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ABSTRACT

Motivation: Accurate identification of transcription start sites (TSSs) is

an essential step in the analysis of transcription regulatory networks. In

higher eukaryotes, the capped analysis of gene expression technology

enabled comprehensive annotation of TSSs in genomes such as those

of mice and humans. In bacteria, an equivalent approach, termed

differential RNA sequencing (dRNA-seq), has recently been proposed,

but the application of this approach to a large number of genomes is

hindered by the paucity of computational analysis methods. With few

exceptions, when the method has been used, annotation of TSSs has

been largely done manually.

Results: In this work, we present a computational method called

‘TSSer’ that enables the automatic inference of TSSs from dRNA-

seq data. The method rests on a probabilistic framework for identifying

both genomic positions that are preferentially enriched in the dRNA-

seq data as well as preferentially captured relative to neighboring

genomic regions. Evaluating our approach for TSS calling on several

publicly available datasets, we find that TSSer achieves high consist-

ency with the curated lists of annotated TSSs, but identifies many

additional TSSs. Therefore, TSSer can accelerate genome-wide iden-

tification of TSSs in bacterial genomes and can aid in further charac-

terization of bacterial transcription regulatory networks.

Availability: TSSer is freely available under GPL license at http://www.

clipz.unibas.ch/TSSer/index.php

Contact: mihaela.zavolan@unibas.ch

Supplementary information: Supplementary data are available at

Bioinformatics online.
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1 INTRODUCTION

Identification of transcription start sites (TSSs) is a key step in

the study of transcription regulatory networks. It enables iden-

tification of promoter regions, and thereby the focused search for

binding sites of transcription factors. Although for species such

as mouse and human, methods to capture TSSs have been

developed410 years ago (Shiraki et al., 2003), owing to differ-

ences in messenger RNA (mRNA) processing, these methods

cannot be applied to bacteria. Recently, however, a method for

genome-wide identification of bacterial TSSs has been proposed

(Sharma et al., 2010). The method, called differential RNA

sequencing (dRNA-seq), uses the 50 mono-phosphate-dependent

terminator exonuclease (TEX) that specifically degrades

50 mono-phosphorylated RNA species such as processed RNA,

mature ribosomal RNAs and transfer RNAs, whereas primary

mRNA transcripts that carry a 50 triphosphate remain intact.

This approach results in an enrichment of primary transcripts,

allowing TSSs to be identified by comparison of the TEX-treated

samples to control untreated ones. As an automated computa-

tional method to identify TSSs based on dRNA-seq data has not

been available, TSS annotation based on dRNA-seq data

required substantial effort on the part of the curators. The aim

of our work was to develop an automated analysis method to

support future analyses of dRNA-seq data. We here introduce a

rigorous computational method that enables identification of a

large proportion of bona fide TSSs with relative ease. The

method is based on quantifying 50 enrichment of TSSs and

also the significance of their expression relative to nearby puta-

tive TSSs. Benchmarking our method on several recently pub-

lished datasets, we find that the identified TSSs are in good

agreement with those annotated manually, and that a relatively

large number of additional TSSs that also have the expected

transcription regulatory signals are identified. TSSer is freely

available at http://www.clipz.unibas.ch/TSSer/index.php.

2 APPROACH

The input to TSSer is dRNA-seq data, consisting of one or more

pairs of TSS-enriched (TEX-treated) and TSS-not-enriched sam-

ples. There are two main criteria that we use to define TSSs. The

first criterion stems from the obvious expectation that TSSs are

enriched in the TEX-treated compared with the TEX-untreated

samples (Sharma et al., 2010). To quantify the enrichment, we

explored two methods. In one approach we calculated, for each

genomic position, a ‘z-score’ of the observed number of reads in

the TEX-treated sample compared with number of reads in

the TEX-untreated sample. The second method aims to take

advantage of the information from multiple replicates: we use

a Bayesian framework to quantify the probability that a genomic

position is overrepresented across a number of TEX-treated sam-

ples. The second main criterion that we use to pinpoint reliable

TSSs rests on the observation that in bacteria, the majority of

genes have a single TSS (Cho et al., 2009). Thus, we expect that

in a specific sample, for each transcribed gene, there will typically

be one main TSS, as opposed to multiple TSSs in relatively close

vicinity. In other words, bona fide TSSs should exhibit a ‘local

enrichment’ in reads compared with neighboring genomic

positions. We will now describe the computation of different

measures of TSS enrichment.*To whom correspondence should be addressed.
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3 METHODS

