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1 Summary 

About three quarters of a eukaryotic genome are transcribed into RNA. However, only <2% of these 

transcripts are translated into protein while the bulk of transcripts execute their biological function as 

RNA. Non-protein coding RNAs (ncRNAs) associate with proteins in ribonucleoprotein particles (RNPs) to 

regulate gene expression at various stages thereby greatly increasing the functional complexity of the 

genome. Nonetheless, the function and mode of action of the vast majority of ncRNAs is unknown and 

even in well studied examples little is known about the post-transcriptional regulation of ncRNAs 

themselves. In the thesis at hand, I explored the molecular and developmental functions of proteins 

implicated in the metabolism of ncRNAs, namely the miRNA-degrading enzyme XRN2 and the U6 snRNA-

interacting proteins SART-3 and USIP-1. The XRN2 project was a collaboration with Takashi Miki and 

Hannes Richter. 

XRN2 project 

XRN2 is a conserved 5’-to-3’ exoribonuclease involved in various pathways including transcription 

termination and processing of precursor forms of rRNAs and snoRNAs. Our lab had established a 

function of XRN2 in the turnover of mature miRNAs, however, whether XRN2 targets all or specific 

miRNAs in vivo remained unclear. Although XRN2 substrates have extensively been characterized, the 

developmental function of XRN2 is essentially unexplored. Moreover, knowledge of co-factors 

regulating XRN2 function beyond transcription termination is scarce in multicellular organisms. In order 

to elucidate the developmental role of XRN2, we characterized an xrn-2 null and xrn-2 temperature-

sensitive mutant. We found that XRN2 is essential during several stages of C. elegans development, 

including embryogenesis, and that only specific miRNAs are affected by XRN2 in vivo. Co-

immunoprecipitations identified PAXT-1 (PArtner of XRN-Two 1) as a tight interaction partner of XRN2. 

paxt-1 depletion enhanced the xrn-2ts mutant phenotype and a paxt-1 null mutant slowed-down miRNA 

degradation in vivo, similar to XRN2 inactivation. These observations, as we showed, are due to a 

stabilizing effect of PAXT-1 on XRN2. Truncation mutants of PAXT-1 revealed a conserved N-terminal 

domain of unknown function, DUF3469, sufficient for XRN2 binding. We were excited to discover that 

human proteins containing DUF3469 were also able to bind to XRN2. Hence, we renamed DUF3469 to 

XRN2-binding domain (XTBD).  Collectively, we identified PAXT-1 as an essential interaction partner of 

XRN2 in C. elegans and established a protein domain (XTBD) that serves as a binding platform for XRN2 

beyond C. elegans.  

Finally, the laboratory of Dr. Martin Simard found that the scavenger decapping enzyme DCS-1 interacts 

with the exonuclease XRN1, a paralogue of XRN2, to promote miRNA degradation in C. elegans. 

Collaborating on their project, I evaluated the subcellular localization of XRN1 and XRN2 in C. elegans 

and provided tools useful to their experiments such as an XRN1 antibody. This collaborative work has 

been published and can be found in section 7. 
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SART-3 project   

The human protein SART3 and its yeast homolog Prp24 have previously been implicated in spliceosome 

assembly, namely the association of the U4 and U6 snRNP into the U4/U6 di-snRNP complex. 

Additionally, a physical interaction of SART3 with the Argonaute proteins AGO1 and AGO2 had been 

reported, suggesting an involvement of SART3 in the miRNA pathway. However, a putative function of 

SART3 in the miRNA pathway remained to be established. In order uncover such a function and to shed 

light on the so far largely neglected systemic role of SART3 in a multicellular context, I investigated its C. 

elegans homolog SART-3. Co-immunoprecipitations of SART-3 revealed an interaction with a previously 

uncharacterized putative terminal uridylyl transferase (TUTase), whereas I could not verify an 

interaction between SART-3 and AGO1/AGO2. It is known that SART3 binds specifically to the U6 snRNA 

which contains a post-transcriptionally elongated uridine (U)-tail essential for spliceosome assembly. 

Therefore it was appealing to assume that this U-tail is polymerized by the identified TUTase. 

Subsequent analyses unveiled an interaction between the TUTase and U6 snRNA, which hence was 

renamed to U Six snRNA Interacting Protein 1 (USIP-1). It appeared that USIP-1 binds to a U6 snRNA 

species that is devoid of Lsm proteins suggesting a role for USIP-1 early in spliceosome assembly. 

Moreover, knock-down of sart-3 in a usip-1 null mutant background led to a synthetic, embryonic lethal 

phenotype. This phenotype was rescued by transgenic expression of wild-type USIP-1. Although formal 

demonstration of TUTase-activity for USIP-1 is lacking, the synthetic lethality was not rescued by a 

supposedly catalytically inactive version of USIP-1. In sum, I established a physical and functional 

interaction between two previously uncharacterized proteins in C. elegans, SART-3 and USIP-1, and 

explored their developmental phenotypes.   
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2 RNA metabolism in eukaryotes 

RNA metabolism is defined as the collectivity of cellular chemical reactions and pathways involving RNA. 

RNAs can be broadly classified into protein-coding messenger RNAs (mRNAs) and non-coding RNAs 

(ncRNAs), the latter representing transcripts that execute their biological function as RNAs itself without 

being translated into protein. These two classes are highly interconnected in that ncRNAs play a role in 

transcription, maturation, translation, and stability of mRNAs. 

The life cycle of an mRNA – wedded to RNPs 

The life cycle of an mRNA can be divided into five stages: transcription, RNA processing, mRNA export, 

translation, and finally degradation. All these steps are controlled by survey mechanisms that ensure 

proper handling of the mRNA at a given stage and, if required, eliminate wrongly processed or mutant 

RNAs. Each of the steps during an mRNA’s life is carried out by large multi-protein complexes that often 

are associated with ncRNAs forming so called ribonucleoproteins (RNPs).  

The life of an RNA starts with its transcription, which is divided into four phases, pre-initiation, initiation, 

elongation and termination. In eukaryotes, all protein-coding genes are transcribed by RNA polymerase 

II (RNA pol II), which is recruited to transcription start sites (TSSs) by general transcription factors and 

activators recognizing specific sequence elements in promoter regions (Hahn, 2004). This initial complex 

forming at promoters is called pre-initiation complex and exhibits a conformation that prohibits 

transcription. The largest subunit of RNA pol II contains a carboxyl-terminal domain (CTD), which, in 

humans, consists of 52 tandem repeats of a seven-amino-acid sequence (Dahmus, 1996). During 

transcription initiation, phosphorylation of serine 5 of each repeat in CTD releases RNA pol II from 

promoter regions and allows it to synthesize an immature precursor mRNA (pre-mRNA) (Cho et al., 

2001). The cyclin-dependent kinase P-TEFb is crucial in mediating the transition from transcription 

initiation to elongation by phosphorylating CTD as well as negative elongation factors such as NELF 

(Fujinaga et al., 2004; Marshall et al., 1996). P-TEFb is regulated itself by the 7SK snRNP, a multi-protein 

complex containing the scaffolding 7SK ncRNA. 7SK snRNP-bound P-TEFb is kept in an inactive state (Yik 

et al., 2003). Its release and thus activation is mediated by the HIV transactivator Tat or the 

bromodomain containing protein BRD4 (Krueger et al., 2010; Sedore et al., 2007).  

The nascent pre-mRNA is processed co-transcriptionally in several ways and the CTD serves as a landing 

platform for the different sets of proteins involved, depending on its phosphorylation state (Buratowski, 

2009). The first step in pre-mRNA processing, taking place as soon as its 5’ end emerges from the RNA 

exit channel of RNA pol II, is addition of a 5’ cap consisting of a methylated GMP (Shatkin and Manley, 

2000). The 5’ cap protects the mRNA from degradation and facilitates translation initiation. Most 

mammalian protein-coding genes contain intervening, non-coding sequences (introns), which need to 

be removed from the primary transcript before it can be used for translation into protein (Chorev and 

Carmel, 2012). The process through which introns are removed and the coding sequences of a primary 

transcript, the exons, are joined is referred to as splicing (Sharp, 2005). The nasent pre-mRNA is spliced 

as it emerges from the polymerase. Tight coupling of transcription and splicing is thought to make sure 
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that exons are joined in a correct 5’-to-3’ order (Maniatis and Reed, 2002). Splicing is carried out by the 

spliceosome, a large complex composed of several ncRNAs and numerous proteins (Wahl et al., 2009). 

The RNA components of the spliceosome comprise five, uridine (U)-rich, small nuclear RNAs (snRNAs) 

called U1, U2, U4, U5, U6 (Valadkhan and Gunawardane, 2013). Spliceosomal U snRNAs recognize short 

consensus sequences within the pre-mRNA that is to be spliced, act as scaffolds for associated proteins, 

and, in the case of U6 snRNA, might even participate in splicing catalysis (Valadkhan, 2010). A detailed 

introduction on splicing can be found in section 4.2. In a last processing step, the nascent transcript is 

cleaved and polyadenylated once the RNA pol II complex has passed the poly(A) signal, a sequence motif 

that initiates 3’ end processing (Proudfoot, 2011). Similar to the 5’ cap, the 3’ poly(A) tail of mRNAs 

protects them from unspecific degradation and is required for efficient translation (Shatkin and Manley, 

2000). The cleavage and polyadenylation specificity factor (CPSF-73) is the endonuclease that mediates 

3‘ cleavage and polyadenylation is catalyzed by polyadenylate polymerase (PAP) (Mandel et al., 2006; 

Shatkin and Manley, 2000). The two enzymes are integrated into a large complex comprising >80 

accessory factors  (Shi et al., 2009). These cleavage and polyadenylation factors are also involved in 

transcription termination, the process whereby the ternary complex of RNA pol II, template DNA, and 

mRNA is disrupted (Guo and Price, 2013). The details of transcription termination remain unclear put it 

has been suggested that the 5’-to-3’ exoribonuclease XRN2 plays a role in this process by degrading the 

3’ product of the CPSF-73 cleavage and by recruiting cleavage and polyadenylation factors (see section 

3.2.2). 

Following transcription termination, the mature mRNA is exported into the cytoplasm where it is 

translated into protein. Translation is carried out by a large RNP, the ribosome, which contains 

ribosomal RNAs (rRNAs) and transfer RNAs (tRNAs) (Jackson et al., 2010). rRNAs provide a structural 

framework to the ribosome but at the same time catalyze peptidyl transferase activity, which links 

amino acids (Cech, 2000). The amino acids linked by the ribosome are provided by the tRNAs (Schimmel 

et al., 1993). Each tRNA contains a triplet sequence, called anticodon, which is associated with a specific 

amino acid. Thus, tRNAs serve as adapter molecules providing a physical link between genetic 

information and protein sequence. rRNAs and tRNAs, together with the above mentioned snRNAs, are 

methylated and pseudouridylated by small nucelolar RNPs (snoRNPs), which are guided sequence-

specifically to their targets by their ncRNA component, the small nucleolar RNAs (snoRNAs) (Dieci et al., 

2009). 

Together, gene expression requires many ncRNAs involved in transcription (7SK RNA), processing 

(snRNA, snoRNA), and translation (rRNA, tRNA). In fact, in recent years, it became evident that only <2% 

of the human genome encode for transcripts that are translated into proteins (Frith et al., 2005). In 

contrast, ~75% of the human genome is transcribed into RNA that is never translated into protein 

(Djebali et al., 2012). The dimensions of the ncRNA world have been underestimated for so long due to 

the fact that transcriptome analyses have traditionally focused on cytoplasmic polyA + RNA. RNA-seq on 

total rather than polyA + RNA brought to light diverse novel classes of ncRNAs, the function of most of 

which, however, is not yet or only little understood (Aalto and Pasquinelli, 2012; Fatica and Bozzoni, 

2014). 
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RNA decay mechanisms 

The level at which an RNA is expressed is determined by its rate of transcription but similarly by its rate 

of degradation. The importance of RNA decay mechanisms is reflected by the enormous diversity of 

enzymes that are capable of degrading RNA, called ribonucleases (RNases) (Aravind and Koonin, 2001; 

Arraiano et al., 2013). RNases can be grouped into two main classes: endoribonucleases, which cleave 

RNA molecules internally and exoribonucleases, which degrade RNA molecules from either the 5’ or 3’ 

end (Arraiano et al., 2013). The cleavage products generated by endoribonucleases serve as substrates 

for 5’-to-3’ or 3’-to-5’ exonucleolytic degradation, thus the two systems are closely linked. During its life 

cycle, an mRNA, and similarly ncRNAs processing/regulating the mRNA, are targeted by several RNases, 

some of which we will come across repeatedly. Below, human names are used for conserved proteins. 

The major players in RNA turnover are the 3’-to-5’ exosome complex and the 5’-to-3’ exonucleases 

XRN1 and XRN2. The exosome consists of a core of nine proteins which associates with the actual 

catalytic subunits, RRP6 and DIS3/DIS3L, with DIS3/DIS3L possessing endonuclease activity in addition to 

exonuclease activity (Chlebowski et al., 2013). A nuclear and a cytoplasmic form of the exosome exist, 

which differ in their co-factors. The nuclear exosome interacts with the TRAMP complex, whereas the 

cytoplasmic exosome interacts with the SKI complex (Chlebowski et al., 2013). XRN1 and XRN2 have also 

been found in several complexes. A detailed discussion of substrates, interacting proteins, and 

developmental functions of XRN1 and XRN2 is given in sections 3.2.1-3.2.3. 

Regular turnover of mature mRNAs is the prototype to illustrate how multiple ribonucleases act 

cooperatively in a tightly regulated pathway (Nagarajan et al., 2013). Degradation of the majority of 

mRNAs is initiated by exonucleases, called deadenylases, that trim the 3’ poly(A) tail (Wahle and 

Winkler, 2013). Subsequent to deadenylation, the mRNA can be degraded 3’-to-5’ by the exosome and 

the SKI complex or, following hydrolytic removal of the 5’ cap through decapping enzymes (Arribas-

Layton et al., 2013), by XRN1. The degradation of a minority of mRNAs is triggered by endonucleolytic 

cleavage, which creates newly available 5’ and 3’ ends that are degraded by XRN1 and the exosome, 

respectively (Nagarajan et al., 2013). One RNase that triggers endonucleolytic cleavage of mRNAs is the 

argonaute protein AGO2 (Krol et al., 2010). It is guided to target mRNAs in a sequence-specific manner 

by small interfering RNAs (siRNAs) and certain microRNAs (miRNAs), originating from exogenous and 

endogenous double-stranded RNA substrates, respectively. Today, thousands of miRNAs are known in 

humans and present a critical layer of gene expression regulation (Djuranovic et al., 2011). Moreover, 

miRNAs do not only regulate the stability of target mRNAs but are themselves subject to active 

degradation. The nucleases and cellular conditions that promote miRNA turnover are reviewed in 

section 3.2.4. The exosome and XRN1 are not only involved in constitutive turnover of mRNAs but also, 

and these functions are shared with XRN2, in the processing of pre-rRNAs and pre-snoRNAs into their 

mature form and degradation of maturation byproducts (Chlebowski et al., 2013; Nagarajan et al., 

2013). The exosome is also involved in snRNA processing (Chlebowski et al., 2013). 

Quality control systems are put in place at various stages during gene expression to dispose spurious or 

defective RNAs. The executors of these surveillance mechanisms are RNases. In the nucleus, quality 

control mechanisms involve the exosome, XRN1, and XRN2. The exosome and XRN1 were shown to 
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degrade specific classes of antisense transcripts, cryptic unstable transcripts (CUTs) and XRN1-sensitive 

unstable transcripts (XUTs), respectively (van Dijk et al., 2011; Wyers et al., 2005). Antisense transcripts 

emerge for instance from bidirectional promoters and usually lack protein-coding potential (Pelechano 

and Steinmetz, 2013). Although certain antisense transcripts clearly have a biological function, most of 

them might present spurious transcripts whose extent needs to be limited. In yeast, the 5’ end cap 

added to the nascent pre-mRNA shortly after transcription initiation is endonucleolytically cut off by the 

decapping protein Rai1p, when inappropriately modified, and the resulting 3’ end cleavage product 

containing a 5’ end monophosphate is degraded by XRN2, which physically interacts with Rai1p (Jiao et 

al., 2010). In humans, DOM3Z/DXO was found to perform an analogous function although its 5’-to-3’ 

exoribonuclease activity may allow it to perform degradation of decapped pre-mRNAs XRN2-

independently (Jiao et al., 2013). As RNA pol II elongates the nascent pre-mRNA, splicing is taking place 

co-transcriptionally. Splice-defective pre-mRNAs are cleared by the exosome, XRN1, and XRN2 

(Nagarajan et al., 2013; Porrua and Libri, 2013). Moreover, future accurate translation in the cytoplasm 

is also ensured by degradation of erroneously processed rRNAs and tRNAs in the nucleus by the 

exosome and XRN2 (Nagarajan et al., 2013; Porrua and Libri, 2013). XRN1 has also been implicated in 

the degradation of aberrant tRNAs (Chernyakov et al., 2008). Of note, in yeast, it was recently identified 

that the exosome degrades >50% of intron-containing pre-mRNAs (that represent roughly 5% of yeast 

genes) as well as ~50% of tRNAs, which do not show a splicing or processing defect, respectively 

(Gudipati et al., 2012). It is currently unclear why a substantial fraction of apparently functional RNAs 

undergoes degradation. 

A mature mRNA that has reached the cytoplasm might contain genomically encoded mutations that 

remained unnoticed by nuclear quality control mechanisms. Several types of mutations can affect 

proper protein synthesis including mutations that lead to a premature termination codon (PTC), to the 

absence of a termination codon, or to strong secondary structures. mRNAs containing these deleterious 

mutations are degraded through nonsense-mediated decay (NMD), nonstop mRNA decay (NSD), and no-

go mRNA decay (NGD), respectively (Isken and Maquat, 2007). The enzymes that mediate constitutive 

mRNA turnover, i.e. the exosome and XRN1, also function in NMD, NSD, and NGD. Notably, different 

eukaryotes, despite the fact that all use the exosome and XRN1 as executors, differ substantially in the 

upstream part of the NMD and NSD pathway (Isken and Maquat, 2007). NGD has only been studied in 

yeast. 

Despite these intricate quality control mechanisms, mutations are inevitable. In particular, silent 

mutations in mRNAs are challenging to be tackled by surveillance systems. These mutations, although 

not changing the amino acid sequence, might still affect splicing. In fact, ~10% of genetic diseases that 

are caused by point mutations arise from mutations within the three consensus sequences recognized 

by the spliceosome, the 5’ and 3’ splice-site, respectively, and the branch point (Cooper et al., 2009). 

Many more exonic and intronic regions exist that are relevant to splicing, called splicing enhancers or 

silencers, whose consensus sequences, however, are less well established (see section 4.2). A striking 

example of a single point mutation with a deleterious effect is the C-to-T change at position 6 in exon 7 

of the SMN2 (survival of motor neuron 2) gene (Cartegni and Krainer, 2002). It was found that this 

mutation lies within a splicing enhancer region and causes skipping of exon 7 by preventing binding of 
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the SF2/ASF splicing factor. Skipping of exon 7 leads to an inactive and unstable SMN2 protein. Mutant 

SMN2 is not able to maintain its function in snRNP biogenesis and thus triggers a detrimental cascade 

that results in spinal muscular atrophy (SMA) (Cartegni and Krainer, 2002). 
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3 The exoribonuclease XRN2 in C. elegans: Its role in development and 

its interplay with the novel protein PAXT-1  
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3.1 Abstract and contributions 

XRN2 is an evolutionarily conserved 5’-to-3’ exoribonuclease in eukaryotes. Although various substrates 

for XRN2 have been established, including pre-mRNAs, pre-rRNAs, pre-snoRNAs, abberant tRNAs and 

miRNAs, its developmental function remains largely unexplored. In section 3.3.1, we assess the 

biological role of XRN2 in C. elegans. We show that XRN2 is expressed constitutively and ubiquitously 

across developmental stages and tissues, respectively. Further, we observe a molting defect and early 

larval arrest in xrn-2 null mutant worms or worms expressing a catalytically inactive version of xrn-2. A 

de novo-generated temperature-sensitive allele allows us to investigate the developmental function of 

XRN2 beyond an early larval stage revealing an involvement of XRN2 in embryogenesis and fertility. 

Furthermore, a time-course experiment following α-amanitin-induced transcriptional shut-off uncovers 

rapidly decaying miRNAs. Interestingly, only a subset of these short-lived miRNAs is stabilized by 

conditional inactivation of XRN2 indicating specificity of XRN2 towards particular miRNAs in vivo. Finally, 

the time-course experiment reveals that miRNA* strands are markedly less stable compared to miRNA 

guide strands in agreement with the view that the vast majority of miRNA* strands are processing 

byproducts rather than having a biological function. Of note, half-lives of miRNA* strands are not 

affected by XRN2.  

Whereas constitutive interaction partners for XRN2 affecting its stability and catalytic activity have been 

identified in yeast (Rai1p) and the ciliate Tetrahymena thermophila (Twi12), such factors await 

elucidation in metazoans. In section 3.3.2 and 6, we identify PAXT-1 as a novel subunit of an XRN2 

complex in C. elegans. We show a direct interaction between XRN2 and PAXT-1, which leads to mutual 

stabilization of the binding partners. Knock-down of paxt-1 enhances the phenotype of an xrn-2ts 

mutant whereas a paxt-1 null mutant causes larval arrest at elevated temperature. This larval arrest is 

rescued by an additional copy of xrn-2 suggesting that PAXT-1 mainly acts by increasing the stability of 

XRN2. Indeed, an in vitro assay fails to show a modulatory effect of PAXT-1 on XRN2 kinetics. Moreover, 

a PAXT-1 fragment comprising a previously uncharacterized domain, DUF3469, is able to rescue the 

larval arrest of the paxt-1 null mutant and suffices to bind to XRN2. Finally, we find that human proteins 

that contain DUF3469 (CDKN2AIP/CARF and NKRF/NRF) bind to XRN2 and that, at least in the case of 

CDKN2AIP/CARF, DUF3469 is sufficient for interaction. In sum, DUF3469 presents a conserved domain 

that connects different proteins to XRN2, which we therefore renamed to XRN2-binding domain (XTBD). 

My contributions to section 3.3.1 include the characterization of the xrn-2 null and xrn-2 catalytically-

dead mutant as well as the determination of the spatio-temporal expression pattern of XRN2. Takashi 

Miki generated and characterized the xrn-2ts mutant and performed the global decay analysis of 

miRNAs. My contributions to section 6 include the co-immunoprecipitations (co-IPs) of transgenic and 

endogenous XRN2 and PAXT-1 in C. elegans as well as the generation of transgenic worms expressing 

different fragments of PAXT-1, which I later used in co-IPs in order to reveal domain requirements of 

PAXT-1 for binding to XRN2. My data is presented separately in section 3.3.2. Hannes Richter purified 

recombinant proteins and performed enzymatic assays. Takashi Miki did all the other experiments.  
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3.2 Introduction 

3.2.1 XRN 5’-to-3’ exoribonucleases 

Yeast and metazoans contain two members of the XRN family of 5’-to-3’ exoribonucleases, the 

cytoplasmic XRN1 (Xrn1p in yeast) and the nuclear XRN2 (Rat1p in yeast) (Nagarajan et al., 2013). 

Henceforth, the denotations ‘XRN1’ and ‘XRN2’ will also be used for the yeast proteins for the sake of 

clarity. In A. thaliana, three XRN2 orthologs are present (AtXRN2, AtXRN3, AtXRN4) but no XRN1 

ortholog (Kastenmayer and Green, 2000). However, whereas AtXRN2 and AtXRN3 are nuclear, AtXRN4 is 

cytoplasmic and exhibits XRN1-functionality such as mRNA turnover (Souret et al., 2004). XRN1 and 

XRN2 possess two highly conserved regions (CR1 and CR2) in their N-terminal part but show only little 

conservation outside these regions (Fig. 1). The sequence of CR1 and CR2 among XRN2 homologs is 50-

60% identical while that between XRN1 and XRN2 homologs is 40-50% identical. Of note, in S. cerevisiae, 

XRN1 artificially targeted to the nucleus by an NLS complements the temperature sensitivity of an xrn2 

mutant strain (Johnson, 1997). Conversely, mutations within the NLS of XRN2 mislocalize it to the 

cytoplasm and are able to rescue the lethality of an xrn1 ski2 double mutant strain (Johnson, 1997). 

Thus, XRN1 and XRN2 and possibly XRN1/2 from higher eukaryotes are functionally interchangeable 

exoribonucleases. The catalytically active site of XRNs comprises seven conserved acidic residues within 

CR1 that coordinate two Mg2+ ions (Chang et al., 2011b; Jinek et al., 2011). Two of these residues 

(Asp206 and Asp208 in XRN1 from S. cerevisiae and Asp207 in D. melanogaster) have been shown to 

abolish catalytic activity of XRN1 in vitro and in vivo when mutated (Jinek et al., 2011; Solinger et al., 

1999). XRN1 contains an extended C-terminal tail that is absent from XRN2 harboring a PAZ/Tudor and 

an SH3-like domain (Jinek et al., 2011). The far C-terminal end of XRN1 in S. cerevisiae (residues 1206-

1528) is dispensable for its catalytic activity in vitro and for rescue of the growth defect of an xrn1 null 

mutant (Page et al., 1998). 

 

 

 

 

 

 

 

Fig. 1. Sequence conservation of XRNs. Conserved regions (CR1 and CR2) are shown in cyan and 

magenta, a weakly conserved region is shown in yellow, and unconserved regions are shown in grey and 

white. Modified with permission from doi: 10.1038/nature07731. 
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3.2.2 The nuclear exoribonuclease XRN2 

Substrates of XRN2 

XRN2 is a promiscuous nuclease targeting a wide range of nuclear RNAs whose maturation, levels or 

quality it controls (Miki and Grosshans, 2013). Some of its substrates are also targeted by XRN1 (see 

section 3.2.3). A separate section (3.2.4) discusses an involvement of XRN1 and XRN2 in miRNA 

turnover. 

XRN2 participates in the maturation of rRNAs (Amberg et al., 1992; Fang et al., 2005; Petfalski et al., 

1998; Wang and Pestov, 2011). A single pre-rRNA molecule is transcribed by RNA polymerase I 

comprising the 18S, 5.8S and 25S/28S (yeast/mammals) sequences. Additionally, the pre-rRNA transcript 

contains an external transcribed spacer (ETS) at the 5’ and 3’ end (5’ ETS and 3’ ETS, respectively) as well 

as two internal transcribed spacers (ITS) separating the prospective mature rRNA sequences. Following 

endonucleolytic cleavage within the ITS’s, XRN2 degrades the remaining ITS sequence at the 5’ end of 

the 5.8S and 25S rRNA (Geerlings et al., 2000; Henry et al., 1994). XRN2 also degrades excised fragments 

of the pre-rRNA spacer regions (Petfalski et al., 1998). Through a conceptually similar process, XRN2 

produces 5’ ends of snoRNAs (Petfalski et al., 1998; Qu et al., 1999). 

XRN2 plays a role in the quality control of several classes of RNAs (Miki and Grosshans, 2013). Defects in 

rRNA processing lead to polyadenylated pre-rRNAs in yeast (Fang et al., 2004). Polyadenylated pre-

rRNAs also accumulate in strains deleted for the exosome subunit Rrp6p indicating that polyadenylation 

targets pre-rRNAs for degradation by the exosome (Kuai et al., 2004). Deletion of XRN2 was found to 

enhance the accumulation of polyadenylated pre-rRNAs in strains mutant for Rrp6p (Fang et al., 2005). 

However, deletion of XRN2 alone did not result in significant accumulation of polyadenylated pre-rRNAs 

suggesting that the exosome is the main surveillance factor for pre-rRNAs in yeast. In contrast, in mouse 

cells, knock-down of XRN2 stabilized aberrant pre-rRNA species, highlighting a more prominent role of 

mammalian XRN2 in the clearance of defective pre-rRNAs (Wang and Pestov, 2011). XRN2 has also been 

implicated in the degradation of unspliced pre-mRNAs (Bousquet-Antonelli et al., 2000; Davidson et al., 

2012). Whereas in yeast the exosome constitutes the major pathway by which deficient pre-mRNAs are 

removed with only little contribution by XRN2, the latter appears to be more important in mammalian 

cells. Of note, in yeast, Bousquet-Antonelli and colleagues observed that inhibition of pre-mRNA 

degradation was accompanied by increased levels of spliced mRNAs arguing for a competition between 

splicing and degradation of pre-mRNAs independent of splice defects (Bousquet-Antonelli et al., 2000). 

Lastly, XRN2 mediates turnover of improperly modified mature tRNAs which might impede translation 

(Chernyakov et al., 2008). 

XRN2 has been shown to degrade Telomeric Repeat-containing RNA (TERRA) (Luke et al., 2008). The 

repetitive nucleotide sequences at the end of linear chromosomes are called telomeres and function in 

protecting chromosomes from nucleolytic degradation and DNA repair activities at their extremes 

(O'Sullivan and Karlseder, 2010). In most somatic cells in humans, telomeres get shortened with every 

cell division due the inability of conventional polymerases to fully replicate the parent DNA (Hug and 

Lingner, 2006). In S. cerevisiae and certain human cells, an enzyme called telomerase provides reverse 
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transcriptase activity to counteract this shortening (Hug and Lingner, 2006). Telomeres are transcribed 

by RNA polymerase II (RNA pol II) into TERRA, which bind to telomeres and prohibit telomerease action 

(Azzalin et al., 2007; Luke et al., 2008). An XRN2-mutant yeast strain showed accumulation of TERRA and 

shortened telomeres (Luke et al., 2008). This suggests a role of XRN2 in the regulation of telomerase 

activity through degradation of TERRA. 

Finally, XRN2 also functions during termination of RNA polymerase II (RNA pol II) transcription in yeast 

and mammals (Kim et al., 2004b; West et al., 2004) and, at least in yeast, also during termination of RNA 

pol I transcription (El Hage et al., 2008). For RNA pol II transcription termination, the current model 

suggests that, following endonucleolytic cleavage of a nascent RNA transcript at the poly(A) site, the 5’ 

cleavage product is polyadenylated whereas the 3’ cleavage product is degraded by XRN2. Eventually 

XRN2 catches up with the elongation complex leading to its release (Tollervey, 2004). However, 

degradation of the 3’ product of the endonucleolytic cleavage is not sufficient, though necessary, to 

induce transcription termination as XRN1, upon mislocalization to the nucleus, is able to degrade the 

nascent RNA  but does not cause polymerase release (Luo et al., 2006). Of note, XRN2 is also involved in 

3’ end processing by enhancing recruitment of cleavage and polyadenylation factors such as Pcf11 and 

Rna15 in yeast (Luo et al., 2006). 

Interaction partners of XRN2 

Given the diverse pathways XRN2 is involved in, it comes as little surprise that it has been reported on 

multiple interacting proteins for this enzyme. In yeast, XRN2 has been shown to interact with Rai1p 

(Rat1p interacting protein 1) (Xiang et al., 2009; Xue et al., 2000). Rai1p deletion leads to a slow-growth 

phenotype that is rescued by an additional copy of XRN2 as well as nucleus-targeted XRN1 suggesting 

that Rai1p mainly acts by enhancing the activity of XRN2 (Xue et al., 2000). It has also been shown that 

Rai1p increases the processivity of XRN2‑mediated RNA decay (Xiang et al., 2009). More recently, it was 

found that Rai1p does not only stabilize XRN2 activity but possesses enzymatic activity on its own. Rai1p 

is a 5’ pyrophosphoydrolase converting 5’ triphosphate on RNA substrates to monophosphate (Xiang et 

al., 2009) and also has non-canonical 5’ decapping activity removing 5’ unmethylated caps of RNAs (Jiao 

et al., 2010). Whereas RNAs with 5’ triphosphates and cap-structures are not amenable to XRN2 

exoribonucleolytic activity (Stevens and Poole, 1995), 5’ monophosphorylated RNA products generated 

by Rai1p through both pyrophosphohydrolase and decapping activity, are (Jiao et al., 2010; Xiang et al., 

2009). An appealing model therefore suggests that Rai1p provides XRN2 with targetable substrates. 

Rai1p has homologs in most eukaryotes, however, its sequence is only weakly conserved. The human 

and Drosophila homolog of Rai1p, DOM3Z and Cuff, respectively, appear not to interact with XRN2 

(Chen et al., 2007; Xiang et al., 2009). Nevertheless, the catalytic residues in Rai1p are conserved in 

DOM3Z (Xiang et al., 2009) as is the pyrophosphohydrolase and decapping enzymatic function (Jiao et 

al., 2013). 

Several interacting factors have been described to cooperate with XRN2 in transcription termination. In 

yeast, the XRN2/Rai1p complex co-purifies with Rtt103p which contains an RNA pol II carboxy-terminal 

domain (CTD)-interacting domain (CID) (Kim et al., 2004b). Furthermore, Rtt103p and XRN2/Rai1p co-
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localize near 3’ ends of genes in chromatin immunoprecipitations (ChIPs). However, the role of Rtt103p 

in XRN2-mediated transcription termination awaits elucidation as XRN2 recruitment to the 3’ end of 

genes is not affected in a strain deleted for Rtt103p (Kim et al., 2004b). In mammals, the multifunctional 

protein p54nrb/PSF appears to recruit XRN2 to the cleavage/polyadenylation machinery (Kaneko et al., 

2007). Kim and colleagues noticed in their ChIP data that XRN2 and Rai1p not only crosslink to 3’ ends 

but also to promoter regions (Kim et al., 2004b). XRN2 in human cells has also been observed to localize 

near transcription start sites (TTSs) by ChIP-seq (Brannan et al., 2012). Moreover, XRN2 was found to 

physically interact with a termination factor, TTF2, but also with decapping factors such as DCP1, DCP2, 

and EDC3 with whom it co-localizes at promoter-proximal regions. Knock-down of XRN2, TTF2 or any of 

the decapping factors led to a redistribution of RNA pol II occupancy away from TTSs toward upstream 

and downstream distal positions (Brannan et al., 2012). In HeLa cells, the microprossecor complex 

consisting of Drosha and DGCR8 has been implicated in the control of premature termination of 

transcription of a subset of genes by recruiting the transcription termination factor SETX and the 

ribonucleases XRN2 and RRP6 to promoter-proximal regions (Wagschal et al., 2012). A model was 

derived whereby promoter-proximal pausing of RNA pol II, facilitated by negative elongation factors 

such as NELF and DSIF (Chiba et al., 2010), allows quality control mechanisms to assess the status of 

transcripts. Co-transcriptional decapping by DCP2 or Rai1p and premature termination of transcription 

by XRN2 is thought to prohibit elongation of defective or undesired transcripts (Brannan et al., 2012; 

Jiao et al., 2010). In particular, XRN2-mediated premature termination of transcription is thought to limit 

bidirectional transcription from promoters.  

Finally, in the ciliate Tetrahymena thermophila, co-immunoprecipitations revealed a trimeric complex 

consisting of XRN2, the Ago/Piwi protein Twi12, and Tan1 (Twi-associated novel 1) (Couvillion et al., 

2012). Twi12 binds to small RNAs (18–22 nt) derived from the 3’ end of mature tRNAs. The Twi12-bound 

tRNA fragments contain a base modification that most likely precludes their interaction with target 

RNAs in a similar way to miRNA and siRNAs. Rather, binding of tRNA fragments is required for nuclear 

import of Twi12. Twi12 localizes XRN2 to the nucleus, stabilizes it, and stimulates its exonuclease activity 

without possessing nuclease activity on its own (Couvillion et al., 2012). Additionally, depletion of Twi12 

or XRN2 leads to an accumulation of rRNA processing intermediates, known substrates of XRN2 

(Geerlings et al., 2000; Henry et al., 1994). The functional contribution of Tan1 to the complex is 

unknown. No homologs for Tan1 exist and in contrast to Twi12 and XRN2, Tan1 is not essential for 

Tetrahymena growth (Couvillion et al., 2012).  

