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General introduction 
 
 

The central theme of this thesis is the terrestrial 
carbon (C) cycle in forest ecosystems, including 
one of its key drivers, the nitrogen (N) cycle, 
both in a global change context.  
 
Forests and the global carbon cycle 
 
Forests are covering 30% of the earth’s land 
surface and account for half of the terrestrial net 
primary production (NPP; Sabine et al. 2004), 
thus playing a central role in the global C cycle. 
This paragraph summarizes the main aspects of 
C cycling in forests: the flow of C from the 
atmosphere to the vegetation, through the soil 
and back to the atmosphere (Figure 1). 
The atmosphere currently contains about 775 Gt 
C in form of CO2 (IPCC 2007). Plants fix ~120 
Gt C per year through photosynthesis, the largest 
C flux within the global C cycle. The sum of 
photosynthesis by all leaves at the ecosystem 
scale is the gross primary production (GPP). 
Plants, like any organisms, acquire their energy 
for growth and maintenance by respiration, 
oxidizing C to CO2, which is released back to 
atmosphere. The C costs (losses) of plant tissues 
are about half of the C gained through 
photosynthesis, and what remains is termed net 
primary production (NPP), the net C gain by 
vegetation, about 60 Gt C per year globally. 
Total ecosystem NPP not only includes the new 
plant biomass produced (leafs, branches, stem, 
coarse- and fine roots), but also C exported by 
roots to rhizosphere organisms, and some 
volatile emissions from leaves straight to the 
atmosphere. A further, highly variable part of 
NPP is episodically removed from the ecosystem 
by disturbances such as fire or herbivory. For 
forests (in contrast to grassland), NPP can be 
divided into two groups, (1) components with 
natural (undisturbed) turnover times of more 
than hundred years (mainly wood), and (2) 
fractions with ongoing recycling and turnover 
times reaching from days to approximately a 
year (above- and belowground plant litter, root 
exudates and C exports to mycorrhiza). Among 
all vegetation types, forests represent the largest 
terrestrial C pool, globally accounting for > 80% 
of land’s biomass, corresponding to ~540 Gt C. 
Most biomass C produced, will pass through 

soils sooner or later, with organic remains 
(humus) representing the largest terrestrial C 
pool. Forest soils alone account for 1100 Gt C 
(to a depth of 3 m; Jobbagy & Jackson 2000).  
Soil organic matter (SOM) is a complex mixture 
of organic compounds that differ in turnover 
time. The majority of the soil C has a very long 
residence time of centuries to millennia, with 
residues chemically and physically protected 
from rapid decomposition (Anderson & Paul 
1984). A minor part of the soil, in contrast, turns 
over within days to years (e.g. Townsend et al. 
1995). In forests, the smaller, but active C pool 
results from the ongoing input of fresh plant 
litter, and, to a minor extent, from root C exports 
and exudates. C released from all different soil C 
pools, by decomposing soil microbes, accounts 
for about half of total soil C efflux (e.g. Högberg 
2001), while the other significant part comes 
from autotrophic root respiration. The sum of all 
C fluxes from soils to the atmosphere, in form of 
CO2, called soil respiration (Rs), accounts for 
75-100 Gt C a year. It is the second major 
terrestrial C flux after photosynthesis, more than 
11-fold the current rate of fossil fuel combustion 
(Raich & Potter 1995).  
A small but not insignificant component of the 
global C cycle is the flux of methane (CH4). The 
dominant natural sources of atmospheric CH4 
are wetlands, where it is released as the product 
of microbial metabolism. The only significant 
sink for atmospheric CH4 besides oxidation in 
the atmosphere, is its uptake by bacteria in soils 
(Le Mer & Roger 2001). 
Although 78% of the atmosphere’s volume is 
dinitrogen (N2), plant available forms of N are 
the element most frequently limiting plant 
production of natural ecosystems, among them 
many northern and temperate forests (Vitousek 
& Howarth 1991). N, like C, enters ecosystems 
largely via the atmosphere, through atmospheric 
deposition or biological N2 fixation. Unlike CO2 
uptake, N2 can be assimilated by a few species 
of free-living or symbiotic bacteria only. These 
organisms convert atmospheric N2 to organic N-
compounds, by breaking the triple bond of N2 
and making the essential macronutrient available 
to higher organisms. The most common 
symbiotic N2 fixers are Rhizobium species in 
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association with legumes, and Frankia species 
living with Alnus, Ceanothus and other woody 
plants. However, most plant available N within 
an ecosystem comes from internal, recycling, i.e. 
available N in soils is largely derived from 
decomposition of organic matter. N cycling in 
many forest ecosystems is of relatively closed 
nature, with small losses via gaseous emissions, 
volatilization and leaching, balanced by similar 
amounts via N2-fixation or atmospheric N 
deposition. Since there is no plant growth 
without proteins, the C cycle is intimately linked 
to the N cycle. 
 
Globally, emissions of the long-lived greenhouse 
gases CO2, CH4, N2O and halocarbons through 
fossil fuel combustion, industrial processes, land 
use change and agriculture, are responsible for 
most of the increase in global mean temperature 
(IPCC 2007). Depending on the scenario, global 
mean air temperature is estimated to increase by 
2-7 K by the end of this century (Allison et al. 
2009). Currently CO2 accounts for 77% of total 
greenhouse gas emissions to the atmosphere, 
CH4 for 14.3%, N2O for 7.9% when expressed in 
terms of CO2 equivalents. A further component 
of human induced global change is the three- to 
fivefold rise of reactive nitrogen emissions over 
the last century (Denman et al. 2007) through 
fossil fuel and biomass combustion, industrial 
processes, animal husbandry and fertilizer use 
(IPCC 2007). The primary sink of reactive N in 
the atmosphere is its deposition on the land’s 
surface. Atmospheric N deposition on land may 
increase by a factor of 2.5 by the end of this 
century (Lamarque et al. 2005).  
Given the prominent role of forest ecosystems in 
the global C cycle, understanding their responses 
to the components of recent climate change is 
essential. 
 
 
Temperature and nitrogen responses of forest 
carbon and nitrogen cycling 
 
Soil respiration (Rs) is a major component of any 
ecosystem C balance consideration (see above). 
Like any metabolic process, Rs is affected by the 
amount and quality of substrate and 
environmental conditions, temperature in 
particular. Using established temperature 
responses of respiration and considering the 
magnitude of the soil C pool, substantial 
increases in soil C release could be expected as a 
positive feedback to climate warming (e.g. 

Heath et al. 2005). However, a warming-driven 
net C loss from soils to the atmosphere rests on 
the widespread assumption, that temperature is a 
relatively independent driver of Rs and that soil 
C releases would outstrip C inputs to soils and 
cause a net addition of CO2 to the atmosphere. In 
contrast, a central hypothesis of this thesis is that 
Rs in the longer run (full year to multi-year 
scale) is driven by substrate availability, i.e. by 
soil C inputs from vegetation, rather than by 
temperature per se. Whether and how much Rs 
responds to climatic warming is intensively 
debated, and the common experimental approach 
is to heat soils and measure CO2 release. This 
method is problematic, because it employs a step 
change in temperature, applies warming to soils 
only, and the study of responses is usually 
confined to a few years only. Such treatments 
commonly cause a rapid increase in Rs followed 
by a decline, with steady state effects remaining 
unknown. Complementary to experimental 
approaches such as soil heating and N fertilizer, 
this thesis reports on long-term established 
gradients of temperature and N availability. 
 
A first objective was to assess a productivity-
based explanation of annual Rs in forest 
ecosystems at contrasting temperatures. Chapter 
2 presents an analysis of forest productivity and 
concurrent soil respiratory fluxes across an 
elevational cline (1200 m of elevation, 
corresponding to 6 K), from the Swiss Central 
Alps to the Swiss Plateau, testing the hypothesis 
that cumulative annual Rs at contrasting 
temperatures reflects the difference in the 
production of short-lived biomass. 
 
A further aim was to expand the analysis of 
chapter two by forest systems composed of trees 
living in association with N2-fixing micro-
organisms. Alnus stands offered systems to study 
long term high-N-input to forest soils. Soil N 
input is increasing globally, with uncertain 
consequences on the C cycle and storage. The 
basic question of Chapter 3 is, whether or not 
high rates of N inputs increase the rate of C-
cycling by accelerating both, NPP and Rs. 
 
The soils of the forest sites described in chapter 
3 were incubated for 600 days in order to 
identify soil organic pools that differ in turnover 
times. Chapter 4 presents an analysis of the 
composition of three soil organic C pools and 
how these pools contribute to Rs, estimated in 
chapter 3.  
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High external N inputs have the potential to 
saturate the biological demand for N of forest 
ecosystems over time (e.g. Aber et al 1995), 
potentially resulting in N losses via leaching or 
gaseous emissions. Chapter 5 addressed the 
impact of high soil N inputs under N2-fixing 
trees on nitrificaiton, denitrification and 
subsequent N2O emissions from soils.  
 
 
Outlook 
 
Chapter 2 is under review in Oecologia and 
chapter 3 is ready to submit. Chapter 4 and 5 
need further development before publication. 
Chapter 4 and 5 are additional parts of this 
thesis, which offer valuable insights into 
mechanisms involved in forest C and N cycling. 
Chapter 6 summarizes the chapters 2 to 5 and 
points out the main conclusions. In order to 
present self-containing chapters, the introduction 
and methodology is partly repetitive within the 
chapters 2 to 5, and references are given at the 
end of each chapter. Finally I add the abstract of 
a publication that is not thematically connected 
to this thesis, but that was prepared during this 
PhD. 
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FOREST SOIL RESPIRATION REFLECTS PLANT 
PRODUCTIVITY ACROSS A TEMPERATURE 
GRADIENT IN THE ALPS 
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Forest soil respiration reflects plant productivity
across a temperature gradient in the Alps
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Abstract Soil respiration (Rs) plays a key role in any
consideration of ecosystem carbon (C) balance. Based on

the well-known temperature response of respiration in

plant tissue and microbes, Rs is often assumed to increase
in a warmer climate. Yet, we assume that substrate avail-

ability (labile C input) is the dominant influence on Rs

rather than temperature. We present an analysis of NPP
components and concurrent Rs in temperate deciduous

forests across an elevational gradient in Switzerland cor-

responding to a 6 K difference in mean annual temperature
and a considerable difference in the length of the growing

season (174 vs. 262 days). The sum of the short-lived NPP

fractions (‘‘canopy leaf litter,’’ ‘‘understory litter,’’ and
‘‘fine root litter’’) did not differ across this thermal gradient

(?6 % from cold to warm sites, n.s.), irrespective of the

fact that estimated annual forest wood production was
more than twice as high at low compared to high elevations

(largely explained by the length of the growing season).

Cumulative annual Rs did not differ significantly between
elevations (836 ± 5 g C m-2 a-1 and 933 ± 40 g C m-2

a-1 at cold and warm sites, ?12 %). Annual soil CO2

release thus largely reflected the input of labile C and not

temperature, despite the fact that Rs showed the well-

known short-term temperature response within each site.

However, at any given temperature, Rs was lower at the
warm sites (downregulation). These results caution against

assuming strong positive effects of climatic warming on Rs,

but support a close substrate relatedness of Rs.