3.1 Quantifying 50 enrichment in a TEX-treated compared

with a TEX-untreated sample

In preparing the dRNA-seq sample, one captures mRNAs from bacterial

cells and sequences their 50-ends. The capture of the mRNAs could be

viewed as a sampling process that gives rise to hypergeometrically distrib-

uted counts of reads from individual positions in the genome. However,

given that the number of reads originating at a given genomic position is

small relative to the total number of obtained reads, we can approximate

the hypergeometric distribution by a binomial distribution. That is, if the

total number of reads in the sample is N, and the fraction f of these cor-

responds to a given TSS of interest, then the probability to observe the TSS

represented by n of the N reads in the sample follows a binomial

distribution:

Pðnjf,NÞ ¼
N
n

� �
fnð1� fÞN�n

Letting fþ and f� denote the frequency of reads derived from a given

genomic position in the TEX-treated (TSS-enriched) and TEX-untreated

(non-enriched) samples, respectively, what we would like to determine is

the enrichment defined as follows:

Pðfþ4f�jnþ,Nþ, n�,N�Þ ¼ Pðfþ � f�40jnþ,Nþ, n�,N�Þ:

We do not know the underlying frequencies fþ and f�. Rather, we

approximate the probability of enrichment based on observed counts as

explained in the Supplementary Material. With x being the observed

frequency of reads derived from a given position (i.e. xþ ¼
nþ
Nþ

and

x� ¼
n�
N�

for the TEX-enriched and not enriched samples, respectively),

the probability that a genomic position has a higher expression in the

TEX-treated compared with the untreated sample is given by the follow-

ing equation:

Pðfþ � f�40jnþ,Nþ, n�,N�Þ ¼ �ð
xþ � x�ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi

xþð1�xþÞ
Nþ

þ
x�ð1�x�Þ

N�

q Þ

where � is the cumulative of Gaussian distribution (error function).

In case of having multiple paired samples, the average value of �ðtÞ for

a given genomic position would quantify the 50 enrichment probability.

We call this measure ‘z-score’. Alternatively, when we have replicates

of paired (TEX-treated and untreated) samples, we can calculate the

50 enrichment �s for each pair separately:

�s ¼ h
fþ
f�
i

Assuming that �s follows a normal distribution with mean � and variance

�2, we can calculate the probability that a TSS is enriched across a panel

of k replicate paired samples:

P �41j�ð Þ ¼

R1
1 ð

1
ð����Þ

2
þ�2�
Þ
k�1
2 d�R1

0 ð
1

ð����Þ
2
þ�2�
Þ
k�1
2 d�

where � ¼ ð�1, �2, :::, �kÞ and �� and �� are mean and variance of �,

respectively, and k is the number of replicates (details of the derivation

are given in the Supplementary Material).

3.2 Quantifying local enrichment

To quantify the local enrichment of a putative TSS, we examine the

frequencies of sequenced reads in a region of length 2l centered on the

putative TSS (½x� l,xþ l�). That is, we define the local enrichment L as

follows:

L ¼

P
i2½x�l, xþl�, nþ, i�nþ,x

nþ, iP
j2½x�l, xþl� nþ, j

ð1Þ

where nþ, i is number of reads derived from position i in the TEX-treated

sample. The value of L would be 1 for the position with maximum ex-

pression in the interval, corresponding to a perfect local enrichment.

When replicates are available, we compute the average local enrichment

over these samples. We chose l such that it covers typical 50 UTR lengths

and intergenic regions, i.e. 300 nt. This value is of course somewhat ar-

bitrary, but we found that it allows a good selection of TSSs in practice.

3.3 Identification of TSSs

To identify TSSs, we compute these measures based on all available sam-

ples. Because we observed that the precision of start sites is not perfect

but there are small variations in the position used to initiate transcription,

we also apply single linkage clustering to select the representative among

closely spaced (up to 10nt) TSSs. We then select the parameters that give

us the maximum number of annotated genes being associated with TSSs,

restricting the total number of predicted TSSs to be in within a narrow

range, �50% of the number of annotated genes in the genome.

4 EVALUATION OF THE TSS IDENTIFICATION
METHOD

To evaluate our method and verify its accuracy, we applied it to

several recently published datasets [Helicobacter pylori,
Salmonella enterica serovar Typhimurium (Kröger et al., 2012)

and Chlamydia pneumoniae (Albrecht et al., 2009)] for which a
mixture of computational analysis and manual curation was used

to annotate TSSs. We here present an in-depth analysis of the
TSS identification approaches for H.pylori. Similar analyses for
the other species are given in the Supplementary Tables S4–S6.

