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Abstract 

Often insufficient information creates a situation in which we are forced to decide 

under uncertainty. In such a situation the behavior of others can complement private 

information and decisively influence a final decision. In many cases relying on the behavior 

of others is a good strategy and results in more accurate decisions. However, from time to 

time the information derived from the behavior of others is wrong and relying on such 

misleading information can trigger herds with destructive consequences (e.g., on the stock 

market). To better understand how herding behavior develops, methods from computational 

modeling and neuroscience were combined with theories from social psychology and 

economics. In the first manuscript a straightforward categorization task was analyzed with a 

prominent computational model to describe how opinions from others can influence the 

decision process. That people often treat private information in a privileged way is shown in a 

second manuscript. It suggests a neural mechanism on how overweighting of private 

information changes belief updating. Understanding this process is important, as 

overweighting of private information can decrease the probability that herds develop. 

Importantly, if private information is overweighted strongly depends on the type of social 

information, which is shown in a third and final manuscript. The analyses demonstrate that 

private information is only overweighted as compared to social information derived from the 

decisions of equally ranked others, but not as compared to social information derived from 

higher ranked others. In sum, this dissertation sheds light on social influence and the 

development of herding behavior by studying individual decisions on the psychological and 

neural level of implementation. Even herding behavior is a group phenomenon it ultimately 

rests on the wrong decisions of individuals. A better understanding of the associated 

mechanisms is crucial for the understanding of how fatal herds, as the ones on the stock 

market, can develop.  
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Cognitive and Neural Mechanisms of Social Influence in Decision Making 

Approximately seven years after its onset and rapid development into a worldwide 

financial crisis, the implications of the U.S. subprime mortgage crisis are still having a 

destructive effect on the lives of many people. According to Robert J. Shiller, winner of the 

2013 Nobel Prize in Economics, the U.S. subprime crisis is based on a speculative bubble in 

the housing market that broke in 2006 (Shiller, 2008). Bubbles in financial markets are an 

emergent phenomenon on the macro-level, but they ultimately rest on the wrong (and 

misleading) decisions of individual agents on the micro-level. Such individual decisions can 

be strongly influenced by the opinions and decisions of other agents (Cialdini & Goldstein, 

2004). Even the conventional stock valuation theory assumes “[…] that a stock's current 

market value tends to converge to the (risk adjusted) discounted present value of the rationally 

expected dividend stream.” (Smith, Suchanek, & Williams, 1988), bubbles impressively 

demonstrate that people’s expectations can strongly deviate from this rational prospect. A 

better understanding of the causes that lead to such devastating consequences of financial 

bubbles is a highly interdisciplinary endeavor. It requires the combination of knowledge from 

various scientific disciplines such as economics, sociology, psychology, evolutionary biology 

and neuroeconomics (Baddeley, 2010). The overarching goal of this dissertation was to 

deepen our knowledge of how the mechanisms of decision making are influenced by various 

social factors (e.g., authority or group size). Understanding these mechanisms is essential 

because they can explain how the wrong and misleading decisions that cause financial 

bubbles arise. Three manuscripts report the mechanisms of decision making that were studied 

on the level of cognitive and neural information processing by combining theories from social 

psychology and economics with tools, models and techniques from statistics, cognitive 

psychology and neuroeconomics. In a first manuscript (Huber, Herzog, Horn, Klucharev, & 

Rieskamp, 2014), we report how the cognitive mechanism of social influence (Germar, 

Schlemmer, Krug, Voss, & Mojzisch, 2013) is modulated by an increase in the size of a 
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group. We found that the effect of an increase in group size from one to 19 on the propensity 

to conform goes along with a more efficient processing of sensory information. This 

perceptual bias towards the choice option favored by others is accompanied by a group size 

dependent increase in response cautiousness. These results confirm earlier findings by Germar 

et al. (2013) and bring research on the functional relationship between group size and 

conformity (Bond, 2005) to a round figure. In a second manuscript (Huber, Klucharev, & 

Rieskamp, 2014), we studied how a bias towards private as compared to social information 

modulates belief updating. This question is important for a better understanding of herding 

behavior because the probability that a cascade will start decreases when people put too much 

weight on their own private information (Nöth & Weber, 2003). Our main findings suggest 

that the more people overweight private information, the more activity can be observed in the 

inferior frontal gyrus/anterior insula and the less activity can be observed in the parietal-

temporal cortex when people update their beliefs by private information. These results on the 

neural level point to a two-fold psychological mechanism with emotional and cognitive risk-

processing components (Loewenstein, Weber, Hsee, & Welch, 2001). A third and final 

manuscript (Schöbel, Rieskamp, & Huber, 2014) reports how we used computational 

modeling to study how a change in the social environment affects information weighting in 

situations prone to herding behavior. In a first experiment, we replicated the classic urn and 

balls study on rational herding by Anderson and Holt (1997). The main conclusion is that 

people have a general tendency to overweight their own private information. In a second 

experiment, we transferred the abstract urn and balls setting to an ecologically more valid 

environment. We observed that people who made decisions in this more realistic setting 

overweighted decisions from higher ranked individuals as compared to decisions from equally 

ranked peers. Weighting of social information seems to depend strongly on authority 

information – an often neglected factor in previous studies. As already mentioned, all three 

manuscripts have the common overarching goal of deepening our knowledge of the cognitive 
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and neural mechanisms underlying social influence in decision making. The remainder of this 

framework consists of two parts. In a first part, the reader will be provided with a short 

historical and theoretical overview of the previous work on which this dissertation is built. 

This first part is essential for understanding the second and final part of the framework: A 

short summary of all three manuscripts. 

Fundamentals of Herding Behavior: Theories From Psychology and Economics 

According to Raafat, Chater, and Frith (2009), herding can be “[…] defined as the 

alignment of the thoughts or behaviors of individuals in a group (herd) through local 

interaction and without centralized coordination.” The general taxonomy introduced by these 

authors distinguishes between global, pattern-based (i.e., connections between agents) and 

local, transmission-based (i.e., exchange of information between agents) mechanisms of 

herding. Importantly, these two mechanisms almost always work in a highly interconnected 

way. However, the work described in this dissertation builds more heavily on the idea of 

transmission-based mechanisms and predominantly on the cognitive (as compared to the 

affective) aspects of herding behavior. Theories from social psychology as well as rational 

models (e.g., informational cascades) developed in economics build the core of this branch of 

herding research. In order to develop paradigms that are optimally suited to studying the 

cognitive and neural mechanisms of social influence in decision making, we combined the 

advantages of both approaches. They will be described in the following two paragraphs. 

In the field of social psychology the early work of Solomon Asch (1951, 1952, 1955, 

1956) is regarded by many as the starting point of conformity research. In his classic 

experiments on the line judgment task, Asch confronted participants with lines of different 

length. The seemingly simple task was to decide which of these lines has equal length to an 

additionally presented reference line. The task was indeed very simple – participants who 

solved this problem alone in the control condition made almost no mistakes. However, 

participants in the experimental condition, who solved the problem after several confederates 
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unanimously stated a wrong answer, made mistakes in more than a third of the trials and only 

about every fourth participant did not make any mistakes at all. Asch recognized that 

increasing the group size can lead to an increase in the propensity to conform. However, the 

idea that a majority size of three already exerts the full impact is nowadays questioned (Bond 

(2005) provides an excellent review of this topic). 

Initial research on conformity had a tendency to highlight the negative side of social 

influence (Larrick, Mannes, & Soll, 2012). According to this view, people put too much 

weight on the information provided by others. Importantly, Morton Deutsch and Harold B. 

Gerard (1955) pointed out that one has to distinguish between informational and normative 

social influence. Informational social influence refers to people’s motivation to gain a more 

accurate perception of reality, whereas normative social influence refers to people’s 

motivation to be an accepted member of a group. Here, relying on other people’s 

informational social influence can often improve decisions (Larrick, Mannes, & Soll, 2012; 

Mannes, 2009; Surowiecki, 2005), whereas only following others because of their normative 

social influence can be both good and bad, depending on the situation. Although initial 

pioneers in the field of conformity research did not distinguish between these two concepts, 

newer research tends to focus more strongly on the advantages of following others. 

Interestingly, researchers studying advice-taking (Bonaccio & Dalal, 2006; Yaniv, 2004; 

Yaniv & Kleinberger, 2000) found that – contrary to the classic view – people sometimes 

even put too low a weight on the opinions of others (egocentric advice discounting). This 

view on conformity is partly supported by a second branch of research that originated in 

economics – the research on informational cascades (Anderson & Holt, 1997; Banerjee, 1992; 

Bikhchandani, Hirshleifer, & Welch, 1992). 

About forty years after the initial work in the field of social psychology, researchers in 

the field of economics started to study herding behavior with a radically different approach. 

Theories following this approach are built on the assumptions of rational expectations theory; 
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that is, they assume independent, rational and self-interested agents who use all the available 

information without making systematic mistakes (Baddeley, 2010). Such rational herding 

models have been widely used to explain people’s behavior in the lab (Anderson & Holt, 

1997; Hung & Plott, 2001), in the labor market (Oberholzer-Gee, 2008), and in financial 

markets (Chari & Kehoe, 2004; Devenow & Welch, 1996). Probably the most prominent 

among these rational herding models is the theory of informational cascades. Informational 

cascades demonstrate that when people decide sequentially without revealing their private 

information, situations can occur in which following the precedent others and deciding 

against one’s own private information can be the best one can do. If people follow the 

underlying assumption of the model to a sufficient degree (that is, if they update their beliefs 

in a way which is consistent with the normative solution provided by Bayes), herds will occur 

even though people did the best they could have done in a particular situation. However, 

research has shown that people often tend to overweight their own private information, even 

in situations in which it would be best for them to follow others (Weizsäcker, 2010). 

Importantly, such overconfident overweighting of private information can decrease the 

probability that cascades start and/or persist (Bernardo & Welch, 2001; Nöth & Weber, 2003). 

A major goal of this dissertation is a better understanding of how the cognitive process of 

belief updating is influenced by changes in the environment (Schöbel et al., 2014) and how a 

bias towards private information modulates the neural mechanism underlying belief updating 

(Huber, Klucharev, & Rieskamp, 2014). 

The outlined research in social psychology and economics has shown that (a) people’s 

decisions are influenced by others (in a good and in a bad way), (b) this influence can depend 

on the specific characteristics of the environment (normative vs. informational social 

influence, group size, …), and (c) people in certain situations tend to overweight their own 

private as compared to the available social information. Understanding the cognitive and 

neural mechanisms of social influence in decision making requires some knowledge of how 
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these mechanisms work in general that is without social influence. The next section will 

therefore provide the reader with some fundamentals on the neural mechanisms of belief 

updating and decision making under uncertainty. In a subsequent section, a short introduction 

to the drift-diffusion model (Ratcliff, 1978) exemplifies how mathematical models of decision 

making can help to disentangle the cognitive mechanisms underlying social influence. 

The Neural Basis of Belief Updating and Decision Making Under Uncertainty 

When faced with the question of which of several financial products she should invest 

her money in, a real-world decision maker most often cannot relate these choice options to 

exact success probabilities. Early 20th century economist Frank H. Knight (1921) introduced 

the now famous distinction between risk and uncertainty. In situations in which an agent 

decides under risk, outcome probabilities (and outcomes) are known (that is, they can be 

logically deduced or inferred from data), whereas in situations of uncertainty information on 

outcome probabilities is not available (Meder, Le Lec, & Osman, 2013). Ambiguity refers to 

situations in which both – probabilities and outcomes – can be uncertain and Daniel Ellsberg 

(1961) famously demonstrated that people generally are ambiguity averse. Meder et al. (2013) 

pointed out that the differentiation between the two concepts risk and uncertainty can be 

problematic. It is often very difficult to qualitatively discriminate between mechanisms of 

decision making under risk and uncertainty. Therefore, in this dissertation the term 

uncertainty refers to all forms of uncertainty (including risk), especially in the context of the 

neural underpinnings of uncertainty. 

Several brain structures – among others, the dorsomedial prefrontal cortex (DMPFC), 

the anterior insula, the dorsolateral prefrontal cortex (DLPFC) and the parietal cortex – have 

been associated with the neural mechanism underlying decision making under uncertainty 

(Bach & Dolan, 2012; Mohr, Biele, & Heekeren, 2010; Platt & Huettel, 2008). The different 

brain structures of this network were associated with different sub processes of decision 

making under uncertainty. According to a recent meta-analysis by Mohr et al. (2010), the 
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anterior insula (together with the thalamus) is thought to be part of an emotional circuitry. The 

DMPFC, on the other hand, seems to be involved in more cognitive aspects. Finally, together 

with the parietal cortex, the DLPFC (Huettel, 2006; Huettel, Song, & McCarthy, 2005) is 

thought to be important for the process of forming a decision and selecting an action. 

Interestingly, this last finding was confirmed by a study of Stern, Gonzalez, Welsh, and 

Taylor (2010), which also found fronto-parietal brain structures to be active while participants 

executed a decision. Additionally, this paper described a neural mechanism of belief updating 

by showing that the activity in the dorsal anterior cingulate is related to objective uncertainty 

while participants accumulate evidence. Another study (D’Acremont, Schultz, & Bossaerts, 

2013) distinguished the process of evidence accumulation (objective frequencies) from the 

process of tracking of Bayesian posterior probabilities (objective frequencies in combination 

with prior information). Here, evidence accumulation was found to be associated with activity 

in angular gyri, posterior cingulate and medial prefrontal cortex, whereas tracking of Bayesian 

posterior probabilities was related to activity in bilateral inferior frontal gyrus. The two 

studies just described, demonstrate in an exemplary way that the neural mechanism of belief 

updating is not yet as well understood as the more general neural mechanism of decision 

making under uncertainty. Huber, Klucharev, & Rieskamp, 2014 provide evidence for the 

idea that specific parts of the neural network of decision making under uncertainty are 

modulated by the weight people give to their own private as compared to social information 

while they update their beliefs. As information integration in cascade situations is ultimately 

nothing other than belief updating in a social environment, a better knowledge of these 

mechanisms is crucial for better understanding the causes that lead to informational cascades. 

In order to study such complex psychological (and neural) processes as those involved 

in sequential decision making (Gluth, Rieskamp, & Büchel, 2012) or belief updating 

(D’Acremont et al., 2013; Stern et al., 2010), the application of computational models has 

become increasingly popular. The goal of these computational models is to translate a 
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complex and noisy data set (often with several dependent variables) into a set of 

psychologically interpretable parameters. Two prominent examples, which were also applied 

in the field of neuroeconomics, are reinforcement learning models (O’Doherty, Dayan, 

Friston, Critchley, & Dolan, 2003; O’Doherty et al., 2004) and random walk or diffusion 

process models (Gold & Shadlen, 2007; Mulder, Wagenmakers, Ratcliff, Boekel, & 

Forstmann, 2012; Philiastides, Auksztulewicz, Heekeren, & Blankenburg, 2011; Philiastides, 

Ratcliff, & Sajda, 2006). The advantage of computational models for psychology in general 

and for the study of social influence in particular will be highlighted in the next section. This 

section especially highlights the diffusion model because, as described in the first manuscript 

of this dissertation (Huber, Herzog et al., 2014), this model was used to study how the 

cognitive mechanism of social influence (Germar et al., 2013) is modulated by an increase in 

group size. 

The Drift-diffusion Model – Advantages of Model Based Social Science 

More than thirty years have passed since Roger Ratcliff introduced the model known 

as drift-diffusion model (1978). The diffusion model has been widely used to study two-

alternative forced choice tasks in the field of cognitive psychology (see Voss, Nagler, & 

Lerche, 2013 for a good introduction) and more recently in the field of social psychology 

(Germar et al., 2013; Klauer, Voss, Schmitz, & Teige-Mocigemba, 2007; Philiastides & 

Ratcliff, 2013). Interestingly, it took quite some time before the model became more generally 

accepted. The exponential change in citations of “Rafcliff (1978)” since approximately the 

mid-nineties nicely reflects this increased interest in the diffusion model (Voss et al., 2013). 

The very general idea of cognitive models is to build a bridge between behavioral (and/or 

neural) data and latent psychological processes (Forstmann, Wagenmakers, Eichele, Brown, 

& Serences, 2011). Cognitive modeling is a very powerful tool. It forces researchers to 

translate verbal hypotheses into mathematical equations and to make quantitative predictions 

and comparisons of these different hypotheses (Farrell & Lewandowsky, 2010). Most often 
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cognitive models have not only fixed parameters, but also free parameters, which are 

estimated by fitting a model to data. This can be performed using traditional statistics (e.g., 

maximum likelihood or least squares) or – as has been done several times in this dissertation 

(Huber, Klucharev, & Rieskamp, 2014; Schöbel et al., 2014) – by using Bayesian statistics 

(Kruschke, 2010a, 2010b, 2011). The drift-diffusion model has seven free parameters 

(Ratcliff, 1978; Ratcliff & McKoon, 2008; Voss et al., 2013; Wagenmakers, 2009), but often 

researchers focus on only four of these seven. These four parameters can be clearly 

interpreted in terms of latent cognitive processes, which has been empirically shown several 

times (Ratcliff, 2002; Voss, Rothermund, & Voss, 2004). The drift rate is higher the more 

easily a stimuli can be encoded and is therefore affected by task difficulty. The (relative) 

starting point reflects an a priori bias towards one of the two decision options. The boundary 

separation can be understood as response cautiousness – the higher the boundary separation 

the more evidence a participant needs in order to make a decision. This parameter – together 

with the (relative) starting point – is thought to be under subjective control of an individual 

(Wagenmakers, 2009). Last, but not least, the non-decision time parameter reflects the time 

needed for processes, such as motor preparation, that are not part of the actual decision. The 

drift-diffusion model takes into account all relevant data (that is, the response time 

distributions for correct and wrong decisions as well as accuracies) and transforms them into 

psychologically interpretable parameters. In recent years, this approach has become 

increasingly popular for studying social phenomenon, e.g., to gain a better understanding of 

the underlying cognitive processes of the implicit association test (Klauer et al., 2007), 

branding (Philiastides & Ratcliff, 2013), and social influence (Germar et al., 2013). The first 

manuscript of this dissertation (Huber, Herzog et al., 2014), which will be described in the 

next section, shows how the general cognitive mechanism of social influence is modulated by 

an increase of group size. 
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Why Does Social Influence Increase With Group Size? 

Huber, R. E., Herzog, S. M., Horn, S. S., Klucharev, V., & Rieskamp, J. (2014). Why 

Does Social Influence Increase With Group Size? A Diffusion Model Analysis. 

Since Solomon Asch’s famous studies on the line judgment task (1952, 1956) it has 

become well known that the opinions of others can strongly influence individuals’ decisions. 

Even in his very early work, Asch (1951, 1955) recognized that the size of a group can 

decisively moderate the effect that others have on individuals’ decisions. Since these early 

days, much research has been carried out and several theories try to functionally relate group 

size to conformity (see Bond, 2005 for a review and meta-analysis). Most of these theories 

point to a curvilinear relationship (Asch, 1951; Latané, 1981; Latané & Wolf, 1981; 

MacCoun, 2012; Mullen, 1983; Tanford & Penrod, 1984), but newer research shows that 

sometimes a linear relationship can do the job just as well, especially for increases in group 

size above two (Bond, 2005). Although the functional relationship between group size and 

conformity has been studied extensively, the same cannot be said about the underlying 

psychological mechanism. Germar et al. (2013) were the first who successfully applied the 

diffusion model in order to show that social influence mainly affects perceptual bias and 

response cautiousness. The initially very plausible alternative hypothesis of a change in 

judgmental bias was not supported by their data. This is an important finding: The core 

mechanism of social influence in perceptual decision making seems to be a change in a 

subjectively uncontrollable mechanism (the ease of encoding). Although it should be 

mentioned that people also required more evidence before they made a decision – a factor that 

is thought to be under subjective control (Wagenmakers, 2009) – the second important bias 

parameter (relative starting point) does not seem to be part of the psychological mechanism of 

social influence. Although Germar et al.'s (2013) study was able to show a convincing 

psychological mechanism of social influence, they did not answer the important question of 

how an increase in group size could alter this mechanism. To answer this question, we 
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combined the face-versus-car categorization task (Philiastides et al., 2011) with group 

opinions and applied the diffusion model to further disentangle the psychological mechanism. 

This approach allowed us to test whether an increase in group size leads to a change in the 

general mechanism proposed by Germar et al. (2013) or whether group size affects an 

additional parameter, which is not affected by social influence in general (e.g., the relative 

starting point). Our results support the conclusion that social influence is mainly due to a 

change in perceptual bias as well as due to a change in boundary separation and show that an 

increase in group size mainly leads to a parametrical change in the general mechanism of 

social influence (Germar et al., 2013). Interestingly, the pattern that we found seems to be 

somewhat incompatible with a linear model of group size and social influence. An increase in 

group size from zero to one leads to a comparable increase in the relevant parameter values 

(drift rate and boundary separation) to an increase in group size from one to 19. If the pattern 

was linear, an increase in group size from one to 19 should be much larger than an increase 

from zero to one. However, although these findings can be related to research trying to 

functionally relate group size and conformity (Bond, 2005), they are exploratory in nature and 

have to be confirmed with future studies. This study offers a plausible explanation of how 

group size could influence the psychological mechanism leading to an increase in social 

influence – knowledge that complements research on the functional relationship between 

these two variables. 
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Neural Correlates of Informational Cascades 

Huber, R. E., Klucharev, V. & Rieskamp, J. (2014). Neural Correlates of 

Informational Cascades: Brain Mechanisms of Social Influence on Belief Updating. 

Manuscript submitted for publication. 

In recent years, developments in the global economy have impressively demonstrated 

which disruptive forces can grow up from financial bubbles. Based on the assumption of 

rationally acting agents, the theory on informational cascades (Anderson & Holt, 1997; 

Banerjee, 1992; Bikhchandani et al., 1992) has offered an explanation of how financial 

bubbles as well as other forms of herds can emerge from a series of correct, but unfortunate, 

decisions. In such sequential decision problems, people can base their decisions on social 

information deduced from the decisions of preceding others and on private information that is 

known only to them. Here, situations can occur in which an individual is confronted with 

prior evidence from social information that is more convincing and contrary to the evidence 

provided by the individual’s private information. In these so-called informational cascades, 

individuals are thought to integrate social and private information according to a process of 

Bayesian belief updating. A decision maker who acts as suggested by the normative Bayesian 

solution weights each piece of evidence equally before deciding on a final choice option. 

Importantly, previous studies have shown that people do not always act in harmony with this 

solution, but sometimes deviate by integrating the available information with a bias towards 

their own private signal1 (Bernardo & Welch, 2001; Nöth & Weber, 2003; Weizsäcker, 2010). 

Individuals who update their beliefs in an “overconfident”, biased way increase the 

probability that cascades do not occur in the first place or terminate prematurely. 

In the study presented here, participants in a hypothetical decision scenario acted as 

stock market traders who have to repeatedly decide which of two stocks they want to buy. 

                                                
1 Note, that in indifferent situations (i.e., in situations in which social information provides the same amount of 
evidence as private information, but for the opposite choice option) it can be rational to give a slightly higher 
weight to one’s own private information, if there is a probability > 0 that one of the previous decision makers 
decided wrongly (Anderson & Holt, 1997). 
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This paradigm can be seen as an adapted version of the classic informational cascades 

paradigm (Anderson & Holt, 1997). In combination with fMRI and computational modeling 

this paradigm enabled us to study the cognitive and neural underpinnings of (biased) belief 

updating in a social environment; that is, the (psychological) mechanisms on which the 

development of informational cascades finally rests. Before participants decided which of the 

two stocks they wanted to buy and provided a final (success) probability judgment, they were 

sequentially confronted with two decisions of previous traders and an own private 

recommendation from a rating agency. There are three basic hypotheses: (a) all three pieces 

of information are weighted differently, (b) social and private information are weighted 

differently, and (c) all the available information is weighted according to the assumptions of 

the normative Bayesian solution. All three hypotheses were translated to computational 

models and compared on a behavioral level. 