Keywords Soil CO2 efflux ! NPP ! Elevation ! Temperate

forest ! Acclimation ! Temperature sensitivity

Introduction

Soil respiration (Rs), defined here as the the release of
carbon dioxide (CO2) from soils, is a major part of eco-

system respiration, and comprises (after photosynthesis)

the second-largest terrestrial carbon (C) flux (IPCC 2001)
at 75–100 Pg C a-1, more than 11-fold the current rate of

fossil fuel combustion (Raich and Potter 1995). Since the

atmosphere contains roughly 800 Pg C, about 10 % of the
atmospheric CO2 is cycled through soils annually. Like any

metabolic process, Rs is affected by the amount and quality

of substrate and by soil environmental conditions such as
temperature and moisture. Global mean air temperature is

currently estimated to increase by 2–7 "C by the end of this
century (Allison et al. 2009). Using established tempera-

ture responses of respiration in plants, soils, and whole

ecosystems, substantial increases in soil C release could be
expected as a positive feedback to climate warming

(Trumbore et al. 1996, Heath et al. 2005, Heimann and

Reichstein 2008). The rationale for a warming-driven
enhancement of net C losses by soils rests on the

assumptions that (1) temperature is a relatively indepen-

dent driver of Rs, and (2) the sensitivity of Rs to warming
will eventually cause C release to exceed C input to soils.

Thus, several global biogeochemical models project soil C

pools in terrestrial ecosystems to turn from a net C sink to a

Communicated by Evan DeLucia.

R. Caprez (&) ! C. Körner
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Schönbeinstrasse 6, 4056 Basel, Switzerland
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net C source by around mid-century (Cox et al. 2000,

Cramer et al. 2001, Friedlingstein et al. 2006). This paper
aims to challenge the view that instantaneous respiratory

responses to temperature are scaling to a long-term, large-

area signal.
Rs is commonly separated into an autotrophic part and a

heterotrophic part. Autotrophic Rs, i.e., respiration from live

plant parts, includes root maintenance respiration, root
growth respiration, and root nutrient uptake respiration, and

is commonly assumed to contribute about half of the total
soil CO2 release (e.g., Högberg et al. 2001). The hetero-

trophic part of Rs is related to respiratory losses by soil

microbes (including mycorrhiza), which depend on the
availability of organic substrate for microorganisms and the

rate of decomposition of this substrate (Trumbore et al.

1990; Schulze et al. 2000). In the short term (hours to
months), rates of soil organic C decomposition are highly

temperature sensitive. However, in the longer term (decades

to centuries), environmental factors such as temperature and
water affect CO2 efflux only indirectly: through the rate of

substrate production (Davidson and Janssens 2006,

Kuzyakov and Gavrichkova 2010, Conant et al. 2011). An
exception is water logging, where oxygen becomes a lim-

iting factor (e.g., Davidson et al. 1998). Short-term substrate

availability for decomposition depends on chemically and
physically easily available organic compounds: plant and

microbial residues and rhizodeposits of living roots. The

concentrations of such substances are low (Fischer et al.
2007), and some of them have mean residence times of

hours to days while others have mean residence times of a

few months to a few years (litter). Hence, a sustained supply
from above- and belowground litter and rhizodeposits is

required to fuel these respiratory processes. Heterotrophic

soil respiration can thus be assumed to strongly correlate
with biomass production, as various studies have shown

(Raich and Nadelhoffer 1989; Raich and Schlesinger 1992;

Davidson et al. 2002b). For forests (in contrast to grass-
land), the heterotrophic respiratory fluxes can be divided

into two parts: (1) fluxes associated with the recycling of

biomass carbon (C) that has accumulated over long periods,
such as wood or humus C, with natural lags in CO2 release

of more than a hundred years, and (2) fractions of NPP

associated with ongoing biomass recycling and fast turn-
over (aboveground litter production, root and mycorrhizal

turnover, and recycling of C exported by roots to rhizo-

sphere organisms).
Accordingly, experimental approaches such as the arti-

ficial heating of forest soils without concomitant heating of

the canopy produce a step change in the temperature,
inducing an initial but transient net loss of C to the atmo-

sphere, with Rs returning to rates similar to those in

unwarmed soils once the fraction of labile organic material
has reached a new (lower) steady-state level (Luo et al.

2001; Strömgren and Linder 2002; Melillo et al. 2002;

Knorr et al. 2005; Bradford et al. 2008). This transient
response of respiratory soil CO2 release to step increases in

soil temperature supports the notion that Rs is under strong

substrate control in the long run. An initial but transient net
loss of C to the atmosphere thus most likely overestimates

the effect of long-term warming on Rs. Respiratory

metabolism, including soil respiration, responds to tem-
perature instantaneously on an hourly or daily timescale,

but we hypothesize that, on a full year to multi-year
timescale, soil respiration is essentially a function of sub-

strate availability (input of plant-derived organic C to

soils), which in turn depends on temperature effects on
productivity.

An NPP-based explanation of annual Rs assumes that

labile C input sets the limit on soil C release from forests
on a long-term (several years) basis, and thus contrasts with

the concept of direct temperature-driven respiration. Nat-

ural climatic gradients based on either latitude or elevation
offer conditions under which C dynamics reflect long-term

whole-ecosystem adjustment to contrasting temperatures,

and thus permit the exploration of ecological theory related
to long-term temperature effects that are not biased by

imposing a step change in temperature on soils only. Only

a few studies, mainly performed in the Andes, have
attempted to quantify and compare forest productivity

and/or respiratory fluxes along elevational gradients (e.g.,

Leuschner et al. 2007; Girardin et al. 2010; Zimmermann
et al. 2010); to our knowledge, no such study has been

conducted in the temperate zone so far.

The present study takes advantage of a mean annual
temperature increase of ca. ?6 K downslope of a 1200 m

drop in elevation from the Central Swiss Alps to the Swiss

Plateau. By restricting the comparison to alluvial sites with
ample water supply, the gradient selected is not confounded

by significant changes in the moisture regime. We present

an analysis of the relation between NPP components in
temperate deciduous forests and the concurrent soil C

effluxes at two contrasting elevations along this thermal

gradient. We hypothesize that the cumulative annual Rs

values at contrasting temperatures reflect the difference in

the production of nonrecalcitrant, short-lived biomass. An

‘‘experiment by nature,’’ as we term it, can (1) be expected
to reflect the combined effects of warming on all ecosystem

processes, and (2) be expected to show signals that are well

adjusted to the local temperature regime, given the rather
slow rates of climatic warming (currently ca. 0.13 K per

decade; IPCC 2007), thus contrasting with short-term soil-

only warming trials (step changes) in forests that are
otherwise exposed to the contemporary climate.

In the present study, ‘‘steady state’’ refers to a forest

state in which annual leaf litter fall has reached a near-to-
constant value (maximum LAI), and in which fine roots

1144 Oecologia (2012) 170:1143–1154
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have explored the available soil space so that the fine root

biomass does not increase further (near-to-constant fine
root turnover). At the same time, stems, branches, and

coarse roots keep accumulating biomass, and the forest

grows in height, so ‘‘steady state’’ refers to the flow of NPP
fractions that are quickly turning over, including above-

ground litter, root and mycorrhizal turnover, and root

exudates.

Methods

Study site and experimental design

A field experiment was set up in early spring 2009, which

consisted of two deciduous forest stands in the Central
Swiss Alps at ca. 1500 m a.s.l., referred to as ‘‘cold’’ or

‘‘high-elevation’’ sites, and two low-elevation deciduous

forest stands in the foothills of the Swiss Plateau at ca.
300 m a.s.l., referred to as ‘‘warm’’ or ‘‘low-elevation’’

sites (Table 1). The elevational cline spanned by these core

sites (1200 m) corresponds to a difference in mean annual
temperature of about 6 K. Each site comprised an area of

50 m 9 50 m, surrounded by a buffer zone at least 10 m in

width. The cold high-elevation sites were homogeneous
closed-canopy stands of Salix fragilis L., which originate

from natural regeneration and had a mean age of ca.

40 years. The warm low-elevation sites were closed-can-
opy stands dominated by Acer pseudoplatanus L. (with a

few Quercus rubra L. individuals at one site), afforested

about 40–60 years ago. Air temperature (at 2 m above the
ground) and soil temperature (at 10 cm depth) were

recorded throughout the field study on an hourly basis at

each site (HOBO TidbiT v2, Onset Computer Corp.,
Bourne, MA, USA). The length of the thermal growing

season was defined here as the number of days with a daily

mean air temperature above 5 !C. At each site, hourly
averages of soil moisture and precipitation were recorded

below the canopy (EM50 data loggers connected to a
ECRN-100 rain gauge and four 10HS soil moisture probes

installed at 10 cm depth; Decagon Devices, Pullman, WA,

USA).

Forest stand characteristics

We estimated stem basal area (BA, in m2) by measuring

stem circumference at breast height (1.3 m above the

ground) in three plots of size 10 m 9 10 m per site in early
spring in three subsequent years for all trees with a diam-

eter exceeding 10 cm (very few trees were \ 10 cm in

diameter). This resulted in 70 ± 8 trees and 37 ± 8 trees
within the three plots at the cold and warm sites, respec-

tively. Forest stand height (H, in m) was estimated as the

height of five randomly selected trees per plot using an
optical reading clinometer (PM-5, Suunto, Espoo, Finland).

Because species-specific allocation rules for stem and

branch biomass were not available, we estimated woody
biomass of all tree species assuming a near-cylindrical

Table 1 Location, climatic, and stand characteristics of the two study sites at high elevation (cold sites) and the two study sites at low elevation
(warm sites)

High-elevation sites Low-elevation sites

Location 46!3601600 N

8!3100100 E

46!3602100 N

8!3102100 E

47!3203700 N

7!4602200 E

47!3205300 N

8!1303400 E

Elevation (m a.s.l.) 1515 1508 296 330

Dominant species Salix fragilis Salix fragilis Acer platanoides Acer platanoides

Stand age (years) ca. 40 ca. 40 50–60 40–50

Tair full year (!C) 3.8 (-23.6, 28.4) 3.6 (-25.7, 27.5) 10.6 (-15.4, 32.0) 10.4 (-14.0, 29.4)

Tair growing season (!C) 10.4 (5.0, 17.3) 10.7 (5.1, 16.9) 14.3 (5.1, 24.5) 14.5 (5.2, 23.3)

Tsoil (!C) 5.3 (0.0, 15.6) 5.5 (0.1, 14.7) 10.5 (0.6, 21.0) 10.3 (1.6, 19.4)

Soil moisture (vol %) 29.8 (19.1, 39.8) 31.3 (19.9, 41.0) 36.6 (24.3, 47.7) 40.1 (29.4, 47.4)

Precipitation (mm y-1) 734 752 813 853

Stem basal area (m2 ha-1) 37.9 ± 2.1 38.9 ± 3.2 54.9 ± 4.2 41.6 ± 1.9

Canopy height (m) 7.8 ± 0.5 6.6 ± 0.1 21.1 ± 0.1 20.5 ± 0.3

Stem and brench wood biomass (t C ha-1) 54 ± 3 50 ± 5 293 ± 24 128 ± 17

LAI (m2 m-2) 3.7 ± 0.2 4.1 ± 0.1 5.5 ± 0.1 5.0 ± 0.2

Annual wood increment (t C ha-1 a-1) 2.29 ± 0.03 1.89 ± 0.03 5.01 ± 0.20 4.80 ± 0.34

Temperature and soil moisture are given as annual (or seasonal) means, with the minima and maxima (in parentheses) measured on an hourly
basis. Precipitation was measured below the canopy of the forest stands. Basal area, canopy height, woody biomass, and LAI were recorded at the
beginning of the field study (April 2009); the within-site mean ± SE is presented here
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shape for the combined stem and branch xylem (sapwood

area), which was estimated by stem basal area and canopy
height:

WC ¼ BA" Hð Þ " q" 0:5; ð1Þ

where WC (in kg) is the aboveground woody biomass C per
ground area, q stands for wood density (Salix: 362 kg m-3;

Acer: 522 kg m-3; compiled by Perruchoud et al. 1999),

and dry stem biomass is assumed to contain 50 % C per
unit weight.

