
Machine Learning Methods for HIV/AIDS
Diagnostics and Therapy Planning

Inauguraldissertation

zur
Erlangung der Würde eines Doktors der Philosophie

vorgelegt der
Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Sandhya Prabhakaran
aus Kerala, Indien

Basel, 2014

Original document stored on the publication server of the University of Basel edoc.unibas.ch

This work is licenced under the agreement
“Attribution Non-Commercial No Derivatives – 3.0 Switzerland” (CC BY-NC-ND 3.0 CH).

The complete text may be viewed here: creativecommons.org/licenses/by-nc-nd/3.0/ch/deed.en

creativecommons.org/licenses/by-nc-nd/3.0/ch/deed.en

Attribution-NonCommercial-NoDerivatives 3.0 Switzerland
(CC BY-NC-ND 3.0 CH)

You are free: to Share — to copy, distribute and transmit the work

Under the following conditions:

Attribution — You must attribute the work in the manner specified by
the author or licensor (but not in any way that suggests that they endorse
you or your use of the work).

Noncommercial — You may not use this work for commercial purposes.

No Derivative Works — You may not alter, transform, or build upon this
work.

With the understanding that:

 Waiver — Any of the above conditions can be waived if you get permission from the
copyright holder.

 Public Domain — Where the work or any of its elements is in the public domain under
applicable law, that status is in no way affected by the license.

 Other Rights — In no way are any of the following rights affected by the license:

o Your fair dealing or fair use rights, or other applicable copyright exceptions and
limitations;

o The author's moral rights;

o Rights other persons may have either in the work itself or in how the work is used,
such as publicity or privacy rights.

 Notice — For any reuse or distribution, you must make clear to others the license terms of
this work. The best way to do this is with a link to this web page.

Quelle: creativecommons.org/licenses/by-nc-nd/3.0/ch/deed.en Datum: 12.11.2013

Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät

auf Antrag von

Prof. Dr. Volker Roth, Universität Basel, Dissertationsleiter

Prof. Dr. Thomas Vetter, Universität Basel, Korreferent

Basel, den 10. Dezember 2013

Prof. Dr. Jörg Schibler, Dekan

Thesis advisor: Prof. Dr. Volker Roth Co-advisor: Prof. Dr. Thomas Vetter

Machine Learning Methods for HIV/AIDS
Diagnostics and Therapy Planning

Abstract

by Sandhya Prabhakaran

Submitted to the Faculty of Science at the University of Basel

in Partial Fulfillment of the Requirements for the Degree of

Doctor of Philosophy in Computer Science

T
HE focus of the thesis is the development and application of Machine Learning methods

to the domain of HIV/AIDS diagnostics and therapy planning. The thesis addresses this

domain from two different perspectives:

Facet I. The first facet of the thesis analyses the genetically-diverse HIV populations present

in an infected patient’s blood samples. Understanding genetic diversity is crucial for further in-

sights into the evolution of drug-resistant viral lineage within an infected host and for personalised

medication where drugs are prescribed to a patient based on his/her viral lineage. With the help

of recent sequencing technologies, one can generate shorter viral strains called reads from infected

blood samples that are made use of in genetic-diversity studies. The puzzle is in matching every read

to its parent strain or haplotype, which can be seen as a standard clustering task. Given error-prone

reads with limited lengths, the main modelling challenge is that non-overlapping reads do not have

any suitable a priori pairwise similarity measure; this leads to a non-standard clustering problem.

None of the previous approaches have provided a convincing strategy to solve this issue. In this

work we overcome this problem by introducing a propagating Dirichlet Process Mixture Model.

Facet II. The second facet of the thesis takes the first steps to identify similarity patterns

between drugs used in HIV/AIDS therapy and active chemical compounds. Currently there exists

only a frugal number of anti-HIV drugs available to prepare drug cocktails. When a viral lineage

becomes resistant to a particular drug, it tends to show resistance to other drugs in the same drug

category, a property called cross-resistance. This situation demands development of newer and

resilient drugs and thus, an indepth understanding of similarities between the current drugs and

active chemical compounds is necessary. This is done by examining a landscape of active chemical

compounds that also contains the drugs. With respect to this, two models are developed:

Network structure learning. We present a fully probabilistic approach to inferring networks

i

Thesis advisor: Prof. Dr. Volker Roth Co-advisor: Prof. Dr. Thomas Vetter

from pairwise Euclidean distances obtained from kernel matrices of n objects. Traditional models

(Lasso-type methods), are based on the central Wishart likelihood parametrised by the inverse

covariance and sparsity of the latter is usually enforced by some penalty term. Assuming a central

Wishart, however, is equivalent to assuming that the origin of the coordinate system is known. If

these methods use on input only kernel matrices, then usually only the kernels’ pairwise distance

information is truly relevant. Since traditional methods rely on an assumed origin for any kernel,

they might generate biased networks. The method we developed is specifically designed to work with

pairwise distances since the likelihood depends only on these distances. Combining this likelihood

with a prior suited for sparse network recovery, we are able to extract sparse networks using only

pairwise distances. Now network inference can be carried out on any such distance matrix induced

by a Mercer kernel on graphs, probability distributions or more complex structures. Given a set of

chemical compounds which also includes anti-HIV drugs, we construct kernels using the SMILES

string encodings of the compounds. The network extracted using the kernels can be used to read

out cross-resistance properties shared amongst compounds from different chemical classes and drugs’

functional groups.

Archetype analysis. Archetype analysis involves the identification of representative objects from

amongst a set of multivariate data such that the observations can be expressed as a noisy convex

combination of these representative objects. Conventional archetype analyses rely on residual sum

of squares (RSS) decay curves for model selection, which in high-noise settings, tend to break down

due to no sudden change in the decay. Another drawback is that these methods are sensitive

to the initialisation of archetypes at the onset of the algorithm. This is crucial for a structured

dataset, where these methods have difficulties in extracting the right archetypes. In the current

work, we address these problems through a Group-Lasso formulation together with a well-defined

criterion, Bayesian Information Criterion (BIC), for model selection. Further, the archetypes are

initialised to all the observations desensitising our method to archetype initialisation. The usage of

larger datasets requires efficient methods and we therefore use the Group-Lasso to enforce grouped

sparsity. Since the Group-Lasso solution ensemble can be sampled at discrete steps using a fast

active-set method, BIC can be computed stepwise for model selection, thereby effecting automatic

archetype identification. The method is applied to extract archetypes from a set of active chemical

compounds including anti-HIV drugs. From the resulting set of archetypal compounds, one can

predict functional similarities that can be shared between drugs and archetypal compounds.

ii

Acknowledgements

This thesis would not have materialised without the encouragement, support and insight of my

thesis advisor, Prof. Dr. Volker Roth. I am greatly indebted to his passion, dedication and

seemingly limitless clarity over concepts which are worth commending and certainly are sources of

inspiration. Prof. Roth was ever ready to take forward a research idea. He was always available

with his sound reasonings and constant encouragements during this research. I thank him for the

several thorough reviews and feedback on my work and for instilling, over the years, the many

academic-nuggets required for writing a paper, drafting a poster/presentation, drawing figures or

running code. I am extremely humbled and honoured to have completed this thesis under his

academic guidance.

I also am deeply grateful to my co-advisor, Prof. Dr. Thomas Vetter, for showing interest

in the thesis and reviewing it.

It gives me great pleasure in acknowledging the collaborations I have had with Prof. Dr.

Niko Beerenwinkel and Armin Töpfer (ETH Zürich, Basel), Dr. Karin J. Metzner, Dr.

Huldrych Günthard and Francesca Di Giallonardo (University Hospital, Zürich), Dr. Os-

valdo Zagordi (University of Zürich, Zürich) and Dr. Alexander Böhm (LOEWE Center for

Synthetic Microbiology, Marburg, Germany). The many meetings and discussions are indeed cher-

ishable and have proved to be an enriching experience.

I am indebted to my colleagues Sudhir Shankar Raman, Julia E. Vogt, Mélanie Rey,

David Adametz, Behrouz Tajoddin and Dinu Kaufmann for providing a conducive research

environment at Basel. I appreciate the discussions and brainstorming sessions we have had so

far. Sincere thanks goes to Mélanie for sharing plenty of light moments, providing quick Math-

clarifications, the morning Rhine-runs and the tiny yet strong chats on art, books, life and chocolates.

In addition, I am extremely grateful toMélanie and David for their multiple reviews over the entire

thesis and helping me refine the text further.

Further, I would like to immensely thank the following people for having proofread parts of the

thesis and for taking the time to communicate their suggestions via email or Skype: Nitya Har-

iharan (Max Planck Institute for Astrophysics, Germany), Manuela Mangold (BVB, Basel),

Priyambada Sinha (SS&C PORTIA, Bangalore), Fengyuan Hu (Department of Haematology,

University of Cambridge), Ranjith R (IBM Software Labs, Bangalore) and Shivashankar Sub-

ramanian (Ericsson Research, Chennai).

This thesis has been typeset in 10.5 point Helvetica font and I acknowledge modifying the PhD

template available here: https://github.com/suchow/.

iii

https://github.com/suchow/

I am certainly thankful to the numerous people I met outside research. Special mention goes to

Tasqiah Julianti and Anja Schramm (Department of Pharmaceutical Sciences, University of

Basel), Tejal and Ajay (Infosys/Novartis Basel), Amandine Thomas (Trad8, Delémont), Dr.

med. vet. Claudia Wenk (LABOKLIN, Basel), Katrin Westritschnig (NIBR, Basel), Silvia

Balu (Psychiatry Clinic Königsfelden, Aargau), Suja Maria Thomas and Vidya Surendran

(UST Global, US/India), Lekshmy Sasidharan (TCS, India/UK), Nitya and Priyambada for

having shared time, be it through emails or the long enduring hikes and runs in Swiss/European

terrain or the brewing debates over a cup of hot chocolate/tea or lunch/dinner. I truly appreciate

the time spent together.

My stay at Katholische Universitätsgemeinde (KUG) has also been rewarding. I thank the

staff for their commitment to ensure a safe and studious environment through the years. During

my time here, I have come across several faces from around the globe and take this opportunity to

thank each and every one of them. There was never a dearth in finding company for a spontaneous

run, hike, tea, dinner or a stroll by the Rhine.

The journey I have embarked of being a student for many, many years was largely possible due

to the love, understanding and encouragement of my family. I cannot thank my parents and little

sister enough: my father who initiated me into education and reading and taught me the virtues of

time and dedication, my mother who always had a good head over her shoulders and my sister who

made me appreciate the small things in life. I am humbled by the trust they showed in me that

allowed me to pursue my interests and for them being the thickest of company all throughout.

Thank you indeed, one and all.

iv

Contents

Abstract i

Acknowledgements iii

Table of Contents 1

List of Figures 5

List of Tables 8

1 Introduction 9

1.1 Motivation - Why is HIV/AIDS domain challenging for ML techniques 10

1.1.1 Challenges in taming the HIV/AIDS infection 11

1.2 Focus of the thesis . 11

1.2.1 Facet One - Analysing Genetic Diversity/Identifying HIV haplotypes 12

HIV is a retrovirus and is highly mutagenic. 12

Stages in HIV infection and AIDS. 12

Challenge in analysing genetic diversity. 13

Thesis contribution. 13

1.2.2 Facet Two - Aiding Antiretroviral drug design and therapy 14

Antiretroviral therapy (ART). 14

Drug categories. 14

Primary challenge in ART: Resistance to anti-HIV medications. 15

Thesis contribution. 16

1.3 Roadmap of the thesis . 17

1.4 List of publications . 19

2 Computational Methods to infer HIV-1 Haplotypes using NGS data 21

2.1 Genetic diversity . 21

2.2 Next-generation Sequencing . 22

2.3 HIV-1 Haplotype assembly from NGS reads . 24

2.4 Computational Approaches for HIV-1 haplotype assembly 27

2.4.1 SNV . 28

2.4.2 Local haplotype assembly . 28

1

2.4.3 Global haplotype assembly . 29

Graph-based Combinatorial assembly. 30

Probabilistic assembly. 33

De novo methods. 34

2.5 Conclusion . 36

3 HIV Haplotype Inference using a propagating Dirichlet Process Mixture

Model 37

3.1 Introduction . 37

Outline of the chapter. 38

3.2 Computational Approaches to Haplotype Reconstruction 38

3.3 Primer to Mixture Models . 39

Sources for this section. 39

3.3.1 Mixture Models . 39

3.3.2 Finite Mixture Model . 39

3.3.3 Infinite Mixture Model . 41

Sample generation from a DP. 42

Chinese Restaurant Process. 43

3.4 Haplotype Reconstruction using a propagating Dirichlet Process Mixture Model . . . 44

3.4.1 The Haplotype Representation . 44

3.4.2 Likelihood and Prior . 44

3.4.3 Including Prior Information from previous local analyses 46

Truncated DPMM . 46

Inference – Gibbs sampling . 47

Truncated DPMM with updated prior information 48

3.5 Results . 50

3.5.1 Simulated Reads . 50

Simulation setup . 50

Performance . 51

Comparison with previous methods . 51

Significance of read length for haplotype reconstruction 52

3.5.2 Real Reads . 53

Sequencing data description . 53

Results on real reads . 55

Comparison with previous methods . 55

3.5.3 Datasets used and links to competing softwares 58

3.6 Conclusions . 58

4 Graphical Models 61

4.1 Introduction . 61

4.1.1 Relation between network structure estimation & inverse covariance matrix

and conditional independence of a corresponding probability distribution . . 62

2

4.2 Challenges related to structure recovery . 64

4.3 Graphical abstract . 65

5 Recovering Networks from Distance Data 67

5.1 Introduction . 67

Outline of the chapter. 67

5.2 Classical GGMs . 68

Related work. 68

5.3 Underlying Problems with Existing Methods . 69

5.4 Novel Solution to Network Inference . 71

5.5 The TiWnet Model . 74

5.5.1 Likelihood model . 74

Marginal likelihood. 74

5.5.2 Prior construction . 75

5.5.3 Inference in TiWnet . 76

5.6 Inferring Module Networks . 77

5.7 Experiments . 78

5.7.1 Toy Examples . 78

Sample generation. 79

Simulations. 79

5.7.2 Real-world Examples . 83

A Module network of Escherichia coli genes. 83

“Landscape” of chemical compounds with in vitro activity against HIV-1. 86

The “Landscape” of Glycosidase enzymes of Escherichia coli. 87

5.8 TiWD versus TiWnet . 89

5.9 Contributions of TiWnet . 92

5.10 Conclusion . 93

5.11 Proof of Proposition 5.1 . 93

Linear transformation and kernel. 93

Shift- and scale-invariant marginal likelihood in D. 94

6 Automatic Archetype Analysis 97

6.1 Introduction . 97

Archetype analysis and PCA. 97

Applications. 98

Focus of the current work. 98

Outline of the chapter. 98

6.2 Data generative model and model learning . 99

Definitions. 99

6.2.1 Generative model . 99

6.2.2 Model Learning . 100

6.3 Conventional Archetype Analysis – Model Description 100

3

Related work. 100

6.3.1 Conventional Archetype Analysis algorithm 101

Complexity analysis for conventional methods. 102

6.3.2 Problems with the conventional methods . 103

Model Selection mechanism. 103

Sensitivity to initialisation of archetypes. 103

6.4 Automatic Detection of the Number of Archetypes 104

6.4.1 Sparse Archetype Selection using the Group-Lasso 104

6.4.2 Monotone Incremental Forward Stage-wise Regression (MIFSR) 105

Complexity Analysis for MIFSR. 106

6.4.3 Group-Lasso optimisation step . 106

6.4.4 Further Acceleration of our Algorithm . 108

Dimensionality reduction with robust PCA. 108

Preselecting the archetype candidates. 108

6.5 Model Selection . 108

6.5.1 ’Approximate’ degrees of freedom for Group-Lasso 109

6.5.2 ’Exact’ degrees of freedom for Group-Lasso 109

Complexity analysis for Model Selection using BIC. 112

6.6 Experiments . 112

6.6.1 Simulations . 112

Simulation example I. 112

Simulation example II: Noisy convex sets generated from a non-uniform

density. 113

Simulation example III: Dataset containing clusters of compact convex

sets. 116

6.6.2 Real-world experiments . 116

Text categorisation using Reuters Corpus Volume 1. 116

Archetypal compounds from amongst active chemical compounds. . . 118

6.7 Conclusion . 122

7 Conclusion and Future directions 124

Facet I . 124

HIV Haplotype Inference using a propagating Dirichlet Process

Mixture Model. 124

Facet II . 125

TiWnet – network inference. 125

Automatic Archetype Analysis. 126

8 Appendix 128

8.1 Appendix: Networks extracted using graph lasso . 128

8.2 Appendix: Primer to Group Lasso . 132

References 134

4

List of figures

1.1.1 HIV. 10

1.1.2 Spread. 10

1.2.1 Viral progression. 13

1.2.2 Landmarks of the HIV-1 genome. 15

1.2.3 Drug Resistance. 16

1.3.1 Graphical overview of the thesis. 18

2.2.1 NGS throughput. 23

2.2.2 NGS platforms. 23

2.3.1 Genetic diversity estimation goals. 24

2.3.2 Error-prone reads sequenced from two different parent haplotypes. 25

2.3.3 Clustering based on mixture models works for fully and partially-overlapping reads

(left and central) but not for full-length reconstruction (right). 26

2.4.1 Spatial stratification. 27

2.4.2 Local haplotype assembly. 29

2.4.3 Flowgram. 30

2.4.4 Quasispecies Read graph. 31

2.4.5 Transitive Reduction. 32

2.4.6 Path Cover. 33

2.4.7 Assumed stochastic process for read generation. 34

2.4.8 Modelling recombinants. 35

2.4.9 De novo read assembly. 35

3.3.1 Generative process for a Finite Mixture model. 40

3.3.2 Plate model: Finite Mixture model to Infinite Mixture model. 41

3.3.3 Generative process for an Infinite Mixture model. 42

3.3.4 Chinese Restaurant Process. 43

3.4.1 Haplotype as probability tables. 44

3.4.2 Detailed plate model for read generation using DPMM. 45

3.4.3 Plate model for the propagating DPMM. 48

3.4.4 Coverage plot of reads. 49

3.4.5 Model workflow for global haplotype reconstruction. 50

5

3.5.1 F-scores over 15 runs each for different combinations of read lengths and mutation

probabilities. 53

3.5.2 Number of correct haplotypes and false positives versus mismatches. 54

3.5.3 Read length versus Haplotype number and frequency. 55

3.5.4 F-scores for comparison experiments on 454 real reads. 56

3.5.5 F-score spectrums for comparison experiments on 454 real reads. 57

4.3.1 Graphical abstract. 66

5.2.1 Assumed underlying generative process in classical GGMs. 69

5.3.1 Assumed underlying generative process. 70

5.3.2 Performance of edge recovery for the graph lasso. 71

5.4.1 Relationship and information loss between data matrix X, similarity matrix S and

pairwise distance matrix D. 72

5.4.2 Choice of S in a probabilistic versus discriminative setup. 73

5.5.1 Metropolis-within-Gibbs sampler. 77

5.7.1 Generative distribution of the edge weights. 79

5.7.2 Performance of graph lasso (GL) using 20 randomly generated Ψ-matrices. 80

5.7.3 Networks with highest predictive likelihood and optimally-thresholded networks for

the various methods. 82

5.7.4 F-scores without additional thresholding for graph lasso (GL) and corresponding

boxplots of the pairwise differences. 83

5.7.5 Effects of same sparsity level as TiWnet on graph lasso (GL). 84

5.7.6 Testing the quality of the three-level prior used in the Ψ on the various methods. . 85

5.7.7 Module Network of Escherichia coli Genes. Black/green edges = positive/negative

partial correlation. 86

5.7.8 “Landscape” of Chemical Compounds with In Vitro Activity against HIV-1. 88

5.7.9 Contact Map. 89

5.7.10 “Landscape” of Glycosidase enzymes of Escherichia coli. 90

5.8.1 Illustration of the difference between TiWnet and TiWD. 91

6.2.1 Data generation mechanism. 100

6.2.2 Archetype analysis: Graphical abstract. 101

6.6.1 Comparison of the Group-Lasso based method with that of conventional methods. 114

6.6.2 Performance of conventional methods on a convex set generated from a non-uniform

density. 115

6.6.3 Group-Lasso based method on a convex set generated from a non-uniform density. 116

6.6.4 Performance of Group-Lasso based method and conventional methods on a dataset

having clusters of compact convex sets. 117

6.6.5 Archetypal documents extracted from the RCV1 text corpus. 118

6.6.6 Archetype analysis on RCV1 corpus using the Group-Lasso based method. 119

6.6.7 IDF, Word cloud and trending topics of archetypal documents per category. 120

6

6.6.8 Archetypal compounds extracted from the chemical compound landscape using the

Group-Lasso based method. 121

6.6.9 Sets of most influential archetypal compounds with chemical structures and archety-

pal weights. 122

8.1.1 Network of chemical anti-HIV compounds inferred by graph lasso with a small `1

penalty. 129

8.1.2 Network of chemical anti-HIV compounds inferred by graph lasso with a medium-

sized `1 penalty. 130

8.1.3 Network of chemical anti-HIV compounds inferred by graph lasso with a large `1

penalty. 131

8.2.1 Lasso estimate profiles for the diabetes data. 132

8.2.2 Group-Lasso estimate profiles for the diabetes data. 133

7

List of Tables

3.5.1 Actual and reconstructed haplotypes proportions obtained using PredictHaplo for

non-PCR and PCR 454/Roche reads. All values are in %. X denotes ’undetected

haplotype’. 57

3.5.2 Links to softwares used in comparison experiments. 58

8

1
Introduction

THE principal focus of the thesis is the development and application of Machine Learning meth-

ods to the domain of HIV/AIDS diagnostics and therapy planning. The thesis is stereoscopic

in that it looks at this domain from two different perspectives:

1. It analyses the genetically-diverse HIV populations present in an infected patient’s blood sam-

ples. Understanding genetic diversity is crucial for further insights into the viral-host inter-

actions, evolution of drug-resistant viral lineage within an infected host, progression of HIV

infection and for personalised medication where drugs are prescribed to a patient based on

his/her viral lineage.

2. It also takes the first steps to identify similarity patterns between drugs used in HIV/AIDS

therapy and active chemical compounds. Currently there exists only a frugal number of anti-

HIV drugs available to prepare drug cocktails. When a viral lineage becomes resistant to a

particular drug, it tends to also become resistant to other drugs in the same drug category, a

property called cross-resistance. This situation demands development of newer and resilient

drugs and thus, an indepth understanding of similarities between the current drugs and active

chemical compounds is necessary.

In what ensues, the underlying motivation for using the HIV/AIDS domain in this thesis is

presented. This caters to understanding the complicated nature of HIV and the construing problems

that offer a challenging and interesting ground for applying Machine Learning (ML) techniques.

9

1.1 Motivation - Why is HIV/AIDS domain challenging for ML tech-

niques

Figure 1.1.1: Appearances of HIV enveloped in the host cell membrane shown with the docking stations (seen as
knobs) that aid the virus to connect onto host cells. 1

Acquired Immune Deficiency syndrome (AIDS) is one of the most destructive pandemics in chron-

icled history and is caused by the presence of the human immunodeficiency virus (HIV) (see Figure

1.1.1) in an infected host body. The spread of HIV infection by demography, based on the UNAIDS

Global Report 2006, is shown in Figure 1.1.2. The first cases of AIDS were reported in 1981 (Coffin

and Varmus, 1997), and the discovery of its etiologic agent, a distinct subtype called human immun-

odeficiency virus type 1 (HIV-1), was identified in 1983 (Marmor et al. (2006)). Since then, there

has been significant research towards understanding HIV-1 interactions at the host’s cellular levels

and in the development of effective antiretroviral therapy (Marmor et al. (2006)).

Figure 1.1.2: Spread of HIV infection. Figure courtesy: UNFPAs AIDS Clock (2006): http://www.unfpa.org/
aids_clock/.

1Figure courtesy: http://www.rkm.com.au/VIRUS/HIV/HIV-virion-laevo.html, http://www.kurzweilai.

net/protein-that-destroys-hiv-discovered, http://www.personal.psu.edu/afr3/blogs/SIOW/2011/10/

good-news-for-hiv-victims.html.

10

http://www.unfpa.org/aids_clock/
http://www.unfpa.org/aids_clock/
http://www.rkm.com.au/VIRUS/HIV/HIV-virion-laevo.html
http://www.kurzweilai.net/protein-that-destroys-hiv-discovered
http://www.kurzweilai.net/protein-that-destroys-hiv-discovered
http://www.personal.psu.edu/afr3/blogs/SIOW/2011/10/good-news-for-hiv-victims.html
http://www.personal.psu.edu/afr3/blogs/SIOW/2011/10/good-news-for-hiv-victims.html

1.1.1 Challenges in taming the HIV/AIDS infection

Although there have been plenty of scientific and clinical advancements in understanding and treating

HIV infection now than at any point in history, the challenges to tame the HIV infection are still

paramount (Marmor et al. (2006), USA (2010)). The challenges faced are primarily related to

(Lamptey et al. (2006), CDC (2013), Schweighardt et al. (2010), NHS (2012)):

1. The nature of HIV: Specifically, HIV is a retrovirus and is highly mutagenic. Mutations can

create newer viral strains that are likely to escape drug treatment and these drug-resistant

lineages allow further disease progression.

2. Channels of HIV transmission: Transmission of HIV is primarily via a mucous membrane or

bodily fluids like the blood stream or mother’s milk. Utmost personal attention and strin-

gent measures must be followed to curtail HIV transmission through these channels which,

unfortunately, stand to be severely defaulted.

3. HIV/AIDS awareness of the general public: A high degree of complacency and general aware-

ness are required.

4. Design, despatch and administering of antiretroviral drugs: Currently there exists only a mea-

gre number of plausible drug combinations for anti-HIV therapy. When HIV becomes resistant

to a particular drug, it also becomes cross-resistant to other drugs in the same drug family,

eventually reducing the number of available drug combinations. Therefore, design of compe-

tent drugs is necessary to counteract the escape of drug-resistant viral mutants and to prevent

further disease progression. Dissemination of drugs is also a problem in many AIDS-impacted

societies due to poverty, higher medicine costs, transportation and shortage of medicines.

Each of the challenges spins further allied problems which require utmost attention. It is at this

juncture, that the thesis pitches in with models tailored using ML techniques to quell some of these

challenges primarily relating to the nature of HIV and aiding antiretroviral drug design.

1.2 Focus of the thesis

From the above discussions, it is clear that HIV/AIDS infection is an unabating menace. The

perspective of this thesis lies in devising and applying ML techniques to analyse challenging problems

that arise due to the virulent2 nature of HIV. We mainly study two different facets of this virulency:

1. One facet deals with analysing the diverse virulent populations for identifying genetic diversity.

Understanding the genetically-diverse population, throws light on drug-resistant strains - an

impending aftermath caused by virulency - and the dynamics of the strains’ reduced drug

susceptibilities and associated therapy failure (Beerenwinkel, 2009). Further insights to the

diverse populations also aid personalised medicines, i.e. drug concoctions tailored to the virus’

genetic diversity given a specific patient.

2Virulency is the extremely infectious or harmful nature of a microorganism to cause disease (Vir).

11

2. Another facet looks for structural similarities between anti-HIV drugs and chemical compounds

given the chemical compound landscape. This facilitates better understanding of drug cross-

resistance and aids the design for new, potent and viable drugs.

Each facet is explained in detail below, together with the challenges posed and the thesis contri-

bution in the area.

1.2.1 Facet One - Analysing Genetic Diversity/Identifying HIV haplotypes

The primary challenge in dealing with the HIV/AIDS infection is the inherent nature of the virus

itself. HIV is a retrovirus and is known for its high mutagenecity (Mansky and Temin (1995)) which

creates a diverse genetic population. This diversity facilitates the evolutionary escape of HIV from

the host’s immune response (Beerenwinkel et al. (2012a)) and leads to the possible emergence of

drug-resistant viral strains (Meyer R Ph (2004)). The knowledge of genetic diversity is also essential

for administering drugs tailored per patient that leads to the personalised medication model in drug

treatment.

HIV is a retrovirus and is highly mutagenic. HIV is a retrovirus meaning that its genetic

material is the RNA. Once it enters the cell, it copies its RNA onto the host DNA. This integration

with the natural DNA results in the lifelong HIV infection (Meyer R Ph, 2004). Replication, mutation

and recombination are vital for the HIV proliferation within the host (Negroni and Buc (2001),

Mansky and Temin (1995)). HIV-1 has a mutation rate of 3.4× 10−5 mutations per base pair (bp)

per replication cycle (Mansky and Temin (1995)). This high mutation rate gives rise to a prolific

viral load with variants that are medically termed as viral quasispecies or viral population or mutant

clouds or swarms (Beerenwinkel et al. (2012a)). The mutated strains arise due to different selection

pressures as the virus evolves within the host, between hosts and also depends on the infection

stage (discussed in the next paragraph) (Rambaut et al. (2004), Yoshida et al. (2011), Beerenwinkel

et al. (2012a)). The selection pressures are induced on the whole viral population and not on a

single variant (Eigen and Schuster (1977), Eigen (1987)). Given HIV’s high mutagenicity and drug-

resistant nature, if left untreated, the infected person can host prolific genetically-diverse populations

of HIV.

Stages in HIV infection and AIDS. The infection of HIV starts by targeting the CD4+ cells

(also known as the T-cells) of the human immune system which is the body’s line of defense against

illness and infection (Bushman et al. (2012), Mohammadi et al. (2013)). When the count of these

cells falls gradually but continually, the immune system is systematically weakened. Refer Figure

1.2.1 for different stages of HIV progression.

The acute infection phase is the initial infection period (Klatt, 2013). This phase is marked by a

higher concentration of less-diverse variants and renders the host highly contagious (Hollingsworth

et al. (2008)). Over time, this results in an assemblage of symptoms and infections that the body

cannot defend any further with the CD4+ cells gradually decreasing. During this asymptomatic

phase, such a HIV-positive patient succumbs to various opportunistic diseases like Tuberculosis,

Herpes, Hepatitis and measles (Fleming (1990)). This compounded state of infections within an

12

Figure 1.2.1: Various stages in HIV Viral progression (Hollingsworth et al. (2008)). Stage 1 is the acute infection
phase where HIV has successfully entered the host cell and starts its replicative cycle. The host is highly conta-
gious during this phase. Stage 2 is the asymptomatic phase where the host contracts opportunistic diseases due
to severe weakening of the immune system. Stage 3 or the symptomatic phase is called AIDS where the infected
body hosts highly-diverse HIV mutants and has a weak immune system (reduced CD4+ count). Figure courtesy:
Philip Rieder and Karin J. Metzner, University Hospital, Zürich, Switzerland.

infected host eventually leads to the AIDS condition. As shown in Figure 1.2.1, stage 3 of the

HIV infection or the symptomatic phase is called AIDS which is highlighted by a profound increase

of highly-diverse viral variants and a sharply depleting CD4+ count (Vergis and Mellors (2000),

Hollingsworth et al. (2008)).

Challenge in analysing genetic diversity. A HIV-infected person can host a highly-diverse

viral population. Given such a diverse viral population, identifying the genetic diversity means

inferring the constituent haplotypes, i.e. the original mutated viral strains. Input data for genetic

diversity identification are the sequenced reads obtained from Next-generation Sequencing (NGS)

techniques. The sequenced reads are shorter fragments of the constituent haplotypes. More details

on NGS are discussed in Chapter 2. These sequencing techniques generate error-prone reads which

further complicate the genetic diversity analysis: the reads that were already subject to biological di-

versity by way of mutations, replications and recombinations are further corrupted through machine

errors (Beerenwinkel, 2009). The pursuit in identifying the genetic diversity now consists in being

able to clearly separate machine error versus biological diversity to be able to effectively interpret

the diverse viral load. The various methods employed for analysing genetic diversity are reviewed

in Chapter 2.

13

Thesis contribution. The model, PredictHaplo, is introduced that infers the genetic diversity

in HIV. This is a Bayesian nonparametric model and uses a propagating Dirichlet Process Mixture

Model framework to infer the number of viral variants, their genetic makeup and corresponding

frequencies. The model is elaborated in Chapter 3.

1.2.2 Facet Two - Aiding Antiretroviral drug design and therapy

Antiretroviral therapy (ART). Proper treatment is extremely crucial in arresting the further

promulgation of viral multiplication (Klatt, 2013). As opposed to monotherapy where only a single

drug was used to eradicate HIV, current anti-HIV drug therapy involves a mix of multiple drugs

available for anti-HIV treatment (Lipsky (1996)). These drugs are known as antiretroviral (ART)

or anti-HIV drugs. The aim of anti-HIV treatment, is to reduce the amount of copies or the ’viral

load’ to very low levels - an undetectable viral load which is below 20–50 copies per ml of blood

(Martin-Blondel et al. (2012)).

Although there are highly active antiretroviral treatments (HAART) for AIDS and HIV to reduce

the mortality and morbidity of the infection, there is no known cure (Mehanna (2003)). Apart from

this, even availing or dispensing HAART promptly and economically is not possible. Further, the

tussle of finding the right drug concoctions to counteract the drug-resistant variants is a lurking

problem in anti-HIV therapy (Shafer and Schapiro (2008)).

To further understand the inherent challenges in HIV drug design and therapy, the different ART

drugs are explored below.

Drug categories. There are currently 25 antiretroviral drugs in use for HAART (Johnson et al.

(2010)). The functional crux of every drug is to prevent the immature HIV from becoming mature

and infectious (Fou, 2013). Depending on the mode of HIV-host cellular interactions, these 25 drugs

offer counter-attacks and can be classified into the following (Mehanna (2003), Johnson et al. (2010),

AID (2012), NIA (2013), AID (2013)):

• Entry Inhibitors

In order to enter the host’s immune cell, HIV binds itself simultaneously onto receptor proteins

(CD4 and CCR-5) present outside the immune cells. The Entry Inhibitors fuse to CCR-5 and

block access to CCR-5, preventing entry of the virus into the host cell. Example drugs are

Maraviroc and Enfuvirtide.

• Integrase Inhibitors

These target the Integrase protein of the HIV (refer Figure 1.2.2 showing active drug target

sites on the HIV genome) and prevent HIV from integrating onto the host DNA altogether.

Example drugs are Raltegravir and Elvitegravir.

• Protease Inhibitors

This set of anti-HIV drugs works once the HIV has infected the host cell. To initiate the viral

replication within the host cell, HIV has to split into its functional constituents and uses a

protein-cutting enzyme, protease, for this. The Protease Inhibitors prohibit the activity of the

14

Figure 1.2.2: Landmarks of the HIV-1 genome showing the pol region (locations 2085 − 5096) which constitutes
the Protease (prot), Reverse Transcriptase (RT) and Integrase (int) proteins; the active sites for ART drugs. Figure
courtesy: Di Giallonardo Francesca, University Hospital, Zürich, Switzerland.

protease protein (refer Figure 1.2.2) by binding onto them thereby preventing further viral

assemblage. Example drugs are Darunavir and Tipranavir.

• (Non)/Nucleoside Reverse Transcriptase Inhibitors (NNRTIs/NRTIs)

After successful binding to the host’s immune cells (CD4+ or T-cells), HIV infects the host cell

by copying its genetic material present in the RNA onto the host’s DNA. The copying from

HIV viral RNA onto the host’s cellular DNA occurs through the Reverse-transcriptase (RT)

protein (Preston (1997)). The NNRTIs/NRTIs target the RT site of the HIV genome (refer

Figure 1.2.2).

1. NNRTIs bind to the RT enzyme itself, making the virus unable to replicate. Example

drugs are Nevirapine and Efavirenz.

2. NRTIs create faulty viral building blocks and binds to the RT protein. When HIV is in the

process of copying genetic material, which in now the NRTI-generated faulty material,

RT is unable to proceed with copying. Example drugs are Stavudine, Lamividine and

Tenofovir.

Both drug categories prevent the RT protein from copying the harmful viral RNA onto the

host’s DNA, prohibiting further infection.

Primary challenge in ART: Resistance to anti-HIV medications. HAART blends in an

approriate drug mix from 3 different families of anti-HIV drugs available (Fou, 2013). It is important

to maintain a steady level of anti-HIV drugs in the body, else HIV can proliferate quickly leading to

resistance (Meyer R Ph, 2004). Resistance is the virus’ ability to resist effects of the anti-HIV drugs

in the body and still be able to mutate, reproduce and proliferate in the presence of antiretroviral

drugs (see Figure 1.2.3) (Meyer R Ph (2004), WHO (2011)). Due to the selection pressure exerted

by a particular drug, the virus sensitive to that drug (green blob) succumbs over time whereas

the resistant virus (red blob) persists, proliferates and aids HIV progression. The other impending

danger is that if the virus is resistant to a medication, it can become resistant to other medications in

the same drug family; this is known as cross-resistance. For example, NRTI s are known to be highly

cross-resistant (Johnson et al. (2010)). Further, drug concoctions for the infected person must make

use of this knowledge and use drugs from other families where resistance has not yet been developed.

If the cross-resistance aspect is not factored in during drug therapy, it can lead to dire consequences

15

Figure 1.2.3: Temporal development of drug resistance: Selection pressure induced by ART drugs acts on the en-
tire viral population. Over time certain strains (green blobs) succumb to the pressure whereas the drug-resistant
variants (red blobs) escape, eventually progressing with their replicative cycles and are responsible for further dis-
ease intensification. Figure courtesy: Dr. Betty Chang, Microsoft Bing, U.S.

like treatment failure and spread of HIV-resistant strains which catalyse the AIDS infection (Stage

3 in Figure 1.2.1). This spins further problems in that new drugs are needed to combat the resistant

strains and these drugs come at increased treatment costs. Current HIV treatments are classified as

successful if they prevent initial infections (due to co-inhabiting with HIV patients) or ameliorate

opportunistic diseases (Marmor et al. (2006)).

It is therefore the dire call of the hour that more and powerful anti-HIV drugs are needed to

respond to HIV’s drug-resistant nature since drug resistance is common and diverse, even among

untreated patients (Hirsch et al. (2008), Metzner et al. (2013)). Currently there are only 25 com-

mercialised drugs used in ART which fall into any of the 5 drug categories described above. Since

certain drugs combinations are contraindicated (Macher et al., 2003), there remains only a handful of

possible and allowed drug combinations between categories. It thus becomes necessary to investigate

further the space of active chemical compounds and chalk out relations between the compounds and

currently-administered ART drugs.

Thesis contribution. To understand HIV’s behaviour towards drug selection pressures and how

the drug concoctions perpetrate viral attacks, one promising strategy would be to explore struc-

tural similarities between the current 25 commercialised anti-HIV drugs and other active chemical

compounds. Therefore, the other facet of the thesis explores the ART drugs where one could draw

similarities of the existing anti-HIV drugs from amongst the landscape of other active chemical com-

pounds. This would lead to better understanding of drug cross-resistance based on the structural

similarities of drugs with the chemical compounds and could open doors to potent drug design and

development.

Given a chemical compound landscape consisting of currently-used ART drugs and active com-

pounds, ML techniques are developed in this thesis for:

• Network structure recovery : A fully-probabilistic model called Translation-invariant Wishart

network (TiWnet) is presented that can extract a network of chemical compounds based on

chemical structures. Details of the 25 ART drugs are superimposed onto the obtained network

16

to visualise structural similarities between the drugs and the active compounds and assists in

sketching the drug cross-resistance profiles. This model is discussed in Chapter 5.

• Automatic archetype analysis: The model automatically identifies archetypal drugs from amongst

the chemical compound landscape based on chemical structures of compounds. For any

archetypal drug, an approximate convex set of active compounds is found that can be well

explained by the archetype. Based on the location of an active compound in this set, pre-

dictions can be made as to how functionally similar they are to the archetype. This can be

used as prior knowledge in the design and development of new anti-HIV drugs. The model is

elaborated in Chapter 6.

Both these models can be used to identify active chemical compounds analogous to the drugs

based on similarities of their chemical structures.

1.3 Roadmap of the thesis

The thesis deals with novel ML techniques devised and applied for HIV/AIDS diagnostics and

therapy planning.

Facet I is based on identifying the genetic diversity of HIV i.e. the swarm of intra-host viral

quasispecies. Chapter 2 reviews genetic diversity, the various NGS techniques and currently-available

computational methods for diversity analysis. PredictHaplo, the propagating DPMM for haplotype

inference is presented in Chapter 3.

Facet II presents models that identify similarities between anti-HIV drugs and active chemi-

cal compounds. Similarities can be tethered by either extracting networks of drugs or identifying

archetypal drugs, given a chemical compound landscape. Chapter 4 is an introduction to graphical

models and in Chapter 5, the fully-probabilistic TiWnet network model is detailed. In Chapter 6 the

model for automatic archetype analysis is presented. Conclusions of the thesis and future directions

are outlined in Chapter 7.

An overview of the subject areas this thesis deals with is captured in Figure 1.3.1.

17

Fi
gu

re
1.

3.
1:

G
ra

ph
ic

al
ov

er
vi

ew
of

th
e

th
es

is
.

18

1.4 List of publications

Following are the publications based on this thesis:

• “HIV Haplotype Inference using a propagating Dirichlet Process Mixture Model”, Sandhya

Prabhakaran, Melanie Rey, Osvaldo Zagordi, Niko Beerenwinkel and Volker Roth. IEEE/ACM

Transactions on Computational Biology and Bioinformatics, [Epub ahead of print], 2013.

An extended abstract was presented at the Machine Learning in Computational Biology

(MLCB) Workshop, NIPS 2010.

• “Recovering networks from distance data”, Sandhya Prabhakaran, David Adametz, Karin J.

Metzner, Alexander Böhm and Volker Roth. Machine Learning Journal, volume 92:2-3, pages

251–283, 2013.

A conference proceeding has appeared here: Asian Conference of Machine Learning (ACML’12),

Journal of Machine Learning Research Workshop and Conference Proceedings, volume 25,

pages 349–364, 2012.

• “Automatic Model Selection in Archetype Analysis”, Sandhya Prabhakaran, Sudhir Raman,

Julia E. Vogt and Volker Roth. 34th DAGM/OAGM Symposium, volume 7476 of Lecture

Notes in Computer Science, page 458–467, 2012.

Other publications also referred to in the thesis are:

• “Probabilistic Inference of Viral Quasispecies Subject to Recombination”, Armin Töpfer, Os-

valdo Zagordi, Sandhya Prabhakaran, Volker Roth, Eran Halperin and Niko Beerenwinkel.

Journal of Computational Biology, volume 20:2, pages 113–123, 2013.

A conference proceeding has appeared here: The 16th Annual International Conference

on Research in Computational Molecular Biology (RECOMB’12), pages 342–354, 2012.

• “The Translation-invariant Wishart-Dirichlet Process for Clustering Distance Data”, Julia E.

Vogt, Sandhya Prabhakaran, Thomas J. Fuchs and Volker Roth. The 27th International

Conference on Machine Learning (ICML’10), pages 1111–1118, 2010.

19

Facet I

Computational methods to infer
HIV-1 Haplotypes using
Next-generation Sequencing data

Goals in this part of the thesis:

• What is genetic diversity and why is it of significant interest.

• Understanding Next-generation sequencing techniques and sequenced reads used

to model genetic diversity.

• Existing methods to infer HIV-1 haplotypes from NGS data

SNV

Local haplotype assembly

Global haplotype assembly

• PredictHaplo - a propagating DPMM to infer global HIV-1 haplotypes

20

2
Computational Methods to infer HIV-1 Haplotypes

using NGS data

THIS chapter reviews the various computational techniques available to reconstruct haplotypes

and estimate genetic diversity present in an infected blood sample. Genetic diversity arises

due to the presence of diverse HIV variants and is responsible for disease progression and hindrance

of medical prognosis. We begin by understanding what constitutes a genetically-diverse sample and

then take a tour of the NGS techniques available to sequence such samples, before reviewing the

computational methods employed for haplotype assembly.

This chapter is structured based on Beerenwinkel et al. (2012a) and Beerenwinkel et al. (2012b).

2.1 Genetic diversity

HIV, which is a RNA virus, is known to be highly mutagenic thereby evolving into large viral pop-

ulations that exhibit extreme genetic diversity (Mansky and Temin (1995), Preston and Dougherty

(1996), Loeb et al. (1999)). They mutate at very high rates i.e. 3.4× 10−5 mutations per base pair

(bp) per replication cycle (Section 1.2.1 and Mansky and Temin (1995)). Such a replication cycle can

entail error-prone steps that introduce base substitutions, frameshifts and recombinations creating

genetic arrangements and leading to diverse mutants (Preston and Dougherty (1996)). The error

rate of a viral mutation is 10−4 – 10−3 per base meaning that every replication of the HIV genome

incurs 1−10 errors (Nowak (1992)). An aftermath of such colossal evolutionary dynamics is that an

HIV-infected patient harbours the virus as complex genetically-heterogeneous populations known as

mutant clouds, swarms or quasispecies that are constantly evolving (Beerenwinkel et al. (2012a)).