Developmental functions of XRN2 

Knowledge on the developmental functions of XRN2 is scare (Nagarajan et al., 2013). In yeast, XRN2 has 

been shown to be essential for viability (Amberg et al., 1992; Sugano et al., 1994). In C. elegans, XRN2 

has been found in a genome-wide RNAi screen for factors involved in molting (Frand et al., 2005). 

Besides, knock-down of XRN2 by RNAi causes slow grow and sterility (Chatterjee and Grosshans, 2009). 

Finally, a genome-wide association study correlates elevated XRN2 levels with an increased risk for 

spontaneous lung cancer (Lu et al., 2010). The diversity of RNA substrates for XRN2 complicates 

phenotypical analyses of mutants of this enzyme set out to understand its biological functions. Thus, 
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although some phenotypes upon loss or knock-down of XRN2 have been described, the substrates 

responsible for the observed phenotypes are largely obscure. 

3.2.3 The cytoplasmic exoribonuclease XRN1 

Substrates of XRN1 

XRN1 mediates turnover of mRNAs and thus, together with the 3’-to-5’-degrading exosome, constitutes 

the major determinant of an mRNA’s half-life (Chang et al., 2011a). Degradation of mRNAs occurs either 

through a deadenylation-dependent or deadenylation-independent pathway.  

Deadenylation-dependent mRNA decay, as the name implies, is initiated by the recruitment of 

nucleases, called deadenylases, that trim the poly(A) tail at the 3’ end of mature mRNAs (Parker and 

Song, 2004). Deadenylase activity is brought about by three different multimeric complexes, CCR4-NOT, 

PAN2-PAN3, and PARN (Parker and Song, 2004). Following deadenylation, the Lsm1-7 proteins bind to 

mRNAs and recruit the decapping machinery with its catalytic subunit DCP2 (Coller and Parker, 2004). 

NUDT16 is another decapping enzyme in mammalian cells, however, whether it is recruited by Lsm1-7 is 

currently unclear (Song et al., 2010). The deadenylated and decapped mRNA is then degraded by XRN1 

(Chang et al., 2011a). 

Deadenylation-independent decay constitutes an additional pathway by which the stability of an mRNA 

is regulated (Nagarajan et al., 2013). This pathway is triggered by endonucleolytic cleavage of the mRNA 

and subsequent attack of newly available 5’ and 3’ ends by XRN1 and the exosome, respectively (Dodson 

and Shapiro, 2002; Nagarajan et al., 2013). Furthermore, a pathway referred to as nonsense-mediated 

decay (NMD) exists that ensures rapid degradation of mRNAs with premature termination codons (PTCs) 

that could lead to truncated and potentially harmful proteins (Conti and Izaurralde, 2005). In yeast and 

mammals this pathway involves deadenylation-independent decapping followed by XRN1 degradation 

as well as deadenylation-dependent exosome degradation (Conti and Izaurralde, 2005). Of note, in 

Drosophila, NMD is initiated by endo- rather than exonucleolytic cleavage followed by degradation of 

the cleavage products by XRN1 and the exosome (Gatfield and Izaurralde, 2004). 

Furthermore, XRN1 is responsible for the turnover of miRNA-targeted mRNAs either by degrading the 3’ 

cleavage product arising from AGO2-mediated endonucleolytic slicing of the mRNA  (Orban and 

Izaurralde, 2005; Souret et al., 2004) or by degrading translationally inhibited mRNAs in a deadenylation-

dependent manner (Carthew and Sontheimer, 2009). Not only mRNA is targeted by XRN1 but also non-

coding RNA such a class of long non-coding RNAs (lncRNAs) termed XUTs (Xrn1-sensitive unstable 

transcripts) (van Dijk et al., 2011).  

Finally, it is intriguing that, despite their different subcellular localization, XRN1 and XRN2 have several 

substrates in common. XRN1, similar to XRN2, is involved in 5’ end processing of precursor forms of 

rRNAs (Geerlings et al., 2000; Henry et al., 1994) and snoRNAs (Lee et al., 2003; Petfalski et al., 1998), as 

well as degradation of hypomodified mature tRNAs (Chernyakov et al., 2008) and unspliced pre-mRNAs 

and intron lariats (Bousquet-Antonelli et al., 2000; Danin-Kreiselman et al., 2003; Hilleren and Parker, 
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2003). Finally, XRN1 and XRN2 both mediate turnover of certain lncRNAs (Geisler et al., 2012) as well as 

mature miRNAs (Ruegger and Grosshans, 2012). 

Interaction partners of XRN1 

Factors that have been found to interact with XRN1 reflect its prominent function in mRNA turnover and 

include proteins involved in decapping such as DCP1/EDC4 (Braun et al., 2012), Lsm1-7 (Bouveret et al., 

2000) and PAT1 (Nissan et al., 2010) as well as proteins involved in the NMD pathway such UPF1, UPF2, 

and UPF3X (Lejeune et al., 2003). Furthermore, XRN1 forms a complex with the scavenger-decapping 

enzyme DCS1 in yeast and C. elegans and stimulates its activity in vitro and in vivo (Bosse et al., 2013; 

Sinturel et al., 2009). Interestingly, in both systems the decapping activity of DCS1 is not required to 

promote XRN1 exonucleolytic activity. 

Developmental functions of XRN1 

In unicellular organisms, XRN1 is not essential. Nonetheless, deletion of xrn1 in yeast (i.e. S. cerevisiae 

and C. albicans) and knock-down of xrn1 in the protozoan parasite T. brucei markedly reduces the 

growth rate (An et al., 2004; Kim and Kim, 2002; Larimer and Stevens, 1990; Li et al., 2006). Additional 

phenotypes observed in S. cerevisiae upon xrn1 deletion include a defect in nuclear fusion, 

hypersensitivity to nitrogen starvation and to a microtubule-destabilizing drug (benomyl), increased rate 

of chromosome loss, and inability of diploids to sporulate (Kim et al., 1990).  

In multicellular organisms, XRN1 is essential. In C. elegans, knock-down of xrn1 by RNAi leads to 

embryos that fail to complete ventral closure due to impaired epithelial movement (Newbury and 

Woollard, 2004). An analogous morphological defect is observed in D. melanogaster, where 

hypomorphic alleles of xrn1 (also called Pacman) show impeded dorsal closure in the embryo and thorax 

closure during metamorphosis (Grima et al., 2008). Furthermore, these reduction-of-function mutants 

of XRN1 result in significantly decreased fertility of male as well as female flies due to a diminished 

number of sperm and eggs, respectively (Lin et al., 2008; Zabolotskaya et al., 2008). In A. thaliana, 

mutations in AtXRN4 result in insensitivity to the plant hormone ethylene (Potuschak et al., 2006), 

serrated leaf edges (Gregory et al., 2008), and late flowering (Geraldo et al., 2009). Late flowering is 

likely caused by reduced turnover of the floral repressor FLC in an XRN1 mutant background (Geraldo et 

al., 2009). In human primary osteogenic sarcoma cell lines, missense mutations have been found in 

conserved regions of XRN1 correlating with reduced levels of XRN1 mRNA levels in these cell lines. 

Moreover, XRN1 mRNA levels were reduced in patient-derived tissue samples indicating that XRN1 

might act as a tumor suppressor gene in osteosarcoma (Zhang et al., 2002). However, a causal link 

between the mutations in XRN1, its reduced mRNA levels, and the osteosarcoma remains to be proven.    
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3.2.4 Publication: “MicroRNA turnover: when, how, and why” 
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Review
MicroRNAs (miRNAs) are short (�22 nucleotide) RNAs
that are important for the regulation of numerous biolog-
ical processes. Accordingly, the expression of miRNAs
is itself tightly controlled by mechanisms acting at the
level of transcription as well as processing of miRNA
precursors. Recently, active degradation of mature
miRNAs has been identified as another mechanism that
is important for miRNA homeostasis. Here we review the
molecular factors and cellular conditions that promote
miRNA turnover. We also discuss what is known about
the physiological relevance of miRNA decay.

Degradation facilitates dynamic miRNA expression
patterns
MicroRNAs are a large class of small regulatory RNAs,
�22 nucleotides long. They bind to partially complemen-
tary sequences in target mRNAs and silence them trans-
lationally or by inducing mRNA degradation [1]. miRNAs
are important for gene regulation in numerous cellular and
developmental processes [2], therefore it is perhaps of little
surprise that miRNAs themselves are subject to extensive
regulation. Indeed, a large body of literature connects
dysregulation of miRNAs with disease [3], highlighting a
need for robust regulation of miRNA activity. Several such
regulatory mechanisms have been shown to affect miRNA
biogenesis, a well-understood process (Box 1), and miRNA
activity [4]. By contrast, regulation of miRNA levels
through degradation of the mature, functional miRNA
has received less attention. This may be owed in part to
the perception of miRNAs as inherently stable molecules,
consistent with the finding that mature miRNAs persist for
many hours or even days after their production is arrested
(e.g., by transcriptional shut-down through chemical inhi-
bitors or depletion of miRNA processing enzymes) [5–8].

Nonetheless, many miRNAs show a dynamic expression
pattern during development, including rapid downregula-
tion in some instances [9–12]. Moreover, specific mature
miRNAs have been found to be expressed in a tissue- or
stage-specific manner without variation in the expression
pattern of the precursor forms (pri- and pre-miRNAs),
supporting the notion of regulatory mechanisms acting
on the mature miRNA [13,14]. These findings suggest that
steady-state levels of miRNAs can be regulated through
both biosynthetic and decay processes. Here, we summa-
rize how turnover of mature miRNAs contributes to their
Corresponding author: Großhans, H. (helge.grosshans@fmi.ch).
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homeostasis and permits their dynamic regulation. We
focus in particular on reviewing the cellular states that
affect miRNA stability as well as molecular mechanisms of
miRNA degradation. However, we do note that currently,
studies consolidating physiological triggers of miRNA de-
stabilization with molecular mechanisms remain largely
elusive. Furthermore, insights into the physiological rele-
vance of mature miRNA degradation are just beginning to
emerge.

Cellular conditions affecting miRNA stability
In contrast to the view of miRNAs as generically stable
molecules, recent studies have shown that individual
miRNAs, or miRNAs in specific environments, are subject
to accelerated decay (Table 1), altering miRNA levels and
hence activity. This section focuses on discussing cellular
conditions and extracellular cues that influence miRNA
stability.

The cell cycle

Several miRNA families function in cell cycle regulation;
for example, by targeting components of cyclin/CDK com-
plexes [15]. Intriguingly, the reverse is also true; that is,
cell cycle stage affects accumulation of certain miRNAs
[16–18]. miR-29b is the first example of these [16]. In HeLa
cells, miR-29b is polycistronically transcribed together
with its ‘sister’ miR-29a, from which it differs by a nucleo-
tide at position 10 as well as its six 30-terminal nucleotides.
However, whereas miR-29a levels change little during
progression through the cell cycle, miR-29b is enriched
in mitotic cells. When mature synthetic miR-29b was
transfected into cells as an miR:miR*-like duplex siRNA,
it was similarly found to accumulate preferentially in
mitotically arrested cells, indicating that regulation of
miR-29b takes place after it has been processed into the
mature form. ‘Pulse-chase’-like experiments using trans-
fection revealed a half-life of miR-29b of 4 h in cycling cells,
compared to >12 h in mitotically arrested cells, whereas
miR-29a has a half-life of >12 h in either case [16]. Muta-
tional analysis suggested that the uracils at nucleotide
positions 9–11 are necessary, although not sufficient, for
the fast degradation of miR-29b [16,19]. Factors recogniz-
ing this element and mediating degradation remain to be
discovered. Additionally, because these experiments [19]
relied mostly on transfection of synthetic miRNA duplexes
at rather high levels (40 nM), it is unclear what fraction of
these RNAs is indeed loaded into Argonaute (AGO; Box 1),
rg/10.1016/j.tibs.2012.07.002 Trends in Biochemical Sciences, October 2012, Vol. 37, No. 10
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Box 1. miRNA biogenesis and function

MicroRNAs (miRNAs) are typically transcribed by RNA polymerase II as

primary transcripts (pri-miRNAs) that are subsequently matured in a

multi-step biogenesis process to generate the mature, functional form

[4] (Figure I). Pri-miRNAs are capped and polyadenylated and are

usually several kilobases long. They possess hairpin structures that

comprise the future mature sequence (red) in their stem. Alternatively,

the pre-miRNA may reside in introns of mRNAs or other non-coding

RNAs. In either case, the nuclear RNase III-type enzyme Drosha, in a

complex with its co-factor DGCR8 (DiGeorge syndrome critical region 8

homolog), cleaves near the base of the stem, releasing an approxi-

mately 70 nucleotide-long stem-loop precursor miRNA (pre-miRNA)

[4]. The pre-miRNA is exported from the nucleus by Exportin 5. In the

cytoplasm, another RNase III-type enzyme, Dicer, with its co-factors

TRBP (TAR RNA-binding protein 2, also known as TARBP2), cleaves off

the terminal loop, resulting in an RNA duplex of �22 nucleotides [4].

Following Dicer cleavage, the short RNA duplex is bound by an AGO

(Argonaute) protein, a component of a multisubunit complex termed

miRISC (miRNA-induced silencing complex) [4]. Subsequently, one of

the two strands, the so called passenger strand (also referred to as

miR*), is released and degraded whereas the other strand, termed

guide strand or miR, is retained within miRISC. This strand selection

follows a ‘thermodynamic asymmetry rule’ in that the strand whose 50-

terminus is less stably base-paired is destined to become the guide

strand. The guide strand targets miRISC to mRNAs with partially

complementary sequences and silences them [1]. The so-called ‘seed’

region, nucleotides 2–8 from the 50-end of an miRNA, is particularly

important for target recognition; hence, miRNAs that share the seed

region but differ outside are frequently considered to form a ‘family’ of

miRNAs with largely overlapping sets of targets [54]. miRISC-bound

mRNAs are subjected to translational repression, mainly inhibition of

translation initiation, and/or degradation following deadenylation by

the CCR4-NOT (carbon catabolite repressor protein 4–General negative

regulator of transcription) complex and decapping (not shown) [68].

Irrespective of the mechanism, members of the GW182 (glycine-

tryptophane protein of 182 kDa) protein family are essential compo-

nents of RISC for mRNA silencing [68].
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Figure I. Schematic view of miRNA biogenesis and mechanism of action.
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and whether loading, which would presumably promote
stability [20,21], is equal for all miR-29b mutant variants.

Several other endogenous miRNAs display a cell cycle-
dependent expression pattern in HeLa cells [22]. HeLa
cells complete a cell cycle in less than 1 day; therefore, this
suggests a relatively rapid turnover of these miRNAs,
21
although exact half-lives were not determined. It is also
unknown whether stability of these miRNAs, similar to
miR-29b, is regulated in a cell cycle-dependent manner.
Alternatively, continuously low stability across all cell
cycle phases might permit rapid decreases of miRNA levels
upon slowed biogenesis. Indeed, Rissland and colleagues
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observed that this is true for the rapid downregulation of
miR-16 family members in mouse NIH 3T3 cells during
transition from G0 to G1 phase [17]. Levels of several
members of this family rapidly decreased at the G0–G1-
transition. Among these, miR-503, an extended miR-16
Table 1. miRNAs that exhibit accelerated decay
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family member that differs from other family members
at nucleotide eight of the seed region (Box 1), decreased
most strongly and with an apparent half-life of 3.6 h.
Strikingly, a similarly short half-life was observed for
miR-503 that was ectopically expressed from a repressible
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Table 1 (Continued )

miRNA Half-lifea (h) Destabilizing

element

Organism/cells Nuclease Condition Refs

miR-20a 3–6 ND Human glioma

cells, human

and murine astrocytes,

HEK 293T cells

ND Stabilized by

binding to QKI

[53]

miR-27 ND Partial

complementarity

to HSUR1 from

HVS and m169

from MCMV

HVS-infected primate

T cells, MCMV

infected mouse

NIH 3T3 cells

ND Destabilized by

binding to viral
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[60–62]

let-7 3.53 Partial

complementarity

to miR-107

Several human

cancer cell lines

and mouse mammary

tumor cells/tissues

ND Destabilized

by binding

to miR-107

[64]

aOnly the shortest measured half-life is given for those examples where decay rate was shown to increase by a given stimulus/context.

ND, no data.
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transgene within G0. Moreover, whereas its precursor, pre-
miR-503, was observed by northern blot in G0-arrested
cells, it became undetectable upon cell cycle re-entry,
suggesting cell cycle-regulated transcription or processing.
Thus, it is not miR-503 stability that is altered during
transition into G1. Instead, constitutively low stability of
miR-503 permits rapid changes in its levels in response to
altered transcription or processing.

Expression of variant pre-miRNA from transgenes
revealed that residues in the seed region and at the 30-
end coordinately destabilize miR-503 [17]. The nuclease
that rapidly turns over miR-503 awaits identification, and
the physiological relevance of fast miR-16 family regulation
is currently not clear. However, given that the known and
predicted miR-16 target genes include several genes that
function in the G1-S transition (e.g., Cyclin D1/2/3, Cyclin
E1, and CDK6) and that repression of miR-503 target
reporters was reduced in G1- compared to G0-phase [17],
a role in modulating cell cycle progression appears likely.

Growth factors

In human MCF10A immortalized breast epithelial cells,
the levels of several miRNAs rapidly decreased upon epi-
dermal growth factor (EGF) stimulation [18]. After
MCF10A cells had been starved of serum to arrest their
proliferation, stimulation by addition of EGF caused a
reduction by �50% of 23 miRNAs within 1 h. Similar
observations were made for human HeLa cervical cancer
cells, although there was only minor overlap in the set of
miRNAs that was affected. Known or predicted targets of
the miRNAs downregulated in MCF10A cells include sev-
eral ‘immediate early genes’; that is, genes that are rapidly
upregulated in response to EGF [18]. This suggests that
rapid miRNA downregulation contributes to the physio-
logical responses (i.e., proliferation or migration) of a cell to
EGF. Conversely, prior to their degradation, the miRNAs
might prevent inappropriate activation of these targets in
the absence of serum or EGF. However, it remains unclear
whether EGF acts by inducing miRNA degradation or,
analogously to the situation of miR-503, alters transcrip-
tion or processing of inherently unstable miRNAs.

Neuronal activity

Strikingly, although rapid degradation affects only subsets
of miRNAs in the examples discussed so far, it appears to
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be a prevailing feature of neurons [23]. Krol and colleagues
found that the miRNA-cluster miR-183/96/182, as well as
miR-204 and miR-211, are light-regulated in the mouse
retina: when mice were shifted from light to dark, levels of
these miRNAs fell to roughly 50% of the starting level
within �90 min, and then remained constant. However,
like miR-503, the miRNA decay rate was not altered but
invariably fast, and rapid decreases in miRNA levels upon
dark adaptation were induced by transcriptional repres-
sion. Moreover, even miRNAs whose accumulation was not
light-regulated (let-7b, miR-29c, miR-15, and miR-16) dis-
played fast turnover in retinas. However, they were not
transcriptionally regulated and so their steady-state levels
were unaffected by dark adaptation. Thus, fast miRNA
turnover might be a general property of neurons. In sup-
port of this notion, non-differentiated mouse ES cells did
not exhibit rapid turnover, whereas pyramidal neurons
differentiated thereof did [23]. That turnover of miRNAs is
generally fast in neurons is also in accordance with the
earlier observations in primary human neuron cultures
and postmortem human brain tissues that miRNA half-
lives were not longer than 3.5 h for all of five tested
miRNAs [24].

Notably, fast turnover of neuronal miRNAs is depen-
dent on neuronal activity. Blocking action potentials by
using tetrodotoxin or by blocking glutamate receptors
prevented fast turnover [23]. However, miR-132, another
miRNA that is enriched in neurons, showed the opposite
behavior: blocking glutamate receptors activated its decay,
whereas addition of glutamate slowed its decay [23].

Rapid downregulation of neuronal miRNAs was also
observed in the sea slug Aplysia californica, for which
treatment with the neurotransmitter serotonin resulted
in a decrease of miR-124 and miR-184 levels with an
apparent half-life of <3 h [25]. At this point, it is not known
whether this finding reflects accelerated decay or
decreased miRNA biogenesis rates for miRNAs displaying
constitutively rapid decay. The serotonin-induced reduc-
tion of miR-124 levels was shown to contribute to learning-
related synaptic plasticity, enhancing the switch from
short- to long-term facilitation through derepression of
the miR-124 target cAMP response element-binding
protein 1 (CREB1).

Taken together, cell cycle progression, growth
factor signaling, and neuronal activity were identified as
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physiological triggers affecting miRNA stability. A small
set of miRNAs, including miR-141, was additionally
reported to be rapidly downregulated upon seeding cells
at low density, but recent work has now established that
this as an artifact caused by differences in miR-141 extrac-
tion efficiency when Trizol reagent was used with different
amounts of starting material [26].

In these different instances of rapid miRNA degrada-
tion, cis-acting elements have been mapped along the
entire length of miRNAs: the seed region, central part,
and the 30-end (Table 1). As none of these motifs sufficed for
rapid turnover, there appears to be a complex interplay
between miRNA decay factors and different parts of a
miRNA. It remains enigmatic how trans-acting turnover
factors would access particular sequence motifs. Structural
and chemical probing data suggest an unequal accessibili-
ty for trans-acting factors to different parts of an AGO-
loaded miRNA [27,28]. Because both ends of an miRNA are
anchored in specific binding pockets within AGO [29], they
are likely to require release from AGO in order to become
accessible for exonucleases. Interestingly, structural stud-
ies of bacterial AGO show that the 30-end of a DNA guide
strand is dislodged from its binding pocket upon binding to
target RNA exhibiting extensive complementarity to the
guide 30-half [30]. The freed 30-end might then become
sensitive to nucleotidyl-transferases and 30-to-50 exonu-
cleases, underpinning the emerging role of target RNAs
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as trans-acting regulators of miRNAs, a fact we discuss
later.

We note that in the instances of rapid miRNA down-
regulation discussed thus far, several examples illustrate
the use of constitutive miRNA destabilization to predis-
pose some or all miRNAs of a cell to rapid expression level
changes through modulation of their transcription or mat-
uration [17,23]. However, there does not appear to be an
inherent constraint against modulating miRNA decay
rates [16], and we highlight additional examples in later
sections.

Finally, in most of the examples we have discussed,
determining the physiological relevance of rapid miRNA
decay awaits further study. This is particularly true for the
intriguing observation of globally accelerated miRNA de-
cay in neurons. Similarly, identification of trans-acting
factors that mediate constitutive or induced miRNA turn-
over in the studies discussed in this section remains a
future challenge. However, different ribonucleases
(RNases) have already been implicated in miRNA degra-
dation, and we discuss these next.

miRNA-degrading enzymes
Several miRNA-degrading enzymes have been identified,
including both 30-to-50 and 50-to-30 exoribonucleases, but so
far no endoribonucleases (Figure 1). Distinct RNases were
found to function in turnover of different sets of miRNAs
s (cultured cells)
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and/or different organisms, but because these results are
only from a small number of studies, substrate specificity
and phylogenetic conservation of individual miRNA turn-
over enzymes remains largely unknown. For convenience,
we will refer to miRNA degrading enzymes as ‘miRNases’,
but we emphasize that the substrate spectrum of many or
all of these RNases is likely, or in cases even known, to
extend beyond miRNAs.

Arabidopsis thaliana: the small RNA degrading

nucleases (SDNs)

Active degradation of miRNAs was initially reported in
Arabidopsis thaliana, where it is mediated by the small
RNA degrading nucleases (SDNs). The simultaneous deple-
tion of all five SDN family members increased the levels of
various miRNAs two- to threefold in vivo, and caused pleio-
tropic developmental phenotypes [31] (Figure 1a). SDNs are
homologous to yeast Rex1/2/3/4p, which are involved in the
30-end processing of rRNAs (yeast does not have miRNA)
[32,33]. However, there is no evidence to support a function
of plant SDNs in rRNA processing [31], and it is currently
not known whether SDN-homologs in other eukaryotes,
including animals, function in miRNA degradation.

Experiments with recombinant SDN1 and synthetic
miRNAs have revealed that SDN1 uses a 30-to-50 exonu-
cleolytic mechanism, yielding a final degradation product
of 8–9 nt. SDN1 can degrade single-stranded RNA in the
range of 17–27 nt with comparable efficiency, but not pre-
miRNAs, longer RNAs, double-stranded RNA or single-
stranded DNA. In vivo, plant miRNAs are 20-O-methylated
at their 30-ends [34,35]; this feature slowed down but did
not prevent miRNA degradation by SDN1 in vitro [31]. 20-
O-methylation by the methyltransferase HEN1 (HUA EN-
HANCER1) also stabilizes miRNAs in vivo by preventing
30-end oligouridylation by HESO1 (HEN1 SUPPRES-
SOR1), a terminal nucleotidyl transferase [36,37]. Howev-
er, because uridylation, at least in vitro, failed to promote
and in fact attenuated SDN1-mediated degradation [31], it
appears that uridylation influences miRNA degradation
through distinct enzymes that remain to be identified.
Interestingly, HEN1-mediated 20-O-methylation also pre-
vents uridylation and degradation of other classes of small
RNAs, namely piRNAs in various animals and siRNAs in
plants and Drosophila [38]. Nevertheless, it remains to be
shown whether HEN1 is used as a physiological regulator
of miRNA degradation.

Chlamydomonas reinhardtii: MUT68 and RRP6

Uridylation of miRNAs and siRNAs also contributes to
their decay in the green alga Chlamydomonas reinhardtii
[39]. The terminal nucleotidyl transferase MUT68 was
found to uridylate the 30-ends of these small RNAs in vivo
and to stimulate their degradation by RRP6 (ribosomal
RNA-processing protein 6), a component of the 30-to-50

exosome RNase complex, in vitro (Figure 1b). Further-
more, depletion of RRP6 elevated miRNA and siRNA levels
in vivo [39]. The 20-O-methyl group present on endogenous
C. reinhardtii miRNAs prevented both uridylation and
degradation in vitro.

Although MUT68 mutation caused an accumulation
of small RNAs, paradoxically, it also resulted in
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accumulation of an mRNA targeted by siRNA expressed
from an inverted repeat transgene [39,40]. The interpre-
tation of this finding is not straightforward, because
MUT68 also adenylated the 50 terminal product that
resulted from siRNA-directed cleavage of this mRNA
[40]. Hence, it has not been ruled out that stabilization
of the full-length mRNA might be an indirect consequence
of impaired clearance of its cleavage product. Nonetheless,
a reasonable scenario proposed by Cerutti and colleagues
[39] is that MUT68 and RRP6 define a quality control
pathway that eliminates non-functional miRNAs, which
might otherwise compete with functional miRNAs for
access to AGO or other components of the miRNA machi-
nery. Instead of contributing to general control of miRNA
stability, HEN1 and HESO1 might then be part of an
analogous quality control system in Arabidopsis.

Caenorhabditis elegans: XRN-1 and XRN-2

In the nematode Caenorhabditis elegans, the 50-to-30 exor-
ibonucleases XRN-1/XRN1 and XRN-2/XRN2/Rat1p were
shown to modulate miRNA activity through degradation
[41,42] (Figure 1c). XRN1 and XRN2 are conserved across
eukaryotes and have been implicated in exonucleolytic
degradation and/or processing of various RNA substrates
including rRNA, tRNA, small nucleolar (sno)RNA, pre-
mRNA, and mRNA [43]. In C. elegans, RNAi-mediated
depletion of xrn-1 or xrn-2 led to an accumulation of several
mature miRNAs, whereas levels of pri- and pre-miRNA
remained unchanged [41,42]. Depletion of xrn-1 or xrn-2
also suppressed mutant phenotypes, such as bursting
through the vulva, that are associated with a point muta-
tion in the seed sequence of the let-7 miRNA. This mutation
leads to a reduction of mature let-7 miRNA levels by
affecting its biogenesis [44] and/or stability [41], but let-
7 levels were restored by depletion of xrn-1 or xrn-2.
Diminished mRNA levels of the let-7 targets daf-12 and
lin-41 provide a molecular basis for the rescue of let-7
mutant phenotypes by xrn-2 depletion, and further dem-
onstrate that XRN-2 targets actively repressing rather
than scavenging non-functional miRNAs.

RNAi against xrn-2 led to a �2-fold increase of nine out
of 12 endogenous miRNAs tested in vivo [42]. Whether the
lack of an effect on the remaining miRNAs reflects a true
substrate specificity of XRN-2 or its inefficient depletion at
specific times or in specific tissues remains to be deter-
mined. In vitro, each of four synthetic miRNAs that were
tested was degraded irrespective of its sequence.

A few XRN co-factors involved in RNA degradation have
been described. In yeast, processive RNA decay by Rat1p/
Xrn2p requires binding of its co-factor Rai1p (RAT1 inter-
acting protein). However, the metazoan Rai1p homolog
Dom3Z (Downstream of MES-3 homolog Z) does not inter-
act with XRN2 [45], leaving it unclear if metazoan XRN2
requires a processivity-stimulating co-factor. In mouse
embryonic fibroblasts, XRN2 degrades ‘non-targeting’
siRNAs in complex with the endoplasmatic reticulum-
resident protein NPGPx (non-selenocysteine containing
phospholipid hydroperoxide glutathione peroxidase; or
glutathione peroxidase GPX7) [46]. NPGPx expression
was induced by stress from accumulation of siRNAs lack-
ing cognate targets. Degradation of the siRNA by the
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NPGPx/XRN2 complex appeared to release this stress.
However, because the authors did not investigate miRNA
levels and used high concentrations of non-targeting
siRNAs in their experiments (20–160 nM), the relevance
of murine NPGPx and XRN2 for physiological miRNA
turnover remains unclear.

Humans: XRN1, RRP41, and PNPaseold-35

In human embryonic kidney (HEK293T) cells, Bail et al.
implicated XRN1 and the exosome in miRNA turnover.
Using microarrays to determine the levels of miRNAs
following transcriptional shutoff by actinomycin D treat-
ment, they found that 95% of miRNAs remained stable for
at least 8 h [47]. Among the miRNAs with a half-life <8 h,
miR-382 was verified by RT-qPCR (reverse transcription-
quantitative polymerase chain reaction) to be unstable.
Knock-down of RRP41 (ribosomal RNA-processing protein
41), a core component of the exosome complex, yielded a
modest 1.5-fold increase in miR-382 levels (Figure 1d); a
1.3-fold increase was observed upon XRN1 knockdown.
XRN2 depletion had no effect. A HEK293T cytoplasmic
lysate was found to recapitulate rapid miR-382 turnover
relative to a more stable miR-378 control miRNA, but only
if the mature miRNA was derived from processing a pre-
miRNA with Dicer-overexpressing lysate. By contrast,
synthetic mature miR-378 and miR-382 decayed at equal
rates. How in vitro processing contributes to destabiliza-
tion of miR-382 remains unclear, but the coupled proces-
sing-degradation system permitted demonstration that
the 30-terminus, positions 16–22, was required for rapid
decay of miR-382. How this element leads to accelerated
decay and the functional relevance of miR-382 destabiliza-
tion remain to be elucidated.

Finally, the human polynucleotide phosphorylase
(PNPaseold-35; aka PNPT1 or polyribonucleotide nucleoti-
dyltransferase 1, mitochondrial) degrades certain mature
miRNAs in human melanoma cells without affecting pri- or
pre-miRNA levels [48] (Figure 1d). PNPaseold-35 is an inter-
feron (IFN)-inducible 30-to-50 exoribonuclease that has been
implicated in the degradation of bacterial small non-coding
RNAs [49] and IFN-induced growth arrest of human mela-
noma cells [50]. Microarray profiling of human melanoma
cells highlighted the downregulation of several mature
miRNAs (including miR-221, miR-222, and miR-106b) upon
ectopic expression of PNPaseold-35. RT-qPCR and northern
blotting further confirmed the downregulation of miR-221,
miR-222, and miR-106b by ectopic or interferon-beta- (IFN-
b-) induced expression of PNPaseold-35. The reduction in
miR-221 and miR-222 levels was accompanied by an upre-
gulation of p27kip1, a validated target of these miRNAs [51].
Interestingly, miR-221 overexpression rendered human
melanoma cells insensitive to IFN-b, supporting the notion
that IFN-b-mediated growth arrest depends, at least par-
tially, on miR-221 degradation. Of note, several miRNAs
(including let-7a, miR-184, and miR-25) did not decrease
upon ectopic expression of PNPaseold-35. When total RNA
from HO-1 cells was incubated with in vitro translated
PNPaseold-35, these same miRNAs were also refractory to
degradation, whereas miR-221, miR-222, and miR-106b
were sensitive. PNPaseold-35 might thus have inherent sub-
strate specificity. PNPase old-35 seems to be preferentially,
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and possibly exclusively, localized in the mitochondrial
inner membrane space [52], therefore, an interesting ques-
tion is where it degrades miRNAs.

In summary, several 50-to-30 and 30-to-50miRNA-degrad-
ing enzymes have been identified (Figure 1). Although the
miRNases described thus far are widely conserved proteins
among eukaryotes, evidence for evolutionary conservation
of miRNA turnover pathways has, in fact, not yet
been produced. Difficulties in pinpointing orthologous
miRNases might arise from (partially) redundant degra-
dation pathways, as illustrated by the need to co-deplete
several SDNs in A. thaliana to elicit a phenotype in vivo
[31]. Individual studies also tended to focus on changes in
the levels of one or only a few miRNAs, therefore, it is
further conceivable that miRNase activity might have been
missed due to substrate or tissue specificity. Lastly, several
of these studies investigated phenotypes upon depletion of
candidate RNases by RNAi rather than gene knockout.
Residual RNase activity might thus hamper detection of
miRNA turnover defects.

Although miRNases have now been shown to function in
maintaining miRNA homeostasis in several organisms, it
remains to be identified whether and how these enzymes
are regulated. The human RNA-binding protein Quaking
(QKI) has recently been shown to bind to and stabilize
miR-20a, a function that appears to contribute to the tumor
suppressive function of QKI in glioblastoma multiforme
[53]. However, it remains unknown which RNase normally
degrades miR-20a and how QKI mechanistically prevents
degradation. More generally, we have little knowledge of
factors that possibly convey processivity, substrate- or
tissue-specificity to miRNases. However, recent work
has revealed an important role of target RNAs in deter-
mining the stability of their cognate miRNAs.

Reversing a relation: regulatory functions of target
RNAs on miRNAs
At the heart of miRNA-mediated mRNA regulation lies the
sequence-specific interaction of the miRNA and the mRNA
[54]. The extent of sequence complementarity between
miRNA and mRNA determines the mode of mRNA silenc-
ing. Extensive complementarity, reminiscent of the
siRNA–mRNA interaction, can result in endonucleolytic
cleavage of the target mRNA, and constitutes a major
means by which miRNAs regulate mRNAs in plants
[55]. In metazoans, miRNAs base-pair with mRNAs mainly
through partial complementarity, resulting in translation-
al repression or exonucleolytic degradation [1]. Recent
studies now provide evidence for reciprocal regulation,
such that target RNAs can modulate miRNA stability
(Figure 2). The degree of sequence complementarity
appears be fateful for the miRNA as well.

