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Summary 

 

Idiosyncratic drug-induced liver injury is a rare toxic event that typically occurs at 

therapeutic doses, which are generally safe to the majority of patients. Because there 

are hardly any reliable preclinical in vitro or animal models available to predict this 

adverse reaction, it represents a substantial problem for the pharmaceutical industry 

and can have important consequences, such as drug withdrawals or warnings by drug 

agencies. Although the mechanisms are not fully understood, drug-induced 

mitochondrial dysfunction and reactive metabolite formation are believed to be major 

contributors. Severe inhibition of mitochondrial function can trigger accumulation of 

reactive oxygen species, microvesicular steatosis, hypoglycemia, coma, and death. It 

is thus important to characterize drugs for their potential interactions with mitochondrial 

function.  

The present work consists of three projects investigating molecular mechanisms of 

mitochondrial dysfunction in vitro and in vivo, and is emphasizing on the new 

antiarrhythmic dronedarone and its structural derivatives.  

The aim of the first project was to understand the molecular mechanism of 

dronedarone-induced hepatotoxicity in vitro, and to compare it to amiodarone, a well-

known mitochondrial disruptor. We investigated acutely exposed rat liver mitochondria, 

and primary human hepatocytes and HepG2 cells treated for up to 24h. We performed 

cytotoxicity experiments, measured the capacity of the respiratory chain and fatty acid 

β-oxidation, and assessed markers of hepatocyte apoptosis/necrosis. Our 

investigations demonstrate that similar to amiodarone, dronedarone inhibited the 

electron transport chain and β-oxidation and uncoupled oxidative phosphorylation of 

liver mitochondria. We thus suggested that mitochondrial toxicity might explain 

hepatotoxicity of dronedarone in vivo.  

The focus of the second project was to expand the knowledge of dronedarone-

associated liver toxicity to the in vivo situation. We studied hepatotoxicity of 

dronedarone in wild-type and heterozygous juvenile visceral steatosis mice, a model 

with higher susceptibility to mitochondrial inhibitors. The animals were treated by oral 

gavage with two different doses of dronedarone, and mitochondrial function was 

assessed in vivo and ex vivo. We found that dronedarone acts as an inhibitor of 

mitochondrial fatty acid β-oxidation both in vivo and ex vivo, whereas the electron 
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transport chain was not inhibited. Furthermore, juvenile visceral steatosis mice 

appeared to be more sensitive to the hepatotoxic effects of dronedarone than wild-type 

mice. We concluded that inhibition of hepatic mitochondrial fatty acid β-oxidation may 

be an important mechanism of dronedarone-associated hepatotoxicity in humans and 

underlying defects in hepatic β-oxidation may represent susceptibility factors for this 

adverse drug reaction. 

In the last project we aimed to improve our understanding of the molecular 

mechanisms of benzbromarone associated liver toxicity. We used HepG2 cells and 

performed cytotoxicity experiments, measured the capacity of the respiratory chain and 

fatty acid β-oxidation. In addition, we also investigated adaptive effects on 

mitochondrial structure. We observed that benzbromarone was associated with 

uncoupling of oxidative phosphorylation, inhibition of the respiratory chain and 

inhibition of mitochondrial β-oxidation. Furthermore we found that benzbromarone 

induced profound changes in mitochondrial network, which may be associated with 

hepatocyte apoptosis. 
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Abbreviations 

ACS    Acyl-CoA synthetase 

ACSL    Long-chain acyl-CoA synthetase 

BCA    Bicinchoninic acid 

BSA    Bovine serum albumin 

ALT    Alanine aminotransferase 

ATP    Adenosine triphosphate 

ATCC    American type culture collection 

BSA    Bovine serum albumin 

CACT    Carnitine:acyl-carnitine translocase 

CoA     Coenzyme A 

CPT1    Carnitine palmitoyltransferase 1 

CPT2     Carnitine palmitoyltransferase 2 

CYP    Cytochrome P450 

DCF    Dichlorofluorescein  

DILI    Drug-induced liver injury 

DMEM    Dulbecco’s Modified Eagle Medium 

DMSO    Dimethyl sulfoxide 

DPBS    Dulbecco’s phosphate buffered saline 

ETC    Electron transport chain 

ETF    Electron-transfer flavoprotein 

FADH2    Flavin adenine dinucleotide 

FCCP     Carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone 

GSH, GSSG   reduced glutathione, glutathione disulfide 

HBSS    Hanks modified salt solution 

HEPES   4-(2-hydroxyethyl)-1-piperazineethanesulfonic acid 

HPLC    High-performance liquid chromatography 
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IMM/ or OMM   Inner/ or outer mitochondrial membrane 

Jvs    Juvenile visceral steatosis 

LCFA    Long-chain fatty acid 

MCAD    Medium-chain specific acyl-CoA dehydrogenase 

MCFA    Medium-chain fatty acids 

MPTP    Mitochondrial permeability transition pore 

mtDNA    Mitochondrial DNA 

NADH    Nicotinamide adenine dinucleotide 

NADPH   Nicotinamide adenine dinucleotide phosphate 

Ox/Phos   Oxidative phosphorylation 

PGC1α    Proliferator-activated receptor gamma coactivator-1α 

PI    Propidium iodide 

PPARα    Peroxisome proliferator-activated receptor α 

ROS    Reactive oxygen species 

RT-PCR   Real-time polymerase chain reaction 

SCFA    Short-chain fatty acid 

SOD1    Superoxide dismutase 1 

SOD2    Superoxide dismutase 2 

TBIL    Total bilirubin 

TCA cycle   Tricarboxylic acid cycle 

TMPD    N,N,N’,N’-tetramethyl-p-phenylenediamine 

TPP    Tetraphenyl phosphonium  
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Introduction 

 

Drug-induced liver injury 

Drug-induced liver injury (DILI) is a major cause for aborted drug development, post 

marketing restrictions placed on use of drugs or withdrawals from the market [1]. The 

reported incidence of DILI attributed to an individual drug is estimated to be between 1 

in 10,000 and 1 in 100,000 patients [2]. The hepatotoxicity often remains undetected by 

clinical Phase III trials since the studies are usually limited to a few thousand people. 

Only after drug approval and subsequent exposure of a large number of patients to the 

drug, these rare toxic events occur [3]. 

DILI has a wide spectrum of manifestations and can trigger diverse types of liver 

diseases, ranging from asymptomatic mild biochemical abnormalities to severe 

hepatitis with jaundice. Clinical presentations may include liver transplantation or death 

of the patient in the most severe cases [4, 5]. In drug development, ‘Hy’s law’ is 

frequently used to predict serious hepatotoxicity in patients with elevated liver tests. 

The rule predicts that a drug has a high risk to cause fatal DILI in a larger population if 

it caused a more than three fold increase in serum alanine aminotransferase (ALT) 

above the limit of normal together with a more than two fold increase in total bilirubin 

(TBIL) above the limit of normal in clinical studies [6]. 

Two different clinical patterns of DILI are distinguished, namely the intrinsic and the 

idiosyncratic liver toxicity. The intrinsic toxicity, or type A toxicity, leads to a predictable 

liver injury in a dose-dependent fashion. A typical example is acetaminophen 

(paracetamol), which leads to a high incidence of elevation of serum ALT levels and 

acute liver failure, if the daily intake is above the recommended limit of 4g per day. This 

hepatotoxicity is associated with the formation of a well-characterized and highly 

reactive intermediate metabolite, N-acetyl-p-benzoquinone imine, and is reproducible 

in animal models [7].  

The idiosyncratic toxicity, or type B (“bizarre”) toxicity, is host-dependent and not 

strictly dose-dependent. Typically, idiosyncratic DILI occurs at therapeutic doses that 

are generally safe to the majority of patients, and often in only few patients (<1%) 

during drug therapy. In most cases, the underlying mechanisms for the unique 

susceptibility of few subjects are not completely understood, but do typically not involve 
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the pharmacological action of the drug [8, 9]. There are hardly any reliable preclinical in 

vitro or animal models available to predict investigational drugs with idiosyncratic DILI 

before the clinic and these adverse reactions thus represent a major issue for both the 

pharmaceutical industry and the affected patients [4]. 

 

Mechanisms of idiosyncratic liver injury 

The reasons for the unique susceptibility of a few patients to idiosyncratic DILI are not 

completely understood. It might in principle be linked to the drug, the environment, or 

the patient (Fig. 1) [7]. In a recent retrospective study, the risk of idiosyncratic DILI was 

shown to be increased when the administered daily dose is higher than 50mg or when 

the drug undergoes extensive hepatic metabolism [4]. Furthermore, drug-drug 

interactions could potentially alter the concentration of a drug or its reactive metabolite 

[7]. Since most drugs require metabolism for pharmacological action and/or removal 

from the body, the generation of reactive metabolites in the liver might account for 

some cases of idiosyncratic DILI. Indeed, 62% of drugs withdrawn from the market due 

to idiosyncratic hepatotoxicity in the last years have been shown to produce reactive 

metabolites [10].  

 

Figure 1: Potential risk factors involved in the pathogenesis of drug-induced liver injury. 

Adapted from Tujios et al. [7] 

 

Possibly the most important susceptibility factors for hepatotoxicity are the patients and 

their genetic variability. Genetic polymorphisms cause differences in the toxic 

responses to drugs, such as polymorphisms in bioactivating enzymes, which cause 

variations in reactive metabolite formation [7, 11]. An example is the enhanced risk of 
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troglitazone-induced hepatotoxicity in patients harboring the combined glutathione S-

transferase GSTT1-GSTM1 null genotype. The deficiency probably leads to the 

accumulation of a toxic epoxide metabolite of troglitazone and subsequent liver toxicity 

[12]. Reactive metabolites may furthermore lead to the formation of drug-protein 

adducts, which can potentially trigger an adaptive immune response to an altered self-

protein (hapten) [7, 11]. 

Another major mechanism believed to be involved in the pathogenesis of idiosyncratic 

hepatotoxicity is drug-induced mitochondrial dysfunction and the presence of medical 

conditions that impair mitochondrial function. Drugs that are released on the market do 

not impair mitochondrial function enough to cause liver injury in most recipients. 

However, if in a few patients mitochondrial function is already impaired by preexisting 

conditions, such as inborn mitochondrial cytopathies affecting mitochondrial 

respiration, mitochondrial β-oxidation defects or mitochondrial alterations associated 

with the metabolic syndrome, susceptibility to mitochondrial disruptors might be 

increased. If patients with such inborn or acquired deficiencies take a drug that induces 

mitochondrial dysfunction, this combination can additively impair mitochondrial function 

and trigger hepatotoxicity [13]. Sometimes, mitochondrial diseases may therefore be 

only revealed during drug administration, such as previously latent mitochondrial 

cytopathy [14, 15] or inborn β-oxidation defect [16, 17] under valproic acid treatment.  

 

Drug-induced mitochondrial toxicity 

Although some pharmaceuticals in the past have been designed to uncouple oxidative 

phosphorylation to cause weight loss, drug-induced mitochondrial dysfunction is often 

an unintended off-target effect [18]. Mitochondrial toxicity has only recently become 

more widely acknowledged and is a growing cause for preclinical candidate failures or 

post marked withdrawals [3]. Numerous mitochondrial off-targets might be responsible 

for a metabolic failure, and often one drug impairs several mitochondrial targets [18]. 

Mitochondria-rich organs which are highly aerobically poised, such as the central 

nervous system, the cardiovascular system, skeletal muscle, or the liver rely heavily on 

mitochondrial metabolism and are thus particularly susceptible to mitochondrial 

toxicants [18]. Furthermore, tissues exposed to higher concentrations of the drug, such 

as the liver due to hepatoportal absorption of oral drugs and their bioactivation, are 

especially vulnerable to mitochondrial toxicants [3].  
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General aspects of mitochondrial morphology 

Mitochondria are the principal energy-producing organelles of the cell and are 

composed of two membranes that separate the intermembrane space and the inner 

mitochondrial matrix (Fig. 2A). The outer mitochondrial membrane (OMM) is smooth 

and separates the mitochondrion from the cytosol, whereas the inner mitochondrial 

membrane (IMM) forms multiple invaginations into the matrix compartment, the so-

called cristae (Fig. 2B). Both membranes are formed of phospholipid bilayers 

containing multiple transporting and enzymatic proteins. The OMM is freely permeable 

for compounds up to 5000 Da and contains cholesterol. In contrast, the IMM is 

essentially cholesterol-free and highly impermeable but contains several specific 

transporters, e.g. for respiratory substrates, inorganic phosphate, ADP and ATP. Within 

the cells, mitochondria are organized as larger, branched structures described as 

mitochondrial network (Fig. 2C). These structures are in constant motion and can split 

or fuse [19].  

 

A             B          C 

   

Figure 2: Mitochondrial morphology. A. Schematic representation of mitochondrial morphology. 

B. Separate mitochondria observed by electron microscopy in HepG2 cells. C. Confocal 

microscopy of mitochondrial network in HepG2 cells stained with TOMM22 antibody 

(mitochondrial surface marker). 
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Inhibition of oxidative phosphorylation 

General principles 

The oxidative phosphorylation (Ox/Phos) is an essential energy-producing process in 

cells and consists of two functionally independent processes, namely the oxidation of 

reduced substrates by the electron transport chain (ETC) and the phosphorylation of 

ADP by inorganic phosphate. In total, the Ox/Phos consists of five complexes (Fig. 3).  

Complexes I to IV constitute the ETC, whereas Complex V is the ATP synthase. The 

ETC is embedded within the inner mitochondrial membrane and each complex is 

composed of multiple individual protein subunits, which are encoded either by the 

mitochondrial genome (mtDNA) or the by the nucleus. Two different forms of reducing 

equivalents are used, namely nicotinamide adenine dinucleotide (NADH) and flavin 

adenine dinucleotide (FADH2).  

The NADH:coenzymeQ oxidoreductase (complex I) catalyzes the electron transfer 

from NADH to ubiquinone (oxidized form of coenzyme Q) and the 

succinate:coenzymeQ oxidoreductase (complex II) transfers electrons from succinate 

via FAD to ubiquinone. Complex II is part of the tricarboxylic acid (TCA) cycle and FAD 

is a prosthetic group reduced during the oxidation of succinate to fumarate. At the level 

of coenzymeQ:cytochrome c oxidoreductase (complex III), the electrons of ubiquinol 

are transferred to cytochrome c (cyt c). Finally, at the terminal complex of the electron 

transport chain, the cytochrome c oxidase (complex IV), molecular oxygen (O2) 

undergoes a four-electron reduction to water. During this process of electron transport, 

protons are actively pumped from the mitochondrial matrix to the intermembrane 

space, creating an electrochemical gradient that approaches 200mV (ΔΨ) and a pH 

gradient (alkaline inside). This proton gradient finally drives the F1F0-ATP synthase 

(complex V) to phosphorylate ADP to ATP [18]. 
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Figure 3: The respiratory chain. I, complex I, NADH:coenzymeQ oxidoreductase. II, complex II, 

succinate:coenzymeQ oxidoreductase. III, complex III, coenzymeQ:cytochrome c 

oxidoreductase. IV, complex IV, cytochrome c oxidase. V, complex V, F1F0-ATP synthase. Q, 

ubiquinone. CytC, cytochrome c. NADH, nicotinamide adenine dinucleotide. Adapted from 

Cuperus et al. [20]. 

 

Inhibition of glycolysis and tricarboxylic acid cycle 

Different metabolic pathways, such as the glycolysis, the tricarboxylic acid cycle (TCA 

cycle), and enzymes involved in fatty acid oxidation are directly connected to the 

respiratory chain, since they provide substrate-derived reducing equivalents (NADH 

and FADH2) that deliver electrons to the ETC (Fig. 4). Ox/Phos dysfunctions thus not 

only involve disruptors of the ETC, but also chemicals that interfere with the transport 

and/or oxidation of reducing substrates [18]. 

Glycolysis occurs in the cytoplasm and its enzymes convert one glucose molecule to 

two pyruvates. This degradation yields two ATP and two NADH. Pyruvate may on one 

hand be further decarboxylated to acetyl-CoA and enter the mitochondrial TCA cycle. 

On the other hand, it may be reduced to lactate with concomitant oxidation of NADH to 

NAD+. The conversion to lactate is anaerobic. A typical response of cells to a loss of 

ATP production capacity is a compensatory increasing production of lactate, which in 

humans leads to serum lactic acidosis, a clinical sign of mitochondrial impairment [3]. 
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In the mitochondrial matrix, the TCA cycle oxidizes acetyl-CoA to CO2. This 

degradation yields one FADH2, three NADH and one ATP [18]. An example of a direct 

inhibitior of the TCA cycle is fluoroacetate. Its metabolite, fluorocitrate, is a potent 

inhibitor of the aconitase enzyme of the tricarboxylic acid cycle, and interferes with the 

generation and delivery of reducing equivalents into the ETC [21].  

                     

Figure 4: Glycolysis and the tricarboxylic acid cycle. Glycolysis and the TCA cycle are directly 

connected to the respiratory chain. NADH, nicotinamide adenine dinucleotide. FADH2, flavin 

adenine dinucleotide. ATP, adenosine triphosphate. 

 

Inhibition of the electron transport chain, and uncoupling of Ox/Phos 

The function of the ETC depends predominantly on the impermeability of the inner 

mitochondrial membrane and the catalytic integrity of the respiratory chain complexes. 

Two different types of interferences with the Ox/Phos are possible, an acute inhibition 

of the ETC or an uncoupling of the electron transport chain from the ATP synthesis 

[18].  

The direct inhibition of the individual complexes of the ETC leads to inhibition of 

substrate oxidation and oxygen consumption. Classical inhibitors of each of the five 

complexes involved in Ox/Phos include rotenone (complex I), malonate (complex II), 

antimycin A (complex III), cyanide (complex IV), and oligomycin (complex V) (Fig. 5). 

Depending on the severity, these inhibitions finally diminish or abolish ATP production 
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and may trigger cell death through apoptosis. Possible metabolic consequences in 

patients are hyperlactic acidemia and hypoglycemia [18].  

Uncouplers are often hydrophobic weak acids, such as phenols or amides, and have a 

‘protonophoric’ activity, which means that they may carry a proton into the 

mitochondrial matrix due to their permeability through the inner mitochondrial 

membrane. Classical examples are carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone (FCCP) or 2,4-dinitrophenol (DNP). The uncoupling 

of the electron transport from the ATP synthesis dissipates the pH gradient and 

mitochondrial membrane potential. Uncoupling results thus in stimulation of substrate 

oxidation and oxygen consumption, and the energy generated is dissipated as heat 

(hyperpyrexia) instead of ATP [18]. 

 

Figure 5: Inhibitors and uncouplers of the respiratory chain. FCCP, carbonyl cyanide-4-

(trifluoromethoxy)phenylhydrazone. DNP, 2,4-dinitrophenol. Adapted from Cuperus et al. [20]. 

 

Production of reactive oxygen species 

Mitochondria are one of the major reactive oxygen species (ROS) producers and it is 

estimated that approximately 90% of cellular ROS is derived from the mitochondrial 

ETC [22]. Three important forms of cellular ROS are superoxide anions (O2
-), hydrogen 

peroxide (H2O2), and hydroxyl free radicals (OH•). Superoxide is generated in 

mitochondria as a byproduct of Ox/Phos. Analysis of isolated mitochondria revealed 

that mainly two ROS-forming sites in the mitochondrial ETC, namely complex I and 

complex III, are responsible for superoxide formation [23, 24]. Superoxide generated 
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by the respiratory chain appears on both sides of the inner mitochondrial membrane 

and can be decomposed by the enzyme superoxide dismutase (SOD) (Fig. 6). SOD 

catalyzes the dismutation of two superoxide anion radicals to H2O2 (2O2
- + 2H+ -

> H2O2 + O2). The SOD1 isoform (or Cu,Zn-SOD) is present in the cytoplasm and 

mitochondrial intermembrane space, whereas the SOD2 isoform (or Mn-SOD) is 

abundant in the mitochondrial matrix. If superoxide is not quickly dismutated, it may 

react with nitric oxide (NO) to form peroxynitrite (ONOO-), which damages DNA and 

proteins. This first line of defense is important for the correct maintenance of a normal 

function of mitochondria-rich organs and is underscored by the fact that homozygous 

SOD2-knockout mice die during the first few weeks after birth [23, 25].  

The next step in the protective mechanism against ROS is the removal of H2O2. In 

contrast to a limited permeability of the superoxide radical, H2O2 may readily cross 

biological membranes. In the presence of ferrous ions (Fe2+), H2O2 reacts 

nonenzymatically in the Fenton reaction, generating extremely reactive hydroxyl 

radicals (H2O2 + Fe2+ -> HO• + OH- + Fe3+), which may directly damage proteins, lipids 

and DNA. H2O2 can be deactivated to water and oxygen by the enzyme catalase, 

which is mainly expressed in peroxisomes (2H2O2 -> 2H2O + O2). Alternatively, 

glutathione peroxidases remove H2O2 by using two molecules of reduced glutathione 

(GSH) as an electron acceptor, and oxidizing it to the glutathione disulfide (GSSG). 

GSSG is then reduced back into GSH by the enzyme GSH reductase by using 

nicotinamide adenine dinucleotide phosphate (NADPH) as cofactor. Glutathione 

peroxidases are expressed in the mitochondrial matrix as well as in the cytosol [19, 

22].  

                                     

Figure 6: Mitochondrial ROS production and antioxidant mechanisms.  

SOD, superoxide dismutase. GPX, glutathione peroxidase. 
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Under normal conditions, these ROS-metabolizing processes are sufficient to keep 

superoxide and H2O2 concentrations at physiological submicromolar levels. However, 

inhibitors of the ETC, such as rotenone or antimycin A, increase the generation of ROS 

and electrons passing through the ETC may leak out to molecular oxygen (O2) to form 

superoxide [23]. Although lower levels of ROS formation are required for normal cell 

homeostasis and cell adaptation, high quantities of ROS lead to oxidative stress and 

induce cell death [26].  

In contrast to an inhibition of the ETC, uncoupling of the Ox/Phos leads to a higher 

efficiency of the ETC in order to re-establish the proton gradient. Therefore, during 

uncoupling the ROS production of the ETC is usually not increased and might even be 

reduced [27]. 

 

Inhibition of fatty acid transport and oxidation 

General principles 

The mitochondrion is the main site of fatty acid degradation and involves the fatty acid 

translocation into the mitochondrial matrix and their β-oxidation. Short-chain (C4-C6) 

and medium-chain (C6-C14) fatty acids can freely cross the mitochondrial outer and 

inner membranes, and are activated into acyl-CoA thioesters by short- and medium-

chain acyl-CoA synthetases in the mitochondrial matrix (Fig. 7) [28]. In contrast, long-

chain fatty acids (C14-C18) require a specific carnitine shuttle system involving a four-

step process in order to access the mitochondria matrix. First, the long-chain fatty acid 

is activated to an acyl-CoA thioester by the action of the enzyme long-chain acyl-CoA 

synthetase located in the outer mitochondrial membrane (OMM). In a next step, the 

long-chain acyl-CoA is esterified into an acyl-carnitine derivative, a reaction catalyzed 

by carnitine palmitoyltransferase 1 (CPT1) in the OMM. The produced acyl-carnitine is 

then translocated across the inner mitochondrial membrane into the mitochondrial 

matrix by the carnitine:acyl-carnitine translocase (CACT). Finally, carnitine 

palmitoyltransferase 2 (CPT2), which is located on the inner side of the IMM, is 

responsible for the conversion of the acylcarnitine back to carnitine and acyl-CoA [28]. 

CPT1 is considered as the rate-limiting step in this translocation and plays a key 

regulatory role in committing long-chain fatty acid towards oxidation, instead of 

esterification into triglycerides or fatty acid synthesis. CPT1 is regulated by an inhibition 

of malonyl-CoA, the first product in cytosolic fatty acid synthesis [29, 30]. 
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Figure 7: Fatty acid transport and β-oxidation. SCFA, short-chain fatty acid. MCFA, medium-

chain fatty acids. LCFA, long-chain fatty acid. CoA, coenzyme A. ACS, short- and medium-

chain acyl-CoA synthetase. ACSL, long-chain acyl-CoA synthetase. CPT1, carnitine 

palmitoyltransferase 1. CACT, carnitine:acyl-carnitine translocase. CPT2, carnitine 

palmitoyltransferase 2. OMM, outer mitochondrial membrane. IMM, inner mitochondrial 

membrane.  

 

In the mitochondrial matrix, acyl-CoA thioesters can in a next step undergo the β-

oxidation cycle. The mitochondrial fatty acid β-oxidation cycle involves four enzymes 

and progressively shortens fatty acids by two carbons. The first reaction is the 

dehydrogenation of the fatty acyl-CoA to 2-trans-enoyl-CoA by acyl-CoA 

dehydrogenases. Different isoforms of the enzyme are known, namely very-long-chain, 

long-chain, medium-chain and short-chain dehydrogenases. This reaction requires 

FAD as a cofactor. In the second reaction, 2-trans-enoyl-CoA is hydrated to L-3-

hydroxyacyl-CoA, a reaction catalyzed by enoyl-CoA hydratase. The third reaction is 

catalyzed by L-3-hydroxyacyl-CoA dehydrogenase and involves the dehydrogenation 

into 3-ketoacyl-CoA. This reaction requires NAD+ as cofactor. In the last reaction, the 

enzyme thiolase finally cleaves 3-ketoacyl-CoA and generates an acetyl-CoA and an 

acyl-CoA shortened by two carbon atoms. The shortened acyl-CoA derivative may 
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finally enter a new cycle of β-oxidation and acetyl-CoA either enters the TCA cycle or 

condenses into ketone bodies (mainly acetoacetate and β-hydroxybutyrate). NADH 

generated by the dehydrogenation is reoxidized by Complex I of the respiratory chain, 

whereas FADH2 delivers electrons to the electron-transfer flavoprotein (ETF), which is 

then oxidized by ETF-ubiquinone oxidoreductase, and gives electrons to the 

respiratory chain by reducing coenzyme Q in Complex III. Fatty acid β-oxidation is thus 

directly connected to the respiratory chain [28].  

