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Summary 
 

 Neurons communicate with each other through synapses. Most excitatory synapses 

contact small protrusions called dendritic spines. Spines are connected to dendrites by a 

very thin stalk called the “spine neck” which restricts diffusion between the spine head and 

its parent dendrite. In consequence, dendritic spines form biochemical micro-

compartments. Compartmentalization inside spines is thought to be important for synaptic 

function, since strong compartmentalization could influence concentration of activated 

molecules close to synapses during repetitive synaptic stimulations, and also increase 

depolarization in spine heads. But it is not fully understood how and to what extend spines 

compartmentalize biochemical signalings. 

 With two-photon microscopy we measured diffusion coupling between spine heads 

and parent dendrites of CA1 pyramidal neurons using fluorescence recovery after 

photobleaching of Alexa dye. Since dendritic spines are below the diffraction limit of light 

microscopy, it is not possible to measure their detailed morphology with two-photon 

microscopy. To investigate how spines ultrastructure regulates diffusional coupling to the 

dendrite, we needed informations about diffusion time constant and spine morphology 

from the same spine. 

We developed a correlative (two-photon microscopy / electron microscopy) 

approach to reconstruct the precise morphology of dendritic spines where diffusional 

coupling measurements took place. We found that the outer shape of dendritic spines 

predicts the diffusional coupling of small molecules. However their diffusional speed in the 

cytoplasm of spines is 5 times slower than in dendrites. The impact of dendritic spines on 

electrical compartmentalization depends on spine neck resistance. There is a controversy 

between studies focusing on dendritic spines morphology (low neck resistance estimates) 

and studies focusing on synaptic physiology (high neck resistance estimates). All estimates 

from morphology rested on the assumption that the cytoplasm inside spines and dendrites 

has homogenous diffusional properties and thus the same resistivity. Here we show that 

this assumption is not correct. In consequence, we estimate that spine necks resistance 

approaches 1 GΩ in some spines, sufficiently high to compartmentalize electrical signals. 
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For the correlative experiments we used Alexa, a small molecule (1 kDa) roughly the 

size of ATP or GTP. We were also interested to see if larger molecules like calmodulin (16 

kDa) or PKA (38 kDa) behave in the same way. In contrast to Alexa, we found that the 

diffusional coupling of PA-GFP (27 kDa) and Dextran (70 kDa) could not be predicted from 

spine shapes. Thus, in addition to the high viscosity of the cytoplasm in all spines, some 

spines seem to contain an additional size filter that selectively blocks the diffusion of larger 

molecules. This filter might be important in regulating metaplasticity. 

Theoretically, dye particles and other molecules should concentrate in high viscosity 

compartments. We tested this prediction by creating synthetic images based on 3D 

reconstructions from our EM data. Indeed, we found that spines appear too bright in the 

two photon images. Thus, the differences in diffusion speed between spines and dendrites 

result in different particles densities, making dendritic spines ‘protein enrichment devices’. 

Finally, we found that the coefficient of diffusion in the cytoplasm is not a static value, but 

that the viscosity of the entire neuron increases in response to strong depolarization. In 

summary, dendritic spines appear to be even more complex than previously thought, as we 

found a new function and a new level of regulation in their functionality. In the light of our 

findings, the disagreement of previous estimates of spine neck resistance can be readily 

explained by local differences in cytoplasmic viscosity. 
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I. Introduction 
 The brain is composed of billions of interconnected cells organized in a very complex 

structure. Inputs are received from the environment and process to induce a response. 

Previous experiences can induce a more appropriated response; this ability is called learning 

and memory. Despite an explosion of scientific discoveries from the level of animal 

behaviors to the structure of single molecules, we barely start to understand how such a 

process is driven.  

The brain is composed mainly of two types of cells: 90 % of glia cells and 10 % of 

neurons. Glia cells provide, support, nutrients and oxygen to neurons, insulate axons and 

also drive the brain immune response. Although it was though for a long time that glia cells 

do not play a role in the process and transmission of information, this idea is challenged by 

new discoveries showing that they do modulate neurotransmission (Parpura, Basarsky et al. 

1994) (Yang, Ge et al. 2003). Neurons in the other hand accomplish the main activity of the 

brain: Processing of information through ensembles of neurons organized into neuronal 

networks is believed to drive behavior. 

 Information transmits through synapses which are very specialized structures 

located at the junction points between neurons. It has been shown that information 

transmission through synapses can be regulated by previous activity. This process called 

synaptic plasticity has been proposed as a mechanism to mediate learning and memory. 

One neuron can carry as much as 10 000 synapses and each synapse can be regulated 

independently and act as a single unit, increasing the computational power of the brain. 

Neurons have developed dendritic spines where synapses are located, most probably to 

establish synaptic independence, but it is not clear to what degree spines isolate synapses. 

 

A. Hippocampus. 

To investigate the compartmentalization of dendritic spines, we used a highly 

studied structure as a model system, the hippocampus. It is part of the forebrain and 

located in the medial temporal lobe and has been shown to play a central role in memory 

storage and spatial navigation (Rempel-Clower, Zola et al. 1996; Reed and Squire 1997; 

Milani, Uemura et al. 1998; Neves, Cooke et al. 2008). It is a highly organized network and it 
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is anatomically divided into several sub regions; CA1, CA2, CA3, dentate gyrus, subiculum, 

parasubiculum, perisubiculum, and entorhinal cortex.  

The hippocampus has three major excitatory pathways running from the subiculum 

to the CA1 region. The perforant pathway runs from the subiculum to the granule cells of 

the denta gyrus. The axons of the granule cells form a bundle, the mossy fiber pathway that 

runs to the pyramidal cells lying in the CA3 region of the hippocampus. The pyramidal cells 

in the CA3 regions send excitatory collaterals, to CA1 pyramidal cells through the Schaffer 

collateral or the commissural pathway. CA1 projections run outside the hippocampus, 

through subiculum and enthorhinal cortex to several cortical and subcortical areas (Amaral 

and Witter 1989) (Figure I-1). 

 
Figure I-1: The anatomy of the hippocampus. 
Sensory information collected by neocortical areas is conveyed to the Enthorhinal cortex, which is 
divided into different layers (here displayed are layers II, III and V0. Each layer projects via the 
perforant path to a different subregion in the hippocampus. Direct projections terminate in the 
dendate gyrus, area CA3 and area CA1. From(Neves, Cooke et al. 2008) 
 

Thanks to its highly organized structure, the hippocampus is an excellent system to 

study synaptic physiology. At the dentate gyrus was described for the first time synaptic 

plasticity(Bliss and Lomo 1973) and most of the studies in the decades that followed its 

original description have focused on the CA1 region. Nowadays a wealth of structural, 

histological, and physiological information is available for hippocampal CA1 pyramidal 

neurons. 
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B. Pyramidal neurons 

Neurons are the functional block of the brain. They receive, process, transmit 

information through form of electrical activity. Neurons can be classified into many different 

types depending on their locations and functions, but they all share the same basic 

architecture. They are composed of three different elements: 

 - the soma or cell body where the nucleus and most organelles for protein 

synthesis are located 

-dendrites are cellular processes with a tree-like branched structure where 

information is received. 

-the axon is a fine, cable-like process where information is transmitted to 

postsynaptic cells. Axons can project over long distances to other parts of 

the brain. 

 

CA1 pyramidal neurons possess two branching dendritic structures which emerge from the 

soma. The basal dendrites occupy the stratum oriens, the apical dendrites occupy the 

stratum radiatum ( proximal apical) and the stratum lacunosum-moleculare (distal 

apical)Figure I-2. 

 

 

 
Figure I-2. CA1 pyramidal cell. 
CA1 pyramidal neurons dendritic 
tree is represented. The cell body 
is in the stratum pyramidale 
(s.p), basal dendrites in the 
statum oriens (s.o) and apical 
dendrites in the stratum 
radiatum (s.r) and stratum 
lacunosum-moleculare (s.l.m) 
The major excitatory inputs in 
each layers and the major 
outputs are also indicated.  
Adapted from(Bannister and 
Larkman 1995). 
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In this study we focused on dendritic spines receiving synaptic input from the Schaffer 

collaterals on apical dendrites. 

 

C. Synapses 

1. Structure 

 There are two types of synapses, electrical and chemical.  

Electrical synapses, also known as gap junctions consist of arrays of intercellular channels 

composed of integral membrane proteins called connexins in vertebrates, creating an 

electrical coupling between both neurons. Gap junction channels regulate the passage of 

ions and biological molecules between adjacent cells (Maeda and Tsukihara 2011). These 

synapses are rare among principal neurons (e.g., pyramidal neurons).  

Most information is transmitted through chemical synapses. They are composed of three 

elements (Figure I-3): 

- The pre synaptic element, called bouton, is a specialized area within the 

axon which contains neurotransmitters enclosed in small membrane- 

spheres called synaptic vesicles.  

- the synaptic cleft is a widening of the space between the neurons 

membranes where the neurotransmitter is released and diffuse to bind to 

receptors located on the postsynaptic membrane. 

- The postsynaptic element includes receptors where the 

neurotransmitter binds but also a postsynaptic density which is an 

aggregate of proteins important for the functionality of the synapse. Most 

receptors are ionotropic receptors. Their opening leads to an influx or 

efflux of ions, changing the transmembrane potential. Depending of the 

type of ions the flux can depolarize or hyperpolarize locally the inside of 

the neuron leading to an excitatory or inhibitory effect called excitatory 

or inhibitory postsynaptic potentials (EPSP, IPSP). 
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Figure I-3:Chemical synapse 
Presynaptic terminal (pre) contains synaptic vesicles, a postsynaptic density 
appears postsynaptically (post). The synaptic clef contains also grey filamentous 
material ( from http://synapses.clm.utexas.edu). 

 

Synaptic potentials will propagate until the soma where they will be integrated at 

the level of the initial segment at the axon. If the integrated signal reaches the spiking 

threshold then an action potential (AP) is initiated and actively transmitted along the axon. 

The AP will also back propagate (bAP) along the dendrites and give a feedback to the 

synapse about the output status of the neuron. 

 

2. Synaptic plasticity 

During an EPSP calcium (Ca2+) permeable channels open, leading to an increase of 

Ca2+ in the spine associated with the postsynapse. Pairing of postsynaptic bAPs with synaptic 

EPSP generates supralinear Ca2+
 signals when the EPSP precedes the bAP and sublinear 

signals when the timing is reversed (Bloodgood and Sabatini 2007). Coincidence of 

postsynaptic bAPs and EPSPs and in consequence elevated calcium levels are crucial for 

regulation of synaptic efficiency (Markram, Lubke et al. 1997). Long-term potentiation and 

long-term depression are long lasting activity dependent changes in synaptic strength that 

are thought to be cellular and molecular mechanisms of memory formation and storage. 

 

Pre 

Post 



12 
 

D. Dendritic spine. 

Most excitatory synapses do not occur directly on dendrites but are located on small 

protrusions of it called spines (Gray 1959). Although they were discovered one century ago 

by Ramon y Cajal, their role is not fully understood. Many roles have been proposed for this 

tiny structure. Ramon y Cajal thought that spines connect axon and dendrite because spines 

would increase the amount of dendritic membrane available for synaptic contacts, similar to 

how intestinal villi increase the absorbance surface in the digestive system. This theory is 

now disregarded because there are almost no synaptic contacts directly on dendrites (Harris 

and Stevens 1989). Spine could also increase the connectivity between neurons. Dendrites 

could connect with more axon terminals than without spines by providing a wider selection 

of axons available to a dendrite to make synaptogenesis more selective (Stepanyants, Hof et 

al. 2002). This design would improve the wiring of a neuronal circuit, as axons could course 

through the nervous system in straight trajectories. The main hypothesis for the role of 

dendritic spines is that they act as biochemical compartments. Synapses on spines could be 

regulated independently and individual synapse could act as basic functional units of 

neuronal integration. In the following, I will list some evidence in favor of this hypothesis. 

 

1. Structure 

In pyramidal neurons spines typically consist of a bulbous head connected to the 

dendrite by a thin stalk called the ‘spine neck’. Dendritic spines exist in a huge variety of 

shapes and sizes. The head can be spherical, cups shaped or completely irregular. The neck 

can be cylindrical, irregular, straight or bent. There is also a huge variety in size. Electron 

microscopy provided fine details of the morphology. Spine head volume ranges from 0.004 

to 0.6 µm3 with a diverse variety of shape. The narrow necks range in length from 0.08 to 

1.58 µm and from 0.0038 to 0.46 µm in diameter (Harris and Stevens 1989). This huge 

variety can be found along a very short dendritic segment (Figure I-4) .  
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Figure I-4 3D reconstruction of dendrite from CA1 pyramidal cell. 
 A segment of pyramidal cell dendrite from stratum radiatum (CA1) with thin, stubby, and 
mushroom-shaped spines. Spines synapses colored in red, stem (or shaft) synapses colored in blue. ( 
from http://synapses.clm.utexas.edu) 
 

Typically, each dendritic spine carries the postsynaptic element of a single excitatory 

synapse. The head can be seen as a minimal cytoplasmic volume associated with the 

synapse; it contains neurotransmitter receptors and associated signaling proteins, as well as 

cytoskeletal elements. Organelles involved in protein synthesis, membrane trafficking and 

calcium metabolism are also present. Spines possess the entire molecular machinery 

indispensable for a proper functioning of the synapse. 

 

a) Postsynaptic density 

The postsynaptic density (PSD) is an electron dense thickening located at the 

membrane opposed to the location where synaptic vesicles are released, the active zone. 

The PSD of an excitatory synapse contains ionotropic and metabotropic glutamate receptors 

as well as voltage dependent channels. It contains also a variety of receptor tyrosine kinases 

and cell adhesion molecules which mediate a physical or communication link between the 

pre and post synaptic elements. At hippocampal Schaffer collateral synapses, the main 

glutamate receptors are α-amno-3-hydroxy-5-5methyl-4-isoxazoleproprionate (AMPA), N-

methyl-D-aspartic acid (NMDA) and metabotropic receptors (Walikonis, Jensen et al. 2000). 

AMPA is a heterotetrameric receptor made of the subunit GluR1-4 (Mayer 2011). 

These receptors carry the main electrical charges transfer at the synapse during synaptic 

transmission. Release of glutamate from the presynaptic element and binding to AMPA 
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receptors induces a rapid inward current of K+ and Na+. AMPA receptors lacking a GluR2 

subunit are impermeable to calcium, but in CA1 pyramidal cell most of AMPA receptor 

contain GluR2 (Burnashev, Monyer et al. 1992),(Geiger, Melcher et al. 1995). 

The NMDA receptor is also a heterotetrameric receptor, but highly permeable to 

calcium ions. It is composed of NR1 and NR2A-D subunits(Mayer 2011). NR2 subunits 

determine the calcium permeability and kinetics of the receptor. NMDA receptors require 

the binding of glutamate and glycine (co-agonist) for their activation. At the resting 

membrane voltage potential the channel pore is block  by Mg2+ (Nowak, Bregestovski et al. 

1984).  Gradual membrane depolarization unblocks the channel to its maximum 

permeability to calcium ions at 0 mV (Grunditz, Holbro et al. 2008). The receptor is also 

permeable to sodium and potassium. The NMDA receptor acts as a coincidence detector, 

since there is only influx of calcium when release of glutamate is concomitant with 

depolarization of the postsynaptic membrane. Influx of calcium through this receptor is 

thought to be the main trigger for the induction of synaptic plasticity (Kennedy, Beale et al. 

2005). 

Metabotropic receptors are G-protein coupled receptors. They are subdivided into 3 

groups depending of the coupled protein. Group I receptors are coupled to the 

phospholipase C/inositol-triphosphate signaling cascade and their activation can result in 

calcium release from internal stores. Group II and III are negatively coupled to adenylate 

cyclase which forms cAMP from ATP. In CA1 pyramidal neurons group I receptors are 

located postsynaptically and group II and III are located presynaptically and are involved in 

presynaptic inhibition (Shigemoto, Kinoshita et al. 1997). 

Hundreds of molecules organized into a laminar structure are found in the PSD. 