The behavioral analyses show that participants’ choices were, in the vast majority of 

cases, compatible with the normative Bayesian solution. This, however, is not the case for the 

probability judgments, where participants’ behavior revealed a general tendency towards 

overweighting of private signals (corresponds to hypothesis b). Interestingly, the more people 

overweighted private information the less they started a cascade in situations specifically 

prone to herding. On the neural level, studies conducted in decision neuroscience have 

convincingly shown that brain structures such as the inferior frontal gyrus/anterior insula, the 

dorsomedial prefrontal cortex (DMPFC), the dorsolateral prefrontal cortex (DLPFC), and the 

parietal cortex (among others) are involved in the processes of belief updating and decision 

execution in decision making under uncertainty (D’Acremont et al., 2013; Mohr et al., 2010; 

Stern et al., 2010). However, this study goes a step further by postulating a potential 

mechanism of how the neural underpinnings of belief updating are modulated by a bias 

towards private information. The more uncertain participants became as a result of belief 

updating by private information the more brain activity was observed in the DLPFC, DMPFC, 
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inferior frontal gyrus/anterior insula and in the parietal-temporal cortex. Importantly, this 

process seems to be modulated by how participants weight private as compared to social 

information: The more participants overweighted private information, the more activity was 

observed in inferior frontal gyrus/anterior insula and the less activity was observed in the 

parietal-temporal cortex during belief updating by private information. All in all, this study 

suggests a neural mechanism underlying biased belief updating – the process that can 

decisively modulate the probability that cascades occur. 

Social Influences in Sequential Decision Making 

Schöbel, M.,. Rieskamp, J, & Huber, R. E. (2014). Social Influences in Sequential 

Decision Making. Manuscript submitted for publication. 

According to a prominent theory in social psychology, conformity influences people’s 

behavior via two different routes: informational and normative social influence (Deutsch & 

Gerard, 1955). This dual-process perspective separates people’s motivation to gain a valid and 

accurate perception of reality (informational social influence) from people’s motivation to act 

in accordance with the positive expectations of others (normative social influence). Normative 

social influence is thought to be stronger in tasks in which people have to respond in public, 

whereas informational social influence seems to predominate when people can provide their 

answers privately (Bond, 2005). However, social expectations can influence people’s 

behavior in private task settings as well (Wood, 2000). Therefore, the distinction between 

internalization of beliefs as compared to (public) compliance (Festinger, 1953; Moscovici, 

1980) cannot easily be simplified to private versus public task settings. Even most conformity 

researchers seem to agree that (at least) two types of conformity processes exist, it has been 

difficult to experimentally separate and quantitatively distinguish these two forces. How these 

two processes interact is a major question in the field of social psychology (Allen, 1965; 

Levine & Russo, 1987; Tajfel, 1969). 
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The theory of informational cascades (Anderson & Holt, 1997; Banerjee, 1992; 

Bikhchandani et al., 1992) describes how people integrate private and publicly available 

social information. According to this theory, people update their beliefs in line with the 

assumptions of rational expectations theory; that is, they act in a Bayesian optimal way 

(Baddeley, 2010). Although this theory has been successfully applied to describe the 

occurrence of herds, e.g., in financial markets (Chari & Kehoe, 2004), it has mostly neglected 

the existence of different social influence processes. In this study, we combined the dual-

process concept of conformity and the paradigm of informational cascades with 

computational modeling in order to quantitatively disentangle informational and normative 

social influence. 

In a first study (Experiment 1), we replicated the general findings of Anderson and 

Holt (1997) and showed that people act in accordance with the informational influence 

hypothesis, which states that people will base their decisions on both private and social 

information. The results from our social influence model show that people have a tendency to 

overweight their own private as compared to the publicly available social information. This 

violation of rational expectations theory can decrease the probability that a cascade occurs 

and has already been discussed previously (Bernardo & Welch, 2001; Nöth & Weber, 2003; 

Weizsäcker, 2010). 

In a second study (Experiment 2), participants solved the abstract informational 

cascades paradigm in an ecologically more realistic medical decision making context. Here, 

participants acting as assistant physicians had to decide which of two different diseases a 

patient suffers from. Both diseases were associated with the same symptoms, but they 

occurred with a different likelihood. By introducing two types of social opinion sources – that 

is (a) hierarchically higher ranked medical directors and (b) hierarchically equally ranked 

assistant physicians – we were able to test a form of normative social influence that is based 

on authority (Milgram, 1974). The results show that decisions in favor of private information 
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as well as confidence ratings (i.e., probability judgments) were consistently lower in the 

authority condition as compared to the baseline condition when the authority opinion was 

contrary to private information. In indifference situations, 61.5% of all participants decided 

against their private information when confronted with opposing social information derived 

from medical directors’ opinions. This is in a strong contrast to Experiment 1, where in 

indifference situations 79.9% of all participants decided according to their private 

information. These results clearly show that authority influence can have a strong impact on 

the development of informational cascades. This is also reflected in the results of the social 

influence model, which shows that private information is only overweighted as compared to 

social information from equally ranked assistant physicians but not as compared to social 

information from higher ranked medical directors. 

We can conclude that (a) it is possible to quantitatively separate normative from 

informational social influence, (b) it is important for the theory of informational cascades to 

incorporate different sources of social influence, and (c) it is recommended to focus not only 

on the individual but also on the environment in which individuals decide, when the goal is to 

improve the (group) outcome in sequential decision making problems. 

General Discussion 

Herding behavior on the group level is always based on wrong decisions on the 

individual level. As a consequence, we can only fully understand herding behavior (e.g., in 

stock markets), if we know how such wrong decisions are psychologically implemented on 

the level of the individual. In three manuscripts (Huber, Herzog et al., 2014; Huber, 

Klucharev, & Rieskamp, 2014; Schöbel et al., 2014) mathematical tools from computational 

modeling and neuroscience were combined with theories and paradigms from social 

psychology and economics to study the psychological mechanisms of social influence in 

decision making. There are three main conclusions: (1) Stronger social influence, due to an 

increase in group size, leads to a stronger bias in sensory information uptake and to an 



Cognitive and neural mechanisms of social influence in decision making 21 

increase in response caution (Huber, Herzog et al., 2014). (2) Others can create a social 

environment in which we overweight private as compared to social information and this effect 

seems to be accompanied by specific changes in the neural network of belief updating (Huber, 

Klucharev, & Rieskamp, 2014). (3) How people weight private as compared to social 

information depends on the specific characteristics of the social environment and authority 

increases the weight assigned to social information. 

The first manuscript (Huber, Herzog et al., 2014) demonstrates that social influence in 

perceptual decision making can result from a bias in sensory information uptake and an 

increase in response caution. Interestingly, others seem to influence how we “see” the world 

and this effect is stronger for opinions from 19 others as compared to the opinion of a single 

other. The interpretation that we “see” the world differently could be tested in future studies 

by using the method described in Huber, Herzog et al. (2014) in combination with brain 

imaging techniques (e.g., fMRI). On the one hand this would provide us with deeper insights 

on how social influence modulates the mechanisms of decision making and on the other hand 

this could also further validate the psychological interpretation of the parameters of the drift-

diffusion model. Further, it would be interesting to know, if the psychological mechanism 

described in Huber, Herzog et al. (2014) can also explain social influence in situations in 

which there is no a priori defined correct choice option (e.g., preference for a politician, music 

star or food item) or in situations in which choice options and their outcomes are coupled in a 

probabilistic (as compared to a deterministic) way. 

In Huber, Klucharev, and Rieskamp (2014) we used cognitive modeling and fMRI to 

study how people integrate social and private information. In the studied environment, we 

observed that people overweight their own private as compared to the social information and 

that this overweighting alters the neural mechanism of belief updating. It is important to better 

understand how and why people overweight private information because overweighting of 

private information decreases the probability that herding in the form of informational 
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cascades occurs. The results on the neural level point to a dual-process mechanism with 

emotional and cognitive components. Here, it would be important to replicate these findings 

(also with other methods) to provide further evidence for the postulated neural mechanism. 

Additional knowledge could be gained by changing the social environment (e.g., as in 

Schöbel et al., 2014) to test, if the same neural mechanism can explain belief updating in 

different social contexts. 

In a third and last manuscript Schöbel et al. (2014) experimentally manipulated the 

social status of others. This resulted in people giving more weight to social information 

derived from higher ranked as compared to equally ranked individuals and private 

information was only overweighted as compared to equally ranked peers. This knowledge 

should be incorporated in future studies on informational cascades because a change in the 

weight assigned to different sources of information also changes the probability with which 

cascades occur. If information of people with a higher social status is also overweighted by 

decision makers in a professional environment (e.g., medical doctors in a hospital or stock 

market traders) was not tested and would be a promising idea for future research. 

In sum, this dissertation describes different psychological mechanisms of social 

influence in decision making. These mechanisms can help us understand how the social 

environment, in which we all decide, can bias important decisions – a process which can 

result in destructive herds as can be observed again and again in financial markets.  
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Abstract 

People’s opinions are influenced by the opinions of others. In particular, social 

influence increases with increases in group size. To understand the underlying cognitive 

mechanism of this association we study how social influence is modulated by group size 

using a face-versus-car categorization task. Assuming that people accumulate evidence until a 

decision threshold is reached this process can be accurately modeled using a drift-diffusion 

model. Prior to their decisions participants were told the opinion of a small or large group or 

received no prior information. A large group influenced participants’ decisions more than a 

small group. Modeling the data with the diffusion model revealed that an increase in social 

influence leads to an increase in the perceptual bias towards a choice option, but at the same 

time to an increase in response cautiousness. In sum, our cognitive modeling approach 

illustrates how social influence affects fundamental cognitive judgment processes. 

Keywords: social influence, conformity, group size, drift-diffusion model, decision 

making, judgment processes, perceptual discrimination  
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Why Does Social Influence Increase With Group Size? 

A Diffusion Model Analysis 

In his pioneering work on social influence Solomon Asch (1952, 1956) impressively 

demonstrated how group opinions can influence decision making. Since Asch’s initial 

research the social influence of group opinions on individual judgments has been replicated 

numerous times (Bond & Smith, 1996). The size of a group is a well-known moderator of this 

effect (Bond, 2005), with larger groups leading to stronger social influence. Prominent 

theories examining the association between group size and social influence primarily focused 

on the mathematical relationship between these two variables (Latané, 1981; Latané & Wolf, 

1981; MacCoun, 2012; Mullen, 1983; Tanford & Penrod, 1984). However, how group size 

affects the underlying cognitive mechanism of the judgment process is not yet fully 

understood. To overcome this lack of knowledge we examined social influence using an 

adapted version of the face-versus-car categorization task (Philiastides, Auksztulewicz, 

Heekeren, & Blankenburg, 2011). In the classic version of the task people have to decide 

without any further information whether a dynamic noisy visual stimuli depicts a face or a 

car. In our version of the task people were a priori informed about the opinion of a single 

other person (1), the opinion of a majority of 19 other persons (2) or they were not informed 

about the opinion of others (3). To understand the psychological mechanism of increased 

social influence resulting from an increase in group size we modeled the data using the drift-

diffusion model (Ratcliff, 1978). 

Group Size and Social Influence 

Deutsch and Gerard’s (1955) dual-process view separates normative from 

informational social influence. Whereas normative social influence acts on an individual’s 

desire to be socially approved, informational social influence describes the motivation to get a 

more accurate perception of reality (Cialdini & Goldstein, 2004). In his meta-analysis on 
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group size and social influence Bond (2005) differentiated between Asch-type (face-to-face) 

and Crutchfield-type (individual booths with false group feedback) tasks with private and 

public response formats. For a Crutchfield-type task setting with private responses (including 

a majority size of one) – comparable to the research presented in this paper – curvilinear 

models explain the relationship between group size and social influence slightly better than 

simple linear models. Whereas the initial research by Asch (1951, 1955) as well as the Social 

Influence model by Tanford and Penrod (1984) assume an asymptotic satiation of social 

influence (e.g., at a group size of three) other theories, such as the Social Impact theory 

(Latané, 1981; Latané & Wolf, 1981) or the Other-Total Ratio theory (Mullen, 1983) 

proposed a negatively accelerated function without an asymptotic limit (Bond, 2005). 

Recently, MacCoun (2012) introduced the Burden of Social Proof model as a promising 

addition to existing theories. Different variants of this logistic threshold model can 

successfully mimic various previous theories. 

Interestingly, recent research on the wisdom of the crowds effect (Larrick, Mannes, & 

Soll, 2012; Surowiecki, 2005) provides additional evidence for a curvilinear relationship 

between group size and (informational) social influence. Integrating an individual opinion 

with the opinions of others according to a unit-weight strategy that weights both types of 

opinions equally also results in a negatively accelerated curve (Mannes, 2009). According to a 

unit-weight strategy an individual opinion and the opinion of one other person both receive an 

equal weight of .50. When confronted with the opinion of 19 others, the opinion of every 

person, as well as that of the individual, receives an equal weight of 1/20, which results in a 

total weight of 19/20 for the group. As a consequence, the increase in the weight assigned to a 

group opinion, caused by an additional member of a group, strongly diminishes with an 

increase in group size. Mannes (2009) concluded that, although people tend to (strongly) 

underweight information provided by large groups, they seem to recognize that larger groups 

are generally more accurate than small groups or individuals. 
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In sum, all prominent theories (1) agree that an increase in group size leads to an 

increase of social influence, (2) mainly focus on the mathematical relationship between group 

size and social influence and (3) do not provide a detailed account of the underlying 

psychological mechanism of social influence. 

Although the mathematical relationship between group size and social influence has 

been studied extensively there appears to be a lack of knowledge of how group size affects the 

judgment process on a psychological level. By using the drift-diffusion model we open this 

black box and show that the effect of group size on social influence can be explained by a 

modulation of the general psychological mechanism underlying social influence (see also 

Germar, Schlemmer, Krug, Voss, & Mojzisch, 2013). 

Decomposing Psychological Mechanisms With Sequential Sampling Models 

The drift-diffusion model introduced by Ratcliff (1978) belongs to the general class of 

sequential sampling models. The basic idea of many sequential sampling models is that when 

presented with a stimuli people start to accumulate evidence for the different choice options 

until a decision threshold is crossed and a decision is executed (see also Gold & Shadlen, 

2007). These models have been applied to a wide variety of cognitive tasks including sensory 

detection (Smith, 1995), perceptual discrimination (Laming, 1968; Link & Heath, 1975; 

Usher & McClelland, 2001; Vickers, 1979), categorization (Ashby, 2000; Nosofsky & 

Palmeri, 1997), probabilistic inference (Wallsten & Barton, 1982), and memory recognition 

(Ratcliff, 1978). Sequential sampling models have also been successfully applied for value-

based decision making (Aschenbrenner, Albert, & Schmalhofer, 1984; Fehr & Rangel, 2011; 

Gluth, Rieskamp, & Büchel, 2012, 2013a, 2013b; Guo & Holyoak, 2002; Rieskamp, 2008; 

Roe, Busemeyer, & Townsend, 2001; Usher & McClelland, 2004). 
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The drift-diffusion model in particular has successfully accounted for behavioral data 

that is, the shapes of the response time distributions and accuracy from a wide variety of rapid 

two-choice decision tasks (see Ratcliff & McKoon, 2008; Voss, Nagler, & Lerche, 2013, for 

reviews). By assuming that evidence from a stimulus is dynamically accumulated over time 

(starting from a point z) until an internal boundary is crossed, the model disentangles the 

efficiency of the accumulation process (drift rate parameter v), the amount of information 

required for the decision (boundary separation a), peripheral nondecision time (Ter; e.g., 

encoding and response execution time), and variability in these components across trials. The 

drift-diffusion model has also proven to be a very useful tool to better understand the 

processes involved in social cognition, such as implicit associations (Klauer, Voss, Schmitz, 

& Teige-Mocigemba, 2007), racial bias (Klauer & Voss, 2008), or the effects of branding 

(Philiastides & Ratcliff, 2013). 

Germar et al. (2013) were the first to use the drift-diffusion model to show that social 

influence primarily results in people accumulating evidence for the recommended choice 

option more efficiently (“perceptual bias”). Additionally, people were more cautious (that is, 

they required more information before they made a decision) when in a situation of social 

influence. Somewhat surprisingly, social influence did not result in an a priori bias toward a 

choice option (“judgmental bias”). The findings of Germar et al. (2013) provide first insights 

into how social influence changes the judgment process. However, how an increase in social 

influence resulting from an increase in group size affects the judgment process is still unclear 

and different psychological mechanisms could go along with this modulatory effect of group 

size. On the one hand, larger group sizes could lead to a linear or non-linear increase in the 

perceptual bias suggested by Germar et al. (2013). According to the drift-diffusion model 

such a change in only the drift rate would result in faster and more accurate judgments. On the 

other hand, an increase in group size could also result in people being increasingly biased 

toward the opinion suggested by a group a priori, that is before the actual stimulus is 
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presented. For such a situation, in which only the relative starting point moves, the drift-

diffusion model would predict faster judgments for the suggested choice option and slower 

judgments for the alternative choice option. One can also think of alternative hypotheses, such 

as a combination of these two mechanisms or an additional inclusion of a third parameter 

(e.g., the boundary separation). Here, we show that an increase in group size primarily results 

in people processing the recommended stimuli more efficiently, but also in an increase in 

response cautiousness. Group size seems to affect this mechanism in a nonlinear way. 

Method 

Participants 

Fifty-one students from the University of Basel, Switzerland, participated in the 

experiment (M = 23.2, SD = 3.3 years; 27 female). The study took approximately 2.5 hours 

after which every participant received 50 CHF plus a variable, performance-contingent bonus 

of 0.04 CHF for each correct response (M = 8.82 CHF; SD = 1.32 CHF; range: 7.00-12.00 

CHF). 

Procedures and Design 

Each participant performed a modified version of the face-versus-car categorization 

task (Philiastides et al., 2011). Participants were informed that they were taking part in a study 

that aims for a better understanding of the processes underlying object recognition in groups 

and that the task could be understood as a training session implemented on a popular social 

media platform. At the beginning of every trial, participants were confronted with cues 

representing the fictitious opinion of a single individual or a majority of a group of 19 

individuals about the category – face or car – of the upcoming stimulus. Next, participants 

were confronted with dynamic noisy visual stimuli (i.e., short “movies”) of faces or cars and 

had to decide which of the two was presented. Participants indicated their rating by pressing 



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 8 

the appropriate button (counter-balanced left/right between subjects). Because we tried to 

minimize learning over time, feedback was provided only at the end of the study. We 

informed participants that cars and faces were presented with equal probability (i.e., 50%). 

Participants were instructed to solve the task as accurately and as quickly as possible. The 

experiment started after a short training period. 

Pictures of twenty different faces and twenty different cars were used to create 

dynamic noisy visual stimuli (grayscale images, 8-bit, 256 levels, 500*500 px - see 

Philiastides et al., 2011 for details) by varying the percentage of phase coherence of each 

image (see Dakin, Hess, Ledgeway, & Achtman, 2002; Rainer, Augath, Trinath, & 

Logothetis, 2001 for a detailed description of the algorithms). Each of the 40 stimuli consisted 

of 30 different frames. The frames were presented at a rate of one frame/50ms and the 

presentation ended as soon as a participant decided for an option or after 1.5s the latest. Noise 

was kept constant by using the same percentage of phase coherence across frames. 

Social influence was manipulated in three conditions. In two conditions we used visual 

cues indicating the opinion either of the majority of a large group consisting of 19 fictitious 

people (“large group condition”) or of a single other individual (“small group condition”). In a 

third condition participants received uninformative visual cues (“control condition” – see 

Figure 1). To create a more realistic environment in which the opinions of others can also be 

wrong, opinion cues in the small and large group condition were correct in only 70% of all 

cases. Importantly, to avoid any biases, opinion cues indicated the correct solution for faces 

and for cars equally often. The three conditions were presented in a randomized way in three 

blocks (not to be confused with the three conditions) consisting of twelve mini-blocks with 

ten stimuli/mini-block. Participants decided in overall 360 trials, in which each mini-block 

contained stimuli of only one condition (i.e., 12 mini-blocks or 120 stimuli per condition). 

The three conditions were presented repeatedly in a fixed order of mini blocks. The order was 

fixed within a participant, but varied between participants. Four different randomizations – 



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 9 

control/large group/small group, large group/small group/control, small group/control/large 

group and small group/large group/control – were used. After 60, 120, 180 and 300 trials a 

short self-paced break allowed participants to relax. 

Calibration: Noise Level 

The noise level was calibrated in a pre-study for every participant individually in a 

way that aimed for an average accuracy of 60% in the control condition. With an accuracy 

level of 60% in the control condition, the group opinions with an accuracy of 70% provided 

useful information that allowed participants to improve their judgments. Thus, participants 

were incentivized to integrate both sources of evidence, that is, social (opinion cues) and 

private (dynamic stimuli). Importantly, if participants had blindly followed the opinion cues 

in the small and/or large group condition, their accuracy would have been 0% for wrong 

opinions and 100% for correct opinions. Our results (see Accuracies and Response Times) 

clearly demonstrate that this was not the case. 

To calibrate the noise level we used 400 trials consisting of ten noise levels (40 

trials/noise level) that were characterized by a different percentage amount of phase 

coherence (0.1525 - .2650 in steps of .0125, where a lower percentage of phase coherence 

indicates more noise). After a short training phase, to familiarize participants with the task, 

different noise levels were presented in mini-blocks of 40 stimuli in a random order with short 

self-paced breaks in-between. The optimal noise level corresponding to an accuracy level of 

(approximately) 60% was determined with the modelfree R package for fitting psychometric 

functions (Zychaluk & Foster, 2009). 

Method: Drift-diffusion Model Analysis 

To examine the role of social influence and group size in rapid perceptual decisions, we 

estimated the mean drift rate (v), boundary separation (a), starting point (z) and nondecision 

time (Ter) using the drift- diffusion model (Ratcliff, 1978). The drift-diffusion model also 

allows for between-trial variability in drift (η; normally distributed), starting point (sz; 
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uniformly distributed) and nondecision time (st; uniformly distributed). We estimated model 

parameters from the behavioral data from each participant separately, using the Kolmogorov-

Smirnov statistic as a fitting criterion (i.e., the maximal vertical distance between observed 

and predicted cumulative distribution functions of response times), as implemented in the 

fast-dm method (Voss & Voss, 2007). As in Germar et al.’s (2013) previous analyses on 

social influence, all seven model parameters were allowed to vary freely between the three 

conditions (control, small group, and large group). The parameters v, a, and z additionally 

varied as a function of cue type (i.e., the opinion cues, suggesting either face or car) to 

account for possible perceptual or judgmental bias effects. Finally, separate drift rates were 

estimated for face and car stimuli (with the lower boundary associated with car decisions and 

the upper boundary with face decisions), implying 32 parameters per participant (across all 

conditions and stimuli). 

Statistical Data Analysis 

Trials in which participants did not respond and trials with RTs < 200ms were excluded 

from all statistical analyses (4.7% of all trials). We calculated means, standard deviations and 

CI95%s for the accuracies and response times of all three conditions, separately for wrong and 

correct opinions: C, Swrong opinions, Scorrect opinions, Lwrong opinions and Lcorrect opinions. 

To test, whether group size (small and large group condition as compared to the control 

condition) had an effect on accuracy, we calculated the mean, standard deviation, CI95% and 

Cohen’s d (i.e., ߤௗ௜௙௙/ߪௗ௜௙௙ሻ (Cohen, 1988) based on the following effect measure: 

௚௖݁ܿ݊݁ݑ݈݂݊݅	݈ܽ݅ܿ݋ݏ ൌ 0.5 ∙ ሾ൫ܣ௚௖,௖௢ െ ௖௖൯ܣ ൅ ൫ܣ௖௖ െ  ௚௖,௪௢൯ሿ. (1)ܣ

Here, Acc refers to accuracy in the control condition and Agc,co and Agc,wo refer to the 

accuracies in the group conditions (gc) with correct or wrong opinions (co, wo), respectively. 

