
 

 

Ubiquitin-proteasome dependent mitochondrial protein 

quality control 

 

 

Inauguraldissertation 

zur 

Erlangung der Würde eines Doktors der Philosophie 

vorgelegt der 

Philosophisch-Naturwissenschaftlichen Fakultät 

der Universität Basel 

 

von 

 

Anne-Sophie Benischke 

aus Basel-Stadt  

 

 

Basel, 2014 

 

 

 

 

 

 

 

Originaldokument gespeichert auf dem Dokumentenserver der Universität 
Basel edoc.unibas.ch  

 
 

Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine 
kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz“ (CC BY-NC-ND 3.0 CH) 

lizenziert. Die vollständige Lizenz kann unter  creativecommons.org/licenses/by-nc-
nd/3.0/ch/ eingesehen werden. 



 

Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz  
(CC BY-NC-ND 3.0 CH) 

Sie dürfen:  Teilen — den Inhalt kopieren, verbreiten und zugänglich machen  
 
Unter den folgenden Bedingungen:  

 

Namensnennung — Sie müssen den Namen des Autors/Rechteinhabers  
in der von ihm festgelegten Weise nennen. 

Keine kommerzielle Nutzung — Sie dürfen diesen Inhalt nicht für  
kommerzielle Zwecke nutzen.  

Keine Bearbeitung erlaubt — Sie dürfen diesen Inhalt nicht bearbeiten,  
abwandeln oder in anderer Weise verändern. 

 
Wobei gilt:  

x Verzichtserklärung — Jede der vorgenannten Bedingungen kann aufgehoben werden, 
sofern Sie die ausdrückliche Einwilligung des Rechteinhabers dazu erhalten.  

x Public Domain (gemeinfreie oder nicht-schützbare Inhalte) — Soweit das Werk, der 
Inhalt oder irgendein Teil davon zur Public Domain der jeweiligen Rechtsordnung gehört, 
wird dieser Status von der Lizenz in keiner Weise berührt.  

x Sonstige Rechte — Die Lizenz hat keinerlei Einfluss auf die folgenden Rechte:  

o Die Rechte, die jedermann wegen der Schranken des Urheberrechts oder aufgrund 
gesetzlicher Erlaubnisse zustehen (in einigen Ländern als grundsätzliche Doktrin 
des fair use bekannt);  

o Die Persönlichkeitsrechte des Urhebers;  

o Rechte anderer Personen, entweder am Lizenzgegenstand selber oder bezüglich 
seiner Verwendung, zum Beispiel für Werbung oder Privatsphärenschutz.  

x Hinweis — Bei jeder Nutzung oder Verbreitung müssen Sie anderen alle 
Lizenzbedingungen mitteilen, die für diesen Inhalt gelten. Am einfachsten ist es, an 
entsprechender Stelle einen Link auf diese Seite einzubinden.  

 
 
Quelle: http://creativecommons.org/licenses/by-nc-nd/3.0/ch/             Datum: 12.11.2013 

 



 2 

 
Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von  

 

 

Prof. Christoph Handschin 

PD Dr. Albert Neutzner 

Prof. Jörg Huwyler 

 

 

 

 

 

 

 

 

Basel, den 18.02.2014 

 

 

 

 

 

 

 

 

 

 

 

 

 

        Prof. Dr. Jörg Schibler 

        Dekan 

 



 I 

Acknowledgments 

My first thanks go to PD Dr. Albert Neutzner for giving me the opportunity to 

perform my doctoral thesis in his laboratory. It was a great privilege to work under his 

supervision. I want to thank him for introducing me to the fascinating world of 

mitochondria, for guiding me through these years with enthusiasm and scientific 

support and for taking time whenever I needed help.  

I would like to thank Prof. Christoph Handschin for having accepted the role of the 

faculty representative and for taking time for my PhD committee meeting.  

I am very grateful to Prof. Jörg Huwyler for joining my PhD committee as a co- 

referee. I also want to thank Prof. Christoph Meier for offering me to be the chairman 

of my defense.  

I want to thank the whole members of the eye clinic, especially Prof. Josef Flammer 

and Prof. David Goldblum for their scientific and personal support. 

I would like to thank Beat and Mike for introducing me to the microscopy and for 

their support and helpful suggestions concerning questions.  

A special thank goes to all my lab members of the Ocular Pharmacology and 

Physiology. It was a pleasure working with all of them in the laboratory and watching 

how this laboratory group was growing and developing over the last years. Therefore, 

big thanks go to Esther for supporting me so much in several protein purifications. 

Also special thanks go to Corina, Claudia, Lei, Jia, Charles, Kathrin, Tatjana, Roy and 

Reto for supporting me with good advise during my thesis.  

Furthermore, I would like to thank the members of the Department of Biomedicine, 

especially Niklaus Vogt and Ilija Lujic for their IT support.  

I would like to thank the Freiwillige Akademische Gesellschaft (FAG), especially the 

August Collin-Fonds for their financial support.  

Most importantly I would like to express my deepest gratitude to my family. A special 

thank goes to my boyfriend Cornelius for his limitless support, love and for always 



 II 

believing in me. My sincerest thanks are addressed to my parents, who provided me 

the opportunity to be where I am now and to do what I love the most. 

I wish to thank the Swiss National Science Foundation for the financial support of my 

project (31003A_129798/1). 



 III 

Abstract 

Dysfunctional mitochondria cause many neurodegenerative disorders and with aging 

in general, mechanisms of mitochondrial quality control are essential for cellular 

function. Keeping mitochondria in a healthy state is a complex process, which is 

tightly regulated by several mitochondrial quality control systems. An ubiquitin-

mediated proteasome-dependent protein degradation pathway, termed outer 

mitochondrial-associated degradation (OMMAD), was recently described. OMMAD 

provides mitochondrial protein quality control to prevent mitochondrial damage. Up 

until now, four outer mitochondrial membrane-anchored RING finger ubiquitin 

ligases as well as the AAA-ATPase p97 were described as OMMAD components. 

Here, we further characterize the mitochondrial RING finger protein MARCH9. We 

found that MARCH9 is an unstable protein degraded in a proteasomal-dependent 

manner. Furthermore MARCH9 interacts physically with both mitofusins, Mfn1 and 

Mfn2, both involved in the mitochondrial fusion. The dominant-negative mutant of 

MARCH9 was found to block mitochondrial fusion and cause mitochondrial 

fragmentation. Taken together, our result suggests a role for MARCH9 in 

mitochondrial quality control and further integrates OMMAD into mitochondrial 

physiology.  

 

Not only reactive oxygen species are involved in the aging process and in 

neurodegeneration, other stressors such as reactive nitrogen species, especially nitric 

oxide (NO) also cause such damage. Constant low level damage caused by NO to 

mitochondria eventually results in the loss of mitochondrial integrity and ultimately 

mitochondrial dysfunction. NO can directly modify mitochondrial proteins in a 

reaction, called S-nitrosylation. In response to low level of exogenous NO but also in 

the absence of such exogenous nitrosative stress, S-nitrosylated proteins are present in 

mitochondria. Furthermore, we found that upon inhibition of the proteasome, levels of 

S-nitrosylated proteins are increased and that the AAA-ATPase p97 is involved in the 

translocation of such S-nitrosylated proteins from mitochondria into the cytosol.  

 

Taken together, OMMAD components are necessary for maintaining mitochondrial 

integrity on the molecular and on the organellar level through the removal of damaged 

proteins and through regulating mitochondrial morphology.
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1. Introduction 

1.1. Mitochondria 

1.1.1. Mitochondrial structure and function 

Mitochondria are essential eukaryotic organelles, which play an important role in different 

cellular functions. While mitochondria are known for their role in adenosine triphosphate 

(ATP) generation through oxidative phosphorylation (OXPHOS), they are also involved in 

the synthesis of lipids (1), the buffering of Ca2+ ions (2) and they act as a central player in 

apoptosis (Figure 1) (3). Mitochondria are thought to be derived from an endosymbiotic 

event, 1.5 billion years ago, between an archaeal ancestor and an α-proteobacteria, together 

building the first eukaryotic cells (4). Reminiscent of their endosymbiotic origin, 

mitochondria are double-membraned organelles giving rise to four distinct mitochondrial 

compartments (5). First an outer mitochondrial membrane (OMM), second an inner 

mitochondrial membrane (IMM), third the intermembrane space (IMS) between OMM and 

IMM and finally the matrix compartment contained within the inner mitochondrial 

membrane (6). 

 

The outer mitochondrial membrane delimits mitochondria towards the cytosol, but also 

allows rapid exchanges of metabolites via channels forming porins. The inner 

mitochondrial membrane is the membrane with the highest protein content (around 75%) of 

all cellular membranes due to the massive amounts of electron transport chain proteins (7). 

Also, the IMM is highly invaginated and forming so called cristae greatly increasing 

membrane surface area (8). The mitochondrial matrix contains soluble enzymes, which are 

involved in fatty acid β-oxidation and in the citric acid cycle, essential for energy 

conversion. The matrix also holds the mitochondrial DNA (mtDNA) molecules and the 

machinery necessary for mtDNA replication and protein translation (9). The human 

mtDNA is a circular molecule, encoding 13 proteins of the respiratory chain and special 

rRNAs and tRNAs, important for translation of proteins encoded by the organellar genome. 

The mtDNA is organized in so called nucleotides containing 2-10 mtDNA copies with up 

to several thousand nucleotides per cell (10). 

 

Almost all biochemical reactions of the cell depend on the hydrolysis of ATP to adenosine 

diphosphate (ADP + Pi) or ATP to adenosine monophosphate (AMP + PPi). In order to 
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maintain ATP homeostasis, and therefore guarantee both cell integrity and cell function, 

ATP must be constantly replenished (11), as about 40 kilogram of ATP are turned over by 

the human body daily (12). Mitochondria are the main site of energy conversion from food 

into ATP via oxidative phosphorylation (OXPHOS). The electron transport chain (ETC) 

consists of five transmembrane complexes. Complexes I to IV are involved in the oxidation 

of nicotinamide adenine dinucleotide (NADH), electron transport and generation of a 

proton gradient across the IMM. While complex V, also known as F0F1-ATP synthase, uses 

this proton gradient to convert ADP + Pi to ATP (13). Each complex is made of multiple 

subunits, which are encoded by both the nuclear and the mitochondrial genomes, except for 

complex II, which is entirely encoded by the nuclear genome (14). 

 

In detail, complex I (NADH: ubiquinone oxidoreductase) is the largest complex of the ETC 

and catalyzes the reduction of ubiquinone by NADH effectively transferring reduction 

equivalents from the tricarboxylic cycle (Krebs) and β-oxidation of fatty acid. Complex I 

translocates four protons for one oxidized NADH molecule across the inner membrane, 

thereby producing an electrochemical gradient (15). Complex II (succinate:quinone 

oxidoreductase) consists of four subunits, all encoded by the nuclear genome (16). During 

succinate oxidation, electrons are transported by flavin-adenine dinucleotide (FAD) 

coenzyme through the Fe-S clusters to reduce ubiquinone to ubiquinol. This reaction is not 

associated with proton transfer (17). Complex III (ubiquinol-cytochrome c oxidoreductase) 

consists of eleven subunits with only one subunit (cytochrome b) encoded by mtDNA (18, 

19). Complex III catalyzes the oxidation of ubiquinol and the reduction of cytochrome c 

also generating a proton gradient across the inner mitochondrial membrane through the 

transfer of four electrons (20).  

 

Finally, complex IV (cytochrome c oxidase; COX) is the last enzyme of the electron 

transport chain and consists of 13 subunits encoded by both the mitochondrial and nuclear 

DNA (21). The four electrons are transferred from cytochrome c to the heme center of CuA 

and from there, on to the heme center of CuB, also generating an additional proton gradient 

across the inner mitochondrial membrane (22).  

 

Complex V (ATP synthase, F0F1-ATPase) is the enzyme that converts the proton gradient 

across the IMM generated by the ETC into ATP. This complex consists of a globular F1 
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domain, localized in the matrix, and a F0 domain, embedded in the inner mitochondrial 

membrane (23). The F0 domain resembles a rotor composed of several subunits. Protons 

travel through a channel along the electrochemical potential thereby causing the rotation of 

this rotor and leading to the generation of ATP from ADP and inorganic phosphate (Pi) for 

every 120° turn (24, 25). 

 

 
 
Figure 1: Functions of mitochondria 
Mitochondria are involved in different cellular functions. Their main function is energy conversion in the 
process of β-oxidation, tricarboxylic acid (TCA) cycle and the electron transport chain all leading to the 
production of ATP. Additionally, mitochondria are involved in calcium homeostasis via the VDAC dependent 
transfer of Ca2+ across the outer mitochondrial membrane and the Ca2+/H+ antiporter-mediated Ca2+ transport 
across the inner mitochondrial membrane. Mitochondria are as well involved in the apoptotic pathway with 
pro-apoptotic signals triggering cytochrome c release from the mitochondria (26). 

1.2. Mitochondrial and cellular stressors  

1.2.1. Oxidative stress 

Mitochondria are not only the powerhouse of the cell, they are also the major source of 

endogenous reactive oxygen species (ROS). Mitochondria are the main consumers of 

oxygen in the body as final electron acceptor during OXPHOS. Mitochondria strictly 

control oxygen handling, however, due to the reactive nature of O2, the generation of ROS, 
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such as superoxide (O2
-), hydrogen peroxide (H2O2) and hydroxyl radicals (OH-), is an 

avoidable consequence of aerobic metabolism. These oxidants are highly reactive 

molecules and therefore capable of damaging mtDNA, proteins and lipids (27). As the 

generation of ROS is unavoidable, several defense mechanisms, including ROS converting 

enzymes or ROS scavengers (28) help to reduce oxidative stress. However, oxidative stress 

exists despite the antioxidant defense, and it has been almost 50 years since Harman 

proposed the “free radical theory” of aging (29). This hypothesis suggests that free radicals 

lead to aging, as well as to age-related neurodegenerative disorders (30). A “vicious cycle” 

of ROS production during ageing has been postulated (31). Miquel et al. (32) first 

suggested that mtDNA might be damaged during aging by enhanced ROS production. The 

production of hydrogen peroxide (H2O2), superoxide (O2
-) and hydroxyl radicals (OH-) 

products causes accumulation of mtDNA mutations giving rise to mutated and therefore 

sub par ETC components, in turn, increasing ROS production, which leads to an increased 

rate of mtDNA mutations (33). During ageing, this vicious cycle would cause an ever 

increasing mitochondrial ROS production, leading to ever more oxidized proteins and 

mtDNA mutations (34) and finally resulting in cell death.  

 

However, the “vicious cycle” hypothesis is still controversial and it is unclear, whether 

mitochondrial ROS production indeed increases with age. This view was challenged by the 

so called mtDNA-mutator mouse. This mouse model contains a point mutation in the 

proof-reading domain of the mtDNA polymerase causing an increased mtDNA mutation 

rate. This increased mutation rate leads to increased levels of mutated respiratory chain 

subunit proteins resulting in elevated ROS production. These mice displayed premature 

aging associated with hair loss, graying and kyphosis at nine months (35). However, the 

point mutations observed in the mutator mouse mtDNA accumulated in a linear manner and 

no an exponential increase of ROS production was observed as predicted by the “vicious 

cycle” hypothesis (36). Rather, these results indicate that the profound aging phenotypes in 

mtDNA mutator mice are not produced by a “vicious cycle” of increased oxidative stress 

but still support the involvement of mitochondria-derived ROS in aging. 

1.2.2. Reactive nitrogen species 

Besides reactive oxygen species, other reactive intermediates are known to cause cellular 

damage. One of them is nitric oxide (NO), a small free radical synthesized from L-arginine 

by the nitric oxide synthase (NOS) (37). Three different genes encode the three isoforms of 
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the NOS enzymes. Two of these isoforms, endothelial NOS (eNOS) and neuronal NOS 

(nNOS), are constitutively expressed. In endothelial cells, NO produced by eNOS plays an 

important role in the regulation of vascular tone (38), while inducible NO synthase (iNOS) 

production is promoted by certain cytokines or bacterial lipopolysaccharides. In 

macrophages, iNOS produce a high amount of NO as part of the host defense mechanism 

(39).  

 

However, besides these functions of NO in normal cellular physiology, NO is also able to 

form highly active intermediates with O2, or various transition metals, such as iron. These 

NO-intermediates quickly support additional nitrosative reactions, such as S-nitrosothiol 

(RS-NO) formation with cysteine residues in proteins (40). Accordingly, NO can react with 

many different metal- and thiol-containing proteins and modify them via S-nitrosylation. 

NO can also react with superoxide (O2
-), which leads to the formation of peroxynitrite 

anion (ONOO-), a highly unstable and reactive compound with great potential for cellular 

damage (41, 42). 

1.2.3. S-nitrosylation of proteins 

Whether NO acts as regulatory protein modification in cellular signaling or causes protein 

damage associated stress depends on the specific biological environment. Various proteins 

are regulated by a posttranslational modification with NO-induced S-nitrosylation. S-

nitrosylation is a reversible process where a NO reacts with a cysteine thiol group (-SH) of 

a specific protein to regulate its function. This S-nitrosylation reaction forms an S-

nitrosothiol (-SNO), and a S-nitrosylated protein is therefore called a SNO-protein (43). 

Under certain physiological conditions, S-nitrosylation changes the function of a target 

protein and can therefore play an important role in different regulatory processes. Like 

other posttranslational modifications, S-nitrosylation can promote conformational changes, 

modulate channels and trigger protein interactions (44, 45). NO is a signal molecule with a 

broad aspect of functions, but in excess it can lead to cellular damage, including neuronal 

cell damage, and cell death (Figure 2). There are some specific examples where S-

nitrosylation plays a key role and affects neuronal survival. Overactivation of NDMA-

receptors leads to excessive release of Ca2+, which produces ROS and activates nNOS 

resulting in massive NO production and cell damage (46). However, S-nitrosylation of 

NMDA receptor itself decreases its activity resulting in an attenuation of the process (47). 
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In another example, the ubiquitin ligase X-linked inhibitor of apoptosis (XIAP) targets 

activated caspases for ubiquitination and degradation therefore leading to the degradation 

and inactivation of caspases (48), thus inhibiting caspase-mediated apoptosis and 

promoting cell survival (49). In animal models of Parkinson’s diseases and also in patients, 

an increase of S-nitrosylated XIAP was shown, consistent with insufficient attenuation of 

caspase function and increased apoptotic cell death (50). On the other hand, it was also 

demonstrated that NO can modify the catalytic cysteine of almost all caspases, thus 

inhibiting their protease activity and subsequently, preventing apoptotic cell death (51). 

 

Another area where S-nitrosylation plays an important role is the S-nitrosylation of the 

protein-disulfide isomerase (PDI). PDI is an oxidireductase of the endoplasmatic reticulum 

(ER), and belongs to the Trx family, which is responsible for proper protein folding by 

inducing disulfide bond formation, breaking disulfide bonds or catalyzing thiol exchange 

(52). Under conditions of nitrosative stress, the isomerase activity of PDI is decreased due 

to S-nitrosylation leading to the accumulation of misfolded proteins and subsequently ER 

stress (53). 

 

S-nitrosylation also plays an important role in the inhibition of the activity of the ubiquitin 

ligase Parkin in Parkinson’s disease (54). Parkin, together with PINK1, are involved in the 

mitophagic clearance of mitochondria (55). Several studies have shown that excessive 

nitrosative stress induces S-nitrosylation of Parkin (54). Parkin has several target cysteine 

residues that can react with NO to form S-nitrosylated Parkin resulting in its inactivation 

(56). The inhibition of Parkin activity may cause deficits for example in mitophagy or other 

Parkin-mediated quality control systems ultimately causing cell death (54). 

 

In addition to these targets for S-nitrosylation, it was shown that increased levels of NO 

cause modification of the mitochondrial fission factor dynamin-related protein 1 (Drp1) at 

cysteine residue 644 (57). Formation of SNO-Drp1 influences its guanosine triphosphatase 

(GTPase) activity and contributes to an excessive mitochondrial fragmentation and 

neuronal damage (section 1.4.3.).  