Below the receptors is a layer of proteins important for anchoring and proper trafficking of 

receptors. Primary scaffolding proteins belong to the PSD-95 family which binds to NMDA 

receptors(Kornau, Schenker et al. 1995) . This family also links receptors to another lamina 

of signaling proteins important for plasticity. They play a role in the formation, stabilization 

and morphology of the synapse among them are the protein kinase A,C Ca2+/CaM-

dependent protein kinase II and others small GTPase activating proteins. (Sheng and 

Hoogenraad 2007). 
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b) Cytoskeleton. 

In contrast to the dendrite, spines possess a high concentration of actin filaments (F-

actin). Actin has been shown to regulate the formation and the morphology of the spine. 

Altered polymerization/depolymerization states accompany change in head shape. The actin 

cytoskeleton is regulated by actin binding proteins, which can increase or decrease the rate 

of polymerization/depolymerisation, but also crosslink actin into higher level of 

organization. Tens of different actin binding proteins are found inside the spine and are 

responsible of diverse functions like vesicle or protein transport, regulation of spine 

morphology, or anchoring of membrane proteins like NMDA receptors (Dillon and Goda 

2005). The motor protein Myosin is also found enriched at the PSD. Myosin can regulate the 

contractibility of actin and affects spine shape (Ryu, Liu et al. 2006). 

 

c) Organelle. 

Dendritic spines possess a multitude of intracellular organelles.  

 

Endosome is found inside dendritic spines and is essential to dendritic and synaptic 

function, sorting membrane proteins for degradation and recycling.  Recent studies have 

shown that postsynaptic endocytosis and exocytosis serve important roles in long-term 

depression (LTD) and long-term potentiation (LTP) (Man, Lin et al. 2000). Endosomes have 

been suggested to provide a local store of receptors at individual dendritic spines. 

 

Polyribosomes and proteasomes are commonly found at the base of the spine 

(Steward and Levy 1982).  It has been shown that spine plasticity requires the synthesis and 

degradation of proteins (Tanaka, Horiike et al. 2008). After induction of LTP, polyribosomes 

move from the dendrite to the spine (Bourne, Sorra et al. 2007), and could play a central 

role for the long-term maintenance of synaptic modification. 

 

Smooth endoplasmic reticulum (SER) forms a continuous networks present in soma, 

axon and dendrite. In CA1 The SER extends into about 50% of spines and forms a laminated 

of SER called ‘spine apparatus’ in a small subset of them (20% of all spine)(Spacek and Harris 

1997). It has been shown that calcium influx into spines through ionotropic channels can 
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trigger release from SER, extending the calcium elevation during synaptic transmission 

(Sabatini, Maravall et al. 2001). The presence or absence of a spine apparatus can influence 

synaptic plasticity and studies show that mice lacking synaptopodin, a protein essential for 

the formation of a spine apparatus present deficits in learning (Deller, Korte et al. 2003). 

 

Mitochondria are rarely present inside dendritic spines. They are prominently 

located inside the dendrite where they produce ATP and also buffer calcium. The ATP 

produced in the dendrites likely diffuses into spines to provide sufficient energy for signal 

transduction. However, it has been shown that mitochondria can migrate into some spines 

during periods of intense activity (Li, Okamoto et al. 2004). 
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Figure I-5:Some important components of dendritic spines. 
Spines are small protrusions at synaptic junctions that use the glutamate, which is released from 
synaptic vesicles clustered in the presynaptic terminal. Across from these glutamate release sites, 
AMPA and NMDA subtypes of glutamate receptors are clustered at the postsynaptic active zone 
within a dense matrix called the postsynaptic density (PSD; pink). Beyond the PSD lie subregions of 
spine membrane that contain G protein-coupled glutamate receptors (mGluR) and endocytic zones 
for recycling of membrane proteins. Receptors, in turn, connect to scaffolding molecules, such as 
PSD-95, which recruit signaling complexes (e.g., regulators of RhoGTPases, or protein kinases). Actin 
filaments provide the main structural basis for spine shape. Via a network of protein interactions, 
actin filaments indirectly link up with the neurotransmitter receptors and other transmembrane 
proteins that regulate spine shape and development, including Eph receptors, cadherins, and 
neuroligins. Actin-regulatory molecules such as profilin, drebrin, cofilin, and gelsolin control the 
extent and rate of actin polymerization. These, in turn, are regulated by signaling cascades through 
engagement of the transmembrane receptors. From (Calabrese, Wilson et al. 2006). 
 

 

d) Spine geometry and synaptic function. 

Dendritic spines present a very large distribution of different sizes and shapes. Since 

their role is to carry the postsynaptic element an important question is if there is any 

relationship between spine geometry and synaptic function. Using electron microscopy, 

different studies have shown that there is a strong correlation between some spine 
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morphological features and synaptic function. PSD area and spine head volume present a 

huge variability across spines (more than 20 fold), but interestingly there is a very good 

correlation between both parameters. These results are very robust among studies, and 

have been found in different type of neurons: Purkinje cells (Harris and Stevens 1988), CA1 

pyramidal neurons(Harris and Stevens 1989), and neocortical pyramidal cells (Arellano, 

Benavides-Piccione et al. 2007). Immunogold labeling studies have shown that the number 

of  AMPA and NMDA receptors per synapse is proportional to PSD area and spine volume 

(Nusser, Lujan et al. 1998; Takumi, Ramirez-Leon et al. 1999; Racca, Stephenson et al. 2000). 

This correlation does not stop at the synaptic cleft, since the PSD area is also correlated to 

the area of the active zone, the number of docked vesicles, and the number of presynaptic 

vesicles which is a good correlate of the quantity of neurotransmitter to be released per AP. 

In summary these studies show that there is correlation between synaptic strength and the 

size structural feature of synapses, in other words big spines carry strong synapses. This 

relation has been confirmed by physiological experiments using Glutamate uncaging. This 

technique allows the stimulation of single synapse located on dendritic spine, bypassing the 

presynaptic element. Those studies found a good correlation between spine head volume 

and uncaging evoked EPSP (Matsuzaki, Ellis-Davies et al. 2001), confirming the structural 

studies realized earlier. 

The spine neck connects the synapse to its parent dendrite. Since it is the obligatory 

passage that molecules or ions have to diffuse through during synaptic activation, it is very 

important to know if there is also a correlation between spine neck morphology and 

synaptic strength. In Purkinje cells (Harris and Stevens 1988), CA1 pyramidal neurons(Harris 

and Stevens 1989), and neocortical pyramidal cells (Arellano, Benavides-Piccione et al. 2007) 

spine neck length and diameter are not correlated to each others. The morphology of the 

spine neck is also uncorrelated with spine head volume and the area of the PSD, suggesting 

that the spine head and neck can be regulated independently. In neocortical pyramidal 

neurons, on the other hand a weak correlation between spine neck diameter and spine 

head volume has been described (Arellano, Benavides-Piccione et al. 2007). 
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2.  Compartmentalization 

 We have seen that a dendritic spine is a very complex structure carrying the synapse 

and its associated rich molecular machinery, important for its function and regulation. Each 

spine forms a tiny biochemical reactor in order to regulate each synapse independently. 

Plasticity is induced by the accumulation of diffusible molecules like calcium which activate 

the molecular machinery. Synapses are very closely spaced: Spine density (as correlate for 

synaptic density) has been estimated using serial section electron microscopy to be able to 

identify all spines regarding of size and position on the dendritic tree. Spine density range 

from two to four spines per micrometer of dendrite in CA1 pyramidal cells(Harris and 

Stevens 1989), but this density can go as high as ten spines per micrometer for Purkinje cells 

(Harris and Stevens 1988). Without strong compartmentalization created by dendritic spine, 

activated molecules at one synapse could diffuse freely within the dendrite and could reach 

inactive synapses within few milliseconds. Activity-dependent regulation of individual 

synapses would not be possible. 

There are several factors that influence the compartmentalization of biochemical 

signals which include diffusion, intracellular binding and removal mechanisms: 

• Diffusion is a probabilistic process due to thermal agitation, spreading 

molecules through random motion. Molecules equally distribute themselves 

from regions of higher concentration to regions of lower concentration. In 

case of a dendritic spine, the time of equilibration can be influenced by the 

anatomical structure and by the coefficient of diffusion of a certain molecule 

in the cytoplasm. The coefficient of diffusion depends of the size of the 

molecule and the cytosolic volume accessible to that molecule. Diffusion is 

inversely proportional to the hydrodynamic radius of a molecule, therefore 

to the cubic root of the mass. A molecule with a 100 times larger molecular 

weight would only be slowed down by a factor of 5. Ions which are 

surrounded by a hydration shell have an increased apparent radius, leading 

to a slowing down of their diffusion speed (they act like bigger molecules) 

(Hille 2001). The accessible cytosolic volume can be reduced due to the 

presence of intracellular organelles or molecular crowding.  In the latter case 

the apparent diffusion coefficient for molecules would be decreased since 



20 
 

molecules would have to find their way between macromolecular 

complexes. 

• Binding of molecules like second messengers or ions to their target can 

change their apparent diffusion speed. Depending on the affinity and the 

mobility of targeted molecules, we can see an increase or decrease in the 

spreading of the messengers. 

• Removal mechanism can compete with free diffusion by pumping ions like 

calcium either out of the cytosol to the extracellular medium or inside 

organelle like SER. 

The morphology of the spine with its huge head connected to the dendrite by a 

constricted neck suggests that spine would isolate synapse from their parent dendrite. The 

narrow neck could restrict the diffusion of molecules (e.g second messengers) but could also 

slow down the diffusion of ions and isolate the spine electrically. Dendritic spines could act 

as chemical, but also as electrical compartments.  

 

a) Spines act as chemical compartments. 

The first studies investigating biochemical compartmentalization of dendritic spines 

were computer simulations based on 3D reconstruction from serial sections electron 

microscopy (Westrum and Blackstad 1962; Gamble and Koch 1987)). A first direct 

measurement of spine compartmentalization became possible thanks to 2-photon 

microscopy which can resolve individual dendritic spines in highly scattering thick brain 

tissue. Using fluorescence recovery after photo-bleaching (FRAP), the authors were able to 

directly measure the diffusional coupling between spine heads and their parent’ dendrites 

in hippocampal slices. They found that small synthetic fluorophores take 20 to 200 ms to 

cover the small distance between the spine head and the dendrite. This is around 100 times 

slower than expected (Svoboda, Tank et al. 1996). Longer spine displayed slower recovery in 

average suggesting a role of spine neck geometry, but long time constants could also be 

found in spines with short neck. Similar timings were also found in cortical slices but in vivo, 

diffusion time constant were found to be much broader, with a distribution ranging from 

0.27 to 2.42s (Grunditz, Holbro et al. 2008) . Moreover, following spine head 

compartmentalization over time, a recent study showed that dendritic spine can experience 
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drastic changes (more than 10 fold) in their diffusional coupling over short period of time 

(minutes) without a measurable change ( at least by light microscopy) in spine morphology. 

The authors suggested that neck diameter, which is the only parameter not resolvable with 

two-photon microscopy, must account for that change (Bloodgood and Sabatini 2005). So 

the diffusional coupling across the spine neck is highly variable, spanning three orders of 

magnitude, and can be regulated at the level of a single spine but it is not clear what factors 

influence such heterogeneity. It could be the spine morphology or properties of the 

cytoplasm that change inside the spine. The situation could be even more complex for 

interacting molecules that play a role in synaptic function (e.g. calcium, small second 

messengers, kinases , phosphatases). 

Calcium is a very ubiquitous second messenger and the main trigger to induce 

synaptic plasticity. Upon synaptic activation calcium enters into the spine and activates 

signaling pathways which locally regulate synaptic transmission. The confinement of calcium 

transient to individual spine has been shown directly by imaging techniques (Yuste and Denk 

1995) using two-photon microscopy (Figure I-6). Calcium enters into the spine through 

three different ways: NMDA receptors, voltage sensitive calcium channels (VSCC), and 

release from internal stores.  Once inside the spine, calcium ions behave differently than 

small fluorophores. Most of the calcium is taken up by endogenous binding protein and only 

5% stays free (Sabatini, Oertner et al. 2002).  Since most of the endogenous buffers are 

immobile, binding slows down calcium diffusion considerably.  Calcium signal time course is 

influence by channel kinetics and by extrusion mechanism across the plasma membrane and 

through the SER. Since both extrusion and binding are extremely fast processes, spine neck 

geometry is thought to have little impact on the diffusion of free calcium ions out of the 

spine. (Sabatini, Oertner et al. 2002). It could control, however, the residence time of Ca-

activated second messenger molecules at the active synapse. 
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Figure I-6: Calcium transient in a dendritic spine of a CA1 pyramidal cell. 
Calcium response to a single presynaptic action potential. Four frames (128 x 128 pixels) were 
acquired at a rate of 3.9Hz(256 ms per frame). Presynaptic axons were stimulated after the first 
frame. Images are overlays of the anatomical image (Alexa 594, red) and the calcium-sensitive 
channel (Fluo5F, green; yellow in overlay). The signal from the green channel is displayed only within 
the dendrite using a binary mask generated from the anatomical image. Scale bar is 1 µm(Oertner 
2002). 
 

The spatial spreading of activated signaling molecules at the single spine level has 

been studied thanks to recent advances of imaging technology based on fluorescence 

energy transfer (Yasuda and Murakoshi 2011). This technique can monitor interaction 

between two molecules tagged with two different fluorophores, or a conformational change 

of a protein tagged with two fluorophores (Miyawaki 2003). Activity of CaMKII and small 

GTPase proteins HRas,RhoA, and Cdc42 in single spine activated with glutamate uncaging 

has been monitored. CaMKII which is one of the most abundant proteins in spine and very 

important for the induction of synaptic plasticity stays active during around 10s and  does 

not diffuse through the spine neck within this time window (Lee, Escobedo-Lozoya et al. 

2009). CaMKII will lead to the activation of small GTPases  which activities and spreading are 

very heterogeneous. Small GTPases can stay active up to 30min and although these proteins 

have similar structure and diffusion coefficient, they possess a different diffusion profile 

upon activation. H-ras and RhoA diffuse out of the spine along their parents dendrites over 

5-10 µm whereas Cdc42 stays inside the spine (Murakoshi, Wang et al. 2011) .  A group 

nicely showed that the diffusion of active h-ras can locally lower the threshold for induction 

of LTP (Harvey and Svoboda 2007).  

We have seen that numbers of important signaling molecules activated during 

synaptic transmission are highly compartmentalized inside the spine. Compartmentalization 

of signaling complexes, e.g. CaMKII  is probably responsible for the ability of a spine synapse 

to be independently regulated. The compartmentalization of small diffusible signaling 
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messengers like cAMP or IP3 is not yet known, but they could be very sensible to the 

geometry of the spine. The ability of a subset of signaling proteins to escape the spine could 

be responsible for summation of biochemical signals in the dendrite, favoring clustering of 

synchronously active inputs. 

 

b) Spines act as electrical compartments. 

In neurons, electrical signal are carried by the movement of ions which presumably 

diffuse freely (in contrast to some of the signaling molecules discussed before). The idea 

that  spines could have an effect on the movement of ions was first proposed In 1952 by 

Chang(Chang 1952) who suggested that dendritic spines could act as electrical 

compartments. This first paper was suggested by a numbers of theoretical studies (Koch and 

Poggio 1983; Wilson 1984; Segev and Rall 1988). The potential effect on electrical signaling 

depends on spine neck resistivity which could attenuate the EPSP. This attenuation would 

decrease the impact of the synapse, and a larger number of synapses would have to be 

activated at the same time to trigger an action potential. However, studies estimating  the 

biophysical properties of spines in their basal state based on, electron microscopic 

reconstructions of spine geometries and diffusional coupling through spine necks concluded 

that most spine neck are not thin and long enough ( spine neck resistances are too small) to 

significantly modulate synaptic currents (Harris and Stevens 1989; Svoboda, Tank et al. 

1996). 

But even if the spine neck resistivity is not sufficiently large to affect the size of 

synaptic currents at the soma, it could still enable strong local depolarization of the spine 

head itself. 