21

The term quasispecies was coined in the works of Manfred Eigen (Eigen (1971), Eigen and Schuster

(1977)) to describe a formal mathematical model explaining mutant populations. The quasispecies is

defined as the equilibrium distribution of heterogeneous mutants generated by a mutation-selection

process coupled with errors (Eigen (1987), Eigen and Winkler (1992), Nowak (1992), Eigen (1993),

Eigen (1996)). The frequency of any mutant in a population depends on two entities: a) its ability

to replicate error-free and b) the probability that it will arise by error-prone replications of other

mutants in the distribution. Therefore, the resultant mutants are not independent but are coupled

via mutations (Jenkins et al., 2001). These resultant mutants represent a cohesive structure that

forms the target of evolutionary selection (Eigen (1987), Eigen et al. (1988) and Eigen and Winkler

(1992)).

Domingo et al. (1978) was the first to suggest that RNA viruses might have quasispecies dis-

tributions, thus introducing the term viral quasispecies. This littany of diverse and proliferating

viral mutants leads to disease progression mainly by the evolution of drug-resistant mutant variants

(Koenig et al. (1995), Domingo and Holland (1997) and Domingo and Perales (2012)). This has

shown to be the case with drug-resistant HIV mutants even before the onset of therapy (Bonhoeffer

and Nowak (1997)). Such a prolific genetically-diverse quasispecies is crucial for the survival of HIV-

1 to withstand various selection pressures both due to drug treatment (see Figure 1.2.3) and the

patient’s immune response (Rambaut et al. (2004), Yoshida et al. (2011)). Therefore, understanding

and modelling the observed genetic diversity forms the heart to answering many medically-relevant

questions related to disease prognosis and prophylaxis including drug design, development and de-

livery.

2.2 Next-generation Sequencing

At the helm of aiding the experimental studies for viral genetic diversity are Next-generation Se-

quencing (NGS) or 2nd generation Sequencing techniques that present a whole gamut of methods

to investigate viral populations for full-genome sequencing, metagenomics, epigenetics and tran-

scriptomics (Metzker, 2010). Blood samples of an infected patient are used by NGS machines to

output reads which are short fragments extracted from the viral mutants in the blood samples.

The reads are further processed and used as input for diversity analysis. Previously, sampling viral

populations was performed exclusively by the Sanger method (also known as the 1st generation se-

quencing method) (Metzker, 2010) that was considered an epitome of high accuracy and had long

read lengths of 800 bps but very low throughput (∼ 6 Mega bps) (Kircher and Kelso (2010), English

et al. (2012)), inferring only a consensus sequence of the sample (Zagordi et al., 2010b). The ad-

vent of NGS brought about a striking impact on later genomic research due to these quintessential

features namely (Shendure and Ji (2008), Mardis (2008), Zhang et al. (2011)):

• Higher throughput: NGS allows massive production of millions of short sequenced fragments

called reads. Figure 2.2.1 shows the advancements in throughput over the past 30 years (Strat-

ton et al. (2009)).

• Efficient scalability: Ability to process a large number of infected blood samples.

• Greater speed.

22

• Reasonable resolution: NGS provides the choice to sequence from any bandwidth i.e. specific

genomic sites to an entire genome.

• Cost-effective.

Figure 2.2.1: Advancements in DNA sequencing throughput over the preceeding 30 years from 1st generation
Sanger method to 2nd generation highly-parallel systems to 3rd generation single-molecule sequencing (Stratton
et al. (2009)).

Due to these features, NGS-reads obtained from a single high-throughput NGS experiment are

used in many applications in modern biology and genetics (Kircher and Kelso, 2010).

Figure 2.2.2: Current commercial NGS platforms1.

Figure 2.2.2 shows the current commercial NGS platforms. Prominent players in NGS are

454/Roche, Illumina/Solexa, PacBio RS, Ion Torrent, HeliScope and ABI SOLiD. These sequencing

platforms vary in runtime, per run costs, read lengths, machine-generated error and throughput

(Metzker (2010), Zhang et al. (2011), Desai and Jere (2012)). In this thesis, work is mainly done

with 454/Roche and Illumina/Solexa sequenced reads. 454/Roche GS Junior produces 100 K reads

1Figure courtesy: http://massgenomics.org/2010/03/next-gen-sequencing-in-2010.html.

23

http://massgenomics.org/2010/03/next-gen-sequencing-in-2010.html.

per run with an average read length of 400 bps 2. The more advanced 454/Roche GS FLX Titanium

XL+ produces upto 1 million reads per run with an average read length of 700 bps 3. Illumina

MiSeq produces 30 million paired-end reads of 2× 150 bps and 15 million single reads of 36 bps in

length 4. Illumina HiSeq 2500 produces 1.2 billion paired-end reads of 2× 150 bps and 600 million

single reads of 36 bps in length 5.

2.3 HIV-1 Haplotype assembly from NGS reads

As illustrated in the previous sections, NGS reads are used for estimating the viral genetic diversity.

Starting with a sample containing a mixture of HIV-1 haplotypes, genetic diversity estimation or

haplotype assembly aims at inferring:

1. The number of different haplotypes in the sample.

2. The respective frequencies of these different haplotypes.

3. The DNA sequence of each haplotype.

Figure 2.3.1 explains a typical workflow for genetic diversity analysis.

Figure 2.3.1: Snapshot of the workflow starting from wetlab experiments (extraction of infected blood samples and
subsequent processing) proceeding to the sequencing machine to obtain sequenced reads. These reads are input
to the haplotype inference mechanism where the reads first undergo filtering and alignment before the computa-
tional processing to infer haplotypes.

The data used for inference are the sequenced reads generated by a sequencing machine. Each

read is a short base sequence which was read from one of the haplotypes by the machine. Since HIV

is a haploid organism, it is valid to assume that a read emanates from any single haplotype. The

haplotype from which a read was generated is referred to as the read’s parent haplotype. Fig. 2.3.2

gives an illustration of reads and their corresponding haplotypes.

There are five major difficulties encountered whilst analysing these reads:

1. We do not know which of the haplotypes the reads were generated from.

2http://454.com/products/gs-junior-system/index.asp
3http://454.com/products/gs-flx-system/index.asp
4http://www.illumina.com/systems/miseq/performance_specifications.ilmn
5http://www.illumina.com/systems/hiseq_2500_1500/performance_specifications.ilmn

24

http://454.com/products/gs-junior-system/index.asp
http://454.com/products/gs-flx-system/index.asp
http://www.illumina.com/systems/miseq/performance_specifications.ilmn
http://www.illumina.com/systems/hiseq_2500_1500/performance_specifications.ilmn

Figure 2.3.2: Error-prone reads sequenced from two different parent haplotypes.

2. The length of a read is much shorter than the haplotypes’ length.

3. The reads are error-prone, thus a read string may not exactly match that part of the haplotype

it was sequenced from. Platform-specific sequencing errors are introduced and it becomes cru-

cial to alleviate these errors for a better statistical analysis of the data. 454/Roche introduces

indels (insertions-deletions) in homopolymeric regions i.e. regions where the nucleotides are

continuously repeated (Gilles et al. (2011)). Illumina/Solexa introduces artificial indels in the

non-homopolymeric zones along with substitutions (Luo et al. (2012)). The errors are directly

proportional to the read length, organism sequenced and genomic loci analysed (Gilles et al.

(2011), Yang et al. (2012), Beerenwinkel et al. (2012a)).

4. The starting positions of the reads with respect to the haplotypes are unknown.

5. Non-uniform read coverage. Read coverage per position can be interpreted as the number of

reads consisting any base at that given position on the genome.

For genetic diversity analysis, the ideal scenario would be having error-free reads and reads of

uniform coverage i.e. uniform distribution of reads along the genomic stretch of interest. In practise,

coverage is not uniform and complicates the situation further with the presence of error in reads

(Zagordi et al. (2012a)). Therefore, the reads undergo rounds of preprocessing prior to using them in

computational procedures for genetic diversity estimation. They are initially filtered based on their

quality scores. The quality score, Q is a score based on the probability that a base is incorrectly

called 6 and is calculated as Q = −10 × log10(p) 7 where p is the estimated probability of the base

call being wrong (Ewing and Green, 1998). Thus, a higher value of Q indicates a smaller error

probability 7. During filtering, the low-quality reads are removed. The rest of the reads are subject

to alignment, where identifying the starting position of the reads can be efficiently done using

6Base calling is the process of matching one of the 4 bases to the chromatogram peaks, each peak taking one of
the 4 allowed colours. A chromatogram is an output of a sequencing run and provides a visual depiction of a DNA
genome with one coloured peak per genome position (Bio, Her).

7http://www.illumina.com/truseq/quality_101/quality_scores.ilmn

25

http://www.illumina.com/truseq/quality_101/quality_scores.ilmn

A C C G

A C T G

A T A A

G G C G

A C C G

?

Figure 2.3.3: Clustering based on mixture models works for fully and partially-overlapping reads (left and central)
but not for full-length reconstruction (right).

alignment techniques (Durbin et al. (1998)) with respect to a HIV reference sequence 8, thereby

producing a set of aligned reads. For instance, reads are mapped individually to portions of the

reference genome to arrive at a consensus alignment called Multiple sequence alignment (MSA) from

all the pairwise alignments (Beerenwinkel et al., 2012a). An example of its usage is presented in

Zagordi et al. (2011). Other aligners widely used are Burrows-Wheeler Alignment Tool (BWA) (Li

(2012)), MOSAIK (Mos) and SEGEMEHL (Hoffmann et al. (2009)). Challenges in aligning relate to

adequate handling of frameshifts, gap placements and substitutions. Sophisticated aligners tackling

these problems are available (Langmead et al. (2009), Langmead and Salzberg (2012) and Li (2012)).

Once the reads are filtered and aligned, they are ready for haplotype assembly. Haplotype assem-

bly refers to classifying the reads with respect to unknown haplotypes and is inherently a clustering

problem: the data points to cluster being the aligned reads and the cluster centroids being the

unknown haplotypes. This, however, is a non-standard clustering problem since the major diffi-

culty posed is that there is no a priori ‘natural’ similarity measure defined for this complete read

dataspace. The reason is that, since the reads are much shorter than the haplotypes and can start

at any position along the haplotypes, two reads randomly chosen will generally not have overlap-

ping positions. Figure 2.3.3 elucidates the non-standard clustering problem due to non-overlapping

reads. Then the question encountered here is that of finding a similarity measure between two reads

generated from different distant regions of the haplotypes. Since there is no direct coupling of non-

overlapping reads, a potential similarity measure first needs to relate the reads to some intermediate

object. This object is the set of haplotypes as will be shown in Section 3.4.

The absence of a priori pairwise relationships between these non-overlapping reads explains why

obtaining a full-length or global reconstruction of the haplotypes constitutes a hard problem (Beeren-

winkel and Zagordi (2011)). The problem becomes easier if we initially consider only a smaller region

of the haplotypes i.e. a region small enough for every two reads to overlap and work within this lo-

cal window (see left and central plots in Figure 2.3.3). The problem now translates to a standard

clustering task where the goal is to differentiate between true mutations (sources of inter-cluster

differences) and sequencing-machine errors (sources of intra-cluster differences). This local-window

8The reference sequence for HIV was obtained from http://www.hiv.lanl.gov/content/sequence/HIV/MAP/

landmark.html.

26

http://www.hiv.lanl.gov/content/sequence/HIV/MAP/landmark.html
http://www.hiv.lanl.gov/content/sequence/HIV/MAP/landmark.html

Figure 2.4.1: Spatial stratification used in diversity estimation. Three parental haplotypes of different propor-
tions are sequenced to produce error-prone reads. Errors are shown in pink. For haplotype assembly, three spa-
tial zones can be considered. SNV: single column analysis, local analysis: is for an aligned short stretch of the
genome rather than the entire genome length, global analysis: where the whole genome is considered for haplo-
type reconstruction. Figure courtesy: Beerenwinkel et al. (2012a).

clustering solution leads to a local reconstruction of the haplotypes. Various computational ap-

proaches to haplotype reconstruction thereby generally start by solving local reconstructions before

combining these local information to infer full-length haplotypes. Details of these approaches are

presented in the forthcoming section.

2.4 Computational Approaches for HIV-1 haplotype assembly

This section reviews the various approaches available to infer the HIV-1 haplotypes given a set of

(Roche or Illumina) sequenced reads. Depending on the length of the interest region for genomic

diversity analysis, the approaches can be spatially stratified into 3 (Beerenwinkel et al., 2012a)

namely:

• Single-nucleotide variant or SNV

• Local haplotype assembly

• Global haplotype assembly

Figure 2.4.1 elucidates these stratification zones used for haplotype assembly.

27

2.4.1 SNV

Single-nucleotide variant or SNV is a random abherration or defect occurring to a single nucleotide

of a haplotype (Snp, 2009). Estimating genetic diversity by identifying SNV or what is referred to

as SNV calling relates to statistical analyses based on count data which concurs to the per-position

quantification of mutation prevalence (Beerenwinkel et al., 2012a). A naive approach to identify if

the SNV is a true biological mutation or a sequencing-induced error, is to assume that 1) at every

SNV-location the number of sequencing errors follows a fixed Poisson distribution, normally used

to model count data, and that 2) true alleles are called based on a given error rate, when their

frequency is higher than expected-by-chance alone (Wang et al. (2007)). Another method to model

the allele counts per location is through a Binomial mixture model where the number of mixtures

allowed or in other words, the number of SNVs called at that site, is fixed a priori (Crisan et al.

(2012)). To improve accuracy in SNV-calling, control experiments are performed by sequencing

the same viral samples. Then, count data analyses can be done between pairs of mixed and control

samples simultaneously, for example, using Fisher’s exact test for every allele (Varscan 2 software by

Koboldt et al. (2012), http://varscan.sourceforge.net/), or by assuming independent Poisson

distributions to model sequencing errors per position and checking the number of mismatches in

the observed alleles (vipR software by Altmann et al. (2011), http://htsvipr.sourceforge.net/).

A refinement to these SNV-calling methods is to introduce a Beta-binomial distribution to model

the per-site sequencing errors (deepSNV software by Gerstung et al. (2012), http://www.bsse.

ethz.ch/cbg/software/deepSNV) or use hypothesis testing with (Bonferroni) correction for multiple

testing (Shimmer software by Hansen et al. (2013)).

2.4.2 Local haplotype assembly

Extending the region of interest from a single genomic locus as that in SNV to a stretch of loci where

the sequenced reads within this stretch tend to almost perfectly overlap, leads to local diversity

analysis. Choice of the local window stretch is crucial as smaller windows, although have larger

coverage, would contain fewer discriminating SNVs necessary for pairwise comparison of reads,

whereas larger windows would have low coverage, but more SNVs (Beerenwinkel et al. (2012a)).

Within the window, reads are subject to clustering with the assumption that similar reads have

emanated from the same parent haplotype. This is valid only when the machine error is low with

respect to the biological variation in the sample and the ability to identify true variants increases

with coverage (Eriksson et al. (2008)).

A probabilistic flavour to clustering reads locally was imparted in Eriksson et al. (2008), Zagordi

et al. (2009) and Zagordi et al. (2010a). Here, the error rate is estimated along with the number of

mixture components. The predicted haplotypes are the cluster centres and the haplotype frequencies

are given by the cluster weights. As depicted in Figure 2.4.2, reads are corrected locally by replacing

all read alleles with its cluster centre. This method of local error correction reduces per-base error,

decreases false positives of local haplotype inference and improves the haplotype frequency estimates

(Zagordi et al. (2010b), Beerenwinkel et al. (2012a)).

Diversity estimation based on flowgram clustering instead of the sequenced reads is devised as

AmpliconNoise (Quince et al. (2009), Quince et al. (2011)). A flowgram is a bar graph of light

28

http://varscan.sourceforge.net/
http://htsvipr.sourceforge.net/
http://www.bsse.ethz.ch/cbg/software/deepSNV
http://www.bsse.ethz.ch/cbg/software/deepSNV

intensities generated in the NGS chambers (454, 2007). The signal intensity is directly proportional

to the number of nucleotides per position (454 (1996), 454 (2007)) (see Figure 2.4.3). The sequences

read out from the flowgrams are assumed to resemble the true sequences but are subject to machine

errors. Clustering error-prone flowgrams leads to estimating a mixture model for the proposed true

sequences (Beerenwinkel (2009), Beerenwinkel et al. (2012a)).

Eventually, clustering sequences or flowgrams should result in differentiating biological variations

as inter-cluster variations and machine-induced errors as intra-cluster variations (Beerenwinkel et al.,

2012a).

Figure 2.4.2: Local haplotype assembly. Given a set of error-prone sequenced reads, local analysis clusters the
reads. All intra-cluster reads are then locally corrected based on the cluster centroid. The cluster centroids are
the reconstructed haplotypes and the cluster weights are the haplotype proportions. Figure modified from Beeren-
winkel et al. (2012a).

2.4.3 Global haplotype assembly

Global haplotype assembly is effected by increasing the spatial window from a local stretch bounded

by the average read length to a window that spans the entire length of the genome. The aim

is in finding whole-length haplotypes that represent the viral population’s genetic makeup or the

quasispecies irrespective of the sequencing machine’s specifications like average read length or read

coverage (Beerenwinkel et al., 2012a). It gives a broader picture over the entire viral population

being sequenced. The assembling approaches for genome-wide haplotypes fall in roughly 3 main

genres namely (Beerenwinkel et al. (2012a), Beerenwinkel et al. (2012b)):

• Graph-based combinatorial assembly

• Probabilistic assembly using mixture models

• De novo methods: these do not assume any reference genome but construct one instead from

the sequenced reads (Narzisi and Mishra (2011), Finotello et al. (2012)).

29

Figure 2.4.3: Flowgram: A flowgram is a bar graph of light intensities generated in the NGS chambers (454,
2007). The signal intensity is directly proportional to the number of nucleotides per position (454 (1996), 454
(2007)). In the figure, the light intensities for sequence TCAG is shown. The height of the signal strength (y-axis)
per sequence position (x-axis) shows the number of same nucleotides incorporated at that position. Figure cour-
tesy: Droege and Hill (2008).

Graph-based Combinatorial assembly. The local methods mentioned above (Section 2.4.2)

can also be rendered to address the global assembly problem. Here, the reads are first locally

corrected for machine error. Next, to obtain a global reconstruction of the haplotypes, these corrected

reads are used to create a read graph from which a minimal set of haplotypes best explaining the

read graph – the minimal path cover – is derived. The read graph construction is shown in Figure

2.4.4. Nodes in the graph represent locally error-corrected reads and the directed edges indicate the

reads’ alignment order with respect to a reference genome (Beerenwinkel et al., 2012a). Redundant

nodes are removed if they overlap exactly. To complete this finite automata, a universal source and

sink node are provided from which all plausible paths start and to which all such paths terminate,

respectively. Only those edges are retained between nodes such that they are the only informative

connecting links between nodes; a property called transitive reduction (Westbrooks et al. (2008)). In

Figure 2.4.5, the transitive reduction property is shown for 3 reads. The path from node u to node

w always overlaps node v entirely, therefore the direct path between node u and node w is removed.

In terms of the read graph, a haplotype is defined as a path from source to sink. The quest of

identifying quasispecies’ constituents using the read graph can be formulated as finding that set of

source-sink paths that explain the locally error-corrected reads well (Beerenwinkel et al., 2012a).

In Eriksson et al. (2008), the path cover concept is synonymous to that of read graph. The

nodes of the graph are error-corrected reads where the correction procedure is done in several steps

comprising statistical tests and k-means clustering of the reads. An example of a path cover for 20

reads is shown in Figure 2.4.6. Quasispecies assembly refers to finding the minimal path cover over

all the reads or finding the minimal set of haplotypes. The minimal path cover can be computed in

30

Figure 2.4.4: Quasispecies Read graph: Shown are 3 haplotypes with their corresponding frequencies and a set
of 15 reads sequenced from the haplotypes. Given these reads, a read graph is constructed having one read per
node and edges between 2 nodes imply an allowed overlap between the read pairs. A haplotype can be read out
from the read graph as a path from ’begin’ to ’end’. The graph must explain a minimal set of haplotypes by sketch-
ing the minimal path cover over all reads. Figure modified from Beerenwinkel et al. (2012a).

O(N3) where N is the total number of reads (Eriksson et al. (2008), Beerenwinkel et al. (2012b)).

The same general approach is followed by Zagordi et al. (2009), Zagordi et al. (2010a) but with a

different method to locally correct the reads: a Dirichlet process mixture model (DPMM) is used

to distinguish true mutations from machine errors. Their software implementation is available as

ShoRAH (Zagordi et al. (2011)).

Another read graph-based assembly is cast as a network-flow problem in Westbrooks et al. (2008).

In the network-flow problem, one views each path (i.e. a haplotype) as a connection from source to

sink. A flow f through the read is the number of haplotypes that contains the read (Westbrooks et al.

(2008), Beerenwinkel et al. (2012b)). The main idea for global assembly is to state the optimisation

problem as one that minimises f leading to the most parsimonious quasispecies assembly subject to

the constraint that each read is part of at least one haplotype (Westbrooks et al. (2008)). A more

general variant of this approach is implemented in the software ViSpA (Astrovskaya et al. (2011))

where sequencing errors are taken into account by allowing mismatches in the overlap between reads

and then constructing a haplotype as a weighted consensus sequence over all reads.

In all of the above combinatorial assemblies, the relative frequencies of these explaining haplotypes

are estimated using the Expectation-Maximisation (EM) algorithm.

Another haplotype reconstruction method is presented in Prosperi et al. (2011) and uses a graph

approach slightly different from read graph. An overlap graph is constructed, using greedy path

sampling, to obtain a set of haplotypes which minimises the number of false variants, called in-silico

31

Figure 2.4.5: Transitive Reduction: Consider 3 reads u, v and w with their ’begin’ b and ’end’ e positions obtained
after aligning to the reference genome. The reads constitute nodes in the read graph. The path from node u to
node w always overlaps entirely node v, therefore the direct path between node u and node w is removed as the
path from u → w possesses the transitive property by going from u → v and from v → w. Figure modified from
Beerenwinkel et al. (2012b), Westbrooks et al. (2008).

recombinants. This is synonymous to evading redundant paths in the read graph (Beerenwinkel

et al., 2012a). The software of Prosperi et al. (2011) is provided as QuRe (Prosperi and Salemi

(2012)). QuRe makes use of the amplicon-based structure 9 seen in sequenced reads for haplotype

reconstruction (Beerenwinkel et al., 2012a) but is however designed for error-free reads and does not

provide any mechanism for handling sequencing errors.

A similar approach to using locally error-corrected reads and the read graph method for global

haplotype assembly is devised as AmpMCF and ShotMCF that cater to amplicon-based reads or

NGS reads, respectively (Skums et al. (2013)).

Another haplotype reconstruction problem, again based on graphs, and defined as a vertex-

colouring problem called QColors is dealt with in Huang et al. (2011). There are two complementary

graphs used whose nodes consist of overlapping reads: an overlap graph where edges are present

between reads that have non-conflicting overlaps and a conflict graph where egdes are present between

reads that have conflicting overlaps (Huang et al., 2011). The reconstruction problem is posed as

finding that partition of reads satisfying a minimum number of non-conflicting subsets, akin to a

vertex-colouring problem. A drawback of QColors is that it could be sensitive to machine errors

and erroneous alignments (Beerenwinkel et al. (2012a)).

However, most of these combinatorial graph-based approaches have some potential drawbacks.

Local error correction is potentially misleading since it is impossible to revise this step in a global

context. Such a correction step also necessarily removes the stochastic nature of the error-prone

reads which precludes a proper modelling of the uncertainty in the haplotypes. This strategy of

locally correcting the reads turns the haplotype assembly problem into becoming deterministic in

nature (Beerenwinkel et al. (2012a)). Further, reconstructing global haplotypes using a minimal path

cover of the read graph is a linear programming problem and therefore computationally expensive

9An amplicon is a nucleic acid (DNA or RNA) strand that gets amplified into multiple copies (Amp, 2013). Primers
are attached to ends of the amplicon that serve as starting points for the DNA synthesis (Pri, 2013). Reads amplified
using amplicon-based strategies tend to show the demarcation corresponding to these primers.

32

Figure 2.4.6: Path Cover: A set of 20 locally error-corrected reads is given. Every read is a node in the graph and
a haplotype is a path from start node s to end node t that explains the reads well. As an example, the purple path
designates haplotype 01110000. Figure modified from Eriksson et al. (2008).

and ambiguous, since the corresponding optimisation problem does not offer a unique solution, in

general.

Probabilistic assembly. The read graph-based methods imparted a deterministic nature to hap-

lotype assembly due to the reads’ premature error removal step, that removed all the stochasticity

from the set of observed reads. With a view to take into account the inherent stochasticity and

model the error accordingly, probabilistic approaches have been put forward. Rather than pursuing

an optimal parsimonious solution as in graph-based methods, probabilistic approaches resort to spec-

ifying probability distributions that encode some a priori information of the sequencing machines.

Generally, the complexity of probabilistic models is given by a single parameter that is used to

tune the number of haplotypes. With this simple parametric form, one can verify the reconstructed

haplotypes based on the model assumptions and also segregate between false and true haplotypes

(Beerenwinkel (2009)).

A probabilistic hierarchical model reproducing the reads’ generative stochastic process was devised

in Jojic et al. (2008). Parameters and hidden variables include the parent haplotype, starting position

and error transformation and are estimated with maximum likelihood estimation using EM. This

model however assumes that the number of haplotypes is known, and does not describe any formal

method to estimate this number. In practise, this estimation constitutes a major challenge for

haplotype reconstruction.

Another probabilistic approach for haplotype assembly that also caters to automatically inferring

the number of haplotypes is PredictHaplo. This is the new model developed and introduced in the

thesis and is the theme of Chapter 3. Here, every haplotype is represented as a set of location-specific

probability tables over the four nucleotides (refer Figure 3.4.1). The underlying generative model

assumes that reads are sampled from a mixture model, where every mixture component represents

one haplotype and the component’s mixing proportion estimates the haplotype frequency in the

33

given viral population. Since the number of haplotypes are not known up-front, it is assumed that

there are infinitely-many different haplotypes from which reads are generated. Figure 2.4.7 explains

the assumed stochastic process for read generation. The probability of choosing any haplotype h

follows a multinomial distribution and given h whose total length is L, a location l is randomly

chosen on h. A read is then read out starting from l till lend where l < lend ≤ L and terminates

at the end state. PredictHaplo uses a truncated version of the Infinite Mixture Model (IMM) also

known as Dirichlet Process Mixture Model (DPMM) (Ewens (1972), Ferguson (1973), Rasmussen

(2000)) that adaptively chooses the number of haplotypes. Entire working details of PredictHaplo

are presented in Chapter 3.

Figure 2.4.7: Infinite-state automata explaining the assumed stochastic process for read generation: Consider
infinitely-many haplotypes from which reads can be generated. One read emanates from only one haplotype. The
probability of choosing any haplotype h follows a multinomial distribution and given h, a location l is randomly cho-
sen. A read is then read out starting from l till the end of h or before and terminates at the end state.

QuasiRecomb is an approach to infer the distribution of generators, the set of sequences that

mutate and recombine and are responsible for quasispecies creation (refer Zagordi et al. (2012b),

Töpfer et al. (2013)). QuasiRecomb relies on the fact that HIV is highly recombinant in nature

and that recombination is amongst the prime factors for maintaining diversity (Beerenwinkel et al.

(2012a)). The generative model for haplotypes is based on the presumption that they emanate from

a small set of generators by virtue of mutation and recombination (Zagordi et al. (2012b)). Figure

2.4.8 depicts the underlying haplotype and read generation process given a set of generators. The

model is designed using a jumping Hidden Markov Model (jHMM) framework that makes use of

HMM switching to be able to switch or jump between potential generators (Zagordi et al. (2012b)).

De novo methods. The third genre of global diversity analysis consists of de novo methods. De

novo read assembly is the construction of longer sequences called contigs from shorter sequenced

reads without a priori information of the read order or reference genome but solely relies on the

pairwise overlaps between reads (MacLean et al. (2009)). Figure 2.4.9 shows the workflow of how a

34

Figure 2.4.8: Modelling recombinants using QuasiRecomb (Zagordi et al. (2012b), Töpfer et al. (2013)). From a
set of 5 generators, a recombinant haplotype is created using the 1st and 3rd generator. A read is sampled at ran-
dom from this recombinant haplotype which possesses parts of both the 1st and 3rd generator. Modelling recom-
binant reads is done using a jumping HMM that makes use of the switching property of HMMs. Figure modified
from Beerenwinkel et al. (2012b).

contig is constructed from a set of sequenced reads. In the de Bruijn graph, the read is represented

as a sequence of k-mers (short fragments k-alleles long). For the overall overlap consensus in the de

novo assembly, only those overlaps between reads explained by the de Bruijn graph are used, thus

removing redundant paths (see MacLean et al. (2009)). There are many de novo assemblers that

are platform-specific (Narzisi and Mishra (2011)) and those that work on reads by mixing platforms

(see Aury et al. (2008), MacLean et al. (2009)). Although in de novo methods only a single contig is

reconstructed, this can be seen as a read-pre-processing step to the many approaches for quasispecies

assembly mentioned before (Ramakrishnan et al. (2009), Beerenwinkel et al. (2012a)).

Figure 2.4.9: De novo read assembly: Sequenced reads are used to construct a contig based on overlaps ex-
plained by each read’s de Bruijn graph. The de novo method does not rely on any reference genome or read order
for contig construction (MacLean et al. (2009)). Figure courtesy: MacLean et al. (2009).

35

2.5 Conclusion

With the preceeding discussions on the many computational methods developed for genetic di-

versity estimation using NGS reads, it is clear that diversity estimation is a crucial link for the

better understanding of HIV-host interactions, evolution of drug-resistant viral variants, disease

prognosis/prophylaxis and provides the necessary leeway for new ART drug/vaccine design and de-

velopment. Next-generation sequencing has made it possible to look at diversity problems based

on different lengths – from single positions to whole stretches – of the genome and thereby open

research questions relevant to this spatial stratification. There is still plenty of scope for improving

genetic diversity estimation and this is discussed in Chapter 7.

36

3
HIV Haplotype Inference using a propagating

Dirichlet Process Mixture Model

3.1 Introduction

THIS chapter presents a new computational technique for the identification of genetically-

diverse HIV (Human Immunodeficiency virus) haplotypes present in an infected blood sample.

HIV is a retrovirus that causes the widespread, life-threatening AIDS (Acquired Immunodeficiency

Syndrome), attacking the human immune system (for more details, refer Chapter 1). Since HIV

mutates fast, upto the order of 10−5 mutations per bp per replication cycle (Mansky and Temin

(1995)) with every mutation having an error rate of the order of 10−4 per base (Nowak (1992)),

a patient generally hosts many different virus mutants (Mansky (1998)). The particular DNA

sequence which constitutes the genetic material of a mutant is called a haplotype. The variety of

mutants present in the patient pose a major issue in HIV treatment because many of these mutants

can be resistant to different drugs (Perrin and Telenti (1998)). Therefore, identifying the haplotypes

present in a particular patient enables adapting the treatment to the specific patient, paving the

way for personalised medication to administer the most efficient drug concoction.

One of the latest technological innovations enabling the extraction of information about the

haplotypes present in a sample is deep sequencing/NGS. More details on NGS can be found in

Section 2.2. Here, the mixture of haplotypes is processed through a series of chemical manipulations

carried out by a NGS machine. The resulting data are short base 1 sequences which have been

generated (or read) by the machine from a random part of any haplotype present in the sample.

1The bases are A, C, T and G for the four nucleotides which are the basic building blocks of DNA.

37

These sequences are called reads. Recent advances in deep sequencing technologies, for example

454/Roche or Illumina/Solexa have made it possible to generate vast amounts of reads while reducing

sequencing costs. However, the limited lengths of reads and their non-negligible sequencing errors

pose new statistical challenges as will be explained in Section 3.2.

From a statistical point of view, identifying haplotypes is a clustering problem: matching the

reads to unknown haplotypes actually means classifying the reads with respect to unknown cluster

centroids. This, however, is a non-standard clustering problem since the non-overlapping nature

of the reads precludes an a priori definition of a suitable similarity measure for the entire read

dataspace.

Outline of the chapter. In Section 3.3, an introduction to the well-established mixture mod-

elling framework is given. We present our haplotype inference model in Section 3.4. Experimental

results based on simulated and real clinical data are discussed in Section 3.5. Finally, the chapter

concludes in Section 3.6.

3.2 Computational Approaches to Haplotype Reconstruction

For a complete review of the problem of haplotype reconstruction and various previous combinatorial

and probabilitistic approaches designed to address the problem, refer Chapter 2.

To ensure clarity, here is a quick recapitulation of the problem we have at hand. Starting with

a sample containing a mixture of HIV-1 haplotypes, we want to infer the genetic diversity of the

sample i.e.

1. The number of different haplotypes in the sample.

2. The respective frequencies of these different haplotypes.

3. The DNA sequence of each haplotype.

The data we use for inference are the reads generated by a NGS machine. Each read is a short

base sequence which was read from one of the haplotypes by the machine. Refer Figure 2.3.2 for an

illustration of sequenced error-prone reads and their corresponding haplotypes.

The challenges faced while analysing these reads for genetic diversity estimation are that:

1. We do not know which of the haplotypes the reads were generated from.

2. The length of a read is much shorter than the haplotypes’ length.

3. The reads are error-prone, thus a read string may not exactly match that part of the haplotype

it was sequenced from.

4. The starting positions of the reads with respect to the haplotypes are unknown.

5. Uneven coverage of reads. Read coverage per position can be interpreted as the number of

reads consisting any base at a given location on the genome.

Before we present details of our probabilistic haplotype inference model, PredictHaplo that is

based on infinite mixture models, we briefly describe the mixture model framework in the succeeding

section.

38

3.3 Primer to Mixture Models

Sources for this section. This section is primarily based on Yu (2006a). Others sources include

Teh (2010), Frigyik et al. (2010), Ghosal (2010) and Bartle and Sherbert (2000).

3.3.1 Mixture Models

Mixture models are techniques used to model processes whose output comes from several different

underlying distributions (Everitt and Hand (1981)). Given a set of n i.i.d. observations {xi}ni=1

where xi = (xi1, · · · , xid) ∈ Rd, clustering using mixture models resorts to

1. Estimating parameters θk for each kth component distribution of the mixture. Each component

represents a cluster or group. Observations within a cluster are deemed similar.

2. Inferring the unknown group assignment, k, of an observation.

For clustering using mixture models, one first defines the generative model, then derives the likelihood

of these observations, specifies model parameters and for the Bayesian formulation, assigns prior

distributions to the model parameters. Then through inference, the best model parameters are

learnt.

3.3.2 Finite Mixture Model

For a Finite Mixture model (FMM), the observations can be modelled using a mixture of finite (say

K) distributions.

The generative model is:

1. Select one of the K clusters with probabilities π = {π1, · · · , πK} where
∑K

k=1 πk = 1.

2. Sample an observation x from the probability distribution of the selected cluster.

3. Repeat steps 1 and 2 n times to sample n i.i.d. observations.

This is pictorially depicted in Figure 3.3.1.

We introduce the class assignment variable, ci which denotes the class to which the ith observation

belongs. The likelihood of xi can be written as:

P (xi|π,Θ) =

K∑
k=1

P (ci = k|π)P (xi|θk) (3.1)

with Θ = {θ1, · · · , θk} being the parameters for all the mixture component distributions. The model

parameters are π and Θ.

For a Bayesian FMM, we assign prior distributions to the parameters π and Θ, namely a Dirichlet

prior over π and a conjugate-family prior over each θk. The hyperparameters for these distributions

are α and G0, respectively.

39

Figure 3.3.1: Generative process for a Finite Mixture model: Given are 3 multinomial distributions shown as his-
tograms. They are chosen randomly according to πk, k = 1, 2, 3 and depending on πk, an observation is drawn
from the corresponding component distribution i.e. xi ∼ Multinomial(θk).

The FMM is equivalent to the following distributions:

xi|Θ, (k = ci)
ind∼ P (xi|θk), i = 1, · · · , n

ci|π
iid∼ Multinomial(ci|π), i = 1, · · · , n

θk
iid∼ G0, k = 1, · · · ,K

π|α,K ∼ Dirichlet(π| αK , · · · ,
α
K)

(3.2)

The corresponding plate model for the FMM is shown in the left panel of Figure 3.3.2.

Equation 3.1 can be equivalently written as

P(xi|π,Θ) =

∫
θ

P (xi|θ)GK(θ)dθ (3.3)

where GK(θ) := P (θ|π,Θ) =
∑K

k=1 πkδθk(θ). Here, δθk(θ) is a point mass distribution located at

θk taking the value 1 for θ = θk and 0 otherwise. GK(θ) can be seen as a discrete prior distribution

over θ meaning that θ can choose from only amongst the K values from Θ weighted by π. α and G0

act as parameters to GK(θ).

By integrating out π and Θ, the likelihood for xi can be written as:

P (xi|α,G0) =

∫
GK

P (GK |α,G0)
(∫

θ

P (xi|θ)GK(θ)dθ
)
dGK . (3.4)

40

Figure 3.3.2: Plate model: Finite Mixture model with class assignments, its random-measure analogue in GK (dis-
crete prior over θ) and the Infinite Mixture model in G ∼ DP (G0, α). xi is an observation, white circles denote
latent variables of interest, squares indicate replications where the replicative factor is at the bottom right corner
and dotted squares are predefined parameters. Figure modified from Yu (2006b).

The plate model denoting the FMM with respect to GK(θ) is given in the central panel of Figure

3.3.2 and the corresponding set of equations to sample xi is:

xi|θi
ind∼ P (xi|θi), i = 1, · · · , n

θi
iid∼ GK , i = 1, · · · , n

GK(θ) =
K∑

k=1

πkδθk(θ)

(3.5)

3.3.3 Infinite Mixture Model

Instead of the K a priori fixed clusters used in the FMM, the FMM can be generalised to the

infinite case i.e. K → ∞ clusters. The nonparametric mixture model this leads to is called the

infinite mixture model (IMM). Figure 3.3.3 gives the generative stochastic process for observations

xi using the IMM. GK(θ) =
∑K

k=1 πkδθk(θ) which was a finite sum of weighted point mass functions

for FMM is now extended in the IMM to an infinite sum of weighted point mass functions i.e.

G(θ) =
∑∞

k=1 πkδθk(θ). When K → ∞, the discrete prior GK tends to be a realisation from a

Dirichlet Process (DP) i.e. G ∼ DP (α,G0) where α is the concentration parameter and G0 is the

base distribution of the DP. The DP defines a distribution for random distributions (Freedman

(1963), Ferguson (1973) and Ferguson (1974)).

41

Figure 3.3.3: Generative process for an Infinite Mixture model: Consider an ∞ number of component distributions,
here they are multinomial distributions shown as histograms. These are chosen according to πk, k = 1, · · · ,∞
and an observation is drawn from the corresponding component distribution i.e. xi ∼ Multinomial(θk).

Since the IMM uses the DP as conjugate prior over the class parameters Θ, the IMM is also

known as Dirichlet Process Mixture Model (DPMM). A DPMM can be written as:

xi|θi
ind∼ P (xi|θi), i = 1, · · · , n

θi
iid∼ G, i = 1, · · · , n

G(θ) =
∞∑
k=1

πkδθk(θ)

(3.6)

The likelihood for xi in the DPMM is given as:

P (xi|α,G0) =

∫
G

P (G|α,G0)
(∫

θ

P (xi|θ)G(θ)dθ
)
dG. (3.7)

and it can be seen that this is similar to the likelihood in Equation 3.4 for a FMM. The corresponding

plate model is depicted in the right panel of Figure 3.3.2.

Sample generation from a DP. There are 3 different ways to generate samples from a DP.

These are:

• Chinese Restaurant Process (Pitman (2006))

• Polya Urn Process (Blackwell and Macqueen (1973))

42

• Stick-breaking process (Sethuraman (1994), Ishwaran and James (2001) and Ishwaran and

Zarepour (2002))

Of the three, we make use of the Chinese Restaurant Process (CRP) in our current haplotype

inference model and therefore describe it below.

Chinese Restaurant Process. Assume an empty restaurant with endless table capacity and

endless seating capacity per table. The first customer xi arrives and chooses an empty table k

(equivalent to selecting a class in mixture modelling framework) and orders food (equivalent to the

class parameters, θk ∼ G0). Subsequent customers joining him will be limited to this table’s food i.e.

they all share the same parameters θk. Any customer has the choice to either join an already existing

table k with probability ∝ nk (the number of people already seated at table k) or resort to a new

table altogether with probability ∝ α. α is the dispersion parameter controlling the number of newer

cluster formations. A larger α leads to a larger number of clusters. Therefore, the class assignments

(tables) ci define partitions over the finite-numbered observations xi (customers). This can be seen

as a sample from a DP and the resulting conditional prior distribution over class assignments is

called the CRP prior. The CRP prior is depicted in Figure 3.3.4 and the corresponding IMM using

the CRP prior is:

xi|θk, k = ci
ind∼ P (xi|θk) (customer)

θk
iid∼ G0 (food at table k; group-level parameter)

ci|c−i, α ∼ CRP(α) =

 nk

n+α−1 (for an existing class k)

α
n+α−1 (for a new class)

(table assignment)

(3.8)

Figure 3.3.4: Chinese Restaurant Process: The conditional probability distribution for assigning the ith customer
to a populated table k ∝ nk (number of customers at table k) or to a new table ∝ α.

43

Next, we present our probabilistic haplotype inference method, PredictHaplo, that uses a propa-

gating DPMM for global haplotype assembly.

3.4 Haplotype Reconstruction using a propagating Dirichlet Process

Mixture Model

3.4.1 The Haplotype Representation

In our model, a haplotype is represented using a set of probability tables (θ), one at every location i

as in Fig. 3.4.1. This representation is designed to model the uncertainty of the inferred haplotypes.

In terms of inference, our aim would then be to infer these tables over all the haplotypes’ locations.

Since the haplotype reconstruction is being carried out for a mixed sample of haplotypes, the problem

involves finding the set of unknown haplotypes which can best explain the sequencing reads. Our

probabilistic approach assumes that these reads are sampled from a Bayesian multinomial mixture

model where each mixture component represents a haplotype. The mixing proportions of the different

components then provide an estimate of the corresponding haplotypes’ frequencies. To account for

the uncertainty in the number of haplotypes we use an infinite mixture model which does not require

to a priori fix this number. In the infinite mixture formulation, a Dirichlet process prior is used

in place of the standard conjugate Dirichlet distribution prior. For optimising the computational

efficiency, we implement a truncated approximation of this Dirichlet process in the Markov Chain

Monte Carlo sampling scheme used for inferring the haplotypes.

Figure 3.4.1: Left: A haplotype represented as a set of position-wise multinomial probability tables θ. Right:
Assumed stochastic generative process for reads. The ith read, ri is generated from the kth haplotype, θk =
(θ1k, · · · , θLk), k = 1, · · · ,∞. The prior distribution over θ is the Dirichlet Process, G.

3.4.2 Likelihood and Prior

The n reads of the data set are denoted by r1, . . . , rn. Each read rj has L components rj =(
r1j , . . . , r

L
j

)
corresponding to the positions locj =

(
l1j , . . . , l

L
j

)
of that read. Every component rij is a

categorical vector of length 4 specifying the base found at position i for read j: rij = (rij1, . . . , r
i
j4),

44

where only one of the 4 values is 1 and the others are equal to 0. To simplify the notation we denote

by L the length of every read but in practise the reads have different lengths. We align the reads

using the Burrows-Wheeler Aligner (BWA) (Li and Durbin (2010)).

The reads are modelled as i.i.d. samples of a Dirichlet process mixture model (DPMM) and the

density is given by:

P (rj |α,G0) =

∫
G

P (G|α,G0)
(∫

θj

P (rj |θj)G(θ)dθ
)
dG, (3.9)

where θj represents the probability table for read j, G is the DP prior placed over θj and G ∼
DP (α,G0) where α denotes the concentration parameter and G0 is the base distribution (Ferguson

(1973)). Figure 3.4.1 shows the haplotype representation as a set of probability tables θ and Figure

3.4.2 gives the stochastic generative process modelling reads.