 

There are mechanisms in place, such as the thioredoxin and the GSNO reductase systems 

that play an important role in the S-denitrosylation (58).  
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For example, S-nitrosoglutathione (GSNO) is formed by the reaction between a S-

nitrosylated protein and glutathione (GSH) leaving the protein with reduced thiol group. To 

restore glutathione, GSNO reductase (GSNOR) catalyzes the denitrosylation of GSNO to 

GSH. It was shown that mice lacking GSNO reductase have an accumulation of S-

nitrosothiols (59, 60). Consistent with these findings, the addition of GSH to S-nitrosylated 

proteins results to the fast denitrosylation of proteins in vitro (61).  

 

Another major reductase system involved in denitrosyaltion is the thioredoxin (Trx) system 

consisting of Trx proteins, thioredoxin reductase (TrxR) proteins and NADPH (62). The 

Trx/TrxR system is involved in the detoxification of free radicals and regeneration of 

antioxidant compounds such as ascorbic acid and ubiquinones (63). The active site of Trx 

contains a Cys-Gly-Pro-Cys motif (62). It was recently found that S-nitrosylated caspase 3 

is denitrosylated by Trx1 resulting in caspase activation, while inhibition of Trx1 increased 

the levels of S-nitrosylated caspase 3 in lymphocytes and macrophages (64). There are two 

mechanisms of Trx-mediated denitrosylation. Either by formation of an intermolecular 

disulphide intermediate in which Trx is covalent bound to the S-nitrosylated protein 

through a disulphide bridge or via transnitrosylation in which Trx is transiently S-

nitrosylated and NO transferred to another protein (60).  

 

Additional to the GSNOR and Trx systems, other enzymes are also involved in the 

denitrosylation processes, although their physiological function has to be further 

established. For example, xanthine oxidase (XO) is a flavin-containing enzyme, which is 

expressed in both prokaryotic and eukaryotic organisms. It was found that CysNO and 

GSNO are decomposed by XO in the presence of purine substrates (65). 

 

In summary, homeostasis of S-nitrosylation is crucial for the maintenance of cellular 

integrity with excessive S-nitrosylation causing cellular stress. Therefore, denitrosylated 

systems dealing with S-nitrosylated proteins are very important to cope with low levels of 

stress and to keep cells and mitochondria in a healthy state. 
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Figure 2: NO triggers formation of S-nitrosylation 
Possible mechanism whereby NO can induce S-nitrosylation of different target proteins. NO is produced from 
L-arginine by NOS and can modify cysteine residues of proteins. For example S-nitrosylation of Parkin, 
Drp1, PDI and other proteins can contribute to neuronal cell death and damage.  

1.3. Mitochondrial Quality Control 

Due to the complex mitochondrial structure and exposure to various stressors, tightly 

regulated defense and quality control systems have evolved to deal with mitochondrial 

damage (Figure 3). Each of the four-mitochondrial compartments is monitored by its own 

control system and multi-tiered damage-correlated repair mechanisms are in place to keep 

mitochondria in a healthy state. Based on the severity of the damage an appropriate 

response is mounted, including apoptotic clearance of entire cells, mitophagic digestion of 

individual mitochondria or degradation of mitochondrial proteins in case of less severe 

damage.  

1.3.1. Apoptosis – mitochondrial quality control on the cellular level 

Apoptosis, the last line of defense in mitochondrial quality control, is a process whereby 

cells are induced by either intrinsic or extrinsic signals. Dysregulation of this process leads 

to several diseases ranging from neurodegenerative disease to cancer and viral infections 



 9 

(66). A wide variety of neurological disorders such as Alzheimer’s disease, Parkinson’s 

disease, amyotrophic lateral sclerosis and others are characterized by a loss of neuronal 

cells. In these diseases, inappropriate apoptosis results in the untimely death of neurons 

causing ultimately dysfunction of the central nervous system (67). On the other hand cancer 

cells are able to survive due to their decreased ability to undergo apoptosis in response to 

cytotoxic conditions (68). Thus, apoptosis is an essential process for the removal of 

damaged or harmful cells, so that the organism as a whole can survive (69). As opposed to 

death-receptor induced apoptosis not discussed here (70), intrinsic programmed cell death 

is initiated by the release of apoptotic factors such as cytochrome c from the mitochondria 

to the cytosol. The release of these apoptotic factors requires mitochondrial outer 

membrane permeabilization (MOMP) modulated by various pro- and anti-apoptotic 

proteins (71). It was found that cytochrome c, a 15kD redox carrier protein, usually 

responsible for the electron transfer between complex III and IV in the electron respiratory 

chain, is essential for the activation of caspases (72). In summary, mitochondria play an 

important role in integrating different apoptotic signals by release of proapoptotic factors 

and are themselves the target for quality control in case of extensive mitochondrial damage.  

1.3.2. Mitophagy – a quality control on the organellar level 

In contrast to the complete removal of mitochondrial networks by apoptosis, in the case of 

less severe damage to the mitochondrial network, single damaged mitochondrial subunits 

are targeted by a special quality control system, named mitophagy (73).  

 

Mitophagy is a type of autophagy, which was recently found to be governed by the 

ubiquitin ligase Parkin whereby mitochondria are selectively removed. The translocation of 

Parkin to the mitochondria is induced by loss of mitochondrial membrane potential, 

suggesting that collapse of the membrane potential is a signal for Parkin recruitment (55). 

The activity of mitochondrial kinase PINK1 is necessary to recruit Parkin to the 

mitochondria to induce mitophagy. Recent studies showed that PINK1 is expressed in 

mitochondria and is rapidly degraded by proteolysis. When mitochondria become damaged, 

the proteolysis process is inhibited and PINK1 accumulates in the cell thus recruiting 

Parkin to the affected mitochondria (74). Furthermore it was shown that loss of Parkin and 

PINK1 in Drosophila resulted in mitochondria swelling and dysfunction (75). These 

findings suggest that Parkin is important in the elimination of damaged mitochondria from 

the mitochondrial network to maintain mitochondrial integrity (74, 76). Beside the quality 
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control function, mitophagy is as well needed to adjust mitochondrion numbers, in order to 

adapt to changes in metabolic requirements (77) as well as during specialized development 

stages of red blood cells where mitochondria need to be completely eliminated (78). Taken 

together, failed mitophagy may be linked to Parkinson’s disease and therefore Parkin-

mediated mitophagy most likely plays a critical role in maintaining mitochondrial integrity. 

1.3.3. Mitochondrial quality control on the molecular level 

Moderate damage to mitochondrial compartments might not necessitate complete removal 

of a mitochondrial subunit by mitophagy. Such damage might be dealt with on the 

molecular level through either repair or degradation mechanisms.  

1.3.3.1. Proteases involved in mitochondrial protein quality control 

Molecular chaperones and proteases provide this first line of defense by monitoring 

mitochondrial protein folding and by mediating the immediate removal of damaged 

proteins. The quality control system in the mitochondrial matrix contains two bacterial type 

ATP-dependent proteases. The first is Lon, a serine protease and a member from the 

ATPase associated with diverse cellular activities (AAA+) family of proteins, which 

degrades denatured and oxidized proteins in the mitochondrial matrix (79). The second 

ATP-dependent protease, less well characterized, is ClpXP, which is localized in the matrix 

space of mitochondria and is also involved in the degradation of damaged proteins (80). As 

the mitochondrial inner membrane contains both the respiratory chain and several proteins, 

there are multiple possible target proteins for oxidative and nitrosative stress and other 

protein damage. The quality control of the inner mitochondrial membrane is mediated by 

the membrane-embedded two metalloprotease complexes, called AAA proteases, which 

play an important role in the degradation of immature and harmful proteins (81). One is the 

i-AAA protease, which faces towards intermembrane space, while the second protease 

complex, the m-AAA protease, exposes the catalytic domain to the matrix side of the inner 

membrane. Both, i-AAA and m-AAA are involved in the processing as well as in the 

degradation of proteins localized either in the matrix, inner mitochondrial membrane or 

inner mitochondrial space (82). 



 11 

 
Figure 3: Quality control system of mitochondria 
The molecular quality control is the first line of defense and is provided by an intraorganellar proteolytic 
system. The second line of defense is on the organellar level, where damaged mitochondria can either be 
recovered by the fusion process or removed by mitophagy. As last quality step, apoptosis will be induced, in 
case of excessive damage (82).  

1.3.3.2. Ubiquitin-proteasome system (UPS) and mitochondrial quality control 

The ubiquitin-proteasome system is a primarily cytosolic multi-component system, 

responsible for the removal of damaged proteins and therefore involved in protein quality 

control (83). Recently, a role for the UPS in mitochondrial protein degradation was 

described (84-87).  

1.3.3.2.1. The ubiquitin-proteasome system 

The main function of the UPS is the recognition, tagging and degradation of substrate 

proteins (84). To this end, the small protein modifier ubiquitin, a 76 amino acid protein, is 

attached to substrate proteins catalyzed by a three-step enzymatic cascade (Figure 4). In the 
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first step ubiquitin-activating enzyme (Uba1) or E1 forms an energy-rich thioester bond 

(energy provided by ATP) with the C-terminal glycine residue of ubiquitin and the active 

site cysteine of the E1. The second step involves a carrier protein, termed ubiquitin-

conjugative enzyme E2, which transfers ubiquitin from the high-energy thioester bond on 

the E1 to another high-energy thioester bond on E2. From there, with the help of an 

ubiquitin ligase or E3 enzyme, ubiquitin is attached to the ε-NH2 group of a lysine residue 

in the substrate protein forming an isopeptide bond. As ubiquitin itself can be modified by 

ubiquitination, this cascade results in the formation of a polyubiquitin chain, mostly via the 

lysine 48 (K48) of ubiquitin. This newly built chain is then recognized by the proteasome 

and the proteasome degrades the ubiquitin tagged proteins (88). However, other lysine 

residues in the ubiquitin protein such as Lys 63 (89) or Lys 11 (90) can serve as acceptor to 

form polyubiqutin chains mediating other processes aside from proteasomal degradation. 

 

As ubiquitin-mediated proteasomal degradation is an irreversible process, substrate 

recognition has to be very specific and tightly regulated (91). While only about fifty E2 

proteins are found in the mammalian genome, the presence of several hundred potential 

ubiquitin ligases implies that the specificity of ubiquitination lies with this class of proteins. 

Indeed, all E3’s seem to have two functional domains, one is important for the interaction 

between E2 and E3, the other domain essential for target protein recognition (92). 
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Figure 4: The ubiquitin-proteasome pathway 
The three-step cascade start with the ATP-dependent activation of ubiquitin by the ubiquitin-activating 
enzyme E1, followed by the conjugation of the ubiquitin-activating enzyme (E2), from which ubiquitin is 
then transferred to Lys residues of a target protein mediated by an ubiquitin ligase E3. This ubiquitin cascade 
is repeated until a polyubiquitin chain is built. The ubiquitinated protein is then recognized by the 26S 
proteasome and degraded in an ATP-dependent process.  

1.3.3.2.2. Classes of ubiquitin ligases  

Two main classes of ubiquitin ligases can be distinguished. The homologous to E6-AP 

Carboxy Terminus (HECT)-type ubiquitin ligase was first reported in 1995 (93). The 

HECT domain encompasses an active-site cysteine residue, able to form an ubiquitin-ligase 

intermediate prior to transfer to the substrate protein (94). 

 

The largest class of ubiquitin ligases contain a so called RING (Really Interesting New 

Gene) finger domain and was originally described by Freemont and colleagues (95). The 

canonical RING finger domain consists of a series of cysteine and histidine residues with 

the consensus sequence Cys-X2-Cys-X9-39-Cys-X1-3-His-X2-3-Cys-X2-Cys-X4-48-Cys-X2-

Cys (96), which allows the coordination of two zinc ions in a so called cross-brace structure 

(Figure 5) (97). RING finger domains can further be classified into RING-CH or RING-H2, 

depending on whether the amino acid Cys or His occupies the fifth coordination site (84). 

Unlike the HECT domain, the RING finger domain does not form a catalytic intermediate 
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with ubiquitin. Rather RING finger containing ubiquitin ligases act as a scaffold that binds 

E2 to the sharable target protein, bringing them into close proximity, which results in a 

direct transfer of ubiquitin from the E2 to the substrate (98).  

 

A subset of membrane-localized RING finger ubiquitin ligase contains a so called RING 

variant (RINGv) (Figure 5 and 6) domain and are referred to membrane-associated RING-

CH or MARCH proteins. The RINGv domains are characterized by a typical seven amino 

acids gap between conserved cysteine on position four and histidine on position five of the 

RING scaffold (99). Two out of nine MARCH proteins were found to localize to the outer 

mitochondrial membrane (section 1.3.3.2.3.) (100).  

 

There are other RING finger ubiquitin ligases that exist as multi-subunit protein complexes. 

A well-studied example is the cullin RING ligase (CRL) superfamily, which has an 

enormous plasticity in substrate specificity. The cullin RING ligase consists of a cullin 

protein, a RING protein and an adaptor protein (Skp1) that binds the substrate recognition 

element, F-box protein. While the cullin ligase exhibits the biggest range of substrate 

recognition, other multi-subunit E3s have an even greater structural complexity. For 

example, the anaphase-promoting complex (APC2) contains 13 subunits including a cullin 

like protein and a RING protein, and is responsible for regulating cell cycle transition (101, 

102). 

 

 
Figure 5: The RING finger structure 
The RING finger domain coordinates Zn2+ ions in a cross-brace structure, which allows the interaction with 
specific E2 for ubiquitination. The two Zn2+ bind certain cysteine and histidine residues (yellow).  
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Figure 6: The RING-CH domain 
The RING finger domains found in all MARCH proteins are highly conserved and were shown to possess 
ubiquitin ligase activity. Amino acid sequences of MARCH RING CH domains are aligned. Red letters show 
the conserved cysteine and histidine residues of RING finger motif, which are responsible for coordinating 
two zinc ions.  

1.3.3.2.3. Outer mitochondrial membrane-associated degradation (OMMAD) 

The UPS plays an important role in mitochondrial quality control. In addition to the 

different quality levels above, recent findings indicated that the ubiquitin-proteasome 

system is involved in the control of mitochondrial proteins, which are localized in the outer 

mitochondrial membrane (103). Recently, several ubiquitin ligases were found to locate to 

the outer mitochondrial membrane, namely the RING finger-containing proteins MULAN 

(104), MARCH5 (105), MARCH9 (Neutzner- personal communication) as well as the in-

between-RING finger domain protein (IBR) IBRDC2 (106), and Parkin (107). Similar to 

the endoplasmatic reticulum (ER), which is quality controlled by ER-associated 

degradation (ERAD), mitochondrial proteins might be controlled by an analogous 

mechanism termed OMM-associated degradation (OMMAD) (105). During ERAD, 

chaperones and other factors, such as Hsp70-family members, calnexin, calreticulin and 

protein disulphide isomerase (108) recognize misfolded proteins. Substrates are 

ubiquitinated by the RING domain containing ubiquitin ligases, Hrd1 (109) and Doa1 (110) 

followed by retrotranslocation from the ER to the cytosol. The extraction from the ER 

requires the activity of the AAA-ATPase p97, which interacts with ubiquitinated substrates 

(111) followed by proteasomal degradation (112). Analogue to the ERAD, the same 

process takes place in the mitochondria. While ERAD is a well-studied mechanism of 

protein quality control, the OMMAD pathway and its role in mitochondrial maintenance 

has not been comprehensively studied. However, the presence of mitochondrial ubiquitin 

ligases, such as, IBRDC2 (106), MULAN (104) and MARCH5 (105) and their involvement 

in the ubiquitination of mitochondrial proteins support the existence of such a process. The 

involvement of these ubiquitin ligases in mitochondrial physiology is underlined by the 

following observations. MARCH5 was shown to be involved in mitochondrial fission by 

recruiting Drp1 to the mitochondria (105) (section 1.4.4.), IBRDC2 was found to regulate 

the levels of Bax during apoptosis (106), while MULAN seems to regulate the 



 16 

mitochondrial fission machinery (104). In addition MARCH9 was implicated in the 

regulation of mitochondrial fusion (Neutzner- personal communication) (section 3.1.5.). 

The proteasomal degradation of membrane and organeller proteins takes place in the 

cytosol, therefore necessitating protein retrotranslocation for UPS-mediated mitochondrial 

protein degradation is likely involved. The AAA-ATPase p97, a known retrotranlocator of 

the ER, was found to be involved in the retrotranslocation and proteasomal degradation of 

ubiquitinated mitochondrial proteins (115). This further underlies the similarities of ERAD 

and OMMAD on the molecular level (Figure 7).  

 

In addition to mitochondrial proteins as substrates for ubiquitination, several target proteins 

for OMMAD were recently identified. One such target, are the mitofusins, important for 

maintaining mitochondrial morphology (113). First in yeast and later in human cells, Fzo1 

and Mfn2, respectively, were shown to be degraded in an ubiquitin-dependent proteasome-

mediated manner (105) (section 1.4.2.). Another mitochondrial UPS substrate is the 

uncoupling protein 2 (UCP2) located on the inner mitochondrial membrane. It was shown 

that UPC2 is ubiquitinated by an unknown E3 ligase and extracted from the mitochondrial 

inner membrane by processes that are probably ATP dependent. UCP2 is then subsequently 

degraded by the proteasome (114). Another example for an OMMAD substrate is the 

apoptosis-related outer mitochondrial protein Mcl-1. Mcl-1 is ubiquitinated by the HECT-

domain containing ubiquitin ligase Mule (115). 
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Figure 7: Outer mitochondrial membrane-associated degradation 
Ubiquitin ligases (green) with the RING finger domain (red), facing towards the cytosol, are located on the 
outer mitochondrial membrane. Together with yet unknown ubiquitin conjugating enzyme (E2) the ubiquitin 
ligase (E3) conduct the ubiquitination of a substrate protein. The hexameric AAA-ATPase p97 translocates 
the polyubiquitinated protein from the mitochondria to the cytosol. The target protein is then degraded by the 
26S proteasome. 

1.4. Mitochondrial morphology 

1.4.1. Mitochondrial dynamics 

Mitochondria form a dynamic network, which is shaped by a constantly ongoing fission 

and fusion process (116). The balance between fission and fusion is very important for 

mitochondrial integrity. Excessive fission process leads to small spherical organelles, 

whereas a shift towards fusion results in an extended interconnected mitochondrial 

network. Extended mitochondria have, the advantage, compared to small isolated 

mitochondria (117), that they serve as a power transmission system from areas with high 

ATP demand to areas with low demand (118). Furthermore, a fused state of mitochondria 

helps to buffer Ca2+ more efficiently (119). In addition, mitochondrial fusion serves to unify 

and mix mitochondrial compartments, allowing for complementation and repair of mtDNA 

and helps to buffer local damage to proteins and lipids (120-122).  



 18 

On the other hand, the fission process is important for the clearance of irreversibly 

damaged mitochondria. Mitochondrial damage leading to loss of membrane potential and 

ATP production excludes subunits from the mitochondrial network as the fusion process 

depends on mitochondrial membrane potential. On the other hand, mitochondrial fission is 

independent of membrane potential resulting in the separation of damaged mitochondria 

from an otherwise healthy mitochondrial network. This separation process aids the 

mitophagic removal of such damaged mitochondria (123) (section 1.3.2.). Beside this 

mechanism, the fission machinery is also involved in apoptosis by facilitating cytochrome c 

release and subsequent caspase activation (124) (section 1.4.5.).  

 

Mitochondrial morphology is therefore essential to mitochondrial fidelity and has great 

influence on cellular functions.  

1.4.2. Mitochondrial fusion 

Mitochondria are double membrane-bound organelles and therefore fusing two 

mitochondrial subunits, which involves the coordinated fusion of two sets of membranes 

without losing organelle integrity to maintain mitochondrial membrane potential (125). The 

first mitochondrial morphogen identified is fuzzy onion (Fzo), which is required for 

mitochondrial fusion during the, so called onion stage of spermatogenesis in Drosophila 

(126). 

