edoc-vmtest

Interhemispheric EEG asymmetries during unilateral bright-light exposure and subsequent sleep in humans

Cajochen, C. and Di Biase, R. and Imai, M.. (2008) Interhemispheric EEG asymmetries during unilateral bright-light exposure and subsequent sleep in humans. American Journal of Physiology. Regulatory, Integrative and Comparative Physiology, Vol. 294, H. 3 , R1053-1060.

Full text not available from this repository.

Official URL: http://edoc.unibas.ch/dok/A6003994

Downloads: Statistics Overview

Abstract

We tested whether evening exposure to unilateral photic stimulation has repercussions on interhemispheric EEG asymmetries during wakefulness and later sleep. Because light exerts an alerting response in humans, which correlates with a decrease in waking EEG theta/alpha-activity and a reduction in sleep EEG delta activity, we hypothesized that EEG activity in these frequency bands show interhemispheric asymmetries after unilateral bright light (1,500 lux) exposure. A 2-h hemi-field light exposure acutely suppressed occipital EEG alpha activity in the ipsilateral hemisphere activated by light. Subjects felt more alert during bright light than dim light, an effect that was significantly more pronounced during activation of the right than the left visual cortex. During subsequent sleep, occipital EEG activity in the delta and theta range was significantly reduced after activation of the right visual cortex but not after stimulation of the left visual cortex. Furthermore, hemivisual field light exposure was able to shift the left predominance in occipital spindle EEG activity toward the stimulated hemisphere. Time course analysis revealed that this spindle shift remained significant during the first two sleep cycles. Our results reflect rather a hemispheric asymmetry in the alerting action of light than a use-dependent recovery function of sleep in response to the visual stimulation during prior waking. However, the observed shift in the spindle hemispheric dominance in the occipital cortex may still represent subtle local use-dependent recovery functions during sleep in a frequency range different from the delta range.
Faculties and Departments:03 Faculty of Medicine > Bereich Psychiatrie (Klinik) > Erwachsenenpsychiatrie UPK > Klinische Stress- und Traumaforschung (Holsboer-Trachsler)
03 Faculty of Medicine > Departement Klinische Forschung > Bereich Psychiatrie (Klinik) > Erwachsenenpsychiatrie UPK > Klinische Stress- und Traumaforschung (Holsboer-Trachsler)
UniBasel Contributors:Cajochen, Christian
Item Type:Article, refereed
Article Subtype:Research Article
Publisher:American Physiological Society
ISSN:0002-9513
Note:Publication type according to Uni Basel Research Database: Journal article
Related URLs:
Identification Number:
Last Modified:25 Apr 2014 08:00
Deposited On:25 Apr 2014 08:00

Repository Staff Only: item control page