 

Causes and consequences of decreased β-oxidation 

Several mechanisms decreasing fatty acid oxidation are known. Drugs may for 

example directly impair the activity of enzymes involved in the mitochondrial uptake of 

fatty acids or sequester important cofactors [31]. An example is troglitazone, an 

inhibitor of mitochondrial acyl-CoA synthetases [32], or amiodarone, an inhibitor of 

carnitine palmitoyltransferase 1 activity [33]. Other drugs, such as valproic acid, impair 

fatty acid oxidation through the generation of coenzyme A and L-carnitine esters, which 

results in the depletion of these cofactors and thus inhibits the entry of long-chain fatty 

acids into the mitochondria [34, 35]. Finally, some drugs directly inhibit mitochondrial β-

oxidation cycle, such as glucocorticoids, which are known to inhibit the acyl-CoA 

dehydrogenase [36]. Importantly, mitochondrial fatty acid oxidation can also be 

secondarily impaired as a result of severe inhibition of the ETC, since the mitochondrial 

respiratory chain allows constant regeneration of FAD and NAD+ required for the 

enzymatic reactions of acyl-CoA dehydrogenase and 3-hydroxyacyl-CoA 

dehydrogenase in the β-oxidation cycle (Fig. 7) [8]. 

Severe and prolonged impairment of mitochondrial β-oxidation leads to accumulation 

of free fatty acids that can impair mitochondrial function through different mechanisms 

[28]. On one hand, they can remain in their free form and reinforce mitochondrial 

dysfunction through uncoupling of the mitochondrial respiration, thus further decreasing 

energy production [37]. On the other hand, fatty acids can be esterified into 

triglycerides, whose accumulation causes steatosis (fatty liver). Two types of steatosis 

are distinguished, namely macro- and microvesicular. Macrovesicular steatosis, where 

hepatocytes contain a single large vacuole of fat, mainly triglycerides, is a relatively 

benign condition and is often associated with a mild increase in serum transaminases. 

Frequent causes are human alcohol abuse, obesity and diabetes. In contrast, the 

presence of microvesicular steatosis implies a more severe disease, where 
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hepatocytes are filled by numerous small lipid vesicles thus involving severe 

impairment of mitochondrial fatty acid β-oxidation. Typically, serum transaminases and 

blood ammonia levels are increased, and disease may progress rapidly from banal 

symptoms, such as anorexia and nausea, to acute liver failure and death [28].  

The impairment of mitochondrial β-oxidation of fatty acids deprives the cell of an 

important source of energy during fasting episodes, since fat oxidation is the principal 

source of ATP in the liver in the fasting state [38]. Furthermore, inhibition of β-oxidation 

leads to an imbalance between increased extrahepatic catabolism of glucose and a 

decreased hepatic production of glucose (Fig. 8). The decreased ketogenesis forces 

extrahepatic tissues to use glucose instead, whereas at the same time the impaired β-

oxidation inhibits pyruvate carboxylase activity, the first step in hepatic 

gluconeogenesis. This combination may cause severe hypoglycemia during fasting 

episodes [31]. 

 

Figure 8: Consequences of inhibition of mitochondrial fatty acid β-oxidation. Severe impairment 

of mitochondrial fatty acid oxidation can induce accumulation of fatty acids and triglycerides, 

and lower production of ATP, ketone bodies and glucose. Adapted from Begriche et al. [8]. 
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Mitochondrial adaptations to drugs 

Various different adaptive mechanisms may occur in mitochondria in response to 

cellular stress in order to limit mitochondrial injury and dysfunction (Fig. 9A).  

Firstly, damaged or dysfunctional mitochondria may be removed by increased rates of 

mitophagy (mitochondrial autophagy, degradation) and/ or mitochondrial biogenesis 

may be enhanced in order to replace injured or damaged mitochondria [39]. A concept 

called mitochondrial hormesis proposes that mitochondrial biogenesis may be triggered 

by low doses of reactive oxygen species (ROS) in order to re-establish homeostasis 

[40]. The proliferator-activated receptor gamma coactivator-1α (PGC1α) plays a key 

regulatory role in mitochondrial biogenesis. Furthermore, it participates in the induction 

of several antioxidant enzymes [41] and may bind to the peroxisome proliferator-

activated receptor α (PPARα) in order to transcriptionally activate nuclear genes 

encoding fatty acid metabolizing enzymes [31].  

A next possible adaptive response is that the respiratory capacity might be increased 

by mitochondrial remodeling of the respiratory chain. The increased mitochondrial 

respiration ensures an easier flow of electrons along the respiratory chain and 

decreases the accumulation of superoxide. As an example, Han et al. described that 

chronic alcohol feeding in mice causes increased incorporation of respiratory chain 

complexes (I, IV, V) in the liver as an adaptive response to the increased metabolic 

stress [42].  

Finally, drugs may cause diverse changes in mitochondrial morphology, since 

mitochondria constantly undergo fusion-fission to exchange respiratory-complexes, 

mitochondrial DNA (mtDNA) and other constituents. Metabolic and toxic stresses, e.g. 

increased mitochondrial reactive oxygen species (ROS) generation, can affect 

mitochondrial fusion-fission rates [39]. As an example, embryonic fibroblasts adapt 

during starvation through a decreased mitochondrial fission to produce elongated 

mitochondria that have greater cristae surfaces and are more resistant to mitophagy 

[43]. In contrast, mitochondrial fission typically occurs during apoptotic cell death [44]. 
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Figure 9. Possible mitochondrial adaptations induced by cellular stress. 

Adapted from Han et al. [39]. 

 

 

Role of mitochondria in cell viability and death 

Mitochondria play an important role in cell survival and cell death. Apoptosis represents 

a complex sequence of events proceeding by two partially independent routes, namely 

the death receptor pathway, which is initiated by ligation of death receptors at the cell 

surface, and the mitochondrial pathway. The latter is known to be induced by 

excessive production of reactive oxygen species and originates from the release of 

cytochrome c from the mitochondria into the cytosol, activation of proapoptotic proteins 

and mitochondrial permeability transition pore (MPTP) opening [19]. 

Cytochrome c is located on the outer surface of the inner mitochondrial membrane. 

During apoptosis it is released to the cytosol, where it interacts with apoptosis 

protease-activating factor 1 (apaf-1), to form a multiprotein complex called 

apoptosome. The apoptosome triggers the activation of caspase-9, an initiator caspase 

that activates capase-3 and other effector caspases. The effector caspases are 

responsible for the degradation of the cell in the terminal phase of apoptosis [13, 19]. 

The mitochondrial permeability transition pore (MPTP) can be opened by diverse 

stimuli, including ROS, accumulation of free fatty acids or an increase in the ratio 

GSSG/GSH, and is located in the contact sites between the outer and inner 

mitochondrial membranes. It is formed by a complex assembly of proteins originating 

from the matrix (cyclophilin D), the inner membrane (adenine nucleotide translocase), 

and outer mitochondrial membrane (porin). In its open state it enables free passage of 
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compounds up to 1500Da between the mitochondrial matrix and the cytosol, and 

causes massive reentry of protons through the IMM, leading to an interruption of 

mitochondrial ATP synthesis. The pore opening also causes matrix expansion and 

results in large-scale mitochondrial swelling, up to rupture of the OMM [13, 19]. 

In contrast to apoptotic cell death, which reflects a programmed cell death that needs a 

certain cellular ATP content, necrotic cell death reflects an uncontrolled cell damage, 

which usually results from major cell injury (e.g. loss of osmotic balance between intra- 

and extracellular fluids), acute metabolic disruption with ATP depletion, or selective 

permeability of cell membranes (e.g. mitochondrial permeabilization). These processes 

result in a rupture of the plasma membrane and loss of intracellular proteins. A switch 

between apoptotic and necrotic cell death depends thus on the mitochondrial energy 

state or the extent of mitochondrial impairment. In general, cell depletion of ATP is a 

stimuli towards cell necrosis [45, 46]. 

 

Preclinical methods to investigate drug-induced mitochondrial 
dysfunction in liver 

Several in vitro and in vivo investigations can be performed to detect mitochondrial 

dysfunction. In the following section, commonly used models are described and 

limitations specified.  

 

In vitro models 

A number of in vitro models, such as isolated mitochondria and hepatic cell models, 

are available to detect and understand drug-induced mitochondrial dysfunction in liver. 

A convenient approach is to first assess the effects of the drugs in isolated liver 

mitochondria, and then to check the effects of the drug in a human liver cell line [47]. 

Since numerous mitochondrial targets might be responsible for a metabolic failure, and 

often one drug impairs several mitochondrial targets, attempts to model drug-induced 

mitochondrial dysfunction must be multifaceted [18]. Table 1 summarizes some of the 

currently used endpoints to assess mitochondrial dysfunction in vitro [47]. 

Mitochondrial dysfunction can be assessed in isolated liver mitochondria by acutely 

exposing them to the drug of interest and measuring basic processes of oxidative 
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phosphorylation and fatty acid oxidation. However, this system has some limitations, 

since the mitochondria are not present in a physiological environment and the drug 

may also interact with other organelles or the plasma membrane. Furthermore, isolated 

mitochondria potentially overpredict drug effects because compounds have unlimited 

access and are not metabolized [48]. 

 

Table 1. Examples of in vitro investgations to detect drug-induced mitochondrial dysfunction. 

TPP, tetraphenylphosphonium, MPTP, mitochondrial permeability transition pore. Adapted from 

Labbe et al. [47]. 

Isolated liver 
mitochondria 

Oxygen consumption and respiratory chain complex activity 

Fatty acid oxidation with radiolabelled fatty acids 

Determination of ΔΨm (TPP selective electrode, fluorescent probe) 

Ca2+- induced swelling (MPTP) 

Hepatic cells Oxygen consumption and respiratory chain complex activity 

Lactic acid in incubation medium 

Fatty acid oxidation with radiolabelled fatty acids 

Determination of neutral lipids (coloration with oil red O, fluorescent probe) 

Determination of ΔΨm (fluorescent probe) 

mtDNA levels by qPCR 

 

Working with intact hepatocytes has thus a higher physiological relevance than working 

with isolated organelles [48]. The use of primary human hepatocytes is considered as 

the gold standard when the presence of metabolic activity is required, since these cells 

express P450 enzymes and have detoxifying capacities. Primary hepatocytes however 

are limited in their use, because these cells are scarce, expensive and have only a 

limited viability over time (up to 72 hours) in a classical monolayer [49].  

Commonly used hepatic cell lines for cell-based mitochondrial assays are tumor-

derived immortalized cell lines (e.g. the human hepatoma cell line HepG2). This cell 

lines have the advantage of being readily available and easy to use. However, the use 

of tumor-derived cells may not truly reflect primary cell behavior [48]. On one hand, 

they are not capable of metabolizing drugs, because they lack the functional 

expression of almost all relevant human liver P450 enzymes [50]. On the other hand, 

tumor-derived cell lines are adapted to rapid growth and generate their energy from 

glycolysis rather than mitochondrial Ox/Phos. Cell culture medium of these cell lines 
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thus usually contains high glucose concentration (25 mM glucose, a more than fivefold 

higher concentration than physiological level) [51, 52]. This glucose-induced 

suppression of Ox/Phos is called “Crabtree effect” (Fig. 10), and in such cells, 

mitochondrial toxicants have little effect on cell growth and death [51, 53]. 

In order to circumvent such resistance, tumor-derived immortalized cell lines can either 

be grown in a low glucose culture medium (and adding higher amounts of TCA 

intermediates, e.g. L-glutamine), or glucose can be replaced by galactose. If cells are 

growing in a medium containing galactose instead of glucose, they require an 

investment of two ATPs in order to enter glycolysis, but complete glycolysis to pyruvate 

yields only two ATPs. These cells must thus rely on mitochondrial Ox/Phos to obtain 

ATP, which makes them more vulnerable to mitochondrial toxicants [51, 54]. Another 

experimental condition for mitochondrial toxicity testing is to add an excess of free fatty 

acids to human liver cell lines, to show accumulation of intracellular lipids induced by 

steatogenic drugs [55] [56]. Overall, if drug-induced mitochondrial dysfunction is aimed 

to be assessed on immortalized cell lines, it is of high importance to carefully choose 

the culture conditions, since results can be greatly affected.  

                    

Figure 10: The Crabtree effect. Despite abundant oxygen and fully functional mitochondria, 

pyruvate is converted to lactate and oxidative phosphorylation is suppressed. Anaerobic 

glycolysis is inefficient and is capturing ca. 5-6% of the potential energy in the glucose 

substrate, when fully oxidized via Ox/Phos. However, flux rates through the glycolytic pathway 

can be dramatically accelerated, so that inefficiency is offset by an abundance of substrate [51, 

57]. 
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Animal models 

Although predictive cell based models might be useful, they still lack the in vivo 

complexity of cell-cell interactions. Animal models are thus more likely to capture the 

complexity of idiosyncratic liver reactions [58-60]. 

It is considerably more difficult to study mitochondrial injury in vivo, since there are only 

limited numbers of noninvasive endpoints that can be assessed. Table 2 summarizes 

some of the currently used endpoints to assess mitochondrial liability in vivo and ex 

vivo in animal studies. Mitochondrial injury can be attributed in vivo by exhalation 

assays of 14C-labelled or nonradioactive 13C-enriched substrates. For instance, whole 

body fatty acid oxidation can be assessed after the administration of 14C- or 13C-

labelled fatty acid by measuring the [14C]CO2 exhalation [61, 62]. In this assay, 14C-

labelled fatty acids of different lengths, such as octanoic acid or palmitic acid, can be 

used to determine whether fatty acid oxidation affects the whole oxidative process or 

only some chain length-specific processes [63]. These methods are typically used in 

combination with ex vivo approaches.  

Animals used in standard preclinical safety studies are normal healthy wild-type animal 

models that do not mimic critical interindividual differences, such as genetic and 

environmental predispositions. Especially mild mitochondrial damage is not readily 

detectable in such models since individual cells contain hundreds or thousands of 

mitochondria and respond to a toxic insult only if a certain critical threshold has been 

reached. These models are thus often refractory to drugs that produce hepatotoxicity 

only in susceptible humans [58-60]. Different models with an inherited or acquired 

abnormality in mitochondrial function have been developed to increase the 

susceptibility to mitochondrial disruptors.  

One approach utilizes direct chemically induced modifications of mitochondrial 

function, and such animal models are primarily used to study mechanisms of 

mitochondrial pathology [60]. An example is the acquired carnitine deficiency in 

animals chronically exposed to the carnitine analog trimethylhydrazinium propionate, 

which leads to massive inhibition of mitochondrial fatty acid β-oxidation and hepatic 

steatosis [64, 65].  
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A second approach involves transgenic or other techniques to induce mitochondrial 

dysfunction. Two promising animal models with preexisting mitochondrial abnormality, 

namely heterozygous mitochondrial superoxide dismutase mice and heterozygous 

juvenile visceral steatosis mice, were recently used to study idiosyncratic liver injury 

due to an increased susceptibility to mitochondria-targeting drugs [60]. 

 

Table 2. Commonly used endpoints in animal models to assess mitochondrial liability. AST, 

aspartate aminotransferase; ALT, alanine aminotransferase; ΔΨm, mitochondrial 

transmembrane potential. Adapted from Boelsterli et al. [60]. 

Clinical chemistry Plasma AST activity relative to ALT activity, plasma lactate level 

Ketone bodies 

Acyl-carnitine derivatives 

Histopathology, 
electron microscopy 

Microvesicular steatosis 

Alterations in mitochondrial structure, loss of cristae, 
megamitochondria, change in abundance 

Tissue analysis ATP content, lipid content 

Mitochondrial GSH/GSSG 

Mitochondrial/ cytosolic cytochrome c translocation 

Functional assays in 
vivo  

Whole body fatty acid (14C- or 13C-palmitate or octanoate) oxidation 
assay 

Functional assays with 
ex vivo isolated cells or 
mitochondria 

Oxygen consumption and respiratory chain complex activity 

Fatty acid oxidation with radiolabelled fatty acids 

Determination of ΔΨm 

Ca2+- induced swelling (MPTP) 

 

Heterozygous mitochondrial superoxide dismutase (SOD2+/-) mice  

This mouse model has a heterozygous deficiency in the mitochondrial manganese 

superoxide dismutase (SOD2). Whereas homozygous SOD2 mutant mice die within 

the first 10 days of life and suffer from a dilated cardiomyopathy [25], the heterozygous 

animals are phenotypically normal, but show increased oxidative stress [66, 67]. 

SOD2+/- mice treated with troglitazone for 14 to 28 days developed increased ALT 

activity, increased hepatic superoxide concentration, and hepatic necrosis whereas 

wild-type mice did not [66, 67]. Similarly, the SOD2+/- mice model could unmask the 

mitochondrial toxicity of nimesulide [68]. In summary, the mouse model is more 
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susceptible to drug-induced mitochondrial liver injury and seems to be especially 

sensitive to drugs that enhance mitochondrial oxidative stress [58]. 

 

Heterozygous juvenile visceral steatosis (jvs+/-) mice  

Heterozygous juvenile visceral steatosis mice are carnitine deficient through an 

impaired renal reabsorption. Jvs+/- mice treated with 100mg/kg/day valproic acid for 14 

days developed hepatotoxicity, but wild-type mice did not. They had decreased 

mitochondrial oxidative function, reduced carnitine concentration in liver, increases in 

serum ALT and ALP activities, and histopathological changes in form of microvesicular 

steatosis and apoptosis [62]. These results showed that mitochondrial alterations in 

fatty acid oxidation might be a risk factor for idiosyncratic liver injuries [58]. 

 

Mitochondrial toxicants – benzofuran derivatives 

Members of diverse drug classes have been reported to inhibit mitochondrial function. 

In this section, a specific group of structural analogs associated with hepatotoxicity and 

mitochondrial dysfunction will be introduced, namely the group of benzofuran 

derivatives (Fig. 11).  

 

 
 

 

Benzofuran Amiodarone Dronedarone Benzbromarone 

Figure 11. Structures of benzofuran derivatives. 
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Amiodarone 

Amiodarone is an antiarrhythmic drug, which is widely used [69, 70] and causes 

multiple potentially severe adverse reactions, including hepatotoxicity with symptoms 

that range from benign increases in transaminases to potentially fatal hepatitis and 

cirrhosis [71-74].  

Amiodarone is a well-known mitochondrial toxicant [28, 75-78]. It is highly lipophilic and 

can accumulate in tissues including hepatocytes. It is a cationic amphiphilic drug, with 

a lipophilic moiety and an amine function, which can be protonated (Fig. 11). The 

uncharged lipophilic form easily crosses the outer mitochondrial membrane and is 

protonated in the acidic mitochondrial intermembrane space [31]. The cationic 

compound can enter the mitochondrial matrix, most probably thanks to charge 

delocalization and the high electrochemical potential across the inner mitochondrial 

membrane, causing a transient uncoupling of Ox/Phos [75]. Besides Ox/Phos 

uncoupling, amiodarone accumulation in the mitochondrial matrix leads to high 

intramitochondrial drug concentrations [79]. At these high concentrations, amiodarone 

inhibits mitochondrial fatty acid β-oxidation causing micro- and/or macrovesicular 

steatosis and inhibits the ETC causing accumulation of superoxide anion radicals [75, 

80]. This impairment leads to hepatocyte necrosis or apoptosis and secondarily to 

inflammation and cytokine induction, and may progress the steatosis to steatohepatitis 

[31]. Furthermore, amiodarone is metabolized by N-desalkylation of the side-chain by 

cytochrome P450 (CYP) 3A4, and it is known that the N-desalkylated metabolites are 

toxic [78, 81]. 

 

Dronedarone 

Dronedarone is a new antiarrhythmic drug with an amiodarone-like non-iodinated 

benzofuran structure, carrying an additional methylsulfonamide group that decreases 

its lipophilicity (Fig. 11) [82]. The drug was specifically designed to minimize 

amiodarone-associated adverse reactions [83].  

However, shortly after its introduction to the market, dronedarone became implicated in 

evere hepatic injury and a post marketing warning was issued [84-87]. So far, the 

underlying mechanisms of dronedarone-induced hepatotoxicity are not fully 

understood. Recently, Serviddio et al. [88] published a study in which they investigated 

liver toxicity of dronedarone in isolated mitochondria from treated rats. They reported 
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that dronedarone uncoupled Ox/Phos, but was not associated with inhibition of the 

ETC or increased ROS production. Similar to amiodarone, dronedarone is metabolized 

by CYP3A4 by N-desalkylation [89]. However, it is currently not known if the N-

desalkylated metabolites are hepatotoxic.  

 

Benzbromarone 

Benzbromarone is a uricosuric drug, used in the treatment of gout and is a structural 

analog of amiodarone and dronedarone (Fig. 11) [31]. In humans, benzbromarone can 

cause hepatocellular liver injury [90-93] and was withdrawn from the market in 2003 

because of continuing concerns about hepatotoxicity.  

The mechanisms of benzbromarone induced liver injury are not fully understood, but 

due to the structural similarity to amiodarone, they are believed to be due to effects on 

mitochondrial function. In isolated rat liver mitochondria and rat hepatocytes 

benzbromarone acutely uncouples Ox/Phos, inhibits the ETC and mitochondrial β-

oxidation, and triggers the mitochondrial permeability transition [76, 94]. 

Benzbromarone is metabolized in the liver by CYP3A4 and CYP2C9. In a recent study, 

Kobayashi et al. showed that benzbromarone and the CYP3A4 metabolite 1’-hydroxy- 

benzbromarone have cytotoxic effects in a human hepatocellular carcinoma cell line 

[95, 96]. The hepatotoxic effects of benzbromarone might thus be associated to the 

parent compound as well as to its 1’-hydroxy metabolite [95].  
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Aim of the thesis 

 

The main purpose of this thesis was to investigate molecular mechanisms of drug-

induced mitochondrial dysfunction. We were interested in the new antiarrhythmic 

dronedarone, as well as its structural analog benzbromarone, both causing rare but 

severe idiosyncratic liver injury in patients. The thesis had three specific aims 

developed in three studies. 

The aim of our first study was to understand the molecular mechanism of dronedarone-

induced hepatotoxicity in vitro. Since dronedarone has an amiodarone-like benzofuran 

structure and amiodarone is a well-known mitochondrial disruptor, we aimed to 

compare both antiarrhythmic drugs regarding their effect on mitochondrial function. We 

performed an analysis in isolated rat liver mitochondria, primary human hepatocytes, 

and the human hepatoma cell line HepG2. After acute drug exposure or treatments up 

to 24h, we performed cytotoxicity experiments, measured the capacity of the 

respiratory chain as well as fatty acid β-oxidation, and assessed markers of hepatocyte 

apoptosis and necrosis.  

The goal of the second study was to expand the knowledge of dronedarone-associated 

liver toxicity to the in vivo situation. From our in vitro study, we hypothesized that the 

inhibition of mitochondrial function might be an important factor leading to 

dronedarone-induced liver injury in vivo. Since only few patients were affected by 

hepatic injury, we tested dronedarone not only in wild-type mice, but also in 

heterozygous juvenile visceral steatosis mice, a model with higher susceptibility to 

mitochondrial disruptors. The animals were treated by oral gavage with two different 

doses of dronedarone, and mitochondrial function was assessed in vivo and ex vivo.  

The third project aimed to investigate the molecular mechanisms of benzbromarone-

associated hepatotoxicity, a structural analog of amiodarone and dronedarone. 

Benzbromarone is a known mitochondrial disruptor in isolated rat liver mitochondria 

and hepatocytes. However, it is unclear if the findings in rodent mitochondrial and 

hepatocytes are also observable in a human liver cell line. The principle aim of this 

study therefore was to investigate the specific mechanisms by which benzbromarone 

impairs mitochondrial function in HepG2 cells. Furthermore, we were also interested to 

investigate adaptive effects on mitochondrial morphology.   
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Abstract 

Dronedarone is a new antiarrhythmic drug with an amiodarone-like benzofuran 

structure. Shortly after its introduction, dronedarone became implicated in causing 

severe liver injury. Amiodarone is a well-known mitochondrial toxicant. 

The aim of our study was to investigate mechanisms of hepatotoxicity of dronedarone 

in vitro and to compare them with amiodarone. We used isolated rat liver mitochondria, 

primary human hepatocytes and the human hepatoma cell line HepG2, which were 

exposed acutely or up to 24h. After exposure of primary hepatocytes or HepG2 cells 

for 24h, dronedarone and amiodarone caused cytotoxicity and apoptosis starting at 

20µM and 50µM, respectively. The cellular ATP content started to decrease at 20µM 

for both drugs, suggesting mitochondrial toxicity. Inhibition of the respiratory chain 

required concentrations of approximately 10µM, and was caused by an impairment of 

complexes I and II for both drugs. In parallel, mitochondrial accumulation of reactive 

oxygen species was observed. In isolated rat liver mitochondria, acute treatment with 

dronedarone decreased the mitochondrial membrane potential, inhibited complex I and 

uncoupled the respiratory chain. Furthermore, in acutely treated rat liver mitochondria 

and in HepG2 cells exposed for 24h, dronedarone started to inhibit mitochondrial β-

oxidation at 10µM and amiodarone at 20µM. 