Highly complementary targets can induce miRNA

degradation in animals

In flies, mice, and human HeLa and HEK293T cells,
miRNAs are destabilized if they are supplied with an artifi-
cial target exhibiting extensive complementarity [6,56,57]
(Figure 2a). The decline of a miRNA in the presence of a
highly complementary target is accompanied by the emer-
gence of longer (‘tailed’; typically multiple [56] or individual
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[6,57] added uridines or adenosines) and shorter (‘trimmed’;
[56,57]) species of the original miRNA. At this point, it is not
known whether tailing precedes trimming, or rather defines
a separate miRNA fate upon binding highly complementary
targets. For instance, when Baccarini and colleagues turned
off miR-223 transcription using a ‘tet-off’ system, levels of
mono-uridylated species of miR-223 increased over time,
relative to those of the unmodified miRNA [6]. This could
mean that uridylation occurs prior to, and promotes, miR-
223 degradation. Alternatively, uridylation might stabilize
miR-223 so that it decays less rapidly than the unmodified
species. Solving this issue will require the identification of
the enzymes mediating tailing and trimming in a target-
dependent manner. Although Drosophila Nibbler, a mem-
ber of the DEDD family of exonucleases, trims the 30-ends of
some miRNAs by a few nucleotides [58,59], it does not
appear to function in miRNA turnover.

Some degree of mismatching between miRNA and tar-
get RNA does not abolish tailing and trimming, and in
particular base-pairing of the eight 30 terminal nucleotides
is dispensable [56]. However, miRNA ‘seed’ binding sites,
that is, those with complementarity to nucleotides 2–8 of
the miRNA only, do not induce tailing and trimming.
Hence, because miRNA complementarity is limited to
the seed for most endogenous targets [54], these targets
will not usually induce miRNA degradation [56].
27
Viruses employ targets to destabilize host miRNAs

No endogenous cellular mRNA has been found to induce
tailing and trimming in flies or mammals. By contrast,
viruses exploit target-dependent miRNA destabilization to
affect gene expression of host cells [60–62] (Figure 2b). In
Herpesvirus saimiri (HVS) infected primate T cells, small
non-coding HSUR RNAs (H. saimiri U-rich RNAs) bound to
the partially complementary miR-142-3p, miR-27 (com-
prising miR-27a and miR-27b, which differ by one nucleo-
tide), and miR-16 [60]. However, only miR-27, which base-
pairs with HSUR 1, was destabilized by this interaction,
causing an increase of FOXO1, a validated miR-27 target.
By contrast, binding of HSURs to miR-142-3p or miR-16
did not alter their levels, perhaps due to less extensive
base-pairing. How the virus benefits from miR-27 degra-
dation remains unclear.

Similar to HVS, infection of mouse cells with murine
cytomegalovirus (MCMV) induces the rapid downregula-
tion of cellular miR-27 through an HSUR-unrelated viral
mRNA, m169, which contains a miR-27 binding site in its
30-UTR [61,62]. Despite hundreds of predicted miR-27-
binding sites in the MCMV transcriptome, m169 is solely
responsible for miR-27 degradation [61]. Moreover, expres-
sion of m169 30-UTR in uninfected NIH 3T3 cells sufficed
for miR-27 degradation, suggesting that no other viral
factors are required for this process [62]. Marcinowski
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and colleagues found that miR-27 degradation was preced-
ed by tailing and trimming, and that degradation and
tailing and trimming alike were dependent on an intact
miR-27 binding site in m169 [62]. However, 30-end hetero-
geneity was observed for several miRNAs even in unin-
fected mouse cells, possibly suggesting that tailing and
trimming also occurred in uninfected cells and that MCMV
infection enhances this process specifically for miR-27 [62].
Although the mechanism by which miR-27 degradation
facilitates viral infection is unknown, m169-mutant virus-
es that were unable to degrade miR-27 exhibited attenu-
ated titers in various organs, strongly implying that
degradation of miR-27 is important for efficient virus
replication in vivo [62].

In Drosophila embryo lysates, tailing and trimming
requires a high degree of complementarity between
miRNA and target, such that a central loop of more than
3 nt impaired trimming [56]. By contrast, base-pairing
between miR-27 and m169 involves a larger loop, and
miR-27 degradation occurred, to a low extent, even with
an m169 version carrying a point mutation in the ‘seed-
match’ sequence [62]. It thus appears possible that the
requirements for target-induced tailing and trimming
might differ for different miRNAs or in different systems.
For instance, depending on the thermodynamics of
miRNA-target interaction, high expression levels of tar-
gets could be permissive for a lower degree of comple-
mentarity.

Target-induced miRNA degradation in plants

Unlike in animals, plant target mRNAs are frequently
highly complementary to their cognate miRNAs. More-
over, there is precedence for the idea of tailing and trim-
ming, which occurs in A. thaliana when 20-O-methylation
of small RNA 30-termini is lost through mutation of hen1
[34,35]. The tails almost exclusively consist of uridines
and also occur on trimmed small RNAs [35]. Although it
remains to be shown that endogenous targets can indeed
induce plant miRNA degradation, artificial, highly com-
plementary target RNAs containing two target sites were
found to cause a severe reduction of cognate miRNA levels
[63]. That primary miRNA levels did not decrease con-
firmed that the effect was post-transcriptional, and partial
restoration of mature miRNA levels in sdn1 sdn2 double
mutant plants provided further evidence that targets
acted by inducing miRNA degradation. However, as dis-
cussed earlier, SDNs are thought to be specific for single-
stranded RNA, therefore, it is unclear how target binding
could promote SDN-dependent miRNA degradation. It
also remains possible that SDNs function in a parallel
pathway; that is, their mutation restores miRNA levels by
bypassing rather than reversing the miRNA-reducing
effect of targets.

Destabilization of one miRNA by another

In human cancer cell lines, miR-107 can reduce the stabil-
ity of mature let-7 miRNA, but not pri- or pre-let-7, via
base-pairing interactions [64] (Figure 2c). Whereas ectopic
expression of miR-107 decreased let-7 levels and enhanced
the levels of the let-7 targets HMGA2 and RAS, depletion of
endogenous miR-107 stabilized let-7 levels and reduced
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let-7 targets. In a mouse tumor model, let-7-dependent
tumor suppression was abolished by transfection of
miR-107 but not mutant versions thereof. Examination
of mutant variants of let-7 and miR-107 suggested that
miR-107-induced let-7 destabilization involved formation
of a miR-107/let-7 duplex, but a mechanism remains to be
determined. In this regard, it will be of particular interest
to determine whether miR-107 is AGO-bound when inter-
acting with let-7. It will also be interesting to determine
whether other regulatory miRNA–miRNA interactions
exist [65].

Stabilization of a miRNA through its targets

Contrasting with target-induced degradation of miRNAs,
target mRNAs in C. elegans have been found to stabilize
miRNAs in vivo by preventing their release from AGO
proteins [41] (Figure 2d). Chatterjee et al. found that
reduced availability of endogenous targets decreased ac-
cumulation of the cognate miRNAs, whereas miRNA levels
increased in the presence of artificial target RNAs. This
process, termed target-mediated miRNA protection
(TMMP) counteracts miRNA decay mediated by XRN-1
and XRN-2. Together, miRNA decay and TMMP could thus
serve as a proofreading mechanism that ensures preferen-
tial occupation of AGO with functional, that is, target-
engaged miRNA.

Although miRNA* (also known as passenger; Box 1)
strands are not normally loaded onto AGO proteins, miR-
241* was stabilized when an artificial target RNA was
provided in vitro or in vivo [41]. This effect may be
limited to a subset of miRNA duplexes that, like miR-
241:miR-241*, do not conform to the thermodynamic
asymmetry rule for selection of the miRNA guide strand
(Box 1). Nonetheless, it offers the possibility that TMMP
might provide a way to drive evolution of new miRNAs
by stabilizing previously unused miRNA* strands once
targets, and thus potential biological functions, have
been acquired. Such a mechanism might explain
how the ratios of miR and miR* levels can vary in
different tissues of an organism or during development
[9,66,67].

In sum, target RNAs have been found to affect partially
complementary miRNAs in various systems, causing
either miRNA stabilization or destabilization. At this
point, it remains unclear whether targets can mediate
miRNA stabilization as well as destabilization in the same
system, or whether these are distinct miRNA regulatory
systems occurring in different organisms. Interestingly,
Kuchen and colleagues observed that in mouse A70 proB
and human HEK293T cells, expression of RNAs with eight
or 16 highly complementary target sites, containing a four
nucleotide central bulge, resulted in reduced accumula-
tion for five out of six targeted miRNA passenger strands,
and increased accumulation of one [66]. Although it was
not investigated in these experiments whether the effects
were related to mature miRNA turnover, the results
emphasize a need for a detailed investigation of how target
architecture, including the extent of complementarity,
and expression levels of the target and/or its cognate
miRNA determine the outcome of miRNA binding by
target mRNA.



Box 2. Outstanding questions

� What are the (patho-)physiological functions of miRNA turnover

processes? For instance, are there developmental processes or

responses to environmental cues that rely on rapid miRNA

turnover?

� Is there a ‘major’, widely conserved miRNA turnover pathway or

do different miRNAs, cells, organisms, etc. rely on distinct miRNA

degrading enzymes?

� Is miRNA turnover regulated and if so, how? How is specificity

provided in situations where individual miRNAs are selectively

degraded?

� To what extent and to what end do endogenous targets modulate

miRNA levels? Are there specific ‘regulatory’ targets? Which

factors decide the outcome of miRNA binding by targets, that is,

stablization or destabilization? In particular, what is the contribu-

tion of target site architecture, target expression levels, and cell

type or experimental system?

� Where does miRNA turnover occur within the cell? Is localization

of the turnover machinery important for regulation of miRNA

degradation, for example, by restricting access to specific

substrates?
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Concluding remarks
Although miRNAs were initially considered to be highly
stable molecules, rapid and active miRNA degradation has
now been demonstrated in many different organisms and
experimental systems. Somewhat surprisingly, there
appears to be a great diversity of miRNA degrading
enzymes and, thus far, little evidence for conserved usage
of individual enzymes across phylogeny. However, given
that this field is still in its early days, further studies may
force us to revise this view by revealing pathways that are
used more broadly.

Degradation can be specific or affect large sets of
miRNAs; however, it is currently largely unclear how
specificity is achieved (Box 2). The use of target RNAs to
modulate miRNA stability, positively or negatively, would
provide an elegant solution, but it remains to be shown how
widely this approach is used. For now, endogenous targets
that alter miRNA levels are largely unknown. However, if
targets were shown to broadly modulate miRNA levels,
this would also challenge our current concept of miRNAs;
rather than thinking of miRNA regulation as a one-way
street leading to target mRNA silencing, we might need to
consider a more complex network of mutual regulation of
miRNAs and their targets.

Finally, miRNA turnover occurs widely in various
organisms and systems, implying that it represents an
important aspect of miRNA regulation. Indeed, the strik-
ing observation that miRNA turnover is generally acceler-
ated in neurons strongly suggests a major role for this
pathway in neuronal development, homeostasis, and/or
function. Nonetheless, identification of the precise physio-
logical function of miRNA turnover remains a major chal-
lenge in this as well as most other instances (Box 2).

Note added in proof
Eri1 (30-to-50 exoribonuclease 1) has recently been impli-
cated in miRNA turnover in murine immune cells [69].
Previously, C. elegans mutant for eri-1 had been found to
accumulate siRNAs derived from exogenously supplied
double-stranded RNA [70], although this may be a conse-
quence of enhanced biogenesis rather than, or in addition
29
to, impaired turnover of the siRNAs [71,72]. Thomas et al.
now found that loss of Eri1 impaired mouse natural killer
cell development, maturation and function. It also in-
creased the levels of many miRNAs by approximately
twofold in these, and to a lower extent in T-cells [69]. It
remains to be determined if Eri1 alters mature miRNA
levels directly, by degradation, and whether it is miRNA
overexpression or some other consequence of Eri1 deficien-
cy that causes the observed immune cell phenotypes.
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ABSTRACT

Although XRN2 proteins are highly conserved eu-
karyotic 50!30 exonucleases, little is known about
their function in animals. Here, we characterize
Caenorhabditis elegans XRN2, which we find to be
a broadly and constitutively expressed nuclear
protein. An xrn-2 null mutation or loss of XRN2 cata-
lytic activity causes a molting defect and early larval
arrest. However, by generating a conditionally
mutant xrn-2ts strain de novo through an approach
that may be also applicable to other genes of
interest, we reveal further functions in fertility,
during embryogenesis and during additional larval
stages. Consistent with the known role of XRN2 in
controlling microRNA (miRNA) levels, we can dem-
onstrate that loss of XRN2 activity stabilizes some
rapidly decaying miRNAs. Surprisingly, however,
other miRNAs continue to decay rapidly in xrn-2ts
animals. Thus, XRN2 has unanticipated miRNA spe-
cificity in vivo, and its diverse developmental func-
tions may relate to distinct substrates. Finally, our
global analysis of miRNA stability during larval stage
1 reveals that miRNA passenger strands (miR*s) are
substantially less stable than guide strands (miRs),
supporting the notion that the former are mostly
byproducts of biogenesis rather than a less
abundant functional species.

INTRODUCTION

XRN2 proteins constitute a family of eukaryotic 50!30

exoribonucleases that have various RNA substrates (1).
For instance, in yeast, where XRN2 has been particularly
well studied and is commonly known as Rat1p, it is
involved in processing of ribosomal RNAs and small
nucleolar RNAs (2–6), transcriptional termination (7)
and degradation of aberrant transfer RNAs (8), among
other functions. The diversity of substrates in vivo is re-
flected by relaxed substrate specificity in vitro where Rat1p
processively degrades 50 monophosphorylated RNAs that
lack strong secondary structures to mononucleotides
(9,10). The catalytic site of XRN2/Rat1p contains seven
acidic amino acids, which form a pocket for a divalent
cation (Mg2+ or Mn2+) required for the exoribonuclease
activity (11).
A paralogous enzyme, Xrn1p, exists in the yeast cyto-

plasm (12), where it is involved in degradation of decapped
mRNAs (13). Single orthologues of XRN1 and XRN2,
respectively, are also found in animals, and it is assumed
that distinct localization and the resulting division of labor
that characterize yeast Xrn1p and Rat1p (14) also apply to
their orthologues in other organisms, although this has not
yet been investigated systematically. A nuclear localization
signal present in Rat1p is not conserved in XRN2
orthologues of other species (14), but nuclear RNAs such
as pre-mRNAs and 5.8S and 18S ribosomal RNAs have
been reported as common substrates of XRN2 in yeast and
other species [reviewed in (15)]
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In Caenorhabditis elegans, the single XRN2-type pro-
tein was found to function in degradation of mature
microRNAs (miRNAs) (16). These short (�22 nt) non-
coding RNAs are derived from longer precursor tran-
scripts, from which two successive processing steps
release a �22 nt duplex RNA consisting of an miRNA
guide (miR) bound to an miRNA passenger (miR*)
strand (17). This duplex is loaded onto an Argonaute
protein and the guide strand retained, whereas the passen-
ger strand is released and presumably discarded. The des-
ignation of miR and miR* was initially based on their
relative abundance, with the more abundant strand
assumed functional and thus designated miR. However,
individual miR*s have also been shown to be functional
[reviewed in (18)], so that in recent times the use of two
suffixes indicating the ‘arm’ of the precursor transcript
from which an miRNA is derived, i.e. �3p or �5p, has
become more common. At any rate, miRNA-Argonaute
complexes can bind to partially complementary sequences
in 30-untranslated regions (30-UTRs) of mRNAs to repress
their translation and induce their degradation (19). They
thus regulate a large number of genes, affording them,
as a class, important roles in animal development and
pathology (20).
Two lines of evidence support a function of XRN2 in

the degradation of mature miRNAs (16). First, C. elegans
lysates containing wild-type levels of XRN2 were more ac-
tive in decay of naked synthetic and Argonaute-associated
miRNAs than XRN2-depleted lysates. Second, depletion
of XRN2 by RNA interference (RNAi) yielded increased
steady-state levels of a number of endogenous miRNAs.
In these latter experiments, however, the levels of some
miRNAs were unchanged. Because RNAi may be ineffi-
cient in certain tissues or at certain times, it remained
unknown whether this reflected true substrate specificity
or a technical limitation of the experiment.
Despite prominent molecular functions, the roles

of XRN2 in animal development largely remain to be
explored (15). In mice and humans, over-expression of
XRN2 has been implicated as a risk factor for a specific
type of lung cancer (21), but a molecular basis remains to
be established. In C. elegans, XRN2, encoded by the xrn-2
gene, was found in a genome-wide RNAi screen for factors
involved in molting (22), the process in which worms syn-
thesize a new and shed their old cuticle. Molting occurs
once at the end of each of the four larval stages, L1
through L4, (23) and Frand et al. (22) found that xrn-2
depleted animals were unable to shed the cuticle from the
pharynx at the final (L4) molt. Consistent with this pheno-
type, a putative xrn-2 promoter, with only limited spatial
activity as assayed by a Green Fluorescent Protein (GFP)
reporter, was active in myoepithelial cells that secrete the
pharyngeal cuticle (22). Promoter activity also occurred in
other cells implicated in molting, including a particular
pharyngeal neuron and intestinal cells. How XRN2
affects molting is unknown, although this function may
involve regulation of expression of MoLTing Defective
10 (MLT-10), another molting factor, in a direct or
indirect manner, through an unknown mechanism. RNAi
against xrn-2 also causes slow growth and sterility (16), but
again the basis of these phenotypes remains unknown.

To obtain a better understanding of the developmental
functions of XRN2 and its role in miRNA turnover, we
have characterized xrn-2 null mutant C. elegans. We find
that these animals arrest at the L2 stage, following a failed
molt from the L1 to the L2 stage. The unanticipated
ability to complete embryogenesis was not due to the
absence of an essential embryonic function of XRN2,
but reflected masking of the null phenotype due to
maternal contribution. We demonstrate this through an
xrn-2ts allele, which we generated by transplanting condi-
tional mutations from yeast to C. elegans. We can thus
show that XRN2 is essential during several stages of
C. elegans development, including embryogenesis. These
broader functions are consistent with a revised picture of
xrn-2 expression that we obtained using a rescuing trans-
gene and detection of the endogenous protein by western
blotting. Using small RNA deep sequencing to determine
miRNA decay rates, we find that miR*s are generally less
stable than miRs. Strikingly, among the small group of
unstable miRs, only some become stabilized by inactiva-
tion of XRN2. We conclude that XRN2 has unanticipated
miRNA substrate specificity in vivo and diverse develop-
mental functions.

MATERIALS AND METHODS

Strains

Caenorhabditis elegans strains were cultured by standard
methods described previously (24). The Bristol N2 strain
was used as wild-type. Animals heterozygous for xrn-
2(tm3473) were obtained from Dr Shohei Mitani, back-
crossed three times and balanced. Strains used are shown
in Supplementary Table S1.

Cloning and site-directed mutagenesis

Cloning and site-directed mutagenesis were performed by
PfuUltra II Fusion HS DNA Polymerase (Agilent
Technologies, Santa Clara, CA, USA) according to the
supplier’s protocol using specific primers (Supplementary
Table S2). The codon-optimized xrn-2 with three artificial
introns (Supplementary Table S3) was designed according
to a previous report (25) and synthesized using a commer-
cial service (GenScript, Piscataway, NJ, USA).

Single-copy transgene insertion

DNA fragments were inserted into pCFJ210 (for chromo-
some I) or pCFJ201 (for chromosome IV) vectors by
Multisite Gateway Technology (Life Technologies,
Carlsbad, CA, USA) according to the supplier’s
protocol. Mos1-mediated single-copy transgene insertion
was performed according to previous reports (26,27).
Following confirmation of correct insertion by polymerase
chain reaction (PCR), transgenic strains were backcrossed
at least three times to the N2 strain.

Multicopy transgene arrays

The multisite gateway cloning system (Invitrogen) was
used to insert transgenes into the pCG150 destination
vector (containing unc-119 rescuing fragment), which
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was transformed into young adult unc-119(ed3) worms by
microparticle bombardment using the Biolistic PDS-1000/
He particle delivery system (BioRad) (28). For each
bombardment, 16 ml of 0.5mg/ml pCG150 and 4 ml of
0.8 mg/ml pCFJ90 (co-injection marker containing Pmyo-
2::mCherry) were coupled to 1-mm microcarrier gold
beads (BioRad, Cat#165-2263). Worms were allowed to
recover for 1 h at 15�C after bombardment and were then
grown at 25�C on NG 2% plates seeded with OP50
bacteria for ca. 2 weeks before screening for wild-type
moving worms and mCherry-fluorescence from the co-in-
jection marker. Transgenes containing wild-type or
D234A-D236A double mutant xrn-2 sequences were
stably transmitted and expressed in the germline, suggest-
ing integration into the genome.

Antibodies and western blotting

Recombinant full-length C. elegans XRN2 was prepared
as described (16) and used to immunize rats (Charles River
Laboratories, Kisslegg, Germany), to obtain an anti-
XRN2 antibody. A mouse monoclonal anti-actin
antibody (clone C4) was purchased from Millipore
(Billerica, MA, USA). The anti-XRN2 antibody and
anti-actin antibody were used with 1000- and 3000-fold
dilutions, respectively, followed by horseradish peroxid-
ase-conjugated secondary antibody (GE Healthcare,
Little Chalfont, UK) reaction. The membranes were
treated with ECL Western Blotting Detection Reagents,
and protein bands were detected using Amersham
Hyperfilm ECL (Figure 3C) or by an ImageQuant LAS
4000 hemiluminescence imager (all GE Healthcare)
(Figure 4C). Band intensities were quantified using the
ImageJ software (NIH, Bethesda, MD, USA).

Microscopy

Differential Interference Contrast (DIC) and fluorescent
images were obtained using an Axio Observer Z1 micro-
scope and AxioVision SE64 (release 4.8) software (Carl
Zeiss, Oberkochen, Germany). Stereoscopic images were
obtained by M205 A stereo microscope (Leica, Solms,
Germany).

RNA preparation, sequencing and RT-qPCR

Gravid N2 or xrn-2ts worms were treated with bleaching
solution [30% sodium hypochlorite (5% chlorine) reagent
(Thermo Fisher Scientific, Waltham, MA, USA), 750mM
potassium hydroxide] to extract eggs, which were then
incubated in M9 medium overnight to hatch. The resulting
synchronized L1 larvae were cultured with Escherichia coli
OP50 in S-medium supplemented with trace metal
solution (29) at a concentration of 1� 104 worms/ml
with shaking (180 rpm) at 25�C for 2 h. Subsequently,
a-amanitin (Sigma-Aldrich, St. Louis, MO, USA) was
added to a final concentration of 50 mg/ml, which
blocks transcription and stalls larval development
(Supplementary Figure S2). A total of 1.5� 104 worms
were harvested at each sampling time point during the
next 8 h, washed three times with M9 medium, resus-
pended in 700 ml of TRIzol reagent (Life Technologies)
and frozen in liquid nitrogen. Worms were broken open

by five repeats of freeze and thaw using liquid nitrogen
and a 42�C heating block, before RNA was extracted and
purified according to the supplier’s protocol with the
modification that RNA was incubated with 50%
2-propanol at �80�C overnight for efficient precipitation
of small RNA.
Small RNA (15–30 nt) libraries were prepared from

extracted total RNA using TruSeq Small RNA Sample
Prep Kit (Illumina, San Diego, CA, USA) according to
the supplier’s protocol. All samples were multiplexed and
13 pM of the multiplexed libraries sequenced on two lanes
of an Illumina HiSeq 2000 instrument using RTA 1.13.48.
Individual reads were assigned to their sample based on
the TruSeq barcode using the Illumina software Casava
v1.8.0.
Quantification of individual miRNAs by reverse

transcription-quantitative polymerase chain reaction
(RT-qPCR) was done using TaqMan MicroRNA Assays
(Life Technologies) and StepOnePlus Real-time PCR
Systems (Applied Biosystems, Foster City, CA, USA) ac-
cording to the suppliers’ protocols. Forty nanogram of
total RNA was used as a template for reverse transcrip-
tion reaction (15ml), and 1.3ml of the reaction was used
for qPCR reaction (25ml). The miRNA levels were
normalized to the small nucleolar RNA sn2841 levels.
For mRNA quantification, complementary DNA

(cDNA) was generated from total RNA by ImProm-II
Reverse Transcription System (Promega, Fitchburg, WI,
USA) using oligo(dT)15 primers (for Figure 4D) or
random primers (for Supplementary Figure S2B, C)
according to the supplier’s protocol. RT-qPCR was per-
formed with specific primers (Supplementary Table S2), a
SYBR Green PCR Master Mix (Applied Biosystems) and
a StepOnePlus Real-time PCR System. Primer sequences
for pre-eft-3 mRNA and 18S ribosomal RNA were taken
from (30) and (31), respectively.

Analysis of the miRNA sequencing data

For each read, the 30 adaptor TGGAATTCTCGGGTGC
CAAGG was removed by aligning it to the read allowing
one or two mismatches in prefix alignments of at least 7 or
10 bases, respectively. Reads with low complexity were
filtered out based on their dinucleotide entropy
(removing <1% of the reads). Only reads with a
minimum length of 14 nt were retained. Alignments to
the miRNA database miRBase release 18 (http://www.
mirbase.org/) were performed by the software bowtie
(version 0.9.9.1) (32) with parameters -v 2 -a -m 100,
tracking up to 100 best alignment positions per query
and allowing at most two mismatches. Reads that
mapped to a miRNA but at the same time also mapped
with fewer mismatches to the genome (ce6) were filtered
out. The expression of each miRNA was determined by
counting the number of associated reads. To compensate
for differences in the read depths of the individual
libraries, each sample was divided by its total number of
counts and multiplied by the average sample size. The re-
sulting values were log2 transformed using a pseudo-count
of 1 (y= log2(x+1)). To obtain relative decay rates for the
time window t=1h to t=8h, the change in expression of
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each miRNA over time was determined by the slope of a
linear fit performed in R (www.r-project.org). Slopes for
the two replicates were calculated separately and then
averaged for further use.
Release 18 of miRBase does no longer provide identi-

fiers that label a miRNA as a mature or a star form. We
thus identified the star forms by firstly pairing the 5p and
3p forms using the miRNA name (without the �5p and
�3p extensions) and then assigning the star label to the
form with the lower expression level in the untreated
sample.

Determination of miRNA half-life

We assumed miRNAs to decay exponentially according to
the following equation:

N tð Þ ¼ N0 � 2
�t=�

where t is the time, N(t) is the concentration of the
miRNA at time point t, N0 is the starting concentration
and t is the half-life of the miRNA.
From this follows a linear relationship between the

logarithmic concentration (measured as delta-Ct values)
and the half-time t:

log2 N tð Þð Þ ¼ �1=�ð Þ � t+log2 N0ð Þ

t can be obtained from the slope of a linear regression
by the following equation:

� ¼ �1=slope

The intercept term captures differences in the starting
concentration; for visualization, the term was subtracted
from delta-Ct values.
The miRNA half-lives were calculated for individual

replicate experiments. The half-life of stable miRNAs
that decreased <20% (the detection limit) over the
course of the 8-h experiment was set to 30 h, which is
the t resulting from a 20% decrease in 8 h and corresponds
to a lower limit estimate for the half-life of such miRNAs.
The significance of differences in half-lives between

worm strains was calculated using a two sample t-test
assuming equal variances.

RESULTS

tm3473 is a bona fide null allele of xrn-2

Previous studies on xrn-2 mutant phenotypes relied on its
depletion by RNAi (16,22). However, knock-down of
genes by RNAi is usually incomplete and may vary
across tissues. Therefore, we set out to characterize the
xrn-2 mutant xrn-2(tm3473), provided by Dr Shohei
Mitani. The tm3473-allele is a deletion of 278 bases in
exon 3 leading to a frame shift at amino acid position
278 and a premature stop codon at position 308
(Figure 1A). Western blotting using an antibody against
XRN2 confirmed absence of full-length XRN2 protein in
the xrn-2(tm3473) background (Figure 1B). This strain,
and a wild-type strain included for comparison, contains a
transgene to express full-length GFP-tagged XRN2 to
achieve wild-type development (see later in the text). We

also failed to detect a band corresponding to the predicted
size of a potential truncated translation product (data
not shown). Although we cannot formally exclude that
the polyclonal antiserum that we used would fail to
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iii   xrn-2/+ 29h
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Figure 1. xrn-2(tm3473) is a bona fide null allele that causes molting
defects and developmental arrest. (A) Schematic representation of wild-
type and mutant XRN2. Conserved regions are shown in light grey.
Dark grey indicates sequence unique to the xrn-2(tm3473) mutant due
to a frame shift. Point mutations investigated in this study are
indicated. (B) Western blotting confirms absence of endogenous
XRN2 in the xrn-2(tm3473) background (lane 3). xrn-2(+) denotes
the N2 wild-type strain. Note the presence of an XRN2/GFP-
encoding transgene in the strains shown in lane 2 and 3, used to
restore development of the xrn-2(tm3473) mutant strain. (C) DIC
micrographs of worms grown at 25�C; gonads are outlined to facilitate
staging. (i, ii) After 18 h, both xrn-2/+ (tm3473 heterozygous) and
xrn-2/xrn-2 (tm3473 homozygous) worms are at the L2 stage. (iii, iv)
After 29 h, xrn-2/xrn-2 worms remain arrested at the L2 stage (iv),
whereas the heterozygous siblings have reached the L4 stage (iii).
(v, vi) Larval arrest is accompanied by molting defects. xrn-2/xrn-2
worms are unable to shed the pharyngeal cuticle (v, arrow head),
which leads to superposition of the old and newly synthesized cuticle
(vi, arrow heads). Scale bar, 20 mm.
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cross-react with such a truncated product despite the fact
that it was raised against recombinant full-length protein,
the data suggest that the mutant mRNA may be degraded
through nonsense-mediated decay. We conclude that xrn-
2(tm3473) is a bona fide null allele.

xrn-2(0) mutant animals fail to molt and arrest during L2

Worms exposed to xrn-2(RNAi) from L1 stage arrest
as L4 larvae that are unable to ecdyse, i.e. shed the
cuticle (22). By contrast, xrn-2(tm3473) animals al-
ready displayed penetrant defects in the L1-to-L2 molt
(Figure 1C), the first molt during development. Ecdysis
starts with loosening of the cuticle at the pharynx
followed by rotations around the longitudinal axis that
loosen the body cuticle (33). XRN2 appears to be
involved in the early shedding of the cuticle taking place
at the pharynx as the mouth of worms homozygous for
tm3473 remained attached to the old cuticle through a
string-like structure [Figure 1C(v)]. The rest of the
cuticle around the head and the body was at least partially
detached [Figure 1C(v and vi)], and a new cuticle was
already visible beneath the old one, indicating that
XRN2 is predominantly involved in ecdysis rather than
cuticle synthesis. Finally, following failure to shed the
L1 cuticle, and possibly as a direct consequence (33), the
mutant worms arrested during the L2 stage [Figure 1C(iv
and iii)].

XRN-2 catalytic activity is required for molting

Although XRN2 is an RNase, it was not evident that the
RNase activity was actually required for the developmen-
tal functions of this protein. XRN1 and XRN2 proteins
share a conserved three amino acid motif, DXD, that is
essential for exonuclease activity in vivo (11,34). The
aspartic acids (D) in this motif are important for

coordination of Mg2+ ions that are required for RNA
hydrolysis. We thus constructed cDNA-based transgenes
that encoded either the wild-type XRN2 or the catalytic
dead D234A-D236A double mutant protein, where A
stands for alanine. Both transgenes were driven from a
promoter region covering 1.4 kb of upstream sequence
and carried the xrn-2 30-UTR as well as a C-terminal
triple GFP/His6/Flag-tag (Figure 2). As expected, the
wild-type transgene efficiently rescued both the molting
defect and larval arrest when introduced as a stable
multicopy array (Figure 2C). By contrast, the mutant
transgene was incapable of rescuing molting defect and
larval arrest (Figure 2D), although mutant and wild-type
protein accumulated at equivalent levels in vivo (Figure
2E). We conclude that the RNase activity of XRN2 is
essential for its function in early larval development.

xrn-2 is expressed broadly and constitutively

Frand et al. (22) previously analysed the ability of a 132bp
sequence upstream from the xrn-2 start codon to drive
expression of gfp when present in a multicopy extrachromo-
somal array, and concluded thatxrn-2 expressionwas limited,
occurring mostly in the pharyngeal myoepithelium, the intes-
tine and certain neurons. This seemed surprising given that,
based on our understanding of yeast and human Rat1p/
XRN2 proteins, C. elegans XRN2 would be expected to be
broadly involved in RNA processing and decay processes.
Moreover, theWormbase database annotates xrn-2 as the se-
cond gene in a two-gene operon where rpl-43 is the upstream
gene, 132bp away (Figure 3A). In generating the rescuing
transgene described earlier in the text, we had therefore
used an extended sequence of 1413bp upstream of the
xrn-2 start codon, reaching the 5’-end of the Y48B6A.1
ORF (Figure 3A). This construct revealed widespread,
possibly ubiquitous expression, with XRN2/GFP signal

A xrn-2(+) B xrn-2/xrn-2

C xrn-2/xrn-2; xrn-2::gfp D xrn-2/xrn-2; xrn-2(D234/236A)::gfp
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Figure 2. XRN2 catalytic activity is required for molting and growth beyond the L2 stage. (A) Wild-type worms develop into gravid adults, whereas
(B) xrn-2(tm3473) homozygous worms arrest development. (C) Transgenic extrachromosomal xrn-2 expressed under the control of the xrn-2 1413-bp
promoter and xrn-2 30-UTR rescues xrn-2(tm3473) mutant animals, whereas (D) a catalytically inactive version of xrn-2 with two point mutations
(D234A and D236A) does not. Both transgenes contain a C-terminal GFP tag, permitting their detection with an anti-GFP antibody. (E) Western
blotting reveals equivalent accumulation of wild-type (lane 1) and mutant (lane 2) protein in vivo. Scale bar, 50 mm. xrn-2(+) denotes the N2 wild-
type strain.
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being detectable from early embryo through adulthood
(Figure 3B). This expression was further validated through
a time course that followed endogenous XRN2 protein by
western blotting, and equally revealed continuous xrn-2
expression throughout the C. elegans life cycle (Figure 3C).
Complementation of mutant phenotypes can provide a

functional test for the authenticity of a putative promoter,
and we found that xrn-2 transgenes driven by the xrn-2
‘long’ promoter could rescue the xrn-2(tm3473) strain.
This was true both when xrn-2 cDNA was used
(Figure 2C), which resulted in protein levels that were
reduced relative to the endogenous protein (Figure 1B),
and when a codon-optimized variant with synthetic
introns was used (Figure 3D), which generated protein
levels more similar to endogenous levels (see later in
the text). By contrast, the xrn-2 ‘short’ promoter failed
to rescue the xrn-2(tm3473) mutation, although the
optimized transgene was used (Figure 3D). Taken
together, our results demonstrate that xrn-2 is expressed
broadly, perhaps ubiquitously, across tissues and

developmental stages, and that expression beyond previ-
ously reported tissues is important for its role in molting.