The leaf area index (LAI) was estimated using a cep-

tometer (AccuPAR LP-80, Decagon Devices Inc.). The
reference measurements were taken immediately after the

forest measurement in an open area within a distance of

50 m under clear sky conditions. All measurements were
accomplished in mid-August, when canopy foliage reached

its maximum. Specific leaf area (SLA) of the litter was

estimated on freshly fallen leaves that were randomly
collected from the litter traps (see next section) at the end

of September. Leaf area was measured using a LI-3100

area meter (LI-COR Inc., Lincoln, NE, USA) and the
biomass of the same leaves was determined after drying at

80 !C.

Forest litter production

Forest NPP comprises ‘‘long-lived’’ components that con-
tribute to C recycling when trees die or become harvested,

such as wood and coarse-root growth, and ‘‘short-lived’’

components that feed more directly into respiratory
belowground signals. These short-lived NPP components

comprise above- and belowground litter as well as non-

tissue components: root exudates and C export to mycor-
rhizae. In the present study, we adopted the selected short-

lived NPP proxies ‘‘canopy leaf litter fall,’’ ‘‘understory

biomass,’’ and ‘‘fine root production’’ in ingrowth cores
(our proxy for belowground NPP). The sum of these short-

lived NPP proxies is termed the ‘‘total litter production.’’

To estimate canopy leaf litter production, six plastic
litter traps (0.25 m2 ground area) with porous ground

(sieve bottom) were installed at random locations within

each study site in early autumn in two subsequent years,
shortly before the leaves began to fall. The litter traps were

emptied regularly, and the accumulated litterfall was dried

at 80 !C. C content, quantified in a dry combustion ele-
mental analyzer (Elementar Vario EL III, Hanau, Ger-

many), ranged from 49 % to 54 % of dry mass at all sites.

Understory vegetation biomass was determined by harvest
at peak biomass at ground level in two areas of size 1 m2

each per study site. At the beginning of the growing season,

a total of 40 soil cores per study site (3.5 cm diame-
ter 9 12 cm depth) were collected. The soil cores were

kept frozen until the extraction of fine and coarse roots,

which were then dried at 80 !C. The holes created by root

sampling were replaced by mesh cylinders (PET filament,
2 mm mesh size) and filled with sieved root-free soil taken

in close proximity to the respective study site. Soil in these

ingrowth cores was compacted to a similar bulk density to
that found on the site. We found substantial root ingrowth

after one year, and thus harvested the complete set of

ingrowth cores. As a proxy of fine root turnover, we cal-
culated the ratio of annual fine root ingrowth (NPP) to the

mean fine root standing crop (Aber et al. 1985).

Soil respiration

Soil respiration (Rs) was measured using a portable cus-

tom-made static chamber system equipped with an open-

path infrared gas analyzer and relative humidity/tempera-
ture sensors (GMP343 carbon dioxide probe, HMP75 rH/T

probe; Vaisala, Vantaa, Finland; described in Bader and

Körner 2010). This design avoids any pumps, thus pre-
venting known problems with flow-through chambers,

where minute pressure variations can alter the CO2 flow

across the delicate soil–air interface (Lund et al. 1999).
Twelve polypropylene collars (20 cm diameter 9 7 cm

height) were installed at randomly selected positions within

each study site. The collars were inserted to a depth of
3 cm into the ground 2–3 weeks prior to the first mea-

surement. These collars permitted leakproof attachment of

the soil respiration chamber, allowing the repeated mea-
surement of the same soil area over time. The collars

remained at the same location throughout the entire study.

Rs was recorded biweekly throughout the growing season.
From late autumn to early spring, Rs was recorded once a

month at the low-elevation sites. Winter measurements at

the high-elevation sites were restricted by heavy snowpack.
For wintertime Rs measurement at the cold sites, snow was

gently removed to reach the buried collars. Soils remained

unfrozen under snow. After several attempts throughout the
winter months, one reliable measurement was achieved in

March 2010, when ambient air temperatures were suffi-

ciently high for the soil surface not to freeze after exca-
vating the collars. During these measurements, gas fluxes

reached a steady state after an initial degassing period, i.e.,

Rs rates remained steady without a significant decrease for
0.5–2.5 h after snow removal. Soil respiration rates were

calculated by linear regression of recorded headspace CO2

concentrations against time (48 automatic readings over a
period of 4 min, starting 1 min after the placement of the

chamber on the collar). The data recorded during the first

minute after the installation of the chamber were not used
to avoid flux disturbances following chamber placement

(Davidson et al. 2002a). Simultaneously with the Rs mea-

surements, soil temperature and soil moisture at the
chamber site were recorded manually (soil temperature:
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GTH 175/Pt digital thermometer, Greisinger Electronic,

Germany; soil moisture: ThetaProbe soil moisture sensor
ML2x, Delta-T Devices Ltd., Cambridge, UK), thus com-

plementing the data collected by the automatic data logger.

In order to ensure that results did not reflect the by-
chance presence of certain tree taxa at the selected study

sites, we measured Rs simultaneously at the core sites and

at supplementary sites with different tree taxa in summer
2010. The supplementary sites at high elevation (cold sites)

were one forest stand of Sorbus aucuparia L. (46!3604800 N,
8!3400800 E; 1635 m a.s.l.) and one forest stand of Betula
pubescens (46!4205300 N, 8!5405600 E; 1325 m a.s.l.). At

low elevation (warm sites), we chose five supplementary
sites of mixed forest dominated by Fagus sylvatica L.

(47!3203900 N, 7!4504200 E; 47!320400 N, 8!1302100 E;

47!0700500 N, 8!1804200 E; 47!3104400 N, 7!4702200 E;
47!2201600 N, 8!1101300 E; all between 300 and 500 m

a.s.l.). Daytime Rs was recorded on four occasions at the

core sites and the supplementary sites (high elevation:
n = 4; low elevation: n = 7) in mid-season (July and

August) 2010.

Soil physicochemical analysis

Two soil pits were dug per study site and the excavated
profile was sampled at depths of 5, 10, 20, 30, 40, and

50 cm using a 35 mm diameter 9 50 mm length auger.

The profiles included the organic topsoil layer, humic
layers, and mineral layers. The soil samples were sieved

(2 mm) and oven-dried at 105 !C to determine the fine

earth density. Subsamples of each soil core were oven dried
at 105 !C and ground to powder to quantify the total C and

N concentrations in an elemental analyzer (ThermoFinni-

gan FlashEA 1112, Milan, Italy) after carbonates were
removed from soils by acid fumigation (Harris et al. 2001).

Soil pH was measured in 0.1 M KCl solution.

Data analysis

Rs rates (lmol CO2 m-2 s-1) were related to soil temper-
ature (T, 10 cm depth) by fitting a nonlinear least squares

model after Lloyd and Taylor (1994), which expresses Rs in

terms of the respiration rate at 10 !C (Rs10) and a parameter
E0 that models temperature sensitivity:

Rs ¼ Rs10 eE0
1

56:02 "
1

T"227:13ð Þ: ð2Þ

Annual soil CO2 efflux was estimated at each core site

by predicting Rs at hourly intervals, based on the

automatically logged soil temperature. The temperature
sensitivity expressed by Q10 values within elevation were

then estimated by comparing Rs rates when the temperature

was increased from 5 !C to 15 !C:

Q10 ¼
Rs 2

Rs 1

! " 10 %C
T2"T1

# $

; ð3Þ

where Rs2 and Rs1 are the Rs rates at the higher (T2 = 15

!C) and lower (T1 = 5 !C) soil temperatures, respectively.
In order to estimate Q10 across elevations, annual Rs rates

at the contrasting temperatures (elevations) were compared

using Eq. 2.
Effects of elevation (temperature) on NPP components

or the sum of NPP components, annual Rs, and pools of soil

C and N were tested using a one-way analysis of variance.
Normality and homoscedasticity were examined visually

using diagnostic plots, and non-normally distributed rates

were log-transformed (canopy leaf litter, soil C and N
contents) or power-transformed (x-0.4; NPP fine roots).

Error estimates in the text and figures are standard errors of

site means, and effects were considered significant at
P \ 0.05. Due to the low replication and therefore statis-

tical power, effects with P values \ 0.1 were considered

marginally significant. All statistical analyses were carried
out using R (R Development Core Team 2009; http://www.

r-project.org).

Results

Climatic conditions

There was substantial seasonal variation in topsoil tem-
perature and moderate changes in topsoil water content and

precipitation at both the cold high-elevation and the warm
low-elevation sites during the study years. Differences

between sites at each elevation were almost negligible

(Fig. 1c–f). The growing season (daily mean air tempera-
ture [ 5 !C) accounted for 174 ± 2 days at the cold sites,

and lasted 262 ± 4 at the warm sites; i.e., there was a

shortening of the growing season by nearly three months
with elevation. Sites at high elevation were snow-covered

(to a max. of 1 m depth) from the beginning of December

to mid April, whereas at low elevation the forest floor was
only periodically covered with a few centimeters of snow,

mainly between early December and late February. Mean

annual air temperatures during the experimental period
were 3.7 ± 0.1 !C and 10.5 ± 0.1 !C at the cold and warm

sites, respectively (Table 1), implying a mean air temper-

ature difference of 6–7 K for the 1200 m difference in
elevation. Soil volumetric water content (VWC) was per-

manently higher at the warm sites, but in general all soils

were moist throughout the study period (Table 1; Fig. 1e,
f). By comparing tree stands on alluvial plains at both high

and low elevations, we have avoided differences in the

most common confounding site variable, soil moisture.
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Forest stand characteristics

Stem basal area did not differ significantly between ele-

vations, whereas tree height increased from the cold to the
warm sites (P = 0.002), resulting in lower aboveground

woody biomass at the cold high-elevation sites compared

to the warm low-elevation sites, though this effect is
marginally significant only due to a large variance in

woody biomass at the warm sites (P = 0.09; Table 1).

Similar to woody biomass, annual wood increment was
higher at the warm compared to the cold sites (? 140 %;

P = 0.03; Table 1). However, accounting for the length of

the growing season, wood increment was only 60 % higher
at the warm low-elevation than at the cold high-elevation

sites. Canopy LAI at peak season was also slightly higher

at the warm sites (P = 0.06; Table 1), whereas SLA was
similar at both elevations (160–180 cm2 g-1).

Forest litter production

Canopy leaf litter production was 117 ± 22 g C m-2 a-1 at

the cold and 235 ± 27 g C m-2 a-1 at the warm sites
(P = 0.09; Table 2), but this marginally significant dif-

ference almost disappeared when divided by the number of

days of the growing season (Table 3). Production of
understory vegetation (herbaceous species) was 128 ± 28 g

C m-2 a-1 at the cold sites and 101 ± 44 g C m-2 a-1 at

the warm sites (Table 2). When expressed per day of the
growing season, this trend was amplified but remained

nonsignificant (Table 3). In contrast to the aboveground

trends in NPP, annual fine root ingrowth decreased

considerably from 97 ± 14 g C m-2 a-1 at the cold to

28 ± 4 g C m-2 a-1 at the warm sites (P = 0.03; Table 2),
and the effect became even stronger when expressed per day

of the growing season (Table 3). Similarly, fine root biomass

at the beginning of the field study declined from the cold to
the warm sites (46 ± 1 g C m-2 a-1 vs. 19 ± 2 g C m-2

a-1; P = 0.009). Both mean fine root turnover (cold sites:

0.37 ± 0.03 a-1; warm sites: 0.31 ± 0.02 a-1) and mean
root duration (cold sites: 2.7 ± 0.2 years; warm sites:

3.3 ± 0.2 years) were similar at the contrasting temperature
regimes. Because of the shorter season, the ‘‘functional

duration’’ (number of days of high metabolic activity) is thus

reduced at the cold sites.
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Fig. 1 Seasonal variations in
a, b Rs (mean ± SE, n = 12), c,
d soil temperature in the top
10 cm, e, f volumetric water
content (VWC) in the top 10 cm
and below-canopy precipitation,
recorded at the individual study
sites at high elevation (cold
sites) and low elevation (warm
sites) from April 2009 to March
2010 (full year). Circles and
solid lines denote data from one
study site, while triangles and
dashed lines denote data from
the other study site at the
corresponding elevation. The
gray-shaded area indicates the
period when the soil was
covered with snow

Table 2 Annual NPP (in g C m-2 a-1) of short-lived components,
annual Rs, and the percentage changes in each of these annual C
fluxes upon moving from cold high-elevational sites to warm low-
elevational sites

High
elevation

Low
elevation

In/decrease
(%)

P

Canopy litter 117 ± 22 235 ± 27 ?101 (*)

Understory
vegetation

128 ± 28 101 ± 44 -21 n.s.