Similar to amiodarone, dronedarone is an uncoupler and an inhibitor of the 

mitochondrial respiratory chain and of β-oxidation both acutely and after exposure for 

24h. Inhibition of mitochondrial function leads to accumulation of ROS and fatty acids, 

eventually leading to apoptosis and/or necrosis of hepatocytes. Mitochondrial toxicity is 

an explanation for hepatotoxicity of dronedarone in vivo. 
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Introduction 

Amiodarone is a well-established antiarrhythmic drug [1, 2], which is associated with 

several potentially severe adverse reactions [3, 4]. Importantly, it is a hepatic 

mitochondrial toxicant [2, 5, 6], which has been described to uncouple oxidative 

phosphorylation, to inhibit enzyme complexes of the electron transport chain and to 

impair fatty acid β-oxidation [7-11]. Mitochondrial β-oxidation and oxidative 

phosphorylation are fundamental physiological processes as evidenced by inherited 

impairment of these pathways, which can affect the function of many organs, including 

the liver [12]. Patients treated with amiodarone for several months or years may thus 

suffer from micro- and/or macrovesicular steatosis, a disease that may progress to 

steatohepatitis and may eventually be fatal [5, 13]. 

Dronedarone, a structural analog of amiodarone, was specifically designed to minimize 

the adverse reactions associated with amiodarone [14]. As shown in Figure 1, 

dronedarone is a non-iodinated amiodarone derivative carrying a methylsulfonamide 

group at the benzofurane ring that decreases its lipophilicity. Similar to amiodarone, 

dronedarone is metabolized by N-desalkylation of the basic side-chain by cytochrome 

P450 (CYP) 3A4 [15]. Although the N-desalkylated metabolites are toxic for 

amiodarone [11, 16], this is currently not known for dronedarone. 

Shortly after its introduction, severe hepatic injury has been reported in two patients 

treated with dronedarone, eventually leading to liver transplantation [17]. Recently, 

Serviddio et al. [18] published a study in which they investigated liver mitochondrial 

toxicity of dronedarone and amiodarone in vivo in rats. Similar to previous studies [7, 9, 

10], amiodarone inhibited the activity of complex I of the respiratory chain, uncoupled 

oxidative phosphorylation and was associated with increased reactive oxygen species 

(ROS) production and lipid peroxidation. In contrast, dronedarone only uncoupled 

oxidative phosphorylation, but was not associated with inhibition of the respiratory 

chain or increased ROS production. 

In this study, we aimed to investigate and to better understand the mechanisms of 

cytotoxicity of dronedarone in vitro using isolated rat liver mitochondria, primary human 

hepatocytes and HepG2 cells, a well-characterized human hepatoma cell line [16]. We 

compared the toxic effects associated with dronedarone with those of amiodarone. 

Because the two drugs are structurally related (Fig. 1) and both can cause hepatic 

injury, we hypothesized that their mechanism of toxicity may be similar. The systems 

used allowed to study the toxicity acutely and after different exposure periods as well 

as after cytochrome P450 (CYP) induction. 
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Figure 1. Chemical structures of dronedarone and amiodarone. 

 

 

Materials and Methods 

Chemicals 

Dronedarone hydrochloride was extracted from commercially available tablets (brand 

name Multaq®) from ReseaChem life science GmbH (Burgdorf, Switzerland). The 

manufacturer declared the substance 99% pure by high-performance liquid 

chromatography (HPLC) and confirmed the structure by 1H-NMR analysis. Amiodarone 

hydrochloride was purchased from Sigma-Aldrich (Buchs, Switzerland). Stock solutions 

were prepared in DMSO and stored at -20°C. All other chemicals used were purchased 

from Sigma-Aldrich or Fluka (Buchs, Switzerland), except where indicated. 

 

Cell lines and cell culture 

The human hepatoma cell line HepG2 was provided by ATCC (Manassas, USA) and 

maintained in Dulbecco’s Modified Eagle Medium (DMEM, with 1.0g/l glucose, 4mM L-

glutamine, and 1mM pyruvate) from Invitrogen (Basel, Switzerland). The culture 

medium was supplemented with 10% (v/v) heat-inactivated fetal calf serum, 2mM 

GlutaMax, 10mM HEPES buffer and non-essential amino acids. Cell culture 

supplements were all purchased from GIBCO (Paisley, UK). Cells were kept at 37°C in 

a humidified 5% CO2 cell culture incubator and were passaged using trypsin. The cell 

number was determined using a Neubauer hemacytometer and viability using the 

trypan blue exclusion method. 
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Cryo-preserved primary human hepatocytes were purchased from Becton Dickinson 

(BD Gentest, Woburn, MA, USA). They were recovered and cultured according to the 

protocol of the manufacturer. Induction of CYP3A4 was achieved by preincubation of 

recovered primary human hepatocytes with 20µM rifampicin for 72h [16]. 

 

Rat liver mitochondria 

Male Sprague-Dawley rats were kept in the animal facility of the University Hospital 

Basel (Basel, Switzerland) in a temperature-controlled environment with a 12h 

light/dark cycle and food and water ad libitum. Animal procedures were conducted in 

accordance with the institutional guidelines for the care and use of laboratory animals. 

The mean rat weight was 433±79g and the mean liver weight 12±4g. Rats were 

sacrificed by pentobarbital overdose (100mg/rat) and liver mitochondria were isolated 

by differential centrifugation according to the method of Hoppel et al. [19]. The 

mitochondrial protein content was determined using the bicinchoninic acid (BCA) 

protein assay kit from Merck (Darmstadt, Germany). 

 

Cytotoxicity  

Cytotoxicity was determined using ToxiLight® BioAssay Kit (Lonza, Basel, Switzerland) 

according to the manufacturer’s manual. This assay measures the release of adenylate 

kinase, a marker for loss of cell membrane integrity, using a firefly luciferase system. 

After drug incubation, 100µl assay buffer was added to 20µl supernatant from drug-

treated cell culture medium, and luminescence was measured after incubation in the 

dark for 5min, using a Tecan M200 Pro Infinity plate reader (Männedorf, Switzerland). 

 

Intracellular ATP content 

Intracellular ATP was determined using CellTiterGlo® Luminescent cell viability assay 

(Lonza, Basel, Switzerland), in accordance with the manufacturer’s manual. In brief, 

100µl assay buffer was added to each 96-well containing 100µl culture medium. After 

incubation in the dark for 30min, luminescence was measured using a Tecan M200 Pro 

Infinity plate reader (Männedorf, Switzerland). 
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Annexin V and propidium iodide staining  

Apoptosis and necrosis were investigated using Annexin V and propidium iodide 

staining (Invitrogen, Basel, Switzerland). Cells were treated with the test compounds 

for 24h and stained with 1µl Annexin V-Alexa Fluor 647 and 1µl propidium iodide 

100µg/ml in 100µl Annexin V binding buffer (10mM Hepes, 140mM NaCl, 2.5mM CaCl2 

in H2O, pH 7.4). Cells were incubated for 15min at room temperature (RT) and 

analyzed by flow cytometry using a CyAn ADP cytometer (Beckman coulter, Marseille, 

France). Data were analyzed using FlowJo 9.3.2 software (Tree Star, Ashland, OR, 

USA). 

 

Caspase 3/7 assay 

Caspase 3/7 activity was determined using the luminescent Caspase-Glo® 3/7 Assay 

(Promega, Wallisellen, Switzerland). The assay was conducted according to the 

manufacturer’s protocol. 

 

Cytochrome c release 

Quantitative determination of cytochrome c was performed as described by 

Waterhouse and Trapani [20]. HepG2 cells (100,000) were harvested and 

permeabilized with digitonin (10µg/ml in Dulbecco’s phosphate buffered saline (DPBS) 

without calcium) at room temperature for 20min. Cells were fixed in paraformaldehyde 

(4% in DPBS) for 20min at room temperature and were washed with blocking buffer 

(BSA 10% in DPBS) for 1h and incubated over night at 4°C with 1:1000 purified mouse 

anti-cytochrome c monoclonal antibody (BD Pharmingen, Basel, Switzerland) in 

blocking buffer. Cells were washed with blocking buffer and incubated for 1h with 

1:1000 alexa 488-labeled secondary antibody (Alexa fluor 488 goat anti-mouse IgG, 

Invitrogen, Basel, Switzerland). After an additional washing step with DPBS, the cell 

suspensions were examined by flow cytometry. Since the selective permeabilization of 

the plasma membrane allows cytoplasmic cytochrome c to diffuse out of the cell, 

mitochondrial release of cytochrome c into the cytoplasm leads to a low cellular 

cytochrome c content. 
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Cellular oxygen consumption using the Seahorse XF24 analyzer 

Cellular respiration was measured using a Seahorse XF24 analyzer (Seahorse 

Biosciences, North Billerica, MA, USA). HepG2 cells were seeded in Seahorse XF 24-

well culture plates at 20,000 cells/well in DMEM growth medium and allowed to adhere 

overnight. Cells were treated with the drugs for 24h. Before the experiment, the 

medium was replaced with 750µl unbuffered medium using a XF Prep Station 

(Seahorse Biosciences, North Billerica, MA, USA) and cells were equilibrated for 40min 

at 37°C in a CO2-free incubator. Basal oxygen consumption was determined in the 

presence of glutamate/pyruvate (4mM and 1mM, respectively). After inhibition of 

mitochondrial phosphorylation by adding oligomycin (1µM), the mitochondrial electron 

transport chain was stimulated maximally by the addition of the uncoupler carbonyl 

cyanide p-(trifluoromethoxyl)-phenyl-hydrozone (FCCP, 1µM). Finally, the 

extramitochondrial respiration was determined after the addition of the complex I 

inhibitor rotenone (1µM).  

 

Respiration by permeabilized HepG2 cells and isolated mitochondria 

The activity of specific enzyme complexes of the respiratory chain was analyzed using 

an Oxygraph-2k high-resolution respirometer equipped with DatLab software 

(Oroboros Instruments, Innsbruck, Austria). Freshly isolated rat liver mitochondria or 

HepG2 cells were suspended in MiR06 (mitochondrial respiration medium containing 

0.5mM EGTA, 3mM MgCl2, 60mM K-lactobionate, 20mM taurine, 10mM KH2PO4, 

20mM HEPES, 110mM sucrose, 1 g/L fatty acid-free bovine serum albumin (BSA), and 

280 U/ml catalase, pH 7.1) and transferred to the pre-calibrated oxygraph chambers. 

Activities of complexes I and II were assessed in isolated rat liver mitochondria using L-

glutamate/malate (10mM and 2mM, respectively) as substrates, followed by the 

addition of adenosine diphosphate (ADP, 2.5mM) and succinate/rotenone (10mM and 

0.5µM, respectively). The oxidative leak, a measure for uncoupling, was determined by 

assessing the residual oxygen consumption after addition of oligomycin (1µM). 

Uncoupling was achieved by the addition of FCCP (1µM). 

The activities of complexes I, II, III and IV were assessed in HepG2 cells permeabilized 

with digitonin (10µg/1 million cells). In a first run, complexes I and III were analyzed 

using L-glutamate/malate as substrate followed by the addition of ADP and the inhibitor 

rotenone. Afterwards, duroquinol (500µM, Tokyo Chemical Industry, Tokyo, Japan) 

was added to investigate complex III and inhibited with antimycin A (2.5µM). In a 

second run, complexes II and IV were analyzed using succinate/rotenone as substrate, 
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followed by the addition of ADP and the inhibitor antimycin A. Afterwards N,N,N’,N’- 

tetramethyl-p-phenylenediamine (TMPD)/ascorbate (0.5mM and 2mM, respectively) 

was added to investigate complex IV and inhibited with KCN (1mM). 

We confirmed the integrity of the outer mitochondrial membrane by showing the 

absence of a stimulatory effect of exogenous cytochrome c (10µM) on respiration. 

Respiration was expressed as oxygen consumption per mg protein. Protein 

concentrations were determined using the Pierce bicinchoninic acid (BCA) protein 

assay kit from Merck (Darmstadt, Germany). 

 

Mitochondrial membrane potential 

The mitochondrial membrane potential was determined as described by Kaufmann et 

al. [9] with some modifications. Freshly isolated rat liver mitochondria were washed 

with incubation buffer containing 137mM sodium chloride, 4.74mM potassium chloride, 

2.56mM calcium chloride, 1.18mM potassium phosphate, 1.18mM magnesium 

chloride, 10mM HEPES, and 1g/L glucose (pH 7.4). Then, mitochondria were 

incubated at 37°C in incubation buffer containing 0.5µl/ml [phenyl-3H]-

tetraphenylphosphonium bromide (40Ci/mmol, Anawa trading SA, Wangen, 

Switzerland). After 15min, the suspension was centrifuged and the mitochondrial pellet 

resuspended in fresh non-radioactive incubation buffer. Afterwards, mitochondria were 

treated with test substances for 1h at 37°C and centrifuged. After the incubation, 

radioactivity of the mitochondrial pellet was measured on a Packard 1900 TR liquid 

scintillation analyzer. 

 

Mitochondrial accumulation of reactive oxygen species 

HepG2 cells were stained with Hoechst 33342 trihydrochloride trihydrate (final 

concentration 20µg/ml DMEM, Invitrogen) for 30min at 37°C, followed by the addition 

of MitoSOX red (final concentration 5µM in DMEM, Invitrogen) and dronedarone (5µM, 

10µM, 20µM) or amiodarone (10µM, 20µM, 50µM). Real-time accumulation of 

superoxide was analyzed over 6h using a Cellomics ArrayScan VTI HCS Reader 

(Thermo scientific, Pittsburg, PA). 
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mRNA expression of superoxide dismutase 1 and superoxide dismutase 2 

The mRNA expression of SOD1 and SOD2 was assessed using real-time PCR as 

described previously [21]. HepG2 cells were treated for 24h and RNA was extracted 

and purified using the Qiagen RNeasy mini extraction kit (Qiagen, Hombrechtikon, 

Switzerland). The purity and quantity of RNA were evaluated with the NanoDrop 2000 

(Thermo Scientific, Wohlen, Switzerland) and cDNA was synthesized from 10µg RNA 

using the Qiagen omniscript system. The real-time PCR was performed in triplicate 

using SYBR green (Roche Diagnostics, Rotkreuz, Basel). We used primers specific for 

the cytosolic SOD1 (forward: 5’-TGGCCGATGTGTCTATTGAA-3’, reverse: 5’-

ACCTTTGCCCAAGTCATCTG-3’) and mitochondrial SOD2 (forward: 5’-

GGTTGTTCACGTAGGCCG-3’, reverse: 5’-CAGCAGGCAGCTGGCT-3’) and 

calculated relative quantities of specifically amplified cDNA with the comparative-

threshold cycle method. GAPDH was used as endogenous reference (forward: 5′- 

CATGGCCTTCCGTGTTCCTA-3′; reverse: 5′-CCTGCTTCACCACCTTCTTGA-3′) and 

no-template and no-reverse-transcription controls were used to exclude non-specific 

amplification [21]. 

 

Mitochondrial β-oxidation 

Metabolism of [1-14C] palmitic acid (60 mCi/mmol; PerkinElmer, Schwerzenbach, 

Switzerland) was assessed via the formation of 14C-acid–soluble β-oxidation products. 

Experiments were performed as previously described [9] with some modifications. 

Isolated rat liver mitochondria were incubated for 15min in the presence of the test 

compounds in assay buffer (200µM Na-palmitate, 0.1pCi/ml [1-14C] palmitic acid 

(60mCi/mmol), 70mM sucrose, 43mM KCl, 3.6mM MgCl2, 7.2mM KH2PO4, 36mM 

TRIS, 2mM ATP, 500µM L-carnitine, 150µM coenzyme A, 50mM acetoacetate, 170µM 

BSA essentially fatty acid free, pH 7.4) at 37°C in a thermomixer at 600 rpm 

(Eppendorf, Switzerland). HepG2 cells were permeabilized with digitonin (10µg/million 

cells) after drug exposure for 24 h and incubated for 1 h in the same assay buffer. The 

reactions were stopped by adding 400µl 20% perchloric acid, and samples were 

precipitated for 20min on ice before centrifugation (10,000 g, 2 min). Radioactivity was 

measured in the supernatant. 
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Intracellular lipid accumulation 

Experiments were performed as described by Donato et al. [22]. HepG2 cells were 

exposed for 24h to exogenous lipids (DMEM containing 62µM of a 2:1 mixture of oleate 

and palmitate). Cells were treated with toxicants in lipid-free medium for 24h and 

intracellular lipid accumulation was measured using BODIPY 493/503 (final 

concentration 3.75ng/ml), a non-polar derivative of the BODIPY fluorophore [22]. Cell 

suspensions were stained for 30min at 37°C in HBSS buffer in the dark, before 

examining by flow cytometry without any additional washing step. In order to exclude 

non-viable cells, propidium iodide was added and the analysis was restricted to live-cell 

populations. 

 

Statistical methods 

Data are given as the mean ± standard error of the mean (SEM) of at least three 

independent experiments. Statistical analyses were performed using GraphPad Prism 

5 (GraphPad Software, La Jolla, CA, US). One-way analysis of variance (ANOVA) was 

used for comparisons of more than two groups, followed by the comparisons between 

incubations containing toxicants and the control group using Dunnett’s posttest 

procedure. Differences between induction experiments were compared using two-way 

ANOVA followed by Bonferroni’s post hoc test. P-values <0.05 (*) or <0.01 (**) were 

considered significant. 

 

 

Results 

Cytotoxicity in primary human hepatocytes and HepG2 cells  

In primary human hepatocytes, dronedarone caused adenylate kinase release starting 

at a concentration of 20µM after treatment for 6 or 24h, whereas amiodarone was not 

toxic up to 100µM (Fig. 2A). In HepG2 cells, dronedarone and amiodarone were both 

toxic starting at 50 and 100µM, respectively (Fig. 2B). Intracellular ATP started to 

decrease at 20µM for both dronedarone and amiodarone after exposure for 6 or 24h, 

suggesting that mitochondria were affected before cytotoxicity could be demonstrated 

(Fig. 2C). CYP3A4 induction by rifampicin increased the cytotoxicity of both 100µM 

amiodarone (42%) and 20µM dronedarone (21%). Considering the only small increase 

in dronedarone-associated cytotoxicity with CYP3A4 induction, the following studies 

were carried out with the parent compounds only. 
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Figure 2. Cytotoxicity and effect on intracellular ATP content. Cytotoxicity was assessed using 

the Toxi-Light assay. A. Cytotoxicity in primary human hepatocytes after drug exposure for 6 or 

24h. B. Cytotoxicity in HepG2 cells after drug exposure for 6 or 24h. C. Intracellular ATP 

content in HepG2 cells expressed as a percentage of the values obtained for DMSO (control). 

D. Effect of pretreatment with rifampicin on cytotoxicity. Primary human hepatocytes were 

pretreated with rifampicin and then exposed to dronedarone or amiodarone for 24h. CYP 

induction by rifampicin was associated with a 21% increase in cytotoxicity for dronedarone and 

a 42% increase for amiodarone. If not indicated otherwise, cytotoxicity data are expressed as 

percent increase compared with DMSO control. Drone: dronedarone, Amio: amiodarone. Data 

represent the mean ± SEM of at least three independent experiments. *p<0.05 versus DMSO 

control. **p<0.01 versus DMSO control. 

 

 

Acute effects on isolated rat liver mitochondria 

Reduced cellular ATP content was compatible with impaired mitochondrial function, 

which has been reported previously for amiodarone [7, 10, 11]. As shown in Fig. 3A, 

both amiodarone and dronedarone reduced the membrane potential of isolated rat liver 

mitochondria, confirming this assumption. Both toxicants impaired concentration 

dependently the maximal function of the electron transport chain in the presence of 
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oligomycin and FCCP and acted as uncouplers of oxidative phosphorylation as 

evidenced by an increase of the respiratory leak in the presence of oligomycin (Fig. 3B 

and 3C). Further investigation of oxidative phosphorylation revealed a concentration-

dependent decrease of state 3 respiration in the presence of L-glutamate/malate by 

both toxicants (Fig. 4A and 4B). With succinate as substrate, the inhibition was less 

pronounced, showing only for amiodarone a significant inhibition of state 3 respiration 

at 50µM (Fig. 4A and 4B). 

 

 

      

Figure 3. Effect on membrane potential and oxidative metabolism of freshly isolated rat liver 

mitochondria. A. Mitochondria were labeled with [3H]-tetraphenylphosphonium bromide, and 

mitochondrial accumulation of radioactivity was determined. DMSO served as control and was 

set at 100%. B. and C. Acute effect of dronedarone and amiodarone on the respiratory leak 

(respiration in the presence of oligomycin) and maximal (FCCP-induced) respiration after acute 

drug exposure. Drone, dronedarone; Amio, amiodarone; Oligo, oligomycin. Data represent the 

mean ± SEM of at least three individual preparations. *p<0.05 versus control. **p<0.01 versus 

control. 
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Figure 4. Acute effect of dronedarone and amiodarone on oxidative metabolism of freshly 

isolated rat liver mitochondria. Glut/mal, glutamate/malate; Succ/rot, succinate/rotenone; Drone, 

dronedarone; Amio, amiodarone. Data represent the mean ± SEM. *p<0.05 versus control. 

**p<0.01 versus control. 

 

Subacute mitochondrial toxicity in HepG2 cells 

The oxygen consumption of intact HepG2 cells was assessed at drug concentrations 

that were not cytotoxic in previous experiments. Figures 5A and 5B show oxygen 

consumption of HepG2 cells after treatment with vehicle (DMSO), dronedarone (5µM, 

10µM) or amiodarone (5µM, 10µM) for 24h. A concentration of 5µM did not significantly 

decrease basal and maximal respiration for both drugs, whereas the higher 

concentration tested decreased basal and maximal (uncoupled) respiration for both 

drugs significantly (Fig. 5C). The respiratory leak after the addition of oligomycin was 

not increased by the toxicants (Fig. 5C), suggesting that dronedarone and amiodarone 

had no uncoupling effect in HepG2 cells exposed for 24h at these low concentrations. 

In order to investigate the mechanism of decreased oxygen consumption, the 

respiratory capacities through the complexes of the electron transport chain were 

analyzed using high-resolution respirometry. After exposure to 10µM dronedarone or 

amiodarone for 24h, the respiratory capacities through complexes I and II were 

decreased for both drugs (Fig. 5D).  

As expected from toxicants inhibiting complex I [23], mitochondrial superoxide 

accumulated in HepG2 cells when exposed to the toxicants (Fig. 6A and 6B). At the 

same time, mRNA expression of mitochondrial SOD2 was increased, whereas the 

expression of the cytoplasmic SOD1 remained unchanged (Fig. 6C), underscoring that 

dronedarone and amiodarone mainly affect mitochondria. 
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Figure 5. Subacute effect of dronedarone and amiodarone on oxidative metabolism of HepG2 

cells. A. and B. Oxygen consumption rate after 24 h exposure for dronedarone or amiodarone 

measured on the Seahorse XF24 analyzer. C. Basal respiration, oxidative leak, and maximal 

respiration after 24 h drug exposure measured on the Seahorse XF24 analyzer. D. Respiratory 

capacity through complexes I, II, III, and IV after 24 h drug exposure measured on the 

Oxygraph-2k high-resolution respirometer. Drone, dronedarone; Amio, amiodarone; Oligo, 

oligomycin. Data present the mean ± SEM. *p < 0.05, **p < 0.01 versus control. 
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Figure 6. Mitochondrial ROS production and SOD expression by HepG2 cells. A. and B. 

Mitochondrial ROS accumulation in the presence of dronedarone or amiodarone for 24 h. C. 

mRNA expression of SOD1, SOD2 in HepG2 cells after exposure to dronedarone or 

amiodarone for 24 h. Drone: dronedarone, Amio: amiodarone. Data present the mean ± SEM. 

*p<0.05, **p<0.01 versus control. 

 

 

Effect on mitochondrial β-oxidation and cellular accumulation of fatty acids 

Mitochondrial β-oxidation was monitored by the formation of acid-soluble β-oxidation 

products from palmitate in isolated rat liver mitochondria after acute exposure to 

dronedarone and amiodarone. Dronedarone started to inhibit β-oxidation by isolated rat 

liver mitochondria at 20µM and amiodarone at 100µM (Fig. 7A). In permeabilized 

HepG2 cells after 24h drug exposure, dronedarone started to inhibit mitochondrial β-

oxidation at 10µM and amiodarone at 20µM (Fig. 7B). As a consequence, intracellular 

lipid accumulation was significant after exposure to 20µM dronedarone or 50µM 

amiodarone for 24h. 
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Figure 7. Effect on mitochondrial β-oxidation and intracellular fat accumulation. A. Freshly 

isolated rat liver mitochondria were exposed to test compounds and acute inhibition of the rate 

of β-oxidation was determined. B. HepG2 cells were exposed to test compounds for 24 h and β-

oxidation was determined in permeabilized cells. C. Intracellular triglyceride accumulation in 

HepG2 cells after drug exposure for 24 h. Drone, dronedarone; Amio, amiodarone. Data 

present the mean ± SEM. *p<0.05 versus control. **p<0.01 versus control. 