The comparison of the response times – wrong versus correct opinions – is based on the 

following effect measure: 
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௢௖ݏݏ݁݊ݐܿ݁ݎݎ݋ܿ	݁ܿ݊݁ݑ݈݂݊݅ ൌ
ோ ೞ்೒,೚೎	ା	ோ்೗೒,೚೎	

ଶ
െ ܴ ௖ܶ௖. (2) 

ܴ ௖ܶ௖ refers to the response time in the control condition and ܴ ௦ܶ௚,௢௖	and ܴ ௟ܶ௚,௢௖  refer 

to the response times for opinion correctness (oc – correct and wrong opinions) for the small 

and large group (sg, lg), respectively. 

To see, whether ݈ܽ݅ܿ݋ݏ	݁ܿ݊݁ݑ݈݂݊݅௟௔௥௚௘	௚௥௢௨௣ > ݈ܽ݅ܿ݋ݏ	݁ܿ݊݁ݑ݈݂݊݅௦௠௔௟௟	௚௥௢௨௣ (for the accuracies) and, 

whether ݂݈݅݊݁ܿ݊݁ݑ	ݏݏ݁݊ݐܿ݁ݎݎ݋ܿ௪௥௢௡௚	௢௣௜௡௜௢௡ > ݂݈݅݊݁ܿ݊݁ݑ	ݏݏ݁݊ݐܿ݁ݎݎ݋ܿ௖௢௥௥௘௖௧	௢௣௜௡௜௢௡ (for the response times), 

we further calculated the mean, standard deviation, CI95% and Cohen’s d for the difference of 

these two effect measures (diff. – see Figure 2). 

For the diffusion model parameters of interest, that is v, z/a, a (and Ter) we calculated 

the means, standard deviations and CI95%. For the contrasts we again relied on Cohen’s d. 

Manipulation Checks 

At the end of the study we asked participants two questions: (1) “How realistic did you 

perceive the opinions of the group that we presented to you on the computer screen?” and (2) 

“How helpful were the opinions of the group that we presented to you on the computer 

screen?” Answers were provided on a seven-point scale, ranging from 1 (not realistic/not 

helpful) to 7 (very realistic/very helpful). The results indicate that the opinions were perceived 

as realistic (M = 4.0, SD = 1.4) and helpful (M = 3.6, SD = 1.4). 

Results 

We first report the effects of group size and opinion correctness on accuracy and 

response time to show that both variables effectively influenced participants’ behavior. 

Thereafter, we provide evidence for the appropriateness of the drift-diffusion model by 

presenting a graphical display of the model's goodness-of-fit. Finally, we focus on the effects 

of group size and opinion cues on the model parameters. These results illustrate how an 

increase in group size changes the cognitive processing of categorization judgments. 
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Accuracies and Response Times 

Descriptive measures for accuracy and response time, separately for the different 

conditions (control, small group and large group) and opinion correctness (no opinion, correct 

opinion and wrong opinion), are summarized in Table 1. 

The accuracy of 59% in the control condition shows that the calibration process 

worked successfully: Even the average absolute deviation to 60% is according to Cohen’s d 

large, it is ൑10% (M = .08, SD = .06, CI95% [.06, .10], d = 1.20). Accuracy substantially 

changed when participants additionally received opinions of groups (see Figure 2A). When 

receiving correct opinions from a small group the accuracy increased by M = .13, SD = .12, 

CI95% [.09, .16] as compared to the control condition. Correct opinions of large groups (M = 

.18, SD = .12, CI95% [.14, .21]) increased accuracy even more and the comparison between 

large and small group showed a moderate-large effect of M = .05, SD = .06, CI95% [.03, .06], d 

= 0.79. Social influence also reduced the accuracy when a wrong opinion was provided. This 

negative social influence was again smaller for the small group (M = -.15, SD = .14, CI95% [-

.19, -.10]) as compared to the large group (M = -.20, SD = .15, CI95% [-.24, -.16]) with a 

moderate effect of M = .06, SD = .11, CI95% [.02, .09], d = 0.50. These results show that 

participants used the social information provided by the opinion cues and integrated it with 

their own private information to make a final judgment. Importantly, participants did not 

follow the opinion cues blindly as the accuracy is clearly >0% for wrong opinions and <100% 

for correct opinions. Although the response times for correct opinions did not differ 

substantially from response times in the control condition (see Figure 2B), response times 

were larger when participants received wrong opinions as compared to the control condition. 

Apparently, in a situation with wrong opinions the integration of private and social 

information can lead to a conflict. 
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Drift-diffusion Model Fit 

For each participant, we estimated 32 parameters with the drift-diffusion model (for the 

different conditions, stimuli, and cue types – see Method: Drift-diffusion Model Analysis for 

details). On the basis of these estimated parameter values one can predict the cumulative 

distribution functions of response times (see Figure 3), separately for all conditions (control, 

small group, and large group), opinion correctness (wrong versus correct) and stimuli (face 

and car). Figure 3 illustrates how the models’ predictions are related to the observed behavior. 

This graphical display of model fit (Voss et al., 2013) shows that the drift-diffusion model can 

qualitatively capture all important aspects of the observed data, that is, the impact of 

condition, opinion correctness, and stimuli on both accuracy and response times. To 

quantitatively examine to what extent the model captures the behavioral data, we assessed the 

models’ goodness-of-fit using the product p value from the Kolmogorov-Smirnov tests as fit 

index (see Voss et al., 2013; Voss, Rothermund, & Voss, 2004). Goodness-of-fit tests with 

values of p < .05 would indicate misfit, which we did not observe for any of the participants 

(average fit index M = .42; SD = .20; range: .09 – .88). 

Results: Drift-diffusion Model Analysis 

In general, the analysis of participants’ accuracies and response times clearly 

demonstrates that the cognitive process underlying the face-versus-car categorization task is 

affected by group size and opinion correctness. In particular, for accuracies the results show 

that social influence is stronger in the large as compared to the small group condition. To 

understand in more detail how these effects can be explained on a psychological level, we 

modeled the data with the drift-diffusion model. As outlined in the introduction, social 

influence could specifically affect certain parts of the psychological processing, so we focused 

our main analyses on three parameters of the model: The drift rate v, the boundary separation 

a, and the relative starting point a /z. In an explorative step, we also tested whether there is an 

effect of group size on nondecision Ter. The main findings are shown in Figure 3. Table S1 in 
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the Appendix contains a more comprehensive summary of the additional parameters, 

including the across-trial variabilities. 

Drift rate (v). 

How does an increase in group size affect information uptake? To answer this 

question, we calculated drift rates for vControl, vSmall Group and vLarge Group (see Figure 4A left). As 

the drift rate was allowed to freely vary between stimuli (i.e., was a face or a car presented?) 

and opinion cues (i.e., was the opinion of the group in favor of face or car?), vControl, vSmall Group 

and vLarge Group were derived by calculating mean estimates across stimuli and opinion cues. 

Very generally, the drift rate can be interpreted as the (relative) amount of evidence 

accumulated per time unit and increases when a stimuli becomes easier or the perceptual 

system more sensitive (e.g., Voss et al., 2004). In this experiment, a face (car) judgment is 

executed when the evidence accumulator hits the upper (lower) boundary and as a 

consequence drift toward face (car) goes along with a positive (negative) sign. In this 

particular analysis, we were interested in how an increase in group size affects the efficiency 

of evidence accumulation independent of which stimuli was presented. Therefore, we 

averaged the absolute values of the drift rates. 

The drift rate in the large group condition (M = 1.01, SD = 0.52, CI95% [0.87, 1.16]) 

was higher than in the small group condition (M = 0.83, SD = 0.40, CI95% [0.72, 0.94]) with a 

moderate effect between vLarge and vSmall Group of M = 0.18, SD = 0.40, CI95% [0.07, 0.29], d = 

0.46. Moreover, there was also a moderate effect between vSmall Group and vControl of M = 0.27, 

SD = 0.51, CI95% [0.13, 0.41], d = 0.53, which shows that the drift rate increases from the 

control condition (M = 0.56, SD = 0.37, CI95% [0.46, 0.66]) to the small group condition as 

well. These results show that participants accumulate evidence more efficiently the larger the 

group. A linear increase can be ruled out, as the increase in group size between vLarge Group and 

vSmall Group (“+18 opinions”) and vSmall Group and vControl (“+1 opinion”) is not proportional to the 

increase in drift rate. 
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If participants’ evidence accumulation process was indeed biased towards the choice 

option favored by the group, we can expect higher positive (negative) drift rates in the large as 

compared to the small group condition for face (car) opinion cues. To further examine this 

assumption, we calculated the mean drift rates vSmall Face, vSmall Car, vLarge Face and vLarge Car for 

both group sizes and opinion cues by averaging across stimuli (see Figure 4B). Here, in 

contrast to the previous analysis, we were interested in the direction of the drift, which is why 

we did not use absolute values. Not surprisingly, the mean drift rates were negative for car 

cues and positive for face cues. The drift rates for car were more negative (i.e., higher in 

absolute terms) for the large group condition (M = -0.62, SD = 0.79, CI95% [-0.84, -0.39]) than 

for the small group condition (M = -0.41, SD = 0.77, CI95% [-0.63, -0.19]) with a small effect 

of M = -0.21, SD = 0.61, CI95% [-0.38, -0.04], d = 0.34. We found a similar effect for the drift 

rates for face. Here, vLarge Face (M = 0.89, SD = 0.81, CI95% [0.66, 1.11]) was more positive 

than vSmall Face (M = 0.61, SD = 0.68, CI95% [0.42, 0.81]) with a corresponding small-moderate 

difference of M = 0.27, SD = 0.57, CI95% [0.11, 0.43], d = 0.47. The presented analyses clearly 

show that group size interacts with cue type: Participants’ evidence accumulation is biased 

toward the stimuli cued by the group and this effect is stronger for large as compared to small 

group opinions. 

Finally, we also tested whether one of the two stimuli was processed with more ease 

by the participants. This was done by comparing vFace with vCar in the control condition. Please 

note that here the indices “Face” and “Car” correspond to the observed stimuli and not, as in 

the previous analyses, to the opinions of a group. In the control condition vFace (M = 0.44, SD 

= 0.55, CI95% [0.28, 0.59]) was not higher than vCar (M = -0.19, SD = 0.75, CI95% [-0.40, 

0.02]): A within-subjects comparison of the absolute values of vFace and vCar shows that there 

is no effect (M = -0.01, SD = 0.61, CI95% [-0.18, 0.16]). 
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Starting point position (z/a). 

The relative position of the starting point between the boundaries (i.e., z divided by a), 

can be interpreted as a measure of a priori bias toward a decision alternative (e.g., Klauer & 

Voss, 2008). Values of z/a larger than 0.5 would indicate a bias toward the choice option 

associated with the upper boundary (i.e., requiring relatively less information for “upper-

boundary” decisions, i.e., faces) and values smaller than 0.5 indicate a bias toward lower-

boundary decisions (i.e., cars). The modeling suggests that participants were a priori more in 

favor of car decisions (with z/a < 0.5 in all three conditions – see Figure 4A, middle). The 

relative starting point decreased with increasing group size and was smaller in the large group 

condition (M = 0.41, SD = 0.09, CI95% [0.39, 0.44]) than in the small group condition (M = 

0.43, SD = 0.08, CI95% [0.41, 0.45]) and highest in the control condition (M = 0.45, SD = 0.06, 

CI95% [0.43, 0.47]). However, only the contrast z/aLarge Group - z/aControl shows a small-moderate 

difference (M = -0.04, SD = 0.08, CI95% [-0.06, -0.01], d = 0.43), whereas the contrasts z/aLarge 

Group - z/aSmall Group (M = -0.02, SD = 0.10, CI95% [-0.04, 0.01]) and z/aSmall Group - z/aControl (M = -

0.02, SD = 0.07, CI95% [-0.04, 0.00]) do not. This analysis shows that the general a priori bias 

toward cars gets larger with an increase in group size. However, only the difference between 

the large group and the control condition shows an effect (Figure 4A). Further, there was no 

interaction between group size and cue type (see Figure 4C). 

Boundary separation (a). 

The drift-diffusion model can map response caution with a larger boundary separation 

parameter. Increases in a lead to slower, but more accurate decisions, as an accidental 

crossing of the incorrect boundary (i.e., face when car would be correct or vice versa) due to 

noise in the evidence accumulation process becomes less likely (e.g., Wagenmakers, 2009). 

Here, an increase in group size resulted in an increase in boundary separation (averaged 

across cues). Participants were more cautious in their decisions the larger the group; that is, 

they sacrificed speed for accuracy (see Figure 4A right). The boundary separation in the large 
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group condition (M = 1.28, SD = 0.17, CI95% [1.24, 1.33]) was higher than the boundary 

separation in the small group condition (M = 1.23, SD = 0.19, CI95% [1.18, 1.28]) with a 

small-moderate effect between aLarge Group and aSmall Group of (M = 0.06, SD = 0.13, CI95% [0.02, 

0.09], d = 0.43). There was also a moderate effect of M = 0.07, SD = 0.13, CI95% [0.03, 0.10], 

d = 0.53 between aSmall Group and aControl (M = 1.16, SD = 0.16, CI95% [1.12, 1.21]). These 

results provide further evidence for the claim that participants did not just blindly follow the 

opinions of others (also see Accuracies and Response Times). 

Nondecision time (Ter). 

Although, the nondecision time (Ter) parameter is not of main interest in respect to our 

hypotheses, we nevertheless tested whether an increase in group size leads to a modulation of 

Ter. We found no effect when comparing the large group condition (M = 0.72, SD = 0.21, 

CI95% [0.66, 0.77]) with the small group condition (M = 0.72, SD = 0.21, CI95% [0.66, 0.78]) 

nor when comparing the small group condition with the control group (M = 0.73, SD = 0.22, 

CI95% [0.67, 0.79]): The differences between both Ter Large Group and Ter Small Group (M = -0.01, SD 

= 0.06, CI95% [-0.02, 0.01]) and Ter Small Group and Ter Control (M = -0.01, SD = 0.06, CI95% [-0.03, 

0.01]) were close to 0. This shows that increases in social influence due to increases in group 

size do not go along with changes in nondecision processes (e.g., motor preparation). 

Discussion 

People’s motivation to gain a more accurate perception of reality is a fundamental 

aspect of social influence and one of the prime reasons why we conform to the opinions of 

others (Cialdini & Goldstein, 2004; Cialdini & Trost, 1998). Research in the field of social 

psychology (Asch, 1951, 1955; Bond, 2005; Latané, 1981; Latané & Wolf, 1981; MacCoun, 

2012; Mullen, 1983; Tanford & Penrod, 1984) and the wisdom of the crowds (Larrick et al., 

2012; Mannes, 2009; Surowiecki, 2005) has hotly debated the question of which 

mathematical model can best describe the functional relationship between group size and 

(informational) social influence. However, to the best of our knowledge, no previous study 
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has yet applied a sequential sampling model to study the psychological mechanisms that 

underlie this fundamental relationship. Here, we combined the drift-diffusion model (Ratcliff, 

1978) with an adapted version of the face-versus-car categorization task (Philiastides et al., 

2011) to compare different hypotheses of how an increase in group size could lead to an 

increase in social influence. On a behavioral level, we observed that opinion correctness 

effectively influenced participants’ accuracy in the categorization task and that this effect is 

stronger in the large as compared to the small group condition. Further, we saw that response 

times increased after participants were confronted with wrong as compared to correct 

opinions, independent of group size. These results demonstrate that participants were 

influenced by both the size and the opinion of a group. The drift-diffusion model was able to 

accurately describe accuracies and response and to transform these measures into 

psychologically interpretable parameter values. Here, we can see that evidence for options 

favoured by larger groups was processed more efficiently (effect on v), but also that 

participants required more evidence (effect on a) before they made a final decision. 

Importantly, there was no difference in the relative starting point between the two group 

conditions. In sum, these results provide additional evidence for the validity of the general 

social influence mechanism proposed by Germar et al. (2013) and further show, that an 

increase in group size from one to 19 people modulates this process in a non-linear way. 

Of the two bias parameters – drift rate (“perceptual bias”) and relative starting point 

(“judgmental bias”) – only the drift rate was modulated by group size and cue type. Further, 

we also observed an interaction between these two factors, with more positive (negative) drift 

rates for face (car) cues in the large as compared to the small group condition. Generally, the 

drift rate is interpreted as the “rate of accumulation of information” (Ratcliff & McKoon, 

2008), the “speed of information uptake” (Voss et al., 2013) or the “ease of processing” 

(Wagenmakers, 2009) and it has been empirically shown that the drift rate decreases when 

stimuli become harder to discriminate (Ratcliff, 2002; Voss et al., 2004). Drift rate maps task 
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difficulty and/or perceptual sensitivity (e.g., Voss et al., 2004) and when (absolute) drift is 

high decisions are fast and less driven by noisy fluctuations (Wagenmakers, 2009). 

Apparently, in this study, evidence for a choice option favoured by a large group was 

accumulated with more ease than evidence for a choice option favoured by a small group. 

Importantly, this finding cannot alternatively be explained by a priming effect, as the words 

“face” or “car” were present on the visual cues of both conditions. It is also noteworthy to 

mention that effects on the drift rate have also been found in other studies using social 

information, e.g., in Philiastides and Ratcliff (2013), who studied the effect of branding, or in 

Klauer et al. (2007), who decomposed the psychological mechanisms of the implicit 

association test. On a neural level, Philiastides et al. (2011) were able to show that by 

disrupting the left dorsolateral prefrontal cortex before participants solved the face-versus-car 

categorization task, the herewith induced decrease in accuracy and increase in response times 

go along with a decrease in drift rate. This finding points to a neural mechanism, which could 

also underlie the social influence effect. A potential next step would therefore be to use the 

adapted version of the face-versus-car categorization task presented here in combination with 

imaging techniques, such as fMRI. 

Besides the effect on the drift rate we also found an increase in boundary separation 

for large as compared to small groups. The boundary separation parameter is thought to 

represent “conservatism” or “response cautiousness” and regulates the speed versus accuracy 

trade-off, where an increase in boundary separation leads to slower, but more accurate 

decisions (Ratcliff & McKoon, 2008; Voss et al., 2013; Wagenmakers, 2009). It has been 

shown empirically that accuracy (or speed) instructions can lead to a higher (lower) value of 

the boundary separation parameter (Ratcliff, 2002; Voss et al., 2004). An increase in 

boundary separation was also found in the social influence experiments reported by Germar et 

al. (2013). In our experiment, participants were more cautious in the large as compared to the 
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small group condition and generally more cautious in the group conditions as compared to the 

control condition, which shows that people do not just blindly follow the opinions of others.  

So how do could these two psychological mechanisms work together? In the 

instructions we explicitly statedthat group opinions can also be wrong and that it is not always 

good to follow them. Higher response times for wrong as compared to correct opinion cues 

and accuracies, which were <100% for correct advice and >0% for wrong advice, show that 

most participants followed this advice and as a consequence integrated both social (opinion 

cues) and private (noisy stimuli) sources of evidence. The boundary separation is thought to 

be under subjective control, whereas the drift rate is not (Wagenmakers, 2009). Importantly, 

when the opinion of a group is inaccurate, a higher drift rate can also lead to faster wrong 

decisions. As drift rate is most probably not consciously controllable by a person, it could be 

that participants counteracted the risk of wrong decisions by increasing the amount of 

evidence necessary to make a final decision. Interestingly, independent of opinion 

correctness, accuracy in the large group condition (M = .65, SD = .09) is almost equal to 

accuracy in the small group condition (M = .64 , SD = .09). Mannes (2009) reported that 

although people generally seem to acknowledge the wisdom of the crowds they are not 

sensitive enough to the information provided by the size of the group. We speculate that this 

could be due to too strong a scepticism toward large groups as compared to small groups, 

reflected in a (too) high boundary separation parameter for the large group. 

Finally, in our data we can observe that participants responded with “face” slightly 

more often than with “car” (in 55% of all valid trials). Although we did not find a within-

subjects difference when comparing the (absolute) drift rates for face and car in the control 

condition, the average values show that there could be a tendency to process faces a little bit 

more easily. Because we mentioned in the instructions that both stimuli will be presented 

equally often, the a priori bias toward car in all three conditions could reflect a sensible 
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strategy to counteract a tendency to “see” faces more often. An a priori bias can be found in 

studies where a response leads to greater rewards (Voss et al., 2004) or when two decision 

options are correct with an unequal probability (Ratcliff & McKoon, 2008). Here, we find a 

general (a priori) bias toward cars and this bias is higher in the large group as compared to the 

baseline condition. Why participants increased their bias toward car in the large group 

condition, however, is not clear to us. 

In sum, the results of this study confirm the general findings of Germar et al. (2013) 

by showing that social influence primarily leads to a more efficient information uptake. 

Additionally, we can show that this mechanism is scaled by group size. Besides the drift rate, 

we also found an effect on the boundary separation. These findings extend the knowledge on 

the psychological mechanism underlying social influence and for the first time show how 

group size influences the psychological processes of interest. 

  



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 22 

References 

Asch, S. E. (1951). The Effects of Group Pressure Upon the Modification and Distortion of 

Judgments. In H. Guetzkow (Ed.), Groups, Leadership and Men: Research in Human 

Relations (pp. 177–190). Pittsburgh, PA: Carnegie Press. 

Asch, S. E. (1952). Social Psychology. Englewood Cliffs, NJ: Prentice-Hall. 

Asch, S. E. (1955). Opinions and social pressure. Scientific American, 193, 31–35. 

doi:10.1038/scientificamerican1155-31 

Asch, S. E. (1956). Studies of independence and conformity: A minority of one against a 

unanimous majority. Psychological Monographs: General and Applied. 

doi:10.1037/h0093718 

Aschenbrenner, K. M., Albert, D., & Schmalhofer, F. (1984). Stochastic choice heuristics. 

Acta Psychologica, 56(1-3), 153–166. doi:10.1016/0001-6918(84)90015-5 

Ashby, F. (2000). A Stochastic Version of General Recognition Theory. Journal of 

Mathematical Psychology, 44(2), 310–329. doi:10.1006/jmps.1998.1249 

Baguley, T. (2012). Calculating and graphing within-subject confidence intervals for 

ANOVA. Behavior Research Methods, 44(1), 158–175. doi:10.3758/s13428-011-0123-7 

Bond, R. (2005). Group Size and Conformity. Group Processes & Intergroup Relations, 8(4), 

331–354. doi:10.1177/1368430205056464 

Bond, R., & Smith, P. B. (1996). Culture and conformity: A meta-analysis of studies using 

Asch’s Line judgment task. Psychological Bulletin, 119(1), 111–137. doi:10.1037/0033-

2909.119.1.111 



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 23 

Cialdini, R. B., & Goldstein, N. J. (2004). Social influence: compliance and conformity. 

Annual Review of Psychology, 55, 591–621. 

doi:10.1146/annurev.psych.55.090902.142015 

Cialdini, R. B., & Trost, M. R. (1998). Social influence: Social norms, conformity and 

compliance. In D. T. Gilbert, S. T. Fiske, & L. Gardner (Eds.), The Handbook of Social 

Psychology (4th ed., pp. 151–192). New York, NY: McGraw-Hill. 

Cohen, J. (1988). Statistical power analysis for the behavioral sciences. Statistical Power 

Analysis for the Behavioral Sciences (2nd ed., Vol. 2nd, p. 567). Hillsdale, NJ: Lawrence 

Erlbaum Associates. 