A xrn-2 temperature-sensitive allele generated de novo
reveals additional XRN2 functions

Our finding of a molting defect as the predominant pheno-
type of xrn-2 null mutant animals was consistent with a pre-
viously reported molting defect in xrn-2(RNAi) animals
(22). However, given the broad expression of XRN2,
which extends to the embryo, we wondered whether
earlier phenotypes were obscured due to maternal contri-
bution of mRNA or protein from xrn-2/+ heterozygous
mothers to their xrn-2/xrn-2 homozygous daughters.
Rapidly inactivatable, conditional alleles would permit
addressing this issue, but such alleles can currently not be
generated in a targeted manner, for a specific gene of
interest, in C. elegans. However, temperature-sensitive (ts)
alleles have been described in Saccharomyces cerevisiae
for Rat1p (35) and the Rat1p/XRN2 paralogue Xrn1p

A

XRN2

Actin

L1 L2 L3 L4E YA GA
e m l e m l e m l e m l

B CHead Hypodermis

Intestine Tail

rpl-43 xrn-2Y48B6A.1

132 bp

1413 bp
promoter used in this paper

promoter from ref. 22

xrn-2/xrn-2; Pxrn-21413bp::xrn-2 xrn-2/xrn-2; Pxrn-2132bp::xrn-2D

*

Figure 3. XRN2 is ubiquitously and constitutively expressed. (A) Schematic depiction of the xrn-2 genomic locus and promoters used. The arrows
indicate the direction of transcription. (B) Micrographs showing GFP signal of single-copy-integrated, codon-optimized and gfp-tagged xrn-2
expressed under the control of the 1413-bp long promoter region. The GFP signal is ubiquitously detected. Examples of hypodermal and intestinal
cells are marked with arrowheads. Insets: DIC images of the same worms. (C) Western blot showing a time-course for endogenous XRN2. ‘e’, ‘m’
and ‘l’ stands for early, mid and late, respectively; ‘YA’ and ‘GA’ for young and gravid adult, respectively. An asterisk indicates an apparent
proteolytic fragment of XRN2, which did not occur consistently in other western blots. (D) Single-copy-integrated, codon-optimized and gfp-tagged
xrn-2 expressed under the control of the 1413-bp long xrn-2 promoter region rescues the phenotypes of xrn-2(tm3473), but the 132-bp long xrn-2
promoter region does not. Scale bar, 20 mm (B) and 50 mm (D).

6 Nucleic Acids Research, 2014

 at N
ovartis Forschungsstiftung / Friedrich M

iescher Institute on January 20, 2014
http://nar.oxfordjournals.org/

D
ow

nloaded from
 

38

W
'
'
below
'
'
S.
,
http://nar.oxfordjournals.org/
http://nar.oxfordjournals.org/


(36). Individual mutation of either aspartate of the DXD
motif mentioned earlier in the text to alanine (A) may
further impair but not abrogate Mg2+ binding and ren-
der the protein function ts (34). We thus went to
test whether the corresponding mutations in C. elegans
xrn-2-elicited temperature sensitivity within the worm’s
physiological temperature window, �10�C below that of
yeast. We introduced single-copy integrated xrn-2 trans-
genes with appropriate mutations into strains that were
homozygous for xrn-2(tm3473), i.e. lacked endogenous
XRN2. Among three distinct mutations that we tested
(Figure 1A), P107L, corresponding to S. cerevisiae
xrn1-10(P90L) (36), conferred temperature sensitivity,
supporting viability at 15�C but not at 25�C. By contrast,
a Y594C-mutant transgene supported viability at either
temperature, whereas the D234A mutant transgene
rescued at neither temperature. In the following, we will
refer to the mutant strain that expresses xrn-2P107L as
xrn-2tscDNA to distinguish it from an optimized version
described later in the text. An analysis of different tempera-
ture regimens revealed numerous phenotypes of xrn-
2tscDNA animals beyond the molting defect observed with
the xrn-2 null strain, including arrest in embryonic devel-
opment and sterility (Supplementary Figure S1). These
mutant strains thus revealed multiple functions of XRN2
beyond molting, which had been obscured in the null
mutant animals.

Although the xrn-2tscDNA transgene permitted
rapid and tight inactivation of xrn-2 (Supplementary
Figure S1), it failed to provide full XRN2 activity at the
permissive temperature as illustrated by slow growth and
small brood sizes small (�25 relative to �250 for wild-type
animals) relative to wild-type animals. This reduced the
strain’s utility for molecular or biochemical studies or
genetic screens. Because low-protein levels relative to the
endogenous protein (Figure 1B) might account for the
reduced functionality, we introduced artificial introns
into the xrn-2 cDNA and optimized its codon composition
(25). For the wild-type protein, these nucleotide changes
increased XRN2/GFP levels as determined by epifluores-
cence microscopy (data not shown). Moreover, xrn-
2(tm3473) animals expressing the sequence-optimized
xrn-2P107L::gfp single-copy transgene, which we will
henceforth call xrn-2ts, grew better (although still more
slowly than wild-type animals) and had an increased
brood size. At the same time, we could still rapidly and
efficiently inactivate the optimized transgene by raising the
temperature (Figure 4A, B), although a fully penetrant
embryonic or L1 arrest now necessitated incubation at
26�C, rather than 25�C. Viability and development
of N2 wild-type animals remained unimpaired at this tem-
perature (Figure 4B) (37).

The P107L mutation induces temperature sensitivity by
reducing XRN2 stability

To test whether destabilization of the protein by elevated
temperature contributed to the ts behavior of xrn-2P107L,
we examined steady-state levels of XRN2 at 15 and 26�C.
We observed that XRN2 levels were substantially lower in
the xrn-2ts mutant strain than either N2 or a strain

carrying the wild-type transgene (Figure 4C). We note
that wild-type XRN2/GFP levels were also reduced
relative to endogenous XRN2 concentration in N2, par-
ticularly at 26�C, but the decrease was less than that seen
with XRN2P107L/GFP. Hence, it seems likely that the
P107L mutation renders XRN2 ts by destabilizing it, con-
sistent also with its location directly adjacent to an unusu-
ally long a-helix, previously termed ‘tower domain’ (11).
To test this possibility further, we quantified xrn-2 mRNA
levels in the two xrn-2 transgenic strains. Unlike XRN2
protein levels, the xrn-2 mRNA levels were not reduced in
the mutant strain. In fact, xrn-2ts mRNA accumulated at
increased concentrations relative to the wild-type mRNA,
particularly at 26�C (Figure 4D). Hence, these results not
only confirm that the P107L mutation causes temperature
sensitivity by reducing XRN2 protein stability but also
indicate the existence of an auto-regulatory mechanism
that promotes transcription or stabilization of xrn-2
mRNA when XRN2 activity is low.

The miR* strands decay more rapidly than guide strands

Our previous studies (16,38) had implicated C. elegans
XRN2 in miRNA turnover by revealing increased
steady-state levels of certain endogenous miRNAs in
xrn-2(RNAi) worms and XRN2-dependent degradation
of naked or Argonaute-loaded miRNAs in worm lysates.
However, a formal demonstration that XRN2 depletion
slowed miRNA degradation in vivo was missing.
Moreover, certain endogenous miRNAs appeared un-
changed on XRN2 depletion, but whether due to substrate
specificity, or technical limitations, e.g. in the kinetics or
tissue distribution of RNAi-mediated XRN2 depletion,
remained unknown. To address these two issues, we
examined miRNA decay globally in vivo in wild-type N2
animals. We performed a time-course experiment in which
we inhibited transcription in L1 stage larvae by addition
of a-amanitin (Supplementary Figure S2) and surveyed
miRNAs at several subsequent time points over the next
8 h by deep sequencing (Figure 5A). We chose the L1 stage
because these larvae had previously been reported to be
sensitive to treatment with a-amanitin (39), and we con-
firmed that this treatment efficiently blocked transcription
by assaying eft-3 pre-mRNA levels (Supplementary Figure
S2B, C). For each time point, we calculated the levels of
each miRNA as reads normalized to average library size
(‘Materials and Methods’ section), which means that these
numbers can go up or down or stay unchanged for a given
miRNA depending on whether it decays less rapidly, more
rapidly or just as rapidly as the average miRNA in this
pool. Accordingly, the fold changes per hour in log2 can
be positive, negative or 0, with negative values indicating
less stable miRNAs. However, these values cannot be
translated into absolute decay rates.
The fold changes per hour thus calculated for two

independent biological replicates correlated well
(Supplementary Figure S3) and their averages were used
for subsequent analysis. A scatter plot displaying fold
changes versus read numbers revealed that decay rates
were broadly distributed with a subset of miRNAs dis-
playing a strikingly faster decay than average (Figure
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5B). The effect was particularly pronounced for miRNAs
of lower abundance. Strikingly, when we coloured miR*s,
operationally defined as the one of two miRNA strands
derived from a pre-miRNA that is less abundant, in red,

and miRs in black, a clear separation of colours became
apparent (Figure 5B). Hence, highly unstable RNAs were
almost exclusively miR*s (Figure 5B). This result makes
immediate and intuitive sense when considering miR*s as
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biogenesis byproducts. It is also consistent with generally
long miRNA half-lives observed in a microarray-based
study that was confined to a survey of annotated
miRs (40).

Specific miRNAs are stabilized on XRN2 inactivation

Although the fast decay rates were preferentially seen for
miR*s, some miRs exhibited unusually low stability, most
notably several members, though not all, of each of the
miR-35 (miR-35 through miR-42) and the miR-51 (miR-

51 through miR-56) families. To test whether this was
due to decay by XRN2, we repeated the a-amanitin
time-course experiment for wild-type and xrn-2ts worms.
Under the conditions that we use, a-amanitin completely
blocks development at the early L1 stage (Supplementary
Figure S2; Supplementary Materials and Methods), so
that wild-type and xrn-2ts animals are equally arrested
in development.
For this analysis, we focused on miRNAs with low sta-

bility (apparent log2 fold change of less than �0.035/h and
thus below the blue cut-off line in Figure 5B) and moder-
ately high, to high, expression levels (>210 normalized
reads, to the right of the cut-off line). We determined
the levels of individual miRNAs by RT-qPCR and
normalized them to sn2841, a small nucleolar RNA
whose level is stable during the time course (data not
shown). When testing the five rapidly decaying members
of the miR-35 family, all of them displayed comparable
half-lives in wild-type and xrn-2ts animals (Figure 5C and
Supplementary Figure S4). Similarly, xrn-2 inactivation
had little effect on the decay of miR-1, miR-65 and
miR-244. By contrast, the decay of miR-51 and miR-87
was substantially and significantly delayed in xrn-2ts
animals. The miR-54, miR-55, miR-56, miR-73 and
miR-243 showed a similar trend, although differences
failed to reach statistical significance (Supplementary
Figure S4). We also examined decay of the highly ex-
pressed and unstable miR-54* and found it to be un-
affected by XRN2 inactivation. Similarly, miR-87*,
unlike miR-87, continued to decay rapidly when XRN2
was inactive. As the passenger and guide strand derive
from the same precursor, this directly confirms that the
decreased apparent half-lives of the guide strands truly
reflects stabilization of this guide strand and not a second-
ary effect of altered processing of residual pre-miRNAs.
Taken together, our data reveal that XRN2 is essential for
rapid decay of a subset of miRNAs during the first larval
stage.

DISCUSSION

xrn-2 is broadly expressed and functions in processes
beyond molting

Although molecular functions of XRN2 proteins have
been studied extensively, particularly in yeast and
cultured human cells, their developmental functions have
remained virtually unexplored (15). An RNAi-based
screen had implicated XRN2 in molting in C. elegans,
consistent also with its expression in tissues important
for cuticle generation or shedding (22), and in agreement
with this idea, we find that an xrn-2 null mutation causes a
penetrant L1 molting defect and subsequent L2 stage
arrest. However, by generating a conditional allele, we
could demonstrate that this only represents the tip of the
iceberg; XRN2 in C. elegans is required for numerous
events during embryonic and post-embryonic develop-
ment as demonstrated for instance by embryonic lethality
and sterility under appropriate regimens.
In yeast, where Rat1p/XRN2 is essential for viability,

mutations cause a diverse array of defects in various RNA
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metabolic processes, such as transcriptional termination,
ribosomal RNA processing, intron degradation and
aberrant transfer RNA degradation (15). However, it
remains to be determined which of these processes consti-
tutes the essential function of Rat1p or whether it is any
one process. Similarly, it remains to be established for
C. elegans whether the requirements for functional
XRN2 in different tissues and developmental stages
reflect a core underlying theme, or whether the respective
targets and processes that become dysregulated on XRN2
depletion vary. We also note that although we have
focused here on miRNAs as the only currently known
substrate of C. elegans XRN2, it is highly likely that
numerous additional substrates exist, and any of these,
individually or in combination, may be relevant for the
xrn-2 mutant phenotypes. Nonetheless, our demonstra-
tion that mutations inactivating the XRN2 catalytic site
also abrogate its ability to complement an xrn-2 null
mutation argue that it is processing or degradation
of one or several RNA substrates that are important
for the function of XRN2 in molting. Modulator, i.e.
enhancer and suppressor, screens may offer a way
forward to identify specific targets and pathways
affected by xrn-2 deficiency and have been initiated in
our laboratory.

XRN2 substrate preferences

In vitro, XRN2 proteins can degrade various RNA se-
quences, provided they are 50-monophosphorylated and
devoid of stable structures (9,10). However, we find here
that in the L1 stage, only a subset of miRNAs is stabilized
on XRN2 inactivation. We cannot formally rule out that
XRN2 activity at the restrictive temperature is not fully
eliminated in the xrn-2ts strain and that complete loss
of activity would stabilize all miRNAs. Nonetheless,
the available data demonstrate that, minimally, some
miRNAs are more dependent on XRN2 for degradation
than others.
The mechanisms that provide specificity remain to be

elucidated. On the XRN2 side, the enzyme may either
contain previously unrecognized intrinsic specificity, or
its substrate range may be restricted specifically in vivo
through the action of protein binding partners, such as
the newly identified PAXT-1 (41). Similarly, features of
the miRNA that render them sensitive or insensitive to
XRN2 remain to be identified. Although we lack enough
examples of miRNAs that are stabilized by mutation
of xrn-2 to confidently comment on the involvement of se-
quence features, we note that there is almost no overlap in
sequence between miR-51 and miR-87, and they even
differ in their 5’ ends, with miR-51 sporting the
miRNA-characteristic U and miR-87 and miR-243 a
more unusual G and C, respectively. Hence, it seems
possible that instead of, or in addition to, sequence, the
site of expression of an miRNA might affect its sensitivity
to degradation by XRN2. Because our expression analysis
of XRN2 indicates widespread, possibly ubiquitous ex-
pression of xrn-2, such a model would imply the existence
of additional factors that either promote degradation of
specific miRNAs by XRN2 in some tissues or prevent it in

others. Targets of miRNAs might be one such factor. We
previously reported that target RNAs protected their
cognate miRNAs from degradation (16,38). At this
point, it is not known whether any target can do this,
for any miRNA, or if specific miRNA-target duplex archi-
tectures are required. Nonetheless, differences in the levels
of either the entire group of target RNAs, or only indi-
vidual targets, might thus alter XRN2 activity towards
miRNAs in a tissue-specific manner.

Finally, intracellular localization of miRNAs may affect
their susceptibility to degradation by XRN2. This notion
is based on our finding that XRN2 accumulates preferen-
tially, perhaps exclusively in the nucleus [this study and
(42)]. By contrast, miRNAs are thought to function in the
cytoplasm, where they would thus be shielded from XRN2
activity. At the same time, a number of mature C. elegans
miRNAs have recently been detected in both nucleus and
cytoplasm, with individual miRNAs apparently differing
in their nucleocytoplasmic distribution (43). However,
because we have so far been unable to achieve sufficiently
clean fractionation of nuclei versus cytoplasm, it remains
to be determined whether XRN2-sensitive miRNAs parti-
tion more extensively to the nucleus than those that are
XRN2-insensitive.

miRs and miR*s differ in their stabilities

Initially, it was assumed that miRNA precursors give rise
to only one functional molecule, the mature miRNA or
guide strand/miR. A second partially complementary
molecule derived from the opposite strand of the pre-
miRNA, the passenger strand/miR*, might be visible at
much lower levels and constitute merely a biogenesis inter-
mediate. More recently, however, several examples of
functional miR*s have been described, and it has
emerged that in some cases the ratio of miR to miR*
may be variable and change with site of expression or
development (18). Accordingly, a different nomenclature
that identifies miRNA molecules based on their proven-
ance from either the 50 or the 30 arm of the pre-miRNA
has been adopted. Although there can be little doubt on
the functionality of certain miR*s, our decay data strongly
suggest that at least in our system most of them accumu-
late only transiently, supporting their designation as
processing intermediates. Although ours is the first dem-
onstration of this phenomenon on a global scale, Winter
and Diederichs previously examined the half-lives of a
small number of miRs and miR*s in human cells and
equally observed reduced half-lives of the latter (44).
Moreover, they noted that over-expression of Argonaute
proteins could stabilize two miR*s that were investigated,
suggesting that it is lack of Argonaute loading that renders
miR*s unstable, which would also deprive them of a func-
tional miRNA status.

We note that the least stable of all miRNAs that we
observe is annotated as miR, miR-1824-3p, rather than
miR*. However, deep sequencing is subject to sequence-
dependent biases that prevent exact quantification of
distinct small RNAs [(45) and our unpublished data].
The miR-1824-3p displays only marginally (�1.6-fold)
more reads than its presumed miR*, miR-1824-5p,
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which is much more stable (log2 fold change of 0.16/h
versus �0.35/h for 5p versus 3p). Hence, we predict that
absolute quantification would reveal that miR-1824-5p is
more abundant than miR-1824-3p and thus the true miR
by our criterion.

De novo generation of a conditional xrn-2 allele

Genetic mutations are invaluable tools in assigning
function to genes. However, if a gene has multiple con-
secutive functions in development, it can be difficult or
impossible to study all of them with ‘constitutive’ muta-
tions especially when an early function is essential during
development. At the same time, for essential genes,
homozygously mutant animals by necessity need to be
derived from heterozygous parents, which may contribute
mRNA or protein to their offspring so that early pheno-
types can be masked (46). RNAi may be used to deplete
such maternal mRNAs, but usually results in only partial
depletion of transcripts and protein products. Similarly,
although RNAi may be applied such that an early
terminal phenotype in development is bypassed (47,48),
it can usually not be timed precisely. Although xrn-
2(RNAi) phenocopies the sterile phenotype of xrn-2ts
animals, none of the conditions we tried so far were able
to elicit embryonic lethality.

Conditional alleles, encoding rapidly inactivatable gene
products, would permit addressing both of the aforemen-
tioned issues. The ts alleles are widely used for instance in
yeast, and screens have been conducted in C. elegans to
identify ts alleles for specific processes. However, because
it has not been possible to predict a priori which muta-
tions will generate a ts allele, targeted approaches for gen-
eration of conditional alleles of specific genes have been
lacking.

We provide here proof of principle that a C. elegans ts
mutation can be generated de novo by exploiting informa-
tion from a different organism, yeast, despite major dif-
ferences in their physiological temperature ranges. We
note that our approach is not easily scalable and its gen-
erality remains to be established. However, many yeast ts
alleles exist, and new ones can easily be generated, e.g. by
complementing yeast deletion mutant cells with randomly
mutagenized transgenes expressing the genes of interests.
Hence, ours may be a fertile approach for other re-
searchers interested in generating conditionally mutant
C. elegans strains, complementing transcriptional
(49,50), co-transcriptional (51) or post-transcriptional
(52) approaches that modulate mRNA levels and thus,
indirectly, protein activity.
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Figure S4. Decay of miRNAs in L1-stage wt and xrn-2ts worms. 

miRNA levels at each time point in L1-stage wt and xrn-2ts worms were quantified by RT-qPCR 

and normalized to sn2841 levels. Values (circles) and trend lines for each miRNA in wt and xrn-

2ts worms are shown in blue and red, respectively. Half-lives (t1/2) and P-values are also shown 

(see Materials and Methods). 
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Supplementary Tables. 

Table S1. Strain information 

Strain name Alias Genotype Locus of single 
copy insertion 

HW426  xrn-2(tm3473)/+ II !
HW666  xrn-2(tm3473) II ; unc-119(ed3) III; xeEx267[Pxrn-

2:xrn-2(D234/236A)::gfp::his::flag::xrn-2 3'utr, unc-
119(+)] 

 

HW737  xrn-2(tm3473) II ; unc-119(ed3) III; xeEx234[Pxrn-
2::xrn-2(cDNA)::gfp::his::flag::xrn-2 3'utr, unc-
119(+)] 

 

HW777  xeSi15[Pxrn-2::xrn-2(cDNA)::gfp::his::flag::xrn-2 
3'utr] IV 

cxTi10882 

HW844*  xrn-2(tm3473) II/mnC1[dpy-10(e128) unc-
52(e444) nIs190] II 

 

HW851  xrn-2(tm3473) II ; xeSi15[Pxrn-2::xrn-
2(cDNA)::gfp::his::flag::xrn-2 3'utr] IV 

cxTi10882 

HW1011 xrn-2tscDNA xeSi56[Pxrn-2::xrn-2(P107L)::GFP::his::flag::xrn-2 
3'utr;unc-119(+)] I; xrn-2(tm3473) II 

ttTi4348 

HW1021  xeSi60[Pxrn-2::xrn-2(codon-
optimized)::gfp::his::flag::xrn-2 3'utr;unc-119(+)] I 

ttTi4348 

HW1023 xrn-2(+) xeSi60[Pxrn-2::xrn-2(codon-
optimized)::gfp::his::flag::xrn-2 3'utr;unc-119(+)] I; 
xrn-2(tm3473) II 

ttTi4348 

HW1026 xrn-2ts xeSi57[Pxrn-2::xrn-2(codon-
optimized/P107L)::GFP::his::flag::xrn-2 3'utr;unc-
119(+)] I; xrn-2(tm3473) II 

ttTi4348 

HW1094  xeSi74[Pxrn-2132bp::xrn-2(codon-
optimized)::gfp::his::flag::xrn-2 3'utr, unc-119(+)] 
I ; xrn-2(tm3473) II/mnC1[dpy-10(e128) unc-
52(e444) nIs190] II* 

ttTi4348 

*The xrn-2(tm3473) mutation was balanced in this strain using a gfp-tagged mnC1 balancer 

introduced by crossing with strain MT16418, kindly provided by R. Horvitz and D.T. Harris 
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Table S2.  Primer information 

Cloning   
 Forward (5'-->3') Reverse (5'-->3') 
Pxrn-21413bp ctgatggaaatatattaa tctcggagttttattttctc 
Pxrn-2132bp acatattaatcccccgaacggggcctcc tctcggagttttattttctctaaat 
xrn-2(cds) atgggagttcccgcattc tctccatgatgaatttcc 
xrn-2_3'utr catcagcattcagtcgat gcgctccatggacaatcgcct 

   
   
Site-directed mutagenesis  
 Forward (5'-->3') Reverse (5'-->3') 
P107L for xrn-
2cts atcgatggagttgctctgcgagccaagatgaacc ggttcatcttggctcgcagagcaactccatcga

t 
P107L for xrn-
2ts catcgacggagtcgccctacgtgccaagatgaac gttcatcttggcacgtagggcgactccgtcgat

g 

D234A gcctctgcggagccgccgccgaccttattatgctcg
g 

D236A gcggagccgacgccgcccttattatgctcgg ccgagcataataagggcggcgtcggctccgc 
Y594C ggtatttcccgtatcattgtgcaccgtttgccagcg 

   
   
RT-qPCR   
 Forward (5'-->3') Reverse (5'-->3') 
pre-eft-3 mRNA acttgatctacaagtgcggagga cgggtgagaaaatctttcaaacta 
18S rRNA cagaccaaacgttttcggacgttg ttggacgtggtagccgtttctaag 
codon-optimized 
xrn-2 mRNA ggacacgagctcaagggagtg gctccttctcgaggtactcacg 

actin mRNA gttgcccagaggctatgttc caagagcggtgatttccttc 

   
   
Genotyping   
 Forward (5'-->3') Reverse (5'-->3') 
tm3473 
genotyping gagacttaaatccctaaaattcacc ctttgtcagataacctttcatctgg 
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Table S3. The sequence of codon-optimized xrn-2 with three introns 

ATGGGAGTCCCAGCCTTCTTCCGTTGGCTCACCAAGAAGTACCCAGCCACCGTCGTCAACGCCAACGA
GGACCGTCAACGTGACCAAGACGGAAACCGTGTCCCAGTCGACTGCACCCAACCAAACCCAAACTTCC
AAGAGTTCGACAACCTCTACCTCGACATGAACGGAATCATCCACCCATGCACCCACCCAGAGGACCGT
CCAGCCCCAAAGAACGAGGACGAGATGTTCGCCCTCATCTTCGAGTACATCGACCGTATCTACTCCAT
CGTCCGTCCACGTCGTCTCCTCTACATGGCCATCGACGGAGTCGCCCCACGTGCCAAGATGAACCAAC
AACGTTCCCGTCGTTTCCGTGCCTCCAAGGAGATGGCCGAGAAGGAGGCCTCCATCGAGGAGCAACG
TAACCGTCTCATGGCCGAGGGAATCGCCGTCCCACCAAAGAAGAAGGAGGAGGCCCACTTCGACTCC
AACTGCATCACCCCAGGAACCCCATTCATGGCCCGTCTCGCCGACGCCCTCCGTTACTACATCCACGA
CCGTGTCACCAACGACGCCTCCTGGGCCAACATCGAGATCATCCTCTCCGACGCCAACGTCCCAGGA
GAGGGAGAGCACAAGATCATGGACTACGTCCGTAAGCAACGTGGAAACCCAGCCCACGACCCAAACA
CCGTCCACTGCCTCTGCGGAGCCGACGCCGACCTCATCATGCTCGGAATCGCCACCCACGAGGCCAA
CTTCAACATCATCCGTGAGGAGTTCGTCCCAAACCAACCACGTGCCTGCGACCTCTGCGGACAATACG
GACACGAGCTCAAGgtaagtttaaacatatatatactaactaaccctgattatttaaattttcagGAGTGCCGTGGAGCCGAGAAC
GAGACCGACCTCGGAGACGACTACTGCAAGCCAGAGCAACGTGAGAAGAACTTCATCTTCCTCCGTAT
CCCAGTCCTCCGTGAGTACCTCGAGAAGGAGCTCTCCATGCCAAACCTCCCATTCAAGTTCGACGTCG
AGCGTGCCCTCGACGACTGGGTCTTCCTCTGCTTCTTCGTCGGAAACGACTTCCTCCCACACCTCCCAT
CCCTCGAGATCCGTGAGGGAGCCATCGACCGTCTCATCAAGCTCTACAAGGAGATGGTCTACCAAATG
AAGGGATACCTCACCAAGGACGGAATCCCAGAGCTCGACCGTGTCGAGATGATCATGAAGGGACTCG
GACGTGTCGAGGACGAGATCTTCAAGCGTCGTCAACAAGACGAGGAGCGTTTCCAAGAGAACCAACGT
AACAAGAAGGCCCGTATGCAAATGTACGGAGGAGGAGGACGTGGAGGACGTGGACGTGGACGTGGAC
GTGGACAACAACCAGCCTTCGTCCCAACCCACGGAATCCTCGCCCCAATGGCCGCCCCAATGCACCAC
TCCGGAGAGTCCACCCGTCAAATGGCCTCCGAGGCCCGTCAAACCGCCATGAAGTTCACCAACGACG
CCAACGAGACCGCCGCCGCCAACCTCAAGgtaagtttaaacagttcggtactaactaaccatacatatttaaattttcagGCCCTC
CTCAACGTCAAGGGAGAGGAGTCCCCAGCCGACATCGCCTCCCGTAAGCGTAAGGCCGAGCAACCAC
TCATCAAGCCAGAGGAGGAGGAGGACGAGGGACCAAAGGACGACATCCGTCTCTACGAGTCCGGATG
GAAGGACCGTTACTACCGTGCCAAGTTCGACGTCGGATCCGACGACATCGAGTTCCGTCACCGTGTCG
CCTGGGCCTACGTCGAGGGACTCTGCTGGGTCCTCCGTTACTACTACCAAGGATGCGCCTCCTGGGAC
TGGTACTTCCCATACCACTACGCCCCATTCGCCTCCGACTTCGAGACCGTCGGAGAGTTCCAACCAGA
CTTCACCCGTCCAACCAAGCCATTCAACCCACTCGAGCAACTCATGTCCGTCTTCCCAGCCGCCTCCAA
GCAACACCTCCCAGTCGAGTGGCAAAAGCTCATGATCCAAGACGACTCCCCAATCATCGACCTCTACC
CAGCCGACTTCCGTATCGACCTCAACGGAAAGAAGTACGCCTGGCAAGGAGTCGCCCTCCTCCCATTC
GTCGACGAGACCCGTCTCCTCGCCACCCTCCAATCCGTCTACCCAACCCTCACCGCCGAGGAGAAGC
AACGTAACACCCGTGGACCAAACCGTATCTTCATCGGACGTAACCACAAGTCCTTCGAGTTCTTCCAAC
AAGTCGCCGAGTCCAAGTCCGACGACCTCGTCCCACTCGACCCAACCCTCCTCAACGGAGTCTCCGGA
AAGgtaagtttaaacatgattttactaactaactaatctgatttaaattttcagATCGCCTACGACTCCACCGCCACCGCCCCAGGA
CTCCCATTCGTCTCCCCAGTCAACCACGACGAGTGCCAAGACCTCCCAACCAACTGCGGAATCTGCGT
CCTCTACGAGGACCCAGAGTACCCACAAGACTACATCTTCCCAGCCCTCCGTCTCGACGGAGCCAAGG
AGCCAGAGAAGACCCTCAAGCCAGACGACTGGAACGACCGTCGTGACGGACGTTACCAACCACAAGT
CGGATTCAACCGTAACGCCCCACGTGGATCCCTCGACCAATCCGGACACCGTCAAGTCCACCACTACG
TCCGTGGAGGAGGAGGAGGAGGAGGAGGATACCGTGGAAACTCCTACGACGACCGTCGTGGAGGAG
GAGGAGGAGGAGGAGGATACAACGACCGTCAAGACTTCGGACGTAACTACGGAGGACGTGACGGAGG
AGGACCACAACGTTACCACGACCAACAACAACAACGTCAAGGAGGATACCAAGGAGGAGGATACGGA
GGAGGATACGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGAGGATCCTACCACCAACCATAC
AACCAAGACCAACGTCGTGGAGGACGTGGAGGAGGAGGAGGACCACCAGGATACCAACGTCCACCAT
ACCGTGGAGGAGGAGGAGGAGGATACCACGGAAACTCCTCCTGGCGT 

 

Lower case: intron 

!
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3.3.2 Additional results 

XRN2 and PAXT-1 form a complex  

Figure 1 and 2 summarize my main contributions to section 6. For an integral view please refer to 

section 6. Through co-immunoprecipitations, I identified the previously uncharacterized protein PAXT-1 

as an interaction partner of XRN2 (Fig. 1). PAXT-1 does not bind to the XRN2 paralogue XRN1. 

Additionally, I found that a domain of unknown function (DUF3469) within PAXT-1 is sufficient to bind to 

XRN2 (Fig. 2). Subsequent experiments carried out by Takashi Miki and Hannes Richter showed that the 

interaction between XRN2 and PAXT-1 is direct and leads to mutual stabilization of the binding partners 

(see section 6). 

 

(A)                (B) 
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Towards identification of the nuclear localization signal of XRN2 

XRN2 is a nuclear exoribonuclease that targets specific mature miRNAs (section 3.3.1). As mature 

miRNAs occur in the cytoplasm as well as in the nucleus (Jeffries et al., 2011; Liao et al., 2010) an 

appealing model suggests that certain miRNAs are shielded from XRN2 degradation by their cytoplasmic 

localization. In order to test this model, I aimed to mislocalize XRN2 to the cytoplasm. Mutating a 

putative bipartite nuclear localization signal (NLS) (Fig. 3A) failed to redirect XRN2 to the cytoplasm (data 

not shown). Subsequently, I tested different truncation mutants for their subcellular localization. The 

shortest of these mutants, which lacks an unconserved linker between two conserved regions and the C-

terminal 154 amino acids, still resided in the nucleus (Fig. 3). The NLS within XRN2 thus remains to be 

discovered. 

(A) 

 

 

 

 

 

(B) 

Δ
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Worms deleted for xrn-1 exhibit strong morphological defects 

My work investigated the developmental and molecular function of XRN2 and did largely exclude its 

cytoplasmic paralogue XRN1. The developmental functions of XRN1 have been investigated to a larger 

extent compared to XRN2 with the caveat that studies have been relying on xrn-1 knock-down or 

hypomorphic alleles (Jones et al., 2012). Loss-of-function mutations of XRN1 might reveal additional 

phenotypes not detected by reduction-of-function mutations. I created a null allele of xrn-1 through 

TALE nuclease-mediated genome editing (SR and HG, unpublished). The allele was called xe4 and is 

characterized by a premature termination codon most likely leading to NMD (Fig. 4A). A western blot 

with lysate from worms homozygous for xe4 failed to detect full-length XRN1 (Fig. 4B). Surprisingly, 

worms deficient for xrn-1, despite showing multiple morphological defects and greatly reduced brood 

size, are viable (Fig. 4C and data not shown). Note that I failed to rescue these phenotypes by expressing 

transgenic, codon-optimized xrn-1 (Fig. 4B and data not shown). Hence, phenotypes observed in worms 

homozygous for the xe4 allele cannot definitely be attributed to XRN1. A thorough analysis of 

phenotypes arising upon complete loss of XRN1 awaits realization. 

(A) 

 

(B)       (C) 
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3.4 Outlook 

A detailed discussion of the results is included in section 3.3.1 and 6. Here, I emphasize some open 

questions that require our attention in the future.  

We find that XRN2 is essential for C. elegans at every developmental stage from the embryo to the adult 

worm. This raises the question of what the pathways are that ultimately cause lethality upon 

inactivation of XRN2 , a question not easily answered considering the various coding and non-coding 

RNA substrates reported for XRN2 (Nagarajan et al., 2013). The subset of miRNAs targeted by XRN2 is 

unlikely to elicit a terminal phenotype as most miRNAs play only a subtle role during development and 

lack a strong phenotype when deleted individually or as whole families (Alvarez-Saavedra and Horvitz, 

2010). Although it cannot be excluded that overexpression of miRNAs, as observed in an xrn-2 null 

mutant situation, has actually more detrimental consequences for the worm than their deletion, it is 

most likely that lethality of xrn-2 null worms results from abolished processing/degradation of multiple 

substrates. It remains a future challenge to assign phenotypes to specific XRN2 substrates. 

XRN2 is localized in the nucleoplasm (sections 3.3.1 and 7). On the other hand, mature miRNAs have 

long been assumed to regulate expression of protein-coding genes in the cytoplasm (Krol et al., 2010). 