 

Further studies of the fusion process in budding yeast identified Fzo1 as the homolog of fly 

FZO (127, 128). In the mammalian system, with the mitofusins Mfn1 and Mfn2, two 

homologs of Fzo1 were identified. Further characterization revealed a function of these 

mitofusins in the fusion of the outer mitochondrial membrane (129). The mitofusins are 

large proteins with a multidomain structure containing an N-terminal GTP-binding and two 

transmembrane domains, as well as two hydrophobic heptad repeat domains (HR). The 

HR1 domain is localized in the middle and HR2 on the C-terminal region, providing the 

basis for the coiled-coil intermolecular interactions. The transmembrane domains are 

important for targeting the protein to the mitochondria (130). Both the C-terminus and the 

N-terminus are exposed to the cytosol (131). It was shown that mutations in the GTPase 

domain block the formation of mitochondrial threads, therefore suggesting being important 

for the mitochondrial fusion process (131) (Figure 8). Furthermore, it was demonstrated 

that the hydrolysis of GTP by Mfn proteins regulates mitochondrial tethering through the 
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formation of a mitofusin complex in trans necessitating the presence of functional 

mitofusion on both mitochondrial fusion partners (132). Moreover, it seems that Mfn1 and 

Mfn2 have overlapping functions and are able to at least partially compensate their 

function. While the fusion process in single knock-out cells was comparable to the process 

in wildtype cells, loss of both Mfn1 and Mfn2 completely prevented mitochondrial fusion 

(133). Despite this observed complementation, both mitofusins seem to have some 

specialized functions. Mfn1 is crucial for mitochondrial docking and fusion, whereas Mfn2 

has lower GTPase activity and is thought to stabilize the interaction between the two 

mitochondria (134). The docking event involves intermolecular interaction between Mfn 

proteins mediated by the coiled-coil domain (135). The GTPase domain likely provides 

energy, which is necessary to overcome the energy barrier involved in fusing lipid bilayers 

(136). Mfn2 is also rich in the ER-mitochondria interface and it was shown that Mfn2 

regulates the shape of the ER and tethers it to mitochondria by complexes comprising Mfn2 

at the ER and Mfn2 or Mfn1 on mitochondria (137). Ablation of Mfn2 causes the 

destruction of the ER structure, the detachment of mitochondria from ER and reduces the 

Ca2+ uptake (137). 

 

Mitofusins are central to the fusion process and as such a target of several regulatory 

mechanisms. In budding yeast, Fzo1 is a substrate for ubiquitin-dependent degradation by 

at least two different mechanisms. During mating in response to mating pheromone, Fzo1 is 

destabilized by a yet unknown ubiquitin ligase to allow for mitochondrial fragmentation 

aiding mitochondrial mixing following zygote formation. During the fusion process itself, 

Fzo1 is the target of an ubiquitin ligase containing the F-box protein Mdm30. The 

ubiquitination and degradation of Fzo1 is thereby an essential part of the fusion process 

itself, likely rendering membrane fusion by Fzo1 irreversible (138, 139). A similar process 

has not been established in human cells and it is unclear how mitochondrial fusion is made 

irreversible. 

 

The fusion of the inner mitochondrial membrane is performed by another large GTPase 

protein, the optic atrophy 1 (OPA1). OPA1 is a dynamin family member and contains a 

GTPase domain, a middle domain and a GTPase effector domain (GED), as well as a 

coiled-coil domain (140). The OPA1 gene encodes 31 exons of which exons 4, 4b and 5b 

are involved in alternative splicing, which results in the generation of eight different 

mRNA variants (141). The splice variants are subsequently processed to form different 
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isoforms with distinct molecular sizes. OPA1 is located in the mitochondrial 

intermembrane space. Furthermore, OPA1 is synthesized as a preprotein and contains an N-

terminal matrix-targeting signal (MTS). The MTS is removed by the mitochondrial 

processing peptidase (MPP) in the matrix during import to form the mature OPA1 isoforms 

(142), causing OPA1 to locate to the mitochondrial intermembrane space. Besides MPP 

involved in the maturation of OPA1, there are several proteases identified to date, which 

are involved in processing of OPA1 isoforms, based on the presence or absence of protease 

sites, namely the m-AAA protease, the i-AAA protease and the presenilin-associated 

rhomboid-like protease (PARL) (143). However, a number of other proteases, such as the 

metalloprotease human yme1-like protein (YME1L) (144) and the zinc metalloprotease 

OMA1 (145) can also perform OPA1 isoform processing. The mechanism of OPA1 

processing can be different between different cell types and may be regulated by distinct 

stimuli such as low ATP levels or apoptotic stimuli (146). Mitochondrial fusion needs to be 

tightly coordinated to ascertain simultaneous fusion of the OMM and the IMM to prevent 

leakage of mitochondrial content. This tight coordination is evident in the strong 

interdependence of OPA1 and mitofusins. It has been shown that OPA1 requires mitofusins 

as a partner for mitochondrial fusion. Moreover, mitofusins are unable to promote 

mitochondrial elongation if OPA1 is unavailable. Beside its function in mitochondrial 

fusion, OPA1 is also essential for maintaining mitochondrial cristae formation (147). It was 

shown that lacking OPA1 results in highly disorganized and swollen cristae (148). 

Furthermore, it was found that OPA1 reduces cytochrome c release and regulates shape and 

length of mitochondrial cristae (149). It seems that OPA1 keeps the cristae junctions tight, 

which are involved in the cytochrome c release (150).  

 
Figure 8: Proteins involved in the fusion machinery 
GTPase proteins Mfn1 and Mfn2 are responsible for the fusion process of the outer mitochondrial membrane. 
The four squares show the coiled-coil region of the mitofusins. OPA1 is localized on the inner mitochondrial 
membrane and mediate fusion of the inner membrane.  
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1.4.3. Mitochondrial fission 

The first gene that was identified as being involved in the mitochondrial fission process 

was Dnm1, in S.cerevisiea and C.elegans, and Drp1, its mammalian homolog (151). In 

general, mitochondrial fission requires the dynamin-related protein Drp1. The dynamin 

family members have a highly conserved N-terminal GTPase domain, a middle domain and 

GTPase effector domain (GED). Drp1 is mostly localized in the cytosol, however upon 

mitochondrial fission, it is recruited to the mitochondria forming distinct mitochondrial foci 

consistent with fission sites (152). Drp1 polymerizes into spirals around mitochondria, and 

is thought to be a mechanoenzyme, which upon GTP hydrolysis constricts and acts as 

pinchase similar to the dynamin during scission of endocytic vesicles (153). Consistent 

with its essential function during fission process, inhibition of Drp1 either by RNAi or a 

dominant-negative mutant leads to very elongated mitochondria that entangle and finally 

collapse (154). Drp1 does not possess a membrane-binding pleckstrin homology (PH) 

domain like dynamin, and thus relies on receptor-like mitochondrial membrane proteins for 

recruitment to the OMM (155). Four integral membrane proteins of the outer mitochondrial 

membrane have been suggested to act as receptors that recruit Drp1 to the mitochondria.  

 

Human Fis1 is an integral membrane protein located around the OMM and it is important 

for the translocation of Drp1 from the cytosol to the mitochondria. The N-terminus of hFis1 

faces the cytosol, whereas the C-terminus is exposed to the inner mitochondrial space 

(156). Loss of hFis1 results in fission defects and in failure to recruit Drp1. On the other 

hand, it was shown that knockdown of hFis1 in HeLa cells did not change mitochondrial 

morphology (157). The yeast Drp1 homolog, Dnm1, requires Fis1 to localize to 

mitochondria and interacts with Dnm1 via the adaptor protein Mdv1 or Caf4. As there are 

no mammalian homologs identified for Mdv1 and Caf4, this might be the reason for only a 

minor binding between Drp1 and hFis and that additional adaptor proteins are required for 

Drp1 recruitment (158). 

 

One such recruitment factor is the mitochondria fission factor (Mff). Mff was identified in a 

RNAi screen in Drosophila for genes causing elongated mitochondria upon a knockdown 

(159). Mff is a tail-anchored protein and was shown to interact with Drp1, but does not 

build a complex with hFis1. These findings suggest that Mff and hFis act in different stages 

of the fission process. However, Mff helps to recruit Drp1 and it was shown that depletion 
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of Mff, inhibits recruitment to the mitochondria. Furthermore, Mff cannot induce 

mitochondrial fission in cells lacking Drp1 (160). These findings suggest Mff, like hFis1, 

acts as a pro-fission protein. Other fission factors are the mitochondrial dynamic protein of 

49kDa (MiD49) and mitochondrial dynamic protein of 51kDA (MiD51) and the 

mitochondrial elongation factor 1 (MIEF1). These proteins are as well located on the outer 

mitochondrial membrane. Overexpression of these proteins cause elongated mitochondria 

and a collapse of the mitochondrial network (161). The exact role of MiD proteins is still 

unclear, however, recent studies suggest that MiD proteins are involved in Drp1 

recruitment to the mitochondria and are able to promote fission in the absence of both hFis1 

and Mff (162).  

1.4.4. Regulation of mitochondrial fission 

As mitochondrial fission is central for maintaining mitochondrial morphology and 

induction of apoptosis, this process is tightly regulated via modulation of Drp1 activity. It 

was found that Drp1 is post-translationally modified by SUMOylation, S-nitrosylation, 

ubiquitination as well as several phosphorylations and that these modifications can change 

the dynamic, localization and activity of Drp1 (Figure 9).  

 

Phosphorylation of Drp1 by Calcium/calmodulin-dependent protein kinase 1a increases 

Drp1 recruitment to the mitochondria and interaction with hFis1 thus increasing 

mitochondrial fission (163). Another kinase, which translocates Drp1 to the mitochondria 

in response to hyperglycemia, is the serine/threonine kinase rho-associated protein kinase 1 

(ROCK1). It was found that ROCK1 promotes phosphorylation of Drp1 at the serine 

residue and therefore contributes to induce mitochondrial fission (164). Drp1 is also 

targeted for phosphorylation by mitosis-promoting factor cyclin-dependent kinase 

Cdk1/cyclin B thereby activating Drp1 and allowing mitochondrial fragmentation during 

mitosis to ensure proper inheritance to daughter cells (165).  

 

The glycogen synthase kinase 3 beta (GSK3β) (166) as well as AMP-activated protein 

kinase (AMPK) (167) mediate the inactivation of the phosphorylation of Drp1. GSK3β 

seems to be involved in the cellular response to oxidative stress, protecting neuronal as well 

as non neuronal cells from apoptosis by preventing excessive mitochondrial fission. Also 

phosphorylation of Dpr1 by the protein kinase A (PKA) seems to modulate the apoptotic 

threshold in response to various stimuli. Interestingly, dephosphorylation of Drp1 by the 
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phosphatase calcineurin increases mitochondrial fragmentation and the sensitivity to cell 

death (168).  

 

Aside from phosphorylation, ubiquitination as well as SUMOylation are able to influence 

the mitochondrial fission machinery. The mitochondrial RING finger ubiquitin ligase 

MARCH5 was shown to bind and ubiquitinate hFis1 and Drp1. Silencing of MARCH5 and 

overexpression of MARCH5 mutant resulted in fragmented or elongated mitochondria 

(105, 113). However, the exact process remains unclear. Besides MARCH5, the ubiquitin 

ligase Parkin was also shown to regulate Drp1 by promoting ubiquitination and 

proteasomal degradation. Mutation in the second RING finger region leads to inactive 

Parkin, reducing levels of ubiquitination and enhanced mitochondrial fragmentation (169). 

Opposing ubiquitination is the SUMOylation of Drp1 by the ubiquitin ligase MAPL. Drp1 

was shown to be protected from degradation following SUMOylation and to exhibit 

enhanced mitochondrial fragmentation activity (170). Interestingly, de-SUMOylation also 

plays a role in regulating Drp1 activity. The SUMO protease SENP5 catalyzes the removal 

of SUMO1 from Drp1. When SENP5 is up-regulated, it promotes the degradation of Drp1 

and thereby inhibits the fission process. In contrast, knockout of SENP5 stabilized Drp1 

and resulted in fragmented mitochondria (171).  

1.4.5. Mitochondrial morphology and apoptotic induction 

It has been shown that apoptosis and cytochrome c release is linked to the fragmentation of 

the mitochondrial network, by translocation of Drp1 from the cytosol to the mitochondria 

(172). The involvement of mitochondrial morphology in apoptosis is supported by the 

discovery that overexpression of a dominant-negative Drp1 (Drp1K38A) mutant retards the 

release of cytochrome c and therefore inhibits apoptosis (124). In addition, inhibition of the 

fusion process often observed during apoptosis, results in mitochondrial fragmentation after 

activation of proapoptotic factors of the Blc-2 family (173). It has been shown that 

knockdown of the fusion protein optic atrophy 1 (OPA1) results in mitochondrial 

fragmentation and furthermore sensitizes cells to apoptotic stimuli suggesting an anti-

apoptotic role for OPA1 (154). 
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Figure 9: Proteins involved in the fission machinery  
Drp1 is localized in the cytosol and is recruited to the mitochondria in the fission process. Drp1 oligomerizes 
into a contractile spiral around mitochondria and severs the mitochondria following GTP hydrolysis. Fission 
is mediated by outer membrane receptors, such as hFis1, Mff and MiD49/MiD51 that are proposed to act as 
recruiters for Drp1. Drp1 can be regulated by different modifications. The ubiquitin ligase MARCH5 and 
Parkin are known to ubiquitinate Drp1. SUMOylation by the ubiquitin ligase MAPL stabilizes Drp1 and 
promotes fission. Phosphorylation is another modification induced by several kinases and regulates Drp1. 

1.5. Mitochondrial dysfunction in neurodegenerative diseases 

Preserving the integrity of mitochondria is essential for cellular survival. For neuronal cells 

especially, a role for mitochondria in neurodegeneration is now widely accepted. Increased 

life expectancy during recent decades has resulted in a dramatic boost to the risk factors of 

neurodegenerative diseases (174). Defects in mitochondrial function have been implicated 

in neurodegenerative diseases (175). Mitochondrial dysfunction in neurodegenerative 

disorders is linked to mtDNA depletion, excessive ROS production, accumulation of 

misfolded proteins, mitochondrial morphology disturbances and losses in membrane 

potential (176).  

1.5.1. ROS-dependent neurodegenerative disorders 

One major factor for mitochondrial dysfunction is accumulating oxidative stress caused by 

the action of ROS (section 1.2.1.). Free radicals are produced constantly and must be 

balanced by antioxidant defenses to maintain cellular integrity. Imbalance of ROS and 

antioxidant systems result in oxidative stress and therefore causing damage, which leads to 

several neurodegenerative disorders (177). As an example of ROS-mediated 

neurodegeneration, Friedreich’s ataxia (FA) is caused by a mutation in the gene coding for 

the protein frataxin (178). Frataxin acts as a chaperone in mitochondrial iron transport, 
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which leads to an accumulation of Fe(II) in mitochondria and finally to an increased ROS 

production (179) as Fe(II) is known to facility single electron reaction with oxygen. In 

another example, mutations in the subunits of NADH dehydrogenase (180) causing LHON 

(Leber’s hereditary optic neuropathy) (181) are linked to optic nerve degeneration. As 

complex I is known to be the major source of ROS, LHON mutations seem to increase 

ROS production causing damage to retinal ganglion cells (182). Another such disorder, 

MELAS (mitochondrial myopathy, encephalopathy, lactic acidosis and stroke-like 

episodes) is also characterized by point mutations in mtDNA, which result in deficient 

expression of mitochondrial respiratory chain proteins and impaired OXPHOS (183).  

1.5.2. Mitochondrial dysfunction following misfolded protein accumulation 

Not only oxidative stress causes mitochondrial dysfunction leading to neurodegenerative 

disorders, but also accumulation of misfolded proteins is damaging mitochondria and 

therefore involved in various neurodegenerative diseases.  

 

In the case of amyotrophic lateral sclerosis (ALS), a mutated superoxide dismutase was 

described to mislocalize to mitochondria, causing dramatic changes in the proteome of 

spinal cord mitochondria and mitochondrial failure (184). In addition, recent findings 

support the role of mSOD1 in disrupting axonal transport of mitochondria via aggregate 

formation with neurofilaments, thereby damaging neuronal cells (185). In addition, mSOD1 

induces inhibition of mitochondrial protein import, therefore it could be explained that 

toxic proteins on the mitochondrial surface also affect the mitochondrial protein turnover 

(186). 

 

In addition, mSOD1 was found to inhibit mitochondrial protein import further impacting 

mitochondria due to an unbalanced organellar proteome. A recent report connected the 

mitochondrial ubiquitin ligase MARCH5 to the degradation of mSOD1 further supporting a 

role for the UPS in mitochondrial maintenance and prevention of neurodegeneration (187). 

Polyglutamine (polyQ)-extension and associated misfolding of various proteins such as 

Huntingtin or ataxin-3 causing Machado-Josephs-Disease is also known to negatively 

impact mitochondrial fidelity. As it is for mSOD1 shown, MARCH5 is also involved in the 

decrease of polyQ toxicity by inducing ataxin-3 proteasomal degradation (188). 
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1.5.3. Failing mitophagic clearance and neurodegeneration 

Many observations have implicated that mitochondria are involved in the pathogenesis of 

Parkinson’s disease (PD). Mutations in both, the ubiquitin ligase Parkin and the 

mitochondrial kinase PINK1 were found to cause autosomal recessive juvenile PD (189). 

These proteins were first suggested to share a pathway based on the observation that the 

knock-out of both proteins Parkin and PINK1 in Drosophila showed similar phenotypes 

(190). PINK1 is located on the outer mitochondrial membrane and leads to recruitment of 

Parkin to the mitochondria. It was found that loss of Parkin and PINK1 leads to elongated 

mitochondria as a result of an excessive fusion process. This phenotype could be rescued 

by either overexpressing Drp1 or knock-down of OPA1 or mitofusins, indicating that 

Parkin and PINK1 promote the mitochondrial fission process or may inhibit mitochondrial 

fusion (191).  

1.5.4. Neurodegeneration linked to mitochondrial morphogens 

Dysfunction of the mitochondrial network results not only in aberrant morphology of the 

organelles, but it is also associated with a wide spectrum of neurodegenerative disorders 

(122). Mutation in OPA1 are linked to about 60% of autosomal dominant optic atrophy 

(ADOA) cases (192). ADOA is characterized by slow vision loss resulting from the 

degeneration of the retinal ganglion cells, whose axons are bundled to form the optic nerve. 

The mitochondrial fusion activity of OPA1 depends on an intact GTPase and C-terminal 

coiled-coil domain with mutations in these domains connected to ADOA (192). Insufficient 

mitochondrial fusion due to mutation in OPA1 likely leads to subpar mitochondria unable 

to completely fulfill the especially high energy requirement of retinal ganglion cells (193). 

In addition, loss of OPA1 function sensitizes cells to apoptotic stimuli (194). This 

mechanism might contribute to the death of retinal ganglion cells in ADOA patients 

ultimately leading to blindness. 

 

Recent studies revealed that mutations close to or within the GTPase domain lead to 

Charcot-Marie-Tooth neuropathy type 2A (CMT2A) (195). Mutations in Mfn2 cause 

CMT2A, an autosomal-dominate disease characterized by axonal peripheral neuropathy 

sometimes associated with visual impairment (195). Patients suffer from weakness, muscle 

atrophy and hearing loss depending on the location of Mfn2 mutation (196). Although 

Mfn1 and Mfn2 share similar sequence homology, there is no known connection between 

Mfn1 and CMT2A to date. 
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While the connection between mitochondrial fusogens and neurodegeneration is well 

established, the connection between the fission process and the death of neuronal cells is 

less clear. A single case study reported a patient with a Drp1 mutation in the middle domain 

suffering from optic nerve degeneration, microencephaly and persistent lactic acidemia. 

The fibroblast of the patient showed elongated mitochondria and peroxisomes and the 

patient died 37 days after birth (197). These findings suggest that defects in the 

mitochondrial fission process lead to more severe consequences than defects in 

mitochondrial fusion.  

 

In summary, mitochondrial dysfunction is the center of many neurodegenerative disorders. 