Dakin, S. C., Hess, R. F., Ledgeway, T., & Achtman, R. L. (2002). What causes non-

monotonic tuning of fMRI response to noisy images? Current Biology, 12(14), R476–

R477. doi:10.1016/S0960-9822(02)00960-0 

Deutsch, M., & Gerard, H. B. (1955). A study of normative and informational social 

influences upon individual judgement. Journal of Abnormal Psychology, 51(3), 629–636. 

doi:10.1037/h0046408 

Fehr, E., & Rangel, A. (2011). Neuroeconomic Foundations of Economic Choice — Recent 

advances. Journal of Economic Perspectives, 25(4), 3–30. doi:10.1257/jep.25.4.3 

Germar, M., Schlemmer, A., Krug, K., Voss, A., & Mojzisch, A. (2013). Social Influence and 

Perceptual Decision Making: A Diffusion Model Analysis. Personality and Social 

Psychology Bulletin, 40(2), 217–231. doi:10.1177/0146167213508985 

   



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 24 

Gluth, S., Rieskamp, J., & Büchel, C. (2012). Deciding when to decide: time-variant 

sequential sampling models explain the emergence of value-based decisions in the 

human brain. Journal of Neuroscience, 32(31), 10686–98. 

doi:10.1523/JNEUROSCI.0727-12.2012 

Gluth, S., Rieskamp, J., & Büchel, C. (2013a). Classic EEG motor potentials track the 

emergence of value-based decisions. NeuroImage, 79, 394–403. 

doi:10.1016/j.neuroimage.2013.05.005 

Gluth, S., Rieskamp, J., & Büchel, C. (2013b). Deciding not to decide: Computational and 

neural evidence for hidden behavior in sequential choice. PLoS Computational Biology, 

9(10). doi:10.1371/journal.pcbi.1003309. 

Gold, J. I., & Shadlen, M. N. (2007). The neural basis of decision making. Annual Review of 

Neuroscience., 30, 535–574. doi:10.1146/annurev.neuro.29.051605.113038 

Guo, F. Y., & Holyoak, K. J. (2002). Understanding similarity in choice behavior: A 

connectionist model. In Proceedings of the twenty-fourth annual conference of the 

cognitive science society (pp. 393–398). Mahwah, NJ. 

Klauer, K. C., & Voss, A. (2008). Effects of Race on Responses and Response Latencies in 

the Weapon Identification Task: A Test of Six Models. Personality and Social 

Psychology Bulletin, 34(8), 1124–1140. doi:10.1177/0146167208318603 

Klauer, K. C., Voss, A., Schmitz, F., & Teige-Mocigemba, S. (2007). Process components of 

the Implicit Association Test: a diffusion-model analysis. Journal of Personality and 

Social Psychology, 93(3), 353–368. doi:10.1037/0022-3514.93.3.353 



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 25 

Laming, D. R. J. (1968). Information Theory of Choice-Reaction Times. (p. 172). Oxford, 

England: Academic Press. 

Larrick, R. P., Mannes, A. E., & Soll, J. B. (2012). The social psychology of the wisdom of 

crowds. In J. I. Krueger (Ed.), Frontiers of Social Psychology: Social Judgment and 

Decision Making (pp. 227–242). New York, NY: Psychology Press. 

Latané, B. (1981). The psychology of social impact. American Psychologist, 36(4), 343–356. 

doi:10.1037/0003-066X.36.4.343 

Latané, B., & Wolf, S. (1981). The social impact of majorities and minorities. Psychological 

Review, 88(5), 438–453. doi:10.1037/0033-295X.88.5.438 

Link, S. W., & Heath, R. A. (1975). A sequential theory of psychological discrimination. 

Psychometrika, 40(1), 77–105. doi:10.1007/BF02291481 

MacCoun, R. J. (2012). The burden of social proof: Shared thresholds and social influence. 

Psychological Review, 119(2), 345–372. doi:10.1037/a0027121 

Mannes, A. E. (2009). Are We Wise About the Wisdom of Crowds? The Use of Group 

Judgments in Belief Revision. Management Science, 55(8), 1267–1279. 

doi:10.1287/mnsc.1090.1031 

Mullen, B. (1983). Operationalizing the effect of the group on the individual: A self-attention 

perspective. Journal of Experimental Social Psychology, 19(4), 295–322. 

doi:10.1016/0022-1031(83)90025-2 

Nosofsky, R. M., & Palmeri, T. J. (1997). An exemplar-based random walk model of speeded 

classification. Psychological Review, 104(2), 266–300. doi:10.1037/0033-

295X.115.2.446 



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 26 

Philiastides, M. G., Auksztulewicz, R., Heekeren, H. R., & Blankenburg, F. (2011). Causal 

Role of Dorsolateral Prefrontal Cortex in Human Perceptual Decision Making. Current 

Biology, 21(11), 980–983. doi:10.1016/j.cub.2011.04.034 

Philiastides, M. G., & Ratcliff, R. (2013). Influence of branding on preference-based decision 

making. Psychological Science, 24(7), 1208–15. doi:10.1177/0956797612470701 

Rainer, G., Augath, M., Trinath, T., & Logothetis, N. K. (2001). Nonmonotonic noise tuning 

of BOLD fMRI signal to natural images in the visual cortex of the anesthetized monkey. 

Current Biology, 11(11), 846–854. doi:10.1016/S0960-9822(01)00242-1 

Ratcliff, R. (1978). A theory of memory retrieval. Psychological Review, 85(2), 59–108. 

doi:10.1037/0033-295X.85.2.59 

Ratcliff, R. (2002). A diffusion model account of response time and accuracy in a brightness 

discrimination task: Fitting real data and failing to fit fake but plausible data. 

Psychonomic Bulletin & Review, 9(2), 278–291. doi:10.3758/BF03196283 

Ratcliff, R., & McKoon, G. (2008). The Diffusion Decision Model: Theory and Data for 

Two-Choice Decision Tasks. Neural Computation, 20(4), 873–922. 

doi:10.1162/neco.2008.12-06-420 

Rieskamp, J. (2008). The probabilistic nature of preferential choice. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 34(6), 1446–1465. 

doi:10.1037/a0013646 

Roe, R. M., Busemeyer, J. R., & Townsend, J. T. (2001). Multialternative decision field 

theory: A dynamic connectionst model of decision making. Psychological Review, 

108(2), 370–392. doi:10.1037/0033-295X.108.2.370 



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 27 

Smith, P. L. (1995). Psychophysically principled models of visual simple reaction time. 

Psychological Review, 102(3), 567–593. doi:10.1037/0033-295X.102.3.567 

Surowiecki, J. (2005). The Wisdom of Crowds. New York, NY: Anchor Books. 

Tanford, S., & Penrod, S. (1984). Social Influence Model: A formal integration of research on 

majority and minority influence processes. Psychological Bulletin, 95(2), 189–225. 

doi:10.1037/0033-2909.95.2.189 

Usher, M., & McClelland, J. L. (2001). The time course of perceptual choice: The leaky, 

competing accumulator model. Psychological Review, 108(3), 550–592. 

doi:10.1037/0033-295X.108.3.550 

Usher, M., & McClelland, J. L. (2004). Loss aversion and inhibition in dynamical models of 

multialternative choice. Psychological Review, 111(3), 757–769. doi:10.1037/0033-

295X.111.3.757 

Vickers, D. (1979). Decision Processes in Visual Perception (p. 406). New York, NY: 

Academic Press. 

Voss, A., Nagler, M., & Lerche, V. (2013). Diffusion models in experimental psychology: A 

practical introduction. Experimental Psychology, 60, 385–402. doi:10.1027/1618-

3169/a000218 

Voss, A., Rothermund, K., & Voss, J. (2004). Interpreting the parameters of the diffusion 

model: an empirical validation. Memory & Cognition, 32(7), 1206–1220. 

doi:10.3758/BF03196893 

Voss, A., & Voss, J. (2007). Fast-dm: a free program for efficient diffusion model analysis. 

Behavior Research Methods, 39(4), 767–775. doi:10.3758/BF03192967 



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 28 

Wagenmakers, E.-J. (2009). Methodological and empirical developments for the Ratcliff 

diffusion model of response times and accuracy. European Journal of Cognitive 

Psychology, 21(5), 641–671. doi:10.1080/09541440802205067 

Wallsten, T. S., & Barton, C. (1982). Processing probabilistic multidimensional information 

for decisions. Journal of Experimental Psychology: Learning, Memory, and Cognition, 

8(5), 361–384. doi:10.1037/0278-7393.8.5.361 

Zychaluk, K., & Foster, D. H. (2009). Model-free estimation of the psychometric function. 

Attention, Perception & Psychophysics, 71(6), 1414–1425. doi:10.3758/APP.71.6.1414 

   



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 29 

Table 1 

Accuracy and Response Time 

  Accuracy  Response Time 

condition opinion correctness M (SD) CI95%  M (SD) CI95% 

control no opinions .59 (.10) [.56, .62]  977 (204) [920, 1035] 

small correct .72 (.12) [.68, .75]  979 (207) [920, 1037] 

wrong .44 (.17) [.39, .49]  998 (205) [940, 1055] 

large correct .76 (.13) [.73, .80]  974 (204) [917, 1031] 

wrong .39 (.18) [.34, .44]  995 (215) [935, 1056]  

 

Notes. Accuracies represent the group mean of the mean accuracies of each participant. 

Response times represent the group mean of the median response times of each participant. CI 

= confidence interval. For all within-subjects conditions we had a sample size of N = 51. 
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Figure 1. Trial structure. (1) At the beginning of each mini-block the condition (control, small 

group or large group) was indicated. (2) At the beginning of every trial, participants were 

exposed to a visual cue indicating the opinion (“face” or “car”) of the majority of a group 

consisting of 19 individuals (large group), a visual cue indicating the opinion of a single 

individual (small group) or a visually analogous cue with no further information (control). For 

the visual cue of the control condition we replaced the group opinion – “face” (“Gesicht” in 

German) or “car” (“Auto”) – with “Xxxx” and the number of persons below the opinion was 

set to 00 instead of 01 or 19. (3) Dynamic noisy visual stimuli of either faces or cars were 

presented for a maximum of 1.5s during which participants made a decision. 
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Figure 2. Effects of group size and opinion correctness on accuracy and response time: (A) 

 ௚௖ (see methods for details) for accuracy was calculated for the small (1) group݁ܿ݊݁ݑ݈݂݊݅	݈ܽ݅ܿ݋ݏ

(M = .14, SD = .11, CI95% [.10, .17], d = 1.22) and for the large (19) group condition (M = .19, 

SD = .13, CI95% [.15, .22], d = 1.48). The contrast ݈ܽ݅ܿ݋ݏ	݁ܿ݊݁ݑ݈݂݊݅௟௔௥௚௘	௚௥௢௨௣ - 

 ௚௥௢௨௣ (diff.) shows a moderate-large main effect between groups on accuracy	௦௠௔௟௟݁ܿ݊݁ݑ݈݂݊݅	݈ܽ݅ܿ݋ݏ

of M = .05, SD = .07, CI95% [.03, .07], d = 0.75. (B) The response time 

 ௢௣௜௡௜௢௡ (M = 19ms, SD = 59ms, CI95% [3ms, 36ms], d = 0.32) was larger	௪௥௢௡௚ݏݏ݁݊ݐܿ݁ݎݎ݋ܿ	݁ܿ݊݁ݑ݈݂݊݅	

than the ݂݈݅݊݁ܿ݊݁ݑ	ݏݏ݁݊ݐܿ݁ݎݎ݋ܿ௖௢௥௥௘௖௧	௢௣௜௡௜௢௡ (M = -1ms, 95%, SD = 63ms, CI95% [-19ms, 17ms]). 

This corresponds to a moderate main effect of opinion correctness on response times (diff.) of 

M = 20ms, SD = 38ms, CI95% [9ms, 31ms], d = .53. 
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Figure 3. Graphical displays of model fit (based on aggregated data, averaged across 

participants). The plots show the observed (dotted lines) and predicted (straight lines) 

cumulative distribution functions of response times, as function of condition (control, small 

group, and large group), opinion correctness (correct and wrong opinions), and observed 

stimulus (face or car). Error response times were multiplied by –1 and are displayed on the 

negative side of the x-axis. The point where a curve intersects with the y-axis represents the 

proportion of error responses.   



WHY DOES SOCIAL INFLUENCE INCREASE WITH GROUP SIZE 33 

 

Figure 4. The effect of group size and opinion cues on information processing. Displayed are 

the width-adjusted Cousineau-Morey CI95%s (inner-tiers) and the multilevel CI95%s (outer-

tiers) for (A) the drift rate (left), the relative starting point (middle) and the boundary 

separation (right) separately for the control, the small group and the large group condition (B) 

the drift rate and (C) the relative starting point depending on opinion cue (“car” and “face”) 

and group size (small and large). Width-adjusted Cousineau-Morey (CM) and Multilevel 

(ML) CI95%s were computed using the R functions provided by Baguely (2012). In a within-

subjects design non-overlap of the CM CI95%s (inner tiers) for two means corresponds to a 

CI95% of the difference between the two means, which doesn’t include 0. ML CI95%s (outer 

tiers) are of interest, when one wants to see, if a particular parameter value is a plausible 
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candidate for the estimated mean (e.g. is a relative starting point of .5 a plausible value in 

condition XY). 
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Appendix 
Table S1 

Additional parameters of the diffusion model 

parameter M (SD) CI95% 

zControl 0.52 (0.06) [0.50, 0.53] 

zSmall Car 0.52 (0.09) [0.49, 0.54] 

zSmall Face 0.51 (0.09) [0.49, 0.54] 

zLarge Car 0.54 (0.16) [0.49, 0.59] 

zLarge Face 0.51 (0.16) [0.46, 0.55] 

aControl 1.16 (0.16) [1.12, 1.21] 

aSmall 1.23 (0.19) [1.18, 1.28] 

aLarge 1.28 (0.17) [1.24, 1.33] 

aSmall Car 1.20 (0.20) [1.15, 1.26] 

aSmall Face 1.25 (0.19) [1.20, 1.30] 

aLarge Car 1.29 (0.21) [1.23, 1.34] 

aLarge Face 1.28 (0.20) [1.23, 1.34] 

vSmall Car Car -0.70 (0.93) [-0.96, -0.44] 

vSmall Car Face 0.25 (0.93) [-0.01, 0.51] 

vSmall Face Car -0.12 (0.87) [-0.36, 0.13] 

vSmall Face Face 0.98 (0.66) [0.80, 1.17] 

vLarge Car Car -0.99 (0.81) [-1.22, -0.77] 

vLarge Car Face 0.59 (0.97) [0.31, 0.86] 

vLarge Face Car -0.24 (0.97) [-0.51, 0.03] 

vLarge Face Face 1.19 (0.91) [0.93, 1.44] 

ηControl 0.48 (0.27) [0.41, 0.56] 

ηSmall 0.52 (0.28) [0.44, 0.59] 

ηLarge 0.58 (0.25) [0.51, 0.65] 

szControl 0.33 (0.12) [0.30, 0.36] 

szSmall 0.34 (0.10) [0.31, 0.37] 

szLarge 0.36 (0.08) [0.34, 0.39] 

stControl 0.02 (0.01) [0.01, 0.02] 

stSmall 0.02 (0.01) [0.02, 0.02] 

stLarge 0.02 (0.01) [0.01, 0.02] 

 
Notes. All values are based on a sample size of N = 51. The first index refers to group size (Control, Small and 
Large). For all parameters – except v – Car or Face refers to the opinion cue. For v the second index refers to the 
observed stimuli (Car versus Face), whereas the third index refers to the opinion cue (Car versus Face). 
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Abstract 

Informational cascades can occur when rationally acting individuals decide independently of 

their private information and follow the decisions of preceding decision makers. In the 

process of updating beliefs, differences in the weighting of private and publicly available 

social information may modulate the probability that a cascade starts in a decisive way. By 

using functional magnetic resonance imaging, we examined neural activity while participants 

updated their beliefs based on the decisions of two fictitious stock market traders and their 

own private information, which led to a final decision of buying one out of two stocks. 

Computational modeling of the behavioral data showed that a majority of participants 

overweighted private information. Overweighting was negatively correlated with the 

probability of starting an informational cascade in trials especially prone to conformity. Belief 

updating by private information was related to activity in the inferior frontal gyrus/anterior 

insula, the DLPFC, and the parietal cortex; the more a participant overweighted private 

information, the higher the activity in the inferior frontal gyrus/anterior insula and the lower 

in the parietal-temporal cortex. This is the first study exploring the neural correlates of 

overweighting of private information, which underlies the tendency to start an informational 

cascade. 
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INTRODUCTION 

Research in the social sciences has reliably demonstrated that individuals are influenced 

by the behavior of others (e.g., Cialdini and Goldstein, 2004; Raafat, Chater, and Frith, 2009). 

Stock market bubbles, for example, can emerge when traders start to follow misleading 

decisions made by their colleagues, disregarding their own private information. Interestingly, 

theoretical and empirical work in economics has shown that initial decisions of others can 

create an environment in which it is even rational for subsequent decision makers to disregard 

their own private information and to follow others. Such a pattern of conforming decisions is 

called an informational cascade (Anderson and Holt, 1997; Banerjee, 1992; Bikhchandani et 

al., 1992). Usually, informational cascades lead to a desired outcome. However, a “reverse” 

cascade can arise if a substantial number of initial decision makers receive an incorrect 

private signal and therefore make incorrect decisions. In such situations, all subsequent 

decision makers would rationally follow the initial decisions and ignore their own private 

signals. The theory of informational cascades can explain numerous real-life phenomenon, 

such as nonemployment in the labor market (Oberholzer-Gee, 2008), revolutionary regime 

transitions (Ellis and Fender, 2011), and financial crises (Chari and Kehoe, 2004). The 

probability that a cascade starts strongly depends on how people weight and integrate their 

own private as compared to publicly available social information (Bernardo and Welch, 2001; 

Goeree et al., 2007; Nöth and Weber, 2003). Weizsäcker's (2010) meta-analysis suggests that 

people tend to overweight private as compared to social information, even in situations in 

which following others is beneficial. Due to overweighting of private information, cascades 

might occur less often, as predicted by the theory of informational cascades. In the present 

work, we combine neurobiological, economic, and computational approaches to investigate 

the neural mechanism of (biased) belief updating during financial decisions and to explore 

individual differences in the weighting and processing of private information, which can 

modulate the frequency of starting a cascade. 
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From a cognitive perspective, informational cascades are based on a process of 

sequential belief updating of social and private information, on which a final decision under 

uncertainty rests. Recent studies in the field of decision neuroscience provide evidence for the 

involvement of the anterior insula (Preuschoff et al., 2006, 2008), the anterior insula in 

combination with the inferior frontal gyrus (Paulus et al., 2003), the posterior fronto-median 

cortex (Volz et al., 2003, 2004) and the parietal cortex, often in combination with the 

dorsolateral prefrontal cortex (Huettel et al., 2005; Mohr et al., 2010; Stern et al., 2010; 

Symmonds et al., 2011; Vickery and Jiang, 2009; Wright et al., 2012), in belief updating and 

decision making under uncertainty (see (Bach et al., 2011) for an overview). Whereas the 

inferior parietal lobule (angular gyrus) seems to have a special role in tracking observed 

relative frequencies of events, activity within a region of the inferior frontal gyrus has been 

found to be negatively correlated with Bayesian posterior probability (d’Acremont et al., 

2013). 

Contrary to other paradigms exploring belief updating (e.g., the evidence accumulation 

task; Stern et al., 2010 or the ball/bin betting task by d’Acremont et al., 2013), informational 

cascades require people not only to update a belief on the basis of (private) information, but 

additionally to derive social information from the observed decisions of others. A better 

understanding of the differences in updating private as compared to social information is 

crucial for the theory of informational cascades, because overweighting of private information 

can result in fewer cascades than predicted by the theory. Here, for the first time, we 

investigate the neural mechanism of biased belief updating of private as compared to social 

information.
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MATERIALS AND METHODS 

Participants 

Thirty-two people recruited from the subject pool of the University of Basel participated 

in our experiment. Five participants were excluded from the final data analysis (two because 

of technical problems during the fMRI data acquisition, one because of a technical error in the 

experimental script, one because of misuse of the response device, and one because of left-

handedness). The final sample consisted of 27 healthy, right-handed participants with normal 

or corrected-to-normal vision (mean age = 22.4 years, ± 2.0 years SD, 20-29 years, 9 

females). The study was approved by the local ethics committee and participants gave written 

informed consent. Participation in the study was reimbursed with a fixed amount of 30 CHF 

and a variable bonus (mean bonus = 3.99 CHF, ± 0.42 CHF SD, 2.90-4.60 CHF). The 

variable bonus was performance contingent, so that deviations from the correct probability 

estimate led to a lower bonus following a non-linear quadratic scoring rule (Selten, 1998). 

Experimental design 

We used a hypothetical decision scenario representing an adapted version of the 

classical informational cascades paradigm (Anderson and Holt, 1997). In our study, 

participants acting as stock market traders were required to repeatedly choose the profitable 

 of two stocks (W or S) given some evidence e. Participants were told that stock (”݀݋݋݃“)

markets are very volatile and fast moving and that every week (trial) only one stock is 

profitable. At the end of each trial, participants reported the posterior probability ݌ሺ݃݀݋݋|݁ሻ௧ 

that the chosen stock was “݃݀݋݋” (Figure 1). In the 32 experimental trials, participants 

sequentially received three different pieces of evidence. At the beginning of a trial, two 

decisions made by other fictitious traders (trader I and II) in the “Swiss Capital Bank” were 

shown, representing social information I and social information II. The social information 

was followed by private information in the form of a personal recommendation from a rating 



7 

agency. Participants were informed that all other traders also received their own personal 

recommendation from an independent rating agency. The likelihood ݌ሺ݁|݃݀݋݋ሻ௧ of receiving 

a correct recommendation from a rating agency was 2/3 (indicated by the visual cue: “+”) or 

4/5 (visual cue: “++”) for all traders and for the participant. The quality (“+” or “++”) of the 

recommendations received was indicated on the screen above the decisions of the other 

traders (social information I and II) or above the private information for the participant. The 

posterior probability that one of the two stocks was profitable (“݃݀݋݋”) given the received 

and perceived evidence can be determined following Bayes theorem as: 

ݐሻ݁|݀݋݋ሺ݃݌ ൌ
ݐሻ݀݋݋݃|ሺ݁݌∙െ1ݐሻ݁|݀݋݋ሺ݃݌

ݐሺ݁|ܾܽ݀ሻ݌∙െ1ݐሺܾܽ݀|݁ሻ݌	൅ݐሻ݀݋݋݃|ሺ݁݌∙െ1ݐሻ݁|݀݋݋ሺ݃݌
,  (1)

where t refers to the three different points in time in the belief updating process (see Figure 1). 

At t = 0 without a participant having received any information ݌ሺ݃݀݋݋|݁ሻ௧ୀ଴ = 0.50. Based 

on the assumption that other traders incorporated all available evidence, participants could 

derive the recommendation received by other traders. Because trader I always received low 

(“+”) quality recommendations her decision (social information I) signaled the correct stock 

with a likelihood of 0.67 (i.e., ݌ሺ݁|݃݀݋݋ሻ = 0.67). Next, trader II was confronted with a 

recommendation of either low (“+”) quality (i.e., ݌ሺ݁|݃݀݋݋ሻ = .67) or high (“++”) quality 

(i.e., ݌ሺ݁|݃݀݋݋ሻ = .80). This evidence could then be combined with the information inferred 

from the decision of the first trader, which led to four possible posterior probabilities of the 

chosen stock by trader II (i.e., 0.50; 0.67; 0.80; 0.89). After receiving a personal 

recommendation (private information) participants could update their belief, which should 

correspond to six different posterior probabilities (i.e., 0.50; 0.67; 0.80; 0.89; 0.94; and 0.97). 