This raises the question how XRN2 may gain access to its miRNA targets. This issue is largely resolved by 

many recent studies revising our view of an exclusive cytoplasmic localization of mature miRNAs. High-

throughput approaches, such as deep sequencing and miRNA TaqMan arrays, have been used to 

compare levels of mature miRNAs in nuclear and cytoplasmic fractions in human cells revealing that 

most miRNAs are present in both compartments and that a roughly similar fraction is specifically 

localized in one or the other compartment (Jeffries et al., 2011; Liao et al., 2010). Importantly, 

Argonaute proteins, the effector components of the miRISC complex, have been shown to reside in the 

nucleus (Weinmann et al., 2009; Zisoulis et al., 2012). This suggests that the nuclear miRNAs have 

biological relevance. In fact, it was found that nuclear miRNAs can promote (Zisoulis et al., 2012) or 

repress (Tang et al., 2012) the processing of primary miRNA transcripts and can direct cleavage of 

lncRNAs (Hansen et al., 2011). Subcellular localization might be one aspect underlying the specificity of 

XRN2 towards particular miRNAs. However, whether the specific miRNAs targeted by XRN2 in our study 

indeed exhibit a predominant nuclear localization remains to be tested. Redirecting XRN2 to the 

cytoplasm and likewise XRN1 to the nucleus will reveal the contribution of localization to miRNA 

turnover. Target-specificity might also be brought about by XRN2-binding proteins. We identified PAXT-1 

as an essential interaction partner of XRN2. Nonetheless, it remains to be shown whether or not PAXT-1 

conveys target-specificity to XRN2.  
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4 USIP-1 is a terminal transferase acting upstream of SART-3 in 

spliceosome assembly 
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4.1 Abstract 

The primary transcripts of most eukaryotic genes requires the removal of intervening sequences 

(introns) through a process referred to as splicing in order to become mature mRNAs. Given the 

essential role of U6 snRNA in the splicing catalysis it is of great interest to identify trans-acting factors 

that mediate the extensive conformational changes that U6 undergoes during the splicing cycle. The 

RNA-binding protein Prp24 and SART3 have been reported in yeast and human cell culture, respectively, 

to interact with the U6 snRNA and to promote its association with the U4 snRNA. Here, we describe the 

molecular and developmental function of the previously uncharacterized C. elegans ortholog of SART3, 

SART-3. Co-immunoprecipitations of transgenic and endogenous SART-3 from C. elegans lysates 

revealed an interaction with the U4/U6 snRNP complex analogous to human SART3. Furthermore, we 

identified a U6 snRNA-mediated interaction between SART-3 and USIP-1, a terminal uridylyl transferase 

(TUTase). Through fluorescence microscopy, we found both SART-3 and USIP-1 to localize in the 

nucleoplasm and to be constitutively and ubiquitously expressed across developmental stages and 

tissues, respectively. Whereas SART-3 was found in complex with the U4/U6 di-snRNP, USIP-1 associated 

with the ‘naked’, that is Lsm/Sm-unbound, U6 snRNA suggesting a participation of USIP-1 in U6 snRNA 

processing rather than spliceosome recycling. Knock-down of sart-3 in a usip-1 null mutant background 

caused a synergistic, embryonic lethal phenotype further supporting an involvement of USIP-1 in the U6 

snRNA life cycle. The embryonic lethality was rescued by transgenic expression of wild-type USIP-1 but 

not by a catalytically inactive version of USIP-1. Finally, through MosDEL genome editing we obtained a 

loss-of-function allele for sart-3 whose phenotype is characterized by lack of oocytes and vulval bursting. 

Together, our data demonstrate that SART-3 associates with the U4/U6 snRNP and genetically interacts 

with the upstream acting terminal transferase USIP-1. 
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4.2 Introduction 

RNA splicing 

Alternative splicing increases the coding potential of a genome 

During transcription particular segments of DNA are copied into RNA. The primary transcript of almost 

all protein-coding genes in multicellular organisms, the precursor messenger RNA (pre-mRNA), contains 

introns and exons. Introns are excised from the pre-mRNA and exons are joined in a process termed 

splicing in order to establish the mature mRNA with a translatable open reading frame (ORF) (Sharp, 

2005). Splicing is found in species from bacteria to humans but whereas splicing is ubiquitous in 

eukaryotes there are only a few examples in bacteria (Edgell et al., 2000) and archaea (Watanabe et al., 

2002; Yokobori et al., 2009). Through alternative splicing (AS) the coding capacity of a genome can be 

expanded manifold by producing different isoforms from a single transcript (Keren et al., 2010; 

Kornblihtt et al., 2013). AS events can be categorized into four main groups (Fig. 1): 1) Exon skipping 

denotes an AS event whereby an exon gets spliced out together with its flanking introns. 2-3) Alternative 

3’ and 5’ splice sites can occur within exons resulting in only partial inclusion of a particular exon in the 

mature mRNA transcript. 4) Lastly, introns can be retained in the mature mRNA (Keren et al., 2010). It is 

probably of little surprise that it was found that the extent by which an organism uses AS correlates with 

its complexity, i.e. position within the phylogenetic tree. Higher eukaryotes have a stronger preference 

for AS than lower eukaryotes (Alekseyenko et al., 2007; Artamonova and Gelfand, 2007; Kim et al., 

2004a). Thus, AS might provide an explanation for the difference in complexity between humans and 

worms despite the fact that both organisms have roughly the same number of genes (worms ~19’000, 

humans ~22’000). Furthermore, AS, with contribution of alternative initiation of transcription and 

alternative mRNA cleavage/polyadenylation, illustrates how the discrepancy between the predicted 

22’000 protein-coding genes in the human genome and the proteome with estimated 100’000 entities 

emerges (Modrek and Lee, 2002). Impressively,  >90% of human genes were found to undergo AS (Wang 

et al., 2008). The physiological importance of AS becomes evident by the observation that aberrant 

alternative splicing plays a causal role in various diseases including cancer (Srebrow and Kornblihtt, 

2006; Tazi et al., 2009).  

Depending on how much a splice site diverges from the consensus sequence it is considered a weak or a 

strong splice site. Strong splice sites lead to constitutive splicing whereas the decision whether to use a 

weak splice site or not requires input from additional cis and trans-acting factors (Singh and Valcarcel, 

2005). Cis-regulatory sequences are named according to their position (exonic/intronic) and effect on a 

particular splice site (enhancer/silencer): exonic splicing enhancer (ESE), exonic splicing silencer (ESS), 

intronic splicing enhancer (ISE) and intronic splicing silencer (ISS). Trans-acting factors, that can be either 

enhancers, silencers, or both, act by binding to the cis-regulatory sequences and include the serine-

arginine-rich (SR) and heterogeneous nuclear ribonucleoprotein (hnRNP) protein families (Singh and 

Valcarcel, 2005). A yet additional layer of splicing regulation was established when it was found that 

splicing and transcription are functionally coupled. Although splicing is known for quite a while to occur 

in most cases co-transcriptionally (Beyer and Osheim, 1988), there is now increasing evidence that 
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promoters, transcription factors, and transcriptional co-activators are not only in close proximity to but 

participate in the regulation of splicing (Kornblihtt et al., 2013). 

 

Fig. 1. Modes of alternative splicing. Blue: constitutive exon, orange: alternatively spliced exon, black 

line: intron. Alternative splicing paths are indicated in green and red, respectively. Modified with 

permission from doi: 10.1038/nrg775. 

The spliceosome 

Constitutive and alternative splicing are catalyzed by the same core machinery, the spliceosome, a 

multisubunit ribonucleoprotein (RNP) (Wahl et al., 2009). The spliceosome binds to short consensus 

sequences within the intron that lie at the very 5’ end (5’ splice site, 5’SS), at the very 3’ end (3’ splice 

site, 3’SS), and 20-50 nucleotides upstream of the 3’SS (branch point, BP). Also, there is a pyrimidine-rich 

sequence found between the branch point and the 3’SS (called polypyrimidine tract) that is recognized 

by splicing factors. The challenge for the spliceosome is to reliably recognize these rather relaxed 

consensus elements and precisely align them within the catalytic center in order for splicing to take 

place. On the other hand the spliceosome should feature a high degree of flexibility to enable AS. In 

order to cope with these opposed demands of great precision and high flexibility, the spliceosome 

integrates a multitude of proteins that interact in a highly dynamic manner. Precision of the splicing 

reaction is achieved by the fact that a particular consensus sequence on the pre-mRNA is recognized 

several times by consecutive splicing factors. Redundant readout of target sequences ensures that a 

splicing reaction only takes place at an approved position. Conversely, many binary interactions within 

the spliceosome are weak but are reinforced upon context-dependent joining of auxiliary splicing 

factors. This approach allows the spliceosome to respond dynamically to regulatory signals (Wahl et al., 

2009). 

The major subunits of the spliceosome are five small nuclear RNPs (snRNPs) U1, U2, U4, U5, U6. Each 

snRNP consists of a uridine-rich (U) snRNA, hence the name. The sequences of the snRNAs are 

surprisingly little conserved from yeast to mammals with U6 being the exception showing 75% identity 

between yeast and human (Brow and Guthrie, 1988). Moreover, U6 snRNA differs in several features 

from the other U snRNAs (reviewd in (Guthrie and Patterson, 1988)). Its unique properties include 1) 
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transcription by RNA polymerase III (RNA pol III) instead of RNA pol II (Reddy et al., 1987), 2) the 

presence of a γ-monomethyl cap instead of a TMG cap (trimethylguanosine cap) at the 5’ end (Singh and 

Reddy, 1989), 3) the interaction with Lsm proteins instead of Sm proteins (Achsel et al., 1999; Mayes et 

al., 1999), and a 2’,3’-cyclic phosphate in the mature form instead of a 3’ hydroxyl group (Lund and 

Dahlberg, 1992).  

The spliceosome is assembled in a stepwise manner onto the pre-mRNA and performs two consecutive 

transesterification reactions. The initial identification of the consensus elements in a pre-mRNA is 

achieved by U1 snRNP, which recognizes the 5’SS, the splicing factor 1 (SF1), which recognizes the 

branch point, and the U2 auxiliary factor (U2AF), which recognizes the polypyrimidine tract and the 3’SS. 

In a next step, U2 snRNP is recruited and its snRNA base-pairs with the BP which leads to displacement 

of SF1. Subsequently, U4, U5, and U6 engage as a preassembled U4/U6.U5 tri-snRNP. At this point all 

spliceosomal snRNPs are sitting on the pre-mRNA, however, major conformational changes are now 

required in order for the spliceosome to gain catalytic activity. Particularly, snRNA-snRNA and snRNA-

pre-mRNA interactions need to be rearranged. This is most impressively exemplified for the U6 snRNA 

which appears to be part of the catalytic site of the spliceosome. The U6 snRNA extensively base-pairs 

with the U4 snRNA. This tight interaction prohibits U6 snRNA to immediately trigger catalysis upon 

binding to the spliceosome. In order to form a catalytically active site, the U6/U4 snRNA bonding needs 

to be disrupted and novel interactions of U6 snRNA with the U2 snRNA as well as the pre-mRNA need to 

be formed. Additionally, in the course of U6 snRNA rearrangements, an intramolecular stem loop is 

formed that coordinates a metal-ion contributing to the catalysis (Yean et al., 2000). After each splicing 

event the spliceosome gets disassembled into the individual snRNPs and in order for another splicing 

event to take place it needs to be reassembled. Factors that have been implicated in the reassembly of 

the spliceosome include the yeast protein Prp24 and the human protein SART3 (see next sections). 

The yeast protein Prp24 

Prp24 is a spliceosomal recycling factor annealing the U4 and U6 snRNAs 

Prp24 is a yeast RNA-binding protein that has homologs up to humans (Fig. 1A of result part). Prp24 has 

originally been isolated by Vijayraghavan et al. in a screen for temperature-sensitive mutants that affect 

pre-mRNA splicing in the budding yeast S. cerevisiae (Vijayraghavan et al., 1989). Alleles from 11 

different complementation groups have been isolated showing impaired splicing ability at the repressive 

temperature and were termed pre-RNA processing (prp) mutants (prp17-prp27) in agreement with 

previously identified splicing-related proteins in yeast (prp2-prp11) (Vijayraghavan et al., 1989). 

Although Vijayraghavan et al. could show that loss of Prp24 leads to accumulation of pre-mRNA, the 

precise stage at which Prp24 acts during splicing as well as its mode of action remained elusive.  

Later work, again carried out in S. cerevisiae, revealed a function of Prp24 as an snRNP recycling factor, 

reannealing the U4 and U6 snRNAs (Jandrositz and Guthrie, 1995; Raghunathan and Guthrie, 1998; 

Shannon and Guthrie, 1991; Vidaver et al., 1999). The U4 snRNA and the U6 snRNA interact extensively 

through base-pairing forming two intermolecular stems (stem I and stem II) separated by an 

intramolecular stem in the U4 snRNA (Fig. 2) (Bindereif et al., 1990; Brow and Guthrie, 1988; Rinke et al., 
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1985; Vankan et al., 1990). Due to the high sequence complementarity between the U4 and U6 snRNAs, 

the U4/U6 di-snRNP complex is highly stable in vitro (Brow and Guthrie, 1988). This high stability 

suggests that there might be an active mechanism required to disrupt the U4/U6 interaction during the 

extensive structural rearrangements that occur within the spliceosome in order to acquire catalytic 

activity. It is also conceivable that trans-acting factors might be needed to stabilize the U4 and U6 single 

complexes to prevent or regulate the formation of the energetically favored U4/U6 di-complex.  

In S. cerevisiae,  trans-acting factors that affect the stability of the U4/U6 complex were identified by 

screening for mutations that suppress the cold-sensitive phenotype of a destabilized U4/U6 complex 

obtained by introducing a single-base mutation (G14C) in U4 snRNA (Fig. 2 and (Shannon and Guthrie, 

1991)). Apart from a mutation in U6 (C67G) compensating for the G14C in U4, two classes of mutations 

were able to rescue the cold-sensitive phenotype: mutations in Prp24, residing in the conserved RNA 

binding motif RRM3, and mutations in U6, which lie in a region outside the region that base-pairs with 

U4 (T38C, A40G, C43G). The latter have been shown to constitute the Prp24 binding site by chemical 

footprinting experiments (Jandrositz and Guthrie, 1995). Moreover, it was found that Prp24 co-

immunoprecipitates U6 snRNA but not U1,U2,U4, U5 snRNAs from wild-type extracts (Shannon and 

Guthrie, 1991). Furthermore, separation of splicing particles using glycerol gradients revealed three 

different U6-containing snRNP complexes, U6 snRNP, U4/U6 di-snRNP, and U4/U6.U5 tri-snRNP. In a 

wild-type strain, Prp24 only interacted with U6 snRNP but not with the other two U6-containing 

complexes. However, in the strain carrying the destabilized U4(G14C)/U6 complex, Prp24 was found to 

interact with U4(G14C)/U6 di-snRNP at the expenses  of the interaction with free U6 snRNP. From these 

data a model was derived whereby the Prp24/U6 complex is in equilibrium with the U4/U6 complex. 

Upon binding of U4 to U6/Prp24, base-pairing between U4 and U6 snRNAs occurs, which in turn leads to 

a displacement of Prp24. Thus the Prp24/U4/U6 complex exists only transiently and appears to require a 

sensitized back-ground in order to be observed (Shannon and Guthrie, 1991). 

 

Fig. 2. Secondary structure of the yeast U4/U6 snRNA complex (as proposed by (Brow and Guthrie, 

1988)). Modified with permission from doi: 10.1101/gad.5.5.773.  
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Controversies about Prp24 

Further studies have been conducted in yeast refining the initial model but at the same time bringing 

about some controversy on the function of Prp24 (Ghetti et al., 1995; Raghunathan and Guthrie, 1998; 

Vidaver et al., 1999). Vidaver et al. suggested a dual, U4/U6-stabilizing and -destabilizing, function for 

Prp24 (Vidaver et al., 1999). They proposed the existence of a novel intramolecular stem in U6 

(telestem) that is able to bind Prp24 and that counteracts U4/U6 base-pairing. How Prp24 would 

possibly switch between the two opposing activities of associating U4 and U6 and dissociating U4/U6 

remained unclear. Conversely, using an in vitro splicing assay it was found that Prp24 is not required for 

the ATP-dependent release of U4 from the spliceosome and the subsequent splicing catalysis but only 

for converting free U4 and U6 in an ATP-independent process to U4/U6 and U4/U6.U5 (Raghunathan 

and Guthrie, 1998).  

Finally, in contrast to studies using yeast extracts (Jandrositz and Guthrie, 1995; Shannon and Guthrie, 

1991), in an in vitro binding assay using recombinant Prp24 and in vitro transcribed U4 and U6 RNA, a 

preferential binding of Prp24 to the U4/U6 hybrid over free U6 was observed (Ghetti et al., 1995). It was 

hypothesized that the discrepancy between the findings obtained for extracts and the recombinant 

protein is due to the presence of an additional factor in extracts that triggers immediate leaving of Prp24 

after the latter has assembled U4/U6. Further evidence that Prp24 activity in vivo might be supported by 

additional factors comes from the observation that immuno-purified Prp24 catalyzed the reannealing of 

U4 and U6 more efficiently with whole immuo-purified snRNPs than with similarly obtained but 

deproteinized snRNAs (Raghunathan and Guthrie, 1998). In search of co-factors for Prp24 that facilitate 

U4/U6 formation, Lsm proteins have been rediscovered (Rader and Guthrie, 2002; Ryan et al., 2002).  

Lsm proteins enhance the recruitment of Prp24 to U6 snRNA 

Like-Sm proteins (Lsm) belong to a large family of proteins that have been named after their first 

identified members, the Sm proteins (Tan and Kunkel, 1966). Lsm proteins are found from prokaryotes 

to humans and form hexa- or heptameric rings that are involved in various RNA-related processes such 

as mRNA decay, histone mRNA 3’ end processing, and pre-mRNA splicing (Tharun, 2009). The pathway in 

which a particular Lsm ring acts depends on the composition of its individual members. The Lsm2-8 ring 

has been implicated in splicing (He and Parker, 2000). Specifically, Lsm2-8 were found to co-

immunoprecipitate with U6 snRNA from U6 snRNP, U4/U6 snRNP, and U4/U6.U5 snRNP in yeast (Mayes 

et al., 1999) and from U4/U6.U5 snRNP in HeLa cells (Achsel et al., 1999). In the latter case, the 3’-

terminal U-stretch in the U6 snRNA was required for complex formation (Achsel et al., 1999). Moreover, 

the Lsm proteins facilitated annealing of U4 and U6 snRNA in vitro (Achsel et al., 1999). Subsequently, a 

yeast two-hybrid assay revealed an interaction between Lsm proteins and Prp24 (Rader and Guthrie, 

2002). The interaction was mediated through a conserved motif of 10 amino acids at the very C-terminal 

end of Prp24, the Lsm interaction domain (LID). Deletion of LID led to reduced U4/U6 levels in vivo as 

well as a cold-sensitive growth phenotype reminiscent of the one observed for U4 snRNA mutations that 

destabilize the U4/U6 complex (Shannon and Guthrie, 1991). Finally, recombinant Prp24 lacking the LID 

exhibited slowed-down U4/U6 annealing kinetics in vitro compared to wild-type protein (Rader and 
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Guthrie, 2002). Ryan et al. came to a similar conclusion finding that the 3’-terminal U-stretch in the U6 

snRNA is important for Lsm binding and that the Lsm-U6 interaction greatly enhances recruitment of 

Prp24 to U6 snRNA (Ryan et al., 2002). Taken together, it is likely that a combined effort of Prp24 and 

Lsm2-8 enables efficient assembly of the U4/U6 snRNP in vivo. 

SART3 - the human homolog of Prp24 

The role of SART3 in splicing 

Homologs of Prp24 exist in several eukaryotes including humans where it previously has been described 

as p110 or SART3 (Bell et al., 2002; Gu et al., 1998). Despite an overall low sequence homology between 

different species, certain domains and their relative positions are highly conserved (Fig. 1A of result 

part). All homologs contain the Lsm interaction domain (LID) at the outermost C-terminal end. Between 

one and four RNA recognition motifs (RRMs) are localized in the C-terminal part. The two RRMs in SART3 

correspond to RRM2 and RRM3 in Prp24 (Bell et al., 2002), which, when mutated, lead to defective 

U4/U6 assembly in vivo (Shannon and Guthrie, 1991; Vidaver et al., 1999). The N-terminal part (except 

for S. cerevisiae) contains several HAT repeats (half a TPR), which are thought to mediate protein-

protein interactions in RNA processing pathways (Blatch and Lassle, 1999; Preker and Keller, 1998). Of 

note, Prp24 lacks the HAT repeats making it considerably smaller than its homologs (444 amino acids in 

Prp24 compared to 963 amino acids in SART3). The HAT-functionality might reside in a separate protein 

in S. cerevisiae. Generally, the primary role for Prp24 as a U4/U6 snRNP recycling factor could be largely 

confirmed for SART3 in humans (Bell et al., 2002; Licht et al., 2008; Medenbach et al., 2004). Co-

immunoprecipitations of recombinant SART3 added to HeLa cell-extracted RNA or in vitro transcribed 

U6 RNA showed a specific interaction with U6 snRNA but not with the other spliceosomal RNAs in 

accordance with the results from yeast (Bell et al., 2002; Shannon and Guthrie, 1991). SART3 binding 

within U6 was mapped to an internal region (G38-U57) encompassing the analogous residues that have 

been shown to be crucial for the Prp24-U6 interaction in yeast (T38-C43) (Jandrositz and Guthrie, 1995; 

Shannon and Guthrie, 1991). Mutational analysis of SART3 demonstrated that RRM1 and RRM2 plus 

some of the neighboring sequence is sufficient for U6 snRNA binding but that neither the HAT repeats 

nor the LID are required (Medenbach et al., 2004). Whereas Prp24 has been shown to interact 

exclusively with U6 snRNP (Shannon and Guthrie, 1991), SART3 was found to be associated with U6 

snRNP and the U4/U6 di-snRNP (though, again fitting yeast data, not with the U4/U6.U5 tri-snRNP or 

higher-order complexes) (Bell et al., 2002). Despite this discrepancy, Bell and colleagues observed that 

HeLa cell extracts under SART3-immunodepleted conditions largely fail to recyle the U4/U6 snRNP 

complex following splicing catalysis (Bell et al., 2002). This recycling activity was dependent on both the 

HAT repeats and the RRMs but not the LID (Medenbach et al., 2004). Finally, similar to Prp24, SART3 was 

found to be more efficiently recruited to Lsm-bound U6 snRNP compared to naked U6 snRNA in a LID-

dependent manner (Licht et al., 2008).  

In sum, there is intriguing agreement on the molecular function of Prp24/SART3 as a U4/U6 snRNP 

annealing factor in yeast and human cell culture. However, insights into the developmental function of 

SART3 are sparse. To date, the system wide role of SART3 has only been investigated in zebrafish where 

it was found that a loss-of-function mutant of SART3 leads to embryonic lethality (Trede et al., 2007).   
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Splicing-unrelated functions of SART3    

Besides the vast amount of studies that suggest an essential role for SART3 in splicing, there are a few 

reports that place SART3 in other pathways. SART3 has been implicated to function as transcriptional 

activator (Liu et al., 2002) and repressor (Liu et al., 2004). Liu et al. showed that in HEK293T cells, SART3 

directly binds the HIV-1 retroviral protein Tat, which is a transcriptional activator of the HIV-1 long 

terminal repeat (LTR) promoter element (Liu et al., 2002). Tat recognizes a stem-loop structure called 

transactivating response element (TAR), which is located immediately 3’ to the LTR transcription start 

site (Cullen, 1998). Co-transfection of HEK293T cells with Tat and different amounts of SART3 amplified 

the expression of a LTR promoter-driven reporter gene in a dose-dependent manner. This synergistic 

response was lost upon deletion of the TAR element (Liu et al., 2002). Of note, it cannot be excluded 

that the effects observed by Liu and his colleagues on reporter genes arise due to an involvement of the 

SART3/TAT complex in splicing. A repressive activity of SART3 on transcription has been reported for 

androgen receptor (AR)-mediated gene expression (Liu et al., 2004). AR is a transcription factor that, 

upon binding of the steroid hormone androgen, regulates expression of target genes, most of which are 

implicated in the development and maintenance of the male sexual phenotype (Mooradian et al., 1987). 

Co-immunoprecipitation experiments from HEK293T cell lysates revealed an interaction of SART3 with 

AR. It appears that binding of SART3 to AR prevents binding of the latter to AREs (AR-responsive 

elements) in target gene promoters (Liu et al., 2004). Details concerning the mechanism of action 

remain unknown.  

Additionally, SART3 has been shown to be required for maintenance of the pluripotency factors NANOG, 

OCT4, and SOX2 in human embryonic stem cells (hESCs) (Liu et al., 2012). SART3 is expressed in hESCs 

but its levels are strongly decreased (by 77%) upon differentiation of hESCs concomitantly with a 

reduction in NANOG, OCT4, and SOX2 levels. Knock-down of SART3 in hESCs, kept under 

undifferentiation conditions, led to diminished levels of pluripotency factors but increased levels of 

differentiation markers. Conversely, overexpression of SART3 in hESCs that have been allowed to 

differentiate for 5 days led to, although slightly, increased levels of NANOG, OCT4, and SOX2 but 

reduced levels of differentiation markers (Liu et al., 2012). Whether the modulation of levels of 

pluripotency factors by SART3 is direct or indirect, and if direct, transcriptional, co- or post-

transcriptional, remained an open question. At least in the case of OCT4 it appears that SART3 regulates 

its alternative splicing into isoforms OCT4A and OCT4B (Liu et al., 2013). Overexpression of SART3 

increased the OCT4A splicing form and knock-down of SART3 decreased the OCT4A splicing form, 

respectively, meanwhile levels of the OCT4B splicing form remained unaffected under both conditions. 

Furthermore, co-immunoprecipitation experiments in HEK293 cells revealed an RNA-independent 

interaction of SART3 and Argonaute (AGO) protein family members, AGO1 and AGO2, essential 

components of the RNA silencing pathway (Hock et al., 2007). However, a potential function of SART3 in 

the RNA silencing pathway remains yet to be established. Finally, in the cancer immunology field, SART3 

has been described as a surface tumor-rejection antigen recognized by HLA-A24-restricted cytotoxic T-

lymphocytes in a multitude of cancers (Murayama et al., 2000; Suefuji et al., 2001; Tsuda et al., 2001; 

Yang et al., 1999). Therefore, SART3-derived peptides might be appropriate molecules for 
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immunotherapy in patients with HLA-A24-positive tumors. It is the cancer field that gave SART3 its 

name, squamous-cell carcinoma antigen recognized by T cells-3. 

Terminal uridylyl transferases (TUTases) and a connection to splicing 

Terminal nucleotidyl transferases (TNTases) are enzymes that covalently add templated or non-

templated nucleotides to the 3’ end of target RNAs (Rissland and Norbury, 2008). The large and diverse 

protein family of TNTases is characterized by a nucleotidyltransferase domain (NTD) that contains two 

aspartic acids (in a DXD motif) essential for catalysis and a poly(A) polymerase-associated domain (PAD) 

(Fig. 3A of result part and (Hagan et al., 2009; Holm and Sander, 1995; Schmid et al., 2009)). Many 

TNTases such as Cid1 from S. pombe, unlike canonical poly(A) polymerase, do not contain an RNA 

recognition motif and therefore likely require interacting proteins that direct them to target RNAs 

(Rissland et al., 2007). TNTases possess either uridyl- or adenyl-transferase activity (correspondingly 

referred to as TUTase and TATase) but rarely cytidyl- or guanyl-transferase activity (Scott and Norbury, 

2013). It appears difficult to predict the nucleotide specificity of a given transferase from the sequence 

(Rissland and Norbury, 2008). To distinguish TUTases from TATases, in vitro or, preferably, in vivo assays 

are required and ultimately structures need to be solved in order to understand the biochemical basis 

for nucleotide specificity such as for RET2 from Trypansoma brucei (Deng et al., 2005). Moreover, 

oftentimes a TNTase does not show exclusive specificity towards a particular nucleotide but allows, 

although usually at significantly lower frequency, the incorporation of different NTPs (Rissland et al., 

2007). In the following, I focus on TUTases. 

In HEK293T cells, the RNA-binding protein Lin28 recruits TUT4/ZCCHC11 to the precursor form of the let-

7 miRNA, pre-let-7, and a couple of other pre-miRNAs that contain the tetra-nucleotide sequence motif 

GGAG (miR-107, mir-143, and mir-200c) (Heo et al., 2008; Heo et al., 2009). TUT4/ZCCHC11 adds a 3’-

terminal oligouridine-tail of 10-30 nucleotides to pre-miRNAs which makes them resistant to Dicer-

mediated processing into the mature form and promotes their degradation. Interestingly, non-canonical 

group II pre-miRNAs that contain only a 1-nucleotide 3’ overhang after Drosha processing (compared to 

the 2-nucleotide overhang of canonical group I pre-miRNAs) acquire a monouridylation through the 

action of TUT7/ZCCHC6, TUT4/ ZCCHC11, and TUT2/GLD2 (Heo et al., 2012). Addition of a single uridyl 

residue by these TUTases restores the canonical 2-nucleotide 3’ overhang of group I pre-miRNAs and 

thus allows their subsequent processing into the mature form. In sum, pre-let-7 mono- and 

oligouridylation demonstrates functional duality of uridylation.  

In S. pombe, Cid1 has been reported to add poly(U) tails of hundreds of U residues to polyadenlyated 

mRNAs (Rissland et al., 2007; Rissland and Norbury, 2009). Initially suggested to be a TATase (Read et 

al., 2002), Cid1 was later found to possess TUTase activity that outcompetes its TATase activity in vitro 

and in vivo (Rissland et al., 2007). The same study demonstrated similar activity for TUT7/ZCCHC6, a 

human ortholog of Cid1. It was proposed that uridylation of polyadenylated mRNAs triggers an 

alternative, deadenylation-independent mRNA decay pathway acting in parallel with the classical 

deadenylation-dependent pathway (Rissland and Norbury, 2009). Furthermore, several TUTases have 

been identified in A. thaliana, S. pombe, C. elegans, and H. sapiens by injecting mRNA encoding 

candidate proteins fused to MS2 together with synthetic, radiolabeled RNA substrates harboring MS2 
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binding sites into X. laevis oocytes  (Kwak and Wickens, 2007). To date, identification of the natural RNA 

substrates for some of these TUTases (At2g45620 in A. thaliana and PUP-3 in C. elegans) is still missing 

(Scott and Norbury, 2013). Finally, a human U6 snRNA-specific TUTase (HsTUT1) has been reported 

(Trippe et al., 1998).  

Although the substrate requirements for HsTUT1 have been characterized in vitro (Trippe et al., 2003) 

the functional role of a U-tail on U6 snRNA in splicing remains largely speculative. The 3’ end of U6 

snRNA is not only uridylated but subject to several modifying activities. U6 snRNA is transcribed by RNA 

pol III (Reddy et al., 1987) and similar to other RNA pol III products, including 5S rRNA and tRNAs (Rinke 

and Steitz, 1982), its precursor form interacts with the La protein in yeast (Pannone et al., 2001) and 

metazoans (Rinke and Steitz, 1985). The La protein binds nascent RNA pol III transcripts through their 

characteristic 3’-terminal U-stretch (usually 4-5 Us) and protects them from exonucleolytic degradation 

(reviewed in (Wolin and Cedervall, 2002)). Not only the 3’ U-tract has been shown to be pivotal for La 

protein binding but similarly the 3’ OH-group. Substituting the 3’ OH by a phosphate significantly 

reduced the interaction of La protein purified from HeLa cells with synthetic tRNA (Stefano, 1984) and of 

La protein purified from D. melanogaster and S. cevervisiae with in vitro transcribed U6 snRNA (Yoo and 

Wolin, 1994). Of note, in HeLa cells only 10% of U6 snRNA is available with a 3’ OH, whereas 90% 

possess a cyclic 2’,3’-phosphate (>p), though this ratio varies depending on the organism (100% >p in 

Soybean, 0% >p Trypanosoma brucei rhodesiense) or developmental stage (Lund and Dahlberg, 1992; 

Rinke and Steitz, 1985; Terns et al., 1992). The current model suggests that HsTUT1 is required to 

restore the four template uridines found in newly transcribed U6 snRNA thus counteracting 

exonucleolytic activity (Trippe et al., 2003; Trippe et al., 1998). Lack of an intact U-tail might prohibit the 

formation of >p and therefore interfere with Lsm protein recruitment (Licht et al., 2008).  
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4.3 Results 

SART-3 interacts with LSM/SNR proteins and with USIP-1 

Prp24 from S. cerevisiae and its human homolog SART3 function in the recycling of the U4/U6 snRNP, a 

transient complex that is crucial for spliceosome assembly (Bell et al., 2002; Shannon and Guthrie, 

1991). In C. elegans, the protein most closely related to Prp24/SART3 is encoded by B0035.12 

(henceforth the gene is referred to as sart-3 and the protein as SART-3) sharing 26% and 45% identity 

and similarity, respectively, with SART3 and 9% and 17% with Prp24 in the amino acid sequence. The 

domain organization of SART-3 is conserved from yeast to humans, with the notable absence of HAT 

repeats in Prp24 of S. cerevisiae (Fig. 1A). Given the lack of previous studies on SART-3 and the fact that 

multicellular in vivo models for this protein are largely missing, we aimed at a developmental and 

molecular characterization of SART-3 in C. elegans. In order to find interaction partners of SART-3 we 

carried out co-immunoprecipitations (co-IPs) with lysates from worms expressing transgenic, N-

terminally FLAG-tagged SART-3 (Fig. 1B, lanes 1-3) and control worms expressing the triple 

GFP/His/FLAG-tag (Fig. 1B, lanes 4-6). Complete eluates from such IPs were subjected to mass 

spectrometry (MS) and the proteins identified with SART-3 but not with the GFP/His/FLAG control 

construct are presented in Figure 1C and S1A. To confirm the initial MS results (IP1 in Fig. 1C) the IP was 

repeated, this time, however, with a different protein extraction method to obtain lysates as well as a 

different approach to concentrate eluates prior to MS (see legend of Figure 1 for details) (IP2 in Fig. 1C). 