Not only deficiencies in mitochondrial respiration are responsible for neuron loss and cell 

death, mitochondrial quality control, mitochondrial dynamic and apoptosis all play 

important roles in the survival of neurons. 
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1.6. Aims of the thesis 

1.6.1. First part of the thesis 

The first part involves the characterization of MARCH9, a new potential mitochondrial 

ubiquitin ligase. The objectives are: 

 

• To study the regulation of MARCH9 

• To identify substrates of MARCH9 

• To study the relation between MARCH9 and OMMAD 

 

1.6.2. Second part of the thesis 

The second part is a study of the degradation of S-nitrosylated proteins on the 

mitochondria, with special focus on the role of proteasomal degradation and the recently 

discovered OMMAD machinery in mitochondrial quality control. The objectives are: 

 

• To study the turnover of S-nitrosylated proteins 

• To establish the proteasomal degradation of S-nitrosylated proteins 

• To study the role of OMMAD 
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2. Materials and Methods 

2.1. Materials 

2.1.1. Nucleic acids and enzymes 

Nucleic acids and enzymes Supplier 
1-kb-DNA-marker Invitrogen, Carlsbad, USA 
dNTPs Invitrogen, Carlsbad, USA 
Oligonucleotides Sigma, St. Louis, USA 
Pfx-polymerase Invitrogen, Carlsbad, USA 
Restriction enzymes New England Biolabs, Ipswich, USA 
T4-DNA-ligase New England Biolabs, Ipswich, USA 

2.1.2. Antibodies 

Antibodies Supplier 
goat α-mouse IgG DyLight800 Thermo Scientific, Waltham, USA 
goat α-mouse IgG HRP Thermo Scientific, Waltham, USA 
goat α-mouse-IgG Alexa488 Invitrogen, Carlsbad, USA 
goat α-mouse-IgG Alexa546 Invitrogen, Carlsbad, USA 
goat α-rabbit IgG DyLight800 Thermo Scientific, Waltham, USA 
goat α-rabbit IgG HRP Thermo Scientific, Waltham, USA 
mouse serum IgG Sigma, St. Louis, USA 
mouse α-cytochrome c Abcam, Cambridge, UK 
mouse α-GADH Santa Cruz Biotechnology, USA 
mouse α-GFP Roche, Basel, Switzerland 
mouse α-HA antibody clone 12CA5 Abcam, Cambridge, UK 
mouse α-MBP New England Biolabs, Ipswich, USA  
mouse α-Myc Sigma, St. Louis, USA 
mouse α-myc antibody clone 9E10 Sigma, St. Louis, USA 
mouse α-FLAG Sigma, St. Louis, USA 
rabbit α-GFP Sigma, St. Louis, USA 
rabbit α-Mfn2 Abcam, Cambridge, UK 
rabbit α-ubiquitin Enzo Life Science, Lausen, Switzerland 
rabbit α-VDAC Abcam, Cambridge, UK 
streptavidin high sensitive HRP Thermo Scientific, Waltham, USA 

2.1.3. Reagents 

Reagents Supplier 
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1,4-dithiointhreitol Roth, Karlsruhe, Germany 
A/G plus-Agarose beads Santa Cruz Biotechnology, Dallas, USA 
Acetone Sigma, St. Louis, USA 
Acrylamide  Roth, Karlsruhe, Germany 
Agarose Sigma, St. Louis, USA 
Amicon Ultra-4 Centrifugal Filter Millipore, Billercia, USA 
Ammoniumperoxodisulfate  Roth, Karlsruhe, Germany 
Ampicillin Roth, Karlsruhe, Germany 
B-Per buffer Thermo Scientific, Waltham, USA 
BCA™ protein assay Kit Thermo Scientific, Waltham, USA 
Biotin-HDPD Sigma, St. Louis, USA 
Blasticidin InvivoGen, San Diego, USA 
Bovine serum albumine Roth, Karlsruhe, Germany 
Bromphenol blue MP Biomedicals, Ohio, USA 
Calcium chloride Roth, Karlsruhe, Germany 
Carbonyl cyanide m-chlorophenyl hydrazine Sigma, St. Louis, USA 
Coomassie-Brilliant Blue G250 Roth, Karlsruhe, Germany 
DAPI Roth, Karlsruhe, Germany 
Digitonin Sigma, St. Louis, USA 
Dimethyl sulfoxide  Sigma, St. Louis, USA 
Dulbecco’s modified Eagle’s medium Sigma, St. Louis, USA 
ECL plus Solution A and B Thermo Scientific, Waltham, USA 
EDTA-free protease tablets Roche, Basel, Switzerland 
Epoxomicin  Peptide Institute, Osaka, Japan 
Ethanol  Merck, Darmstadt, Germany 
Ethidium Bromide Biorad, Berkley, USA 
Ethylendiamintetraacetat Sigma, St. Louis, USA 
Fetal bovine serum (FBS) Sigma, St. Louis, USA 
Filter paper Roth, Karlsruhe, Germany 
Formaldehyde Solution  Thermo Scientific, Waltham, USA 
FuGENE6 Qiagen, Venlo, Nederland 
Fuji Film medical X-ray Fuji, Tokyo, Japan 
Glacial acetic acid Roth, Karlsruhe, Germany 
Glutathione sepharose beads Thermo Scientific, Waltham, USA 
Glycerin Roth, Karlsruhe, Germany 
Glycine Roth, Karlsruhe, Germany 
HEPES Roth, Karlsruhe, Germany 
Histrap HP column GE Healthcare, St. Giles, USA 
Hygromycin Roth, Karlsruhe, Germany 
Imidazole Roth, Karlsruhe, Germany 
Iodoacetamide Sigma, St. Louis, USA 
Isopropyl β-D-1-thiogalactopyranoside Roth, Karlsruhe, Germany 
L-glutamine Sigma, St. Louis, USA 
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LB-Medium Roth, Karlsruhe, Germany 
Leupetine Sigma, St. Louis, USA 
Magnesium chloride Roth, Karlsruhe, Germany 
Magnesium sulfate Roth, Karlsruhe, Germany 
Methanol Roth, Karlsruhe, Germany 
MG132 Peptide Institute, Osaka, Japan 
Mitochondrial Isolation Kit Macs Milteny Biotec, Gladbach, Germany 
Mounting medium, Vectashield, H-1000 Vector Laboratories, Burlingame, USA 
N-ethylmalmeide Sigma, St. Louis, USA 
Neocuprine Sigma, St. Louis, USA 
Nitrocellulose membrane GE Healthcare, St. Giles, UK 
NucleoSpin® Extract II Gel Extraction kit Macherey-Nagel, Düren, Germany 
OPTI-MEM Invitrogen, Carlsbad, USA 
Pepstatine Sigma, St. Louis, USA 
Polyethylenimine Polyscience, Philadelphia, USA 
Potassium acetate Roth, Karlsruhe, Germany 
Potassium chloride Sigma, St. Louis, USA 
Potassium hydrogen phosphate Merck, Darmstadt, Germany 
QYAprep® spin Mini Prep Kit Qiagen, Venlo, Nederland 
RIPA buffer (Pierce) Thermo Scientific, Waltham, USA 
S-Methyl methanethiosulfonate Sigma, St. Louis, USA 
Sodium ascorbate Sigma, St. Louis, USA 
Sodium chloride Roth, Karlsruhe, Germany 
Sodium dodecylsulfate Roth, Karlsruhe, Germany 
Sodium lactate Sigma, St. Louis, USA 
Tetracycline free FBS Clontech (Takara), Kyoto, Japan 
Tetracycline hydrochloride Roth, Karlsruhe, Germany 
Trypsin-EDTA 1x Sigma, St. Louis, USA 
Tryptone Roth, Karlsruhe, Germany 
z-VAD-fmk Peptide Institute, Osaka, Japan 
Zinc chloride Roth, Karlsruhe, Germany 
β-Mercapthoethanol Sigma, St. Louis, USA 

2.1.4. Equipment 

Equipment Supplier 
ÄktaPrime FPLC GE Healthcare, St.Giles, UK 
Centrifuge 5424 Eppendorf, Hamburg, Germany 
Centrifuge Avanti J-25 Beckman, Brea, USA 
Centrifuge Mikro 200R Hettich, Tittlingen, Germany 
Electrophoresis chamber Xcell mini Invitrogen, Carlsbad, USA 
HE33 mini horizontal agarose electrophoresis Hoefer, Holliston, USA 
Heating bloc Labnet, Edison, USA 
Microscope, BX 63, Apollo Olympus, Japan 
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Nanodrop Thermo Scientific, Waltham, USA 
Scale PM1200 Mettler Toledo, Zurich, Switzerland 
Sterile filter 0.2 µM Roth, Karlsruhe, Germany 
Thermomixer Eppendorf, Hamburg, Germany 
Transfer-blot Semi-Dry Transfer cell Biorad, Berkley, USA 
Water bath Memmert, Büchenbach, Germany 
Water purification system Millipore, Billercia, USA 

2.1.5. Plasmids 

Plasmids Description 
pAN393 MARCH9YFP, CMV promoter, promoter active in mammalian cells 

pAN464 
MARCH9H136WYFP, CMV promoter, promoter active in mammalian 
cells 

pAN515 MARCH93xMyc, CMV promoter, promoter active in mammalian cells 

pAN516 
MARCH9H136W3xMyc, CMV promoter, promoter active in mammalian 
cells 

pAN680 
Bacterial expression of MARCH9 RING domain part with Myc/GST,  
T7 promoter, bacterial expression 

pAN681 YFPMfn1, CMV promoter, promoter active in mammalian cells 
pAN770 MARCH9-Halo, CMV promoter, promoter active in mammalian cells 
pAN832 MARCH9, CMV promoter, promoter active in mammalian cells 
pAN833 MARCH9H136W, CMV promoter, promoter active in mammalian cells 
pAN918 FLAG-Ubiquitin, CMV promoter, promoter active in mammalian cells 
pAN940 ParkinYFP, SV40 promoter, promoter active in mammalian cells 
pAN945 GST-3xMycMARCH9 , T7 promoter, bacterial expression 
pAN968 his6-UBE2G2, UBE1-S-Tag, T7 promoter, bacterial expression 
pAN969 UBE2G2, T7 promoter, bacterial expression 
pAN993 GST-3xMycMARCH9 H136W, T7 promoter, bacterial expression 
pAN1117 MARCH9-GST, CMV promoter, promoter active in mammalian cells 
pAN1356 Mfn2YFP, CMV promoter, promoter active in mammalian cells 
pAN1357 Mfn2RasG12VYFP, CMV promoter, active in mammalian cells 
pAN1370 Mfn1RasG12VYFP, CMV promoter, active in mammalian cells 
pAN1371 MBPMARCH9-ΔC-terminus-his6, P-lac promoter, bacterial expression 

pAN1372 
MBPMARCH9H136W-ΔC-terminus-his6, P-lac promoter, bacterial 
expression 

Vector pcDNA 3.1, mammalian expression vector, CMV promoter 
Vector YFP-N1, mammalian expression vector, CMV promoter 
Vector pMAL-c5E, bacterial expression vector for MBP-fusion protein 

Vector 
pCDF-DUET, bacterial co.expression vector, for two genes, lacI 
promoter 

Vector 
pACYC-DUET, bacterial co-expression vector for two genes, lacI 
promoter 

Table 1: Plasmids used in experiments 
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The described plasmids were a gift from Neutzner lab or cloned individually for the experiment. 
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2.2. Molecular Biology Methods 

2.2.1. Bacterial strains 

The Escherichia coli (E.coli) strains, DH5α and BL21 (DE3) served in both the cloning and 

the expression experiments. BL21 and DH5α were used for heat shock transformation. 

They were grown overnight in LB (Luria-Bertani) medium and later on LB agar plates 

supplemented with the appropriate antibiotic for selection.  

2.2.2. Preparation of competent cells 

A 6 ml overnight culture of either E.coli DH5α or BL21 was grown in 2YT medium (10 g/l 

NaCl, 10 g/l yeast extract, 12 g/l tryptone, 20 nM MgSO4 and 10 mM KCl) and diluted 

1:100 in 10 ml 2YT medium (198). Cells were grown to OD600 0.5, diluted 1:100 and grown 

again to OD600 0.5. The culture was chilled for 10 minutes on ice and then collected by 

centrifugation (7 min, 2000g, 4°C). The supernatant was discarded and the pellet 

resuspended in 20 ml ice-cold transformation buffer (30 mM MgCl2, 100 mM RbCl, 10 

mM CaCl2, 15% (v/v) glycerol in ddH2O (pH 5.8)) then incubated for 10 minutes on ice. 

After a second centrifugation (7 min, 2000g, 4°C), the pellet was resuspended in 4 ml ice-

cold transformation buffer 2 (10 mM MOPS, 10 mM RbCl, 75 mM CaCl2, 15% (v/v) 

glycerol in ddH2O (pH 6.8)). Aliquots of 100 µl were immediately stored at -80°C.  

2.2.3. High-fidelity polymerase chain reaction (PCR) 

Polymerase chain reaction (PCR) serves for the exponential amplification of a defined 

DNA-sequence by a thermo stable DNA-Polymerase (199). The PCR reaction contains 

template DNA, DNA polymerase, primers, 10x buffer and deoxynucleotides triphosphate 

(Table 2). The PCR consists of 20-40 repeated cycles and the PCR reaction has the 

following thermal cycler: 

 

1. Denaturation step: heating the reaction up to 94 °C. 

2. Annealing step: DNA polymerase binds to the primer-template hybrid 

3. Extension step: DNA polymerase synthesizes the new DNA strand 
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PCR products were separated on an agarose gel (section 2.2.9.) and purified from agarose 

gel blocks using NucleoSpin® Extract Gel Extraction according to the manufactures 

protocol. 

Components PCR1 
µl 

PCR2 
µl 

PCR3 
µl 

PCR4 
µl 

MasterMix 
µl 

MARCH9YFP 0.5 0.5 0.5 0.5 2.25 
Pfx buffer 5 5 10 10  
dNTPs 7.5 7.5 7.5 7.5 33.75 
MgSO4 1 1 1 1 4.5 
Enhancer 0 5 0 5  
Oligo 884 1.5 1.5 1.5 1.5 6.75 
Oligo 1177 1.5 1.5 1.5 1.5 6.75 
Pfx 0.5 0.5 0.5 0.5 2.25 
Water 32.5 27.5 27.5 22.5 12.5 
Table 2: Components for PCR 
PCR for MBPMARCH9his6, PCR1 to PCR4 are different conditions, which result in four different PCR 
products. 
 

1x94°C 4’; 25x94°C 15”, 56°C 30”, 68°C 1’; 1x10°C indef 
 
 

Components PCR1 
µl 

PCR2 
µl 

PCR3 
µl 

PCR4 
µl 

MasterMix 
µl 

MARCH9H136WYFP 0.5 0.5 0.5 0.5 2.25 
Pfx buffer 5 5 10 10  
dNTPs 7.5 7.5 7.5 7.5 33.75 
MgSO4 1 1 1 1 4.5 
Enhancer 0 5 0 5  
Oligo 884 1.5 1.5 1.5 1.5 6.75 
Oligo 1177 1.5 1.5 1.5 1.5 6.75 
Pfx 0.5 0.5 0.5 0.5 2.25 
Water 32.5 27.5 27.5 22.5 12.5 
Table 3: Components for PCR 
PCR for MBPMARCH9H136Whis6, PCR1 to PCR4 are different conditions, which result in four different PCR 
products.  
 

1x94°C 4’; 25x94°C 15”, 56°C 30”, 68°C 1’; 1x10°C indef  

2.2.4. Cloning of MBPMARCH9-his6 
MBPMARCH9-his6 was amplified from MARCH9YFP wildtype or from MARCH9H136WYFP 

using Pfx polymerase, oligo nucleotide OAN884 (GGTGGTCAT 

ATGCTCAAGTCTCGGCTCCG) and OAN117 (TAGTCCAAGCTTCTA 

GTGATGGTGATGGTGATGCTTCTCGATGACCGTCAGGGA). The resulting PCR 
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product was cut with NdeI/HindIII and ligated into pMAL-c5E vector cut with 

NdeI/HindIII to obtain MARCH9ΔCT or MARCH9H136WΔCT, respectively  

(section 2.2.3. Table 2 and 3). The PCR generated fragments were purified from agarose 

gel using NucleoSpin® Extract II Gel Extraction according to the manufacture’s protocol.  

2.2.5. DNA digestion 

1 µg DNA was incubated with 1 µl selected restriction enzymes, with 2 µl of the 

appropriate incubation buffer as suggested by the manufacturer, 2 µl 10x BSA and ddH2O 

to reach the final volume of 20 µl. The reaction was incubated for 1-2 hours and purified 

using Quiagen MinElute Reaction® cleanup kit according to the manufacture’s protocol.  

2.2.6. DNA ligation 

For ligation reactions a 1:3 vector to insert ratio was used. 1 µl insert and 3 µl vector were 

mixed with 1 µl ligase, 2 µl of 10x ligase buffer and ddH2O to reach a final volume of 20 

µl. The reaction was incubated overnight at 37°C before transformation into DH5α (section 

2.2.7).  

2.2.7. DNA transformations 

For transformation into competent bacteria (E. coli), 5 µl of ligation reactions were added 

to the competent cells and incubated on ice for 30 minutes. After incubation the DNA-

bacteria mixture was heated at 42°C for 45 seconds. Immediately after incubation the 

bacteria were placed one ice for 5 minutes followed by adding 1 ml of SOC medium (SOB 

medium (5 g/l yeast extract, 20 g/l tryptone, 0.186 g/L KCl, 2.4 g/l MgSO4) with 20 mM 

sterile glucose, then shaken for 1 hour at 37° C. The mixture was spread on LB plates 

containing the appropriate antibiotic for selection followed by an overnight incubation at 

37°C.  

2.2.8. DNA plasmid isolation 

After transformation several clones were picked for growing overnight at 37 °C in 5 ml LB 

medium containing the appropriate antibiotic. DNA was extracted from bacteria using the 

QIAprep® Spin Mini prep kit according to manufacturer’s instructions. The isolated DNA 

was digested with the selected restriction enzymes and separated onto agarose gel (section 

2.2.9) to verify clones with the correct insert length. The constructs were verified by 

sequencing (Microsynth, Basel, Switzerland).  
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2.2.9. Gel electrophoresis 

For gel electrophoresis DNA samples were separated on 0.8 % (w/v) agarose gels in TAE 

buffer (48.4 g/l Tris-base, 10.9 g/l glacial acetic acide, 2.92 g/l ethylendiaminetetraacetic 

acid (EDTA), ddH2O add 1 l) supplemented with 0.5 µg/ml ethidium bromide. DNA 

loading dye (10x 10 mM TrisHCl pH7.8, 1 mM EDTA, 2.5 mg/ml bromphenol blue, 2.5 

mg/ml xylene cyanol, 300 mg glycerol) was added to the DNA samples and samples were 

separated using 85 V for 45 minutes. NucleoSpin® Extract II Gel Extraction kit was used 

to extract DNA fragments from agarose gels for further cloning steps according to the 

manufacturer’s protocol.  

2.3. Biochemical Methods  

2.3.1. Sodium dodecyl sulfate polyacrylamide gel electrophoresis (SDS-
PAGE) 

SDS-PAGE is a method to separate protein samples according to their molecular weight 

(200). For detection of proteins, 9% or 12% (w/v) acrylamide resolving gel combined with 

4% stacking gels was used (Table 4, 5, 6). Samples were run at 120 V for 110 minutes in 

Laemmli running buffer (10x 250 mM Tris base, 1.92 M glycine, 10 g/l SDS). 

Table 4: Components for 12% resolving gel 

Resolving Gel (12%)  
1.5 M Tris/HCL pH 8.8 5 ml 
10% (v/w) SDS 200 µl 
30% (v/w) acrylamide 8 ml 
25% (w/v) APS 54 µl 
TEMED 13 µl 
ddH2O 6.7 ml 

Table 5: Components for 4% stacking gel 

Stacking Gel (4%)  
0.5 M Tris/HCL pH 6.8 2.5 ml 
10% (v/w) SDS 100 µl 
30% (v/w) acrylamide 1340 ml 
25% (w/v) APS 80 µl 
TEMED 10 µl 
ddH2O 6 ml 

 

Resolving Gel (9%)  
1.5 M Tris/HCL pH 8.8 5 ml 
10% (v/w) SDS 200 µl 
30% (v/w) acrylamide 6 ml 
25% (w/v) APS 54 µl 
TEMED 13 µl 
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ddH2O 8.7 ml 
Table 6: Components for 9% resolving gel 

 

2.3.2. Coomassie staining 

To detect proteins, SDS gels were washed in 30 ml ddH2O, heated for 30 seconds in the 

microwave and shaken for 10 minutes at RT. This procedure was repeated 3 times. The gels 

were then stained using 15 ml Coomassie staining solution (60-80mg Coomassie Brilliant 

Blue G250 in 1 l ddH2O, 35 mM 37% HCl) and heated for 10 seconds in a microwave. 