Importantly, by using all different combinations of decisions and private information (2×4×4 

= 32 trials of interest), we created a design matrix in which the different pieces of evidence 

are independent; that is, seeing one piece of evidence did not allow the prediction of the next 
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piece of evidence. To force participants to pay equal attention to social and private 

information and to update their probability estimate at every point in time (ݐ), we included six 

filler trials in the task. In these trials, subjects had to make a decision with only one (social 

information I) or two (social information I & II) pieces of evidence and no private 

information. To familiarize themselves with the task, participants completed 11 training trials 

outside of the scanner before the fMRI session. To further boost their attention, filler trials 

were overrepresented in these training trials. The randomized sequence of trials was identical 

for all subjects. Trials were separated with fixation crosses, as were the different events within 

a trial (see Figure 1). The inter-stimulus intervals (ISI) between the time windows were varied 

according to a left truncated Poisson distribution (mean (λ) = 3172.78 ms, min = 1000 ms, 

max = 8000 ms). Importantly, from a normative Bayesian perspective, the first two decision 

makers can create a situation in which the third decision maker (and all subsequent decision 

makers) should ignore private information and just follow the decisions of others. Thus, the 

decision of the third decision maker is crucial, as it can start or prematurely end an 

informational cascade. Therefore, in our paradigm we investigated the cognitive and neural 

mechanisms underlying the process of belief updating and decision making of the third 

decision maker, who can initiate or end an informational cascade. 

Behavioral data analysis 

To examine whether participants differentiated between the six different posterior 

probabilities (i.e., ݌ሺ݃݀݋݋|݁ሻ௧ୀଷ = 0.50, 0.67, 0.80, 0.89, 0.94, and 0.97), we performed a 

one-way repeated measures ANOVA with the six levels of uncertainty as within-subject 

factor and the average probability judgments as the dependent variable. The same analysis 

was conducted with the logarithm of the reaction times as dependent measure. 
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Conformity index 

The experimental design matrix included six “conflicting” trials in which the two pieces 

of social information suggested buying the same stock whereas the private information 

suggested buying the other stock and where the normatively correct decision was consistent 

with the social information and opposite to the private information. Therefore, we calculated 

a conformity index for every participant, defined as the percentage of decisions in line with 

the decision of the others in these specific trials. 

Computational models 

To explain the cognitive process underlying belief updating, we constructed an 

Evidence Model that represents a modification of the model proposed by Hung and Plott 

(2001). According to the normative Bayesian solution (see Equation 1), a participant is 

required to update her prior belief with every new piece of evidence	݁t presented at t. To 

simplify the Bayesian solution, Equation 1 can be transformed by computing the log odds 

ratio of the posterior probabilities of which of the two stocks being the profitable one 

 ,assuming equal priors (e.g., Dieckmann and Rieskamp, 2007); that is (”݀݋݋݃“)

݈݊ ௣ሺ௚௢௢ௗೈ|௘೟ሻ

௣ሺ௚௢௢ௗೄ|௘೟ሻ
ൌ 	∑ ݈݊ ௣ሺ௘೟|௚௢௢ௗೈሻ

௣ሺ௘೟|௚௢௢ௗೄሻ
்
௧ୀଵ         (2) 

However, people might not follow the Bayesian solution and might weight their private 

information more heavily than the socially inferred information. To identify how people 

weight the different pieces of information, we extended Equation 2 by allowing pieces of 

information to be weighted differently; that is, 

෡ܻ ൌ 0ߚ ൅ ∑ ݐߚ ∙ ݈݊
ሻܹ݀݋݋݃|ݐሺ݁݌

ሻܵ݀݋݋݃|ݐሺ݁݌
ܶ
ൌ1ݐ         (3) 
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where 0ߚ represents a bias for one of the two stocks at t = 0 and ݐߚ refers to the weight given 

to the different pieces of information. If all weights are equal to 1 and 0 = 0ߚ then Equation 3 

is identical to Equation 2; that is, the normative solution is nested within the Evidence Model 

specified by Equation 3. 

When estimating the Evidence Model (see supplementary methods), we also imposed 

three different constraints on the model parameters. First, in the full model (FM) we estimated 

one bias parameter 0ߚ and three different ݐߚ weights for each piece of information at the three 

points in time (social information I, social information II, and private information), providing 

four parameters. Second, for the social model (SM), we assumed no bias (i.e., 0 = 0ߚ) and one 

single weight for social information (i.e., ݐߚൌ1 = ݐߚൌ2) and one weight for private information 

(i.e., ݐߚൌ3), leading to a total of two free parameters. Third, we also determined the goodness-

of-fit of the normative Bayesian model (BM) by setting 0 = 0ߚ and all other weights to one 

(i.e., 1 = ݐߚ). Whereas the BM has no flexibility in weighting information differently, the FM 

allows weighting each piece of information in a different way. The SM assumes that people 

do not have a bias for one of the options, treat both pieces of social information equally but 

weight their private information differently. The SM is more complex than the BM but less 

complex than the FM. 

Information weighting index 

A decision maker following Bayesian principles should weight the social and private 

information equally. To examine to what extent participants deviated from the Bayesian 

approach, we determined an information weighting index for the SM by dividing the 

estimated weight for the private information (ݐߚൌ3, i.e., using the mode of the marginal 

posterior distribution as a point estimate) by the sum of the estimated weights for the private 

and social information (i.e., ݐߚൌ3 + ݐߚൌ1൅2). An information weighting index > 0.50 indicates 
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overweighting of private as compared to social information, whereas values of < 0.50 indicate 

overweighting of social as compared to private information. 

Functional imaging data analyses 

To study the neural underpinnings of belief updating with social and private 

information, two first level models were calculated in the context of a GLM (SPM8, 

Wellcome Trust Center for Neuroimaging, University College London). Our experimental 

design is characterized by three updating stages (see Figure 1). In every trial, participants 

were forced to update their belief ݌ሺ݃݀݋݋|݁ሻݐ after the decisions of two traders (social 

information I & II) and after they had received their own private information. 

We computed how much a signal given at t = 2 increased/decreased the belief in the 

option that was more probable at stage t = 1 following the Bayesian solution (i.e., Equation 1). 

Likewise, we determined the difference of the posterior probability between t = 2 and t = 3. 

Please note that as the decision of trader 1 was always based on a low (+) quality signal for 

either stock W or S. Belief updating from t = 0 (i.e., the beginning of a trial) to t = 1 was the 

same for every trial and therefore not explicitly modeled. 

First level analysis 

In the first level model 1, belief updating at the social information II (belief updating by 

social information) and at the private information (belief updating by private information) 

stages was modeled with a single parametric regressor to account for general effects of belief 

updating at both stages (i.e., independent of the social or private nature of the information). 

Brain activity at the time of the decision and at the time of the probability judgment was 

modeled with separate parametric regressors tracking the log odds of the probability 

judgments and the decision for either stock W or S. We also included parametric regressors 

coding for the stock with the highest posterior probability (at t = 1 and t = 2 and 3 combined) 
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and for the quality of the private information (low (+) or high (++)) at t = 2 and 3 combined. 

Decision and/or probability judgment time windows in which participants gave no answer and 

filler stimuli were included in the GLM as regressors of no interest. 

In the first level model 2, the second (social information II) and third (private information) 

belief updating stages were modeled separately using parametric regressors to account for the 

specific effects of belief updating by social and private information. The quality of the private 

information (low (+) or high (++)) was included as a parametric regressor for the belief 

updating stage at t = 3. In all other respects, first level models 1 and 2 were similar. To 

account for head movements, both first level models included motion parameters. 

Second level analysis 

To test for the general (first level model 1) and specific (first level model 2) effects of 

belief updating as well as for the effects of an increase in subjective uncertainty during 

decision making (first level model 2 – see supplementary fMRI results) we used one-sample t-

tests on the group level (P < 0.001 (uncorrected) with a minimum cluster size of 20 voxels). 

To test how belief updating by private information was modulated by inter-individual 

differences in information weighting, we used a multiple regression design (P < 0.001 or 

0.005; uncorrected) with the information weighting index as a covariate. In order to restrict 

the search volume only to brain regions involved in belief updating by private information we 

used the results of the respective second level analysis as an explicit mask (using a liberal 

threshold, P < 0.005, uncorrected, for the mask). To further illustrate these findings we 

extracted the contrast estimates within two ROIs (see Figure 5) and plotted them against the 

information weighting index. The ROIs were defined with the MarsBaR toolbox for SPM 

(Brett et al., 2002). 
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RESULTS 

Behavioral results 

Overall, participants performed the task consistent with the Bayesian solution: In 

93.18% of all trials in which participants (N = 27) made a decision, they decided in 

accordance with the Bayesian solution, with seven participants always choosing the more 

profitable stock. The six different levels of uncertainty significantly modulated participants’ 

probability judgments, F(3.64, 94.51 = 70.28, P < 0.001 (see Figure 2 for details), with the 

probability judgments as dependent variable and the six levels of uncertainty as independent 

variable. The reaction times did not differ significantly between the six levels of uncertainty, 

F(2.59, 67.44) = 1.57, P = 0.21. 

Model comparison and parameter estimation 

To further explore how participants weighted the different types of information in belief 

updating, we compared the three different models described above according to their DIC 

values (see supplementary methods for details on model estimation and model comparison). 

The SM, which assumes a differential weighting of social as compared to private information, 

performed best (∆DICFM	minus	SM = 10.4; ∆DICBM	minus	SM = 1590.4). This result was further 

supported by an analysis at the individual level: The Bayes factors favored the SM as 

compared to the FM for 24 of all 27 participants. 

Figure 3 illustrates the difference in weighting of social and private information (SM) in 

belief updating. The weights given to social information (ܯsocial - Figure 3A, left) were 

credibly smaller than the weights given to private information (ܯprivate - Figure 3A, right). 

This is further illustrated by the contrast ܯprivate - ܯsocial (Figure 3B). Thus, during belief 

updating, participants substantially overweighted private as compared to social information. 

We also calculated the information weighting index on the basis of the estimated parameters 
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of the SM for each participant. The information weighting index (Figure 3C) was significantly 

negatively correlated with the conformity index, Pearson’s product moment correlation r(25) 

= -.83, P < 0.001, suggesting that the more people overweighted private as compared to social 

information, the less often they started a cascade in the trials of interest. 

fMRI results 

To investigate the neural processing of social and private information increasing 

uncertainty, we analyzed neural activity associated with belief updating. 

General effects of belief updating 

To correctly estimate the probability of choosing the better stock, a participant had to 

update her (prior) belief with every piece of information received (social information I & II 

and private information). Therefore, for the initial analysis we used a single parametric 

regressor that tracked the belief updating process independent of the social or private nature 

of the information (at 2 = ݐ and 3 combined). Besides others, we found significant activity in 

fronto-parietal brain regions and in the precuneus during belief updating; that is, the activity 

of these regions increased with an increase in uncertainty (see Table 1, Figure 4 for further 

details). 

Specific effects of belief updating by social or private information 

Because our behavioral results indicated a differential processing of private and social 

information, we analyzed the two main belief updating stages (social information II and 

private information) independently. The left middle temporal gyrus/inferior parietal lobule 

was active during belief updating when subjects processed social information II (see Table 1) 

whereas activity of the anterior insula, the DLPFC, and the parietal cortex, besides others (see 

Table 1 and Figure 5), correlated with belief updating by private information. 
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Modulation of belief updating by individual differences in overweighting private 

information 

The probability of an informational cascade starting depends on the differential 

weighting of private and social information. Therefore, we used the information weighting 

index to analyze how the process of belief updating (at 3 = ݐ) is modulated by inter-individual 

differences in information weighting. The regression analysis showed a positive correlation of 

the belief updating activity in the inferior frontal gyrus with the information weighting index: 

A similar positive correlation was observed in the anterior insula using a more liberal 

threshold (P < 0.005). Overall, the more participants overweighted private as compared to 

social information, the more active the inferior frontal gyrus/anterior insula were during belief 

updating of private information (Figure 5A and Table 2). An opposite effect was found in the 

parietal-temporal cortex: The more participants overweighted private as compared to social 

information, the less active the parietal-temporal cortex was during belief updating of private 

information (Figure 5B and Table 2). 
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DISCUSSION 

By combining neurobiological, economic, and computational approaches, we were able 

to show that people who tend to overweight private as compared to social information show a 

decreased activity in the parietal-temporal cortex and an increased activity in the inferior 

frontal gyrus/anterior insula while updating their beliefs by private information. To our 

knowledge, this is the first study to illuminate the neural underpinnings of biased belief 

updating by private information – the cognitive process that is decisive for the emergence and 

stability of informational cascades. 

Making an optimal decision when observing other people’s decisions and receiving 

personal (private) information as represented by the informational cascades paradigm requires 

the integration of available social and private information as described by the Bayesian 

solution. Deviations from the Bayesian solution (e.g. overweighting of private information) 

can influence subsequent decisions and therefore the occurrence of informational cascades. It 

is especially important for the theory of informational cascades to understand how the neural 

process of belief updating (of private information) is modulated by such deviations. The 

computational analysis of the behavioral data showed that subjects weighted private and 

social information differently: The majority of subjects (24 of 27 participants) overweighted 

private as compared to social information. This finding is consistent with recent research on 

informational cascades: A comprehensive meta-analysis by Weizsäcker (2010) showed that 

decision makers often overweight private information even in situations in which it would be 

optimal to follow others. The results of our behavioral control study (see supplementary 

results) indicate that subjects specifically overweight private information, which cannot 

alternatively be explained by an order-effect of overweighting recent information. 

Importantly, previous studies have shown that overweighting of private information strongly 

influences the emergence and stability of informational cascades (Bernardo and Welch, 2001; 

Nöth and Weber, 2003; Goeree et al., 2007). We also found a strong negative correlation 
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between the individual tendency to make conforming decisions (conformity index) and 

overweighting of private information (information weighting index). This clearly indicates 

that overweighting of private information lowers the tendency to follow others and thereby 

lowers the probability that an informational cascade starts or continues. 

Our fMRI results showed that an increase in uncertainty during belief updating by either 

social or private information activated the parietal-temporal cortex – a region of the brain 

previously associated with number processing (Dehaene et al., 1998, 2003). Additionally, we 

found that an increase in uncertainty during belief updating by private information activated 

the DMPFC, bilateral anterior insula, and DLPFC – brain regions closely linked to decision 

risk (for a review, see Mohr et al., 2010). Furthermore, we demonstrated that stronger 

individual overweighting of private information positively correlated with activity in the 

inferior frontal gyrus/anterior insula and negatively with activity in the parietal-temporal 

cortex. 

It has been shown that the inferior frontal gyrus is often co-active with the anterior 

insula (Paulus et al., 2003; Wright et al., 2012) and may constitute the so called “fronto-

insular junction” (Craig, 2009). In the decision making under risk literature, activity of the 

inferior frontal gyrus has been related to higher risk aversion (Christopoulos et al., 2009), an 

increase in positive skewness (the chance of a better than average outcome is small) 

(Symmonds et al., 2011), an increase in the variance of an outcome (uncertainty) for risk-

seeking individuals (Tobler et al., 2007), ambiguous versus non-ambiguous gambles, 

especially for ambiguity averse individuals (Bach et al., 2011), and increasing uncertainty 

(Huettel et al., 2005). Interestingly, a more posterior region within the inferior frontal gyrus 

was recently found to be more active the more improbable an event becomes as the result of a 

Bayesian updating process (d’Acremont et al., 2013). Tracking of Bayesian posterior 

probabilities, however, has to be differentiated from belief updating of uncertainty as these are 
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two different processes based on two different, but related, concepts (probability of 

occurrence with 0 ≤ p ≤ 1 as compared to uncertainty with 0.5 ≤ p ≤ 1). How belief updating 

leads to adjusted representations of posterior probabilities (i.e. the outcome of the belief 

updating process) is not yet known. 

Activity in the anterior insula has been linked to risk anticipation (Mohr et al., 2010; 

Preuschoff et al., 2006), prediction of risk (Preuschoff et al., 2008), risk-aversion mistakes 

(Kuhnen and Knutson, 2005), intolerance of uncertainty (Simmons et al., 2008), risk during 

the selection of the potential behavioral responses (Huettel, 2006), and to the integration of 

subjective risk preference (Symmonds et al., 2011). Activity of the insular cortex has also 

been associated with the degree of harm avoidance (Paulus et al., 2003) and choice strategies 

that try to minimize losses (Venkatraman et al., 2009). Thus, we can speculate that the 

stronger uncertainty-related activity of the inferior frontal gyrus/anterior insula during the 

processing of private information conflicting with social information can overcome the 

effects of social conformity in subjective estimates of uncertainty. 

However, according to the computational model (SM) overweighting of private 

information changes the posterior probability and thereby uncertainty. Thus, increased 

uncertainty could potentially explain increased activation of the inferior frontal gyrus/anterior 

insula in participants who strongly overweighted private information. To examine this 

explanation we determined whether overweighting of private information indeed increased 

uncertainty. The (un-)certainty measured as the average absolute difference between the 

posterior probability and a pure chance prediction of 0.5 across all trials was nearly the same 

for the SM with 0.2627 and the standard model (BM) with 0.2602. Therefore, overweighting 

of private information did not on average increase uncertainty and can be ruled out as an 

explanation for the increased activity of the inferior frontal gyrus/anterior insula. Instead, it 

appears plausible that people who are very sensitive to cues associated with uncertainty as 

reflected in increased activity of the inferior frontal gyrus/anterior insula tend to overweight 
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private information. Overall, our results further support the important role of the anterior 

insula in the neural mechanism of social influence on human behavior (Berns et al., 2010; 

Campbell-Meiklejohn et al., 2010; Izuma and Adolphs, 2013; Klucharev et al., 2009). 

The parietal-temporal cortex was active at all stages of belief updating (by social and 

private information). Importantly, activity of the parietal-temporal cortex was modulated by 

inter-individual differences in the weighting of private information: Stronger overweighting 

of private information was associated with decreased activity in the parietal-temporal cortex 

during the final stage of belief updating. Previous human and non-human studies consistently 

associated the parietal cortices with number processing (Dehaene et al., 1998, 2003) and with 

the resolution of uncertainty in tasks with limited knowledge about the correct action to take 

(Huettel et al., 2005, 2006; Kiani and Shadlen, 2009; Symmonds et al., 2011; Volz et al., 

2003, 2004). Our results suggest that people with stronger numerical processing of private 

information in the parietal cortices are less biased towards private information and estimate 

uncertainty closer to the Bayesian optimal solution; however, this makes them more prone to 

start an informational cascade. Overall, we suggest a two-fold neural mechanism of 

overweighting of private information in informational cascades: (1) increased activity of the 

inferior frontal gyrus/anterior insula and (2) decreased activity in the parietal-temporal cortex. 

At a later stage during decision making, these two neural signals could be integrated via the 

direct anatomical connection between insula and posterior parietal cortex (Cavada and 

Goldman-Rakic, 1989). Further experiments are needed to explore this hypothesis. 

We found a large overlap of activations evoked by increased uncertainty during belief 

updating by private information and during decision making (see supplementary fMRI 

results). In both time windows, we observed uncertainty-related activity of the DMPFC, 

anterior insula, parietal cortex and DLPFC. A meta-analysis by Mohr et al. (2010) showed 

that these brain regions are more strongly activated for decision risk as compared to 

anticipation risk. In our task, all relevant information was already available after the 
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presentation of private information. Therefore, participants had the opportunity to form a 

decision (i.e., select a stock) before the response cue. Thus, in our task it is difficult to 

differentiate the neural effects related to belief updating and decision making at the last stages 

of a trial. Interestingly, in contrast to Stern et al. (2010), we did not find activity in the 

anterior cingulate cortex during belief updating (even when using a very low uncorrected 

threshold of 0.05). This discrepancy could be caused by the differences in the statistical 

analysis and/or design of the two studies. In contrast to our study, participants in the evidence 

accumulation task used by Stern et al. (2010) (1) rated uncertainty after each of the 

information cues, (2) received only private information, (3) received a feedback after every 

trial, and (4) had the opportunity to decline a decision. Thus, further studies are needed to 

clarify the exact role of the anterior cingulate cortex in belief updating. Additional studies will 

also help to generalize the observed mechanisms to different social environments. 

Taken together, we show that private information conflicting with social information 

activates brain regions associated with risk and uncertainty. Furthermore, activity of the 

inferior frontal gyrus/anterior insula and the parietal-temporal cortex were modulated by inter-

individual differences in the overweighting of private information. The behavioral results 

indicate that such inter-individual differences can influence the probability that a cascade 

starts. By and large, our results suggest a profound role of the uncertainty-related neural 

activity in the formation of informational cascades. 
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Figure 1. Informational cascades task trial structure. The decisions of trader 1 (social 

information I) and trader 2 (social information II) were followed by a buying recommendation 

of a rating agency for one or the other stock (private information). At the end of every trial 

participants decided which stock (W or S) provided the higher revenue and indicated the 

probability of the correct outcome (probability judgment). The different windows were 

separated with fixation crosses (see “experimental design” section for details). 

 

Figure 2. The effect of the different levels of uncertainty signaled by social and private 

information on participants’ probability judgments. An increase in objective certainty (x-axis) 

led to increased probability judgments (y-axis). 

Note: the dotted line indicates the prediction of the normative Bayesian model (cf. Equation ). The boxes range 

from the lower quartile to the upper quartile of the distribution. The black band in the middle of the box 

represents the median. The whiskers represent the minimum and the maximum of the distribution as long as 

these estimates are not further away from the median than ±1.5×IQR. Circles represent outliers. 

 

Figure 3. Different weighting of social and private information (SM). (A) Marginal posterior 

distributions for the weight of the social information (ܯsocial) and for the weight of the private 

information (ܯprivate). (B) The contrast private information minus social information (ܯprivate 

 social) indicates a strong difference of weighting of social and private information. (C) Theܯ -

distribution of the information weighting index shows that the majority of subjects overweight 

private as compared to social information. 

Note: The 95% Highest Density Interval (95% HDI) spans 95% of the distribution. The vertical red line indicates 

hypothetical unbiased information weighting (i.e., equal weighting of social and private information). 



29 

Figure 4. Neural correlates of belief updating by social and private information. Neural 

activity of the frontal and parietal cortices increased with increasing uncertainty of the 

decision. 

Note: P < 0.001; cluster size = 20, uncorrected. 

 

Figure 5. Inter-individual differences in belief updating by private information. Blue color 

indicates brain regions whose activity increased with increasing uncertainty during belief 

updating by private information. Results of the regression analysis (red boxes) represent 

activity of the subregions within the inferior frontal gyrus (A) and the parietal-temporal cortex 

(B) that was significantly correlated with overweighting of private information (information 

weighting index): The green color indicates a positive correlation, whereas the red color 

indicates a negative correlation. The two scatterplots display the average contrast estimates 

per subject within the respective cluster plotted against the information weighting index. The 

dashed red line displays a linear regression model. 