Since spines contain VSCC, a voltage difference between spine head and dendrite 

may selectively activate VSCC and NMDA receptors in the head, further boosting local 

depolarization in the spine head. An increasing number of studies using sophisticated 

imaging techniques, calcium and voltage imaging to monitor synaptic function concluded 

that spine can have an effect on the electrical signaling (Araya, Jiang et al. 2006; Grunditz, 

Holbro et al. 2008; Bloodgood, Giessel et al. 2009; Palmer and Stuart 2009). The level of 

spine neck resistance could then influence calcium kinetics and amplitude by controlling the 

voltage in the spine and permit regulation of synaptic signaling cascades. 
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In conclusion, we have seen that dendritic spines compartmentalize otherwise freely 

diffusible molecules. It has to be taken into account that the diffusion of many signaling 

molecules is strongly influenced by the mobility of their binding partners. In addition 

electrical compartmentalization produced by spine morphology could increase local 

membrane depolarization, boost the entrance of calcium into the spine head, and thus 

influence plasticity. 
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II. Aim of the Thesis 
 

 Dendritic spine compartmentalization is thought to be important for synaptic 

function, since strong compartmentalization could increase the concentration of activated 

molecules close to the synapse during repetitive synaptic stimulations, and also increase 

depolarization in the spine head. But it is not fully understood how and to what extend 

spines compartmentalize biochemical signaling. Compartmentalization and morphology of 

dendritic spines have been demonstrated to be extremely variable. 

 

The aim of our study was to investigate whether information about spine 

ultrastructure is sufficient to predict diffusional coupling with the dendrite. 

 

To answer that question we developed a correlative approach to gain information 

about diffusional coupling and morphology of individual spine. We found that 

compartmentalization of small molecules can be predicted from spine morphology and also 

that their diffusion speed is slowed down inside spines compare to dendrites. This discovery 

could explain a controversy between studies investigating the role of  dendritic spines as an 

electrical compartments.  

Since the diffusional coupling of alexa can be predicted by spine morphology. We 

used Alexa dye as a correlate for spine morphology to investigate the compartmentalization 

of larger molecules. We observed that larger molecules are regulated independently of 

spine morphology. 

Theoretically, dye particles and other molecules should concentrate in high viscosity 

compartments. We tested this prediction by creating synthetic images based on 3D 

reconstructions from our EM data. We found that spines under two photon images appear 

too bright, thus dendritic spines act as enrichment devices.  

 

By integrating informations from diffusion and  ultrastructure measurements on the 

same dendritic spines we have gained new insights on the regulation of 

compartmentalization in dendritic spines. These insights could help to resolve contradiction 

in previous studies and also supplement the model of dendritic spine functionality. 
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III. Methods 
 

A. Slice culture 

Dendritic spine compartmentalization was investigated in hippocampal organotypic 

slices prepared from Wistar rats. This method developed in the nineties (Stoppini, Buchs et 

al. 1991) is the method of choice to maintain explants of central nervous tissue for long 

term with a high degree of cellular differentiation and organization (Gahwiler, Thompson et 

al. 2001) . The major characteristic of this technique is the use of  semiporous membranes 

to culture the explants which are maintained at the interface between a culture medium 

and a CO2 enriched environment. Compared to other technique like roller tube culture 

where the explants flatten into a monolayer, interface cultures stay thicker and retain their 

three dimensional structure. Since cultures are prepared from 5 days old postnatal rats 

where the cellular and tissue organization is already well advanced, the original local 

circuitry remains intact (Figure III-1). Although cultures develop in isolation from the outside 

world, explants continue to develop at a similar rate compared to in vivo. Development of 

synaptic transmission and dendritic morphology are similar that acute slice prepare from 

the same age as the culture but connectivity is higher (De Simoni, Griesinger et al. 2003). 

Tissue slices were prepared from 5 day old Wistar rats under sterile conditions.  The 

brain was removed, hippocampus was dissected and placed onto tissue chopper (McIlwain). 

Slices of 400 µm were cut and collected in Petri dish containing chilled MEM. The single 

slices were then transferred to humidified membrane insert (Millicel-CM, Millipore 0.4 mm 

pore size), which was placed in culture plates with 750 μl MEM. The medium was replaced 

every 2-3 days. The dissection medium contained 1 mM CaCl2, 5 mM MgCl2, 10 mM 

glucose, 4 mM KCl, 26 mM NaHCO3, 2 mM kynurenic acid and 1mL phenol red. The medium 

was vacuum filtered and stored at 4 °C. MEM contained 20% Horse Serum, 1 mM L-

glutamine, 0.00125% ascorbic acid, 1 μg/ml insulin, 1 mM CaCl2, 2 mM MgSO4, 13 mM D-

glucose and 1μg/ml retinol. The medium was vacuum filtered and stored at 4 °C. 
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Figure III-1:Hippocampal slice cultures. 
(a). The slice is placed directly on a semiporous membrane, and medium is added to the bottom of 
the culture dish. In these stationary cultures, the slices are immersed in the medium on one side and 
accessible to oxygen from the other side.(b). Semithin section stained with methylene blue/Azur II 
and cut in a plane parallel to the membrane. Note the well preserved anatomical organization of the 
hippocampal slice culture. (c) Living pyramidal cells in hippocampal slice culture. Differential 
interference contrast (bar = 15 μm).(d) Electron microscopic images of stratum radiatum in the CA1 
area of a 4 week old hippocampal slice culture. Modified from (Gahwiler, Thompson et al. 2001). 
 

 

B. Plasmid construct and transfection 

5-6 days old hippocampal organotypic slice cultures were biolistically transfected 

with expression cassettes of appropriate proteins using a Helios Gene Gun (BioRad). 

 Expression cassettes were generated by cloning cDNAs of appropriate proteins into 

a neuron specific expression vector. The human synapsin 1 gene promoter was used to 

enable neuron-restricted transgene expression (Kugler, Meyn et al. 2001). The tandem 

dimer of a monomeric red fluorescent protein (tidimer2RFP) from Roger Tsien was use as a 

volume marker (Campbell, Tour et al. 2002). A photoactivable green fluorescence protein 

(PA-GFP) was use to measure the diffusion coupling between a spine and its parents 
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dendrite. PA-GFP was made from EGFP by substituting threonine 203 to histidine (T203H) 

(Patterson and Lippincott-Schwartz 2002). It contains also an A206K mutation to disrupt 

dimerization. 

Plasmids are then introduced into the cell where the expression cassette is 

integrated into the genome of the host neuron and corresponding proteins can be 

expressed. Biolistic transfection, was first developed as a method of gene transfer into plant 

cells (Klein, Wolf et al. 1992) through the cell wall. It later became a very popular 

transfection method in neuroscience as it is well suitable for neuronal organotypic slice 

cultures (McAllister 2004; O'Brien and Lummis 2006). Biolistic transfection is efficient, 

reliable, and optimal to have a sparse transfection to be able to assess fine morphology of 

single neuron in intact brain slice. The DNA is attached to a tiny biologically inert particle 

(usually gold). By accelerating such DNA-particle complex and placing the target tissue 

within the acceleration path, DNA is effectively introduced into the cell. For introducing the 

plasmids into the cells we used Helios Gene Gun (BioRad). This hand-held device accelerates 

DNA-coated gold particles that are precipitated on the inner wall of a plastic tube 

(cartridge) by pressurized helium. The bullets are made this way.  8 μg Plasmid-DNA and 27 

μl nupherin (3 mg / ml) were diluted to a total volume of 100 μl. After incubating at RT for 

15 min the DNA was stacked to nupherin. 4 mg gold was suspended in 20 μl spermidine (250 

mM) by vortexing and sonicating. Afterwards, the DNA-nupherin mix was added to the gold. 

To precipitate the DNA 120 μl CaCl2 (1 M) was added slowly to the DNA-gold solution. After 

incubating at RT for 10 min the gold was spin down. The supernatant was removed and 

discarded. The DNA-gold particles were washed three times with ethanol and dissolved in 3 

μl PVP ethanol (0.04 mg / ml) solution. A tube (25 cm) was loaded with this solution and 

dried in the Tubing Prep Station. Afterwards, it was cut into ≈ 50 cartridges with the Tubing 

Cutter. The cartridges were stored with a desiccant pellet at 4 ºC. We used 13.79 bar helium 

pulse to sweep the DNA- coated gold microcarriers from the inner wall of the cartridge 

directly into the hippocampal organotypic slice cultures. Protein expression increase slowly, 

and after 1-2 weeks we used the transfected cells for experiments. 

 



29 
 

C. Two-photon imaging 

Neurons are organized into a complex network. To fully understand their physiology 

it is preferable to study them in their intact environment. Using microscopy to image into 

such a thick tissue is challenging because  brain tissue is  highly scattering.  

Traditional microscopic techniques use a linear absorption process where a molecule 

is excited by the absorption of one photon. The molecule emits a photon of longer 

wavelength and return to its ground state (Figure III-2.a).  The absorption occurs within the 

entire excitation light cone (Figure III-2.b). In confocal microscopy a pinhole rejects 

fluorescence from off-focus locations, but above and below the focal plane the entire 

specimen is illuminated and damaged. Moreover, the pinhole rejects photon coming from 

the focus that are scattered on their way back resulting in loss of information. Increasing the 

excitation to compensate for signal loss leads to even more damage and phototoxicity. This 

technique is only optimal for thin tissue.    

 Two photon microscopy was invented about 20 years ago and uses a non-linear 

absorption process (Denk, Strickler et al. 1990). Two photons of low energy are absorbed 

simultaneously (within 0.5 fs) by a molecule. Their energy is summed up to bring it to an 

excited state. A photon of shorter wavelength is emitted when the molecule returns to its 

ground state. The rate of such absorption depends on the second power of the light 

intensity. In a focused laser beam, the intensity is highest in the focus and drops off 

quadratically with distance, resulting in a drop of excitation with the 4th power of distance. 

As a result, fluorophores are excited almost exclusively in a tiny diffraction limited focal 

volume that can be as small as 0.1 µm3(Zipfel, Williams et al. 2003) . All emitted photons can 

be collected, since they all originate from that volume. In contrast to confocal microscopy 

there is no need to use pinholes to reject out-of-focus fluorescence. The undesirable effects 

of bleaching and photo toxicity are also restricted to the focal volume. In addition, the 

wavelength used for two photon excitation is longer than in case of one-photon 

fluorescence. Photons of longer wavelength interact less with matter and are less absorbed 

by endogenous chromophores, in consequence they get less scattered and can go deeper 

into the tissue.  Moreover, since the scattered excitation photons are too dilute for 2-

photon excitation and too low energy to create 1-photon excitation, they cannot cause 

appreciable fluorescence. Because of these advantages, 2PE laser scanning microscopy is a 

powerful new technology that is contributing to discoveries in neurobiology on many 
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spatiotemporal scales. Since this method enables calcium measurements in highly scattering 

brain tissue, it is especially useful for anatomic and functional imaging of such tiny 

structures as single synapses (Svoboda and Yasuda 2006). 

 

 
Figure III-2: One versus two photons fluorescence. 
 (a) Simplified Jablonski diagram for one and two photon transition,based on wavelength of the 
incoming photon(s).Values chosen for simplicity, a range of wavelengths can generate TPE, 
dependent on the specific dye’s absorption cross section. (b) The blue laser excites an entire column 
of sample. (b) The Blue laser excites an entire column of sample whereas the IR pulse laser excites 
only a small spot of sample.)  (fromhttp://mcb.berkeley.edu/labs2/robey/content/2-photon-
imaging) 
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1. Experimental setup 

Live imaging experiments were done on a custom-built dual beam two-photon laser 

scanning microscope. It is based on a BX51WI microscope (Olympus) equipped with a 

LUMPFI/IR 60X 0.9 NA, Olympus objective controlled by an open source software Scanimage 

(Pologruto, Sabatini et al. 2003). Two ultrafast IR lasers (Chameleon-Ultra, Coherent) 

controlled by Pockel's cells (350-80, Conoptics) were combined by polarizing optics 

(Thorlabs). One laser was tuned to 960 nm for two-photons imaging PA-GFP and RFP  or 810 

nm for Alexa Fluor 594. The second laser was tuned to 750 nm for two-photon 

photoactivation (2PLPA) of PA-GFP (Schneider, Barozzi et al. 2005). Fluorescence was 

detected in epi and transfluorescence (achromatic aplanatic condenser, 1.4 NA,Olympus) 

modes using 4 photomultiplier tubes (R3896, Hamamatsu). We used 725DCXR dichroic 

mirrors and E700SP blocking filters to reflect emitted photons into a secondary beam 

splitter, containing a 560DCXR dichroic, 525/50 (525 ± 25 nm, green) and 610/75 (610 ± 37.5 

nm, red) band pass filters (AHF Analysentechnik) (Figure III-3). 

 

Figure III-3: Scheme of fluorescence 
detection system used in two-
photon setup. 
An infrared laser beam (810 nm) is 
used to excite fluorescence in the 
preparation (scan mirrors not 
shown). Emitted photons are 
collected through the objective and 
through the condenser. Primary 
dichroic mirrors (DM1) separate the 
emitted photons from the excitation 
beam, secondary dichroic mirrors 
(DM2) are used to direct photons 
from the green and the red 
fluorescent dye to different 
photomultipliers (PMTs). Lenses and 
filters are omitted for clarity 
(Oertner 2002). 
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2. Electrophysiology 

Slice cultures were superfused with artificial cerebrospinal fluid (ACSF) at room 

temperature containing (in mM) 127 NaCl, 25 NaHCO3, 25 D-glucose, 2.5 KCl, 1 MgCl2, 2 

CaCl2, 1.25 NaH2PO4, 0.05 chloroadenosine. Cell were filled with a synthetic dye during 

whole-cell voltage clamp recordings using an Axopatch 200B amplifier (Axon Instruments). 

Pipettes were pulled from borosilicate glass capillary tubing to yield tips of 4-6 MΩ 

resistance and were filled with (in mM): 135 Kgluconate, 10 HEPES, 10 sodium 

phosphocreatine, 3 sodium ascorbate, 4 MgCl2, 4 Na2-ATP, 0.4 Na-GTP and 0.030 Alexa Fluor 

594 or/and, 1mg/ml of neurobiotin. PH and osmolarity were adjusted to 7.3 and 290mOsm 

respectively. In some experiments 1mM NBD-M-TMA a cationic dye was included in the 

intracellular solutions (Aavula, Ali et al. 2006). 

 

3. Image acquisition and analysis 

a) Measurement of coupling between dendritic spine and its 

parent’s dendrite. 

To measure coupling between dendritic spine head and its parents dendrite we used 

a technique called fluorescence recovery after photobleaching (FRAP) or photo-activation. A 

neuron was filled with the synthetic fluorophore Alexa-fluor 594 through a patch pipette. 

After 10 min the neuron was filled with the dye and it was possible to image individual 

dendrites with spines using 2-dimensional scan mode (Frame scan) (Figure III-4). Typical 

format of a xy-frame was 128*128 pixel scanning at 2 ms / line. Spines with a head clearly 

separated from the dendrite were selected for diffusion measurements to avoid bleaching 

part of the dendrite. To monitor fluorescence in the spine head with a fast time resolution, 

we use line scans at 500Hz. Baseline fluorescence was measured for 128 ms. The power was 

then briefly increased (0.5ms) to bleach 30% of the baseline and set to its initial value to 

monitor the recovery (Figure III-4.b). The fluorescence was monitored at power levels that 

did not produce noticeable bleaching (Figure III-4.c). Analysis software custom written in 

Matlab was used to optimize the different parameters for every experiment and for online 

analysis. The time course of recovery was well fitted by a single exponential recovery (Figure 



33 
 

III-4.d). Since bleaching is an irreversible process, fluorescence recovery represents the 

exchange of bleached alexa molecules by unbleached molecules from the dendrite by 

diffusion and Ʈequilibrium (Ʈequ) reflects the time constant of diffusional equilibration through 

the neck. To ensure adequate signal-to-noise ratio in the exponential fit, only fluorescence 

decrease whose amplitude was above two times the standard deviation of fluorescence in 

the baseline period were included in the analysis. The same selection process was used for 

PA-GFP or RFP expressing cells. In case of photoactivation of PA-GFP, the brief increase in 

fluorescence was followed by a decay which again represents the exchange of activated PA-

GFP from the spine head with non-fluorescent PA-GFP molecules from the dendrite.  