Fine root ingrowth 97 ± 14 28 ± 4 -71 *

Total litter 343 – 21 365 – 13 16 n.s.

Annual Rs

(g C m22 a21)
836 – 5 933 – 40 112 n.s.

Total litter refers to the sum of the canopy litter, understory litter, and
fine root ingrowth. The mean ± SE is presented here

(*) 0.05 \ P \ 0.1; * P \ 0.05; ** P \ 0.01
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Soil respiration

Rs rates measured throughout the sampling year at the four
core sites showed pronounced seasonality (Fig. 1a, b), with

rates \ 1 lmol CO2 m-2 s-1 in February and March at

both the cold high-elevation and the warm low-elevation
sites, and peak rates of 4.8 lmol CO2 m-2 s-1 at the cold

sites in August and 5.8 lmol CO2 m-2 s-1 at the warm

sites in July. As soon as air and soil temperatures exceeded
4 !C in spring, Rs started to rise. At the cold sites, this

occurred in mid-May following snowmelt, while this

threshold was passed at the warm sites at the end of March.
At the cold sites, Rs declined continuously during October

to its lowest winter values, whereas Rs dropped more

rapidly in September at the warm sites, with the tempera-
ture reducing from about 20 !C to 15 !C during a period of

reduced rainfall (soil moisture: 26 % to 29 %; Fig. 1f).

While Rs values at the two cold high-elevation sites ran
parallel throughout the year, Rs values at the two warm

low-elevation sites diverged during July and August,

achieving the maximum Rs discrepancy of about 2 lmol
CO2 m-2 s-1 (Fig. 1a, b). On an annual basis (365 days),

the average daytime Rs was 2.9 ± 0.1 lmol CO2 m-2 s-1

for the cold sites and 2.8 ± 0.2 lmol CO2 m-2 s-1 for the
warm sites, so it did not vary significantly across the 6 K

elevational cline in temperature.

Rs at the cold sites in mid March was 0.5 ± 0.1 lmol
CO2 m-2 s-1 at a topsoil temperature of 0.3 !C. For the

annual soil CO2 efflux, this rate is assumed to represent

winter rates at the cold sites from mid-December 2009 to
mid-April (the soil temperature barely changed under snow

cover during that period). Had actual rates been lower (e.g.,

0.1 lmol CO2 m-2 s-1), the elevational effect on the
annual CO2 efflux calculated by Eq. 2 would not have been

significantly affected.

Soil temperature accounted for 70–80 % of the seasonal
variation in Rs, and Q10 within elevation was similar at the

two elevations (cold sites: R2 = 0.79, P \ 0.001,

Q10 = 2.1 ± 0.3; warm sites: R2 = 0.70, P \ 0.001,

Q10 = 2.2 ± 0.6; Fig. 2). Comparing annual Rs across

elevation (a temperature rise of 6 K) resulted in a Q10 of

1.2 ± 0.1.
Total annual respired C amounts, obtained by modellng

hourly values of Rs rates using Eq. 2, were only 12 % (n.s.)

higher at the warm sites relative to the cold sites (836 ± 5 g
C m-2 a-1 vs. 933 ± 40 g C m-2 a-1; Table 2).

Mid-season Rs rates in summer 2010 were similar across

elevations at the core sites (cold sites: 4.4 ± 0.1; warm
sites: 3.4 ± 0.5), and even higher at cold high-elevation

sites than at warm low-elevation sites when the supple-

mentary sites were included (cold sites: 4.4 ± 0.1; warm
sites: 3.2 ± 0.3; P = 0.02), and when daytime rates were

averaged across measurement occasions and sites. This

finding indicates that the elevational effect found for the
year-round recordings at the core sites was not species

specific. Mid-seasonal mean soil temperature was ca. 3 K

higher at the warm sites than at the cold sites, and VWC
varied between 30 % and 37 % and between 28 % and

50 % at the cold and the warm sites, respectively, during
all measurements.

Soil C and N

The amount of soil organic C (0–50 cm depth) was

15.3 ± 0.3 kg C m-2 at the warm low-elevational sites and
4.8 ± 2.2 kg C m-2 at the cold high-elevational sites.

These values may not represent the total soil C stocks of

the study sites, since soils can be much deeper. As both soil
C and soil N concentrations were higher at the warm sites,

Table 3 Productivity of short-lived components expressed per day
of growing season (i.e., mean daily NPP during the growing season in
g C m-2 d-1; the number of days experiencing a 24 h temperature
mean above 5 !C: high elevation 174 ± 2 days, low elevation
262 ± 4 days) and the percentage change on moving from the cold
high-elevation sites to the warm low-elevation sites. The mean ± SE
is presented here

High
elevation

Low
elevation

In/decrease
(%)

P

Canopy litter 0.66 ± 0.13 0.90 ± 0.09 ?35 n.s.

Understory litter 0.74 ± 0.16 0.39 ± 0.17 -48 n.s.

Fine root ingrowth 0.56 ± 0.08 0.11 ± 0.01 -81 **

(*) 0.05 \ P \ 0.1; * P \ 0.05; ** P \ 0.01 0 5 10 15 20 25
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Fig. 2 Seasonal response of Rs to soil temperature (10 cm depth) at
the cold high-elevational sites (open symbols, dashed line) and at the
warm low-elevation (filled symbols, solid line), fitted with Lloyd and
Taylor (1994) functions. Data points are campaign averages of the Rs

rates at each study site (n = 12) throughout the sampling year. Q10

values are estimated by comparing the Rs rates obtained upon
increasing the temperature from 5 !C to 15 !C

Oecologia (2012) 170:1143–1154 1149

123



the C/N ratios were the same for both cold and warm sites

along the sampled profile (Table 4).

Discussion

The temperature difference of about 6 K upon moving

from alluvial cold study sites in the Swiss Central Alps to
alluvial warm study sites in the foothills of the Swiss

Plateau provided us with the opportunity to test effects of
temperature as a driver of both forest productivity and

forest Rs. We found that neither annual Rs nor total annual

litter production (i.e., the sum of the short-lived NPP

components) depended significantly on elevation.

NPP components across the temperature cline

While total litter production hardly changed across eleva-

tions (?6 %, n.s.), canopy leaf litter vs. fine root litter

showed contrasting components: more canopy litter
(?101 %), but less fine root litter (-71 %) at the warm

compared to the cold sites (Table 2).
Annual canopy leaf litter production at the cold

(117 ± 22 g C m-2 a-1) and the warm (235 ± 27 g C m-2

a-1; Table 2) sites compare well with the Swiss Forest
Inventory data on canopy leaf litter input in the respective

regions (Alps: 134 g C m-2 a-1; Jura: 229 g C m-2 a-1;

Perruchoud et al. 1999). Further, the ten-year mean for the
canopy leaf litter fall in the deciduous forest at the Swiss

Canopy Crane research site located in the Jura foothills is

almost identical to that observed at our warm low-elevation
sites (238 ± 65 g C m-2 a-1; Körner et al. 2005).

Annual understory litter production did not differ sig-

nificantly between the cold and warm sites but, remarkably,
was similar to canopy litter production at the cold sites,

whereas understory litter production at the warm low-ele-

vation sites was not even half of the canopy litter pro-
duction (Table 2), most likely due to the greater shade

produced by a closer canopy. However, we observed the

reverse trend belowground to that seen for canopy litter
production, with fine root production at the warm low-

elevation sites reaching only one-third of that at the cold

high-elevation sites (Table 2). To the extent that new root
growth into an empty soil patch can be considered pro-

portional to overall fine root production in such a site

comparison, our cold sites showed a substantially higher
root activity, perhaps associated with reduced microbial

activity, scarcer nutrients, or a low temperature associated

reduction in specific water uptake (Persson and Ahlström
1990). A similar increase in fine root production has been

reported along elevational gradients in the Ecuadorian

Andes (Roderstein et al. 2005, Moser et al. 2011), whereas
a recent study along an elevational gradient in the Peruvian

Andes found no such trend with elevation (Girardin et al.

2010). Fine root production in ingrowth cores at the warm
sites was within the ranges previously reported for decid-

uous temperate forests based on the ingrowth core tech-

nique (Steele et al. 1997; Bader et al. 2009), whereas no
literature data for a direct comparison with our cold high-

elevation sites was found. If we assume that the ratio of

new roots appearing in ingrowth cores and the fine root
stock is a proxy for root turnover, we arrive at rates that are

slightly higher at the cold sites (0.37 a-1) than at the warm

sites (0.31 a-1). The resultant root longevity of around
three years is well within the range reported from other

Table 4 Soil properties along the soil profiles to a depth of 50 cm at
the cold high-elevational and the warm low-elevational sites
(mean ± SE; n = 2)

Soil depth High elevation Low elevation

0–5 cm

Bulk density (g cm-3) 0.71 ± 0.16 0.96 ± 0.09

% C 3.27 ± 0.35 5.82 ± 0.33

C stock (kg C m-2) 1.18 ± 0.38 2.77 ± 0.13

C/N 11.18 ± 1.59 17.11 ± 5.77

pH(KCL) 5.25 ± 0.01 6.26 ± 0.38

5–10 cm

Bulk density (g cm-3) 1.15 ± 0.01 1.05 ± 0.06

% C 1.36 ± 0.75 3.33 ± 0.15

C stock (kg C m-2) 1.58 ± 0.87 3.50 ± 0.05

C/N 11.77 ± 0.56 9.86 ± 0.42

10–20 cm

Bulk density (g cm-3) 1.27 ± 0.01 1.10 ± 0.01

% C 0.28 ± 0.05 2.81 ± 0.09

C stock (kg C m-2) 0.35 ± 0.09 3.10 ± 0.08

C/N 12.72 ± 2.45 10.70 ± 1.95

20–30 cm

Bulk density (g cm-3) 1.22 ± 0.09 1.26 ± 0.02

% C 0.30 ± 0.14 1.95 ± 0.24

C stock (kg C m-2) 0.35 ± 0.14 2.44 ± 0.26

C/N 12.95 ± 0.68 9.03 ± 0.31

30–40 cm

Bulk density (g cm-3) 1.13 ± 0.10 1.20 ± 0.06

% C 0.77 ± 0.55 1.33 ± 0.03

C stock (kg C m-2) 0.77 ± 0.50 1.59 ± 0.04

C/N 11.53 ± 1.23 8.37 ± 0.01

40–50 cm

Bulk density (g cm-3) 1.16 ± 0.12 1.26 ± 0.06

% C 0.52 ± 0.26 1.54 ± 0.44

C stock (kg C m-2) 0.57 ± 0.23 1.91 ± 0.46

C/N 13.34 ± 1.62 10.46 ± 1.05

0–50 cm (total profile)

C stock (kg C m-2) 4.79 ± 2.18 15.32 ± 0.27
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temperate deciduous forests (Bader et al. 2009, Gaul et al.

2009). The ratio of fine root ingrowth to total fine root
biomass may overestimate actual turnover, since root

growth into an empty soil patch may be greater than new

root growth in undisturbed soil, but to a first approximation
we can assume that such a deviation applies to all test sites,

so it does not affect the comparison.