 

 

Mechanisms of cell death in HepG2 cells 

In order to investigate the mechanism of cell death, externalization of 

phosphatidylserine was analyzed using Annexin V and disintegration of cell 

membranes with PI. Flow cytometric analysis of HepG2 cells revealed a progressive 

increase of early and late apoptotic cells with increasing concentrations of dronedarone 

or amiodarone (Fig. 8A). The activity of caspases 3/7, key mediators of apoptosis, was 

increased after treatment with 20µM dronedarone for 6 or 24h, and after treatment with 

50µM amiodarone for 24h (Fig. 8B). Furthermore, the release of cytochrome c from 

mitochondria was significant after 6 or 24h of incubation with 5µM dronedarone and 
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with 20µM or 5µM amiodarone, respectively (Fig. 8C). Mitochondrial release of 

cytochrome c is a marker of permeabilization of the mitochondrial outer membrane, 

activating the intrinsic apoptotic pathway [24]. 

 

 

Figure 8. Mechanisms of cell death. A. Annexin V binding and PI uptake by HepG2 cells which 

were exposed for 24 h to test compounds. The samples were analyzed using flow cytometry. 

Early apoptotic populations are stained only with annexin V and late apoptotic represent 

annexin V and PI double-stained populations, undergoing necrosis or later stages of apoptosis. 

Staurosporine was used as a positive control for apoptosis. Data are presented as percent cell 

count. B. Caspase 3/7 activity after drug exposure for 6 and 24 h, expressed as percent 

increase compared with DMSO control. C. Mitochondrial cytochrome c content after drug 

exposure for 6 and 24 h expressed as fluorescence intensity measured by flow cytometry. 

Stauro: staurosporine, Drone: dronedarone, Amio; amiodarone. Data represent the mean ± 

SEM of at least three independent experiments. *p<0.05 versus DMSO control **p<0.01 versus 

DMSO control. 
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Discussion 

Our investigations demonstrate that both dronedarone and amiodarone are uncouplers 

and inhibitors of the mitochondrial respiratory chain and also inhibit mitochondrial β-

oxidation. Furthermore, exposure to dronedarone and amiodarone was associated with 

cellular superoxide accumulation and lipid storage, eventually leading to apoptosis 

and/or necrosis. 

Both compounds tested were toxic for isolated liver mitochondria, primary human 

hepatocytes and HepG2 cells. They impaired mitochondrial function starting at 

concentrations between 10 and 20µM, whereas cytotoxicity was observed at higher 

concentrations, namely 20µM for dronedarone and 50µM for amiodarone. At 

therapeutic dosages, amiodarone reaches plasma concentrations in the range of 

approximately 2µM [25]. In liver, amiodarone concentrations are 10 to 20 times higher 

than in plasma [26], suggesting that the results of the current study are clinically 

relevant. This assumption is supported by the observation that in 104 patients treated 

with amiodarone and followed prospectively, 25 developed an increase in serum 

transaminases and 3 out of these 25 patients symptomatic liver injury [6]. For 

dronedarone, plasma concentrations reached at therapeutic dosages are in the range 

of 0.2µM [15], which is approximately 50 times lower than the lowest concentration 

where we started to observe mitochondrial toxicity. Dronedarone is almost completely 

absorbed and its bioavailability is only 15% [27], suggesting that the hepatic 

concentrations may be higher than in plasma. This may be even more so in patients 

with low hepatic CYP3A4 activity, in particular in patients treated concomitantly with 

CYP3A4 inhibitors, because dronedarone is metabolized mainly by CYP3A4 [15, 28]. 

Although dronedarone was at least as toxic as amiodarone in this study, slightly less 

patients appear to develop liver injury during treatment with dronedarone compared 

with amiodarone. In large clinical studies, between 0.6% and 13.6% of the patients 

treated with dronedarone have been reported to develop liver injury [29-31]. The large 

variation can be explained by different definitions of liver injury and by the patients 

included into the studies. No patient in these studies developed symptomatic liver 

injury. The apparently lower hepatic toxicity of dronedarone compared to amiodarone 

may at least partially be explained by the assumption that the tissue accumulation of 

dronedarone is less accentuated than for amiodarone due to the lower lipophilicity of 

dronedarone [27]. As a consequence, as discussed above, only specific patients may 

reach high enough hepatic concentrations which lead to hepatocyte damage. 

Our data suggest that the toxicity of dronedarone is mainly caused by the parent 

compound. In comparison to amiodarone, the N-dealkylated metabolites appear to play 
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a less important role for the toxicity (Fig. 2D). The question concerning the toxicity of 

the N-dealkylated metabolites is clinically important, because, as we have shown in an 

in vitro study for amiodarone, CYP3A4 induction is a risk factor for hepatotoxicity, since 

the N-dealkylated metabolites are even more hepatotoxic than amiodarone [11, 16]. 

For dronedarone, this question can only be answered accurately, however, when 

toxicological studies can be carried out with the corresponding N-dealkylated 

metabolites. 

The toxicity of dronedarone and amiodarone on the electron transport chain was quite 

similar. Both drugs inhibited complex I and uncoupled oxidative phosphorylation in 

isolated liver mitochondria in a concentration-dependent manner. Amiodarone inhibited 

also complex II, a finding observed for dronedarone only in HepG2 cells, but not in 

isolated rat liver mitochondria. For amiodarone, such findings have already been 

described in previous studies [7, 10, 11]. For dronedarone, they are not surprising, 

taking into account its structure with a benzofurane ring carrying a butyl side-chain. 

These structural properties have been described in a previous study from our 

laboratory as being sufficient for mitochondrial toxicity [9]. Importantly, the effects of 

both drugs on mitochondrial respiration were observed at lower concentrations than 

those required for cytotoxicity; taking into account the concentration-dependency, it is 

likely that mitochondrial toxicity is a major reason for the cytotoxicity of these 

compounds. In contrast to our study, Serviddio et al.[18] had not observed an inhibition 

of enzyme complexes of the electron transport chain in liver mitochondria isolated from 

rats treated with dronedarone. This discrepancy with our study may be explained by 

the observation that small molecules such as drugs can diffuse out of the mitochondria 

during the isolation procedure [32]. In our experiments, we used either isolated 

mitochondria which were exposed to a known drug concentration or permeabilized 

hepatocytes, in which the local environment of the mitochondria should not have 

changed much during the experimental procedures. Alternatively, the exposure in the 

study of Serviddio et al. [18] may have been lower than in our in vitro investigations. In 

their study, Serviddio et al. used a dosage of approximately 40mg dronedarone per kg 

body weight and they did not determine serum or tissue concentrations. 

Besides affecting the electron transport chain, dronedarone and amiodarone also 

efficiently inhibited mitochondrial β-oxidation. Steatosis during the treatment with 

amiodarone is well established [5, 13] and may be a result from impaired β-oxidation 

[8, 9]. A likely mechanism how amiodarone inhibits β-oxidation is by inhibiting carnitine 

palmitoyltransferase 1 [33], which is considered to be rate-limiting for β-oxidation. In 

contrast to amiodarone, the effects of dronedarone on the individual steps of β-

oxidation are currently not known. The inhibition of mitochondrial β-oxidation has 
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several consequences. As shown in the current and in previous investigations [32, 34], 

free fatty acids, acyl-CoAs and triglycerides accumulate and may be toxic in 

hepatocytes. Accumulating free fatty acids have been described to uncouple oxidative 

phosphorylation, increase ROS production and to induce mitochondrial permeability 

transition, eventually leading to apoptosis [35]. 

Both inhibition of the electron transport chain (especially complexes I and/or III) [23, 36] 

and inhibition of β-oxidation [9] are associated with increased mitochondrial production 

of ROS. In the presence of inhibitors of complex I or III, electrons may escape from the 

electron transport chain and react with molecular oxygen to form superoxide [36]. 

Under normal conditions, superoxide is degraded by intramitochondrial antioxidative 

systems such as glutathione peroxidase and superoxide dismutase [37, 38]. The 

observed increase of the mRNA expression of mitochondrial SOD2 after treatment with 

20µM dronedarone or 50µM amiodarone can therefore be regarded as a compensatory 

mechanism to counteract increased mitochondrial ROS production. The lacking 

increase of cytosolic SOD1 mRNA expression suggests that ROS production was 

primarily intramitochondrial. An increase of mitochondrial ROS production is a trigger 

for opening of the mitochondrial membrane permeability transition pore, which is 

associated with cytochrome c release into the cytoplasm and induction of apoptosis 

and/or necrosis [24]. Mitochondrial release of cytochrome c and apoptosis could clearly 

be demonstrated in our study. 

In conclusion, our investigations demonstrate that dronedarone inhibits the electron 

transport chain and β-oxidation and uncouples oxidative phosphorylation of liver 

mitochondria. Inhibition of complex I and of β-oxidation is associated with increased 

mitochondrial ROS production, which triggers mitochondrial membrane permeability 

transition and apoptosis. These findings may explain liver toxicity observed in 

predisposed patients.  
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Abstract 

Dronedarone is an amiodarone-like antiarrhythmic drug associated with severe liver 

injury. Since dronedarone inhibits the mitochondrial respiratory chain and β-oxidation in 

vitro, we hypothesized that mitochondrial toxicity may also explain dronedarone-

induced hepatotoxicity in vivo. We therefore studied hepatotoxicity of dronedarone 

(200mg/kg/day for 2 weeks or 400mg/kg/day for 1 week by intragastric gavage) in 

heterozygous juvenile visceral steatosis (jvs+/-) and wild-type mice. Jvs+/- mice have 

reduced carnitine stores and are sensitive for mitochondrial β-oxidation inhibitors. 

Treatment with dronedarone 200mg/kg/day had no effect on body weight, serum 

transaminases and bilirubin, and hepatic mitochondrial function in both wild-type and 

jvs+/- mice. In contrast, dronedarone 400mg/kg/day was associated with a 10 to 15% 

drop in body weight, and a 3 to 5-fold increase in transaminases and bilirubin in wild-

type mice and, more accentuated, in jvs+/- mice. In vivo metabolism of intraperitoneal 
14C-palmitate was impaired in wild-type, and, more accentuated, in jvs+/- mice treated 

with 400mg/kg/day dronedarone compared to vehicle-treated mice. Impaired β-

oxidation was also found in isolated mitochondria ex vivo. A likely explanation for these 

findings was a reduced activity of carnitine palmitoyltransferase 1a in mitochondria 

from dronedarone-treated mice. In contrast, dronedarone did not affect the activity of 

the respiratory chain ex vivo. 

We conclude that dronedarone inhibits mitochondrial β-oxidation in and ex vivo, but not 

the respiratory chain. Jvs+/- mice appear to be more sensitive to the effects of 

dronedarone on mitochondrial β-oxidation than wild-type mice. The results suggest that 

inhibition of mitochondrial β-oxidation is an important mechanism of hepatotoxicity 

associated with dronedarone. 
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Introduction 

Dronedarone, a structural analogue of amiodarone, was introduced as a new 

antiarrhythmic drug for the treatment of atrial fibrillation or flutter in the year 2009. 

Amiodarone is a well characterized hepatic toxicant which causes symptoms that 

range from benign increases in transaminases to potentially fatal hepatitis and cirrhosis 

[1]. Although dronedarone has been claimed to possess an improved hepatic safety 

profile compared to amiodarone, only shortly after its introduction, two cases of severe 

liver injury requiring emergency liver transplantation have been reported [2, 3]. These 

reports were followed by warnings by regulatory authorities about possible severe 

hepatotoxicity in patients treated with dronedarone. 

The underlying mechanisms of dronedarone-associated hepatotoxicity are currently not 

fully understood. Amiodarone is a well-known mitochondrial toxicant that inhibits both 

mitochondrial β-oxidation and oxidative phosphorylation [4-7]. In our previous in vitro 

study [8], we therefore compared dronedarone and amiodarone for their effects on 

mitochondrial function and found that dronedarone has at least the same potential as 

amiodarone to inhibit the respiratory chain complexes I and II and mitochondrial β-

oxidation. Furthermore, a study in rats performed by Serviddio et al. suggested that 

dronedarone is not a direct inhibitor of the mitochondrial respiratory chain in vivo [9]. 

We therefore hypothesized that inhibition of mitochondrial β-oxidation may play a more 

important role in the hepatotoxic potential of dronedarone in vivo. 

Since severe hepatotoxicity of dronedarone can be considered as an idiosyncratic 

reaction needing susceptibility factors for its manifestation [10], we decided to study the 

toxicity of dronedarone not only in wild-type mice, but also in mice with impaired β-

oxidation. Based on our previous experience with valproic acid [11], we choose jvs+/- 

mice as a model with impaired hepatic β-oxidation. Carnitine is an essential cofactor for 

hepatic β-oxidation [12] and jvs+/- mice have reduced plasma and tissue carnitine 

stores due to a mutation in the gene coding for OCTN2, the renal carnitine carrier [13]. 

Homozygous jvs-/- mice are characterized by liver steatosis and other features of 

impaired β-oxidation due to carnitine deficiency such as growth retardation and cardiac 

hypertrophy, and do not survive without carnitine supplementation [14, 15]. 

Heterozygous (jvs+/-) mice have carnitine plasma and tissue levels which are 

approximately half that of wild-type mice and can survive without carnitine 

supplementation [16]. 

The specific questions that we wanted to answer in our study were 1. is dronedarone 

hepatotoxic in vivo in mice, 2. if yes, which are the principle mechanisms and 3. are 

jvs+/- mice more sensitive to dronedarone than the corresponding wild-type mice. 
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Materials and methods 

Animals 

The experiments were performed with 9 to 12 weeks old male C57BL/6 (wild-type) or 

heterozygous juvenile visceral steatosis mice (jvs+/-). Jvs+/- mice were originally 

obtained from Prof. Masahisa Horiuchi (University of Kagoshima, Kagoshima, Japan). 

The genotype of the breeding pairs and offsprings was analyzed by a TaqMan allelic 

discrimination method as described previously [11]. Experiments were reviewed and 

accepted by the cantonal veterinary authority and were performed in agreement with 

the guidelines for care and use of laboratory animals. 

 

Study design and dronedarone administration 

Dronedarone was administered as a suspension in water-macrogol 400 (50:50 v/v) at a 

concentration of 20mg/ml by oral gavage. The 200mg/kg dronedarone dose was 

administered for 14 days once daily. The 400mg/kg dose was administered twice daily 

(every 12h 200mg/kg) for 7 days. 

Based on body surface area (BSA) conversion according to Reagan-Shaw et al. [17], 

the daily dose of 200mg/kg corresponds approximately to a human adult daily 

equivalent dose of 500mg/m2 (corresponding to 400mg twice-daily with a mean human 

adult BSA of 1.6m2). The animals received water and food ad libitum during the entire 

study, but were starved over night before sacrifice.  

 

Reagents 

Dronedarone HCl was extracted from commercially available tablets (Multaq®, Sanofi) 

from ReseaChem life science GmbH (Burgdorf, Switzerland). 1-14C palmitic acid was 

purchased from Perkin Elmer (Schwerzenbach, Switzerland), and L-(N-14C-methyl)-

carnitine, 1-14C palmitoylcarnitine, and palmitoyl-L-(N-14C-methyl)-carnitine from 

American Research Chemicals (Anawa, Wangen, Switzerland). All other chemicals 

used in this study were purchased from Sigma Aldrich (Buchs, Switzerland) if not 

indicated differently. 
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Characterization of the animals 

The animals were characterized by their body, liver, and heart weight. Mouse plasma 

was analyzed for the activity of alanine aminotransferase, total bilirubin and creatine 

kinase using routine biochemical tests. Plasma concentrations of carnitine and 

acetylcarnitine were determined with an established LC-MS/MS method as described 

previously [18]. Plasma β-hydroxybutyrate was analyzed using a commercially 

available colorimetric assay kit (Cayman, MI, USA). 

 

Histological analysis of liver tissue 

Liver samples were treated with 4% formaldehyde or frozen in isopentane. Staining 

with hematoxylin-eosin or immunohistochemistry for cleaved caspase-3 was performed 

as described previously on formaldehyde conserved liver samples [11]. Lipid 

accumulation was investigated by Oil red O staining and performed on isopentane 

frozen sections. Oil red O was freshly diluted (3:2 in distilled water) from a stock 

solution in isopropanol (0.5g in 100ml) and sections were incubated for 15min. After 

incubation, the slides were rinsed with 60% isopropanol, counterstained with 

hematoxylin and coverslipped in aqueous mountant. The stained sections were 

examined by light microscopy and investigated for pathological changes in the liver. 

 

mRNA expression 

RNA was extracted and purified using the Qiagen RNeasy mini extraction kit (Qiagen, 

Hombrechtikon, Switzerland) and RNA quality was evaluated with the NanoDrop 2000 

(Thermo Scientific, Wohlen, Switzerland). The Qiagen omniscript system was used to 

synthesize cDNA from 10µg RNA. The expression of mRNA was assessed using 

SYBR Green real-time PCR (Roche Diagnostics, Rotkreuz, Basel). We used primers 

specific for Bcl2 (forward: 5’-AGTACCTGAACCGGCATCTG-3’, reverse: 5’-

GGGGCCATATAGTTCCACAAA-3’) and Bax (forward: 5’-GTGAGCGGCTGCTTGTCT-

3’, reverse: 5’-GGTCCCGAAGTAGGAGAGGA-3’). Quantification was performed using 

the comparative-threshold cycle method. Beta actin (forward: 5’-

CATGGCCTTCCGTGTTCCTA-3’, reverse: 5’-CCTGCTTCACCACCTTCTTGA-3’) was 

used as endogenous reference.  
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Immunoblotting 

Expression of cleaved caspase-3 and CPT1a were checked by Western blotting using 

monoclonal antibodies (cleaved caspase-3 from Cell signaling technology, USA, and 

CPT1a from Abcam, UK). We homogenized frozen liver samples with a Micro-

dismembrator S (Sartorius, Göttingen, Germany) during 1min at 2000rpm, 

resuspended the tissue in protein extraction reagent (T-PER, Thermo scientific, 

Wohlen, Switzerland) containing a protease inhibitor cocktail (Roche AG, Basel, 

Switzerland) and collected the supernatant. We separated 20µg protein on a 

commercially available 4-12% gradient NuPAGE Bis-Tris gel (Invitrogen, CA, USA) in 

the presence of molecular weight standards (Gibco, Paisly, UK), transferred the 

proteins onto a polyvinylidene fluoride membrane, and probed with the specific 

antibodies. Appropriate secondary antibodies coupled to horseradish peroxidase were 

applied and chemiluminescence substrate (GE Healthcare, Buckinghamshire, UK) was 

used for quantification. Densitometric analysis was performed using ImageJ software 

(Bethesda, USA). 

 

In vivo metabolism of palmitate  

A trace amount of 1-14C palmitic acid (3 µCi/kg, 60 µCi/µmol) was diluted in thistle oil 

and administered i.p. at 0 min. The mice were placed in a cylindrical vessel attached to 

a vacuum pump and breath samples were collected over 100min. Exhaled 14CO2 was 

pulled through ethanol (to dry the exhaled breath) followed by a solution containing 4M 

ethanolamine in ethanol. The exhaled 14CO2 was quantified by liquid scintillation 

counting using a scintillation fluid for organic compounds (GE Healthcare, 

Buckinghamshire, UK) [11]. 

 

Isolation of liver mitochondria  

Fresh liver tissue was quickly removed and immersed in ice-cold isolation buffer 

(200mM mannitol, 50mM sucrose, 1mM Na4EDTA, 20mM HEPES, pH 7.4). Liver 

mitochondria were isolated by differential centrifugation as described previously [19]. 

The mitochondrial protein content was determined using the bicinchoninic acid protein 

assay reagent from Thermo Scientific (Wohlen, Switzerland). 
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Oxygen consumption and mitochondrial membrane potential  

Activities of complexes I and II of the respiratory chain were analyzed using an 

Oxygraph 2k high resolution respirometer equipped with DatLab software (Oroboros 

Instruments, Innsbruck, Austria). Freshly isolated liver mitochondria were resuspended 

in mitochondrial respiration medium MiR06 [8]. Complex I (NADH dehydrogenase) was 

assessed using L-glutamate and L-malate (10 and 2mM, respectively) as substrates, 

followed by the addition of ADP (2.5mM). Complex II (succinate dehydrogenase) was 

assessed using 10mM succinate as a substrate after having blocked complex I with 

0.5µM rotenone. The integrity of the outer mitochondrial membrane was assessed by 

showing the absence of a stimulatory effect of exogenous cytochrome c (10µM) on 

respiration. The mitochondrial membrane potential was assessed using the Oroboros 

2k-MultiSensor system (Oroboros Instruments) with an electrode selective for 

tetraphenylphosphonium (TPP) in the presence of succinate, rotenone and oligomycin 

(2.5µM). The membrane potential (∆ᴪ) was calculated using a TPP calibration curve 

(1µM to 3µM), and using a modified Nernst equation [20]. 

 

β-oxidation of palmitic acid  

Mitochondrial oxidation of 1-14C palmitic acid by freshly isolated liver mitochondria was 

assessed in the presence of saturating concentrations of cold palmitic acid and co-

substrates. The metabolism of 1-14C palmitic acid was quantified as the formation of 
14C-acid-soluble β-oxidation products. Isolated mouse liver mitochondria (250µg 

protein) were preincubated for 10min in 450µl assay buffer (70mM sucrose, 43mM KCl, 

3.6mM MgCl2, 7.2mM KH2PO4, 36mM Tris, 2mM ATP, 500µM L-carnitine, 150µM 

coenzyme A, 5mM acetoacetate, pH 7.4) at 37°C in a thermomixer at 600rpm 

(Eppendorf, Switzerland). The reaction was started by addition of 50µl of radioactive 

substrate mix containing 200µM Na-palmitate (final concentration), 25pCi [1-14C] 

palmitic acid, and 170µM BSA (fatty acid free). The reactions were stopped after 15min 

by adding 100µl 20% perchloric acid. After centrifugation (7000g, 2min), radioactivity 

was measured in the supernatant by liquid scintillation counting. 

 

Activity of carnitine palmitoyltransferase 1 

The activity of carnitine palmitoyltransferase (CPT) 1 was assessed by the formation of 

palmitoyl-14C-carnitine from palmitoyl-CoA and 14C-carnitine as prescribed previously 

[21] with some modifications. Mitochondria (250µg protein) were incubated for 10min in 
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450µl assay buffer (80mM KCl, 50mM MOPS, 10mg/ml BSA defatted, 5mM EGTA, 

25mM N-ethylmaleimide, pH 7.4) at 37°C in a thermomixer at 600rpm. The reaction 

was started by the addition of 50µl radioactive substrate mix containing L-carnitine 

(final concentration 400 µM), 25pCi 14C-L-carnitine and palmitoyl-CoA (final 

concentration 200 µM). The reaction was terminated after 10min by adding 100µl of 

concentrated HCl. The samples (600 µl) were transferred into an extraction vial, and 

1.4ml butanol-saturated distilled water and 1ml water-saturated n-butanol was added. 

The tubes were shaken for 10min at 200rpm and centrifuged at 2000rpm for 10min. 

The upper (butanol) phase was transferred into a new extraction tube containing 2ml of 

butanol-saturated water and the extraction repeated. Finally, the upper butanol-phase, 

containing the lipophilic palmitoyl-14C-L-carnitine, was separated and the radioactivity 

determined by liquid scintillation counting. 

 

Acute treatment of isolated liver mitochondria and activity of fatty acid 

metabolism 

Untreated freshly isolated C57BL/6 (wild-type) liver mitochondria were acutely exposed 

to dronedarone and amiodarone concentrations ranging between 10 to 100µM for 

10min at 37°C before starting the assays.  

The metabolism of 1-14C palmitic acid and 1-14C palmitoyl-L-carnitine were assessed 

as described above, but the assay buffer of palmitoyl-L-carnitine metabolism contained 

no L-carnitine (70mM sucrose, 43mM KCl, 3.6mM MgCl2, 7.2mM KH2PO4, 36mM Tris, 

2mM ATP, 150µM coenzyme A, 5mM acetoacetate, pH 7.4), and the reaction was 

started by the addition of a radioactive substrate mix containing palmitoyl-L-carnitine 

(200µM final assay concentration), containing 25pCi [1-14C] palmitoylcarnitine. 

The activity of the long-chain acyl-CoA synthetase (ACSL) was investigated by 

assessing the rate of 14C-palmitoyl-CoA formation as prescribed previously [22].  

The activity of carnitine palmitoyltransferase 2 (CPT2) was measured by the formation 

of 14C-carnitine from CoASH and palmitoyl-14C-carnitine. Mitochondria (250µg protein) 

were incubated for 10min in 450µl assay buffer (80mM KCl, 50mM MOPS, 10mg/ml 

BSA defatted, 1mM EGTA, pH 7.4) at 37°C in a thermomixer at 600rpm. The reaction 

was started by the addition of 50µl radioactive substrate mix containing CoASH (final 

concentration 2mM), malonyl-CoA (final concentration 200µM), palmitoyl-L-carnitine 

(final concentration 1mM), and 25pCi palmitoyl-14C-carnitine. The reactions were 

stopped after 5min by adding 100µl 20% perchloric acid. After centrifugation (7000g, 

2min), radioactivity was measured in the supernatant by liquid scintillation counting.  
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The activities of mitochondrial acyl-CoA dehydrogenases were determined 

spectrophotometrically at 37°C as described by Hoppel et al. [19]. Long-chain, 

medium-chain, and short-chain acyl-CoA dehydrogenase were assessed using 

palmitoyl-, octanoyl-, and butyryl-CoA (final concentrations 100, 50, and 50µM, 

respectively) as substrates. 