 

 
Figure III-4: Measuring  diffusional coupling by bleaching spine head fluorescence. 
(a)  Frame scan mode was used to select a dendritic spine separated from the dendrite for a FRAP 
experiment. The yellow line represents the lines-can used in figure b. (b) Line-scan profile. Ordinate 
represent the distance along the line scanned, and abscise represent the time. We can see the short 
laser pulse bleaching the fluorescence in the spine head. (c) Fluorescence average integrated in the 
spine head over time. Note fluorescence recovery to the baseline. (d) A single exponential was fitted 
to the recovery. 
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b) Measurement of coefficient of diffusion in dendrites. 

To estimate the diffusion coefficient of fluorophore within CA1 hippocampal 

pyramidal dendrites, we performed FRAP experiments in the dendrite. The decrease in 

fluorescence induced by a FRAP pulse was measured as a function of space along the 

dendrite and fitted with Gaussian functions. The standard deviation of the Gaussian (spread 

of bleached fluorophore along the dendrite, σ(t), is related to the diffusion coefficient D of 

the fluorescent molecule by D=(1/2).d[σ2(t)]/dt. Thus, D is given by the slope of plot σ2/2 

versus time (Soler-Llavina and Sabatini 2006). The fluorescence of Alexa was measured in 

line-scan mode along the dendrite for high temporal resolution ( 500Hz). A Gaussian fit was 

calculated for every trace. 

 

c) Estimation of spine volume. 

Assuming homogenous distribution of Alexa-Fluor 594 in the cytoplasm, the 

integrated fluorescence intensity (red channel) of a spine is proportional to its cytoplasmic 

volume (Svoboda, 2004) ((Holtmaat, Trachtenberg et al. 2005)). For each cell, a calibration 

measurement was taken by scanning the laser across the proximal apical dendrite, a cellular 

compartment large enough to contain the entire point-spread function (PSF) of our 

microscope, to get the maximum fluorescence intensity (fmax). This calibration measurement 

was typically taken at a different depth (zcal) than the spine image (zspine), and attenuation of 

the laser was corrected using an experimentally determined attenuation function  

To measure the absolute volume of a spine (Vspine), we first calculated the Gaussian intensity 

distribution a hypothetical PSF-sized object would produce if imaged at the same zoom 

factor and the same depth than the spine (fsim). The integrated intensity of fsim (sum of all 

pixel values within a region of interest, ∫∫f sim) was then compared to the integrated intensity 

of the spine image in the center plane (∫∫f spine). The volume of the spine is related to the 

spine intensity as follows:  

Vspine = ∫∫fspine * VPSF / ∫∫fsim  

The volume of the PFS (VPSF = 0.38 μm3) was determined using fluorescent beads (0.1 μm, 

Molecular Probes). 
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D. Serial block face scanning electron microscope. 

To reconstruct the detailed 3D structure of dendritic spine, we used a newly 

developed electron microscope technique called serial block face scanning. This microscope 

is a scanning electron microscope combined with an ultramicrotome directly placed inside 

the chamber of the microscope. The tissue embedded in resine is placed inside the 

chamber. The SEM will take an image of the surface of the block using back scattered 

electrons to form an image. A diamond knife will then cut an ultrathin section off the top of 

the block. The block is moved upwards to stay in focus, and another image is taken. This 

cycle can be automatically repeated as many times as needed to take a full 3D stack of a 

desired volume. The different pictures forming the stack are perfectly aligned (Figure III-5) 

(Denk and Horstmann 2004). 
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Figure III-5: Serial block face SEM 
(a) Principle of SBFSEM operation: 1) a SEM image is taken of the surface of the plastic embedded 
tissue preparation (2) then with a diamond knife(blue) an ultrathin slice is cut off the top of the 
block(3)After retraction of the knife the next picture is taken. (b) usually cut-off slices pile up on the 
top of the knife, Protruding into the picture from the right is a puffer pipette occasionally used to 
remove debris from the knife. (c and d) The mechanical design for the in-chamber microtome is 
shown in an overview(c) and a close-up of knife and sample(d) in renderings . Most parts are 
nonmagnetic stainless steel (grey). A large motion leveraged piezo actuator (green part one the left) 
drives the knife holder back and forth. The custom diamond knife (light blue) is clamped in a special 
holder. The sample(amber) advance is driven via a lever by a direct current motor driven micrometer 
(dark blue). From(Denk and Horstmann 2004) 
 

 

E. Correlative microscopy 

To gain a better understanding of the mechanisms regulating the 

compartmentalization inside dendritic spines, we needed to combine the diffusion 

measurements recorded with two-photon microscopy with the detailed morphology of the 

previously imaged spine, reconstructed from electron microscopy. It can be challenging to 

recover a single spine with a volume of less than 0.1 μm3 in a tissue of more than 1 000 000 
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μm3 . One needs to mark specifically the spine of interest and know exactly where that mark 

is located in the tissue. We developed the following procedure: 

 

1. Recovery of the previously imaged neuron by DAB staining 

To measure the diffusional coupling between the spine head and its parent dendrite 

we filled the cell with a fluorescent dye. At the same time, the cell was filled with 

neurobiotin at a concentration of 1mg/ml. Neurobiotin diffused freely inside the neuron 

during the experiment. At the end of the experiment (after around 30 min), the pipette was 

retracted while monitoring patch parameters. The goal was to avoid ripping a hole in the 

membrane while retracting the pipette. Otherwise, the large calcium influx could induce 

changes in the morphology of the dendrite and spines that were previously imaged.  

The tissue was incubated over night in an ice cold solution of 1% paraformaldehyde, 

1% glutaraldehyde and 1μM of tetrodotoxine (to block spiking during the fixation process) in 

0.1M phosphate buffer. 

The following day, the tissue was processed for the recovery of the previously 

imaged neuron using a Diaminobenzidine (DAB) staining against neurobiotin. The protocol 

can be briefly described as follow:  

• slices were washed 6-8 times in phosphate buffer at 0.1M(pH=7.4) 

• To increase the penetration of the DAB in the tissue, the tissue was immersed 

into liquid nitrogen to produce micro-fractures. Before the tissue was 

successively incubated in 10% and 30% sucrose solution for cryoprotection. 

• Endogenous peroxidase activity was blocked by washing the tissue in 3%H2O2. 

The tissue was then washed to remove all traces of H2O2, as H2O2 would 

interfere with the DAB staining. 

• We then proceeded with the DAB staining. DAB gives a black precipitate in 

presence of Horse radish peroxidase. This enzyme is coupled with avidin 

which has a very strong affinity for biotin. In consequence the complex 

avidin/enzyme will only be localized in the dendrite filled with biotin and a 

black precipitate will form after addition of DAB. This black precipitates is 

opaque to photon and reflects incoming electrons, resulting in high contrast 

and a white appearance in SBFSEM. The complex avidin/enzyme was 
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incubated over night at 4 C. After washing the complex from the tissue, DAB 

was added and incubated for 20 min. H2O2 was then added to induce the 

formation of the black precipitate. The reaction was monitored under the 

microscope and stopped by transferring the slices to 0.1M PB. 

 

2. Embedding 

The sample needs then to be stained and transferred into a solid state to preserve 

the structure and allow the tissue to be cut in very thin section for electron 

microscopy. Here is a brief procedure for the embedding: 

• Tissue is washed in cacodylate buffer. 

• Post-fixation in osmium at 1%  for 40 min will fix and stain membranes  

• Section are washed in distilled water 

• Second staining in 1% uranyl acetate 

• The tissue is then dehydrated in graded alcohol series 

• Infusion with a “plastic “formulation followed by polymerization in the oven 

at 60 °C for 48 hours 

 

3. Recovery of previously image spine in the SBFSEM. 

After staining with heavy metal and embedding into the resin it was still possible to 

visualize the neuron of interest using a conventional light microscope. An area of about 

1mm2 was marked around the neuron and trimmed with a thin razor blade. The resulting 

small cube was glued on a translucent stub. This stub was used to hold the sample in the 

ultramicrotome for trimming and also in the SBFSEM for imaging. The sample was trimmed 

precisely using an ultramicrotome until the dendrite of interest was isolated into a small 

volume. The final volume was a trapezoid shape with a size of 200 to 300 μm. This was done 

by cutting edges of the block until the area of interest (the previously imaged piece of 

dendrite) remained in the center of the block. Going back and forth several times between 

the ultramicrotome and the light microscope was necessary. The top of the block was also 

trimmed to bring the dendrite of interest as close as possible to the surface. When the 

trimming was finished, the precise location of the dendrite in the block was documented by 

taking images with the light microscope. The coordinates of the dendrite of interest relative 
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to the sides of the block were used in the SBFSEM to find the exact position of the dendrite 

(Figure III-6.) 

 

 

a

b

c

 
Figure III-6: Correlative between light and electron microscopy. 
(a)Neuron of interest was visible under light microscopy. (b) After trimming, the precise location of 
the dendrite of interest was documented. (light microscopy) (c)Position of the dendrite of interest 
was recovered in the SBFSEM. (Electron microscopy) 
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4. Imaging and image analysis. 

Once the location of the dendrite of interest was localized, an area of few tens of 

μm2 was selected. This area was imaged between two consecutive cuts. If the neuropil was 

not visible on the surface of the block, low resolution pictures and/or consecutive slices 

without imaging  were used to speed up the process of finding the region of interest. Once 

the tissue of interest was visible, the following parameters were used for automatic 

sectioning: 

-resolution: 0.011 μm per pixel in x y and 50 nm in z 

-image size: 8192 * 8192 pixel 

-magnification: 1600 

-time per pixel: 7 μs, thus 1 image took 8 minutes 

 

Once the dendrite of interest was imaged, the resulting stack could be analyzed. 

One stack can easily exceed 50 GByte, so preprocessing of the data set was an essential first 

step. After down sampling by a factor of 4, we could open the entire stack in Imaris using a 

fast PC with 64 GByte of RAM. Since the contrast between the stained dendrite and the 

surrounding tissue is very high, automatic segmentation and 3D rendering in Imaris was 

trivial. Structural features like branching points or characteristic spines helped us to find the 

previously imaged region of dendrite. This location was recorded and used to crop the full 

resolution data set. The final data set containing only the dendrite of interest at full 

resolution was typically 10-20 GByte.  

 

 The DAB staining was not perfectly uniform inside the dendrite. Intracellular 

organelles such as mitochondria were not stained. In addition, there were also spherical 

zones (‘blobs’) where the DAB reaction apparently had not proceeded.  Therefore, we used 

two different segmentation methods: Automatic thresholding to generate the coarse 

dendritic morphology, and manual contour tracing for spines where the precise shape and 

volume was of interest. The spine head volume and morphological features of the spine 

neck (diameter and length) were extracted from the 3D reconstruction using inbuilt 

measurement tools in Imaris. For large-scale reconstruction of the dendrite, we used an 

automatic thresholding method. The intensity of the threshold was set on one slice to fit the 
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stained area. This threshold was then applied to every slice for automatic 3D reconstruction 

(Figure III-7) 

 

 
Figure III-7: 3D EM reconstruction. 
(a)(b)(c) Automatic reconstruction. (a) Piece of dendrite with a spine visible. Raw EM image. Scale 
bar,1 μm (b) Automatic segmentation of the stained area by setting the intensity of the threshold. 
Scale bar,1 μm (c) The entire dendrite  was automatically reconstructed by applying the 
segmentation on every slices. Scale bar, 4 μm. 
(d)(e)(f) Manual reconstruction. (d)(e) Manual contour tracing. Scale bar,1 μm.(f) 3D reconstruction 
of  the entire dendritic spine. Volume of the spine head and spine neck morphology were measured. 
Scale bar, 0.3 μm. 
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The preparation of the tissue included fixation and dehydratation procedures which 

could shrink the tissue. To correct for any modification in the size of the tissue we applied a 

shrinkage correction using our correlative data set. Once the two photon microscope and 

the SBFSEM were calibrated, we measured the same distance between different spines in 

the maximum intensity projection from a two-photon image stack and in the 3D EM 

reconstruction. Since maximum intensity projections were 2D whereas the EM 

reconstruction was 3D, we used Pythagoras’ theorem to calculate the correct distance. 

 

F. Estimation of spine neck resistance. 

We estimated the resistance of the spine neck according to the cable equation.  

 

Rneck= ƿi spine L/A 

 

Ƿi is the cytoplasmic resistivity in Ω.cm, L is the spine neck length, A is the cross sectional 

area of the spine neck. Estimates of Ƿi range from 200 to 400 in Ω.cm (Fromherz and Muller 

1994). We used Ƿi = 250 in Ω.cm ; with Ƿi = 200 in Ω.cm, R is decreased by a factor of 1.25, 

and with Ƿi, = 400 in Ω.cm Rn is increased by a factor of 1.6. We calculated Ƿi in the spine 

assuming a linear relationship between the decrease in Dalexa and the increase in  Ƿi 

(Svoboda, Tank et al. 1996)(Berg 1993).  Ƿispine=  Ƿidendrite * (  Dalexa (dendrite)  /(Dalexa (spine)). 

 

G. Computation of Digitally Reconstructed Fluorescence Images 

(DRFI) 

The computation of Digitally Reconstructed Fluorescence Images (DRFI) enabled us 

to compare the fluorescence intensity distribution from live tissue to a prediction based on 

EM morphology. DRFI use the geometrical correct shape of neural structures combined with 

a synthetic Points Spread Function (PSF) and represent then assuming a homogenous 

distribution of fluorophores within the neural structures. The computation of DRFIs itself is a 

convolution of the PSF (as kernel) and the geometrical correct representation of the object 

as image. This part of the project was done in close collaboration with Clemens Blumer, PhD 

student in the computer science department of the University of Basel (with Prof. T. Vetter). 
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1. Reconstruction of geometrical structures 

We used images from SBFS-EM in which the volume of one CA1 pyramidal cell was 

labeled. In these images, geometrical correct dendritic morphology could be automatically  

reconstructed. We corrected the reconstruction manually for artifacts (at object surface and 

enclosed artifacts). Enclosed artifacts (blobs) are regions where the labeling did not work 

successfully. Furthermore, we ensured that in the reconstruction the volume of enclosed 

mitochondria was excluded from the reconstructed volume, since mitochondria were also 

not filled with fluorescent dye. Figure III-8  shows a flowchart of the reconstruction process. 

 

 

 

 

 

 

 

Flowchart representing the different steps before the convolution of 3D reconstructed neural 
structures.  
 

 

2. Computation of synthetic PSF 

The point spread function of microscope like two-Photon Microscopy can be 

approximated by a 3D Gaussian distribution ( Zhang 07). Furthermore, It has been  showed 

that the different sigma of the distribution for the x-, y- and z-axis (where as the z-axis is 

parallel to the laser direction) is given by the parameters of the microscope (Zipfel, Williams 

et al. 2003). Therefore the synthetic PSF is defined by a 3D Gaussian distribution and 

parameters of the imaging system as follow: 

 

 

 SBFS-EM raw data Manual Threshold Manual Correction of 
Artifacts at Surface 

Filling of Enclosed 
Artifacts  

Subtraction of 
Enclosed Mitochondria 
from Reconstruction 

Volume 
Reconstruction of 
Neural Structures 

Figure III-8:  Volume reconstruction of dendritic structure from SBF-SEM raw data. 
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The constants are given by (Zipfel, Williams et al. 2003) 

 

3. Convolution 

The final computation of the DRFI was done by convolution of reconstructed 

dendrites with the synthetic PSF. Both can be sampled with high spatial precision. 

Therefore, also high resolution DRFI is feasible. In the convolved images, absolute intensities 

cannot be compared with real two-photon microscopy. Therefore, only normalized 

intensities should be compared (e.g. normalized by average dendritic intensity). 

Figure 2 shows the different data we used. It shows the raw data and the manual 

threshold overlaid (A/B and C/D), the final reconstruction (with enclosed mitochondria in 

pink, E), the synthetic PSF (viewed from top and side, F and G) and the DRFI (given by the 

convolution) More details about the process of DRFI generation can be found in our 

contribution to the Workshop “Microscopic Image Analysis with Applications in Biology 

(MIAAB)”, (Blumer 11). 