Figure 3.4.2: Detailed plate model for read generation using DPMM: Consider n observed reads r of length L.
They can possibly arise from one of the infinitely-many haplotypes θ of length L. The prior distribution of haplotype
(or class) assignment is according to the Polya Urn Scheme or Chinese Restaurant Process (see Section 3.3.3).
For the ith read ri, draw its haplotype parameters θi from already-seen values {θ1, · · · , θi−1} i.e. θi = θk with a
probability ∝ nk, the number of reads belonging to haplotype k or a new value from the base distribution G0 with
probability ∝ α.

Since we assume independence between the locations, the mixture components are modelled using

a product of independent multinomial distributions:

rj |θj ∼
∏

i∈locj
Multinomial

(
rij |θij

)
, (3.10)

where θij represents the probability table entries for read j at location i. To obtain conjugacy in

the model, G0 is chosen as a product of independent Dirichlet distributions. The latent variables of

the observations’ class assignments are denoted by cj where j = 1, . . . , n. If we suppose that classes

k = 1, . . . ,K are already populated by n1, . . . , nK reads then, using the CRP sampling scheme

45

for DPMM (see Section 3.3.3), the conditional prior distribution for the class assignment has the

following form:

1. Probability of assignment to an already populated class k is: P (cj = k|c−j , α) ∝ nk

n+α+1 .

2. Probability of assignment to a new class is: P (cj 6= 1, . . . ,K|c−j , α) ∝ α
n+α+1 .

3.4.3 Including Prior Information from previous local analyses

As was explained in Section 3.2, to be able to extend our model to solve the global reconstruction

problem we need to address the issue of missing direct coupling between non-overlapping reads. To

introduce indirect relationships between these reads we use prior information extracted from local

reconstructions.

Truncated DPMM

A computational challenge in implementing the DPMM is in handling the infinite mixture (Ishwaran

and James (2001), Gelfand and Kottas (2002)). The principled workaround to this is to truncate

the DP to approximate the full process by choosing a sufficiently-large positive integer K such that

G =
∑∞

k=1 πkδθk(θ) ≈
∑K

k=1 πkδθk(θ) and πk = 0 ∀k > K (Blei and Jordan (2004), Ohlssen et al.

(2007)). Thus, by choosing a large K, G becomes a finite sum of weighted point-mass funtions and

using such a truncated DP leads to the truncated DPMM which acts as a good approximation to

the DPMM.

Hence, for inference we implement a truncated DPMM as shown in Fig. 3.4.3. A positive integerK

large enough for our problem is chosen to be the maximum number of clusters allowed in the model.

This approximation which considerably improves the running time enables our model to handle

larger datasets of several hundred thousands of reads. A practical strategy to set the value for K, is

to check if the DPMM returns K-fully populated clusters. If this is the case, one significantly raises

the value for K. On the other hand, if the DPMM returns many empty clusters, it is an indication

that the bound K was set high enough. Another point to be relied upon while setting the value for

K is that there are frequency detection limits imposed by the sequencing error rate. For a given

coverage, say we assume that all the haplotypes are of frequencies below 0.1%. Then we expect to

detect at most K = 1000 different haplotypes which, with the current available methods, would be

unrealistic to reliably detect.

Since the truncated DPMM is formally identical to a finite mixture model (Section 3.3.2), G

can be rewritten as a finite sum of point-mass measures with weights π = (π1, . . . , πK) and the

distribution of the reads is now:

P (rj |π, φ) =
∑K

k=1 πkP (rj |φk) , (3.11)

where φ = (φ1, . . . , φK) and φk relates to the kth haplotype’s probability tables. We again denote

by cj , j = 1, . . . , n the variables taking values in {1, . . . ,K} which represent the cluster assignments

for every read. The conditional distribution of a read given its cluster assignments is then given

46

analoguously to Equation 3.10:

rj |cj , φ ∼
∏

i∈locj
Multinomial

(
rij |φicj

)
, (3.12)

and the variables cj are distributed according to:

cj |π ∼ Multinomial (cj |π) . (3.13)

To complete the model specification we still need to give the prior distributions of φ and π. The

prior distribution of the parameters φik for every location i is a Dirichlet of order 4:

φik|γ ∼ Dirichlet(γ4 , . . . ,
γ
4), k = 1, . . . ,K, (3.14)

where γ ∈ R and is divided by the number of possible nucleotides (A, C, T, G). The prior distribution

of the mixture proportions π for our truncated DPMM with K components is a Dirichlet of order

K:

π|α ∼ Dirichlet(α
K , . . . ,

α
K), (3.15)

with α ∈ R.

Inference – Gibbs sampling

Inference is obtained via Gibbs sampling based on the Chinese Restaurant Process (CRP) (CRP is

discussed in Section 3.3.3). The Gibbs sampler is a Markov chain Monte Carlo (MCMC) method used

for sampling from the posterior probability distribution over variables given the probabilistic model

(Geman and Geman (1984), Casella and George (1992)). This involves iterations where one draws

variables of interest from the corresponding conditional posterior distributions alternately, keeping

the others fixed, while repeatedly sweeping through all observations. The variables of interest are

cj , φ and π. Iterative Gibbs sampling results in a sequence of samples for these variables that form a

Markov chain which converge to samples from the joint distribution P ({cj}nj=1, {φk}Ki=1, π|{rj}nj=1).

The conditional posterior distributions required by the Gibbs sampler based on the CRP are:

1. For the latent class assignment variable cj :

P (cj |ccc−j , {rj}nj=1, {φcj}Kcj=1, γ, π, α) = P (cj |rj , {φcj}Kcj=1, π)

∝ P (cj |{φcj}Kcj=1, π)︸ ︷︷ ︸
prior distribution

P (rj |cj , {φcj}Kcj=1, π)︸ ︷︷ ︸
likelihood

∝ P (cj |π)P (rj |φcj)

(3.16)

where the right hand side of the equation is known and the normalisation constant can be

determined by simply adding over the possible values for cj .

47

Figure 3.4.3: Plate model for the truncated Dirichlet prior mixture model (A). When using updated prior information
the mixing proportions π are replaced by π̃ (B). We can see that when information from the previous window is
available in the form of P prev the class assignment probabilities π̃ are differentiated for every read.

2. For the kth-haplotype’s probability table, φk:

P (φik|{rj}nj=1, c, α, π, γ) = P (φik|{rij}∀j:cj=k, γ)

∝ P (φik|γ)︸ ︷︷ ︸
Dirichlet prior

∏
j:cj=k

P (rij |φik)︸ ︷︷ ︸
product of Multinomials

(using Bayes’ Theorem)

= Dirichlet

γ

4
+

∑
j:cj=k

rij1, . . . ,
γ

4
+

∑
j:cj=k

rij4

 (due to conjugacy)

(3.17)

3. For the component proportions π, using Bayes’ theorem and conjugacy of the Dirichlet prior:

P (π|c, {rj}ni=1, {φk}Kk=1, α) = P (π|c, α)

∝ p(π|α)p(c|π)

= Dirichlet(
α

K
+

n∑
j=1

δ1(cj), . . . ,
α

K
+

n∑
j=1

δK(cj))

(3.18)

where δk(cj) is the Kronecker delta.

Truncated DPMM with updated prior information

We split the global problem into a sequel of several reconstruction tasks of increasing difficulty. We

start with a local reconstruction initiated at the region of maximum coverage 2 (see Fig. 3.4.4).

Then we progressively increase the window currently analysed until that window covers the entire

2The coverage at location i is the number of reads covering location i.

48

haplotypes’ length. For every window, we perform Gibbs sampling and obtain a clustering of the

reads which fall in that window. Using this clustering we can update the prior information about

clusters probabilities which will then be an input for the subsequent window. Fig. 3.4.5 depicts our

model’s workflow.

Figure 3.4.4: Uneven coverage landscape of non-PCR real data. Coverage is the number of reads covered per
haplotype position.

After every window analysis, we update the prior of the class assignment probabilities (π) of the

reads. The key idea is that we allow this prior to be different for every read. As a consequence, the

class assignment probabilities also become different for every read and we use π̃j = (π̃j1, . . . , π̃jK)

for j = 1, . . . , n (see Fig. 3.4.3). The reads are now modelled as independent samples of several

mixture distributions sharing a common parameter φ:

P (rj |π̃j , φ) =
∑K

k=1 π̃jkP (rj |φk) , j = 1, . . . , n, (3.19)

and Equation 3.15 is replaced by:

π̃j |α, P prev
j

ind∼ Dirichlet(αP prev
j1 , . . . , αP prev

jK), j = 1, . . . , n, (3.20)

where P prev
j = (P prev

j1 , . . . , P prev
jK). Here P prev

jk is the posterior probability of the event {cprevj = k}
given r, φprev, π̃prev obtained during the sampling performed for the previous window. It gives a

measure of how likely the assignment of read j was in the previous window. We finally obtain a

clustering of all the reads where each read j is assigned to a haplotype represented by its estimated

probability table φcj . The respective proportions of the haplotypes can be simply estimated by

counting the number of reads assigned to each cluster and dividing it by the total number of reads.

49

Figure 3.4.5: Model workflow for global haplotype reconstruction: Local analysis for haplotype reconstruction is
initially performed on a smaller section of the entire sequence. Here the reads have significant overlap to enable
clustering. The cluster centroids form intermediate haplotypes. The locally-available class assignment probability
of every read is extracted and aids as prior information to the DPMM for an enhanced assembly of the interme-
diate haplotypes in subsequent larger sections of the sequence. This process of updating the prior information
continues over the entire length of the sequence thus reconstructing the whole haplotype.

3.5 Results

We tested our model on both simulated and real sequencing reads. Simulations were done on the

gagpol region of 4306 bases and real data focussed on the pol gene region of 1245 bases. Choosing

a longer region for simulations was done to verify our model’s stability while inferring haplotypes

over longer genomic stretches. Further, the gagpol region is known to be medically relevant for drug

resistance. Our software PredictHaplo implementing the model is available as Open-source software

from http://bmda.cs.unibas.ch/HivHaploTyper/.

3.5.1 Simulated Reads

Simulation setup

Ten haplotypes were simulated as mutants from the HIV-1 reference genome with proportions ranging

from 50% to 0.1% following a geometric-decay series and thereafter reads were simulated from these

haplotypes. For each haplotype the mutation sites were drawn independently using a mutation

probability per position of 0.5% with respect to the reference genome. The new base substituting

the original one was then drawn with each of the three possible replacements having equal probability.

All haplotypes are simulated as mutants from the gagpol region starting from 790 till 5096 which

is 4306 bases long. We used MetaSim (Richter et al. (2008)) to generate 200,000 reads from these

haplotypes. MetaSim explicitly models the light intensity emitted by the 454/Roche sequencing

machines along with the possible resulting sequencing errors. The error model used in Metasim was

the 454 error model and the parameters were chosen as recommended in Richter et al. (2008).

50

http://bmda.cs.unibas.ch/HivHaploTyper/

We generated MetaSim-simulated reads for two different read lengths: 340 and 700 bases. These

two read lengths correspond to the average read length of the real data we analysed (see section 3.5.2

and Zagordi et al. (2010a)) and to the typical read length for the 454/Roche GS FLX Titanium XL+

sequencing machine, respectively. These different lengths also capture the evolution of 454/Roche

sequencing machines.

Another set of MetaSim-simulated reads was generated for the same two read lengths with hap-

lotypes having a mutation probability of 1.5% with respect to the reference genome.

Performance

To compare the performance between different MetaSim-simulated reads, 15 simulation runs each

were carried out on a particular combination of read length and mutation probability. Figure 3.5.1

shows the comparative performance between read lengths of 340 and 700 and mutation probabilities

of 0.5% and 1.5%. Each boxplot denotes the F-scores over these 15 runs. For read length of 340

bases with a mutation probability of 0.5% i.e. an average of 1% diversity between the haplotypes,

all the haplotypes present with proportions higher than 12.5% could be reconstructed and exactly

matched the original sequences of bases. For the same mutation probability but longer reads of 700

bases, all haplotypes above 3.125% were reconstructed without errors. The former setting detected

more false positives (on average 3) whereas in the latter only 1–2 haplotypes were signalled as false

positives. For read length of 340 bases with a higher mutation probability of 1.5%, haplotypes above

1.6% were reconstructed without errors whereas for longer reads of 700 bases, haplotypes above

0.8% were reconstructed error-free. The number of false positives for shorter reads was between 1–2

whereas for longer reads, there were 0–1 false positives. We can conclude that longer read lengths

together with higher mutation rates show an improved performance since both factors contribute in

bridging the gaps between identical regions in different haplotypes.

In general, these simulations depict that haplotype reconstruction is a harder problem when the

read lengths are shorter. This also illustrates the benefits with longer reads as brought about by the

evolution in 454/Roche sequencing machines. Further increasing the reconstruction window, when

with shorter reads, reconstructs only a fewer number of haplotypes with more false positives. This

can be attributed to the fact that as the window spans, shorter reads would not constitute adequate

overlapping positions necessary to identify the appropriate haplotypes. This leads to forfeiting

potential haplotypes in the inference process and also increasing the number of mismatches in the

resulting inferred haplotypes. Thus longer read lengths (700 bases or more) as provided by the

latest 454/Roche GS FLX Titanium XL+ lead to better results. Further, for a fixed read length

increased diversity renders a higher number of true positives as the diversity aids in distinguishing

true haplotypes at the local-window levels itself.

Comparison with previous methods

We compare our method with ShoRAH (which also implements the read-graph approach of Eriksson

et al. (2008)) and QuRe. ViSpA was not included in the comparison for reasons explained further

below.

An initial comparison experiment was based on the sets of simulated reads described in Section

51

3.5.1, however none of these competing softwares was able to handle the 200,000 simulated reads.

Therefore, this lead us to conduct comparisons on a smaller scale, reproducing the charasteristics

of our real data sets, see Section 3.5.2. We simulated 10,000 reads of mean length 340 bases,

again using the MetaSim 454 error model. The reads were simulated from 10 different haplotypes

having a mutation probability of 1.5% with respect to the reference genome, and the haplotypes

constitute the same decreasing proportions as described in Section 3.5.1. Since reconstructing a

region of 4306 bases long is not possible with only 10,000 reads, the haplotypes now considered

have a decreased length of 1321, corresponding to Reverse Transcriptase (RT) region of the pol

gene. Figure 3.5.2 depicts the number of correctly reconstructed haplotypes and the number of false

positives as a function of the number of mismatches tolerated between the reconstructed haplotypes

and the ground truth. We can see that PredictHaplo perfectly reconstructs 6 of the 10 haplotypes.

This performance can also be attained by ShoRAH if we allow a maximum of 4 mismatches to the

ground truth. ShoRAH, however, suffers from a high number of false positives. QuRe performed

poorly on this simulated data set reconstructing only 1 haplotype with less than 5 mismatches,

which could be attributed to the specificities of the inbuilt MetaSim 454 error model that introduces

a lot of insertions (representing approximately 80% of the simulated errors) within simulated reads.

Insertions are treated differently in QuRe than in PredictHaplo and ShoRAH. Therefore, to ensure a

fair comparison, we present in Fig. 3.5.2 results for QuRe obtained with reads previously corrected

using ShoRAH as was recommended for ViSpA in Astrovskaya et al. (2011). We see that QuRe

can reconstruct up to 3 haplotypes for a mismatch tolerance of 2 with the number of false positives

lower than ShoRAH but considerably higher than PredictHaplo. This performance of QuRe is in

accordance with how it performs on real reads (discussed in Section 3.5.2).

We did not include ViSpA in the comparison because it suffered from instability problems on

simulated reads, preventing us from reproducing results and presenting definite conclusions. Mem-

ory leak issues appeared for runs with more than 20,000 reads whilst the coverage obtained with

10,000 reads seemed insufficient to recover haplotypes from error-prone reads. ViSpA results were

extremely sensitive to the parameters used, delivering from 1 to 430 haplotypes without being able

to reconstruct more than 1 haplotype that always corresponded to the most frequent one. Even us-

ing ShoRAH -corrected reads did not improve the results. The only setup for which we obtained an

improvement of reconstructing 4 haplotypes exactly and 2 haplotypes with less than 2 mismatches

along with 10 false positives, was when using MetaSim simulated error-free reads. Problems using

ViSpA were previously also reported in Schirmer et al. (2012).

Significance of read length for haplotype reconstruction

To test the importance of read length addressing the haplotype reconstruction problem, we run

simulations using different read lengths ranging from 36 bp to 350 bps. This range emulates the

Illumina/Solexa read length of 36 bps to 454/Roche (GS FLX Titanium) read length of 450 bps.

From the haplotypes reconstructed using different read lengths, we deduce that read length is a

significant factor to answer the global haplotype reconstruction problem and also a criterion when

it comes to choosing between sequencing platforms, i.e. one platform generating smaller number of

52

●

●

●

●

●

●●

0.
2

0.
3

0.
4

0.
5

0.
6

0.
7

0.
8

F−scores for various read lengths/mutation probabilities

Simulations using different read lengths and mutation probabilities

F
−

sc
or

es

34
0_

0.
5

70
0_

0.
5

34
0_

1.
5

70
0_

1.
5

Figure 3.5.1: Boxplots denoting F-scores over 15 runs each for different combinations of read lengths (340 and
700 bases) and mutation probabilites (0.5% and 1.5%). Longer reads, irrespective of the mutation probabilities,
turns in a higher number of true positives with lesser false positives. The results obtained for longer reads portray
the benefits brought about by the latest 454/Roche technology. Increased diversity also aids in inferring more num-
ber of true haplotypes.

longer reads (454/Roche) versus another with larger number of shorter reads (Illumina/Solexa). If

the goal is large-scale global reconstruction of highly abundant haplotypes, we recommend using

longer reads from 454/Roche, whereas if it is local reconstruction of scarcer haplotypes, one should

opt for Illumina/Solexa by virtue of their deeper coverage. This further reinforces the results of

Zagordi et al. (2012a). Figure 3.5.3 compares the significance of platform-dependent read lengths

specifically addressing the global haplotype reconstruction problem.

3.5.2 Real Reads

Sequencing data description

A genetically diverse sample was prepared by mixing 10 haplotype clones of length 1245, in known

proportions ranging from 38.3% to 0.02% (refer Table 3.5.1 for actual proportions and see Zagordi

et al. (2010a)). These 10 clones were previously isolated from the plasma of HIV infected patients

and the clones consist of the protease and a part of the reverse transcriptase portion of the pol gene.

One aliquot of this sample underwent polymerase chain reaction (PCR) amplification to access the

viability of utilising amplified samples for haplotype reconstruction. Both samples were sequenced

using a 454/Roche sequencing machine with an average read length of 340 bases. The PCR dataset

contained 25,716 reads whereas the non-PCR dataset had 10,174 reads.

53

0 1 2 3 4 5 6 7

0
2

4
6

8

Comparison of methods on simulated reads

nbr of accepted mismatches

nb
r

of
 r

ec
on

st
ru

ct
ed

 h
ap

lo
ty

pe
s

PredictHaplo
QuRe
ShoRAH

0 1 2 3 4 5 6 7

0
1

2
3

4
5

6
7

nbr of accepted mismatches

nb
r

of
 fa

ls
e

po
si

tiv
es

 (
lo

g
sc

al
e)

PredictHaplo
QuRe
ShoRAH

Figure 3.5.2: Top: Number of correctly reconstructed haplotypes. Bottom: number of false positives on a log scale
(the numbers shown are exactly log(fp + 1) where fp is the number of false positives) as a function of the toler-
ated number of mismatches for simulated reads.

54

Figure 3.5.3: Number of reconstructed haplotypes (left axis) and the corresponding haplotype frequencies (right
axis) against read length for simulated data. Higher the read length, more are the number of globally-reconstructed
haplotypes.

Results on real reads

The true haplotypes are in general either correctly reconstructed (meaning that the inferred bases

matched exactly with the true ones at every location) or not detected by the model. The inferred

proportions are very close to the true values as can be seen in Table 3.5.1. For the PCR amplified

reads the model was able to correctly reconstruct all the haplotypes present with proportions between

38.3% and 5.6% and for non-PCR amplified reads between 29.3% and 6.2%.

Comparison with previous methods

We compare our experimental results from PredictHaplo to those obtained from ShoRAH, QuRe and

ViSpA. Multiple runs for each of these methods are performed by varying the available parameters

to obtain precision and recall values. For ShoRAH, the Dirichlet process rate is varied that controls

the number of reconstructed haplotypes. With ViSpA, reads are first corrected with ShoRAH, as

recommended in Astrovskaya et al. (2011). We then varied the number of mismatches allowed

to cluster reads around super reads and the mutation-based range to obtain different numbers of

reconstructed haplotypes. For QuRe, we changed both the homopolymeric and non-homopolymeric

error rates.

The upper plot of Fig. 3.5.4 shows the best F-score obtained for different methods on the non-

PCR reads 3 whereas the bottom plot depicts the highest precision and recall values as well as the

best F-score (harmonic mean of the precision and recall) obtained for these different methods on

PCR amplified reads. The reader should note here that the highest precision value coincided with

its best F-score value. All values are given for a tolerated number of mismatches of less than 5 with

respect to the ground truth.

From Fig. 3.5.4, it is evident that all methods perform equally well in terms of recall since at most

5 to 6 haplotypes could be reconstructed for conducive parameter settings. However, PredictHaplo is

3Best F-score, highest precision and highest recall values coincided for all models except for ViSpA, which attained
a maximal recall of 0.6.

55

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

non−PCR 454 reads

Precision

R
ec

al
l 0.670.420.11 0.27

PredictHaplo
QuRe
ShoRAH
ViSpA

0.0 0.2 0.4 0.6 0.8 1.0

0.
0

0.
2

0.
4

0.
6

0.
8

1.
0

PCR 454 reads

Precision

R
ec

al
l 0.67

0.33

0.06 0.26

PredictHaplo
QuRe
ShoRAH
ViSpA

Figure 3.5.4: Plots showing best F-score / highest precision and recall values obtained for PredictHaplo, QuRe,
ShoRAH and ViSpA using 454 sequencing reads. For each method, several sets of parameters were varied (see
Section 3.5.2) leading to corresponding precision-recall points from which the highest precision and recall values
were chosen. The best F-score (harmonic mean of precision and recall) for each method is also shown. Top: Best
F-score values shown for the 4 methods on non-PCR data. Bottom: Highest precision and recall along with best
F-score values plotted for the 4 methods on PCR-amplified data. Note here that the highest precision values coin-
cide with the corresponding best F-scores. It can be seen from both the plots that PredictHaplo clearly stands out
in terms of better precision and thereby has a higher F-score as compared to the previous methods.

56

Figure 3.5.5: Plots showing precision and recall values obtained for PredictHaplo, QuRe, ShoRAH and ViSpA us-
ing 454 sequencing reads. For each method, several sets of parameters were varied (see Section 4.2.3) leading
to corresponding precision-recall points. The number of obtained points can vary between the methods since dif-
ferent parameter values can still lead to the same performance. For each method we also show the value of the
best F-score attained. Top: Values shown for the 4 methods on non-PCR data. Bottom: Values plotted for the 4
methods on PCR-amplified data. It can be seen from both the plots that PredictHaplo clearly stands out in terms of
better precision.

significantly ahead of its competitors in terms of offering better precision values. We run PredictHaplo

with values for the Dirichlet prior over probability tables, γ, between 0.01 and 50 and the Dirichlet

prior over the mixtures, α, between 0.1 and 10 (although changing α did not influence the model’s

performance significantly). For appropriate parameter settings our method can find 5 haplotypes

for non-PCR and PCR reads, without detecting any false positives. By tuning the only available

parameter for ShoRAH, the Dirichlet process rate, over a large range (1e-5 to 1e3), false positives

could not be reduced below 73 (present with frequencies between 0.02% and 3.1%) and 152 (between

0.01% and 6.4%) on the non-PCR and PCR data respectively. A more detailed version of Fig. 3.5.4

containing all points obtained for the different sets of parameters is given in Figure 3.5.5.

These experimental results confirm that our probabilistic model performs remarkably better than

Astrovskaya et al. (2011), Prosperi et al. (2011) and the four-step approach detailed in Eriksson

et al. (2008) and Zagordi et al. (2009).

Table 3.5.1: Actual and reconstructed haplotypes proportions obtained using PredictHaplo for non-PCR and PCR
454/Roche reads. All values are in %. X denotes ’undetected haplotype’.

Non-PCR
Actual 29.3 28.6 22.1 10.4 6.2 2.3 0.7 0.26 0.16 0.04
Reconstructed 32.1 26.0 23.7 10.5 7.7 X X X X X

PCR
Actual 38.3 35.4 10.1 9.5 5.6 0.46 0.32 0.08 0.06 0.02
Reconstructed 37.6 34.9 11.8 10.1 5.7 X X X X X

57

Table 3.5.2: Links to softwares used in comparison experiments.

PredictHaplo http://bmda.cs.unibas.ch/HivHaploTyper/

ShoRAH http://www.bsse.ethz.ch/cbg/software/shorah

QuRe https://sourceforge.net/projects/qure/

ViSpA http://alla.cs.gsu.edu/~software/VISPA/vispa.html

3.5.3 Datasets used and links to competing softwares

To ensure reproducibility of results presented in Sections 3.5.1 and 3.5.2, we provide the links to

datasets used as well as softwares used for comparison purposes. Data used for comparison exper-

iments based on simulated data (in Section 3.5.1) can be found at http://bmda.cs.unibas.ch/

HivHaploTyper/ and that used for comparison experiments based on real reads (in Section 3.5.2) is

published at https://wiki-bsse.ethz.ch/display/ShoRAH/Data under 454 Data section.

Links to the various softwares deployed in this chapter are provided in Table 3.5.2.

3.6 Conclusions

This research deals with analysing the different haplotypes obtained from deep-sequencing data.

With the advent of these powerful sequencing technologies, there is a plenitude of reads being

curated but their limited lengths and machine-induced errors pose challenges in identifying the

exact haplotypes’ diversity within the sample. Being able to identify the genetic diversity is an

important step in administering personalised medication.

The main modelling challenge here arises due to non-overlapping reads not having any suitable

a priori similarity measure defined between them. None of the previous approaches have pro-

vided a convincing strategy to solve this issue. In this work we successfully overcome this problem

by introducing a propagating DPMM. Our model does not a priori need to know the number of

genetically-diverse HIV haplotypes present in the sample. A Gibbs sampler is used for inferring

the unknown haplotypes from the error-prone reads. Through this the full posterior distribution

of model parameters is inferred and by using Gibbs sampling we eliminate potential local minima

issues arising with EM. Other added values of this Bayesian model are that it is computationally

efficient and requires only a few input parameters. From our results based on simulated reads we

can see that the model’s performance is stable under simulations conducted with varying diversities.

Experiments with real data also confirmed the model’s performance.

58

http://bmda.cs.unibas.ch/HivHaploTyper/
http://www.bsse.ethz.ch/cbg/software/shorah
https://sourceforge.net/projects/qure/
http://alla.cs.gsu.edu/~software/VISPA/vispa.html
http://bmda.cs.unibas.ch/HivHaploTyper/
http://bmda.cs.unibas.ch/HivHaploTyper/
https://wiki-bsse.ethz.ch/display/ShoRAH/Data

Facet II

Computational methods for structure recovery in antiretro-
viral drug space

Goals in this part of the thesis:

• Graphical models – An introduction.

• TiWnet – a Bayesian method for network structure recovery using distance

data.

• Automatic Archetype Analysis.

59

Introduction to Facet 2

HIV is highly virulent spawning mutants that escape drugs over time, thereby becoming a menace

difficult to eradicate. Preventive measures like ART drugs must be powerful enough to avert aggres-

sive HIV proliferation that eventually lead to the AIDS infection. The ART drugs prescribed are

a concoction from amongst 25 commercialised drugs falling in 5 categories as discussed in Section

1.2.2. When HIV becomes drug-resistant to a drug of a particular category, it in turn becomes resis-

tant to other drugs within the same category, giving rise to what is known as cross-resistance. This

effectively reduces the number of possible drug combinations available for prescription. It is there-

fore important to analyse for similarities between ART drugs and other available chemically-active

compounds for an effective ART.

The 2nd facet of the thesis looks into extracting similarities between drugs and chemical com-

pounds, based on their chemical structures. This is done by examining a landscape of active chemical

compounds, also encompassing the drugs:

1. for extracting networks amongst the active chemical compounds. This helps in understanding

relations between chemical compounds and drugs. The fully-probabilistic model, TiWnet, is

developed and deployed for this purpose. This is discussed in Chapter 5.

2. for identifying archetypal compounds. A Group-Lasso based approach along with an efficient

model selection criterion to identify archetypes is developed. The method is applied to extract

archetypes from a set of chemical compounds including drugs. From the resulting archetypal

drugs, one can draw deeper insights into the functional similarities (for example, the cross-

resistant nature of HIV strains towards drugs) that can possibly be shared within convex sets

of archetypal drugs and compounds. This is further discussed in Chapter 6.

60

4
Graphical Models

Graphical models constitute a well-studied research field and have been used in many application

domains including natural language processing, analysis of biological networks, speech recognition

and image processing. In this chapter, we introduce the basic concepts used in graphical models

before discussing our contribution to this field. This chapter follows the content provided in Lauritzen

(1996) and Whittaker (1990).

4.1 Introduction

A network or graph is a blueprint deciphering the connectedness between a set of objects.

The study of graphs is called graph theory where one learns the structure of the graph (or

network). The structure represents the pairwise relationships between objects in the graph. A graph

G = (V,E) is composed of a vertex set V and an edge set E ⊆ V × V . The elements of V are called

vertices and the number of vertices or vertex cardinality is denoted by |V |. The elements of E are

called edges of the graph and the size of the graph is |E|. A graph is directed if all the pairwise

edges have directional information and it is undirected, if the directional information is absent. The

focus of the current chapter and Chapter 5 is of discovering structures of the underlying undirected

graph given a set of objects.

Undirected graphs have amassed prolific interest in recent years due to its intuitive mechanism of

representing and visualising complex connectedness between objects. More specifically, they provide

a rigid formalism to represent high-dimensional distributions of random variables (objects). Given

a n× d-dimensional random matrix X with n objects and d i.i.d. measurements (observations), an

undirected graphical model for X is the family of probability density functions that represent the

61

conditional dependencies amongst these n objects. Fitting such a graphical model to X is called

graphical modelling.

Next, the definitions of (conditional) independence that play a central role in graphical modelling

are presented.

Consider a random vector Y = (Y1, · · · , Yn)t with Yi being a continuous random variable for

i = 1, · · · , n.

Definition 4.1 (Independence) Two continuous random variables Yi and Yj with marginal densities

f(yi) and f(yj) respectively are independent, denoted as Yi ⊥⊥ Yj, if and only if their joint probability

density function (pdf) factorises as a product of their marginal densities i.e. f(yi, yj) = f(yi)f(yj)

∀(yi, yj).

Definition 4.2 (Conditional Independence) Two continuous random vectors Yi and Yj are condi-

tionally independent on Yk, denoted as Yi ⊥⊥ Yj |Yk, if and only if the conditional pdf f(yi, yj |yk) =
f(yi|yk)f(yj |yk) ∀(yi, yj , yk) satisfying f(yk) > 0.

Definition 4.3 (Markov Chain) A (discrete time) Markov Chain with discrete state space Yn ∈
{0, 1, 2, . . .} is a sequence of random variables Y0, Y1, Y2, . . . such that for all states in+1, in, in−1, · · · , i0
and all discrete time points n = 0, 1, 2, . . ., the Markov property is satisfied i.e.

f(yn+1|yn, yn−1, . . . , y0) = f(yn+1|yn).

From Definition 4.3, it can be said that the future observation Yn+1 is conditionally independent of

past observations {Y\n} 1 given the current observation Yn i.e. (Yn+1 ⊥⊥ Yn−1, . . . , Y0|Yn).

4.1.1 Relation between network structure estimation & inverse covariance matrix

and conditional independence of a corresponding probability distribution

To make the relation between the probability distribution explaining the network structure and its

inverse covariance matrix clearer, let us assume 1) a graph G = (V,E) with |V | = n and 2) a

n-dimensional random vector Y = (Y1, · · · , Yn)t, Y ∈ Rn and Yi is a continuous random variable

having a marginal density f(yi) for i = 1, · · · , n. Each Yi forms the ith node of G.

Consider the joint probability distribution P (Y) on the random variables Yi. The conditional

independence in a Markov chain (Definition 4.3) can be written reflecting Yi in G. These Markov

properties (or conditional independence properties) that P might have with respect to G are:

1. Definition 4.4 (Pairwise Markov property)

For any given non-adjacent pair of vertices (Yi, Yj) where Yi 6= Yj and (i, j) = 1, · · · , n, Yi is
conditionally independent of Yj given the rest of the variables i.e. Yi ⊥⊥ Yj |YV \{i,j}.

2. Definition 4.5 (Local Markov property)

For any given vertex Yi ∈ V , Yi is conditionally independent of the rest given its neighbours

Yne(i) i.e. Yi ⊥⊥ YV \(ne(i)∪{i})|Yne(i).
1{Y\n} denotes all past observations Y0, · · · , Yn−1 excluding the current observation Yn.

62

3. Definition 4.6 (Global Markov property)

For any triple (YA, YB , YC) of disjoint subsets of V such that YC separates YA from YB in G,

subsets YA and YB are conditionally independent given YC i.e. YA ⊥⊥ YB|YC .

Proposition 4.1 (Lauritzen (1996) Proposition 3.4)

For any undirected graph G and any probability distribution P (Y), if P (Y) satisfies the global

Markov property with respect to G then it also satisfies the pairwise Markov property of G.

Definition 4.7 (Factorisation property)

A joint probability distribution P (Y) is said to possess the factorisation property with respect to

a given undirected graph G if it can be written as the product of non-negative functions φr(Yr) such

that P (Y) =
∏

r⊆C φr(Yr) where C is the set containing fully-connected subgraphs or cliques of G

and Yr is the set of nodes in clique r.

Proposition 4.2 (Lauritzen (1996) Proposition 3.8)

For any undirected graph G and any probability distribution P (Y), if P (Y) satisfies the factori-

sation property with respect to G then it also satisfies the pairwise Markov property of G.

The converse of Proposition 4.2 does not hold for all distributions except for strictly positive

distributions P (Y) i.e. P (Y) > 0. The necessary and sufficient conditions under which a strictly

positive probability distribution has its pairwise Markov property equivalent to its factorisation

property is given by the Hammersley-Clifford theorem (Shen, 2011).

Theorem 4.3 (Hammersley and Clifford) (Lauritzen (1996) Theorem 3.9)

For any undirected graph G and a probability distribution P (Y) with respect to G, P (Y) satisfies

the pairwise Markov property with respect to G if and only if it factorises according to G.

According to Proposition 4.2, if P (Y) factorises according to G then it also satisfies the pairwise

Markov property. The converse needs to be shown i.e. if P (Y) satisfies the pairwise Markov property

then it factorises according to that particular G. This proof can be found in Lauritzen (1996).

Let Y follow a multivariate Gaussian distribution with mean ζ and covariance matrix Σ. Σ−1 = Ψ

is the inverse covariance matrix of the distribution P (Y). Given these, the corollary to Theorem 4.3

can be stated as follows:

Corollary 4.4 The zeroes in Ψ of the multivariate Gaussian distribution of Y correspond to missing

edges in the network G.

Proposition 4.5 (Lauritzen (1996) Proposition 5.2)

Assume Y ∼ Nn(ζ,Σ) where ζ is the mean vector and Σ is invertible. For (i, j) = 1, · · · , n
and i 6= j, it holds that the pairwise Markov property viz. Yi ⊥⊥ Yj |YV \{i,j} ⇐⇒ ψij = 0 where

Ψ = {ψij} = Σ−1.

Thus conditional independence in the multivariate Gaussian distribution is captured in Ψ as

zero entries. Lauritzen (1996) uses the pairwise Markov property between two vertices Yi and Yj

63

to further show the relationship between the inverse covariance matrix Ψ and the elements of the

partial correlation matrix as follows:

ρij|V \{i,j} = − ψij√
ψiiψjj

∀i 6= j (4.1)

where ρij|V \{i,j} is the partial correlation coefficient between variables Yi and Yj given the rest of

the variables YV \{i,j}. Since Y is multivariate Gaussian distributed, if Yi and Yj satisfy the pairwise

Markov property, then ρij|V \{i,j} = 0. Therefore ρij|V \{i,j} = 0 is synonymous to ψij = 0 and

conditional independence can be asserted between nodes Yi and Yj .

As seen in Equation 4.1, the partial correlations measure the strength of pairwise direct interac-

tions only and since Ψ contains scaled partial correlations, identifying zeroes either in the pairwise

partial correlations or Ψ forms the crux to network structure recovery. This lays the basis for a pro-

cedure called covariance selection introduced by Dempster (1972) where graph structure recovery is

made possible by estimating Ψ of the underlying Gaussian distribution. Then it suffices to read out

the zero-entry indices from Ψ and construct a graph where the corresponding indices have missing

edges. Since the underlying distribution considered is multivariate Gaussian, covariance selection

models are also called Gaussian graphical models (GGMs) (Lauritzen (1996)).

4.2 Challenges related to structure recovery

Identifying networks – estimating dependencies between objects and thereby determining their un-

derlying graph structure – is a challenging problem. In the simplest case where the number of

measurements is greater than the number of objects (d � n), the standard estimation of partial

correlations involves either the inversion of the sample covariance matrix, or the estimation of n

least squares regression problems. The problem is more pronounced in high-dimensional settings i.e.

when the number of objects n is far larger than the measurements d themselves (n � d) and then

the sample covariance matrix becomes non-invertible (see Dykstra (1970), Stifanelli et al. (2011)).

Having to learn the unknown network structure from noisy observed measurements further aggra-

vates the structure recovery problem. Another statistical challenge one faces is that the number

of possible undirected networks is exponential in the number of objects n (Erds and Rényi (1960),

Stifanelli et al. (2011)). Example works for structure recovery based on solving n regularised neigh-

bourhood regression problems was dealt with in Meinhausen and Bühlmann (2006). Based on the

nonnegative garrote (Breiman (1995)) and Lasso (Tibshirani (1996)) for the linear regression, Yuan

and Lin (2007) introduced a regularised estimation of the Ψ using a `1-type penalty on the entries

of Ψ when maximizing the multivariate Gaussian log-likelihood. The `1 norm forces certain entries

of the estimated Ψ to be exactly zero. Similar sparsity-enforcing techniques on the entries of Ψ have

been dealt with in Banerjee et al. (2008), Friedman et al. (2007) and d’Aspremont et al. (2008).

Apart from dealing with high-dimensional data, another problem-inflicting aspect to traditional

network inference models is that they depend on geometric translations of the data which require

knowledge of the underlying geometric coordinates. In many real-world scenarios, especially those

dealing with non-vectorial objects like strings, graphs etc, one rarely has access to the objects’

underlying vectorial representations but only to their pairwise distances implying that the geometric

64

translations are entirely lost. Therefore, it becomes pertinent to devise a network inference procedure

that looks from the angle of pairwise distances, hence being devoid of any vectorial representations

of the objects. This forms the goal of the next chapter.

A novel sparse network inference mechanism designed to work solely with pairwise distances of

the data X is introduced where X is a n× d-dimensional random matrix with n objects and d i.i.d.

measurements (observations). To deal with network structure recovery in high-dimensional settings,

the construction of module networks using the pairwise distance representation is also described.

4.3 Graphical abstract

For clarity, a graphical abstract (Figure 4.3.1) is provided that captures the purview of network

inference. The top panel shows the classical operational regime for GGMs that uses the vectorial

representation of an object for network recovery. These vectors are present in the observed Xn×d

matrix where n is the number of objects and d the measurements. The bottom panel sketches the

regime of our work which deals with the non-vectorial representations of objects. These objects can

be those having a structure like graphs, strings, probability distributions etc. For such objects, it is

natural to look into their pairwise representations and therefore for network recovery, their pairwise

representations assembled in a pairwise distance matrix Dn×n is made use of. The model is detailed

in the subsequent chapter.

65

vectors

D11 D1n

D n1 D nn

Dnxn
Network

Network recovery

structured objects

Figure 4.3.1: Graphical abstract. Consider the space of objects having a vectorial or non-vectorial representa-
tion. (Top) Classical GGMs operate in a vectorial regime where networks are extracted from objects represented
as vectors in an observed Xn×d matrix with n objects of interest and d observations. (Bottom) Current focus of
this work deals with objects possessing a non-vectorial representation i.e. these objects have a structure like a
string or graph. For such objects, it is natural to consider their pairwise representations rather than vectorial repre-
sentations. To enable network extraction for such structured objects, their pairwise representations collected in a
pairwise distance matrix Dn×n is made use of.

66

5
Recovering Networks from Distance Data

5.1 Introduction

IN the current chapter, we introduce a novel sparse network inference mechanism called the

Translation-invariant Wishart Network (TiWnet) model that is designed solely to work on pair-

wise distances. This applicability to situations in which we can only observe distance information

constitutes the strength of this new model over similar approaches involving the matrix-valued

Gaussian likelihood (Allen and Tibshirani, 2010). We denote by Dn×n, the matrix that contains

the pairwise distances between n objects. To the best of our knowledge this is the first work that

deals with network structure discovery in situations where no vectorial representation of objects is

available and only pairwise distances are observed. Additionally, the presence of certain objects hav-

ing a relatively higher confluence of edges gives rise to central hub regions. Extracting the network

structure from amongst hubs given noisy measurements makes it, in general, difficult to summarise

the entire network succinctly. To handle this, we present the construction of module networks where

networks are learned on groups of variables called modules, thereby effectively reducing n to the

number of modules.

Outline of the chapter. In Section 5.2, we explain the classical setting for GGMs. The un-

derlying problems with existing methods are elaborated in Section 5.3. In Section 5.4, we discuss

the solution to these problems and further explain how our model, TiWnet, caters to this solution.

Section 5.5 details the TiWnet network inference model. We describe module networks in Section

5.6. Comparison experiments on simulated data along with three real-world application areas are

demonstrated in Section 5.7. In Section 5.8, we discuss TiWD (Vogt et al., 2010) that uses the same

67

likelihood as TiWnet and TiWD’s incapability to extract networks. The contributions of TiWnet

are highlighted in Section 5.9 and in Section 5.10, we conclude the chapter.

5.2 Classical GGMs

To set the stage, we begin with a description of the classical framework for estimating sparse GGMs.

One usually starts with a n× d observed data matrix Xo (the superscript o means “original” and is

used here only for notational consistency), its d columns interpreted as the outcome of a measuring

procedure in which some property of the n objects of interest is measured. In a biological setting,

for instance, the objects could be n genes and one set of measurements (one column) could be gene

expression values from one microarray. All d columns in Xo are assumed to be i.i.d. according to

N (0,Σ). Then, the inner product matrix So = 1
dX

o(Xo)t follows a central Wishart distribution

Wd(Σ) in d degrees of freedom 1 (Muirhead, 1982) (if d ≥ n otherwise So is pseudo-Wishart 2), and

its likelihood as a function of the inverse covariance Ψ := Σ−1 is

L(Ψ) ∝ |Ψ| d2 · exp
[
−d

2 tr(ΨS
o)
]
. (5.1)

The corresponding generative model is sketched in Figure 5.2.1. Every algorithm for network re-

construction relies on some potentially interesting sparsity structure garnered within the inverse

covariance matrix Ψ := Σ−1. Ψ contains the (scaled) partial correlations between the n random

variables forming the nodes in the network: a zero entry in Ψij concurs to no edge prevailing between

the pair of random variables (i, j) in the network.

Related work. There exists a plethora of literature on network structure estimation using i.i.d.

samples. To infer the underlying network, it is straightforward (at least from a methodological

viewpoint) to maximise the Wishart likelihood while ensuring that Ψ is sparse. This is exactly the

approach followed in Yuan and Lin (2007), Banerjee et al. (2008), d’Aspremont et al. (2008) and

graph lasso (Friedman et al. (2007)) where a `1 sparsity constraint on Ψ is used:

logL(Ψ) ∝ d
2 log |Ψ| −

d
2 tr(ΨS

o)− λ||Ψ||1 (5.2)

where λ controls the amount of penalisation and ||Ψ||1 =
∑

i |Ψi|, the `1 norm which is the sum

of absolute values of the elements in Ψ. A methodologically similar, but simplified approach that

decouples this joint estimation problem into n independent neighbourhood-selection problems is

dealt in Meinhausen and Bühlmann (2006). The neighbourhood selection problem is cast into

a standard regression problem and is solved efficiently using a `1 penalty. The model presented in

Kolar et al. (2010a) deals with conditional covariance selection where the neighbourhoods of nodes are

conditioned on a random variable that holds information about the associations between nodes. They

1The central standard Wishart distribution is defined for So = Xo(Xo)t. Throughout the chapter, we use So =
1
d
Xo(Xo)t so that d appears in the central Wishart distribution and can be later used as an annealing parameter in

the inference procedure.
2The names of the Wishart distribution are inconsistent in the literature. We use the notation in Dı́az-Garćıa et al.

