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Summary

Estimates of the disease burden due to malaria in Africa show that the toll it is

exacting in terms of loss of life, episodes of serious illness, and impediment to

economic development is enormous. In many areas the situation has become worse

due to failing drugs, failing insecticides, failing health systems, large scale population

movements and possibly due to co-infection with HIV. On the other hand, recent

studies have shown that widespread use of insecticide treated bed nets has the

potential for making substantial inroads into this disease burden, particularly in areas

of high endemicity.

Recording the geographical distribution of any major disease forms an important basis

for locating appropriate interventions for its control and a means to monitoring their

effectiveness. It also provides a possibility for identifying ecological factors with

which the disease may be associated.

The objective of this thesis was to produce evidence-based maps of malaria

prevalence and incidence by means of spatial statistical modelling; to evaluate and

advance the application of methodology in the analysis of spatially correlated disease

data; and to undertake detailed analysis of malaria incidence for one particular area in

order to establish underlying patterns of malaria risk over space and time and in

relation to population, climatic and environmental factors. Altogether six individual

studies were carried out, which modelled malaria distribution at three different levels

of scale. These levels and their locations, were: regional level in sub-Saharan West

Africa, country level in Mali and district level in Ubombo and Ngwavuma in

KwaZulu Natal, South Africa. In the case of the regional and country maps, the

malariometric measure was parasite prevalence in children, obtained from the MARA

database. In the case of the district-level analysis, routinely recorded small area

malaria incidence data were used, which were obtained from the provincial malaria

control programme. Three of the studies modelled malaria distribution over space and

time.
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There are well-documented difficulties with the mapping of raw disease rates, since

such maps will be dominated by sampling variability and analyses based on them will

be flawed due to the lack of independence in the rates. Spatial statistical methods can

be used to overcome these difficulties, but these have rarely been applied in the

context of malaria distribution modelling. In this thesis two such approaches were

employed: 1) classical geo-statistical methods, based on variograms and generalised

linear mixed models, and 2) autoregressive models in a Bayesian context using

Markov Chain Monte Carlo (MCMC) methods. Some minor adaptations of the

methods have been suggested.

The main findings of the studies carried out in this thesis were:

•  Both classical geostatistical and autoregressive MCMC methods are feasible

for modelling malaria distribution and advantages and limitations of each

method have to be weighed up in a particular context. The development of

extensions to the MCMC spatial modelling approach to cater for point

referenced (as opposed to areal) spatial data will make this method more

generally applicable. The ability to adequately reflect the effects of random

errors comprehensively in the resulting map estimates is an important

advantage of the Bayesian modelling approach.

•  It is feasible to produce evidence-based maps of transmission intensity, which

are a refinement of expert opinion maps, from parasite ratio surveys.

•  Malariometric measures of transmission intensity (and their proxies) are often

highly correlated in space as well as in time and this must be taken into

account in any modelling, particularly at the short range scales.

•  Due to strong spatial heterogeneity it is difficult to model malaria transmission

intensity without leaving considerable unexplained, residual variation, which

may be spatially correlated. It is therefore unsatisfactory to map model

predictions directly. One method of overcoming this problem is to produce a

map of kriged (interpolated) model residuals, and to add these to model

predictions which can then be mapped. In large heterogeneous regions, models

should be derived within ecological zones, and special smoothing methods
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should be employed in boundary areas between these zones, rather than

attempting to derive a single unified distribution model for the whole region.

•  Spatial variation in malaria transmission intensity is significantly associated

with basic climatic factors in areas of endemic stable malaria and in areas of

epidemic unstable malaria, but the relationship is usually not straightforward.

However, an association between temporal variation in malaria transmission

intensity and variation in weather, whilst plausible, could not be proven in the

data that were analysed.

•  Sharp increases in malaria caseloads in Kwa Zulu Natal appear to originate

mainly from areas of previously low incidence, whilst high incidence areas

have partly stabilized. This suggests a geographical expansion of malarious

areas, and the acquisition of clinical tolerance to disease in some individuals in

high incidence areas. The finding that adults in high transmission sub-regions

of the province experience lower incidence rates than teenagers, supports the

hypothesis of clinical immunity to infection in these relatively high incidence

areas. Children under five in the same area, experience the lowest incidence

rates compared to other age groups, possibly as a result of being more

adequately protected by vector control measures than older children and

adults.

•  In areas of unstable fluctuating malaria transmission intensity, incidence in

individual localities is highly correlated to incidence at the same locality in

previous seasons.

One of the maps (West Africa) that were produced in this thesis has already been put

to use in malaria control. The findings relating to Kwa Zulu Natal will be presented

directly to the provincial malaria control programme. Two of the six studies have

been published, three have been submitted for publication and one is being prepared

for submission, to ensure widespread dissemination of the findings.

A number of future research questions arise out of this work. These are, amongst

others:

•  Methodological development of Bayesian spatial modelling software,

particularly to accommodate point referenced spatial data.
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•  Further analysis using the MARA database to produce endemicity maps of

other regions in Africa.

•  Prospective studies should be undertaken to assess the relationship between

malaria and weather changes in epidemic prone areas, with a view to further

exploring the feasibility of epidemic forecasting systems.

•  Further investigation of factors that influence the acquisition of clinical

immunity in adults in areas of moderate transmission intensity; investigation

whether this is confirmed in similar areas elsewhere (e.g. Namibia, Botswana),

and whether it is supported by age specific differences in case-fatality rates.



Zusammenfassung 15

Zusammenfassung

Schätzungen der Malariabelastung in Afrika zeigen, dass diese Krankheit eine sehr

hohe Sterberate und eine enorme Anzahl schwerer Erkrankungen verursacht, sowie

ein beachtliches Hindernis für die wirtschafliche Entwicklung darstellt. In vielen

Teilen des Kontinents hat sich die Situation wegen Fehlmedikation verschlechtert,

sowie durch unwirksame Insektenbekämpfungsmittel, mangelhafte

Gesundheitsdienste, grosse Bevölkerungsumsiedlungen und möglicherweise durch

Koinfektion mit HIV. Demgegenüber haben neuere Studien gezeigt, dass die

flächendeckende Nutzung von insektizidbehandelten Mückennetzen das Potential

haben, grosse Erfolge gegen die Belastung durch Malaria zu erzielen, besonders in

Gegenden mit hoher Endemizität.

Das Aufzeichnen der geographischen Ausbreitung einer Krankheit stellt eine wichtige

Basis dar, um entsprechende Kontrollinterventionen zu lokalisieren, und um die

Effektivität solcher Interventionen zu überwachen. Weiter dient es der Möglichkeit

Umweltfaktoren zu identifizieren, mit der die Krankheit verbunden sein könnte.

Das Ziel der vorliegenden Dissertation war: Mittels räumlicher statistischer

Modellierung Karten zu erstellen, welche die Prävalenz und das Auftreten von

Malaria dokumentieren; die Anwendung von Methoden in der Analyse räumlich

korrelierter Daten auszuwerten und zu verbessern; und eine detaillierte Analyse von

Malariameldungen einer bestimmten Gegend durchzuführen, damit zugrundeliegende

räumliche und zeitliche Tendenzen von Malaria Erkrankungsrisiken aufgezeigt und

mit Bevölkerungs-, Klima- und Umweltfaktoren in Zusammenhang gestellt werden

können. Im Ganzen wurden sechs verschiedene Studien durchgeführt, welche die

Malariaausbreitung in drei verschiedenen Masstäben modellierten. Diese drei

Masstäbe waren: Regionaler Masstab in West Afrika südlich der Sahara,

Landesmasstab in Mali, und Distriktmasstab in Ubombo und Ngwavuma in KwaZulu

Natal, Süd Afrika. Bei den Regional- und Landeskarten wurde das Vorkommen von

Malariaparasiten bei Kindern als Malariaindikator benutzt, welches in der MARA

Datenbank enthalten ist. Im Falle der Distriktanalyse wurden routinemässig

gemessene Malaria Inzidenzdaten benutzt, die vom Malaria-Kontrolldienst der
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Provinz Kwa Zulu Natal zugestellt wurden. Drei der Studien modellierten Malaria

Ausbreitung in der räumlichen sowie in der zeitlichen Dimension.

Es gibt gutdokumentierte Schwierigkeiten die auftreten, wenn rohe Krankheitsraten

auf Landkarten übertragen werden, da solche Landkarten überwiegend von

Stichprobenvariabilität dominiert werden, und jegliche Analyse, die darauf beruht,

wegen der nicht vorhandenen Unabhängigkeit der Daten, fälschliche Resultate

aufweist. Räumliche statistische Methodik, welche zu diesem Zweck entwickelt

wurde, kann solche Schwierigkeiten überwinden, wurde aber bisher selten im

Zusammenhang mit Malaria Ausbreitungsmodellierung verwendet. In der

vorliegenden Dissertation wurden zwei solche Ansätze angewandt: erstens klassische

geostatistische Methoden, die auf Variogrammen und verallgemeinerten linearen

gemischten Modellen beruhen, und zweitens autoregressive Modelle, die in einem

bayesianischen Kontext Markov Chain Monte Carlo (MCMC) Methoden anwenden.

Ferner werden geringfügige Abweichungen der Methodik vorgeschlagen.

Die wichtigsten Ergebnisse der Untersuchungen in dieser Doktorarbeit waren:

•  Klassische geostatistische sowie autoregressive MCMC Methoden können

erfolgreich zur Modellierung der Malariaausbreitung angewandt werden - ihre

jeweiligen Vor- und Nachteile müssen im einzelnen Fall abgewogen werden. Die

Weiterentwicklung des MCMC Ansatzes zur räumlichen Modellierung

punktueller, im Gegensatz zu flächigen Daten, wird diese Methodik allgemeiner

anwendtbar machen. Die Fähigkeit der bayesianischen Methodik die Effekte von

Stichprobenfehlern in den sich ergebenden Kartenschätzungen zu reflektieren, ist

ein wichtiger Vorteil dieses Ansatzes.

•  Es ist durchaus möglich, mittels Erhebungen über  Malariaparasiten Prävalenz,

empirische Karten der Übertragungsintensitäten zu erstellen, die eine

Verfeinerung der Expertenkarten darstellen.

•  Messungen der Malariaübertragungsintensität sind oft räumlich sowie zeitlich

stark korreliert. Diese Korrelation muss bei jeglicher Modellierung in Betracht

gezogen werden, besonders bei kürzeren Distanzen.
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•  Wegen starker räumlicher Heterogenität ist es schwierig Malaria

Ausbreitungsmodelle zu entwickeln, bei denen nicht beachtliche unerklärte

Residualvariation zurückbleibt, welche räumlich korreliert sein kann. Es ist

deshalb nicht zufriedenstellend, Modellvohersagen direkt auf Karten zu

übertragen. Stattdessen kann eine Karte von gekrigden Modelresiduen erstellt

werden, um diese dann zu den Modellvorhersagen zu addieren - diese addierten

Werte können schliesslich auf Karten übertragen werden. In heterogenen Gebieten

sollten Modelle in der Regel innerhalb von ökologischen Zonen erstellt werden,

und spezielle Glättungsmethoden sollten in den Grenzgebieten zwischen diesen

Zonen durchgeführt werden, statt zu versuchen ein einziges, ganzumfassendes

Verbreitungsmodel abzuleiten.

•  Die Räumliche Variation der Malaria Übertragunsintensität ist erheblich assoziert

mit grundlegenden klimatischen Faktoren in Gegenden von endemischer, stabiler

Malaria Übertragung, sowie in Gegenden von unstabiler epidemischer

Übertragung, aber der Zusammenhang ist meistens nicht einfacher Natur. Eine

Assoziation von zeitlicher Veränderung von Malaria Übertragungsintensität, und

zeitlicher Veränderungen des Wetters, ist zwar plausibel, konnte aber nicht

nachgewiesen werden in den Datensätzen die analysiert wurden.

•  Der starke Anstieg der Anzahl Malariafälle in Kwa Zulu Natal scheint

hauptsächlich aus Gegenden zu stammen, wo vorher nur geringes Auftreten der

Krankheit vorhanden war, während es sich in Gegenden mit zuvor hohen

Auftretensraten teilweise stabilisierte. Dieser Umstand deutet auf eine räumliche

Ausbreitung von Malaria Gegenden hin, sowie das Erwerben einer klinischen

Toleranz bei manchen Bewohnern der Gegenden mit bisher hoher Malaria

Inzidenz. Die Feststellung, dass Erwachsene in Gebieten höherer

Übertragungsintensität einem niedrigerem Auftreten von Malariaepisoden

unterliegen als Teenagern, unterstützt die Hypothese klinischer Immunität in

diesen Regionen. In diesen Orten, erleben Kinder unter fünf Jahren weniger

Episoden von Malariaerkrankung als irgend eine andere Altersgruppe,

möglicherweise infolge von Mückenbekämpfungsmassnahmen, welche diese

Altersgruppe vorwiegend schützen.
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•  In Gegenden unstabiler, fluktuierender Malaria Übertragungsintensität, ist die

Inzidenz einzelner Teilgebiete stark korreliert mit der vorjahres Inzidenz

desselben Teilgebietes.

Eine der Karten, die in dieser Dissertation erstellt wurde (West Afrika, Kapitel 4), ist

bereits in der Malariabekämpfung benutzt worden. Die Ergebnisse, die sich mit Kwa

Zulu Natal befassen, werden dem örtlichen Malaria-Kontrolldienst direkt vorgetragen.

Zwei der sechs Studien dieser Dissertation sind bereits publiziert worden, drei weitere

sind zur Publikation eingesandt, und ein weiteres wird zur Publikation vorbereitet, um

diese Ergebnisse so weit wie möglich zu verbreiten.

Einige weitere Forschungsthemen ergeben sich aus dieser Arbeit. Diese sind unter
anderem:
•  Methodische Weiterentwickelung von bayesianischer räumlicher modellierungs

Software damit diese punkt-bezogene räumliche Daten verarbeiten können.

•  Weiterbearbeitung der MARA Datenbank um Malaria Endemizitätskarten für

andere Regionen Afrikas zu erstellen.

•  Prospektive Studien sollten unternommen werden, um den Zusammenhang

zwischen Malaria und Wetterveränderung zu bewerten, in Gegenden welche

Malaria Epidemien unterliegen, um weitere Möglichkeiten eines Malaria

Vorherrsagesystems zu beurteilen.

•  Weitere Untersuchung von Faktoren, die Erwerb von klinischer Immunität bei

Erwachsenen in Gegenden mässiger Übertragungsintensität beeinflussen.

Untersuchungen ob dieses Phänomen sich in anderen ähnlichen Gegenden

wiederholt (z.B. Namibia, Botswana), und ob es durch Unterschiede in

Fatalitätsraten bestätigt wird.
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Abbreviations
AEZ Agro-ecological zone

AR(1) First order autoregressive

ARTEMIS African real time environmental monitoring using imaging satellites

AVHRR Advanced very high resolution radiometer

CAR Conditional autoregressive

CCD Cold cloud duration

EA Enumeration area

EIR entomological inoculation rate

EPD Expected predictive deviance

ESHAW Ecosystem health analytic workshop

FAO Food and agricultural organisation

GLM Generalised linear model

GLMM Generalised linear mixed model

GIS Geographic information system

GPS global positioning systems

HRR High resolution radiometer

ITM/ITBN Insecticide treated material/bednet

LRS Likelihood ratio statistic

LST Land surface temperature

MARA Mapping malaria risk in Africa

MCMC Markov Chain Monte Carlo

NOAA National Oceanographic and Atmospheric Administration

NDVI normalised difference vegetation index

PEN Penalty

RS Remote sensing

SD Standard deviation
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Chapter 1

Introduction: The epidemiology of malaria distribution

The burden of malaria in Africa
In areas of stable endemic malaria transmission in sub-Saharan Africa it has been

estimated that in 1995 about 1 million deaths were directly attributable to malaria

infection (Snow et al. 1999). Of these deaths, three-quarters were in children below

the age of 5 years. In the same population, it is estimated that about 200 million

clinical attacks of malaria occurred in the same year. In areas of unstable or epidemic

prone malaria in southern Africa (�fringe areas�), about 2000 deaths and 200,000

clinical episodes occurred that were due to malaria and that were not prevented

despite malaria control measures in these areas. According to a World Bank report of

1993, malaria accounts for an estimated 35 million disability �adjusted life years

(DALYs) per year lost in Africa due to ill-health and premature death (World Bank,

1993).

The discovery of an interactive effect between HIV infection and malaria morbidity

(Whitworth et al. 2000; Chandramohan and Greenwood 1998; Verhoef et al. 1999)

exacerbates the potential for devastating health consequences in populations with

large numbers of individuals who are co-infected. In resource-poor countries in

Africa, malaria prevention and treatment consume large proportions of health budgets,

and since it poses a threat to indigenous populations as well as visitors, it acts as a

deterrent to tourism and foreign investment in these countries. Malaria therefore not

only affects the health status of Africa�s population, but also has far-reaching

economic consequences inhibiting economic development (Wernsdorfer and

Wernsdorfer 1988). The impact of malaria on the region has been recognized by the

convening of the first African summit of heads of state on malaria in Abudja, Nigeria

in April 2000. A report to the summit meeting calls, amongst other things, for more

research on trends in incidence and prevalence, epidemic outbreaks and clinical

epidemiology (Sachs 2000). A better understanding of the distribution of malaria has

been identified as an important tool in its control (Snow et al. 1996). More accurate
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maps make it possible for interventions to be mounted which are appropriate to the

disease profile which characterises particular levels of endemicity, for clinical trials

and evaluations of new approaches to be located correctly, and for planners of

irrigation and other development schemes to take cognisance of the potential effects

of these schemes on malaria transmission intensities.

Transmission of malaria
Malaria is caused by the parasite of genus Plasmodium. The four species of

Plasmodium are P. falciparum, P.malariae, P.ovale and P.vivax. In Africa the

predominant species of the disease causing-parasite is P. falciparum. Infection of the

human host occurs when a person is bitten by a female Anopheles mosquito which has

previously become infected. The parasite, called sporozoite at this stage of its cycle,

enters the human body via the saliva of the mosquito which is injected into the blood.

The parasites multiply in the liver, and re-invade the blood via red blood cells as

merozoites. These develop into a stage known as the trophozoite, which is the one

visible in blood films, and subsequently divide by the process of schizogony to

produce further merozoites, which invade non-infected blood-cells. Some of the

merozoites develop into new trophozoites whilst others develop into male micro- or

female macrogametocytes. Uninfected Anopheles mosquitoes become infected if they

feed on a person with mature gametocytes in their peripheral blood. In the mosquito,

the microgametozytes exflagellate into gametes before fertilising the

macrogametocytes, thereby forming zygotes. The zygote changes into an ookinete and

then into an oocyst, which is found in the mid-gut wall of the mosquito. Large

numbers of sporozoites are formed within the oocyst. The rate of development of

sporozoites in the oocyst is temperature dependent. The sporozoites leave the oocyst

to invade the mosquito�s salivary glands, from where they can infect another human

host when the mosquito takes a blood meal. The incubation period of the parasite in

the vector takes 13 days to complete at 24û C. for P.falciparum. The vector will only

become infective if it survives this sporogonic cycle (Gilles and Warrell 1993, chapter

2).

Malaria as a disease is therefore closely bound to conditions which favour the survival

of the anopheles mosquito in the form of habitat and breeding sites and which favour
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the life cycle of the parasite in terms of suitable temperatures. In the absence of any

human intervention these conditions are predominantly determined by climatic and

environmental factors.

The most important vectors of malaria in Africa are members of the An. gambiae

complex and An. funestus. Identification of the distribution of particular species is

important since malaria vector control measures may have to take account of

behavioural differences between species to be effective (Coetzee et al. 2000; Gillies

and De Meillon 1968). For example, indoor biting and indoor resting habits

(endophagy and endophily respectively), make mosquitoes more susceptible to

control by residual insecticide on interior walls of houses, and to other insecticide

treated materials such as bednets.

Five species of the An. gambiae complex are vectors of malaria. The two species

which are the most efficient vectors of malaria parasites, An. gambiae sensu stricto

and An. arabiensis, are also the most widely distributed throughout most of sub-

Saharan Africa. They often occur together, but An. arabiensis predominates in drier

areas, whilst An gambiae predominates in more humid areas. An gambiae generally

has a higher vectorial capacity than any of the other species, in part due to it being

highly anthropophilic. It is also mainly endophagic and endophilic, making it

amenable to control by indoor house-spraying of residual insecticide, at least in areas

of moderate transmission intensity. An. arabiensis, on the other hand, is partly

zoophagic and mainly exophagic and exophilic. It is generally considered a less

efficient vector of malaria than An gambiae, but it is nevertheless the principal

malaria vector in many areas (White 1974). A. bwambae is found only in the Semliki

forest area in Uganda. It is partially endophagic and partially endophilic. The two

saltwater species of the An. gambiae complex are An. melas and An. merus which are

found in West Africa and in East Africa respectively. An. merus is exophilic and

mainly zoophagic, whereas An. melas displays a more mixed resting and biting

behaviour. An. funestus of the An funestus group, the other major vector of malaria in

many parts of tropical and sub-tropical Africa (Armah et al. 1997; Gillies and De

Meillon, 1968) bites humans; it is exophagic and endophilic. Since it breeds mainly in

permanent water bodies, it is associated with all-year as opposed to seasonal malaria

transmission (Sharp et al. 2000).
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One of the main environmental factors affecting malaria transmission is temperature.

The effect of an increase in temperature on the parasite is to shorten the sporogony

cycle and hence to accelerate transmission. The duration of sporogony can be

calculated by the formula n=T/(t-tmin) where n=duration of sporogony in days, t=

average temperature in ûC, and for P.falciparum T =105 and tmin =16û C. Below 16û C

parasite development ceases. Rising temperature also increases transmission by

increasesing the frequency with which the vector takes blood meals, which increases

the growth rate of vector populations through a shortening of the generation time. The

optimal range of temperature for most vectors lies between 20 and 30û C. Higher

temperatures reduce the longevity of adult vectors, and hence fewer of them will

survive the sporogony cycle to become infective. There are thus upper and lower

thresholds outside which malaria transmission is very inefficient or impossible. The

dependence of malaria transmission on temperature is indirectly expressed in the

Macdonald model which formulates the dependence of the basic reproduction rate of

malaria in terms of the daily survival probability of the vector and the length of the

incubation period (Bruce-Chwatt 1980, pp. 149-159; Molineaux 1988, pp. 923).

Increasing rainfall and vegetation density generally have a favourable impact on

malaria transmission through the provision of breeding sites and habitat for the vector.

However, the differing breeding habits of different species of Anopheles, complicate

the relationship between rainfall and malaria transmission. Flooding, for example,

may flush out larvae pools and lead to a temporary reduction in vector populations.

Forest vegetation may inhibit An. gambiae because of the lack of sunlight.

Nevertheless, insufficient annual rainfall, or seasonal rainfall, constitutes a distinct

limitation to malaria transmission in areas where temperature is not a limiting factor.

Rainfall of about 80mm per month for at least five months of the year has been

identified as a minimum requirement for stable transmission to occur (Craig et al.

1999).

Clinical manifestations
Clinical malaria manifests itself in its mild form as a febrile illness associated with

other non-specific symptoms (Bruce-Chwatt 1980, ch.3). The first clinical signs will



Introduction 29

only appear after the incubation period, which varies between nine and fourteen days

for falciparum malaria. Clinical diagnosis is usually confirmed by a blood test,

involving microscopic evidence of parasites in the blood, or by rapid diagnostic kit

(Craig and Sharp 1997). However, in endemic countries infected individuals are often

asymptomatic, so that parasitological evidence does not necessarily prove that the

symptoms are due to malaria in a particular patient (Bruce-Chwatt 1980, pp. 35-51;

Snow et al. 1997).

Severe life threatening malaria is usually due to P.falciparum malaria. In non-endemic

areas cerebral malaria is the sequel that often sets in after the initial general

symptoms. In such areas death due to malaria in both children and adults is usually

due to cerebral malaria. In highly endemic areas severe malaria affects mainly young

children, and women during pregnancy. In such areas infants may enjoy a period of

inherited immunity of up to 6 months. As this declines, clinical attacks become more

severe, and often take the form of severe anaemia which is responsible for most

deaths due to malaria in these areas. Depending on the intensity of exposure to the

parasite, these children develop relative tolerance to malaria infection in their first few

years of life. As a result of this older children and adults usually exhibit mild, non

life-threatening clinical symptoms, if any.

Malaria control
In areas of high transmission intensity the use of insecticide treated bednets (ITBNs)

and materials has become recognized as an effective means of malaria vector control

for reducing mortality and severe morbidity in young children and pregnant mothers

(Binka 1997; Abdulla et al. 2001). In an integrated strategy these would be used in

conjunction with rapid and effective algorithms for diagnosis and the availability of

efficient and affordable drugs for case management.

In areas of low transmission intensities (particularly in southern Africa), house

spraying with residual insecticide (for example pyrethroids, or DDT) has been widely

used as an effective means of vector control, coupled with definitive diagnosis and

treatment towards parasitological cure (Sharp et al. 2000). More recently, this has

been complemented with the use of ITBNs in specific areas (Mnzava et al. 1999).
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Malaria parasite control in most parts of Africa, including the malaria �fringe� areas

in the south, has been affected by large scale parasite resistance to the cheap anti-

malarial drugs such as chloroquine and increasingly to sulphadoxine/pyrimethamine

(SP). In KwaZulu Natal in South Africa this has necessitated a recent decision to

introduce combination therapy including artemisinin in place of previously used SP.

Malaria distribution data and measures of transmission intensity
For modelling malaria transmission intensity, the measure of choice is the

entomological inoculation rate (EIR), which is the number of infective bites per

person per year, since it is a direct measure of exposure to which individuals are

subjected. Unfortunately this is not widely available. Other potential measures would

be the vectorial capacity, man-biting rate, parasite ratio and incidence rates.

Irrespective of the merits and de-merits of these measures, the only one that is widely

available for the whole continent is the parasite ratio or prevalence of infection. This

is obtained by a random survey of individuals who are tested for the presence of

parasites in their blood. The results of thousands of these surveys taken over time

across the length and breadth of malarious areas in Africa, have been consolidated in

the MARA database (MARA/ARMA Collaboration 1998). Due to the effects of

partial immunity in endemic malaria areas, surveys that include older children and

adults do not give a reliable measure of potential infection rates. For this reason only

surveys (or components of surveys) restricted to children under 10 years of age have

been included in analyses for the purpose of malaria distribution modelling. A general

problem with such surveys is that they are predominantly located in areas of high

transmission intensity, leading to an under-representation of populations living in low

transmission environments.