Despite deviating in crucial parameters, the outcome of IP1 and IP2 is virtually identical, strengthening 

the credibility of the result. Two main groups of proteins are found in complex with SART-3, namely LSM 

and SNR proteins, the latter being the C. elegans Sm proteins. The heptameric Lsm2-8 ring is known to 

bind exclusively to the U6 snRNA, whereas the Sm ring binds to the U1, U2, U4, and U5 snRNAs (He and 

Parker, 2000). Remarkably, in our co-IP we were able to recover the entire seven-membered Lsm ring 

and, with the exception of SNR-6, also the Sm ring. Considering that human SART3 has been shown to 

specifically bind to the U6 snRNP and the U4/U6 snRNP complex (Bell et al., 2002), our data is probably 

best explained by assuming a similar behavior for C. elegans SART-3. Interestingly, we find that RNase A 

treatment abolishes the interaction of SART-3 with LSM proteins, despite the presence of the Lsm 

interaction domain (LID) in SART-3 (Fig. 1A). The conserved C-terminal LID motif has previously been 

shown by a yeast two-hybrid assay to be required for Lsm binding in yeast (Rader and Guthrie, 2002) 

and by an in vitro binding assay to be important to recruit SART3 to the Lsm-bound U6 sRNA in HeLa 

cells (Licht et al., 2008). Here, we observe that binding of SART-3 to LSM proteins is RNA-dependent or 

at least enhanced by RNA. 
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Figure 1 
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In addition to LSM and SNR proteins, we immunoprecipitated USIP-1 (U Six snRNA Interacting Protein, 

gene usip-1/ZK863.4) with SART-3 in an RNA-dependent manner (Fig. 1C). Domain prediction software 

(InterPro) revealed the existence of a PAP-associated domain (PAD) characteristic for terminal adenylyl- 

or uridylyltransferases, short TATases or TUTases (Fig. 3A). Besides, USIP-1 contains a conserved DXD 

motif that, in homologous proteins, is required for catalytic activity whereby D represents an aspartic 

acid and X represents any amino acid (Heo et al., 2009; Schmid et al., 2009). In light of the previous 

identification of a U6-specific TUTase, HsTUT1 (Trippe et al., 1998), USIP-1 caught our attention. Of note, 

there are TUTases in C. elegans, such as PUP-2 and CID-1, that are phylogenetically more closely related 

to HsTUT1 than USIP-1 (Schmid et al., 2009). In order to verify the interaction of SART-3 and USIP-1 

found by MS, we created a worm line expressing C-terminally GFP/3xFLAG-tagged USIP-1 from a fosmid 

(Sarov et al., 2012). Transgenic USIP-1 was indeed able to co-IP endogenous SART-3, though, in 

agreement with the MS results, the interaction was lost by RNase A treatment (Fig. 1D, upper panel, 

lanes 1 and 3-5). A GFP/His/FLAG control construct did not bind to SART-3 (lanes 2 and 6-8). Similarly, 

performing the reverse IP, endogenous SART-3 was found to co-IP transgenic USIP-1, although 

inefficiently (Fig. 1D, lower panel). This low efficiency can be explained by the fact that the USIP-

1/GFP/3xFLAG transgene forms an extrachromosomal array that is only transmitted to ~60% of the 

progeny. Thus, ~40% of the worms used in the IP do not contain the USIP-1/GFP/3xFLAG transgene but 

do contain endogenous USIP-1 competing for SART-3 binding. Of note, whereas in HEK293 cells SART3 

has been found to interact with the Argonaute proteins AGO1 and AGO2 (Hock et al., 2007), we do not 

find any Argonaute proteins associated with SART-3 in C. elegans (data not shown). We conclude that 

SART-3 primarily interacts with the U4/U6 di-snRNP complex, however, a transient interaction with U6 

single snRNP cannot be excluded, respectively, is even suggested by our model (see discussion). 
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SART-3 and USIP-1 are present in different spliceosomal sub-complexes 

Our SART-3 co-IP data (Fig. 1) did not formally exclude an interaction of SART-3 with U1, U2, U4, or U5 

snRNP complexes or combinations thereof. In order to more precisely define the sub-spliceosomal 

complex(es) in which SART-3 and USIP-1 reside, we conducted co-IPs with lysates from worms 

expressing FLAG/SART-3 and USIP-1/GFP/3xFLAG, respectively, and analyzed the bound RNA by 

northern blot (Fig. 2A). We find that SART-3 immunoprecipitates U6 and U4 but not U1, U2, or U5 

snRNA. Given that purified Prp24 and recombinant SART3 only bind U6 snRNA but not U1, U2, U4, or U5 

snRNAs (Bell et al., 2002; Shannon and Guthrie, 1991), we hypothesize that the U4 snRNA that we 

detect originates from the U4/U6 snRNP. USIP-1 exclusively interacts with the U6 snRNA (Fig. 2A). In line 

with this finding, USIP-1 does not interact with SNR proteins as assessed by MS results obtained from 

the same co-IP (Fig. 2B). However, despite an interaction of USIP-1 with U6 snRNA, USIP-1 does not 

interact with LSM proteins (Fig. 2B). This argues for an involvement of USIP-1 in the processing of 

LSM/SNR-unbound, possibly newly transcribed U6 snRNA into its mature form or in an early step during 

spliceosome assembly, prior to LSM and SNR participation. Several other proteins apart from LSM and 

SNR proteins co-immunoprecipitate with SART-3 and USIP-1 but are not further pursued in this study 

(Fig. S1B). Together, these results provide evidence for SART-3 and USIP-1 being present in distinctive 

complexes, although the fact that they precipitate each other suggests that they, at least transiently, 

engage in the same complex. 
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Physical interaction between SART-3 and USIP-1 predicts an overlapping expression pattern. We 

therefore set out to investigate in which tissues and developmental stages SART-3 and USIP-1 occur. We 

determined the spatio-temporal expression pattern of SART-3 and USIP-1 by fluorescence microscopy 

exploiting fosmids expressing sart-3 and usip-1 under their endogenous promoters and with a C-

terminal GFP/3xFLAG-tag. The GFP signal was generally low and analysis was further complicated by 

mosaic expression due to the extrachromosomal nature of the fosmids. Nevertheless, analyzing multiple 

worms for each developmental stage led us to conclude that SART-3 as well as USIP-1 are expressed 

constitutively and ubiquitously across developmental stages and tissues, respectively. Exemplary 

pictures are shown in figure 3A and B. SART-3 and USIP-1 are dispersed throughout the nucleoplasm 

(arrows) but are depleted from the nucleolus (arrow heads). Sustained expression of SART-3 over the 

entire C. elegans life cycle was further validated by western blotting of lysates extracted at different 

time points during development using an antibody against endogenous SART-3 (Fig. 3C). 
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sart-3 and usip-1 interact genetically 

Since we have demonstrated an RNA-mediated physical interaction between SART-3 and USIP-1, we 

next wanted to know whether they functionally interact. In order to look for genetic interaction, we 

made use of a putative null mutant of usip-1, usip-1(tm1897), kindly provided by Dr. Shohei Mitani. The 

tm1897 allele is a deletion of 542 bases that leads to a frame shift at amino acid position 233 (I233T) and 

to a premature termination codon shortly thereafter (S276Stop) (Fig. 4A). Thus, the mRNA transcript of 

usip-1(tm1897) is presumably degraded by nonsense-mediated decay (Baker and Parker, 2004). RNA 

extracted from worms homozygous for tm1897 was subjected to semi-quantitative RT-PCR in order to 

test two regions of usip-1, one before and one after the deletion, for their ability to produce mRNA (Fig. 

S2A). The region in front of the tm1897 deletion, which includes the catalytic DXD motif (Fig. 4A), did not 

reveal any band, whereas a strong band arose for wild-type worms (Fig. S2B). The region after the 

deletion showed mRNA levels similar to wild-type worms. However, it is unlikely that this C-terminal 

fragment, even if properly translated, would be functional given the loss of the DXD motif. Worms 

homozygous for tm1897 are viable but developmentally slightly delayed (data not shown) and display 

moderately reduced brood size (data not shown). The same weak phenotype was observed when wild-

type worms were exposed to sart-3 RNAi (data not shown). 

We analyzed whether combined diminishment of SART-3 and USIP-1 functionality would elicit a 

synthetic phenotype by subjecting L1 worms, either wild-type (N2) or usip-1(tm1897) mutant, to sart-3 

and mock RNAi. Efficient knock-down of SART-3 was confirmed by western blot (Fig S3A, upper panel). 

After 48h at 25°C wild-type worms under mock RNAi conditions had laid many embryos (Fig. S3B). 

Meanwhile, wild-type worms under sart-3 RNAi conditions and usip-1(tm1897) worms under mock RNAi 

conditions had fewer progeny, and usip-1(tm1897) worms under sart-3 RNAi conditions did not have 

any progeny (Fig. S3B). After 96 h at 25°C the conditions N2/mock RNAi, N2/sart-3 RNAi, and usip-

1(tm1897)/mock RNAi revealed hatched progeny that had exhausted the food, whereas the concerted 

depletion of sart-3 and usip-1 displayed mainly arrested embryos with only a few hatched worms (Fig. 

4B). In a similar but quantitative experiment the number of hatched progeny after 60 h at 25°C was 

assessed and revealed a sharp drop for usip-1(tm1897)/sart-3 RNAi but only a slight drop for N2/sart-3 

RNAi and usip-1(tm1897)/mock RNAi compared to N2/mock RNAi (Fig. 4C). Additionally, when L4 worms 

were exposed to sart-3 or mock RNAi, the F1-progeny of usip-1(tm1897)/sart-3 RNAi arrested at the L3 

stage, whereas the other conditions led to fertile F1-progeny (data not shown). Expressing C-terminally 

FLAG-tagged usip-1 in a usip-1(tm1897)/sart-3 RNAi background rescued the embryonic arrest 

confirming that the synthetic phenotype is due to the deletion of usip-1 (Fig. 4C).  

To test whether catalytic activity of USIP-1 was required for its genetic interaction with SART-3, we 

generated a worm line expressing a supposedly catalytically inactive version of USIP-1, in which the 

aspartic acids in the DXD motif had been mutated to alanines. USIP-1(D183A/D185A)/FLAG was not able 

to rescue the embryonic arrest of usip-1(tm1897)/sart-3 RNAi, highlighting the importance of TUTase 

activity for the physiological function of USIP-1 (Fig. 4C). Inability of the USIP-1(D183A/D185A)/FLAG 

protein to rescue is not due to destabilization in consequence of the point mutations, as it is expressed 

at similar levels as the wild-type USIP-1/FLAG transgene (Fig. S3C). In order to test whether the 
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observation of a genetic interaction between sart-3 and usip-1 is due to altered U6 snRNA levels, we 

carried out a northern blot with RNA from N2 and usip-1(tm1897) worms grown under normal or mock 

RNAi conditions as well as with RNA from usip-1(tm1897) worms exposed to sart-3 RNAi (Fig. S3A, lower 

panel). None of the conditions assayed revealed significantly changed U6 snRNA levels. In sum, we 

demonstrate a genetic interaction between sart-3 and usip-1 specified by a terminal phenotype, which, 

however, is not attributed to modified U6 snRNA levels. 

Figure 4 

(A)       (B) 
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sart-3 null mutant worms die as adults 

Knock-down of genes by RNAi is usually incomplete, leaving residual levels of the targeted mRNA, which 

are potentially able to maintain a vital function. In order to exclude this possibility for sart-3 we 

generated a bona fide null allele making use of the MosDEL (Mos1-mediated deletion) technique 

allowing for targeted gene deletion (Frokjaer-Jensen et al., 2010). Exploiting the ttTi5820 Mos1 

transposon insertion within sart-3, we deleted a portion of the gene corresponding to amino acids 1-715 

and termed the allele xe3 (Fig. 1A). An affinity-purified polyclonal antibody against SART-3 failed to 

detect a band for full-length SART-3 in a western blot with lysates from worms homozygous for the xe3 

allele (Fig. 5A, lane 3 and 6). The status of the C-terminal fragment not targeted by MosDEL (amino acids 

716-836) remained unclear as it does not cover the epitope region for our antibody. At any rate, 

translation of the C-terminal fragment is improbable considering the absence of the AUG start codon. 

RNA sequencing confirmed absence of reads in the region targeted by MosDEL (Fig. S4A). Worms 

homozygous for the xe3 allele displayed a protruding vulva once reaching adulthood and eventually 

burst, a phenotype that was 100% penetrant (Fig. 5B, i). Furthermore, sart-3-deleted worms failed to 

produce oocytes (Fig. 5B, iv). We note, that until reaching adulthood there was no apparent phenotype 

apart from a developmental delay (xe3/+ worms reaching early L4 stage after 28h at 25° and xe3/xe3 

worms after 31h) (Fig. S4B). Lack of more detrimental phenotypes in embryos and the subsequent larval 

stages of xe3/xe3 worms might be due to wild-type mRNA or protein contributed by the heterozygous 

mothers (xe3/+). The vulval bursting as well as the sterility was fully rescued by transgenic, C-terminally 

GFP/His/FLAG-tagged SART-3 (Fig. 5B, ii and v) as well as N-terminally FLAG-tagged SART (data not 

shown). Wild-type worms are shown as a control (Fig. 5B, iii and vi). This confirms that the observed 

phenotypes indeed originate from a loss of SART-3 activity. Levels of the SART-3/GFP/His/FLAG 

transgene were shown to be similar to endogenous SART-3 levels by Western blot (Fig. 5A, compare lane 

2 with 3 and 5 with 6). Taken together, the xe3 allele leads to absence of the sart-3 gene product (RNA 

and protein) and thus presents a genuine null allele by means of molecular criteria. sart-3 loss-of-

function causes a penetrant adult lethal phenotype. 
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In Figure 2A we show an interaction between USIP-1 and U6 snRNA. Due to the fact that USIP-1 

comprises a conserved PAD and DXD motif characteristic of a terminal transferase (Fig. 3A), it is 

tempting to speculate that USIP-1 modifies the 3’-terminal poly(U)-tail on U6 snRNA. We employed 3’-

RACE to compare the 3’ heterogeneity on U6 snRNA in wild-type worms and worms lacking either SART-

3 or USIP-1 (Fig. 6). As a consequence of the lethal phenotype of worms homozygous for the xe3 allele 

(xe3/xe3), worms were maintained as heterozygotes (xe3/+) utilizing the nT1[qls51] balancer containing 

a fluorescent marker (pharyngeal GFP) (Table S1). This allows to differentiate between xe3/xe3 worms, 

which lack pharyngeal GFP, and xe3/+ and +/+ worms, which have pharyngeal GFP. Clean populations of 

xe3/xe3 worms were obtained by sorting out GFP-containing worms from a mixed population on a 

COPAS BIOSORT device (Fig. 5A (compare lane 1 with 2 and 4 with 5) and Fig. S4A)). Northern blotting of 

RNA extracted from worms thus obtained did not reveal altered U6 snRNA levels compared to wild-type 

worms (Fig. S4C). In agreement with previous studies in HeLa cells (Gu et al., 1997; Rinke and Steitz, 

1985), the 3’ end of U6 snRNA in wild-type worms (N2) is heterogeneous in size ranging from 4-7 U-

residues, thus exhibiting U-tails that are shorter as well as longer relative to the five templated uridines 

(Fig. 6). Similarly, worms deleted for sart-3 or usip-1 show variable U-stretches, however, abolishment of 

these proteins does not extend the scope of 4-7 U-residues observed in wild-type worms. Lack of an 

effect for usip-1(tm1897) is probably surprising but might be explained by TUTases acting redundantly in 

vivo. Of note, fractionation of HeLa cell extracts revealed U6-specific but also unspecific TUTase activity 

(Trippe et al., 1998). Alternatively, as our analysis considers only U6 molecules that have a 3’-hydroxyl 

group (see methods) corresponding to just ~5% of total U6, we may miss an effect of USIP-1 on ~95% of 

U6 molecules containing an unidentified 3’ end group (Lund and Dahlberg, 1992), which might, or might 

not, be amenable to terminal transferase activity. 
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4.4 Discussion 

In this study we analyzed the molecular function of SART-3 in C. elegans and characterized the 

phenotypes arising from its targeted deletion. We performed co-IPs on transgenic SART-3 and found an 

interaction with the splicing-related LSM and SNR proteins (Fig 1C). This is in agreement with findings for 

homologous proteins in yeast (Prp24) and mammals (SART3) which have been shown to be required for 

the assembly of the U4/U6 snRNP from individual U4 and U6 snRNPs (Bell et al., 2002; Shannon and 

Guthrie, 1991). However, whereas Prp24 appears to be part of the U6 mono-snRNP, SART3 is found in 

the U6 mono-snRNP and the U4/U6 di-snRNP. When we assessed the spliceosomal snRNAs that 

immunoprecipitate with SART-3 from whole worm lysates, we were able to detect U6 and U4 but not 

U1, U2, or U5 (Fig. 2A). U4 snRNA is most likely detected through its interaction with U6 snRNA and not 

directly bound by SART-3 (Bell et al., 2002). We thus conclude that SART-3 binds to U4/U6 di-snRNP but 

not to U4/U6.U5 tri-snRNP and the spliceosome, though our data does not allow to conclusively answer 

the question if and to what extent SART-3 interacts with the singular U6 snRNP complex. Besides, we 

show that the Lsm interaction domain (LID) at the C-terminal end of SART-3 is not sufficient to bind to 

LSM proteins in the absence of RNA (Fig. 1C). This might be equally true for human SART3. Whereas for 

Prp24 there is a clear consensus on a role of the LID in mediating an interaction with Lsm proteins and 

formation of the U4/U6 snRNP (Rader and Guthrie, 2002; Ryan et al., 2002), the LID of SART3 in HeLa 

cells appears to be largely dispensable for U6 snRNA binding and in vitro U4/U6 snRNP recycling 

(Medenbach et al., 2004). The reason for this discrepancy between yeast and mammals is currently 

unclear.  

As expected for a spliceosome assembly factor, SART-3 and similarly USIP-1 are constitutively and 

ubiquitously expressed (Fig. 4). Immunofluorescent labeling as well as EGFP-tagging of SART3 in HeLa 

cells and human primary fibroblasts revealed an exclusive nuclear localization (Stanek and Neugebauer, 

2004; Stanek et al., 2003). SART3 is found throughout the nucleoplasm but is highly enriched in Cajal 

bodies (CB), where U4/U6 snRNP recycling takes place (Stanek and Neugebauer, 2004). Localization of 

SART3 to CBs was dependent on the CB-specific protein coilin (Stanek and Neugebauer, 2004). Of note, 

neither CBs nor an ortholog of the coilin protein have yet been identified in C. elegans. Consistently, 

fluorescence microscopy reveals a diffuse signal for SART-3 throughout the nucleoplasm lacking any 

focal spots (Fig. 4A). How maturation of U6 snRNA and assembly of U6-containing snRNPs are 

temporally coordinated without spatial separation of these events in C. elegans remains to be 

investigated in future studies. 

Although the molecular function of SART3/Prp24 has been investigated in sufficient detail in yeast and 

HeLa cells its role in development remains elusive. In C. elegans, loss of SART-3 leads to sterility (lack of 

oocytes) and eventually to death through vulval bursting (Fig 5B). A lethal phenotype has also been 

described for SART3 in zebrafish at 7-8 days postfertilization (Trede et al., 2007). However, whereas 

steady-state levels of U6 snRNA are reduced in zebrafish upon deletion of SART3, they remain 

unaffected in C. elegans (Fig. S4C). Whether the fatal phenotypes observed upon SART-3 deletion are 

linked to its role in splicing or another, possibly yet unrevealed function, remains to be investigated. 
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Taking into account the predominant interaction of SART-3 with LSM and SNR proteins under our 

conditions we speculate that spliceosome assembly is the main function of SART-3. 

U6 snRNA undergoes a series of post-transcriptional modifications affecting internal residues, which 

include the conversion of certain uridines to pseudouridines and 2’-O-methylation of some backbone 

sugars (Tycowski et al., 1998). Besides multiple internal residues, the 3’ end of U6 snRNA is subjected to 

major processing. U6 snRNA is transcribed by RNA pol III and accordingly its primary transcript ends in a 

series of uridine (U) residues that serve as a termination signal (4-5 Us in higher eukaryotes) and 

contains a 3’ hydroxyl (OH) group (Gunnery et al., 1999). Intriguingly, the 3’ poly(U) stretch in U6 snRNA 

has been found to be highly variable in length through post-transcriptional removal and addition of Us in 

murine tumor cells (Hirai et al., 1988) and HeLa cells (Gu et al., 1997; Lund and Dahlberg, 1992; Reddy et 

al., 1987; Tazi et al., 1993). What are the enzymes mediating the tailing and trimming of U6 snRNA? 

Here we describe USIP-1 from C. elegans, which we find to bind to U6 snRNA but not to the other 

spliceosomal snRNAs (Fig. 2A). Moreover, whereas USIP-1 binds to U6 snRNA, it does not bind to LSM or 

SNR proteins, which are components of the U6-containing snRNP complexes (e.g. U6 snRNP, U4/U6 

snRNP). This result suggests that USIP-1 is involved in U6 snRNA maturation rather than snRNP 

assembly. However, although we find that USIP-1 does only interact with U6 among the spliceosomal 

snRNAs, it remains to be determined whether or not USIP-1 targets splicing-unrelated RNA substrates.  

Also, a formal demonstration of uridylyl-transferase activity for USIP-1 is still lacking. Though, the fact 

that a supposedly catalytically inactive version of USIP-1 is not able to rescue the terminal phenotype of 

usip-1(tm1897) in a sart-3 RNAi background, strongly suggest that transferase activity of USIP-1 is crucial 

to its physiological function (Fig. 3C). Trippe et al. previously identified a U6-specific TUTase in Hela cells, 

HsTUT1 (Trippe et al., 1998), biochemically characterized it (Trippe et al., 2003) and eventually 

sequenced and cloned it (Trippe et al., 2006). Addition of purified HsTUT1 to in vitro transcribed U6 

snRNA substrates varying in their U-tail length revealed a preference for HsTUT1 to restore the four 3’ 

end template Us whereas incorporation of additional, non-templated Us might be mediated by an 

unspecific TUTase (Trippe et al., 2003; Trippe et al., 1998). Nevertheless, USIP-1 is phylogenetically only 

distantly related to HsTUT1 (Schmid et al., 2009) and thus further experimental evidence is required to 

bring to light whether USIP-1 functions in an analogous manner to HsTUT1. Trimming of the U6 snRNA 3’ 

U-tail is supposedly mediated by exonuclease activity. Indeed, recently, the 3’-to-5’ exonuclease MPN1 

has been identified in yeast and humans to trim U6 oligo(U)-tails (Shchepachev and Azzalin, 2013). 

However, a homolog of MPN1 does not exist in C. elegans. 

Consolidating our data with previous studies, we propose the following model (Fig. 7). Both the 3’-

terminal U stretch and the 3’ OH group of newly transcribed U6 snRNA are bound by the La protein 

which stabilizes the RNA (reviewed in (Wolin and Cedervall, 2002)). U6 snRNA with a free 3’ hydroxyl 

group is amenable to tailing and trimming of the U-tail leading to a steady-state population of U6 

snRNAs heterogeneous in size  (Gu et al., 1997; Hirai et al., 1988; Lund and Dahlberg, 1992; Reddy et al., 

1987; Tazi et al., 1993). In humans, tailing is mediated by the above mentioned enzyme HsTUT1 (Trippe 

et al., 1998). We speculate that a similar function might be carried out by USIP-1 in C. elegans. Trimming 

activity counteracting HsTUT1/USIP-1-mediated tailing is brought about by the conserved 3’-to-5’ 

exonuclease MNP1 (Shchepachev and Azzalin, 2013). Importantly, MNP1 generates U6 molecules that 
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terminate with a cyclic 2’,3’-phosphate (>p). Formation of a >p reduces the affinity to La protein and 

increases the affinity for Lsm proteins (Licht et al., 2008; Yoo and Wolin, 1994). At the same time, 

formation of >p and recruitment of Lsm proteins appears to replace HsTUT1/USIP-1 at the 3’ end of U6 

as USIP-1 only binds to U6 snRNA not bound by Lsm proteins (Fig. 2). In HeLa cells, formation of >p even 

takes place upon targeted degradation of U1 and U2 snRNA suggesting that its generation is not 

dependent on the formation of the spliceosome or splicing for that matter (Gu et al., 1997). Moreover, 

>p is detected on U6 snRNAs with U-tails longer than the four templated Us (Gu et al., 1997) and these 

heterogeneously sized U6 snRNAs are incorporated into U4/U6 snRNP, U4/U6.U5 snRNP, and the 

spliceosome (Tazi et al., 1993). Formation of the U4/U6 snRNP from the individual U4 and U6 snRNPs 

requires the action of Prp24/SART3/SART-3 (this study and (Bell et al., 2002; Shannon and Guthrie, 

1991)). Notably, we find that SART-3 and USIP-1 precipitate each other in an RNA-dependent manner 

(Fig. 2B) suggesting their presence in a common complex. Presumably, based on the finding that 

recombinant human SART3 can bind to in vitro transcribed U6 snRNA lacking >p (Bell et al., 2002), USIP-

1 and SART-3 both bind to newly transcribed U6 snRNA but upon formation of >p and binding of Lsm 

proteins the interaction with USIP-1 is weakened whereas the interaction with SART-3 is reinforced. 

Association of U5 snRNP with the U4/U6 di-snRNP to form U4/U6.U5 tri-snRNP as well as subsequent 

spliceosome assembly steps are reviewed by Nagai and colleagues (Nagai et al., 2001). Whether >p is 

converted back to OH following splicing catalysis and thus releasing the Lsm proteins from U6 snRNA is 

unknown (Fourmann et al., 2013). 
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4.5 Supplementary figures  
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Figure S1 

(A) % coverage of IP1 and IP2 shown in figure 1C. (B) Additional proteins identified by mass 

spectrometry in the co-IP shown in figure 2B enriched by ≥ 10-fold in either the USIP-1 or SART-3 IP over 

the GFP-control. Table is ranked according to the USIP-1/GFP ratio. Numbers indicate the exclusive 

spectrum count, i.e. number of spectra mapping uniquely to a given protein. 
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Figure S2 

(A) usip-1/ZK863.4 genomic locus indicating the region of the deletion tm1897, the PAP-associated 

domain (PAD), and the two regions amplified in (B) (dashed lines). (B) Semi-quantitative RT-PCR on usip-

1 with oligo(dT) primers amplifying the regions indicated in (A). RT = reverse transcriptase. 
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Figure S3 

(A) Upper panel: Western blot of lysates extracted from wild-type (N2) worms or worms homozygous for 

the tm1897 allele (usip-1) exposed to no RNAi (lane 1-2), mock RNAi (lane 3-4), or sart-3 RNAi (lane 5). 

Deletion of usip-1 does not affect SART-3 levels (compare lane 1 with 2). Knock-down of sart-3 by RNAi 

reduces its levels by about 80% (compare lane 1 with 5). Lower panel: Northern blot for U6 snRNA using 

RNA extracted from worms treated as described for the upper panel. Quantification of bands is relative 

to the underlined value, which has been set to 1. (B) N2 or usip-1(tm1897) worms were exposed to 

mock or sart-3 RNAi at the L1 stage (P0 generation) and cultured at 25°C. Pictures were taken after 48h 

showing P0 adults and F1 embryos. The number of laid embryos was reduced for N2/sart-3 RNAi and 

usip-1(tm1897)/mock RNAi relative N2/mock RNAi. No embryos were observed after 48h for usip-

1(tm1897)/sart-3 RNAi. (C) Western blot showing similar protein levels for transgenic, FLAG-tagged wild-

type USIP-1 or mutant USIP-1(D183A/D185A). Both transgenes are expressed in a usip-1(tm1897) 

background and were detected through their FLAG-tag. 
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Figure S4 

(A) Snapshot of genome browser showing absence of mapping reads in the MosDEL-targeted region of 

sart-3(xe3) compared to wild-type N2 worms (sart-3(+)) in a poly(A)+ RNA deep sequencing experiment. 

(B) DIC microscopy pictures. Worms homozygous for the xe3 allele need 31h at 25°C to reach early L4 

stage (left panel) whereas worms heterozygous for xe3 only need 28h (right panel). (C) Northern blot for 

U6 snRNA using RNA from wild-type (N2) worms (denoted ‘+’ in the figure) and worms homozygous the 

xe3 allele (denoted ‘-’ in the figure) at two different developmental stages (L3 and L4). The experiment 

was performed in duplicates (Repl1 and Repl2). Quantification of bands is relative to the underlined 

value, which has been set to 1. 
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4.6 Methods 

Strains 

Strains were cultured using standard methods on OP50 seeded NGM plates (Stiernagle, 2006). The 

Bristol N2 strain was used as wild-type. Mutant and transgenic strains generated for this study are listed 

in Table S1. Except for HW1340 and HW1342, which express an extrachromosomal array, transgenic 

lines were obtained by Mos1-mediated Single-Copy transgene Insertion as previously described 

(MosSCI; (Frokjaer-Jensen et al., 2012; Frokjaer-Jensen et al., 2008). All strains have been backcrossed 

two times, unless indicated otherwise. usip-1(tm1897) animals were obtained from Dr. Shohei Mitani 

and backcrossed two times. The resulting strain was called HW1251. 

RNAi 

The RNAi clone against sart-3 was obtained from (Kamath and Ahringer, 2003). RNAi was carried out by 

feeding worms with HT115 bacteria expressing dsRNA of sart-3 or an insertless plasmid (L4440) as 

negative control according to (Timmons and Fire, 1998). 

Single-copy transgene insertion 

DNA fragments were inserted into pCFJ210 (for chromosome I), pCFJ150 (for chromosome II) or pCFJ201 

(for chromosome IV) vectors by Multisite Gateway Technology (Life Technologies, Carlsbad, CA, USA) 

according to the supplier’s protocol and as detailed in Table S1. Mos1-mediated Single-Copy transgene 

Insertion (MosSCI) was performed according to previous reports (Frokjaer-Jensen et al., 2012; Frokjaer-

Jensen et al., 2008). Successful insertion of transgenes was verified by PCR. 

Semi-quantitative RT-PCR 

For mRNA quantification, cDNA was generated from total RNA using the ImProm-II Reverse 

Transcription System (Promega, Fitchburg, WI, USA) and oligo(dT) primers according to the supplier’s 

protocol. cDNA was diluted 1:10 and amplified using Taq DNA polymerase (New England Biolabs, 

Ipswich, MA, USA) and gene-specific primers (Table S2). 

Site-directed mutagenesis 

Site-directed mutagenesis was performed by PfuUltra II Fusion HS DNA Polymerase (Agilent 

Technologies, Santa Clara, CA, USA) according to the supplier’s protocol using specific primers (Table 

S2).  

Antibodies and Western blotting 

Polyclonal, affinity purified anti-SART-3 was generated by SDIX (Newark, DE, USA) using DNA 

immunization of rabbits against a polypeptide (amino acids 1-163). Antibodies were used at the 

following dilutions: rabbit anti-C. elegans SART-3 (Q5635) 1:2’000, mouse anti-Actin (clone C4, 
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MAB1501, Millipore, Billerica, MA, USA) 1:10’000, mouse anti-GFP (Roche, Penzberg, Germany) 1:2’000, 

mouse anti-FLAG (clone M2, F1804, Sigma-Aldrich, St. Louis, MI, USA) 1:2’000. Western blotting was 

performed as previously described (Miki et al., 2014). Band intensities were quantified using ImageJ 

software (NIH, Bethesda, MD, USA). 

RNA isolation and Northern blotting 

Worms were mixed with TRI Reagent (Molecular Research Center, Cincinnati, OH, USA) and freeze-

thawed as described previously (Bethke et al., 2009). The RNA was extracted according to the 

manufacturer’s instructions. Total RNA or RNA from IP’s (see immunoprecipitation) was separated on a 

10% urea-PAGE gel and transferred to a Hybond-NX membrane (GE Healthcare, Little Chalfont, UK) by 

semi-dry blotting. Cross-linking was carried out by UV irradiation using a UV Stratalinker 1800 

(Stratagene, La Jolla, CA, USA) followed by baking (1 h at 80°C) (or by chemical cross-linking as described 

previously (Pall and Hamilton, 2008) in the case of Fig. S3A and S4C). Single-stranded DNA probes were 

designed with Unique Probe Selector (http://array.iis.sinica.edu.tw/ups/index.php). Sequences of 

probes are given in Table S2. Probes were 5’ end-labelled with ATP-γ-[32P] and polynucleotide kinase 

according to standard protocols. Hybridization was carried out overnight in 4x SSPE (0.6 M NaCl, 40 mM 

NaH2PO4, 4 mM EDTA), 7% SDS, 40% formamide at 37°C. 

Immunoprecipitation 

Mixed stage worms were lysed with a Dounce Tissue Grinder (BC Scientific, Miami, FL, USA) in 30 mM 

HEPES/KOH pH 7.4, 100 mM KCl, 1.5 mM MgCl2, 0.1% Triton X-100, and protease inhibitors (Protease 

Inhibitor Cocktail Tablets, EDTA-free, Roche). Lysates were cleared at 16,000xg for 15 min. RNase A-

treated samples were additionally incubated with 0.1 mg/ml RNase A (Sigma-Aldrich) for 1 h at 4°C. 

Anti-FLAG IP: lysates were incubated with anti-FLAG M2 magnetic beads (Sigma-Aldrich) for 2 h. Washes 

were performed in lysis buffer. Elution was achieved by incubation with 1 mg/ml FLAG peptide (Sigma-

Aldrich). For RNA extractions, TRI Reagent (Molecular Research Center) was directly added to the 

magnetics beads. Anti-SART-3 IP: Lysates were incubated with 5 μg purified antibody (anti-SART-3) for 1 

h. Protein A sepharose beads (Roche) were added for 2 h. Washes were performed in lysis buffer. 

Complexes were eluted by heating the beads in sample loading buffer containing reducing agent for 10 

min at 70°C. 

Mass-spectrometry 

TCA precipitated and acetone washed protein pellets were dissolved in 0.5 M Tris, pH 8.6, 6 M 

guanidinium hydrochloride, reduced in 16 mM TCEP for 30 min, and alkylated in 35 mM iodoacetamide 

for 30 min in the dark. The proteins were digested at 37°C with trypsin (Promega, Madison, USA) after 

6x dilution in 50 mM Tris, 5 mM CaCl2 (pH 7.4) overnight. The generated peptides were separated on a 

75μm x 10cm Magic C18 column (Michrom, Bioresources, Auburn, USA) with an Agilent 1100 Nanoflow 

LC System (Agilent, Palo Alto, California). The LC was connected to a LTQ Orbitrap Velos (Thermo 

Scientific). Mascot (Matrix Science, London, UK) searching UniProt data base version 2012_09 was used 

to identify the peptides. 

92



 

 

Microscopy 

DIC and fluorescent images were obtained using an Axio Observer Z1 microscope and AxioVision SE64 

(release 4.8) software (Carl Zeiss, Oberkochen, Germany). Stereoscopic images were obtained by a 

M205 A stereo microscope (Leica, Solms, Germany). 

MosDEL 

The xe3 allele was obtained by following the protocol established by (Frokjaer-Jensen et al., 2010). A 

targeting plasmid was created using the Multisite Gateway Technology (Life Technologies). Specific 

primers (Table S2) were used to amplify the left (2039 bp) and right (2988 bp) homology regions from 

genomic DNA and amplicons were cloned into pDONRP4-P1R and pDONRP2R-P3, respectively. Together 

with pENTR221 containing and unc-119 rescue gene a pDESTR4-R3 targeting plasmid was created. The 

targeting plasmid was injected at 50 ng/ul into strain HW1350, a Mos1-engineered strain (IE5820 

containing the ttTi5820 allele) obtained from the NemaGENETAG consortium (Bazopoulou and 

Tavernarakis, 2009) which we crossed into an unc-119(ed3) mutant background. Following injection, 

wild-type moving worms were screened for successful integration of the transgene by PCR (see Table S2 

for primer sequences). 

3’ RACE 

U6 does not contain a poly(A) tail and therefore we ligated an RNA oligonucleotide to the 3’ end of U6 

to serve as a primer binding site for reverse transcription. The 3’ RNA adapter from the TruSeq Small 

RNA Sample Preparation Kit (Illumina, San Diego, CA, USA) was ligated onto 1ug total RNA according to 

the supplier’s protocol. This adapter only ligates to RNA molecules with a 3'-hydroxyl group but not to 

U6 molecules with a 2’- or 3’-monophosphate (or a 2’,3’-cyclic phosphate) at the 3’ end. For reverse 

transcription, components of the TruSeq Small RNA Sample Preparation Kit (Illumina) were used. 