In the H.pylori genome, our method identified 2366 TSSs. Of
these, 1306 (55%) TSSs are in the reference set of 1893 curated

TSSs reported by Sharma et al., 2010, which we refer to them as
‘Common’ TSSs. Thus, 69% of the curated sites are included in

our TSS list. A number of reasons contributed to our method
failing to identify another 31% curated TSSs, which we refer to
them as ‘Reference only’.

� In our approach, we only use reads that were at least 18 nt in
length and mapped with at most 10% error to the genome.

This selection appears to have led to the loss of 187 (32%) of
the 587 curated TSSs in the mapping process, before apply-
ing the TSSer inference.

� The majority of the curated sites that we did not retrieve

appear to have been supported by a small number of reads.
Two hundred twenty-six (38%) of the 587 curated TSSs that

we did not identify were supported by less than a single read
per 100 000 on average and we required that a TSS is

supported by at least 1 read (see Fig. 1a).

� Finally, 174 (30% of the curated TSSs that we did not re-
trieve) did not pass our enrichment criteria (see Fig.1c).

Accepting these TSSs as putative TSSs would have to be
accompanied by the inclusion of many false positives.

In summary, 70% of the manually curated TSSs that are not in
the ‘TSSer’ prediction set were not lost due to TSSer scoring but
rather before because they had little evidence of expression, even

though we mapped 70.43% of the reads to the genome, com-
pared with 80.86% in the original analysis (Sharma et al., 2010).

Only 30% of the TSSs that were in the reference list were not
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present in the TSSer list because they did not satisfy our criteria

for enrichment in reads. Further investigating the features [en-

richment values, distance to start codon (TLS) and presence of

transcriptional signals (see Supplementary Material)] of these

TSSs that we did not identify, we found that a large proportion

are likely to be bona fide TSSs, i.e. false negatives of our method.
On the other hand, we identified an even larger number of

TSSs (1060) that were not present in the curated list. We refer

to these as ‘TSSer only’. Of these, 198 TSSs correspond to 142

genes that were not present in the reference list. Of the remaining

862 TSSs that are only identified by our method, 287 TSSs are

‘Antisense’ TSSs, 58 TSSs are ‘Orphan’ and 379 TSSs are alter-

native TSSs for genes that did have at least one annotated TSS in

the reference set (the definition of these categories is given in

Section 2.3 of Supplementary Material). These TSSs share the

properties of TSSs jointly identified by our method and the

manual curation (Fig. 1), indicating that they are also bona

fide TSSs. To further support the TSSs that were identified by

TSSer and were missing in the reference list, we compared these

TSSs with the ‘Common’ category and also ‘Reference only’

category in the following aspects:

� Average normalized expression (Fig. 1a): ‘TSSer only’ TSSs

have almost the same expression distribution as TSSs in

‘Reference only’ category and both have lower expression

compared with the TSSs in the ‘Common’ set. This indicates

that TSSs with high expression are equally well identified by

the two methods, and that the difference between methods

manifests itself at the level of TSSs with low expression.

� TSS to TLS distance: Figure 1b shows that TSSer identifies

putative TSSs that are closer, on average, to the translation

start, compared with the TSSs that were manually curated.

The proportion of internal TSS identified by TSSer is also

higher and it remains to be determined what proportion of

these represents bona fide transcription initiation starts.

� Enrichment values: Figure 1c shows that TSSs identified by

TSSer only have strong 5’ and local enrichment, whereas

those that are present in the ‘Reference only’ set have low

local enrichment. This indicates that these sites are located

in neighborhoods that give comparable initiation at spurious

sites and thus these sites would be difficult to identify simply

based on their expression parameters.

� Strength of transcriptional signals: Figure 1d shows that

TSSs identified by TSSer share transcriptional signals such

as the �10 box with the other categories of sites. The overall

weaker sequence bias may indicate that a larger proportion

of ‘TSSer only’ sites are false positives, consistent with the

higher proportion of sites that TSSer identified downstream

of start codons (Fig. 1a). To further investigate the tran-

scription regulatory signals, we also implemented a hidden

Markov model (HMM) that we trained on the ‘Common’

sites to find transcription regulatory motifs. We then applied

this model to the sequences from each individual subset (see

Supplementary Material for details). The results from

the HMM further confirm that a large proportion of the

‘TSSer only’ sites have similar scores to the sites in the

other two categories, indicating that TSSer captures a sub-

stantial number of bona fide TSSs that were not captured

during manual curation.