After 20-30 minutes of staining, gels were destained overnight with ddH2O under constant 

shaking.  

2.3.3. Protein sample preparation 

Cells expressing target proteins were harvested, and protein lysates were prepared using 

RIPA buffer according to the manufacturer’s instructions. The pellet was lysed on ice with 

RIPA buffer 5 minutes followed by centrifugation (14000 rpm, 4°C) for 10 minutes. 

Supernatants containing the protein were collected and mixed 1:1 in 2x Laemmli sample 

buffer (125 mM Tris/HCl pH 6.8, 4% (w/v) SDS, 20% (v/v/) glycerol, 0.04% (w/v) 

bromphenol blue) supplemented with 50 mM DTT and heated at 65°C for 10 minutes for 

samples containing MARCH9 or at 95°C for 5 minutes for all other samples. 

2.3.4. Western blot 

Using Western blot, proteins were transferred from SDS-PAGE gel onto a nitrocellulose 

membrane followed by the detection of target proteins using specific monoclonal 

antibodies against the protein (201). The membrane was washed with PBS-T and incubated 

with a secondary HRP antibody. Proteins were detected using chemiluminescent substrate. 

To perform quantitative Western blotting, samples were loaded in triplicate onto SDS-

PAGE, and proteins were detected using primary antibodies followed by secondary reagent 

α-DyLight800-coupled α-rabbit and α-mouse antibodies. Bands were visualized using an 

infrared-based laser scanner (LiCor) and quantified using Odyssey software (LiCor). 

Detection of GAPDH served as a loading control. 

2.3.5. Immunoprecipitation 
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Cells were harvested and lysed on ice in lysis buffer (25 mM Hepes, pH 7.5, 10 mM CaCl2, 

1% digitonin, 20 mM iodoacetamide, 20 mM N-ethylmaleimide, 1 µg/ml pepstatin, 1 µg/ml 

leupeptin, 1 mM PMSF) for 30 minutes (202). Cleared lysates were generated by 

centrifugation at 14000 rpm for 10 minutes. Proteins from the lysates were mixed either 

with 2 µg of rabbit α-Mfn2 or 2 µg of rabbit α-GFP antibodies, then incubated for 2 hours 

at 4°C. Lysates were then incubated with 50 µl of prewashed protein A/G sepharose beads 

and rotated for 2 hours at 4 °C. Beads were washed three times with washing buffer 

(25 mM Hepes, pH 7.5, 10 mM CaCl2, 0.2 % digitonin) and heated at 65 °C in 1x Laemmli 

sample buffer supplemented with 50 mM DTT for 10 minutes. Immunopurified proteins 

were detected by Western blot.  

2.3.6. Bacterial ubiquitination assay 

E. coli T7 express were transformed with a pCDF-DUET-based expression plasmid 

containing the single ubiquitin activating enzyme 1 (E1) as Stag marked version, as well as 

a suitable conjugating enzyme E2, such as his6-UBE2G2 under the control of the IPTG-

inducible T7 promoter (203). These bacteria were transformed with a second plasmid based 

on pACYC-DUET containing 3xFLAGubiquitin and GST-his6-3xMycMARCH9AA1-182 or GST-

his6-3xMycMARCH9AA1-182H136W, lacking both transmembrane domains and both under the 

control of an IPTG-inducible promoter. Solubility of MARCH9 in this bacterial expression 

system was confirmed in previous experiments performed in our laboratory. To detect auto-

ubiquitination of GST-his6-3xMycMARCH9AA1-182, bacteria containing both expression vectors 

were induced for 3 hours with 1 mM IPTG and lysed using B-PER buffer supplemented 

with DNAse and lysozyme according to the manufacturer’s protocol. GST-tagged proteins 

were then purified using immobilized glutathione sepharose beads. Samples were boiled at 

95°C in 1x Laemmli sample buffer and affinity-purified proteins as well as lysates were 

detected by Western blot using mouse α-myc and mouse α-FLAG antibodies. 

2.3.7. Ubiquitin activating assay 

To measure ubiquitin activity of MBPMARCH9 and MBPMARCH9H136W, an in vitro 

ubiquitin activity assay was performed. All components, which were used for the reaction 

(Table 7) were mixed in a 1.5 ml microtube and incubated for 1 hour at 37°C. Afterwards 

50 µl of nonreducing 2x Laemmli sample buffer was added and samples were analyzed by 

Western blot using either α-ubiquitin or mouse α-MBP antibody.  
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Component in µl Control MARCH9 MARCH9H136W 
ddH2O 28 0 0 
10xUbiquitinylation Buffer 5 5 5 
IPP (100U/ml) 10 10 10 
DTT (50 mM) 1 1 1 
Mg-ATP (0.1 M) 2.5 2.5 2.5 
Reticulocytes lysate  1 1 1 
Ubiquitin (50 µM) 2.5 2.5 2.5 
Table 7: Components of in vitro ubiquitination assay 

2.3.8. Detection of S-nitrosylated proteins 

HeLa cells were transfected overnight with a plasmid encoding ubiquitin-HA. After 

incubation, cells were harvested and mitochondria isolation was performed (section 2.4.4.). 

Mitochondria were resuspended in RIPA buffer and heated at 95°C for 5 minutes. To detect 

ubiquitinated proteins, samples were separated on a 12% SDS-PAGE and detected by 

Western blot using rabbit α-ubiquitin antibody.  

2.3.9. Purification of MARCH9 proteins 

BL21 cells containing plasmids pAN1371 (MBPMARCH9-his6) or pAN1372 

(MBPMARCH9H136W-his6) were grown overnight at 37°C in LB medium containing 2% 

glucose, 100 µM ZnCl2 and 100 µg/ml ampicillin. The next day, cells were diluted to an 

OD600 of 0.08 in the same medium. After reaching an OD600 of 0.8, 1 mM IPTG was added 

to the culture to induce protein expression. After 3 hours, cells were centrifuged (4000g, 15 

minutes, 4°C), the supernatant was discarded and the pellet was frozen at -20°C. This pellet 

was resuspended in buffer A (20 mM NaPO4, 10 mM imidazole, 500 mM NaCl, pH 7.4 and 

protease inhibitor cocktail (Roche)), sonicated on ice 10 times for 30 seconds and 

centrifuged at 15000 g for 40 minutes at 4°C. The supernatant was filtered through a 0.45 

µm sterile filter and subjected to ÄktaPrime FPLC using 1 ml Histrap HP column, buffer A 

and buffer B (20 mM NaPO4, 500 mM imidazole, 500 mM NaCl, pH 7.4). Fractions 

containing MARCH9 were pooled together. In the case of dual-affinity purification, 
MBPMARCH9 fractions were diluted 1:5 in column buffer (20 mM Tris/HCl pH 7.4, 200 
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mM NaCl and one protease inhibitor cocktail (Roche)). This sample was loaded to 1 ml 

amylose beads equilibrated with column buffer. Beads were washed with 12 ml column 

buffer. Proteins were eluted in fractions of 1 ml with column buffer containing 20 mM 

maltose. Protein fractions from Histrap HP column or from amylose beads were pooled 

together and dialyzed against buffer C (20 mM Tris/HCl, 300 mM NaCl and 1 mM DDT, 

pH 7.9) using dialysis tubing with a molecular weight cut of 4’000-6’000 kDa. The samples 

were gently removed from the dialysis tubing and centrifuged (30 minutes at 4°C) to 

remove precipitated proteins. Proteins were concentrated using the Amicon Ultra-4 

Centrifugal Filter Devices and concentration was determined by measuring A280 using 

nanodrop. Protein size was confirmed by SDS-PAGE followed by Coomassie staining.  

2.4. Cell Biology methods 

2.4.1. Cell culture 

HeLA cells, a human cervix carcinoma cell line, were maintained in Dulbecco’s Modified 

Eagle’s Medium (DMEM), supplemented with 10% (v/v) fetal bovine serum, 1 mM 

sodium pyruvate and 2 mM L-glutamine. Cells were grown in a humidified incubator at 5% 

CO2 and 37°C. Stable transfected 293 FlpIn TRex cells were cultured in DMEM 

supplemented with 10% tetracycline-free fetal bovine serum, 2 mM L-glutamine, 50 mg/ml 

hygromycin and 5 mg/ml blasticidin. To express the requested protein, 293 FlpIn TRex 

cells were induced by addition of 1 µg/ml tetracycline. For splitting cells, medium was 

removed and cells were washed once with PBS. After washing, trypsin/EDTA was added 

for 5 minutes and the same volume of medium was added to the cells to stop trypsination. 

Cells were spin down at 900 g for three minutes and diluted in 1:4 ratio. This procedure 

was repeated every 2-3 days. 

2.4.2. Transfection of cells 

HeLa cells were transfected with plasmid DNA using polyethylenimine (PEI) as previously 

described (204). Briefly, DNA was mixed with PEI in a ratio of 1:5 and incubated in the 

presence of sodium lactate (LBS) for 20 minutes at room temperature. After 20 minutes 

OPTI-MEM medium was added to the solution and the DNA complex was directly dropped 

onto the cells and incubated overnight. 

2.4.3. Heavy membrane 
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HeLa cells were harvested using trypsine/EDTA. For fractionation, fresh cells were 

resuspended in mitochondria isolation buffer (210 mM mannitol, 70 mM sucrose, 

1 mM EDTA, 10 mM Hepes pH 7.5) supplemented with protease inhibitors 

(1 µg/ml pepstatin, 1 µg/ml leupeptin, 1 mM PMSF), and passed 15 times through a 25G 

needle. Samples were centrifuged for 5 minutes at 500 rpm at 4°C. The resulting 

supernatant was again centrifuged for 30 minutes at 10000 rpm to obtain the mitochondria-

enriched heavy membrane fraction. This fraction was either resuspended in RIPA buffer 

supplemented with 2 mM DTT and analyzed by Western blot or used for biotin switch 

assay. 

2.4.4. Mitochondria isolation 

Mitochondria were isolated using a mitochondrial isolation kit according to the 

manufacturer’s protocol. Briefly, cells were harvested with ice-cold PBS, lysed in 1 ml 

lysis buffer supplemented with protease inhibitors (1:1000) and subsequently homogenized 

with a 25G needle (stepwise using 15 strokes). After homogenizing, ice-cold 1x separation 

buffer and 50 µl α-TOM22 microbeads were added to the lysate for magnetic labeling of 

the mitochondria. This mixture was incubated for 1 hour at 4°C under gentle rotation. One 

LS column was placed in the magnetic field of a MACS separator and the column was 

prepared by rinsing with 3 ml of 1x separation buffer. The cell lysate was applied stepwise 

to the column. Mitochondria were eluted by firmly pushing the plunger into the column. 

After two centrifugation steps, mitochondria were resuspended in 100 µl RIPA buffer and 

sonicated for 10 seconds.  

2.4.5. Micro BCA 

Concentration of mitochondria was determined by using BCATM protein assay kit (205). 

After pipetting 9 µl of working solution to each well, 1 µl of each sample was added to the 

solution. The standard curve was prepared using BSA in the concentrations of 0, 125, 250, 

500, 750, 1000, 1500 and 2000 µg/ml. The samples were incubated for 15 minutes at 37°C 

and protein concentration was measured at OD546 using micro photometer. 

2.4.6. Biotin-switch 

Based on previous work (206) detection of S-nitrosylated mitochondria was done using 

biotin-switch assay. Biotin switch consists of three steps: (1) blocking of free cysteine 

thiols by S-methylmethane thiolsulfonate (MMTS); (2) conversion of S-nitrosothiol (SNO) 
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to a free thiol via a transnitrosation reaction with ascorbate; (3) labeling by S-biotinylation 

of the newly formed thiols with biotin-HPDP. Mitochondria were isolated as described in 

section 2.4.4. For all experiments 0.1-0.2 mg of mitochondria were used. Different 

treatments were adjusted with fresh prepared HEN buffer containing 250 mM Hepes pH 

7.4, 1 mM EDTA pH 8.0, 20 µl neocuprine (5 mg/ml in methanol), 10 µl MMTS and 2.5% 

SDS. Samples were incubated in the dark at 50°C for 20 minutes under constant shaking. 

After the blocking step, 3 ml of 100% ice-cold acetone was added to each sample and 

precipitated for 30 minutes at -20°C. The pellets were collected by centrifugation at 2000 g 

for 10 minutes (section 2.4.8.). The supernatant was aspirated and the mitochondria pellet 

was washed 3 times with cold 70% acetone. After precipitation the dry pellet was 

resuspended in 200 µl HENS buffer containing 250 mM Hepes pH 7.4, 1 mM EDTA pH 

8.0, 20 µl neocuprine (5 mg/ml in methanol) and 1% SDS. The labeling reaction was 

initiated by adding 15 µl biotin-HDPD (2.5mg/ml) and 20 µl of 20 mM sodium ascorbate. 

All samples were rotated at RT for 1 hour while protected from light. After the 

biotinylation step, samples were precipitated with 900 µl ice-cold 100% acetone for 30 

minutes at -20°C. The supernatant was aspirated and the mitochondria pellet was washed 3 

times with cold 70% acetone. After complete resuspension of the protein pellet in 200 µl 

HENS/10 buffer, 750 µl of neutralization buffer containing 25 mM Hepes pH 7.4, 100 mM 

NaCl, 0.5% Triton X-100 and 100 µM EDTA pH 8.0 as well as 40 µl of prewashed 

neutravidin beads were added and the samples were gently rotated overnight at 4°C. 

Neutravidin beads were used to enrich the biotinylated proteins. After the enrichment of 

biotinylated proteins, neutravidin beads were washed 4 times with neutralization buffer 

containing 25 mM Hepes pH 7.4, 600 mM NaCl, 0.5% Triton X-100 and 100 µM EDTA 

pH 8.0 and 40 µl of nonreducing 1x Laemmli sample buffer was added to the samples. The 

elution of the biotin labeled protein was performed by heating the beads to 95°C for 5 

minutes. To detect the S-nitrosylated proteins samples were separated on a 12% SDS-

PAGE, transferred onto a nitrocellulose membrane, blocked with 3% Topblock and 

incubated for 2 hours with 1:6000 diluted streptavidin high sensitive- peroxidase.  

2.4.7. Immunocytochemistry  

A primary antibody binds specifically to the protein of interest and a secondary antibody, 

tagged with a fluorescent dye, binds to the primary antibody. This allows the detection of 

proteins by fluorescence microscope. To assess mitophagy, HeLa cells grown on glass 

cover slips were transfected overnight with ParkinYFP using FuGENE 6 transfection reagent 
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followed by different treatments. Cells were fixed using methanol-free electron microscopy 

grade 4% paraformaldehyde in PBS for 15 minutes at RT, permeabilized for 15 minutes at 

RT using 0.15% Trixon X-100 in PBS and blocked for 1 h in 10% BSA in PBS. To stain 

for cytochrome c, cells were incubated with mouse α-cytochrome c antibody and mouse α-

Alexa546 antibody. Samples were mounted using mounting medium, observed using 

fluorescence microscopy and analyzed with Image J software. 

2.4.8. Protein precipitation 

Protein samples contain substances, which can interfere with some further applications. To 

eliminate those substances from the samples, a compound that causes protein precipitation 

has to be added. The protein pellet, which contains the precipitated proteins, was re-

dissolved in a compatible buffer. To remove interfering substances, 4 times of the sample 

volume of 100% ice-cold acetone was used and incubated at -20°C for 30 minutes. After 

incubation, samples were centrifuged (5000 rpm, 5 minutes, 4°C) and washed 3 times with 

70% acetone. The compatible buffer was added to the dry pellet and resuspended.  

2.4.9. Statistical analysis 

All experiments were performed at least three times independently. Statistical significance 

was analyzed using unpaired, two-tailed Student’s t-test as implemented in Microsoft 

Excel. P-values of < 0.05 or smaller was considered statistically significant and are 

highlighted with *, p-values of <0.01 are highlighted with **, p-values of <0.001 are 

highlighted with ***. Error bars represent the standard error of the mean (SEM). 
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3. Results 

3.1. MARCH9, a potential new mitochondrial ubiquitin ligase 

3.1.1. Characterization of MARCH9- previous findings 

Bioinformatic analysis revealed about 400 genes in the human genome to encode RING 

finger domains containing proteins with 54 of these predicted to contain one or more 

transmembrane domains (Figure 10). Containing a RING finger domain suggests a putative 

ubiquitin ligase activity. Using a large scale subcellular localization, it was found that of 

these 54 potential RING finger ubiquitin ligases, four localize to mitochondria in the 

presence of two alpha-helical transmembrane domains (202), termed MARCH5 (105), 

IBRDC2 (106), MAPL/MULAN (104) and MARCH9 (Neutzner- personal 

communication). Further experiments confirmed for MARCH9 localization to the outer 

mitochondrial membrane with the RING finger domain facing the cytosol. In addition, 

mutating, and thus inactivating the RING finger domain of MARCH9 by exchanging a 

crucial zinc-complexing histidine residue on position 136 to tryptophan generated a likely 

dominant-negative mutant of MARCH9 (MARCH9H136W) (105). Analyzing the impact of 

MARCH9H136W on mitochondrial morphology revealed that the dominant-negative mutant 

MARCH9H136W blocks the mitochondrial fusion process and causes mitochondrial 

fragmentation, making a role of MARCH9 in the fusion process likely (Neutzner- personal 

communication). 

 

 

 
Figure 10: Domain structure of the mitochondrial RING finger protein MARCH9 
MARCH9 is a 346 amino acid protein containing a RINGv domain N-terminal and (red) two membrane-
spanning alpha helices (green).  

3.1.2. MARCH9 is a substrate of OMMAD 

The presence of a RING finger domain in MARCH9 supports ubiquitin ligase function for 

this protein. Ubiquitin ligases are known to possess auto-ubiquitination activity in the 

absence of substrate proteins, thus regulating their levels via auto-degradation (207). 

During the auto-ubiquitination process, ubiquitin ligases catalyze the addition of poly-
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ubiquitin chains to themselves resulting in their degradation or change of their cellular 

function (208). To test the stability and the degradation of MARCH9 and MARCH9H136W 

by the proteasome, expression levels of these proteins were studied. To test whether 

MARCH9 levels might be regulated through auto-ubiquitination, the stability of MARCH9 

and MARCH9H136W was studied. The exchange of the histidine residue on position 136 in 

MARCH9H136W to tryptophan is predicted to render MARCH9H136W inactive, thus 

MARCH9H136W might be more stable compared to wildtype MARCH9. To this end, cells 

stably expressing MARCH9 or MARCH9H136W under control of a tetracycline-inducible 

promoter were induced for 24 hours with tetracycline, additionally treated for 6 hours with 

the proteasome inhibitor MG132 or DMSO as control and expression levels of MARCH9 

and MARCH9H136W were analyzed by quantitative Western blot (Figure 11). Comparing 

the expression levels of MARCH9 control (lane 1) with MARCH9H136W control (lane 3) 

revealed MARCH9H136W levels to be about 20% of wildtype MARCH9 levels. Upon 

inhibition of the proteasome by MG132 treatment the levels of MARCH9H136W 

significantly increased compared to DMSO control treated cells (lane 3 and 4) and reached 

almost wildtype levels. Interestingly, proteasomal inhibition did not significantly increase 

wildtype MARCH9 levels. Thus, inactivation of the RING domain of MARCH9H136W did 

not stabilize the protein but rather destabilized it, while wildtype MARCH9 does not seem 

to be a target for proteasomal degradation. The stabilization after treatment with the 

proteasome inhibitor MG132 suggests that MARCH9H136W is a target for proteasomal 

degradation. Based on this data, wildtype MARCH9 does not seem to possess auto-

ubiquitination activity. 
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Figure 11: MARCH9 is a substrate for proteasomal degradation  
Cells stably expressing MARCH9 or MARCH9H136W were induced using tetracycline for 24 hours and treated 
for 6 hours with the proteasome inhibitor MG132 (50 µM/ml) or DMSO as a control. Protein lysates were 
analyzed by quantitative Western blot using α-MARCH9 antibody. Actin was used as a loading control. Error 
bars correspond to SEM. *** highlights p<0.001, ** highlights p<0.01, * highlights p<0.05 and n.s. 
highlights p>0.05 (unpaired, two-tailed Student’s t-test, Microsoft Excel). This figure shows the average of 
three individual assays.  
 