It has been shown that parasite ratios are reasonably well correlated with EIR (Beier

et al. 1999). For this reason the parasite ratio is an acceptable proxy for transmission

intensity. It needs to be remembered, however, that the parasite ratio is dependent on

the age-group of children being surveyed, and to some extent on season. If the main

objective of modelling is to predict malaria risk in broad categories, then the parasite

ratio is the most practical measure due to its abundant availability.
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Another proxy of transmission intensity that is fairly widely available in southern

Africa is parasitologically confirmed disease incidence. Incidence data generally are

biased due to the fact that they may reflect patient access to health services rather than

true morbidity, and they are dependent on good denominator data being available at

the same level of aggregation as the case data. In the northern most magisterial

districts of KwaZulu Natal a surveillance system is used which is believed to identify

the vast majority of cases, since active case finding supplements the passively

reported cases, as part of a malaria control strategy that seeks to identify and treat

every infected individual. Reasonably good population data are also available for this

area. Incidence data for this population are unique in that they have been recorded

over many years. Since malaria in the area is seasonal and highly variable over space

and time, the data present an unequalled opportunity to investigate the relationship

between climatic variability and malaria incidence in a mainly non-immune

population and to explore the potential of epidemic prediction using satellite derived

meteorological data.

This thesis therefore used both parasite ratios and malaria incidence data to undertake

spatial statistical analysis of malaria distribution. In chapters 2 and 4 parasite ratios

are used to model the relationship between malaria and climatic factors in order to

produce prediction maps of prevalence of infection. Chapters 3, 5, 6 and 7 use

incidence data to analyse spatial and temporal variation in incidence and to investigate

relationships between climate and malaria at a small area level by using spatial and

spatial-temporal models.

There have been previous projects to map the distribution of malaria in Africa. These

have ranged from expert opinion maps (Molineaux 1988), to suitability maps (Craig et

al. 1999), to maps for a single country that have used parasite ratios (Thomson et al.

1999). Whilst this thesis is not attempting to produce a detailed empirically derived

risk map for the whole continent, it attempts to show approaches using modern

statistical methods that are suitable at different levels of scale ranging from regional to

sub-district maps.
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Spatial statistical modelling and mapping of malaria
There is a wide range of approaches to spatial analysis and modelling in the statistical

and Geographic Information Systems (GIS) literature. Many of these approaches have

been recently developed in response to the interest in spatial processing and

presentation of data, and the opportunities that have been opened up through the

collection of small area data and the development of GIS technology and software.

However, the idea of spatial analysis to solve epidemiological problems goes back to

the very beginnings of epidemiological research (Snow J 1855).

Statistical approaches to spatial analysis have in common the concept of correlation or

non-independence of spatial data. This can be a problem that needs to be taken into

account when analysing such data since the degrees of freedom tend to be

exaggerated, or it can be usefully exploited, for example in stabilising small counts of

cases in small areas by borrowing strength from neighbouring areas. Sometimes the

mere existence of significant spatial correlation is a statistical result of interest in itself

(Walter 1994). Results of spatial statistical modelling are estimated quantities

(parameters) that are intended to quantify the true underlying magnitudes in a map

and their uncertainty rather than the mere mapping of recorded data that are subject to

sampling error. The role of GIS in such analysis is twofold: (a) to pre-process the

data, for example by extracting values, or calculating distance or proximity, and (b) to

post-process the results, for example by plotting estimated area effects in a map. The

essential core of such spatial analysis is however, stochastic and uses statistical

programs that take account of the random nature of the processes involved. Modelling

approaches that are based purely on GIS techniques tend not to deal with the random

nature of processes explicitly and hence produce point estimates of processed

quantities for individual pixels in a map.

In this thesis spatial statistical analysis was performed, with GIS employed as a pre-

and post-processing tool, but with statistical software used for the main analysis. Two

distinctly different approaches to spatial statistical modelling have been followed,

without attempting to make direct comparisons between the two. In chapters 2, 3 and

4, geostatistical approaches in conjunction with generalised linear mixed models
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(GLMM) have been followed, whereas in chapters 5 and 6 hierarchical fully Bayesian

methods using Markov Chain Monte Carlo modelling was used.

Geostatistical, or variogram approaches have occasionally been applied to disease

mapping (Carrat and Valleron 1992; Oliver et al. 1992). In these the method of

�ordinary kriging� is used as a means of interpolating disease prevalence or incidence

across a map, based on observed values at known grid locations. A variogram is used

to model spatial dependence in the observed data. Classical kriging is based on the

assumption that the response is a continuous variable, that its underlying value is

constant across the map (stationarity) and that the covariance between two points is

entirely a function of distance between them. Details are given in ch. 2. In this thesis

this method has not been used directly, since these assumptions are generally not

satisfied in malaria distribution data. Instead, kriging has been applied to residuals

(which do satisfy the assumptions) in order to improve map estimates obtained from a

regression model (ch. 2). In chapters 3 and 4 variograms are used to estimate the co-

variance matrix of the GLMM which is used to analyse the relationship between the

disease, and climatic and other factors. This approach requires software that allows a

spatial model to be used to define the covariance matrix. Regression coefficients are

estimated using residual maximum likelihood methods (Littell et al. 1996). The

method lends itself well to data consisting of observations that represent points.

Hierarchical fully Bayesian methods using MCMC sampling (Gelfand and Smith,

1990) have been widely applied to disease mapping and ecological regression analysis

in recent years (see Wakefield et al. 2000 for an overview). In this approach the

correlation between neighbouring areas is modelled via conditional autoregressive

(CAR) priors. Such methods have been developed for data in which the response

represents an areal unit as well as for data representing points. However, readily

available statistical software using these methods is currently restricted to area based

spatial data which limits its application to malaria distribution data, which are

generally point referenced, with the exception of the reporting system that is available

in South Africa. Virtually all applications of Bayesian disease mapping methods in the

literature are in the context of rare diseases such as rare cancers in developed

countries of Europe and North America. Vector borne diseases in tropical countries

differ in that the disease is often not rare and in that the spatial correlation is often



34 Introduction

much stronger due to the links with climatic and environmental factors. The quality of

both disease data and age-sex specific population data is also generally of a lower

standard than is the case for example with cancer registration data in first world

countries. In chapters 5 and 6 of this thesis these methods were applied to malaria

incidence data thereby representing an evaluation of this methodology to the tropical

disease setting.

Currently the only �off the shelf� software that is available for this type of analysis is

WinBUGS (WinBUGS 2000) and this was used in this thesis. In chapter 5 the simple

spatial model without co-variates was extended to a spatial-temporal model by adding

a linear temporal term with spatial smoothing of the rate of change of incidence. In

chapter 6 a spatio-temporal model using first order autoregressive effects was used to

investigate the effects of rainfall and temperature on malaria incidence at different

points in time. The methodological details are given in the respective chapters.

Overall aim
This thesis sets out to estimate malaria prevalence and incidence at map locations or

areal units by means of spatial statistical modelling; to determine factors that are

associated with spatial and temporal heterogeneity of malaria transmission intensity

and to evaluate the potential of using remote sensed meteorological satellite data for

explaining and hence predicting variation in malaria incidence at small area level. It

does so by applying state of the art methodology in the spatial analysis of correlated

disease data and thereby evaluates the potential of this methodology to vector borne

disease and other tropical disease data in general. It also attempts to document the

time trend of malaria incidence in an area of unstable malaria and to suggest some

reasons why malaria incidence has increased so unevenly in this area.
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A spatial statistical approach to malaria mapping
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Summary
Good maps of malaria risk have long been recognised as an important tool for malaria

control. The production of such maps relies on modelling to predict the risk for most

of the map, with actual observations of malaria prevalence usually only known at a

limited number of specific locations. Estimation is complicated by the fact that there

is often local variation of risk that cannot be accounted for by the known co-variates

and because data points of measured malaria prevalence are not evenly or randomly

spread across the area to be mapped. We describe, by way of an example, a simple

two stage procedure for producing maps of predicted risk: we use logistic regression

modelling to determine approximate risk on a larger scale and we employ geo-

statistical (�kriging�) approaches to improve prediction at a local level.

Malaria prevalence in children under 10 was modeled using climatic, population and

topographic variables as potential predictors. After the regression analysis, spatial

dependence of the model residuals was investigated. Kriging on the residuals was

used to model local variation in malaria risk over and above that which is predicted by

the regression model. The results of the method are illustrated by a map showing the

improvement of risk prediction brought about by the second stage. The advantages

and shortcomings of this approach are discussed in the context of the need for further

development of methodology and software.

Keywords: malaria risk, disease maps, geo-statistics, spatial analysis, kriging, climatic

factors.
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Introduction
Malaria is a major cause of morbidity and mortality in Africa, and is a leading cause

of death especially amongst children, in many African countries (Snow et al. 1999;

Binka, 1997). The MARA/AMRA project (MARA/AMRA Collaboration, 1998) has

been set up recently to collate sources of data on malaria, and to model and map

malaria risk across the continent. Accurate maps of malaria have been recognised as

an important tool in the hands of control programme managers (Snow et al. 1996;

Kitron et al. 1994). This paper describes the statistical methods used to produce a map

of malaria risk for Mali and discusses the methodological issues that are raised. A

companion paper discusses in detail the substantive aspects of the results of this work

and its policy implications (Bagayoko M, Kleinschmidt I, Sogoba N, Craig M, le Seur

D, Toure YTT. Mapping malaria risk in Mali. (in preparation)).

The production of malaria maps relies on modelling to predict the risk for most of the

map, with actual observations of malaria prevalence usually only known at a limited

number of specific locations. Accurate prediction of risk is dependant on knowledge

of a number of environmental and climatic factors that are related to malaria

transmission (Craig et al. 1999; Snow et al. 1998; Beck et al. 1994). However, the

estimation is complicated by the fact that there is often local variation of risk that

cannot easily be accounted for by the known co-variates. A further complication

arises from the fact that data points of measured malaria prevalence are not evenly or

randomly spread across a country, but are often closely clustered in areas of high risk.

Any modelling of risk has to take account of spatial autocorrelation of the data, and

allow for local deviation from predictions that are based on the known climatic

covariates

In this project a two-stage procedure was followed: (1) generalised linear regression

modelling was applied to determine approximate risk on a larger scale by identifying

important climatic and environmental determinants and (2) the geo-statistical kriging

method was used to improve prediction at a local level.
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Data collection and data preparation
Malaria prevalence data were collated from surveys of childhood populations in Mali

since 1960. Altogether 101 such surveys were identified yielding suitable estimates of

malaria prevalence. The surveys represent historical data whose screening for

inclusion in the MARA/AMRA database has been documented elsewhere.

(MARA/AMRA Collaboration, 1998) For example surveys carried out amongst non-

representative samples of respondents were excluded. Similarly, surveys conducted

during known malaria epidemics were also excluded. In the absence of large scale

intervention or climatic change it was assumed that malaria endemicity in Mali has

remained reasonably stable. All the surveys were carried out in a confined locality so

that the survey results collectively could be regarded as a cross-section of point

referenced malaria prevalence observations.

For each survey the total sample size and number of individuals testing positive was

known. The geographical co-ordinates of each survey were established using paper

maps, electronic maps and global positioning systems. The distribution of surveys

across Mali was uneven, with higher concentrations of surveys in more densely

populated areas and in areas where malaria risk was perceived to be high. The

location of each survey is shown in fig. 2.1.

For each of the survey co-ordinates long term climatic averages, normalised

difference vegetation index (NDVI) (NDVI Image Bank Africa, 1991) and population

density were obtained. A number of published data sets were available for this

purpose. (Hutchinson et al. 1995; African Data Sampler, 1995). The resultant array of

variables consisted of: monthly rainfall, monthly average maximum temperature,

monthly average minimum temperature, monthly NDVI and population density. In

addition, the number of months with rainfall in excess of 60mm (regarded as suitable

for malaria transmission) was computed for each location. Using GIS, the distance to

the nearest water body was also calculated.
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All climatic variables were available as long term averages for each calendar month,

but not by individual year. The individual monthly averages of the climatic variables

are highly correlated within climatic seasons. The question arises over what period

climatic variables should be sensibly averaged. The shorter the aggregation period the

stronger the likelihood of a high degree of serial autocorrelation in the values. For the

purpose of selecting climatic variables for explaining the variation in malaria

prevalence it was decided to average monthly climatic data over climatic seasons in

order to reflect the variation in weather. Temperature and rainfall were averaged over

3 months periods, with the first quarter starting in December to coincide with the

beginning of the dry season. The vegetation index NDVI was aggregated over two

six-month periods corresponding approximately to the dry season (December to May)

and the wet season (June to November) respectively.

Methods and results

The first stage of this analysis involved ordinary logistic regression analysis to

determine the relationship between malaria prevalence and ecological predictors of

Mali

Burkina Faso
Guinea

Senegal

Western Sahara

Mauritania
Niger

Fig 2.1. Map showing survey sites
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malaria. From this a first prediction map for the whole of Mali was produced. In the

second stage we investigated spatial pattern in the residuals of the model and used

residual spatial dependence in the data to improve prediction at local level.

1. Regression analysis
The relationship between malaria parasite prevalence and each individual potential

explanatory variable was first investigated by inspection of scatter-plots and by single

variable regression analysis. Since parasite prevalence data are binomial fractions, a

logistic regression model for grouped (blocked) data was used as is standard practice

for the analysis of such data (Hosmer and Lemshow, 1989). Predictions of prevalence

made from the logistic model will always fall within the interval 0 to 1. Larger

surveys are implicitly accorded more weight than the smaller ones. The glm command

in the statistical package STATA (Stata Corp, 1997) was used for the analysis.

Each of the explanatory variables was adjusted for all of the others by performing

multiple regression in the usual way. Non-linearity in the relationship between

parasite prevalence and a predictor variable was explored by adding polynomial terms

and then grouping the values of continuous variables into categorical ones. Variable

selection for the multiple logistic regression model was carried out by a combination

of automatic (stepwise) procedures, goodness of fit criteria and by using judgement in

selecting variables that explain malaria prevalence in terms of vector, host and

parasite dynamics of malaria. An additional criterion for selection of the final model

was the degree of spatial correlation of the model residuals (see below).

The final multiple logistic regression model contained four significant explanatory

variables for the prediction of malaria prevalence. These were distance to water

(categorical), average NDVI during the wet season(June to November, also

categorical), number of months with more than 60 mm rainfall, and average

maximum temperature during the quarter March to May. The detailed results are

discussed in the companion paper. Table 2.1 summarises these results.
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Table 2.1. Factors associated with malaria parasite prevalence. Adjusted odds ratios
obtained by multiple logistic regression.

Unadjusted Adjusted

Variable Odds
Ratio

95% Confidence
Interval

Odds
Ratio

95% Confidence
Interval

Vegetation index(NDVI) in rainy
season (relative to NDVI of 0.50
or less)
0.50 > NDVI <=0.7 16.17 4.96 � 52.74 4.13 1.37 � 12.47
 NDVI>0.7 36.30 11.00-119.74 4.90 1.29 � 18.55

Distance to water (relative to less
than 4km)
between 4 and 40 km 2.63 2.52 - 2.74 2.55 1.90 �3.423
more than 40km 0.19 0.17 � 0.23 0.70 0.24 � 2.11

Average maximum temperature,
March to May
Change per °°°°C 0.75 0.63-0.88 1.40 1.14 � 1.72

Length of rainy season (months)
change for each month of season
length

1.62 1.59 � 1.64 1.76 1.33 � 2.34

The final model explains about 65% of the total variation in malaria if one takes the

reduction in deviance as a measure of variation. It must be noted that the final model

is �overdispersed� i.e. the residual deviance is larger than would be expected for the

number of degrees of freedom. This has been taken into account in the model by using

a deviance based extra dispersion parameter , which results in inflating the standard

errors of the model parameters by the square root of the dispersion factor (Littell et al.

1996). The inclusion criteria for the variables selected for the final model can

therefore be regarded as conservative.

For each variable used in the model an image covering the whole of Mali was

produced in the GIS package IDRISI (Clark Labs, 1998). In the case of categorical

variables this entailed creating the equivalent boolean indicator variables as used in

the statistical model. The prediction formula of the model was then used with the

IDRISI image calculator to produce a prediction image. The predicted risks were then

grouped into 4 categories: below 10%, from 10% to 30%, from 30% to 70% and
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above 70%. As an additional validation exercise, the predicted frequencies in these 4

categories were compared with those of the known values. Of the 101 survey results,

70 fall within their predicted group. The resulting map of malaria risk is shown in

figure 2.2.
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2. Investigation of spatial pattern
For geographical data of the type of the malaria survey data, it is of interest to know

whether the data display any spatial auto-correlation, i.e. do surveys that are near in

space have values (of malaria prevalence) that are similar, in contrast to surveys that

are far apart. Put another way, does nearness in space go together with nearness in

value? This is important because spatially correlated data cannot be regarded as

independent observations. If the analysis does not take account of the correlation

structure of the data, the estimates obtained from modelling may be inaccurate.

Fig. 2.2. Map of predicted malaria risk based on regression model only
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The malaria prevalence data and the residuals of the regression model were analysed

for the presence of spatial pattern. We used two separate methods to investigate

spatial pattern: the D-statistic and the variogram.

The non-parametric D statistic (Walter, 1992) is a weighted average of rank

differences in the values of observations, with the average taken over all pairs of

points. If yi refers to the rank of the value at any point i, then D is defined by
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Weights wij refer to pairs of points. Weights can be chosen in different ways, but

should be large for points that are near in space and small or zero for points that are

distant in space. In this analysis two approaches to assigning weights were used: a) all

pairs of points that were within a particular distance of each other were assigned a

weight of 1, all other points were assigned a weight of zero(binary neighbourhood

weights); and b) the weight for each pair of points was assigned the inverse of the

distance between them. If there is spatial autocorrelation, rank differences for nearby

pairs of points will be small values, whilst the weights for these pairs of points will be

large values. Distant pairs of points on the other hand would be expected to display

large differences in rank, but these would be multiplied by low or zero values of

weights. The overall effect is that D will be a smaller value if there is spatial pattern in

the data, than if the ranks of points were randomly distributed i.e. near and far pairs of

points showing no significant differences in rank difference.

A significance test was obtained by simulation. The simulation consists of randomly

assigning ranks to the data points and then calculating D assuming the particular

pattern of weights given by the spatial layout of the data. This process is repeated

many times over, and the distribution of the simulated D is then compared to the

actual value of D calculated from the observed data. This directly yields a p-value for

significant evidence of spatial autocorrelation. For mutual binary weights an

analytical test was used (Walter, 1994), which is computationally less demanding.
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Since it is based on the ranks of the data rather than the actual values, the D-statistic is

not dependent on normality of the data. In the malaria data (and generally) negative

autocorrelation is not likely, since this would assume distant points to be more similar

than near ones. Therefore, a one sided significance test was used, rejecting the null

hypothesis of random spatial pattern if the value of D is sufficiently small.

The semi variogram (Oliver et al. 1992; Carrot and Valleron, 1992; Diggle et al.

1998) (often simply called the variogram) also measures spatial dependency, but there

is no significance test associated with this measure. It is normally used to obtain a

spatial model for kriging, but it also serves to examine spatial pattern. The semi

variance γ(h) measures half the average squared difference between pairs of data

values separated by the so-called lag distance, h.
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where N(h) is the number of pairs of sample points at a distance in the range h±h/2

from each other. Computations of γ(h) are repeated for 2h, 3h, 4h � etc.  The semi-

variogram is a plot of the semi-variance γ(h) against lag distance h. If the semi

variance is markedly small for low values of h it is taken as an indication of spatial

autocorrelation i.e. values at short distance from each other are more alike (less

variable) than those at large distances.

Table 2.2 shows that the observed malaria prevalence for Mali is highly

autocorrelated in space, as one would expect on account of its strong link with

climatic factors. The model residuals still show evidence of spatial pattern, but some

of this has been removed by the modelling process. This result holds whether spatial

pattern is assessed using the D-statistic with inverse distance weights or binary

neighbourhood weights. It can be seen from the p-value for binary weights, that the

spatial pattern is more distinct over short distances. The semi-variogram of residuals

(fig. 2.3) shows that there is some evidence of spatial correlation over short ranges of

below 20km.
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Table 2.2. Results of tests for autocorrelation by non-parametric D(p-values)

Type of weight for pairs of
points

Autocorrelation of
observed Malaria

prevalence
Autocorrelation of model

residuals

Binary neighbourhood
weights, 50km

<0.0005 0.05

Binary neighbourhood
weights, 15km

<0.0005 0.001

Inverse distance weights <0.0005 0.006

Fig. 2.3. Variogram of model residuals (lag=8km)
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3. Geo-statistical prediction (Kriging)
Prediction by kriging (Krige, 1966; Oliver et al. 1992; Carrot and Valleron, 1992;

Diggle et al. 1998) is based on the assumption that covariance between points is

entirely a function of distance between them as modeled by means of the variogram.
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A further assumption is that the underlying mean of the quantity that is being

predicted is constant (the assumption of stationarity).

Since the variogram describes the spatial dependence between the observed

measurements as a function of the distance between them, it allows us to estimate the

value of malaria prevalence at any point from the observed data. The value of

prevalence, Z, at the coordinates(x0, y0) can be estimated from the n nearest sampling

values Zobs(x1, y1), Zobs(x2, y2), �. Zobs(xn, yn) by the linear formula
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The ai are found by introducing a Lagrange multiplier λ and solving the system:
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under the constraint

where hi,j is the distance between two points located at (xi,yi) and (xj,yj), at which

malaria prevalence has been measured, and hj,0 is the distance between a measured

point and the point (x0,y0) at which the prediction is to be made. γ(h) is the semi-

variance as previously defined.

The extreme variation in the Mali malaria prevalence data invalidates the assumption

that a common mean exists. There is clearly a need to take co-variates into account

due to the strong association between malaria risk and climatic factors, and due to the

wide variation of the latter across Mali. Residuals from the logit model should be free

of covariate effects and the logit transformation will moderate any non-homogeneity

in variance of the residuals.

Inspection of the variogram based on the residuals (fig 2.3) shows that there is spatial

dependence (not taken into account by the model) over short distances up to about 15

1
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or 20 km. A variogram of logit scale model residuals was constructed, confirming a

short range spatial pattern up to distances of about 18km, although the relatively small

number of pairs of points that are less than this distance apart makes the variogram

less reliable in this region. This means that there is small area variation in malaria

prevalence which cannot be modeled well by climatic factors presumably because

these do not vary much over this short distance.

Kriging performed on residuals is equivalent to kriging a variable which has an

underlying (stationary) mean of zero. To carry out this process residuals for all

observed points were calculated on the logit (ln(p/1-p)) scale of the logistic model.

Spatial dependence of these was modeled using the previously constructed variogram.

An exponential model was fitted to the variogram using a sill and nugget of 0.7 and

0.4 respectively, and a range of 18 km. This geo-statistical model was then used in the

kriging procedure of the package GEO-EAS (Geostatistical Environmental

Assessment Software, 1991) to map predictions of residuals in an 18 km radius

around each observation. These logit scale �kriged� residual predictions were then

added to the logit scale predicted values produced from the original logistic model.

The resultant map predictions were transformed back to prevalences in the usual way

(exp(Xβ+kriged residuals)/(1+exp(Xβ+kriged residuals))) to produce a new

prediction map (fig.2.4). This map takes into account local spatial dependence and

allows local deviation from the prediction of the logistic model.

To see how much improvement was achieved by local kriging, another map was

produced showing the difference between the final map (fig. 2.4), and the original

map produced by regression only (fig 2.2). This difference map is shown in fig 2.5.

The new map results in an improvement of 5 additional surveys whose observed

prevalence falls within the predicted prevalence bands of the map. (We would expect

that this can be improved upon with a higher grid resolution). A weighted inter-rater

kappa statistic (Altman, 1991) for agreement between observed and predicted map

values for the surveys shows an improvement from 0.624 for the map based on

regression only to 0.727 for the map based on the 2 stage procedure. This takes into

account not only agreement/non agreement between observed and expected

prevalence bands, but also the seriousness of discordance, if any.
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Fig. 2.4. Map of predicted malaria risk using regression model plus kriging
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Discussion

The final malaria prediction map is in agreement with eco-geographical descriptive

epidemiology of malaria in Mali (Doumbo et al. 1989). Kriging has significantly

improved the prediction of malaria risk in parts of the map, particularly where the

density of surveys is high, which coincides with areas of high risk. However, given

that the data used for obtaining the model are not a random sample of the population

or a spatially well distributed set of sampling points, one needs to be cautious in

extrapolating the predicted risk to points outside the data set as has been done here.
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Fig 2.5. Map showing difference in predicted malaria risk as a result of kriging
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A concern with spatial data is the potential for spatial correlation in the observations,

which could lead to incorrect estimates. Spatial clustering of disease is almost

inevitable since human populations generally live in spatial clusters rather than

random distribution of space. An infectious disease that is heavily associated with

climatic variables is likely to be spatially clustered even if population distribution was

not clustered. The model derived here explains some of the spatial pattern of malaria

risk, but there is still significant spatial correlation, particularly over short distances of

under 20km. (This result holds for differing ways of defining �nearness� in the D-

statistic and is confirmed by the variogram method.) The reduction in spatial structure

in the residuals lends credence to the correctness of the model.

Overdispersion in the logistic model does indicate that there may be important

covariates missing from the model. Some of these unknown predictors are likely to be

spatially distributed, particularly at a local level.

500 km
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Kriging with a non-stationary mean (�universal kriging�) is a refinement of ordinary

kriging in that it allows for co-variate adjustment by means of regression modelling

(Diggle et al. 1998). This would be more appropriate in the case of malaria risk where

we know that climatic factors are strong predictors. Since the mean prevalence is now

a function of the co-variates, rather than a constant, the model assumptions would not

be violated as in the case of ordinary kriging. Universal kriging offers the most

comprehensive approach to the mapping of malaria risk: it uses the values of the co-

variates (climate data) at the point at which the prediction has to be made, as well as

the position of the point in relation to points at which observed values of malaria risk

are available. Universal kriging applied to generalised linear models such as the

logistic model, is currently not available and we have therefore not been able to apply

it as such.

The two stage approach that we used offers an appealing alternative to universal

kriging and it is somewhat similar in approach. The non-spatial model provides the

covariate adjustment and prediction of mean risk in an area. It thereby allows for non-

stationarity in the data by modelling the long range differentials in the malaria risk

pattern. Kriging of the resulting residuals allows for local deviation from the predicted

mean and for spatial dependence in points that are close together. In the MARA

project it is unlikely that local predictors affecting malaria risk over and above what is

predicted by climatic factors will ever be available. For this reason local variation

from the more global area prediction has to be taken into account by spatial

modelling.

Whilst the kriging process will give minimised unbiased prediction error (of residuals)

on the logit scale, this cannot be guaranteed for the backtransformed predictions

(Cressie, 1993). However, the kriged logit scale residuals are only a component (in

most cases a small component) of the linear predictor which is backtransformed to

produce the final prediction for the point on the map.

Prediction based on regression alone has a tendency to produce predicted values that

are pulled towards the mean. For example, two observations in different parts of the

country with very similar climatic data may differ in their observed malaria
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prevalence value. Regression modelling would predict for these two places a value

close to the mean prevalence of the two points. This would result in large residuals.

Kriging the residuals and adding the predicted residuals to the model predictions will

produce predictions that are closer to the observed prevalences in each

neighbourhood, particularly if the deviation from the model prediction is supported by

other points in the neighbourhood.