We did not develop species- and stand-specific allom-
etries; nevertheless, our estimates of annual wood mass

increment provide a rough estimate of the increase in wood
C stocks. The annual wood increment of ca. 200 g C m-2

a-1 at our cold sites is close to the 170 g C m-2 a-1

reported for a cold temperate forest in a similar climate in
the northern USA (Gough et al. 2007), and the 485 g C

m-2 a-1 observed at our warm sites falls in the range of

200–600 g C m-2 a-1 found under similar climatic con-
ditions in Germany, close to our warm sites (Jacob et al.

2010).

The effects of temperature on canopy leaf litter pro-
duction and wood increment largely resulted from a longer

growing season; the signals almost disappear when pro-

ductivity is expressed per day available for growth
(Table 3). The limitation on productivity caused by a

shorter season (irrespective of temperature) is a global

trend across latitudinal and elevational gradients covering
the major vegetation types (Schulze 1982, Körner 1998).

The higher annual root production at the cold sites became

further amplified when expressed per day of the growing
season (Table 3).

In summary, the productivity data obtained here are

representative of similar forests elsewhere, and the eleva-
tional difference in annual rates of aboveground biomass

production are largely explained by season length.

Soil respiration at contrasting temperatures

As in most previous cases, our data indicate that temper-
ature controls the short-term temporal variability of Rs

(Fig. 1), but the absolute rates of Rs are such that the ele-

vational temperature effect on Rs is greatly diminished on
an annual basis (Table 2).

Annual soil C efflux was similar at both elevations (cold

sites: 836 ± 5 g C m-2 a-1; warm sites: 933 ± 40 g C
m-2 a-1), matching rates reported for other temperate

deciduous forests (Malhi et al. 1999; Wang et al. 2006;

Bader and Körner 2010; Ruehr et al. 2010), all of which
corresponded to yearly soil C releases of between 700 and

1200 g C m-2 a-1. Rs values for high-elevation deciduous

forests that are comparable to those for our cold high-ele-
vation sites do not exist, but cool temperate deciduous

forests at a similar mean annual temperature were reported

to release 700–800 g C m-2 a-1 (compiled by Chen et al.
2011). Mid-season Rs rates at the supplementary sites

indicate that our results are not species specific. We have

nearly exhausted the spectrum of deciduous forest types at
high elevation with Salix, Betula, and Sorbus. Abundant

Alnus forests, also found at this elevation, cannot readily be

compared due to their symbiotic N fixation and therefore
higher nutrient availability (Caprez et al., unpublished).

Estimates of annual soil C release in climates subject to

seasonal snow cover are often based on recordings taken
during the growing season only. However, soil C release

during winter can play a significant role in the annual C
budget of seasonal forest ecosystems (Sommerfeld et al.

1993, Brooks et al. 2004), with soil temperatures of -7 to

-5 !C considered threshold temperatures for significant
heterotrophic respiration (Brooks et al. 1997). At the cold

sites of our study, below-snow soil temperatures were

decoupled from air temperature by a thick snow pack, and
never dropped below 0 !C (Fig. 1). Hence, our winter

signals of 0.5 lmol CO2 m-2 s-1 may be higher than what

might generally apply for such elevations when the
snowpack is shallower. Our estimates of Rs at high eleva-

tion in winter match those reported by Schindlbacher et al.

(2007) for a forest ecosystem in the Austrian Alps (dif-
ferent method), while other studies that used open or closed

chambers found lower (Mast et al. 1998), similar (McDo-

well et al. 2000), or higher (Mariko et al. 2000) below-
snow Rs rates than the rates recorded in our study. The

four-month contribution of below-snow soil CO2 efflux to

annual soil CO2 efflux at high elevation was about 16 %, a
contribution similar to that reported for other temperate

forest ecosystems (e.g., Schindlbacher et al. 2007: 12 %;

Mariko et al. 2000: \ 15 %; McDowell et al. 2000: 17 %).

Temperature and substrate relatedness of Rs

The in situ relationships between Rs and soil temperature

obtained here under steady state litter turnover indicate a

downregulation of Rs at higher temperatures close to
homeostasis; i.e., rates of Rs did not increase with increased

seasonal mean temperature when moving across elevations

(Fig. 2). Similar to our findings, EUROFLUX sites showed
no correlation between annual Rs and mean annual tem-

perature across a large range of European climates and tree

species (Janssens et al. 2001). Further, a recent study across
an elevational transect in tropical forests, spanning a larger

temperature range than covered here, found no trend in Rs

rates with elevation when daytime data were compared
(Zimmermann et al. 2009), and only a weak positive

relationship between Rs and temperature when night-time

data were included (Zimmermann et al. 2010).
Responses of ecosystem respiration to temperature have

often been described using the Q10 concept, assuming that

respiration more than doubles for warming of 10 K
(Q10 [ 2; Lloyd and Taylor 1994, Kirschbaum 1995). On a
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short-term basis (hours to days), we also found a Q10 of

close to 2 within both cold and warm sites (Fig. 2). How-
ever, the apparent Q10 calculated across sites (e.g., moving

from high to low elevations to simulate a 6 K warming)

dropped to only * 1.2. This estimate is compatible with
an apparent Q10 of 1.4–1.5 across biomes differing in mean

annual temperature (Mahecha et al. 2011; Bond-Lamberty

and Thomson 2010). Thus, across biomes adapted to dif-
ferent temperatures, temperature does not exert a strong net

influence on Rs. Had annual Rs in the present study
responded in a similar way to the short-term Q10 of 2.15

(the mean of the Q10 values at the cold and warm sites), a

6 K higher temperature should have caused a 65 %
increase in Rs relative to the substrate availability, which is

not what we found. The proportionality to the short-lived

NPP fraction (the amount of which also responds to tem-
perature) when comparing cold and warm sites indicated

that substrate availability rather than temperature controls

annual Rs.
A full accounting of all C input components and ear-

marking C output according to the contributions of these

components is a near-to-impossible task (see the ‘‘Intro-
duction’’). This study aimed to quantify some major input

pathways, use proxy measures for others, and leave the

remaining inaccessible fractions (root exudates, C export to
mycorrhiza) as residuals. Further, separating out below-

ground C release by auto- and heterotrophic fractions in a

forest is a challenging task without performing severe
experimental manipulation and therefore interfering with

ecosystem functioning (e.g., Kuzyakov and Larionova

2005) and introducing unknown treatment bias. Such
manipulations were beyond what could be done in this

study.

In contrast to the linear relationship between annual Rs

and annual canopy litter production as a single C input

component, as reported by Raich and Nadelhoffer 1989,

this study reveals that leaf litter input is insufficient to
account for annual Rs, which is not surprising. In a seasonal

climate, canopy litter results from a single flush in spring,

producing a site-specific LAI, with leaves shed at the same
time in autumn. The seasonal C uptake by trees is then

largely influenced by the leaf duration (i.e., the season

length). In contrast, fine root production (and thus root
turnover and associated release of organic C compounds) is

likely to show a more continuous, more season length

dependent C input to soils than canopy (leaf) litter pro-
duction does. Since much of the belowground activity that

induces respiratory C release is also related to aboveground

biomass production, wood increment can be used to char-
acterize the overall vigour of the system. However, due to

the delayed respiratory recycling of wood, wood produc-

tion in itself does not contribute directly to ongoing Rs on
an annual basis as long as a forest grows.

We hypothesized that soil C output is largely controlled

by available substrate (C input), rather than by temperature
per se, and that the relevant C input fractions on an annual

basis are those undergoing continuous biomass recycling.

If we take the often assumed ca. 50 % autotrophic fraction
of Rs (e.g., Bond-Lamberty et al. 2004; Hanson et al. 2000;

Högberg et al. 2001) out of the roughly 900 g annual total

respiratory C release from our soils, we arrive at ca.
400–500 g of C that should originate from the heterotro-

phic CO2 source, including unknown amounts of root
exudates and mycorrhizal C consumption. Our estimates of

total annual litter NPP explain 343 g (41 %) and 365 g

(39 %) of the respiratory C release at the high- and low-
elevation sites, respectively. Hence, ca. 10 % of the

assumed heterotrophic fraction of Rs remained unac-

counted for, which is a reasonable estimate for root exu-
dates and mycorrhizal consumption in temperate forests

(15 % of NPP are reported by Vogt et al. 1982 for mature

fir stands, 3–13 % of NPP are reported by Bekku et al.
1997 for temperate weed seedlings).

Hence, a similar quantity of C cycles through the soil

within a year at both elevations, reinforcing our substrate-
dependency hypothesis. Yet, in an undisturbed landscape,

with all age classes of trees and forest parcels represented,

including those where recalcitrant NPP (stems and bran-
ches) is at a recycling stage (decomposition of fallen logs),

CO2 will be released that is not covered by our Rs values

obtained in intact forest parcels. Clearly, the 6 K warmer
annual temperatures did not significantly enhance soil C

release on an annual basis, and instantaneous rates of Rs

were downregulated, largely reflecting the annual input of
labile C. Summing up, these results caution against

expectations of strong positive effects of climatic warming

on Rs.
Finally, we assume that recent climatic warming was too

slow to cause a significant deviation from a thermal equi-

librium of metabolism (metabolism tracking temperature
change) at our test sites. Thus, elevational gradients

approximate the combined effects of temperature on all

forest processes more closely then any experimental
warming ever could. What natural thermal gradients cannot

capture is long-term vegetation change, which will lag

behind climatic change. The temperature dependency of C
cycling across natural thermal gradients can assist in

developing more realistic scenarios of C cycling in forests

in a warmer climate than step changes in soil temperature
only. We advocate whole-ecosystem approaches (i.e., the

canopy and soils receive similar warming) and a wider

appreciation and use of natural temperature contrasts in
biological climate warming research.
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Abstract 
 
Globally increasing soil nitrogen (N) availability implies unknown consequences on the carbon (C) 
cycle and storage. While there is an ongoing debate on whether atmospheric N deposition can 
influence the terrestrial C cycle, surprisingly little use has been made of the natural, long-term N input 
in forest ecosystems by trees associated with N2-fixing bacteria. A basic question to be explored is, 
whether or not high rates of N input increase the rate of C cycling by accelerating both, productivity 
and respiratory C release. By assessing above- and belowground components of forest NPP and 
concurrent soil respiration (Rs) in N2-fixing Alnus stands and adjacent non N2-fixing control stands at 
two elevations (temperatures), we tested the hypothesis that high-N-input Alnus forests facilitate 
higher soil C release, which, however, still remains in proportion to substrate availability. We found 
that biological N2 fixation enhanced total litter production (the sum the above- and belowground forest 
litter production) and facilitated higher Rs at low elevation, while it reduced both at high elevation. 
Hence Rs remained in proportion to forest litter production, irrespective of the effect of N availability 
or site temperature, with annual litter production explaining c. 40% of annual Rs. Assuming a c. 10% 
contribution of C input to soils other than by plant litter, autotrophic and heterotrophic soil respiration 
contribute similar fractions to total Rs. 
 