5 DISCUSSION

Deep sequencing has truly revolutionized molecular biology. It

enabled not only the assembly of the genomes of thousands of

species, but also annotation of transcribed regions in these gen-

omes and the generation of a variety of maps for DNA-binding

factors, non-coding RNAs and RNA-binding factors. High-

throughput studies revealed that not only eukaryotic but also

Fig. 1. Properties of TSSs that were present only in the reference list

(left), both in the reference and the TSSer list (middle) or only in the

TSSer list (right). (a) Box plot of averaged normalized expression (the

boxes are drawn from the first to the third quantile and the median is

shown with the red line). (b) Box plot of the displacement distribution

relative to the start codon. (c) Scatterplots of 50 versus local enrichment

(both shown as percentage). (d) Sequence logos indicating the position-

dependent (50 ! 30 direction) frequencies of nucleotides upstream of the

TSS (datasets are shown from top to bottom rather than from left to

right)
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prokaryotic genomes are more complex than initially thought. In

particular, bacterial genomes encode relatively large numbers of

non-coding RNAs with regulatory functions (Waters and Storz,

2009) and antisense transcripts (Georg and Hess, 2011). Such

transcripts are of particular interest because they are frequently

produced in response to and contribute to the adaptation to

specific stimuli (Repoila and Darfeuille, 2009). The availability

of a large number of bacterial genomes further enables identifi-

cation of regulatory elements through comparative genomics-

based approaches (Arnold et al., 2012). However, these methods

benefit from accurate annotation of TSSs that enables a focused

search for transcription factor binding sites. Although the data

supporting TSS identification can be obtained with relative ease

(Sharma et al., 2010), the annotation of TSSs has so far been

carried out manually, which is tedious and likely leads to an

incomplete set of TSSs. Only recently, as our manuscript was

in the review process, methods for automated annotation of

TSSs based on dRNA-seq data started to emerge (Dugar et al.,

2013) (see also http://www.tbi.univie.ac.at/newpapers/pdfs/TBI-

p-2013-4.pdf). The method that we propose here is meant to

provide a starting point into the process of TSS curation.

Because it uses dRNA-Seq data, it is clear that only TSSs from

which there is active transcription during the experiment can be

annotated. As we have determined in the benchmark against the

H.pylori, there remain TSSs for which the expression evidence is

poor, yet have the properties of bona fide TSSs. Additional sam-

ples, covering conditions in which these TSSs are expected to be

expressed are necessary to identify them. Alternatively, they can

be brought in during the process of manual curation.

Nonetheless, the advantage of an unbiased automated method

such as the one we propose here is that it allows the discovery of

TSSs that may not be expected or easily evaluated such as those

of antisense transcripts, alternative TSSs and TSSs correspond-

ing to novel genes. Furthermore, this method can provide an

initial set of high-confidence TSSs that can be used to train

more complex models of transcription regulation, which could

be used to iteratively identify additional TSSs, that may be sup-

ported by a small number of reads. To illustrate this point, we

here used an HMM, which we trained on high-confidence TSSs

from the ‘Common’ category, to provide an additional list of

putative TSSs that appear to have appropriate transcription

regulatory signals but that were not captured with high abun-

dance or enrichment in the experiment (Supplementary

Table S8). Thirty-six percent of the TSSs that were only present

in the reference annotation are part of this list. More sophisti-

cated versions of this approach could be used toward compre-

hensive annotation of TSSs in bacterial genomes. Finally, the

method can be applied to other systems in which genomic

regions give rise to an increased number of transcripts in specific

conditions.

6 CONCLUSION

We have proposed an approach for genome-wide identification

of TSSs in bacteria, which uses dRNA-Seq data to quantify the

50 and local enrichment in reads at putative TSSs and their cor-

responding significance. The method is implemented in an auto-

mated pipeline, which we applied to several recently published

dRNA-Seq datasets. A thorough benchmarking of the TSSs pro-

posed by our method relative to manual curation indicates that

the method performs well in identifying known TSSs and is able

to further detect novel TSSs that have the expected properties of

bona fide TSS. Thus, our method should enable rapid identifica-

tion of TSSs in bacterial genomes starting from dRNA-Seq data.
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