As one might expect therefore, the range of final predictions from the two stage

method is wider than that produced by the regression model alone, with predictions

ranging from about 0% to 92% (compared to a range of 0% to 80% for the logistic

model alone). As can be seen from the new prediction map (fig 2.4) and the difference

map (fig 2.5), the changes brought about by this process are confined to areas around

most of the survey locations. For the rest of the map the data are too sparse to be

affected by this process i.e. most places are more than 18 km removed from the

nearest survey.

A problem with this approach is that often there are insufficient data points to give us

a good basis for estimating the local variability. In the case of malaria maps this

problem is less serious in those areas where malaria prevalence is highest, simply

because the frequency of surveys is greatest in these areas. The map is therefore likely

to be at its most accurate where it matters most: in places where malaria prevalence is

high.

It should be noted that universal kriging might have resulted in a different model to

the one obtained here, since it attempts to simultaneously obtain good estimation of

covariate effects and allow for residual spatial pattern. In this particular example,

however, the residual spatial correlation was weak and therefore we would not expect

that universal kriging would have produced a model that differs  much from the

present one. We are currently investigating an iterative approach that would be

applicable in situations were the residual spatial pattern is substantial.

The specification of a nugget variance makes allowance for measurement error at a

location. This avoids the prediction �honouring� every observation, which would

result in a very spiky map. Future development in this area should include a method
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of weighting the observations in such a way that large surveys draw the map

prediction closer to their observed value than small surveys.

Additional further work in this area would be to develop �goodness of fit� indicators

for this two stage method. For example, how much of the overdispersion in the model

has been taken up by local kriging? What proportion of variation in the data is

�explained� by kriging? It would also be important to produce combined prediction

errors for the whole map, taking into account both components of the process of

prediction.

In conclusion, our view is that the model produced here is a reasonable representation

of malaria risk in Mali. The reduction of residual spatial pattern enhances our

confidence in the fidelity of the model and residual spatial dependence has been

modeled by kriging wherever the density of observed points allows for this. Kriging

has been made possible by �leveling� the map through the regression model, and

applying the kriging process to the residuals. The final predictions make sense from

the entomological perspective. However, a more systematic approach to this work in

future would be a full mixed model with universal kriging to take account of spatial

pattern.
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Chapter 3

Use of generalised linear mixed models in the spatial analysis of small
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Summary
Spatial statistical analysis of small area malaria incidence rates of the northern-most

districts of KwaZulu Natal in South Africa was undertaken in order to identify factors

that may explain very strong heterogeneity in the rates. A method for adjusting the

results of the regression analysis for strong spatial correlation in the rates by making

use of generalised linear mixed models and variogram methods is described. The

results of the spatially adjusted multiple regression analysis show that malaria

incidence is significantly positively associated with higher winter rainfall and higher

average maximum temperature and significantly negatively associated with increasing

distance from water bodies. The statistical model is used to produce a map of

predicted malaria incidence in the area taking account of local variation from the

model prediction where this is supported by the data. The predictor variables show

that even small differences in climate can have very marked effects on malaria

transmission intensities, even in areas that have been subject to malaria control for

many years. These results have important implications for malaria control program

activities in the area.

Keywords: malaria incidence, spatial analysis, statistical models, variogram
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The districts of Ngwavuma and Ubombo in the northern part of the province of

KwaZulu-Natal experience the highest malaria incidence rates in South Africa (Sharp

and Le Sueur, 1996). Very large variation in malaria incidence rates within these

districts has hitherto not been properly accounted for although it has been ascribed as

much to human factors such as cross-border migration as to natural forces such as

climate and environment.

The purpose of this study has been to undertake a spatial statistical analysis of malaria

incidence in order to identify important predictor variables and to produce an

incidence map of the area that illustrates the variation of malaria risk. A secondary but

important aim of this analysis has been to advance methodology for the spatial

analysis and modelling of malaria transmission data in the context of the

MARA/ARMA project (MARA/ARMA, 1998) which amongst other objectives seeks

to produce maps of malaria risk for the continent of Africa (Snow et al. 1998;

Kleinschmidt et al. 2000).

In Africa the predominant species of the malaria causing-parasite is Plasmodium

falciparum. When a person is bitten by an infected anopheles mosquito, the parasite,

called sporozoite at this stage of its cycle, enters the human body via the saliva of the

mosquito which is injected into the blood. The parasites multiply in the liver, and re-

invade the blood via red blood cells as merozoites. The merozoites multiply sexually

and some of them form into gametocytes. Uninfected anopheles mosquitoes become

infected if they feed on a person with gametocytes in their blood. The gametocytes

will undergo another phase of reproduction inside the insect called the �sporogony�

cycle. At the end of this cycle the mosquito will become infective as a new generation

of sporozoites are able to infect another human host.

Malaria as a disease is therefore closely bound to conditions which favour the survival

of the anopheles mosquito and the life cycle of the parasite. These conditions are

predominantly determined by climatic factors, by vegetation coverage and by the

vector�s access to water surfaces for breeding requirements (Molineaux, 1988; Gillies

and De Meillon, 1968; Ghebreyesus, 1999). Human population movement from areas
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where malaria is endemic to areas where the disease has been at least partially

eradicated can also contribute to malaria transmission (Martens and Hall, 2000).

Accurate knowledge of the distribution of malaria is an important tool in planning and

evaluating malaria control (Snow et al. 1996). Explaining this distribution is

important since it provides a rationale for interventions, and because it makes it

possible to predict transmission intensity in places where it has not been measured.

The area under consideration has been subject to insecticide house-spraying over

several decades (Sharp and Le Sueur, 1996), resulting in reduced incidence rates

compared to the era before the introduction of malaria control measures (Sharp et al.

1988). In recent years incidence rates have risen again steeply. The area is situated on

the southern fringe of climatic suitability for endemic malaria distribution in Africa

(Craig et al. 1999). Summer rainfall (six-monthly average = 68 mm per month) and

temperatures (average maximum daily temperatures = 29.4°C) are generally suitable

for malaria transmission. On the other hand, winter conditions are sub-optimal and

could be limiting transmission (Molineaux, 1988) (average rainfall = 19 mm per

month and average maximum daily temperature = 25.9°C). We sought to test the

hypothesis that it is the spatial distribution of climatic conditions in winter that

accounts for much of the variation in malaria transmission intensity in this region. To

this end we undertook a spatial statistical analysis of small area malaria incidence

rates in relation to rainfall and temperature. We included proximity to permanent

water bodies and distance to the border with Mozambique in the analysis due to their

potential confounding effects. The latter was used as a proxy for migration from

Mozambique where routine malaria control had not been implemented. The water

bodies included all permanent fresh water surfaces, except rivers.

In both Ngwavuma and Ubombo districts a small area malaria incidence reporting

system has been in operation for a number of years as part of the provincial malaria

control programme (Sharp et al. 1999). A component of the control strategy is to

identify and treat all infected individuals. Passive and active case finding is therefore

practised. The latter consists of screening measures by which teams go into the

community to encourage individuals who may be suspected of having malaria, to be

tested. Whilst this system may not achieve 100 percent coverage, it is thought to
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identify the vast majority of cases. Low levels of exposure to Plasmodium falciparum

in the past have made it unlikely that the host population possess naturally acquired

immunity, apart from recent immigrants from Mozambique. Individuals are therefore

unlikely to possess clinical tolerance to parasite infection and to recover from it

without treatment (Molineaux, 1988, pp 936-938).

A population census at homestead level was carried out in 1994 by the control

programme, thus making it possible with the use of Geographic Information Systems

(GIS) to derive population counts for the same small areas for which cases were being

reported. It was therefore decided to base the analysis on the malaria season from July

1st 1994 to June 30th 1995 since this would have the most reliable denominator data

available for the calculation of incidence rates.

Data

Malaria cases (by passive and active detection) for the season mid-1994 to mid-1995

for the districts of Ngwavuma and Ubombo in northern Kwazulu Natal were extracted

from the malaria control programme database and allocated to 220 magisterial

subdivisions referred to as sections. Population totals for each section were obtained

from the same source, based on a census carried out during the year 1994/95.

The total number of cases was 2,418 including 400 patients whose place of residence

was not known and who were therefore excluded from all of the spatial analysis.

Many of the latter are likely to be imported cases from Mozambique with no fixed

residence in the area. The total population count for the study area was 241,397

persons, resulting in a crude overall incidence rate of 8.4 per 1000 person years.

Population per section ranged from 11 to 5,482 persons (median=858, mean = 1102,

SD = 886). Area per section ranged from 1.1 km2 to 263.2 km2 (median=19.0, mean =

25.9, SD= 27.5).
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Figure 3.1. Water bodies, Malaria Incidence and Smoothed Malaria Incidence for the
population of the districts of Ngwavuma and Ubombo, KwaZulu Natal, July 1994 to

June 1995 (Source: KwaZulu Natal Malaria Control
Programme)
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For each section a crude incidence rate for the year 1994/1995 was calculated. For the

purpose of calculating rates it was assumed that the entire population of an area was

exposed to malaria risk for the period that was studied i.e. that each individual

contributed exactly one person year of exposure. Crude incidence rates per section

ranged from 0 to 306 cases per 1000 person-years (mean = 11.2, SD = 32.0,

interquartile range 0 to 8 per 1000). In all but 14 of the sections the rate was less than

50 per 1000 person years. In 66 sections there were no cases. The map in figure 3.1

shows the distribution of incidence rates by section.

Long term averages of climatic data (rainfall, average daily maximum temperature)

by calendar month were obtained from climatic databases for Africa (Hutchinson et

al. 1995). By means of GIS (Clark Labs, 1998) the average value of each variable was

calculated for each of the sections by averaging the pixel values of the variable over

the area of the section. The monthly averages were combined into six-monthly

averages to coincide with the winter (April to September) and summer (October to

March) seasons. Average daily maximum temperature in winter was highly correlated

with average daily maximum temperature in summer (correlation coefficient =0.995).

We therefore combined these two variables into a single average daily maximum

temperature for the whole year. We also calculated the average monthly rainfall and

average maximum daily temperature for the midwinter months of June and July

combined.

The centroid of each section was derived, also by GIS. For each of these centroids

distance to water bodies (lakes, reservoirs and dams � see figure 3.1) and distance to

the Mozambican border were calculated.
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Analysis and results

Smoothed incidence map
Relatively small population totals per section result in rates that are subject to

considerable random error (Cuzick and Elliot, 1992). The map of smoothed rates in

figure 3.1 was produced using the smoothing method proposed by Kafadar (Kafadar,

1996). The smoothing effect of the incidence rate of one area on another was limited

to areas whose centroids were less than 15km apart.

Heterogeneity test
A heterogeneity test due to Potthoff-Whittinghill (Potthoff and Whittinghill, 1966)

was applied to the observed rates, using Monte Carlo simulation to distribute cases

randomly amongst areas, but in proportion to populations in each area. This showed

that the observed distribution of cases is very unlikely to have come about due to

chance alone (p<0.0001), given a null hypothesis of no differences in underlying risk

between areas.

Test for spatial pattern
The non-parametric D-statistic (Walter, 1994) was used to test the observed incidence

rates of the sections for significant spatial pattern. The statistic is calculated as a

weighted average of rank differences in incidence rates for all pairs of sections, the

weights favouring pairs of areas in close proximity to each other. This results in a low

value of D if there is marked spatial correlation. We used binary mutual

neighbourhood weights (i.e. a weight of 1 if two areas share a common boundary, 0

otherwise) which were obtained using a GIS program written for this purpose. The

calculated value of D for the observed incidence rates was 34.3, whilst the expected

value of D given the adjacency configuration of the areas is 194 (SD=5.67), indicating

that there is strong evidence of spatial pattern in these rates (p<0.0001), as one might

expect.
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Association between malaria incidence and climatic and environmental
factors
In order to determine climatic and environmental co-variates that are associated with

observed incidence rates whilst allowing for the spatial correlation of the data, an

iterative approach of variogram methods and generalised linear mixed

models(GLMM) was used (Littell et al. 1996). We have chosen this approach since

we would expect it to inherit the optimal properties (Best Linear Unbiased Prediction)

of the mixed model.

Appendix 1 gives details of how the spatial correlation of the data can be derived from

a variogram of model residuals and how this spatial correlation can be taken into

account by the SAS (SAS System 1996) implementation of the GLMM. The overall

strategy for modelling spatially correlated incidence data was as follows:

The counts of malaria cases for each section were represented by a GLMM with a

Poisson distribution, a logarithmic link function, a correlated error structure as

described in appendix 1, and with the population of the section as an offset. (The

offset is a term added to the Poisson model on the logarithmic scale so that the count

of cases is adjusted for population size.) Potential explanatory variables were average

values for winter and summer seasons separately of monthly rainfall, annual average

daily maximum temperature, distance to nearest water body and distance to the

Mozambican border. Average monthly rainfall and average daily maximum

temperature combined for the midwinter months June and July were also included as

candidate explanatory variables. The specification of the correlated error structure in

the GLMM due to spatial pattern in the data, was iteratively improved by examining

the model residuals and re-specifying the covariance matrix, as detailed in appendix 1.

The final model contained three variables, namely annual average daily maximum

temperature, average monthly rainfall during March through to September, and

distance to water bodies, which were significantly associated with malaria incidence.

Once these variables had been selected, we investigated for each of the three variables

in turn whether any of a set of transformations of the variable would result in a

significant reduction in deviance in the multiple regression Poisson model, following

a procedure suggested by Royston et al (Royston et al.1999). The transformation
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producing the biggest reduction in residual deviance was chosen if this reduction in

deviance was at least 3.84 compared to the untransformed variable. Transformations

that were tried for each variable x were 1/x2, 1/x, 1/x0.5, ln(x), x0.5 and x2, without

simultaneous inclusion of the untransformed variable (x1) in the model. The

transformations are useful to represent relationships in which the log incidence rate

increases more rapidly than a straight line at low values of x and more slowly at high

values, or vice versa. Any resulting improvement in the fit of the model would

enhance its utility for the purpose of prediction.

The variogram of residuals of the final model shows that there is residual spatial

dependence after fitting the model (Figure 3.2). The specification of a covariance

structure in the GLMM based on the spatial correlation of residuals ensures that the

results are adjusted for this spatial correlation.

The incidence rate ratios of the final model are shown in table 3.1, together with the

estimated effect these variables by themselves would have on incidence rates.

Distance to water and winter rainfall were fitted as square root and logarithmic

transformations respectively, whereas maximum temperature fitted best without any

transformation. To facilitate the reporting and interpretation of transformed variables,

we have calculated the model based incidence rate ratio for the transformed variable

for two separate values of the variable, relative to a third (referent) value of the

variable (Royston et al. 1999). The referent value chosen was the mean value of the

untransformed variable minus one standard deviation, with the other two values being

the mean itself and the mean plus one standard deviation. The two incidence rate

ratios demonstrating the association between the transformed variable and malaria

incidence are therefore one and two standard deviations removed from the referent

value, and give some indication of the non-linear nature of the association.

Throughout this analysis there was evidence of considerable overdispersion of the

Poisson model with a variance greater than the mean (dispersion factor in the final

model = 11.5). This was accounted for by inflating the standard errors in the model by

the square root of the overdispersion factor (Littell et al. 1996 pp 445).

Overdispersion indicates other unmeasured sources of variation that could not be

taken into account.



Small area malaria incidence: Use of GLMM 63

TABLE 3.1. CLIMATIC and topographic factors and their effect on malaria incidence in the
districts of Ngwavuma and Ubombo. For the multiple regression model, incidence rate ratios

(IRR) have been calculated from the model:
log(IRR) = 4.91*TMAX + 7.70*ln(RAI0409) � 0.46*sqrt(DSTWTR)

All results have been adjusted for spatial autocorrelation.

Malaria incidence

Single variable analysis
Poisson multiple

regression analysis

Climatic/topographic
variable

Reference
point

Incidence
Rate Ratio

95%
Confidence

Interval

Incidence
Rate Ratio

95%
Confidence

Interval

Average daily
maximum

temperature1 (TMAX),
Change per °C 6.7 3.5 - 13.0 135.6 61.2 � 300.4

(p<0.0001) (p<0.0001)

Average monthly
rainfall, March to

September (RAI0409),
mm

13
(reference)

1 1

19 0.48 0.29-0.80 18.6 10.0 � 34.4
25 0.29 0.12 � 0.68 153.8 53.1 � 445.5

(p = 0.005) (p<0.0001)

Distance to water
(DSTWTR), km

3
(reference)

1 1

8 0.43 0.32 � 0.59 0.60 0.50 � 0.73
13 0.24 0.14 � 0.41 0.43 0.31 � 0.58

(p<0.0001) (p<0.0001)

1Note: Range: 26.5°C to 29°C

Grouping observed and predicted incidence rates into categories of less than 1 per

1000, between 1 and 5 per 1000, between 5 and 10 per 1000, between 10 and 50 per

1000 and more than 50 per 1000, gives a weighted kappa statistic on agreement

between observed and predicted categories of 83%.

Model based prediction map

Using the model derived above, a map of predicted malaria incidence rates was

produced following a two-stage approach previously developed for the mapping of

malaria prevalences (Chapter 2). Kriged residuals from the final model were added to

the model predictions and exponentiated (exp(linear prediction+kriged residual)) to
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produce a map of incidence rates that takes into account local deviation from the

model predictions where this is supported by the data (Figure 3.3).

Figure 3.2. Variogram of deviance residuals of final model of incidence rates for the
population of the districts of Ngwavuma and Ubombo, KwaZulu Natal for the season

July 1994 to June 1995
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Discussion
Historical comparisons of malaria incidence with the period prior to the introduction

of malaria control (Sharp and Le Sueur, 1996) and comparisons with neighbouring

countries suggest that house spraying has resulted in a significant reduction in

transmission intensity in KwaZulu Natal. Our analysis shows that even at this

relatively low level of transmission, the overwhelming factors that are related to

variation in malaria incidence are climatic factors that are also associated with malaria

distribution in endemic areas (Sharp and Le Sueur, 1996; Molineaux, 1988). The

prediction map (Figure 3.3) shows that, the combination of the three factors of

proximity to water bodies, winter rainfall and maximum temperature are closely

associated with high malaria risk in the north west of the study area and moderately

high transmission intensity in the border areas along the north and west of the area.

Although cross-border migration of infected individuals and the proximity of

uncontrolled areas across the border may further add to transmission intensity in
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border areas, our model shows that natural factors go some way towards explaining

the higher transmission levels found in these areas. Distance to the Mozambican

border, the surrogate measure of cross-border migration, summer rainfall, average

rainfall and average daily maximum temperature in June and July were not significant

once other variables had been included in the model.

Our model underlines the importance of adjusting for confounding effects when

investigating the association between malaria incidence and climatic factors. Our

study area is marked by significantly higher winter rainfall along the coast than in the

interior. The coastal areas on the other hand experience lower daily maximum

temperatures than inland areas. Both these factors are closely associated with malaria

incidence, but due to the negative correlation between winter rainfall and maximum

temperature (correlation coefficient = -0.89), the former on its own is negatively

associated with malaria incidence (table 3.1). The same negative confounding

between rainfall and temperature is responsible for the large difference between the

sizes of the adjusted and unadjusted rate ratio of maximum temperature. The multiple

regression model shows that after correcting for maximum temperature, winter

rainfall is positively associated with malaria incidence. Similarly the effect of

temperature, after adjusting for the effect of rainfall and to a lesser extent distance to

water, is much larger than the single predictor relationship between temperature and

malaria incidence would suggest. The large magnitude in rate ratios should be seen in

the context of very low incidence rates in much of the study area, with the areas of

higher risk constituting incidence rates many tens of times higher. For this reason the

incidence rate ratios cannot be extrapolated to situations of higher endemicity levels

found in areas further north. Furthermore, the likely absence of immunity in the study

population has the effect that any increase in transmission intensity is directly

translated into higher incidence rates.

The very high collinearity between average daily maximum temperature in summer

and in winter has meant that we were unable to test the hypothesis that variation in

average daily maximum temperatures in winter is a factor in determining variation in

malaria risk. In the study area there is virtually no variation in average daily

maximum temperature in winter independent of average daily maximum temperature

in summer.
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Figure 3.3. Map showing model based prediction of malaria incidence for the
population of the districts of Ngwavuma and Ubombo, KwaZulu Natal for the season

July 1994 to June 1995
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According to our results, average daily maximum temperature has a large effect on

malaria incidence with a rate ratio of 135.6 per degree centigrade. This study area is at

the southern limit of malaria distribution and an association with temperature,

particularly winter temperature, would not be surprising due to its effect on both

parasite and vector development (Craig et al. 1999). In the study area annual average

daily maximum temperatures vary from 26.5°C to 29°C, with some places having

much lower maxima over some of the winter period. The water temperature of small

water bodies around which the vectors over-winter is likely to be well below the

maximum daily air temperature. Low water temperatures have been shown to have a

significant negative impact on mosquito abundance due to long larval duration (Le

Sueur, 1991), whilst fairly high air temperatures for at least part of the day keep adult

life spans reasonably short. At the same time any reduction in air temperature will

lead to an increase in the incubation period in the vector (the time needed for

production of sporozoites that infect man in the female mosquito) (Molineaux, 1988)

thereby reducing the chances of adult vectors surviving long enough to become

infective. This result is therefore in accordance with the Macdonald model which

expresses the dependence of the basic reproduction rate of malaria in terms of the

daily survival probability of the vector and the length of the incubation period (Bruce-

Chwatt, 1980; Molineaux, 1988 p. 923).

Winter rainfall obviously affects winter vegetation and sustains smaller water bodies

throughout winter in which vector populations can survive. The range in winter

rainfall is quite large in the study area and some places are fairly dry, with averages

below 15mm per month during the winter half of the year. This would suggest a

lengthy period during which no breeding sites are available in these areas. The non-

linear nature of the relationship between winter rainfall and malaria incidence

suggests that some places are below a threshold which is needed for additional rain to

be associated with a large increase in malaria incidence. The distribution of winter

rainfall in this area is a plausible constraint on vector survival in winter, and hence on

malaria transmission.

Under these circumstances mosquitoes may be forced to overwinter around permanent

water bodies from which populations can spread out as more transient water bodies
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form after early summer rains. Permanent water bodies may constitute a last resort as

breeding habitat for Anopheles gambiae due to the presence of predators (Le Sueur

and Sharp, 1988). However these water bodies are often surrounded by smaller less

permanent water bodies in their vicinity which constitute more suitable breeding sites.

Whatever the dynamics of survival around these sites, our model shows that their

proximity constitutes an additional risk factor for malaria. As a result of the non-

linearity of the relationship the effect of unit increase in distance from water bodies

attenuates with distance from these.

Spatial correlation in the residuals of the model up to 20km between pairs of sections

(Figure 3.2) suggests that there are unmeasured spatially structured sources of

variation not accounted for by the model. The range of this spatial pattern in residuals

is in excess of the flight distances of mosquitoes (Gillies and Meillon, 1968 pp 213).

Some of this unexplained variation could be due to deviation of climatic effects

during the particular study year from the pattern of the long term averages which were

used in the analysis. Other possible sources of spatially dependent variation in

incidence rates may be the diligence with which insecticide spraying was carried out

by teams in particular sections, the emergence of insecticide and drug resistance as

well as differences in the host populations.

The two climatic factors of significance in our analysis are both factors that influence

the survival of vector populations in winter. An important conclusion therefore is that

control activities in this area can be made more effective by focussing on eradication

of winter populations of vectors. Any areas with a combination of high average daily

maximum temperature and high winter rainfall are at risk. The additional risk posed

by water bodies should be considered when new irrigation schemes in the area are

envisaged. The highly uneven distribution of malaria in Ngwavuma and Ubombo

districts would justify an uneven application of control activities, with more effort

being concentrated in the higher risk areas.

This study had a number of limitations which could have affected the results. 1) Only

83 percent of the cases could be allocated to their geographical area. We did not use

the remaining 17 percent of cases in the spatial analysis assuming that they are either

transients, or a random sample of all cases. 2) Incidence rates could not be adjusted
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for age and sex since demographic data were not available for the population counts.

Previous studies have shown that the age distribution of cases in this area closely

follows the age distribution of the population, so that adjustment for age would have

had a negligible effect on the results (Sharp et al. 1988). 3) Large databases of

reporting data are always prone to inaccuracies, omissions and duplicates

(Kleinschmidt et al. 1994). As long as these errors are randomly distributed this would

lead to an attenuation of any significant associations (MacMahon et al. 1990). 4)

Potential bias caused by the system of active case finding cannot be ruled out, but we

have no reason to believe that such under-reporting favours some areas over others. A

recent health survey in this area has shown that health seeking behaviour in general

does not appear to be affected by distance of residence from health facilities (Joyce

Tsoka, Medical Research Council, Durban, personal communication, 1999).

In this study we have accounted for the spatial correlation in the data by iteratively

improving the measurement of residual correlation and subsequently specifying the

covariance matrix of the data in a generalised linear mixed model. Ignoring spatial

correlation can result in explanatory variables apparently being associated with

incidence, as a result of overstatement of the degrees of freedom in the data and

consequent under-estimation of the sizes of standard errors. In our analysis the

standard errors of regression coefficients were under-estimated by as much as 35

percent in the model ignoring spatial effects, compared to the model that adjusted for

spatial effects. The advantage of using the GLMM approach is that it can be extended

to incorporate additional data requiring further random effects to be specified. For

example, we would like to extend this analysis in future to take into account several

years of data for the same small areas, by specifying the year of each annual count as

a random effect and allowing for temporal correlation. Such spatial-temporal analysis

would show whether unusual weather conditions in a given winter predict unusual

malaria incidence during the ensuing malaria season.
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Summary
The objective of this study was to produce a malaria distribution map that would

constitute a useful tool for development and health planners in West Africa.

The recently created continental database of malaria survey results (MARA/ARMA

Collaboration 1998) provides the opportunity for producing empirical models and

maps of malaria distribution at a regional and eventually at a continental level. This

paper reports on the mapping of malaria distribution for sub-Saharan West Africa

based on these data.

The strategy used in this study was to undertake a spatial statistical analysis of malaria

parasite prevalence in relation to those potential bio-physical environmental factors

involved in the distribution of malaria transmission intensity, which are readily

available at any map location. The resulting model was then used to predict parasite

prevalence for the whole of West Africa. We also produced estimates of the

proportion of population of each country in the region exposed to various categories

of risk to show the impact that malaria is having on individual countries.

The data used in this study represent a very large sample of children in West Africa. It

constitutes a first attempt to produce a malaria risk map of the West African region,

based entirely on malariometric data. We anticipate that it will provide useful

additional guidance to control programme managers, and that it can be refined once

sufficient additional data become available.
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Introduction
Accurate knowledge of the distribution of malaria is an important tool in planning and

evaluating malaria control (Snow et al.1996). A report to the recently held first sub-

Saharan regional African summit meeting on malaria cites a �dire lack of extensive

and comparable data about malaria,� and calls, amongst other things, for more

research on trends in incidence and prevalence, epidemic outbreaks and clinical

epidemiology (Sachs 2000).

Global, continental and regional maps of malaria distribution in the past have been

largely based on expert opinion (Molineaux 1988), and more recently on climatic

suitability (Craig et al. 1999). Empirical maps based on malariometric data have

hitherto been produced only at country or district level (Snow et al. 1998,

Kleinschmidt et al. 2000, Thomson et al.1999). These have the advantage of

approximate homogeneity of factors related to malaria control and health services, but

they ignore the �wider picture� of effects outside the political boundaries of the

country being studied. Since transmission intensity and the factors that determine it

are rarely confined to these political boundaries, a country or district map is subject to

inaccuracies due to spatial effects acting across such boundaries.