(1997).

68

2

−2

−1

0

1
−2

−1

0

1

2
0.05

0.10

0.15

x i

original

(u)

draw (i=1,...,d)

n

Σ
−1

Sparse inverse cov. mat.
n

n−dimensional Gaussian N(0,)Σ

n

X

d

tS (1/d) X Xo oo o=
~central Wishart

Figure 5.2.1: Assumed underlying generative process in classical GGMs. Black arrows indicate the workflow
when drawing samples from this model; n, d: matrix dimensions. Every dth draw from the n-dimensional Gaussian
is an i.i.d. replication and stacked as a column of Xo. A draw represents a set of observations and a row denotes
an object of interest.

employ a logistic regression model with a `1,2 penalty for the neighbourhood-selection problem while

additionally assuming this conditioning variable which steers sparsity of edges. Another method

to extract networks called walk-summable graphs is introduced in Johnson et al. (2005b) where a

neighbourhood is constructed based on walks accumulated by every node in the graph and weighted

as a function of the edgewise partial correlations present in Ψ.

5.3 Underlying Problems with Existing Methods

The above papers and related approaches, however, have been built on an assumption that the

d columns in Xo are i.i.d. This particular assumption of considering columns to be identically dis-

tributed might be too restrictive: even if the underlying Gaussian generative process is a valid model,

different column-wise bias terms are common in practice. In the above biological example, there

might be global expression differences between the d microarrays. It is therefore indispensable to

model these unknown shifts (biases) for valid network inference. An ensuing consequence of model-

ing these biases is that the column i.i.d. assumption gets relaxed i.e. one ends up working with just

independent data since the columns now come from different distributions.

Employing non-i.i.d. data for network recovery has been dealt with in the past, primarily in the

area of time-varying data. Here, the data are no longer identically distributed since observations

are taken at d discrete time points. In this case, the time-varying GGMs aim in capturing the

longitudinal relational structure between objects. Examples of such work that deal with transient

non-i.i.d. data due to discrete time points can be found in Kolar et al. (2010b), Zhou et al. (2010)

and Carvalho and West (2007). In these references, it must be noted that every observation assumes

to have been generated from either a common-mean discrete-distribution Ising model (Kolar et al.

(2010b)) or zero-mean multivariate normal distribution (Zhou et al. (2010) and Carvalho and West

(2007)). At this juncture, our work differs from this fraternity in that although we also deal with

69

Figure 5.3.1: Assumed underlying generative process. Black arrows indicate the workflow when drawing samples
from this model; n, d : matrix dimensions. The red arrows highlight the same distance matrix D produced from
either the “original data” Xo (consisting of i.i.d. samples) or the “mean-shifted” data X (purple-outlined boxes).

non-i.i.d. data, the non-i.i.d. nature arises not due to the time component but due to admitting

different column-wise biases.

To model these column-wise biases in TiWnet, they are included in the generative model by

introducing a shifting operation in which scalar bias terms b(i=1,...,d) are added to the “original”

column vectors xo
i , which results in a mean-shifted vector xi, forming the i-th column in X, cf.

Figure 5.3.1 (purple-outlined boxes). Hence the columns come from different distributions i.e. they

cease to be identically distributed. In the classical case of not considering column biases, Xo is

distributed as N (0,Σ), but in TiWnet which now accommodates these column biases, the joint

distribution of all matrix elements is expressed, that here is matrix normal X ∼ N (M,Ω) with

mean matrixM := 1nb
t
d and covariance tensor Ω := Σn×n⊗Id. This model implies that S = 1

dXX
t

follows a non-central Wishart distribution S ∼ Wd(Σ,Θ) with non-centrality matrix Θ := Σ−1MM t

(Gupta and Nagar, 1999). Practical use of the non-central Wishart for network inference, however,

is severely hampered by its complicated form and more so, the problem of estimating the unknown

non-centrality matrix Θ based on only one observation of S which is problematically analogous to

identifying the mean of any distribution given only a single data point.

It is, thus, desirable to use a simpler distribution. One possible way of handling such column

biases is to “center” the columns by subtracting the empirical column means b̂i, and using the

matrix SC = 1
d (X − 1b̂t)(X − 1b̂t)t in the standard central Wishart model. Since the entries in the

i-th column, {x1i, · · · , xni}, are not independent but coupled via the Σ-part in Ω, this centering,

however, brings about undesired side effects; apart from removing the additive shift, the original

columns are modified with the resulting column-centered matrix SC being rank deficient. As a

consequence, SC 6∼ W(Σ) i.e. SC is not central Wishart distributed. Instead, SC follows the more

complicated translation invariant Wishart distribution, see Equation 5.12 below.

Figure 5.3.2 exemplifies these problems where we depict the performance of graph lasso (Friedman

et al., 2007) based on (i) the original unshifted data generated using Figure 5.2.1 (GL.o), (ii) mean-

shifted data generated using Figure 5.3.1 (GL.s) and (iii) column-centered data (GL.C). Graph lasso

70

maximises the Wishart likelihood using a `1 sparsity constraint (see Equation 5.2) and works best

in case (i) where the model assumptions are met. The boxplots in Figure 5.3.2 confirm that the

presence of column-wise biases (case ii) significantly deteriorates the performance of graph lasso and

even column-centering (case iii) does not augment the performance. Thus column-biases are not

only a theoretical problem of model mismatch but also a severe practical problem for inferring the

underlying network.

true

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

●

G
L.

o

G
L.

C

G
L.

s

0.3

0.4

0.5

0.6

0.7

0.8
F−measure, optimal threshold

Figure 5.3.2: Left: Example network, artificially created from a data generator. Right: performance of edge recov-
ery for the graph lasso (GL) method which maximises the standard Wishart likelihood with a `1 sparsity penalty.
The leftmost boxplot refers to the original (unshifted) data (GL.o), meaning that the model assumptions are correct,
the rightmost boxplot refers to data with column shifts (GL.s), and the middle boxplot refers to empirically centering
the columns (GL.C). Refer section 5.7 for details on sample generation, methods, model selection and evaluation
criteria.

Another problem-arising situation is where even observing Xn×d is not valid, instead one assumes

access to a measuring procedure which directly returns pairwise relationships between n objects.

Two variants are considered: either a positive definite similarity matrix identified with the matrix S

is measured, or pairwise squared distances arranged in a matrix D is measured, defined component-

wise as Dij = Sii + Sjj − 2Sij . In the first case with S or in the second case with D, column-

centering is still possible by the usual “centering” operation in kernel PCA (Schölkopf et al., 1998):

SC = QSQt = −(1/2)QDQt, with Qij = δij − 1
n . However, using this column-centered matrix SC

in the standard Wishart model induces obviously the same problems related to model mismatch as

in the vectorial case above (Figure 5.3.2).

5.4 Novel Solution to Network Inference

To overcome the above intertwined problems of having to work with column-wise biases and the

complicated non-central Wishart we need to rely on a model that makes use of only pairwise dis-

tances. Figure 5.4.1 shows how one can move from X 7→ S 7→ D and the information loss involved

therein. When one moves from X to S, the rotational information is lost and when one moves from

S to D, the translational information is lost. Once in D, we are devoid of any relevant geometric

71

Figure 5.4.1: Relationship between data matrix X, similarity matrix S and pairwise distance matrix D and the
information loss procured by moving between them. The straight lines from X 7→ S, X 7→ D and S 7→ D show a
unique mapping whereas the dotted lines from D 7→ S and S 7→ X show a non-unique mapping. Since we deal
with squared-Euclidean pairwise distances throughout, the distances are preserved. It is the non-uniqueness that
poses the real problem which requires attention.

information i.e. D is both translation and rotation invariant. Since we consider D to contain the

squared-Euclidean pairwise distances, the distances are preserved throughout. On the other hand,

the mappings from D 7→ S and S 7→ X are not unique and this non-uniqueness is the problem that

requires careful handling. We explain more on this non-uniqueness and how we handle it in the

following.

Since by assumption D contains squared Euclidean distances, there is a set of inner product

matrices S that fulfill Dij = Sii +Sjj − 2Sij (McCullagh, 2009). If S∗ is one (any) such matrix, the

equivalence class of these matrices mapping to a single D is formally described as set S(D) = {S|S =

S∗ + 1vt + v1t, S � 0,v ∈ Rn}. The elements in S(D) can be seen as Mercer kernels that represent

many objects ranging from graphs to probability distributions to strings etc. Mercer kernels are

kernels that satisfy Mercer’s theorem conditions (Vapnik (1998) and Cristianini and Shawe-Taylor

(2000)). These kernels are viewed as similarity measures between structured objects that have no

direct vectorial representation 3. For example, Figure 5.4.2 represents a structured object like a graph

for which different Mercer kernels S1 and S2 can be constructed wherein S1, S2 ∈ S(D) and therefore

map to the same D. This S is exactly the set of inner product matrices that can be constructed by

3This does not necessarily imply that it is meaningful to use any Mercer kernel for reconstructing a Gaussian
graphical model. The main focus here is not on kernels as a means for mapping input vectors to high-dimensional
feature spaces in order to exploit nonlinearity in the input space but as similarity measures.

72

Figure 5.4.2: A structured object like a graph for which two different similarity matrices (Mercer kernels) S1 and
S2 exist that give rise to the same D. In this case, the choice of S for usage in a probabilistic setup is irrelevant
whereas if they did not map to the same D, then the choice of S is critical for the probabilistic model. In a discrimi-
native framework, the choice of S is irrelevant.

arbitrarily biasing the column vectors in Xn×d. Shifting the viewpoint from column to row vectors,

this invariance means that the density does not depend on the origin of the coordinate system in

which the n objects are represented as vectors containing d different measurements. Column-wise

biases referred to before reduce in this view to simple shifts of the origin of an underlying coordinate

system.

Most of the methods used for constructing kernels have no information about the origin of the

kernel’s underlying space meaning that we have no knowledge whether the probability distribution

of either S1 or S2 is that of SC i.e. the S having zero-column shifts. This indicates that as long as the

kernels belong to set S(D), the exact form of the kernel matrix is irrelevant. On the other hand, were

S1 or S2 /∈ S(D), then the choice of S is critical in the framework of probabilistic models whereas

for discriminative classifiers, the choice of S does not pose a problem. Most supervised kernel

methods like SVMs are invariant against choosing different representatives in S, and in common

unsupervised kernel methods like kernel PCA (Schölkopf et al., 1998) the rows of X are considered

i.i.d. implying that subtracting the empirical column means (leading to SC) is the desired centering

procedure for selecting a candidate in S(D). However, the sampling model for GGMs is not invariant

against choosing S ∈ S. If one adopts column centering, then this reduces to selecting one specific

representative SC from the set of all possible S ∈ S(D), namely the one whose origin is at the sample

mean. This leads to implicitly assuming the underlying vectorial space. Such column centering,

however, destroys the central Wishart property of S (assuming it was a Wishart matrix before) as

discussed in Section 5.3. The strategy is therefore to avoid the selection of a representative S ∈ S
altogether.

Instead, the proposed solution is to use a probabilistic model for squared Euclidean distances

D. We use a likelihood model in TiWnet that depends only on D where these distances are not

affected by any column-wise shifts (translations), cf. the red arrows in Figure 5.3.1. The likelihood

model invariant to shifts has been studied before in the Translational-invariant Wishart Dirichlet

73

(TiWD) cluster process (Vogt et al., 2010). In Section 5.8, we discuss further the TiWD model and

its unsuitability for network extraction.

5.5 The TiWnet Model

In this section, we discuss the likelihood model common to both TiWD and TiWnet, the prior

construction we use suitable for network inference and the network inference mechanism.

5.5.1 Likelihood model

One starts with an observed matrix D containing pairwise squared distances between row vectors

of an unobserved matrix X ∼ N (M,Ω). This means that in addition to the classical framework for

GGMs, arbitrary column biases b(i=1,...,d) are now allowed which “shift” the columns in X but leave

the pairwise distances unaffected.

As elaborated in Section 5.4 and depicted in Figure 5.4.2, there exists S(D), the set of kernel

matrices mapping to the same D. We can now work with either D or with any S ∈ S(D) i.e. a

specific S is not required. Since there exists no convenient expression for the distribution of D, the

likelihood in terms of D can be computed based on the distribution of S (McCullagh, 2009). Here,

it is shown that the distribution of an arbitrary S ∈ S can be derived analytically as a singular

Wishart distribution with a rank-deficient covariance matrix. The likelihood is developed through

the concept of marginal likelihood (Harville, 1974, Patterson and Thompson, 1971). Below, we

explain the constructs for marginal likelihood and then define it in terms of D.

Marginal likelihood. The term marginal likelihood is not consistently used in the literature.

What is sometimes called the “classical”marginal likelihood, (Harville, 1974, Patterson and Thomp-

son, 1971), is a decomposition of the likelihood into one part which depends on the parameters

of interest and a second one depending only on “nuisance” parameters. The “Bayesian” marginal

likelihood, on the other hand, is computed by integrating out the nuisance parameters after placing

prior distributions on them. In the following we will use the first definition, which involves a parti-

tion of the likelihood into an “interesting” part and a “nuisance” part. In some cases, this classical

marginal likelihood coincides with the profile likelihood, which is obtained by replacing the nuisance

parameters with their maximum likelihood (ML)-estimates. This interpretation indeed holds true

in our case, implying that here the intuitive idea of plugging-in the ML estimates leads to a valid

likelihood function (which is not always true for profile likelihoods). Further technical details on

this equivalence between profile- and marginal likelihood are given in Section 5.11, and a discussion

of these likelihood concepts from a Bayesian viewpoint can be found in Berger et al. (1999).

Let the data matrixX be distributed according to p(X|α, θ), where the distribution is parametrised

by the interest parameter α and the nuisance parameter θ. Assume there exists a statistic t(X) whose

distribution depends only on α. Then p(X|α, θ) can be decomposed as follows:

p(X|α, θ) = p(t(X), X|α, θ)

= p(t(X)|α)︸ ︷︷ ︸
ML of interest

p(X|t(X), α, θ). (5.3)

74

We base our inference on p(t(X)|α) which is the “classical”marginal likelihood based on the interest

parameter alone. We notate p(t(X)|α) as L(α; t(X)) where t(X) = (X−1nb̂t)

||X−1nb̂t||
is the standardised

statistic and the interest parameter α = Ψ. The nuisance parameters θ consist of bias estimates

b̂ and scale factor τ . Note that this specific statistic t(X) is constant on the set of all X and S

matrices that map to the same D. Therefore t(X) can be seen as a function that depends only on

the scaled version of D i.e. f(D
||D||).

Proposition 5.1 McCullagh (2009)

Consider the standardised statistic t(X) = (X−1nb̂t)

||X−1nb̂t||
where t(X) is a function f(D

||D||) depending

only on (scaled) D. The interest parameter is Ψ. The shift- and scale- invariant likelihood in terms

of D is:

L(Ψ; D
||D||) ∝ det

(
Ψ̃
) d

2 tr(−1
2 Ψ̃D)−

(n−1)d
2 (5.4)

where Ψ̃ = f(Ψ) = Ψ− (1t
nΨ1n)

−1Ψ1n1
t
nΨ.

The proof of Proposition 5.1 is given in Section 5.11.

Thus, there is a valid probabilistic model underlying Equation 5.4, and with a suitable prior

Bayesian inference for Ψ is well-defined.

The reader should notice that Equation 5.4 can be computed either from the distances D, or

from any inner product matrix S ∈ S(D). Rather than choosing any S and implicitly fixing the

underlying coordinate system, our solution is to make the distribution invariant to the choice of any

S (refer Section 5.4). This is achieved by working directly with D whereby any S ∈ S(D) can be

used. The practical advantage of this property is that one can now make use of the large “zoo”

of Mercer kernels that represent structured objects whose vectorial representations are generally

unknown. With TiWnet based on D, we make no assumption of the underlying coordinate system

and can now use these Mercer kernels for reconstructing GGMs without being dependent on the

choice of S ∈ S.

5.5.2 Prior construction

For network inference in a Bayesian framework, we complement the likelihood (Equation 5.4) with

a prior over Ψ. We develop a new prior construction that enables network inference. This prior

is similar to the spike and slab model introduced in Mitchell and Beauchamp (1988). In principle,

any distribution over symmetric positive definite matrices can be used. The likelihood has a simple

functional form in Ψ̃, but our main interest is in Ψ, since zeros in Ψ determine the topology. Unfor-

tunately, the likelihood in Ψ is not in standard form making it plausible to use a MCMC sampler.

For any two Σ matrices, Σ1 and Σ2 that are related by Σ2 = Σ1 + 1vt + v1t, the likelihood is the

same for Σ1 and Σ2 (McCullagh, 2009). This means that Ψ is non-identifiable and a sampler will

have problems with such constant likelihood regions by continuing to visit them unless a prior is

used that breaks this symmetry.

To deal with this problem, we quantise the space of possible Ψ-matrices such that any two

candidates have different likelihood. This is achieved with a two-component prior: P1(Ψ) is uni-

form over the discrete set A of symmetric diagonally-dominant matrices with off-diagonal entries

in {−1,+1, 0}, and diagonal entries are deterministic, conditioned on the off-diagonal elements

75

i.e. Ψii =
∑

j 6=i |Ψij | + ε where ε is a positive constant added to ensure full rank of Ψ. Thus

A = {Ψ|Ψij ∈ {−1,+1, 0},Ψji = Ψij ,Ψii =
∑

j 6=i |Ψij | + ε}. Note that we treat only the off-

diagonal entries as random variables. Enforcing such a diagonally-dominant matrix construction

ensures that the matrix will be positive definite. The usage of diagonally-dominant matrices for

network reconstruction is further justified since these matrices form a strict subclass of GGMs that

are walk summable (Johnson et al., 2005a) and in Anandkumar et al. (2011) theoretical guarantees

are provided establishing that walk-summable graphs make consistent sparse structure estimation

possible. It is clear that such a three-level quantisation of the prior which differentiates only between

positive, negative and zero partial correlations encodes a strong prior belief about the expected range

of the partial correlations. However, it is straightforward to use more quantisation levels, or even

switch to continuous priors like the ones introduced in Daniels and Pourahmadi (2009), Joe (1996)

which parametrise the “semi-partial” correlations. On the other hand, our simulation experiments

below suggest that the simple three-level prior performs very well in terms of structure recovery.

The second component of the prior is a sparsity-inducing prior P2(Ψ). This corresponds to a Lapla-

cian prior over the number of edges for each node and is given by P2(Ψ|λ) ∝ exp(−λ
∑n

i=1(Ψii− ε))
where (Ψii−ε) denotes the number of edges for the ith node and λ is equivalent to the regularisation

parameter controlling the sparsity of the connecting edges.

5.5.3 Inference in TiWnet

To enable Bayesian inference in our model, we make use of the likelihood given in Equation 5.4 and

the two-component prior described in Section 5.5.2. For inference we devise a Metropolis-within-

Gibbs sampler where the Metropolis-Hastings step proposes an appropriate Ψ matrix by iteratively

sample one row/column in the upper triangle part of Ψ, conditioning on the rest, and the Gibbs

iteration involves repeating the Metropolis-Hastings step for every node.

The proposal distribution defines a symmetric random walk on the row/

column vector taking values in {−1,+1, 0} by randomly selecting one value and resampling it

with identical probability to the two other possible values. After updating the i-th row/column

in the upper triangle matrix and copying the values to the lower triangle, the corresponding diag-

onal element is imputed deterministically as Ψii =
∑

j 6=i |Ψij | + ε. This creates Ψ̃proposed which

is then accepted according to the usual Metropolis-Hastings equations based on the posterior ra-

tio P (Ψ̃proposed|•)/P (Ψ̃old|•). The acceptance threshold is given by just the posterior ratio since

we implement a symmetric random walk Metropolis sampling. The entire Metropolis-within-Gibbs

sampler is described in Algorithm 1. For a pictorial representation, see Figure 5.5.1.

Since the proposal distribution, Ψ̃proposed, defines a symmetric random walk on set A consisting

of diagonally-dominant matrices, one can reach any other element in A with non-zero probability

after a sufficient number of n(n−1)
2 steps that account for number of elements in the upper triangle

of Ψ. This construction ensures ergodicity in the Markov chain.

Note that the (usually unknown) degrees of freedom d in the shift- and scale-invariant likelihood

(Equation 5.4) appears only in the exponents and, thus, has the formal role of an annealing param-

eter. In the annealing framework, the likelihood equation is seen as the energy function with d as

the annealing temperature. We use this property of d during the burn-in period, where d is slowly

76

Algorithm 1 Metropolis-within-Gibbs sampler

in ith row/column vector in upper triangle of Ψ
1: Uniformly select index k, k ∈ {1, · · · , i− 1, i+ 1, · · · , n}
2: Resample value at Ψik by drawing with equal probability from {−1,+1, 0}
3: Set Ψki = Ψik and update Ψii and Ψkk (to ensure diagonal dominance). This is Ψ̃proposed

4: Compute P (Ψ̃|•) ∝ L(Ψ̃)P1(Ψ)P2(Ψ)

5: Calculate the acceptance threshold a = min (1,
P (Ψ̃proposed|•)

P (Ψ̃old|•)
)

6. Sample u ∼ Unif(0, 1)

7: if (u < a) accept Ψ̃proposed, else reject.

i rowth
Uniformly select k indexth

Resample Ψ from {-1,+1,0}ik

Ψ = Ψ ki ik

Ψ

ii kkUpdate Ψ and Ψ

n

n

Figure 5.5.1: A Ψ proposal using the Metropolis-within-Gibbs sampler.

increased to “anneal” the system until the acceptance probability reaches below a certain threshold,

and then the sampled Ψ-matrices are averaged to approximate the posterior expectation. If a truly

sparse solution is desired, the annealing is continued until a network is “frozen”.

Implementation & complexity analysis. Presumably the most efficient way to recompute

P (Ψ̃|•) after a row/column update of Ψ is through the identity: det(Ψ̃) = (det(Ψ)/1tΨ1) · n (Mc-

Cullagh, 2009). Assume now we have a QR factorisation of Ψold before the update. Then the new

Ψ = Ψold + viv
t
i + vjv

t
j where i,j are the row/column indices of Ψold to be updated along with

the corresponding diagonal elements and this accounts for two rank-one updates. Thus the QR

factorisation of the new Ψ̃ can also be computed in O(n2) time and det(Ψ̃) is then derived as
∏

iRii.

The trace tr(Ψ̃D) is also computed in O(n2) time, as it is the sum of the element-wise products of

the entries in Ψ̃ and D. It is clear that this scaling behavior is prohibitive for very large matrices,

but matrices of size in the hundreds can be easily handled, and for larger matrices with a “complex”

inverse covariance structure the statistical significance of the reconstructed networks is questionable

anyway, unless a really huge number of measurements is available. Moreover there is an elegant way

of avoiding such large matrices by reconstructing module networks as outlined in the next section.

5.6 Inferring Module Networks

A particularly interesting property of TiWnet is its applicability to learning module networks. We

define a module as a completely-connected subgraph, forming nodes in a module network. As a

motivating example we refer to our gene-expression example of Xn×d where the measurements con-

77

sist of d microarrays for n genes. In usual situations having far more objects than measurements,

one should not be too optimistic to reconstruct a meaningful network, in particular if the mea-

surements are noisy and if the underlying network has “hubs”– nodes with high degrees. Generally

when the node neighbourhoods are small, networks can be learned well whereas when the neigh-

bourhoods tend to grow larger as in the case with hubs, learning networks gets difficult due to the

higher-order dependencies existing between nodes. Unfortunately, both high noise and existence of

hubs are common in such data. To address these issues, we present the computationally-attractive

method of initially creating clusters of objects, that we connote as modules, over which networks

are learned. Considering the gene-expression example, there are usually groups of genes which have

highly correlated expressions and can often be jointly represented by one cluster without losing too

much relevant information, due to high noise. To create clusters, we begin with the d-dimensional

expression profile vectors, x ∈ Rd, of the n genes and use a mixture model to cluster these expression

vectors into “modules”, reducing n to the effective number of modules. The mixture model density

is given by p(x) =
∑K

k=1 πkpk(x) where πk is the mixing coefficient and pk(x) is the component

distribution of the kth module. Partition matrices can be viewed as block-diagonal covariances (see

McCullagh and Yang (2008), Vogt et al. (2010)), and in the terminology of GGMs the blocks define

independent subgraphs with completely connected nodes, which is what we have defined as modules.

The link to learn networks on top of these modules goes via kernels defined on probability distri-

butions. We can use kernels like Bhattacharyya kernel (Jebara et al., 2004):

KB(k, j) =

∫
(
√
pk(x)

√
pj(x)) dx (5.5)

or the Jensen-Shannon kernel (Martins et al., 2008):

KJS(k, j) = ln(2)−H(pk(x) + pj(x)

2
) +
H(pk(x)) +H(pj(x))

2
(5.6)

(where H is the Shannon entropy) over the component distributions of the modules to compute

an inner-product matrix of the modules. Network inference is then performed using this resulting

inner-product matrix.

Usually, there is no information available about the origin of the underlying space, and by re-

constructing networks from such kernels we heavily rely on the geometric invariance encoded in the

TiWnet model. This elegant solution for inferring module networks overcomes statistical problems,

and is also a principled way of applying the TiWnet to large problem instances. An example of this

strategy is presented in Section 5.7.

5.7 Experiments

5.7.1 Toy Examples

The TiWnet is compared with the graph lasso method (Friedman et al., 2007) and with its non-

invariant counterpart Wnet on artificial data. The graph lasso maximises the standard Wishart

likelihood under a sparsity penalty on the inverse covariance matrix, see Equation 5.2. Wnet replaces

78

true

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

0 5 10 15 20 25

0.
00

0.
02

0.
04

0.
06

0.
08

distribution of abs(edge weights)

Figure 5.7.1: Left: Example network drawn from the data generator. Right: generative distribution of the edge
weights.

the invariant Wishart used in TiWnet with the standard Wishart (Equation 5.1), but uses otherwise

exactly the same MCMC code.

Sample generation. For these experiments we implemented a data generator that mimics the

assumed generative model as shown in Figure 5.3.1. First, a sparse inverse covariance matrix Ψ ∈
Rn×n with n = 25 is sampled. Networks with uniformly sampled node degrees are relatively easy to

reconstruct for most methods, while networks with “hubs” are better suited for showing differences.

Hubs are nodes with high degrees that appear naturally in many real networks since they often are

scale-free i.e. their node degrees follow a power law. We simulate such networks by drawing node

degrees from a Pareto(7 × 10−5, 0.5)-distribution and use these values as parameters in a binomial

model for sampling 0/1 entries in the rows/columns of Ψ. The sign of these entries is randomly

flipped, and scaled with samples from a Gamma- or uniform distribution (see below for a precise

description of the distribution of the edge weights). The diagonal elements are imputed as the

row-sums of absolute values plus some small constant ε (= 0.1) to ensure full rank. We draw d

vectors xo
i ∈ Rn from N (0n,Ψ), and arrange them as columns in Xo. So = 1

dX
o(Xo)t is then a

central Wishart matrix. To study the effect of biased measurements, we randomly generate biases

b(i=1,...,d), resulting in the mean-shifted vectors xi in Figure 5.3.1. The resulting matrix S is non-

central Wishart with non-centrality matrix Θ = Σ−1MM t, and M = 1bt. In fact, we always sample

two i.i.d. replicates of the matrices So and S, and we use the second ones as a test set to tune all

model parameters of the respective methods (the `1 regularisation parameter in graph lasso and the

corresponding λ-parameter in the prior P2(Ψ) of TiWnet and Wnet) by maximising the predictive

likelihood on this test set. In order to separate the effects of parameter tuning from the “true”

differences in the models themselves, we additionally compared all models by tuning them to the

same sparsity level. Figure 5.7.1 shows an example network drawn from our data generator together

with a Gamma(2,4)-distribution of the absolute values of the edge weights.

79

●

●

G
L.

o

G
L.

C

T
iW

n

W
n

0.4

0.5

0.6

0.7

0.8

F−measure, optimal threshold

●

●

●●

G
L.

o
−

 G
L.

C

T
iW

n
−

 G
L.

C

W
n

−
 G

L.
C

T
iW

n
−

 G
L.

o

W
n

−
 G

L.
o

W
n

−
 T

iW
n

−0.2

0.0

0.2

0.4

Optimal thresholding: Boxplots (of the differences)

Figure 5.7.2: Left: Boxplots of F-scores obtained in 20 experiments with randomly generated Ψ-matrices for
graph lasso (GL): GL.o uses original So and GL.C uses column-centered S, TiWnet, and Wnet. Right: Boxplot
of the pairwise differences together with color-coded significance (green, if multiple-testing-corrected p < 0.05)
computed by a non-parametric Friedman test with post-hoc analysis (Wilcoxon-Nemenyi-McDonald-Thompson
test, see Hollander and Wolfe (1999)).

Simulations. In a first experiment, we compare the performance of TiWnet with graph lasso

and Wnet. The quality of the reconstructed networks is measured as follows: A binary vector l of

size n(n−1)/2 encoding the presence of an edge in the upper triangle matrix of Ψ is treated as “true”

edge labels, and this vector is compared with a vector l̂ containing the absolute values of elements

in the reconstructed Ψ̂ after zeroing those elements in l̂ which are not sign-consistent with the non-

zero entries in Ψ (meaning that sign-inconsistent estimates will always be counted as errors). The

agreement of l and l̂ is measured with the F-measure, i.e. the highest harmonic mean of precision

and recall under thresholding the elements in l̂. The left panel in Figure 5.7.2 shows boxplots of

F-scores obtained in 20 experiments with randomly generated Ψ-matrices for graph lasso, TiWnet,

and Wnet. For graph lasso, a series of Ψ̂ estimates with increasing `1 penalty parameter is computed

using the glassopath function from the glasso R package 4. For the MCMC-based methods TiWnet

and Wnet, Ψ̂ is computed as the sample average of networks drawn from the Gibbs samples after a

certain burn-in period. The right panel shows the outcome of a Friedman test (i.e. non-parametric

ANOVA) with post-hoc analysis for assessing the significance of the differences, see figure caption for

further details. From the results we conclude that for the methods relying on the standard Wishart

distribution (i.e. graph lasso and Wnet), column centering does not overcome the problem of model

mismatch due to column biases. Further, TiWnet using only the pairwise distances D performs as

well as graph lasso on the original (not shifted) data. Note that for the original So, graph lasso

might indeed serve as a “gold standard”, since the model assumptions are exactly met. And last but

not least, the invariance properties of the likelihood used in TiWnet are indeed essential for its good

performance, since its non-invariant counterpart Wnet uses exactly the same MCMC code (apart

from using the standard Wishart likelihood, of course).

4http://www-stat.stanford.edu/∼tibs/glasso

80

The left column of Figure 5.7.3 shows the networks reconstructed by the different methods (net-

works with highest predictive likelihood for graph lasso and sample average in the case of TiWnet

and Wnet). The right column depicts the thresholded networks according to the best F-score with

respect to the known ground truth. Analysing the reconstructed networks in the left column of

Figure 5.7.3, it is obvious that the graph lasso networks are very dense, and that thresholding the

edge weights is essential for a high F-score. Note, however, that such thresholding is only possible if

the ground truth is known. The average TiWnet/Wnet result is also dense, since it represents the

empirical distribution of networks sampled during the MCMC iterations. Thresholding the edges

is also essential here, but for the MCMC models we can easily compute a truly sparse network by

annealing the Markov chain without having access to the ground truth. Further studying this effect

leads us to a second experiment, where we directly compare the lasso-type networks reconstructed

using a sequence of `1 regularisation parameters with the “frozen” TiWnet after annealing. In this

comparison, however we do not allow for further thresholding the edge weights when computing the

F-score (i.e. we replace the entries in l̂ by their sign). The left panel in Figure 5.7.4 shows that

TiWnet clearly outperforms all other methods. We conclude that model selection in the lasso meth-

ods does not work satisfactorily, probably because the `1 penalty not only sparsifies the solution,

but also globally shrinks the parameters. As a result, truly sparse solutions have a relatively small

predictive likelihood. Further, it is obvious that in the case of TiWnet, the annealing mechanism

in our MCMC sampler produces very sparse networks of very high quality. The direct comparison

with the non-invariant Wnet model shows that the invariance in the Wishart likelihood is indeed

the essential ingredient of TiWnet.

It is clear that the results of the previous experiment crucially depend on the model selection

step. To exclude differences caused by model selection, in a third experiment we additionally

investigated the performance of the models after tuning all of them to the same sparsity level as the

annealed network obtained by TiWnet. The results are presented in Figure 5.7.5. It is obvious that

TiWnet clearly outperforms its competitors. Inspecting the recovered networks for the graph lasso,

we see that under these restrictive sparsity constraints, the lasso selection has particular problems

to recover the edges connecting hubs in the network.

We test the dependency of these results on the validity of the model assumptions, in a fourth

experiment. The TiWnet in its simplest form uses only three levels for edge weights: 0,+1,−1. It is
clear that this simple model will have problems recovering networks with a very high dynamic range

of edge weights (the generalisation to more than 3 levels, however, is straight forward). Since the

edge weight distribution in the previous experiments was relatively concentrated around the mode

of the gamma distribution (see Figure 5.7.1), we changed the distribution to a uniform distribution

over the interval [0.2, 20]. This choice implies a uniform dynamic range over two decades. The

performance of TiWnet measured in terms of the F-score, however, did not change significantly, see

the top row in Figure 5.7.6 in comparison to Figure 5.7.2.

In order to further test the robustness under model mismatches, in a fifth experiment, we

substituted the Gaussian to produce Xo with a Student-t distribution in our data generator. The

resulting plot of F-scores (Figure 5.7.6, bottom row) has the same overall-structure as in Figure

81

GL.o

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

F = 0.36

GL.C

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

F = 0.33

TiWnet

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

Wnet

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

GL.o thresholded

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

F = 0.68

GL.C thresholded

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

F = 0.49

TiWnet_thresholded

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

F = 0.7

Wnet_thresholded

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

F = 0.47

Figure 5.7.3: Left column: Networks with highest predictive likelihood for graph lasso (GL): GL.o uses original So

and GL.C uses column-centered S and sample averages for TiWnet, and Wnet. Right column: Optimally thresh-
olded networks according to the best F-score with respect to the known ground truth. The underlying ground truth
network is the one depicted in Figure 5.7.1.

82

●

● ●

●

●

●
G

L.
o

G
L.

C

T
iW

n

W
n

0.2

0.3

0.4

0.5

0.6

0.7

0.8

F−measure, no thresholding

●

G
L.

o
−

 G
L.

C

T
iW

n
−

 G
L.

C

W
n

−
 G

L.
C

T
iW

n
−

 G
L.

o

W
n

−
 G

L.
o

W
n

−
 T

iW
n

−0.4

−0.2

0.0

0.2

0.4

0.6

0.8
No thresholding: Boxplots (of the differences)

Figure 5.7.4: Left: F-scores without additional thresholding for graph lasso (GL): GL.o uses original So and GL.C
uses column-centered S, (model selected according to best predictive likelihood) and TiWnet /Wnet (also selected
according to predictive likelihood, then annealed). Right: Corresponding boxplots of the pairwise differences.

5.7.2, which shows that TiWnet is relatively robust under such model mismatches. In summary, we

conclude from these experiments that TiWnet significantly outperforms its competitors, and that

the main reason for this good performance is indeed attributed to the invariant Wishart likelihood.

5.7.2 Real-world Examples

A Module network of Escherichia coli genes. For inferring module networks in a biologi-

cal context, we applied the TiWnet to a published dataset of promoter activity data from ≈ 1100

Escherichia coli operons (Zaslaver et al., 2006). The promoter activities were recorded with high

temporal resolution as the bacteria progressed through a classical growth curve experiment experi-

encing a “diauxic shift”. Certain groups of genes are induced or repressed during specific stages of

this growth curve. Cluster analysis of the promoter activity data was performed using a spherical

Gaussian mixture model with shared variance σ: p(x) =
∑

k πkN (x|µk, σ) along with a Dirichlet-

process prior to automatically select the number of clusters. This revealed the presence of 14

distinct gene clusters (see expression profiles of nodes in Figure 5.7.7). Network inference with Ti-

Wnet was carried out on a Bhattacharyya kernel KB computed over the Gaussian clusters where

KB(k, j) = exp−||µk−µj ||2/ 8σ2

(see Jebara et al. (2004)). When the clusters were analysed, genes

known to be co-regulated were predominantly found in the same or nearby clusters with positive

partial correlations. For example, during the diauxic shift experiment, the transcriptional activator

CRP induces a certain set of genes in a specific growth phase (Keseler et al., 2011). Strikingly, of

the 72 known CRP regulated operons in the dataset, 43 genes are found in cluster 6 or the four

neighbouring clusters (3,9,11,13). Likewise, genes involved in specific molecular functions (those

coding for proteins involved in amino acid biosynthesis pathways) were found in close proximity in

the network, for example in nodes 1 and 2 (Figure 5.7.7). Physiologically, this co-regulation makes

sense since protein biosynthesis (carried out by the ribosome) depends on a constant supply of syn-

thesised amino acids. Thus TiWnet can successfully identify connections between genes co-regulated

83

● ●

●

●

●
●

G
L.

o

G
L.

C

T
iW

n

W
n

0.3

0.4

0.5

0.6

0.7

0.8

F−measure, adjusted sparsity

GL.C

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

F = 0.33

GL.o

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

F = 0.33

TiWnet_annealed

1

2

3

4

5

6
78

9

10

11

12

13

14

15

16

17

18
19 20

21

22

23

24

25

F = 0.65

Figure 5.7.5: F-scores obtained by tuning the models to (roughly) the same sparsity level as the annealed TiWnet,
averaged over 20 randomly drawn networks (top left). Other panels: networks recovered by graph lasso (GL): GL.o
uses original So and GL.C uses column-centered S and TiWnet in one of the 20 experiments. The underlying
ground truth network is again the one depicted in Figure 5.7.1.

84

G
L.

o

G
L.

C

T
iW

n

W
n

0.4

0.5

0.6

0.7

0.8

F−measure, optimal threshold

G
L.

o

G
L.

C

T
iW

n

W
n

0.3

0.4

0.5

0.6

0.7

F−measure, optimal threshold

G
L.

o
−

 G
L.

C

T
iW

n
−

 G
L.

C

W
n

−
 G

L.
C

T
iW

n
−

 G
L.

o

W
n

−
 G

L.
o

W
n

−
 T

iW
n

−0.4

−0.2

0.0

0.2

Optimal thresholding: Boxplots (of the differences)

●

●

●

●

●

G
L.

o
−

 G
L.

C

T
iW

n
−

 G
L.

C

W
n

−
 G

L.
C

T
iW

n
−

 G
L.

o

W
n

−
 G

L.
o

W
n

−
 T

iW
n

−0.2

−0.1

0.0

0.1

0.2

0.3

Optimal thresholding: Boxplots (of the differences)

Figure 5.7.6: Top row: Testing the quality of the three-level prior on the elements in the inverse covariance matrix
by simulating edge-weights with a uniform distribution on the interval [0.2, 20] for graph lasso (GL) (GL.o uses orig-
inal So and GL.C uses column-centered S) and TiWnet /Wnet. Bottom row: Results using a multivariate Student-t
distribution in three degrees of freedom instead of a normal distribution to generate the columns in Xo.

85

1

2

3

4

5

6

7

8

9 10

11

12

13

14

9

3
6

13

12

7

4

10

14

51

2

11

8

Gene clusters showing
expression profiles

Figure 5.7.7: Module Network of Escherichia coli Genes. Black/green edges = positive/negative partial correla-
tion.

by the same molecular factor, or are involved in interlinked molecular processes.

“Landscape” of chemical compounds with in vitro activity against HIV-1. As a sec-

ond real-world example TiWnet is used to reconstruct a network of chemical compounds. We

enriched a small list of compounds identified in an AIDS antiviral screen by NCI/NIH available at

http://dtp.nci.nih.gov/docs/aids/searches/list.html with all currently available anti-HIV

drugs, yielding a set of 86 compounds. Chemical hashed fingerprints were computed from the chem-

ical structure of the compounds that was encoded in SMILES strings (Weininger, 1988). The Tan-

imoto kernel, a similarity matrix S of inner-product type, is constructed by the pairwise Tanimoto

association scores (Rogers and Tanimoto, 1960) between the compounds. Since the geometric posi-

tion of the underlying Euclidean space is unclear, we again relied heavily on the geometric invariance

inherent in TiWnet. The resulting network (Figure 5.7.8) shows several disconnected components

which nicely correspond to chemical classes (the node colors). Currently available anti-HIV drugs

are indicated by their chemical and commercial names alongside their 2D-structures depicting the

chemical similarity underlying this network. These drugs belong to the functional groups“Nucleoside

reverse transcriptase inhibitors (NRTI)”, “Non-nucleoside reverse transcriptase inhibitors (NNRTI)”,

“Protease inhibitors”, “Integrase inhibitors”, or “Entry inhibitors”, and most compounds of a certain

functional type cluster together in the graph. Medically, this network can be very useful to predict

“cross-resistance”between resistant HIV-1 variants and drugs and is especially distinctive for NRTIs.

The pairs lamivudine-emtricitabine, tenofovir -abacavir, and d4T -zidovudine(ZDV) show almost the

same resistance profiles (Johnson et al., 2010). This similarity is very well reflected by our network

86

http://dtp.nci.nih.gov/docs/aids/searches/list.html

where these pairs are in close proximity.

It is worth noting that graph lasso has similar difficulties on this dataset as in the toy examples.

When following the solution path by varying the penalty parameter, it is difficult to find a good

compromise between sparsity and connectivity: either the obtained graphs are very dense being dif-

ficult to plot and harder to interpret, or are increasingly sparse in which, however, several interesting

structural connections are lost since many singleton nodes are created. For a graphical depiction,

refer Figures in Appendix 8.1. The R and C++ source code for this experiment using TiWnet is

available at http://bmda.cs.unibas.ch/TiWnet.

The “Landscape” of Glycosidase enzymes of Escherichia coli. In yet another real-world

experiment, we use TiWnet to extract the network of Glycosidase enzymes of Escherichia coli.

Every enzyme is represented by its vectorised contact map computed from their PDB (Protein Data

Bank) files. A contact map is a compact representation of the topological information of the 3D

protein structure, present in the PDB file, into a symmetric, binary 2D matrix consisting of pairwise,

inter-residue contacts.

For a protein with R amino acid residues, the contact map (see Figure 5.7.9) would be a R × R
binary matrix CM where CMij = 1 if residues i and j are similar or 0 otherwise. The starting

point for TiWnet is the contact map representation of an enzyme whose row-wise vectors serve

as strings. To obtain the pairwise distances between strings in these contact maps, we compute

the Normalised Compression Distance (NCD) (Li et al. (2004)) which is an approximation to the

Normalised Information Distance (NID). The NID (Li et al. (2004)) is a distance metric minimising

any admissible metric between objects. Given strings x and y, NID is proportional to the length of

the shortest program that computes x|y as well as y|x and is defined as

NID(x, y) =
max{K(x|y),K(y|x)}
max{K(x),K(y)}

=
K(xy)−min{K(x),K(y)}

max{K(x),K(y)}

where K(x) is the Kolmogorov complexity of the string x. The real-world approximated version of

NID is given by NCD and is calculated as follows:

NCD(x, y) =
C(xy)−min{C(x), C(y)}

max{C(x), C(y)}

where C(xy) represents the size of the file obtained by compressing the concatenation of x and y. We

use the ProCKSI-Server (Barthel et al. (2007), Krasnogor and Pelta (2004)) to compute NCD(x, y).

The network extracted by TiWnet from the NCD values is shown in Figure 5.7.10. The network

shows a clear formation of subnets of enzymes given by node colors. To further analyse the obtained

subnets, we look at their corresponding Gene Ontology (GO) annotations. The GO annotations are

part of a Directed Acyclic Graph (DAG), covering three orthogonal taxonomies: molecular function,

biological process and cellular component (Ashburner et al., 2000). For two subnets (shown in

dotted circles in Figure 5.7.10), we inspect the GO subgraphs that are subsets of the entire GO

graph. The three taxonomic components of the GO subgraphs explain the proteins in these subnets

87

http://bmda.cs.unibas.ch/TiWnet

1

2

3

4

5

6
7

8

9

10

11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

35

36

37

38

39

40

41

4243

44

45

46

47
48

49

50

51

52

53

54

55

56
57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

A
zi

do
 P

yr
im

id
in

es

Be
nz

od
ia

ze
pi

ne
s,

Py
rim

id
in

e
N

uc
le

os
id

es

H
ea

vy
 M

et
al

 C
om

po
un

ds

Pu
rin

e
N

uc
le

os
id

es

D
ye

s
&

 P
ol

ya
ni

on
s

ot
he

r

N
at

ur
al

 P
ro

du
ct

s
or

 A
nt

ib
io

tic
s

Th
ia

zo
lo

be
nz

im
id

az
ol

es
 e

tc
.