To further study the turnover of MARCH9 and MARCH9H136W, protein levels of MARCH9 

and MARCH9H136W after treatment with the protein synthesis inhibitor cycloheximide were 

measured. To this end, HeLa cells were transfected with plasmids encoding either 

MARCH9 or MARCH9H136W, respectively. Protein levels were analyzed after 

cycloheximide treatment using quantitative Western blot. Figure 12 shows measured half-

lives of the proteins using quantitative Western blot. It was confirmed that MARCH9 is a 

relatively unstable protein with a half-life of around 90 minutes. However, MARCH9H136W 

was even more unstable with a half-life around 45 minutes. These findings support the 

previous result in section 3.1.2. regarding the instability of MARCH9H136W, and indicate 

that MARCH9 levels are not regulated by auto-ubiquitination alone, because inactivation of 

MARCH9 does not stabilize it.  
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Figure 12: Half-life of MARCH9 and inactive MARCH9 
HeLa cells were transfected with plasmids encoding MARCH9YFP or MARCH9H136WYFP and protein levels of 
MARCH9YFP and MARCH9H136WYFP were measured after treatment with cycloheximide (0-6 h, 50 µg/ml) 
using mouse α-GFP antibodies and quantitative Western blot. GAPDH was used as loading control and for 
normalization. Half-lives were calculated with the formula: t1/2= ln (2)/λ. Error bars correspond to SEM. This 
figure shows the average of three individual experiments.  

3.1.3. MARCH9 is part of a homomeric complex 

Based on the observed dominant-negative activity of MARCH9H136W in terms of regulating 

mitochondrial morphology (Neutzner- personal communication), it is conceivable that 

MARCH9 is part of a homomeric complex as dominant-negative mechanisms oftentimes 

imply physical interaction. In the case of an ubiquitin ligase this might imply inter-

molecular ubiquitination, potentially explaining the instability of MARCH9H136W compared 

to wildtype MARCH9. To evaluate the potential of MARCH9 for self-interaction, the 

oligomeric state of MARCH9 was studied. To this end, HeLa cells were co-transfected with 

plasmids encoding MARCH9YFP and MARCH93xMyc or with plasmids encoding 

MARCH9YFP and control. Using α-GFP antibody, MARCH9YFP was immunopurified and 

co-purifying MARCH93xMyc was detected using α-myc antibodies. It was found that 

MARCH93xMyc specifically co-purifies with MARCH9YFP (Figure 13, lower panel, lane 2) 

when compared to control transfected cells (Figure 13, lower panel, lane 4). This result 
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strongly supports a physical MARCH9/MARCH9 interaction and might explain the 

observed dominant-negative effect of MARCH9H136W. 

 

 
Figure 13: MARCH9 is part of a homomeric complex 
HeLa cells were co-transfected with plasmids encoding MARCH9YFP and MARCH93xMyc or vector control. 
Cells were lysed using digitonin lysis buffer and immunopurified using mouse α-GFP antibody. 
Immunoprecipitates of MARCH9YFP were analyzed by Western blot using α-myc antibodies for the presence 
of MARCH93xMyc. This figure shows a representative experiment of three individual assays.  

3.1.4. Potential role of MARCH9 as an ubiquitin ligase 

Ubiquitination is involved in many cellular processes and is mediated by the action of an 

enzymatic cascade involving ubiquitin activating enzyme (E1), conjugating enzyme (E2) 

and ligating enzyme (E3). This cascade results in the formation of an ubiquitin chain on the 

specific substrate (100). RING finger domains were shown to play an important role in the 

transfer of ubiquitin to a substrate protein intended for proteasomal degradation (96). In 

mammalian genomes, several hundred ubiquitin ligases are found and their large number 

illustrates the specificity of the ubiquitination process. RING finger variant domains 

(RINGv), which are found in all MARCH proteins, were also shown to have ubiquitin 

ligase activity (209). Thus, the presence of a RING finger domain makes an ubiquitin ligase 

activity of MARCH9 conceivable. To evaluate this hypothesis of a potential ubiquitin 
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ligase activity for MARCH9, in vitro ubiquitin ligase measurements were performed. While 

MARCH9 did not display specific ubiquitination activity with the E2 enzymes UBE2D1, 

UBE2C, UBE2B or UBEJ2, previous preliminary studies from our laboratory suggested a 

functional interaction between MARCH9 with the Ubc7 ortholog E2 UBE2G2 (Neutzner- 

personal communication). 

3.1.4.1. Bacterial in vivo ubiquitination assay 

To test the potential role of MARCH9 as an ubiquitin ligase, an in vivo ubiquitination 

system was employed where E1, E2, E3 and ubiquitin are co-expressed in E.coli to 

reconstitute the ubiquitination machinery in a prokaryotic cell. Two different vectors were 

used, controlled by separate T7 promoters, each expressing two separate target genes 

(Figure 14) (203). Specifically, pCDFDuet-1 vector expressing Uba1/Ube1 (E1) gene and 

UBE2G2 (E2) gene, whereas a pACYCDuet-1 vector was used to produce a soluble version 

of MARCH9 or inactive MARCH9H136W (E3) as well as FLAG-tagged ubiquitin. As 

MARCH9 is a transmembrane protein and as such insoluble, only amino acid 1-182 of 

MARCH9 containing the RING finger domain but omitting the two transmembrane 

domains were used. 

 
Figure 14: Expression system for reconstituting ubiquitination in E. coli 
The employed pCDFDuet-1 and pACYCDuet-1 vectors contain two IPTG- dependent T7 promoters capable 
of driving each the expression of two different genes of interest allowing for the simultaneous production of 
four different genes. IPTG-induction of E. coli strains containing both plasmids results in the simultaneous 
production of E1, E2, E3 as well as ubiquitin.  
 

To provide MARCH9 with an intramolecular substrate for auto-ubiquitination and to allow 

for easy purification and detection, MARCH9AA1-182 was fused to gluthatione S-transferase 

(GST) as well as to a 3xmyc epitope tag, respectively. To detect potential ubiquitination, 

both GST-3xMycMARCH9AA1-182 and GST-3xMycMARCH9AA1-182H136W were expressed in E.coli 
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together with E1, E2 and ubiquitin, and purified by affinity chromatography using 

glutathione-sepharose-beads. Figure 15 shows the expression and the in vivo ubiquitination 

of GST-3xMycMARCH9AA1-182 compared to GST-3xMycMARCH9AA1-182H136W with the upper 

panel displaying the whole cell lysates and the lower panel displaying purified MARCH9. 

Using α-Flag antibodies to detect ubiquitination, no significant difference in auto-

ubiqitination of GST-3xMycMARCH9AA1-182 (lane 3), when compared to GST-

3xMycMARCH9AA1-182H136W (lane 4), was observed. Interestingly, also GST-

3xMycMARCH9AA1-182-H136W displayed some ubiquitination in this assay 

 

 
Figure 15: MARCH9 expression in a bacterial in vivo system 
E.coli NEB T7 express was transformed with two compatible dual expression plasmids containing Uba1 (E1 
enzyme), UBE2G2 (E2 enzyme), FLAG-ubiquitin and GST-3xMycMARCH9AA1-182 or GST-3xMyc-MARCH9AA1-

182H136W. All open reading frames were under the control of an IPTG-inducible T7 promoter. Bacteria were 
induced for 3 hours with IPTG, lysed in B-Per buffer and GST-tagged proteins were affinity purified using 
gluthation-sepharose-beads. Whole cell lysate (lane 1 and 2) was analyzed by quantitative Western blot using 
α-myc antibody. α-FLAG was used to analyze purified GST-3xMycMARCH9 or GST-3xMycMARCH9H136W (lane 3 
and 4). No specific ubiquitination of MARCH9 with UBE2G2 was noticed. This figure shows a 
representative experiment of three individual assays.  



 52 

 

To study this further and to exclude unspecific auto-ubiquitination, GST-3xMyc-MARCH9AA1-

182 and GST-3xMycMARCH9AA1-182H136W were expressed alone without Uba1 and E2 (Figure 

16A). In the GST pull-down no difference in modification was observed. To further 

exclude unspecific auto-ubiquitination, GST alone as additional control were expressed 

separately from E1 and E2 activity (Figure 16B). Figure 16B indicates a similar 

modification pattern between MARCH9 and MARCH9H136W even in the absence of E1 and 

E2 expression (Figure 16B). These data are consistent with the notion that a certain read-

through between the two open reading frames on the pACYC-Duet vector occurred causing 

the generation of a MARCH9-ubiquitin in-frame fusion protein. To avoid this unspecific 

ubiquitination of MARCH9, the employed bacterial expression system was improved by 

placing MARCH9 and ubiquitin on separate expression vectors (section 3.1.4.2.). 
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Figure 16: MARCH9 expression in a bacterial in vivo system  
A: Expression of GST-3xMycMARCH9 and GST-3xMycMARCH9H136W without Uba1 and E2. B: To exclude 
unspecific ubiquitination, the plasmid expressing GST gene alone and the plasmid encoding Uba1 and 
UBE2G2 were analyzed (lane 5). The affinity purified GST-3xMycMARCH9 and GST-3xMycMARCH9H136W was 
analyzed using α-FLAG antibody. The lanes 3-5 indicate the same pattern of ubiquitination in each condition. 
This figure shows a representative experiment of three individual assays.  

3.1.4.2. Improved bacterial in vivo ubiquitination assay 

As the previous in vitro assay was inconclusive (3.1.4.1.) and the formation of an in-frame 

fusion protein between MARCH9 and ubiquitin was suspected, the employed bacterial 

expression system was further improved by placing MARCH9 and ubiquitin on separate 

expression vectors, thus preventing the formation of a MARCH9-ubiquitin fusion protein 

(Figure 17).  

 
Figure 17: Prokaryotic expression system with three expression vectors for bacterial ubiquitination 
Improved prokaryotic system with three expression vectors pCDFDuet-1, pACYCDuet-1 and pET41 for the 
expression of Uba1, UBE2G2, 3xFLAGubiquitin and GST-3xMycMARCH9 genes. The new construct contains three 
different expression vectors encoding separately GST-3xMycMARCH9 genes, 3xFLAGubiquitin genes and both 
UBE1 genes and UBE2G2 genes.  
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In vivo ubiquitination assay was performed as described in section 3.1.4.1 using the 

expression of GST as a control for unspecific ubiquitination. As seen previously, there was 

no detectable difference in ubiquitination between MARCH9 and MARCH9H136W (Figure 

18, lanes 4 and 6). However, in this experimental setup, GST alone was targeted for 

ubiquitination. Thus, an ubiquitin ligase activity of MARCH9 could neither be confirmed 

nor excluded.  

 

 
Figure 18: MARCH9 expression in a bacterial in vivo system  
E.coli NEB T7 express was transformed with one pET41 expression vector encoding Uba1 (E1 enzyme) 
gene, UBE2G2 (E2 enzyme) gene and two compatible dual expression vectors encoding 3xFLAGubiquitin and 
GST-3xMycMARCH9AA1-182 or GST-3xMycMARCH9AA1-182H136W genes. All genes are under control of an IPTG-
inducible T7 promoter. Expression was induced for 3 hours with IPTG, bacteria were lysed in B-Per buffer 
and GST-tagged proteins were affinity purified using gluthation-sepharose-beads. Whole cell lysate was 
analyzed by Western blot using α-myc antibody. α-FLAG was used to analyze purified GST-3xMycMARCH9AA1-

182 or GST-3xMycMARCH9AA1-182H136W. No specific ubiquitination of MARCH9 with UBE2G2 was evident. This 
figure shows a representative experiment of three individual assays. 
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3.1.4.3. Purification of MARCH9 or MARCH9H136W for in vitro ubiquitination 

To further address a potential ubiquitin ligase activity for MARCH9, an in vitro 

ubiquitination assay was performed. To avoid unspecific ubiquitination of GST fusion 

proteins as seen above, maltose binding protein (MBP) was employed as fusion partner for 

MARCH9AA1-182. In addition and instead of the above used bacterial in vivo ubiquitination 

system, in vitro reconstitution of ubiquitination was performed. To this end, 
MBPMARCH9AA1-182-his6 or MBPMARCH9AA1-182H136W-his6 were purified using nickel-affinity 

chromatography. As seen in Figure 19, purification of MARCH9 fusion proteins was 

successful and resulted in a single peak of purified MBPMARCH9AA1-182-his6 or 
MBPMARCH9AA1-182H136W-his6.  
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Figure 19: Chromatogram of nickel-NTA affinity purification of MBPMARCH9AA1-182-his6 and 
MBPMARCH9AA1-182H136W-his6 

A and B: Green line shows the linear gradient of imidazole concentration, while the blue line depicts protein 
concentration (absorbance at 280 nm).  
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Proteins from the fractions with the highest concentration were analyzed using SDS-PAGE 

and Coomassie staining (Figure 20), and fraction 9 and 10 with the highest concentration of 
MBPMARCH9AA1-182-his6 or MBPMARCH9AA1-182H136W-his6 was dialyzed overnight against 

buffer C (section 2.3.9.) and used as E3 for the in vitro ubiquitination assay (section 

3.1.4.4.) (Figure 20A, red-rimmed band and Figure 20B). 
 

 
Figure 20: SDS-PAGE of purification of MARCH9 and MARCH9H136W 

A: The collected fractions (7-10) corresponding to the peak of maximal absorbance were run on a SDS-PAGE 
for verification of protein size and purity. The red-rimmed band indicates the purest protein with the highest 
concentration. This fraction was chosen for overnight dialysis. B: After dialysis MBPMARCH9AA1-182-his6 and 
MBPMARCH9AA1-182H136W-his6 were separated on SDS-PAGE. MBPMARCH9AA1-182-his6 and MBPMARCH9AA1-

182H136W-his6 run at their predicted molecular weight of 43 kDa. 

3.1.4.4. In vitro ubiquitination assay 

Using purified MBPMARCH9AA1-182-his6 and MBPMARCH9AA1-182H136W-his6, an in vitro 

ubiquitination assay was performed, to examine whether MBPMARCH9 catalyzes auto-

ubiquitination in the presence of ATP, E1, E2 and ubiquitin. As a source of E1 and E2, 

rabbit reticulocyte lysate was used, as it is known to contain ubiquitin-dependent 

proteolytic activity (210) and is a good source for a wide variety of different E2 activities. 

To this end, MBPMARCH9AA1-182-his6, MBPMARCH9AA1-182H136W-his6 or MBP as control were 

incubated for 1 hour at 37°C and modification of MARCH9 was detected by Western blot 
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using α-MARCH9 antibodies. As shown in Figure 21, incubation of MBPMARCH9AA1-182-

his6 and MBPMARCH9AA1-182H136W-his6 with reticulocyte lysate and ubiquitin did not alter the 

molecular weight of MBPMARCH9AA1-182-his6 and MBPMARCH9AA1-182H136W-his6. However, it 

was apparent that one-step nickel-affinity purification was not sufficient to obtain protein 

of sufficient purity for this assay.  

 

 
Figure 21: In vitro Ubiquitination assay 
Both MBPMARCH9AA1-182-his6 and MBPMARCH9AA1-182H136W-his6 were incubated for 1 hour at 37°C in the 
presence of ATP, ubiquitin and reticulocyte lysate. MBP served as control. This figure shows a representative 
experiment of three individual assays. 

3.1.4.5. Dual-affinity purification of MARCH9 or MARCH9H136W 

To achieve a purer form of the protein a dual-affinity purification was performed. 

MARCH9 was first purified using nickel-NTA affinity chromatography (Figure 22A) 

followed by maltose binding protein purification (Figure 22B, 22C). MBPMARCH9 was 

immobilized on the amylose resin and eluted using 10 mM maltose. The collected fractions 

were analyzed by Coomassie staining and the pooled fractions were dialyzed overnight 

against buffer C (Figure 22D). These dialyzed proteins were used for the following in vitro 

ubiquitination assay (section 3.1.4.6.).  
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Figure 22: Dual-affinity purification of MBPMARCH9AA1-182-his6 and MBPMARCH9AA1-182H136W-his6 
A: Chromatogram of MBPMARCH9-his6 nickel affinity chromatography. Green line shows the linear gradient 
of imidazole concentration and blue line shows absorbance at 280 nm. B and C: SDS-PAGE and 
Coommassie staining of the samples from the nickel-affinity purification peak fractions (8-15). D: SDS-
PAGE and Coommassie staining of the pooled fractions following amylose-affinity chromatography and 
overnight dialysis. Please note the high purity of the fusion proteins especially in comparison to single affinity 
purification (section 3.1.4.3.). 
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3.1.4.6. In vitro ubiquitination assay using dual-affinity purified MARCH9 

Dual-affinity purified MARCH9 and MARCH9H136W was used in an in vitro ubiquitination 

assay. To ensure the presence of a broad spectrum of different E2 enzymes rabbit 

reticulocyte lysate was used as a source of E1 and E2 (211). The reaction mixture 

containing ATP, reticulocyte lysate, ubiquitin and either MARCH9 or MARCH9H136W or 

MBP as control, was incubated at 37°C for 1 hour as described before in section 3.1.4.4. 

After incubation, samples were analyzed by Western blot using α-MBP antibodies. As 

shown in Figure 23 there was no difference in ubiquitination between MARCH9 and 

MARCH9H136W after analyzing using α-MBP antibody (lane 5 and 6). However, a clear 

ladder-like modification of MBP consistent with polyubiquitination was seen (lane 4) and 

with MBP itself being a target for modification in this experimental setting. 

In summary, neither in vivo nor in vitro ubiquitination experiments (sections 3.1.4.1., 

3.1.4.2., 3.1.4.4., 3.1.4.6.) support ubiquitin ligase activity for MARCH9, however neither 

do they disprove E3 activity for MARCH9. 

 

 
Figure 23: Ubiquitination-assay after using dual-affinity purification 
In vitro ubiquitination assay using purified MARCH9 after dual-affinity purification. Samples were analyzed 
by Western blot using α-MBP antibody. Lane 5 shows the MBP control ubiquitination. Lane 6 and 7 
demonstrate the ubiquitination of MARCH9. This figure shows a representative experiment of three 
individual assays.  
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3.1.5. The potential role of MARCH9 in the fusion machinery 

Previous work indicated that MARCH9 might have a role in the regulation of 

mitochondrial morphology, in particular in the fusion of mitochondria tubules. Cells 

expressing dominant-negative MARCH9H136W displayed a strong fragmentation of the 

mitochondrial network after immunostaining with α-cytochrome c antibody when 

compared to control cells (Neutzner- personal communication). To further substantiate a 

possible role of MARCH9 as a regulator of the fusion machinery, interaction between 

MARCH9 and known mediators of mitochondrial fusion were analyzed. To this end, co-

immunoprecipitation studies were performed between MARCH9 and the two mitofusins 

Mnf1 and Mfn2 (117).  

 

For this purpose, cells were tranfected with plasmids encoding Mfn1YFP and MARCH9YFP. 

Ectopically expressed Mfn1 or endogenous Mfn2, respectively, were immunopurified from 

whole cell lysates prepared using Triton X-100, CHAPS or digitonin containing buffers 

using specific α-Mfn2 and α-GFP antibodies. While no interaction between MARCH9 and 

mitofusins was detectable in buffers containing either Triton X-100 or CHAPS detergent, 

MARCH9 specifically co-purified with Mfn1 (Figure 24A) and Mfn2 (Figure 24B) in 

digitonin containing buffer. To ensure of complete solubilization of the mitochondrial 

membrane and thus co-purification of mitofusins with MARCH9 based on a real physical 

interaction and not on micelle formation due do incomplete solubilization of the 

mitochondrial membranes, immunoprecipitates were analyzed for the presence of the outer 

mitochondrial protein VDAC (voltage-dependent anion channel). Consistent with a 

complete solubilization of the mitochondrial membrane, VDAC was not detected in these 

mitofusin precipitates. The observed physical interaction of MARCH9 with both mitofusins 

and the observed impact of dominant-negative MARCH9H136W on mitochondrial 

morphology strongly support a role of MARCH9 in the regulation of the mitochondrial 

fusion process.  
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Figure 24: Interaction of MARCH9 with Mfn1 and Mfn2 
A: HeLa cells transfected with plasmids encoding MARCH93xMyc or MARCH9YFP and Mfn1YFP were lysed in 
buffer containing digitonin. After centrifugation lysates were incubated with α-GFP antibody or an unspecific 
IgG antibody. After 2 hours of incubation with the antibody, A/G sepharose beads were added to the lysate 
and incubated overnight at 4°C. The interaction of Mfn1YFP and MARCH93xMyc was detected using α-GFP or 
α-MARCH9 antibodies B: HeLa cells were transfected with plasmids encoding MARCH9YFP and lysed using 
digitonin-containing lysis buffer. Whole cell lysates were immunopurified using α-Mfn2 antibody. This figure 
shows one representative experiment of three individual assays.  
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3.2. S-nitrosylation 

3.2.1. S-Nitrosylated proteins 

Nitric oxide (NO) can lead to S-nitrosylation, a chemical reaction resulting in the addition 

of NO to a cysteine-thiol (-SH) group on a target protein forming a nitrosothiol (SNO) (43). 