The recently created continental database of malaria survey results (MARA/ARMA

Collaboration 1998) provides the opportunity for producing empirical models and

maps of malaria distribution at a regional and eventually at a continental level. This

paper reports on the mapping of malaria distribution for West Africa based on these

data. With a total population of nearly 300 million people, sub-Saharan West Africa

represents the region with the largest population exposed to high levels of malaria

transmission intensity. More detailed knowledge of the distribution of malaria

transmission intensity in this region can be used as a basis for more targeted malaria

control and health service provision for a very large number of people.

The objective of the present study was to produce a malaria distribution map that

would constitute a useful tool for development and health planners in West Africa.

We also produced estimates of the proportion of population of each country in the
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region exposed to various categories of risk to show the impact that malaria is having

on individual countries.

Methods and materials
Previous studies using the MARA database for the production of malaria distribution

models have described methodological approaches that we have essentially followed

in this study (Craig et al.1999; Snow et al.1998; Chapter 2, Chapter 3). In this paper

we describe the methods and data used for this study, the results obtained and the

implications for malaria control in West Africa. Further detail relating to the methods

and the results are contained in a technical report (Appendix 2).

Data
The entomological inoculation rate (EIR) (the number of sporozoite positive bites per

person per time unit) would have been the ideal malariometric measure to model for

the purpose of mapping the distribution of transmission intensity (Snow et al. 1996).

Since EIR is not widely available, we modelled parasite prevalence, which is far more

commonly available and which is a reasonable proxy for EIR (Beier et al. 1999).

Results from parasite prevalence surveys used for this analysis, were restricted to

those of childhood populations of less than 10 years of age, in order to avoid the

effects of population immunity in endemic areas moderating the survey results.

Figure 4.1. Locations of surveys, and agro-ecological zones for West Africa
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The MARA / ARMA database of geographically referenced survey reports on malaria

endemicity in sub-Saharan Africa has been described elsewhere (MARA/ARMA

Collaboration 1998). For this study all data relating to community based surveys

between latitudes 1° and 22° North and longitudes 17° West to 16° East, in which at

least 50 children between 1 and 10 years of age were examined for the presence of

Plasmodium falciparum in blood smears, were extracted from the database. In a few

instances where no further age breakdowns were available, surveys on populations

between 1 and 15 years were also included. Surveys conducted during known

epidemics were excluded, as were those that may represent biased samples, such as

those that were restricted to school attenders only. Data from island populations were

also excluded. The survey dates covered several decades from about 1970 onwards,

and surveys conducted more than once at the same location were combined (summing

numerators and denominators). An implicit assumption therefore is that malaria

endemicity has remained relatively stable over this period, so that the surveys taken at

different time points can be conceptually regarded as a cross-section of surveys, taken

at many locations. A total of 450 data points resulted from this process representing

approximately one quarter of a million children surveyed for malaria parasites. The

locations of these points are shown in figure 4.1.

Distribution of malaria is governed by a large number of factors relating to the

parasite, the vector and the host (Molineaux 1988). Predominant among these are

climatic and environmental factors, particularly those that effect habitat and breeding

sites of the anopheline vectors such as temperature, precipitation, humidity, presence

of water, vegetation and man to vector contact. The data used in this study for

modelling and mapping malaria parasite prevalence were long-term averages of

monthly rainfall, monthly averages of daily minimum and maximum temperature

(Hutchinson et al. 1995), normalised difference vegetation index (NDVI Image Bank

Africa 1991), drainage density (Windmeijer and Andriesse 1993), and estimated

population density (Deichman 1996). Monthly climate and vegetation data were

aggregated into quarterly averages, from December onwards (to approximately

coincide with the drier and wetter seasons respectively).
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Four agro-ecological zones (AEZ) were distinguished on the basis of the length of the

growing period, i.e. the period that water is available for vegetative production on

well drained soils. This is a function of precipitation, evaporation, and the amount of

available water in the soil (FAO 1978). The definition of the zones is as follows:

Equatorial Forest zone (> 270 days), Guinea Savanna zone (165 � 270 days), Sudan

Savanna zone (90 �165 days) and the Sahel zone (< 90 days), shown in figure 4.1.

Such zones are well established environmental entities with specific agricultural

potential (FAO 1978).

Statistical modelling
For the purpose of this study, the data were divided into 3 groups corresponding to the

agro-ecological zones described above, with Sahel and Sudan Savanna combined into

one group. A statistical model was derived for each of these three zone specific

groups. This approach was based on the assumption that the factors affecting malaria

risk such as rainfall would be different in the four agro-ecological zones. Parasite

prevalence values varied from 0 to 100%. Of the total number of individuals

surveyed, 48.8% tested positive. A variogram (Krige 1966, Carrat and Valleron 1992)

of prevalence values showed that spatial dependence of the survey results extended

over a distance of about 160 kilometres.

Initial variable selection for each model was done by performing a stepwise procedure

using a generalised linear model (GLM) with logit link function (Hosmer and

Lemshow 1989, StataCorp. 1997) and with the parasite prevalence of a point being

the response variable. The criterion for inclusion of a variable into the model was set

to p<0.01.

In order to account for spatial correlation in the data we followed a previously

documented iterative procedure (Chapter 3) for improving the specification of the co-

variance structure of the data using a generalized linear mixed model (GLMM)

(Littell et al. 1996; SAS 1996). Deviance residuals were calculated for each statistical

model that was derived from the initial GLM. Semivariance (Carrat & Valleron,

1992) of the deviance residuals of all pairs of observations was calculated and a

variogram constructed to determine if there was evidence of residual spatial
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correlation i.e. if the semivariance of pairs of residuals that are close together is

markedly less than that of observations which are further apart. The parameters of the

function that describes the relationship between semivariance and separation distance

(the spatial model) is then used to specify the correlation structure of the data in the

GLMM thereby taking account of any residual non-independence in the data.

Allowing for spatial correlation may therefore lead to removal of some variables from

the model due to the resultant inflation of the standard errors. Deviance residuals of

the spatially adjusted model are calculated and a new variogram is constructed. This

process is iterated until the variogram no longer changes indicating that a covariance

structure corresponding to the model residuals is adequately specified (Chapter 2;

Appendix 1).

In order to improve the fit (i.e. reduce residual deviance), each variable that survived

the above procedure was transformed into 7 different fractional polynomials (Royston

et al. 1999). The transformation producing the biggest reduction in residual deviance

was chosen if this reduction in deviance exceeded 3.84, compared to the

untransformed variable. Transformations that were tried for each variable x were 1/x2,

1/x, 1/x0.5, ln(x), x0.5, x2 and x3.

Once the zone specific models had been derived, these were used to produce map

based on the predictor variables which are available as map images. The zone

boundaries represent a somewhat arbitrary cut-off, with places near such a boundary

sharing characteristics of the zones on both sides of the boundary. Predictions of

parasite prevalence along a boundary between two zones were therefore based on a

weighted mean of the predictions obtained from the models for the two adjoining

zones, with the weights being a function of the distances from the boundary (see

appendix 2, p.156). This interpolation of predictions along zone boundaries was

carried out up to a distance of 160km from each zone boundary, since the previously

constructed variogram showed that spatial effects were limited to approximately this

distance.

To improve prediction in places where there is considerable divergence between

model predictions and observations in a local neighbourhood we used a previously

developed method (Kleinschmidt et al. 2000) based on kriging (Krige 1966) of the
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residuals of the final model predictions. A kriged map of deviance residuals is

calculated, which is added to the predicted values on the logit scale before

transforming the result back to proportions. The addition of kriged residuals will

allow the map to deviate from the model and move closer to the observed values, if

such deviation is supported by other observed values in the neighbourhood. This

improves the final map in the sense that it does not deviate too severely from the

observations, which is particularly important if the model does not adequately explain

the observed variation in transmission risk.

Our method therefore involves a combination of modelling (predictions based on the

values of climatic and environmental variables at each location) and kriging

(interpolation of prevalence values at points between observed survey locations). This

has the effect that the map predictions are primarily model driven in areas with a

paucity of points, whereas in areas with an abundance of survey locations the map

values will be primarily determined by the actual observed values at these points.

Predicted population at risk
We overlayed the final predicted prevalence map on a population density map

(Deichman 1996), to calculate the population at risk for different endemicity

categories for each country, excluding urban areas.

Results and discussion
Significant explanatory variables for the model for the Sahel and Sudan Savanna zone

were: average monthly rainfall from March to May, average minimum temperature

from September to November and from December to February, average maximum

temperature from March to May and from September to November, average

vegetation index from March to May and drainage density. For the model for the

Guinea Savanna zone the significant variables were average monthly rainfall from

September to November, average vegetation index from December to February, and

from March to May, average minimum temperature from December to February and

from June to August, average maximum temperature from September to November,

difference in maximum monthly and minimum monthly vegetation index, drainage
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density and population density. Finally, the model for the Forest zone contained

average maximum temperature from September to November and from June to

August, and average monthly rainfall from September to November. Since all the

models are multiple variable models, each variable is corrected for all the other

variables in the model. The relationship between these quantities and parasite

prevalence is complex, and we give details of model coefficients and their plausibility

in the technical report (Appendix 2).

Figure 4.2 shows the final map of predicted risk of malaria infection for children

under 10 years during a location�s main malaria season that was predicted from our

models after processing the predictions in the way described above. The grouping of

the map predictions into the four categories of risk shown in the map are the same as

were used for a country level malaria map for Mali (Chapter 2).

Our data contained a handful of points (n=21) that could be regarded as urban on

account of their 1995 population density being above 386 per sq km (US Bureau of

Census 1995). Average parasite prevalence in these �urban� surveys was 45.1%,

compared to a mean of 46.7% for non-urban surveys (two-sample t-test, p = 0.77).

This result was not sensitive to the particular population density cut-off chosen for the

definition of urban sites, and it was true in all three zones. It was only in the Guinea

Savanna zone that there was a significantly higher prevalence for points with

population densities below 1 per sq km after adjusting for other factors in the model.

Despite this lack of evidence in the MARA database for lower parasite ratios in urban

areas, we considered our data too unrepresentative of urban areas to make any

predictions in such areas. Urban areas were therefore excluded from the prediction

map, and from the population at risk calculations. It is quite likely that some surveys

were taken in places which were rural outskirts of urban areas at the time of the

surveys, but which are now urban. Whilst climatic factors might justifiably have been

regarded as constant over the time that the surveys were conducted, this assumption is

almost certainly not uniformly valid for population density, and this may be the

reason for it not featuring more prominently as a significant explanatory variable.



Figure 4.2. Predicted prevalence of P.falciparum in children aged 2 to 10 years for West Africa

* Differing map resolutions have caused some digitisation error along the coast, causing some coastal urban areas not to show on the map
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Comparing our final map predictions with the observed prevalence values of the 450

surveys, 77.6% (349/450) of the surveys were correctly classified, i.e. the predicted

prevalence category agreed with the observed prevalence category (kappa=0.62,

p<0.0001). Of the points where there was a disagreement between the observed and

predicted prevalence categories, only 3 were misclassified by more than one category

value.

Visual comparison of our map with previous �expert� opinion maps (Wernsdorfer and

McGregor 1988, Haworth 1988) and with the suitability map by Craig et al. (1999),

shows broad agreement. The map is also in agreement with a map of Mali, that was

previously derived from MARA data (Chapter 2). Our map offers more differentiation

in the category of �highly suitable� of the climatic suitability map, but less

differentiation in the areas designated as �unstable malaria� in the suitability map.

This is in part due to the fact that comparatively few malaria surveys are done in areas

of unstable malaria, and this is reflected in the MARA database. Nevertheless, a

visual comparison of our map with the suitability map shows many similar features,

which is not surprising since climatic factors were involved in the production of both

maps. We should caution that there were several countries in the regions which were

either poorly covered by surveys, or not at all. We are optimistic that this situation

will improve in future and this will allow a more accurate map to be produced.

However, in the meantime our map predictions for these areas are entirely based on

our models that were derived from data from neighbouring countries. This may still

give reasonable predictions for smaller countries or those that are surrounded by

countries with an abundance of data points, but it is bound to give inaccurate

estimates for countries on the periphery of our map window, such as Niger. We

excluded Niger from the calculation of populations at risk (table 4.1) for this reason.

Most of Nigeria, and the central parts of Ghana also suffered from a sparse coverage

of points, and hence the predictions in these regions are model dependent, rather than

interpolation driven. A current shortcoming in our modelling methodology is the fact

that we are unable to give an estimation error for the various parts of the map.

The proportion of population in each country exposed to each of the four risk

categories varies considerably between countries in the region (table 4.1). For
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example, the population living in areas with less than 30% prevalence make up 17%

of the population of the entire region, with high proportions of the population in this

category living in Mauritania (50%), Guinea Bissau (30%), Mali (31%), and Senegal

(23%). Some of these could be populations with low levels of immunity and it can

reasonably be expected that exceptional rainfall will cause significant morbidity in all

age groups. Often such areas are remote and interventions are hampered by poor

health service infrastructures. On the other hand, populations in areas with predicted

prevalences above 30% (categories 3 and 4 on the map) are more likely to have some

measure of immunity with young children and pregnant women being the groups most

vulnerable to morbidity and mortality due to malaria. According to our map, 58% of

the population of West Africa (168 million people) fall into this category. In Côte

d�Ivoire, Togo, Burkina Faso, Sierra Leone and Liberia 70% or more of the

population is exposed to this level of transmission intensity.

Although the highest prevalence category, namely 70% to 100%, occupies a

considerable area on the map, the proportion of population living in these areas is

reasonably small in all countries except Togo. For the West African region as a whole

about 16 million people are exposed to this high level of transmission intensity. Marsh

and Snow (1999) suggested that vector-contact reducing measures such as insecticide

treated materials (ITM) may change severe-disease patterns of malaria and

consequently case fatality in high endemicity settings. The introduction of ITMs on a

large scale should be accompanied by more intense monitoring efforts in such

circumstances. Our prediction map helps to identify areas where such long term

morbidity monitoring might need to accompany ITM deployment.

Ideally, we would like to have a map that clearly identifies two types of areas

requiring two quite distinct types of intervention packages. These would be epidemic

prone areas, and areas with stable malaria endemicity. In areas of unstable malaria

transmission, surveillance efforts, the stocking of efficacious insecticides such as

DDT for in-house spraying as well as appropriate and affordable diagnosis and

treatment algorithms play a primary role. In holoendemic areas on the other hand,

rapid diagnosis and treatment, intermittent treatment during pregnancy, behavioural

aspects related to the large scale use of ITMs and innovative strategies to ensure the

availability of high quality first line treatments at home might be considered high
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priority by country control programs. Our map cannot provide such clear division into

endemic and epidemic areas, but it can be used to guide such decisions.

Table 4.1. Predicted percentage of population at risk by country and risk category
(excluding urban populations)

Percentage of total population in each risk category1

Country2

Predicted

prevalence of

less than 10%

Predicted

prevalence of

10 to 30%

Predicted

prevalence of 30

to 70%

Predicted

prevalence

above 70%

Benin 0 5 43.4 12

Burkina Faso 0 17 76 0

Cameroon 1 16 58 2

Côte d'Ivoire 0 4 75 0

Gambia 0 8 44 0

Ghana 1 15 46 17

Guinea 1 12 57 3

Guinea Bissau 2 30 13 0

Liberia 0 1 81 2

Mali 3 28 66 1

Mauritania 20 30 6 1

Nigeria 0 8 48 8

Senegal 1 22 41 2

Sierra Leone 0 0 79 2

Togo 0 0 39 38

Entire region 2.4 14.8 52.7 5.4

Total population

at risk

7,006,869 42,941,669 152,779,264 15,698,929

1 Percentages do not sum to 100% since urban populations have been excluded and parts of
some countries lie outside the map window.
2 Excluding Niger
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It is well known that malaria transmission intensity exihibits strong spatial

heterogeneity even at a local level. It is therefore likely that the map may be at

variance with local experience in some places. Where this occurs, it ought to motivate

further investigation through well conducted local surveys.

A possible source of variation that is not determined by natural factors such as climate

and drainage density may be differences in socio-economic development, which has

played a part in malaria control and eradication elsewhere, probably coinciding with

other factors (Bruce-Chwatt and de Zuleta 1980, Molineaux 1988, Packard 1984,

Wernsdorfer and Wernsdorfer 1988). Socio-economic development could reduce

malaria transmission in a variety of ways. For example, increases in household

income of women and poverty reducing measures in general have the potential to

reduce exposure to malaria and to improve health seeking behaviour and quality of

treatment. However, socio-economic development in a high transmission tropical

setting could equally increase malaria transmission due to changes such as forest

clearing or the migration of people with little or no immunity into areas of high

endemicity. We have been unable to model such factors in our analysis due to the fact

that such data for the entire region are currently not available with adequate spatial

resolution. It is highly likely that there are other unmeasured, perhaps more local

factors that determine variation in parasite prevalence.

A further source of variation that has not been taken into account in this study is

variation in prevalence by season and by age (Sissoko et al., submitted). The impact

of these factors will differ according to the endemicity level of an area. It was our

opinion that the differentiation that was available within the results of many surveys

was inadequate to stratify the data by these factors.

A regional malaria risk map, such as the one produced in this study, will allow

planners to assess the possible health impacts of measures aimed at improving food

security through the promotion of large scale irrigation and wetland management

projects. Elsewhere in Africa such developments have significantly increased malaria

infection and morbidity in epidemic prone areas of unstable malaria (Ghebreyesus et

al. 1999). However, the same agricultural production methods are unlikely to affect
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the malaria risk profile of rural populations living in areas characterized by high

parasite prevalences (Dossou-Yovo et al. 1998, Faye et al. 1995).

Finally, the map will also help guide public health research managers in identifying

appropriate study environments for intervention trials as well as assist with the

identification of populations potentially benefiting from new interventions.

The data used in this study represent a very large albeit imperfectly sampled

population of children in West Africa. This study is a first attempt to produce a

malaria risk map of the West African region, based entirely on malariometric data.

We anticipate that it will provide useful additional guidance to control programme

managers, and that it can be refined once sufficient additional data become available.
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ABSTRACT
Spatial and temporal variations in small area malaria incidence rates for the period

mid-1986 to mid-1999 for two districts in northern KwaZulu Natal, South Africa were

investigated using Bayesian statistical models. Maps of spatially smoothed incidence

rates at different time points and spatially smoothed time trend in incidence gave a

visual impression of the highest increase in incidence occurring where incidence rates

previously had been lowest. This was confirmed by conditional autoregressive

models, which showed that there was a significant negative association between time

trend and smoothed baseline incidence before the steady rise in caseloads began.

Growth rates also appeared to be higher in the areas close to the Mozambican border.

The main findings were that: (1) the spatial distribution of the rise in malaria

incidence is uneven and strongly suggests a geographical expansion of high-risk

malaria areas; (2) there is evidence of a stabilisation of incidence in areas which had

the highest rates before the current escalation of rates began; (3) areas immediately

adjoining the Mozambican border appear to have undergone larger increases in

incidence, in contrast to the general pattern of low growth in the more northern, high

baseline incidence areas, but this was not confirmed by modelling; (4) smoothing of

small area maps of incidence and growth in incidence (trend) is important for the

interpretation of the spatial distribution of disease incidence, and the spatial

distribution of rapid changes in disease incidence.
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Malaria cases in South Africa have risen steadily and steeply over the past few years.

The total number of cases reported nationally during the first six months of 1999 was

over 34,000, representing an increase of 80 percent compared to the same period of

the previous year (Department of Health, 2000a). Isolated cases of local malaria

transmission have recently been identified in the Durban municipal area, which is

several hundred kilometers to the south of malarious areas, giving rise to considerable

public concern(Pillay, 2000). A question that has arisen is whether the increase in case

loads is associated with an expansion of South Africa�s malaria transmission area or

whether it is the same areas as before suffering increased transmission rates. The

sharp increase in malaria incidence could have potentially severe consequences not

only for public health but also for tourism and economic development.

The cause for the steep increase in malaria cases in South Africa has been linked to a

variety of factors, namely the El Nino effect on weather patterns in Southern Africa,

proximity to areas where no malaria control systems are in place and migration from

such areas, the development of drug-resistance in the malaria parasite (Bredenkamp et

al. 2000) and insecticide resistance in the malaria vector Anopheles funestus

(Hargreaves et al. 2000), and the possible effects of HIV infection on a substantial

proportion of the population (Department of Health, 2000b), Whitworth et al. 2000).

Our analysis attempts to document the spatial changes in malaria transmission in two

particular districts for which high resolution reporting systems are available. These

are the neighbouring magisterial districts of Ngwavuma and Ubombo in Northern

KwaZulu Natal which have hitherto had the highest malaria incidence rates in the

country.

The objective of this study was to investigate whether there was geographical

expansion of malaria transmission. By modelling the spatial variation of time trend in

incidence rates we sought to establish whether the additional cases come

predominantly from areas that have always had the highest transmission levels, or

whether they originate from previously low transmission or malaria free sub-regions.

We used Bayesian statistical methods to produce maps of smoothed incidence at

different time points, and maps of spatially smoothed rate of change of incidence. By
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modelling the time trend we investigated whether there was an association between

time trend and baseline malaria incidence.

Materials and methods
In both Ngwavuma and Ubombo districts a small area malaria incidence reporting

system has been in operation since 1986 as part of the provincial malaria control

programme(Sharp et al. 1999). This records all parasitologically confirmed cases,

both passive as well as those found by active surveillance. The latter consists of

screening measures by which teams go into the community to encourage individuals

who may be suspected of having malaria, to be tested. Active case finding forms part

of the control strategy of treating all infected individuals. Whilst such active case

finding may not achieve 100 percent coverage, it is thought to identify the vast

majority of cases. Since malaria incidence is generally low (average annual incidence

rates have been as low as 2.3 cases per 1000 in the last 10 years), individuals living in

this area generally have, until very recently, had infrequent or no exposure to malaria.

The low levels of exposure to Plasmodium falciparum in the past have made it likely

that the actively found cases are recent infections, rather than asymptomatic semi-

immune cases. This assumption may no longer be valid in those areas which

experience the highest incidences.

A population census at homestead level was carried out in 1994 by the malaria control

programme, thus making it possible to use a Geographic Information System (GIS) to

derive population counts for the same small areas for which cases were being

reported. Unfortunately the boundaries for small area counts for both the 1991 and

1996 censuses are considered unreliable and do not coincide with those of the malaria

reporting boundaries. We therefore used population totals based on the 1994 census,

applying a constant and uniform growth rate of 2 percent per annum(Statistics South

Africa, 1999).

Figure 5.2 shows that the overall malaria incidence rate for the study area over the 13

year period fluctuated strongly around approximately 10 cases per 1000 person years

annually with neither an upward nor a downward trend during the years 1986/7 to
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1994/5 (We have used mid-year to mid-year aggregations since these correspond

roughly to a malaria season). After 1995 there has been a steep and consistent increase

in malaria incidence. We have therefore modelled the data separately for the two time

periods 1986/7 to 1994/5 and 1995/6 to 1998/9.

Modelling
Crude maps of disease incidence are often subject to considerable random error,

particularly if either the disease is rare or the population per spatial unit is small, so

that the rate may be influenced by a relatively small number of cases. This leads to

maps in which attention is drawn to those areas whose rates are based on the least

stable estimates (Cuzick and Elliott, 1992). Moreover, the estimation of the standard

errors of explanatory variables will be biased if spatial correlations are not taken into

account. These problems can be overcome by spatial smoothing of the rates, which is

based on �borrowing strength� from neighbouring regions. In this study we have

followed the approach that uses hierarchical fully Bayesian spatial modeling as

described by Bernadinelli and Montomoli (1992). This approach models spatial

variation via conditional autoregressive (CAR) priors (Clayton and Kaldor, 1987).

Let Yit and Pit denote the observed counts of cases and population respectively and let

ηit ≡ E(Yit) denote the mean count of cases for the ith area in the tth year. It is assumed

that the Yit are conditionally independent given the ηit and follow a Poisson

distribution, i.e. Yit~Poisson(ηit). The ηit are defined using customary linear models

which may include covariate terms as well as random time and area effects.

The following model was used to estimate smoothed incidence rates for each area for

the nine year period from 1986/7 to 1994/5:

log(ηit )= log(Pit) + µ + φi + ωt (model 1)

where µ represents the mean incidence rate over all areas over all time periods, φi is a

random effects term that allows for spatially structured variation in rates and ωt is a

random term representing between year variation, assumed independent and normally

distributed.
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Bayesian statistical inference is based on posterior distributions which combine

information available from the data via the likelihood function and any prior

knowledge about the model parameters by specifying appropriate distributions for

these parameters. We incorporate our prior information about the structure of the map

by assuming CAR models for the area random effects. According to the CAR model

the area specific spatial effects φi are modeled (conditional on neighbouring random

effects) as normally distributed with mean equal to the mean of the effects of its

neighbours ( iϕ ) and a variance that is inversely proportional to the number of

neighbours ni, i.e. φi | φ-i ~ N( iϕ ,σφ2/ni)  where 1
ji

j neighbours of iin
ϕ ϕ

∈

= ∑ . The effect of

this prior distribution is to shrink the incidence rates of areas to that of the local mean,

where the local mean is the mean of all contiguous areas excluding the area i itself.

The posterior distribution of the rate of an area is therefore a compromise between the

prior, which is based on the rates of neighbouring areas, and the data for the area, thus

stabilising the rate in areas where the data are sparse due to small populations.

Since no information is available for the remaining parameters we adopt standard

conjugate priors, i.e. vague inverse gamma priors for the variances σω2 and σφ2 and

vague normal priors for all other parameters.

We used a second model to analyse the data for the last 4 years of the series, namely

1995/6 to 1998/9. To be able to determine the spatial variation of increases in malaria

incidence the model included a spatially smoothed time trend instead of random time

effects used in model 1.

Bayesian models for the analysis of space-time variation of disease rates have been

considered by a number of authors (Heisterkamp et al. 2000; Knorr-Held and Besag,

1998; Waller et al. 1997, amongst others). Bernadinelli et al (1995) and Sun et al

(2000) assumed the temporal variation of disease rate to be linear, which we judged to

be a reasonable constraint in our data given a relatively short period of 4 years for the

second time period. We used the following model to estimate spatially smoothed time

trend for each area
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log(ηit )= log(Pit) + µ + φi + (α + δi)t (model 2)

where t represents the years from 1995/6, α represents an overall time trend for all

areas, and the random term δi represents the smoothed local deviation in trend from

the overall trend. The latter, which has been termed differential trend (Bernadinelli et

al. 1995) is assigned a CAR Normal prior distribution, as described above, to allow

for spatial smoothing of time trends, thereby facilitating the interpretation of patterns

in time trend from a map.

A third model was used to investigate the association between time trend and baseline

incidence i.e. average incidence before the period of steady increases in incidence.