Note: P < 0.001; cluster size = 0, uncorrected; brain regions in blue color – P < 0.005; cluster size = 0, 

uncorrected (explicit mask). Clusters are overlayed on a chi2better.nii.gz template provided by MRIcron 

(http://www.mccauslandcenter.sc.edu/mricro/mricron/).   
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Table 1. Neural correlates of belief updating 

Contrast 

 MNI centroid  

Region x y z No. of voxel Z value 

General effects of belief 

updating (independent of 

social and private 

information)  

Superior Temporal Gyrus/Inferior Parietal Cortex 63 -49 19 221 4.83 

Precuneus/Posterior Cingulate 3 -61 34 222 4.79 

Superior/Middle Frontal Gyrus (DLPFC) -15 29 52 104 4.77 

Superior Temporal Gyrus/Inferior Parietal Cortex -42 -61 28 229 4.54 

Superior/Middle Frontal Gyrus 21 26 46 59 3.99 

Superior/Medial Frontal Gyrus -18 53 19 35 3.87 

Belief updating by social 

information  
Middle Temporal Gyrus -42 -58 22 28 3.79 

Belief updating by private 

information 

Superior/Middle Frontal Gyrus (DLPFC)/DMPFC 48 32 19 1807 5.84 

Precuneus/Posterior Cingulate 6 -58 40 309 5.69 

Inferior Frontal Gyrus/Anterior Insula 48 41 -14 205 5.36 

Inferior Parietal Lobe 33 -64 40 524 4.83 

Inferior Parietal Lobe -48 -64 43 372 4.52 

Middle Occipital Gyrus 27 -88 -5 145 4.45 

Middle Temporal Gyrus 42 -52 -11 161 4.41 

Cerebellum -33 -73 -38 298 4.24 

Inferior Frontal Gyrus/Anterior Insula -33 20 -2 108 4.17 

Middle/Inferior Frontal Gyrus -39 41 -8 49 4.13 

Middle Occipital Gyrus -36 -64 -11 120 4.07 

Parahippocampal Gyrus 21 -28 -11 20 3.95 

 
Dorsal Striatum 12 14 7 20 3.85 
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Table 2. Neural correlates of inter-individual differences in overweighting private 

information 

Contrast 

 MNI centroid   

Region x y z No. of voxel  Z value 

Positive correlation with 

Information Weighting Index  

Inferior Frontal Gyrus 45 38 10 3 (11) 3.35 

Inferior Frontal 

Gyrus/Anterior Insula 

39 17 -5 (3) (2.90) 

Negative correlation with 

Information Weighting Index 

Middle Temporal Gyrus -51 -64 22 8 (36) 3.46 

 
Midbrain -3 -10 -11 1 (3) 3.45 

 
Middle Temporal Gyrus -54 2 -23 1 (8) 3.38 

 
Middle Temporal Gyrus -48 11 -29 1 3.35 

 
Midbrain -6 -13 -8 1 3.24 

 
Middle Temporal Gyrus -63 -31 -8 1 (20) 3.13 

 
Middle Temporal Gyrus -51 2 -29 1 3.11 

 
Precuneus -3 -52 40 1 (14) 3.11 

 
Middle Temporal Gyrus -57 -31 -11 1 3.10 

 
Cerebellum -33 -85 -38 (8) (3.01) 

 
Middle Frontal Gyrus -39 17 52 (3) (2.86) 

 
Cerebellum -15 -88 -38 (3) (2.81) 

 
Medial Frontal Gyrus -6 50 46 (1) (2.64) 

 
Cerebellum -18 -82 -29 (1) (2.63) 

Note: Z values in brackets are significant at P < 0.005 (uncorrected), whereas Z values without brackets 

represent results significant at P < 0.001 (uncorrected). The same logic is applied for the no. of voxels. 



 

  1

SUPPLEMENTARY MATERIALS 

Neural Underpinnings of Informational Cascades: Brain Mechanisms of Social Influence On 

Belief Updating 

Rafael E. Huber, Vasily Klucharev, and Jörg Rieskamp 

 

I. Supplementary methods - Model estimation 

To estimate the free parameters of the three computational models, we applied a 

Bayesian hierarchical approach (Kruschke, 2011) implemented with the OpenBugs software 

(Lunn et al., 2009) and the BRugs package (Thomas et al., 2006) in R (R Development Core 

Team, 2011). All three models provide a point estimate for the posterior probability that one 

stock is better than the other stock. To compare the model predictions ෠ܻ (see Equation 3) with 

the observed probability judgments of the participants, we first transformed the observed 

probabilities using a logit transformation. We then assumed a normal distributed error (ߪ௡) 

around ෠ܻ for each participant n as an additional free parameter. The model parameters for the 

݊௧௛ participant (ߚ଴௡, ߚ௧௡ and ߪ௡) were sampled from group distributions, whereas the 

parameters of these group distributions were sampled from higher order distributions. In our 

hierarchical model, explicit prior assumptions were specified at the top of the hierarchical 

model only, as all the downstream parameters were connected to the overarching values. The 

model parameters of interest for the ݊௧௛ individual (that is,	ߚ௧௡ and 	ߚ଴௡) were sampled from 

normal (group) distributions with means ܯ௧ and ܯ଴ and precisions ௧ܶ and ଴ܶ (where SD = 

1/√ܶ). The means ܯ௧ and ܯ଴ were sampled from normal hyperparameter distributions with a 

prior mean of μ௧ = 1 and a precision ߬௧ = 0.01 for all ܯ௧ and μ଴ = 0 and ߬଴ = 0.01 for ܯ଴ 

(notice that the chosen prior means μ௧ and μ଴	represent the normative solution). The 

precisions ௧ܶ and ଴ܶ were sampled from gamma distributions with Shape = 0.1 and Rate = 



 

  2

0.1. As prior distribution for the error component ߪ௡ we defined a gamma distribution with 

parameters S and R, which were also sampled from hyperparameter distributions (see 

Kruschke (2011, p.443) for a detailed description). For an efficient estimation process, we 

used a thinning factor of 100 and an initial burn-in of 10,000. All final Markov chains had a 

length of 100,000. 

Model comparison 

To compare the models we estimated the Deviance Information Criterion (DIC) for all 

three computational models. The DIC is especially suited to hierarchical models, as it takes 

the goodness-of-fit and the effective number of free parameters into account. The model with 

the lowest DIC should predict a replicate data set best (Spiegelhalter et al., 2002). 

Additionally, we compared the FM with the SM on the individual level via approximate 

Bayes factors based on the best fitting parameters (modes of the marginal posterior 

distributions) using the Bayesian Information Criterion (see Raftery, 1995; Wagenmakers, 

2007). 

Functional imaging data acquisition 

Functional MRI was performed with ascending slice acquisition using a T2*-weighted 

echo-planar imaging sequence using a 3T Siemens Magnetom Verio whole-body MR unit 

equipped with a 12-channel head coil; 40 axial slices; volume repetition time (TR), 2.28 s; 

echo time (TE), 30 ms; 80° flip angle; slice thickness, 3.0 mm; field of view (FoV) read, 228 

mm; slice matrix 76×76. For structural MRI, we acquired a T1-weighted MP-RAGE sequence 

(176 sagittal slices; volume TR, 2.0 s; TE, 3.37 ms; 8° flip angle; slice matrix 256×256; slice 

thickness, 1.0 mm; no gap; FoV, 256 mm). We preprocessed the fMRI data using SPM8 

(Wellcome Trust Center for Neuroimaging, University College London). We applied a slice 

time correction using the middle image as reference. Preprocessing was continued with spatial 
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realignment to correct for head movement. T1 images were then co-registered to the mean 

functional image created in the previous step. This image was segmented into grey matter, 

white matter, and cerebrospinal fluid (CSF). In a next step, the data were normalized 

according to the Montreal Neurological Institute (MNI) template and smoothed with a 

Gaussian smoothing kernel (FWHM = 8 mm). The start of the experimental paradigm was 

triggered by the 7th scanner pulse to account for magnetization equilibration and previous 

scans were excluded from the final analysis. 

II. Supplementary behavioural results - Control Study 

The standard informational cascades paradigm implies a fixed order of social followed 

by private information. However, due to the fixed order of the presented information, it could 

have been that a different weight assigned to the private information simply represented an 

order effect in which the last piece of information is given larger weight (e.g., Hogarth & 

Einhorn, 1992). Therefore, in order to examine whether indeed the last piece of information 

was given larger weight, we conducted a control study in which we had an additional 

condition in which only private information was presented. Seventeen participants (mean age 

= 21.6 years, ± 1.7 SD, 20-25 years, 6 females) participated in this additional behavioral study 

that consisted of 60 trials with 8 filler trials, 26 standard trials (social information I, social 

information II and private information; similar to the fMRI study) and 26 control trials 

(private information I, private information II and private information III). To explore a 

potential order effect, we compared the standard and control trials with each other by 

estimating the SM model. This enabled us to examine whether private information is 

weighted differently as compared to social information or whether simply the last piece of 

information is given larger weight than the preceding information. 

The analysis of the standard trials replicated the behavioral results of the fMRI study: 

A clear trend towards overweighting of private information was observed, ܯ௣௥௜௩௔௧௘ - ܯ௦௢௖௜௔௟, 
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mode = 0.165, 95% HDI = -0.0316 – 0.394. Importantly, the analysis of the control trials 

(consisting of private information only) did not show overweighting of the last private 

information at the end of the trial: The marginal posterior for ܯ௣௥௜௩௔௧௘	ூூூ (private information 

III; mode = 0.748, 95% HDI = 0.615-0.873) could not be credibly differentiated from the 

marginal posterior for ܯ௣௥௜௩௔௧௘	ூାூூ (private information I & II, mode = 0.746, 95% HDI of 

0.609-0.876), as indicated by the 95% HDI for the contrast ܯ௣௥௜௩௔௧௘	ூூூ - ܯ௣௥௜௩௔௧௘	ூାூூ, mode = 

-0.005, 95% HDI = -0.189-0.18. The results of the control study, in particular the control 

condition, showed that the last piece of information is not overweighted due to a recency 

effect and no order effect was observed. Thus, we can conclude that the larger weight given to 

private information as compared to social information in the fMRI study was due to the 

private versus social character of the information. 

III. Supplementary fMRI results - The effect of subjective uncertainty during decision 

making 

The probability judgments (i.e. subjective posterior probabilities) provided by the 

participants are a very direct measure of subjective uncertainty. Additionally, we analyzed the 

effect of subjective uncertainty on brain activity during decision making (decision time-

window). At the end of each trial, participants made a probability judgment about their 

decision. We found that increased subjective uncertainty activated the bilateral fronto-parietal 

network, the left fronto-insular cortex and the dorsomedial prefrontal cortex (DMPFC) (Fig. 

S1 and Table S1). Thus, the brain areas involved into the belief updating by private 

information were also engaged into the final decision-making process. 
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Figure S1. Neural correlates of subjective uncertainty during decision making. The decision-

related activity of the anterior insular, parietal and frontal cortices increased with increasing 

subjective uncertainty.  

Note:  p < 0.001, cluster size = 20, uncorrected. Subjects indicated the subjective uncertainty of the decision at 
the end of each trial (probability judgment phase). 
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Table S1. Neural correlates of subjective uncertainty during decision making 

 MNI centroid  

Region x y z No. of Voxel  Z value 

Dorsomedial Prefrontal Cortex (DMPFC) 

 

12 23 37 1368 4.74 

Cerebellum 

 

33 -61 -29 279 4.72 

Inferior Frontal Gyrus / Precentral Gyrus 

 

-48 41 1 644 4.65 

Cerebellum 

 

-27 -58 -32 647 4.51 

Middle Temporal Gyrus 57 -40 1 110 4.31 

Inferior Parietal Lobule 51 -46 22 146 4.24 

Superior Temporal Gyrus -54 -49 19 77 4.13 

Superior Frontal Gyrus -18 56 31 41 4.00 

Thalamus 9 -13 13 24 3.89 

Precuneus 3 -58 43 32 3.68 

Inferior Parietal Lobule -42 -52 43 76 3.63 
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Abstract 

The present work examines social influence on people’s decisions in a sequential 

decision-making situation. The first experimental study using an information cascade 

paradigm shows that people infer information from others’ decisions for making their own 

decisions. Following a cognitive modeling approach, our proposed social influence model 

shows that people overweight their own private information relative to the inferred social 

information. The second study examines the decision problem of Study 1 embedded in a 

medical decision-making problem. We test whether in the medical situation people do not 

only infer information from other’s decision but also take other’s authority into account. The 

social influence model illustrates an authority effect such that people overweight public 

information inferred from higher ranked persons as compared to equally ranked persons. Both 

studies shows how the social environment provides different sources of information that 

people integrate for making decisions.  

Keywords: Social Influence, Conformity, Authority, Informational Social Influence,  

Information Cascade, Bayesian Analysis 
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Social Influences in Sequential Decision Making 

Individuals often ignore their own opinion in favor of the opinions of others. Early 

experimental results of Asch (1951, 1956) and Sherif (1935) impressively illustrated how the 

judgments of others influence individuals’ judgments. People sometimes follow the behavior 

of others even when they provide inaccurate information. The present article focuses on a 

decision-making problem in which several individuals sequentially make decisions and have 

the potential to influence each other. This situation has been studied by economists (e.g., 

Anderson & Holt, 1997; Bikhchandani, Hirshleifer, & Welch, 1992) who focused on 

conformity behavior due to the cognitive integration of socially inferred information 

improving individual decisions. In contrast, social psychologists have additionally 

emphasized conformity behavior, which is motivated by maintaining or building acceptance 

and belonging. Following a cognitive modeling approach, the goal of the present study is to 

examine to what extent individual decisions are affected by different types of social influence. 

Specifically, we are interested in how socially inferred information and normative 

expectations of an authority have an impact on individual decisions. 

Imagine a physician confronted with the task of diagnosing a type of flu strain in a 

patient showing several symptoms. The symptoms speak in favor of Influenza A, but 

symptoms are only probabilistically related to flu strains. Thus the physician knows that her 

diagnosis will only be correct with a certain probability. Meanwhile she knows that her 

colleague has diagnosed a case of the relatively harmless Influenza C in the same patient. 

What should she do: Rely on the symptoms that she has observed or follow her colleague’s 

judgment? If she follows her colleague’s judgment this would be a typical case of conformity 

behavior, because she is disregarding the evidence the patient’s symptoms provide. Can such 

a conformity decision be reasonable? 

To explain why people conform it is helpful to distinguish two types of social 

influence: normative social influence and informational social influence (Deutsch & Gerard, 
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1955). Normative social influence describes behavior that has been driven by the desire to 

achieve a valued, coherent self-identity and to convey a particular impression to others 

(Chaiken, Wood, & Eagly, 1996). The influence is based on people’s motivation to gain 

approval and avoid rejection by conforming with others’ expectations. The physician’s 

decision to conform may be motivated by the desire to avoid looking ridiculous in front of 

others because she was incapable of diagnosing the harmless Influenza C. In contrast, 

informational social influence arises from useful and valid information that another’s opinion 

or behavior provides to improve a decision or judgment (Allen & Levine, 1971; Festinger, 

1954). If, for instance, the physician’s colleague was very experienced and potentially had 

additional information for a diagnosis, this informational influence would lead the physician 

to the correct inference that her colleague’s diagnosis is very likely correct, making her own 

conforming decision the best she can do. 

Dual-motive views of social influence have already been proposed in several domains, 

such as conformity research (Deutsch & Gerard, 1955; Insko, Drenan, Solomon, Smith, & 

Wade, 1983), group polarization research (Kaplan & Miller, 1983, 1987), and persuasion 

research (Wood, 2000). Criticism of such views has mainly focused on the problem of how 

the two types of influence can be separately measured and, consequently, how they interact 

(Allen, 1965; Levine & Russo, 1987; Tajfel, 1969). In many conformity studies individuals’ 

behavior is examined under two conditions: In the public condition, individuals act under the 

surveillance of others, whereas in the private condition, responses are given anonymously. If 

behavior in the public condition differs from behavior in the private condition, this is usually 

attributed to salient beliefs of the person being socially influenced by the fact that others will 

positively evaluate his or her conformity behavior. Nevertheless, normative social influence 

cannot be excluded in the private condition. Social expectations of others can also emerge 

when their presence is imagined, so they hold across public and private contexts (Wood, 

2000). Moreover, priming studies suggest that individuals’ tendency to conform can even 
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arise automatically, outside conscious awareness or voluntary control (Epley & Gilovich, 

1999; Pendry & Carrick, 2001). 

In sum, many social psychologists agree that conformity can result from informational 

and normative social influence. How the two types influence behavior is often difficult to 

measure, and whether and how they might work together is an even more complicated 

question. In the present study we examine a sequential decision-making task that helps us 

identify the different types of social influences on individual behavior. More specifically we 

examine decision making using the “information cascade paradigm” (e.g., Anderson & Holt, 

1997; Bikhchandani, Hirshleifer, & Welch, 1992). 

Information Cascades and Conformity Behavior 

 Bikhchandani et al. (1992) argued that people’s judgments, in principle, are based 

upon private and public information. For instance, based on a person’s own examination of a 

judgment situation, the person has access to information others have not obtained, which is 

private information. In addition, the person can consider information that is commonly 

available to everyone; this is public information. In a situation in which several individuals 

make the same decision sequentially, the decisions made by others preceding an individual’s 

own decision provide public information to that individual. An informational cascade occurs 

when it is optimal for an individual, having observed others’ preceding decisions, to follow 

the behavior of the preceding person, ignoring his or her own private information. 

Bikhchandani et al. (1992) showed that such decisions are rational when following a Bayesian 

analysis of the problem, which we demonstrate below. 

Anderson and Holt (1997) examined whether information cascades actually occur. In 

their experiment, one of two urns was randomly selected by the experimenter. The two urns 

contained the same number of balls, but the composition of the balls’ color differs for the 

urns. For instance, both urns could contain three balls, with two white and one black ball for 

the first urn (Urn A) and two black and one white ball for the second urn (Urn B). The 
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participants knew the compositions of the two urns but did not know which urn was randomly 

selected by the experimenter. Participants decided sequentially which of the two urns had 

been selected. Before making a decision, each participant drew one ball from the selected urn 

and observed its color, which was not revealed to the other participants (i.e., private 

information) and the drawn ball was afterwards put back into the urn. Thereafter, each 

participant publicly announced his or her decision. Thus, participants had private information, 

which was the color of the drawn ball from the chosen urn, and public information, which was 

the decisions of the preceding participants (but not their private signals). To make a correct 

prediction, participants could use both types of information. 

More precisely, according to a Bayesian analysis of the problem, the posterior 

probability of an Urn A being selected could be determined by applying Bayes’ theorem: 

    (1) 

where  is the likelihood of observing the number na and nb of “a” and “b” signals 

given Urn A was selected, where “a” speaks for Urn A and “b” speaks for Urn B. Signals are 

either obtained from private draws or inferred from public decisions of others. It is easier to 

determine the log odds of the posterior probability that Urn A was selected relative to the 

posterior probability that Urn B was selected. When assuming equal a priori probabilities with 

which the two urns are selected, the log odds are defined as 

 ,    (2) 

(for details see Appendix). When the log odds ratio is positive, then the posterior probability 

of Urn A being selected is larger than the posterior probability of Urn B being selected, 

whereas a negative ratio makes Urn B more likely to be selected. Under the assumption of 

equal priors and equal likelihoods of observing a or b signals, it can be easily seen with 

Equation 2 that solely the difference in the number of “a” and “b” signals is decisive 
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(regardless of the absolute numbers of signals). For more details on the Bayesian solution to 

this problem see also Phillips and Edwards (1966), Grether (1980), Anderson and Holt 

(1997), or Hung and Plot (2001). 

The following example illustrates the Bayesian analysis of the sequential decision 

problem. Suppose there are three people, named John, Jim, and Jack, facing the decision 

problem. John draws, unobserved by the others, the first ball and publicly decides for Urn A. 

After John’s decision, Jim draws a ball and also decides for Urn A. Now it is Jack’s turn. He 

draws a “b-ball,” which indicates the selection of Urn B, but since John and Jim decided for 

Urn A, Jack infers that John has drawn an “a-ball,” since he decided for Urn A. In addition, 

Jack infers that Jim also drew an a-ball, because if he had drawn a b-ball he probably would 

have decided for Urn B, to avoid being misled by a potential mistake of John.1 Thus, Jack 

infers that two a-balls (na = 2) and one b-ball (nb = 1) have been drawn and can calculate the 

log odds for Urn A: 

, 

which are positive, so that Urn A should be selected despite the private signal supporting Urn 

B. Any subsequent decision makers should also follow the decision of the first and second 

decision makers, so that an information cascade emerges. If a fourth and fifth person drew b-

balls it would be rational for them to decide for Urn A. Thus, although after the fifth person 

three b-balls and only two a-balls have been drawn, making Urn B the most likely selected 

urn, all individuals would be acting rationally by selecting Urn A according to a Bayesian 

analysis of the private and public information available to them. 

Anderson and Holt (1997) observed a high proportion of individuals’ decisions in line 

with the illustrated Bayesian updating process, which could be replicated by a multitude of 

empirical studies (e.g., Anderson, 2001; Hung & Plott, 2001; Kübler & Weizsäcker, 2004). 

However, compared to the Bayesian solution, participants in cascade experiments seem to 
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overweight their private information relative to the public information (e.g., Bernardo & 

Welch, 2001; Goeree, Palfrey, Rogers, & McKelvey, 2007; Nöth & Weber, 2003). A recent 

meta-analysis by Weizsäcker (2010) comes to the overall conclusion that people often 

overweight their private information in comparison to public social information. 

However, we think that this conclusion needs to be limited to the artificial cascade paradigm 

examined. We think that people are often strongly influenced by other people’s behavior in 

many real-life situations and thus overweight social relative to private information. Research 

illustrating the strong impact of social influences on behavior and decision making is 

widespread; for an overview, see for instance Cialdini & Goldstein (2004). In the present 

work we illustrate with the sequential decision-making paradigm described above how the 

impact of social influence can increase due to the social context in which it is embedded. 

Moreover, we follow a cognitive modeling approach to identify the importance people give to 

private as compared to social information. 

Social influence model 

To identify the importance people give to different sources of information we suggest 

a social influence model. For this model we modify Equation 2 by separating one component 

containing private from one component containing public information: 

݈݊
௣ሺ஺|௡ೌ,௡್ሻ

௣ሺ஻|௡ೌ,௡್ሻ
ൌ

௕௜௔௦ߚ ൅ ௦௢௖ߚ ቂ∑ ௜݂ሺܽሻ ൅௜∈௔೛ೠ್೗೔೎
∑ ௜݂ሺܾሻ௜∈௕೛ೠ್೗೔೎ ቃ ൅ ሺ2 െ ௦௢௖ሻߚ ቂ∑ ௜݂ሺܽሻ ൅௜∈௔೛ೝ೔ೡೌ೟೐

∑ ௜݂ሺܾሻ௜∈௕೛ೝ೔ೡೌ೟೐ ቃ (3) 

where ௜݂ሺܽሻ ൌ ln ቂ݌ሺܽ|ܣሻ
ሻܤ|ሺܽ݌

ቃ, ௜݂ሺܾሻ ൌ ln ቂ݌ሺܾ|ܣሻ
ሻܤ|ሺܾ݌

ቃ, and where the index ݅ ∈ ܽ௣௥௜௩௔௧௘, ܽ௣௨௕௟௜௖ denotes 

that the sum is reached over all private (public) “a” signals. The social importance parameter 

௦௢௖ (0ߚ ൏ ௦௢௖ߚ ൏ 2ሻ specifies how much weight a person gives to the social as compared to 

the private information. In case of ߚ௦௢௖ > 1 the decision maker overweights social information 

and in case of ߚ௦௢௖ < 1 the decision maker overweights private information. The prior weight 

 = 1 and	௦௢௖ߚ ௕௜௔௦ represents any initial bias towards one of the two choice options. Whereߚ
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௕௜௔௦ߚ ൌ 0 the social influence model is equivalent to the Bayesian solution expressed by 

Equation 2. Note that the log odds of Equation 2 or 3 can be easily re-transformed into 

posterior probabilities by 

,௔݊|ܣሺ݌ ݊௕ሻ ൌ
ଵ

ଵା௘
ష೗೙

೛൫ಲห೙ೌ,೙್൯
೛൫ಳห೙ೌ,೙್൯

. (4) 

The larger the posterior probability for one option, the larger should be the probability 

that a person chooses this option. Accordingly we define the choice probability with which a 

person chooses an option as a function of the option’s posterior probability of being correct: 

ሻܣ௣௘௥௦௢௡ሺ݌ ൌ
ଵ

ଵା௘ಐൈሺ೛൫ಳห೙ೌ,೙್൯ష೛൫ಲห೙ೌ,೙್൯ሻ
 (5) 

where θ (10>θ>0) represents a free sensitivity parameter that specifies how sensitive a person’s 

response is to the different posterior probabilities. A large sensitivity parameter implies that the 

option with the larger posterior probability will be chosen with a larger probability. 

In sum, the social influence model allows us to quantify the importance given to 

information inferred from others’ decisions (public social information) relative to private 

information. By specifying the Bayesian solution as a special case of the model, we can test 

whether people deviate from the normative solution of probability theory. 