N
RT

I

N
RT

I N
RT

I

N
RT

I

N
RT

I

N
RT

I

In
di

na
vi

r(
Cr

ix
iv

an
®)

Lo
pi

na
vi

r

Ra
lte

gr
av

ir
(Is

en
tr

es
s®

)

A
ta

za
na

vi
r (

Re
ya

ta
z®

)

A
m

pr
en

av
ir

(A
ge

ne
ra

se
®)

En
fu

vi
rt

id
e

(F
uz

eo
n®

)
Ri

to
na

vi
r (

N
or

vi
r®

)

N
el

�n
av

ir(
Vi

ra
ce

pt
®)

La
m

iv
ud

in
e

(E
pi

vi
r ®

)

Em
tr

ic
ita

bi
ne

 (E
m

tr
iv

a
®)

Te
no

fo
vi

r (
Vi

re
ad

®)

A
ba

ca
vi

r (
Zi

ag
en

®)
D

D
I (

Vi
de

x
®)

N
ev

ira
pi

ne
 (V

ira
m

un
e®

)
Ca

la
no

lid
e

A

Sa
qu

in
av

ir
(F

or
to

va
se

®)

M
ar

av
iro

c
(C

el
se

nt
ri®

)

Ef
av

ire
nz

 (S
tr

oc
in

 ®
)

Et
ra

vi
rin

e(
In

te
le

nc
e®

)

Ti
pr

an
av

ir
(A

pt
iv

us
®)

D
ar

un
av

ir
(P

re
zi

st
a®

)

Fo
sa

m
pr

en
av

ir
(L

ex
iv

a®
)

d4
T,

 S
ta

vu
di

ne
 (Z

er
it®

)

En
te

ca
vi

r (
Ba

ra
cl

ud
e®

)

FL
T

(A
lo

vu
di

ne
 ®

)

ZD
V

(A
ZT

, R
et

ro
vi

r ®
)

N
N

RT
I

In
te

gr
at

io
n

N
RT

I

N
RT

I

N
N

RT
I

N
N

RT
I

Pr
ot

ea
se

Pr
ot

ea
se

Pr
ot

ea
se

En
tr

y

N
RT

I

Pr
ot

ea
se

N
N

RT
I

Pr
ot

ea
se

Pr
ot

ea
se

Fi
gu

re
5.

7.
8:

“L
an

ds
ca

pe
”o

fC
he

m
ic

al
C

om
po

un
ds

w
ith

In
V

itr
o

A
ct

iv
ity

ag
ai

ns
tH

IV
-1

.
B

la
ck

/g
re

en
ed

ge
s

=
po

si
tiv

e/
ne

ga
tiv

e
pa

rt
ia

lc
or

re
la

tio
n.

88

Figure 5.7.9: A contact map which is the vectorised 2D matrix capturing the 3D representation of a protein.

and show the relevance of these proteins through the color-scaling scheme where red accounts for

highly-frequent enzymes. As depicted, the GO subgraphs plotted for the two subnets consist of

many highly-significant enzymes thus emphasising that the subnets so obtained using TiWnet are

not random, but instead consist of groups of enzymes having shared annotations. Subnets of this

kind are beneficial to identify the most important GO domains for a given set of enzymes and also

suggest biological areas for further exploration.

5.8 TiWD versus TiWnet

In this section, we describe the Translational-invariant Wishart Dirichlet

(TiWD) cluster process (Vogt et al., 2010) (previously mentioned in Section 5.4) and explain why it

is unsuited for extracting networks. TiWD is a fully-probabilistic model for clustering and is specif-

ically devised to work with pairwise Euclidean distances by suitably encoding the translational and

rotational invariances. Although the TiWD clustering model and TiWnet use identical likelihoods,

the priors in both models are different.

The TiWD clustering model uses a Dirichlet-Multinomial type prior over clusters with the priors

being restricted to block-diagonal form. This kind of prior construction is incompetent for network

inference since if such a prior is used, all networks would always decompose into separated clusters

which are maximal cliques i.e. fully connected within themselves. Therefore, to enable network

recovery an enhanced prior construction is necessary and to this end, TiWnet uses a prior that

relaxes the block-diagonal form. The two-component TiWnet prior (Section 5.5.2) is designed that,

along with the invariance encoded in the likelihood, leads to sparse network recovery. The resulting

Ψ is constructed to be a sparse diagonally-dominant matrix.

We illustrate the difference between the TiWnet and TiWD prior constructions in Figure 5.8.1.

The top panel of Figure 5.8.1 depicts the original network generated using Ψ (no longer block-

diagonal) meant for network inference and the inferred network using TiWnet. The black/green

edges depict the positive/negative partial correlations between the nodes. The bottom panel of

Figure 5.8.1 shows the inferred block-diagonal Ψ (left) obtained from TiWD clustering that uses a

block-diagonal prior and different views of the network obtained using this Ψ: the center plot shows

that the network is densely connected bearing no resemblance to the original network and the right

89

Figure 5.7.10: Top: “Landscape” of Glycosidase enzymes of Escherichia coli. Black/green edges = posi-
tive/negative partial correlation. For two subnets, Subnet 1 and 2 (encircled by dots), the corresponding Gene
Ontology (GO) subgraphs (centre and bottom) are given that explain the enzymes present in the subnet. The
multiple red/orange-hued boxes in the GO subgraph signal highly-frequent enzymes thus showing that the subnets
extracted by TiWnet are not random but instead contain groups of enzymes having shared annotations.

90

Original

1

2

3

4

5
6

7
8

910111213
14

15
16

17

18

19

20

21

22

23

24

25
26

27
28

29 30 31 32 33
34

35
36

37

38

39

40

Inferred (TiWnet)

1

2

3

4

5
6

7
8

910111213
14

15
16

17

18

19

20

21

22

23

24

25
26

27
28

29 30 31 32 33
34

35
36

37

38

39

40

Ψ

1

2

3

4

5

6

7

8

9

10
11

12

13

14

15

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30
31

32

33

34

35

36

37

38

39

40

1

2

3

4

5

6

7

8

9

10

11

1213

14

15

16

17

18

19
20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36 37

38

39

40

Figure 5.8.1: Illustration of the difference between TiWnet and TiWD clustering (Vogt et al., 2010) using data gen-
erated from Ψ (no longer block-diagonal) designed for network inference. Top: Left: Original network. Right: In-
ferred sparse network using TiWnet. The black/green edges denote positive/negative partial correlations between
nodes. Bottom: Left: Inferred Ψ using TiWD clustering that has a block-diagonal structure which leads to fully-
connected clusters (maximal cliques). Center: Densely-connected network obtained using this block-diagonal Ψ.
The edges do not differentiate between positive/negative partial correlations. Right: The same network as in the
center now showing that the network decomposes into separate maximal cliques. Here the network decomposes
into 5 clusters viz. 3 fully-connected and 2 singletons.

91

plot highlights that the network gets decomposed into separate fully-connected clusters (maximal

cliques). Moreover, the network fails to capture the positive/negative partial correlations between

the nodes since the inferred Σ in the case of TiWD clustering only contains information regarding

the cluster structure but without signs.

From the above discussion, it is obvious that clustering is a specialised case of network inference

and that general networks cannot be recovered using the TiWD clustering model of Vogt et al. (2010).

Thus the prior designed for use in TiWnet is not of the block-diagonal form thereby allowing any

possible internodal interaction. Combining this enhanced prior suitable for network reconstruction

with the likelihood, we are able to perform Bayesian network inference in TiWnet. We refer the

reader to the Section 5.5 for complete details of our inference mechanism.

5.9 Contributions of TiWnet

TiWnet deals with distance data and is therefore, shift invariant. Classical GGMs extract

networks from vectorial representations of objects and are based on the standard (central) Wishart

likelihood model. The central Wishart model is only justified for zero column-shifts (i.i.d. data).

These methods have solely relied on the i.i.d. assumption and not catered to the inherent column-

shifts, thereby possibly generating biased networks. Graph lasso’s performance on column-shifts

(Figure 5.3.2) and our extensive comparison experiments in Section 5.7 validate that not handling

the column-wise biases is detrimental to network extraction. Instead, TiWnet based on D is shift-

invariant and can therefore handle non-i.i.d. data (non-vectorial data). We show that in practical

applications this shift invariance is an essential ingredient for recovering correct networks. Due to

this, network reconstruction is possible using any D induced by a Mercer kernel that represents

objects with structures for which the underlying vectorial space is unknown.

Generate module networks. Being able to derive networks from such complex objects, for exam-

ple graphs and probability distributions, further leads to the development of module networks which

addresses the high-dimensionality problem setting. A module connotes a cluster of homogeneous

objects, thereby reducing the number of objects to that of the overall clusters, where each module

is now represented by a probabilistic distribution or a graph over which a Mercer kernel can be

constructed and used for network discovery.

TiWnet provides a distribution over networks. Graph lasso was devised for estimating a truly

sparse network from the data. Since TiWnet is fully probabilistic, on output we not only obtain a

single network but a distribution of networks explaining the data. For many cases in reality, this is

more meaningful since one has access to possible structural variations of the extracted networks.

TiWnet provides an annealed network. Further, if required, our method has the flexibility to

yield a single MAP-estimate network by simulated annealing and this is possible even without know-

ing the underlying ground truth. On the contrary, obtaining such an equivalent sparse network with

graph lasso would require thresholding the edge weights and this too is only possible if the ground

truth is known. The graph lasso’s sparse networks obtained by the highest predictive likelihood are

comparatively less better than TiWnet’s (Figure 5.7.4). This could probably be to the improper

model selection in the lasso-based models in the presence of column-shifts in the data.

TiWnet can extract hub nodes. Comparing TiWnet with graph lasso and Wnet based on the

92

same sparsity level, we see that graph lasso clearly fails in recovering hub nodes (Figure 5.7.5). Ti-

Wnet still returns a sparse annealed network with these desirable properties that seem difficult to be

achieved by graph lasso. Thus, the experiments justify TiWnet’s superior performance against lasso-

based non-invariant models and the reason can be clearly attributed to the translation-invariance

encoded in the Wishart likelihood.

5.10 Conclusion

The TiWnet model is a fully probabilistic approach to inferring GGMs from pairwise Euclidean

distances obtained from inner-product similarity matrices (i.e. kernels) of n objects. Traditional

models for reconstructing GGMs, for example lasso-type methods, are based on the central Wishart

likelihood parametrised by the inverse covariance, and sparsity of the latter is usually enforced

by some penalty term. Assuming a central Wishart, however, is equivalent to assuming that the

origin of the coordinate system is known. If these methods use on input only kernel matrices, then

usually only the kernels’ pairwise distance information is truly relevant. Since traditional methods

solely rely on the origin implicitly encoded in any such kernel, they might generate biased networks.

Our TiWnet method is specifically designed to work with pairwise distances since the likelihood

used in inference depends only on these distances. Combining this likelihood with a prior suited

for sparse network recovery, we are able to extract sparse networks using only pairwise distances.

This property opens up a huge new application field for GGMs, because network inference can

now be carried out on any such distance matrix induced by a Mercer kernel on graphs, probability

distributions or more complex structures. We also present an efficient MCMC sampler for TiWnet

making it applicable to medium-size instances, and the possibly remaining scaling issues may be

overcome by inferring module networks using kernels defined on probability distributions over groups

of nodes. Comparisons with competing methods demonstrate the high quality of networks obtained

from TiWnet, evoking the effectiveness of working with pairwise distances. TiWnet is also robust to

model mismatches unlike existing methods. The three real-world examples provide an insight into

the huge variety of possible applications.

5.11 Proof of Proposition 5.1

The marginal likelihood in terms of D, L(Ψ; t(X)), is developed indirectly through the distribution

of S. Here, t(X) = (X−1nb̂t)

||X−1nb̂t||
is the standardised statistic and is constant on the set of all X

and S mapping to the same D. Therefore t(X) can be seen as a function of the scaled version of

D alone i.e. f(D
||D||). Our interest parameter is Ψ. McCullagh (2009) shows that the distribution

of an arbitrary S ∈ S(D) can be analytically derived as a singular Wishart distribution with a

rank-deficient covariance matrix.

We first explain the linear transformation and its kernel applied to S necessary to formulate the

marginal likelihood and then proceed with the derivation of the marginal likelihood in D. The proof

is derived using McCullagh (2009).

93

Linear transformation and kernel. Given a transformation matrix L with kernel K, i.e.

LK = 0 and a generalised Gaussian random variable in Rn, X ∼ N (K,µµµ,Σ), then the linearly

transformed vector LX is distributed as N (Lµµµ,LΣLt). Under K = 1n, two parameter values (µµµ1,

Σ1) and (µµµ2, Σ2) are equivalent when L(µµµ1−µµµ2) = 0 and L(Σ1−Σ2)Lt = 0 i.e. when (µµµ1−µµµ2) ∈ 1n

and (Σ1−Σ2) ∈ {1nv
t+v1t

n;v ∈ Rn}, the space denoted by sym2(1n⊗Rn). Equivalent parameter

values denote the same distribution. Corresponding to the generalised distribution of X with kernel

K = 1n, the similarity matrix S = 1
dXX

t is now distributed as S ∼ Wd(1n,Σ). D exhibits the

negative definiteness property i.e. xtDx = −2xtSx ≤ 0 for any x : xt1n = 0. The same property

holds when x is replaced by a symmetric positive semi-definite matrix Q i.e. QDQ = −2QSQ ≤ 0

for any Q : Q1n = 0.

Now we consider the case of having a generalised Gaussian random matrix for kernel K: Xn×d ∼
MN (K,M,Ω) with mean matrix M := 1nb

t where bi is the ith-column bias of X and covariance

tensor Ω := Σn×n⊗Id. For the mean-shifted X, the exponent term in the matrix normal distribution

of X will be:

(X − 1nb̂
t)tΣ−1(X − 1nb̂

t). (5.7)

The corresponding exponent term in the distribution of the transformed X, LX, is now:

(X − 1nb̂
t)tLt (LΣLt)−1 L(X − 1nb̂

t). (5.8)

We define Q = ΣLt (LΣLt)−1 L or ΨQ = Lt (LΣLt)−1 L (where Ψ = Σ−1) as a unique orthogonal

projection with K = 1n. Q can be written as (I − 1n(1
t
nΨ1n)

−11t
nΨ) which is the orthogonal

projection onto the orthogonal complement of the space spanned by symmetric positive semi-definite

Σ matrices constructed by Σ+1nv̂t+ v̂1t
n;v ∈ Rn. Note that Q is rank deficient with rank = n−1.

Based on LX, the corresponding S follows a generalised Wishart distribution in d degrees of

freedom S ∼ Wd(1,Σn×n). McCullagh (2009) shows that Dij = Sii + Sjj − 2Sij is a linear trans-

formation on symmetric matrices with transformation kernel K = sym2(1n ⊗Rn), implying that D

follows a generalised Wishart distribution −D ∼ Wd(1, 2Σ) defined with respect to a transformation

kernel K = 1 ⊂ Rn. The generalised distribution is different from the standard Wishart distribution

in that Ψ is replaced by Ψ̃ = ΨQ = Ψ(I− 1n(1
t
nΨ1n)

−11t
nΨ) and the | · | symbol for determinant is

replaced by the generalised det(·) which is the product of non-zero eigenvalues of its argument. Ψ̃

is rank deficient with rank = n− 1.

Shift- and scale-invariant marginal likelihood in D. Using the above formulation of linear

transformation and kernel on symmetric positive semi-definite S matrices, McCullagh (2009) derives

the marginal likelihood in D based on the standardised statistic t(X) = (X−1nb̂t)

||X−1nb̂t||
and the interest

parameter α = Ψ (Equation 5.3). The nuisance parameters θ are bias estimates b̂ and scale parameter

τ .

Given Xo
n×d, the corresponding So = 1

dX
o(Xo)t follows a central Wishart distribution 5 and its

5The central standard Wishart distribution is defined for So = Xo(Xo)t. Throughout the chapter, we use So =
1
d
Xo(Xo)t so that d appears in the central Wishart distribution and can be later used as an annealing parameter in

the inference procedure.

94

likelihood as a function of the inverse covariance Ψ is:

L(Ψ;So) = |Ψ| d2 · exp
[
−d

2 tr(ΨS
o)
]
. (5.9)

We consider the statistic for mean-shifted X as (X − 1nb̂). In terms of this statistic, S = 1
d (X −

1nb̂
t)(X − 1nb̂

t)t and Equation 5.9 becomes:

L(b̂,Ψ;S) = |Ψ| d2 · exp
[
−d

2 tr(ΨS)
]
. (5.10)

In Equation 5.10, we apply an arbitrary but fixed transformation L with kernel K = 1n leading

to ΨQ = Lt (LΣLt)−1 L and replace the determinant | · | symbol by the generalised det(·) which is

the product of non-zero eigenvalues of its argument (since Q is rank deficient) and obtain:

L(Ψ;S) ∝ det(ΨQ)
d
2 · exp

[
−d

2 tr(ΨQS)
]
. (5.11)

We substitute Ψ̃ = ΨQ = Ψ(I − 1n(1
t
nΨ1n)

−11t
nΨ) to arrive at the shift-invariant form for

marginal likelihood in S:

L(Ψ;S) ∝ det(Ψ̃)
d
2 · exp

[
−d

2 tr(Ψ̃S)
]

∝ det
(
Ψ̃
) d

2 · exp
[
−d

2 tr(Ψ̃S)
]
.

(5.12)

The likelihood in Equation 5.12 is constant for all choices of S ∈ S(D) and hence it depends

only on D. Using the negative definiteness property of D i.e. Ψ̃S = (− 1
2)Ψ̃D, Equation 5.12 can be

written in terms of D as:

L(Ψ;D) ∝ det(Ψ̃)
d
2 · exp

[
d
4 tr(Ψ̃D)

]
. (5.13)

Equation 5.13 is the shift-invariant marginal likelihood in D based on the statistic (X − 1nb̂) and

the rank-deficient inverse covariance Ψ̃.

To remove the scalar terms, we base the marginal likelihood on the standardised statistic t(X) =
(X−1nb̂t)

||X−1nb̂t||
. Consider the scale parameter τ = 1

||X−1nb̂
t||
. Equation 5.10 now becomes:

L(b̂, τ,Ψ;S) = | Ψτ2 |
d
2 · exp

[
− d

2τ2 tr(ΨS)
]
. (5.14)

Applying the same procedure as before i.e. using K = 1n leading to ΨQ, replacing | · | with det(·)
symbol and substituting for Ψ̃, we get:

L(τ,Ψ;S) ∝ det
(Ψ̃
τ2

) d
2 · exp

[
− d

2τ2 tr(Ψ̃S)
]

∝ τ−2
(n−1)d

2 · det
(
Ψ̃
) d

2 · exp
[
− d

2τ2 tr(Ψ̃S)
] (5.15)

since rank(Ψ̃) = (n− 1) and det(cA)h = ch·rank(A) det(A)h for any constants c and h and a nonsin-

gular matrix A. Notice here that the dependency on biases b̂ is removed.

95

Next, we differentiate Equation 5.15 and set the derivative to zero.

0 =
d(L(τ,Ψ;S))

dτ

= −2τ−2
(n−1)d

2 · exp
(
− d

2τ2 tr(Ψ̃S)
)
· (−d

2)tr(Ψ̃S) · τ
−3+

exp
(
− d

2τ2 tr(Ψ̃S)
)
· τ−2

(n−1)d
2 −1 · (−2) (n−1)d

2

(5.16)

2τ−2
(n−1)d

2 · exp
(
− d

2τ2 tr(Ψ̃S)
)
· (−d

2)tr(Ψ̃S) · τ
−3 =

exp
(
− d

2τ2 tr(Ψ̃S)
)
· τ−2

(n−1)d
2 −1 · (−2) (n−1)d

2

(5.17)

By cancelling terms and rearranging Equation 5.17, we obtain:

τ2 =
tr(Ψ̃S)

n− 1
(5.18)

and then substitute the expression for τ2 back in Equation 5.15:

L(Ψ;S) ∝ (
tr(Ψ̃S)

n− 1
)−

(n−1)d
2 · det

(
Ψ̃
) d

2 · exp
[
− d

2(
tr(Ψ̃S)
n−1)

tr(Ψ̃S)

]
(5.19)

where the dependency on τ vanishes.

Ignoring constant terms, we obtain the shift- and scale-invariant likelihood in S (McCullagh, 2009,

Tunnicliffe-Wilson, 1989):

L(Ψ;S) ∝ det
(
Ψ̃
) d

2 tr(Ψ̃S)−
(n−1)d

2 (5.20)

which is constant for all S ∈ S(D). Thus the likelihood depends only on (the scaled version of) D

and by the negative definiteness property of D, we finally arrive at the shift- and scale-invariant

marginal likelihood in D:

L(Ψ; D
||D||) ∝ det

(
Ψ̃
) d

2 tr(−1
2 Ψ̃D)−

(n−1)d
2 (5.21)

�

96

6
Automatic Archetype Analysis

6.1 Introduction

ARCHETYPES are defined as an original model, type or observation based on which similar

things are patterned. Given observations of a multivariate dataset, archetype analysis aims

at finding a small number of archetypes or pure data samples that optimally summarise the variation

in the dataset. This summarisation is based on the precept that the data observations can be well

represented as noisy convex mixtures of these archetypes and that the archetypes themselves are

restricted to being convex combinations of the observations.

Archetype analysis as developed in Cutler and Breiman (1994) shows that archetypes are those

explaining extremal points lying close to the convex hull 1 of the data. The traditional definition of

an archetype is that it is in itself an existing observation. Since in practical applications, observations

are never devoid of noise, this definition has been relaxed. Rather than assuming them to be existing

observations, the archetypes are allowed to be a convex combination of the observations but still

reside close to the convex hull. From the statistical viewpoint and for computational feasibility, this

relaxed definition grants the archetypes more flexibility to interpret the observations. Therefore,

archetype analysis can be seen as a technique where pure observations are used to minimise a set of

archetypes given noise.

Archetype analysis and PCA. Like PCA, archetype analysis can also be seen as as a dimension-

ality-reduction technique. Whereas PCA is a technique based on maximum-variance projection,

1A convex hull is the smallest convex polygon containing all the observations of the multivariate dataset (Boyd
and Vandenberghe, 2004). It can be visualised as a rubber band drawn taut around the data demarcating the data
periphery.

97

archetype analysis is a projection along with a geometric constraint that the archetypes need to lie

along the convex hull of the observations.

Applications. Examples of archetype analysis include analysis of compositional data in sedimen-

tology to identify samples having pure geochemical compositions of sediments (Palmer and Douglas

(2008)), in galaxy spectra studies (Chan et al. (2003)) to analyse new or evolving stellar constel-

lations, in image analysis (Bauckhage and Thurau (2009)) for finding potential vision categories,

in the analysis of the human genotope (Huggins et al. (2007)) for identifying informative allele or

single-nucleotide polymorphism (SNP) locations and for text mining (Morup and Hansen (2012)) to

group texts into core categories. Archetypes have also been used to study the evolution of species

using phenotypic data (Shoval et al., 2012). In multispectral imaging, archetypes are known as end

members and are used to extract original signals (Keshava (2003), Labitzke et al. (2012)). Archetype

analysis has also made its foray into market segmentation where consumers or products are grouped

into various heterogenous groups to provide marketing and advertising insights (Li et al., 2003).

Archetypes are also widely used in studies dealing with petrology and palaeoecology for identifying

archetypal rock patterns between continental tectonic plates (Hacker and Gans, 2005).

Focus of the current work. Conventional archetype analysis methods (Cutler and Breiman

(1994), Bauckhage and Thurau (2009)) rely on RSS (residual sum of squares) for model selection.

Although in low-noise datasets, the RSS curves are reliable for model selection due to their prominent

knee regions, in high-noise settings the curves tend to be become uninformative as they flatten

out. This has been verified in our Experiments section. Further, these models are sensitive to the

initialisation of archetypes and therefore if the dataset possesses any structure (as shown in Figure

6.2.1 (centre and right)), archetype analysis becomes difficult, if the archetypes are not properly

initialised.

The current work aims in addressing these two drawbacks jointly. For reliable model selection,

we employ the Bayesian information criterion (BIC) (Schwarz, 1978). Even though BIC can be

applied to conventional methods, in high-noise settings our experiments have shown that BIC curves

tend to become unreliable (refer Figure 6.6.1 (d)). Since in these models the degrees of freedom

df = p (where p is the number of archetypes), assigning higher values of p to df only leads to

overpenalising the complexity term in BIC, thereby making BIC favour models with lower p. In our

current method, we have better access to efficiently compute the effective df for BIC. To overcome

the dependency relating to a good initialisation of the archetypes, the archetypes are initialised to

all the n observations since the model considers at most n archetypes sufficient to approximate the

set of observations. Given larger datasets, this also calls for efficient methods. Thus, we base our

work on the idea of enforcing grouped sparsity using the Group-Lasso formulation (Yuan and Lin

(2006)). Since there are efficient methods that allow sampling of the solution paths of the Group-

Lasso, stepwise model selection using BIC can be performed thereby effecting automatic archetype

detection.

Outline of the chapter. Section 6.2 describes the assumed underlying process used to simulate

archetypal data. In Section 6.3, the conventional archetype analysis is described and the existing

98

problems are elucidated. In Section 6.4, the automatic archetype analysis model is introduced,

elaborating the algorithmic modifications brought about to that of the conventional methods. Section

6.5 details the model selection procedure using BIC scores in the automatic model. BIC score

computation based on two forms of the degrees of freedom – approximate and exact – are described.

Simulations and real-world experiments are discussed in Section 6.6. Section 6.7 summarises this

work.

6.2 Data generative model and model learning

Definitions. A convex set X is a set of observations {xi} for i = 1, · · · , n such that
∑n

i=1 λixi

for λi ≥ 0,
∑

i λi = 1. A convex hull C of the convex set X is the smallest convex set containing all

the points of X i.e. C = {
∑n

i=1 λixi : λi ≥ 0,
∑

i λi = 1}. In other words, C is the set of convex

combinations of any finite collection of observations contained in X and can also be seen as the

simplex of the convex set.

6.2.1 Generative model

Assume there exists an underlying data generating density function that has a convex support. p

points in Rd are sampled from this density function and serve as archetypes. The support of the

density function is defined by the convex hull or the simplex generated by these p archetypes. Data

observations are created as convex combinations of the p archetypes and additionally noise is added.

Futher it is assumed that the set of data observations are in general position. For example, to generate

a convex set X of n noisy observations from p archetypes, first sample p d-dimensional archetypes

from a Gaussian distribution. Each of the remaining (n− p) observations are convex combinations

of the p archetypes where the weights are drawn from a p-dimensional Dirichlet distribution whose

support is a (p− 1)-dimensional simplex. Gaussian noise is added to these (n− p) observations.
Based on this generative model, in this current work, three different settings are outlined below.

• Setting 1: Here, the Gaussian samples are weighted with a symmetric Dirichlet distribution

where the Dirichlet parameter, α, takes on the same value (α = 1). This is equivalent to a

uniform distribution over the simplex or is uniform over all observations in its support. Noisy

data observations weighted using such a symmetric distribution are shown in Figure 6.2.1 (left)

for p = 3, n = 1000 and d = 10.

• Setting 2: We consider weights from another symmetric Dirichlet distribution where 0 < α < 1.

The Dirichlet density gets concentrated towards the edges of the simplex and this corresponds

to a non-uniform distribution over the simplex. Gaussian samples weighted by such a Dirichlet

distribution are shown in Figure 6.2.1 (centre) for p = 4, n = 1000 and d = 100.

• Setting 3: Clusters of compact convex sets are generated from Gaussians with different means

and weighted using a symmetric Dirichlet distribution (α = 1). Figure 6.2.1 (right) shows

a dataset consisting of 3 such compact clusters with each cluster having 1000 observations

generated from 4 10-d archetypes.

99

−2.0 −1.5 −1.0

−
2.

5
−

2.
0

−
1.

5
−

1.
0

−
0.

5
0.

0
0.

5
1.

0

X[1,]

X
[2

,]

−5 0 5

−
5

0
5

X[1,]

X
[2

,]

Figure 6.2.1: Left: Noisy convex set of Gaussian observations X1000×10 weighted using a symmetric Dirichlet
distribution (α = 1). Observations (o) are generated using Z3×10 (∆). Centre: Noisy Gaussian observations
X1000×100 weighted using a symmetric Dirichlet distribution (0 < α < 1). Samples tend to concentrate near the
simplex edges. Observations are generated using Z4×100. Right: 3 clusters of convex sets weighted using a sym-
metric Dirichlet distribution (α = 1) where each convex set contains Gaussian observations X1000×10 generated
by a noisy convex combination of Z4×10. All plots are the 2-d PCA projections of the data.

6.2.2 Model Learning

Given the set of noisy observations, Xn×d, archetype analysis aims in fitting a noisy convex hull to

the data. This is equivalent to finding the optimal set of archetypes Zp×d, that best describes X

and that resides close to the convex hull of X with p� n. Figure 6.2.2 gives the graphical abstract

with the top panel depicting the setup for p = 3 archetypes. The convex hull of X is the red outline.

6.3 Conventional Archetype Analysis – Model Description

We start with a description of the conventional archetype analysis. Given a data matrix Xn×d

which is a noisy convex set of n observations (x1,x2, . . . ,xn)
′, where xi = (xi1, · · · , xid) ∈ Rd for

i = 1, · · · , n, the goal of archetype analysis is to find a sparse set of archetypes or pure samples Zp×d

with p archetypes (z1,z2, . . . , zp)
′ where p � n and zj ∈ Rd for j = 1, · · · , p. The archetypes are

such that the observations xi are noisy convex combinations of these archetypes:

xi = Z ′ai + εi, for i = 1 . . . n , (6.1)

where εi ∼ Nd(0, I) represents the stochastic nature of xi and ai is a composition vector such that

aij ≥ 0 and
∑p

j=1 aij = 1. The archetypes themselves are defined to be convex mixtures of the

observations and reside close to the convex hull of the data. Hence archetypes are chosen to be a

small number of points (typically smaller than n) residing in close proximity to this convex hull. The

optimisation procedure in archetype analysis involves finding a small set of archetypes such that the

error in approximation of the observations as convex mixtures of the archetypes is minimised.

Related work. Based on the above formulation, an iterative optimisation algorithm was intro-

duced in Cutler and Breiman (1994). This version is still not computationally feasible for large

datasets. A more scalable version was introduced in Bauckhage and Thurau (2009). The scalability

100

Figure 6.2.2: Graphical abstract. Top: Given Xn×d, archetype analysis finds the optimal Zp×d that best describes
X and lie close to the convex hull of X. The convex hull of X is shown by the red outline around the observations
(∆). Plots show the 2-d PCA projections of the data. Bottom: In terms of matrix dimensions, we need to find the
best p where p � n.

relied on choosing archetype candidates as points lying close to the convex hull. Another approach

was introduced in Morup and Hansen (2012) that was based on kernelising the data prior to extract-

ing the archetypes. An iterative weighted optimisation method was dealt with in Eugster and Leisch

(2011) where robust archetypes were estimated in the presence of outliers since outliers normally

plague the analysis of archetypes.

6.3.1 Conventional Archetype Analysis algorithm

The identification of archetypes is split into multiple steps as in Bauckhage and Thurau (2009).

Given a set of archetypes Z, the compositions for all the data points can be estimated based on the

optimisation problem:

Â = argminA

n∑
i=1

‖xi −
p∑

j=1

aijzj‖22 , (6.2)

where ‖ · ‖2 denotes the `2 norm of a vector. A is a n×p composition vector matrix which comprises

of composition vectors (a1,a2, · · · ,an)
′, where each ai ∈ Rp is represented as a row of the matrix A.

Since ai are composition vectors, additional constraints are imposed to ensure that each observation

is a meaningful combination of the archetypes and that the observations are represented as mixtures

of the archetypes:

aij ≥ 0 and

p∑
j=1

aij = 1. for i = 1 . . . n . (6.3)

Further, we assume that the archetypes lie within close proximity to the convex hull of the given

101

observations. Hence, each zi can be expressed as a convex combination of the observations:

zi =
n∑

j=1

bijxj , (6.4)

with the coefficients bij ≥ 0 and
∑n

j=1 bij = 1. The coefficient vectors bi’s are represented as a p×n
matrix B = (b1, b2, · · · , bp)′, with the rows comprising of composition vectors bi ∈ Rn. This choice

of bi’s assures that the archetypes resemble the data and that they are a convex mixture of the data.

A and B are row-stochastic matrices meaning that every row sums to 1.

In matrix form, with X ∈ Rn×d, Z ∈ Rp×d, A ∈ Rn×p and B ∈ Rp×n, a suitable choice of

archetypes will minimise the residual sum of squares (RSS) problem:

(Â, B̂) = argminA,B‖X −AZ‖22 = argminA,B‖X −ABX‖22

s.t. bij ≥ 0,
n∑

j=1

bij = 1, aij ≥ 0,

p∑
j=1

aij = 1 .
(6.5)

Thus the overall problem of finding a fixed predetermined number of archetypes for a given set

of observations translates into a constrained optimisation problem involving two sets of coefficients

{aij} and {bij}.

Archetype analysis casts the data X as

the noisy convex combination of the convex combination of the observations︸ ︷︷ ︸
Z = BX︸ ︷︷ ︸

X = AZ + noise

(Thurau, 2010).

Eventually, this means finding the optimised coefficient matrices A and B minimising

Equation 6.5.

The optimisation-based formulation given in Equation 6.5 is solved using an alternating least

squares procedure described in Algorithm 2 (Bauckhage and Thurau (2009)).

Complexity analysis for conventional methods. The complexity of one iteration of the

algorithm in Cutler and Breiman (1994) is given by O(n2p). To reduce this complexity further, the

approach in Bauckhage and Thurau (2009) was to resort to preselecting the archetypal candidates

by subsampling a set of n∗ points (n∗ � n) that reside on the convex hulls obtained from random

102

Algorithm 2 Conventional Archetype Analysis Algorithm

A : Initialise Zp×d

repeat

B : determine coefficients aij by minimising ||xi − Z ′ai||22 s.t. aij ≥ 0 and
p∑
j

aij = 1 for

i = (1, ..., n).

C : solve OLS equation Ẑ = (A′A)−1A′X to compute the intermediate archetypes Ẑ using
updated aij .

D : determine coefficients bij by minimising ||ẑj − X ′bj ||22 s.t. bij ≥ 0 and
n∑
i

bij = 1 for

j = (1, ..., p).
E : Update the archetypes by setting Z = BX.

until end criterion based on the RSS approximation error.

2D projections. This, thereby, reduced the complexity to O(n2∗p).

6.3.2 Problems with the conventional methods

Model Selection mechanism. Model selection in conventional methods is generally done using

RSS decay curves. The RSS problem for archetype analysis is given in Equation 6.5. The decay

curves are obtained by plotting different RSS values against corresponding p values. Model selection

in RSS decay curves is facilitated by observing a prominent knee region in the curve, where the p

corresponding to the knee is the optimal model choice.

In the simulations we conducted on high-noise datasets, it is observed that there are no clear

knee regions since the curves tend to flatten out (as shown in Figure 6.6.1 (b)). A larger p will

lead to better approximation of the dataset but not without undesirable fitting to the noise in the

dataset. Therefore, RSS decay curves for model selection can be unreliable in high-noise settings.

Model selection in high-noise settings using BIC is also problematic in these models. The classic

BIC computation is: BIC(df) = n · log(RSS(df)
n) + df log(n) where n is the number of observations

and df is the number of free parameters to be estimated. The first term n · log(RSS(df)
n) represents

the goodness of fit and the second term df log(n) measures complexity. For conventional models,

df = p. For higher values of p, the complexity term is overpenalised. Thus, BIC favours models with

lower p leading to model underfitting. This is clearly exhibited in Figure 6.6.1 (d).

Sensitivity to initialisation of archetypes. Conventional methods are not only dependant

on the input p but also on the initialisation of Zp×d. For example, in datasets consisting of ob-

servations drawn from a non-uniform distribution (Figure 6.2.1 (centre)) or having a structure like

clusters of compact convex sets (Figure 6.2.1 (right)), conventional methods will find it hard to

approximate the noisy observations since it requires a sound a priori knowledge of not only p but

also their initialisation (Step A, Algorithm 2). Our experimental results (Section 6.6.1) confirm that

a right choice for p as well as a good initialisation of archetypes at the onset of the algorithm is

necessary for the proper functioning of conventional methods.

103

6.4 Automatic Detection of the Number of Archetypes

In this work, the aforementioned drawbacks of the conventional models – unreliable RSS/BIC curves

for model selection in high noise cases and the sensitivity to p and initialisation of Zp×d – are

addressed jointly. To facilitate automatic archetype extraction, the archetype analysis problem is

stated using a Group-Lasso formulation (Yuan and Lin (2006)) together with a well-defined criterion

for model selection. A refresher to Group-Lasso is presented in Appendix 8.2. The fact that we can

also efficiently sample the solution path of the Group-Lasso offers a well-defined model selection

procedure.

6.4.1 Sparse Archetype Selection using the Group-Lasso

We start with a n× d data matrix X as before. Since n is the maximum number of archetypes that

would be needed to represent data, we consider a n × d matrix Z (instead of p × d as referred in

Section 6.3) which assumes that at most n archetypes are required to represent data. Our goal is

to formulate an optimisation problem for identifying a sparse set of archetypes which translates to

obtaining a sparse matrix Z where most of the rows are zero. Hence the non-zero rows of Z will

culminate as the selected archetypes of the data.

This type of a sparsity attainment can be related to the Group-Lasso formulation (as defined in

Yuan and Lin (2006)) which involves solving a linear regression problem with the goal of achieving

grouped sparsity in the regression coefficients. The solution path of the Group-Lasso is efficiently

computed using a fast active-set algorithm defined in Roth and Fischer (2008). As in the Group-

Lasso, we use similar constraints on the matrix Z to impose grouped sparsity where the groups

are the rows of the matrix and the aim is to obtain sparsity at a group level. This is achieved by

imposing a `1,2 norm constraint on the rows of the matrix Z. The modified optimisation problem

with X ∈ Rn×d, Z ∈ Rn×d, A ∈ Rn×n and B ∈ Rn×n, is now:

(Â, B̂) = argminA,B‖X −AZ‖22 = argminA,B‖X −ABX‖22

s.t. bij ≥ 0,

n∑
j=1

bij ≤ 1, aij ≥ 0,

n∑
j=1

aij ≤ 1

s.t.
n∑

j=1

‖zj‖2 ≤ κ (`1,2 norm on rows of Z)

(6.6)

where κ is the tuning parameter.

To solve this optimisation problem we use the same alternating least squares idea used in previous

methods, however with several algorithmic changes namely:

1. To compute the constrained optimised set of coefficients {aij} and {bij} using Equation 6.6

(and steps B and D respectively in Algorithm 2), we implement the Monotone Incremental

Forward Stage-wise Regression (MIFSR) (Hastie et al. (2007)). More details are given in

Section 6.4.2.

2. Instead of solving the intermediate archetypes Ẑ = argminZ‖X − AZ‖22 using ordinary least

squares (OLS) (step C in Alg. 2), we now introduce the Group-Lasso optimisation step. This

104

is elaborated in Section 6.4.3. Since the solution path of Group-Lasso can be sampled at steps

of κ using the fast active-set algorithm (Roth and Fischer (2008)), BIC can be computed at

these κ steps allowing a well-defined model selection procedure. Model selection using BIC is

described in Section 6.5.

To further accelerate our Group-Lasso based archetype analysis model, we utilise two preprocess-

ing steps.

1. Since archetype analysis is sensitive to outliers, a preprocessing step to remove them using the

Outlier-Pursuit technique (Xu et al., 2010) is implemented.

2. The archetypes are located in close vicinity of the convex hull of the dataset. Making use of

this fact, archetypal candidates can be preselected to be amongst those points close to the

convex hull. This approach was used in Bauckhage and Thurau (2009).

The new algorithm incorporating these changes is given in Algorithm 3.

Algorithm 3 Group-Lasso extension for archetype analysis

Preprocessing X:
• Removal of outliers using the Outlier Pursuit method (Xu et al., 2010).

• Preselecting archetypal candidates (Bauckhage and Thurau, 2009).

A : Initialise Zn×d

repeat

B : Determine coefficients aij by minimising ‖xi − Z ′ai‖22 s.t. aij ≥ 0 and
n∑

j=1

aij ≤ 1 for ith

row, i = (1, . . . , n) using MIFSR (Hastie et al., 2007). Refer Algorithm 4.
C : Solve Equation (6.8) for zGL to obtain ẑGL using the Active-set algorithm in Roth and
Fischer (2008). Refer Algorithm 5.

D : Determine coefficients bij by minimising ‖ẑj −X ′bj‖22 s.t. bij ≥ 0 and
n∑

j=1

bij ≤ 1 for ith

row, i = (1, . . . , n) using MIFSR (Hastie et al., 2007). Refer Algorithm 4.
E : Update the archetypes by setting Z = BX.

until end criterion

Next, the algorithmic changes are discussed in detail.

6.4.2 Monotone Incremental Forward Stage-wise Regression (MIFSR)

To compute the constrained optimised set of coefficients {aij} and {bij} using Equation 6.6 (and

steps B and D respectively in Algorithm 2), we implement the Monotone Incremental Forward Stage-

wise Regression (MIFSR) as introduced in Hastie et al. (2007). This heuristic is used for closely

approximating Equation 6.6 to reduce the computational complexity further rather than directly

solving the quadratic program.

For instance, the respective optimisation problem in terms of the MIFSR for step B can be written

105

as:

minai‖xi − Z ′ai‖22 s.t aij ≥ 0 and
n∑

j=1

aij ≤ 1 for ith row (i = 1 . . . n). (6.7)

Algorithm 4 depicts MIFSR for step B that involves the optimisation of ai. Step D involves the

similar optimisation for bj .

Algorithm 4 MIFSR algorithm for step B

1: Start with r = xi −mean(xi), aij = 0.
2: Find predictor ẑj most positively correlated with r.
3: Update aij ← aij + ε. (ε is a predefined stepsize parameter)
4: Update r ← r − εẑj .
5. Repeat steps 2 and 3 until no predictor has any correlation with r.

Complexity Analysis for MIFSR. By construction, Algorithm 4 terminates after κ/ε steps

meaning that there is a fixed number of iterations that neither depend on n or p but only on κ and

ε which are constant in this setting. The only cost involved then would be that of the correlation

(Step 2 of Algorithm 4) that involves a matrix multiplication between a matrix of Rn×d and a vector

∈ Rd, thereby having a worst-case complexity of O(nd).

6.4.3 Group-Lasso optimisation step

The next modification to Algorithm 2 is the computation of intermediate archetypes. Instead of

solving Ẑ = argminZ‖X − AZ‖22 using ordinary least squares (OLS) (Step B of Algorithm 2), we

now introduce the Group-Lasso optimisation step:

ẑGL = argminzGL‖xGL −AzGL‖22 s.t.
n∑

j=1

‖zGL
j ‖2 ≤ κ , (6.8)

where in terms of the standard Group-Lasso formulation, A ∈ Rnd×nd, xGL ∈ Rnd and zGL ∈ Rnd

i.e.

A =

a1 0n · · · 0n an 0n · · · 0n

0n a1 0n · · · 0n an 0n · · ·
.

. . .

0n 0n · · · a1 0n 0n · · · an

 , xGL =

x1

...

xn

 , zGL =

z1

...

zn

 .

Solving equation 6.8 gives the entire ensemble of solutions for Z that traces the different models

corresponding to p = (1, · · · , n). This is solved using the fast active-set algorithm described in

Roth and Fischer (2008) that uses a projected gradient method (Kim et al. (2006)) and that allows

to sample the solution path at various steps of κ. Algorithms 5 and 6 present the details for the

active-set and projected-gradient methods respectively.

106

Algorithm 5 Active-set Algorithm

A : Initialise : set active set AS = {j0}, zGL
j0

arbitrary with
∥∥zGL

j0

∥∥
2
= κ, activeκ = 0, stepκ,

κset = {}.

B : Iterate :
activeκ = activeκ + stepκ ; Add activeκ to κset.
Optimise over the current AS using the projected gradient method (Kim et al., 2006)
with activeκ. Refer Algorithm 6.

Define set AS∗ =
{
j ∈ AS :

∥∥zGL
j

∥∥
2
> 0

}
.

Adjust the active set AS = AS∗.

C : Model Selection :
Compute BIC scores for κ steps in κset using Equation 6.9.

Find κmin, the κ value that minimises the BIC curve.