. 
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Figure III-9: Images used for computation of the DRFI 
(A)(C) Represent SBFS-EM raw data. (B)(D). Manual threshold overlaid. Noted that mitochondria are 
excluded from the reconstruction. (e) EM reconstruction with mitochondria enclosed in the 
dendrite. (F) and (G) represent the synthetic PSF (viewed from top and side,  F and G).(H) DRFI after 
convolution with the synthetic PSF. Courtesy of Clemens Blumer 
 

 

4. Measurements of Spine Intensity in 2-Photon Images and DRFI 

We performed manual measurements of spine intensities for our studies. The goal was to 

compare spine-to-dendrite intensity ratios from real data to our synthetic data. The 

(normalized) spine intensity values were measured with the following procedure: 

1. Measure average dendrite intensity in dataset 

The average dendrite intensity was estimated by computing the average intensity 

along a part of the backbone (centerline) of the dendrite. This ensures that all spine 

intensities within the dataset were normalized with the same value and the average 
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dendrite intensity was less dependent on the selected voxels as it represents a larger 

region. 

2. Measure spine intensity in different slices, using local maxima 

In (typically) 3 slices a small region (4x4 voxels) the average intensity was computed. 

This corresponds to the average intensity of a 4x4x3 voxel region. The box was 

placed at the local highest intensities for the spine but as far away as possible from 

the dendrite. By this procedure the measurement takes place in the center of the 

spine head. 

3. Normalize spine intensity with average dendrite intensity 

The measured spine intensity is normalized with the average dendrite intensity of 

the dataset. Then a comparison between measurements from 2-Photon Microscopy 

and DRFI was possible. 

To compare measurements between 2-Photon Microscopy data and the corresponding DRFI 

the reconstruction was manually aligned to the fluorescence image. Then the intensities 

were measured with the steps described above. The measurement was difficult for vertical 

oriented spines. Therefore, we measured only spines with a horizontal orientation. ( Figure 

III-10) gives an overview about the selection of spines to be measured. (Figure III-11) gives 

an overview about the steps to do a measurement in a 2-Photon Microscopy image or a 

DRFI. 

 

 

 

 

 

 

 

 

 

 

 

 

 

View from top 

View from side 

Measured Spines 

Not Measured Spines 

A

   

B

   

B

   

C
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D

   

A

   

D

   

Figure III-10: Sellection of spines to be measured 
Top row: View from top. Bottom row: View from side. Courtesy of Clemens Blumer 
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H. Statistical analysis. 

Analysis of the morphological and correlative data set comparison were performed 

with Graphpad prism v5.0. Correlation analysis between the parameters quantified was 

performed with non-parametric Spearman analysis since most parameters did not exhibit 

a normal distribution. Significant correlations were classified as weak ( Spearman rho(r) 

value lower than 0.40), moderate (0.4<r<0.7) and strong ( r>0.7). 

 

 

 

 

 

 

 

 

 

 

 

 

Figure III-11: Intensity measurement in  two-photon or DRFI images 
Red square represent voxels used to measure (normalized) spine intensities. 
Courtesy of Clemens Blumer 
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IV. Results 
 

A. Direct measurement of coupling between dendritic spines and 

dendrites. 

We examined the compartmentalization of dendritic spines in rat hippocampal pyramidal 

neurons. Neurons were filled with alexa dye via a patch pipette and diffused freely inside 

the neuron. Two-photon laser scanning microscopy with illumination at 810 nm was used to 

excite alexa 594 revealing dendrites and spines that fluoresce in the red spectrum (Figure 

IV-1.A). Following the fluorescence in individual spine with a line-scan mode, a brief focal  

increase in the laser power bleached alexa which led to a decrease in fluorescence restricted 

to the head. The fluorescence recovered as bleached and unbleached fluorophores mixed 

by diffusion through the spine neck. The decay of the fluorescent transient decrease in the 

spine head was well fitted by a single exponential yielding a time constant of equilibration 

for alexa Ʈequ(alexa) . It can be noted that any given pair of spines that did not look 

noticeably different under two-photon microscopy could still had a huge difference in 

Ʈequ(alexa)  (Figure IV-1.A) . Repeated measurements in individual spines yielded consistent 

values of Ʈequ(alexa)  with a coefficients of variation (CVs) of 10 to 15% (Figure IV-1.B). 

Conversely Ʈequ(alexa)  varied over a broad range from spine to spine. Within the same 

neuron, measurement of Ʈequ(alexa)   along a dendrite revealed a huge heterogeneity (Figure 

IV-1.C). In a population study Ʈequ(alexa)  ranged from 4 to 408 ms with a median of 49 ms. 

The 25th and 75th percentiles were respectively 24 and 84 ms (Figure IV-1 D, n=5/287 

cells/spines) which led to a 40 fold differences between weak and strongly 

compartmentalized spines.  
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Figure IV-1: Measurement of Alexa 594 diffusion through the spine neck reveals heterogeneity of 
spine/dendrite diffusional coupling. 
 (A) images of spine/dendrite pairs that demonstrate weak (top) and strong (bottom) diffusional 
coupling. The arrow indicates the site of bleaching. Scale bar,1 μm. Fluorescence measured with a 
high temporal resolution in line scans over regions indicated by a dashed line during the bleaching of 
Alexa in the spine head. Scale bar 50 ms. Quantification of the Alexa fluorescence decrease in the 
spine head. (B) Repeated measurements of Ʈequ(Alexa)    (4x) in 10 spines. For each spine, the values 
of Ʈequ obtained from each independent measurement (blue point), the average (red) and the CV of 
Ʈequ(bottom) are shown.(D) Distribution of Ʈequ(Alexa) on the same neuron along the same 
dendrite.(E) Distribution of Ʈequ(Alexa)  for spines diffusional coupling measured in several neurons. 
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B. Correlative microscopy 

 

We hypothesized that the heterogeneity of Ʈequ(Alexa) was caused by the different 

morphology of the spines. A thin and/or a long spine neck should increase the time it takes 

for molecules to escape into the dendrite. Changes of spine morphology might account for 

the observed changes in Ʈequ(Alexa). However, spine neck parameters are not resolvable 

with two-photon microscopy. Only electron microscopy can resolve fine details of spine 

necks. We used a correlative approach combining Ʈequ(Alexa) measurements with two-

photon microscopy  and spine detail structural measurements by electron microscopy on 

the same spines to investigate the origin of Ʈequ(Alexa) heterogeneity. For this purpose we 

filled neurons with Alexa and neurobiotin through a patch pipette. Alexa 594 ( fluorescent 

dye) was imaged with two-photon microscopy. The location of every spine was registered 

with series of image stacks along the dendrite, after which the neuron was fixed. (Figure 

IV-2A.B.C). Neurobiotin, which is not visible by two-photon microscopy since it is not 

fluorescent  allowed us to specifically stain the previously imaged neuron with an electron 

dense black precipitate using DAB staining, (Figure IV-2.D). The neuron was completely 

black, making it possible to localize the previously imaged piece of dendrite that had to be 

trimmed for serial section imaging in the SBFSEM. Since the staining was electron dense it 

gave a very nice contrast against the surrounding tissue revealing spines fine structures. 

After 3D reconstruction, (Figure IV-2.E) spine detailed morphology was measured and the 

correlation with spine compartmentalization was possible (Figure IV-2.F). 
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Figure IV-2: Correlative microscopy 
(A)Max projection of a neuron filled with Alexa 594 and neurobiotin through a patch pipette. The 
location of a selected piece of dendrite where diffusional coupling measurements took place was 
recorded (B) Positions of dendritic spines  on a piece of dendrite were  documented by taking image 
stacks.(C) Diffusional measurement of spines along the dendrite. The fluorescence recovery was 
fitted by a single exponential. (D)After DAB staining against neurobiotin the previously imaged 
neuron was easily identifiable and the dendrite of interest could be easily located . (E) 3D 
reconstruction from high resolution image stack taken from SBFSEM. It was possible to identify 
spines where Ʈequ(Alexa) was measured . (F) 3D structure of a dendritic spine. Neck diameter and 
length could be measured precisely. 
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C. Analysis of ultrastructural reconstruction of dendritic spines in 

CA1 pyramidal neurons. 

Since neurons were specifically stained, all reconstructed dendritic spines came 

from a known cell type and location: apical dendrites from 3-4 weeks old CA1 hippocampal 

pyramidal neurons. Dendritic spines exist in a huge variety of shapes and sizes even on the 

same dendrite. In our subset of reconstructed dendritic spines (30 spines from 4 cells) the 

spine head volume ranged from 0.01 to 0.34 μm3 with an average of 0.11 ± 0.096 μm3 

(mean ± SD). The neck length and diameter were also very variable. The spine neck length 

ranged from 0.11 to 1.84 μm with an average of 0.48 ± 0.33 μm . Since the neck diameter is 

not always constant along its length, we estimated the average diameter for each spine 

(see Materials and Methods). Spine neck diameter ranged from 0.09 to 0.38 with an 

average value of 0.21 ± 0.06 μm (Table 1). 

 

Table 1: Summary of spine morphological variables and compartmentalization 
Spine parameters N Mean ± SD Range 

Head volume (μm3) 30 0. 11 ± 0.096 0.01 - 0.34 

Neck diameter (μm) 30 0.21  ± 0.06 0.09 - 0.38 

Neck length (μm) 30 0.48 ± 0.33 0.11 - 1.84 

Recovery time constant (ms) 30 61 ± 79 13 -372 

 

 

Since spine morphology possibly regulates its degree of compartmentalization, we 

first examined if there was correlation between spine head and neck morphologies in our 

data set. For example, do spines with a big head have longer or wider necks? We plotted the 

spine head volume versus neck length and diameter. We detected a weak but significant 

correlation between head volume and neck diameter (r=0.4; p<0.05) whereas no correlation 

was found between head volume and neck length (r=0.17; p=0.18). Bigger spines seems to 

have wider necks on average. Spine neck length and diameter were not correlated (r=-0.07; 

p=0.35). Thus, for each spine it appears that the spine neck length and diameter were 

independently regulated (Figure IV-3.A) 

For each reconstructed spine, we also knew the degree of compartmentalization. We 

tested whether specific morphological parameters dominantly, control the residence time 
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of small molecules inside the spine. For this purpose, we plotted the different spine 

parameters versus Ʈequ(Alexa).. In this analysis, we found a moderate correlation between 

spine head volume and Ʈequ(Alexa) (r=0.59; p<0.0005) and a weak correlation between spine 

neck length and Ʈequ(Alexa)  (r=0.5062; p<0.005). No correlation was found between spine 

neck diameter and Ʈequ(Alexa)   (r=0.02; p=0.45) (Figure IV-3.B)  

 

 

 
 

Figure IV-3: Relationship between spine morphological variables and compartmentalization. 
Dendritic spine parameters are plotted versus each others to investigate potential co regulation of 
the spine morphology (B) Dendritic spine parameters are plotted versus the recovery time constant 
to investigate the role of spine parameters on compartmentalization. Linear regression fit and R2 are 
plotted .R2 in red are statistically significant. 
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Thus, spine head volume has a strong influence on Τequ(Alexa). This result was 

expected, since a bigger reservoir takes more time to fill it with unbleached fluorophores. A 

correlation with the spine neck length was also expected, as longer spine necks increase the 

distance that molecules have to travel between spine head and parent dendrite. The lack of 

correlation between Ʈequ(Alexa) and spine neck diameter seems to be counterintuitive, but 

theoretical studies have suggested that spine neck diameters does not influence particles 

movements inside the neck, but rather controls the times they spend in the head by setting 

the small windows where they can escape (Biess, Korkotian et al. 2007; Schuss, Singer et al. 

2007) . The ratio spine head volume/neck diameter should strongly influence Ʈequ(Alexa) . To 

test this hypothesis, we plotted the ratio head volume/neck diameter versus Ʈequ. Although 

there was no correlation between neck diameter and Ʈequ, taking both values into account 

improved the correlation from R2 =0.51 to R2=0.63 (r=0.61; p<0.0005,)(Figure IV-4). 

 

 

 
Figure IV-4: ratio spine head volume versus recovery time constant. 
Ʈequ (alexa) was plotted versus spine head volume and spine neck diameter ratio. Linear regression 
fit and R2 are plotted 
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D. Dendritic spine morphology predicts alexa diffusion out of the 

spine. 

Compartmentalization inside dendritic spines is not well described by taking into 

account only one morphological parameter. The entire spine morphology has to be 

considered. The compartmentalization of freely diffusible molecules inside a spine has been 

studied theoretically and two similar equations have been suggested to calculate Ʈequ (see 

methods): 

 

 

According to Svoboda et al. Ʈequ can be predicted according to equation (1) (Svoboda, Tank 

et al. 1996): 

 
Where V is the spine head volume in μm3, L is spine neck length in μm, A is the cross 

sectional area in μm2  and D is the coefficient of diffusion for the measured particle in μm2.s-

1. 

 

According to Holcman Ʈequ  can be predicted according to equation (2) (Biess, Korkotian et 

al. 2007): 

 
 

Ʈequ is described as the sum of the mean sojourn time of particles inside the head and inside 

the neck. The first product represents the time of particles inside the head where V is the 

spine head volume in μm3, L is spine neck length in μm, and D is the coefficient of diffusion 

of particles inside the head. The second product represents the time  particles spend inside 

the spine neck where L is the spine neck length and D the coefficient of diffusion for the 

molecule inside the neck. We were able to test these formulas since we had detailed spine 

(1) 

(2) 
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morphology and the associated measurement of compartmentalization. The coefficient of 

diffusion of alexa has been measured in the cytoplasm (Nitsche, Chang et al. 2004) but 

neurons with this particular shape could have a cytoplasm with different properties, 

perhaps owing differences in their cytoskeletons. Change in the cytoplasm composition 

could interfere with the movements of molecules (Nitsche, Chang et al. 2004). As a 

consequence the coefficient of diffusion for Alexa 594 in a neuronal dendrite could differ 

from that measured in the cytoplasms of other cells. To measure the coefficient of diffusion 

in pyramidal neuron dendrites we bleached Alexa contained within the dendrite. We 

selected an aspiny dendrite to avoid any anomalous diffusion created by spines, which 

would make it difficult to measure the real coefficient diffusion for Alexa (Santamaria, Wils 

et al. 2006). A small portion of the dendrite was bleached which an increase in the laser 

power. We monitored the spread of bleached molecules along the dendrite with high 

temporal resolution. The calculated diffusion coefficient of Alexa (DAlexa ) within pyramidal 

neurons ranged from 130 to 240 μm2.s-1  with an average of  173.63 ± 41 μm2.s-1 (n=6), 

approximately 72% of the values previously measured (Weber, Chang et al. 2004). 
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Figure IV-5: Measurement of coefficient of diffusion in dendrite. 
(A) An aspiny dendrite was selected; major apical dendrite. The fluorescence along the dendrite was 
monitored using a line scan mode allowing  high temporal resolution. A brief increase in the laser 
power bleached a small volume of fluorophores in the dendrite. The diffusion of bleached 
fluorophores is visible over time (B) Intensity profile along the dendrite at various time after 
photobleaching (noisy line). Smooth line are Gaussian fit. (C) Δ(σ2/2) versus time after 
photobleaching. The slope gives the coefficient of diffusion. (D) Coefficient of diffusion for Alexa 
from 6 different cells. (Average and standard deviation)  
 

 With the measurement of DAlexa all the relevant parameters are known and we can 

investigate if spine morphology predicts the compartmentalization of molecules inside the 

head.  
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Equations (1) 

 

 
Figure IV-6:Spine morphology predicts the movements of Alexa. 

Ʈequ predicted computed from equation (1) and (2) with morphological data for 3D EM 
reconstruction are plotted versus Ʈequmeasured with two-photon microscopy 
 

Spines morphologies are tested with equations (1) and (2). Using equation (1) Ʈequ predicted 

(alexa) ranged from 0.82 to 56 ms with an average of 10.27 ± 13.8 ms (n=4/30 cells/spines). 

Using Equation (2) Ʈequ predicted(Alexa) ranged from 0.74 to 54 ms with an average of 9 ± 12 

ms (n=30).  Ʈ equmeasured(Alexa) ranged from 11 to 371 ms with an average of 61 ± 79 ms .  