 
 
Key words 
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Introduction 
 
Forests represent the largest terrestrial ecosystem 
carbon (C) pool, currently estimated at c. 1640 
Gt C, more than two thirds of which is stored in 
soils (Sabine et al. 2004). Soil C pools are, in 
essence, balanced by the rate of soil C input via 
net primary production (NPP) and the rate of soil 
C output via soil respiration (Rs), the two major 
terrestrial C fluxes after photosynthesis (IPCC 
2001). While there is an ongoing debate on 
whether atmospheric nitrogen (N) deposition can 
influence the terrestrial C cycle, surprisingly 
little use has been made of the natural, long-term 
N input in forest ecosystems by trees living in 
symbiosis with N2-fixing bacteria, the topic of 
this paper. 
Currently, N2 fixation into biologically available 
forms through human activity exceeds natural N2 
fixation (IPCC 2007), and it is expected that the 
human induced N-cycle will become further 
enhanced two- or threefold before reaching 
saturation (Vitousek et al. 1997; Lamarque et al. 
2005). Fertilizer use, agricultural N2-fixation and 
N deposition are globally increasing soil N 
availability with unknown consequences on the 
C cycle and C storage.  
In ecosystems, N is generally found in 
predictable proportions to C. In soil humus, this 
proportion is particularly high (C/N=12-20), 
compared to herbaceous tissue (C/N>30) or 
wood (C/N>200). Any soil C sequestration thus 
exerts a major N demand, that competes with 
plant N demand for growth, which rises the 
question, whether or not enhanced N inputs to 
forest ecosystems imply a net C sequestration in 
plants or soils (e.g. Magnani 2007). 
A useful indicator of belowground C cycling is 
Rs (Kutsch et al. 2009), as it integrates the 
decomposition of organic matter at all 
decomposition stages and in all soil layers, as 
well as rhizomicrobial and root respiration, i.e. 
the total C flux from soils to the atmosphere. A 
recent meta-analysis reported enhanced N inputs 
(either through fertilizer or through atmospheric 
deposition) to negatively affect Rs in most, but 
not all, temperate forest ecosystems investigated, 
with a stronger negative effect in highly 
productive sites (Janssens et al. 2010). Such a 
slowing down of the C-cycle by N addition 
would increase the soil C-pool. The effect of N 
on C cycling though, is often described to 
greatly depend on the duration of N-deposition, 
the dose of N applied, and the decomposition 

stage or the quality of the substrate (e.g. Fog 
1988; Makipaa et al. 1999; Knorr et al. 2005). 
While substrate with high N content, such as 
fresh litter, is rather found to be stimulated, low 
N content, such as in substrate in later 
decomposition stages, seems to be suppressed by 
N addition (e.g. Berg and Matzner 2005; 
Hagedorn, in press). This would result in either a 
depletion of fast turnover soil C pools or a 
generally faster ecosystem C turnover, and a 
retention or accumulation of stable soil C pools. 
New data also suggest, that neither N nor lignin, 
but often unaccounted polyphenols in litter 
control decomposability (Hättenschwiler et al. 
2010). 
Whether or not N deposition or symbiotic N2 
fixation affect litter and soil organic matter 
decomposition, a forest that reached steady-state 
nutrient cycle will commonly operate at a 
steady-state annual input of organic debris (plant 
litter production), with the decomposability only 
affecting the mean residence time of the litter 
pool, but not the input-output ratio of C.  
Steady state respiratory signals from forests 
receiving long-term (decades or longer) high N 
inputs can provide useful insights for a better 
understanding of the C cycle under high N 
supply. Here we make use of naturally 
contrasting N availability in forest stands 
composed either of symbiotically N2-fixing tree 
species (Alnus) or non N2-fixing tree species, at 
two contrasting elevations but similar (high) 
moisture supply. Tree species living in 
symbiosis with N2-fixing bacteria have been 
known for a long time to accumulate large 
amounts of N and improve N availability in soils 
(Hart and Gunther 1989; Binkley et al. 1992; 
Griffiths et al. 1998; Uri et al. 2011).  
The basic question to be explored is, whether 
high rates of N input do increase the rate of C 
cycling by accelerating both NPP as well as 
respiratory C-release, or enhances NPP more 
than it enhances Rs, thus allowing C to 
accumulate.  
By assessing above- and belowground 
components of forest NPP and concurrent Rs, we 
tested the hypothesis, that high-N-input Alnus 
forests facilitate higher soil C release, which, 
however, remains in proportion to NPP. In other 
words, we expect the high N availability in N2-
fixing forest sites to enhance Rs only to the 
extent it enhances labile C input in soils. The 
inclusion of forest sites at different temperatures 
(elevations) permits exploring nitrogen × 
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temperature interactions, which are of interest in 
a global warming context. 
 
This study represents an extension of an earlier 
work that focused on temperature-only effects in 
a global warming context (Caprez et al., under 
review in Oecologia). In order to explain the 
effect of natural N2 fixation on both NPP and Rs, 
we are re-utilizing part of this earlier dataset for 
the control sites of the present study in a 
condensed way. In the current context we are 
thus refraining from a detailed analysis of 
temperature effects, but focus on N effects. 
 
 
Methods 
 
Study design and field sites 
A field experiment was set up to study C fluxes 
in temperate deciduous forests differing in 
natural soil N input, at two contrasting 
elevations. Forest stands at low elevation were 
located at the Swiss Plateau at about 300 m 
a.s.l.; forest stands at high elevation were in the 
Swiss Central Alps at 1200 to 1500 m a.s.l., 
corresponding to a topography driven 
temperature gradient of c. 6 K (mean annual 
temperature). At each elevation, we compared 
forest stands (plots) with N2-fixing trees with 
nearby plots of non N2-fixing trees as control 
forest plots. The N2-fixing plots were 
homogeneous stands of Alnus glutinosa (L.) 
Gaertn. and Alnus incana (L.) Moench, each at 
low and high elevation. The control plots carried 
either of the dominant tree species Acer 
platanoides or L., Fagus sylvatica L., 
(interspersed with Quercus petraea Liebl., 
Carpinus betulus L. or Tilia platyphyllos Scop.) 
at low elevation, and were homogeneous Salix 
fragilis L. Betula pubescens Ehrh. or Sorbus 
aucuparia L. forest stands at high elevation. In 
total our field study included 7 sites at low 
elevation, each comprising an N2-fixing and a 
nearby control plot (Low1-Low7), and 4 sites at 
high elevation, two of which comprised an N2-
fixing and a control plot (High1 and High2), and 
two consisting of extra control plots only (High3 
and High4; Table 1). In part of these sites, i.e. at 
our core sites (Low1 and Low2; High1 and 
High2), we monitored NPP and year-round Rs 
(our core sites; Table 2), whereas peak growing 
season Rs was recorded at all 11 sites. 
We selected alluvial sites only, in order to avoid 
confounding effects by soil moisture. All study 
plots had closed canopies within an area of 50 × 

50 m, surrounded by a buffer zone of at least 10 
m and were older than 40 years. Larger 
homogeneous, monospecific N2-fixing stands are 
hard to find, given most alluvial land and 
riverine forests were transformed into 
agricultural land over the past centuries.  
Air temperature (2 m above ground) and soil 
temperature (10 cm depth) were recorded 
throughout the field experiment at an hourly 
basis (HOBO TidbiT v2, Onset Computer Corp., 
Bourne, MA, USA) and hourly averages of soil 
moisture and precipitation were recorded below 
the canopy (EM50 data loggers connected to a 
ECRN-100 rain gauge and four 10HS soil 
moisture probes installed at 10 cm depth, 
Decagon Devices, Pullman; USA) at each core 
site.  
 
Leaf area index (LAI) 
LAI was estimated using a ceptometer 
(AccuPAR LP-80, Decagon Devices Inc., 
Pullman, USA). Reference measurements were 
taken in an open area within 50 m distance under 
clear sky conditions immediately after below-
canopy measurement. All measurements were 
accomplished in mid August, when canopy 
foliage reached its maximum. 
 
Soil physico-chemical analysis 
We excavated two soil profiles per plot at the 
core sites and sampled soils at 5, 10, 20 and 30 
cm depth using a 35 mm diameter × 50 mm 
length corer (at the high-elevational N2-fixing 
sites a profile depth deeper than 30 cm could not 
be accessed because of stony ground). All soil 
samples were sieved (2 mm), oven-dried at 105 
°C for 24 h, and fine earth density determined. 
Soil pH of subsamples was measured in 0.1 M 
KCl solution. Carbonates were removed from 
subsamples from each soil core by exposure to 
HCl vapour (Harris et al. 2001) and C and N 
contents determined by dry combustion 
(ThermoFinnigan FlashEA 1112, Milan, Italy).  
 
Soil microbial C and N 
Soil microbial C and N were estimated by 
chloroform fumigation-extraction (CFE) 
(Brookes et al. 1985, Vance et al. 1987). In brief, 
the water content of sieved fresh soil samples (0-
10 cm) corresponding to 10-15 g dry was 
adjusted to 50% water holding capacity. These 
subsamples were then fumigated with ethanol-
free CHCl3. After fumigation, CHCl3 was 
removed by repeated evacuation and the sample 
extracted with 100 ml 0.5 M K2SO4 by shaking  
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Table 1 Despriction of all study sites at low elevation (Low1 to Low7) and high elevation (High1 
to High 4).  
                  Elevation 
(m a.s.l.) Site Plot Coordinates Dominant species 
            
      Low 296 Low1 (core sites) Control 47°32'37'' N / 7°46'22'' E Acer platanoides 

300 N2-fixing _47°32'42" N _/ 7°46'7" E Alnus glutinosa 
     
330 Low2 (core sites) Control 47°32'53'' N / 8°13'34'' E Acer platanoides 
328 N2-fixing 47°32'49" N / _8°13'38" E Alnus glutinosa 
     
295 Low3  Control 47°32'39'' N / 7°45'42'' E Acer platanoides 
295 N2-fixing 47°32'39'' N / 7°45'56'' E Alnus glutinosa 
     
410 Low4 Control 47°32'40'' N / 8°13'21'' E Fagus sylvatica 
330 N2-fixing 47°32'48'' N / 8°13'27'' E Alnus glutinosa 
     
498 Low5 Control 47°07'05'' N / 8°18'42'' E Fagus sylvatica 
485 N2-fixing 47°07'00'' N / 8°18'23'' E Alnus glutinosa 
     
449 Low6 Control 47°31'44'' N / 7°47'22'' E Fagus sylvatica 
447 N2-fixing 47°31'41'' N / 7°47'13'' E Alnus glutinosa 
     
486 Low7 Control 47°22'16'' N / 8°11'13'' E Fagus sylvatica 
472 N2-fixing 47°22'10'' N / 8°11'09'' E Alnus glutinosa 

      
High 1515 High1 (core sites) Control 46°36'16'' N / 8°31'01'' E Salix fragilis 

1190 N2-fixing 46°43'02'' N / 8°54'09'' E Alnus incana 
     
1508 High2 (core sites) Control 46°36'21'' N / 8°31'21'' E Salix fragilis 
1390 N2-fixing 46°32'13'' N / 8°21'30'' E Alnus incana 
     
1220 High3 Control 46°42'54'' N / 8°54'56'' E Betula pubescens 
     
1630 High4 Control 46°36'47'' N / 8°34'11'' E Sorbus aucuparia 

            
      
      

for 60 min on a table shaker. A corresponding 
set of unfumigated soil samples were also 
extracted. The extracts were then centrifuged (10 
min at 1000 g), the supernatant filtered and 
frozen at -20°C until analysis for organic C and 
N (Dimatoc TOC/TNb-analyser, Dimatec, Essen, 
Germany). Microbial biomass C and N were 
calculated considering the extraction efficiency 
for C (kEC=0.45; Wu et al. 1990) and N 
(kEN=0.54; Brookes et al. 1985). 
 
Forest NPP 
We estimated the short-lived forest NPP 
fractions ‘canopy litter fall’, ‘production of 
understory vegetation’ and ‘fine root increment’ 
in ingrowth cores (our proxy for belowground 
NPP), and addressed the sum of all three proxies 
as ‘total litter production’. Stem basal area 

increment (BAI) was estimated as indicator of 
the long-lived forest NPP component ‘wood’. 
Canopy litter production was estimated by 
collecting canopy litter fall in litter traps (0.25 
m2 ground area plastic sieves); Six traps were 
placed randomly in each core site during two 
subsequent autumns. Litter traps were emptied at 
least every two weeks, canopy litter was dried 
(80 °C). For annual understory production, we 
harvested peak biomass at ground level (2 × 1 
m2 per core site). To assess annual fine root 
production, we first harvested 40 soil cores per 
core site at random locations (3.5cm diameter × 
12 cm depth) for fine root standing biomass, 
which we immediately replaced the mesh 
cylinders (2 mm mesh size) filled with root-free 
soil (ingrowth cores). Ingrowth cores were 
harvested after one year. Both soil cores for  
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Table 2 Forest stand properties of the core sites. Given are the within-site means ± SE. 
                    