In the second study, below, we manipulated the hierarchical rank of a previous decision 

maker to increase its social influence and the model allows us to test whether this manipulation 

affects the social influence. This was achieved by embedding the rather artificial cascade 

paradigm into a clinical decision-making context. Thereby, we draw on the authority principle, 

which states that people are willing to follow the suggestions of someone that they see as a 

legitimate authority (Cialdini, Bator & Guadagno, 1999; Milgram, 1974). The principle works 

within hierarchical relationships, which are asymmetrical in nature and involve the 

management of dominance “in ways that maximize the interests of the more dominant 

individual and limit harm to the less dominant individual” (Bugental, 2000, p.202). We 

understand the authority principle as a specific type of normative social influence, since it is 
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based on the deference to authority norm, which is a prevailing norm in most organizations 

(Cialdini & Goldstein, 2004). However, manipulating normative social influence by 

confronting participants with a decision of a higher ranked person is a relatively weak induction 

of normative influence when compared to much more “pressurizing” homogenous majority 

opinion. 

We examined the impact of social influence in two experiments by testing to what 

extent individual decisions are affected by social influences according to the following two 

hypotheses: 

1. The informational influence hypothesis follows from a Bayesian view of 

information usage. This hypothesis states that people try to be as accurate in their judgments 

as they can be, efficiently inferring information from others’ behavior, and integrating the 

socially inferred information with their own private information to derive a decision. This 

decision can be the opposite of a decision that is reached from private information alone. 

Decision makers who behave in a manner consistent with the informational influence 

hypothesis will make decisions in line with the Bayesian model specified above (i.e., 

Equation 2). The social influence model allows us to test whether the decision maker weights 

all available information equally to make a decision, regardless of whether it is private or 

public information. 

2. The authority influence hypothesis predicts that people’s behavior will also be 

influenced by the hierarchical status of other decision makers. In line with the authority 

principle, people will make decisions that conform to higher ranked others’ decisions more 

often, even if other available public information and one’s own private information suggest 

doing otherwise. Behavior that is consistent with the authority influence hypothesis should be 

better described by the social influence model, which allows the decision maker to give 

greater weight to the information that is inferred from the behavior of the higher ranked other 

person. 
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The aim of the following studies was to test these two hypotheses. 

Study 1 

The purpose of Study 1 was primarily to test the informational influence hypothesis. 

The experimental task was constructed in such a way as to minimize normative social 

influence on people’s decisions, so that conformity behavior will largely express the 

informational social influence of others. If people’s decisions are consistent with the Bayesian 

model, as suggested by Bikhchandani et al. (1992), this will indicate that individuals’ 

decisions reflect a rational information integration process of privately and socially inferred 

information. In Study 1 we fit the social influence model to participants’ decisions to see how 

and whether people’s behavior deviates from the Bayesian solution. 

The experimental task was similar to that used by Anderson and Holt (1997). 

However, to increase the experimental control, participants were not confronted with real urns 

from which balls were drawn. Instead they had to make judgments for a series of hypothetical 

scenarios (see Huck & Oechssler (2000) for a similar experimental procedure). This allowed 

us to systematically vary the information given to each participant. In contrast, in the 

experiment by Anderson and Holt participants had to announce their decisions to a group, so 

that normative social influence cannot be ruled out completely. In Study 1 participants were 

additionally asked to estimate the probability that their predictions were correct, so that we 

could compare it to the posterior probabilities derived by the Bayesian model (see Equation 

2). 

Method 

Participants. A total of 40 students from different departments at the University of Basel 

participated in the 30-minute experiment. Participants received course credit or a book 

voucher worth 10 Swiss Francs. In addition, participants were informed that one of their 

decisions would be selected randomly, and if that decision were correct they would be 
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rewarded with 2 Swiss Francs. If their corresponding confidence rating lay within the range of 

+-5% of the Bayesian solution they would receive an additional 2 Swiss Francs. 

Procedure. Participants received a questionnaire with a description of the urn decision 

scenario, with two urns, each containing three balls, where Urn A had one black and two 

white balls and Urn B had two black and one white ball. Participants were instructed that one 

urn was randomly chosen at the beginning of the task by the experimenter and a maximum of 

four persons had the task of sequentially inferring which of the two urns was randomly 

chosen. They were told that four persons each sequentially drew one ball from the selected 

urn, which they replaced in the urn after they privately observed the ball’s color. Thereafter 

each person announced which urn he or she considered most likely to have been chosen. Thus 

each person knew the predicted urn of her or his predecessors (but not the color of their drawn 

balls). It was also explained that each person in the urn scenario had observed his or her 

predecessors’ decisions. Participants were told they should play the role of the person who 

made the last decision, in a total of 24 different scenarios. 

After the situation description, participants received the 24 scenarios in a randomized 

order, in which the color of the ball that the last person had drawn and the decisions of the 

preceding persons were provided. The 24 scenarios presented 12 different decision tasks, 

where all possible combinations of up to four decision makers were specified. Decision 

sequences where participants were confronted with an unreasonable preceding decision 

(according to the Bayesian solution) were not included in our scenarios. The 12 decision tasks 

were presented in two different ways; that is, the decision sequences were mirrored in terms 

of the color of the balls and the decisions of the preceding persons. Thus, each participant 

decided twice on the same decision task. Participants were asked to predict for each scenario 

which urn (A or B) was most likely to have been randomly chosen by the experimenter. In 

addition, they had to judge the probability with which they thought their decision was correct 
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(on a scale of 50–100%). Tables 1 and 2 together summarize 12 decision tasks with the 

corresponding posterior probabilities. 

Results 

We first analyzed whether participants' decisions were in line with the Bayesian 

solution. The fifth column of Table 1 shows the proportion of choices in line with the 

Bayesian solution (see Equation 1). For all tasks where the posterior probability was in favor 

of one alternative (Scenarios 1–9), 86.9% of all choices were consistent with the Bayesian 

prediction. In particular, when the Bayesian prediction was in favor of a participant’s private 

signal, 90.2% of all choices were consistent with the prediction. To determine whether 

information cascades occurred, Scenarios 6 and 8 are crucial. Here the Bayesian solution 

predicts that the private signal should be disregarded in favor of the previous decisions. A 

high degree of cascade behavior consistently occurred: Of all 160 choices, 120 (75.5%) were 

consistent with the Bayesian prediction. 

In situations with posterior probabilities of p = .50 (Scenarios 10–12), private and 

public information cancel each other out. These scenarios allow us to test whether public 

social information has a stronger influence than private information. As shown in Table 2, in 

79.9% of all choices participants decided in line with their private signal, thus participants 

gave more weight to their own information than to the public information1. In sum, the results 

show that participants used the information provided by others’ decisions in a way that is 

consistent with a Bayesian analysis of the decision problem, supporting the informational 

influence hypothesis. 

To examine in more detail how much weight participants gave to public information 

relative to private information, we estimated the importance (ߚ௦௢௖ሻ, the bias (ߚ௕௜௔௦), and the 

sensitivity (ߠሻ parameters of the social influence model on the basis of the observed data. We 

estimated the model by following a Bayesian approach for each participant (cf. Kruschke, 

2010a, 2010b, 2011). This approach provides a posterior probability distribution of each of 
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the model's free parameters. For each parameter, we first specified a prior distribution 

expressing the initial belief in every possible parameter. For the ߚ௕௜௔௦ parameter we assumed 

a prior truncated normal distribution with a mean of zero and a standard deviation of 10, 

truncated at +1 and -1. For the social importance parameter ߚ௦௢௖	we assumed a prior uniform 

distribution ranging from 0 to 2 (specified by a beta distribution). Likewise we assumed a 

uniform prior distribution ranging from 0 to 10 for the sensitivity parameter ߠ (specified by a 

beta distribution). According to the Bayesian approach, the prior distributions are then 

updated on the basis of the data and the model's likelihood function (i.e., Equation 5). 

Technically we relied on JAGS (Plummer, 2003) through the rjags interface in R (R 

Development Core Team, 2011). For the sampler we chose a thinning factor of 100 (to 

minimize autocorrelation) and an initial burn-in of 10000 (to produce more representative 

samples from the posterior). The final Markov chains had a net length of approximately 

50,000. Group estimates for the parameters of the model were derived by averaging the 

posterior distributions of all participants (by averaging the results of the Markov chains). The 

derived distributions of the means can be used to calculate summary statistics (e.g., median, 

95% highest density interval; HDI2, etc.). 

 For the social influence model the median estimated sensitivity parameter was θ = 

6.08 (95% HDI = 5.57 – 6.58), which implies that participants reacted rather sensitively to the 

different posterior probabilities. For instance, with a value of 6.08 for the sensitivity 

parameter, Urn A will be chosen with a probability of .89 given a posterior probability of .67 

for Urn A. For ߚ௕௜௔௦ the estimated median parameter value was -0.12 (95% HDI = -0.22 – -

0.01), which indicates a slight tendency to favor Urn B a priori. The median importance 

parameter given to the public information was ߚ௦௢௖ = 0.78 (95% HDI = 0.71 – 0.86), which 

shows that participants weighted public information less strongly than private information. 

When contrasting the weight given to private information (2- ߚ௦௢௖) with the weight given to 

public information (ߚ௦௢௖ሻ a median positive difference of 0.44 results (95% HDI = 0.28 – 
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0.59), illustrating overweighting of private information. In sum, the analysis shows that 

participants overweight private as compared to public information—inconsistent with the 

Bayesian model that weights all information equally. 

In addition to making choices between the two urns the participants had to judge the 

probability that their choices were correct. The probability judgments, reported in the last 

columns of Tables 1 and 2, did not match the Bayesian posterior probabilities. Whereas the 

average probability judgment of .59 was higher than the posterior probability of .50 in 

Scenarios 10-12, for scenarios with a posterior probability of .67, .80, and .89 the average 

probability judgments of .61, .69, and .74, respectively, were lower. These results appear 

similar to the standard conservatism phenomena reported in the early literature on probability 

judgments (Edwards, 1968), according to which people tend to give less moderate probability 

judgments. However, our social influence model might give an alternative explanation for 

these deviations. The social influence model, which we propose, predicts the probability with 

which people will select one or the other option (see Equation 5). These predictions follow 

from the models' predicted subjective posterior probabilities that one or the other option is 

correct. Therefore people's confidence judgments can also be compared to these subjective 

posterior probabilities that the model predicts. Importantly, the model was estimated solely on 

the basis of participants' choices ignoring their confidence judgments. Therefore predicting 

participants' confidence judgments represents a strong generalization test of the social 

influence model. 

Figure 1A shows that the model predicts the observed confidence judgments very 

accurately. Importantly, the model also predicts overweighting of small probabilities and 

underweighting of large probabilities. For instance, the model correctly predicts a confidence 

level of 61% compared to people's observed confidence levels of 59% in situations in which 

the normative Bayesian account predicts a posterior probability of 50%. Similarly, for 

situations with a normative posterior probability of 89%, the model predicts a confidence 
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judgment of 83% compared to the empirically observed confidence judgment of 75%. Thus, 

the social influence model can predict the observed deviations of people's confidence 

judgments from the normative account. According to the social influence model these 

deviations result from overweighting individual as compared to public information. For 

instance, in the normative indifference situation with posterior probabilities of 50% 

overweighting private information leads to increased confidence, whereas in situations with 

normative high posterior probabilities overweighting private information leads to more 

moderate confidence levels. 

Discussion of Study 1 

Study 1 shows that people decided to conform and go against their own private signal 

depending on whether the posterior probabilities spoke for or against their private signal. In 

situations where private and public information cancelled each other out, the private 

information was preferred over public information. These results suggest that private 

information and socially inferred information are cognitively integrated. Furthermore, the 

results replicate Anderson and Holt’s (1997) findings, where the participants made real draws 

from the urns. Our hypothetical scenarios have the advantage of maximizing experimental 

control. For instance, the scenarios minimize potential normative social influences of other 

people present in a public setting. Therefore, our results illustrate the impact of informational 

social influence leading to conformity behavior. The results of the social influence model 

show that participants overweight private as compared to public information, contrary to 

equal weighing of the Bayesian model. Likewise, participants’ probability judgments do not 

correspond to the Bayesian solution. These deviations from the Bayesian posterior 

probabilities could be explained by the social influence model. According to the social 

influence model people overweight their private information as compared to social 

information, which on average in the tested situations lead to more moderate confidence 
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judgments. Importantly the model predicts these deviations from the Bayesian account 

without being fitted to the observed confidence judgments. 

Study 2 

The purpose of Study 2 was to investigate decision making in a real-life situation in 

which both informational and authority influences may affect people’s decisions. Therefore, 

in Study 2 the decision problem of Study 1 was embedded in a medical decision-making 

context. Participants had to take on the role of an assistant physician who had to diagnose, on 

the basis of particular symptoms, from which of two diseases a patient was suffering. The task 

was analogous to that of Study 1: The assistant physicians had information about others’ 

decisions; here, the previously made diagnoses of other physicians recorded in the patient’s 

record. The other physicians’ decisions were often not supported by the private information 

available to the assistant physician. Again, these decisions represent informational social 

influence to the assistant physician. To examine social influences of the hierarchical status of 

preceding decision makers, the cascade paradigm offers the opportunity to control the 

strength of authority influences by varying the hierarchical ranking of the preceding decision 

makers. At the same time, we can control the strength of informational influences by 

determining the validity of available information that the decision makers in a sequence draw 

on. In the following, we explain how we manipulate both types of social influences to 

examine the influence of authority relative to informational social influences. 

To manipulate authority influence, the hierarchical ranking of the influence source 

was varied: The preceding decisions were made either by a colleague (another assistant 

physician) with the same hierarchical ranking or by a supervisor (the medical director) with a 

higher hierarchical ranking. This manipulation varied the strength of the authority influence 

by focusing on the legitimate power of previous decision makers in relation to the assigned 

hierarchical ranking of the participant’s role. Although our participants did not expect any 

negative consequences when deciding against the diagnosis of the medical director, we argue 
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that the tendency to conform should emerge as a result of the perceived hierarchical status 

difference in line with priming studies on conformity (Epley & Gilovich, 1999; Pendry & 

Carrik, 2001). To control the strength of informational social influences, participants were 

told that the average accuracy of the assistant physicians’ and the medical director’s 

diagnoses on the specific decision problem was the same. This allowed us to test the 

informational influence hypothesis and the authority influence hypothesis within the same 

task. 

In Study 2, 40 scenarios were employed in which participants were confronted with 

the same 12 decision tasks of Study 1. In order to test our hypotheses, we created all possible 

variations of the same decision task in terms of varying hierarchical rankings of the previous 

decision makers. More specifically, 40 scenarios for all possible decision sequences for up to 

four decision makers were created, in which the medical director and assistant physicians 

decide at all positions in the decision sequence with corresponding diagnoses. Again, we 

excluded scenarios with unreasonable preceding decisions (according to a Bayesian analysis), 

e.g., scenarios where two decisions favoring the same diagnosis are followed by an opposed 

decision. In sum, we created four scenarios with one previous decision maker (one with the 

assistant physician and one with the medical director as previous decision makers favoring or 

opposing participants’ private information), 12 scenarios with two previous decision makers 

and 24 with three previous decision makers (see Tables 3–6 in Column 1 and 2 for the 

scenarios used in Study 2). 

In a next step, we structured the scenarios according to the corresponding Bayesian 

predictions, resulting in four groups of scenarios (scenarios with a posterior probability of .50, 

.67, .80, and .89; see Tables 3–6). This study design allowed us to test both social influence 

hypotheses. According to the informational influence hypothesis, we should obtain no 

differences in participants’ decision making and probability judgments in (the four groups of) 

scenarios where the Bayesian solution is the same. However, according to the authority 
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influence hypothesis, participants’ decisions should vary depending on (a) whether the 

decision of the higher ranked decision maker (the medical director) supports or speaks against 

participants’ privately held information and (b) whether the medical director is one of the 

preceding decision makers or not. Due to the same informational value of previous decisions, 

independently of the hierarchical status of preceding decision makers, changes in participants’ 

decision making and probability judgments within a scenario group (i.e., a group of scenarios 

with the same Bayesian solution) could be traced back to the impact of the hierarchical status 

of previous decision makers. Therefore, we calculated the average proportion of participants’ 

decisions in favor of their private information for the following three types of scenarios 

(within each of the four groups of scenarios i.e., of scenarios with a posterior probability of 

.50, .67, .80, and .89) (see Table 3-6): 

1. Scenarios in which only assistant physicians are the preceding decision makers 

(baseline condition) 

2. Scenarios in which the medical director’s decision supports participants’ private 

information 

3. Scenarios in which the medical director’s decision speaks against participants’ 

private information 

According to the authority hypothesis, we predict that (a) participants should decide 

more strongly according to their private information (and should be more confident) when the 

medical director supports it relative to decisions in the baseline condition (i.e., comparing 

scenarios b to a); and (b) participants should decide less according to their private information 

(and should be less confident) when the medical director’s decision speaks against it relative 

to decisions in scenarios of the baseline condition (i.e., comparing scenarios c to a). 

Method 

Participants. A total of 40 students from different departments at the University of 

Basel participated in the experiment, which took approximately one hour. Participants 
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received a course credit or a book voucher worth 10 Swiss Francs. In addition, participants 

were informed that one of their diagnoses would be selected randomly, and if that diagnosis 

were correct according to the Bayesian solution they would be rewarded with 2 Swiss Francs. 

If their corresponding confidence rating lay within the range of +-5% of the Bayesian solution 

they would receive an additional 2 Swiss Francs. 

Procedure. First, participants received a description of a hypothetical situation in a 

hospital. They were asked to imagine themselves in the position of an assistant physician who 

had to make a decision concerning a patient’s disease. Participants were told about two 

possible diseases, which were a priori equally likely: sigma diverticulitis and appendicitis. 

Both diseases were probabilistically related to two independently occurring symptoms. 

Participants were informed that the patient suffered from one of the two symptoms; this 

constituted the private information of the participant. The first symptom, regurgitation, was 

more often observed when patients suffered from sigma diverticulitis; that is, the conditional 

probability of observing the symptom when the patient suffered from the disease was 

p(regurgitation|sigma diverticulitis) = .67, whereas the conditional probability of observing 

the symptom when the patient suffered from appendicitis was p(regurgitation|appendicitis) = 

.33. The second symptom, twinges in the left underbelly, was more often observed when 

patients suffered from appendicitis; that is, p(twinges in the left underbelly|appendicitis) = 

.67, whereas the symptom was less often observed when patients suffered from sigma 

diverticulitis; that is, p(twinges in the left underbelly|sigma diverticulitis) = .33. 

In addition, the scenarios provided public information concerning the previous 

diagnoses made by other assistant physicians and/or the medical director, which were 

recorded in the patient’s record. Participants were informed about the average accuracy of the 

assistant physician and the medical director when making an independent diagnosis, that is, a 

diagnosis without knowing other physicians’ diagnoses. Participants were told that an 

independent diagnosis of the assistant physician and the medical director was correct in 2 out 
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of 3 cases (p = .67). Thus, the decisions of all preceding decision makers (independently of 

their hierarchical rank) have the same validity of being correct. 

After the initial situation was described, 40 decision scenarios were given to the 

participants in a randomized order. The 40 scenarios provided the participants with the 

symptom of the patient and the previous diagnoses. Tables 3–6 summarize the 40 decision 

scenarios with the corresponding posterior probabilities. For each scenario participants were 

asked to predict which disease (appendicitis or sigma diverticulitis) the patient had developed. 

In addition, they were asked to judge the probability with which they thought their diagnosis 

would be correct (on a scale of 50–100%). 

Results 

The purpose of Study 2 was to examine individuals’ decision making in relation to the 

predictions of the informational and the authority influence hypotheses. We broke down our 

analysis into three parts: First, we present the results of testing the informational influence 

hypothesis. Next, we describe the results of examining the authority influence hypothesis. 

Finally, we fit the observed decisions with the social influence model describing the interplay 

between informational and authority influences. 

Informational social influences. To examine whether participants behaved according 

to the Bayesian analysis of the decision problem, we first analyzed their decisions. The fifth 

column of Tables 3–5 shows the proportion of participants who made choices in line with the 

posterior probabilities derived from the Bayesian analysis (see Equation 2). For all scenarios 

in which the posterior probability was in favor of one disease (Scenarios 1–30), 92.0% of all 

choices were consistent with the Bayesian prediction. In particular, when the Bayesian 

prediction was in favor of a participant’s private information, 95.1% of all choices were 

consistent with the prediction. To determine if informational cascades occurred, Scenarios 3, 

4 and 9–13 are crucial (Table 3). Here the Bayesian solution predicts that the private signal 

should be ignored in favor of the previous decisions. Consistently, a high degree of cascade 
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behavior occurred: Of all 280 decisions, 230 (82.1%) were consistent with the Bayesian 

prediction. 

In situations with posterior probabilities of p = .50 (Scenarios 31–40), private and 

public information cancel each other out. Similarly to Study 1, these scenarios allow us to test 

whether public information has a stronger influence than private information. As shown in 

Table 6, in only 49.7% of all diagnoses did participants decide in line with their private 

signal. To explain this result it is important to examine the influence of the authority influence 

presented in the next section. Overall, the results show that participants used information 

provided by others’ decisions consistent with a Bayesian analysis of the problem, supporting 

the informational influence hypothesis. 

Authority influences. In order to examine the authority influence on participants’ 

decisions, we first analyzed whether participants in general decided against or with the 

diagnosis of the medical director. We had 1119 diagnosis decisions in scenarios where the 

medical director was one of the preceding decision makers. Of these, 838 (74.89%) were in 

line with the diagnosis of the medical director. However, to evaluate the impact of authority, 

it is crucial to focus on participants’ diagnoses and probability judgments with regard to (1) 

the Bayesian prediction of each decision scenario and (2) the comparison of scenarios with 

and without the medical director as preceding decision maker supporting or disapproving 

participants’ private information. Therefore, we draw on four scenario groups (see Tables 3–

6), in which each scenario had the same posterior probability of one disease (Scenarios 1–30) 

or the posterior probabilities predict an indifference situation (Scenarios 31–40). 

The authority hypothesis predicts that (a) participants should decide more strongly 

according to their private information (and should be more confident) when the medical 

director’s decision supports their private information relative to decisions in scenarios of the 

baseline condition where the medical director is not one of the preceding decision makers. 

Likewise, (b) participants should decide less according to their private information (and 
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should be less confident) when the medical director’s decision speaks against their private 

information relative to decisions in scenarios of the baseline condition. 

We began with scenarios for which the posterior probability of one disease according 

to a Bayesian analysis is .67 (see Table 3). The average proportion of participants’ decisions 

favoring the private information is higher in scenarios where the medical director supports 

participants’ private information compared to the baseline scenarios where the medical 

director is not one of the previous decision makers (z = -5.12, p = .001 according to a 

Wilcoxon signed-rank test). Moreover, we found a lower average proportion of decisions 

according to private information in scenarios where the medical director decided against 

participants’ private information compared to the decisions at the baseline scenarios (z = -

4.85, p = .001). Participants’ probability judgments with M = .69 were higher in scenarios 

where the medical director’s decision supported participants’ private information compared to 

the baseline condition with M = .65; (t(39) = -2.54, p = .015). However, the probability 

judgments for scenarios where the medical director’s decision speaks against participants’ 

private information with M = .66 were not different to the probability judgments for the 

baseline scenarios with M = .65, (p = .07). 

Next, we present the results of comparing participants’ decisions in scenarios for 

which the posterior probability of one disease according to a Bayesian analysis is .80 (see 

Table 4). We found no significant difference of the average proportions of decisions 

according to the private information between scenarios where the medical director’s decision 

favors the private information and the baseline scenarios (p = .65). However, participants 

decided less often according to their private information in scenarios where the decision of the 

medical director spoke against their private information compared to their decisions in the 

baseline scenarios (z = -2.23, p = .026), supporting our authority influence hypothesis. No 

significant differences in the probability judgments could be observed between scenarios 

where the medical director’s decision favored the private information and the baseline 



SOCIAL INFLUENCES IN SEQUENTIAL DECISION MAKING  24 24

scenarios. However, participants’ decisions against the medical director’s decisions showed a 

significantly lower confidence (M = .67) compared to the confidence judgments in the 

baseline scenarios (M = .77) (t(39) = 4.36, p = .001). 