Ʈequ predicted (ms) 
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To investigate if spine morphologies explain the heterogeneity of Ʈequmeasured(alexa) we 

plotted  Ʈequmeasured(alexa) versus Ʈequpredicted(alexa) for both equations. We found 

strong correlations with equation (1) (r=0.7533; p<0.0001) and equation (2) (r=0.74; 

p<0.0001). The linear regression was found slightly better with equation (1) than equation 

(2),  0.85 versus 0.80 (Figure IV-1). Strong correlation between Ʈequmeasured(Alexa) and Ʈequ 

predicted(Alexa) indicates that the morphology of a dendritic spine predicts the time that 

alexa takes to diffuse out of the spine and also that Alexa diffuses freely inside the entire 

cytoplasm of a dendritic spine. However, the slope of the linear regression was not equal to 

1, but 5.23 for equation (1) and 5.81 for equation (2). Thus  Ʈequmeasured(Alexa) was 5.5 

times slower than Ʈequ predicted(Alexa). Going back to equations (1) and (2) this large 

difference is likely due to one parameter we could not directly measure, the coefficient of 

diffusion of Alexa inside the spine. DAlexa was measured inside aspiny dendrites, assuming 

that it was homogenous inside the entire cell.  D is defined by the equation (3): 

 

 

 

Where K is the Boltzman constant in m2kg.s-2, T is the absolute temperature , r is the Stokes 

radius of the molecule in μm, and η is viscosity in kg/(s.m). We explain the difference 

between Ʈequmeasured(Alexa)  and Ʈequ predicted(Alexa) by a difference in DAlexa between 

spines and dendrites. We could calculate DAlexa inside the spine using equation 1, and in our 

reconstructed spines we found that DAlexa ranged from 9 to 72 μm2.s-1 with an average of 32  

± 27 μm2.s-1  . The movement of Alexa inside spines is slowed down by a factor of 5.4 

compared to dendrites.  Since K is constant, the size of Alexa and temperature are all the 

same between dendrites and spines, the difference in D indicates a difference in 

cytoplasmic viscosity between spines and dendrites. Since the cytoplasm is a 

macromolecular complex and viscosity is most commonly used to described the biophysical 

properties of homogeneous medium we prefer to talk about “apparent viscosity” increase. 

The cytoplasm inside dendritic spines must differ from that which is inside the dendrites. 

 

D= kT (6πr η) -1 (3) 
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E. Movements of larger and positively charged molecules are also 

slowed down inside spines.  

We have seen previously that diffusion of Alexa dyes out of the spine was regulated 

by its morphology and also slowed down by a factor of 5.4. Alexa dyes are polar molecules 

with a Stokes radius of approximately 0.8 nm and carry 2 negative charges (Heyman and 

Burt 2008). We were interested to know if the movement of small biologically active 

particles such as small ions or bigger molecules such as small enzymes were also regulated 

by spine morphology and generally slowed down.  

To get a closer look at the movement of ions we used a small dye: N,N,N-Trimethyl-

2-[methyl(7-nitrobenzo[c][l,2,5]oxadiazol-4-yl)amino]ethanaminium Iodide (NBD-MTMA) 

(Aavula, Ali et al. 2006). This dye has a Stokes radius of approximately 0.43nm and carries 

one positive charge (Heyman and Burt 2008). The ionic radius of Na+ is approximately 0.09 

nm (Conway 1981), but in solution ions attract water molecules, which form a hydration 

sphere. The apparent stokes radius is increased and  ions act like  bigger molecules and thus 

their speed of diffusion is decreased. The stokes Radius of Na+  in solution is approximately 

0.36 nm ( Conway 1981). Thus NBD-MTMA is close to Na+ ions in terms of size and charge 

carried. We infused CA1 pyramidal neurons with an intracellular solution containing Alexa 

and NBD-MTMA . We successively bleached Alexa (Ʈequmeasured(Alexa) ) and NBD-MTMA 

Ʈequmeasured(NBD-MTMA)  in the same spine. In our population (n=5/61 cells / spines) 

Ʈequmeasured(Alexa) ranged from 22 to 241ms with an average of 95 ± 48 ms. 

Ʈequmeasured(NBD-MTMA) ranged from 8 to 66 ms with an average of 25 ± 13 ms. We 

plotted Ʈequmeasured(Alexa) versus Ʈequmeasured(NBD-MTMA). We found a strong 

correlation between Ʈequmeasured(Alexa) and Ʈequmeasured(NBD-MTMA) (r=0.8609; 

p<0.0001) (Figure IV.7). We have seen previously that compartmentalization of Alexa inside 

spines is dependent upon spine morphology. Strong correlation between both fluorophores 

indicates that the compartmentalization of small positively charged molecules is also 

controlled by spines shape.   We were also interested to know if NBD-MTMA was also 

slowed down inside spines in a similar way as Alexa. Since the Stokes radius of both 

molecules has been described in the literature we could calculate Ʈequpredicted(NBD-

MTMA) (plotted as red square in figure III-7) from Ʈequmeasured(Alexa) . We calculated that 

NBD-MTMA should be 1.7 times faster than Alexa, and measured 4 times faster diffusion. 

Since the Stokes radius of NBD-MTMA has not been measured experimentally, we cannot be 
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sure whether this difference is due to a poor estimate of the hydrodynamic radius or truly 

indicates strong charge effects inside the spine, retarding negatively charged particles more 

than positively charged ones. 

 

 

To investigate the compartmentalization of bigger molecules such as small enzymes, 

we used the following genetically encoded fluorophores: PA-GFP, RFP (27kDa) and Alexa 

coupled to 70 KDa dextran. 

To begin with, we investigated whether large molecules of similar size have the same 

behavior inside dendritic spines. In CA1 pyramidal neuron transfected with PA-GFP and RFP, 

we photoactivated PA-GFP and bleached  RFP at the same time in the same spine (Figure 

IV.8.a).  In our population (n=3/110 cells spines) Ʈequmeasured(PA-GFP) ranged from  44 to 

502 ms with an average of 159 ± 103 ms and Ʈ equmeasured(RFP) ranged from 28 to 469 ms 

with an average of 161.47 ± 109 ms. We plotted Ʈequmeasured(PA-GFP) versus 

Figure IV-7: Correlation between Alexa and NBD-MTMA 
Ʈequmeasured(NBD-MTMA) is plotted versus Ʈequmeasured(Alexa) (blue square) . Linear regression 
fit, R2 and  Ʈequpredited(NBD-MTMA) are plotted (red square). 
 

Prediction 
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Ʈequmeasured(RFP) to investigate a possible correlation between both parameters . We 

found a strong correlation (r=0.977; p<0.0001, n=110) with a slope of the linear fit equal to 

1, indicating that molecules of similar size behave in a similar way inside dendritic spine.  

The cytoplasm of a cell is a highly crowded environment (Ellis 2001) and it has been 

shown that dendritic spines posses a very high concentration of actin (Fischer, Kaech et al. 

1998) .Large molecules can be more sensitive to a crowded environment than smaller 

molecules (Popov and Poo 1992) like Alexa. Thus molecules of different sizes could behave 

differently inside the cytoplasm of a dendritic spine. To test this hypothesis we measured 

the compartmentalization of molecules of different sizes. First, we infused alexa  into a CA1 

pyramidal neurons transfected with PA-GFP and RFP. We bleached Alexa and 

photoactivated PA-GFP successively in the same spine to measure compartmentalization for 

both fluorophores (figure IV.8.b). In our population (n=3/55 cells/spines), 

Ʈequmeasured(Alexa) ranged from 8 to 52 ms with an average of 25 ± 14 ms. 

Ʈequmeasured(PA-GFP) ranged from 21 to 414 ms with an average of 96 ± 83 ms. We plotted 

Ʈequmeasured(Alexa) versus Ʈequmeasured(PA-GFP) and found a moderate correlation 

(r=0.57; p<0.0001, n =55) with  R2= 0.40. Since Ʈequmeasured(Alexa)  was highly correlated 

with the morphology of the spine, a moderate correlation  indicated that the 

compartmentalization of PA-GFP was regulated by spine morphology but also by other 

factors  that  differed from spine to spine. Based on the Stokes radius of Alexa and PA-GFP, 

we calculated  Ʈequpredicted(PA-GFP). Since literature values for the Stokes radius of PA-GFP 

are not consistent, we plotted two extreme predictions (fast and slow prediction).  Although 

the majority of Ʈequmeasured(PA-GFP) were included inside this range, some measurements 

are out of bounds and appear even much slower (red point on the right side of slow 

prediction curve), indicating that some spines retain PA-GFP very efficiently.  To confirm this 

observation we measured the diffusion of 70 KDa dextran coupled to a green Alexa dye. 
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Figure IV-8:Diffusion of large molecules can not be predicted from spine shape. 
(a)Ʈequmeasured(RFP) is plotted versus Ʈequmeasured(PA-GFP). Linear regression fit and R2 are 
plotted.(b) Ʈequmeasured(alexa) is plotted versus Ʈequmeasured(PA-GFP). Linear regression fit,  R2  and  
Ʈequpredicted(PA-GFP) (in blue) are plotted.(c) Ʈequmeasured(alexa) is plotted versus 
Ʈequmeasured(dextran). Linear regression fit,  R2  and  Ʈequpredicted(dextran) (in blue) are plotted . 
Dextran data were provided by Dr Michael Avermann. 
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 We were able to FRAP red and green Alexa at the same time (Figure IV.8.c). In our 

population (n=3/154 cells/spines) Ʈequmeasured(Alexa) ranged from 7 to 250 ms with an 

average of 61 ± 48 ms. Ʈ equmeasured(dextran ) ranged from  127 to 2600 ms with an 

average of 570 ± 532 ms. Plotting Ʈequmeasured(Alexa) versus Ʈequmeasured(dextran ) 

showed that diffusion of the two different probes was almost completely uncorrelated (r= 

0.19, p<0.01, n=154). We calculated Ʈequpredicted(dextran ) based on the stokes radius of 

Alexa and dextran (70 KDa). The prediction was much faster than the measurements as all 

red points are on the right side of the prediction. Thus, the diffusion of large molecules is 

only weakly influenced by spine morphology. Large molecules seem to be retained inside 

spines for very long times, and their compartmentalization varies from spine to spine, 

indicating a filter or block in some spines that is invisible to the light microscope. 

In conclusion, the compartmentalization of small molecules is controlled by the 

morphology of the spine, but diffusion is slowed down compared to the dendrite. On top of 

this effect that is likely caused by a uniformly high viscosity of spine cytoplasm, bigger 

molecules were subject to another level of regulation. This additional filter for large 

molecules seems to exist only in a subset of spines. 
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F. Estimation of dendritic spine neck resistance. 

A close analogy exists between diffusion of small fluorophores driven by 

concentration gradients and electrical currents driven by electrical potentials gradients 

(Svoboda, Tank et al. 1996)(Berg 1993). Since we found that the compartmentalization of 

Alexa and NBD-MTMA are directly correlated with the morphology of dendritic spines we 

assumed that the cytoplasmic space is equally accessible to ions and small  fluorophores. 

The coefficient of diffusion for alexa and NDB-MTMA were used to calculate the cytoplasmic 

resistivity (Ƿi) of dendritic spine.  We calculated  the resistance of the spine neck according 

to the cable equation as Rneck= ƿi spine L/A (see materials and methods for details) assuming 

three different values for internal resistivity (Figure IV-9):  

• Ƿi =250 ohm.cm : previous estimations of cytoplasmic resistivity (Fromherz 

and Muller 1994; Major, Larkman et al. 1994). In our population study Rneck 

ranged from 10 to 144 MΩ with an average of 42 ± 36 MΩ similar to values 

derived from morphometry(Harris and Stevens 1989) or diffusional coupling 

measurement (Svoboda, Tank et al. 1996). 

• Ƿi =1985 ohm.cm based on measurement of alexa diffusion inside dendritic 

spine. Rneck ranged from 63 to 824 MΩ with an average of 257 ± 188 MΩ 

• Ƿi=992 ohm.cm based on prediction for diffusion of NBD-MTMA inside 

dendritic spine . Rneck ranged from 31 to 412 MΩ with an average of 128 ± 93 

MΩ. 

 Taking into account a higher resistance of the cytoplasm inside spines, our estimate 

of spine neck resistance is much higher than previously estimates, approaching 1 GΩ in 

some spines. 
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Figure IV-9: Spine neck resistance. 
Spine neck resistance was calculated  for Ƿi=250 ohm.cm , Ƿi =1985 ohm.cm, Ƿi=992 ohm.cm black 
circles represent individual data points, and bars represent averages. 
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G. Dendritic spines act as molecular enrichment devices. 

We found that the cytoplasmic properties inside a neuron can vary between 

compartments. The movement of small molecules inside dendritic spines is around 5 times 

slower than in dendrites. A simple modeling study (data not shown) suggested that such 

heterogeneity in diffusion speed should result in different particle densities in spines and 

dendrites at equilibrium. To investigate this possibility, we used our correlative data sets to 

build synthetic two-photon images with a homogeneous distribution of particles inside 

(Figure IV-10. b). Intensity measurements between synthetic and real two-photons images 

revealed that dendritic spine are more fluorescent in the two-photons images (Figure IV-10. 

c) compared to the prediction. In our data set (n=2/30 cells/spines), spine intensity ratio 

between two-photon images and synthetic images ranged from 0.80 to 3.71 with an 

average of 1.51 ± 0.69. Dendritic spines are 50% “too bright” in the two-photon images, 

indicating that the dye concentration is higher in spines than in dendrites. This is consistent 

with the idea that diffusion is slowed down in spines, and indicates that spines enrich all 

kinds of molecules by this biophysical mechanism.  
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Figure IV-10: Simulated fluorescence images revealed increased concentration of particles inside 
dendritic spines. 
(a)Two-photon volume rendering. (b) Synthetic volume rendering: EM reconstruction convolved by 
PSF of the microscope assuming a homogeneous distribution of Alexa inside dendrites and spines. (c) 
intensity ratio measurement between two-photon and synthetic volume rendering. 
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H. Activity induced change in diffusion. 

Very recently it has been discovered that dendritic spine compartmentalization is 

plastic and can be regulated by neuronal activity. In slice cultures, a study has shown that 

coincident synaptic activation and postsynaptic action potentials rapidly restrict diffusion 

across the neck (Bloodgood and Sabatini 2005). A second study has shown in acute slices 

that strong depolarization of neurons can induce drastic changes in diffusional coupling 

between spine head and dendrite (Grunditz, Holbro et al. 2008). The mechanism of such a 

rapid change in dendritic spine diffusional coupling is unknown. It could be a rapid change in 

dendritic spine morphology or/and change in cytoplasmic properties, e.g. viscosity.  

Dendritic spine diffusional coupling is different between acute slice and slice culture 

(Grunditz, Holbro et al. 2008). In a first step, we verified that rapid changes in diffusional 

coupling induce by step depolarization also occurs on slice cultures. 
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Figure IV-11: Postsynaptic depolarization changes diffusional coupling between spine head and 

dendrite. 
(a)Example of a FRAP experiment in the same spine before and after strong depolarization of the 
neuron. Line scans across the spine head were used to follow fluorescence recovery.(b)Recovery 
time constant before and after depolarization in individuals spines. Red line represent average.(c) 
Volume measurements in individual spine before and after depolarization. Red line represents 
average. 
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We therefore tested whether a step depolarization to 0 mV, evoked by current injection, 

would affect diffusional coupling in slice culture. After the end of a 4 min depolarization Ʈequ 

(alexa) was increased on average by a factor of 7 (Figure IV-11.b). In our data set (n=4/18 

cells/spines)  Ʈequ (alexa) before depolarization ranged from 9.5 to 122 ms with an average 

of 77 ± 119 ms. After depolarization Ʈequ (alexa) ranged from 99 to 816 ms with an average 

of 490 ± 362 ms. Spine head volume did not significantly change in our experiments, 

suggesting that the drastic increase in Ʈ equ (alexa) was due to an increase in the L/A ratio of 

the spine neck or a change in the cytoplasmic properties inside the spine (Figure IV-11.c). 