S-nitrosylation of proteins can be detected using the so called biotin-switch technique 

(206), where nitrosothiols are specifically labeled with a biotin moiety to allow detection of 

SNO-proteins using streptavidin-coupled HRP. To produce exogenous nitric oxide the NO 

donor sodium nitroprusside (SNP) was used, as it is known that SNP induces S-nitrosylated 

proteins (212). Furthermore, to test the potential role of the proteasome in the degradation 

of SNO-proteins, a proteasome inhibitor was used. Thus, HeLa cells were treated for 6 

hours with 100 µM SNP or with the proteasome inhibitor MG132 (Figure 25). The whole 

cell lysate was prepared using RIPA buffer and following biotin-switch, SNO proteins were 

detected by Western blot using streptavidin HRP. In the presence of the NO donor the level 

of SNO-proteins was increased compared to the untreated control cells (Figure 25, lane 1 

and 2). Interestingly, SNO protein levels of MG132 treated cells in the absence of 

exogenous NO were also increased (Figure 25, lane 3). This result shows that many 

proteins are a target for S-nitrosylation and that the degradation of such proteins is most 

likely proteasome-dependent.  

 
Figure 25: S-nitrosylated proteins in the whole cell lysate 
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HeLa cells were treated either with the NO donor SNP (100 µM) or the proteasome inhibitor MG132 (50 
µg/ml) or left untreated as control, whole cell lysates were prepared, biotin-switch was performed and SNO 
proteins were detected using streptavidin HRP. This figure shows one representative experiment of three 
individual assays. 

3.2.2. Turnover of S-nitrosylated proteins on mitochondria 

To address the question whether mitochondrial proteins are also a target for S-nitrosylation, 

enriched mitochondrial fractions were studied. To this end, HeLa cells were treated with 

100 µM SNP or MG132 for 6 hours and mitochondria-enriched heavy membrane fractions 

were generated using differential centrifugation. After mitochondrial isolation, 

mitochondria were solubilized using RIPA buffer and biotin switch was performed. As 

shown in Figure 26 (lane 2 and 3) both SNP and the proteasome inhibitor MG132 caused 

increased levels of SNO-proteins compared to unstressed cells (lane 1). Again, proteasomal 

inhibition resulted in similar SNO protein levels compared to low level NO stress due to 

SNP treatment. This result suggests the presence of S-nitrosylated proteins on mitochondria 

and their degradation via the proteasomal dependent pathway.  

 

 

 
Figure 26: Turnover of S-nitrosylated mitochondrial proteins 
Mitochondria were isolated from HeLa cells and treated with the NO donor SNP (100 µM) or the proteasome 
inhibitor MG132 or left untreated. After 6 hours of treatment cells were lysed, biotin switch was performed 
and S-nitrosylated proteins were analyzed by Western blot using streptavidin HRP. Note the different levels 
of SNO proteins (lane 2 and 3) compared to untreated cells (lane 1). This figure shows one representative 
experiment of three individual assays.  
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3.2.3. S-nitrosylated proteins on highly purified mitochondria 

In the previous experiment (section 3.2.2.), levels of S-nitrosylated proteins after treatment 

with SNP and MG132 were compared. The result showed an increase of SNO-proteins 

after SNP and MG132 treatments (Figure 26) indicating a continuous turnover of SNO-

proteins on mitochondria in a proteasome-dependent manner even in unstressed cells. To 

further investigate the involvement of the ubiquitin-proteasome system in the removal of 

SNO modified proteins from mitochondria, highly purified mitochondria were analyzed to 

exclude the possibility of contamination of the mitochondrial fractions with non-

mitochondrial proteins. To obtain highly purified mitochondria, which exclude cytosol and 

other proteins, α-Tom22 antibodies coupled to super-paramagnetic beads were used. The 

highly purified mitochondria were free of lysosome and contained only a minor ER-

resident proteins impurity (Charles Hemion- personal communication). For this propose, 

HeLa cells were treated either with 100 µM SNP, or the highly specific irreversible 

protease inhibitor epoxomicin. In contrast to MG132, epoxomicin does not inhibit the LON 

protease, which is involved in the degradation of matrix proteins (213). Highly purified 

mitochondria were lysed in RIPA buffer and S-nitrosylated proteins were analyzed by 

Western blot using streptavidin HRP antibody (Figure 27A). Using biotin-switch analysis, 

the levels of S-nitrosylated proteins in cells treated with the proteasomal inhibitor 

epoxomicin were found to be similar to the level in SNP treated cells and increased 

compared to the levels found in untreated control cells (Figure 27A, lane 2, 4 and 6). To 

confirm these results in another cell line, 293 HEK cells were used. As with HeLa cells, 

after treatment with the NO donor SNP or with the proteasome inhibitor epoxomicin, an 

increase in SNO-proteins in HEK 293 cells was observed compared to untreated control 

cells (Figure 27B, lane 2, 4 and 6). These findings strongly support an involvement of the 

ubiquitin proteasome system in the degradation of mitochondrial SNO-proteins. 
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Figure 27: S-nitrosylated proteins on highly purified mitochondria 
S-nitrosylated proteins were detected by biotin-switch using Western blot and streptdavidin-coupled HRP. A: 
Biotin-switch analysis of SNO proteins was performed on highly purified mitochondria of HeLa cells either 
treated with the proteasome inhibitor epoxomicin or NO-donor SNP. As shown in lane 4 there is a marked 
increase in SNP proteins following SNP treatment. Treatment with epoxomicin also increases the level of S-
nitrosylated proteins (lane 6). The lanes 1, 3, 5 served as a control (-biotin) for the biotin-labeling step during 
the biotin switch. B: Highly purified mitochondria of 293 HEK cells either treated with the proteasome 
inhibitor epoxomicin or NO-donor SNP were analyzed by biotin-switch. Lane 4 and 6 show an increase in 
modified proteins following SNP treatment. VDAC served as an input control before starting the biotin-
switch. This figure shows one representative experiment of three individual assays.  
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3.2.4. Absence of mitophagy upon SNP treatment 

Mitophagy is a quality control process where dysfunctional mitochondria are selectively 

eliminated by autophagy (73). There is one pathway of mitophagy, which is activated by 

the ubiquitin ligase Parkin after translocation from the cytosol to the dysfunctional 

mitochondria (74). To evaluate the possibility of induced mitophagy following low dose 

treatment with the NO-donor SNP, induction of mitophagy was analyzed by assessing 

Parkin translocation to mitochondria. To this end, HeLa cells were transfected with a 

plasmid encoding ParkinYFP and treated for 20 hours either with 100 µM SNP or 1 mM 

SNP and compared to untreated cells and to cells treated with the mitochondrial uncoupler 

and known inducer of mitophagy carbonyl cyanide m-chlorophenylhydrazone (CCCP). 

CCCP is known to depolarize mitochondria by increasing membrane permeability to H+ 

(214) causing translocation of Parkin to mitochondria. Figure 28 shows the translocation of 

ParkinYFP after treatment with 20 µM CCCP from the cytosol to the mitochondria in 47% 

+/- 10% of cells, while translocation of Parkin following treatment with 100 µM or 1 mM 

SNP was only evident in 1.2% +/- 0.8%, 0% +/-0% of cells, respectively (Figure 29). This 

data demonstrates, that SNP in the used concentration does not induce mitophagy.  
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Figure 28: SNP does not promote mitophagy 
HeLa cells were transfected with a plasmid encoding ParkinYFP (green) and treated for 20 hours either with 20 
µM CCCP, 100 µM SNP, 1 mM SNP or untreated as control. Mitochondria were visualized using α-
cytochrome c staining (red). DAPI (blue) stains the nucleus. Note the clear overlap of Parkin with the 
mitochondrial marker cytochrome c following treatment with CCCP indicative for mitophagic induction. 
Treatment with the NO-donor SNP in both concentrations showed no translocation of Parkin to the 
mitochondria similar to untreated control cells. This figure shows one representative experiment of three 
individual assays.  
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Figure 29: Quantification of mitophagy in HeLa cells 
HeLa cells were transfected with a plasmid encoding ParkinYFP followed by treatment with the mitophagy 
inducer CCCP or NO-donor SNP or left untreated as control. The translocation of Parkin to the mitochondria 
was quantified by counting >100 cells/condition. Error bars correspond to SEM. *** highlights p<0.001 
(unpaired, two-tailed Student’s t-test, Microsoft Excel). This figure shows the average of three individual 
assays.  

3.2.5. Absence of cytochrome c release upon SNP treatment 

It is known that NO-donors in high concentration are neurotoxic and induce apoptosis (40). 

Cytochrome c is a mitochondrial intermembrane space protein, which is released from the 

mitochondria into the cytosol in case of apoptosis (215). To test whether SNP induces 

apoptosis in the employed concentrations, cytochrome c release was quantified using 

immunocytochemistry. To this end, HeLa cells pretreated with the caspase inhibitor zVAD-

fmk, were treated either with actinomycin D, a DNA transcription and replication inhibitor 

or 100 µM SNP or 1000 µM SNP. After 8 hours of treatment, cells were fixed, 

immunostained for cytochrome c and analyzed using fluorescence microscopy (Figure 30). 

As shown in Figure 31, cytochrome c was released into the cytosol in 32% +/- 6% of cells 

following actinomycin D treatment as expected. However, apoptotic induction following 

SNP treatment was only evident in 0% +/- 0% (100 µM), or 1.2% +/-0.6% of cells (1000 

µM), respectively (Figure 31). This result illustrates that SNP treatment, as employed here, 

does not induce programmed cell death as no cytochrome c release during SNP treatments 

was observed. 
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Figure 30: Cytochrome c release in HeLa cells 
HeLa cells were pretreated for 30 minutes with 50 µM zVAD-fmk, followed by incubation with 20 µM ActD, 
100 µM or 1 mM SNP for 8 hours or left untreated. Cells were stained using α-cytochrome c antibody (red), 
and cytochrome c release was visualized by fluorescence microscopy. Note in the group treated with ActD a 
markedly higher cytochrome c release was observed compared to the untreated control group or SNP groups. 
This figure shows one representative experiment of three individual assays.  
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Figure 31: Quantification of cytochrome c release in HeLa cells 
HeLa cells were pretreated for 30 minutes with zVAD-mfk followed by treatment with the apoptosis inducer 
ActD or NO-donor SNP as described in Figure 30. Cytochrome c release was quantified by counting >100 
cells/condition. Error bars correspond to SEM. *** highlights p<0.001 (unpaired, two-tailed Student’s t-test, 
Microsoft Excel). This figure shows the average of three individual assays.  

3.2.6. Degradation of S-nitrosylated proteins by the ubiquitin-proteasome-
system 

To further investigate the role of proteasome-dependent SNO-proteins turnover, the levels 

of ubiquitinated proteins in absence or presence of the NO-donor SNP were studied. To this 

end, HeLa cells were transfected with a plasmid encoding HA-epitope tagged ubiquitin 

followed by treatment either with SNP, and/or epoxomicin for 6 hours. After treatment, 

highly purified mitochondria were prepared and analyzed by Western blot using α-ubiquitin 

antibody. Figure 32 shows that after treatment with SNP or epoxomicin the levels of S-

nitrosylated proteins in highly purified mitochondria are increased even further (Figure 32, 

lane 2 and 3). However, treatment with SNP together with the proteasomal inhibitor 

epoxomicin increases the level of ubiquitinated mitochondrial proteins substantially (Figure 

32, lane 4). This accumulation of ubiquitinated proteins on mitochondria following NO 

stress and under conditions of proteasomal inhibition strongly supports a role of the 

proteasome-dependent degradation pathway in the clearance of SNO proteins from 

mitochondria.  
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Figure 32: Ubiquitin-dependent degradation of S-nitrosylated proteins  
HeLa cells were transfected with a plasmid encoding ubiquitin-HA and treated either with the proteasome 
inhibitor epoxomicin, 100 µM SNP or both together for 6 hours. Cells were harvested and highly purified 
mitochondria were prepared. Mitochondria pellets were resuspended in RIPA buffer and boiled at 95°C for 5 
minutes. Ubiquitinated proteins were analyzed by Western blot using α-ubiquitin antibody. This result is 
consistent with the ubiquitin-dependent degradation of SNO-proteins. This figure shows one representative 
example of three individual experiments.  

3.2.7. The AAA-ATPase p97 is involved in the degradation of SNO proteins 

To allow the degradation of mitochondrial proteins by the cytosolic proteasome, substrate 

proteins must be extracted from mitochondria and retrotranslocated into the cytosol (103). 

Recent studies have shown that the cytosolic AAA-ATPase p97 is required for this protein 

retrotranslocation from the mitochondria into the cytosol (111). To investigate whether the 

AAA-ATPase p97 is involved in the proteasomal degradation of SNO mitochondrial 

proteins, SNO-protein levels in cell lines, stably expressing p97 or inactive p97QQ (216) 

under the control of a tetracycline-inducible promoter, were analyzed. Both wildtype p97 

and mutant p97QQ expressing cells were either treated with SNP for 9 hours or left 

untreated. Highly purified mitochondria were prepared and biotin-switch was performed. 

Figure 33 shows the levels of SNO proteins after incubation with SNP. As expected, 

treatment with SNP caused elevated levels of SNO-proteins (lane 1) in cells expressing 

wildtype p97 compared to untreated control cells (lane 3). Interestingly, expression of 
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p97QQ caused a marked increase of SNO-protein levels in the presence as well as in the 

absence of exogenous NO stress. 

This result supports a role for p97 in the degradation and therefore likely in the 

retrotranslocation of SNO proteins from mitochondria into the cytosol for proteasomal 

degradation.  

 
Figure 33: AAA-ATPase p97 dependent degradation of mitochondrial S-nitrosylated proteins 
HEK 293 cells stably expressing tetracycline-inducible p97 or inactive p97QQ were treated with SNP for 9 
hours or left untreated. Levels of SNO-proteins were analyzed in highly purified mitochondria. Note the 
strong increase in cells expressing inactive p97QQ (lane 7) compared to cells expressing wildtype p97 (lane 3). 
More SNO proteins are detectable following SNP treatment (compare lane 1 with lane 5). These findings 
support a role of p97 in clearance of mitochondrial SNO proteins. This figure shows one representative 
experiment of three individual assays. Omission of biotin label served as control for the biotin-switch assay. 
Detection of VDAC served as input control. This figure shows one representative example of three individual 
experiments. 

3.2.8. NO-dependent stabilization of MARCH9 

To test the role of the potential mitochondrial ubiquitin ligase MARCH9 during NO stress, 

Western blot was performed to analyze expression levels of MARCH9 and MARCH9H136W 

after treatment with the NO donor SNP. For this purpose, HeLa cells were transfected with 

a plasmid encoding MARCH9YFP or MARCH9H136WYFP and incubated for 12 hours with 10 

µM SNP, 100 µM SNP or left untreated. Levels of MARCH9 were detected by Western 

blot using α-GFP antibody (Figure 34). 
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Figure 34: MARCH9 stabilization after SNP incubation  
A: : HeLa cells were transfected with a plasmid encoding MARCH9YFP and treated for 12 hours with the NO-
donor SNP at concentrations of 10 µM SNP, 100 µM SNP or left untreated. Protein lysates were analyzed by 
quantitative Western blot using α-GFP antibody. GAPDH was used as a loading control. Note the increase of 
MARCH9 levels following SNP treatment compared to control cells (bar 2 and 3). B: HeLa cells were 
transfected with a plasmid encoding MARCH9H136WYFP and treated for 12 hours with the NO-donor SNP in 
the concentrations of 10 µM SNP, 100 µM SNP or left untreated. Protein lysates were analyzed by 
quantitative Western blot using α-GFP antibody. GAPDH was used as a loading control. Note there is no 
increase of levels of MARCH9H136W following SNP treatments when compared to untreated controls. C: 
HeLa cells were transfected with a plasmid encoding short-lived GFP and treated for 12 hours with the NO-
donor SNP in the concentrations of 10 µM SNP, 100 µM SNP or left untreated. Protein lysates were analyzed 
by quantitative Western blot using α-GFP antibody. GAPDH was used as a loading control. Note there is no 
increase of short-lived GFP levels. Error bars correspond to SEM. *** highlights p<0.01, ** highlights 
p<0.05 and n.s. highlights p>0.05 (unpaired, two-tailed Student’s t-test, Microsoft Excel). This figure shows 
the average of three individual assays. 
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These data are consistent with a stabilization of MARCH9 under NO stress conditions 

based on increased stability of MARCH9 rather than decreased proteasomal degradation of 

this protein. While no direct connection between levels of mitochondrial SNO-proteins and 

the expression of MARCH9 was found (data not shown), these observations hint towards a 

potential role for MARCH9 during NO stress. Increased stability of an ubiquitin ligase 

suggests the presence of substrate proteins, which in turn would diminish auto-degradation 

of such an ubiquitin ligase. Whether such a mechanism explaining the observed 

stabilization of MARCH9 remains unclear, however, it is tempting to speculate that 

MARCH9 might have a role in resolving NO stress conditions. 
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4. Discussion 

Mitochondrial dysfunction is virtually at the core of all neurodegenerative disorders and 

connected to the aging processes. Therefore multiple mitochondrial quality control 

mechanisms are an essential part of maintaining cellular function to prevent aging and 

untimely death of neuronal cells. Keeping mitochondria in a healthy state is a complex 

process and has to be tightly regulated (218). Recent studies support the idea that 

mitochondrial fusion and fission machinery as well as mitochondrial quality control play an 

important role in maintaining mitochondrial integrity and the survival of neurons (219). 

4.1. Degradation of mitochondrial proteins by OMMAD 

Ubiquitination plays an essential role in virtually all cellular processes, and especially in 

the quality control of proteins. Recently, the role of ubiquitination and ubiquitin-dependent 

protein degradation in mitochondrial physiology became clearer. Mitochondrial 

morphology seems to be under control of the UPS, with the mitofusins as well as the 

fission protein Drp1 being a target for ubiquitination. 

 

The special topology of mitochondria requires specialized protein degradation mechanisms. 

As the UPS is mainly cytosolic, ubiquitin-dependent degradation of mitochondrial proteins 

necessitates the presence of factors able to interface the UPS to mitochondria. OMM-

anchored RING finger ubiquitin ligases such as MARCH5 (105), MULAN/MAPL (220) 

and IBRDC2 (106) might provide this interfacing function. These observations suggest an 

involvement of the UPS on mitochondrial quality control. Recent observations suggest a 

role for proteasomal degradation of outer mitochondrial proteins, similar to the process of 

ER-associated protein degradation (ERAD) (221). As mitochondria, the ER is a membrane-

bound organelle with highly active protein import mechanisms. Also like mitochondria, the 

ER is impacted by misfolded and/or damaged proteins. Thus, one might postulate that 

mitochondrial proteins are under the control of a process termed OMM-associated 

degradation (OMMAD) as the ER is maintained by ERAD. ER-associated degradation 

consists of three different steps. Ubiquitin ligases, embedded in the ER membrane, interact 

with accessory recognition factors to recognize misfolded proteins. Two mammalian 

ubiquitin ligases were identified, HRD1 and gp78 (222). Specific ubiquitination of the 
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substrate is catalyzed by such membrane-anchored ubiquitin ligases. As the proteasome is 

located in the cytosol, the ubiquitinated substrates have to be extracted from the ER 

membrane to the cytosol for proteasomal degradation. For ERAD it was shown that the 

AAA-ATPase p97 provides the mechanical force necessary to extract substrate proteins and 

cause retrotranslocation of proteins into the cytosol (223). After translocation, the substrate 

is then escorted to the 26S proteasome for degradation (224). Interestingly, while OMMAD 

and ERAD are governed by different membrane-anchored ubiquitin ligases, both 

mechanisms share their retrotranslocation mechanism. It was shown that p97 is able to 

extract and retrotranslocate ubiquitinated mitochondrial proteins from the outer 

mitochondrial membrane to the cytosol for subsequent proteasomal degradation (225). It is 

currently unknown whether misfolded or damaged mitochondrial proteins are processed by 

OMMAD in the same manner as misfolded ER proteins. However, the presence of 

ubiquitin ligases on the outer mitochondrial membrane and the involvement of p97 in 

protein retrotranslocation greatly support this notion. 