 

Statistical analysis 

Data are represented as mean ± standard error of the mean (SEM). Statistical 

analyses were performed using two-way analysis of variance (ANOVA) followed by a 

Bonferroni’s post test (GraphPad Prism 5, Graph Pad Software, Inc., San Diego, CA, 

USA). Comparisons of acute treatments between one control group and several 

treatment groups were performed by one-way ANOVA followed by Dunnett’s post test. 

Statistical significance is indicated as *p<0.05 or **p<0.01. 

 

Results 

Characterization of the animals 

A daily dose of 200mg/kg dronedarone for 14 days had no significant effect on the 

body weight, whereas 400mg/kg for 7 days was associated with a 10% drop in wild-

type and a 15% drop in jvs+/- mice body weight (Table 1). The food intake by mice 

treated with 400mg/kg dronedarone was decreased compared to vehicle-treated 

control mice, explaining the decrease in body weight. Liver and heart weight adjusted 

to body weight were not affected by treatment with dronedarone. 

Plasma activities of alanine aminotransferase (ALT) and creatine kinase (CK) as well 

as the plasma concentration of total bilirubin were not different from control mice in 

animals treated with 200mg/kg dronedarone per day (Table 2). In contrast, wild-type 

mice treated with 400mg/kg dronedarone had a 4-fold increase in ALT and a 3-fold 

increase in total bilirubin, and jvs+/- mice a 5-fold increase in ALT and a 4-fold increase 

in total bilirubin compared to vehicle-treated control mice. In contrast, plasma CK 

activity was not different from vehicle-treated control mice in mice treated with 

400mg/kg dronedarone. In comparison to wild-type mice, jvs+/- mice had significantly 

lower plasma free carnitine and acetylcarnitine concentrations, reflecting deficient renal 

carnitine reabsorption [13]. 
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Table 1. Animal and organ weights. The animal weight was recorded at start and end of the 

study, and organ weights were normalized to the body weight at study end. Wild-type and jvs+/- 

mice treated orally with 200mg/kg dronedarone (Drone) for 14 days or 400mg/kg for 7 days or 

vehicle control (Vehicle). Statistical differences were calculated with a two-way ANOVA followed 

by a Bonferroni post test. bw, body weight; nd, not determined. 

                             200 mg/kg/day                                                              400 mg/kg/day  

 
Wild-type  Jvs+/-  Wild-type  Jvs+/- 

 
Vehicle Drone  Vehicle Drone  Vehicle Drone  Vehicle Drone 

Body weight, start of study (g) 28.7 ± 0.3 27.8 ± 0.9  28.9 ± 0.9 28.0 ± 0.5  27.6 ± 1.3 27.7 ± 1.0  28.5 ± 1.2 27.5 ± 0.6 

Body weight, end of study (g) 29.8 ± 0.3 27.9 ± 0.8  30.0 ± 0.9 28.3 ± 0.8  27.6 ±1.1 24.7 ± 0.7*  28.9 ± 1.3 23.5 ± 0.7** 

Average food intake 
(g/animal/day) 

nd nd  nd nd  3.4 ± 0.2 2.4 ± 0.2**  3.5 ± 0.2 2.3 ± 0.2** 

Liver weight (mg/g bw) 34 ± 2 40 ± 2  38 ± 2 36 ± 1  39 ± 1 37 ± 1  41 ± 2 37 ± 1 

Heart weight (mg/ g bw) 4.7 ± 0.1 4.5 ± 0.1  4.5 ± 0.1 4.4 ± 0.1  4.3 ± 0.1 4.6 ± 0.2  4.3 ± 0.1 4.7 ± 0.2 

 

 
Table 2. Plasma parameters. Alanine transaminase (ALT), total bilirubin (bilirubin), creatine 

kinase (CK), free carnitine and acetylcarnitine were determined in mouse plasma. Statistical 

differences were calculated with a two-way ANOVA followed by a Bonferroni post test. *p<0.05, 

or **p<0.01 indicate difference between dronedarone treated mice in comparison to their 

respective controls. †p<0.05, or ††p<0.01 indicate difference between jvs+/- mice in comparison 

to wild-type mice. 

                            200 mg/kg/day                                                              400 mg/kg/day  

 
Wild-type  Jvs+/-  Wild-type  Jvs+/- 

 
Vehicle Drone  Vehicle Drone  Vehicle Drone  Vehicle Drone 

Alanine transaminase 
(U/L) 

17 ± 2 23 ± 2  18 ± 3 23 ± 2  21 ± 1 91 ± 24**  23 ± 2 109 ± 22** 

Bilirubin (µmol/L) 1.3 ± 0.2 1.1 ± 0.2  1.1 ± 0.3 1.3 ± 0.2  0.8 ± 0.1 2.3 ± 0.5**  0.8 ± 0.1 3.0 ± 0.4** 

Creatine kinase (U/L) 386 ± 161 552 ± 193  540 ± 115 644 ± 173  601 ± 84 448 ± 91  663 ± 147 1091 ± 400 

Free carnitine (µmol/L) 32.0 ± 3.1 26.3 ± 2.6  19.5 ± 2.2†† 19.9 ± 3.1†  28.4 ± 2.3 35.2 ± 2.3  19.2 ± 1.7†† 20.9 ± 2.1†† 

Acetylcarnitine (µmol/L) 12.9 ± 1.8 13.6 ± 2.3  6.0 ± 0.8† 8.5 ± 1.6  11.7 ± 1.1 13.5 ± 2.6  6.6. ± 0.7† 12.4 ± 1.9* 
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Histological changes in the liver 

Liver histology of wild-type and jvs+/- mice treated with 200mg/kg dronedarone per day 

was not different from the respective vehicle-treated control mice (data not shown). As 

shown in supplemental Fig. 1, haematoxylin-eosin stained liver sections of wild-type 

and jvs+/- mice treated with 400mg/kg dronedarone per day were negative for 

inflammation, necrosis or steatosis. In agreement with the serum transaminase activity, 

staining of hepatocytes for cleaved caspase 3 was increased in wild-type or jvs+/- mice 

treated with 400mg/kg dronedarone per day, suggesting apoptosis (Fig. 1A-D). This 

finding was confirmed by increased protein expression of cleaved caspase 3 (Fig. 1E) 

and an increased Bax/Bcl2 mRNA expression ratio in livers of mice treated with 

400mg/kg dronedarone per day (Fig. 1F). 

 

 

Figure 1. Assessment of hepatocyte apoptosis associated with dronedarone. A-D. Liver 

sections stained for cleaved caspase 3 of wild-type mice treated with vehicle (A) or dronedarone 

400mg/kg (B) and jvs+/- mice treated with vehicle (C) or dronedarone 400mg/kg (D). E. Cleaved 

caspase 3 assessed by Western blot. F. mRNA expression of Bax/Bcl2 in liver tissue. Statistical 

differences were calculated with a two-way ANOVA followed by a Bonferroni post test. 
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In vivo oxidation of palmitate  

Since our previous in vitro study has shown that hepatocellular fatty acid metabolism is 

impaired at dronedarone concentrations in the low µmolar range [8], we investigated 

hepatic metabolism of palmitate in vivo. The breakdown of an i.p. administered 1-14C 

palmitic acid tracer was analyzed by collecting 14CO2 breath samples over time. Wild-

type animals treated with 400mg/kg dronedarone per day had a significantly decreased 
14CO2 peak exhalation 30min after tracer injection compared to control mice (Fig. 2 and 

Table 3). In agreement with this finding, jvs+/- mice treated with 400mg/kg dronedarone 

per day not only had a numerically lower peak exhalation, but also a significantly 

slower 14CO2 production compared to vehicle-treated control mice (Fig. 2 and Table 3). 

Impaired metabolism of fatty acids was also reflected by a numerically lower serum β-

hydroxybutyrate concentration after overnight starvation in mice treated with 400mg/kg 

dronedarone per day (Fig 2 D). In contrast to these findings, fat accumulation in livers 

of wild-type or jvs+/- mice treated with 400mg/kg dronedarone per day could not be 

demonstrated by Oil red O staining of liver sections (Suppl. Fig. 2). 

 

 

Table 3. Quantitative results of in vivo metabolism of 1-14C palmitic acid. Wild-type and jvs+/- 

mice were given oral treatment with 400mg/kg/day dronedarone or vehicle for 7 days. 1-14C-

palmitic acid (3µCi/kg, 57.0mCi/mmol in thistle oil) was administered i.p. and exhaled 14CO2 was 

quantified over 100min. Statistical differences were calculated with a two-way ANOVA followed 

by a Bonferroni post test. 

 
                                       400 mg/kg/day 

 
Wild-type  Jvs+/-  

 
Vehicle Drone  Vehicle Drone  

Peak exhalation (percentage 
of injected dose/10 min) 

14.4 ± 0.7 11.2 ± 1.1*  12.3 ± 1.4 11.6 ± 1.0  

Tmax (min) 28 ± 2 29 ± 1  29 ± 1 39 ± 3 **  

AUC (10-100min) 580 ± 28 499 ± 46  512 ± 50 593 ± 44  
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Figure 2. In vivo metabolism of 1-14C palmitate and ketone bodies in plasma. A, B. Exhalation 

time curves of 14CO2 in wild-type (A) or jvs+/- mice (B) treated with vehicle or 400mg/kg 

dronedarone. Quantitative results of this experiment are shown in Table 3. C, D. β-

hydroxybutyrate plasma level in wild-type or jvs+/- mice treated with 200mg/kg (C) or 400mg/kg 

per day (D). Statistical differences were calculated with a two-way ANOVA followed by a 

Bonferroni post test. 

 

 

Metabolic function of intact liver mitochondria 

Dronedarone has been shown in vitro to be an inhibitor of both the respiratory chain 

complexes I and II and mitochondrial β-oxidation [8]. Since impaired hepatic fatty acid 

metabolism (as reflected by altered 14CO2 exhalation after i.p. administration of 14C-

palmitate) can be a consequence of a decreased function of both the activity of the 

respiratory chain or β-oxidation [12], we examined these pathways ex vivo in isolated 

liver mitochondria in more detail. Treatment with 200mg/kg or 400mg/kg dronedarone 

per day did neither impair the membrane potential, nor the activity of the respiratory 

chain complexes I and II of liver mitochondria isolated from wild-type or jvs+/- mice (Fig. 

3A,B and Suppl. Fig. 3A,B). The activity of mitochondrial β-oxidation of 1-14C palmitic 

acid was not altered in liver mitochondria from mice treated with 200mg/kg 

A B 

C D 
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dronedarone per day (Fig. 3C), whereas the activity was decreased by 15% in liver 

mitochondria from wild-type or jvs+/- mice treated with 400mg/kg dronedarone per day 

compared to vehicle treated control mice (Fig. 3D). 

 

 

Figure 3. Characterization of isolated mouse liver mitochondria. A. Mitochondrial membrane 

potential in mitochondria from animals treated with 400mg/kg. B. Respiratory capacity through 

complexes I and II in mitochondria from animals treated with 400mg/kg. C, D. Metabolism of 1-
14C palmitic acid in mitochondria from animals treated with 200mg/kg (C) or 400mg/kg (D). 

Statistical differences were calculated with a two-way ANOVA followed by a Bonferroni post 

test. 

 

  

A B 

C D 
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In order to find out the reason for impaired liver mitochondrial β-oxidation in mice 

treated with 400mg/kg dronedarone per day, we assessed the function and protein 

expression of carnitine palmitoyltransferase 1a (CPT1a), the rate limiting enzyme of 

hepatic fatty acid β-oxidation [12]. As expected, CPT1a activity was not affected by a 

treatment of 200mg/kg dronedarone per day (Fig. 4A), but was decreased by 15% in 

liver mitochondria from mice treated with 400mg/kg dronedarone per day (Fig. 4B). In 

contrast to CPT1a activity, dronedarone treatment did not affect protein expression of 

CPT1a in livers of wild-type or jvs+/- mice treated with 400mg/kg dronedarone per day 

(Fig. 4C and D). 

 

 

Figure 4. Mechanism of inhibition of fatty acid metabolism. A, B. Activity of carntine 

palmitoyltransferase 1a (CPT1a) in mitochondria from animals treated with 200mg/kg (A) and 

400mg/kg (B). C, D. Protein expression of CPT1a in wild-type and jvs+/- mice treated with 

400mg/kg. Statistical differences were calculated with a two-way ANOVA followed by a 

Bonferroni post test. 
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Acute inhibition of fatty acid oxidation in liver mitochondria 

Mitochondrial β-oxidation of long-chain fatty acids (LCFAs, e.g. palmitic acid) is a 

complex process involving multiple enzymes. In order to localize the inhibition of fatty 

acid metabolism more precisely we investigated the effects of acute exposures to 

dronedarone on isolated liver mitochondria and compared the findings to amiodarone. 

The translocation of LCFAs into the mitochondrial matrix space depends on the 

transformation of the free fatty acid to the corresponding acylcarnitine (e.g. 

palmitoylcarnitine) (Fig. 5A). In freshly isolated mouse liver mitochondria exposed 

acutely to different concentrations of dronedarone or amiodarone, we found that both 

drugs inhibited palmitic acid (Fig. 5B) as well as palmitoylcarnitine metabolism (Fig. 

5C) starting at 50µM. These findings suggested that dronedarone and amiodarone 

inhibit not only the conversion of palmitate to palmitoylcarnitine, but also the 

downstream metabolism of palmitoylcarnitine (see Fig. 5A). We then assessed the 

activity of the enzymes involved in fatty acid transport and showed that CPT1a was 

inhibited by dronedarone and amiodarone starting at 50 µM (Fig. 5E), but not the long-

chain acyl-CoA synthetase (ACSL) (Fig. 5D) or CPT2 (Fig. 5F). Next, we assessed the 

activity of the first enzymes in the β-oxidation cycle, namely the acyl-CoA 

dehydrogenase, and found that amiodarone inhibited the long-chain dehydrogenase 

starting at 50 µM (Fig. 5G), whereas dronedarone had no inhibitory effect on acyl-CoA 

dehydrogenases (Fig. 5G,H,I). 
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Figure 5. Acute inhibition of fatty acid transport and metabolism. Mouse liver mitochondria were 

acutely exposed to different concentrations of dronedarone and amiodarone. A. Schematic 

representation of mitochondrial fatty acid translocation and metabolism. B, C. Acute inhibition of 

1-14C-palmitic acid (B) or 1-14C-palmitoylcarinitine (C) metabolism D. Activity of the long-chain 

acyl-CoA synthethase (ACSL). E. Activity of carnitine palmitoyltransferase 1a (CPT1a). F. Activity 

of carnitine palmitoyltransferase 2 (CPT2). G, H, I. Activities of long-chain, medium-chain, and short-

chain acyl-CoA dehydrogenases (LCAD, MCAD, and SCAD). Values represent activities 

expressed in nmol x min-1 x mg protein-1 of at least three independent experiments. Statistical 

differences were calculated with a one-way ANOVA followed by a Dunnett’s post test. 
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Discussion 

Our study shows that a daily exposure to 200mg/kg dronedarone for 14 days was well 

tolerated by wild-type and jvs+/- mice and not associated with hepatic injury. In contrast, 

administration of 400mg/kg dronedarone daily was associated with a decrease in food 

consumption and body weight, impaired palmitate metabolism and hepatotoxic effects 

such as increased plasma transaminases and bilirubin as well as hepatocyte apoptosis 

in wild-type and jvs+/- mice. 

We found that a daily exposure to 400mg/kg dronedarone inhibited hepatic β-oxidation 

of fatty acids in wild-type and jvs+/- mice both in vivo (impaired 14CO2 exhalation of i.p. 

administered 14C-palmitate) and ex vivo in liver mitochondria from mice treated with 

dronedarone. Our ex vivo results indicate that this reflects a direct inhibition of the 

mitochondrial β-oxidation pathway and not an indirect inhibition via an impaired activity 

of the respiratory chain. These results are in agreement with those reported by 

Serviddio et al., who also did not observe an inhibition of the respiratory chain in rats 

treated with dronedarone [9]. The findings are in contrast with our in vitro study 

showing that dronedarone impairs the activity of enzyme complex I and II of the 

respiratory chain starting at 20µM [8]. Since 98% of dronedarone is bound to albumin, 

it may be possible that differences in protein-binding between the in vivo and in vitro 

situation explain the lack of toxicity on the respiratory chain in the current study. 

The reduced activity of mitochondrial β-oxidation in the presence of dronedarone can 

be explained by inhibition of CPT1a, which represents the rate-limiting enzyme in fatty 

acid oxidation [23] and controls the access of long-chain fatty acids to the 

mitochondrial matrix. Amiodarone, the structural analogue of dronedarone, is known to 

inhibit both CPT1a [21], as well as the long-chain acyl-CoA dehydrogenase (LCAD) [7], 

the first enzyme of the β-oxidation cycle in the mitochondrial matrix. In acute drug 

exposure experiments on isolated liver mitochondria, we confirmed the inhibition of 

CPT1a and LCAD by amiodarone and we demonstrate the inhibition of CPT1a by 

dronedarone. Furthermore, we found that the inhibition of fatty acid metabolism by 

dronedarone is also detectable with palmitoylcarnitine as a substrate, suggesting that 

dronedarone inhibits an additional target downstream to CPT1a, which is not located at 

the level of acyl-CoA dehydrogenases (LCAD, MCAD or SCAD) and needs further 

investigation. Since the protein content of CPT1a was not affected by treatment with 

dronedarone, our data support a direct toxic effect of dronedarone on the function of 

CPT1a. This assumption is supported by the acute toxicity of dronedarone of 

mitochondrial β-oxidation shown in the current and our previous investigation [8]. 
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The inhibition of mitochondrial β-oxidation has several metabolic consequences for 

hepatocytes. First, it deprives hepatocytes of a major energy source, particularly during 

episodes of fasting. When hepatic mitochondrial fatty acid metabolism is severely 

inhibited, the impairment of β-oxidation causes hepatic accumulation of free fatty acids, 

which may be esterified into triglycerides and cause liver steatosis. Furthermore, the 

increasing pool of cellular free fatty acids may be associated with cytotoxic effects such 

as apoptosis and/or necrosis of hepatocytes [12, 24]. Amiodarone is a known inducer 

of steatosis in predisposed patients [25, 26] and also in mice [5]. In the current study, 

we did not observe a significant accumulation of lipids in the liver of wild-type or jvs+/- 

mice treated with 400mg/kg dronedarone. This observation may be a consequence of 

the decreased food intake and associated weight loss of the mice treated with 

400mg/kg dronedarone per day, since it is known that weight loss can reverse hepatic 

steatosis [27]. 

Idiosyncratic drug-induced liver injury is rare and affected patients must have 

susceptibility factors [10]. Our previous study on jvs+/- mice developing liver injury when 

treated with a subtoxic dose of valproic acid revealed that reduced carnitine body 

stores represent a risk factor for hepatotoxicity [11]. Jvs+/- mice, but not wild-type mice, 

showed increased transaminases, impaired hepatic mitochondrial β-oxidation, and 

hepatocellular damage. In the current study, dronedarone induced numerically more 

pronounced elevations in plasma ALT and bilirubin and a stronger inhibition of in vivo 

metabolism of palmitic acid in jvs+/- as compared to wild-type mice treated with 

400mg/kg daily. In isolated liver mitochondria, the impairment of palmitate metabolism 

and CPT1a activity was however comparable in mitochondria from wild-type and jvs+/- 

mice, since these assays were performed using saturating concentrations of all 

necessary cofactors, including L-carnitine. A comparison of the current with the former 

study [11] reveals, however, that carnitine deficiency is a more pronounced 

susceptibility factor for liver injury associated with valproate than with dronedarone. 

This may be due to differences in metabolic pathways and toxicological mechanisms of 

these drugs. While dronedarone is mainly metabolized by CYP3A4 through 

debutylation [28, 29], valproic acid is metabolized mainly by conjugation, including also 

conjugation with carnitine [30, 31]. Furthermore, oxidative metabolism of valproic acid 

is associated with toxic acidic metabolites (e.g. Δ2,4-diene valproic acid and other 

reactive metabolites, which can form carnitine esters and be excreted [32, 33]. 

Reduced hepatic carnitine stores may therefore be a more specific susceptibility factor 

for valproate-associated liver injury than for dronedarone, whose metabolism does not 

involve the production of carnitine conjugates. Based on the results of the current 

study, mice with impaired activity of CPT1a or enzymes involved in β-oxidation may be 
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a more suitable animal model than jvs+/- mice to investigate susceptibility factors for 

dronedarone-associated liver injury. 

In conclusion, our results demonstrate that dronedarone acts as an inhibitor of 

mitochondrial fatty acid β-oxidation both in vivo and in vitro. Jvs+/- mice appear to be 

more sensitive to the hepatotoxic effects of dronedarone than wild-type mice. Inhibition 

of hepatic mitochondrial fatty acid β-oxidation may be an important mechanism of 

dronedarone-associated hepatotoxicity in humans and underlying defects in hepatic β-

oxidation may represent susceptibility factors for this adverse drug reaction. 
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Supplemental Figures 

 

Suppl. Figure 1. Liver sections stained for haematoxylin-eosin. A-D. Liver sections stained for 

haematoxylin-eosin of wild-type animals treated with vehicle (A) or dronedarone 400mg/kg (B) 

and jvs+/- animals treated with vehicle (C) or dronedarone 400mg/kg (D). No gross pathological 

changes were detected in these sections. 
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Suppl. Figure 2. Liver sections stained for cellular lipids with Oil red O. A-D. Wild-type animals 

treated with vehicle (A) or dronedarone 400mg/kg (B) and jvs+/- animals treated with vehicle (C) 

or dronedarone 400mg/kg (D). No significant fat accumulation was detected in these sections. 
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Suppl. Figure 3. Characterization of isolated mouse liver mitochondria. A. Mitochondrial 

membrane potential in mitochondria from animals treated with 200mg/kg. B. Respiratory 

capacity through complexes I and II in mitochondria from animals treated with 200mg/kg. 

Statistical differences were calculated with a two-way ANOVA followed by a Bonferroni post 

test. 
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Abstract 

The aim of the study was to improve our understanding in the molecular mechanisms 

of benzbromarone associated liver toxicity. Benzbromarone is an uricosuric structurally 

related to amiodarone and is a known mitochondrial toxicant. HepG2 cells, a well 

characterized human hepatoma cell line lacking cytochrome P450 enzymes, were used 

for the experiments.  

Cytotoxicity occurred at 100µM benzbromarone following incubation for 24 or 48h, 

whereas intracellular ATP started to decrease at 25 to 50µM, suggesting mitochondrial 

dysfunction. Benzbromarone was associated with a significant decrease in the 

mitochondrial membrane potential starting at 50µM. Furthermore, benzbromarone 

induced mitochondrial uncoupling, decreased mitochondrial ATP turnover and 

decreased maximal respiration of HepG2 cells starting at 50µM following incubation for 

24h. This was accompanied by an increased lactate concentration in the cell culture 

supernatant, reflecting increased glycolysis. Investigation of the electron transport 

chain revealed a decreased activity of all relevant enzyme complexes. Treatment with 

benzbromarone was associated with increased cellular ROS production, which could 

be located to mitochondria using specific staining. Furthermore, benzbromarone 

inhibited palmitic acid metabolism due to a direct inhibition of the long-chain acyl CoA 

synthetase. Benzbromarone disrupted the mitochondrial network, leading to 

mitochondrial fragmentation and a decreased mitochondrial volume per cell. Cell death 

occurred by both apoptosis and necrosis.  

The study clearly demonstrates that benzbromarone not only affects the function of 

mitochondria in HepG2 cells, but is also associated with profound changes in 

mitochondrial structure which may be associated with apoptosis. 
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Introduction 

The liver represents an important target for drug-mediated toxicity. Accordingly, many 

drugs are associated with liver injury, which can be hepatocellular, cholestatic or mixed 

[1, 2]. Importantly, drug toxicity is one of the major causes for fulminant liver failure 

necessitating liver transplantation or leading to death [3, 4] and also for withdrawal of 

drugs from the market [3, 5]. The reason why the liver is a special target for drug 

toxicity is at least twofold. First, the liver is exposed to high drug concentrations after 

oral ingestion due to its location between the gut and the systemic circulation. Second, 

the liver is the major location of drug metabolism. Hepatic metabolism of drugs and 

other chemical compounds can be associated with the production of metabolites, which 

may be toxic to hepatocytes, and/or other cell types located in the liver [6, 7]. For most 

hepatotoxic drugs, the risk for drug-induced liver injury is small, non-predictable and 

does not occur in a clearly dose-dependent manner [2, 8]. 

Benzbromarone is an uricosuric used for the prophylaxis of acute gout attacks. For 

many years, benzbromarone was considered to be both effective and well-tolerated. 

However, after several reports of severe hepatotoxicity [9-11], the drug had to be 

withdrawn from the market in several countries, e.g. the USA, France and Switzerland. 

Histological findings in affected patients included microvesicular steatosis of liver [9], a 

finding compatible with inhibition of mitochondrial β-oxidation [12-14]. In a previous in 

vitro study using isolated rat liver mitochondria and rat hepatocytes, we have compared 

the hepatotoxicity associated with benzbromarone with that of amiodarone [15]. 