          
Site (elevation) Low1 Low2 High1 High2 

Plot Control N2-fixing Control N2-fixing Control N2-fixing Control N2-fixing 
                    
          
 Stand age (years) 50-60 110-150 40-50 c. 100 c. 40 40-50 c. 40 40-50 

 Basal area (m2 ha-1) 55 ± 4.2 77 ± 4.1 42 ± 1.9 61 ± 6.3 38 ± 2.1 58 ± 9.6 39 ± 3.2 82 ± 6.6 

 Canopy height (m)  21.1 ± 0.1 24.6 ± 0.4 20.5 ± 0.3 26.0 ± 0.5 7.8 ± 0.5 12.3 ± 0.9 6.6 ± 0.1 15.4 ± 0.3 

 LAI (m2 kg-1) 4.7 ± 0.1 5.5 ± 0.1 5.0 ± 0.2 5.9 ± 0.2 3.7 ± 0.2 4.4 ± 0.1 4.1 ± 0.1 4.9 ± 0.2 
                    
Canopy height was estimated using an optical reading clinometer (PM-5, Suunto, Espoo, Finland). 
 
 
 

standing fine root biomass and ingrowth cores 
for fine-root production were washed carefully 
and dried (80 °C). To obtain a relative proxy for 
fine root turnover, we calculated the ratio of 
annual fine root ingrowth (NPP) to the mean fine 
root standing biomass, sampled before placing 
the ingrowth cores (Aber et al. 1985). The rate of 
fine root production was assumed to be in 
equilibrium with fine root decay (no net 
accumulation in fine root mass).  
 
Soil respiration (Rs) 
Rs was measured using a portable custom-made 
static chamber system (after the design of Bader 
et al. 2010) equipped with an open-path infrared 
gas analyser and relative humidity/temperature 
sensors (GMP343 carbon dioxide probe, HMP75 
rH/T probe; Vaisala, Vantaa, Finland). In brief, 
twelve polypropylen collars (7 cm in height, 20 
cm in diameter) were installed at randomly 
selected positions within each site, inserted to a 
depth of 3 cm into the ground, two to three 
weeks prior to the first measurement. The collars 
remained at the same location throughout the 
study, allowing a repeated measurement of the 
same soil area over time. Headspace CO2 
concentrations were automatically measured 
every 5 seconds during 5 minutes per 
measurement occasion and collar and Rs rates 
calculated by linear regression of recorded 
headspace CO2 concentrations against time. 
Rs was recorded year-round from early spring 
2009 to early spring 2010 at all 8 core sites: 
every two weeks throughout the growing season 
and once a month from late autumn to early 
spring, whereas winter-time measurements at 
high elevation were restricted by heavy 
snowpack, resulting in one set of reliable Rs 
measurements between mid December and mid 

April. During the summer months July and 
August 2010, we performed weekly 
measurements of mid season Rs at the core and 
supplementary sites.  
Besides data collected by the automatic data 
loggers, soil temperature and soil moisture at the 
chamber site were measured manually, 
simultaneously with all Rs recordings (soil 
temperature: Digital Thermometer GTH 175/Pt, 
Greisinger electronic, Germany; soil moisture: 
ThetaProbe Soil Moisture Sensor - ML2x, Delta-
T Devices Ltd., Cambridge, UK). 
 
Data analysis 
Rs was related to soil temperature (T, 10cm 
depth) by fitting a non-linear least squares model 
following Lloyd and Taylor (1994): 
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where Rs(t) is soil respiration under standard 
conditions (at 10°C) and E0 is a parameter 
describing temperature response. Annual Rs was 
estimated at the core sites by predicting Rs in 
hourly intervals, based on the temperature 
response function, using automatically logged 
soil temperature. 
Effects of elevation (“low” vs. “high”) and N 
availability (control vs. N2-fixing plots) were 
tested using mixed-effects models fitted by 
restricted maximum likelihood (REML) with 
‘elevation’ and ‘N’ as fixed effects and ‘site’ as 
random effect. Non-normally distributed rates 
were log-transformed (fine root ingrowth). Error 
estimates in text and figures are standard errors 
of ‘treatment’ means and effects were 
considered significant at P < 0.05. Due to the 
relatively low replication and therefore statistical 
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power, P-values > 0.05 but < 0.1 were 
considered marginally significant. All statistical 
analyses were carried out using R (version 2.10; 
mixed effects models were fit using the lme 
procedure from the nlme package; Pinheiro et al. 
2008; R Development Core Team, 2010; www.r-
project.org). 
 
 
Results  
 
Climatic conditions 
Air and soil temperature showed typical seasonal 
variation with lowest values in January and 
highest values in July. Mean annual air 
temperature (2 m height) during the sampling 
period was 10.3 ± 0.1 and °C 4.3 ± 0.4 °C at low 
and high elevation respectively, corresponding 
to a topography driven temperature cline of c. 6 
K, with no or minor differences between N2-
fixing and control plots. During the entire 
sampling time, soil temperature did not drop 
below the freezing point at any of the plots. Top-
soil water content (VWC at 0-10 cm depth) 
showed moderate changes and stayed relatively 
high at all plots throughout the sampling period. 
There was a small trend within locations, with 
higher VWC at N2-fixing compared to control 
plots at both elevations, and, as a result of higher 
sand content, VWC was generally lower at high 
elevation compared to low elevation (Figure 1). 
At the N2-fixing plot Low1, the soil was flooded 
from early December to mid February, a period 
during which no Rs measurements could be 
accomplished at this plot. Plots at high elevation 
were snow covered (to a max. of 1 m thickness) 
from the beginning of December to mid April, 
whereas at low elevation the forest floor was 
only periodically covered with a few centimetres 
of snow between early December and late 
February.  
 
Forest stand characteristics 
The stem basal area was in the range of 38 to 82 
m2 ha-1 in all plots and did neither differ 
significantly between N2-fixing and control 
plots, nor across elevations.  
Trees in low elevational plots were significantly 
higher than trees at high elevation. LAI was 
slightly higher in N2-fixing compared to control 
sites (P <0.1) and significantly enhanced at low 
relative to high elevation (P < 0.05; Table 2). 
 
 
 

Soil C and N 
Soil organic C and N differed remarkably 
between plots, with higher average organic C (P 
< 0.05) and N contents (P < 0.1) in N2-fixing 
compared to control plots. Both C and N 
concentration decreased with soil depth at all 
core plots. C/N was neither affected by elevation 
nor N2 fixation (Table 3).  
 
Soil microbial C and N 
Soil microbial C in the upper 10 cm was higher 
in N2-fixing compared to control plots, though 
this signal was statistically marginally 
significant only (P < 0.1); a similar, also 
statistically marginally significant trend was 
found for microbial N (P < 0.1; Table 3). 
Accordingly, the C to N ratio of microbial 
biomass was similar for N2-fixing and control 
plots. Elevation had no influence on microbial C, 
N or C/N.  
 
Forest NPP 
Annual canopy litter production was higher in 
N2-fixing compared to control plots (+35%, P < 
0.1), and significantly lower at high relative to 
low elevation (-49%, P < 0.05). Understory litter 
production was neither enhanced under N2-
fixing trees nor differed between elevations. Fine 
root ingrowth, our proxy for belowground litter 
production, showed reversed trends at the two 
elevations: at low elevation, fine root ingrowth 
was enhanced at N2-fixing compared to control 
plots, whereas it was the other way round at high 
elevation, resulting in no overall N2-fixation or 
elevational-effect. Fine root standing biomass 
was slightly reduced under N2-fixing trees (-
43%, P < 0.1), and was significantly higher at 
high compared to low elevation (+108%, P < 
0.05). The resulting fine root turnover rates were 
generally between 0.28 and 0.40,  
but substantially higher in low-elevational N2-
fixing plots (Low1: 1.28 a-1; Low2: 0.68 a-1), 
resulting in no overall N- and elevational-effect. 
Total litter production (the sum of the forest 
productivity components with fast turnover: 
canopy litter, understory litter and fine root 
ingrowth) showed an slightly significant N2 
fixation effect which depended on elevation (N × 
elevation: P < 0.1); at low elevation total litter 
production was 21% higher in N2-fixing relative 
to control plots, whereas at high elevation it was 
23% lower in N2-fixing compared to control 
plots (Table 4).  
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Stem basal area increment was not different for 
N2-fixing trees compared to controls, and neither 
showed an elevational effect. 
 
Soil respiration 
Rs showed pronounced seasonality, following 
changes in soil temperature, at the core sites. 
While at low elevation, Rs rates showed no clear 
pattern for N2-fixing and control plots in the 
course of the year, at high elevation Rs rates at 
the control plots were higher than Rs at under 
N2-fixing trees for most of the year (Figure 1). 
At site Low1, cumulative annual Rs at the N2-
fixing plot (1166 g C m-2 a-1) exceeded the 
control plot (894 g C m-2 a-1) by 30%, whereas at 
site Low2, annual Rs was 2% lower at the N2-
fixing plot (958 g C m-2 a-1) than at the control 
plot (973 g C m-2 a-1). Mid-seasonal Rs rates 
(averaged across sites Low1 to Low7) were 40% 
higher in N2-fixing plots than in control plots 
(Figure 1 a, inset), relating more to the effect of 
the site pair Low1 than the site pair Low2. 

At high elevation, cumulative annual Rs in N2-
fixing plots (High1: 602 g C m-2 a-1; High2: 525 
g C m-2 a-1) were on average reduced by 33% 
relative to control plots (High1: 841 g C m-2 a-1; 
High2: 830 g C m-2 a-1). Mid-seasonal Rs rates at 
high-elevational control plots High3 and High4 
were similar to mid season Rs at control plots 
High1 and High2, thus confirming their 
representativeness for non N2-fixing deciduous 
forest plots at this elevation (Figure 1, inset). 
The contrasting signal of cumulative annual Rs at 
the two elevations (higher Rs in N2-fixing plots 
at low elevation, but lower Rs in N2-fixing plots 
at high elevation compared to control plots) 
resulted in a marginally significant interaction 
between elevation and N2-fixation (N2-fixation × 
elevation: P < 0.1), whereas annual Rs was 
higher at low compared to high elevation (P < 
0.05; Table 4). Mid season Rs rates did not 
generally differ between elevations, but, similar 
to annual Rs, we found N2-fixation to 
significantly affect Rs rates depending on  
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Table 3 Soil properties along the soil profiles to a depth of 30 cm at the core sites at low and 
high elevation. Microbial biomass (Cmic and Nmic) were measured for the upper 10 cm of the 
soils (mean ± SE; n = 2).     
            