 To determine whether cell-wide changes in cytoplasmic viscosity account for the 

changes in Ʈ equ (alexa), Dalexa was measured before (Figure IV-12.a) and  after step 

depolarization (Figure IV-12.b). In the control Dalexa ranged from 120 to 227 μm2.s-1  with an 

average of 173 ± 41 μm2.s-1 (n=6). After depolarization Dalexa  ranged from 27 to 55 μm2.s-1  

with an average of 38  ± 10 μm2.s-1  (n=5) (Figure IV-12.d). Apparently, strong depolarization 

of a neuron changes dramatically the properties of the cytoplasm in the entire cell. This 

suggests that the changes in Τequ (Alexa) that we and others observed after strong 

depolarization are probably due to a change in viscosity rather than rapid changes in 

morphology. 
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Figure IV-12:Dalexa is affected by strong depolarization of the neurons. 
(a)(b)Intensity profile along the dendrite at various times after photobleaching (noisy line). Smooth 
line are Gaussian fit before(a) and after depolarization(b) of the neuron.(C) Δ(σ2/2) versus time after 
photobleaching for a control and a depolarized dendrite. The slope gives the coefficient of diffusion. 
(D) Coefficients of diffusion for Alexa in control and depolarized neuron. (Average and distribution) 
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V. Discussion 
 

In this study, we used a correlative approach using EM and two-photon microscopy 

to investigate diffusional coupling between dendritic spine heads and their parent 

dendrites. We found that the morphology of dendritic spines predicts the residence time of 

small molecules. We calculated the coefficient of diffusion of a small fluorophore inside 

dendritic spines and found that diffusion was slowed down by a factor of 5 compared to the 

dendritic environment. Compartmentalization of bigger molecules like enzymes could not 

be predicted from the morphology of spines. We speculate that a size filter exists in some 

spines, regulating the motility of large molecules differently from spine to spine. Since the 

movement of small molecules is slowed down in spines, it is highly likely that the resistivity 

of spine cytoplasm is higher than previously thought, suggesting that spines could act as 

electrical compartments. A comparison of our two-photon images with synthetic images 

calculated from our EM reconstructions suggests that particles inside the neuron are not 

homogeneously distributed but rather concentrated in dendritic spines. We suggest a new 

function for dendritic spines as molecule enrichment device. Finally, the coefficient of 

diffusion inside neurons is not a static value, but intense activity can change the viscosity of 

the entire cytoplasm. 

 

A. Diffusion of molecules is slowed down inside dendritic spines. 

Thanks to our correlative approach, we have for the first time a measure of the 

diffusional coupling between spines and dendrites combined with detailed measurements 

of spines morphology on the same spines (Figure IV-2). We learned from these 

measurements that: 

• The morphology of dendritic spines predicts diffusional coupling with an 

accuracy of 85% (Figure IV-6). Thus, the micro-viscosity of the cytoplasm is 

near identical in all spines of a given cell. Spine structures are extremely 

heterogeneous even on a small portion of dendrite (Figure I-4). We know 

now that this heterogeneity will have a direct impact on 

compartmentalization of small molecules.  
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•  The coefficient of diffusion of small molecules inside dendritic spines is 

slowed down by a factor of 5 compared to their parent dendrites, indicating 

a high viscosity of spine cytoplasm. 

 

It was generally assumed that the cytoplasm of spine and dendrite are identical 

(Harris and Stevens 1989; Svoboda, Tank et al. 1996). Since the spine neck diffusion time 

constants have been measured previously (Svoboda, Tank et al. 1996; Sabatini, Maravall et 

al. 2001; Harvey and Svoboda 2007) and dendritic spine morphology was also known, why 

was it not noted that diffusion in spines is unusually slow? Indeed, calculation of  Ʈequ   from 

morphological data and direct Ʈequ measurements gave similar values (Yasuda and 

Murakoshi 2011). But for several reasons, such a comparison led to wrong estimates of D: 

• Measurements from different model systems were combined. Most of the 

measurements of Ʈequ were made in acute slices whereas EM morphology 

came from perfusion fixed brains. We know that the average Ʈequ is very 

different in acute slices and in vivo (Grunditz, Holbro et al. 2008): Median 

Ʈequ jumps from 40 ms to 130 ms between acute hippocampal slices and 

cortical pyramidal cells in vivo, leading to error by a factor of 3 in calculation 

of diffusion coefficient inside dendritic spine.  

• Dendritic spine morphology is extremely heterogeneous even on the same 

dendrite (Table 1)(Harris and Stevens 1989; Arellano, Benavides-Piccione et 

al. 2007). Since there are no correlations between spine morphological 

variables, there is no ‘typical spine’ (Harris and Stevens 1989; Arellano, 

Benavides-Piccione et al. 2007). Ʈequ is also extremely variable between 

spines, spanning two orders of magnitude (Svoboda, Tank et al. 1996)(Figure 

IV-1). It is in consequence very hazardous to estimate the coefficient of 

diffusion of molecules from an average spine. It is necessary to know the 

morphology of individual spines and the associated Ʈequ. 

A restriction of small molecule mobility in neuron has also been described in 

cerebellar stellate cells (Soler-Llavina and Sabatini 2006). These neurons are capable of 

input-specific synaptic plasticity even without dendritic spines by compartmentalizing the 

diffusion of Ca2+ due to  interaction with calcium buffers and general restriction of small 

molecule mobility in the entire dendrite by a factor of 10 compared to the cytoplasm of 
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hippocampal pyramidal neurons (Svoboda, Tank et al. 1996; Soler-Llavina and Sabatini 

2006).  In spiny neurons, dendritic spines have apparently trapped this “viscous cytoplasm”, 

leaving dendritic viscosity relatively low. The mechanism slowing down small molecule 

diffusion is unknown, but might result from molecular crowding or high tortuosity of the 

dendroplasm (Kushmerick and Podolsky 1969; Popov and Poo 1992; Ellis 2001; Soler-Llavina 

and Sabatini 2006) and is expected to retard the movement of all molecules, including 

second messengers and proteins. 

 

To check if the numbers and signs of charges carried by molecules affect their 

diffusion inside spines we used the small, positively charged fluorophore NBD-MTMA. This 

fluorophore behaved similarly to alexa (Figure IV-7), but diffusion was faster. Unfortunately, 

we could not measure the diffusion of NBD-MTMA in the dendrite, as we approached the 

time resolution of our microscope and NBD-MTMA was difficult to bleach with two-photon 

excitation. Therefore, at this point, we cannot decide whether the smaller Stokes radius or 

the different change of NBD-MTMA was responsible for its faster diffusion.  

 

During our FRAP experiments, the entire spine and part of its neck were bleached. 

Thus, our measurements of Dalexa represent an average for the entire spine. It is possible 

that the diffusion of Alexa is different between the spine head and the spine neck. An 

ongoing study at the computer science department of Basel University (C. Blumer, T. Vetter) 

uses the correlative datasets produced in this thesis to model the diffusion of particles in 

3D, with the goal to determine the speed of diffusion inside the spine neck and the spine 

head. 

 

 

 

B. The controversy about spine neck resistance. 

It is highly debated whether spines can be considered electrical compartments. A 

critical parameter determining the potential for electrical compartmentalization is the 

resistance of the spine neck (Koch and Poggio 1983). Studies investigating the morphology 

of dendritic spines with electron microscopic reconstructions of spine geometries or  
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indirectly by measuring the diffusional coupling through spine necks concluded that most 

spine neck are not thin and long enough (spine neck resistances are too small) to 

significantly modulate synaptic currents (Harris and Stevens 1989; Svoboda, Tank et al. 

1996). Estimation ranged from 4 to 50 MΩ. However, an increasing number of recent 

studies using calcium and voltage imaging to investigate synaptic physiology of synapses 

located on dendritic spines concluded that the spine neck  must affect the electrical signal 

(Araya, Jiang et al. 2006; Grunditz, Holbro et al. 2008; Bloodgood, Giessel et al. 2009; Palmer 

and Stuart 2009). Why is there such a discrepancy between studies investigating dendritic 

spines properties and those investigating synaptic physiology? In their calculation of spine 

neck resistance, morphological studies assumed that the cytoplasm inside dendritic spines is 

identical to dendrites. We know now that this is not the case, and we estimate spine neck 

resistance to be as high as 1 GΩ in some spines (Figure IV-9). Stimulation of synapses 

located on spines with such a high neck resistance would result in a very large voltage 

difference between spine head and dendrite (Segev and Rall 1988; Grunditz, Holbro et al. 

2008).  

 

C. Dendritic spines possess a size filter. 

The general slowing down in diffusion inside dendritic spines also affects PA-GFP and 

70 KDa dextran, but an additional filter seems to exist in a subset of spines to retain them 

longer in the spine head (Figure IV-8). A study shown that the diffusional coupling of PA-GFP 

in individual spine can spontaneously change within minutes in slice cultures and can be 

shifted toward higher values by chronic activity (Bloodgood and Sabatini 2005), thus the 

ability to retain large molecules could reflect the history of a particular spine. Such a filter 

could be created by a mesh of actin. It is known that dendritic spine heads are full of actin 

filaments (Fischer, Kaech et al. 1998). One could test this hypothesis by depolarizing actin 

and to see if the correlation between Ʈequ(alexa) and Ʈequ(PA-GFP) improves.  

Second messengers and many proteins involved in spines and synapses regulation 

are similar in size to PA-GFP (28 kDa) or bigger. Synaptic plasticity is typically induced by 

repetitive stimulation (Bliss and Lomo 1973) of synapses, lead to the activation of second 

messenger cascades. The ability to retain more or less these messengers could influence the 

threshold for the induction of synaptic plasticity. Dendritic spines which retain large 
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molecules could be primed for plasticity. Using glutamate uncaging, one could investigate if 

the retention of big molecules inversely correlates with the strength of the protocol needed 

to induce plasticity.  

 

D. Dendritic spines concentrate particles. 

Although it was always assumed that spines and dendrites distribute dye evenly 

(Svoboda 2004), the heterogeneity in diffusion speed between spines and dendrites affects 

particle distribution (Figure IV.10).  This new function of dendritic spines could have 

implications from a technical and biological point of view.  

• In fluorescence microscopy, the measurement of spine volumes 

assumes a homogeneous distribution of fluorophores. Since spines 

concentrate particles, dendritic spines appears brighter (and, in 

consequence, bigger) than their real size. Microscopists will have to 

take this enrichment into account when analyzing spine size. 

• Dendritic spines represent a very small volume compare to the entire 

dendritic three (data not shown). Concentrating proteins inside the 

spines would decrease the quantity of these proteins that the neuron 

has to produce to reach the desired concentration inside the spine 

head since there is no need to fill the entire dendritic tree.  

 

 

E. Activity induced changes in diffusion speed. 

Recently it has been discovered that diffusional coupling can be changed by activity, 

at the level of a single spine by pairing synaptic stimulation and bAPs (Bloodgood and 

Sabatini 2005), or in all spines with a strong depolarization of the postsynaptic neuron 

(Grunditz, Holbro et al. 2008). Since diffusional changes was not accompanied by changes in 

spine head volume, it was thought that strong activity could change the  morphology of the 

spine neck. We know now that strong depolarization of the postsynaptic neuron changes 

the coefficient of diffusion in the entire dendrite (Figure III.11). The electrical resistivity of 

the cytoplasm will increase at the same time, providing electrical and chemical 

compartmentalization. Increased electrical compartmentalization would lead to activation 
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of voltage dependent channels boosting spine depolarization, and consequently increase 

calcium influx into the spine. The amplitude of calcium signals has been shown to be 

correlated with the magnitude of change in synaptic strength (Nevian and Sakmann, 2006). 

Increased spine neck resistance could therefore drastically facilitate or even be a 

prerequisite for the induction of LTP. 

 

This thesis was started with the goal to distinguish between activity-dependent changes in 

spine morphology and activity-dependent changes of cytoplasmic properties. The strong 

differences in cytoplamic properties between spines and dendrites at baseline (before 

stimulation) came as an unexpected surprise. In addition, we could clearly show that 

depolarization does change cytoplasmic properties. In the future, it would be very 

interesting to perform correlative experiments on stimulated cells to address the question 

whether the outside shape of spines does change in response to strong activity. The fact 

that only one time point can be morphologically reconstructed is of course a severe 

limitation of electron microscopy and makes it impossible to do ‘before/after’ 

measurements of individual spines. Very likely, super-resolution light microscopy (e.g. STED) 

will eventually be applied to visualize changes in spine morphology during activity at 

nanometer resolution. From the point of view of the synapse, it might not even matter 

whether active second messengers are retained due to a constricted spine neck diameter or 

due to a high viscosity plug in the neck. How exactly biochemical reactions inside the spine 

are affected by altered mobility of the reactants we don’t know yet, but in this thesis it 

became clear that the postsynaptic milieu is physically very different from the cuvette of the 

biochemist, and even from the rest of the neuron.  

 

In conclusion dendritic spines appear to be even more complex than previously 

thought, as we found a new function and a new level of regulation in their functionality. By 

integrating informations from diffusion and ultrastructure measurements on the same 

dendritic spines we have gained new insights on the regulation of compartmentalization in 

spines. These insights could help to resolve contradiction in previous studies and also 

supplement the model of dendritic spine functionality (Figure V-1). 
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Figure V-1: New model of dendritic spine compartmentalization. 
-The diffusion of molecules is slowed down inside dendritic spines. 
- A subset of spines possess a size filter. 
-Dendritic spines concentrate particles. 
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VI. Annexe 

 
Figure VI-1: Scale of an ion and different fluorophores. 
 (a)  An atome of sodium is represented (red ball) surrounded by its hydration sphere. (b) (c) 
structure Alexa series. Space-filling models showing each axial face ( separated by 90 degrees 
rotations), Atoms are represented by color: Carbon( green), hydrogen(white), nitrogen (blue), 
oxygen (red), and sulfur (yellow)(Nitsche, Chang et al. 2004). (d)The overall shape of GFP where β-
sheet (green) and α-helices can be visualized(Yang, Moss et al. 1996). 
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Figure VI-2: Two-photon excitation spectrum of NDB-MTMA. 
 (a) Max projection of a CA1 neuron filled with NBD-MTMA through a patch pipette. (b) Graphic 
representing the ratio of the laser power measured with photodiode and real power measured in 
the back focal plane versus the excitation Wavelength. (c) Graphic representing the fluorescence 
excitation spectra for NBD-MTMA. 
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Abstract— In biological experiments fluorescence imaging is  
used to image living and stimulated neurons. But the analysis  
of fluorescence images is a difficult task. It is not possible to  
conclude the shape of an object from fluorescence images alone.  
Therefore, it is not feasible to get good manual segmented nor  
ground truth data from fluorescence images. Supervised learning  
approaches are not possible without training data. To overcome  
this issues we propose to synthesize fluorescence images and call  
them ’Digitally Reconstructed Fluorescence Images’ (DRFI). We  
propose how DRFIs are computed with data from ’Serial Block- 
Face Scanning Electron Microscopy’ (SBFS-EM). As novelty, we  
use DRFIs to learn a distribution model of dendrite intensities  
and apply it to classify pixels into spine and non-spine pixels. By  
using DRFIs as test data we also have the ground truth of spine  
and non-spine pixels and can validate the results. With DRFIs  
supervised learning of fluorescence images is feasible. 
 

I. INTRODUCTION 

In  the  biological  field  the  bottleneck  moved  from  data 
generation to data analysis. Neurobiologists heavily use mi- 
croscopy to investigate how neurons communicate. Thanks to 
fluorescence imaging (neurons are filled with fluorescent dyes as a 
volume marker) it becomes possible to image live cells over time 
with a high resolution resolving dendrites and spines (Fig. 1 shows 
schematic neurons). 

Fluorescence images are intensity images. In the sample,  
proteins are excited and emit photons that are counted. No  
optical mapping of an object to its fluorescence image ex- 
ists (this means, there is no direct reflection of light). The  
emission and the point spread function (PSF) of e.g. 2-photon  
imaging is large and blurry. The resulting images lack of  
edges respectively surfaces. It is not possible to conclude the  
object shape from the fluorescence image. 3D fluorescence 
 
 
 
 
 
 
 
 
 
 
 
 
 
Fig. 1.   Signals are sent from cell to cell over axons (B) to dendrites (C). The 
connection between axons and dendrite is often located at spines (D) and is called 
synapse (E). 