Relevant findings in this study were that benzbromarone uncouples hepatic 

mitochondria and inhibits the respiratory chain and β-oxidation.  

Mitochondrial function can be disturbed by chemical compounds via multiple ways. 

Important mechanisms include inhibition and/or uncoupling of oxidative 

phosphorylation and inhibition of specific metabolic pathways such as the urea cycle, 

fatty acid oxidation and/or ketone body production and the citric acid cycle [16]. While it 

was clear from our previous study that benzbromarone impairs certain mitochondrial 

functions such as the respiratory chain and β-oxidation [15], it is currently unclear 

whether the findings in rodent mitochondria and hepatocytes are also present in human 

liver cell lines, by which mechanisms benzbromarone disturbs mitochondria and how 

mitochondria react after exposure to benzbromarone. We therefore studied the effect of 

benzbromarone on mitochondrial functions and mitochondrial structure in HepG2 cells 

after 24h or 48h drug exposure. 
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Material and Methods 

Cell line and culture 

The human hepatoma cell line HepG2 was purchased from ATCC (Manassas, USA). 

Benzbromarone was purchased from Sigma-Aldrich (Buchs, Switzerland). Cells were 

kept at 37°C in a humidified 5% CO2 cell culture incubator and passaged according to 

the instructions provided by ATCC using trypsin. The cells were maintained in 

Dulbecco’s Modified Eagle Medium (DMEM, containing 1.0g/l glucose, 4mM L-

glutamine, and 1mM pyruvate, 10mM HEPES buffer) from Invitrogen (Basel, 

Switzerland), which was supplemented with 10% (v/v) heat-inactivated fetal calf serum. 

Protein concentrations of cells in culture plates were determined with the 

sulforhodamine B assay as described by Skehan et al. [17]. 

 

Isolation of mouse liver mitochondria 

Male C57BL/6 mice were kept in the animal facility of the University Hospital Basel 

(Basel, Switzerland) with food and water ad libitum. Animal procedures were performed 

in accordance with the institutional guidelines for the care and use of laboratory 

animals. Liver mitochondria were isolated by differential centrifugation according to the 

method described by Hoppel et al. [18] and the mitochondrial protein content was 

determined using the bicinchoninic acid protein assay reagent from Thermo Scientific 

(Wohlen, Switzerland). 

 

Cytotoxicity and intracellular ATP 

Cytotoxicity was assessed using the Toxilight® assay from Lonza (Basel, Switzerland) 

and carried out according the manufacturer’s manual. In brief, cells grown in 96-well 

plates were exposed to a range of benzbromarone concentrations for either 24 or 48h. 

All incubations contained the same amount of DMSO (0.1%, v:v), which has been 

shown not to be toxic to HepG2 cells [19]. The plate was centrifuged and 20µl of 

supernatant per well was transferred to a new 96 well plate. After addition of 100µl of 

Toxilight® solution and incubation in the dark at 37°C for 5min, luminescence was 

recorded using a Tecan M200 Pro Infinity plate reader (Tecan Traiding AG, Männedorf, 

Switzerland).  

The intracellular ATP content was determined using the CellTiterGlo® Luminescent cell 

viability assay from Lonza (Basel, Switzerland) and carried out according to the 

manufacturer’s manual. In brief, 100µl assay buffer was added to each 96-well 
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containing 100µl culture medium. After cell lysis at 37°C for 30min, the released ATP 

was detected by luminescence measurement. 

 

Assessment of apoptosis and mitochondrial membrane potential 

Apoptosis and necrosis of HepG2 cells was assessed by flow cytometry using annexin 

V/propidium iodide (PI) staining as described previously [20]. 

The mitochondrial membrane potential (Δψ) was determined using tetramethyl 

rhodamine methyl ester (TMRM, Invitrogen, Basel, Switzerland), a lipophilic cationic 

fluorescent probe which accumulates within mitochondria depending on their Δψ. 

Briefly, HepG2 cells were seeded in 24-well plates (200’000 cell/well) and treated with 

specified concentrations of benzbromarone for 24h. Cells were detached with trypsin-

EDTA (0.05%), washed with Dulbecco’s phosphate buffered saline (DPBS) and 

suspended in Hanks modified salt solution (HBSS). Cells were incubated with 10nM 

TMRM and Live/Dead® Near-IR dead cell stain kit (Invitrogen, Basel, Switzerland) for 

30min at 37°C in the dark. Afterwards, cells were analyzed by flow cytometry using a 

CyAn ADP cytometer (Beckman coulter, Marseille, France). Dead cells were excluded 

in all measurements by gating the live-cell population and data were analyzed using 

FlowJo 9.3.2 software (Tree Star, Ashland, OR, USA). Incubations exposed to the 

uncoupler carbonyl cyanide-4-(trifluoromethoxy)phenylhydrazone (FCCP, 10µM, 5min) 

served as a positive control. 

 

Oxygen consumption and activity of specific enzyme complexes of the 

respiratory chain 

Cellular respiration of intact cells was measured using a Seahorse XF24 analyzer 

(Seahorse Biosciences, North Billerica, MA, USA). Two days prior the assessment of 

oxygen consumption, HepG2 cells were cultured in V7 Seahorse XF 24-well cell culture 

microplates by seeding 40’000 cells in 250µl Dulbecco's Modified Eagle's Medium 

(DMEM) per well. 

Before assessing the respiratory capacities, the medium was replaced with 750µl 

unbuffered medium containing 4mM L-glutamate and 1mM pyruvate as described by 

the manufacturer of Seahorse. After equilibration of the cells to the unbuffered medium 

(30min at 37°C in a CO2-free incubator), the plates were transferred to the XF24 

analyzer. First, basal oxygen consumption rates (OCR) were measured, and then, 

sequentially 1µM oligomycin, 1µM FCCP and 1µM rotenone were injected for metabolic 
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characterization of the cells. The concentrations used in the final experiments had 

carefully been assessed in preliminary experiments. 

Activity of complexes I, II, III and IV were analyzed as prescribed previously using an 

Oxygraph-2k high resolution respirometer (Oroboros Instruments, Innsbruck, Austria) 

[20]. Lactate concentrations in the cell culture supernatant were analyzed with an 

enzymatic assay after protein precipitation with PCA 5% [21]. 

 

Production of reactive oxygen species 

Cellular reactive oxygen species (ROS) production was determined using 25µM 

dichlorofluorescein (DCF) as a probe as described previously [15].  

Generation of mitochondrial ROS was assessed using MitoSox Red (Invitrogen, Basel, 

Switzerland). HepG2 cells were seeded into black costar 96-well plates and treated the 

following day with benzbromarone, DMSO (negative control) or doxorubicin (positive 

control). Upon incubation for 24h, culture medium was removed and 5µM MitoSox 

dissolved in HBSS was added and the plate was incubated for 20min. Afterwards, cells 

were washed with HBSS and fluorescence was recorded (excitation 510nm, emission 

580nm) using a Tecan M200 Infinite Pro plate reader (Tecan Traiding AG, Männedorf, 

Switzerland). 

For confocal microscopy, 80’000 HepG2 cells were seeded into Lab-Tek® chamber 

slides (Thermo Scientific, Wohlen, Switzerland) containing 2ml cell culture medium. 

The following day, the cells were treated with various concentrations of 

benzbromarone, DMSO (negative control) or doxorubicin (positive control). After 24h, 

the cells were washed with HBSS and incubated with HBSS containing 5µM MitoSox 

for 20min. Afterwards, the cells were washed twice with HBSS buffer containing 1% 

BSA, and confocal imaging was performed without cell fixation. The ROS-dependent 

emitted light was recorded using Zeiss Software (Zen) and confocal microscopy (Zeiss, 

LSM 710, Feldbach, Switzerland). 

 

Oxidation of 1-14C palmitic acid or 1-14C palmitoylcarnitine 

Metabolism of 1-14C palmitic acid was assessed in isolated mouse liver mitochondria or 

permeabilized HepG2 cells via the formation of 14C-acid-soluble β-oxidation products 

as described previously [20]. Metabolism of 1-14C palmitoylcarnitine was assessed 

using a similar protocol with some modifications. Isolated liver mitochondria or HepG2 

cells were preincubated for 10min in 225µl assay buffer (70mM sucrose, 43mM KCl, 
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3.6mM MgCl2, 7.2mM KH2PO4, 36mM Tris, 10mg/ml BSA, 2mM ATP, 150µM 

coenzyme A, 5mM acetoacetate, pH 7.4) at 37°C in a thermomixer at 600rpm 

(Eppendorf, Schönenbuch, Switzerland). The assay buffer of HepG2 cells contained 

digitonin (10µg/million cells) in order to permeabilize the plasma membrane. The 

reaction was started by the addition of 25µl radioactive substrate mix containing L-

palmitoylcarnitine (200µM final assay concentration), and 25pCi [1-14C] 

palmitoylcarnitine. The reactions were stopped after 15min by adding 250µl 6% 

perchloric acid. After centrifugation (10’000rpm, 2min) the radioactivity was measured 

in the supernatant by liquid scintillation counting.  

 

Activity of ACSL and CPT1α 

The activity of the long-chain acyl-CoA synthetase (ACSL) was investigated by 

assessing the rate of 14C-palmitoyl-CoA formation as described by Reinartz et al. [22] 

with some modifications. HepG2 cells or isolated liver mitochondria were incubated in 

225µl assay buffer (70mM sucrose, 43mM KCl, 3.6mM MgCl2, 7.2mM KH2PO4, 36mM 

Tris, 1mM ATP, 200µM coenzyme A, 5mM acetoacetate, pH 7.4) at 37°C for 10min in 

a thermomixer at 600rpm. The assay buffer of HepG2 cells contained digitonin 

(10µg/million cells). Then, the reaction was started by the addition of 25µl radioactive 

substrate mix containing 200µM Na-palmitate (final assay concentration), 25pCi [1-14C] 

palmitic acid, and 170µM BSA (fatty acid free). The reaction was stopped after 4min by 

the addition of 1ml Dole’s medium (isopropanol/n-heptane/H2SO4 0.5M, v/v/v 40:10:1), 

0.4ml water and 0.6ml n-heptane. Next, each sample was transferred into an extraction 

vial and the upper n-heptane phase was renewed three times until the radioactivity was 

assessed in the water phase by liquid scintillation counting. 

The activity of carnitine palmitoyltransferase (CPT) 1α was assessed as the formation 

of palmitoyl-14C-carnitine from palmitoyl-CoA and 14C-carnitine as described by 

Kennedy et al. [23] with some modifications. HepG2 cells or isolated liver mitochondria 

were incubated for 10min in 225µl assay buffer (80mM KCl, 50mM MOPS, 10mg BSA 

defatted, 5mM EGTA, 25mM N-ethylmaleimide and water, pH 7.4) at 37°C on a 

thermomixer at 600rpm. The assay buffer for HepG2 cells contained digitonin 

(10µg/million cells) in order to permeabilize the plasma membrane. The reaction was 

started by the addition of 25µl radioactive substrate mix containing 400µM L-carnitine 

(final concentration), 12.5pCi 14C-L-carnitine and 200µM palmitoyl-CoA (final 

concentration). The reaction was terminated after 10min by adding 50µl of 

concentrated HCl. Next, the samples were transferred into an extraction vial, and 1.4ml 

n-butanol-saturated distilled water and 1ml water-saturated n-butanol was added. After 



 

 - 88 - 

extraction, the upper (butanol) phase was transferred in a new extraction tube 

containing 2ml of butanol-saturated water. Finally, the upper butanol-phase containing 

the lipophilic palmitoyl-14C-L-carnitine was removed and the radioactivity determined by 

liquid scintillation counting. 

 

mRNA expression 

Extraction of mRNA, synthesis of cDNA and real-time PCR were performed as 

described previously [24]. We used specific primers for SOD1 and SOD2 [20], for 

CPT1α (forward: 5’-GCCTCGTATGTGAGGCAAAA-3’, reverse: 5’-

TCATCAAGAAATGTCGCACG-3’) and ACSL (forward: 5’-

GGAGTGGGCTGCAGTGAC-3’, reverse: 5’-GGGCTTGCATTGTCCTGT-3’), and for 

mitochondrial fission and fusion markers [25]. Quantification was performed using the 

comparative-threshold cycle method. GAPDH served as endogenous reference 

(forward: 5’- CATGGCCTTCCGTGTTCCTA -3’, reverse: 5’-

CCTGCTTCACCACCTTCTTGA-3’). 

 

Mitochondrial DNA content 

DNA was extracted and purified using the Qiagen DNeasy blood and tissue kit 

(Qiagen, Hombrechtikon, Switzerland) following the manufacturer’s instructions. DNA 

was quantified spectrophotometrically at 260nm with the NanoDrop 2000 (Thermo 

Scientific, Wohlen, Switzerland). The mitochondrial and nuclear DNA content was 

analysed by quantitative real-time PCR (qRT-PCR) as described recently, with some 

modifications [26]. DNA (10ng/µl) was analyzed in triplicate using SYBR Green dye 

(Roche Diagnostics, Rotkreuz, Basel) by determining the ratio between one 

mitochondrial gene (human NADH-ubiquinone oxidoreductase chain 1, forward: 5’- 

ATGGCCAACCTCCTACTCCT -3’, reverse: 5’- CTACAACGTTGGGGCCTTT-3’) and 

two nuclear reference genes (human polymerase γ accessory subunit, forward: 5’-

GAGCTGTTGACGGAAAGGAG-3’, reverse: 5’-CAGAAGAGAATCCCGGCTAAG-3’, 

and beta-actin, forward: 5’-ACTCTTCCAGCCTTCCTTCC-3’, reverse: 5’-

GGCAGGACTTAGCTTCCACA-3’) using the classical comparative-threshold cycle 

method. 

 

Western blotting  

Proteins were resolved by SDS-PAGE using commercially available 4-12% NuPAGE 

Bis-Tris gels (Invitrogen, Basel, Switzerland) which were run as described by the 
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producer. Western blotting was performed as described previously [7]. Specific 

monoclonal antibodies displaying one specific band at the appropriate molecular weight 

were used for CPT1α (Abcam, Cambridge, UK) and ACSL (Cell signalling technology, 

Danvers, USA). The five mitochondrial respiratory chain complexes were assessed 

using the MitoProfile® Total OXPHOS rodent antibody cocktail (MitoSciences, Eugene, 

USA). Appropriate secondary antibodies coupled to horseradish peroxidase were 

applied in order to visualize detected proteins. Densitometric analysis was performed 

using ImageJ software (Bethesda, USA). 

 

Staining of mitochondrial network 

HepG2 cells were seeded into Lab-Tek® chamber slides (Thermo Scientific, Wohlen, 

Switzerland). The following day, cells were treated with different concentrations of 

benzbromarone for 24h. Subsequently, cells were fixed using 4% 

paraformaldehyde/DPBS, followed by permeabilization using 0.2% Triton X-100. 

Afterwards, the slides were blocked using 10% BSA/DPBS for 1h. Subsequently, the 

cells were incubated with anti-TOMM22 (Sigma-Aldrich, Buchs, Switzerland) in 10% 

BSA/DPBS at 4°C for at least 15h. Afterwards, the samples were washed with 10% 

BSA/DPBS and treated with a secondary antibody (Alexa anti-mouse 488 in 10% 

BSA/DPBS) for 1h, followed by wash steps with DPBS and incubation with 4',6-

diamidino-2-phenylindole (DAPI) dye for 5-10min. After a final wash step with DPBS, 

the chamber slides were used for confocal microscopy (Zeiss, LSM 710, Feldbach, 

Switzerland). 

 

Transmission electron microscopy 

HepG2 cells were cultured in 60cm2 dishes. After reaching about 50% confluency, the 

cells were exposed to either 12.5µM or 50µM benzbromarone or 0.1% DMSO (v:v) for 

24h. Subsequently, the cells were washed and fixed using a PBS solution with 3% 

paraformaldehyde and 0.5% glutaraldehyde for 1h. Afterwards, cells were collected by 

scraping, washed twice with PBS, treated with osmium tetroxide and dehydrated by 

ethanol. After an additional treatment with acetone, cells were embedded in epon and 

slices of 60 to 70nm (Ultracut microtome, Reichert-Jung, Germany) were obtained from 

these samples. Electron microscopy was performed using an FEI Morgagni 268D 

transmission electron microscope (Eindhoven, Netherlands). 
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Results 

Cytotoxicity and mechanism of cell death 

Benzbromarone caused release of adenylate kinase starting at 100µM and decreased 

intracellular ATP starting at 50µM after treatment for 24h in HepG2 cells (Fig. 1A and 

B). After treatment for 48h, cytotoxicity also started at 100µM, but the decrease in 

cellular ATP already at 25µM (Suppl. Fig. 1A and 1B). 

The observation that the cellular ATP content was starting to decrease at lower 

concentrations than the appearance of cytotoxicity suggested mitochondrial toxicity, a 

finding compatible with our previous report [15]. To prove involvement of mitochondria 

also in HepG2 cells, we determined the mitochondrial membrane potential, which is a 

marker of mitochondrial integrity and function. Similar to the intracellular ATP content, 

the fraction of depolarized cells started to increase at a benzbromarone concentration 

of 50µM after drug exposure for 24h (Fig. 1C). 

Impaired mitochondrial function can be associated with both apoptosis and/or necrosis 

[15]. As shown in Figure 1D, at the highest concentration investigated (100µM), 

treatment with benzbromarone was associated with an increase in annexin V positive 

cells, reflecting early apoptosis. This increase was also significant for annexin V and PI 

double stained populations, reflecting necrosis or later stages of apoptosis. 
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Figure 1. Cytotoxicity and mechanism of cell death. A. Cytotoxicity assessed by the release of 

adenylate kinase in HepG2 cells after 24h drug exposure. Data are expressed relative to control 

incubations containing 0.1% DMSO. B. Intracellular ATP content in HepG2 cells after 24h drug 

exposure. Data are expressed relative to control incubations containing 0.1% DMSO. C. 

Mitochondrial membrane potential assessed by means of TMRM fluorescent staining after 24h 

drug exposure. Samples were analyzed by flow cytometry and are presented as percent 

depolarized cells. Acute exposure to FCCP served as positive control. D. Annexin V binding and 

propidium iodide uptake in HepG2 cells after 24h drug exposure. Samples were analyzed using 

flow cytometry and presented as percent cell count. Early apoptotic populations are annexin V 

positive and late apoptotic or necrotic populations represent annexin V and PI double stained 

populations. Staurosporine was used as a positive control for apoptosis. Data represent the 

mean ± SEM of at least three independent experiments. *p<0.05 versus DMSO control. 

**p<0.01 versus DMSO control. 
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Effect on oxidative metabolism 

The observed decrease in intracellular ATP and membrane potential can be caused by 

an impairment of the respiratory chain [15]. Incubation for 24h with benzbromarone had 

no effect on basal respiration of HepG2 cells up to 100µM benzbromarone (data not 

shown). However, the ATP turnover rate (see Fig. 2A for explanation) decreased by 40 

to 50% starting at 50µM, whereas the leak respiration (indicating uncoupling) increased 

by the same extent at 50µM (Fig. 2B), explaining the observed decrease in the cellular 

ATP content. The maximal respiration (obtained by addition of the uncoupler FCCP) 

decreased by 60% starting at 100µM benzbromarone, demonstrating an impaired 

function of the electron transport chain. 

In order to investigate the mechanism of decreased ATP turnover and maximal 

respiration, the activity of the complexes of the electron transport chain were analyzed 

using specific substrates for each complex. As shown in Figure 2C, after 24h exposure 

of HepG2 cells to 50µM benzbromarone, the respiratory capacity was decreased for all 

complexes with a more pronounced inhibition at the level of complexes I and II. In 

addition, after 24h benzbromarone treatment, the lactate concentration in the cell 

culture supernatant started to increase at 50µM, reflecting a compensatory increase of 

glycolysis (Fig. 2D). 

In order to gain more information about the mechanism of the observed decrease in the 

activity of the enzyme complexes of the respiratory chain, Western blots of subunits of 

each enzyme complex were performed. As shown in suppl. Fig. 2, the protein content 

of selected subunits of enzyme complexes I to V of the respiratory chain revealed no 

change after benzbromarone treatment for up to 48h compared control incubations, 

compatible with a direct toxic effect of benzbromarone on the respiratory chain. 
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Figure 2. Function of the respiratory chain and adaptive responses in HepG2 cells. A. 

Schematic representation of ATP turnover, leak respiration, and maximal respiration. B. Oxygen 

consumption by HepG2 cells after 24h benzbromarone exposure measured by the Seahorse 

XF24 analyzer. Basal oxygen consumption rate by control incubations (0.1% DMSO) was 361 ± 

14 pmol x min-1. C. Respiratory capacity through complexes I, II, III, and IV after 24h 

benzbromarone treatment measured by the Oxygraph-2k high resolution respirometer. D. 

Lactate concentration in cell culture medium. Data represent the mean ± SEM of at least three 

independent experiments. *p<0.05 versus DMSO control. **p<0.01 versus DMSO control. 
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Effect on ROS production 

Inhibition of the respiratory chain can be associated with increased ROS production [7, 

15]. As shown in Figure 3A, treatment with benzbromarone was associated with an 

increased intracellular ROS accumulation in a concentration-dependent fashion, 

starting at 50µM and reaching statistical significance at 100µM.  

To verify mitochondrial accumulation of ROS, a MitoSox red assay to detect 

superoxide formation was performed. As shown in Fig. 3B and 3C, mitochondrial ROS 

generation was evident starting at 50µM benzbromarone. In parallel, mRNA expression 

of the mitochondrial superoxide dismutase 2 (SOD2) increased starting at 50µM 

benzbromarone, whereas the cytoplasmic SOD1 showed a tendency to decrease (Fig. 

3D). Increased expression of SOD2 as a consequence of mitochondrial ROS 

accumulation has been shown previously for dronedarone [20].  

 

 

Figure 3. ROS production and SOD expression by HepG2 cells. A. Cellular accumulation of 

ROS in HepG2 cells after 24h drug treatment determined using dichlorofluorescein (DCF). B. 

Mitochondrial accumulation of superoxide in HepG2 cells after exposure to benzbromarone for 

24h determined by staining with MitoSox red. C. Confocal microscopy of MitoSox red after 24h 

drug exposure. D. mRNA expression of SOD1 and SOD2 in HepG2 cells after exposure to 

benzbromarone for 24h. Data represent the mean ± SEM of at least three independent 

experiments. *p<0.05 versus DMSO control. **p<0.01 versus DMSO control. 
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Effect on mitochondrial β-oxidation  

Previous studies in isolated rat liver mitochondria have shown that not only the 

mitochondrial respiratory chain, but also mitochondrial β-oxidation can be impaired by 

benzbromarone [15]. In order to localize the inhibition of fatty acid metabolism more 

precisely, we investigated the degradation of palmitic acid and palmitoylcarnitine by 

measuring the formation of acid soluble β-oxidation products. Long-chain fatty acids 

must first be transformed to acylcarnitines (e.g. palmitoylcarinitine) in order to be 

translocated into the mitochondrial matrix. In permeabilized HepG2 cells treated for 24h 

with different concentrations of benzbromarone, we found that 1-14C-palmitic acid 

metabolism was inhibited starting at 50µM, whereas the metabolism of 1-14C-

palmitoylcarnitine remained unaffected up to 100µM benzbromarone (Fig. 4A). The 

findings in freshly isolated mouse liver mitochondria were qualitatively similar; 

benzbromarone started to inhibit 1-14C palmitic acid metabolism already at 2µM, 

whereas the metabolism of 1-14C-palmitoyl-carnitine remained unchanged (Fig. 4B).  

These findings suggested that benzbromarone inhibits the conversion of palmitate to 

palmitoylcarnitine, but not the metabolism of palmitoylcarnitine. The conversion of 

palmitate to palmitoylcarnitine involves two enzymes, the long-chain acyl-CoA 

synthetase (ACSL) and carnitine palmitoyltransferase 1α (CPT1α). We directly 

assessed the activity of these two enzymes in permeabilized HepG2 cells and found 

that ACSL was inhibited whereas the activity of CPT1α was not impaired by 

benzbromarone (Fig. 4C,D). 
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Figure 4. Effect on fatty acid metabolism in HepG2 cells and freshly isolated mouse liver 

mitochondria. A. HepG2 cells were exposed to benzbromarone for 24h and metabolism of 

palmitate or palmitoylcarnitine was determined in permeabilized cells. Basal β-oxidation activity 

of control incubations (0.1% DMSO) for palmitate or palmitoylcarnitine was 0.45 ± 0.03 or 0.49 ± 

0.05 nmol x min-1 x mg protein-1, respectively. B. Mouse liver mitochondria were exposed to 

benzbromarone and acute inhibition of palmitate and palmitoylcarnitine metabolism was 

determined. Basal β-oxidation activity of palmitate or palmitoylcarnitine was 4.93 ± 0.15 or 5.50 

± 0.20 nmol x min-1 x mg protein-1, respectively. C. HepG2 cells were exposed to 

benzbromarone for 24h and activities of CPT1α and ACSL were determined in permeabilized 

HepG2 cells. Basal activities of ASCL and CPT1α were 0.15 ± 0.01 and 0.37 ± 0.02 nmol x min-

1 x mg protein-1, respectively. D. Mouse liver mitochondria were exposed to benzbromarone and 

acute inhibition of the activity of ACSL and CPT1α was determined. Basal activities of ASCL 

and CPT1α were 1.71 ± 0.09 and 4.21 ± 0.21 nmol x min-1 x mg protein-1, respectively. Data 

represent the mean ± SEM of at least three independent experiments. *p<0.05 versus DMSO 

control. **p<0.01 versus DMSO control. 
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By inhibiting the long-chain acyl-CoA synthetase, benzbromarone is thus impairing the 

first step in mitochondrial β-oxidation of long-chain fatty acids. As shown in Fig. 5A, 

treatment with benzbromarone for 24h was associated with an increase in mRNA 

expression of CPT1α (but not ACSL) starting at 25µM. Analysis of protein expression 

revealed that treatment with benzbromarone up to 50µM and up to 48h did not affect 

ACSL expression (Fig. 5B and 5C), whereas expression of CPT1α was increased after 

incubation with 50µM benzbromarone for 48 h (Fig. 5B and 5D). 