In scenarios in which the posterior probability of one disease is .89 (Table 5), we 

found no significant differences in participants’ average proportion of decisions in line with 

their private information between scenarios where the medical director’s decision corresponds 

to participants’ private signal and the baseline scenarios (p = .32) whereas their probability 

judgments significantly differed between both conditions (t(39) = -3.55, p = .001) in the 

direction of a higher confidence for decisions which correspond with the medical director’s 

decision. 

Lastly, we analyzed decisions and probability judgments in scenarios where the 

posterior probabilities for both diseases were the same, with .50 predicting indifference for 

the diagnoses (see Table 6). We found no significant differences between scenarios where the 

decision of the medical director favors participants’ information and decisions made in the 

baseline scenarios. Consistent with the authority influence hypothesis, we found a 

significantly lower average proportion of participants’ decisions in line with their private 

information in scenarios with participants’ private information opposite to the medical 

director’s decision compared to the baseline scenarios where the medical director is not one of 

the preceding decision makers (z = -3.42, p = .001). Participants’ probability judgments were 

significantly higher in scenarios where the medical director supports the private information 

(M = .69) compared to the probability judgments at the baseline scenarios (M = .63) (t(39) =-

5.18, p = .001). Moreover, the probability judgments in scenarios where the decisions of the 

medical director speak against participants’ private information (M = .65) were significantly 

higher compared to the probability judgments at the baseline scenarios (t(39) = -2.54, p = 

.015). 
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In sum, we found strong empirical evidence for our authority hypothesis when 

comparing participants’ decisions in scenarios without the medical director as preceding 

decision maker (baseline scenarios) with scenarios, in which the medical directors’ decision 

contradicts participants’ private information. Here, the average proportion of decisions 

according to private information indicates a consistent tendency to follow authority 

influences. The analysis of the impact of authority influences supporting participants’ private 

information provided evidence that for scenarios with a posterior probability of .67 

participants more often decided according to their private information (compared to their 

decisions at the baseline scenarios), whereas this influence was not observed for scenarios 

with posteriors of .80 and .89. This could be due to a ceiling effect, because for the scenarios 

with high posterior probabilities we had already observed high proportions of decisions in line 

with private information in the baseline scenarios. However, the probability judgments were 

consistently higher in scenarios with a supporting decision of the medical director compared 

to the probability judgments in the baseline scenarios illustrating an authority influence. 

The social influence model. Finally, we estimated the social influence model on the 

basis of participants’ decisions. The goal in Study 2 was to distinguish informational from 

authority influence. Therefore, we decomposed the public information component within 

Equation 3 into two components instead of only one; one referring to information from higher 

ranked decision makers and one referring to information from equally ranked decision 

makers, providing: 

݈݊ ௣ሺ஺|௡ಲ,௡ಳሻ

௣ሺ஻|௡ಲ,௡ಳሻ
ൌ ௕௜௔௦ߚ ൅

௛௜௚௛௘௥ߚ ቂ∑ ௜݂ሺܽሻ ൅௜∈௔೛ೠ್೗೔೎	೓೔೒೓೐ೝ	ೝೌ೙ೖ೐೏ ∑ ௜݂ሺܾሻ௜∈௕೛ೠ್೗೔೎	೓೔೒೓೐ೝ	ೝೌ೙ೖ೐೏ ቃ ൅

௘௤௨௔௟ߚ ቂ∑ ௜݂ሺܽሻ ൅௜∈௔೛ೠ್೗೔೎	೐೜ೠೌ೗	ೝೌ೙ೖ೐೏ ∑ ௜݂ሺܾሻ௜∈௕೛ೠ್೗೔೎	೐೜ೠೌ೗	ೝೌ೙ೖ೐೏ ቃ ൅ ൫3 െ ௛௜௚௛௘௥ߚ െ

௘௤௨௔௟൯ߚ ቂ∑ ௜݂ሺܽሻ ൅௜∈௔೛ೝ೔ೡೌ೟೐ ∑ ௜݂ሺܾሻ௜∈௕೛ೝ೔ೡೌ೟೐ ቃ (6) 
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where ߚ௛௜௚௛௘௥ refers to the importance given to the information derived from the decisions of 

the higher ranked medical director and ߚ௘௤௨௔௟ refers to the importance given to the 

information derived from the decisions of the equally ranked assistant physician. In the case 

of ߚ௛௜௚௛௘௥ = 1 and ߚ௘௤௨௔௟ = 1 the social influence model specified by Equation 6 is identical 

with the pure Bayesian model (see Equation 2). To estimate the four free parameters 

,௕௜௔௦ߚ) ,௛௜௚௛௘௥ߚ  see Equation 6) of the social influence model for every - ߠ	݀݊ܽ	௘௤௨௔௟ߚ

participant in Study 2 we applied the same Bayesian approach as used in Study 1 (except that 

we used a precision (SD= 1/ඥ݊݋݅ݏ݅ܿ݁ݎ݌	) of 0.01 instead of 0.1 for the prior distribution of 

(௕௜௔௦ߚ
3. 

 The median estimated sensitivity parameter for the social influence model in Study 2 

was θ = 7.37 (95% HDI = 6.9 – 7.85), thus just a little higher than in Study 1. The median 

parameter estimate for ߚ௕௜௔௦ was 0.06 (95% HDI = -0.02 – 0.13), indicating no a priori bias 

toward one of the two decision options. The median importance parameter for 

 ௥௔௡௞ was 1.12 (95% HDI = 1.05 – 1.19), which was higher as compared to the	௛௜௚௛௘௥	௣௨௕௟௜௖ߚ

median importance parameter ߚ௣௨௕௟௜௖	௘௤௨௔௟	௥௔௡௞	= 0.85 (95% HDI = 0.78 – 0.91). The contrast 

between the two parameters ߚ௣௨௕௟௜௖	௛௜௚௛௘௥	௥௔௡௞ - ߚ௣௨௕௟௜௖	௘௤௨௔௟	௥௔௡௞ was positive with a median 

difference of 0.27 (95% HDI = 0.15 – 0.39). The median weight for the private information of 

1.03 (95% CI = 0.97 – 1.10) shows that participants gave more weight to private information 

than public information derived from the decisions of the equally ranked doctors 

(Mediandifference = 0.19 (95% HDI = 0.08 – 0.30). However, private information was not 

treated differently when compared to the importance given to information derived from the 

decisions of the higher ranked doctors (Mediandifference = -0.09 (95% HDI = -0.21 – 0.04). 

Therefore, the results of the social influence model show that people give greater weight to 

public information derived from higher ranked individuals than public information derived 

from equally ranked individuals. Furthermore, in line with the results of Study 1 people 
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overweight private information when compared to social information derived from equally 

ranked persons. 

Similar to Study 1 we compared the actual to the predicted confidence judgments of 

participants (see Figure 1B). Again, this test of the social influence model is performed purely 

on the predicted subjective probabilities that were derived from the model, which were 

estimated on the basis of participants' decisions. Thus, participants' confidence judgments 

were not used at all to fit the model. Again, the social influence model was able to predict 

people's confidence judgments very accurately. 

Discussion of Study 2 

The results of Study 2 support the view that individuals are affected by informational 

and authority influences. Consistently, the majority of participants made decisions that can be 

regarded as rational when considering the sequential decision problem from a Bayesian 

perspective. This holds for scenarios in which, according to a Bayesian analysis, the posterior 

probability of one disease is above .50. Authority influences could be observed when the 

decision of the medical director contradicted participants’ private information (compared to 

the baseline condition), independently of the corresponding posterior probability of the 

scenarios. The average proportion of decisions according to private information and 

probability judgments was consistently lower, illustrating the authority influences. With 

regard to the impact of authority influences supporting participants’ private information, only 

the analysis of participants’ probability judgments reveals a consistent pattern; that is, higher 

confidence in one’s own decision when the previous decision of the medical director is in line 

with participants’ private information. Finally, the results of our social influence model reveal 

that people treat public information differently due to its normative quality and independent 

of its validity. Moreover, the social influence model was also able to predict people's 

confidence judgments quite accurately, importantly without making use of the confidence 

data to estimate the model's parameter. 
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General Discussion 

The primary goal of our studies was to examine how individuals’ decisions are 

influenced by the decisions of others. Therefore, we tried to manipulate informational and 

authority influences by embedding a social decision task into different contexts. Using the 

cascade paradigm, we were able to trace back the effects of the two influence types on 

people’s decisions. Study 1 shows that individuals do integrate socially inferred information 

to make a decision consistent with a Bayesian analysis. Study 2 shows the impact of authority 

and informational social influences on individual decision making. Authority influence affects 

people’s judgment most when the decision of a higher ranked individual is opposed to 

participants’ private information. In these types of situations, people show stronger 

conformity behavior and lower confidence in their own private information compared to 

situations in which they are confronted with opposing decisions of similar hierarchically 

ranked individuals. Additionally, we found consistent authority influences on participants’ 

probability judgments when previous authority decisions supported participants’ private 

information. 

As a consequence, one can assume that the impact of authority influence should foster 

the emergence of information cascades. In Study 1 the majority of our participants decided in 

indifference situations according to their private information (on average 79.9% of all 

participants, Scenarios 10–12, see Table 2). In Study 2 the majority of our participants 

decided in indifference situations against their private information (on average 61.5% of all 

participants, Scenarios 36–40, see Table 6) when authority influences were exerted. Given the 

risk that two decision makers may have unfortunately obtained private information indicating 

the wrong state of affairs and that subsequent decision makers have followed them, the results 

of Study 2 reveal that only one authority decision will suffice to start a cascade, independently 

of subsequent privately obtained information. 
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The results of Studies 1 and 2 show that people apparently use social information to 

make decisions in a way that is generally consistent with a Bayesian perspective of the 

sequential decision problem. However, quantifying social influences with our computational 

model based on participants’ choices shows that the weight people give to social and private 

information is context-dependent and therefore deviate from the pure Bayesian analysis that 

weights both kind of information equally. In line with recent studies on cascade behavior 

(e.g., Bernardo & Welch, 2001; Goeree et al., 2007; Nöth & Weber, 2003; Weizsäcker, 2010) 

we found that participants assigned higher weights to private information relative to public 

information within an urn-and-balls-setting (Study 1). Contrary to recent studies on cascade 

behavior, embedding the decision task into a real-life context reveals that people treat public 

information derived from higher ranked individuals more seriously than public information 

derived from equally ranked individuals whereas they overweight private information as 

compared to social information derived from lower ranked persons. Therefore, we argue that 

normative social influence cannot be neglected when analyzing the occurrence of information 

cascades in real-life settings. Moreover, the model, which was estimated only on the basis of 

participants' choices, was also able to predict people's confidence judgments. For Study 1 and 

Study 2 the model was able to explain why people's confidence judgments deviate from the 

posterior probabilities of the Bayesian account. 

The current research throws new light on the motivational grounds of conformity by 

clarifying the role of informational social influence in relation to authority influence. The 

findings of both studies highlight the cognitive aggregation of available public and private 

information as a decisive factor in the occurrence of conformity. According to the 

informational hypothesis, people evaluate the validity of socially inferred information and 

integrate it to make a decision. Consistently, one can assume that people are principally 

influenced by information of others and that authority influences only marginally account for 

conformity behavior. However, in both studies we used a task in which participants’ decisions 
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could be objectively evaluated. Thus the impact of authority influence should have affected 

people’s decisions less compared to tasks where objectively correct solutions are barely 

identifiable, if at all (e.g., judging the attractiveness of persons, Klucharev, Hytönen, 

Rijpkema, Smidts, & Fernández, 2009). Therefore, the results refer to social influence 

situations where the intellective properties of a task are salient (Kaplan, 1987; Kaplan & 

Miller, 1983; Laughlin, 1980). 

From an applied perspective, our results reveal that the emergence of informational 

cascades can be fostered by authority influences. In particular, in situations in which the 

decisions of higher ranked individuals should have been given the same importance as those 

of other individuals due to equal decision accuracy, our results reveal that people still assign 

more importance to the decisions of the higher ranked individual. Here, the majority of our 

participants decided against their private information and thereby will start a cascade 

independently of subsequent privately obtained information. From this one may conclude that 

even when people act rationally according to a Bayesian perspective, the group of decision 

makers might not make good decisions as a whole. Thus, interventions to support sequential 

decision-making processes should focus more on changing the design of redundant systems 

rather than on changing the individual. Here it is important to change the structure of how 

individuals make decisions. For instance, one can think of systems where individuals first 

decide without knowing the decisions of their predecessors, and thereafter the single decisions 

are aggregated in a group context. This has the advantage that all available private 

information is integrated in the decision of the group. 

Improving the reliability of sequential decision-making structures should also include 

reflections on the incentives that individuals expect. Our studies focused on situations in 

which people wanted to maximize their individual outcomes; however, social influence 

situations may differ with respect to their underlying incentive structure. On the one hand, 

there can be incentives for following the group regardless of being correct. On the other hand, 
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social influence situations can provide incentives to follow the group and to make a correct 

decision. For example, Hung and Plott (2001) provided evidence on how information 

cascades developed when decision makers were positively rewarded when their personal 

decision was identical to the majority decision. They demonstrated that the attainment of a 

group goal led to a tendency to place more weight on public information than on private 

information. Therefore, it seems important to consider the incentives people expect in 

sequential decision-making structures and whether these goals correspond with their 

individual goals. 

Our studies show that people cognitively integrate both private and public information 

for making decisions. They attach importance to the inferred information not solely based on 

their validity but also by taking into account the normative qualities of this information. 

Therefore, people make smart decisions that aim at being accurate and consistent with their 

social environment. 
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Appendix: The Bayesian analysis of the sequential decision problem 

According to a Bayesian analysis the posterior probability of Urn A being selected is 

determined by applying Bayes’s theorem:     

 

(A1) 

where  is the likelihood of obtaining the number na and nb of “a” and “b” signals 

given that Urn A was selected, where “a” speaks for Urn A and “b” speaks for Urn B. 

Analogously, the posterior probability of Urn B being selected given the number na and nb of 

“a” and “b” signals can be determined, so that the ratio of the two posterior probabilities is 

defined as 

       

 (A2) 

Assuming equal a priori probabilities of the two urns being selected and taking the logarithm 

on both sides provides 
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Footnotes 

1. These decisions are also in line with a Bayesian analysis, if one takes into account that 

people occasionally make mistakes. If one assumes that with a small probability the preceding 

persons in the sequential decision situation might have chosen the wrong urn, this increases 

the posterior probability above .50 in favor of one’s own information, so that a decision in 

line with one’s own signal should be made. For instance, we assumed that two initial A 

decisions imply two “a” draws, which means that if the second decision maker had a private 

“b” signal we assume that she would have selected Urn B. In the case of a “b” signal for the 

second decision maker the posterior probabilities are equal for both urns, but because the 

second decision maker cannot be absolutely sure that the first decision maker has not 

mistakenly selected Urn A, it is reasonable for her to go with her own signal. Nevertheless, 

even if one assumes that the second decision maker decided randomly when she got a “b” 

signal, the third decision maker should still predict Urn A (against his own “b” signal), as the 

posterior probability for Urn A is p = .56. 

2. The 95% highest density interval (HDI) is a way to summarize posterior distributions used 

in Bayesian statistics. According to Kruschke (2011) the 95% HDI can be defined as “[…] an 

interval that spans 95% of the distribution, such that every point inside the interval has higher 

believability than any point outside the interval” (p. 85). 

3. To guarantee that the three importance parameters sum up to 3 we applied the following 

procedure: In a first step two independent values (β_1 and β_2) were sampled from uniform 

beta distributions (α = 1, β = 1). The smaller value was then multiplied by 3 and defines 

β_(public equal rank). To get β_(public higher rank) we subtracted the smaller value from the 

higher value and multiplied the result by 3. Finally, the importance parameter for the private 

information was derived by subtracting β_(public equal rank) and β_(public higher rank) from 

3.  
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Tables 

Table 1 

Participants’ decisions and probability judgments for the nine decision scenarios of Study 1 

in which, according to a Bayesian solution, the posterior probability of one urn being chosen 

is above .50. 

Scenario Previous decisions 

Private 

information 

favors 

Posterior 

probability 

Choices for 

the most 

likely urn 

(%)a 

Average 

probability 

judgment 

1 Urn A Urn A .80 for A 91.3 .66 

2 Urn A; Urn A Urn A .89 for A 90.0 .74 

3 Urn A; Urn B Urn A .67 for A 91.1 .62 

4 Urn A; Urn A; Urn A Urn A .89 for A 85.0 .75 

5 Urn A; Urn B; Urn A Urn A .80 for A 85.0 .69 

6 Urn A; Urn A Urn B .67 for A 71.3 .54 

7 Urn A; Urn B Urn B .67 for B 95.0 .66 

8 Urn A; Urn A; Urn A Urn B .67 for A 79.7 .65 

9 Urn A; Urn B; Urn B Urn B .80 for B 93.8 .74 
a Most likely according to a Bayesian analysis 
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Table 2 

Participants’ decisions and probability judgments for the three decision scenarios in Study 1 

in which a Bayesian analysis leads to an indifference situation; that is, the posterior 

probability for both urns being .50. 

Scenario Previous decisions 

Private 

information 

favors 

Posterior 

probability 

Choices for 

the urn 

favored by 

private signal 

(%) 

Average 

probability 

judgment 

10 Urn A Urn B .50 90.0 .60 

11 Urn A; Urn B; Urn B Urn A .50 65.0 .60 

12 Urn A; Urn B; Urn A Urn B .50 84.8 .58 
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Table 3 

Participants’ decisions and probability judgments for the 13 decision scenarios of Study 2, in which the 

posterior probability of one disease according to a Bayesian analysis is .67. 

 

 

Scenario 

 

 

Previous diagnosis 
Private 

information 

favors 

 

 

Posterior 

probability 

Participants 

choosing the 

most likely 

disease (%)a 

Participants’ 

average 

probability 

judgment 

Average 

proportion 

of decisions 

according to 

private 

information 

Average 

proba-

bility 

judgment 

Baseline Scenarios (no previous decision of the MD)   

1 AP: A, AP: S A .67 for A 95.0 0.70  

 

.59 

 

 

.65 

2 AP: A; AP: S S .67 for S 92.5 0.66 

3 AP: A; AP: A S .67 for A 75.0 0.60 

4 AP: A; AP: A; AP: A S .67 for A 75.0 0.66 

Scenarios where the decision of the MD favors participants’ private information   

5 MD: A, AP: S A .67 for A 95.0 0.72  

.94 

 

.69 6 AP: A; MD: S S .67 for S 92.5 0.68 

Scenarios where the decision of the MD speaks against participants’ private information    

7 MD: A; AP: S S .67 for S 87.5 0.61  

 

 

.36 

 

 

 

.66 

8 AP: A, MD: S A .67 for A 82.5 0.64 

9 MD: A; AP: A S .67 for A 82.5 0.67 

10 AP: A; MD: A S .67 for A 82.5 0.65 

11 MD: A; AP: A; AP: A S .67 for A 87.5 0.70 

12 AP: A; MD: A; AP: A S .67 for A 87.5 0.72 

13 AP: A; AP: A; MD: A S .67 for A 85.0 0.71 

Note. AP = Assistant physician; MD = Medical director; A = Appendicitis; S = Sigma diverticulitis. 

a Most likely according to the Bayesian analysis 
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Table 4 

Participants’ decisions and probability judgments for the 10 decision scenarios of Study 2 in which the posterior 

probability of one disease according to a Bayesian analysis is .80. 

 

 

Scenario 

 

 

Previous diagnosis 
Private 

information 

favors 

 

Posterior 

probability 

Participants 

choosing the 

most likely 

disease (%) 

Participants’ 

average 

probability 

judgment 

Average 

proportion 

of decisions 

according to 

private 

information 

Average 

proba-

bility 

judgment 

 

Baseline Scenarios (no previous decision of the MD)   

14 AP: A A .80 for A 97.5 0.80  

.97 

 

.77 15 AP: A, AP: S; AP: A A .80 for A 95.0 0.77 

16 AP: A; AP: S; AP: S S .80 for S 97.5 0.75 

Scenarios where the decision of the MD favors participants’ private information   

17 MD: A A .80 for A 97.5 0.83  

 

.97 

 

 

.79 

18 MD: A, AP: S; AP: A A .80 for A 95.0 0.79 

19 AP: A, AP: S; MD: A A .80 for A 97.5 0.79 

20 AP: A; MD: S, AP: S S .80 for S 95.0 0.76 

21 AP: A; AP: S; MD: S S .80 for S 97.5 0.77 

Scenarios where the decision of the MD speaks against participants’ private information    

22 AP: A, MD: S; AP: A A .80 for A 90.0 0.72  

.86 

 

.67 23 MD: A; AP: S; AP: S S .80 for S 82.5 0.63 

Note. AP = Assistant physician; MD = Medical director; A = Appendicitis; S = Sigma diverticulitis. 

a Most likely according to the Bayesian analysis
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Table 5 

Participants’ decisions and probability judgments for the seven decision scenarios of Study 2 in which the 

posterior probability of one disease according to a Bayesian analysis is .89. 

 

 

Scenario 

 

 

Previous diagnosis 
Private 

information 

favors 

 

 

Posterior 

probability 

Participants 

choosing the 

most likely 

disease (%)a 

Participants’ 

average 

probability 

judgment 

Average 

proportion 

of decisions 

according to 

private 

information 

Average 

proba-

bility 

judgment 

Baseline Scenarios (no previous decision of the MD)   

24 AP: A; AP: A A .89 for A 100.0 0.84  

.98 

 

.85 25 AP: A; AP: A; AP: A A .89 for A 97.5 0.86 

Scenarios where the decision of the MD favors participants’ private information   

26 MD: A; AP: A A .89 for A 100.0 0.87  

 

1 

 

 

.88 

27 AP: A; MD: A A .89 for A 100.0 0.85 

28 MD: A; AP: A; AP: A A .89 for A 100.0 0.89 

29 AP: A, MD: A; AP: A A .89 for A 100.0 0.88 

30 AP: A, AP: A; MD: A A .89 for A 100.0 0.88 

Note. AP = Assistant physician; MD = Medical director; A = Appendicitis; S = Sigma diverticulitis. 

a Most likely according to the Bayesian analysis
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Table 6 

Participants’ decisions and probability judgments for the decision scenarios in Study 2, where the posterior 

probabilities of the medical diagnosis task predict an indifference situation between the available options. 

 

 

Scenario 

 

 

Previous diagnosis 
Private 

information 

favors 

Participants’ 

diagnosis 

according to 

their private 

information 

(%) 

Participant

s’ average 

probability 

judgment 

Average 

proportion 

of decisions 

according to 

private 

information 

Average 

probability 

judgment 

Baseline Scenarios (no previous decision of the MD)   

31 AP: A S 70.0 0.62  

.57 

 

.63 32 AP: A, AP: S; AP: S A 40.0 0.63 

33 AP: A; AP: S; AP: A S 60.0 0.66 

Scenarios where the decision of the MD favors participants’ private information   

34 MD: A, AP: S; AP: S A 75.0 0.68  

.67 

 

.69 35 AP: A; MD: S, AP: A S 60.0 0.69 

Scenarios where the decision of the MD speaks against participants’ private information  

36 MD: A S 37.5 0.62  

 

.39 

 

 

.65 

37 AP: A, MD: S; AP: S A 40.0 0.63 

38 AP: A, AP: S; MD: S A 30.0 0.66 

39 MD: A; AP: S; AP: A S 47.5 0.66 

40 AP: A; AP: S; MD: A S 37.5 0.68 

Note. AP = Assistant physician; MD = Medical director; A = Appendicitis; S = Sigma diverticulitis. 
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Figure 1. Empirically observed versus predicted confidence judgments for Study 1 (A) and 

Study 2 (B). The general pattern of confidence judgments (blue) is accurately captured by the 

predictions of the model solely derived from participants’ choices (green) for Study 1 (A) and 

Study 2 (B). 

Note. Confidence judgments on the dashed line are in accordance with the Bayesian solution. 
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