For this model the data for the entire time series (13 years) were used so that baseline

incidence (first period) and its effect on differential trend during the second period

could be estimated simultaneously from the same model. This has the advantage that

uncertainty in the estimates of baseline incidence are incorporated into the estimates

of parameters that express the association between baseline incidence and time trend.

The following model was used:

log(ηit )= log(Pit) + z1t[µ1 + φ1i] + z2t[ µ2 + φ2i + (α + δi )(t-9)]

Subscripts 1 and 2 refer to the first and second period of the data respectively so that

µ1 and µ2 denote the overall mean log of incidence rates during the first and second

periods respectively and φ1i and φ2i denote the area specific random effects for the

first and second periods respectively. z1t and z2t are indicator variables to distinguish

between the first and second time periods i.e. z1t = 1 for 1£ t £ 9 and z1t =0 for 10 £ t

£13 whilst z2t = 1- z1t. The φ1i �s and φ2i �s are assigned separate CAR prior

distributions, as previously described. The number of years after the start of the

second period is represented by t-9. The area specific differential trend is denoted by

δi as before. Following Bernadinelli et al (1995), δi are assumed to be independent,

conditional on the φ1i i.e.

 [δi | φ1i , σδ2] ~ Normal(βφ1i , σδ2 ) (model 3)
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The term β allows for baseline incidence and trends to be correlated in the prior. It is

assigned a vague normal prior. Note that δi is modelled conditional on the first period

area effect φ1i to determine its correlation with incidence during the earlier period.

The variance term σδ2 represents the variance of the differential trend and is assigned a

non-informative gamma distribution. Figure 5.1 is a graphical representation of model

3, using graphical conventions outlined by Bernadinelli and Montomolli (1992), and

used in the software package WinBUGS (2000)

A further variant of model 3 was used to determine whether areas whose centroids are

within 4km of the Mozambican border follow a different time trend. The investigation

of this model was primarily motivated by inspection of the smoothed trend map (see

below). The distance of 4km was chosen since it corresponds approximately to

maximum distances of dispersal of the main vector (Anopheles gambiae) (Gillies and

De Meillon, 1968) in the area. This was done by modeling the differential trend as

[δi | φ1i ,xi , σδ2] ~ Normal(βφ1i + γxi, σδ2 ) (model 4)

where xi represents a dummy variable denoting whether an area is within 4km of the

Mozambican border, γ allows the differential trend in border areas to differ from that

of other areas and all other terms have the same meaning as before.

Markov Chain Monte Carlo simulation was used to obtain estimates of the posterior

and predictive quantities of interest. The models were implemented using Gibbs

sampling in the software package WinBUGS. In order to properly monitor

convergence a sampling scheme was designed using 3 independent chains and a

�burn-in� of 12000 iterations. After convergence a final sample of 5000 was collected

to obtain summaries of posterior distributions of the parameters. Convergence was

assessed using the method of Gelman and Rubin (1992).

In order to compare models 3 and 4 we calculated the expected predictive deviance

(EPD) (Carlin and Louis, 1996) for each model. A brief description of the EPD is

given in the appendix. A lower EPD is indicative of a better model. We also

calculated the likelihood ratio statistic (LRS), which assesses model fit.



Figure 5.1. Graphical representation of model 3. Symbols as defined in text.
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Figure 5.2. Annual malaria incidence rates for the population of Ngwavuma and

Ubombo districts, and proportion of areas with incidence of less than 1 per 1,000

person-years by year from mid 1986 to mid 1999
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TABLE 5.1. Description of areas

Number of areas 220

Total population (1994) 239 000

Average size of area (SD), km2 25.9 (27.6)

Average population per area in 1994 (SD) 1086 (884)

Average population density per area (SD), persons per km2 65.1 (61.9)

Overall average incidence rate per area (SD), cases per 1000
person years

28 (91)

Lowest annual average incidence rate per area (SD), cases per
1000 person years

3.4 (16)

Highest annual average incidence rate per area (SD), cases per
1000 person years

78 (133)
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Results
There was considerable variation in population size, area, population density and

malaria incidence rates between the areas that formed the unit of analysis (also know

as sections) and between years (table 5.1 and figure 5.2). The proportion of very low

risk areas with incidence rates of less than 1 per 1000 reduced sharply over the period

1995/6 to 1998/9 (figure 5.2). The map of smoothed incidence rates for the period

1986/7 to 1994/5 as derived from model 1 (figure 5.3) clearly shows a trend of highest

incidences in the north west of the region, with the lowest incidence in the south-east.

There are also some high incidence �hot spots� in the north along the Mozambican

border, and in the south-west along the Pongola river. The steep rise in incidence rates

across the area is evident from the smoothed map of incidence for the final year of the

time series (figure 5.4).

TABLE 5.2. Posterior medians and 95% credible intervals(C.I.) for model estimates of mean

log incidence rate, log overall trend, effects of baseline incidence and being a border area, and

standard deviation of log differential trend, for the population of Ngwavuma and Ubombo

districts, 1995/6 � 1998/9.

Parameter Description Model 3 Model 4

Median 95% CI Median 95% CI

 µ1 Mean log incidence rate during
period 1 (log cases/person)

-5.42 -5.45, -5.38 -5.42 -5.45, -5.38

µ2 Mean log incidence rate during
period 2 (log cases/person)

-4.78 -4.82, -4.72 -4.78 -4.83, -4.73

α Log overall trend during period 2
(log incidence rate ratio)

0.35 0.31, 0.41 0.34 0.29, 0.38

β Effect of log baseline incidence on
log differential trend (log
incidence rate ratio/log incidence
rate)

-0.11 -0.14, -0.08 -0.12 -0.14, -0.09

σδ Standard deviation of log
differential trend

0.086 0.069, 0.11 0.084 0.067, 0.11

γ Effect of being a border area on
log differential trend (change in
log incidence rate ratio)

0.15 0.017, 0.28



98 Spatial variation of time trend

Mean values of spatially smoothed local trend for each area were obtained from

model 2. Smoothed local trends for areas, expressed as incidence rate ratios per

annum, varied from 0.6 to 3.5, with a median value of 1.4, and an inter-quartile range

of 1.2 to 1.7. Figure 5.5 shows how the smoothed time trends over the 4 year period

from 1995/6 to 1998/9 are distributed across the study area. This map, when

compared with the map of relatively stable �baseline� rates for the period 1986/7 to

1994/5 prior to the period of steady growth in annual cases, gives a visual impression

of an inverse relationship between the gradient of incidence, and baseline incidence.

The areas with the lowest baseline incidences appear to have been subjected to the

steepest increases, and vice versa, with some of the high baseline incidence areas

having either stabilised or undergone a small negative trend. Sections immediately

bordering Mozambique appear to be an exception with moderately high time trends

despite high baseline incidences. The impression of an inverse relationship between

trend in incidence and baseline incidence is confirmed by figure 5.6, which is a scatter

plot of the log of the trend against the log of average incidence during the first period.

According to model 3, baseline incidence is significantly negatively associated with

trend (tables 5.2 and 5.3). According to both models 3 and 4, incidence rose by just

over 40 percent per annum and this annual rate of increase in incidence rate is reduced

by a factor of about 0.90 for each doubling in the baseline rate (incidence in the first

period).

According to model 4, the time trend is 16 percent higher in the border areas than in

other areas after adjusting for the effect of baseline incidence on time trend. However,

model comparison (table 5.3) shows that there is no difference in EPD between model

3 and 4. The data therefore provide no evidence that the differential trend in border

areas is different from what it is in other areas.
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TABLE 5.3. Estimates of mean trend, effects of baseline incidence and proximity to
Mozambican border on growth in incidence rates per annum for the population of Ngwavuma
and Ubombo districts, 1995/6 � 1998/9, and model fit criteria

Model 3 Model 4

Median 95% CI Median 95% CI

Mean trend per annum(eα):
Incidence rate ratio

1.42 1.37, 1.50 1.41 1.33, 1.46

Differential trend*:
Effect on annual trend of doubling of
baseline incidence rate (eβln2)

0.93 0.91, 0.95 0.92 0.91, 0.94

Effect of being a border area (eγ) 1.16 1.02, 1.32

Expected predictive deviance (EPD) 21580 21572

Likelihood ratio statistic (LRS) 18639 18625

* Change in trend expressed as ratio of incidence rate ratios

Discussion
Our model of smoothed time trends in malaria incidence over the 4 years from 1995/6

to 1998/9 shows that there is considerable variation in average annual growth between

areas (model 2, figure 5.5). The average annual increase for all areas was 52 percent.

At the two extremes, over 10 percent of areas (n=26) experienced more than 100

percent annual increases, whilst just under 10% of areas (n=19) underwent a decline

in incidence.

Our map of smoothed trends in incidence rates has enabled us to observe a spatial

pattern in time trends in relation to baseline incidence. The map of unsmoothed crude

trends for each area (not shown) makes it difficult to obtain an overall impression due

to random noise in trends. For some areas it is impossible to calculate a stable crude

trend value due to very low or zero incidences at the start of the four-year period.

Smoothing of time trends is important to see underlying trends in a map, for the same

reasons that smoothing of disease rates has become commonplace to stabilize

estimates that are subject to high sampling variability (Wakefield et al. 2000).
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We were able to confirm the visual impression from the smoothed trend map that

increases in incidence rates have been steepest in areas with the lowest initial rates

using a simple model incorporating initial incidence rates as a factor affecting time

trend over the four years from 1995/6 to 1998/9. The border areas have been of

special interest due to their proximity to Mozambique, where malaria vector control

through house spraying is not practiced. The time trend in border areas appeared to be

steeper than in other areas after adjusting for the association of trend with baseline

incidence (model 4), but model comparison shows that we do not have evidence

against the null hypothesis of border areas following the same pattern as other areas.

For the two districts in our study area it is therefore evident that there has been a

steady geographical expansion of high-risk malaria transmission areas. It is likely that

this expansion has progressed beyond the boundaries of the two districts which we

have analysed, although this cannot be verified directly since the malaria reporting

system in other districts does not permit the aggregation of cases in small geographic

units as is possible for the districts of Ubombo and Ngwavuma.

The negative association of baseline incidence with time trend suggests that there is

some degree of stabilisation of rates in high transmission areas. This could be due to

vector and parasite related environmental factors. These would be the overall climatic

suitability for malaria transmission in terms of temperature and rainfall of the region,

which may impose constraints on further increases in transmission intensity, despite

substantial cyclical variation (Craig et al.1999; Molineaux, 1988; Chapter3).

Alternatively, the stabilisation of incidence rates in high transmission areas could be

due to population related factors in the form of a measure of immunity conferred by

relatively high levels of exposure. It has been shown in settings of endemic malaria

that a small number of infections with P. falciparum from birth can lead to an immune

response that modulates disease outcome (Gupta et al. 1999). Our own data show that

in high incidence areas of Ngwavuma and Ubombo, age-specific malaria incidence in

adults is lower than it is in teenagers (Chapter 7). This observation would be

consistent with the acquisition of clinical tolerance to infection by at least part of the
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population in high-incidence sub-regions of the study area, and it would explain the

finding of lower increases in incidence in these areas.

Under circumstances of a steep overall increase in incidence, and plausible biological

factors limiting the increase in incidence in some areas, it is unlikely that the observed

inverse relationship between differential trend and baseline incidence is merely one of

regression to the mean. The estimates of baseline incidence in model 3 are a fairly

precise assessment of an area�s underlying incidence during the first period, on

account of being obtained from a long time series of data, and on account of being

spatially smoothed estimates. Regression to the mean is unlikely if such stable

estimates are used instead of individual unsmoothed observations relating to a

particular year.

If immunity rather than leveling of transmission pressures is the cause for stabilisation

of incidence rates in the high incidence areas, then it is possible that there has been an

increase in transmission intensity in excess of that reflected by the incident cases. This

would imply that the reported incidence rates are no longer a reliable indicator of

transmission in these areas and the risk to non-immune visitors may have increased

considerably more than the incidence rates. The consequences for tourism and

economic development would consequently be more severe.

Our modelling approach represents a modest extension of the spatial temporal model

developed by Bernadinelli et al (1995). We have applied this methodology to an

infectious tropical disease with relatively high incidence rates and substantial spatial

structure in the data (Chapter 3). We were able to model the data of the two time

periods of the study comprehensively within the same overall model which enabled us

to test the effects of incidence rates in the first period on time trends in the second

period. Future work on this topic will investigate the potential association between

possible model covariates, such as rainfall, during an earlier period, and malaria

incidence in a latter period.
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Figure 5.3. Smoothed mean malaria incidence rates by area estimated from model 1 for the
population of Ngwavuma and Ubombo, mid 1986 to mid 1995
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Figure 5.4. Estimated smoothed mean malaria incidence rates by area for the population of
Ngwavuma and Ubombo, mid 1998 to mid 1999
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Figure 5.5. Smoothed trend in malaria incidence rates by area estimated from model 2
for the population of Ngwavuma and Ubombo, mid 1995 to mid 1999

The main limitation of this study is its dependence on data obtained from the

provincial malaria control programme. We are concerned that under-reporting of

cases may be worse in high incidence areas due to resources being over-stretched in
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these areas, which may have biased our trend analysis. Furthermore, we were unable

to incorporate possible between-area population movements into our analysis.

In conclusion, the main finding of this retrospective analysis is that the spatial

distribution of the rise in malaria incidence is uneven and strongly suggests an

extension of high-risk malaria areas in South Africa. There is evidence of a

stabilisation of incidence in areas with the highest rates before the current escalation

of rates began. The impression that areas immediately adjoining the Mozambican

border have undergone larger increases in incidence, in contrast to the general pattern

of stabilizing of rates in the more northern, high baseline incidence areas was not

confirmed by modelling. Smoothing of small area maps of incidence and growth in

incidence (trend) is important for the interpretation of the spatial distribution of

disease and rapid change in disease incidence. The analysis of time trend in relation to

baseline incidence provides a useful means to describe geographical expansion of

disease risk, provided that precise estimates of baseline incidence can be made.

Figure 5.6. Plot of log trend (1995/6 to 1998/9) in malaria incidence against log initial
malaria incidence rate (1986/7 to 1994/5) of each area for the population of

Ngwavuma and Ubombo
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Summary
Health services in areas of unstable malaria are often under severe strain as result of

unexpectedly large numbers of malaria cases during epidemic outbreaks. Advance

warning of such outbreaks can assist in putting in place adequate diagnostic and

treatment facilities, as well as other counter measures. Remote sensors onboard earth

orbiting satellites have been shown to have the potential for predicting unusual

malaria seasons by monitoring changes in weather conditions. In this study remote

sensed (RS) proxy measures for rainfall and temperature for small areas, namely cold

cloud duration (CCD) and land surface temperature (LST) respectively, were

modelled in relation to space-time variation in malaria incidence rates for small areas

in a region of unstable malaria transmission in South Africa over a four year period.

Autoregressive Bayesian space-time models using Markov Chain Monte Carlo

(MCMC) methods were used to take account of and to estimate spatial and temporal

correlation in the data. A number of simple models which included quarterly values of

CCD and LST as covariates were investigated. There was strong correlation of

incidence rates between years and between neighbouring areas for individual small

areas. Although the posterior distributions of model coefficients for CCD and LST

were significantly different from zero, comparison of EPD for models with and

without these explanatory variables showed that they do not improve overall model

fit. Our analysis therefore did not provide any real evidence of an association between

seasonal RS data and malaria incidence. We recommend that this relationship should

be further explored using longer time series, good quality disease and population data,

and including data on appropriate confounding variables.
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Introduction
In sub-Saharan Africa, malaria remains the major cause of morbidity and mortality,

with an estimated 200 million clinical cases annually and approximately one million

annual deaths. In areas of unstable malaria on the fringe of endemic malaria areas, and

in highland areas of East Africa, malaria is characterized by strong seasonal and

regional variation and by epidemics, with case fatality rates of about 1% in largely

non-immune populations (Snow et al. 1999).

The disease is closely bound to conditions which favour the survival of the anopheles

mosquito and the life cycle of the parasite. These conditions are predominantly

determined by climatic factors which effect vegetation coverage and access to water

surfaces for breeding requirements (Molineaux, 1988; Gillies and De Meillon, 1968;

Ghebreyesus et al. 1999). Data obtained from sensors aboard earth orbiting satellites

have been shown to possess powerful potential for mapping mosquito populations

(Thomson et al. 1996) and to predict malaria seasons (Hay et al. 1998). This study

investigates associations between remote sensed (RS) data and small area space-time

variation in malaria incidence. It attempts to bring together the potential of on-line

weather data at specific locations provided by RS technology, high resolution malaria

incidence data, and the analytic framework provided by recent developments in

spatial epidemiology (Elliott et al. 2000). The ultimate purpose of this investigation is

to explore the potential for developing early warning forecasting models of unusually

severe malaria seasons.

This study focuses on the neighbouring magisterial districts of Ngwavuma and

Ubombo in northern KwaZulu Natal in South Africa. This area is traditional rural in

character, and amongst the most underdeveloped in South Africa. According to the

1996 population census, 95% of households had no piped water, 97% of households

had no electricity, 74% of households were built of traditional materials, and 52% of

the adult population had no formal education. It has been argued that effective malaria

control is at the same time both a pre-condition and a likely consequence of economic

development of this area.
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The two districts are unusual in the sense that a comprehensive small area malaria

reporting system has been in operation for a long time (Sharp et al. 1999).

Transmission is seasonal with strong inter-seasonal and spatial variation and with an

exponential overall upward trend in recent years (Chapter 3; Chapter 5; Sharp and Le

Sueur, 1996). Hospitals and clinics in the area have often struggled to cope with an

influx of patients during periods of rapidly escalating case numbers (Dr. Harvey

Williams. Comments made at KwaZulu Natal Malaria Conference, 19th September

2000, Richards Bay, South Africa). Anticipation of forthcoming high caseloads could

be used to put counter measures in place by controlling mosquito vector populations,

and by preparing health services for large numbers of cases in terms of diagnostic

facilities, availability of drugs etc.

We have previously undertaken a small area spatial analysis of malaria incidence in

this area (Chapter 3) which showed an association between malaria incidence and

average rainfall and temperature of a locality, despite the malaria control measure that

are in place. In this study we have extended this analysis to space-time modelling of

malaria incidence in relation to the actual climatic conditions during a particular year

by making use of small area, time specific climatic data that are available from

satellite images.

Methods and materials

Population and case data

A component of the malaria control strategy in Ngwavuma and Ubombo districts is to

identify and treat all infected individuals. Passive and active case finding is therefore

practised. The latter consists of screening measures by which teams go into the

community to encourage individuals who may be suspected of having malaria, to be

tested. Whilst this system may not achieve 100 percent coverage, it is thought to

identify the vast majority of cases. Low levels of exposure to Plasmodium falciparum

in the past have made it unlikely that individuals possess clinical tolerance to parasite

infection and recover from it without treatment (Molineaux, 1988, pp 936-938).
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Although the malaria information system covers many years of case data, we were

concerned to restrict our analysis to years for which reasonably good age- and sex

specific population data are available at small area level, and to exclude years during

which non-climatic factors are known to have had a major effect on malaria

transmission in the area. We therefore confined this analysis to the years mid-1993 to

mid 1997 which were reasonably close in time to the 1996 population census (the first

of its kind in many years), and at the same time avoided the years after 1997, which

have been characterized by very high increases in incidence, ascribed to the

development of resistance to sulphadoxine-pyrimethamine (SP) in the parasite

(Bredenkamp et al. 2000), and resistance to synthetic pyrethroid insecticide in one of

the vectors in the area (Hargreaves et al. 2001). Mid-year to mid-year totals were used

rather than calendar years, to ensure that the cases in any one malaria season are

grouped together.

A total of 20,754 malaria cases were extracted from the malaria information system

for the period from 1st July 1993 to 31st July 1997 for the districts of Ngwavuma and

Ubombo. Since homesteads in the area are geo-coded, cases could be allocated to

census enumeration areas (EAs). The number of cases that had to be excluded since

they could not be linked to enumeration areas was 4,414 (21%). EAs that straddle the

outside boundary of the surveillance area, and cases belonging to them, were also

excluded from the study. The remaining 15,166 cases were those that could be linked

to corresponding census populations using geographic information systems (GIS).

This resulted in a final set of 268 EAs after amalgamating eleven EAs that had zero

population counts with a neighbouring EA.

Incidence rates by sex and by 5-year age group were calculated for the area as a whole

over the entire time period of the study. These were then applied to the corresponding

population strata of the EAs in order to calculate age- and sex adjusted expected

numbers of cases for each EA, for each year.

The total population of the study area was 234,630 persons at the time of the 1996

census. Adjusting this downwards for years preceding the census to account for

population growth (Statistics South Africa, 1999) leads to an overall crude mean

incidence rate of 16.7 cases per 1000 person years for the study period. Population per
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area ranged from 6 to 2734 persons (median=855, mean = 875 , SD = 427). Crude

incidence rates per area ranged from 0 to 473 cases per 1000 person-years (median =

3, interquartile range 0 to 356 per 1000).

Climate data
Climate data for the study area were derived using Advanced Very High Resolution

Radiometer (AVHRR) and High Resolution Radiometer (HRR) imagery from

National Oceanographic and Atmospheric Administration (NOAA) and European

Meteorological Satellite Programme (EUMETSAT) satellites respectively.

1. HRR data for rainfall. In the African tropics, rain-bearing clouds are predominantly

the result of strong convective currents and a predictable relationship has been shown

to exist between cloud-top temperature and the probability of rainfall (Burt et al.

1995). Cloud-top temperatures can be obtained routinely using thermal infrared

images from Meteosat�s channel 2, which are collected every half hour. This

information is most commonly presented as cold cloud duration (CCD), which is a

measure of the amount of time a given image pixel is covered by cold cloud within

the compositing period. Given that the relationship between cloud temperature and

precipitation varies over space and between seasons, cold cloud thresholds should

ideally be derived empirically for individual regions.  In this study mean monthly

CCD from FAO�s African Real Time Environmental Monitoring Using Imaging

Satellites (ARTEMIS) project, which covers the whole of Africa at a spatial resolution

of 7.6 × 7.6 km, were used. The ARTEMIS data use seasonal thresholds (-50 °C in

summer and �60 °C in winter) for areas between 0 and 27 °N (Snijders, 1991), and a

single annual threshold of �40 °C for all other areas. Despite the simplicity of this

approach, it has been shown that the relationship between CCD and measured rainfall

remains relatively robust over the continent as a whole (Hay and Lennon, 1999) and

for this reason CCD remains a plausible proxy for rainfall even in the absence of local

calibration.

2. AVHRR data for temperature. AVHRR data were obtained from the Global

Inventory Monitoring and Modelling Systems group, GIMMS, at Goddard Space
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Flight Center. The data have a spatial resolution of 7.6 × 7.6 km and represent

maximum value monthly composites. Land surface temperature (LST) was derived

from surface brightness channels 4 and 5 using a split window algorithm which takes

into account the attenuating effect of water vapour in the atmosphere (Price, 1984;

Hay and Lennon, 1999). It should be stressed that while LST is commonly used as a

proxy for ambient temperature, the relationship between the two variables is not

always straightforward.

For each EA mean monthly values of CCD and LST were calculated from the pixel

values that cover the individual areas. These monthly values were then averaged over

three month periods leading to quarterly values of CCD and LST for each year, for

each EA. Each unit of analysis therefore represents one EA for one particular year,

with eight potential explanatory variables consisting of early winter, late winter, early

summer and late summer quarters for CCD and LST respectively.

Quarterly averages of CCD had a mean value of 137 hours per month over all areas

over the entire period (SD=117, range 0 to 465, median 88, inter-quartile range 54 to

211). Quarterly values of LST had a mean value of 33.5°C over all areas over the

entire period (SD=6.1, range 18.1 to 45.3, median 33.0, inter-quartile range 19.2 to

38.4°C).

Modelling
Mapping and modelling the geographical distribution of disease incidence is

complicated by the fact that the rates are often subject to considerable random error.

This is particularly true if either the disease is rare or the population per spatial unit is

small, so that the rate may be influenced by a relatively small number of cases. This

leads to maps which show a misleading picture of the true underlying relative risks

since attention is drawn to those areas whose rates are based on the least stable

estimates (Cuzick and Elliott, 1992). Moreover, failing to account for the anticipated

similarity of relative risks in nearby or adjacent regions will lead to bias in the

estimation of co-variate effects and their standard errors. These problems can be

overcome by spatial smoothing of the rates, which is based on �borrowing strength�



114 Malaria incidence & RS climate data

from neighbouring regions. Hierarchical fully Bayesian spatial modelling using

Markov Chain Monte Carlo (MCMC) as described by Bernadinelli and Montomoli

(1992) is an approach to spatial modelling of disease rates that has found widespread

application in recent years (Elliott et al. 2000). This approach models spatial

correlation via conditional autoregressive (CAR) priors (Clayton and Kaldor, 1987).

The Bayesian approach to spatial modelling has been extended to spatial-temporal

models by several authors (Heisterkamp et al. 2000; Waller et al. 1997; Bernadinelli

et al. 1995; Sun et al. 2000; Xia and Carlin, 1998). We have applied these methods to

the problem of modelling the spatial and temporal distribution of malaria incidence in

relation to space and time varying climatic factors.

Let Yit and Eit denote the observed and expected counts of cases respectively for the

ith area in the tth year. Eit are the expected counts under the null hypothesis of

homogenous risk over space and time. If µit denotes the log of relative incidence then

the expectation of Yit = Eitexp(µit ) denotes the mean count of cases. It is assumed that

the Yit are conditionally independent given the µit and Eit and follow a Poisson

distribution, i.e. Yit ~ Poisson(Eitexp(µit)). The µit are defined using appropriate linear

models which may include covariate terms as well as random time and area effects.

Appendix 3 gives details of how the prior probability distributions of the area effects

can be specified to model spatial auto-correlation, and how prior distributions for the

year effects can be specified to model temporal auto-correlation.

We used an adaptation of the CAR model described by Sun et al. (2000). This enabled

us to estimate an index of spatial dependence ρ1 (|ρ1 | <1), which expressed the extent

of spatial correlation between neighbouring areas. Between-year correlation was

assessed by estimating a temporal correlation coefficient ρ2 in a first order

autoregressive (AR(1)) model which was used to specify the temporal term δ (see

Appendix 3).

We fitted the model

 µit = µ + βxit + φit(t=1) + δit(t>1)
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where φit and δit are random effect terms that capture spatial structure (area effects)

and temporal heterogeneity (time effects) respectively, µ is the overall log-relative

risk for all areas and time periods, xit represents one of the RS variables for area i and

year t, and β represents the corresponding regression coefficient. In this model the

area effects (φit(t=1) ) are fitted for the first year only and the time effects (δit(t>1) ) are

fitted for years after year 1 only. The area-specific time effects for year 2 are allowed

to be correlated with the area effects of year 1 (see Appendix 3 for details). We chose

this model because it explicitly models between year correlation in incidence rates for

individual areas, as well as spatial correlation between neighbouring areas. We did

experiment with other possible models, but they either resulted in a much poorer fit,

or they failed to converge due to over-parameterisation.

We used the model without covariates to obtain posterior distributions of predicted

values by sampling from Poisson(Eitexp(µit)). After converting the predictions to

standardized incidence rates, we mapped these together with 2.5 and 97.5 percentiles

so that the map estimates can be displayed together with the variation of prediction

error in our map.