For j ∈ AS at κmin → construct ẑGL.

D : Return: ẑGL

Algorithm 6 Projection onto the `1,2-norm ball

B1 : Gradient : At time t− 1, set d =
(
zGLt−1 − s∇zGL(‖xGL −AzGL‖22)

)
and

AStemp = AS, where s is the step-size parameter.

B2 : Projection :

Mj = ‖dj‖2 +
κ−

∑
j ‖dj‖2

|AS| ∀j ∈ AStemp.

IfMj ≥ 0 ∀j ∈ AStemp

Go to B3

Else
Update AStemp = {j :Mj > 0}
Repeat B2.

B3 : New solution:
∀j ∈ AStemp, set z

GLt

j = dj
Mj

‖dj‖2
.

For the rest j ∈ AS, j /∈ AStemp, set z
GLt

j = 0.

B4 : Return: zGLt

107

6.4.4 Further Acceleration of our Algorithm

To further accelerate our archetype analysis model, we utilise two preprocessing steps as described

below.

Dimensionality reduction with robust PCA. The first aspect of preprocessing involves di-

mensionality reduction which aims at reducing d. Real-world datasets are usually of high dimensions

which call for the use of dimensionality reduction techniques such as PCA that project the data to

a low-dimensional manifold. It becomes relevant to use PCA in finding such low-rank projections

in the context of archetype analysis. This is due to the fact that a set of convex mixtures of p

archetypes cannot lie on a subspace greater than p and since convex sets are linear manifolds, the

search for these linear manifolds is justified using PCA-based projections. However, PCA is highly

susceptible to outliers and thus it becomes essential to filter out the outliers before performing PCA.

We resort to a robust version of PCA as given in Xu et al. (2010) that deals with Outlier Pursuit.

This method involves decomposing the data matrix X as X = XL + XC where XL is the low-

rank matrix comprising the true subspace of the non-outlier points andXC the column-sparse matrix

denoting presence of outliers. Through robust PCA, we estimate XL that represents the uncorrupted

data. Details of the method are given in Xu et al. (2010).

Preselecting the archetype candidates. After obtaining the outlier-free data matrix with

reduced dimensionality, we focus our attention on reducing the number of possible archetypes from

n to a lower number for computational gains. Archetypal candidates can be chosen from amongst

those observations located close to the convex hull of the data.

For preselecting the archetype candidates we use the approach as in Bauckhage and Thurau (2009).

Here they consider that the convex hull can be seen as a polytope in Rd. Given a transformation

matrixM∈ Rd∗×d and a real vector t ∈ Rd∗
, the main theorem in polytope theory states that every

image of a polytope under an affine transformation π : x 7→ Mx+ t is also a polytope (Henk et al.

(1997), Bauckhage and Thurau (2009)). This means that for every point on the convex hull of X,

there exists a linear map under whose image the point also appears on the convex hull of the image.

Using this, the technique is then to take the union of as many such points forming the convex hull

of different 2D projections of X with the view to recover the true convex hull of X. Calculating the

convex hull in 2D is easier since the worst-case combinatorial complexity of calculating the convex

hull for n observations in d dimensions increases exponentially with d as O(nbd/2c+1) (Skiena, 1997).

6.5 Model Selection

Selecting a sparse set of archetypes according to Equation 6.8, however, involves tuning the parameter

κ which controls the level of sparsity in the solution. Since different κ return different parsimonious

models, model selection is required to select one amongst these models. Although cross-validation

is generally used for model selection, it can tend to be computationally expensive.

We use the BIC scoring mechanism for Group-Lasso as detailed in Yuan and Lin (2006) for model

selection. BIC, proposed by Schwarz (1978), is an information criterion based on the regression

models goodness of fit and complexity. An increase in the model’s goodness of fit increases BIC

108

whereas an increase in the model complexity, penalises BIC. Since a lower BIC indicates a favourable

model, BIC penalises larger models more heavily and would tend to prefer smaller models which in

our problem setting would mean preferring a smaller p.

The BIC score for Group-Lasso is given as:

BIC(µ̂ ≡ ÂẑGL) =
‖xGL − µ̂‖22

τσ2
+

log(τ)

τ
· d̂f(µ̂) , (6.9)

where τ = nd, Â and ẑGL are the estimated values of A and zGL based on a particular κ value.

The degrees of freedom of Group-Lasso, d̂f(µ̂), can be computed using both the approximate (Yuan

and Lin (2006)) and exact (Vaiter et al. (2012)) forms which are discussed in turn below.

6.5.1 ’Approximate’ degrees of freedom for Group-Lasso

The approximate degrees of freedom for Group-Lasso (Yuan and Lin, 2006) is given as:

d̂f(µ̂) =
n∑

j=1

I(‖ẑGL
j ‖2 > 0)︸ ︷︷ ︸

|AS|

+
n∑

j=1

‖ẑGL
j ‖2

‖ẑGLLS
j ‖2

(d− 1) , (6.10)

where I(·) is the indicator function, ẑGL is the estimated value of zGL, |AS| is the number of active

groups where the set of active groups is AS :=
{
j : ẑGL

j 6= 0
}
, ‖ẑGL

j ‖2 is the `2 norm of ẑGL
j and

‖ẑGLLS
j ‖2 is the `2 norm of the least-square estimate of ẑGL

j .

6.5.2 ’Exact’ degrees of freedom for Group-Lasso

The exact degrees of freedom for Group-Lasso (Vaiter et al., 2012) is given as:

d̂f(µ̂) = tr
(
AAS

(
A′

ASAAS + τ Z ◦ P
)−1A′

AS

)
= tr

((
A′

ASAAS + τ Z ◦ P
)−1A′

ASAAS

) (6.11)

where τ > 0 and is the regularisation parameter, ◦ is the Hadamard (element-wise) multiplication

of two matrices having same dimensions and AAS is the A matrix whose columns correspond to the

set of active groups AS :=
{
j : ẑGL

j 6= 0
}
.

We look in detail at the terms within the inversion of Equation 6.11.

Z =

z 0|AS|×|AS| · · · 0|AS|×|AS|

0|AS|×|AS| z 0|AS|×|AS| · · ·
...

...
. . .

...

0|AS|×|AS| 0|AS|×|AS| · · · z

 ∈ R|AS|d×|AS|d

where |AS| is the number of active groups.

109

z =

1
‖ẑGL

AS[1]
‖ 0 · · · 0

0 1
‖ẑGL

AS[2]
‖ 0 · · ·

...
...

. . .
...

0 0 · · · 1
‖ẑGL

AS[|AS|]‖

 ∈ R|AS|×|AS|.

The projection matrix P is given as:

P =

p 0|AS|×|AS| · · · 0|AS|×|AS|

0|AS|×|AS| p 0|AS|×|AS| · · ·
...

...
. . .

...

0|AS|×|AS| 0|AS|×|AS| · · · p

 ∈ R|AS|d×|AS|d

and

p = I|AS| −

ẑGL
AS[1](ẑ

GL
AS[1])

′

‖ẑGL
AS[1]

‖2 0 · · · 0

0
ẑGL
AS[2](ẑ

GL
AS[2])

′

‖ẑGL
AS[2]

‖2 0 · · ·
...

...
. . .

...

0 0 · · · ẑGL
AS[|AS|](ẑ

GL
AS[|AS|])

′

‖ẑGL
AS[|AS|]‖2

∈ R|AS|×|AS|

where p is the projector orthogonal to ẑGL
AS .

Z and P are shown to be block-diagonal matrices. Since the expensive operation in Equation 6.11

is that of the matrix inversion of (A′
ASAAS+τ Z ◦ P)−1, we exploit a block-diagonal structure of the

terms present in the inversion. For this, we permute the columns in AAS to obtain the block-diagonal

structure as shown below.

AAS =

aAS[1] aAS[2] · · · aAS[|AS|] . . . 0n 0n · · · 0n

0n 0n 0n · · · . . . 0n 0n 0n · · ·
.

. . .

0n 0n · · · 0n . . . aAS[1] aAS[2] · · · aAS[|AS|]

 ∈ Rnd×|AS|d.

Therefore A′
ASAAS takes the following block-diagonal structure:

A′
ASAAS =

A 0|AS|×|AS| · · · 0|AS|×|AS|

0|AS|×|AS| A 0|AS|×|AS| · · ·
...

...
. . .

...

0|AS|×|AS| 0|AS|×|AS| · · · A

 ∈ R|AS|d×|AS|d

110

where A is a symmetric matrix given as:

A =

a′
AS[1]aAS[1] a′

AS[1]aAS[2] · · · a′
AS[1]aAS[|AS|]

a′
AS[2]aAS[1] a′

AS[2]aAS[2] · · · a′
AS[2]aAS[|AS|]

...
...

. . .
...

a′
AS[|AS|]aAS[1] a′

AS[|AS|]aAS[2] · · · a′
AS[|AS|]aAS[|AS|]

 ∈ R|AS|×|AS|.

This indicates that to construct the block-diagonal A′
ASAAS , it is sufficient to compute A only

once and diagonalise it using eigenvalue decomposition i.e. A = VΛV′ where V ∈ R|AS|×|AS| consists

of the eigenvectors of A and diag(Λ) = (λ1, · · · , λ|AS|) is the diagonal matrix with the corresponding

eigenvalues, λi. Using A = VΛV′, the per-block operation for the inversion terms in Equation 6.11

can be written as:

(A+ τz ◦ pI)−1 = ((VΛV′) + τz ◦ pI)−1. (6.12)

Equation 6.11 now reads as:

d̂f(µ̂) = tr(MN)

where

M =

((VΛV′) + τz ◦ pI)−1 0|AS|×|AS| 0|AS|×|AS|

0|AS|×|AS| ((VΛV′) + τz ◦ pI)−1 · · ·
...

...
. . .

0|AS|×|AS| 0|AS|×|AS| ((VΛV′) + τz ◦ pI)−1

and

N =

VΛV′ 0|AS|×|AS| 0|AS|×|AS|

0|AS|×|AS| VΛV′ · · ·
...

...
. . .

0|AS|×|AS| 0|AS|×|AS| VΛV′

 .

111

Therefore,

d̂f(µ̂) = tr

((VΛV′) + τz ◦ pI)−1VΛV′ 0|AS|×|AS| 0|AS|×|AS|

0|AS|×|AS| ((VΛV′) + τz ◦ pI)−1VΛV′ · · ·
...

...
. . .

0|AS|×|AS| 0|AS|×|AS| ((VΛV′) + τz ◦ pI)−1VΛV′

=
∑
d

tr
(
((VΛV′) + τz ◦ pI)−1VΛV′

)
(sum over traces of the block matrices on the diagonal)

=
∑
d

tr
(
(V(Λ + τz ◦ pI)V′)−1VΛV′

)
=
∑
d

tr
(
V

′−1(Λ + τz ◦ pI)−1V−1VΛV′
)

=
∑
d

tr
(
V(Λ + τz ◦ pI)−1 V−1V︸ ︷︷ ︸

I

ΛV′
)

(since V
′−1 = (V−1)′ = (V′)′ = V)

=
∑
d

tr
(
(Λ + τz ◦ pI)−1Λ

)

=

∑
d

|AS|∑
i=1

λi

λi +
τ

‖ẑGL
i ‖

(
1− ẑGL

i (ẑGL
i)′

‖ẑGL
i ‖2

)
︸ ︷︷ ︸

per-block summation |AS| times︸ ︷︷ ︸
overall summation over d blocks

(6.13)

Throughout the rest of the paper and in the experiments, we resort to using the exact degrees of

freedom given in Equation 6.13 for BIC score computation to evaluate models obtained with different

κ values.

Complexity analysis for Model Selection using BIC. Equation 6.9 computes BIC for a

particular κ. Since the active-set algorithm permits sampling of the solution path at discrete sets

of κ, corresponding BIC scores can be computed stepwise. Since no additional costs are involved in

computing the BIC scores over the entire solution path, it renders our method to be computationally

efficient. Choosing the best model from amongst parsimonious models boils down to merely observing

the minimum attained in the BIC curves.

6.6 Experiments

6.6.1 Simulations

Simulation example I. We generate two datasets, one with low Gaussian noise and another

with high noise using a Student-t distribution (known to confuse traditional PCA but not the robust

PCA). Each dataset consists of n = 1000 observations in R10 generated from p = 3 archetypes using

Setting 1 (see Section 6.2.1). The datasets are subject to preprocessing as described in Section 6.4.4:

112

first for dimensionality reduction using robust PCA followed by reducing the number of archetype

candidates to those points residing near the convex hull of the data.

For comparison, we run our algorithm versus the conventional algorithm (Bauckhage and Thurau

(2009)) for archetype detection. For Bauckhage and Thurau (2009), we compute the percentage

decay in the RSS error against p. The percentage decay is given as: 100 · RSS(p)
RSS(1) . Refer Figure 6.6.1

(top row). In the low-noise setting, the knee in the RSS decay curve is at p = 3 signalling the right

model whereas in the high-noise case, the curve hardly exhibits a knee region thereby making the

curve uninformative for model selection.

Concomitantly, we plot the BIC scores for both noise settings for the conventional methods (Figure

6.6.1 (middle row)). The classic BIC computation is: BIC(df) = n · log(RSS(df)
n) + df log(n) where

n is the number of observations and df is set to p. For the low-noise case, BIC has a minimum at the

correct model p = 3 whereas for the high-noise setting, we have observed that there hardly occurs

a curve with a minimum but that the BIC scores always increase with increasing p. Thus even the

BIC scores fail to signal the right p in high-noise cases.

For our Group-Lasso based method, we have a more direct access to efficiently compute the

effective df needed for BIC (Equation 6.13). We plot the BIC curves computed at discrete steps of

κ (using Equation 6.9) versus the κ values (Figure 6.6.1 (bottom row)). In both noise settings, the

BIC curves show a clear minimum that serves to determine the right p and is aptly positioned at

p = 3, enabling automatic model selection.

Thus, we have experimentally shown that for conventional methods, although RSS/BIC curves

can aid model selection in low-noise cases, in high-noise settings they tend to be unreliable. The

model selection using BIC for our Group-Lasso based method performs better even in high-noise

settings.

Simulation example II: Noisy convex sets generated from a non-uniform density.

Figure 6.2.1 (centre) shows a noisy convex dataset X1000×100 generated using 4 archetypes from

a non-uniform density using Setting 2 (Section 6.2.1). Figure 6.6.2 depicts the performance of

conventional methods. These methods find it hard to extract archetypes as they heavily rely on p

and the archetype initialisation. Plots (a)–(d) show the optimised archetypes (�) for an increasing

p = 3, 4, 6 and 8 where these values are known a priori. A smaller number of archetypes (for example

3) is not sufficient to represent the observations well whereas a larger number of archetypes may

or may not approximate the noisy observations depending on the initialisation of Z at the onset.

For example, plots (b) and (c) show 4 and 6 archetypes respectively that have been extracted but

wrongly approximate the data and in plots (e) and (f), 4 and 6 archetypes are correctly retrieved

but after a good random initialisation of Z.

In Figure 6.6.3, we show the performance of our Group-Lasso based method on the same noisy

convex set. Our method clearly extracts all 4 archetypes since it does not depend on any a priori

known value for p. Moreover, Z is initialised to all the n = 1000 observations of X since the model

considers at most n archetypes sufficient to approximate X, thereby desensitising our method to

initialisations of Z.

113

2 4 6 8 10

0
2

4
6

8
10

p (Number of archetypes)

R
S

S
 d

ec
ay

2

3 4 5
6

7 8 9
10

(a)

5 10 15 20

0
20

40
60

p (Number of archetypes)

R
S

S
 d

ec
ay

2

3

4
5

6
7

8

9 10

20

(b)

2 4 6 8 10

−
55

0
−

50
0

−
45

0
−

40
0

−
35

0
−

30
0

−
25

0

p (Number of archetypes)

B
IC

 s
co

re
s

2

3
4 5

6

7 8 9

10

(c)

5 10 15 20

−
50

−
48

−
46

−
44

−
42

−
40

p (Number of archetypes)

B
IC

 s
co

re
s

2

3

4

5

6

7

8
9

10

20

(d)

0 5 10 15 20 25

0
20

40
60

80

kappa

B
IC

 s
co

re

1

1

1

1

1

2

2

2

2

2
3

3
3 3 3 3 5

5
6

6

7

8

8

8

9

(e)

20 40 60 80 100 120 140

2.
0

2.
5

3.
0

3.
5

4.
0

4.
5

kappa

B
IC

 s
co

re

1

1

1

2

3
3

5 7

11
11

15
19

19
24

29
35

39

(f)

Figure 6.6.1: Comparison of the Group-Lasso based method with that of Bauckhage and Thurau (2009). Number
of archetypes are indicated along the curves. Left column: low-Gaussian noise. Right column: high Student-t
noise.
For Bauckhage and Thurau (2009):
(a) RSS decay curves plotted against p archetypes for a low-Gaussian noise dataset.
(b) RSS decay curves plotted against p archetypes for a high Student-t noise dataset.
(c) BIC scores plotted against p archetypes for a low-Gaussian noise dataset.
(d) BIC scores plotted against p archetypes for a high Student-t noise dataset.
For Group-Lasso based:
(e) BIC scores versus κ for the low-Gaussian noise dataset.
(f) BIC scores versus κ for the high Student-t noise dataset.
Both datasets were generated using p = 3, n = 1000 and d = 10. For conventional methods, RSS/BIC curves
perform well in low-noise settings whereas in high-noise cases, model selection will be cumbersome due to no
clear knee region in the RSS curves or incorrect minimum in the BIC scores. On the other hand, our Group-Lasso
based model automatically identifies 3 archetypes as shown clearly by the prominent minimum in the BIC curves,
in either noise setting.

114

−5 0 5

−
5

0
5

Conventional Archetype Analysis

X[1,]

X
[2

,]

optimised Z
data points
true Z

(a) Using 3 archetypes (�).

−5 0 5

−
5

0
5

Conventional Archetype Analysis

X[1,]

X
[2

,]

optimised Z
data points
true Z

(b) Using 4 archetypes (�).

−5 0 5

−
5

0
5

Conventional Archetype Analysis

X[1,]

X
[2

,]

optimised Z
data points
true Z

(c) Using 6 archetypes (�).

−5 0 5

−
5

0
5

Conventional Archetype Analysis

X[1,]

X
[2

,]

optimised Z
data points
true Z

(d) Using 8 archetypes (�).

−5 0 5

−
5

0
5

Conventional Archetype Analysis

X[1,]

X
[2

,]

optimised Z
data points
true Z

(e) Using 4 archetypes (�), after a good
random initialisation of Z.

−5 0 5

−
5

0
5

Conventional Archetype Analysis

X[1,]

X
[2

,]

optimised Z
data points
true Z

(f) Using 6 archetypes (�), after a good
random initialisation of Z.

Figure 6.6.2: Performance of conventional methods on a convex set generated from a non-uniform density
as shown in Figure 6.2.1 (centre): Here X1000×100 and Z4×100. Conventional methods find it hard to extract
archetypes for such convex sets as they heavily rely on p and the archetype initialisation. (a)–(d): Plots showing
the optimised archetypes (�) for an a priori-known increasing number of archetypes viz. p = 3, 4, 6 and 8. A
smaller number of archetypes (for example 3) is not sufficient to represent the observations well whereas a larger
number of archetypes may or may not approximate the noisy observations depending on the initialisation of Z. For
example, (b) and (c) show 4 and 6 archetypes extracted but that wrongly approximate the data. (e) and (f) show 4
and 6 archetypes correctly retrieved but only after a proper random initialisation of Z. All plots show the 2-d PCA
projections of the data.

115

Figure 6.6.3: Group-Lasso based method on a convex set generated from a non-uniform density as given in
Figure 6.2.1 (centre): Given a convex set X1000×100 generated from 4 archetypes (∆), the Group-Lasso based
method is able to automatically identify all 4 archetypes (�). Plot shows the 2-d PCA projection of the data.

Simulation example III: Dataset containing clusters of compact convex sets. For this

simulation, we compare the different methods on a dataset that contains clusters of noisy convex

sets generated according to Setting 3 (Section 6.2.1). Refer Figure 6.2.1 (right). In this experiment,

we generate 3 convex sets with each convex set X1000×10 being noisy convex combinations of Z4×10.

Figure 6.6.4 (a) shows that the Group-Lasso based method optimises the data using 14 archetypes

(�) of which all 12 original archetypes are found. Plots (b)–(d) show the optimised archetypes for

conventional methods using 4, 8 and 12 archetypes (�) respectively. The plots clearly show the

inability of conventional methods to approximate the right p which again heavily depends on the

initialisation of Z.

6.6.2 Real-world experiments

Text categorisation using Reuters Corpus Volume 1. As a real-world example, we apply

our archetype analysis model for categorising texts where the focus is to obtain automatic annotations

of the text corpus leading to potential new categories as opposed to manually-provided categories.

Since the term frequency (TF) of a document can be described as an ideal convex mixture of words, in

archetype analysis the pursuit would be to find those archetypal documents that can be meaningfully

interpreted as a convex combination of legitimate words comprising one of the main categories.

We use the Reuters Corpus Volume 1 (RCV1), an archive of news documents manually cate-

gorised and made available through Lewis et al. (2004). The four categories reflecting the content

of the corpus are CCAT : Corporate/Industrial, ECAT : Economics, GCAT : Government/Social and

MCAT : Markets. The dataset we use consists of 23,149 TF-IDF normalised documents with their

corresponding labels and 57,180 words. We compute the Gram matrix of this dataset and apply

kernel-PCA that results in the dataset having 23,149 documents and a reduced dimensionality of

200 words.

We apply our Group-Lasso based method on this corpus and retrieve 89 archetype documents

116

●
●

●

●

●●
●

●

●●
●●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●
●

●● ●

●

●

●

● ●●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●
●

●

● ●

● ●●

●
● ●

●

●

●

●

●
●

●●
●

●

●

● ●●●
●

●

●

● ●●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●●
●

●

●

●
●● ●

●

●
●

●

● ●

●

●

●
●

●

●●

●

●
●

●

●

●

● ●

●●
●

● ●

●

●

●
●●

●

●

●

●
●

●

●●

●●

●

●

●
●●

●
●

●
●●●

●

●

●
●

●

●●●

●●

●

●
●

●

●

●

● ●

●
●

●●
●

●
●

●

●

●
●● ●●

●

●

●

●●
●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●
●
●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●
●●

●

●

●
● ●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●
●

● ●

● ●
●

●

●

●

●
●

●●

●

●

●

●

● ●●

●

●

●

●

●●

●
●

●

●

●

●

● ●
●

●
●●

● ●

●

●

●

●

●

●
●
●

●●

●

●

●

● ●

●

●

●

●

● ●

●

●

●
●

●

●
●

● ●
●

●
●

● ●●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●
●

●

●●

● ●
●

● ●

●

●

●●

●
●

●

●

●

●

● ●●●

●

●

●
●

●

●

●

●
●

●

● ●

●

●

● ●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

● ●●

●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
● ●

●
●

●

●

●●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●●

●
●

●

●

●

●

●

●

●
●

●

● ●

● ●

●

●

●
●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

● ●

● ●

●

●

●

●
●●

●

●
●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●
●

● ●
●

●

●

●

●●
●

●
●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●●

●

●
●

●

●

●

● ●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●
●

●

●

● ●

●●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●●
●

●
●

●

●

●
●

●

●

●
●

●

●
●

●

●●

●

●

● ● ●

●● ●

●

●

●

●

●

●

●

●●
●

●

●

●

●●●

●

●

●
●

●

●●

●
●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●
●

●

●
●

●
●

●

●●
●

●

●
●

●

●

●
●

●
●

●

●●

●
● ●

●●
●

●
●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

●

●

●

●
●

● ●
●

●

●
●●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●
●

●
●

●

●
●

●

●

●

●

●

●● ●
●

●

●

●

●

●

● ●●

●

●

●

●

● ●
● ●

● ●

●●

●

●

●

● ● ●
● ●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●

●

●
●

●
● ●

●

● ●●
●●

●

●

●

●

●
●

●

●
●

●

● ●
●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●● ●

●

●

●
●●

●

●

●

●● ●
●

●

●

●●

●

●●
●●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●
●

●

●

●●

●

● ●
●

●

●

●
● ●

●●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●
●

●

●

●
●● ●

●
●●●●

●

●

●
●

●

●

●

●● ●
●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●
●

●

●●●
●

●
●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●●

●
●●

●

●

●
●

●

●

●
●● ●

●

●
●

●

●

●

●

●

●●

●

●●

●

●

●
●
●●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●●

●●

●

●
●

●

●

●

●

● ●●

● ●

●

●
●

●
●

●

●

●

●

●

●

●

● ● ●
●

●
●

●
●●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

● ● ●

●

●

●
●

●

●
●● ●

● ●●

●

●

●

●

●

●

● ●

●

●

●
● ●

● ●

●

●

● ●
●

●
●

●

●● ●
●

●

●

●

●

●●●

●●
●

●

●

●

●

●
●

●●
●

●● ●

●

●

●

●

● ●
●

0 2 4 6 8

−
2

0
2

4
6

X[1,]

X
[2

,]

●

optimised Z
data points
true Z

(a) Group-Lasso based method: 12 archetypes
(�) are correctly extracted.

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●●●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

● ●

●

●

●

●
●

●●●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●●●

●

●
●

●

●
●

●

●

●

0 2 4 6 8

−
2

0
2

4
6

X[1,]
X

[2
,]

●

optimised Z
data points
true Z

(b) Conventional methods with 4 archetypes (�).

(c) Conventional methods with 8 archetypes (�).
(d) Conventional methods with 12 archetypes
(�).

Figure 6.6.4: Performance of Group-Lasso based method and conventional methods on a dataset having clusters
of compact convex sets: Given a dataset that consists of 3 compact convex sets where each convex set consists
of 1000 10-d observations generated from 4 10-d archetypes (∆). (a) The Group-Lasso based method optimises
the dataset using 14 archetypes (�) of which all 12 original archetypes are found. (b)–(d) Plots with the optimised
archetypes for conventional methods using 4, 8 and 12 archetypes (�) clearly showing the inability to approximate
the right p which again heavily depends on the initialisation of Z. All plots show the 2-d PCA projections of the
data.

117

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●●

●

●●

●●

●

●●

●

●● ●

●

●

●●

●

●

●

●●

●
●●●

●

●
●●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●● ●
●

●

●

●

●●
●

● ●● ●●●
●
●

●
●

●

●
●
●

●

●
●

●

●

●

●
● ● ●●●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●
●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

● ●

●

●●●●
●

●
●

●

●

●●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

● ●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
● ● ●●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●●●
●

●

●● ●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

●

● ●
●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●●
●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●●●●
●●

●
●

●

●

● ●

●

●

●

●

●

●● ●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●
●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

● ●

●

●●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●
●●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
● ●

●

● ●

●
●

●
● ● ●●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●
●

●
●

●
● ●
● ●

●

●●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●●●

●

●

●

●●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●●

●●●
●

●●

●

●
●

●

● ●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●
●

●

●

●●
●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●
●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
● ●

●

●

●

●

●

●

●●
●●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●
●●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●
● ●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●
● ●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
● ●●

●

●

●

●

●

●

●

●
● ●

●

●

●

●
●

●

●

●●
●

●●

●

●●

●

●

●

●●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●
●●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●● ●

●

●

●

●●
●

● ●

●

●

●

●

●

● ●

●
●

● ●●

●
●● ●●

●
● ●

●
●

●
●

●●●
●

●

●

●

●

●
●

●●
●

●

●
● ●

●

●

●●
●

● ●●
●
●

●

●
●●● ● ●
●●

●
●

●
● ●●

●●
● ●●

●●●●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●
●

●●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●

●

●●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

● ●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●●

●

●

●

●

●

●
●

●
●● ●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●●

●

●

●●
●

●

●

●
●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

● ● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●
●

●

●

●

●

● ●
●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●●●

●

●

●
●
●

●
●●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●

●●●

●

●

●

●

●

● ●●●

●

●

●

●

●

●
●

●

●

●

● ●

● ●

●

●

●
●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●●

●

●

●

●●

●
●

●
●

●

●

●●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●● ●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●●

●

●
●

●

●●

●

●
●

●

●
●●

●

●

●

●

●

●

●● ●

●

●

●
●

●

●●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
● ●

●● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●
●

●

●

●
●

●
●

●

●

●

●
●●

●
●

●

●

●
●

●●

●

●

●●
●●

●●

●
●

●●

●

●
●

●
●

●

●
●

●
●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●
●

●● ●

●

●

●

●
●

●

●●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●

●

●●

●

●

●

●

● ●
●

●

●●

●
●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●●

●
●

●
●

●

●

●
● ●

●

●●
●

●
●

●

●

●

●

●
● ●

●
●

●
●

●
● ●●

●● ●

●

●● ●

●

●

●

●

● ●
● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

● ●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●

●

●

●
●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●

●

●●

●

●●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

● ●
● ●

●

●
●

●

●

●

●●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
● ●

● ●
●

●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●
● ●

●

●

●

●

●

●

●

●

●● ●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●●

●

●

●

●

●

●
●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●●
●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
● ●

●

●

●●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●
●●

●●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●
● ●

●●

●

●

●

●
●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

● ●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

● ●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●●

● ●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

● ●●●

● ●

●

●

●

●

●

●●

●

●

●

● ●
●

●

●
●●

●●
●

●
●

●

●

●
● ●●

●

●
●

●●●

●
●

●
●

●
● ●● ●

●
●

●

●●
●

●

● ●● ●

●

●
●

●

●
●

● ●

● ●●●
●●●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

●

●

●
●

●

●●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●

●

●

●
●●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●●

●

● ●●

● ●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

● ●

●
●

●

●●●● ●●
●●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●● ●

●

●
●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●
●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●
●

●

● ●
●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

● ●
●

●
●

● ●

●
●

●●●●● ●●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●
●

●

●

●
●

●

●●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●●

● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●

●
●

● ●●●

●
● ●

●

●

●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

● ●
●

●● ●●
●

●
● ●
●

●●
●

●
● ●

●●● ●
●●

●
●

●
●

●
●

●

●
●

● ●
●● ●

●

●●

●
●

●

●
●

●

● ●●

●
●●

● ●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●●

●
●● ●

●
● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●●

●

●

●

●●

●

●
●

●●

●

●
●

● ●

●

●
●●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●

●

●
●

●

●● ●

●●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

● ●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●

●

●

●

●●

●
●

●

●●

●

● ●
●

●

●
●

●
●

●● ●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●● ● ●
●

●

●

●

●

●

●

●

● ●

●
●

●
●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●●

●
●

●

●

●

●

●

●

●● ●

●

●
●

●

●●●●
●●

●

●● ●

●

●

●

●
●●

●

●

●

●
●

●

●

● ●

●

●
●

●●●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
● ●

●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●

●●
●●

●●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●● ● ●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●
●

●●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●
● ●

●●
●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●
●

●●
●

●

●

●
●● ● ●

●

● ●●

●

●

●

●

●
●

●

●
●

●

●

●

●
●

●

●

●
●

●
●
●●

●●
●

●

●

●

●

● ●

●

●●
●

●●
● ●

●

●

●

●● ●●

●
●

●

●

●
●

●
●●

●

●

●●
●

●

●

●●
●

●
●

●

●

●●

●

●

● ●

●

●
●

●
●

●

●

● ●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●● ●
●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

● ●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●

●

●

●

●

● ●
●

●

●

●●
●

●

●

●●

●
●

●

●●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●● ●●●
●●
●

●
●

● ●

●

● ●

●●
●●

●
●

●
●●

●
●

●

●
●

●
●

●

●●
● ●●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●
●

●●

●

●

●

●
●

●

●

●
●

●
● ●

●
●

● ●
● ●●●

●

●

●

●
●
●

●● ●
●

●

●
●

●●

●

●
●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●

●
●●

● ● ●
●

●

●

●

●●

●●●●

●

●

●

●

●
●●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●●
●

●

●
●●

●

●

●

●●●
●●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●
●

●

●

●

●

●
●

●

●

●
●

● ●

●

●

●

●●
●

●

●

●

●

●● ●

●

●●

●●

●

●

●

●

●●●

●

●●

●
●

●
●

●

●

● ●

●
●

●

●

●

●●

●

●
●

●
●●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●●●

●

●

●
●

●

●

●
●

●

●

●

●

● ●
●

●

●
●

●

●● ●
●●

●

●● ●
● ● ●

●
●

● ●
●

●
●

●
●

●
●

●
●

●

●

●
●

●

●
●

●

●

●
●

●
●

●●
●

●

●
●

●

●
●● ●●
●

●

●●

●●

●
●

●●
●
●●●●

●
●

●● ●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●

● ●

●●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●● ●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

● ●

●

●
●●

●

●

●

●
●

●

●●

●
●
●

●●

● ●

●
●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●
●●
●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●●● ●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●
●

●

●

●●

●

●

●
●●●

●

●
●

●
●

●

●

●

●

● ●

●

●
●

●

●

● ●

●

●

●

●

● ●

●

●●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●
●
●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●● ●

●

●

●

●

●

●
●

●

● ●

●
●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●●

●

●
● ●●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●●

●●

●●

●

●

●

●●

●

●●

●
● ●●

●●

●●
● ●

●●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●● ●● ●
●

●

●

●

●

●

●

● ● ●
●

●

●

●

●●

●

●●

●

●

●
●

●

●
●

● ●
●

●
●

●●
●

●
●

●●
●

●

●
●

●
●

●
●
●●

●
● ●

●

●
●●
●

●● ●●
●

●

●
●

●
●

●
●

●
●

●

●
●

●
●

●●
●●

●● ●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●
●

●

●
●●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●
●●

●

●

●●
●

●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●
●

●

●

●●

●
●

●

●

●
●

●
●

●

●

● ●

●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●
●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●
●

●
●

●

● ●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●
●●
●

●●
●

●
●

●

●●
●

●

●

●

●
●●

●

●

●

●

●

●●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●●

●

●

●

●
●

●

●

●

●
●

●

● ●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

● ●

● ● ●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●● ●●

●
●

●

● ●

●
●

●
●

●

●

●

●

●

●●
●

●

●

●

●

●

●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●
●● ●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●

●

●

●

●

●● ●

● ●

●

●

●

●
●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●
●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●
●
●●

●●

●
●

● ●

●

● ●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

● ●

●
●

●

●

●

●
● ●

● ●
● ● ●

●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●

●

●

●

●

● ● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

● ●
●

●

●

●

●

●
●

●
●

●

●
●

●●
●

●●

●

●

●
●

●

●●

●● ●

●

●

●

●

●
●

●●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●
●

●

●

● ●●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●
●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●●

●
●

● ●

●

● ●●
●

●

●

●

●●

●
●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●
● ●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●●

●

●

●
●

●
●

●

●

●

●

●

●●

●

●

●
●

● ●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●
●

● ●

●
●

●

●

●

●

●●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●● ●

●
●●

●

●
●●

●
●

●

● ●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●●
● ●

●
● ●

●

●
● ●

●
● ●

●
● ●

●

●

●
● ●

●

●

● ●

●

●
●

●
●

●●

●

● ●● ●

●
●●

●
●

●
●● ● ●●

●

●

●

●
●

●

●

●

●

●

●● ●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●

●

●

●●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

● ●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ●
●●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

● ●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●●

●

●

● ●●

●

● ●●

●

●

●

●

●●
●

● ●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●

●●

●

●

●

●
●

●

●

● ●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●●●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●●●●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●● ●

●

●

● ●

●●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●
● ●

●

●
●

●●●
●●

●
●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●
●●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●●

●

●

●

●

●

●
●

●

●●

●●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●●

● ●

●

●

●
●

●

●●

●

●
● ●●

●●

●

●

●
●

●
●

●

●

●

●

●
●

●

●●

● ●●
●

●●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●

●

●

● ●
●

●

●

●

●

●

● ●●

●

●

● ●

●

●

●

●

●

●
●

●

●●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●●

●

●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●
● ●●

●
●

●

●

● ●

●

●

● ●

●

●

●

●
●

●

●

●

●

● ●
●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

● ● ●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

● ●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●●

●●

●

●

●

●●

●

●

●

●

●●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●
● ●

●

● ●

●

● ●●

●

●

●

●

●
●

●

●

●
●

●

●

●●

●

●●

●

●

●

●

●
●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●
●

●
●

●

●●

●

●

●

●

●

●

●
● ●

●
●

●

●●

●●

●●

●

●

●

●

●

●

●

●

●
●

●
● ●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●
●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●●

●

●

● ●
●

●
●●

●

●

●

●

●

●●

●●

●●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

● ●
●

●

●
●

●
●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●
●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●
●● ●

●

●

●●

●

●●

●

●
●●

●
●

●●
●

●
●

●

●
●

●●●
● ●●
●
●

●
●

●●

●
●

●
●

●●●
●

● ●

●
●

●
●

● ●
●

● ●●●●

●
●●●

●
●
●●●● ●

●
●

●
●

●
●

● ●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●●

●

● ●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●
●

● ●●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

● ●
●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●
●

●
●

●
●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

● ●

●

●

●

●

●

●

●
●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●●●●

●

●
●●●

●

●●
●

●
● ●

●

●

●

●

●

●
●

●
●●

● ●

●

●

●

●
●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

● ●

●
●

●

●
●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●
●

●

●
●

●
●

●

●

●
●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●

●

●
●

●●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

● ●

●●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●●

●

●

●

●

●
●●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●●●

●●
●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

● ●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●● ●
● ●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●●
●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●●

●

●●

●

●
●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

● ●

●

●

●●
● ●

●
● ●

●
●

●

●

●

●●

●●

●

●

●

●

●

●

●

●

● ●

● ●●
●

●

●

●

●

●
●●

●
●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

● ●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

● ●
● ●

●

● ●●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

●

●

● ●●

●

●

●

●
●

●

●

●

● ●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●

●

●

●

● ●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●
● ●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●
●

●
●●

●●
●

●●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●

●

●
●

●
●

●

●
●

● ●

●

●

●

●
●● ●

●

●

●

●

●

●

●●

●

●

●

●

●

● ●●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

● ●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●
●
●

●

●

●
●

●

● ●

●
●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●

● ●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●

●

●

●

●●
●●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●●

●

●

●●
●

●

●
●

●

●

●

●

● ●

●

●

●
● ●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●● ●
●

●
● ●

●
●●

● ●
●
●

●

●
●

●

●

●

●

●
●

●
●●

●

● ●
● ●

●
●

●

●
●

●
●

●

●

●
●

●●●
●

●
●

●
●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●
●

●

●
●

●

●

●

●

● ●● ●

●

●

●

●

●

●

●

●

●

●●

●

●
●

●●

●
●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●●
●●

●
●

●

●

●

● ●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●
●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

● ●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●
●

●
●

● ●

●
●

●

●

●

●

●

●

●

●
●

●

● ●

●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●●

● ●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●●
●

●

●

●●

●
●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●
●

●

●

●
●

●

●

●

●
●●

●

●

●

●

●

●

●
●

●●●●
●●● ●

●
●

●

●

● ●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●
●●

●
●

●

●

●

●

●

●

●

●

●

●

●●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●● ●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●
●

●

●

● ●

●

●

●

●

●
●

●

●

●

●
● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●

● ●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

● ●
●●

●

●

●

●

●

●
●

●

●
●

●

●

●●

●●
●

●

●

●

●

●

●

● ●

●

●

●

● ●

●

●

●

●●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●●

●

●
●

●

●

●

●
●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●
●

●●

●

●

●
●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●
●

●
●

●

●
●

● ●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

● ●

●

●

●

●

● ●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●
●

●

●
●

●

●

●

●
●

●
●

●●

●

●

●

●

●

●
●●

●

●

●
●

●

● ●

●

● ●

●

●

●

●

●
●

● ●●

●
● ●

●

●
●

●●

●

●

●

●

●
● ●

●

●
●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●●

● ●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

● ●

●

●

●

●
●

●

●

●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●●

●

●

●
●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

● ●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

● ● ●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●●

●

●

●

●

●

●
●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●
●
●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●
●

●

●

●●

●●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●●

●

●

●

●

●

●

●
●

●
●

●

●
●

●

●

●

●
● ●

● ●

●

●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●

●

●
●

●

●

●

●● ●

●

●●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●
●●

●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●

●

●

●
●

●●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●
●

●
●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●● ●
●

●
●● ●●
●●

●

●
●

●

●

●● ●
●

●
●

●●
● ●

●

●

● ●●●
●

● ●

● ● ●

●
●●●

●

●

●
●

●
●
●

●
● ●

●

● ●

●
●
●

●

●
●

●

●
●

●
●

●

●●
● ●●●●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

● ●
●

●
●

●

●

● ●

●

●

●

● ●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●●

●
●

●

●

●

●● ●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●●● ●

●

●

●

●

●

●
●●

●

● ●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●
●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●● ●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●

●
●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

●
●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●●

●

●

●

● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●
●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●
●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●● ●●●

●

●

●
●

●

●
●

●
●●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●
●

●●

●

●
●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●●
●

●
● ●●●

●

●

●
●
●

●

●

●

●

●●
●

●

●

●

●
●

●

●

●

●

●
●

●

●
● ●● ●●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●
●

●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●●

●

●

●

●

●

●
●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●

●
●

●

●

●

●

●

●

●

● ●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●
●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

● ●

●

●

●
●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●
●

●

●

●

●

●
●

●
●

●

● ●
●●

●

●

●

●

●

●

●

●●●

●

●●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●●

●

●

●●

●

●

●●

●

●

●

●

●●●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●●

●

●
●●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●●●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

● ●●

●

●

●

●

●●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●●●

●

●

●

●

●

●●
●●
●

●

●

●
●

● ●●
●

●

●

●

●●

●

●

●

●

●

●

● ●

●
●●

●

●

●
●

●

●

●
●

●

●
●

●

●

●
●

●

●

●●●

●

●

●

●●

●

●

●

● ●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●

●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●●

●

●

● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●

●

●

●
●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●
● ●

●

●

●

●

●

●

●●

●

●

●●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●
●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

●

●
●

●

●

●●

●

●

●

●

●
●

●

● ●

●

●●

●
●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●
●

●
●

●

●
●

●

●

●

●

●

●●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●● ●

●

●
●

●

●

●● ●
●●

● ●

●
●●

●
● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●
●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

●

●

●

●

●

● ●

● ●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●●●

●

●

●

●

●
●

●

●
●

●

●

●

●

●
●

●

●●

●

●

●

●
●

●

●

●

●

●

● ●●

●

●

●

●

●
● ●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

● ●
●

●
●

●

●

●
●

●
●

●

●

●

●

●

● ●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●
●

●

● ●

●
●●

●

●●

●

●
● ●

●

●

●

●

●

●● ●

●

●

●

●
●

●
●

●

●

●● ●●

●

●

●

●●

●

●

●

●● ●
●●● ●●

●●●
●

●●●
●

● ●●
●

●

●

● ● ●● ●
●●
●

●●

●

● ●
●

●● ●●●●
● ●

●●
● ●●●

●
● ●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

● ●●
●

●●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●
●

●●

●

●

●

●
●
●

●
●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

● ●

●

●

● ●

●

●
●

●

●
●

●

●

●

●

●

●

●
●

●

●

●
●

●●●●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

● ●

●

●

●

●●

●
● ●

●

●

●
●

●
●

●

●
●

●

●

●
●

●
●

●

● ●●

●

●

●

●

●
●

●

●

●
●

●

●

●

●

●

●

●●
●

●

●

●

●●●
●
●

●

●

●
● ●

●

●

●
●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●
●

●

●
●

●

●

●

●

●

●●

●
●

●

●

●

●

●

●

●

●

●

●

●
●

●

●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●

●

●

●

●

●

●●

●

●

●

●

●
●

●●

●
●

●

●

●

●

●
●

●

●

●

●

●

●

●

●
●

●
●

●

● ●●

●

● ●●

●

●

M M

M

C

C

GG

M

G C
GG

C

C

M

C

C
E

C CC

C

C

CCC
C

M

E

C

M

C

M E

C

C

M

CE
C

M

C

C

C

M

C

C

C

C

G

C

C
C

C

C

G

M

CC
E

M

M

C C

G G

C

G

C

C

C

G

C

M

C

E

C

C

G

E

C

G

C

G C

G

G

M

C
G

M

C

C

C

G

M

G

M

M

MM

G

C
G

C

GG

M

M

G
G

E

C

C

M

G

CC

M

M

G

C

M

E
G

G

C
C

M

C

E

M

MM

G

M

G

M

M

C

G

G

C

M

C

C

G

G

C

CC

G

G

C

M

C

M
M

C
GG

G

M

C

C E

G

C

C

M

C
C

E

G

C

G C
G

G

G

M

G

M

M

G

MM

C
CE

G

G

E

G C

C

G
G

M
C

C

MM

C

G

G

G

M

G

G
C

M
M C

C

MM

C

C

ME

EE

G

G

E

G

C

C

M

E

C

M

C

M

M

C

M

C

M

C

C

C
G

C

G

C

M

M

G
G

E

C
G

E

C

M
E

G

M E

M
M

M

C

G

M

E

C

E
EG

G

M

C

G C

M

G
G

C
G

C
G

C

G

C

G

E C

E

E

E

M

C C

M
M

M

E

M

M

M

M

E

M

M

E

C

M

M

C

C

M M

C

M

M

M

M

M

C

C

M

M

M

M

C

E

M

M

C

C

E

C

MM

C

M

CG

M

E
M

M

G

M

M

C

M

M

M
C

G

G

M

M

E

G

M

M

M

G

C

E

M

E

M

G C

M

G

M

G

G G

M

G

E

E

C

C

E

M

M

M

G

M

M

M MM

M
E

M

G

M

G

M

M
MM

E

G

M

G

M
M

G

C

G

M

M

C

C

C

C

M

M

M

C

C

C

M

M

M

M

E

CG

M

G

G

M

C

M

MM

E

C

G

C

M
M

M

CG

M

C

M

M

M
MM

MM

C

E

M

G

G

G

C

G

M

M

M

C
C

C

C

M

E

C

CE
E

E E

M

M C
C

M

C
C

E

C

G

C

C

E C

E

E

C C

C

M
M

C

G
C

M

C

E
C

M

M
M

CE

G

G

C

C
E

M

G

E

M

C

M

M

E

M

G

E

G

M

G

E
C

G

E

MM

CM

G

C E

C

E EM

M

C

E

G

M

E

M

E

E

M

M

M

M

M

C

MM E

M

C

M

C

C

C

CCC

GG

M

E

E

C

C

E

C
C

C

E

CC

C

CC
C

M

C

C

C
C C

G C
C

C

MM

C CCC

C
M

M

E
M

M

C

MM

E

E

M

M

M

M

M

E
E

M

E

M

C

M

C

M

C

M

M

M

C
C

MM

M

M

M

M
C

CE

M

E
M

M

M
M

M

M

M
M

M
M

M

C

M

C

E

M

E

M

C

M

C

E
M

MM

M

M

M

M

M

M

M
M

M

C

M

M

M

M

M M

C

M

M E

M

M

G

MM

C

C

C

C C

C

E

C

C
C

GG
C

C

M

M

C
G

C

M

C
C

M

E

M

M

E

G C

C
C

CC

C

C

C

M

G
C

C

M

C

C

EM

E

E

M

M

E

C

M

E
E

M

E

M

C

GG

C

M

M

G
C MM

E

C
E

M

M

E

C

M

C

C

M

M

M
M

E

M
E

E
M

E

E

C

C

M

C

M

E

E
E

C

M E

M

M

M
M

M
M

M
M

M

MC E

E

E

M

E

M
M

M

C

C

E

C
C

C

C

G

C

C
C

C

C

C

E

C
G

M
C

M

C

C

C

C

M

C

C

E

E

M

M

C

E

G

MM

M

E C

M

E

M

E

E

E

M

E
M

E

E

M
E

M

M

M

E

MM

E

M

M

E

M

G

E

M

C

M

M
M

MMM

E

E

C

G

M
M

C

C

M

M

E M

M

M

M

M

C

C C

C

C
C

M
MM

C
C

C

C

C

MM

C
C

M

C

E
C

E

C

C

C
C

G
C

C

E

G

C
G

M

M

E

C

G

C
M

G
G

C

GG

M

M

M

C

E

G

M

E

M
M

C

M

M

M

G
G

E

M

C

C

C

C

C

M

G

E

G

GG G
G

M
M

C

E

C

G

M

G

CC

G

M
M

G

G

C

M

M

M E

M

E

G

C

M

C

M

C

M

C

E

M
M

M

C
C

M

C

M

M

M

C CM

C

M

C

M

C

C

M

C
C

CM

G
G

M

MMC

C

M

M

C

G

M

M

C

G

M

M

G

G

M

GG

M

M

M

G

M

E

G

M

GC

G

C

M

C

G

M

C
C

G

C

MMMM
M

G
G

C
C

M
M

E

M

G
G

E

G

M
E

M

C

C
C

E

M

G

M

C

M

M

M C

G

E

G

E

G G

C

CG CC

G

G

MM

C

M

G

C

C

G

G

M E
M

E

C
EE

G

G

MM M

M

E

C

M

C

M

E

G

M

E

MM

E

E

E

M

M

M

M

M

G

M

E

M

M

M

G

M

M

C

E

C

G

MM

M
M

G

M

M

M

M

G

G
G

C
E

CM
CG

M

G

C

M

C

EM

G

C

C

MM

C

G

G

E

E

C

M

G

M

G

C

MM

M

C

M

G

MM

C

E

G

M

M

G

M

G

M

G

C

M

C
M

C

MM
M

G

C

E

M

G

MMMM

M

G

C C

G

E

C

C

G

M

G

CC

G

C

G

GG

M

M

G

MM
M
M

M

G

G

M

M
M

M
M

G

M

C

E

G

G

C

EC

M

E

G

G C

M

C

E

M

G

G

M

M

M

E

M
G G

C

M

MM

C

C

G

CCG

E

G

G

MM

Figure 6.6.5: Archetypes (green triangles) plotted against the entire 23K documents (left) and against documents,
categorically annotated of the RCV1 corpus (right). The landscape of 89 archetypal documents is clearly spread
across all four categories.

as shown in Figure 6.6.5. Analysing the archetypes identified, it is obvious that all 89 archetypes

are spread out across all the four core categories. Another interesting result is that the archetypes

also capture all the high-frequency terms denoting rare words present in the corpus (see Figure

6.6.6 (a and b)). Rare words are akin to the most informative words in a document and are given

by their inverse document frequency (IDF). Thus the identified archetypes can be seen as those

apex documents in the corpus meaningfully representing the core categories. Next, we plot the BIC

scores using Equation 6.9 for the different parsimonious models obtained for various values of κ (see

Figure 6.6.6 (c)). The BIC scores are computed by following the solution path of the Group-Lasso in

successive steps of κ. The scores of each model along with the corresponding number of archetypes

supporting that model are shown. We also plot the RSS curves obtained at these stepwise intervals

of κ. From the plot, it is clear that the RSS curve cannot be used for reliable model selection

since there is no prominent knee in the curve. On the other hand, the BIC curve clearly depicts a

minimum emphasising that automatic model selection made possible by the active-set algorithm of

Group-Lasso works well in reclaiming the unknown number of archetypal documents.