4.2. MARCH9 and mitochondrial maintenance 

Ubiquitination plays an essential role in all critical cellular processes, especially in the 

quality control of proteins, and recent findings strongly connect the UPS to mitochondrial 

maintenance. MARCH9 was identified in a screen for new factors regulating mitochondrial 

morphology and mitochondrial integrity, where potential membrane-anchored ubiquitin 

ligases, based on the presence of a RING finger domain and at least one transmembrane 

domain, were localized to subcellular compartments (105). Together with MARCH5, 

IBRDC2 and MAPL/MULAN, MARCH9 was found to localize to the outer mitochondrial 

membrane (Neutzner- personal communication). However, the function of MARCH9 

remained unclear and warranted further examination. 

4.3. RING finger domain of MARCH9 

As MARCH9 belongs to the MARCH family of proteins and encompasses a RINGv and as 

most MARCH proteins were shown to possess E3 activity, this suggests also an ubiquitin 

ligase activity for MARCH9 (99). To further investigate whether MARCH9 indeed 

possesses E3 activity, several attempts were made to reconstitute MARCH9-mediated 

ubiquitination in vitro or to ascertain E3 activity for MARCH9 in vivo. It is a prominent 

feature of RING finger ubiquitin ligases to regulate the enzymatic activity in vitro via auto-

ubiquitination wherein they catalyze the addition of ubiquitin to themselves to form a 
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polyubiquitin chain and initiate their own proteasomal degradation (208). In a first attempt, 

mutation in the RING finger domain by substitution of histidine 136 with tryptophan 

predicted to inhibit Zn2+ coordination, thereby inactivation of MARCH9 was performed. 

While inactivation of the RING finger domain lead to the stabilization of most RING finger 

proteins, the RING finger mutation of MARCH9 did not stabilize as predicted, but rather 

destabilized and promoted proteasomal degradation of inactive MARCH9 mutant (Figure 

11). Measurement of protein levels (Figure 12) also confirmed the instability of 

MARCH9H136W. These data do not readily support ubiquitin ligase activity for MARCH9. 

While it is unlikely that the introduced RING finger mutation did not inhibit but rather 

increase MARCH9 activity towards itself, it cannot completely exclude the possibility that 

the H136W mutation does not render MARCH9 completely inactive. However, a similar 

mutation in MARCH5 (H43W) was shown to block E3 activity (105). In addition, analysis 

of wildtype MARCH9 levels in the presence and absence of proteasomal inhibition did not 

result in a massive stabilization of MARCH9, suggesting that wildtype MARCH9 only has 

minor auto-ubiquitination activity. This leaves the question of why the H136W mutation 

leads to a destabilization of MARCH9. It is conceivable, that MARCH9H136W constitutes a 

novel substrate for mitochondrial protein quality control or OMMAD. Thus, unknown 

ubiquitin ligase or endogenous MARCH9 target MARCH9H136W for proteasomal 

degradation. As many ubiquitin ligases form dimers, such as MARCH9-dependent 

ubiquitination could also occur in trans (226). The notion that MARCH9 might be involved 

in the degradation of MARCH9H136W is supported by the observation that MARCH9 

interacts with itself and likely forms dimers (Figure 13). These observations are consistent 

with a model were MARCH9 would control its stability in a regulatory feedback loop. 

However, another still unknown ubiquitin ligase could be responsible for the degradation of 

MARCH9H136W as result for protein quality mechanism, responsible for the removal of 

damaged proteins. In summary, the analysis of MARCH9H136W stability neither proved nor 

disproved an ubiquitin ligase activity for MARCH9. 

 

To identify ubiquitin ligase activity of MARCH9, a bacterial system was used that allows 

expression of multiple genes to reconstitute the ubiquitination reaction in vivo. To this end, 

E1, E2, and ubiquitin, as well as MARCH9, were expressed in a bacterial host and auto-

ubiquitination of MARCH9 was analyzed. As prokaryotes do not have posttranslational 

modification by ubiquitin like eukaryotic cells, background nonspecific ubiquitin reactions 

are absent in such systems. Using this bacterial in vivo ubiquitination assay did not result in 



 79 

specific ubiquitination of MARCH9. As discussed above, MARCH9 might not possess 

major auto-ubiquitination activity. In the bacterial assay a GST-fusion of MARCH9 was 

employed, supposedly providing an intra-molecular substrate for MARCH9. While this 

method proved useful for other ubiquitin ligases, the low auto-ubiquitination activity of 

MARCH9 might hamper this approach. 

 

Also, MARCH9 is a membrane protein, making the purification of the full-length protein 

highly difficult, and in this case all such attempts failed. Thus, a soluble version of 

MARCH9 including the RING finger domain, lacking the two transmembrane domains and 

the entire C-terminus, was used for these assays. This might explain the lack of ubiquitin 

ligase activity of truncated MARCH9 seen in the experiments. While it was shown that a 

RING finger domain might be sufficient to support in vitro ubiquitin ligase activity (227), it 

cannot be exclude that other parts of the protein domains, even the transmembrane 

domains, might be involved in the ubiquitination reaction. 

 

Another reason for the failure to detect ubiquitin ligase activity might lie with employment 

of ubiquitin-conjugating enzyme E2 and MARCH9. MARCH9 did not show specific 

ubiquitination with UBE2G2, UBE2D1, UBE2B, UBE2B and UBEJ2. An ubiquitin ligase 

function results only with a specific E2 enzyme, therefore the compatibility between E3 

and E2 is a critical aspect of the enzyme cascade. MARCH9 might require another E2 such 

as a mitochondrial-anchored ubiquitin-conjugating enzyme E2. For example, during the last 

step of ERAD it was demonstrated that substrates are polyubiquitinated by membrane-

bound E2 enzymes Ubc1, Ubc6 and Cue1-associated Ubc7 (228, 229). However, 

MARCH9’s requirement of an as yet unknown E2, is a subject for another investigation. 

Construction of an E2 library could serve as a tool to identify a specific E2 for MARCH9 

(230). The library would contain both full-length and core UBC domain versions of all 40 

H. sapiens E2 proteins. This entire E2 panel could then be used in an in vitro ubiquitination 

assay with MARCH9.  

  

Although it is suspected that MARCH9 is a potential ubiquitin ligase, it cannot be excluded 

that MARCH9 has as well some another function. It was recently shown that the 

mitochondrial RING finger containing ubiquitin ligase MAPL (104) possess SUMO ligase 

activity, MARCH9 might also act as a SUMO ligase. SUMOylation is, like ubiquitination, 

a multi-step process involving E1, E2 and a SUMO ligase. The question whether MARCH9 
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possesses ubiquitin ligase activity, or may act as a SUMO ligase remains open to further 

specific investigation. 

4.4. A potential role for MARCH9 in the mitochondrial fusion process 

Previous observations suggested a role for MARCH9 in the regulation of mitochondrial 

fusion. It was found that expression of inactive MARCH9H136W caused extensive 

mitochondrial fragmentation, while expression of wildtype MARCH9 did not seem to 

influence the balance between mitochondrial fusion and fission. These findings indicate a 

role for MARCH9 as either a fusion process activator or a fission process inhibitor. 

Interestingly, no shift in mitochondrial morphology was observed after 70% knockdown of 

MARCH9 using RNA interference (Neutzner- personal communication). Assuming the 

achieved knockdown was sufficient, MARCH9 seems not to be an essential part of the 

mitochondrial fusion machinery. However, these findings indicate a dominant-negative 

action of MARCH9H136W likely blocking mitochondrial fusion through a titration effect. 

One mode of action for dominant-negative mutations is through unproductive interaction 

between a mutated protein and an essential factor of the affected process (231). 

Consequently, the existence of a MARCH9 activator has not been postulated and would 

explain why only dominate-negative mutant affect mitochondrial morphology. Consistent 

with this notion, we found that MARCH9 physically interacts with both Mfn1 and Mfn2, 

both of which are essential for the mitochondrial fusion process as no other mitofusins are 

present in mammalian cells (Figure 24). It is also conceivable that MARCH9 directly or 

indirectly regulates the stability of mitofusins thereby blocking the fusion process. While 

Mfn1 is not a target of proteasomal degradation, Mfn2 is a substrate for proteasomal 

degradation (232) and MARCH9 seems to influence Mfn2 stability under certain conditions 

(Neutzner- personal communication). A model seems attractive where MARCH9 causes 

the degradation of Mfn2 during the actual fusion process. During fusion, mitochondrial 

tubules show a so called kiss-and-run behavior (233). The degradation of Mfn2 might be 

essential to change from the kiss-and-run pattern into a permanent fusion of two 

mitochondria. This scenario is supported by recent studies in yeast, where the Ugo-1 and 

Mdm30- dependent degradation of the mitofusin Fzo1 is necessary for the irreversibility of 

the outer mitochondrial membrane fusion (138). However, to substantiate this hypothesis, 

the role of MARCH9 in modulating Mfn2 stability, and its involvement in the 

mitochondrial fusion machinery needs, further investigation. 
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4.5. Additional potential role of MARCH9 

The RING-CH proteins were initially described, following the identification of the K3 

family or viral E3 ligases in γ-herpesvirus. While showing little sequence homology with 

the viral E3 ligases, the mammalian MARCH E3 ligases share similar structural 

organization and contain both, a RING domain and several transmembrane domains (234). 

It was also shown that other MARCH proteins such as MARCH1 and MARCH8 modulate 

the levels of immune regulatory molecules either directly or indirectly. Interestingly, it was 

also shown that mitochondrial-localized MARCH5 catalyzes the K63-linked 

polyubiquitination of TANK, a modulator of innate immunity, thus promoting toll like 

receptor 7 responses in viral defense (235). These observations suggest a function of 

MARCH proteins in the immune response.  

 

Recent studies have suggested that MARCH9 modulates the stability of immunological cell 

surface markers such as ICAM-1 (236), CD4 and HLA-DOβ (237). Indeed, MARCH9, as a 

MARCH protein, shows homology to the viral ubiquitin ligase K3 and K5, supporting the 

idea that MARCH9 is involved in the degradation of immune-modulatory surface proteins 

(234). Considering that MARCH9 is closely related to MARCH5, and other mitochondrial 

proteins such as MAVS (238) and NLRX1 (239) are involved in immune response, a role 

for MARCH9, as an immune modulator is conceivable. Thus, similarly to MARCH5, 

MARCH9 might also have dual functions in modulating mitochondrial morphology and the 

immune response. 

4.6. Mitochondria and S-nitrosylation 

Nitric oxide has normal physiological functions and influences a wide variety of cellular 

processes (40, 240). Mitochondrial physiology is impacted by NO and NO-mediated 

protein modification. Although NO has many physiological functions, once excessive NO 

is generated, it reacts with oxygen to form very reactive nitrogen species (RNS), such as 

nitrogen dioxide (NO2), dinitrogen trioxide (N2O3) and peroxynitrite (ONOO-) (241). Such 

RNS are known to cause damage to proteins such as excessive S-nitrosylation and nitration. 

Mitochondria are especially prone to RNS damage as these organelles are major producers 

of RNS via ROS production. The question, when does mitochondrial nitric oxide (NO) 
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become harmful, remains open. The answer may depend on different factors, such as the 

type of target protein, location of target protein and function of target protein. Also the 

issue of where mitochondrial NO originates from is still controversial. Some studies have 

reported that one of the isoforms of NO synthase is located in the inner mitochondrial 

membrane. Bates et al. (242) has identified the first NO synthase in liver and rat brain 

mitochondria. This observation has opened the possibility that nitric oxide could be a 

regulator of mitochondrial respiration. Indeed, the activity of mtNOS has been proven by 

the measurement of mitochondrial NO production in liver mitochondria (243). Aside of the 

mitochondrial NO synthase, NO can impact mitochondria in other ways. As NO is a 

soluble and uncharged molecule it can diffuse easily across membranes (244). A well-

established model for excessive NO production in neuronal cells is the activation of N-

methyl-D-aspartate (NMDA)-type glutamate receptor. Activation of the glutamate receptor 

leads to an influx of Ca2+, which in turn activates neuronal NO synthase (nNOS) leading to 

elevated NO levels in case of exocitotoxicity finally causing mitochondrial dysfunction 

(245). 

4.7. Quality control of S-nitrosylated mitochondrial proteins 

Mitochondrial proteins are the target of S-nitrosylation either during normal regulatory 

processes or as result of a stressor induced insult. While several mechanisms such as 

thioredoxin or S-nitrosogluthation reductase (section 1.2.3.) are in place to reverse S-

nitrosylation, it is unclear whether these systems are able to revert all S-nitrosylation of 

mitochondrial proteins or whether, especially during increased NO stress, S-nitrosylated 

proteins accumulate with potentially deleterious effects on mitochondrial function. 

Therefore it is conceivable, that degradation of such S-nitrosylated proteins plays a role in 

the clearance of such proteins, thus maintaining mitochondrial fidelity. While several 

proteolytic systems such as membrane-anchored as well as matrix localized proteases are 

active in mitochondria, the UPS might also provide quality control for extraneous S-

nitrosylated proteins. Indeed, we found that proteasome inhibition increased the levels of S-

nitrosylated proteins in whole cell lysates, and most importantly, in highly purified 

mitochondrial fractions (Figures 26, 27, 32). The accumulation of ubiquitinated proteins in 

response to NO stress under treatment with the proteasome inhibitor is indicative of an 

ubiquitin-dependent, proteasomal degradation of mitochondrial S-nitrosylated proteins. 

Interestingly, proteasome-dependent degradation of S-nitrosylated proteins was evident in 

NO-stressed as well as unstressed cells. Thus, even under normal physiological conditions, 
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in the absence of exogenous NO, S-nitrosylation is resolved via protein degradation. While 

de-nitrosylation might still be the main pathway to deal with S-nitrosylated proteins, UPS-

mediated clearance of S-nitrosylated proteins clearly plays a role under unstressed 

conditions. Proteasomal degradation of S-nitrosylated proteins also occurs during low NO 

stress conditions. 

 

These observations are further supported by the involvement of p97 in the clearance of S-

nitrosylated proteins from mitochondria. We found increased levels of S-nitrosylated 

proteins in cells expressing p97 when compared to control cells (Figure 33). Based on this 

result, it is reasonable to assume that mitochondrial S-nitrosylated proteins are 

retrotranslocated by p97 from the mitochondria to the cytosol to prevent accumulation of S-

nitrosylated proteins and to aid their proteasomal degradation. As p97 was previously 

shown to be a part of OMMAD, these findings support the involvement of OMMAD in the 

quality control of S-nitrosylated proteins.  

 

Recently, the importance of Parkin-mediated mitophagic clearance of damaged 

mitochondrial subunits was recognized (246). While NO seems to be connected to the 

induction of mitophagy (247), under low level NO stress, as employed by us, proteasomal 

degradation seems more prevalent than mitophagic clearance as no Parkin recruitment to 

mitochondria was seen. Also, induction of apoptosis was not present under low level NO 

stress, thus, no involvement of programmed cell death in the clearance of S-nitrosylated 

proteins is evident (Figure 28 and 30). Therefore, we suggest that the degradation of S-

nitrosylated mitochondrial proteins by the proteasome is an additional element in protection 

against low level nitrosative stress and might be an important player in the defense against 

aging and neurodegeneration. 

 

This notion is further supported by the link between the mitochondrial ubiquitin ligase 

MARCH5 and S-nitrosylated microtubules-associated protein 1B (MAP1B). S-nitrosylated 

MAP1B (SNO-MAP1B) in mitochondria is degraded by the mitochondria-anchored 

ubiquitin ligase MARCH5. MARCH5-dependent degradation of SNO-MAP1B protects 

neurons from mitochondrial dysfunction and subsequent cell death (248). In addition, the 

ubiquitin ligase Parkin that participates the ubiquitin proteasome system is a target for S-

nitrosylation. Upon S-nitrosylation, the activity of Parkin initially increases but is 

subsequently inhibited. This might be of the increased auto-ubiquitintation. This inhibition 



 84 

of ubiquitin ligase activity leads to impairment of ubiquitination and degradation of 

substrate protein (54).  

Further support for the connection between OMMAD and quality control of S-nitrosylated 

proteins comes from our finding that the stability of the mitochondrial RING finger protein 

MARCH9 was increased in response to low level NO stress (Figure 34A). It is conceivable 

that MARCH9 levels are upregulated in response to the presence of potential S-nitrosylated 

substrate proteins. Thus, MARCH9, as a possible OMMAD ubiquitin ligase, could play a 

role in the clearance of S-nitrosylated proteins. However, no direct impact of MARCH9 on 

the levels of S-nitrosylated proteins was seen. If S-nitrosylation can also directly inhibit the 

26S proteasome activity by targeting cysteine residues in the catalytic core, one might 

speculate that the observed stabilization of MARCH9 can be attributed to a decreased 

turnover of MARCH9 in response to proteasomal degradation (249). However, using a 

short-lived GFP protein, which is degraded by the proteasome, did not result in protein 

stabilization after treatment with NO (Figure 34C), discounting the idea of proteasomal 

inhibition under low level stress conditions as used by us. 

 

Thus, reversal of S-nitrosylation or denitrosylation resulting in restoration of protein 

function and protein degradation seems to work hand in hand to protect mitochondria from 

the deleterious action of excessive NO levels. As the detoxification systems are a target for 

S-nitrosylation-dependent inactivation themselves, the ubiquitin proteasome system likely 

also plays a role in maintaining denitrosylation capacity. 

 

Considering these data, the ubiquitin proteasome system is probably an additional part in 

defending mitochondria against nitrosative stress and therefore prevention of mitochondrial 

dysfunction and associated neurodegenerative diseases. Our data supports a new role for 

p97-mediated, ubiquitin-dependent proteasomal degradation for S-nitrosylated proteins. In 

addition, our findings may connect the potential OMMAD ubiquitin ligase MARCH9 with 

the clearance of S-nitrosylated proteins from mitochondria. OMMAD may therefore 

provide an additional mitochondrial quality control for the clearance of S-nitrosylated 

proteins and help to keep mitochondria in a healthy state during constant low level 

nitrosative stress conditions. 
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4.8. Summary 

In summary, recent findings have expanded the understanding of the importance of 

mitochondrial maintenance. One central part, in keeping mitochondria healthy is the 

removal of damaged proteins, which potentially interfere with normal mitochondrial 

function. Such damages are caused by ROS and RNS, leading to modifications such as 

protein carbonylation and S-nitrosylation. These modifications result in inactivation of 

proteins, thus it is important to remove such proteins preventing mitochondrial dysfunction. 

Several different mitochondrial quality control levels are involved to maintain the 

mitochondrial functions. On the molecular level, the repair systems deal with damaged 

proteins, mitochondrial DNA or lipids. On the organellar level the combined functions of 

mitochondrial fusion and fission together with mitophagy are established as essential 

quality control mechanisms. On the cellular level, programmed cell death is responsible for 

the removal of entire mitochondrial networks (82). Similar to the ERAD, the ubiquitin 

proteasome system in form of OMMAD controls proteins, which are localized on 

mitochondria. Based on our data, the ubiquitin proteasome system provides mitochondrial 

quality control and is involved in the clearance of mitochondrial S-nitrosylated proteins. 

Furthermore, based on our data a role for MARCH9 in this process is conceivable, we do 

not want to exclude the possibility of another as yet unknown ubiquitin ligase being 

involved in this process. However, the involvement of the OMMAD-component p97 in the 

retrotranslocation and degradation of mitochondrial S-nitrosylated proteins is well 

supported by our findings. Thus, the ubiquitin proteasome system in form of OMMAD 

seems to be important for the elimination of S-nitrosylated proteins from the mitochondria, 

further connecting ubiquitination to mitochondrial maintenance.  
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