 

 

Figure 5. Changes in mRNA and protein expression of CPT1α and ACSL. A. mRNA expression 

of ACSL and CPT1α after 24h benzbromarone treatment of HepG2 cells. B. Western blot of 

ACSL and CPT1α of HepG2 cells after 24h and 48h exposure to benzbromarone. C, D. 
Densitometric quantification of ACSL and CPT1α expression of three independent experiments. 

Data represent the mean ± SEM. *p<0.05 versus DMSO control. **p<0.01 versus DMSO 

control. 
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Mitochondrial morphology and mitochondrial content 

Mitochondrial morphology was assessed using confocal microscopy after labeling with 

anti-TOMM22 as well as with transmission electron microscopy (TEM). As shown in 

Figure 6A, mitochondria in HepG2 cells normally form a cellular network. After 

treatment with 12.5µM benzbromarone for 24h, this network was still intact. In contrast, 

treatment with 50µM benzbromarone for 24h disturbed the structure of the 

mitochondrial network, resulting in a granular appearance of the mitochondria. 

To further investigate these alterations in mitochondrial structure, high-resolution 

transmission electron microscopy (TEM) was used (Fig. 6B). As already observed 

using confocal microscopy, treatment with 12.5µM benzbromarone for 24h did not 

change mitochondrial structure compared to DMSO-treated control incubations. In 

contrast, treatment with 50µM benzbromarone for 24h was associated with a 

fragmentation of mitochondria and a loss of mitochondrial cristae. Morphometric 

analysis revealed a decrease of the mitochondrial volume per cell volume (Fig. 6C), 

which could be observed already after treatment with 12.5µM benzbromarone for 24h. 

In order to investigate possible reasons for this decrease in the mitochondrial volume 

fraction, we investigated the relative amount of mtDNA by real-time PCR as a marker 

for mitochondrial proliferation. As shown in Figure 6D, the ratio of mtDNA to nuclear 

DNA was not affected by treatment with benzbromarone. This is in agreement with the 

finding that the protein expression of the mitochondrially encoded subunit I of complex 

IV was not affected by benzbromarone treatment (Suppl. Fig. 2). In order to examine 

whether the observed changes in mitochondrial morphology may be associated with 

altered mRNA expression of genes involved in mitochondrial fission or fusion, we 

performed qRT-PCR of various genes. As shown in supplementary Fig. 3, we observed 

no significant differences in mRNA expression of genes involved in mitochondrial 

fusion (OPA1, Mfn1, Mfn2) or fission (Fis1, Drp1). 
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Figure 6. Effect of benzbromarone on mitochondrial morphology and mitochondrial content. A. 

Confocal microscopy of HepG2 cells stained with TOMM22 and treated for 24h with 

benzbromarone. B. Transmission electron microscopy (TEM) of HepG2 cells treated for 24h 

with benzbromarone. C. Volume fraction of mitochondria per HepG2 cell in TEM. D. 

Mitochondrial DNA content after 24h benzbromarone exposure in HepG2 cells. Data represent 

the mean ± SEM of at least three independent experiments. *p<0.05 versus DMSO control. 

**p<0.01 versus DMSO control. 
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Discussion 

The principle aims of the current investigation were to uncover the specific 

mechanisms by which benzbromarone impairs mitochondrial function and to 

investigate possible effects on mitochondrial morphology in HepG2 cells. As known 

from previous investigations in isolated rat liver mitochondria [15], benzbromarone is a 

mitochondrial toxicant primarily affecting mitochondrial β-oxidation and the function of 

the respiratory chain. We could confirm these findings and provide evidence for 

mitochondrial ROS accumulation as an additional factor responsible for the 

hepatocellular toxicity of benzbromarone. Importantly, we performed the current studies 

primarily in HepG2 cells, showing directly that benzbromarone not only affects isolated 

mitochondria but also mitochondria in a more complex environment of human origin. 

Benzbromarone impaired the function of the respiratory chain by uncoupling oxidative 

phosphorylation and by inhibiting complexes I to IV of the electron transport chain. This 

is in line with previous studies in rat liver mitochondria and isolated rat hepatocytes [15, 

27], where impaired function of the respiratory chain and uncoupling of oxidative 

phosphorylation have also been described. From these early studies it is known that 

benzbromarone exerts an acute effect on the function of the respiratory chain. The 

current study is in agreement with these findings since exposure of HepG2 cells for up 

to 48h had no impact on the protein expression of subunits encoded by mitochondrial 

or nuclear DNA of the enzyme complexes of the respiratory chain. It is therefore most 

likely that benzbromarone directly inhibits the flow of electrons between the enzyme 

complexes of the respiratory chain. This may also be true for uncoupling of oxidative 

phosphorylation, since uncoupling was also described as an acute effect in our 

previous study [15]. Benzbromarone has a phenolic structure and is therefore a weak 

acid, possibly explaining the uncoupling effect of this compound. 

 

Inhibition of the respiratory chain and uncoupling of oxidative phosphorylation are both 

associated with impaired mitochondrial ATP synthesis. In this situation, cells try to 

prevent a drop in intracellular ATP levels by increasing glycolysis. Since lactate is the 

end product of glycolysis, this was true also for the HepG2 cells exposed to 

benzbromarone (Fig. 2D), convincingly demonstrating the metabolic consequences of 

the inhibition of oxidative phosphorylation. 

  



 

 - 101 - 

Impaired activity of the electron transport chain is usually associated with increased 

mitochondrial ROS production [15, 20]. In the current study, we showed that ROS 

accumulation is increased in mitochondria of HepG2 cells treated with benzbromarone. 

The observed ROS accumulation was associated with an increased mRNA expression 

of SOD2, a mitochondrial enzyme responsible for superoxide anion degradation [28]. 

Taking into account that we recently reported similar findings in HepG2 cells exposed 

to dronedarone, which is also associated with mitochondrial ROS accumulation, SOD2 

upregulation seems to be a common mechanism to counteract mitochondrial ROS 

accumulation [20]. Importantly, mitochondrial ROS accumulation can be associated 

with apoptosis and/or necrosis, depending on the ATP content of the cells [29, 30]. 

Mitochondrial ROS accumulation is therefore a possible mechanism for hepatocyte 

death associated with benzbromarone exposure. 

In our previous study with isolated liver mitochondria we have shown that 

benzbromarone inhibits mitochondrial β-oxidation more potently than the respiratory 

chain [15]. In the current study with HepG2 cells, benzbromarone started to inhibit both 

β-oxidation and the respiratory chain at 50µM. Interestingly, in contrast to HepG2 cells, 

in isolated mouse liver mitochondria, inhibition of β-oxidation started already at 2µM. 

The discrepancy between mitochondria and HepG2 cells may be explained by a better 

accessibility of the mitochondrial matrix for benzbromarone for isolated mitochondria 

compared to HepG2 cells. In addition, the original incubation buffer of the HepG2 cells 

containing benzbromarone was removed and replaced by the assay buffer containing 

no benzbromarone before the cells were investigated. The intramitochondrial 

concentration during the investigations may therefore have been lower than the 

benzbromarone concentration originally added. 

In both assay systems, HepG2 cells and mouse liver mitochondria, inhibition of the 

long-chain acyl-CoA synthetase explains inhibition of β-oxidation. Interestingly, CPT1α, 

which is highly regulated and can therefore be considered as the rate-limiting enzyme 

of hepatic mitochondrial β-oxidation [31], showed an increased expression of both 

mRNA and protein, which was time- and concentration-dependent for benzbromarone 

exposure. Since benzbromarone impaired β-oxidation and the concentration of β-

oxidation substrates and intermediates increases when β-oxidation is inhibited [14], 

CPT1α induction may be explained by accumulation of such intermediates. In support 

of this hypothesis, increased hepatocellular concentration of free fatty acids have been 

described to be associated with CPT1α induction [32]. Since benzbromarone did not 

impair CPT1 activity, a direct effect of benzbromarone on CPT1α expression is less 

likely but cannot be excluded. 
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Impaired mitochondrial β-oxidation explains well the clinical finding of microvesicular 

steatosis in a patient with liver injury associated with benzbromarone exposure [9]. 

Microvesicular steatosis is a typical histological finding in animals [13, 14] and humans 

[12, 33] with impaired hepatic β-oxidation. 

Beside the exploration of the specific mechanisms how benzbromarone disturbs 

mitochondrial function in HepG2 cells, a second aim of the study was to investigate 

possible effects on mitochondrial morphology. Intact mitochondria perform active 

exchange of mitochondrial DNA and proteins through mutual interaction. Consequently, 

tight mitochondrial networks are formed and a highly controlled fission to fusion 

balance is maintained [34, 35]. Mitochondrial impairment, for instance by treatment with 

mitochondrial toxicants, can disturb this balance [36, 37]. Interestingly, as shown in 

Figure 6A, we observed a decrease in mitochondrial interconnectivity in TOMM22-

stained HepG2 cells with increasing benzbromarone concentrations. The network 

structures gradually disappeared and were replaced by more granulated structures. 

This was also clearly visible on transmission electron microscopy images, where 

mitochondria appeared smaller with fewer cristae. Loss of the mitochondrial network 

structure with a granular appearance and formation of short, round mitochondria occurs 

in early apoptosis [38, 39], which is favoring mitochondrial fission over fusion. 

Furthermore, dissipation of the inner membrane potential was shown to inhibit 

mitochondrial fusion and may induce fragmentation of mitochondrial filaments [37]. The 

amount of mitochondrial DNA did not change, indicating that benzbromarone had no 

effect on mitochondrial DNA synthesis. 

Cell death occurred by both apoptosis and necrosis. As mentioned above, apoptosis 

can be induced by mitochondrial accumulation of ROS [30]. In addition, hepatocellular 

accumulation of fatty acids has also been described to be associated with apoptosis 

[40]. As described above, the development of apoptosis is most probably responsible 

for the destruction of the mitochondrial network associated with benzbromarone. 

Apoptosis is dependent on a high enough cellular ATP concentration, whereas cells 

with a too low ATP level undergo necrosis [29], which was also observed in HepG2 

cells treated with benzbromarone (Fig. 1D). 

A pharmacokinetic study in healthy volunteers has shown that peak plasma 

benzbromarone concentrations after a single dose of 100mg can reach 5 to 15µmol/L, 

depending on the CYP2C9 genotype [41]. This concentration is most likely also 

reached in the liver and is close to the concentrations associated with cytotoxicity in the 

current study. Interestingly, recently Kobayashi et al. [42] have shown that both the 

parent substance (benzbromarone) and 1’-OH-benzbromarone, which is formed by 
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CYP3A4 [43], are hepatotoxic. Since HepG2 cells do not contain CYP3A4 [7], a 

conversion to 1’-OH-benzbromarone can be excluded in the current studies. The 

molecular mechanism of the hepatocellular toxicity associated with 1’-OH-

benzbromarone has therefore to be investigated in future studies. 

In conclusion, our investigations show that benzbromarone is causing mitochondrial 

dysfunction in HepG2 cells already after 24h of exposure at clinically relevant 

concentrations. Benzbromarone is associated with uncoupling of oxidative 

phosphorylation, inhibition of the respiratory chain and impaired β-oxidation. Most of 

these effects can be explained by a direct toxic effect of benzbromarone, since they 

occur also with acute exposure. Benzbromarone induces mitochondrial ROS 

accumulation and breakdown of the mitochondrial network which are associated with 

the development of apoptosis and necrosis. 
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Supplemental Figures 

 

Suppl. Figure 1. Cytotoxicity and intracellular ATP. A. Cytotoxicity in HepG2 cells after drug 

exposure for 48 h assessed by the release of adenylate kinase. Data are expressed relative to 

control incubations containing 0.1% DMSO. B. Intracellular ATP content in HepG2 cells after 

drug exposure for 48h. Data are expressed relative to control incubations containing 0.1% 

DMSO. Data represent the mean ± SEM of at least three independent experiments. *p<0.05 

versus DMSO control. **p<0.01 versus DMSO control. 

 

            

Suppl. Figure 2. Protein expression of subunits of mitochondrial respiratory chain complexes. 

The protein expression of the five mitochondrial respiratory chain complexes was assessed by 

Western blotting using using the MitoProfile® Total OXPHOS antibody cocktail. 
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DMSO    BB 25 µM   BB 50 µM       DMSO    BB 25 µM   BB 50 µM 

48 h 

Complex I – subunit NDUFB8 

Complex II - subunit 30kDa 
Complex IV - subunit I 

Complex III - subunit core 2 
Complex V - subunit alpha 

Beta actin 
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Suppl. Figure 3. mRNA expression of mitochondrial fusion and fission markers. HepG2 cells 

were exposed for 24h with benzbromarone and mRNA of fission and fusion markers was 

quantified by RT-PCR. A. Markers involved in mitochondrial fusion, e.g. OPA1, Mfn1, Mfn2. B. 

Markers involved in mitochondrial fission, e.g. Fis1, Drp1. Data represent the mean ± SEM of at 

least three independent experiments. *p<0.05 versus DMSO control. **p<0.01 versus DMSO 

control. 

A B 
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General discussion 

 

Drug-induced liver injury is an important adverse drug reaction and a challenge for the 

pharmaceutical industry as well as for health care professionals. The reasons for the 

unique susceptibility of a few patients to idiosyncratic DILI are not completely 

understood, but mitochondrial dysfunction and reactive metabolite formation are 

believed to be major contributors [47]. Over the last years, drugs with mitochondrial 

liability have been withdrawn from the market (e.g. troglitazone, benzbromarone) or 

have been given warnings by drug agencies restricting their use (e.g. valproic acid, 

amiodarone, dronedarone) [3, 13, 97]. Numerous mitochondrial targets might be 

responsible for a metabolic failure, and often one drug impairs several mitochondrial 

targets [18].  

 

Molecular mechanisms of dronedarone-induced hepatotoxicity 

Previous studies of our laboratory have described that chemicals containing a 

benzofuran structure coupled to a p-hydroxybenzolring are prone to induce 

mitochondrial dysfunction [76, 77]. Since the chemical structure of dronedarone 

contains these structural properties, we hypothesized, that mitochondrial dysfunction 

might account for dronedarone-induced hepatotoxicity.  

The aim of our first study therefore was to understand the molecular mechanism of 

dronedarone-induced hepatotoxicity in vitro. Our investigations in isolated rat liver 

mitochondrial and HepG2 cells demonstrate, that similar to amiodarone, dronedarone 

inhibited the ETC and β-oxidation and uncoupled Ox/Phos. The mitochondrial 

dysfunction led to an accumulation of superoxide and intracellular lipids that might 

have triggered hepatocyte apoptosis. Reactive metabolites play an important role in 

amiodarone-induced hepatotoxicity, and previous studies have shown that N-

dealkylated metabolites of amiodarone are more hepatotoxic than the parent 

compound [78, 81]. Our data in primary human hepatocytes suggested that in the case 

of dronedarone mainly the parent compound caused the toxicity. In order to clearly 

address the question if reactive metabolites may play a role, we recently performed a 

toxicological study directly with the main N-dealkylated metabolite of dronedarone, 

desbutyl dronedarone, and found that the metabolite did not further increase 
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cytotoxicity in vitro (Felser et al., unpublished data). We thus conclude that 

dronedarone is, in contrast to amiodarone, most probably not associated with reactive 

metabolite formation. Since the effects on mitochondrial function were observed at pre-

cytotoxic concentrations and were clearly dose-dependent, it is likely that mitochondrial 

dysfunction is a major reason for dronedarone-associated hepatotoxicity in vitro. 

In our second study we investigated dronedarone-associated hepatotoxicity in wild-

type and jvs+/- mice, and exposed the animals to two different doses of dronedarone. 

Whereas the lower dose was not hepatotoxic, the higher induced apoptosis of 

hepatocytes. We found that dronedarone inhibited β-oxidation of 1-14C palmitic acid in 

vivo, as well as ex vivo in isolated liver mitochondria. In contrast, inhibition or 

uncoupling of Ox/Phos could not be demonstrated. These results are in agreement 

with a study performed by Serviddio et al., who did not observe inhibition of Ox/Phos in 

rats treated with dronedarone [88]. In order to fully uncover where the inhibition of fatty 

acid oxidation is located, further research is still required. We found that the rate-

limiting enzyme in fatty acid oxidation, CPT1a, was inhibited. In spite of this we also 

demonstrated that the acute inhibition of fatty acid oxidation could not be restored with 

palmitoylcarnitine as substrate, suggesting that an additional target downstream to 

CPT1a must be inhibited as well. Overall, the experiments show that inhibition of 

mitochondrial β-oxidation might play a leading role in dronedarone-induced 

hepatotoxicity in vivo.  

Taken together, the first two studies of the thesis have characterized a possible 

mechanism of dronedarone-induced hepatotoxicity in vitro and in vivo. We showed that 

dronedarone is a mitochondrial toxicant and that inhibition of mitochondrial β-oxidation 

is a major mechanism of liver toxicity associated with dronedarone. Hepatotoxicity 

caused by dronedarone can be fatal in rare cases, and our observations contribute to 

the understanding that patients with mitochondrial β-oxidation defects might be at risk 

of developing dronedarone-associated severe liver injury in the clinics. In order to 

validate susceptibility factors for dronedarone-associated hepatotoxicity, it would be 

interesting to test affected patients for genetic mitochondrial abnormalities [7]. Indeed, 

in the past years, a great progress has been made in the collection of biological 

samples from patients experiencing unexpected liver reactions in response to a given 

drug and novel observations are starting to emerge from their work [98, 99]. Such 

approaches will help to further enlarge our knowledge about idiosyncratic 

hepatotoxicity and identify new susceptibility factors of patients. 
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Animal models for idiosyncratic liver injuries – future directions 

Preclinical safety assessments are usually performed in young and healthy wild-type 

animals. However, idiosyncratic drug-induced liver injuries are rare, and affected 

patients have susceptibility factors [3, 7, 47, 100]. So far, only two models with pre-

existing mitochondrial alterations in liver and other tissues, namely SOD2+/- and jvs+/- 

mice, have been tested for their sensitivity towards drug-induced mitochondrial 

hepatotoxicity [58, 62, 66, 67]. In our study on dronedarone-associated hepatotoxicity 

in mice, elevations in plasma ALT and bilirubin, and inhibition of in vivo metabolism of 

palmitic acid were more accentuated in jvs+/- mice as compared to wild-type mice. 

However, the hepatotoxicity observed in our study was rather modest compared to the 

pronounced liver injuries that have been observed in some dronedarone-treated 

patients [86, 87].  

New models for underlying defects in hepatic β-oxidation that reflect clinical 

manifestations of mitochondrial dysfunction more faithfully are thus necessary [101]. 

An animal model that could be interesting to use are medium-chain acyl-CoA 

dehydrogenase (MCAD+/-) deficient mice [102]. This deficiency is the most frequent 

metabolic disorder of genetic origin among Caucasians [103, 104]. MCAD deficiency is 

inherited in an autosomal recessive manner and newborn screening for homozygous 

mutations of MCAD (MCAD-/-) is well-established [105, 106], since affected children 

would remain undiagnosed until an episode of increased energy demand and fasting 

occurs [107-109]. MCAD+/- are asymptomatic and so far, it has never been investigated 

whether the MCAD carrier state may be sufficient to increase the risk of DILI in patients 

receiving drugs that impair mitochondrial function [47]. Alternatively, another mouse 

model with partial carnitine palmitoyltransferase 1a deficiency (CPT1a+/-) might be 

interesting to test, especially for dronedarone-associated hepatotoxicity. Since CPT1 is 

a rate-limiting enzyme in fatty acid oxidation and highly regulated [30], it might 

represent a stronger bottleneck situation for inhibitors of fatty acid oxidation than 

MCAD+/-. This is underlined by the fact that homozygous knockout was lethal in early 

gestation, whereas the heterozygous phenotype resulted in a significant reduced 

CPT1a activity in liver (54.7% compared to wild-type activity) [110].  

In addition, also improved mouse models with underlying Ox/Phos dysfunction are 

necessary. A next approach could be to test models with direct impairment of the ETC 

[111, 112], such as for example a model with partial knockout of the mitochondrial 

transcription factor A (TFAM+/-). As explained earlier, the ETC complexes are 

composed of several subunits, which are encoded either by the mitochondrial 
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DNA or the nuclear DNA. The mitochondrial transcription machinery consists of a three 

proteins, namely the mitochondrial RNA polymerase, mitochondrial transcription factor 

A (TFAM) and mitochondrial transcription factor B2 and is essential for the biogenesis 

of 13 subunits of the respiratory chain complexes I, III, IV and V. Whereas a 

homozygous TFAM knockout is lethal in early gestation, heterozygous mice are born at 

normal frequency but have reduced levels of mitochondrial encoded ETC proteins 

[113] and could therefore be more susceptible for inhibitors of mitochondrial Ox/Phos. 

In conclusion, animal models with a higher susceptibility to drug-induced mitochondrial 

effects that reflect clinical manifestations of mitochondrial dysfunction more faithfully 

should be established. Further studies are needed to assess if any of the animal 

models mentioned above provide progress and hold promise for increasing the 

prediction and understanding of human mitochondrial dysfunction-mediated DILI. 

Furthermore, greater understanding of the mechanisms of DILI will help to develop 

more effective in vitro screening strategies [58]. 

 

Investigation of drug-induced mitochondrial dysfunction in 
vitro  

In the third project of the thesis we aimed to improve our understanding of the 

molecular mechanisms of benzbromarone associated liver toxicity in vitro. We found 

that benzbromarone inhibited the ETC and uncoupled Ox/Phos, which led to a 

compensatory increase in lactate and accumulation of superoxide. Furthermore, we 

found that benzbromarone inhibited mitochondrial β-oxidation, most probably at the 

level of the long-chain acyl-CoA synthetase, and we observed that benzbromarone not 

only impaired mitochondrial function in HepG2 cells, but also induced profound 

changes in mitochondrial morphology.  

Together with our first study on dronedarone-induced mitochondrial toxicity in vitro, we 

demonstrated that there are a plethora of possibilities how to demonstrate 

mitochondrial dysfunction in vitro. Although our approaches are useful to test specific 

hypotheses, not all of them might be applicable for routine high-throughput preclinical 

safety assessments in industry. The assessment of mitochondrial dysfunction during 

the lead discovery phase could for example be organized in a two-step approach [3]. In 

a first step a high-throughput screen for mitochondrial dysfunction could be preformed 

and if mitochondrial liability would be identified in a lead structure of interest, in a 
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second step, more mechanistic studies would need to be performed. Investigations to 

set up and validate high-throughput assays for mitochondrial toxicity involve the use of 

oxygen-sensitive probes (fluorescent-based 96-well approach, Seahorse bioscience) 

[114, 115] or multiplexed assays in sensitive cell lines, which measure several 

endpoints such as cytotoxicity, ATP, ROS, membrane potential, etc. [51, 56, 116].  

But how severe does mitochondrial impairment have to be before it yields frank toxicity 

in vivo? As mentioned earlier, in vitro systems such as isolated mitochondria and 

tumor-derived cell lines, might over- or underreport drug effects, since they lack 

cytochrome P450 and do not take into account detoxifying mechanisms or formation of 

reactive metabolites. Furthermore, screening concentrations might often include a 

multiple of anticipated maximum serum concentration and not reflect physiological 

reality. In order to define the range of mitochondrial impairment that can be tolerated 

clinically, a retrospective analysis of correlations between adverse drug events in 

humans and mitochondrial toxicity in vitro would help to establish a guideline. Indeed, 

many beneficial drugs have mitochondrial liabilities, but they might not be clinically 

significant in terms of risk-to-benefit ratio if the dysfunction is merely modest. 

Therefore, finding a drug-induced mitochondrial liability does not necessarily lead to 

the abandoning of the drug, but to increased safety vigilance and investigation of the 

potency in mechanistic assays. 

In conclusion, although testing for mitochondrial dysfunction is not mandatory in 

preclinical safety assessments, pharmaceutical companies should consider 

systematically investigating mitochondrial dysfunction during the routine screening for 

preclinical safety in the early lead selection phase, in order to be aware of the 

hepatotoxic potential and to allow an early selection of safer compounds for the 

subsequent development process [3, 47].  
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Conclusion 

In summary, we provide important mechanisms of dronedarone-induced idiosyncratic 

hepatotoxicity in vitro and in vivo. Patients with mitochondrial β-oxidation defects might 

be at risk of developing dronedarone-associated severe liver injury. However, a reliable 

preclinical model to safely predict disruptors of mitochondrial β-oxidation is still missing. 