A word cloud 2 comprising the most informative words from amongst the 89 archetypal documents

is plotted in Figure 6.6.6 (d). The higher the IDF of rare words, the bigger the font it is depicted in

the word cloud. Next, the per category IDF is plotted in Figure 6.6.7 along with the corresponding

word clouds. Thus, one can use the archetype analysis method to further finegrain existing major

categories into their archetypal documents and also delineate news highlights or crucial topics per

category.

Archetypal compounds from amongst active chemical compounds. As a second real-

world example we use our model to identify archetypal compounds from a list of 456 active chemical

compounds which also includes all the 25 currently available anti-HIV drugs. The entire list of active

compounds is found at http://www.dtp.nci.nih.gov/docs/aids/aids_data.html.

We begin by first accessing the SMILES strings (Weininger, 1988) that encode the chemical

structure of the compounds. Using these strings, the chemical hashed fingerprints of compounds

2Word clouds are plotted using the R package wordcloud (Fellows, 2012).

118

http://www.dtp.nci.nih.gov/docs/aids/aids_data.html

IDF of all documents

IDF

F
re

qu
en

cy

0 2 4 6 8 10

0
50

00
10

00
0

15
00

0

(a)

IDF of archetypal documents

IDF

F
re

qu
en

cy

0 2 4 6 8 10
0

10
0

20
0

30
0

40
0

50
0

60
0

70
0

(b)

150 200 250 300 350 400

1.
9

2.
0

2.
1

2.
2

2.
3

kappa

B
IC

 s
co

re

90
10

0
11

0

nu
m

be
r

of
 a

rc
he

ty
pe

s

BIC

RSS

#(Archetypes)

(c)

tcholak
aug95

buckwheat
grest

blatentiou
si

nk
l

de
cl

laff ntc

li

baskettom lb en
t

florid

ll

(d)

Figure 6.6.6: Inverse Document Frequency (IDF) of (a) all documents and (b) archetype documents. The
archetype documents successfully capture the high-frequency terms present in the RCV1 corpus. (c) BIC scores
and number of archetypes plotted against different models obtained for various κ values. (d) Word cloud com-
prising informative words (tokens) in the 89 archetypal documents. The tokens comprise of stock market ticker
symbols or commodities procured.

119

Markets
IDF of MCAT archetypal documents

IDF

F
re

qu
en

cy

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0

aug95
buckwheat

maxm
kitan

jul96

au
g9

6

pirie ldn

nb

av
yld ultr

cn
b

dete

ib
i

ribalumin

bull

floor

Trade Markets

London (ldn)
Kitan (kitan - Israeli textile firm)
Relevé didentité bancaire (rib)
Port Pirie food market, AU (pirie)
Czech central bank (cnb)

Government
IDF of GCAT archetypal documents

IDF

F
re

qu
en

cy

0 2 4 6 8 10

0
10

0
20

0
30

0
40

0
50

0

tcholak
aug95

buckwheat

grest

milosv

sc
al

l

ju
l9

5

rory

lian

liu

li

intensif

st
on

re
al

is

edt

ill

al

Government

Slobodan Miloevi (milosv)
Zoe Tcholak (tcholak -
Carbon Disclosure Project, UK)

Economics
IDF of ECAT archetypal documents

IDF

F
re

qu
en

cy

0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

maxm
lorain

iou
sinkl

doorstop

ntc

le
xi

ng
to

n

cmie

wp

nca ons

sc
bhf

fii

verb

sr

costelhint bse

ll

Banks/Financial institutions

Office for National Statistics (ons)
Foreign Institutional Investor (fii)
Centre for Monitoring

Indian Economy (cmie)
Bombay Stock Exchange (bse)

Corporate

IDF of CCAT archetypal documents

IDF

F
re

qu
en

cy

0 2 4 6 8 10

0
50

10
0

15
0

20
0

25
0

30
0

aug95
buckwheat

lorain

kinkai

bayervb
seir

just

jd

dhl
dai

tnt

ca
cart

lu
x

ibmfimshor

sort

Corporate names

Shortel (shor)
IBM (ibm)
Fiat (fim)
Daimler AG (dai)
Bayer AG (bayer)
Carolina (cart)
Luxottica Group (lux)

Figure 6.6.7: IDF (left column), Word cloud (central column) and trending topics (right column) of archetypal doc-
uments per category: Markets, Government, Economics and Corporate. The word clouds denote the most impor-
tant words (tokens) constituting archetypal documents and are given by the rarity of the words obtained from the
IDF. The rarer the words are, the more information they contain and the bigger the font they are depicted in.
Here, the words having an IDF ≥ 4 are plotted.
Such dominating words can possibly be used to carve out trending topics or get an insight into words that con-
tribute highly to a particular category. The tokens are stock market ticker symbols (NASDAQ or NYSE), commodi-
ties procured or names of government officials.

120

Figure 6.6.8: The 456 active chemical compounds are annotated by the chemical classes they represent and
the 29 archetypal compounds found by our archetype analysis algorithm are denoted by N. It is evident that the
archetypal compounds neatly spread across all 456 compounds.

are computed. A pairwise similarity matrix S, the Tanimoto kernel, is constructed by the pairwise

Tanimoto association scores (Rogers and Tanimoto, 1960) between the compounds’ fingerprints. An

eigenvalue decomposition of S is performed with a projection onto a reduced-dimensional space to

obtain a reduced dataset with 456 drugs and 16 dimensions. Our Group-Lasso method is applied on

this dataset and extracts 29 archetypal compounds from amongst the 456 active compounds. The

resulting landscape of all 456 active compounds annotated by the chemical classes and the archetypes

are shown in Figure 6.6.8.

To analyse the archetypal compounds further, we look at how they explain any of the 25 currently-

available anti-HIV drugs. Depending on their mode of inhibiting HIV-1 viral infection and progres-

sion within the host, all currently active anti-HIV drugs are designated to any one of the functional

groups: “Nucleoside reverse transcriptase inhibitors (NRTI)”, “Non-nucleoside reverse transcriptase

inhibitors (NNRTI)”, “Protease inhibitors”, “Integrase inhibitors”, or “Entry inhibitors”. See also

Section 1.2.2. Drugs within a specific group are known to show almost the same resistance pro-

files (Johnson et al., 2010). For any anti-HIV drug amongst the available 25, we plot the most

influential archetypes based on similar, higher-valued archetypal weights. Figure 6.6.9 (a and b)

illustrate two different convex sets of currently-available anti-HIV drugs as archetypes and their

explaining archetypal compounds. Interestingly, from the figures, we see that some of the archetypal

compounds themselves represent anti-HIV drugs. For example in Figure 6.6.9 (a), the majority of

archetypal compounds are also anti-HIV drugs, all constituting the Protease Integrase family and

thereby sharing the same resistance profiles. This sharing of resistance profiles is very well reflected

by their grouping as archetypal compounds, that is seen in the similarity of archetypal weights, and

is also strickingly similar in their underlying chemical structures. The chemical structures of the

compounds are plotted using the R package rcdk (Guha (2007)). Medically, this grouping can be

very useful to predict HIV-1 cross-resistance depending on the location of the compound within this

121

(a)

(b)

Figure 6.6.9: Sets of most influential archetypal compounds shown with their chemical structures and correspond-
ing archetypal weights. Amongst these archetypal compounds, anti-HIV drugs have been identified. (a) One set
of explaining archetypes of which four are anti-HIV drugs namely, Amprenavir, Darunavir and Fosemprenavir and
Lopinavir, that constitute the Protease inhibitors group. (b) Another set of explaining archetypes of which three are
anti-HIV drugs namely, Saquinavir, Indinavir and Atazanavir, also from the Protease inhibitors group. The archety-
pal drugs identified in each set are known to exhibit similar resistance profiles and this grouping is well captured by
our method that makes use of chemical structural similarity in identifying archetypes. Another use of such a group-
ing can be that chemical compounds similar to archetypal drugs can be looked into further for antiretroviral drug
discovery studies.

approximate convex set. Such information could be used to benefit new drug discovery studies and

therapeutic protocols.

6.7 Conclusion

Archetype analysis involves the identification of representative objects from amongst a set of mul-

tivariate data such that the observations can be expressed as a noisy convex combination of these

representative objects. Conventional archetype analyses rely on RSS curves for model selection. In

high-noise settings, the curves tend to become uninformative due to no sudden change in the decay.

Another drawback is that these methods are also sensitive to the initialisation of archetypes at the

onset of the algorithm. If the dataset consists of some structure, then these methods have difficulties

in extracting the right archetypes.

In the current work, we address these problems through a Group-Lasso formulation together with

a well-defined criterion, BIC, for model selection. Further, the archetypes are initialised to all the

observations desensitising our method to archetype initialisation. With the usage of larger datasets,

122

this would require efficient methods, and we therefore use the Group-Lasso to enforce grouped

sparsity. Since the Group-Lasso solution ensemble can be sampled at discrete steps using a fast

active-set method, BIC can be computed stepwise for model selection, thereby effecting automatic

archetype identification. Model selection is experimentally shown to perform well even in high-noise

cases and also with structured data. Both the simulations and real-world experiments bring out the

proficiency of our Group-Lasso based archetype analysis method over conventional methods.

123

7
Conclusion and Future directions

In this concluding chapter, we summarise the 3 models presented in the thesis along with possible

extensions.

Facet I

HIV Haplotype Inference using a propagating Dirichlet Process Mixture Model.

The first facet of the thesis analyses the genetically-diverse HIV populations present in an infected

patient’s blood samples using Next-generation Sequencing (NGS) data. The data are shorter viral

strains called reads. Understanding genetic diversity is crucial for further insights into the evolu-

tion of drug-resistant viral lineage within an infected host, disease progression and for personalised

medication where drugs are prescribed to a patient based on his/her viral lineage. The puzzle is in

matching every read to its parent strain or haplotype. Given error-prone reads with limited lengths,

the main modelling challenge is that non-overlapping reads do not have any suitable a priori pairwise

similarity measure; this leads to a non-standard clustering problem. None of the previous approaches

have provided a convincing strategy to solve this issue. In this work we successfully overcome this

problem by introducing a propagating Dirichlet Process Mixture Model that adaptively chooses the

number of haplotypes. A Gibbs sampler is used for inferring the unknown haplotypes from the

error-prone reads. The model is computationally efficient and requires only a few input parameters.

From our results based on simulated reads we can see that the model’s performance is stable under

simulations conducted with varying diversities and read lengths. Experiments with real data also

confirmed the model’s performance.

124

Future outlook:

1. Looking ahead, specific regions of the HIV genome can be analysed such as fully-conserved

regions, mutation hotspots or ART-drug binding target sites. This would provide deeper

insights into these regions’ mechanisms towards evolution of drug-resistant mutants and aid

proactive drug design.

2. In terms of alignment, aligners could take into account frameshifts that in turn would reduce

the number of false haplotypes. Frameshifts are caused by insertions or deletions of 1 or 2 bases

that shift the reading frame and disturb the amino-acid triplet encoding. Currently, frameshifts

are ignored while aligning reads to a reference genome. Frameshift detectors for metagenomes

(such as MetaGeneTack (Tang et al. (2013))) can be used to provide prior information to

aligners.

3. There are challenges involved in the handling of huge amounts of data churned out by NGS

platforms and these are paving the way for wide-scale cloud computing (Schadt et al. (2010))

and Big Data initiatives (Har (2012), Golden et al. (2013), Lewis et al. (2013)).

Facet II

The second facet of the thesis takes the initial steps to identify similarity patterns between anti-

HIV drugs and active chemical compounds. At present there are only 25 commercialised anti-HIV

drugs spread over 5 functional groups based on the drug’s mode of viral attack. When a viral

lineage becomes resistant to a particular drug, it tends to show resistance to other drugs in the same

drug group, a property called cross-resistance, thus limiting drastically the number of available

drugs for prescription. This situation demands proactive drug development and thus, an indepth

understanding of similarities between the current drugs and active chemical compounds is necessary.

This is done by examining a landscape of active chemical compounds that also contains the drugs.

With respect to this, we have developed two models in the thesis:

TiWnet – network inference. We develop a fully probabilistic approach, Translation-

invariant Wishart network (TiWnet), to infer networks from pairwise Euclidean distances obtained

from kernel matrices of n objects. Traditional models (Lasso-type methods), are based on the cen-

tral Wishart likelihood parametrised by the inverse covariance and sparsity of the latter is usually

enforced by some penalty term. Assuming a central Wishart, however, is equivalent to assuming

that the origin of the coordinate system is known. If these methods use on input only kernel ma-

trices, they would rely on an assumed origin for any such kernel rather than the relevant pairwise

distance information of the kernel. This might lead to biased networks. The method we developed

is specifically designed to work with pairwise distances since the likelihood depends only on these

distances. Combining this likelihood with a prior suited for sparse network recovery, we are able

to extract sparse networks using only pairwise distances. Network inference can now be carried

out on any such distance matrix induced by a Mercer kernel on graphs, probability distributions

or more complex structures. We also present an efficient MCMC sampler for TiWnet making it

applicable to medium-size instances. For further higher-node cardinalities, we show the possibility

125

of inferring module networks using kernels defined on probability distributions over groups of nodes.

Comparisons with competing methods demonstrate the high quality of networks obtained from Ti-

Wnet. Given a set of chemical compounds which also includes anti-HIV drugs, we construct kernels

using the SMILES string encodings of the compounds. The network extracted using the kernels can

be used to read out cross resistance properties shared amongst compounds from different chemical

classes and drugs’ functional groups.

Future outlook:

1. We can consider deploying pairwise distance data into the regression-based neighbourhood-

selection method of Meinhausen and Bühlmann (2006) for network recovery. For this, there

would be n independent regression models, one each to find the neighbourhood for every node.

The translation-invariant Wishart likelihood is used and regularised with the `1 penalty.

2. Conditional covariance selection has been presented in Kolar et al. (2010a) where the neigh-

bourhoods of nodes are conditioned on a random variable that holds information about the

associations between nodes. The problem was cast as a logistic regression model with a `1,2

penalty. We can extend TiWnet for estimating such a conditional covariance matrix. For this,

we look at the weighted RSS problem which is (X ′β − y)tdiag(K)(X ′β − y) where K has the

weights on its diagonal. These weights can be regarded as the values the conditioning random

variable takes. The similarity kernel is given by Sweighted = sqrt(diag(K))XXtsqrt(diag(K))

which can be used to compute pairwise distances needed for TiWnet.

3. In TiWnet, we use a prior similar to the spike and slab prior of Mitchell and Beauchamp (1988).

A new class of priors over covariance matrices that parametrises the partial autocorrelations

is studied in Daniels and Pourahmadi (2009). Such a prior can be devised for TiWnet that

induces a marginal uniform prior allowing values between (−1, 1) on the entries of a covariance

matrix.

4. We are yet to provide the necessary and sufficient conditions for consistent sparse network

recovery using TiWnet.

5. For an extremely large number of nodes, variational approximations methods can be explored

for model speed-up (Jordan et al., 1999).

Automatic Archetype Analysis. Archetype analysis involves the identification of represen-

tative objects from amongst a set of multivariate data such that the observations can be expressed

as a noisy convex combination of these representative objects. Conventional archetype analyses rely

on RSS decay curves for model selection, which in high-noise settings tend to break down due to no

prominent knee region. Another drawback is that these methods are sensitive to the initialisation

of archetypes at the onset of the algorithm. This is crucial for a dataset having a structure like

clusters of convex sets, where these methods have difficulties in extracting the right archetypes. In

the current work, we address these problems through a Group-Lasso formulation together with a

well-defined criterion, BIC, for model selection. Further, the archetypes are initialised to all the

observations desensitising our method to archetype initialisation. Since the usage of larger datasets

requires efficient methods, we use the Group-Lasso to enforce grouped sparsity. The Group-Lasso

126

solution ensemble can be sampled at discrete steps using a fast active-set method allowing BIC com-

putation stepwise for model selection, thereby effecting automatic archetype identification. Model

selection is experimentally shown to perform well even in high-noise cases and also with structured

data. The method is applied to extract archetypes from a set of active chemical compounds including

anti-HIV drugs. From the resulting set of archetypal compounds, one can draw deeper insights into

the functional similarities that can be shared between archetypal drugs and their explaining set of

compounds.

Future outlook:

1. One extension would be to amplify the domain scope of archetype analysis. We could apply our

Group-Lasso based method on datasets used in, for example, phenotypic data analysis (Shoval

et al. (2012)), galaxy spectra studies (Chan et al. (2003)) or consumer-behaviour studies (Li

et al. (2003)) and verify existing results.

2. Since we have only empirically observed our model’s performance in high noise settings, the

next step is to provide theoretical justifications for the same.

127

8
Appendix

8.1 Appendix: Networks extracted using graph lasso

128

1

2

3

4

5

6

7

8

9
10

11 12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41

42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74
75

76

77

78

79

80

81

82

83

84

85

86

Figure 8.1.1: Network of chemical anti-HIV compounds inferred by graph lasso method (Friedman et al., 2007,
2009) with a small `1 penalty.

129

1

2
3

4

5

6

7

8

9

10

11

12

13

1415

16

17

18

19

20

21

22

23

24

25

26

27

28

29

30

31

32

33

34

35

36
37

38

39

40

41

42

43

44

45

46

47

48
49

50

51

52

53

54

55

56 57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Figure 8.1.2: Network of chemical anti-HIV compounds inferred by graph lasso method (Friedman et al., 2007,
2009) with a medium-sized `1 penalty.

130

1

2

3

4

5

6

7

8

9

10

11

12
13

14

15

16

17

18

19

20

21
22

23

24

25

26

27

28

29

30

31

32

33

34

35

36

37

38

39

40

41
42

43

44

45

46

47

48

49

50

51

52

53

54

55

56
57

58

59

60

61

62

63

64

65

66

67

68

69

70

71

72

73

74

75

76

77

78

79

80

81

82

83

84

85

86

Figure 8.1.3: Network of chemical anti-HIV compounds inferred by graph lasso method (Friedman et al., 2007,
2009) with a large `1 penalty.

131

Figure 8.2.1: Lasso estimate profiles for the diabetes data X442×10. When τ = 1 (i.e. log (τ) = 0), 3 features
enter the model. When τ = 0 (i.e. log (τ) = −∞), all the coefficients β̂ have non-zero values and thus all the
features are also active.

8.2 Appendix: Primer to Group Lasso

Consider a response vector y ∈ Rd and a feature (predictor) matrix X ∈ Rn×d where X =

(x1, · · · ,xn)
′ and each feature xi = (xi1, · · · , xid) ∈ Rd is placed as a row in X. We assume

that y and X are centred i.e. mean = 0. The standard linear regression problem can be stated as:

minβ ‖(y −X ′β)‖22 (8.1)

where ‖ · ‖2 denotes the `2 norm of a vector, β ∈ Rn are the weights associated with each feature

xi i.e. β = (β1, · · · , βn)′. When the number of features n is much greater than the dimension d,

Equation 8.1 fails. As a workaround, the Least absolute shrinkage and selection operator (Lasso)

was introduced in Tibshirani (1996) or basis pursuit in signal processing by Chen et al. (1998) which

regularised Equation 8.1 using a `1 penalty norm as follows (Knight and Fu, 2000):

β̂ = argmin{‖y −X ′β‖22 + τ︸︷︷︸
≥ 0

‖β‖1︸ ︷︷ ︸∑n
j=1 |βj |

} (8.2)

In the Lasso estimator, the degree of sparsity is controlled indirectly via the penalty weight τ . For τ

= 0, the full linear regression model is employed, whereas increasingly many features are deleted from

the model as τ →∞. This can be seen in Figure 8.2.1 where Lasso estimate profiles (β̂) are provided

for the diabetes data set X442×10 (used in Efron et al. (2004)). When τ = 0 (i.e. log (τ) = −∞),

all the βs are active and the model corresponds to the standard linear regression problem. As

τ increases, the βs are gradually zeroed out one by one, thereby dropping out the corresponding

features from the model. Thus, the `1 penalty norm encourages sparsity in the Lasso estimate β̂ i.e.

the solution returned consists of certain non-zero entries in β which allow only those corresponding

132

Figure 8.2.2: Group-Lasso estimate profiles for the diabetes data X442×10, assuming 2 groups of features. When
τ = 1 (i.e. log (τ) = 0), the blue group of features is active whereas the red group is inactive. As τ decreases
further, both the groups are active and likewise all the features are also active.

features (or rows) to be selected in X.

As seen, in Lasso the features are selected individually. If the features have a grouped structure,

then it is practically meaningful to identify important groups (factors/subsets) than individual fea-

tures (Yuan and Lin (2006)). For example, consider X to be divided into F factors (groups) with df ,

the number of elements in the f th factor i.e. X = [X ′
1, · · · , X ′

F]
′ where Xf ∈ Rdf×d for f = 1, · · · , F

and
∑F

j=1 df = n. Xf is orthonormalised1 i.e. XfX
′
f = Idf for f = 1, · · · , F . When df = 1, there is

no grouped structure in the feature space and the setup is exactly the same as for the Lasso case. To

be able to select groups of features, Yuan and Lin (2006) proposed the Group-Lasso, by penalising

the grouped coefficients in a manner similar to Lasso. Here, they use a `1,2 penalty norm over the

grouped coefficients. The convex optimisation problem being solved here to get the Group-Lasso

estimates β̂ is as follows:

β̂ = argmin{||y −
F∑

f=1

X ′
fβf ||22 + τ︸︷︷︸

≥ 0

F∑
f=1

‖βf‖2︸ ︷︷ ︸
`1,2 norm

} (8.3)

The Group-Lasso penalty is a sum (`1-norm) over the `2-norms of the coefficient vectors βf pertaining

to groups of features and this induces sparsity at the group level. Here β = (β′
1, · · · , β′

F)
′ and each

βf ∈ Rdf , f = 1, · · · , F . Figure 8.2.2 gives the Group-Lasso estimate profiles for the same diabetes

data X442×10 as used in Lasso, this time grouping the 10 features into 2 groups. As log(τ) = 1, none

of the groups are active. As log(τ) decreases, groups of coefficients become active - first the blue

group of 5 features and subsequently the red group with the remaining 5 features - and likewise the

corresponding grouped features make their way into the regression model.

1The condition is further relaxed for non-orthonormal matrices: sparse group lasso (Simon et al. (2013)).

133

References

Interpreting DNA sequence. URL http://delliss.people.cofc.edu/virtuallabbook/

LabReadings/Interpreting_DNA_SequenceREV.pdf.

What is a chromatogram. URL http://www.dnabaser.com/help/samples/what%20is%20a%

20chromatogram.html.

Mosaik – The MarthLab. URL https://github.com/wanpinglee/MOSAIK/wiki/QuickStart.

WordNet Search – 3.1. URL http://wordnetweb.princeton.edu/perl/webwn?s=virulence.

454 glossary. 1996. URL http://www.454.com/glossary.

454 sequencing. 2007. URL http://www.454.com/downloads/news-events/

how-genome-sequencing-is-done_FINAL.pdf.

SNP-vs-SNP. 2009. URL http://www.politigenomics.com/2009/07/snp-vs-snp.html.

NATIONAL HIV/AIDS STRATEGY FOR THE UNITED STATES. 2010. URL http://aids.

gov/federal-resources/national-hiv-aids-strategy/nhas.pdf.

HIV Drug resistance fact sheet. 2011. URL http://www.who.int/hiv/facts/drug_resistance/

en/.

AIDS map, 2012. URL http://www.aidsmap.com/v634738045080000000/file/1052204/AHD_

2012_Web.pdf.

Harvard School of Public Health - The promise of Big Data. 2012. URL http://www.hsph.harvard.

edu/news/magazine/spr12-big-data-tb-health-costs/.

HIV and AIDS. 2012. URL http://www.nhs.uk/conditions/hiv/pages/introduction.aspx.

Drug Information - HIV AIDS Drugs - HIV medication, 2013. URL http://www.aidsmeds.com/

list.shtml.

Amplicon Wikipedia, 2013. URL http://en.wikipedia.org/wiki/Amplicon.

Centers for Disease Control and Prevention - Prevention Benefits of HIV Treatment, 2013. URL
http://www.cdc.gov/hiv/prevention/research/tap/.

What is HIV Antiretroviral treatment? | Foundcare, 2013. URL http://www.foundcare.org/

HIV-Antiretroviral-Treatment.

HIV/AIDS Antiretroviral Drugs Classes, 2013. URL http://www.niaid.nih.gov/topics/

HIVAIDS/Understanding/Treatment/pages/arvdrugclasses.aspx.

Primer Wikipedia, 2013. URL http://en.wikipedia.org/wiki/Primer_%28molecular_biology%

29.

Genevera I. Allen and Robert Tibshirani. Transposable regularized covariance models with an
application to missing data imputation. The Annals of Applied Statistics, 4(2):764–790, 2010.

134

http://delliss.people.cofc.edu/virtuallabbook/LabReadings/Interpreting_DNA_SequenceREV.pdf
http://delliss.people.cofc.edu/virtuallabbook/LabReadings/Interpreting_DNA_SequenceREV.pdf
http://www.dnabaser.com/help/samples/what%20is%20a%20chromatogram.html
http://www.dnabaser.com/help/samples/what%20is%20a%20chromatogram.html
https://github.com/wanpinglee/MOSAIK/wiki/QuickStart
http://wordnetweb.princeton.edu/perl/webwn?s=virulence
http://www.454.com/glossary
http://www.454.com/downloads/news-events/how-genome-sequencing-is-done_FINAL.pdf
http://www.454.com/downloads/news-events/how-genome-sequencing-is-done_FINAL.pdf
http://www.politigenomics.com/2009/07/snp-vs-snp.html
http://aids.gov/federal-resources/national-hiv-aids-strategy/nhas.pdf
http://aids.gov/federal-resources/national-hiv-aids-strategy/nhas.pdf
http://www.who.int/hiv/facts/drug_resistance/en/
http://www.who.int/hiv/facts/drug_resistance/en/
http://www.aidsmap.com/v634738045080000000/file/1052204/AHD_2012_Web.pdf
http://www.aidsmap.com/v634738045080000000/file/1052204/AHD_2012_Web.pdf
http://www.hsph.harvard.edu/news/magazine/spr12-big-data-tb-health-costs/
http://www.hsph.harvard.edu/news/magazine/spr12-big-data-tb-health-costs/
http://www.nhs.uk/conditions/hiv/pages/introduction.aspx
http://www.aidsmeds.com/list.shtml
http://www.aidsmeds.com/list.shtml
http://en.wikipedia.org/wiki/Amplicon
http://www.cdc.gov/hiv/prevention/research/tap/
http://www.foundcare.org/HIV-Antiretroviral-Treatment
http://www.foundcare.org/HIV-Antiretroviral-Treatment
http://www.niaid.nih.gov/topics/HIVAIDS/Understanding/Treatment/pages/arvdrugclasses.aspx
http://www.niaid.nih.gov/topics/HIVAIDS/Understanding/Treatment/pages/arvdrugclasses.aspx
http://en.wikipedia.org/wiki/Primer_%28molecular_biology%29
http://en.wikipedia.org/wiki/Primer_%28molecular_biology%29

Andre Altmann, Peter Weber, Carina Quast, Monika Rex-Haffner, Elisabeth B. Binder, and Bertram
Müller-Myhsok. vipR: variant identification in pooled DNA using R. Bioinformatics (Oxford,
England), 27(13):i77–i84, 2011.

Animashree Anandkumar, Vincent Tan, and Alan S. Willsky. High-Dimensional Graphical Model
Selection: Tractable Graph Families and Necessary Conditions. Advances in Neural Information
Processing Systems 24, pages 1863–1871, 2011.

Michael Ashburner, Catherine A. Ball, Judith. A. Blake, David Botstein, Heather Butler, J. Michael
Cherry, Allan P. Davis, Kara Dolinski, Selina S. Dwight, Janan T. Eppig, Midori A. Harris,
David P. Hill, Laurie Issel-Tarver, Andrew Kasarskis, Suzanna Lewis, John C. Matese, Joel E.
Richardson, Martin Ringwald, Gerald M. Rubin, and Gavin Sherlock. Gene ontology: tool for the
unification of biology. The Gene Ontology Consortium. Nature genetics, 25(1):25–29, 2000.

Irina Astrovskaya, Bassam Tork, Serghei Mangul, Kelly Westbrooks, Ion I. Mandoiu, Peter Balfe,
and Alex Zelikovsky. Inferring viral quasispecies spectra from 454 pyrosequencing reads. BMC
Bioinformatics, 12(S-6):S1, 2011.

Jean-Marc Aury, Corinne Cruaud, Valérie Barbe, Odile Rogier, Sophie Mangenot, Gaelle Samson,
Julie Poulain, Véronique Anthouard, Claude Scarpelli, François Artiguenave, and Patrick Wincker.
High quality draft sequences for prokaryotic genomes using a mix of new sequencing technologies.
BMC Genomics, 9(1):603+, 2008.

Onureena Banerjee, Laurent El Ghaoui, and Alexandre d’Aspremont. Model Selection Through
Sparse Maximum Likelihood Estimation for Multivariate Gaussian or Binary Data. Journal of
Machine Learning Research, 9:485–516, 2008.

Daniel Barthel, Jonathan D. Hirst, Jacek Blazewicz, Edmund K. Burke, and Natalio Krasnogor.
ProCKSI: a decision support system for Protein (Structure) Comparison, Knowledge, Similarity
and Information. BMC Bioinformatics, 8(416):3250–3264, 2007.

Robert G. Bartle and Donald R. Sherbert. Introduction to real analysis. John Wiley & Sons Canada,
Limited, 2000.

Christian Bauckhage and Christian Thurau. Making Archetypal Analysis Practical. In Proceedings
of the 31st DAGM Symposium on Pattern Recognition, pages 272–281, 2009.

Niko Beerenwinkel. HIV-1 whole-genome quasispecies analysis by ultra-deep sequencing and compu-
tational haplotype inference to determine the mechanisms of drug resistance development. Swiss
National Science Foundation proposal form, 2009.

Niko Beerenwinkel and Osvaldo Zagordi. Ultra-deep sequencing for the analysis of viral populations.
Current Opinion in Virology, 1(5):413–418, 2011.

Niko Beerenwinkel, Huldrych Günthard, Volker Roth, and Karin Metzner. Challenges and oppor-
tunities in estimating viral genetic diversity from next-generation sequencing data. Frontiers in
Microbiology, 3:329+, 2012a.

Niko Beerenwinkel, Karin J. Metzner, and Volker Roth. Tutorial: Inferring Genetic Diversity from
Next-generation Sequencing Data: Computational Methods and Biomedical Applications. Euro-
pean Conference on Computational Biology, 2012b. URL http://www.eccb12.org/t4.

Mohamed-Ali Belabbas and Patrick J. Wolfe. Fast low-rank approximation for covariance matrices.
In IEEE Workshop on Computational Advances in Multi-Sensor Processing, pages 293–296, 2007.

James O. Berger, Brunero Liseo, and Robert L. Wolpert. Integrated likelihood methods for elimi-
nating nuisance parameters. Statistical Science, 14(1):1–28, 1999.

135

http://www.eccb12.org/t4

Dimitri P. Bertsekas. Nonlinear Programming. Athena Scientific, 1995.

Peter J. Bickel and Elizaveta Levina. Covariance regularization by thresholding. The Annals of
Statistics, 36:2577–2604, 2008.

David. Blackwell and James. B. Macqueen. Ferguson distributions via Pólya urn schemes. The
Annals of Statistics, 1:353–355, 1973.

David M. Blei and Michael I. Jordan. Variational Methods for the Dirichlet Process. In Carla E.
Brodley, editor, Proceedings of the International Conference on Machine learning (ICML), vol-
ume 69 of ACM International Conference Proceeding Series. ACM, 2004.

Sebastian Bonhoeffer and Martin A. Nowak. Pre-Existence and Emergence of Drug Resistance in
HIV-1 Infection. Proceedings: Biological Sciences, 264(1382):631–637, 1997.

Stephen Boyd and Lieven Vandenberghe. Convex Optimization. Cambridge University Press, 2004.

Leo Breiman. Better Subset Regression Using the Nonnegative Garrote. Technometrics, 37(4), 1995.

Wray Buntine and Marcus Hutter. A Bayesian Review of the Poisson-Dirichlet Process, 2010. URL
http://arxiv.org/abs/1007.0296.

Frederic D. Bushman, Gary J. Nabel, and Ronald Swanstrom. HIV: From Biology to Prevention and
Treatment. Cold Spring Harbor Perspectives in medicine. Cold Spring Harbor Laboratory Press,
2012. ISBN 9781936113408.

Carlos M. Carvalho and Mike West. Dynamic matrix-variate graphical models. Bayesian Analysis,
2(1):69–97, 2007.

George Casella and Edward I. George. Explaining the Gibbs Sampler. The American Statistician,
46(3):167–174, 1992.

Ben H. P. Chan, Daniel A. Mitchell, and Lawrence E. Cram. Archetypal analysis of galaxy spectra.
Monthly Notices of the Royal Astronomical Society, 338(3):790–795, 2003. ISSN 1365-2966.

Scott Shaobing Chen, David L. Donoho, Michael, and A. Saunders. Atomic decomposition by basis
pursuit. SIAM Journal on Scientific Computing, 20:33–61, 1998.

John M. Coffin and Harold E. Varmus. Etiologic Agents. Retroviruses, 1997.

Anamaria Crisan, Rodrigo Goya, Gavin Ha, Jiarui Ding, Leah M. Prentice, Arusha Oloumi, Janine
Senz, Thomas Zeng, Kane Tse, Allen Delaney, Marco A. Marra, David G. Huntsman, Martin
Hirst, Sam Aparicio, and Sohrab Shah. Mutation Discovery in Regions of Segmental Cancer
Genome Amplifications with CoNAn-SNV: A Mixture Model for Next Generation Sequencing of
Tumors. PLoS ONE, 7(8):e41551, 08 2012.

Nello Cristianini and John Shawe-Taylor. An Introduction to Support Vector Machines. Cambridge
University Press, Cambridge, UK, 2000.

Adele Cutler and Leo Breiman. Archetypal Analysis. Technometrics, pages 338–347, 1994.

Michael J. Daniels and Mohsen Pourahmadi. Modeling covariance matrices via partial autocorrela-
tions. Journal of Multivariate Analysis, 100(10):2352–2363, 2009.

Alexandre d’Aspremont, Onureena Banerjee, and Laurent El Ghaoui. First-Order Methods for
Sparse Covariance Selection. SIAM Journal on Matrix Analysis and Applications., 30(1):56–66,
2008.

136

http://arxiv.org/abs/1007.0296

Easley David and Kleinberg Jon. Networks, Crowds, and Markets: Reasoning About a Highly Con-
nected World. Cambridge University Press, New York, NY, USA, 2010.

Arthur P. Dempster. Covariance Selection. Biometrika, 28:157–175, 1972.

Aarti N. Desai and Abhay Jere. Next-generation sequencing: ready for the clinics? Clinical Genetics,
81(6):503–510, 2012.

José A. Dı́az-Garćıa, Ramón Gutierrez Jáimez, and Kanti V Mardia. Wishart and Pseudo-Wishart
distributions and some applications to shape theory. Journal of Multivariate Analysis, 63:73–87,
1997.

Esteban Domingo and John. J. Holland. RNA VIRUS MUTATIONS AND FITNESS FOR SUR-
VIVAL. Annual Review of Microbiology, 51(1):151–178, 1997.

Esteban Domingo and C. Perales. From Quasispecies Theory to Viral Quasispecies: How Complexity
has Permeated Virology. Mathematical Modelling of Natural Phenomena, 7:105–122, 1 2012. ISSN
1760-6101.

Esteban Domingo, Donna Sabo, Tadatsugu Taniguchi, and Charles Weissmann. Nucleotide sequence
heterogeneity of an RNA phage population. Cell, 13(4):735–744, 1978.

Marcus Droege and Brendon Hill. The Genome Sequencer FLX System – Longer reads, more appli-
cations, straight forward bioinformatics and more complete data sets. Journal of Biotechnology,
136(12):3–10, 2008.

Richard Durbin, Sean Eddy, Anders Krogh, and Graeme Mitchison. Biological sequence analysis:
probabilistic models of proteins and nucleic acids. Cambridge University Press. 1998.

Richard L. Dykstra. Establishing the Positive Definiteness of the Sample Covariance Matrix. The
Annals of Mathematical Statistics, 41:2153–2154, 1970.

Bradley Efron, Trevor Hastie, Iain Johnstone, and Robert Tibshirani. Least angle regression. The
Annals of statistics, 32(2):407–499, 2004.

Manfred Eigen. Self-organization of matter and the evolution of biological macromolecules. Natur-
wissenschaften, 58:465–523, 1971.

Manfred Eigen. New concepts for dealing with the evolution of nucleic acids. Cold Spring Harbor
Symposia on Quantitative Biology, 52:307–319, 1987.

Manfred Eigen. The origin of genetic information: viruses as models. Gene, 135(1-2):37–47, 1993.

Manfred Eigen. On the nature of virus quasispecies. Trends Microbiol, 4(6):216–218, 1996.

Manfred Eigen and Peter Schuster. The Hypercycle. A Principle of Natural Self-Organisation. Part
A: Emergence of the Hypercycle. Naturwissenschaften, 64(11):541–565, 1977.

Manfred Eigen and R. Winkler. Steps towards life: a perspective on evolution. Stufen zum Leben.
Oxford University Press, Incorporated, 1992.

Manfred Eigen, John McCaskill, and Peter Schuster. Molecular quasi-species. The Journal of
Physical Chemistry, 92(24):6881–6891, 1988.

Adam C. English, Stephen Richards, Yi Han, Min Wang, Vanesa Vee, Jiaxin Qu, Xiang Qin,
Donna M. Muzny, Jeffrey G. Reid, Kim C. Worley, and Richard A. Gibbs. Mind the Gap: Upgrad-
ing Genomes with Pacific Biosciences RS Long-Read Sequencing Technology - slides. PLoS ONE,
7(11):e47768, 11 2012. URL http://pacb.com/pdf/Poster_Upgrading_Reference_Genomes_

PacBio_RS_Long_Read.pdf.

137

http://pacb.com/pdf/Poster_Upgrading_Reference_Genomes_PacBio_RS_Long_Read.pdf
http://pacb.com/pdf/Poster_Upgrading_Reference_Genomes_PacBio_RS_Long_Read.pdf

Paul Erds and Alfréd Rényi. On the Evolution of Random Graphs. In PUBLICATION OF THE
MATHEMATICAL INSTITUTE OF THE HUNGARIAN ACADEMY OF SCIENCES, pages
17–61, 1960.