In order to compare the models, we calculated the expected predictive deviance

(EPD). Smaller values of EPD are indicative of a better model. The EPD consists of

two components, the likelihood ratio statistic (LRS), which assesses goodness of fit,

and, a penalty term PEN which penalises for over- or under fitting (details are given

in Appendix 3).

Results
The results (table 6.1) show that whilst all but one of the regression coefficients of the

eight climatic covariates were significantly different from zero, the reduction in

deviance of models including a co-variate was very modest compared to the model

without co-variates. Most multiple covariate models (not shown) resulted in

convergence failure, probably due to significant correlation between these covariates.

Furthermore, the results indicate very strong spatial correlation (ρ1) between

neighbouring EAs, and temporal correlation between years for individual EAs (ρ2)
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(table 6.1)  The spatial correlation index remained virtually unchanged indicating that

the spatial correlation in incidence is not explained by any of the climatic co-variates.

Table 6.1. Posterior medians (95% credible intervals) for spatial correlation index
(ρ1), temporal correlation coefficient (ρ2), coefficients of climatic co-variates (β), and

deviances to assess model fit, using the model µit = µ + βxit + φit(t=1) + δit(t>1)
where φ refers to effects with CAR priors, δ to effects with AR(1) priors and µit is the log

relative incidence

Median β
(95% CI)

Spatial
correlation:
Median ρ1
(95% CI)

Temporal
correlation:
Median ρ2
(95% CI) EPD LRS PEN

Model
without co-
variates

0.989
(0.986 � 0.990) 0.85(0.81 � 0.88) 1860 568 1292

Models with
covariate:
Climatic
variable, x

Temperature1

early winter2 1.87(1.54 � 2.19) 0.989
(0.984 � 0.99)

0.83(0.80 � 0.87) 1852 561 1291

late winter 0.52(0.43 � 0.61) 0.989
(0.985 � 0.99)

0.82(0.79 � 0.85) 1843 549 1294

early summer 0.86(0.73 �0.99) 0.988
(0.982 � 0.989)

0.86(0.82 � 0.89) 1843 570 1273

late summer -0.82(-1.1 - -0.56) 0.989
(0.986 � 0.99)

0.83(0.80 � 0.86) 1851 549 1302

Rainfall3

early winter 0.18(0.16 � 0.21) 0.988
(0.983 � 0.99)

0.86(0.83 � 0.88) 1855 578 1277

late winter 0.017(-0.001-0.037) 0.989
(0.986 - 0.99)

0.85(0.81 � 0.88) 1857 558 1299

early summer 0.009(-0.002 � 0.021) 0.989
(0.985 � 0.99)

0.85(0.81 � 0.88) 1857 571 1286

late summer 0.10(0.08 � 0.12) 0.989
(0.984 - 0.99)

0.84(0.82 � 0.87) 1855 577 1278

1 Temperature = Land surface temperature
2 Early winter = Refers to quarter from April to June of following season, where season
extends from 1st July to 30th June of following year. Other quarters follow chronologically.
3 Rainfall = rainfall proxy as given by cold cloud duration



Figure 6.1. Maps of median and 95% credible intervals of fitted incidence rates predicted from model
µit = µ + φit(t=1) + δit(t>1)
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Our map of model predictions (fig. 6.1) shows the spatial and temporal distribution of

incidence together with the corresponding credible interval. This shows that the

estimate of incidence is less reliable in the southern low incidence areas of the region,

than in the north and confirms the conclusion of very strong spatial correlation in

rates. The maps of median estimates show that the highest incidence rates are

concentrated in the north-west corner of the study area during the first year of the

study. By years 3 and 4 the highest incidence category had extended eastwards mainly

along the Mozambican border. This eastward extension is also evident in the 2.5

percentile map, which can be regarded as a minimum estimate of underlying

incidence. The 97.5 percentile maps can be thought of as indicating the distribution of

maximum estimates of transmission. These maps show that the highest incidence rates

in this upper bound of estimates of underlying transmission are located in areas along

the northern border as well as some areas in the south west of the region.

Discussion
The paucity of detailed epidemiological data on malaria in Africa has limited the

scope of analysis of RS in relation to malaria transmission (Thomson et al. 1997).

Nevertheless RS data have been successfully used to predict malaria seasons by using

hospital admissions covering extensive catchment areas (Hay et al. 1998), and to

establish correlations between RS variables and vector abundance at specific sites

where entomological data were available (Thomson et al.1996). In this study we have

sought to exploit geo-referenced reporting data for two entire districts to analyse

variation of incidence in space and time in relation to variation in weather data in

space and time. Furthermore, we have been able to use Bayesian modelling

approaches to disease mapping, which have hitherto not been employed in this

context.

In our results, the absence of any appreciable difference in model fit between models

with co-variates, and the model without co-variates, leads us to conclude that our data

do not provide any real evidence in favour of an association between the two RS

weather variables LST and CCD, and seasonal malaria incidence. Nevertheless, the

coefficients of six of the eight weather variables, when included in the model
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individually, were significantly different from zero. Apart from average temperature

during the second summer quarter, the direction of these associations were all

positive. Increased rainfall and temperature would generally be expected to have a

positive effect on malaria incidence, particularly in malaria �fringe� areas, where

these two climatic factors limit malaria transmission intensity (Molineaux 1988;

chapter 3). The negative effect of late summer maximum LST on malaria incidence is

plausible since the highest temperatures reduce mosquito longevity with the result that

fewer of them survive the incubation period (sporogony) of the parasite (Craig et al.

1999). Alternatively, the negative coefficient of late summer temperature could be due

to confounding with rainfall, i.e. the hottest places and years are also the driest.

Our conclusion of a negative finding regarding the association between malaria

incidence and the two RS variables, is therefore somewhat tempered by the fact that

the significant model coefficients presented in table 6.1 are all biologically plausible.

A negative finding does, of course, present no evidence against the hypothesis of an

association between variation in malaria incidence and temporal variation in weather.

In our analysis we explicitly modelled spatial and temporal correlation between

neighbouring areas and successive years. This is plausible in terms of malaria, and is

confirmed by the estimates of spatial and temporal correlation from our model.

According to our results malaria incidence in an area is significantly correlated with

incidence during the preceding year i.e. low incidence in one year in an area will have

some protective effect on incidence in the following year and vice versa. This may be

due to the time required for the environment to respond to changes in weather that

lead to an increase or decrease in transmission intensity. For example, it may take

more than a single season to replenish diminished water tables following a dry period,

or conversely for ground water tables to deteriorate following an above average wet

season. Such momentum in environmental factors will add to the momentum of vector

populations to build up or decrease, and to the delay due to changes in the number of

infectious individuals in the host population supplying a sufficient pool of

gametozytes to increase or decrease disease transmission.

Our previous spatial analysis of malaria incidence in the same population (chapter 3)

showed significant association between malaria incidence for a particular year, and
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average temperature and average winter rainfall of an area. This apparent

contradiction with the absence of an association in this study poses the question of

whether it is possible for malaria incidence to be associated with long term average

climatic factors of individual areas, but not with temporal variation of these factors.

Could average temperature and rainfall explain spatial heterogeneity in malaria

incidence in the area, whilst temporal variation in incidence is driven by other factors?

Long term averages in climate determine the reservoir of infection in the human

population which probably accounts for much of the strong correlation of incidence

between years shown in our results. Changes in weather from one year to the next can

therefore only play a limited role in changing transmission in an area. Another

possibility is of course that our data of four years simply lacked the power to

demonstrate an association between weather and malaria, if it does exist, particularly

in view of the multi-factorial causes of malaria transmission intensity. The strong

spatial and temporal correlation in incidence rates implies that the number of degrees

of freedom in the data set, and hence its power to demonstrate any associations, is

considerably less than it would appear to be from the total number of observations.

In this study we have used the annual number of cases of an area as a response

variable. This way we were deliberately excluding within-year variation of malaria

incidence and RS variables from our analysis, because we were interested in

determining the factors that are responsible for between year and between area

variation. However, within year variation generally far exceeds between year

variation in disease incidence and in weather and this variation is ignored in a year by

year analysis. Analysis that uses annual area counts is further weakened by the fact

that cases which occur early in the malaria season (early summer) precede the climatic

events of the peak of the season (late summer). It may therefore be necessary to carry

out an analysis that uses incidence data that are further disaggregated in time. Such

analysis would also reveal whether the strong annual temporal correlation we

observed is also present over shorter time periods of months or weeks.

In this analysis we have simply used three month averages of CCD and LST.

However, it may be necessary in future studies to differentiate, for example, between

rainfall in the form of a torrential downpour lasting only a few days on the one hand,

and more prolonged gentle rain of the same overall quantity on the other.
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A more intractable difficulty in using RS data for small area disease analysis is the

considerable mismatch in resolution between satellite data, and small area disease

data. The pixel size of 57.8 km2 of the ARTEMIS and AVHRR data that were used in

this study is of much lower resolution than what is usually thought of as small area

resolution of disease and population data. The EAs that formed the areal unit of

analysis in this study had a mean area of 21 km2 (SD=27, median area= 13, inter-

quartile range 5 to 25). As a consequence we had to allocate the same value of CCD

and LST for a particular time period to all EAs within the same pixel. This difference

in spatial resolution between satellite and disease data is likely to be even bigger in

more densely populated areas.

There are also likely to be substantial errors of under-reporting and misallocation of

both cases and populations in our small area disease data. These shortcomings and the

ones mentioned above all contribute towards a dilution of any potential association

between weather and malaria incidence. Some of these difficulties can only be

overcome by prospective studies, for example by conducting consecutive

malariological surveys that are located in a grid that coincides with the satellite

images on the ground.

Our results show that malaria incidence in an area is significantly related to incidence

during the previous season but show no conclusive evidence of an association

between variation in malaria incidence and variation in climatic factors. We would

therefore suggest that studies need to be undertaken that consist of longer time series,

to further explore the potential of RS data to forecast malaria incidence and to validate

such models against data of subsequent years. Other RS variables may need to be

explored, and possibly other data reduction techniques need to be applied (Hay et al.

1998). Factors that restrict such modelling at present are the availability of good data,

particularly age-sex stratified population data, and data on important factors that

confound the relationship between climate and malaria transmission intensity, such as

insecticide house spraying and drug and insecticide resistance. We therefore

recommend that the collection of comprehensive data for such modelling should

include these factors.
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In this study we have shown that by plotting disease maps together with the

estimation confidence interval it is possible to extend to map predictions the general

principle that estimated quantities should be quoted together with a measure of

uncertainty in the estimate. This is easily accomplished as part of the MCMC

procedure and we recommend that this practice should be carried out wherever

possible in disease mapping.

The strong temporal correlation in incidence rates implies that for most areas between

year changes in incidence rates are only very minor. However, there are obviously

exceptions to this, and these are the instances when health services become

overwhelmed with the influx of new patients. To be able to predict these instances

with a reasonable degree of probability would be the real value of an early warning

system.
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Summary
The population of the northern part of the province of KwaZulu Natal in South Africa

has experienced low levels of malaria transmission intensity for many years. We

investigated the widely held assumption that individuals in this population do not

develop clinical tolerance to infection with P.falciparum. We calculated malaria

incidence rates by five year age groups from a comprehensive small area malaria

reporting system and from national census data for the period from mid 1990 to mid

1999. Incidence rates were plotted against age groups for each of the nine malaria

seasons, and by quintile of crude incidence rate. These show that age specific

incidence varied considerably in areas of high incidence and in years of high

incidence. In these areas malaria incidence rose with age until the late teens, and

either remained constant or decreased in young adults. This finding appears to be

consistent with results from settings of much higher transmission intensities which

show that clinical tolerance to infection with P.falciparum in adults may be acquired

as a result of a small number of infective bites in early childhood and implies that

even in this relatively low transmission area, there is an asymptomatic reservoir of

infection in older people. The results also show that in high incidence sub-regions the

lowest incidences are reported for children under five years of age, which may be the

result of greater protection offered to this age group by malaria vector control through

indoor house spraying.
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The relationship between the pattern of age-specific malaria morbidity and malaria

transmission intensity has been well documented (Molineaux, 1988; Snow et al. 1997;

Snow and Marsh, 1998b). In areas of high transmission intensity this generally shows

that the incidence of clinical attacks peaks in early childhood and then declines

rapidly with increasing age due to the acquisition of clinical immunity in such

populations. In areas of moderate transmission intensity the age of peak transmission

occurs at a later age, whereas in populations exposed to very low levels of

transmission or to epidemic malaria, the risk of infection remains constant across all

ages. This has been shown to be the case for both mild as well as severe clinical

malaria (Snow and Marsh, 1998b). The pattern of age specific malaria incidence can

therefore serve as an indication of the presence of any naturally acquired immunity in

a population.

Historically the population of northern KwaZulu Natal exhibited the features

characteristic of an endemic malaria setting, but due to long term intensive vector

control through house spraying with residual insecticide, it changed to that of

epidemic malaria (Sharp et al. 1988). Data from the provincial malaria information

system show that overall incidence rates in the two northernmost magisterial districts

of Ngwavuma and Ubombo (figure 7.1) varied from less than 2 cases per 1000 pa to

25 cases per 1000 pa during the years from 1985 to 1995. Despite this low level of

overall malaria transmission there have been pockets of much higher transmission

within this area, even in years of low incidence (Chapter 3). In the second half of the

1990�s there has been a sharp increase in incidence in almost all parts of this region

(Sharp et al. 2000).

In this study we report on variation in the pattern of age-specific incidence over the

years 1990 to 1999, and on variation in this pattern between low and high incidence

sub-regions of the area.
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Methods and materials
The malaria information system that has been in operation in Ngwavuma and

Ubombo for many years has been described elsewhere (Sharp and le Sueur, 1996;

Sharp et al. 1999). In essence, this records all parasitologically confirmed cases, both

passive as well as those found by active surveillance. The latter consists of screening

measures by which teams go into the community to encourage individuals to be

tested. These may be individuals with  non-specific symptoms such as fever, or

simply people living near or in the same homesteads as recent confirmed cases.

However, the distinction between active and passive cases is not always strictly

adhered to, and some cases classified as active are in actual fact patients presenting

for treatment. Low levels of exposure to Plasmodium falciparum in the past have

made it unlikely that individuals possess clinical tolerance to parasite infection and to

recover from it without treatment. It has therefore been assumed up to now that active

and passive cases together represent the overall sum of all new infections, and that

there are generally no asymptomatic cases, apart from recent migrants from

Mozambique.

Every case is linked to their residential homestead. All homesteads have been located

by global positioning systems (GPS) and their co-ordinates stored in a database. The

exact residential location of each incident case is therefore known.

South Africa�s first post-apartheid national census, which was carried out in 1996,

gives population counts by age and sex for small areas known as enumerator areas

(EAs). Boundaries of EAs are available in digitized form. By means of geographic

information systems (GIS) software it was therefore possible to link all cases to EAs

that are wholly contained within the malaria surveillance area of Ngwavuma and

Ubombo. EAs that straddle the outside boundary of the surveillance area, and cases

belonging to them, were excluded from the study. This resulted in 279 EAs whose

populations could be linked to all cases arising from them. A uniform annual

population growth rate of 2% was assumed to project population totals forward and

backward in time from the census year (Statistics South Africa, 1999). The study was

restricted to the time period from 1st July 1990 to 31st June 1999 in order to limit the

effect of the simplifying assumption of uniform population growth, and zero
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population movement between EAs. Annual case totals by five year age group and by

annual malaria season were extracted from the malaria information system for each

EA. A malaria season was taken to be the period from the beginning of July to the

following end of June. Cases and populations over 40 years of age were aggregated

into one age-group.

For each of the nine malaria seasons, age specific incidence rates for the entire area

were calculated by aggregating cases and populations over all EAs for individual

years and age-groups. To see if the pattern of age-specific incidence rates varies

between areas of low and high transmission intensities, the crude incidence rate of

each enumeration area was used as a proxy for its transmission intensity. EAs were

divided into quintiles of crude incidence rate, excluding EAs with zero incidence.

This was done for incidence rates of EAs within individual years, and for all annual

incidence rates of individual EAs combined over the study period. Incidence rates for

five-year age-groups were then computed separately for each quintile of malaria

incidence. The number of EAs per quintile varied from 13 for the year of lowest

incidence, to 48 for the year of highest incidence.

Figure 7.1. Map showing location of study area.

Mozambique

Ngwavuma

Ubombo
South Africa

Results
At the time of the 1996 census, the total population of the study area as delineated by

the 279 EAs was 228,806 persons. For this area, a total of 37,303 cases were recorded
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during the nine years of the study period. Annual incidence rates for the whole area

range from 5 per 1000 pa in 1990/91 to 43 per 1000 pa in 1998/99.

Figure 7.2 shows that there has been a gradual change in the pattern of age specific

incidence rates for the entire area over the nine-year study period. Incidence rates rise

quite sharply with age up to age 15, and then remain nearly constant or decline with

age from the 1992/1993 season onwards. In the earlier years the variation in incidence

with age is less pronounced but not absent.

Figure 7.3 shows that the pattern of rising incidence rates with age for children up to

their mid- to late teens is mainly a phenomenon of areas with incidence rates above

14.4 per 1000 pa (quintile 4 and above). The marked decline in incidence in adulthood

is confined to areas with incidence above 37.9 per 1000 pa (quintile 5). Plotting age-

specific incidence rates by quintile of overall incidence rate for individual years

shows a similar pattern for the entire time period, although it is less marked for low

incidence years (data not shown). Figure 7.4 shows the location of EAs belonging to

the highest quintile of incidence for the first and the last year of the time series.

Discussion
Since the data are obtained from a large database of all recorded cases, the observed

variation of incidence by age is very unlikely to be due to chance. Our analysis shows

that there is a highly uneven distribution of malaria incidence across age-groups in

high incidence areas. This is evident since at least the early nineties, but the

phenomenon was masked by the majority of areas which had very low incidence rates

in the earlier years of the decade (figure 7.2). Once the age curves are shown

separately for low and high transmission intensity areas, variation in incidence with

age becomes apparent in the latter. Closer scrutiny of published data covering a much

earlier time period also suggest that incidence amongst under fives was lower than for

other age-groups (Sharp et al. 1988 p.104).
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Figure 7.2. Age specific incidence by malaria season. Age is by midpoint of 5-year age-group, with over 40 combined into one group. Overall incidence rates
in cases per 1000 pa (by season) were: 4.6 (1990/91); 1.7 (1991/92); 13.5 (1992/93); 12.5 (1993/94); 8.3(1994/95); 26.0(1995/96); 24.0(1996/97); 30.4

(1997/98) and 42.9(1998/99).
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Figure 7.3. Age specific incidence by quintile of overall incidence of EA, all years combined. EAs with zero incidence excluded. Age is by midpoint of 5-year
age-group, with over 40 combined into one group. Quintile 1 ()) corresponds to overall incidence rates below 2.2 per 1000 pa; quintile 2 (2) to incidence rates

between 2.2 and 6.1 per 1000 pa; quintile 3 (3) to incidence rates between 6.1 and 14.4 per 1000 pa; quintile 4 (+) to incidence rates between 14.4 and 37.9
per 1000 pa; quintile 5 (∋ ) to overall incidence rates above 37.8 per 1000 pa (median 77.8)
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In endemic malaria areas the peaking of incidence at a much younger age is thought to

be associated with the acquisition of clinical immunity due to intense challenge of the

immune system early in life, when other protective mechanisms may still be operating

(Snow et al. 1997). The incidence curves shown here are fundamentally different in

that they show a peak in late teenage years, and a decline with age in adulthood. We

do not have sufficiently accurate data to investigate single year age-specific incidence

for early childhood, but it seems likely that any effects between single years would be

swamped by the steep variation between five-year age groups that are evident from

our data. The only possible explanation for the steadily rising incidence with age

during childhood can be an increase in chance infections as children become older.

All curves show that incidence is lowest in the under 5 age group, possibly because

children at this age are indoors at night and benefit from the protection offered by

indoor house spraying. As they get older, their sleeping patterns may be less regular

and they may therefore become more at risk of infective bites by mosquitoes.

However, it is unlikely that adults are at lower risk of exposure to P. falciparum than

teenagers. It has been shown that a small number of infective bites in early childhood

may be sufficient to yield clinical protection in adults (Gupta et al. 1999; Snow et al.

1998c). It is therefore plausible that some adults in high transmission areas are less

susceptible to clinical attack due to the acquisition of some immunity early in life.

This does not appear to be the case in low transmission intensity areas, where the

incidence curve is more or less flat. A possible alternative explanation would be some

behavioural factor, for example the possibility that adults spend more time outside the

area to seek work on a temporary or commuting basis. There is however, no reason

why this should be the case for high incidence areas in particular.

Although all cases, both active and passive, were parasitologically confirmed, it is

possible, though unlikely that misdiagnosis, for example of paediatric fevers, may

have lead to lower recorded incidence in young children. Misdiagnosed children

would be unlikely to recover without anti-malarial therapy, unless they already

possessed a measure of clinical tolerance, which is unlikely, given the rise in

incidence with age in children. The existence of real differences in the rate of

detection in different age-groups would therefore lend support to the hypothesis of

immunity in some age-groups.
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Our results appear to contradict those of a study by Baird et al. (1998) in Irian Jaya

which showed that severe disease increased with age in a population of non-immune

migrants from Java, after relocation to a hyperendemic area. However, the subjects in

the Irian Jaya study were exposed to much higher levels of transmission intensity than

the population in our study, whilst having had no previous exposure to P.falciparum.

The decline in incidence with age in adults living in areas of moderate transmission

intensity in KwaZulu Natal, in contrast to the adult migrants in Bairds study, can

therefore plausibly be explained by the acquisition of immunity due to exposure to

P.falciparum earlier in life.

Figure 7.4 shows that EAs in the highest quintile of incidence were primarily located

in the northernmost border areas, but this pattern has started changing with the

geographic expansion of high malarious areas in recent years. The differentially

greater protection against malaria afforded to children under five years of age in these

high incidence areas is an important beneficial feature of the vector control measures

being practiced. This is underlined by the fact that 71% (26510/37303) of all cases

over the nine year period originate from EAs in the top quintile of incidence.

We sought to further investigate the hypothesis of a measure of clinical immunity in

adults from high transmission areas by distinguishing between active and passive

cases. Unfortunately the practice of recording cases as active only when they have not

presented themselves for treatment does not appear to have been followed rigorously,

and there are reports of mobile field stations recording cases as active, when in fact

they were patients seeking treatment. What the data do show, however, is that the

proportion of passive cases decreases sharply with increasing incidence rates, and also

with time. If this trend is not artefactual it would support the concept of increasing

clinical tolerance with increasing transmission intensity.

A limitation of our study is that it is based entirely on reporting data and it is not

possible to derive independent confirmation of our finding from these data. It is,

however, unlikely that the pattern we have observed would be maintained over such a

long time-period if it was simply due to a reporting error. An additional shortcoming

is that the measure of transmission intensity we are using is the overall incidence rate

rather than a measurement of exposure derived from a separate source. If regular data
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on parasite ratios or entomological inoculation rates had been available, we could

have investigated the variation in age-specific incidence in relation to transmission

intensity derived from these. Nevertheless, what our investigation shows, is that

where incidence is high, it is always highly unevenly distributed across age groups.

If it is true that a measure of clinical tolerance to infection with P. falciparum is

developing in adults in high transmission areas, this does have implications for the

current control strategy, since it challenges the assumption that there are no

asymptomatic cases. The existence of asymptomatic infected individuals, who are not

being treated, undermines the strategy of eliminating sources of transmission by

ensuring parasitological cure of all infected individuals. It would also provide an

explanation for our previous finding that the recent rise in malaria incidence in this

area is highest in areas that previously experienced the lowest incidence rates and vice

versa (Chapter 5).

Figure 7.4. Maps showing enumerator areas belonging to the highest quintile (shaded areas)
of crude malaria incidence for the years 1990/1 and 1998/9 within the malaria surveillance

area of the districts of Ngwavuma and Ubombo in KwaZulu Natal, South Africa.

1990/1 1998/9
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Chapter 8

Discussion and conclusions

The history of modern epidemiology is often considered to start with the investigation

of an outbreak of cholera in London in 1854 by the physician John Snow and his

successful intervention to control it (Snow J, 1855). Disease mapping is therefore as

old as epidemiology itself. John Snow�s study depended on relating 3 essential data

sets: a reliable and unbiased count of incident cases, good small area census data and

detailed knowledge of the distribution of the exposure, namely the contaminated

water. In addition it was necessary to have a geographical entity in which each of

these data items could be linked. The same requirements still hold today for the

successful execution of studies based on spatial analysis of disease data. All of the

studies in this thesis have had to deal with bringing together malariological data,

populations at risk, and exposure data, linked in geographical entities that become the

unit of analysis. These studies have produced a more detailed picture of the

distribution of malaria in parts of Africa. They have also given us a clearer idea of the

factors that are associated with malaria incidence and parasite prevalence in children

in these areas and how incidence in an area of unstable malaria has changed over

time.

One disease, many scenarios
In this thesis spatial analysis and modelling of malaria distribution has covered a wide

range of different scenarios, not only in terms of the disease but also in terms of scale

and in terms of the data and methodological approaches. These differences were: 1)

vastly different levels of spatial resolution: regional (or sub-continental) level in the

case of West Africa, country level in the case of Mali, and sub-district level in the

case of Kwa Zulu Natal. 2) Vastly differing levels of endemicity ranging from areas

of all year transmission in parts of the forest and Guinea savanna zones of West

Africa, to seasonal and epidemic prone areas in Kwa Zulu Natal, and in the northern

parts of sub-Saharan West Africa. 3) Differences in the measure of transmission

intensity: parasite prevalence derived from random surveys on the one hand, reported
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incidence on the other hand. 4) Differences in the spatial organisation of the data:

points representing the population and area in which they are located on the one hand,

aggregations within contiguous areas on the other hand. 5) Differences in modelling

approaches used: classical geostatistical, generalized linear mixed model on the one

hand, hierarchical fully Bayesian spatial models on the other. 6) Differences in the

number of dimensions of the data: cross-sectional spatial analysis in some studies,

space-time analysis in others.

Maps are outputs of interest in all the studies. In most cases they are the primary end-

product that motivates the study. In other cases the models and co-variates that were

used are more important, since they reveal the potential for forecasting. In four of the

studies, climatic data were used. In five of the studies the issue of spatial dependence

in the data had to be addressed. Spatial dependence was approximately inversely

related to the scale of the study: weak in the regional and country level analyses,

strong in the small area analyses. Spatial dependence can be a complication for which

allowance has to be made in the analysis, or it can be an aid to mapping, as in the case

of kriging which would not be possible without it, or map stabilisation (smoothing)

which is based on spatial correlation. Much the same is true for temporal

autocorrelation in the space-time analyses. All the studies were based on historical or

observational data, which is a source of problems in the analysis and in the

interpretation of the results.

Throughout these studies there has been a duality of purpose: to evaluate, apply and

advance spatial modelling methodology to problems of geographical distribution of

malaria on the hand, and to produce tools that will assist in the control of malaria on

the other. This discussion will attempt to draw together the methodological insights

gained from this experience and to summarise the conclusions for malaria control

strategies.