Reverse transcription was performed 30 min at 42°C followed by 1 h at 50°C using a primer that 

introduces a primer binding site for subsequent amplification (Table S2). The reverse transcriptase was 

inactivated by putting samples to 70°C for 15 min. Subsequently, the RNA template was degraded by 

RNase H for 20 min at 37°C. The cDNA was diluted 1:10 and U6 was amplified using a U6-specific primer 

and a primer complementary to the region introduced by reverse transcription (Table S2) by PfuUltra II 

Fusion HS DNA Polymerase (Agilent Technologies). PCR amplicons were cloned into the pCR8 vector 

according to the supplier’s protocol (pCR8/GW/TOPO TA Cloning Kit, Life Technologies) and sequenced. 
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Table S1 (Strains) 

 

Table S2 (Primer and northern probes) 

Cloning Forward (5'-->3') Reverse (5'-->3') 

      

sart-3 (genomic DNA) ggggacaagtttgtacaaaaaagcaggcttgATGTCCGATGTGGATATGG ggggaccactttgtacaagaaagctgggtgATTTTTCATAAACATTTTACGG 

flag::sart-3 (genomic DNA) ggggacaagtttgtacaaaaaagcaggctgcATG GATTATAAAGATGATGATGACAAGTCCGATGTGGATATG ggggaccactttgtacaagaaagctgggtgTTAATTTTTCATAAACATTTTAC 

usip-1 (genomic DNA) ggggacaagtttgtacaaaaaagcaggcttgATGTCTTCAAACTTGCAACTGG ggggaccactttgtacaagaaagctgggtgTTATGGCCAAGTTGGGGCTGC 

      

Genotyping     

      

tm1897 CGCCTCCGTGCGCACTTGAG GTTATGCTGTGAAAACAAGC 

      

Site-directed mutagenesis     

      

usip-1(D183A) GGCGAAATGGTTACTCAGCGATTGTAAGTTGTTAG CTAACAACTTACAATCGCTGAGTAACCATTTCGCC 

usip-1(D185A) CAATAATGTTTTTAGGCGATTAACGTGGAATCAG CTGATTCCACGTTAATCGCCTAAAAACATTATTG 

      

Semi-quantitative RT-PCR     

      

usip-1 amplicon 1 CACCGGTGCGGCGAAATGG GGGTATGTCTCAAGCTCCG 

usip-1 amplicon 2 CGAACAAAGCGATTTACGG CATAGTAGCCATCGTGTTG 

      

MosDEL     

      

left homology region ggggacaactttgtatagaaaagttggcCGAACCATCTGAGTACGTCG ggggactgcttttttgtacaaacttgcGCTCAAAAATGTGTTGCTTCTGG 

right homology region ggggacagctttcttgtacaaagtggcgCTTGCAGAATTTTGATGGAAAC ggggacaactttgtataataaagttgcGAAGCTTTCCTACAAAGAGC 

xe3 5' end insertion CGTCCTCACTTTCTGAGCTG CCAATTCATCCCGGTTTCTG 

xe3 3' end insertion CCAATTACTCTTCAACATCC CGACATTATTGATGTAACACC 

      

3' RACE     

      

RT primer GACCGAGTGTAGCAAGCGAGGACTCGAGCTCAAGCCAAGCAGAAGACGGCATACGA   

U6 amplification GACCGAGTGTAGCAAGCG GTTCTTCCGAGAACATATAC 

      

Probes for Nothern blotting     

      

U1 GCACGCAGCCCCGATACGCA   

U2 CGATAAGAACAGATACTACAC   

U4 CGCACCTCGGCAAAGCCTCA   

U5 GGTTAAATGCAGAGGAACCAGAGT   

U6 ATTTGCGTGTCATCCTTGCGCAGG   

tRNA(gly) GCTTGGAAGGCATCCATGCTGACCATT   

 

Lower case letters = gateway recombination sites 

Strain name genotype comment 

      
gfp control     
HW781 EG5003, xeSi17[Pxrn-2::gfp::his::flag::xrn-2 3', unc-119(+)] IV   
      
sart-3 lines     
HW1008 EG6701, xeSi55[Pdpy-30::sart-3::gfp::his::flag::xrn-2 3', unc-119(+)] I   
HW1337 sart-3(xe3)/nT1[qls51] IV   
HW1338 HW1008 ; sart-3(xe3) IV   
HW1339 EG6699, xeSi126[Pdpy-30::flag::sart-3::gpd-operon::gfp::his-58::tbb-2 3', unc-119(+)] II   
HW1340 EG6699, xeEx386(WRM0622D_C09::gfp::3xflag;Pmyo-2::mCherry) gfp::3xflag tagged B0035.12 (sart-3) on fosmid 
HW1341 HW1339 ; sart-3(xe3)/nT1[qls51] IV   
HW1350 unc-119(ed3) III; ttTi5820 IV   
      

usip-1 lines     
HW1251 ZK863.4(tm1897) V   
HW1342 EG6699, xeEx387(WRM0610A_C05::gfp::3xflag) gfp::3xflag tagged ZK863.4 (usip-1) on fosmid 
HW1343 EG6699, xeSi127[Pdpy-30::ZK863.4::flag::gpd-operon::gfp::his-58::tbb-2 3'), unc-119(+)] II   
HW1344 EG6699, xeSi128[Pdpy-30::ZK863.4(D183A/D185A)::flag::gpd-operon::gfp::his-58::tbb-2 3'), unc-119(+)] II   
HW1345 HW1343 ; ZK863.4(tm1897) V   
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5 Conclusion 

This study aimed at a better understanding of the developmental and molecular function of two 

proteins involved in ncRNA metabolism, XRN2 and SART-3. XRN2 is the major 5’-to-3’ exonuclease in the 

nucleus and had been implicated in the processing or degradation of many non-coding RNA species 

including rRNAs, snoRNAs, tRNAs, and miRNAs. Whereas XNR2 comprises a broad spectrum of 

substrates, SART-3, according to my findings and published literature, appears to be specifically involved 

in U6 snRNA metabolism where it mediates the recruitment of the U4 snRNP to the U6 snRNP. For both, 

XRN2 and SART-3, knowledge of their systemic role had been scarce and C. elegans provided an 

excellent model to investigate their function in a multicellular context. Moreover, once phenotypes for 

mutants of these proteins had been characterized, they allowed looking for functionally linked factors by 

testing candidate proteins for genetic interaction with XRN2 and SART-3. Indeed, genetic interaction as 

well as biochemical approaches led me to the identification of novel physical and functional interaction 

partners for XRN2 and SART-3, which we termed PAXT-1 and USIP-1, respectively. PAXT-1 binds to XRN2 

through a conserved XRN2-binding domain (XTBD) and modulates its stability. Importantly, by showing 

that human proteins possessing an XTB-domain are also able to bind to XRN2, we could nicely extend 

our initial findings in C. elegans to humans. It remains to be investigated whether XTBD-containing 

proteins in organisms other than C. elegans similarly function in XRN2 stabilization. Whereas we know 

how PAXT-1 modulates XRN2 activity, we only have a preliminary understanding of how the synthetic 

lethal phenotype of SART-3 and USIP-1 arises. Future enquiries are needed to establish the functional 

implications of the putative uridylyl-transferase activity of USIP-1 for splicing. Aberrant levels of XRN2 as 

well as SART-3 have been correlated with cancer. Thus, a precise understanding of their mode of action 

might eventually pave the way for therapeutic approaches. 
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6 Publication: “PAXT-1 promotes XRN2 activity by stabilizing it through 

a conserved domain”  
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SUMMARY

XRN2 is an essential eukaryotic exoribonuclease that
processes and degrades various substrates. Here
we identify the previously uncharacterized protein
R05D11.6/PAXT-1 as a subunit of an XRN2 complex
in C. elegans. Targeted paxt-1 inactivation through
TALEN-mediated genome editing reduces XRN2
levels, decreases miRNA turnover activity, and re-
sults in worm death, which can be averted by over-
expressing xrn-2. Hence, stabilization of XRN2 is a
major function of PAXT-1. A truncated PAXT-1 pro-
tein retaining a predicted domain of unknown func-
tion (DUF3469) suffices to restore viability to paxt-1
mutant animals, elevates XRN2 levels, and binds to
XRN2. This domain occurs in additional metazoan
proteins and mediates interaction of human
CDKN2AIP/CARF and NKRF with XRN2. Thus, we
have identified a bona fide XRN2-binding domain
(XTBD) that can link different proteins, and possibly
functionalities, to XRN2.

INTRODUCTION

Ribonucleases (RNases) play important roles in various aspects of

gene expression through their functions in RNA processing, sur-

veillance, and decay. Although some RNases may specialize in

only a subset of these functions, others seem to function more

broadly in diverse processes. This is particularly true for the proc-

essive eukaryotic 50-to-30 exoribonuclease XRN2 (Miki and

Großhans, 2013; Nagarajan et al., 2013). Its major substrate re-

quirements in vitro are the presence of a 50 monophosphate and

the absence of strong secondary structures (Kenna et al., 1993).

In cells, its nuclear steady-state localizationmay restrict substrate

availability, but XRN2 was nonetheless shown to act on various

types of RNAs. Among its substrates are pre-rRNA (Amberg

et al., 1992; Henry et al., 1994) and snoRNAs (Petfalski et al.,

1998; Qu et al., 1999), which XRN2 processes, as well as pre-

mRNAs (Bousquet-Antonelli et al., 2000; Davidson et al., 2012)

and aberrant tRNAs (Chernyakov et al., 2008), which XRN2 de-

grades. InC.elegans, XRN2, encodedby the xrn-2gene,degrades

functional, mature miRNAs (Chatterjee and Grosshans, 2009).

Consistent with its diverse and extensive functions in cellular

RNA metabolism, XRN2 is essential for growth of S. cerevisiae

(Amberg et al., 1992) and for development of C. elegans. Specif-

ically, RNAi-mediated depletion of C. elegans XRN2 causes

growth delay, sterility, and larval molting defects (Chatterjee

and Grosshans, 2009; Frand et al., 2005).

A number of different proteins have been shown to interact

with XRN2 in various systems or organisms (Nagarajan et al.,

2013), which may be a prerequisite for the diversity of functions

that it executes. However, it is frequently unclear whether inter-

actions reflect direct binding and hence what the immediate

functional consequences of interactions are. A notable excep-

tion is yeast Rai1p, which was shown to bind XRN2/Rat1p and

promote its exoribonuclease activity (Xiang et al., 2009). Rai1p

also exhibits pyrophosphohydrolase activity for 50 triphosphory-

lated RNA, which is resistant to XRN2, raising a possibility that

Rai1p preprocesses these substrates into 50 monophosphory-

lated RNA for XRN2 (Xiang et al., 2009). However, Dom3Z/

DXO, the metazoan ortholog of Rai1p, does not bind to XRN2

(Xiang et al., 2009), but instead functions as a decapping

enzyme, pyrophosphohydrolase, and distributive 50-to-30 exori-

bonuclease (Jiao et al., 2013; Xiang et al., 2009).

A second protein whose interaction with XRN2 is well char-

acterized is the Argonaute/Piwi protein Twi12 in the ciliate Tetra-

hymena thermophila. Twi12 can bind to small fragments of

tRNAs, and this enables it to bind XRN2, localize it to the nucleus,

and stimulate RNase activity (Couvillion et al., 2012). Twi-associ-

ated novel 1 (Tan1) is an additional protein subunit of this XRN2

complex, whose function is, however, currently unknown. Since

Piwi proteins in other organisms are preferentially or exclusively

expressed in the germline and since Twi12 is rather divergent in

sequence from other Piwi proteins, it is unknown if similar com-

plexes function outside Tetrahymena.

Whereas Rai1p and Twi12 appear to be constitutive subunits

of functional XRN2 complexes in yeast and Tetrahymena,

respectively, additional XRN2 interacting partners may function

in more specific processes. For instance, TTF2 and some

decapping factors such as Dcp1a coimmunoprecipitate with

XRN2 from human HeLa cell nuclear extract, and complex for-

mation may allow these proteins to terminate RNA polymerase

II transcription prematurely (Brannan et al., 2012). Conversely,

recruitment of XRN2 to 30 RNA fragments downstream of poly(A)

cleavage sites facilitates their degradation and transcriptional

termination in yeast and mammals and is promoted by Rtt103p

(Kim et al., 2004) and p54nrb/PSF (Kaneko et al., 2007). Whether
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these interactions with more specific factors are direct remains

largely unexplored.

Here we report a complex formed by XRN2 and the previously

uncharacterized protein R05D11.6/PAXT-1 in C. elegans.

PAXT-1 binds and stabilizes XRN2, and this activity is required

for efficient degradation of miRNAs by XRN2. Generation of

paxt-1 null mutant animals reveals that an essential function of

PAXT-1 in C. elegans development can be compensated for by

an increased xrn-2 gene dosage. PAXT-1 binds XRN2 through

a predicted domain of unknown function, DUF3469, and expres-

sion of this domain in paxt-1 mutant animals suffices for XRN2

stabilization andwormdevelopment. Although PAXT-1 has over-

all little homology to other sequences, DUF3469 occurs in human

CDKN2AIP/CARF and NKRF/NRF and mediates their interaction

with XRN2. Thus, DUF3469 constitutes an XRN2-bindingmodule

that is employed by different metazoan proteins to link to XRN2.

RESULTS

PAXT-1 Is in a Complex with XRN2
In order to gain insight into XRN2 function, we purified XRN2

complexes by immunoprecipitation fromwhole lysates of worms

expressing XRN2 fused to GFP/FLAG at the C terminus (XRN2/

GFP/FLAG). One band migrating between the 50 and 37 kDa

markers was present specifically in XRN2/GFP/FLAG but not

in GFP/FLAG precipitates (Figure S1A). Mass spectrometry

analysis of the XRN2 immunoprecipitates identified a 38 kDa

uncharacterized protein, R05D11.6 (Figure 1A). Interaction of

endogenous XRN2 and R05D11.6 was confirmed by coimmuno-

precipitation from whole wild-type worm lysate, whereas XRN1,

a paralog of XRN2, did not coprecipitate with R05D11.6 (Fig-

ure 1B). Based on these and additional data presented below,

we named R05D11.6 Partner of Xrn-Two, or PAXT-1 for short.

The interaction between XRN2 and PAXT-1 was resistant to

RNase treatment (Figure 1B), suggesting that it was not medi-

ated by RNA. To test directly whether XRN2 and PAXT-1 were

capable of binding to one another, we sought to produce recom-

binant proteins in E. coli. To facilitate expression, we utilized an

XRN2 construct comprising amino acids 1–821, which lacks the

glycine-rich C terminus that is not found in orthologous proteins

from other organisms and that is not required for enzymatic

activity (data not shown). Whereas PAXT-1 alone was poorly

expressed, it could be produced at good yields when XRN2

was coexpressed in the same cells (data not shown). This sug-

gested that the recombinant proteins bound to one another.

We confirmed this by size-exclusion chromatography (SEC),

which revealed a shift in protein migration when assaying the

complex relative to XRN2 alone (Figures 1C and 1D). We

conclude that PAXT-1 is a direct binding partner of XRN2.

Furthermore, considering that SEC assays complexes at high

dilutions and that the complex resisted dissociation by salt con-

centration of up to 2 M NaCl (data not shown), binding appears

very stable.

PAXT-1 Is a Nuclear Protein that Is Present throughout
C. elegans Development
xrn-2 is expressed ubiquitously throughout C. elegans develop-

ment, and XRN2 protein localizes predominantly to the nucleus

(Miki et al., 2014). To examine the expression of paxt-1, we

generated a strain that produced GFP-tagged full-length

PAXT-1 (GFP/PAXT-1) by Mos1-mediated single-copy trans-

gene insertion (MosSCI) (Frøkjær-Jensen et al., 2012; Frøkjaer-

Jensen et al., 2008). Since paxt-1 is expressed in an operon

(CEOP1484; http://www.wormbase.org), we used the sequence

50 of ran-4, the most upstream gene of the operon, as a promoter

(Figure S1B). GFP/PAXT-1 was observed ubiquitously and

throughout worm development and predominantly located in

the nucleus (Figure 1E). In the nucleus of adult hypodermal cells,

GFP/PAXT-1 was localized both in the nucleolus and in the

nucleoplasm.

GFP/PAXT-1 was functional as demonstrated by the fact

that it rescued developmental defects associated with a paxt-1

null mutation (see below). However, fertility was only partially

restored in rescued animals, presumably because the transgene

is cDNA based and may thus express at reduced levels. Hence,

to examine the accumulation of endogenous PAXT-1, we raised

a polyclonal antibody that detects two specific bands in western

blots, of which the bottom band appears close to an additional,

nonspecific band (Figure S2B). Consistent with the GFP/PAXT-1

data, we find that PAXT-1 is present in all stages at similar levels

(Figure S1C). Thus, PAXT-1 and XRN2 share a similar expression

pattern and subcellular localization.

PAXT-1 Depletion Enhances xrn-2 Mutant Phenotypes
Whereas depletion of XRN2 by RNAi leads to various develop-

mental defects (Chatterjee and Grosshans, 2009; Frand et al.,

2005), we failed to observe any gross developmental pheno-

types when exposing wild-type N2 animals to RNAi against

paxt-1 (Figures 2A and 2B). To test whether PAXT-1 function

would become more readily detectable when XRN2 function

was impaired, we utilized an xrn-2 temperature-sensitive

(xrn-2ts) strain that we recently generated (Miki et al., 2014).

This strain displays various defects such as embryonic lethality,

larval arrest, and sterility at high temperature (R23�C), but is

viable, albeit slow-growing, at 20�C. Remarkably, when xrn-2ts

worms were grown at the permissive temperature, depletion of

PAXT-1 was fatal: xrn-2ts worms fed with paxt-1(RNAi) bacteria

from L3 stage laid eggs, but the eggs failed to hatch (Figure 2A).

By contrast, embryos from xrn-2ts animals exposed to mock

RNAi or from wild-type animals exposed to paxt-1(RNAi)

hatched normally (Figure 2A).

To see effects of PAXT-1 depletion in early larval development,

we fed xrn-2ts worms with paxt-1(RNAi) bacteria from L1 stage.

Most of the worms developed into adults, but they were all

sterile, and half showed a molting defect (Figure 2B). These

phenotypes have also been observed in xrn-2tsworms at restric-

tive temperature (Miki et al., 2014) as well as wild-type worms

subjected to RNAi against xrn-2 (Chatterjee and Grosshans,

2009; Frand et al., 2005), suggesting that paxt-1 is a genetic

enhancer of xrn-2. Thus, PAXT-1 interacts with XRN2 both phys-

ically and genetically.

A Complete PAXT-1 Knockout Causes Larval Arrest
Using RNAi, wewere unable to deplete PAXT-1 bymore than half

(Figure S4C), suggesting that residual PAXT-1 would prevent

us from observing mutant phenotypes in wild-type animals
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Figure 1. PAXT-1 and XRN2 Form a Complex

(A) Two replicates ofmass spectrometry following IP of transgenic, FLAG-tagged XRN2 detect R05D11.6/PAXT-1 above the background (i.e., GFP/FLAG control)

in total eluates.

(B) Western blot analysis of IPs against endogenous XRN1, XRN2, and R05D11.6/PAXT-1. R05D11.6/PAXT-1 is detected in the XRN2 IP (lane 2 and 3) and vice

versa (lane 6 and 7). R05D11.6/PAXT-1 does not interact with XRN1 (lanes 4–7). RNase A treatment does not abolish the R05D11.6-XRN2 interaction. 10% of

input and 100% of eluate was loaded. Note that in this and similar figures below, differences in salt concentrations cause high molecular weight proteins (XRN1,

XRN2) to migrate slightly differently in input versus eluate samples.

(C) Preparative size-exclusion chromatography elution profiles of XRN2 (dashed line) alone and a PAXT-1 XRN2 complex (solid line). mAU, milliabsorption unit.

(D) SDS-PAGE analysis of aliquots of the indicated fractions collected from the individual elutions. XRN2 and PAXT-1 are indicated by an arrow and an arrowhead,

respectively.

(E) Worms expressing GFP/PAXT-1 on chromosome II from the paxt-1 operon promoter were observed by epifluorescence microscopy. Scale bar, 50 mm.

Arrowheads point to nucleoli. See also Figure S1.
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exposed to paxt-1(RNAi). To circumvent this limitation, we

generated paxt-1 knockout strains by genome engineering using

transcription activator-like effector nucleases (TALENs) (Wood

et al., 2011). We recovered two paxt-1 null alleles (Figure S2A)

and confirmed lack of PAXT-1 in these strains by western blot-

ting (Figure S2B). We used the paxt-1(xe5) strain for further

experiments. At 20�C, these animals were viable, with growth

rates comparable to wild-type animals and no obvious differ-

ences in fertility (data not shown). Similarly, when shifted to

26�C during larval stage 1 (L1), paxt-1(0) worms developed into

adults without obvious defects and segregated F1 progeny.

However, > 80% of F1 progeny arrested at the L1 stage, while

wild-type F1 progeny developed into fertile adults (Figure 2C

and see below). Thus, C. elegans requires PAXT-1 for larval

development at elevated temperature.

PAXT-1 Is Required for Efficient RNA Degradation by
XRN2
The genetic data revealed that PAXT-1 is important for XRN2

function. To test the effect of PAXT-1 on XRN2 enzymatic activ-

ity, we compared RNA degradation by recombinant XRN2 and

XRN2-PAXT-1 complexes (Figures 1C and 1D) utilizing an assay

previously used for yeast Xrn1p and Rat1p (Sinturel et al., 2009).

This assay is particularly suitable for processive enzymes, as it

measures full degradation of substrate molecules (Supplemental

Experimental Procedures). Using a 50 monophosphorylated RNA

substrate of 30 nucleotides, we made two observations. First,

the initial velocity of RNA degradation remained unaffected by

PAXT-1, suggesting that PAXT-1 does not modulate XRN2

enzymatic kinetics (Figures 3A and S3A, insets). Second, when

assaying activity over extended times at enzyme or complex

concentrations exceeding 10 nM, more substrate was turned

over by the complex than by XRN2 alone (Figure 3A and data

not shown). For instance, under the conditions shown in Fig-

ure 3A, the complex consumes 42.7% (±1.0% SEM; mean of

three replicate measurements) of substrate compared to

32.4% (±1.2%) for XRN2 alone within 1,800 s and 58.2%

(±0.3%) versus 44.5% (±1.9%) after 3,600 s, the endpoint of

the assay. This presumably reflects increased stability of the

complex relative to XRN2 alone. However, the experiments are

performed in a > 50-fold excess of substrate, and the later phase

is thus driven by multiple turnover activity (Liu et al., 2011).

Hence, beyond stabilizing XRN2, PAXT-1 might enhance multi-

ple substrate turnover.

To examine whether PAXT-1 affected XRN2 activity in vivo,

we examined degradation of endogenous miR-51 and miR-87,

two known XRN2 substrates (Miki et al., 2014) in synchronized

A
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wt

Control

RNAi from L1

paxt-1(RNAi)

xrn-2ts
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188/188 154/155

84/89 0/124

42/82

B

C

wt paxt-1(0)

L1 Adult Egg Observation
3 d

26 26 26

P0 F1

Figure 2. paxt-1 Is Essential for Larval Development at Elevated

Temperature

(A) Wild-type (WT) or xrn-2ts worms were cultured on a control or a paxt-1

(RNAi) plate from L3 stage at 20�C, and hatching rates of their eggs were

examined. Numbers of hatched eggs/total numbers are shown.

(B) WT or xrn-2ts worms were cultured on a control or an paxt-1(RNAi) plate

from L1 stage at 20�C. All xrn-2tsworms on an paxt-1(RNAi) plate were sterile,

with 42 out of 82 showing a molting defect. Arrows indicate unshed cuticles.

(C) WT or paxt-1(0) animals were cultured from L1 until laying eggs. After

3 days, hatched progeny were observed by stereo microscopy at the same

magnification. See also Figure S2.
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wild-type and paxt-1(0) L1-stage worms. The animals were

treated with a-amanitin to block de novo production of miRNAs,

and the levels of miR-51 and miR-87 were followed over time

(Figure 3C). Under these conditions, the paxt-1(0) develop-

mental arrest phenotype will not influence the measured decay

rates, because a-amanitin equally arrests the development of

wild-type animals (Miki et al., 2014). Whereas the levels of

both miRNAs substantially decreased in wild-type animals,

they remained essentially unchanged in paxt-1(0) animals

throughout the entire time course. Figure S3B shows this to be

true for miR-56, a third XRN2 target miRNA, but not for miR-

87*, the passenger strand of miR-87, which is not a target of

XRN2 either (Miki et al., 2014). Thus, PAXT-1 is important for
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Figure 3. PAXT-1 Is Required for RNA

Degradation by XRN2 In Vivo

(A) Comparison of nucleolytic activity over time of

XRN2 (blue), PAXT-1 XRN2 complex (orange),

PAXT-1 XRN2* (catalytic dead) complex (black),

and mock control (gray) at 10 nM of protein or

complex and 500 nM of RNA substrate. Lines of

the same color indicate individual replicates. Inset,

initial velocity of the reaction.

(B) Experimental design for miRNA decay analysis

in vivo. Eggs were hatched overnight, and the re-

sulting synchronized L1 larvae were cultured with

food for 2 hr prior to addition of a-amanitin. Sam-

ples were harvested at the indicated times. All

processes were done at 26�C.

(D) Levels of miR-51 and miR-87 were examined

by RT-qPCR. The levels relative to the time point

0 hr are shown (n = 2 for WT and paxt-1(0); xrn-

2::gfp and 3 for paxt-1(0); means ± SD). See also

Figure S3.

in vivo degradation of the same miRNAs

that are also substrates of XRN2.

Stabilization of XRN2 Is an
Essential Function of PAXT-1
Although it remained formally possible

that PAXT-1 promoted miRNA degrada-

tion independently of XRN2, this seemed

unlikely given the physical interaction of

the two proteins. Moreover, we noticed

that in the xrn-2ts strain, where GFP is

appended to the C terminus of the tem-

perature-sensitive XRN2 protein, paxt-1

(RNAi) caused a decrease in GFP levels

relative to mock RNAi (Figures S4A and

S4B), providing a possible mechanism

by which PAXT-1 would stimulate XRN2.

To confirm that PAXT-1 promotes endog-

enous, wild-type XRN2 accumulation, we

quantified XRN2 protein levels by western

blotting in wild-type worms exposed to

paxt-1(RNAi) and found a reduction by

50% relative to mock RNAi-treated ani-

mals in L4-stage worms (Figure S4C).

This effect was specific, as XRN2 levels also declined in paxt-

1(0) animals (Figure 4A). Reciprocally, depletion of XRN2 by

RNAi in wild-type worms (Figure S4D) or by temperature shift

of xrn-2ts worms (Figure 4B) reduced PAXT-1 protein levels.

Notably, depletion was specific to proteins; the corresponding

mRNAs continued to accumulate (Figures 4A and 4B, Figures

S4C and S4D). We conclude that PAXT-1 and XRN2 proteins

stabilize one another through formation of a complex.

Whenwe examined XRN2 levels in paxt-1(0) animals, we found

that the timing of developmental defects were mirrored by the

observed decline in XRN2 levels. Whereas XRN2 levels were

reduced by about 60% in L4 stage paxt-1(0) animals from the

P0 generation relative to wild-type animals, XRN2 was nearly
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undetectable in lysates from newly arrested paxt-1(0) F1 worms

(Figure 4C). It is possible that these differences in levels reflect

gradual depletion of XRN2 during the entire developmental

period. However, we favor an alternative model where PAXT-1

function would be particularly important during the adult or em-

bryonic stages because shifting paxt-1(0) animals to 26�C at the

late L4 stage sufficed to induce an L1 stage arrest in their prog-

eny (data not shown).

The fact that paxt-1 mutant phenotypes correlated with the

extent of XRN2 depletion suggested that loss of XRN2 activity

A B

C

D

Figure 4. XRN2 and PAXT-1 Stabilize One

Another

(A) WT or paxt-1(0)wormswere cultured from L1 to

L4 at 26�C. Levels of XRN2, PAXT-1, and Actin

were examined by western blot. An arrowhead

indicates PAXT-1, an asterisk a mixture of PAXT-1

and a cross-reacting protein. xrn-2 mRNA levels

were quantified by RT-qPCR and normalized to

act-1mRNA levels with control values defined as 1

(n = 2, means ± SD).

(B) WT or xrn-2ts worms were cultured from L3 to

L4 at 26�C. Levels of the indicated proteins and

mRNAs were analyzed as in (A).

(C) The indicated worms were cultured from L1 at

26�C, and protein was extracted at the L4 stage of

the same generation (P0, left panel). Alternatively,

following continued growth to adult stage, eggs

were extracted and hatched in medium without

food, and the resulting synchronized larvae of the

next generation (F1)were culturedwith food for 2 hr

prior to harvesting (right panel). Levels of XRN2,

PAXT-1, andActin at L4were examined bywestern

blot. An arrowhead indicates PAXT-1, an asterisk a

mixture of PAXT-1 and a crossreacting protein.

(D)Wormsof the indicatedgenotypeswerecultured

from L1 at 26�C until laying eggs. After 2 days,

hatched progeny were scored on their develop-

mental stages (n = 2, means ± SD; R 40 worms

were scored per experiment and genotype).

Whereas paxt-1(0) animals arrest at the L1 stage,

expression of full-length paxt-1, paxt-1N, or xrn-

2::gfp from transgenes restores larvaldevelopment;

expression ofpaxt-1Cdoes not. See alsoFigureS4.

could be causal to the developmental

arrest of paxt-1(0) animals. We tested

this possibility by expressing xrn-2::gfp

in addition to endogenous xrn-2 in paxt-

1(0) worms. Although even the combined

levels of both XRN2/GFP and endoge-

nous XRN2 in paxt-1(0) animals were

significantly lower than those of endoge-

nous XRN2 in wild-type animals (Fig-

ure 4C), more than 80% of the F1 from

paxt-1(0); xrn-2::gfp animals developed

to adult (Figures 4D and S4E), and 40%

of those segregated F2 progeny (data

not shown). The presence of XRN2/GFP

also enhanced decay of miR-51 and

miR-87 in paxt-1(0) animals (Figure 3C).

As anticipated from the low levels of XRN2/GFP that can be

achieved in the absence of PAXT-1, this enhancement was

modest. Collectively, these results reveal that stabilization of

XRN2 is a major function of PAXT-1 and essential for worm

development at elevated temperature.

The Essential DUF3469 Domain of PAXT-1 Mediates
Complex Formation with and Stabilization of XRN2
To determine which part of PAXT-1 is responsible for stabili-

zation of XRN2 in vivo, we expressed truncated proteins
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bearing a C-terminal FLAG-tag in paxt-1(0) animals. The

N-terminal part of PAXT-1, PAXT-1N, comprises a domain of

unknown function, DUF3649, whereas no domains or motifs

are discernable within the C-terminal part, PAXT-1C (Figure 5A).

As a control, full-length PAXT-1 (PAXT-1FL) could rescue the

paxt-1(0) worms from L1 stage arrest so that more than 90% of

paxt-1(0); PAXT-1FL worms became adult (Figure 4D), although

half of them did not segregate progeny (data not shown). In-

complete rescue may result from reduced levels relative to

endogenous PAXT-1, as would be expected for a cDNA-based

transgene. Similar to PAXT-1FL, PAXT-1N permitted develop-

ment of paxt-1(0) animals into adults (Figure 4D), more than

80% of which segregated progeny (data not shown). On the

other hand, PAXT-1C failed to rescue paxt-1(0) worms

(Figure 4D).
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Figure 5. DUF3469 Is a Bona Fide XRN2-

Binding Domain

(A) Schematic drawings of full-length (PAXT-1FL)

and truncation muntants (PAXT-1N and PAXT-1C)

of PAXT-1. Amino acid numbers relative to the first

methionin of PAXT-1 are indicated.

(B) Wild-type and paxt-1(0) worms expressing

FLAG-tagged PAXT-1FL, PAXT-1N, or PAXT-1C

were cultured from L1 to L4 at 26�C. Levels of

XRN2, PAXT-1, and Actin were examined by

western blot. Levels of XRN2 are normalized to

actin levels and shown with values of WT defined

as 1. Arrowheads indicate PAXT-1FL, PAXT-1N,

and PAXT-1C. An asterisk indicates a mixture of

PAXT-1 and a crossreacting protein.

(C) PAXT-1N/FLAG coimmunoprecipitates XRN2

whereas GFP/FLAG does not. 5% of input and

15% of eluate was loaded. Note that GFP/FLAG is

overloaded. Arrowheads indicate PAXT-1N/GFP

and GFP/FLAG. IgL, immunoglobulin light chain.

(D–F) Coimmunoprecipitation of human XRN2 with

NKRF and CDKN2AIP. Endogenous XRN2 (D),

NKRF or CDKN2AIP (E), or FLAG/CDKN2AIP_

DUF3649 (F) was immunoprecipitated from RNase

A-treated HEK293T cell lysate. 1% of input and

20% of immunoprecipitate (IP) fractions were

analyzed by western blot. IgH, immunoglobulin

heavy chain. In (F), nonadjacent lanes from a single

scan were spliced together. See also Figure S5.

Consistent with PAXT-1N being key to

stabilization of XRN2, XRN2 levels were

restored in PAXT-1N-producing worms

to wild-type levels or above, while

PAXT-1C-producing worms showed

XRN2 levels approximating 40% of those

in wild-type worms (Figure 5B), similar to

the paxt-1(0) worms (Figures 4A and

4C). The presence of PAXT-1FL restored

XRN2 levels less efficiently than that of

PAXT-1N (Figure 5B), consistent also

with less complete rescue of the develop-

mental phenotypes in the F2 generation.

The fact that PAXT-1N sufficed for

restoration of both XRN2 levels and larval

development of paxt-1(0) animals suggested that it was suffi-

cient for binding to XRN2. Indeed, XRN2 coprecipitated when

we immunoprecipitated PAXT-1N/FLAG with anti-FLAG anti-

bodies, whereas it did not precipitate with a FLAG-tagged con-

trol protein (Figure 5C). For unknown reasons, we were unable

to precipitate PAXT-1FL/FLAG or PAXT-1C/FLAG with anti-

FLAG antibodies so that we cannot rule out that the PAXT-1 C

terminus may supply additional XRN2-binding activity. Nonethe-

less, these data clearly demonstrate that PAXT-1N, comprising

DUF3469, is sufficient for XRN2 binding.

Binding of DUF3469-Containing Proteins to XRN2 Is
Conserved in Humans
Given that PAXT-1 binds and stabilizes XRN2 through

DUF3469, we were intrigued by the existence of additional
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DUF3469-containing proteins in metazoa (Figure S5). We tested

if the three human proteins predicted to contain this domain,

CDKN2AIP/CARF, CDKN2AIPNL/C2AIL, andNKRF/NRF, bound

to XRN2. We were unable to detect CDKN2AIPNL/C2AIL in

HEK293T cells using a commercially available antibody (data

not shown). However, both CDKN2AIP and NKRF were not

only present in the cell lysates, but also readily detectable in

XRN2 immunoprecipitates that had been treated with RNase

(Figure 5D). Conversely, immunoprecipitation of CDKN2AIP or

NKRF, respectively, coprecipitated XRN2 from RNase-treated

lysates (Figure 5E). To see if the two proteins bind XRN2 through

DUF3469, we transfected HEK293T cells with expression vec-

tors for FLAG-tagged CDKN2AIP(1-128) and NKRF(1-94), i.e.,

the respective DUF3469. Although we failed to express FLAG/

NKRF(1-94) for unknown reasons (data not shown), we detected

XRN2 in FLAG/CDKN2AIP(1-128) immunoprecipitates (Fig-

ure 5F). These data indicate that DUF3469 represents a

conserved XRN2-binding domain. Moreover, since CDKN2AIP

and and NKRF did not coimmunoprecipitate one another, they

appear to form distinct complexes with XRN2. It seems likely

that this may be a consequence of mutually exclusive binding.

DISCUSSION

XRN2 Stabilization Is a Major Function of PAXT-1
We report here identification of a protein complex in C. elegans

consisting of XRN2 and PAXT-1. The extensive destabilization

that we observe for either subunit upon loss of the other suggests

that a large fraction of each protein is contained within the XRN2-

PAXT-1 complex. Genetic data strongly support this notion for

PAXT-1 in that its essential function for development at elevated

temperaturecanbebypassedbyan increased xrn-2genedosage.

At this point, it is not knownwhy PAXT-1 becomes essential for

larval development only at temperatures of 26�C and above. In

principle, this fact could reflect an increased demand for XRN2

activity at the elevated temperature. However, we favor an alter-

native, although not necessarily mutually exclusive, explanation,

namely that XRN2 alone is sufficiently stable at the lower temper-

atures but exceedingly destabilized at temperatures at or above

26�C. This notion is not only consistent with the differences in

XRN2 accumulation that we observed in paxt-1 mutant animals

grown under different conditions, but also with the synthetic

lethality of xrn-2ts and paxt-1(RNAi), which occurs already at

reduced temperature.