Nicholas Eriksson, Lior Pachter, Yumi Mitsuya, Soo-Yon Rhee, Chunlin Wang, Baback Gharizadeh,
Mostafa Ronaghi, Robert W. Shafer, and Niko Beerenwinkel. Viral population estimation using
pyrosequencing. PLoS Computational Biology, 4(5):e1000074, 2008.

Michael D. Escobar and Mike West. Bayesian Density Estimation and Inference Using Mixtures.
Journal of the American Statistical Association, 90:577–588, 1994.

Manuel J. A. Eugster and Friedrich Leisch. Weighted and robust archetypal analysis. Computational
Statistics and Data Analysis, 55(3):1215–1225, 2011.

Brian Sidney Everitt and David J. Hand. In Finite Mixture Distributions, Monographs on Applied
Probability and Statistics, pages 1–143. Chapman and Hall, 1981.

Warren J. Ewens. The sampling theory of selectively neutral alleles. Theoretical Population Biology,
3(1):87–112, 1972.

Brent Ewing and Phil Green. Base-calling of automated sequencer traces using phred. II. Error
probabilities. Genome Research. Genome Research, 8:175–185, 1998.

Ian Fellows. Wordcloud. http://cran.r-project.org/web/packages/wordcloud, 2012.

Thomas S. Ferguson. A Bayesian Analysis of Some Nonparametric Problems. The Annals of Statis-
tics, 1(2):209–230, 1973.

Thomas S. Ferguson. Prior Distributions on Spaces of Probability Measures. The Annals of Statistics,
2(4):615–629, 1974.

Francesca Finotello, Enrico Lavezzo, Paolo Fontana, Denis Peruzzo, Alessandro Albiero, Luisa Bar-
zon, Marco Falda, Barbara Di Camillo, and Stefano Toppo. Comparative analysis of algorithms
for whole-genome assembly of pyrosequencing data. Briefings in Bioinformatics, 13(3):269–280,
2012.

Alan F. Fleming. Opportunistic infections in AIDS in developed and developing countries. Trans-
actions of the Royal Society of Tropical Medicine and Hygiene, 84(1):1–6, 1990.

David A. Freedman. On the Asymptotic Behavior of Bayes’ Estimates in the Discrete Case. The
Annals of Mathematical Statistics, 34(4):1386–1403, 1963.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. Sparse inverse covariance estimation with
the graphical lasso. Biostatistics, 9:432–441, 2007.

Jerome Friedman, Trevor Hastie, and Robert Tibshirani. glasso: Graphical lasso - estimation of
Gaussian graphical models. R package version 1.4, 2009.

Bela A. Frigyik, Amol Kapila, and Maya R. Gupta. Introduction to the Dirichlet Distribution and
Related Processes. Technical Report 206, 2010.

Alan E. Gelfand and Athanasios Kottas. A computational approach for full nonparametric Bayesian
inference under Dirichlet process mixture models. Journal of Computational and Graphical Statis-
tics, 11:289–305, 2002.

Stuart Geman and Donald Geman. Stochastic relaxation, Gibbs distributions, and the Bayesian
restoration of images. IEEE Transactions on Pattern Analysis and Machine Intelligence, 6:721–
741, 1984.

138

Moritz Gerstung, Christian Beisel, Markus Rechsteiner, Peter Wild, Peter Schraml, Holger Moch,
and Niko Beerenwinkel. Reliable detection of subclonal single-nucleotide variants in tumour cell
populations. Nature Communications, page 811, 2012.

Subhashis Ghosal. The Dirichlet Process, Related Priors, and Posterior Asymptotics. In Nils Lid
Hjort, Chris Holmes, Peter Müller, and Stephen G. Walker, editors, Bayesian Nonparametrics.
Cambridge University Press, 2010.

Andre Gilles, Emese Meglecz, Nicolas Pech, Stephanie Ferreira, Thibaut Malausa, and Jean F. Mar-
tin. Accuracy and quality assessment of 454 GS-FLX Titanium pyrosequencing. BMC Genomics,
12(1):245+, 2011.

Aaron Golden, S. Djorgovski, and John Greally. Astrogenomics: big data, old problems, old solu-
tions? Genome Biology, 14(8):129+, 2013.

Rajarshi Guha. Chemical Informatics Functionality in R. Journal of Statistical Software, 18(6),
2007.

Arjun K. Gupta and Daya K. Nagar. Matrix Variate Distributions. Chapman and Hall/CRC ISBN
978-1584880462, 1999.

Bradley R Hacker and Philip B Gans. Continental collisions and the creation of ultrahigh-pressure
terranes: Petrology and thermochronology of nappes in the central Scandinavian Caledonides.
Geological Society of America Bulletin, 117(1-2):117–134, 2005.

Nancy F. Hansen, Jared J. Gartner, Lan Mei, Yardena Samuels, and James C. Mullikin. Shimmer:
detection of genetic alterations in tumors using next-generation sequence data. Bioinformatics,
29(12):1498–1503, 2013.

David A. Harville. Bayesian Inference for Variance Components Using Only Error Contrasts.
Biometrika, 61(2):383–385, 1974.

Trevor Hastie, Jonathan Taylor, Robert Tibshirani, and Guenther Walther. Forward Stagewise
Regression and the Monotone Lasso. Electronic Journal of Statistics, 1:1–29, 2007.

Charlotte Hedskog, Mattias Mild, Johanna Jernberg, Ellen Sherwood, Göran Bratt, Thomas Leitner,
Joakim Lundeberg, Björn Andersson, and Jan Albert. Dynamics of HIV-1 Quasispecies during
Antiviral Treatment Dissected Using Ultra-Deep Pyrosequencing. PLoS ONE, 5(7):e11345+, 2010.

Martin Henk, Jürgen Richter-Gebert, and Günter M Ziegler. Basic Properties Of Convex Polytopes.
In Handbook of discrete and computational geometry, Chapter 13, pages 243–270. CRC Press,
Boca, 1997.

Martin S. Hirsch, Huldrych F. Günthard, Jonathan M. Schapiro, Françoise Brun Vézinet, Bonaven-
tura Clotet, Scott M. Hammer, Victoria A. Johnson, Daniel R. Kuritzkes, John W. Mellors,
Deenan Pillay, Patrick G. Yeni, Donna M. Jacobsen, and Douglas D. Richman. Antiretroviral
Drug Resistance Testing in Adult HIV-1 Infection: 2008 Recommendations of an International
AIDS Society-USA Panel. Clinical Infectious Diseases, 47(2):266–285, 2008.

Steve Hoffmann, Christian Otto, Stefan Kurtz, Cynthia M. Sharma, Philipp Khaitovich, Jörg Vogel,
Peter F. Stadler, and Jörg Hackermüller. Fast Mapping of Short Sequences with Mismatches,
Insertions and Deletions Using Index Structures. PLoS Computational Biology, 5(9):e1000502,
2009.

Myles Hollander and Douglas A. Wolfe. Nonparametric Statistical Methods, 2nd Edition. Wiley-
Interscience, 1999.

139

T. Déirdre Hollingsworth, Roy M. Anderson, and Christophe Fraser. HIV-1 Transmission, by
Stage of Infection. Journal of Infectious Diseases, 198(5):687–693, 2008. URL http://jid.

oxfordjournals.org/content/198/5/687.abstract.

Austin Huang, Rami Kantor, Allison DeLong, Leeann Schreier, and Sorin Istrail. QColors: An
algorithm for conservative viral quasispecies reconstruction from short and non-contiguous next
generation sequencing reads. In BIBM Workshops, pages 130–136, 2011.

Peter Huggins, Lior Pachter, and Bernd Sturmfels. Toward the Human Genotope. Bulletin of
Mathematical Biology, 69:2723–2735, 2007. ISSN 0092-8240.

Hemant Ishwaran and Lancelot F. James. Gibbs Sampling Methods for Stick-Breaking Priors.
Journal of the American Statistical Association, 96:161–173, 2001.

Hemant Ishwaran and Mahmoud Zarepour. Exact and approximate sum representations for the
Dirichlet process. Canadian Journal of Statistics, 30(2):269–283, 2002.

Tony Jebara, Risi Kondor, and Andrew Howard. Probability Product Kernels. Journal of Machine
Learning Research, 5:819–844, 2004.

Gareth M. Jenkins, Michael Worobey, Christopher H. Woelk, and Edward C. Holmes. Evidence for
the Non-quasispecies Evolution of RNA Viruses. Molecular Biology and Evolution, 18(6):987–994,
2001.

Harry Joe. Families of m-variate distributions with given margins and m(m− 1)/2 bivariate depen-
dence parameters. In L. Rüschendorf, B. Schweizer, and M.D. Taylor, editors, Distributions with
Fixed Marginals and Related Topics, volume 28 of IMS lecture notes, pages 120–141. AMS, 1996.

Jason K. Johnson, Dmitry M. Malioutov, and Alan S. Willsky. Walk-Summable Gaussian Networks
and Walk-Sum Interpretation of Gaussian Belief Propagation. Technical Report – 2650, LIDS,
MIT, 2005a.

Jason K. Johnson, Dmitry M. Malioutov, and Alan S. Willsky. Walk-Sum Interpretation and Analysis
of Gaussian Belief Propagation. In Advances in Neural Information Processing Systems 18, pages
579–586, 2005b.

Victoria A. Johnson, Francoise Brun-Vezinet, and Bonaventura Clotet et al. Update of the drug
resistance mutations in HIV-1: Dec 2010. Topics in HIV medicine, 18(5):156–163, 2010.

Vladimir Jojic, Tomer Hertz, and Nebojsa Jojic. POPULATION SEQUENCING USING SHORT
READS: HIV AS A CASE STUDY. Pacific Symposium of Biocomputing, pages 114–125, 2008.

Michael I. Jordan, Zoubin Ghahramani, Tommi Jaakkola, and Lawrence K. Saul. An Introduction
to Variational Methods for Graphical Models. Machine Learning, 37(2):183–233, 1999.

Ingrid M. Keseler, Julio Collado-Vides, and Alberto Santos-Zavaleta et al. Ecocyc: a comprehensive
database of Escherichia coli biology. Nucleic Acids Research, 39:D583–D590, 2011.

Nirmal Keshava. A Survey of Spectral Unmixing Algorithms. Lincoln Lab Journal, 14(1):55–78,
2003.

Yuwon Kim, Jinseog Kim, and Yongdai Kim. Blockwise Sparse Regression. Statistica Sinica, 16:
375–390, 2006.

Martin Kircher and Janet Kelso. High-throughput DNA sequencing – concepts and limitations.
Bioessays, 32(6):524–536, 2010.

Edward C Klatt. Pathology of AIDS, volume 24. 2013. URL http://library.med.utah.edu/

WebPath/AIDS2013.PDF.

140

http://jid.oxfordjournals.org/content/198/5/687.abstract
http://jid.oxfordjournals.org/content/198/5/687.abstract
http://library.med.utah.edu/WebPath/AIDS2013.PDF
http://library.med.utah.edu/WebPath/AIDS2013.PDF

Keith Knight and Wenjiang Fu. Asymptotics for lasso-type estimators. Annals of Statistics, pages
1356–1378, 2000.

Daniel C. Koboldt, Qunyuan Zhang, David E. Larson, Dong Shen, Michael D. McLellan, Ling Lin,
Christopher A. Miller, Elaine R. Mardis, Li Ding, and Richard K. Wilson. VarScan 2: Somatic
mutation and copy number alteration discovery in cancer by exome sequencing. Genome Research,
22(3):568–576, 2012.

Scott Koenig, Anthony J Conley, Yambasu A Brewah, Gary M Jones, Simon Leath, Lynn J Boots,
Victoria Davey, Guiseppi Pantaleo, James F Demarest, Charles Carter, et al. Transfer of HIV-1-
specific cytotoxic T lymphocytes to an AIDS patient leads to selection for mutant HIV variants
and subsequent disease progression. Nature medicine, 1(4):330–336, 1995.

Mladen Kolar, Ankur P. Parikh, and Eric P. Xing. On Sparse Nonparametric Conditional Covariance
Selection. In Proceedings of the 27th International Conference on Machine Learning, pages 559–
566, 2010a.

Mladen Kolar, Le Song, Amr Ahmed, and Eric P. Xing. Estimating Time-Varying Networks. Annals
of Applied Statistics, 4(1):94–123, 2010b.

Natalio Krasnogor and David A. Pelta. Measuring the Similarity of Protein Structures by Means of
the Universal Similarity Metric. Bioinformatics, 20(7):1015–1021, 2004.

Björn Labitzke, Serkan Bayraktar, and Andreas Kolb. Generic visual analysis for multi- and hyper-
spectral image data. Data Mining and Knowledge Discovery, pages 1–29, 2012. ISSN 1384-5810.
doi: 10.1007/s10618-012-0283-9.

Peter R. Lamptey, Jami L. Johnson, and Marya Khan. The Global Challenge of HIV and AIDS.
Population Bulletin, 61(1), 2006.

Ben Langmead and Steven L. Salzberg. Fast gapped-read alignment with Bowtie 2. Nature Methods,
9(4):357–359, 2012.

Ben Langmead, Cole Trapnell, Mihai Pop, and Steven L. Salzberg. Ultrafast and memory-efficient
alignment of short DNA sequences to the human genome. Genome Biology, 10(3):R25–10, 2009.

Steffen L. Lauritzen. Graphical Models. Oxford University Press, 1996. ISBN 0-19-852219-3.

David D. Lewis, Yiming Yang, Tony G. Rose, Fan Li, G. Dietterich, and Fan Li. RCV1: A new
benchmark collection for text categorization research. Journal of Machine Learning Research, 5:
361–397, 2004.

Seth C. Lewis, Rodrigo Zamith, and Alfred Hermida. Content Analysis in an Era of Big Data: A
Hybrid Approach to Computational and Manual Methods. Journal of Broadcasting and Electronic
Media, 57(1):34–52, 2013.

Heng Li. Exploring single-sample SNP and INDEL calling with whole-genome de novo assembly.
Bioinformatics, 28(14):1838–1844, 2012.

Heng Li and Richard Durbin. Fast and accurate long-read alignment with Burrows-Wheeler trans-
form. Bioinformatics (Oxford, England), 26(5), 2010.

Ming Li, Xin Chen, Xin Li, Bin Ma, and Paul M.B. Vitanyi. The Similarity Metric. IEEE Trans-
actions on Information Theory, 50(12):3250–3264, 2004.

Shan Li, Paul Wang, Jordan Louviere, and Richard Carson. Archetypal analysis: A new way to
segment markets based on extreme individuals. A Celebration of Ehrenberg and Bass: Marketing
Knowledge, Discoveries and Contribution. Proceedings of the ANZMAC 2003 Conference, pages
1674–1679, 2003.

141

James J. Lipsky. Antiretroviral drugs for AIDS. The Lancet, 348(9030):800–803, 1996.

Lawrence A. Loeb, John M. Essigmann, Farhad Kazazi, Jue Zhang, Karl D. Rose, and James I.
Mullins. Lethal mutagenesis of HIV with mutagenic nucleoside analogs. Proceedings of the National
Academy of Sciences, 96(4):1492–1497, 1999. doi: 10.1073/pnas.96.4.1492.

Chengwei Luo, Despina Tsementzi, Nikos Kyrpides, Timothy Read, and Konstantinos T. Kon-
stantinidis. Direct comparisons of Illumina vs. Roche 454 sequencing technologies on the same
microbial community DNA sample. PLoS ONE, 7(2):e30087+, 2012.

Abe Macher, David Thomas, and Sindy M Paul. Contraindicated antiretroviral drug combinations.
New Jersey medicine: the journal of the Medical Society of New Jersey, 100(9 Suppl):41, 2003.

Daniel MacLean, Jonathan D. Jones, and David J. Studholme. Application of ’next-generation’
sequencing technologies to microbial genetics. Nature Reviews Microbiology, 7(4):287–296, 2009.

Louis M Mansky. Retrovirus mutation rates and their role in genetic variation. Journal of General
Virology, 79(6):1337–1345, 1998.

Louis M. Mansky and Howard M. Temin. Lower in vivo mutation rate of human immunodeficiency
virus type 1 than that predicted from the fidelity of purified reverse transcriptase. Journal of
Virology, 69(8):5087–5094, 1995.

Elaine R. Mardis. The impact of next-generation sequencing technology on genetics. Trends in
Genetics, 24(3):133–141, 2008.

Michael Marmor, Ki Hertzmark, Su M. Thomas, Pi N. Halkitis, and Mi Vogler. Resistance to HIV
infection. Journal of Urban Health, 83(1):5–17, 2006.

Guillaume Martin-Blondel, Karine Sauné, Vinh Vu Hai, Bruno Marchou, Pierre Delobel, Jacques
Izopet, Lise Cuzin, and Patrice Massip. Factors associated with a strictly undetectable viral load
in HIV-1-infected patients. HIV Medicine, 13(9):568–73, 2012.

André F. T. Martins, Mário A. T. Figueiredo, Pedro M. Q. Aguiar, Noah A. Smith, and Eric P. Xing.
Nonextensive entropic kernels. In Proceedings of the 25th International Conference on Machine
Learning, pages 640–647, 2008.

Peter McCullagh. MARGINAL LIKELIHOOD FOR DISTANCE MATRICES. Statistica Sinica, 19:
631–649, 2009.

Peter McCullagh and Jie Yang. How many clusters? Bayesian Analysis, 3:101–120, 2008.

Ahmed S. Mehanna. Rationale of Design of Anti-HIV Drugs. John Wiley and Sons, Inc., 2003.

Nicolai Meinhausen and Peter Bühlmann. High dimensional graphs and variable selection with the
Lasso. Annals of Statistics, 38:1436–1462, 2006.

Michael L. Metzker. Sequencing technologies – the next generation. Nature Reviews Genetics, 11
(1):31–46, 2010.

Karin J. Metzner, Alexandra U. Scherrer, Benjamin Preiswerk, Beda Joos, Viktor von Wyl, Christine
Leemann, Philip Rieder, Dominique Braun, Christina Grube, Herbert Kuster, Jürg Böni, Sabine
Yerly, Thomas Klimkait, Vincent Aubert, Hansjakob Furrer, Manuel Battegay, Pietro L. Vernazza,
Matthias Cavassini, Alexandra Calmy, Enos Bernasconi, Rainer Weber, Huldrych F. Günthard,
and the Swiss HIV Cohort Study. Origin of Minority Drug-Resistant HIV-1 Variants in Primary
HIV-1 Infection. Journal of Infectious Diseases, 2013.

Steve Meyer R Ph. How HIV drugs work. HIV Treatment Series III: Part Two of Five, 2004. URL
http://www.thebody.com/content/art968.html(FromTestPositiveAwareNetwork).

142

http://www.thebody.com/content/art968.html(From Test Positive Aware Network)

Toby J. Mitchell and John J. Beauchamp. Bayesian Variable Selection in Linear Regression. Journal
of the American Statistical Association, 83(404):1023–1032, 1988.

Pejman Mohammadi, Sébastien Desfarges, István Bartha, Beda Joos, Nadine Zangger, Miguel
Muñoz, Huldrych F. Günthard, Niko Beerenwinkel, Amalio Telenti, and Angela Ciuffi. 24 Hours
in the Life of HIV-1 in a T Cell Line. PLoS Pathogens, 9(1):e1003161+, 2013.

Morten Morup and Lars Kai Hansen. Archetypal analysis for machine learning and data mining.
Neurocomputing, 80(0):54–63, 2012. ISSN 0925-2312.

Robb J. Muirhead. Aspects of Multivariate Statistical Theory. Wiley New York, 1982.

Giuseppe Narzisi and Bud Mishra. Comparing De Novo Genome Assembly: The Long and Short of
It. PLoS ONE, 6(4):e19175, 2011.

Radford M. Neal. Bayesian Mixture Modeling by Monte Carlo Simulation. Technical report, 1991.

Radford M. Neal. Markov chain sampling methods for Dirichlet process mixture models. JOURNAL
OF COMPUTATIONAL AND GRAPHICAL STATISTICS, 9(2):249–265, 2000.

Matteo Negroni and Henri Buc. Mechanisms of retroviral recombination. Annual Review of Genetics,
35:275–302, 2001.

Martin A Nowak. What is a quasispecies? Trends in Ecology and Evolution, 7(4):118–121, 1992.

David I. Ohlssen, Linda D. Sharples, and David J. Spiegelhalter. Flexible random-effects models
using Bayesian semi-parametric models: applications to institutional comparisons. Statistics in
Medicine, 26(9):2088–2112, 2007. ISSN 1097-0258.

Mark J. Palmer and Grant B. Douglas. A Bayesian statistical model for end member analysis of
sediment geochemistry, incorporating spatial dependences. Journal of the Royal Statistical Society:
Series C (Applied Statistics), 57(3):313–327, 2008. ISSN 1467-9876.

Desmond Patterson and Robin Thompson. Recovery of Inter-Block Information when Block Sizes
are Unequal. Biometrika, 58(3):545–554, 1971.

Luc Perrin and Amalio Telenti. HIV Treatment Failure: Testing for HIV Resistance in Clinical
Practice. Science, 280:1871–1873, 1998.

Jim Pitman. Combinatorial stochastic processes, volume 1875 of Lecture Notes in Mathematics.
Springer-Verlag, Berlin, 2006.

Jim Pitman and Marc Yor. The Two-Parameter Poisson-Dirichlet Distribution Derived from a Stable
Subordinator. The Annals of Probability, 25(2):855–900, 1997.

Sandhya Prabhakaran, Karin J Metzner, Alexander Boehm, and Volker Roth. Recovering Networks
from Distance Data. Journal of Machine Learning Research Workshop and Conference Proceed-
ings, 25:349–364, 2012.

Sandhya Prabhakaran, David Adametz, Karin J. Metzner, Alexander Boehm, and Volker Roth.
Recovering Networks from Distance Data. Machine Learning, 92(2-3):251–283, 2013a.

Sandhya Prabhakaran, Melanie Rey, Osvaldo Zagordi, Niko Beerenwinkel, and Volker Roth. HIV
Haplotype Inference Using a Propagating Dirichlet Process Mixture Model. IEEE/ACM Trans-
actions on Computational Biology and Bioinformatics [Epub ahead of print], 2013b.

Bradley D. Preston. Reverse Transcriptase Fidelity and HIV-1 Variation. Science, 10:228–229,
author reply 230–231, 1997.

143

Bradley D. Preston and Joseph P. Dougherty. Mechanisms of retroviral mutation. Trends in Micro-
biology, 4(1):16–21, 1996.

Mattia Prosperi, Luciano Prosperi, Alessandro Bruselles, Isabella Abbate, Gabriella Rozera, Do-
natella Vincenti, Maria Solmone, Maria Capobianchi, and Giovanni Ulivi. Combinatorial analysis
and algorithms for quasispecies reconstruction using next-generation sequencing. BMC Bioinfor-
matics, 12(1):5+, 2011.

Mattia C. F. Prosperi and Marco Salemi. QuRe: software for viral quasispecies reconstruction from
next-generation sequencing data. Bioinformatics, 28(1):132–133, 2012.

Christopher Quince, Anders Lanzen, T Curtis, R Davenport, N Hall, I Head, L Read, and W Sloan.
Accurate determination of microbial diversity from 454 pyrosequencing data. Nature Methods, 6:
639–641, 2009.

Christopher Quince, Anders Lanzen, Russell Davenport, and Peter Turnbaugh. Removing Noise
From Pyrosequenced Amplicons. BMC Bioinformatics, 12(1):38+, 2011.

Muthannan A. Ramakrishnan, Zheng Jin J. Tu, Sushmita Singh, Ashok K. Chockalingam, Marie R.
Gramer, Ping Wang, Sagar M. Goyal, My Yang, David A. Halvorson, and Srinand Sreevatsan.
The feasibility of using high resolution genome sequencing of influenza A viruses to detect mixed
infections and quasispecies. PLoS ONE, 4(9), 2009.

Andrew Rambaut, David Posada, Keith A. Crandall, and Edward C. Holmes. The causes and
consequences of HIV evolution. Nature Reviews Genetics, 5(1):52–61, 2004.

Carl Edward Rasmussen. The Infinite Gaussian Mixture Model. In In Advances in Neural Informa-
tion Processing Systems 12, pages 554–560. MIT Press, 2000.

Daniel C. Richter, Felix Ott, Alexander F. Auch, Ramona Schmid, and Daniel H. Huson. MetaSim
– A Sequencing Simulator for Genomics and Metagenomics. PLoS ONE, 3(10):e3373+, 2008.

David J. Rogers and Taffee T. Tanimoto. A computer program for classifying plants. Science, 132:
1115–1118, 1960.

Volker Roth and Bernd Fischer. The Group-Lasso for generalized linear models: uniqueness of
solutions and efficient algorithms. In ICML ’08, pages 848–855. ACM, 2008.

Eric E. Schadt, Michael D. Linderman, Jon Sorenson, Lawrence Lee, and Garry P. Nolan. Compu-
tational solutions to large-scale data management and analysis. Nature Reviews Genetics, 11(9):
647–657, 2010.

Melanie Schirmer, William T. Sloan, and Christopher Quince. Benchmarking of viral haplotype
reconstruction programmes: an overview of the capacities and limitations of currently available
programmes. Briefings in Bioinformatics, 2012.

Bernhard Schölkopf, Alexander Smola, and Klaus-Robert Müller. Nonlinear Component Analysis
as a Kernel Eigenvalue Problem. Neural Computation, 10:1299–1319, 1998.

Gideon Schwarz. Estimating the Dimension of a Model. The Annals of Statistics, 6(2):461–464,
1978.

Becky Schweighardt, Terri Wrin, Duncan A Meiklejohn, Gerald Spotts, Christos J Petropoulos,
Douglas F Nixon, and Frederick M Hecht. Immune escape mutations detected within HIV-1
epitopes associated with viral control during treatment interruption. Journal of acquired immune
deficiency syndromes (1999), 53(1):36, 2010.

144

Jayaram Sethuraman. A constructive definition of Dirichlet priors. Statistica Sinica, 4:639–650,
1994.

Robert W. Shafer and Jonathan M. Schapiro. HIV-1 drug resistance mutations: an updated frame-
work for the second decade of HAART. AIDS reviews, 10(2):67–84, 2008.

Yuan K. Shen. Markov Properties. 2011. URL http://people.csail.mit.edu/yks/documents/

classes/mlbook/pdf/chapter15.pdf.

Jay Shendure and Hanlee Ji. Next-generation DNA sequencing. Nature Biotechnology, 26(10):
1135–1145, 2008.

Oren Shoval, Hila Sheftel, Guy Shinar, Yuval Hart, Omer Ramote, Avi Mayo, Erez Dekel, Kathryn
Kavanagh, and Uri Alon. Evolutionary Trade-Offs, Pareto Optimality, and the Geometry of
Phenotype Space. Science, 336(6085):1157–1160, 2012.

Christian Sigg, Bernd Fischer, Björn Ommer, Volker Roth, and Joachim Buhmann. Nonnegative
CCA for Audiovisual Source Separation. In In IEEE Workshop on Machine Learning for Signal
Processing, pages 253–258, 2007.

Noah Simon, Jerome Friedman, Trevor Hastie, and Robert Tibshirani. A sparse-group lasso. Journal
of Computational and Graphical Statistics, 22(2):231–245, 2013.

Steven S. Skiena. The Algorithm Design Manual. New York: Springer-Verlag, 1997.

Pavel Skums, Nicholas Mancuso, Alexander Artyomenko, Bassam Tork, Ion Mandoiu, Yury
Khudyakov, and Alex Zelikovsky. Reconstruction of viral population structure from next-
generation sequencing data using multicommodity flows. BMC Bioinformatics, 14:1471–2105,
2013.

Patrizia F. Stifanelli, Teresa M. Creanza, Roberto Anglani, Vania C. Liuzzi, Sayan Mukherjee, and
Nicola Ancona. A comparative study of Gaussian Graphical Model approaches for genomic data.
arXiv preprint arXiv:1107.0261, 2011.

Michael R. Stratton, Peter J.Campbell, and P. Andrew Futreal. The cancer genome. Nature, 458
(5):719–724, 2009.

Shiyuyun Tang, Ivan Antonov, and Mark Borodovsky. MetaGeneTack: ab initio detection of
frameshifts in metagenomic sequences. Bioinformatics, 29(1):114–116, 2013.

Yee W. Teh. Dirichlet Processes. In Encyclopedia of Machine Learning. Springer, 2010.

Christian Thurau. Nearest Archetype Hull Methods for Large-Scale Data Classification. In Inter-
national Conference on Pattern Recognition, pages 4040–4043. IEEE, 2010.

Robert Tibshirani. Regression Shrinkage and Selection via the Lasso. Journal of the Royal Statistical
Society (Series B), 58:267–288, 1996.

Armin Töpfer, Osvaldo Zagordi, Sandhya Prabhakaran, Volker Roth, Eran Halperin, and Niko
Beerenwinkel. Probabilistic Inference of Viral Quasispecies Subject to Recombination. Journal of
Computational Biology, 20(2):113–123, 2013.

Granville Tunnicliffe-Wilson. On the Use of Marginal Likelihood in Time Series Model Estimation.
Journal of the Royal Statistical Society, Series B, 51:15–27, 1989.

Harald Uhlig. On singular Wishart and singular multivariate Beta distributions. Annals of Statistics,
22:395–405, 1994.

145

http://people.csail.mit.edu/yks/documents/classes/mlbook/pdf/chapter15.pdf
http://people.csail.mit.edu/yks/documents/classes/mlbook/pdf/chapter15.pdf

Samuel Vaiter, Charles Deledalle, Gabriel Peyré, Jalal Fadili, and Charles Dossal. The Degrees of
Freedom of the Group Lasso. http://arxiv.org/abs/1205.1481, 2012.

Vladimir Vapnik. Statistical Learning Theory. John Wiley and Sons, New York, 1998.

Santosh S. Vempala. The Random Projection Method. Series in Discrete Mathematics and Theoret-
ical Computer Science. AMS, 2004.

Emanuel N. Vergis and John W. Mellors. NATURAL HISTORY OF HIV-1 INFECTION. Infectious
disease clinics of North America, 14:809–825, 12 2000.

Julia E. Vogt, Sandhya Prabhakaran, Thomas J. Fuchs, and Volker Roth. The Translation-invariant
Wishart-Dirichlet Process for Clustering Distance Data. In Proceedings of the 27th International
Conference on Machine Learning, pages 1111–1118, 2010.

Chunlin Wang, Yumi Mitsuya, Baback Gharizadeh, Mostafa Ronaghi, and Robert W. Shafer. Char-
acterization of mutation spectra with ultra-deep pyrosequencing: application to HIV-1 drug resis-
tance. Genome Research, 17(8):1195–201+, 2007.

David Weininger. SMILES, a chemical language and information system. 1. Introduction to method-
ology and encoding rules. Journal of Chemical Information and Computer Sciences, 28(1):31–36,
1988.

Kelly Westbrooks, Irina Astrovskaya, David Campo, Yury Khudyakov, Piotr Berman, and Alex
Zelikovsky. HCV quasispecies assembly using network flows. In Proceedings of the 4th Interna-
tional Conference on Bioinformatics Research and Applications, ISBRA’08, pages 159–170, Berlin,
Heidelberg, 2008. Springer-Verlag.

Joe Whittaker. Graphical Models in Applied Multivariate Statistics. Wiley, 1990.

Huan Xu, Constantine Caramanis, and Sujay Sanghavi. Robust PCA via outlier pursuit. In J. Laf-
ferty, C. K. I. Williams, J. Shawe-Taylor, R. S. Zemel, and A. Culotta, editors, Advances in Neural
Information Processing Systems 23, pages 2496–2504. 2010.

Xiao Yang, Sriram P. Chockalingam, and Srinivas Aluru. A survey of error-correction methods for
next-generation sequencing. Briefings in Bioinformatics, 14(1):56–66, 2012.

Izumi Yoshida, Wataru Sugiura, Junko Shibata, Fengrong Ren, Ziheng Yang, and Hiroshi Tanaka.
Change of Positive Selection Pressure on HIV-1 Envelope Gene Inferred by Early and Recent
Samples. PLoS ONE, 6(4):e18630, 04 2011.

Shipeng Yu. Advanced probabilistic models for clustering and projection. PhD thesis, Ludwig Maxim-
ilians University Munich, 2006a. URL http://edoc.ub.uni-muenchen.de/archive/00005884/.

Shipeng Yu. Advanced probabilistic models for clustering and projection – slides. 2006b. URL
http://www.dbs.informatik.uni-muenchen.de/~spyu/.

Ming Yuan and Yi Lin. Model selection and estimation in regression with grouped variables. Journal
of the Royal Statistical Society, Series B, 68:49–67, 2006.

Ming Yuan and Yi Lin. Model selection and estimation in the Gaussian graphical model. Biometrika,
94(1):19–35, 2007.

Osvaldo Zagordi, Lukas Geyrhofer, Volker Roth, and Niko Beerenwinkel. Deep Sequencing of a
Genetically Heterogeneous Sample: Local Haplotype Reconstruction and Read Error Correction.
Research in Computational Molecular Biology, 5541:271–284, 2009.

146

http://edoc.ub.uni-muenchen.de/archive/00005884/
http://www.dbs.informatik.uni-muenchen.de/~spyu/

Osvaldo Zagordi, Lukas Geyrhofer, Volker Roth, and Niko Beerenwinkel. Deep Sequencing of a
Genetically Heterogeneous Sample: Local Haplotype Reconstruction and Read Error Correction.
Journal of Computational Biology, 17(3):417–428, 2010a.

Osvaldo Zagordi, Rolf Klein, Martin Däumer, and Niko Beerenwinkel. Error correction of next-
generation sequencing data and reliable estimation of HIV quasispecies. Nucleic Acids Research,
38(21):7400–7409, 2010b.

Osvaldo Zagordi, Arnab Bhattacharya, Nicholas Eriksson, and Niko Beerenwinkel. ShoRAH: es-
timating the genetic diversity of a mixed sample from next-generation sequencing data. BMC
bioinformatics, 12(1):119+, 2011.

Osvaldo Zagordi, Martin Däumer, Christian Beisel, and Niko Beerenwinkel. Read length versus
Depth of Coverage for Viral Quasispecies Reconstruction. PLoS ONE, 7(10):e47046, 10 2012a.

Osvaldo Zagordi, Armin Töpfer, Sandhya Prabhakaran, Volker Roth, Eran Halperin, and Niko
Beerenwinkel. Probabilistic inference of viral quasispecies subject to recombination. In Proceedings
of the 16th Annual international conference on Research in Computational Molecular Biology,
RECOMB’12, pages 342–354, Berlin, Heidelberg, 2012b. Springer-Verlag.

Alon Zaslaver, Anat Bren, and Michal Ronen et al. A comprehensive library of fluorescent tran-
scriptional reporters for Escherichia coli. Nature Methods, 3(8):623–628, 2006.

Jun Zhang, Rod Chiodini, Ahmed Badr, and Genfa Zhang. The impact of next-generation sequencing
on genomics. Journal of Genetics and Genomics, 38(3):95–109, 2011.

Shuheng Zhou, John Lafferty, and Larry Wasserman. Time Varying Undirected Graphs. Machine
Learning, 83:295–319, 2010.

147

Sandhya Prabhakaran

Department of Mathematics and Computer Science,
University of Basel,
Bernoulistrasse 16, Basel, CH-4056
Switzerland

Herbergsgasse 7,
Basel, CH-4051
Switzerland

CONTACT sandhya.prabhakaran@unibas.ch, sandhyaprabhakaran@gmail.com
Phone: 0041 - 076 634 2412
Website: https://sites.google.com/site/sandhyaprabhakaran/

EDUCATION Ph.D, Mathematics and Computer Science
Ph.D THESIS: Machine Learning Methods for HIV/AIDS Diagnostics and Therapy
Planning. [Magna Cum Laude / High Distinction]
University of Basel, Switzerland February 2009 - January 2014

Master of Science (M.Sc), Artificial Intelligence (specialism: Intelligent Robotics)
Master THESIS: Multi-scale, Reactive Motion Planning with Deformable Linear Ob-
jects. [Distinction with First class]
University of Edinburgh, Scotland, UK Sep 2007-December 2008

Bachelor of Technology (B.Tech), Computer Engineering
Bachelor project: Remote monitoring of SCADA machines using Java/CORBA ar-
chitecture. [Distinction with First class]
College of Engineering, Chengannur (CUSAT), India May 1997-August 2001

COMPUTER
SKILLS

R, MatLab, C++, COBOL, JCL, IBM 370 Assembler

PUBLICATIONS “HIV Haplotype Inference using a propagating Dirichlet Process Mixture Model”,
Sandhya Prabhakaran, Melanie Rey, Osvaldo Zagordi, Niko Beerenwinkel and Volker
Roth. IEEE/ACM Transactions on Computational Biology and Bioinformatics,
[Epub ahead of print], 2013.

• An extended abstract was presented at the Machine Learning in Computa-
tional Biology (MLCB) Workshop, NIPS 2010.

“Recovering networks from distance data”, Sandhya Prabhakaran, David Adametz,
Karin J. Metzner, Alexander Böhm and Volker Roth. Machine Learning Journal ,
volume 92:2-3, pages 251–283, 2013.

• A conference proceeding has appeared here: Asian Conference of Machine
Learning (ACML’12), Journal of Machine Learning Research Workshop
and Conference Proceedings, volume 25, pages 349–364, 2012.
[Best Student Paper award]

“Probabilistic Inference of Viral Quasispecies Subject to Recombination”, Armin Töpfer,

Osvaldo Zagordi, Sandhya Prabhakaran, Volker Roth, Eran Halperin and Niko Beeren-
winkel. Journal of Computational Biology , volume 20:2, pages 113–123, 2013.

• A conference proceeding has appeared here: The 16th Annual International
Conference on Research in Computational Molecular Biology (RECOMB’12),
pages 342–354, 2012.

“Automatic Model Selection in Archetype Analysis”, Sandhya Prabhakaran, Sudhir
Raman, Julia E. Vogt and Volker Roth. 34th DAGM/OAGM Symposium, volume
7476 of Lecture Notes in Computer Science, page 458–467, 2012.

“The Translation-invariant Wishart-Dirichlet Process for Clustering Distance Data”,
Julia E. Vogt, Sandhya Prabhakaran, Thomas J. Fuchs and Volker Roth. The 27th
International Conference on Machine Learning (ICML’10), pages 1111–1118,
2010. [Best Paper award runner-up]

TEACHING
EXPERIENCE

University of Basel Autumn semesters 2010-2012
Life Science Seminar Project Assistant for MatLab and C++.

WORK
EXPERIENCE

IBM Software Laboratories November 2004 - August 2007
Bangalore, India (System Software Engineer)

• IBM Mainframe Operating system (zOS) development. Involved specifically in
APPC/MVS – Advanced Program to Program Communication on zOS, imple-
mented through zOS’ network stack.

U.S. Technology Global November 2001 - November 2004
Kerala, India (Software Engineer)

• IBM Mainframe Application development.

OTHERS Recipient of the Scottish International Scholarship Programme (SISP) (2007-08) un-
der the Fresh Talent Initiative. The programme offers fully-funded scholarships for
22 Commonwealth students each year that cover Master programmes in UK.

Won the 1st place for Best Poster at the Informatics Jamboree (2008) held at Uni-
versity of Edinburgh:
Multi-scale, Reactive Motion Planning with Deformable Linear Objects

Co-authored an IP disclosure on Data Transfer from JCL to COBOL with Padmaraj
Meethal, IBM Software Laboratories. Awarded Publish status on January 9th 2008.
(Disclosure Number: IPCOM000167543D).

Article on IBM developerworks (January 2007):
Converting z/OS assembler code to COBOL

LANGUAGES Fluent : English, Hindi, Malayalam
Conversational : German, Sanskrit, Tamil

Beginner : French, Japanese, Arabic

INTERESTS Yoga & meditation, Tae Bo, hiking, running and reading.

	Abstract
	Acknowledgements
	Table of Contents
	List of Figures
	List of Tables
	Introduction
	Motivation - Why is HIV/AIDS domain challenging for ML techniques
	Challenges in taming the HIV/AIDS infection

	Focus of the thesis
	Facet One - Analysing Genetic Diversity/Identifying HIV haplotypes
	HIV is a retrovirus and is highly mutagenic.
	Stages in HIV infection and AIDS.
	Challenge in analysing genetic diversity.
	Thesis contribution.

	Facet Two - Aiding Antiretroviral drug design and therapy
	Antiretroviral therapy (ART).
	Drug categories.
	Primary challenge in ART: Resistance to anti-HIV medications.
	Thesis contribution.

	Roadmap of the thesis
	List of publications

	Computational Methods to infer HIV-1 Haplotypes using NGS data
	Genetic diversity
	Next-generation Sequencing
	HIV-1 Haplotype assembly from NGS reads
	Computational Approaches for HIV-1 haplotype assembly
	SNV
	Local haplotype assembly
	Global haplotype assembly
	Graph-based Combinatorial assembly.
	Probabilistic assembly.
	De novo methods.

	Conclusion

	HIV Haplotype Inference using a propagating Dirichlet Process Mixture Model
	Introduction
	Outline of the chapter.

	Computational Approaches to Haplotype Reconstruction
	Primer to Mixture Models
	Sources for this section.
	Mixture Models
	Finite Mixture Model
	Infinite Mixture Model
	Sample generation from a DP.
	Chinese Restaurant Process.

	Haplotype Reconstruction using a propagating Dirichlet Process Mixture Model
	The Haplotype Representation
	Likelihood and Prior
	Including Prior Information from previous local analyses
	Truncated DPMM
	Inference � Gibbs sampling
	Truncated DPMM with updated prior information

	Results
	Simulated Reads
	Simulation setup
	Performance
	Comparison with previous methods
	Significance of read length for haplotype reconstruction

	Real Reads
	Sequencing data description
	Results on real reads
	Comparison with previous methods

	Datasets used and links to competing softwares

	Conclusions

	Graphical Models
	Introduction
	Relation between network structure estimation & inverse covariance matrix and conditional independence of a corresponding probability distribution

	Challenges related to structure recovery
	Graphical abstract

	Recovering Networks from Distance Data
	Introduction
	Outline of the chapter.

	Classical GGMs
	Related work.

	Underlying Problems with Existing Methods
	Novel Solution to Network Inference
	The TiWnet Model
	Likelihood model
	Marginal likelihood.

	Prior construction
	Inference in TiWnet

	Inferring Module Networks
	Experiments
	Toy Examples
	Sample generation.
	Simulations.

	Real-world Examples
	A Module network of Escherichia coli genes.
	``Landscape'' of chemical compounds with in vitro activity against HIV-1.
	The ``Landscape'' of Glycosidase enzymes of Escherichia coli.

	TiWD versus TiWnet
	Contributions of TiWnet
	Conclusion
	Proof of Proposition 5.1
	Linear transformation and kernel.
	Shift- and scale-invariant marginal likelihood in D.

	Automatic Archetype Analysis
	Introduction
	Archetype analysis and PCA.
	Applications.
	Focus of the current work.
	Outline of the chapter.

	Data generative model and model learning
	Definitions.
	Generative model
	Model Learning

	Conventional Archetype Analysis � Model Description
	Related work.
	Conventional Archetype Analysis algorithm
	Complexity analysis for conventional methods.

	Problems with the conventional methods
	Model Selection mechanism.
	Sensitivity to initialisation of archetypes.

	Automatic Detection of the Number of Archetypes
	Sparse Archetype Selection using the Group-Lasso
	Monotone Incremental Forward Stage-wise Regression (MIFSR)
	Complexity Analysis for MIFSR.

	Group-Lasso optimisation step
	Further Acceleration of our Algorithm
	Dimensionality reduction with robust PCA.
	Preselecting the archetype candidates.

	Model Selection
	'Approximate' degrees of freedom for Group-Lasso
	'Exact' degrees of freedom for Group-Lasso
	Complexity analysis for Model Selection using BIC.

	Experiments
	Simulations
	Simulation example I.
	Simulation example II: Noisy convex sets generated from a non-uniform density.
	Simulation example III: Dataset containing clusters of compact convex sets.

	Real-world experiments
	Text categorisation using Reuters Corpus Volume 1.
	Archetypal compounds from amongst active chemical compounds.

	Conclusion

	Conclusion and Future directions
	Facet I
	HIV Haplotype Inference using a propagating Dirichlet Process Mixture Model.
	Facet II
	TiWnet � network inference.
	Automatic Archetype Analysis.

	Appendix
	Appendix: Networks extracted using graph lasso
	Appendix: Primer to Group Lasso

	References