Methodological insights gained
What should be done differently if this same exercise was attempted again, with the

benefit of hindsight, and what should be done the same way again?
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One of the major problems facing the researcher in observational studies is the

problem of interpretation. The plethora of potential explanatory variable data make it

tempting to try out what is available, resulting in many chance associations. The

solution to this problem is to ensure that the study is based on a few solid hypotheses,

rather than many vague ones, and to make the threshold for inclusion of an

explanatory variable relatively high, to avoid spurious associations from dominating a

model. Strategies for combining essentially similar co-variate data should be made

explicit beforehand. Ideally, even a retrospective study should be carried out against

an agreed protocol. Recent examples of mapping lymphatic filariases based on length

of rainy season and maximum and minimum temperature (Lindsay and Thomas,

2000) show what can be achieved with good hypotheses and relatively few

explanatory variables. The proven relationship between seasonality and malaria

parasite ratios make such an approach feasible for malaria mapping as well (Tanser et

al. 2000).

When this work was started the MARA database was in its infancy and there was a

temptation to include all available data. It might have been better to be more selective,

for example in excluding surveys that are atypical or that are of questionable quality,

or that reflect urban malaria when the main focus of the study is on rural malaria. It

would also be advisable to always exclude a random sample of points against which

the validity of the resulting model can be tested.

The experience of the West Africa model showed that it is not feasible to attempt to

derive a single model for vastly differing ecological and climatic areas, when dealing

with distribution models at this scale. Even once a reasonable division of such a

region into ecological zones has been achieved, there is the problem of producing a

smooth map for the entire region. A satisfactory empirical approach to this was

achieved in the case of West Africa (see appendix 2).

Quite different data problems are encountered when dealing with small area reporting

data. Since such data are derived from one information system, rather than many

surveys, one needs to be vigilant in looking for artefactual patterns in the data, as

opposed to scrutinizing the validity of a single record.
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Despite methodological and conceptual difficulties, small area studies of geographical

distribution of disease have become widespread in developed countries due to the

potential they offer of studying relationships between environmental exposures to

pollutants or other hazards, and disease (Elliott et al. 1992; Cuzick and Elliott 1992;

see Elliott et al. 2000 for further references). Developments in spatial statistical

methodology (for example, Bernadinelli et al. 1995; Diggle et al. 1998; Cressie,

2000) and improvements in small area disease and census data have given the impetus

for carrying out such studies, as much as heightened interest in questions of

environmental health (see for example, Elliott et al. 1996; Heisterkamp et al. 2000).

The paucity of appropriate population and disease reporting data in developing

countries has limited such studies on diseases in poor countries in general and on

tropical diseases in particular, despite some notable exceptions (for example Smith et

al. 1995; Vounatsou et al 2000; Schellenberg et al. 1998; Mueller 2000). This thesis

has in part been an attempt to transfer these developments in spatial epidemiology to a

tropical disease setting.

The use of small area population and disease data for the study of the geographical

distribution of disease is one such development that has been applied in chapters 6

and 7. The study on age distribution of malaria cases (chapter 7) would not have been

possible without age-specific population data being available at small area level.

Chapters 6 and 7 are probably the first studies that have used the South African

enumeration area census data in this particular way. Even so, inaccuracies in such

small area data may have contributed towards the negative result in chapter 6.

However, the advantage of using census data is that expected numbers of cases based

on the age and sex structure of populations can be computed, and that many socio-

economic indicators are available for defined populations.

In these studies essentially two modelling approaches were used. For Mali, West

Africa and the first KwaZulu Natal analysis generalized linear or generalized linear

mixed models (GLMM) were used, with variograms of model residuals providing the

means by which the specification of the co-variance structure of the data could be

iteratively improved. Kriging of the residuals of the final model was carried out in

each case in order to adjust model predictions where local deviation of observations
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from the model supported this. This adaptation of standard kriging has proved to be a

useful tool whenever disease modelling resulted in unexplained variability which

resulted in spatially correlated residuals. Details are given in appendix 1.

In the two space-time studies of the KwaZulu Natal small area incidence rates,

Bayesian autoregressive spatial models were fitted. In this approach the posterior

distribution

[φ, β, λ | E, Y] = [Y|E, φ, β] [φ| λ] [λ] [β]

is computed, where Y = the vector of observed cases, E = vector of expected cases,

φ= vector of area effects, β = vector of regression coefficients of area-specific

explanatory variables, and λ represents geographical variability and controls the

amount of variation in risk distribution in the map (Bernadinelli and Montomoli,

1992). Prior distributions are specified for the parameters φ, µ and λ, as described in

chapters 5 and 6, and in appendix 3. Since it is not possible to obtain parameter

estimates of the posterior distributions analytically, these have previously been

estimated via the empirical Bayes approach (Clayton and Kaldor, 1987). The

empirical Bayes approach leads to parameter estimates which are over-precise since

the uncertainty associated with λ is not incorporated into the estimation of φ and µ.

The advent of the implementation of Markov Chain Monte Carlo (MCMC)

simulations in readily accessible software has made fully Bayesian approaches to

estimating the parameters of the above distribution feasible. As Wakefield et al (2000)

point out �All MCMC algorithms generate a sequence of dependent values which will

eventually resemble a sample from the required posterior distribution�. However, high

correlation between model parameters often lead to problems of non-convergence of

MCMC simulations.

Most recent spatial statistical disease mapping developments (see Elliott et al. 2000

for examples) have been carried out in the context of fully Bayesian spatial models

using MCMC simulation. One advantage of this method is that it produces probability

distributions of all parameters, including area effects, so that �confidence interval�

maps can easily be produced. Unfortunately this methodology has not been widely

adapted to spatial data representing points rather than areas, which currently limits its
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application to the vast majority of spatial data in the field of vector borne diseases,

where reporting systems for areal units are the rare exception. It remains an important

future research priority to remedy this shortcoming.

No direct comparisons of the two approaches, GLMMs on the one hand, Bayesian

autoregressive models on the other, were attempted by analysing the same data by the

two different methods. However, chapters 4 and 6 both analyse malaria incidence in

relation to climatic factors in KwaZulu Natal using the GLMM approach in the first

instance, and the Bayesian autoregressive models approach in the second instance.

The two studies had many differences: the first study dealt with a single year only,

used long term averages of climate data for small areas and used population counts

obtained from a census carried out by the malaria control programme; the second

study dealt with several years of incidence, used remote sensed earth observation

climatic proxies obtained from satellites for the particular time periods and small

areas of interest, and used aggregates of population data obtained from the general

population census of 1996. Despite these various differences in the modelling

approach and in the two data sets for the same area, the two studies produced

essentially similar associations between malaria incidence and climatic factors, even

though model fit criteria led us to reject the model containing climatic co-variates in

the MCMC analysis. A general conclusion from all the studies in this thesis is that

both of the methods employed are feasible in a tropical disease setting, and can make

a considerable contribution to more evidence based disease control.

In the analysis of spatial data it is often claimed that the point estimates of regression

coefficients in a spatial model are the same as those that are obtained from the non-

spatial model, and that it is merely the standard errors of the regression coefficients

that are different (for example, Cressie 1993, p 14). This is only true in particular

circumstances, and it should not be generalised to all spatial configurations. This can

be illustrated by the graph in figure 8.1 which represents a scatterplot of a response, y,

against a covariate x. Non-spatial regression would assume all the observations to be

independent, and result in the regression line a. If however, the observations denoted

by c are obtained from a spatial cluster and hence are more strongly correlated with

each other than other pairs of observations, the regression line will be less steep in the

spatial model (line b). This is because the degrees of freedom of the group of
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observations c is exaggerated in the non-spatial model, whereas the spatial model

would accord them much less influence. This situation, where the degree of spatial

correlation is uneven across the map, and is associated with the co-variate, was

common in the data sets analysed in this thesis, and hence the regression coefficients

of spatial and non-spatial models were rarely the same, in contrast to the widely held

belief that they should not differ.

The ambiguous findings of chapter 6 deserve further investigation of the statistical

issues. On the one hand the coefficients of the co-variate effects were significantly

different from zero and therefore suggest evidence of an association with malaria

incidence. On the other hand the absence of any real difference in model fit criteria

between models with and models without co-variates undermines the apparent

evidence of an association. This conflict between the message we get from regression

coefficients, and the one we get from model fit considerations should be investigated

more closely to see how it can be resolved.

Line a:
non-
spatial
model

Line b:
spatial
model
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Co-variate x

R
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e 
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Fig. 8.1. Regression line for spatial and non-spatial model

Highly correlated observations
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A more general point is that studies of the kind carried out in this thesis are highly

interdisciplinary in nature. Quite detailed expertise is required from diverse fields

such as malaria epidemiology, spatial statistics, geographic information systems,

entomology, remote sensing and climatology. Such studies therefore should be

collaborative in nature. Writing up such multi-disciplinary work poses substantial

challenges, particularly for the coordinating author, since any write-up must be

comprehensible to a general epidemiological audience without loss of rigour in the

reporting of detail in any of the areas which made up the study. Often it is difficult to

ensure that co-authors let alone their readership, understand the contributions of their

colleagues from other fields of expertise. There is really no substitute for the

collaborating researchers to familiarise themselves thoroughly with all the fields of

expertise that come together in such studies. They may prefer to leave some of the

decisions and execution of some of the work to those with experience and expertise in

an area, but they should nevertheless be well acquainted with all the issues that are

involved.

The potential contribution of this work to malaria control
The ultimate purpose of modelling malaria distribution must be to improve control of

malaria as a disease. This has already been indicated in the discussion in various

chapters. The following is therefore an attempt to draw conclusions for malaria

control from the combination of studies.

Evidence based maps, derived from observed parasite ratios must be a more reliable

indication of malaria risk than those based on expert opinion. These studies have

produced a number of such maps, one of which (chapter 4) is already being used by

the Roll Back Malaria programme in conjunction with country control managers.

Often the absolute level of prevalence is not the decisive factor, but the broad

category of prevalence, which can guide control efforts. Low endemicity areas will

require an approach that assumes little or no immunity in the host population. In such

circumstances an epidemic will affect all age-groups leading to large scale morbidity

and mortality, often through complications such as cerebral malaria. Control efforts

therefore need to be directed towards early detection and preparation for epidemic
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outbreaks. On the other hand high prevalence areas should be prepared to cope with

severe disease presenting as severe anaemia in young children and in illness in

pregnant women. Although the majority of the population may possess a certain

measure of clinical tolerance, preventative measures need to concentrate on

insecticide treated materials (ITMs) to offer protection to infants in particular, and to

ensure the availability of effective drugs and rapid diagnostic facilities as part of the

management of severe disease. More research effort needs to be directed to classify

areas as endemic stable versus epidemic unstable on the basis of parasite prevalence

values.

Although the four studies based on the Ubombo and Ngwavuma districts in KwaZulu

Natal focus on a population of only one quarter of a million, this area represents

populations living in areas of unstable malaria generally. The first of these studies

showed that climatic differences still play an important part in malaria distribution in

an area, even if intensive malaria control measures have reduced overall levels to well

below their historical levels (Sharp et al. 2000). Of particular importance to malaria

control is the fact that increased winter rainfall can create conditions of all year

transmission and hence high annual caseloads. Proximity to water bodies also

constitutes a risk factor particularly if transmission factors are otherwise sub-optimal,

unless measures are taken to intensify malaria control in these areas. This has obvious

consequences for the location of irrigation and water storage schemes, and may give

rise to difficult choices in places where access to water is a critical development

target.

The results of chapter 5 show that the increase in malaria incidence over recent years,

for whatever reason, has been associated with a geographical spread of malarious

areas. This shows that areas to the south of the high incidence area, where malaria had

been all but eradicated for a long period, are vulnerable to resurgent malaria if

neighbouring areas to the north experience a breakdown of control systems, for

example, through failing drugs, or failing insecticides, or climate change, or a

combination of these factors. It is also important for malaria control programs to

sustain vector control through house spraying throughout the area, instead of focusing

only on the historically high-incidence sub-regions. Such selective application of
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house-spraying may have given rise to the faster rise in incidence in previously low

incidence areas.

The results of chapter 7 give an indication of the reasons for the leveling of malaria

incidence in areas that experience the highest incidence rates, showing that

populations in these areas are developing a measure of clinical tolerance to infection

with Plasmodium falciparum. This finding supports the notion that exposure to

P.falciparum early in life, even if only by a few infections, may yield some clinical

protection in adults (Gupta et al. 1999). In Kwa Zulu Natal it also means that disease

incidence can no longer be regarded as a reliable proxy for transmission intensity.

Although the conclusions of chapter 6 are somewhat tentative, they hold potentially

the greatest benefit for malaria control in areas of unstable malaria through early

warning forecasting. Remote sensing has previously been applied to mapping malaria

vector distributions in Africa (Hay et al. 2000; Hay et al. 1998). This study, however,

is a first attempt at trying to demonstrate a relationship between malaria incidence in a

particular year and a particular locality to remote sensed climatic variables during and

preceding that year. We were unable to confirm a relationship between malaria

incidence of an area and a number of climatic factors, but as we argue in the

discussion to chapter 6, the potential of remote sensing technology for timely

information on the location of areas at high risk of epidemics warrants further

exploration. Being ill-prepared for the diagnosis and treatment of large numbers of

cases has been identified as a serious problem in these districts due to the severe

fluctuation in case loads. Advance warning of periods of unusually high peaks in

incidence therefore affords the opportunity for being better prepared for them. The

groundwork done in this study has in part been the basis of a grant application to

investigate the relationship between malaria and climate in this area prospectively. In

particular, this project would collect malaria prevalence data prospectively from

spatially dispersed surveys at numerous instances in time over a number of years, to

provide the basis for a more reliable data set on which a space-time model could be

based. Such a data set would be independent of small area population data derived

from the census, which has been a weakness in the current data set, and it would

include important covariate data such as intensity of insecticide spraying and

entomology.
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What the analysis in chapter 6 does show quite convincingly is the strong correlation

between incidence in an area in a particular year, with incidence in the same area in

the previous year. In other words, change in incidence in an area usually does not

happen quickly from one season to the next, and last year�s incidence is perhaps the

best predictor of incidence for the current year, even if there is an overall time trend in

incidence. However, in some years and in some places there is a more dramatic

change, and the task of an early warning system would be to predict these instances

with reasonable probability.

This thesis therefore combines a number of studies that have shown the applicability

of methods that have previously been largely employed in developed country disease

settings. As argued above, the results of these studies have refined knowledge of the

distribution of malaria, of the factors that affect the distribution of malaria, and of the

factors that have promoted or inhibited changes in malaria distribution in one area.

The development of this work has laid the foundation for future more focused studies

that aim to usefully exploit the relationship between malaria and climate.
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Appendix 1

Iterative procedure for specifying spatial dependence in the

generalised linear mixed model

(This appendix forms part of the paper which constitutes chapter 3)

The SAS procedure MIXED is an implementation of mixed model methodology for

Gaussian response variables. For non-Gaussian responses, such as incidence rates, the

macro GLIMMIX implements the Generalised Linear Mixed Model. GLIMMIX

produces estimates via PROC MIXED and hence provides similar functionality. We

used GLIMMIX to adjust for spatial dependence in the regression analysis

1. The standard Generalised Linear Model(GLM) (McCullagh and Nelder, 1989).

With the classical GLM, a vector of observations y is assumed to have uncorrelated

elements. In our particular application the model assumes the yi are Poisson

distributed and if mean(y)=µµµµ, then log(µµµµ)=Xβ, a linear function of the explanatory

variables X, and var(y)= V, a diagonal matrix, with unequal elements since the

variance of a Poisson variate depends on the mean.

2. The Linear Mixed Model(LMM), allowing for a correlated error structure

In the LMM, as implemented in procedure MIXED, it is possible for observations, y,

which are assumed to be normally distributed, to have a spatial correlation structure.

In particular, if dij denotes the distance between the points i and j where observation yi

and yj were made,

V= Iσ1
2 + Fσ2, where Fij=exp(-dij/ρ)

The unknown parameters in this model, namely σ1
2, the nuggett, σ2 , the sill, and ρ,

the range, can be obtained from a variogram of the data, as described below. They are

jointly referred to as 










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


=

ρ
σ
σ

2

2
1

θ . This particular spatial model is known as the

exponential model, and effectively postulates that the correlation increases as points

occur closer together, whereas points at distances greater than the range from one
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another are uncorrelated. Fij can be defined using other spatial models (Littell et al.,

1996 pp 305). In the PROC MIXED implementation only the variogram parameters θ,

are specified for SAS to be able to calculate V. In the case of non-normally distributed

data, θ is specified in the macro call to enable GLIMMIX to estimate the appropriate

correlation matrix for a spatially correlated Poisson model. However, since the

Poisson model does not satisfy the requirement of constant variance, the estimation of

θ is carried out on standardised residuals, as explained below.

3. The variogram approach to the estimation of θθθθ

In classical kriging (Cressie, 1993), the following approach is adopted: If one can

assume the mean value of y to not be changing from point to point (the characteristic

of stationarity), a variogram is constructed. The pairs of observations are arranged so

that all pairs a given distance h ± h/2 apart are pooled into one class, and the semi-

variance γ(h) = 
2
1 average(yi-yj)2 calculated. The variogram is a plot of γ(h) against

distance for distances h, 2h, 3h, 4h � etc. (Littell et al. 1996 pp 307). Estimates of θ

are obtained graphically. We used the package GS-Windows (GS+) for this purpose.

In our application the variogram was not constructed from y because of the non-

stationarity and the Poisson distribution (implying non-constant variance). Instead, we

used the signed deviance residuals calculated from

r  =sign(y-µ){2(ylog(y/µ)-y+µ)}½

where y and µ are the observed and fitted values of the response variable respectively

(McCullagh and Nelder, 1989 pp 37-40).

4. Fitting the GLMM and iteration between the variogram and GLMM

The mixed model estimates of β and θ (Littell et al. 1996 pp 229-251) can be obtained

jointly in SAS via the procedure MIXED. However, in the context of the GLIMMIX

implementation (i.e. non Gaussian models), interpretation of the output relating to the

spatial parameters θ is not straightforward, and convergence problems can arise. Our

approach has been to fix θ, use GLIMMIX to estimate β and from the residuals, r,

then use a variogram to revise the estimate of θ. In other words, accommodation of

correlation between elements of y due to spatial effects is achieved by converting

from the observed y to standardised residuals r, which have the property of constant

variance and mean. The following steps were carried out.
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(i) An initial estimate 0β�  of β was made assuming no spatial correlation i.e. with V

being a diagonal matrix. The deviance residuals r0 were calculated using 0β�  and a

variogram constructed using GS-Windows. Initial estimates 0θ�  of θ were made as

described above.

(ii) GLIMMIX was now used with θ being fixed at the values 0θ� .

(iii) From GLIMMIX a new set of estimates 1β�  are found and hence a new set of

deviance residuals r1 are calculated. These are used in a new cycle to re-draw the

variogram and hence derive fresh estimates 1θ� .

Steps (ii) and (iii) form an iterative cycle which continues until there is no further

change in the estimates. Assuming that any spatial correlation is positive rather than

negative, standard errors of 0β�  may have been under-estimated rather than over-

estimated. Adjusting for spatial correlation may therefore lead to removal of some

variables from the model whose contribution was initially overstated. The criterion for

dropping a variable from the model was p>0.05.

6. Producing predicted values by kriging

Figure 3.2 shows that the residuals of the final model remained spatially correlated.

Map predictions could therefore be improved through kriging of the residuals. This

was done by calculating the log(mean y) using β� and then adding to this (on the log

scale), the kriged predictor for the deviance residual, r, at that point (Chapter 2).

These kriged predictions are then transformed back to predicted incidence rates

(Figure 3.3).
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This appendix gives additional detail of the analysis and results of the MARA data for
West Africa described in chapter 4. There is some overlap between this appendix and
chapter 4 so that each can be read independently of the other.

This appendix is a report on the Ecosystem Health Analytical Workshop (ESHAW)

held in Bouake, Cote d�Ivoire, November 1999. It is a description of the data used, the

analytical methods employed and the results obtained in a project on mapping

malaria risk in West Africa.

A malaria distribution model for West Africa

Introduction
The recently created continental database of malaria survey

results(MARA/AMRA,1998) provides the opportunity for producing empirical

models and maps of malaria distribution at a regional and eventually at a continental

level. This appendix describes the methods used and the results obtained in the

analysis, modelling and mapping of malaria distribution for West Africa. West Africa

was chosen since a reasonably large set of survey results are available for this region

on the MARA database, since it represents the region with the largest population

exposed to high levels of malaria transmission intensity, and because at least two

                                                
8 South African Medical Research Council, P.O. Box 17120 Congella, Durban 4013, South Africa.
9 Kenya Medical Research Institute/Wellcome Trust Collaborative Programme, PO Box 43640,
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10 West Africa Rice Development Association (WARDA),01 BP 2551 Bouake 01, Cote D'Ivoire
11 Center for Development Research, Bonn University, Walter-Flex-Str 3, 53113 Bonn, Germany.
12 Malaria Research and Training Center DEAP/FMPOS, Universite du Mali, Bamako, Mali.
13 Navrongo Health Research Centre, P.O.Box 114, UE/R Ghana.
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country maps based on survey data are already available for West Africa (Thompson

et al. 1999; chapter 2).

In the analysis and modelling of the geographical distribution of malaria the first

question that arises is what measure of malaria intensity is to be investigated. If the

distribution of transmission intensity is the main objective of such a study, then the

ideal malariometric measure to be modelled would be the entomological innoculation

rate (EIR), which measures the number of sporozoite positive bites per person per

time unit (Snow et al. 1996). In practice this is not widely available. The most

commonly available concept of intensity of malaria is that of parasite prevalence in a

random sample of individuals, usually obtained by means of a local survey of the

population. This gives rise to a geographically located binomial point response. The

survey should be restricted to childhood populations of less than 10 years of age, in

order to avoid the effects of population immunity in endemic areas moderating the

survey results. However, using parasite prevalence as a proxy for transmission

intensity has some distinct disadvantages. Most important amongst these is the

variation of prevalence with age, and the fact that prevalence varies with dry and wet

seasons in all age groups apart from the age group of peak prevalence (Molineaux and

Gramiccia,1980).

The distribution of malaria is governed by a large number of factors relating to the

parasite, the vector and the host. Many of these factors affect the interactions between

parasite, vector and host in some way. For example, temperature effects the duration

of sporogony and longevity of mosquitoes and hence determines the proportion of

vectors surviving long enough to become infective. Similarly, vector populations

depend on habitat and breeding sites which are largely determined by precipitation,

humidity and presence of water, but also on man to vector contact. For efficient

transmission of malaria the density of vectors in relation to man is also important, and

hence human population density is a factor in transmission intensity (Molineaux,

1988). Due to the complexity of these relationships, it is unlikely that these factors are

simply linearly related to measures of malaria intensity such as parasite prevalence.

                                                                                                                                           
14 Alterra, PO Box 47, 6700 AA Wageningen, The Netherlands.
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The strategy used in this study was to undertake a spatial statistical analysis of malaria

parasite prevalence in relation to those potential factors involved in the intensity of

malaria distribution which are readily available at any map location. The resulting

regression model can then be used to predict parasite prevalence for the whole of

West Africa. A geostatistical process is subsequently used to improve prediction in

places where there is considerable divergence between model predictions and

observations in a local neighbourhood (see chapter 2).

Data sources and data preparation
The MARA / ARMA collaboration database consists of over 8,000 reports on malaria

endemicity in sub-Saharan Africa. Each report has been geographically referenced by

means of longitude and latitude. The subset of this database that was used in this

study contains discrete survey locations relating to community based surveys between

latitudes 1° and 22° North and longitudes 17° West to 16° East, in which at least 50

children were examined for the presence of Plasmodium falciparum in blood smears.

This represents over a quarter of a million children surveyed for malaria parasites.

Surveys were screened to include only populations between 1 and 10 years of age,

although in a few cases where no further age breakdowns were available, surveys on

populations between 1 and 15 years were included. Surveys conducted during known

epidemics were excluded, as were those that may represent biased samples, such as

surveys that were restricted to school attendees only. The survey dates covered several

decades from about 1970 onwards, and surveys conducted more than once at the same

location were combined (summing numerators and denominators). An implicit

assumption therefore is that malaria endemicity has remained relatively stable over

this period, so that the surveys taken at different time points could be conceptually

regarded as a cross-section of surveys, taken at many locations. A total of 450 data

points resulted from this process. The locations of these points are shown in figure

4.1.

Environmental data were mostly derived from the Hutchinson Climate Dataset for

Africa (Hutchinson et al. 1995). These comprised normalised difference vegetation

index (NDVI), average maximum and minimum temperature and precipitation per
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calendar month, all averaged over a number of years. By means of Geographic

Information Systems (GIS) values of each of these variables were assigned to each

survey location.

Four agro-ecological zones were distinguished on the basis of the length of the

growing period, i.e. the period that water is available for vegetative production on

well drained soils. It is a function of precipitation, evaporation, and a fixed amount of

available water in the soil (FAO, 1978). The zones are from south to north: the

Equatorial Forest zone (> 270 days) Guinea Savanna zone (165 � 270 days), Sudan

Savanna zone (90 �165 days) and the Sahel zone (< 90 days), shown in figure 4.1.

Population density data were derived for each survey location (Deichman, 1996).

A drainage density map was calculated based on agro-ecological zone and geology.

This variable is a measure of the amount of surface water that is available in an area,

and it is expressed as the total length of streams in an area per unit of area

(Windmeijer and Andriesse, 1993). Drainage density values for each point were

divided into categories of very low (<0.3 k/km2), low (0.3 to <0.6 km/km2), medium

(0.6 to <1.2 km/km2) and high (1.2 to <2.4 km/km2).

Analysis, modelling and mapping: methods
Parasite prevalence values varied from 0 to 100%, mean(SD) = 46%(24%). However,

of the total number of individuals surveyed, 48.8% tested positive. Surveys varied in

size from 50 to 10463 persons, mean(SD) = 539 (1197). Table A.2.1 shows how

parasite prevalence varied between the 4 agro-ecological zones described previously.

Table A.2.1. Parasite prevalence by agro-ecological zone.
Mean Prevalence(SD) Number of surveys

Sahel 34(23) 34
Sudan Savanna 46.5(23) 128
Guinea Savanna 47(24) 159
Forest 50(26) 129
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The variogram (Krige, 1966; Carrot and Valleron, 1992) in figure A.2.1 shows that

the spatial dependence of the survey results extends over a distance of about 1.6

degrees.
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Figure A.2.1. Variogram of parasite prevalence (all zones) 
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Since climatic variables by calendar month are highly correlated with those of

adjacent months, all rainfall, temperature and NDVI data were aggregated into

quarterly (3-month) averages, from December onwards (to coincide with the drier and

wetter seasons respectively).