 
 
 

images are highly anisotropicly blurred. Therefore, the use  
of  classical 3D  image  analysis  is  not  feasible.  Even  for  
experienced biologists it is very challenging to segment objects  
or  structures  in  fluorescence  images.  Fluorescence  images  
are difficult to be analyzed automatically. The evaluation of  
results is very ambitious because there does not exist real  
ground truth data. Automated image analysis using supervised  
learning requires training data. In the domain of fluorescence  
images the generation of training data is very difficult. In  
contrast, the manual reconstruction of specially prepared, fixed  
dendrites in electron microscopy (EM) images is possible.  
These reconstructions have the correct geometrical properties  
of the dendrites. It is feasible to (manually) identify different  
structures (e.g. spines) in the reconstructions. This motivates  
to compute training data from EM reconstructions. 

In our approach we combine 2-photon imaging and electron  
microscopy and transfer a-priori knowledge from EM recon- 
structions to the 2-photon imaging modality. The conjunction  
of  the  two  modalities  is  realized  by  computing  synthetic  
fluorescence  images  that  we  call ’Digitally  Reconstructed  
Fluorescence Images’ (DRFI). This enables automated fluores- 
cence image analysis algorithms based on supervised learning. 

Furthermore, EM reconstructions and DRFIs provide the 
possibility  to  study  dendrites  and  its  fluorescence  images in 
different aspects. It is possible to visualize the effect of enclosed 
structures (e.g. mitochondria) on imaging and how different spines 
are represented in fluorescence images. There- 
fore, beside the computation of the statistical variability of the 
fluorescence response also different (biologically inspired) questions can 
be studied. 

In our studies we focus on the classification into spine and  
non-spine voxels in fluorescence images. Different approaches  
exist but none of them uses supervised learning. Many ap- 
proaches are based on the use of a full skeleton or backbone  
([1], [2], [3], [4], [5]) or use the skeleton represented in a  
different way, e.g. Zhang et al. [6] use vector flows. Shi et al.  
[7] use the center line to compute a surface. Other approaches  
like Rodriguez et al. [8] use local threshold methods. We  
propose a novel approach and model fluorescence intensity  
of dendrites. Therefore, we propose how a statistical model  
for fluorescence images can be computed and overcomes the  
drawbacks of fluorescence images. In the application we model  
dendrites and segmentations by using Principal Component  
Analysis (PCA).  
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Section II introduces the raw data generation. In section III we 
describe how DRFIs are computed. In section IV we explain the 
knowledge transfer, a 2D model and its application and in section V we 
discuss our approach.  

 
II. RAW DATA GENERATION  

We image neurons and are interested in dendrites and spines.  
Dendrites have the size of some µm. We can image with high  
magnification such that fine structures like spines are visible. 
Many spines are visible by 2-photon imaging but it is difficult to 
conclude the geometrical shape from fluorescence images. 
Therefore, we use electron microscopy and DRFIs. 

Since years electron microscopy is used to image small  
structures like spines in high resolution. Classical electron  
microscopes like Transmission Electron Microscopy have the  
disadvantage that the image stack must be aligned and cor- 
rected for distortion. In 2004 Denk and Horstmann [9] pre- 
sented the ’Serial Block-Face Scanning Electron Microscopy’  
(SBFS-EM). The data does not require an alignment. Image  
analysis can be done without preprocessing. By the preparation  
the tissue and neurons are fixed (not possible to do time-lapse  
imaging). The samples get trimmed to a few hundred µm and  
are then ready for imaging (for more details about preparations  
and SBFS-EM in general see [9]). 

We  imaged  with  2-photon  imaging  and  SBFS-EM  the same 
piece of dendrite. This enables us to visually compare the DRFIs 
with imaged fluorescence images. By a special preparation one 
cell becomes distinguishable (labeled) from background in SBFS-
EM. Then we can easily reconstruct the dendrite of interest (see III-
A). 
 

III. DIGITALLY RECONSTRUCTED FLUORESCENCE  
 IMAGES (DRFI) 

Our data set resolves fine structures like spines in all details  
in  the  SBFS-EM  modality.  But  live  neurons  can  only  be  
imaged with fluorescence imaging. It is time consuming and  
not trivial to acquire both data sets from the same piece of  
dendrite. We would like to analyze only fluorescence images.  
Therefore, the knowledge about structures and segmentations  
must  be  transferred  from  the  SBFS-EM  to  the 2-photon  
imaging modality. We use synthetic fluorescence images to  
transfer a-priori knowledge. 

The goal of the DRFI approach is to model information in the 2-
photon imaging modality that is very difficult to detect in 
fluorescence images directly but easily in SBFS-EM data (like e.g. 
spines and its segmentation). 

Fig.  2. A,C) Two examples of raw data of SBFS-EM. B,D) Examples with 
overlaid segmentation (an enclosed structure is at "X"). E) 3D EM 
reconstruction with visualized mitochondria (pink). 

 

all of them are filled and mitochondria volumes are subtracted from the 
reconstruction. This yields to correct reconstructions of dendrites 
which exclude mitochondria. This is important because in 2-
photon imaging mitochondria is not fluorescent. Fig. 2 shows the raw 
data and the reconstruction of the dendrite with visualized 
mitochondria (E). 

 

B. Point Spread Function of Fluorescence Images  
 The response of an imaging system to a point source is  
called point spread function (PSF). In many imaging systems the 
spatial extension of the PSF is negligible. But not in 2-photon 
imaging and similar microscopes. These imaging systems have a 
large PSF. Furthermore, the PSF is elongated along the optical axis 
(laser- or z-direction). The PSF can be measured or synthetically 
approximated. We use a synthetic PSF. This enables us to compute new 
data (and so new models) for any possible microscope configuration. 

Zhang et al. [10] show that a 3D Gaussian distribution 
approximates the PSF quite accurate: 

 
 
 
 

where σp is the standard deviation in x,y-direction (plane), σz in z-
direction and x, y, z is the position relative to the center of the PSF. 

Furthermore, Zipfel et al. [11] show a dependency between the 
1/e width ωp  and ωz . It is valid that 

 
 
 

Where FWHM is the full width at half maximum. Therefore, we get 
for the standard deviations 

A. Manual Dendrite Reconstruction in SBFS-EM  
 Data  from  the  SBFS-EM  is  used  without  any  previous  
alignment nor distortion correction. An experienced biologist  
manually thresholds the data to a binary image. The largest  
connected object is kept and all others (background noise) are 
removed. This first reconstruction has enclosed structures  
which can be divided into artifacts and mitochondria. The  
artifacts are regions where the labeling failed (in Fig. 2 D  
an artifact is highlighted with an "X"). The special labeling  
does not stain mitochondria. To correct the enclosed structures 

 
 
 
And 
 
 
 
 
 
where NA is the numerical aperture, n is the refraction index and is 
the wave length of the laser. The constants are given by Zipfel et al. 
[11]. 
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Fig. 3.   A) Volume rendering of DRFI with overlaid backbone, visualized backbone-
orthogonal plane (red line) and normal of the plane (arrow). B) Backbone-
orthogonal slice extracted from DRFI.  
 

C. Computing Digitally Reconstructed Fluorescence Images  
The EM reconstruction is the correct geometrical shape  
of the objects (dendrites). We assume a homogeneous filled 
neuron and exclude mitochondria volume. Given the synthetic PSF it is 
known how every object point is mapped to the 2- 
photon imaging modality. A convolution of the shape with the PSF 
gives the DRFI 
 
 

where Rd(i, j, k) is the binary image of the reconstruc- 
tion. Both images must be sampled at the same rate. This is 
achieved by resampling or computing the PSF with the required 
sampling frequency. 
 

IV. APPLICATION 

In the application we use the computed data to build a PCA model 
to classify pixels into spine or non-spine. To simplify the 
classification the model is trained on 2D data extracted from the 
3D images. 

Dendrites can be illustrated with central curves, also known as 
backbone. This backbone is the elongation of the dendrite in space. 
We use 2D images orthogonal to the (manually generated) 
backbone (see Fig. 3). 

Finally,  for  any  2D  backbone-orthogonal  slice  image  a  
prediction of spines can be done. As a-priori knowledge we  
use DRFIs of dendrites and spine segmentations which are  
computed like presented in section III. We use DRFI test  
data. This enables us to validate the results on pixel level.  
Therefore, the advantages and disadvantages of our approach  
can be studied in all details. Also some first 2-photon imaging  
data is analyzed. 

Fig. 4 shows the process pipeline. Offline, the training data  
is computed from the reconstructions and a synthetic PSF in  
3D. From the training data then also offline the PCA models  
are computed. In the testing phase online the 3D fluorescence  
image (every backbone-orthogonal slice) is approximated with  
the dendrite model and from this the approximation for the  
spine probability model is computed. With the parameters  
for  the  spine  probability  model  a  segmentation  of  spines  
in the 3D space is computed. In the following sections the  
computation and combination of the 2D models is introduced  
and detailed results for synthetic 3D test data in backbone- 
orthogonal slices presented. Furthermore, we show some first  
results on a 3D fluorescence image from 2-photon microscopy  
where the prediction results are transferred from the backbone- 
orthogonal slices to the 3D space. 

Fig. 4.  A) Offline computation of training data. B) Offline Computation of the  
PCA models. C) Testing Pipeline: For test data the parameters of the dendrite  
model are computed. Then the parameters for the spine probability model are  
estimated. Using these parameters the spines are detected and segmented. 

 
 

A. Transfer of a-priori Knowledge 
In EM reconstructions spines and other structures are de- 

tectable.  The  goal  of  the  knowledge  transfer  is  to  trans- 
fer this information to fluorescence images. Given an EM  
reconstruction Rd(i, j, k) of the dendrite (including spines)  
and a manual segmentation Rs(i, j, k) of its spines we can  
compute the DRFI Fd(i, j, k) of the dendrite including spines  
reconstruction and a fluorescence image Fs(i, j, k) of the spine  
segmentation. Because both images are computed with the  
same PSF the probability for every pixel the intensity is from  
spine is given by: 

 
 
This probability map corresponds to a segmentation in fluo- 

rescence images and is the knowledge transfer. It is to mention  
that there is a smooth transition between spine and dendrite  
pixels. Therefore, for a final segmentation in fluorescence  
images a threshold (e.g. > 50% of intensity from spine) must  
be applied. 

 

B. PCA Model Computation 
From DRFI Fd  and the probability image Ps  backbone- 

orthogonal slices Fd,i  and Ps,i  with i = {1, 2, . . . n} are  
extracted. The slices are scaled. The scaling is per axis (x/y- 
and z-axis) to compensate the elongated PSF. The intensity  
is normalized to {0, 1}. Then we compute a dendrite model  
PCA(Fd,i) and a spine probability model PCA(Ps,i). The  
computation for both PCA models is the same and we present  
it for PCA(Fd,i). 

First we compute the mean of all n examples as 
 
 
 

and construct the mean-free data matrix:  

 Xd = [Fd,1 − µd . . . Fd,n − µd]  (8)  
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ñ 

T 

Then we do a singular value decomposition of matrix Xd:  

 
 

An arbitrary slice sd  can be written as  
 

 
 
where αd  are the PCA-coefficients.  

 
 
C. PCA Model Combination and Prediction  

The goal of model combination and prediction is to approx- 
imate a test slice by the PCA-coefficients of the dendrite model 
and compute the PCA-coefficients of the spine probability 
model. This yields the prediction maps ss,i. 

The dendrite model and the spine probability model are  
constructed of the same slices. Furthermore, any linear com- 
bination of principal components uk can be expressed as linear  
combination of the example data and vice versa. We assume  
that a slice of dendrite respectively spine probabilities can be  
represented by the same linear combination of examples of  
dendrite slices respectively spine probability maps. Given the  
assumption it becomes possible to predict the PCA-coefficients  
of one model by the other one. First we right-multiply eq. (9)  
with VdDd1: 

  
 

αd  = (αd,1, . . . , αd,ñ)T  and βd  = (βd,1, . . . , βd,ñ)T  are 
coefficient vectors. Then 

 
 
 
 

and we have the relations 

  

and 

  
 
Given the assumption above introduced about same linear  
combinations of examples it is valid that βs  = βd  and we  
get 

  
 

The prediction map ss for a 2D dendrite image sd is given by 
projecting sd  to the dendrite PCA model using 

 
 

and retrieve αs  with eq. (15). Finally, the prediction is:  

  

Fig. 5.   The first row shows examples of DRFI test slices (Fd,i) and the second 
row the corresponding prediction maps (ss,i). The third row shows the ground truth 
probability maps (Ps,i). The outlines (green, 10% of intensity) are marked for 
better visibility. 

 
 

D. Results 

We used different EM reconstructions for training and test- 
ing. First, we present results of synthetic data. This enables us  
to validate the results with ground truth data. As training data  
we used an EM reconstruction with 17 spines. The dendrite  
was rotated along its main axis in 10◦ steps to compute spines  
at different orientation relative to the optical axis. Then every 
0.02µm backbone-orthogonal slices (about 20000) with a side  
length of 4µm were extracted. The slices were resampled at 
0.1µm. From these 20000 slices the PCA model was computed and the 
first 25 components kept. 

Fig. 5 shows results for the test image. From the DRFI of  
the test dendrite backbone-orthogonal slices Fd,i  (first row)  
were extracted and the posterior probabilities ss,i  computed  
(second row, third row shows ground truth probability maps  
Ps,i). The posterior probabilities have similar local maxima  
like the computed ground truth data. With further processing  
of these posterior probabilities it is possible to conclude from  
fluorescence images the existence and location of spines and  
its segmentations. 

Furthermore, we computed a binary segmentation of the  
slices. For the ground truth data we used a threshold of 0.5. 

 
n 

all slices as 0.5 ∗ n ∑
iosmax (ss,i) ≈ 0.23. Thiscparameterocan  

be tuned. Fig. 6 shows the slices (same examples like in Fig. 
5). The binary results for our predictions are shown in the first  
row. The second row shows the binary result for the ground  
truth data. The third row shows a classification into correct  
background (dark gray), correct foreground (white), missed  
foreground (light  gray)  and  incorrectly  as  spine  classified  
(black) pixels . 

In the  544 test slices  92.4% pixels are correctly classi- 
fied (88.2% background and 4.2% foreground pixels). 4.4% are 
wrongly classified as spine pixels and 3.2% are missed foreground 
pixels. Changing the threshold value and further changes improve 
the results. 

Furthermore, the approach was tested with the same piece of  
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the supervised learning approach trained with synthetic data.  
 
V. CONCLUSION  

We presented a novel approach to compute 2D models for 
fluorescence data that uses a-priori knowledge from electron 
microscopy reconstructions. The information transfer from 
reconstructions to fluorescence images and the combined models enabled 
us to classify pixels of 2D slices orthogonal to the backbone into spine 
or non-spine.  

The synthetic and real fluorescence examples illustrated  
how to model the distribution of fluorescence intensity from  
dendrites  and  spine  probabilities  in 2D  thanks  to  DRFIs.  
Enough training data can easily be computed in 2D.  

The  process  pipeline  is  working  with  real  fluorescence  
images. Furthermore, by the use of a correlative data set it  
became possible to compare the results with the geometrical  
correct reconstruction of dendrite and spines. This showed also  

Fig. 7. A) Volume rendering of the fluorescence image and the surface 
reconstruction of the segmentation. B) Manual aligned reconstruction of the SBFS-
EM data with highlighted spines (pink). 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 

Fig. 6.   Binarized results of prediction maps ss,i  (first row) and of ground  
truth data Ps,i (second row). The third row shows a comparison between  
correct (dark gray and white) and wrong (light gray and black) classified  
pixels. 
 

dendrite like in the synthetic case but imaged with 2-photon  
microscopy. The backbone was approximated automatically  
(using a thinning algorithm) and 2D slices extracted. Then  
the model was applied to generate a prediction for these 2D  
images. The predictions of the 2D images were transformed  
back to the 3D space and then binarized with a manually  
selected threshold t = 0.35. Fig. 7 shows the results. The  
first row shows a volume rendering of the fluorescence image  
and  in  grey  a  surface  reconstruction  of  the  segmentation.  
The second row shows for the same piece of dendrite the  
reconstruction of the SBFS-EM data (spines are highlighted  
in pink). This direct comparison of the segmentation with the  
geometrically correct reconstruction is possible because of the  
correlative data set. The use of the same piece of dendrite in  
the synthetic and the real case shows that the approach can  
be transferred from synthetic data to real fluorescence images.  
The application to real fluorescence data shows the power of 

that the approach gives similar predictions for synthetic data and 
real fluorescence images. 
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