Since our data establish that stabilization of XRN2 is a key

function of PAXT-1 in the context of larval development, an

intriguing question for future work will be whether this relates to

a specific activity of XRN2 on a specific substrate. Alternatively,

paxt-1(0) animals may arrest development because of impaired

XRN2 function in diverse processes and on a diverse set of sub-

strates. Addressing this point will require a deeper understanding

of the identity and function of XRN2 substrates in C. elegans, ex-

tending beyond miRNAs as the only currently known substrate.

DUF3469/XTBD Constitutes a Bona Fide XRN2-Binding
Domain in Metazoa
A PAXT-1 fragment consisting of DUF3469 suffices for binding

and stabilization of XRN2. Metazoan genomes typically contain

a small number of proteins with this domain of unknown function

(Figure S5). Strikingly, we found that CDKN2AIP/CARF and

NKRF/NRF, the two human proteins with this domain that

are expressed in HEK293T cells, also coimmunoprecipitated

XRN2, as did a FLAG-tagged fragment comprising the

CDKN2AIP DUF3469 only. Similarly, XRN2 complexes obtained

by Brannan et al. (2012) by immunoprecipitation from HeLa cell

nuclear extracts contain CDKN2AIP and NKRF as shown by

mass spectrometry. Mass spectrometry also revealed the

presence of XRN2, CDKN2AIP, and NKRF in hnRNP A1-contain-

ing, chromatin-associated mRNPs that Close et al. (2012)

purified. Finally, Couvillion et al. (2012) identified Tan1, another

DUF3469-containing protein, as a component of an XRN2-

containing ternary complex in Tetrahymena. Thus, we consider

DUF3469 a bona fide XRN2 binding domain and propose to

name it XTBD (Xrn-Two-Binding Domain).

Whereas XTBD-containing proteins are readily identifiable in

metazoa, they appear not to exist in fungi (http://pfam.sanger.

ac.uk/family/duf3469#tabview=tab7). By contrast, homologs of

Rai1p, which binds to XRN2/Rat1p in yeast and promotes its

RNase activity (Stevens and Poole, 1995; Xue et al., 2000), are

present in metazoa but do not bind to XRN2 (Xiang et al.,

2009). Thus, Rai1p and XTBD-containing proteins such as

PAXT-1 may represent two solutions to the problem of ensuring

optimal XRN2 activity. Although we do not know why distinct

proteins would serve this function in different organisms, we

note that Rai1p also exhibits enzymatic activities that are inde-

pendent of its function with XRN2, namely decapping and pyro-

phosphohydrolase activities (Xiang et al., 2009; Jiao et al., 2010).

The presence of multiple activities within a single protein may

facilitate their coordinated regulation, but in turn make the task

of regulating them independently more difficult. Interestingly,

although the mammalian Rai1p homolog DOM3Z/DXO does

not bind XRN2, it shares the two enzymatic activities with

Rai1p (Jiao et al., 2013). Thus, we speculate that a need to

coordinately or separately regulate the enzymatic and the

XRN2-binding activities may have been a driving force for this

evolutionary development. Understanding if and how XRN2-

dependent and -independent functions of Rai1p/DOM3Z/

DXO1-type proteins, including the yeast Rai1p paralogue

Dxo1p (Chang et al., 2012), and XTBD-containing proteins are

regulated in different organisms may then shed light on this

issue.

Implications for XTBD-Containing Proteins beyond
C. elegans

Although ours and the published data demonstrate that

CDKN2AIP, NKRF, and Tan1, like PAXT-1, occur in complexes

with XRN2, unlike PAXT-1, no functional links with XRN2 have

been established for these three proteins. Based on the fact

that the PAXT-1 XTBD can supply much of the function of the

full-length protein in vivo, we might speculate that these proteins

similarly function in XRN2 stabilization. However, given that

PAXT-1 is, at 335 amino acids (aa), considerably shorter than

CDKN2AIP (580 aa) or NKRF (690 aa), it is equally possible that

the latter proteins provide additional functionality that is then

recruited to XRN2 via XTBD. For instance, NKRF and other

XTBD-containing proteins also have domain(s) implicated in
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RNA binding, e.g., single- and double-stranded (ds) RNA binding

or a G-patch domain, and dsRNA-binding activity has been

confirmed for NKRF (Niedick et al., 2004). It may be interesting

to examine whether these domains serve to regulate target

RNA recognition and/or processing by XRN2.

Whereas C. elegans XRN2 requires PAXT-1 for function, we

note that a reverse scenario is also possible, i.e., XTBD-contain-

ing proteins may require XRN2 to execute specific functions. We

are particularly intrigued by the NF-kB repressing factor (NKRF),

which antagonizes NF-kB-mediated activation of transcription

(Nourbakhsh and Hauser, 1999). While this function involves

binding of NKRF to specific DNA sequences, NKRF does not

appear to act through steric hindrance of DNA binding by

NF-kB but through active repression of transcription by an

unknown mechanism (Nourbakhsh and Hauser, 1999). Given

the recent discovery that XRN2 may oppose transcription by

inducing premature termination (Brannan et al., 2012), we pro-

pose that a role for XRN2 in NKRF’s function in repression of

transcription could be considered. A second example that may

be worth investigating is the Drosophila melanogaster protein

CG31301, which binds to siRNAs and functions, by an unknown

mechanism, in RNAi (Gerbasi et al., 2010). Since this protein

contains a readily detectable XTB domain, a connection to

XRN2-dependent RNA decay may be a possibility.

To conclude, although it is currently unknown whether XTBD-

containing proteins beyond PAXT-1 will function by modulating

XRN2 activity or whether, conversely, XRN2 will contribute to

the functions of these proteins, or both, we expect that identifi-

cation of DUF3469 as a bona fide XRN2-binding domain will

open up new avenues of research to understand the functions

of these proteins.

EXPERIMENTAL PROCEDURES

Strains

The Bristol N2 wild-type, mutant, and transgenic strains generated for this

study (Table S1) were cultured by standard methods (Brenner, 1974). Trans-

genic lines were obtained by Mos1-mediated single-copy transgene insertion

(MosSCI) (Frøkjær-Jensen et al., 2012; Frøkjaer-Jensen et al., 2008).

Antibodies, Immunoprecipitation, and Western Blotting

Affinity-purified rabbit anti-PAXT-1 and anti-XRN1 antibodies were generated

by SDIX (Newark, DE) using DNA immunization. IP and western blotting were

performed as described in the Supplemental Experimental Procedures.

RNAi

RNAi clones against xrn-2 and paxt-1 were obtained from the libraries by

Fraser et al. (2000) and Kamath and Ahringer (2003) and by Rual et al.

(2004), respectively. RNAi was performed by the feeding method (Timmons

and Fire, 1998); bacteria carrying the insertless L4440 RNAi vector were

used as a negative control.

Microscopy

DIC and fluorescent images were obtained using a Zeiss Axio Observer Z1

microscope. Stereoscopic images were obtained with a Leica M205 A stereo

microscope.

TALEN-Mediated Gene Targeting

TALEN-mediated paxt-1 gene targeting was performed according to a previ-

ous report (Wood et al., 2011) and as detailed in the Supplemental Experi-

mental Procedures.

miRNA Decay Analysis

Eggs from animals cultured at 26�C were extracted with bleach and hatched

overnight in M9 medium at 26�C. The resulting synchronized L1 larvae were

cultured with food at 26�C for 2 hr before a-amanitin was added. Aliquots of

worms were harvested at each sampling time point and RNA was extracted

and purified. Individual miRNAs were quantified by RT-qPCR (see Supple-

mental Experimental Procedures for details).

In Vitro Turnover Assay

In vitro RNA turnover was assayed as described (Sinturel et al., 2009). Briefly, a

17-mer DNA oligonucleotide bearing a fluorescence quencher was annealed

to a 30 nt 50 monophosphorylated, 30 fluorescently labeled RNA substrate.

Increase of fluorescence due to degradation of the RNA and thus release of

the quencher was measured using a real-time PCR machine.

Recombinant Protein Expression and Preparative Size Exclusion

Chromatography

C. elegans XRN2 (aa 1–821) was cloned into pOPINE (C-terminal hexa-histi-

dine tag). PAXT-1 with XRN2 or XRN2* (D234A,D236A double mutant; catalytic

dead) were cloned into a bicistronic vector at positions one and two, respec-

tively. The vector is amodified pCOLADuet-1 with an N-terminal hexa-histidine

tag plus TEV protease cleavage site at the first position and no affinity tag at the

second position. E. coli was used for expression, followed by Ni-NTA

(QIAGEN) and size-exclusion chromatography (Superdex 200 pg, 16/600)

purification. Fractions of 1 ml were collected and 12 ml taken to analyze eluted

proteins by SDS-PAGE.

SUPPLEMENTAL INFORMATION

Supplemental Information includes five figures, two tables, and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.molcel.2014.01.001.
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SUMMARY

In metazoans, microRNAs play a critical role in the
posttranscriptional regulation of genes required for
cell proliferation and differentiation. MicroRNAs
themselves are regulated by a multitude of mecha-
nisms influencing their transcription and posttran-
scriptional maturation. However, there is only sparse
knowledge on pathways regulating the mature, func-
tional form of microRNA. Here, we uncover the impli-
cation of the decapping scavenger protein DCS-1 in
the control of microRNA turnover. In Caenorhabditis
elegans, mutations in dcs-1 increase the levels of
functional microRNAs. We demonstrate that DCS-1
interacts with the exonuclease XRN-1 to promotemi-
croRNA degradation in an independent manner from
its known decapping scavenger activity, establishing
two molecular functions for DCS-1. Our findings thus
indicate that DCS-1 is part of a degradation complex
that performs microRNA turnover in animals.

INTRODUCTION

MicroRNAs (miRNAs) are �22 nt long noncoding RNAs that

regulate gene expression at the posttranscriptional level by

binding to partially complementary sequences of target

messenger RNAs (mRNAs) (reviewed in Ebert and Sharp,

2012). miRNA genes are mostly transcribed by RNA polymerase

II to yield a primarymiRNA transcript (pri-miRNA). The pri-miRNA

undergoes processing by a multiprotein complex known as the

microprocessor to produce an intermediate called the precursor

miRNA (pre-miRNA). After nuclear export, the pre-miRNA is

cleaved by Dicer, resulting in the mature miRNA. Subsequently,

mature miRNAs are bound by an Argonaute protein to form the

core of a multisubunit effector complex termed miRISC

(miRNA-induced silencing complex) (reviewed in Krol et al.,

2010; Kim et al., 2009). miRISC binds to partially complementary

sequences found typically in the 30 untranslated region (30 UTR)

of mRNAs, leading to their translational repression and/or degra-
10
dation (reviewed in Huntzinger and Izaurralde, 2011; Pasquinelli,

2012).

miRNA-mediated gene regulation is involved in diverse biolo-

gical functions, including the control of development in meta-

zoans (reviewed in Ebert and Sharp, 2012) as well as cellular

pathways such as DNA damage and stress responses (reviewed

in Hu and Gatti, 2011; Leung and Sharp, 2010). Notably, miRNAs

are dysregulated in many diseases, such as cancer (reviewed in

Esteller, 2011; Mendell and Olson, 2012). Thus, it is essential for

a cell to tightly control miRNA biogenesis and turnover.

Like other RNA polymerase II-transcribed genes, miRNA loci

are subject to widespread transcriptional regulation. Addition-

ally, the different biogenesis steps are controlled by cellular

factors that either modulate the activity of processing factors

or bindmiRNAprecursormolecules to interfere with the process-

ing of a subset of miRNAs (reviewed in Bajan and Hutvagner,

2011; Krol et al., 2010; Newman et al., 2011). More recently,

evidence has emerged that miRNA decay pathways contribute

to the control of miRNA levels (for details see Kai and Pasquinelli,

2010; Rüegger and Großhans, 2012). In particular, the small RNA

degrading nucleases (SDNs) mediate 30 to 50 turnover of miRNAs

in plants (Ramachandran and Chen, 2008), and the exoribonu-

cleases XRN-1 and XRN-2 function in 50 to 30miRNA degradation

in C. elegans (Chatterjee et al., 2011; Chatterjee and Grosshans,

2009).

In this study, we identify the decapping scavenger enzyme 1

(DCS-1, also known as DcpS) as a player in the C. elegans

miRNA turnover pathway. Our data reveal that DCS-1 stimulates

XRN-1-mediatedmiRNA degradation through a physical interac-

tion and that this process is independent of the decapping sca-

venger activity previously assigned to DCS-1.

RESULTS

Mutations in dcs-1 Lead to Precocious Adult Fate and
Enhanced Repression of miRNA Targets
In order to discover factors implicated in themiRNA pathway, we

performed a genetic screen to identify genes that interact

synthetically with alg-2, one of the two C. elegans Argonautes

that functions in the miRNA pathway (Grishok et al., 2001). The

rationale of the screen was based on the observation that an

alg-2 mutant, alg-2(ok304), is viable, whereas the combined
Molecular Cell 50, 281–287, April 25, 2013 ª2013 Elsevier Inc. 281
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Figure 1. The Loss of dcs-1 Affects miRNA-

Mediated Gene Regulation and miRNA

Levels

(A) Alae are produced precociously in dcs-1

animals. L4 animals were precisely staged by

observing vulval and gonad formation by Nomar-

ski optics (Figure S2A), and the percentage (%) of

animals with precocious alae (white arrow; right

picture) was scored. Magnification is 1,0003. The

number of animals scored (n) is indicated.

(B) To study lin-41 regulation in vivo, wemonitored

the expression of green fluorescent protein (GFP)

under the control of a hypodermis-specific col-10

promoter and the lin-41 30 UTR containing the let-7

miRNA binding sites (red; diagram). GFP is ex-

pressed during early larvae stages (L2) and

downregulated when animals reach young adult-

hood (Adults). Young adult dcs-1(qbc3) animals

repressed the miRNA-sensitive reporter more

strongly than wild-type animals. Quantification of

GFP in adults relative to L2 stage animals. The

quantification of the GFP signal was performed by

measuring the mean of the GFP detected in five

different cells for each animal (below). The

magnification of all pictures is 1,0003. The number

of animals scored (n) is indicated.

(C) The levels of miRNA found in dcs-1(qbc3)

young adult animals were measured by quantita-

tive RT-PCR (TaqMan assay) and compared with

the levels found in wild-type animals (wt; 1).

TaqMan assay for the small nucleolar RNA

(snoRNA) sn2343 was used as the normalization

control. The error bars represent the 95% confi-

dence interval of three independent experiments.

p values were obtained using normalized delta

delta Ct values. Normalized delta delta Ct values

were obtained by subtracting the mean of delta

delta Ct from all experiments.

(D) The levels of significantly increased miRNAs

(let-7, miR-57, miR-59, miR-235, and miR-241) in

dcs-1 mutant were detected by northern blot

hybridization of RNA samples purified from young

adult animals. tRNAGly (transfer RNA-glycine) was

used as loading control.
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loss of alg-2 and its paralog alg-1 results in lethality (Grishok

et al., 2001; Vasquez-Rifo et al., 2012). We generated an alg-

2(ok304) strain that carries an extrachromosomal array express-

ing wild-type alg-2 and a green fluorescent protein (GFP) marker.

Since alg-2 is not required for viability, the array is lost stochas-

tically from this strain. Following chemical mutagenesis, we

screened for animals that remained GFP positive, indicating

a potential requirement for the array, and thus alg-2, for survival.

Among the six complementation groups isolated from this

screen, we characterize here one group of two mutant alleles,

qbc2 and qbc3, that were lesions in the dcs-1 gene (Figure S1).

The dcs-1 gene encodes the decapping scavenger enzyme,

which has been shown to hydrolyze the residual cap structure

that results from 30 to 50 decay ofmRNAs by the exosome (Cohen

et al., 2004; Liu et al., 2002). Whereas alg-2(ok304); dcs-1(qbc3)

double-mutant animals arrested in development as early as

embryos postfertilization (data not shown), dcs-1(qbc3) single-

mutant embryos developed normally. However, in contrast to

wild-type animals, animals carrying lesions in the dcs-1 gene dis-
282 Molecular Cell 50, 281–287, April 25, 2013 ª2013 Elsevier Inc.
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played alae structures at the larval L4 stage, one developmental

stage earlier than wild-type (Figure 1A); the developmental stage

was confirmed by examining the vulval and gonad morphology

(Figure S2A). Re-establishing the expression of wild-type dcs-1

using a transgenic array rescued the precocious formation of

the alae (Figure 1A), confirming that this developmental pheno-

type is caused by the mutation in the dcs-1 gene.

LIN-41 is an important regulator of the L4-to-adult develop-

mental transition in C. elegans. During the L4 stage, lin-41

mRNA levels are repressed by the let-7miRNA allowing develop-

mental progression (Reinhart et al., 2000; Slack et al., 2000).

Similar to what we observe for dcs-1, lin-41 loss-of-function

alleles cause precocious formation of alae (Slack et al., 2000).

To test whether dcs-1(qbc3) leads to misregulation of lin-41,

a GFP reporter under the control of the lin-41 30 UTR was

used. Consistent with the fact that the let-7 miRNA is only ex-

pressed during late larval stages (Reinhart et al., 2000; Slack

et al., 2000), we found that, in wild-type worms, the GFP signal

was present in the L2 stage but decreased in adult animals.



Figure 2. The Loss of dcs-1 Function Rescues let-7Mutant Develop-

mental Defects by Increasing Mature let-7 miRNA Levels

(A) Detection by northern blotting of let-7 molecules in various genetic back-

grounds of young adult animals. The detection of tRNAGly by northern

hybridization acted as loading control.

(B) Viability and complete adult alae were scored at 20�C on young adult

animals in the genetic background listed. The number of animals scored is

indicated in parentheses.

Molecular Cell

DCS-1 Is Important for MicroRNA Turnover
Although the signal was comparable for wild-type and

dcs-1(qbc3) animals at the L2 stage, repression appeared

enhanced in adult dcs-1 mutant animals relative to wild-type

(Figure 1B). This effect was accompanied by significantly

decreased endogenous lin-41 mRNA levels in dcs-1(qbc3) rela-

tive to wild-type adult animals (Figure S2B). Notably, the effect

on the lin-41 mRNA level also suggests that the role of dcs-1 in

this process does not involve the decapping scavenger activity

since its loss lead to an increase of overall mRNA levels (Liu

and Kiledjian, 2005). Thus, our data indicate that the precocious

alae observed in dcs-1 mutant animals are a consequence of

precocious downregulation of lin-41.

Mutations in dcs-1 Lead to an Increase of Functional
miRNA Levels
A possible explanation for the robust repression of a miRNA-tar-

geted gene such as lin-41 in dcs-1 mutants is that the loss of

dcs-1 increases the levels of functional miRISC. To test this
11
hypothesis, we monitored the level of two core constituents of

miRISC, namely, miRNAs and the Argonaute protein ALG-1

(Hutvagner et al., 2004). Whereas alg-1mRNA and protein levels

were unaltered in dcs-1(qbc3) (Figures S2C and S2D), the levels

of 16 out of 97 tested miRNAs, including let-7, were significantly

increased relative to wild-type (Figures 1C and 1D). It remains to

be shown what the common feature is that qualifies the miRNAs

that change as DCS-1 targets since many miRNAs are not

affected by the loss of dcs-1 (Table S1).

To determine whether the elevated miRNA levels are due to

enhanced miRNA transcription or processing, we examined

the levels of let-7miRNA-related RNA species and did not detect

any significant change in the levels of pre-let-7 and pri-let-7

molecules between wild-type and dcs-1(qbc3) animals (Figures

S3A and S3B). We conclude that the increase in mature let-7 is

not a consequence of increased transcription, enhanced stability

of the pri- or pre-miRNA molecules, or enhanced processing,

which is consistent with a function for dcs-1 that is not related

to the decapping scavenger activity, but instead reflects an

effect on the stability of mature miRNA molecules.

To obtain further evidence that the miRNAs that accumulate in

dcs-1 animals are functional, we investigated let-7(n2853)

mutant animals. This point mutation in the mature let-7 miRNA

causes reduced let-7 levels as well as temperature-sensitive

alae defects and lethality due to vulval bursting (Reinhart et al.,

2000). Similar to wild-type, the let-7 RNA was significantly

increased during the development of dcs-1(qbc3); let-7(n2853)

animals (Figure S3C), with no significant changes in the pre-

let-7 RNA levels (Figure 2A). Moreover, this increase in let-7

levels coincided with suppression of both the lethality and alae

defects of let-7(n2853) animals to an extent comparable to that

seen with lin-28 knockout, a conserved negative regulator of

let-7 production (Figure 2B; Lehrbach et al., 2009). We conclude

that the loss of dcs-1 leads to the accumulation of functional

miRNAs in animals.

DCS-1 Is Required for the Degradation of miRNAs that
Are Released from miRISC
Because our observations argue against a role of DCS-1 in

miRNA transcription or biogenesis, we next sought to evaluate

a potential role of DCS-1 in miRNA degradation. To this end,

we performed miRNA degradation assays by incubating radiola-

beled synthetic miRNA molecules with total worm lysates as

described previously (Chatterjee and Grosshans, 2009). While

we observed complete degradation of synthetic let-7 after incu-

bation with lysates prepared from wild-type animals, degrada-

tion was severely impaired in lysates prepared from dcs-1(qbc3)

mutant animals (Figures 3A and S3D). This effect was specific

because lysate from dcs-1(qbc3) animals that expressed

a dcs-1 transgene restored decay (Figure 3A). We conclude

that DCS-1 is required for efficient miRNA degradation in vitro.

To further characterize the function of DCS-1 in miRNA degra-

dation, we performed a miRNA release assay. In this assay,

miRISC is purified by immunoprecipitation of endogenous

ALG-1 and then incubated with a miRNA-depleted worm lysate

(by treating the extract with micrococcal nuclease). Subse-

quently, the miRNA molecules that remain associated with, or

are released from, miRISC are quantified (Figure 3B; Chatterjee
Molecular Cell 50, 281–287, April 25, 2013 ª2013 Elsevier Inc. 283
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Figure 3. DCS-1 Is Required for miRNA Degradation

(A) Degradation assays of a 50-32P-labeled, 21 nt long RNA incubated for

15 min with total worm lysates produced from wild-type (wt), dcs-1(qbc3)

mutant, and dcs-1(qbc3) rescued with an HA::dcs-1 transgene (HA::dcs-1)

animals. Dashed lines indicate that unrelated lanes have been removed

between samples.

(B) Schematic of the miRNA release assay.

(C) The miRISC purified by immunoprecipitation of endogenous ALG-1 was

incubated with micrococcal nuclease-treated worm lysate, and the let-7, lin-4,

and miR-80 miRNAs that are released into the supernatant (top panel) or the

remains associated with ALG-1 complexes (bottom panel) were quantified by

quantitative RT-PCR (TaqMan assay). The error bars represent the 95%

confidence interval of three independent experiments. p values were obtained

using a two-sided Student’s t test with the normalized Ct values.

Figure 4. DCS-1 and XRN-1 Form a miRNA Degradation Complex

(A) Schematic of the immunoprecipitation assay.

(B) Transgenic animals are first exposed to either control (�) or xrn-1 (+)

double-stranded RNA (dsRNA)-expressing bacteria for 38 hr followed by total

protein extraction and HA::DCS-1 complex purification with beads coupled

with anti-HA monoclonal antibody. Inputs represent 10% of the total protein

lysate used for the immunoprecipitation (bottom panels). Dashed lines indicate

that unrelated lanes have been removed between samples.

(C) Same as (B), with transgenic lines expressing either wild-type (WT) HA-

tagged DCS-1 or HA-DCS-1 with the point mutation found in the dcs-1mutant

allele qbc3. In both cases, the detection of HA::DCS-1 and XRN-1 was ach-

ieved by western blotting. The minus (�) lane represents the amount of

50-32P-labeled let-7 RNA used for the assay.

(D) The point mutation in DCS-1 abrogates the XRN-1 interaction and

exonuclease activity. Beads coupled with histidine (His)-tagged recombinant

wild-type (WT), mutated in the catalytic histidine triad (CatM), or mutated at the

leucine residue 32 to the proline (L32P; qbc3) DCS-1 protein were incubated

with worm total protein extracts. Each purified DCS-1 complex was then

incubated with the 50-32P-labeled, 21 nt long let-7 RNA for 15 min. The minus

(�) lane represents the amount of radiolabeled let-7 RNA used for the assay.

Coomassie blue staining monitored His-DCS-1 proteins, and western blotting

was used to detect XRN-1 association.
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and Grosshans, 2009). Incubation of miRISC with wild-type

lysate led to efficient release of miRNAs; this was unchanged

when dcs-1 mutant lysate was used (Figure 3C). However,

whereas wild-type lysate caused substantial degradation of the

released miRNAs, which thus was detectable in only small

amounts in the supernatant, dcs-1(qbc3) lysate caused a signifi-

cant accumulation in the supernatant of let-7 and lin-4 (Fig-

ure 3C). By contrast, miR-80, a miRNA that is not affected by

the loss of dcs-1 (Table S1), did not accumulate in the superna-

tant (Figure 3C). These data suggest that DCS-1 is important for

the degradation of some miRNAs released from the miRISC.

DCS-1 Interacts with XRN-1 to Form a miRNA
Degradation Complex
Since our previous results did not rule out the possibility that

DCS-1 affected miRNA turnover indirectly, we immunoprecipi-

tated hemagglutinin (HA)-tagged DCS-1 complexes from
284 Molecular Cell 50, 281–287, April 25, 2013 ª2013 Elsevier Inc.
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rescued dcs-1(qbc3) animals and performed a miRNA degrada-

tion assay (Figure 4A). As previously observed with total lysates,

the purified DCS-1 complex efficiently degraded exogenously

supplied radiolabeled miRNA (Figure 4B). This confirms that

miRNA degrading activity is associated with DCS-1.

The DCS-1 protein has dinucleoside triphosphate hydrolase

activity, which allows it to remove the m7G cap from capped

oligonucleotides, but is not known to degrade oligoribonucleoti-

des themselves (Cohen et al., 2004). Hence, we hypothesized

that a copurifying RNase could endow DCS-1 immunoprecipi-

tates with miRNA degrading activity. XRN-1 and XRN-2 ap-

peared to be suitable candidates, as these two 50 to 30 exonucle-

ases are associated with miRNA degradation in C. elegans

(Chatterjee et al., 2011; Chatterjee and Grosshans, 2009).

Because DCS-1 (Lall et al., 2005) and GFP-tagged XRN-1, but

not XRN-2, are localized in the cytoplasm (Figures S4A and

S4B), we investigated whether the purified DCS-1 complex
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contained the XRN-1 protein. Using an antibody specific to

endogenous XRN-1 (S.R. and H.G., unpublished data), we found

that the functional HA::DCS-1 fusion protein did contain endog-

enous XRN-1 (Figure 4B).

To confirm that this interaction was functionally relevant for

decay, we purified DCS-1 complexes from animals depleted for

XRN-1 by RNA interference (RNAi) and observed that miRNA

degradation was lost (Figure 4B). Moreover, when we introduced

an HA::dcs-1 transgene carrying the L32P missense mutation

found in dcs-1(qbc3) animals (Figure S1), both the interaction

with XRN-1 as well as the miRNA degrading activity of the immu-

nopurifiedDCS-1was lost (Figure 4C).We conclude that XRN-1 is

thecatalytic enginedrivingmiRNA turnover in theDCS-1complex.

Finally, to determine whether the decapping scavenger

activity of DCS-1 participates inmiRNA degradation and to verify

that the qbc3 mutation affects binding to XRN-1, we performed

pull-down experiments with recombinant wild-type, catalytically

inactive (CatM), and qbc3 mutant DCS-1 proteins (Figure S1).

Whereas the wild-type and catalytically inactive DCS-1 inter-

acted with XRN-1 and retained the degradation activity in the

complex, the interaction as well as the degradation activity

was lost with DCS-1 qbc3 protein (Figure 4D). We therefore

conclude that the implication of DCS-1 in miRNA turnover is un-

coupled from its decapping scavenger activity. Because we did

not observe any changes in xrn-1 mRNA or protein levels in

dcs-1(qbc3) animals (Figures S4C and S4D), our data support

the notion that an interaction with DCS-1 promotes the enzy-

matic activity of, rather than stabilizes, XRN-1. Altogether, we

conclude that DCS-1 and XRN-1 form an enzymatic complex

that performs miRNA degradation in C. elegans.

DISCUSSION

Overall, our observations demonstrate that the interaction

between DCS-1 and XRN-1 promotes the degradation of

miRNAs. Consistent with this notion, the orthologous

S. cerevisiae proteins Dcs1p and Xrn1p have recently been

shown to interact, and Dcs1p is essential for Xrn1p enzymatic

activity in vitro and, at least in the presence of a nonfermentable

carbon source, in vivo (Sinturel et al., 2012). Strikingly, Sinturel

et al. (2012) further observed that the stimulation of Xrn1p by

Dcs1p did not require Dcs1p catalytic activity. Similarly, our

in vitro results indicate that the catalytic activity of C. elegans

DCS-1 is dispensable for XRN-1 interaction and stimulation.

Therefore, our data demonstrate that in addition to its previously

characterized role in the degradation of the cap structure of

mRNAs (Cohen et al., 2004; Liu et al., 2002; Wang and Kiledjian,

2001), DCS-1 contributes to miRNA turnover in animals by

promoting the exonuclease activity of XRN-1 on miRNAs.

Currently, it is unknown how miRNAs are released from the

miRISC for degradation by the DCS-1/XRN-1 complex. Recent

crystal structures of yeast and human Argonautes showed that

the 50 end of the small RNA is embedded within the Mid domain

of the protein (Elkayam et al., 2012; Nakanishi et al., 2012; Schirle

and MacRae, 2012) and thus most likely not accessible to the 50

to 30 exonuclease complex. Our observation that DCS-1 does

not promote miRNA release in vitro but facilitates degradation

of the released miRNA is indeed consistent with the notion that
11
DCS-1 and XRN-1 act after the release step, once the miRNA

50 end has become available. In vivo, our analysis clearly indi-

cates that not only miRNA levels, but also miRNA activity, are

increased in dcs-1 mutant animals, which suggests that miRNA

will, at least in part, be retained on Argonaute. It therefore seems

possible that the release of the miRNA from the Argonaute

protein is driven by a dedicated factor that itself needs to unload

the miRNA onto the DCS-1/XRN-1 complex to promote further

rounds of release.

Our finding that dcs-1 loss-of-function mutations are embry-

onic lethal when combined with loss of the Argonaute alg-2 in

embryos but promote miRNA accumulation in the presence of

alg-2 is puzzling, since this finding suggests that DCS-1 can

have both positive and negative effects on miRNA activity.

However, it seems possible that impaired miRNA decay alone

might account for both phenotypes. In our recent effort to cha-

racterize alg-1 and alg-2, we observed that while nearly all

C. elegansmiRNAs are associated with both Argonaute proteins,

a small subset of miRNAs remains specifically interacting with

ALG-1 or ALG-2 (Vasquez-Rifo et al., 2012). Therefore, if loss

of ALG-2 leads to increased competition among miRNAs for

access to ALG-1, overaccumulation of selected miRNAs by

loss of DCS-1 could further compromise Argonaute loading of

a subset of miRNAs. If these include miRNAs essential for

embryonic viability, synthetic lethality might result. Future work

on the function of DCS-1 during embryogenesis may help us to

confirm or refute this idea.

Our data, along with previous observations, support that the

level of miRNAs in C. elegans must be carefully controlled to

enable precisely timed developmental transitions in animal

development. Loss or excess of miRNAs can severely impair

developmental timing, leading to heterochronic phenotypes

(e.g., animals that adopt adult cell fates prematurely or not at

all) (Resnick et al., 2010). The fact that DCS-1 expression is

developmentally regulated in C. elegans (Kwasnicka et al.,

2003; Figure S4E) suggests that modulating DCS-1 levels may

represent an efficient way to regulate XRN-1 activity, thus rapidly

turning overmiRNAs at a specific point during development. This

timely controlled expression of DCS-1 may also explain why

some miRNAs are less sensitive to the loss of dcs-1 function in

animals. We speculate that the role of DCS-1 in miRNA turnover

would be more prominent during important developmental

switches during which animals undergo significant changes in

gene expression, such as the initial steps of embryogenesis

and at the larvae-adult transition (Kaufman and Miska, 2010).
EXPERIMENTAL PROCEDURES

Nematode Methods

C. elegans strains were grown under standard conditions (Brenner, 1974).

Animal transgenic lines were produced by microinjections as described in

(Mello and Fire, 1995). All worm cultures were performed at 20�C unless other-

wise noted.

Synthetic Lethal Forward Screen

A population of 500,000 alg-2(ok304)Ex[alg-2;sur-5::GFP] animals was muta-

genized with 50 mM ethyl methanesulfonate (EMS) for 4 hr. A total of four

GFP-positive F2 animals per F1 were isolated from 1,000 GFP-positive F1.

We screened the F3 population from 1,556 F2 to obtain six unlinkedmutations.
Molecular Cell 50, 281–287, April 25, 2013 ª2013 Elsevier Inc. 285
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Total Worm Lysate Preparation

Populations of synchronized animals were harvested at the adult stage. Har-

vested animals were homogenized in ice-cold lysis buffer (100 mM potassium

acetate, 30 mM HEPES-KOH [pH 7.4], 2 mM magnesium acetate, 1 mM

dichlorodiphenyltrichloroethane [DDT], 0.5% [v/v] Triton X-100, 2% [v/v]

SUPERase,In [Ambion], and cOmplete, Mini, EDTA-free Protease Inhibitor

Cocktail [1 tablet/10 ml solution; Roche]). The homogenized extract was

clarified by centrifugation at 13,817 3 g for 10 min at 4�C, and the protein

concentrations of the different samples were normalized using DC protein

assay (Bio-Rad).

DCS-1 Protein Purification

HA-tagged DCS-1 wild-type and mutant proteins were expressed and purified

as reported in (Cohen et al., 2004).

Pull-Down Assays

Purified recombinant DCS-1 proteins were first incubated with total worm

protein lysate for 1 hr at 4�C, followed by purification on a TALON Afinity

Column (Clontech). Purified DCS-1 complexes were washed three times

with lysis buffer, and proteins associated with DCS-1 were identified by

western blotting.

MicroRNA Degradation Assays

Assays were performed as described previously in (Chatterjee and Grosshans,

2009).

SUPPLEMENTAL INFORMATION

Supplemental Information includes four figures, one table, and Supplemental

Experimental Procedures and can be found with this article online at http://dx.

doi.org/10.1016/j.molcel.2013.02.023.
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Scholarship and is a Natural Sciences and Engineering Research Council of

Canada Graham Bell Scholar. S.R. gratefully acknowledges his Boehringer In-

gelheim Fonds PhD fellowship. Work in the lab of M.J.S. has been funded by

the Canadian Institutes of Health Research (CIHR). Work in the lab of H.G. is

funded by grants from the European Research Council (miRTurn; ERC

2419845), the Swiss National Science Foundation (SNF 31003A_127052),

and the Friedrich Miescher Institute, which is supported by the Novartis

Research Foundation. Contributions from V.A. and M.C.O. were supported

by funding from the US NIH grant (R01 GM24028). M.J.S. is a Junior 2 Scholar

from Fonds de la recherche en santé du Québec.
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Rüegger, S., and Großhans, H. (2012). MicroRNA turnover: when, how, and

why. Trends Biochem. Sci. 37, 436–446.
11
Schirle, N.T., and MacRae, I.J. (2012). The crystal structure of human

Argonaute2. Science 336, 1037–1040.
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