The data were divided into 3 groups corresponding to the agro-ecological zones for

West Africa, with Sahel and Sudan Savanna combined into one group. A statistical

model was derived for each of these zone specific groups. This was done on the basis

of the assumption that the factors affecting malaria risk would be different in the four

agro-ecological zones (AEZ). (Sahel was combined with Sudan Savanna since there

were only 34 observations in the former, and because these two zones are adjacent

and have previously been analysed as one in a similar analysis for Mali.) An analysis

by AEZ would therefore produce predictor variables that are appropriate for a

particular zone, which would in turn produce models that fit the data better in terms of

explained deviance.
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The disadvantage of separate models for each zone is the somewhat arbitrary nature of

the division between zones, with many points in the vicinity of a boundary between

two zones having characteristics of both zones. If the prediction for such a point is

based only on the model for the zone it is situated in, whilst a nearby (and therefore

similar) point on the other side of the boundary is predicted entirely using the model

for the zone it is situated in, this could lead to predictions that are very different from

one another for two points that should be very similar. The result would be a sharp

discontinuity along the zone boundary, which would be counterintuitive and likely not

to reflect reality. (Fitting zone as a categorical variable to a combined model for all

zones would create a similar problem). To avoid an artifact of this nature, map

predictions in a buffer of 1.6 degrees (the extent of spatial dependence, from figure

A.2.1) on each side of a zone boundary were based on a weighted average of the two

predictions for the point, assuming it belongs to either the one or the other zone. The

weights for the two predictions are dependent on the distance of the point from the

boundary in the following way: For each point within 1.6 degrees of the boundary, a

circle of radius 1.6 degrees is drawn, and the weights are proportional to the areas of

the two parts of the circle lying on either side of the boundary (fig A.2.2).

Figure A.2.2. Prediction near zone boundaries

The prediction for point P (at the centre of the imagined circle) is therefore:

Zp= (Area1*µ1 + Area2*µ2)/(Area1 + Area2)

boundary

Zone 1

Zone 2
Area2

Area1

Point P

d
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where µ1 and µ2 are the predictions at point P (i.e. using the covariates applicable to

point P) obtained from the models for zone 1 and zone 2 respectively. The relative

magnitude of the two areas, and hence of the weights, is a fuction of d, the distance of

P from the boundary. The map prediction Z therefore provides a smooth transition

between the two zones.

Initial variable selection for each model was done by performing a stepwise procedure

using a generalised linear model (GLM) with logit link function (Hosmer and

Lemshow, 1989; StataCorp, 1997) and with the parasite prevalence of a point being

the response variable. The criterion for inclusion of a variable into the model was set

to p<0.01.

In order to improve the fit (i.e. reduce residual deviance), each variable that survived

the stepwise procedure was transformed into 7 different fractional polynomials. The

transformation producing the biggest reduction in residual deviance was chosen if this

reduction in deviance was significant by a χ2 test on one degree of freedom.

Transformations that were tried for each variable x were 1/x2, 1/x, 1/x0.5, ln(x), x0.5, x2

and x3. The transformations are useful to represent relationships in which parasite

prevalence increases more rapidly than a straight line at low values of x and more

slowly at high values, or vice versa. To facilitate the reporting and interpretation of

transformed variables, we have calculated the model based odds ratio of parasite

prevalence for the transformed variable for two separate values of the variable,

relative to a third (referent) value of the variable. The referent value chosen was the

mean value of the variable minus one standard deviation, with the other two values

being the mean itself and the mean plus one standard deviation. The two odds ratios

demonstrating the association between the transformed variable and parasite

prevalence are therefore one and two standard deviations removed from the referent

value, thereby giving some indication of the non-linear nature of the association

(Royston et al. 1999).

Deviance residuals were calculated for each statistical model that was derived from

the GLM. Semivariance of the deviance residuals of all pairs of observations was

calculated and a variogram constructed to determine if there was evidence of residual
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spatial correlation i.e. if the semi-variance of pairs of residuals that are close together

is markedly less than that of observations which are further apart. The parameters of

the function that describes the relationship between semi-variance and separation

distance is then used to specify the correlation structure of the data (R) in a

generalised linear mixed model (GLMM), (Littell et al. 1996) thereby taking account

of any residual non-independence in the data (see chapter 3 and appendix 1).

Assuming that any spatial correlation is positive rather than negative, standard errors

of the spatially naïve model may have been under-estimated rather than over-

estimated. Allowing for spatial correlation may therefore lead to removal of some

variables from the model due to the resultant inflation of the standard errors. Deviance

residuals of the spatially adjusted model are calculated and a new variogram is

constructed. If this variogram differs from the one that was used to specify the

correlation structure of the data in the GLMM, then the model is fitted again using the

improved spatial specification. This process is iterated until the variogram no longer

changes indicating that a covariance structure corresponding to the model residuals is

adequately specified (see details in chapter 3; appendix 1).

Once the models for the three areas had been derived, these were used to produce map

predictions for the three zones based on the predictor variables which are available as

map images. In the buffer regions of the boundaries between zones the interpolated

predictions using the two adjoining models were calculated as described above. The

resulting predicted map values at the survey points (observations) are then extracted

and residuals calculated on the logit scale. Based on a variogram of these residuals, a

kriged map of residuals is calculated, which is added to the predicted values on the

logit scale before transforming the result back to proportions. The addition of kriged

residuals will allow the map to deviate from the model and move closer to the

observed values, if such deviation is supported by other observed values in the

neighbourhood (details in chapter 2). This should improve the final map in the sense

that it does not deviate too severely from the observations, which is particularly

important if the model does not adequately explain the observed variation in

transmission risk.
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Results and model interpretation
Tables A.2.2, A.2.3 and A.2.4 show the odds ratios of the association between

parasite prevalence and significant explanatory variables. In the interpretation of these

results it is relevant to note that many of the climatic variables for this region broadly

have a north to south gradient ranging from the arid Sahel zone in the north to the

humid tropical forest zone in the south. Rainfall, NDVI and maximum temperature

show a consistent gradient between the Sahel zone and the forest zone for all calendar

months, the gradient being negative for maximum temperature throughout the year,

and positive for rainfall and NDVI throughout the year. Minimum temperature on the

other hand, has a positive gradient from the Sahel to the Forest zone for most of the

dry months of the year, and a negative gradient for most of the wet months. This may

explain at least partially its effect reversal for different months of the year.

Table A.2.5 shows the proportion of explained deviance that is achieved by each of

the models. This shows that for the Sahel and Sudan Savanna and for the Guinea

Savanna zone approximately 50% of variation is explained by the factors in the

model, whereas only 17% of variation (as expressed by deviance) of the Forest zone

model is explained by available predictor variables. The over-dispersion of parasite

prevalence values has been taken into account in the analysis by inflating standard

errors by the square root of the dispersion factor.

Inspection of variograms of deviance residuals of the models for the 3 zones shows

that only the residuals of the model for the Guinea Savanna zone display a distinct

spatial pattern (figure A.2.3), whereas the variograms for the other two zones (not

shown) do not show a very distinct spatial pattern.

Predicted malaria risk was calculated for each pixel for the map of West Africa, based

on the three separate models with interpolation between models applied in a buffer 1.6

degrees on each side of a boundary between zones. Figure A.2.4 shows that the

residuals from these predictions show some spatial dependence. Kriging of these

residuals could therefore be performed. Fig 4.2 is the result of adding kriged residuals

to the map of model predictions. The map categories chosen are identical to those

used in a previous study for producing a malaria distribution map for Mali (chapter 2).
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Sahel and Sudan Savanna zones
Table A.2.2 shows the results that are obtained from the multiple regression model for

this zone i.e. each effect is adjusted for all the others. This shows that for all places

that have equal values for all the other variables in the model, any increase in rainfall

in the second half of the dry season, is associated with a reduction in parasite

prevalence. Vegetation index in the same quarter shows the same negative

association. Whilst these two factors are somewhat counterintuitive in the direction of

the association, this could be due to torrential floods flushing larvae out of pools that

are used for breeding by vectors. Another possible explanation is overabundance of

vegetation, particularly forest-like vegetation, which shuts out sunlight at ground level

and around small water bodies which may have a negative impact on A. gambiae

breeding potential (Ravoniharimelina et al. 1992; Imevbore, 1991). Higher average

minimum temperatures in the wet season are associated with higher parasite

prevalences, possibly due to the shortening of the duration of sporogony. Average

maximum temperature in the second half of the dry season, other factors being equal,

leads to a shortening of the duration of sporogony, thus facilitating increased

transmission although very high temperatures would lead to smaller proportions of

adult vectors surviving the maturation of the parasite. Low, as opposed to very low

drainage density, provides more extensive and more stable breeding sites for vectors,

whereas medium drainage density may reflect faster flowing streams that are less

suitable as breeding sites, again other factors being the same. Average minimum

temperature in the first half of the dry season is higher in the more southern, humid

parts of this zone thus favouring malaria transmission. Average maximum

temperatures in the second half of the wet season are much higher in the more arid

north of the zone, thus making the negative association with parasite prevalence

highly plausible.

Guinea Savanna zone
Table A.2.3 shows the results that are obtained from the multiple regression model for

this zone. Increased rainfall in the second quarter of the wet season is likely to lead to

increased vegetation density in the first quarter of the drier season. Both are positively
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associated with parasite prevalence, reflecting the superior vector breeding conditions

that these two factors represent. Increased vegetation growth in the latter part of the

drier season may represent those areas with very dense forest-like vegetation which

inhibits vector proliferation on account of low levels of direct light, which may

explain the negative association of this factor with transmission intensity. Areas with

more humid climate generally experience higher minimum temperatures in the drier

season on account of their greater cloud cover. A positive association of minimum

temperatures in the early part of the drier season with parasite prevalence is therefore

plausible. Average maximum temperature in the latter part of the more rainy season is

higher in the drier parts of West Africa: the fact that this is nevertheless associated

with parasite prevalence may be because other factors already represent the negative

association with the more arid areas, so that this variable reflects an association

between parasite prevalence and warmer places which are similar in terms of

precipitation and humidity. As in the model for the Sahel and Sudan Savanna zone,

parasite prevalence is significantly associated with areas that have a drainage density

categorised as �low� compared to those with a �very low� drainage density reflecting

the lack of vector breeding sites in areas of �very low� drainage density. The two

higher levels of drainage density, namely �medium� and �high� show no significant

difference compared to areas of very low drainage density. This is probably due to

very low numbers in some categories of drainage density with the point estimates

indicating a raised risk compared to the �very low� category.

Other factors in the model being equal, population densities below 1 per square km

are associated with a raised risk of malaria parasite infection. This may be an

indication of the importance of vector densities in relation to man, and it may also be

a surrogate measure for low socio-economic development. There are no significant

differences between categories of higher population densities which is in part due to

small numbers of surveys in some of the categories. Nevertheless it is somewhat

surprising to see such low population densities favouring malaria transmission.

There is a significant association between difference in maximum and minimum

vegetation index and parasite prevalence. This variable has been added to model the

�pioneering� behaviour of the predominant vector in this region, A. gambiae, which is

well equipped to take advantage of rapidly improving habitat and breeding sites. It is
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an indication that areas with all year round high vegetation density do not necessarily

have the highest transmission intensities (Kuhlow and Zielke, 1976).

Table A.2.2. Factors associated with parasite prevalence in Sahel and Sudan Savanna zones. Odds
ratios(OR) have been calculated from the model: log OR = - 0.081*rn0305 - 0.806*tmin0911 +

0.465*tmax0305 + 0.63*drdens2 - 0.62*drdens3 + 36615*vi0305-2 - 854*tmin1202-2 -
0.012*tmax09112

Category Reference point
(or range)

Odds Ratio (model based)

Estimate 95% Confidence Interval

Average monthly rainfall
March to May (rn0305), per
mm

0.922 0.895 - 0.949

Average minimum
temperature September to
November (tmin0911), per °C

0.447 0.331 - 0.603

Average maximum
temperature March to May
(tmax0305), per °C

1.593 1.359 - 1.866

Drainage density
km/km2

Very
low(referent) <0.3 1.0

(drdens2) low 0.3 - <0.6 1.885 1.228 - 2.894
(drdens3) medium 0.6 - <1.2 0.534 0.403 - 0.718

Transformed variables:

Vegetation Index March to
May (vi0305) , per unit on
scale of 255

Low (referent) 100 1.0

Medium 110 0.53 0.40 - 0.70
High 120 0.33 0.20 - 0.53

Average minimum
temperature December to
February (tmin1202) , °C

Low (referent) 14.3 1.0

Medium 15.6 1.95 1.42 � 2.67
High 16.9 3.27 1.87 � 5.73

Average maximum
temperature September to
November (tmax0911), °C

Low (referent) 32.9 1.0

Medium 34.2 0.35 0.27 � 0.46
High 35.5 0.12 0.07 � 0.20

Increases in average minimum temperature during the rainy season are associated

with the more arid areas. The reduced risk of parasite infection associated with

average minimum temperature from June to August is therefore plausible.
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Table A.2.3. Factors associated with parasite prevalence in the Guinea Savanna zone. Odds ratios have
been calculated from the model: log OR = 0.012*rn0911 + 0.031*vi1202 � 0.028*vi0305 +
0.467*tmin1202 + 0.584*tmax0911 + 2.665*drdens2 + 1.502*drdens3 + 1.898*drdens4 -
1.706*popdens2 - 1.521*popdens3 - 1.482*popdens4 - 1.532*popdens5 � 7202*vidif-2 +
121*tmin0608-0.5

Category
Range or

reference point
Odds Ratio (model based)

Estimate 95% Confidence Interval

Average monthly rainfall
September to November
(rn0911), per mm

1.012 1.005 - 1.020

Vegetation Index December
to February (vi1202) , per unit
on scale of 255

1.032 1.013 - 1.052

Vegetation Index March to
May (vi0305) , per unit scale
of 255

0.973 0.959 - 0.987

Average minimum
temperature December to
February (tmin1202), per °C

1.595 1.298 - 1.960

Average maximum
temperature September to
November (tmax0911), per
°C

1.793 1.482 - 2.170

Drainage density
km/km2

Very
low(referent) <0.3 1

(drdens2) low 0.3 - <0.6 14.368 1.831 � 112.726
(drdens3) medium 0.6 - <1.2 4.491 0.570 � 35.370
(drdens4) high 1.2 - <2.4 6.673 0.741 � 60.049

Population density
persons/km2

Very
low(referent) <1 1

(popdens2) 1 - <10 0.18 0.07 - 0.47
(popdens3) 10 - <50 0.22 0.11 - 0.44
(popdens4) 50 - <100 0.23 0.12 - 0.43
(popdens5) >100 0.22 0.14 - 0.34

Transformed variables:

Difference in maximum and
minimum Vegetation Index
(vidif) , scale of 255

Low (referent) 67 1

Medium 70 1.144 1.120 - 1.168
High 83 1.749 1.603 - 1.909

Average minimum
temperature June to August
(tmin0608) , °C

Low (referent) 19.5 1

Medium 21 0.368 0.201 - 0.675
High 22.5 0.150 0.047 - 0.475
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Model for Forest zone
Table A.2.4 shows that only three factors were significantly associated with parasite

prevalence in the tropical forest zone. Average maximum temperature between

September to November is positively associated with malaria risk, presumably

reflecting the shorter duration of sporogony having a favourable impact on

transmission risk in a humid area where maximum temperatures do not reach a level

at which adult vector survival becomes a limiting factor. This appears to be in contrast

to the significant negative association between parasite prevalence and maximum

temperature during June to August, for places of similar maximum temperature

between September to November, and similar average rainfall between September to

November. A possible explanation for this may be the fact that higher maximum

temperatures are more prevalent in the relatively more arid areas of the region,

particularly during the wetter part of the year.

The positive association with average rainfall between September and November is

obviously due to the improved breeding sites that are provided by higher levels of

precipitation, provided these are not of the type that flush out larvae from pools.

Table A.2.4. Factors associated with parasite prevalence in the Forest zone. Odds ratios have been
calculated from the model: log OR = 1.092*tmax0911 - 0.0181*tmax06082 + 0.0000095*rn09112

Category
Range or

reference point
Odds Ratio (model based)

Estimate 95% Confidence
Interval

Average maximum temperature
September to November
(tmax0911), per °C

2.98 1.61 � 5.51

Transformed variables:

Average maximum temperature
June to August (tmax0608), °C Low (referent) 26.5 1

Medium 28 0.227 0.0813 - 0.634
High 29.5 0.0475 0.0056 - 0.392

Average monthly rainfall
September to November
(rn0911), per mm

Low (referent) 150 1

Medium 215 1.25 1.23 - 1.273
High 280 1.70 1.63 - 1.77
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Table A.2.5. Residual deviance

Zone Total deviance* Residual deviance
Percent �explained� by

model

Sahel & Sudan
Savanna 14096 7187 49
Guinea Savanna 27510 13516 51
Forest 10238 8512 17

Total 44%

* = deviance of null model
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Discussion
Note: This discussion deals only with technical aspects of this analysis. The

implications of the map for malaria control in West Africa, are addressed in the

discussion of chapter 4.

Our models for the three separate zones show that the relationship between malaria

prevalence and climatic, environmental and population factors is complex. The

difference in significant variables in the 3 models indicates that different factors are

responsible for variation in malaria risk in the three zones.

In interpreting the plausibility of the models, it needs to be remembered that there is

considerable confounding between explanatory variables, which are often highly

correlated with each other. In some cases the other factors in the model can control for

this confounding, in others there may be substantial residual confounding, or even no

adjustment for confounding. This results in the interpretation being to some extent

speculative. For example, sparsely populated areas are more common in very arid

regions and hence would be associated with low transmission intensity since they are

confounded with water-related factors, such as precipitation. However, once

adjustment is made for precipitation and NDVI, it is quite plausible that for places that

are equally wet (or dry), those with lower population densities have a higher

transmission risk on account of the presence of suitable vector habitat etc.
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A second interpretational problem is the fact that these models are essentially data

driven, rather than hypothesis driven. This can lead to chance associations which have

no biological or climatic explanation. We have sought to reduce this possibility by

making it �harder� for variables to enter the multiple regression model, firstly by

setting the criterion for significance to p=0.01 instead of the customary 0.05, secondly

by inflating standard errors by a factor equal to the square root of the over-dispersion,

and thirdly by adjusting for spatial correlation in the data. We are therefore reasonably

confident that the associations which we are reporting are strong associations,

indicating some mechanism that is responsible for variation in transmission intensity,

even if the interpretation is not always obvious.

Our analysis leaves a considerable amount of variation in malaria risk unaccounted

for. A significant proportion of this variation is likely to be noise due to errors and

non-uniform sampling methods employed in the surveys that yielded the observed

parasite prevalences. This is to be expected in a large heterogeneous historical data set

with no uniform standards in data collection having been applied. No amount of

model fitting is going to overcome this shortcoming in the data.

Nevertheless these data represent a very large albeit imperfectly sampled population

of children in West Africa, and it is highly likely that there are other unmeasured

perhaps more local factors that determine variation in parasite prevalence.

The distribution of distances between pairs of surveys in our data is such that the

lowest lag distances for which variograms can be constructed is about 0.25 kilometres

without the number of pairs becoming too few to make a reasonable estimate of semi-

variance. This leaves open the possibility of spatial dependence at a shorter range.

Such spatial dependence may be due to small area socio-demographic or

environmental factors but the spatial distribution of our survey data makes it difficult

if not impossible to investigate these. Our analysis of residuals shows that except for

the Guinea Savanna region unobserved factors determining malaria distribution are

not spatially correlated unless the spatial correlation is at the micro scale referred to

above. In the Forest zone most of the variation (83%) is not accounted for by the

climatic factors that we have investigated. This may indicate widespread uniform
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climatic suitability for malaria transmission in this zone (Craig et al. 1999) with

variation driven by other factors.

There are a number of additional limitations to this study that may have affected the

results.

1. The combination of age-groups of survey subjects: Under conditions of the same

transmission intensity, parasite prevalence will vary by age group in endemic

areas. Since all age groups between 1 and 10 (in some cases 1 and 15) were

combined this could have resulted in additional variation in prevalence if the mix

of age groups was not constant. This problem could only have been avoided by

rejecting all surveys that did not provide a more detailed breakdown by age. An

additional problem related to the age of survey subjects is due to the fact that in

areas of seasonal variation in transmission intensity, parasite prevalence will vary

between dry and wet season for all ages except the age of peak prevalence

(Molineaux and Gramiccia, 1980). This could only have been overcome by

restricting prevalence values to those relating to the age of peak prevalence. Since

this age varies depending on transmission intensity, such an approach would have

required modelling first age specific prevalence and producing estimates of age

specific prevalence so that at each map location a curve of prevalence versus age

could be estimated. A parameter that expresses the shape of this curve and hence

the transmission intensity could then be estimated at each location (This idea is

due to Tom Smith, STI). Such a study would have entailed a modelling exercise of

considerably more complexity than what has been attempted here.

2. Bias of sample surveys away from low prevalence values. There are generally

fewer surveys in areas of low or zero transmission intensity and in urban areas

than in areas of high transmission intensity, which causes a bias in the data

towards higher prevalences. There are no immediate solutions to this problem, but

it is an issue for the whole of the MARA database, and it is worth looking at ways

of adequately compensating for this bias. This difficulty did not get directly

addressed in previous country models using the MARA data but it was minimised

by masking out areas where climatic suitability rules out malaria transmission.

3. Uneven sampling densities. As figure 4.1 shows sampling densities varied

considerably between countries, and for the country with the highest population in
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the region, namely Nigeria, only a small number of surveys were available. This

has made map predictions less reliable in under-sampled sub-regions.

The very weak indication of a spatial structure of residuals in 2 of the 3 zones implies

that the shortcomings of our model have no particular spatial distribution at distances

above 25km. This makes it more difficult to identify areas and factors which

contribute to the poor fit. By adding kriged residuals to the values predicted by the

models (including the adjustments for boundary discontinuities), we have been able to

adjust the map to take more account of the empirical observations and hence deviate

from the model predictions in places were such deviation is supported by the data.

Despite the quoted limitations of this study, it does to our knowledge represent the

first attempt to produce a malaria risk map of the West African region, based entirely

on malariometric data. The map agrees broadly with expert opinion maps,

(Wernsdorfer and McGregor, 1988) and represents a refinement of these. The

complexity of the models does reflect the complexity of the factors that are

responsible for malaria distribution. All the factors that are present in the three models

have a plausible explanation, albeit a speculative one in some instances. In our view

this first attempt at producing a regional model and map of malaria transmission can

be built upon and improved in future through, amongst others, the suggestions we

have put forward. Developments in Markov Chain Monte Carlo (MCMC) methods

(Gelfand & Smith 1990; Diggle 1998) applied to the spatial analysis of point data may

prove particularly useful for the type of modelling and mapping we have carried out.

Although this will not overcome the problems that are inherent in the data, it will

provide a comprehensive estimate of the prediction error associated with individual

map locations.





Appendix 3

Some aspects of spatial disease modelling using hierarchical Bayes

Specification of priors in spatial and spatial-temporal models used in

chapters 5 and 6
Bayesian statistical inference is based on posterior distributions which combine

information available from the data via the likelihood function and any prior

knowledge about the model parameters by specifying appropriate distributions for

these parameters. We incorporate our prior information about the structure of the map

by assuming conditional autoregressive (CAR) models for the area random effects.

According to the CAR model the area specific spatial effects φi are modeled

(conditional on their neighbours) as normally distributed with mean equal to the mean

of the effects of its neighbours ( iϕ ) and a variance that is inversely proportional to the

number of neighbours ni, i.e. φi | φ-i ~ N( iϕ ,σφ2/ni) where 1
ji

j neighbours of iin
ϕ ϕ

∈

= ∑ . The

effect of this prior distribution is to shrink the incidence rates of areas to that of the

local mean, where the local mean is the mean of all contiguous areas excluding the

area i itself. The posterior distribution of the rate of an area is therefore a compromise

between the prior, which is based on the rates of neighbouring areas, and the data for

the area, thus stabilising the rate in areas where the data are sparse due to small

populations.

Sun et al. (2000) use a CAR prior that includes an index of spatial dependence, or

shrinkage factor (Cressie 1993), ρ1, so that

∑ ϕρϕ
∈

=
iofneighboursj

j
j

i n __
1

1

If |ρ1 | <1 this leads to a proper prior. When ρ1 =0, the φi �s are independent i.e. there

is no spatial dependence between areas.
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The temporal effects can be specified in a number of ways which will determine the

prior distribution that is assumed for the term δt . The approach we used models time

effects as first order auto-regressive AR(1) (Cryer, 1986). This allows for correlation

between consecutive time periods which can be assessed via a temporal correlation

coefficient ρ2. The prior distributions for the time effects δt are specified as follows:

δ1 ~ Normal(0, σδ2)

where σδ = (σe)√(1- ρ2
2) for year 1 (t=1), and

δt| δ(t-1) ~ Normal(ρ2δt-1 , σe
2 ), for subsequent years (t>1).

Since no information is available for the remaining parameters we adopt standard

conjugate priors, i.e. vague inverse gamma priors for the variances σe
2 and σφ2 and

vague normal priors for all other parameters. The prior for the correlation coefficient

is specified ρ2~ uniform(-1,1).

The AR(1) effect described above can be applied to all areas uniformly for each

consecutive year (δt), or we can specify a separate AR(1) effect for each area for each

year (δit) thus allowing for space-time interaction. In our model we allow for one set

of spatial effects for year 1 and then add AR(1) terms for each area for each

consecutive year. The AR(1) term for year 2 is now conditional on the spatial term φi

of year 1, i.e. δit(t=2) ~ Normal(ρ2φi , σe
2 ), with the AR(1) effects for later years

specified as described above. This allows for space-time interaction as well as spatial

effects. The correlation coefficient ρ2 will estimate the correlation of incidence rates

in areas over time.

Markov Chain Monte Carlo simulation was used to obtain estimates of the posterior

and predictive quantities of interest. The models were implemented using Gibbs

sampling in the software package WinBUGS (2000). In order to properly monitor

convergence a sampling scheme was designed using 3 independent chains. The

number of iterations of �burn-in� depended on convergence which was assessed using

the method of Gelman and Rubin (1992). After convergence a final sample of 18000

was collected to obtain summaries of posterior distributions of the parameters.
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Assessing model fit
We assessed model fit by comparing the expected predictive deviance (EPD) (Carlin

and Louis, 1996) of different models. For the Poisson model this can be computed as

follows: Let l denote all combinations of i,t, and let yl, new refer to the posterior

replicates of the observed data yl,obs. The yl,new are obtained by sampling

Poisson(Elexp(µl)), with posterior samples of µl obtained after convergence of the

MCMC run. The EPD is calculated as

E[d(ynew , yobs )| yobs , Mi], where

d(ynew, yobs) = 2Σl{ yl,obslog(yl,obs / yl,new) - (yl,obs - yl,new )}

Carlin and Louis (Carlin and Louis, 1996, pp232-33) show that the EPD consists of

two components, namely a likelihood ratio statistic (LRS) indicating goodness of fit,

and a penalty term (PEN) which penalizes for under- or over fitting i.e.

EPD=LRS+PEN. Smaller values of EPD are indicative of a better model. The two

components can be calculated from

LRS = d(E[ynew|yobs, Mi], yobs)

and

PEN = 2Σl(yl,obs){log E[yl,new|yobs] � E[log(yl,new) |yobs]}

All three terms can be computed from MCMC samples.
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