In addition, we have shown that benzbromarone induced mitochondrial dysfunction and 

structural changes in the mitochondrial network in vitro. Further studies are still 

necessary to investigate whether these findings are relevant for benzbromarone-

induced hepatotoxicity in vivo. Over all, this thesis contributes to our knowledge of how 

dronedarone and other mitochondrial disruptors cause toxicity, provides evidence that 

mitochondrial testing is important in preclinical research and shows that the area of 

idiosyncratic drug reactions still needs intense research in order to improve preclinical 

predictivity. 

 

  



 - 115 - 

References 

1. Ghabril, M., N. Chalasani, and E. Bjornsson, Drug-induced liver injury: a clinical 
update. Curr Opin Gastroenterol, 2010. 26(3): p. 222-6. 

2. Larrey, D., Epidemiology and individual susceptibility to adverse drug reactions 
affecting the liver. Semin Liver Dis, 2002. 22(2): p. 145-55. 

3. Dykens, J.A. and Y. Will, The significance of mitochondrial toxicity testing in drug 
development. Drug Discov Today, 2007. 12(17-18): p. 777-85. 

4. Lammert, C., et al., Oral medications with significant hepatic metabolism at 
higher risk for hepatic adverse events. Hepatology, 2010. 51(2): p. 615-20. 

5. Navarro, V.J. and J.R. Senior, Drug-related hepatotoxicity. N Engl J Med, 2006. 
354(7): p. 731-9. 

6. Temple, R., Hy's law: predicting serious hepatotoxicity. Pharmacoepidemiol Drug 
Saf, 2006. 15(4): p. 241-3. 

7. Tujios, S. and R.J. Fontana, Mechanisms of drug-induced liver injury: from 
bedside to bench. Nat Rev Gastroenterol Hepatol, 2011. 8(4): p. 202-11. 

8. Begriche, K., et al., Drug-induced toxicity on mitochondria and lipid metabolism: 
mechanistic diversity and deleterious consequences for the liver. J Hepatol, 
2011. 54(4): p. 773-94. 

9. Shaw, P.J., P.E. Ganey, and R.A. Roth, Idiosyncratic drug-induced liver injury 
and the role of inflammatory stress with an emphasis on an animal model of 
trovafloxacin hepatotoxicity. Toxicol Sci, 2010. 118(1): p. 7-18. 

10. Walgren, J.L., M.D. Mitchell, and D.C. Thompson, Role of metabolism in drug-
induced idiosyncratic hepatotoxicity. Crit Rev Toxicol, 2005. 35(4): p. 325-61. 

11. Hawkins, M.T. and J.H. Lewis, Latest advances in predicting DILI in human 
subjects: focus on biomarkers. Expert Opin Drug Metab Toxicol, 2012. 8(12): p. 
1521-30. 

12. Watanabe, I., et al., A study to survey susceptible genetic factors responsible for 
troglitazone-associated hepatotoxicity in Japanese patients with type 2 diabetes 
mellitus. Clin Pharmacol Ther, 2003. 73(5): p. 435-55. 

13. Pessayre, D., et al., Mitochondrial involvement in drug-induced liver injury. Handb 
Exp Pharmacol, 2010(196): p. 311-65. 

14. Krahenbuhl, S., et al., Mitochondrial diseases represent a risk factor for 
valproate-induced fulminant liver failure. Liver, 2000. 20(4): p. 346-8. 

15. Lam, C.W., et al., Mitochondrial myopathy, encephalopathy, lactic acidosis and 
stroke-like episodes (MELAS) triggered by valproate therapy. Eur J 



 - 116 - 

Pediatr, 1997. 156(7): p. 562-4. 

16. Kottlors, M., et al., Valproic acid triggers acute rhabdomyolysis in a patient with 
carnitine palmitoyltransferase type II deficiency. Neuromuscul Disord, 2001. 
11(8): p. 757-9. 

17. Njolstad, P.R., et al., Medium chain acyl-CoA dehydrogenase deficiency and fatal 
valproate toxicity. Pediatr Neurol, 1997. 16(2): p. 160-2. 

18. Wallace, K.B., Mitochondrial off targets of drug therapy. Trends Pharmacol Sci, 
2008. 29(7): p. 361-6. 

19. Wojtczak, L. and K. Zablocki, Basic mitochondrial physiology in cell viability and 
death. In: Dykens JA., Will Y., eds. Drug-induced mitochondrial dysfunction, 
2008. 1st ed. (Hoboken, New Jersey: John Wiley and Sons, Inc.): p. 3-36. 

20. Cuperus, R., et al., Fenretinide induces mitochondrial ROS and inhibits the 
mitochondrial respiratory chain in neuroblastoma. Cell Mol Life Sci, 2010. 67(5): 
p. 807-16. 

21. Goncharov, N.V., R.O. Jenkins, and A.S. Radilov, Toxicology of fluoroacetate: a 
review, with possible directions for therapy research. J Appl Toxicol, 2006. 26(2): 
p. 148-61. 

22. Balaban, R.S., S. Nemoto, and T. Finkel, Mitochondria, oxidants, and aging. Cell, 
2005. 120(4): p. 483-95. 

23. Liu, Y., G. Fiskum, and D. Schubert, Generation of reactive oxygen species by 
the mitochondrial electron transport chain. J Neurochem, 2002. 80(5): p. 780-7. 

24. Adam-Vizi, V. and C. Chinopoulos, Bioenergetics and the formation of 
mitochondrial reactive oxygen species. Trends Pharmacol Sci, 2006. 27(12): p. 
639-45. 

25. Li, Y., et al., Dilated cardiomyopathy and neonatal lethality in mutant mice lacking 
manganese superoxide dismutase. Nat Genet, 1995. 11(4): p. 376-81. 

26. Sena, L.A. and N.S. Chandel, Physiological roles of mitochondrial reactive 
oxygen species. Mol Cell, 2012. 48(2): p. 158-67. 

27. Adjeitey, C.N., et al., Mitochondrial uncoupling in skeletal muscle by UCP1 
augments energy expenditure and glutathione content while mitigating ROS 
production. Am J Physiol Endocrinol Metab, 2013. 305(3): p. E405-15. 

28. Fromenty, B. and D. Pessayre, Inhibition of mitochondrial beta-oxidation as a 
mechanism of hepatotoxicity. Pharmacol Ther, 1995. 67(1): p. 101-54. 

29. Bonnefont, J.P., et al., Carnitine palmitoyltransferases 1 and 2: biochemical, 
molecular and medical aspects. Mol Aspects Med, 2004. 25(5-6): p. 495-520. 

30. Kerner, J. and C. Hoppel, Fatty acid import into mitochondria. Biochim Biophys 



 - 117 - 

Acta, 2000. 1486(1): p. 1-17. 

31. Pessayre, D., et al., Central role of mitochondria in drug-induced liver injury. Drug 
Metab Rev, 2012. 44(1): p. 34-87. 

32. Fulgencio, J.P., et al., Troglitazone inhibits fatty acid oxidation and esterification, 
and gluconeogenesis in isolated hepatocytes from starved rats. Diabetes, 1996. 
45(11): p. 1556-62. 

33. Kennedy, J.A., S.A. Unger, and J.D. Horowitz, Inhibition of carnitine 
palmitoyltransferase-1 in rat heart and liver by perhexiline and amiodarone. 
Biochem Pharmacol, 1996. 52(2): p. 273-80. 

34. Ponchaut, S., F. van Hoof, and K. Veitch, In vitro effects of valproate and 
valproate metabolites on mitochondrial oxidations. Relevance of CoA 
sequestration to the observed inhibitions. Biochem Pharmacol, 1992. 43(11): p. 
2435-42. 

35. Millington, D.S., et al., Valproylcarnitine: a novel drug metabolite identified by fast 
atom bombardment and thermospray liquid chromatography-mass spectrometry. 
Clin Chim Acta, 1985. 145(1): p. 69-76. 

36. Letteron, P., et al., Glucocorticoids inhibit mitochondrial matrix acyl-CoA 
dehydrogenases and fatty acid beta-oxidation. Am J Physiol, 1997. 272(5 Pt 1): 
p. G1141-50. 

37. Rial, E., et al., Lipotoxicity, fatty acid uncoupling and mitochondrial carrier 
function. Biochim Biophys Acta, 2010. 1797(6-7): p. 800-6. 

38. Saudubray, J.M., et al., Recognition and management of fatty acid oxidation 
defects: a series of 107 patients. J Inherit Metab Dis, 1999. 22(4): p. 488-502. 

39. Han, D., et al., Regulation of drug-induced liver injury by signal transduction 
pathways: critical role of mitochondria. Trends Pharmacol Sci, 2013. 34(4): p. 
243-53. 

40. Sano, M. and K. Fukuda, Activation of mitochondrial biogenesis by hormesis. Circ 
Res, 2008. 103(11): p. 1191-3. 

41. St-Pierre, J., et al., Suppression of reactive oxygen species and 
neurodegeneration by the PGC-1 transcriptional coactivators. Cell, 2006. 127(2): 
p. 397-408. 

42. Han, D., et al., Dynamic adaptation of liver mitochondria to chronic alcohol 
feeding in mice: biogenesis, remodeling, and functional alterations. J Biol Chem, 
2012. 287(50): p. 42165-79. 

43. Gomes, L.C., G. Di Benedetto, and L. Scorrano, During autophagy mitochondria 
elongate, are spared from degradation and sustain cell viability. Nat Cell Biol, 
2011. 13(5): p. 589-98. 



 - 118 - 

44. Chen, H. and D.C. Chan, Emerging functions of mammalian mitochondrial fusion 
and fission. Hum Mol Genet, 2005. 14 Spec No. 2: p. R283-9. 

45. Kim, J.S., T. Qian, and J.J. Lemasters, Mitochondrial permeability transition in the 
switch from necrotic to apoptotic cell death in ischemic rat hepatocytes. 
Gastroenterology, 2003. 124(2): p. 494-503. 

46. Eguchi, Y., S. Shimizu, and Y. Tsujimoto, Intracellular ATP levels determine cell 
death fate by apoptosis or necrosis. Cancer Res, 1997. 57(10): p. 1835-40.47.
 Labbe, G., D. Pessayre, and B. Fromenty, Drug-induced liver injury through 
mitochondrial dysfunction: mechanisms and detection during preclinical safety 
studies. Fundam Clin Pharmacol, 2008. 22(4): p. 335-53. 

48. Brand, M.D. and D.G. Nicholls, Assessing mitochondrial dysfunction in cells. 
Biochem J, 2011. 435(2): p. 297-312. 

49. Hengstler, J.G., et al., Cryopreserved primary hepatocytes as a constantly 
available in vitro model for the evaluation of human and animal drug metabolism 
and enzyme induction. Drug Metab Rev, 2000. 32(1): p. 81-118. 

50. Castell, J.V., et al., Hepatocyte cell lines: their use, scope and limitations in drug 
metabolism studies. Expert Opin Drug Metab Toxicol, 2006. 2(2): p. 183-212. 

51. Marroquin, L.D., et al., Circumventing the Crabtree effect: replacing media 
glucose with galactose increases susceptibility of HepG2 cells to mitochondrial 
toxicants. Toxicol Sci, 2007. 97(2): p. 539-47. 

52. O'Brien, P.J., et al., High concordance of drug-induced human hepatotoxicity with 
in vitro cytotoxicity measured in a novel cell-based model using high content 
screening. Arch Toxicol, 2006. 80(9): p. 580-604. 

53. Diaz-Ruiz, R., M. Rigoulet, and A. Devin, The Warburg and Crabtree effects: On 
the origin of cancer cell energy metabolism and of yeast glucose repression. 
Biochim Biophys Acta, 2011. 1807(6): p. 568-76. 

54. Swiss, R. and Y. Will, Assessment of mitochondrial toxicity in HepG2 cells 
cultured in high-glucose- or galactose-containing media. Curr Protoc Toxicol, 
2011. Chapter 2: p. Unit2 20. 

55. Gomez-Lechon, M.J., et al., A human hepatocellular in vitro model to investigate 
steatosis. Chem Biol Interact, 2007. 165(2): p. 106-16. 

56. Donato, M.T., et al., Cytometric analysis for drug-induced steatosis in HepG2 
cells. Chem Biol Interact, 2009. 181(3): p. 417-23. 

57. Rossignol, R., et al., Energy substrate modulates mitochondrial structure and 
oxidative capacity in cancer cells. Cancer Res, 2004. 64(3): p. 985-93. 

58. Roth, R.A. and P.E. Ganey, Animal models of idiosyncratic drug-induced liver 
injury--current status. Crit Rev Toxicol, 2011. 41(9): p. 723-39. 



 - 119 - 

59. Boelsterli, U.A., Animal models of human disease in drug safety assessment. J 
Toxicol Sci, 2003. 28(3): p. 109-21. 

60. Boelsterli, U. and Y. Lee, Development of animal models of drug-induced 
mitochondrial toxicity. In: Dykens JA., Will Y., eds. Drug-induced mitochondrial 
dysfunction, 2008. 1st ed. (Hoboken, New Jersey: John Wiley and Sons, Inc.): p. 
539-554. 

61. Miele, L., et al., Hepatic mitochondrial beta-oxidation in patients with nonalcoholic 
steatohepatitis assessed by 13C-octanoate breath test. Am J Gastroenterol, 
2003. 98(10): p. 2335-6. 

62. Knapp, A.C., et al., Toxicity of valproic acid in mice with decreased plasma and 
tissue carnitine stores. J Pharmacol Exp Ther, 2008. 324(2): p. 568-75. 

63. Freneaux, E., et al., Stereoselective and nonstereoselective effects of ibuprofen 
enantiomers on mitochondrial beta-oxidation of fatty acids. J Pharmacol Exp 
Ther, 1990. 255(2): p. 529-35. 

64. Spaniol, M., et al., Development and characterization of an animal model of 
carnitine deficiency. Eur J Biochem, 2001. 268(6): p. 1876-87. 

65. Spaniol, M., et al., Mechanisms of liver steatosis in rats with systemic carnitine 
deficiency due to treatment with trimethylhydraziniumpropionate. J Lipid Res, 
2003. 44(1): p. 144-53. 

66. Ong, M.M., C. Latchoumycandane, and U.A. Boelsterli, Troglitazone-induced 
hepatic necrosis in an animal model of silent genetic mitochondrial abnormalities. 
Toxicol Sci, 2007. 97(1): p. 205-13. 

67. Lee, Y.H., et al., Troglitazone-induced hepatic mitochondrial proteome 
expression dynamics in heterozygous Sod2(+/-) mice: two-stage oxidative injury. 
Toxicol Appl Pharmacol, 2008. 231(1): p. 43-51. 

68. Huang, Y.S., et al., Genetic polymorphisms of manganese superoxide dismutase, 
NAD(P)H:quinone oxidoreductase, glutathione S-transferase M1 and T1, and the 
susceptibility to drug-induced liver injury. J Hepatol, 2007. 47(1): p. 128-34. 

69. Julian, D.G., et al., Randomised trial of effect of amiodarone on mortality in 
patients with left-ventricular dysfunction after recent myocardial infarction: 
EMIAT. European Myocardial Infarct Amiodarone Trial Investigators. Lancet, 
1997. 349(9053): p. 667-74. 

70. Morse, R.M., et al., Amiodarone-induced liver toxicity. Ann Intern Med, 1988. 
109(10): p. 838-40. 

71. Mason, J.W., Amiodarone. N Engl J Med, 1987. 316(8): p. 455-66. 

72. Stelfox, H.T., et al., Monitoring amiodarone's toxicities: recommendations, 
evidence, and clinical practice. Clin Pharmacol Ther, 2004. 75(1): p. 110-22. 



 - 120 - 

73. Lewis, J.H., et al., Histopathologic analysis of suspected amiodarone 
hepatotoxicity. Hum Pathol, 1990. 21(1): p. 59-67. 

74. Simon, J.B., et al., Amiodarone hepatotoxicity simulating alcoholic liver disease. 
N Engl J Med, 1984. 311(3): p. 167-72. 

75. Fromenty, B., et al., Dual effect of amiodarone on mitochondrial respiration. Initial 
protonophoric uncoupling effect followed by inhibition of the respiratory chain at 
the levels of complex I and complex II. J Pharmacol Exp Ther, 1990. 255(3): p. 
1377-84. 

76. Kaufmann, P., et al., Mechanisms of benzarone and benzbromarone-induced 
hepatic toxicity. Hepatology, 2005. 41(4): p. 925-35. 

77. Spaniol, M., et al., Toxicity of amiodarone and amiodarone analogues on isolated 
rat liver mitochondria. J Hepatol, 2001. 35(5): p. 628-36. 

78. Waldhauser, K.M., et al., Hepatocellular toxicity and pharmacological effect of 
amiodarone and amiodarone derivatives. J Pharmacol Exp Ther, 2006. 319(3): p. 
1413-23. 

79. Pirovino, M., et al., Amiodarone-induced hepatic phospholipidosis: correlation of 
morphological and biochemical findings in an animal model. Hepatology, 1988. 
8(3): p. 591-8. 

80. Fromenty, B., et al., Amiodarone inhibits the mitochondrial beta-oxidation of fatty 
acids and produces microvesicular steatosis of the liver in mice. J Pharmacol Exp 
Ther, 1990. 255(3): p. 1371-6. 

81. Zahno, A., et al., The role of CYP3A4 in amiodarone-associated toxicity on 
HepG2 cells. Biochem Pharmacol, 2011. 81(3): p. 432-41. 

82. Hoy, S.M. and S.J. Keam, Dronedarone. Drugs, 2009. 69(12): p. 1647-63. 

83. Dobrev, D. and S. Nattel, New antiarrhythmic drugs for treatment of atrial 
fibrillation. Lancet, 2010. 375(9721): p. 1212-23. 

84. Anonymous, In brief: FDA warning on dronedarone (Multaq). Med Lett Drugs 
Ther, 2011. 53(1359): p. 17. 

85. In brief: FDA warning on dronedarone (Multaq). Med Lett Drugs Ther, 2011. 
53(1359): p. 17. 

86. Joghetaei, N., et al., Acute liver failure associated with dronedarone. Circ 
Arrhythm Electrophysiol, 2011. 4(4): p. 592-3. 

87. Jahn, S., et al., Severe toxic hepatitis associated with dronedarone. Curr Drug 
Saf, 2013. 8(3): p. 201-2. 

88. Serviddio, G., et al., Mitochondrial oxidative stress and respiratory chain 
dysfunction account for liver toxicity during amiodarone but not dronedarone 



 - 121 - 

administration. Free Radic Biol Med, 2011. 51(12): p. 2234-42. 

89. Patel, C., G.X. Yan, and P.R. Kowey, Dronedarone. Circulation, 2009. 120(7): p. 
636-44. 

90. van der Klauw, M.M., et al., Hepatic injury caused by benzbromarone. J Hepatol, 
1994. 20(3): p. 376-9. 

91. Arai, M., et al., Fulminant hepatic failure associated with benzbromarone 
treatment: a case report. J Gastroenterol Hepatol, 2002. 17(5): p. 625-6. 

92. Wagayama, H., et al., Fatal fulminant hepatic failure associated with 
benzbromarone. J Hepatol, 2000. 32(5): p. 874. 

93. Haring, B., et al., Benzbromarone: a double-edged sword that cuts the liver? Eur 
J Gastroenterol Hepatol, 2013. 25(1): p. 119-21. 

94. Kramar, R. and M.M. Muller, Inhibition of enzymes of the internal mitochondrial 
membrane by benzbromarone. Experientia, 1973. 29(4): p. 391-2. 

95. Kobayashi, K., et al., Cytotoxic effects of benzbromarone and its 1'-hydroxy 
metabolite in human hepatocarcinoma FLC4 cells cultured on micro-space cell 
culture plates. Drug Metab Pharmacokinet, 2013. 28(3): p. 265-8. 

96. Kobayashi, K., et al., Identification of CYP isozymes involved in benzbromarone 
metabolism in human liver microsomes. Biopharm Drug Dispos, 2012. 33(8): p. 
466-73. 

97. Krahenbuhl, S., Mitochondria: important target for drug toxicity? J Hepatol, 2001. 
34(2): p. 334-6. 

98. Stewart, J.D., et al., Polymerase gamma gene POLG determines the risk of 
sodium valproate-induced liver toxicity. Hepatology, 2010. 52(5): p. 1791-6. 

99. Daly, A.K., et al., HLA-B*5701 genotype is a major determinant of drug-induced 
liver injury due to flucloxacillin. Nat Genet, 2009. 41(7): p. 816-9. 

100. Boelsterli, U.A. and P.L. Lim, Mitochondrial abnormalities--a link to idiosyncratic 
drug hepatotoxicity? Toxicol Appl Pharmacol, 2007. 220(1): p. 92-107. 

101. Dixit, R. and U.A. Boelsterli, Healthy animals and animal models of human 
disease(s) in safety assessment of human pharmaceuticals, including therapeutic 
antibodies. Drug Discov Today, 2007. 12(7-8): p. 336-42. 

102. Tolwani, R.J., et al., Medium-chain acyl-CoA dehydrogenase deficiency in gene-
targeted mice. PLoS Genet, 2005. 1(2): p. e23. 

103. de Vries, H.G., et al., Prevalence of carriers of the most common medium-chain 
acyl-CoA dehydrogenase (MCAD) deficiency mutation (G985A) in The 
Netherlands. Hum Genet, 1996. 98(1): p. 1-2. 



 - 122 - 

104. Grosse, S.D., et al., The epidemiology of medium chain acyl-CoA dehydrogenase 
deficiency: an update. Genet Med, 2006. 8(4): p. 205-12. 

105. Chace, D.H., et al., Rapid diagnosis of MCAD deficiency: quantitative analysis of 
octanoylcarnitine and other acylcarnitines in newborn blood spots by tandem 
mass spectrometry. Clin Chem, 1997. 43(11): p. 2106-13. 

106. Lindner, M., G.F. Hoffmann, and D. Matern, Newborn screening for disorders of 
fatty-acid oxidation: experience and recommendations from an expert meeting. J 
Inherit Metab Dis, 2010. 33(5): p. 521-6. 

107. Schatz, U.A. and R. Ensenauer, The clinical manifestation of MCAD deficiency: 
challenges towards adulthood in the screened population. J Inherit Metab Dis, 
2010. 33(5): p. 513-20. 

108. Rinaldo, P., D. Matern, and M.J. Bennett, Fatty acid oxidation disorders. Annu 
Rev Physiol, 2002. 64: p. 477-502. 

109. Fromenty, B., et al., Most cases of medium-chain acyl-CoA dehydrogenase 
deficiency escape detection in France. Hum Genet, 1996. 97(3): p. 367-8. 

110. Nyman, L.R., et al., Homozygous carnitine palmitoyltransferase 1a (liver isoform) 
deficiency is lethal in the mouse. Mol Genet Metab, 2005. 86(1-2): p. 179-87. 

111. Vempati, U.D., A. Torraco, and C.T. Moraes, Mouse models of oxidative 
phosphorylation dysfunction and disease. Methods, 2008. 46(4): p. 241-7. 

112. Lee, K.K., et al., Isoniazid-induced cell death is precipitated by underlying 
mitochondrial complex I dysfunction in mouse hepatocytes. Free Radic Biol Med, 
2013. 65: p. 584-94. 

113. Larsson, N.G., et al., Mitochondrial transcription factor A is necessary for mtDNA 
maintenance and embryogenesis in mice. Nat Genet, 1998. 18(3): p. 231-6. 

114. Hynes, J., et al., Investigation of drug-induced mitochondrial toxicity using 
fluorescence-based oxygen-sensitive probes. Toxicol Sci, 2006. 92(1): p. 186-
200. 

115. Will, Y., et al., Analysis of mitochondrial function using phosphorescent oxygen-
sensitive probes. Nat Protoc, 2006. 1(6): p. 2563-72. 

116. Rana, P., S. Nadanaciva, and Y. Will, Mitochondrial membrane potential 
measurement of H9c2 cells grown in high-glucose and galactose-containing 
media does not provide additional predictivity towards mitochondrial assessment. 
Toxicol In Vitro, 2011. 25(2): p. 580-7. 

 

  



 - 123 - 

Acknowledgments 

 

This work could only be performed with the help and support of several people. 

I would like to thank Prof. Stephan Krähenbühl for mentoring my work and his constant 

support and advices during my PhD studies. I profited from your extensive knowledge 

in pharmacology and toxicology and you offered me a great opportunity to advance my 

scientific knowledge in the master program in Toxicology. Thanks also to Prof. Jörg 

Huwyler for his availability as co-referee for the evaluation of this work, and to Prof. 

Alex Odermatt for his presence as chairman of the faculty. 

I am grateful to all my colleagues in the Clinical Pharmacology and Toxicology 

Laboratory 410 and 411 at the University Hospital of Basel. I would like to thank Dr. 

Peter Lindinger and Dr. Jamal Bouitbir for introducing me to mitochondrial function and 

for teaching me essentials in in vitro and in vivo experimentation. A special thank also 

goes to Andrea Marisa Stoller and Réjane Morand Bourqui for their support during the 

animal study, and to Kim Blum and Dominik Schnell who performed their master thesis 

under my supervision and helped me to get a lot of assays done, I couldn’t have done 

it on my own. Thank you Annalisa, Benji, Anna, Riccardo, Franziska, Patrizia, 

Massimiliano, Karin, Linda, Swarna, Estelle and all the master students for the good 

working climate and for valuable discussions.  

Finally, I would like to thank my family and friends for their support and 

encouragement. Thanks to my parents and sisters for supporting my in every possible 

way and thank you my dear Stefan for backing me up all along.  