      
  Low elevation High elevation 
Soil depth Control N2-fixing Control N2-fixing 
            
      0-5 cm     
 Bulk density (g cm-3) 0.96 ± 0.09 0.46 ± 0.05 0.71 ± 0.16 0.85 ± 0.12 
 C content (kg C m-2) 2.77 ± 0.13 2.61 ± 0.33 1.18 ± 0.38 5.20 ± 2.03 
 N content (kg N m-2) 0.18 ± 0.05 0.23 ± 0.05 0.12 ± 0.01 0.45 ± 0.12 
 pH(KCL) 6.26 ± 0.38 5.96 ± 0.72 5.25 ± 0.01 5.51 ± 0.65 
      
5-10 cm     
 Bulk density (g cm-3) 1.05 ± 0.06 0.59 ± 0.09 1.15 ± 0.01 1.02 ± 0.22 
 C content (kg C m-2) 3.50 ± 0.05 5.57 ± 2.26 1.58 ± 0.87 5.96 ± 1.08 
 N content (kg N m-2) 0.37 ± 0.03 0.47 ± 0.14 0.16 ± 0.05 0.38 ± 0.15 
      10-20 cm     
 Bulk density (g cm-3) 1.10 ± 0.01 0.76 ± 0.20 1.27 ± 0.01 1.22 ± 0.22 
 C content (kg C m-2) 3.10 ± 0.08 4.37 ± 0.69 0.35 ± 0.09 5.87 ± 0.14 
 N content (kg N m-2) 0.30 ± 0.06 0.44 ± 0.09 0.03 ± 0.01 0.28 ± 0.22 
      20-30 cm     
 Bulk density (g cm-3) 1.26 ± 0.02 0.84 ± 0.26 1.22 ± 0.09 1.07 ± 0.06 
 C content (kg C m-2) 2.44 ± 0.26 4.62 ± 2.69 0.35 ± 0.14 4.09 ± 0.75 
 N content (kg N m-2) 0.27 ± 0.04 0.39 ± 0.19 0.03 ± 0.01 0.35 ± 0.13 
      Microbial biomass     
 Cmic (mg (g dry soil)-1) 20.38 ± 1.86 67.84 ± 16.79 5.21 ± 0.65 38.17 ± 17.19 
 Nmic (mg (g dry soil)-1) 5.05 ± 0.49 14.76 ± 4.05 1.35 ± 0.02 8.10 ± 3.21 
         

         
elevation (N2-fixation × elevation: P < 0.05; 
Table 4). 
 
Correlation of annual plant litter production and 
annual Rs 
Total annual litter production (the sum of the 
labile forest productivity components) correlated 
well with annual Rs (y = 2.42x – 5.53, r2 = 0.85; 
Figure 2). 
 
 
Discussion  
 
We hypothesized, that high-N-input Alnus 
forests are more productive than nearby control 
deciduous forests, and that this higher 
productivity stimulates soil C release with a 
generally faster C cycling as the main 
explanation, irrespective of local temperature. 
What we found was, that natural N2-fixation 
enhanced total litter production and facilitated 
higher Rs at low elevation, while it reduced both 
at high elevation. Hence Rs remained in 
proportion to forest litter production, irrespective 

of the effect of N-availability or site 
temperature.  
By choosing Alnus stands, we intended to 
compare high N-input, high productive forest 
stands with nearby control forest stands on 
similar substrate and moisture. It appears 
however, that Alnus takes only advantage from 
high N-input in terms of litter NPP (production 
of plant parts with annual recycling) relative to 
the control forest stands at low elevation, but not 
at high elevation, as the incoherent picture of 
total fresh litter production shows (Table 4): At 
low elevation N2 fixation tended to enhance 
canopy litter (+ 34%), to reduce understory 
production (- 17%), but enhance new root 
production (+ 57%), yielding a 21% net increase 
of total litter production at N2-fixing compared 
to control sites. At high elevation, in contrast, 
the increase in canopy litter (+ 38%) of N2-
fixing trees was more than cancelled by very low 
production of understory (- 58%) and fine roots 
(- 51%), causing total litter production to be 23% 
lower in the N2-fixing forest stands compared to 
controls.  
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Table 4 Annual forest C fluxes at the core sites (components forest litter production and annual Rs), and mean mid-seasonal 
Rs of all sites. Total litter production refers to the sum of canopy litter, understory litter and fine root production. Given is 
the mean ± SE (n = 2 per elevation). Results of linear mixed models are given on the right.  
           
                  
  Low elevation High elevation  Effect (P-value) 

  Control N2-fixing Control N2-fixing  Elev. N2-fix. 
N2-fix. × 

Elev.   
                   
          
Annual C fluxes (g C m-2 a-1)          
          
 Canopy litter production 235 ± 27 314 ± 7  117 ± 22 161 ± 10  * (*) n.s. 
 Understory litter production 101 ± 44 84 ± 15 128 ± 28 54 ± 9  n.s. n.s. n.s. 
 Fine root ingrowth 28 ± 4 44 ± 8 97 ± 14 48 ± 23  n.s. n.s. n.s. 
 Total litter production 365 ± 13 442 ± 31 343 ± 21 263 ± 21  n.s. n.s. (*) 
 Annual Rs 933 ± 40 1062 ± 104 836 ± 5 563 ± 39  * n.s. (*) 
          
Mid-seasonal Rs  (µmol C m-2 s-1) 3.47 ± 0.29 4.89 ± 0.21 4.62 ± 0.01 3.18 ± 0.18  n.s. (*) * 
              
               
(*) 0.05 < P < 0.1; * P < 0.05. 
 
     

Concurrently, the presence of N2-fixing trees 
enhanced annual respiratory soil CO2 release by 
14% at low elevation, and reduced it by 33% at 
high elevation. Mid season Rs signals, including 
a higher number of site pairs tested, strengthened 
the rather weak signal of annual Rs at low 
elevation, with on average 41% higher Rs rates 
in N2-fixing compared to control forest stands. 
At high elevation, mid season Rs rates supported 
the general high-elevational signal, with 31% 
lower Rs rates in N2-fixing compared to control 
forest stands (Table 4). 
 
N limitation of forest productivity 
Although the productivity of temperate forests is 
traditionally considered N-limited (Vitousek et 
al. 2002), plant N demand has been observed to 
saturate when exposed to long-term high N 
input, followed by declining plant production 
and/or mortality, and decreased forest retention 
of added N (e.g. Aber et al. 1998). Increased 
nitrate leaching (Aber et al. 1998; Macdonald et 
al. 2002) or nitrous oxide emissions (Mohn et al. 
2000; Jassal et al. 2011) can be the consequence 
of such an N saturating stage of a forest system. 
At high elevation, we found high stand biomass 
(see stem basal area and canopy height in Table 
2), but low productivity (Table 4) in the N2-
fixing relative to the control plots, suggesting 
that our high-elevational N2-fixing forest stands 
have reached N saturation (limitation by other 
nutrients or low temperature). At low elevation 
in contrast, lower forest productivity in N2-fixing 
compared to control plots (Table 4) might 
suggest that N2-fixing stands had not yet arrived 
N-saturation. Nitrous oxide emissions were 

particularly high in N2-fixing stands at both 
elevations (see Chapter 5 of this thesis). 
 
Rs from soils with contrasting N-inputs 
The stimulation of N2 fixation on annual Rs we 
reported for the low-elevational core sites, might 
not be robust enough to draw conclusions. 
However, for mid season (when when Rs data 
were available for all sites), we found Rs to be 
significantly stimulated (directly or indirectly) 
by N2-fixation (Figure 1 a, inset), with a single 
site (Low2) not showing an effect.  
Our estimates of annual Rs of 933 ± 40 g C m-2 a-

1 (control) and 1062 ± 104 g C m-2 a-1 (N2-fixing) 
at low elevation, are within the range of annually 
respired C amounts from soils of other temperate 
deciduous forests (Malhi et al. 1999; Wang et al. 
2006; Bader and Körner 2010; Ruehr et al. 2010) 
all reporting yearly soil C releases between 700 
and 1200 g C m-2 a-1. For N2-fixing forest stands, 
our estimates are thus in the upper part of this 
range, similar to the 1234 g C m-2 a-1 reported for 
a black alder forest soil in northern Germany 
(Kutsch et al. 2001). 
Mid season Rs at the low-elevational control 
sites was on average 3.4 ± 0.3 µmol CO2 m-2 s-1, 
and thus similar to the 3.9 µmol CO2 m-2 s-1 mid 
season Rs recorded in a long-term Rs time-series 
in a temperate broadleaf forest located at the 
same elevation to our low-elevational sites 
(Bader and Körner 2010).  
At high, in contrast to low elevation, Rs patterns 
between N2-fixing and control forests were 
clearer, with both, annual and mid-seasonal soil 
CO2 efflux rates being more than one third 
higher under N2-fixing trees (Figure 1, inset). A 
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phylogenetic bias, i.e. a Salix effect at the high-
elevational control plots (High1 and High2) 
could be excluded by recording similar mid 
season Rs rates at two additional control plots 
dominated by either Betula (High3) or Sorbus 
(High4), exhausting the spectrum of deciduous 
forest types at this elevation. Our estimates of 
annual soil C efflux at high elevation of 836 ± 5 
C m-2 a-1 in control and 563 ± 39 C m-2 a-1 in N2-
fixing forest stands, to our knowledge are the 
only Rs data of temperate high elevational 
deciduous forests, but annual Rs rates of 700 to 
800 g C m-2 a-1 were reported in forests with 
similar mean annual temperature (compiled by 
Chen et al. 2011). We are not aware of any Rs 
data at Alnus-sites at this elevation. Studies 
comparing soil C effluxes in N2-fixing and other 
forests are rare, but Kutsch et al. (2001 and 
2005) found extraordinarily high rates of 
rhizomicrobial respiration in an alder/ash-
dominated forest in northern Germany compared 
to adjacent sites composed of different tree 
species. By contrast, Rs in sites covered with the 
N2-fixing shrub Elaeagnus umbellate Thunb. 
was reduced relative to adjacent C3 grassland 
sites (Baer et al. 2006), yet this comparison 
includes two totally different types of 
ecosystems. 
 
 

Soils under N2-fixing and non N2-fixing trees 
Soil N content (0-30 cm) under N2-fixing trees, 
exceeded soil N content at the control forest 
stands by 36% at low elevation, and was four 
times higher than in control sites at high 
elevational (Table 3). The C to N ratio though, 
similar for all N2-fixing and control plots, 
suggested that a considerable part of the 
abundant soil N in the N2-fixing plots tied up 
with soil C to SOM. Several studies indicate that 
for about two-thirds of all added N, SOM is the 
final and long-term sink (Aber et al. 1993; 
Nadelhoffer et al. 1995; Magill et al. 1997; Aber 
et al. 1998). Another frequently reported way to 
incorporate mineral N into SOM is N 
immobilization through microbial biomass 
production (e.g. Hart et al. 1994; Magill and 
Aber 2000). In accordance with higher soil C 
and N contents, we found microbial C and N to 
be three and seven times higher in N2-fixing than 
in control plots at low and high elevation 
respectively (Table 3).  
 
Forest C balance 
Plotting the annual C input fluxes to soils (total 
litter production) against the annual soil C 
releases via Rs across the core study sites reveals 
a highly significant correlation (Figure 2), 
suggesting a dependency of soil C release on 

 
 
 
 
 
 
 
 
 
 
 
Fig. 2 Relationship (simple linear 
regression) between total annual litter 
production (the sum of canopy litter, 
understory litter and fine root 
production) and annual soil respiration 
(Rs) at the core sites, differing in 
elevation and N availability. Each data 
point represents a plot-mean. 
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short-lived forest NPP fractions, irrespective of 
N-availability and temperature. 
Here we can balance C output with C input in 
soils by the heterotrophic input fraction  only, 
i.e. by proxies of plant litter input. Autotrophic 
(in essence root) respiration remains 
unaccounted by direct data, but is often assumed 
to account for half of total Rs, though estimates 
range from 10-90% (Hanson et al. 2000).  
The ratio of total annual plant litter C production 
to annual C release from soils observed was 
2.4:1 (Figure 2). In other words, annual plant 
litter C production is about 40% of annual C 
realease by Rs. Given that the labile NPP fraction 
of a forest ecosystem not only includes plant 
litter production, but, to a smaller extent, also 
root exudates and mycorrhizal C-consumption 
(esimates range from 3-15 % in the literature, e.g 
Vogt et al. 1982; Bekku et al. 1997), the balance 
of C input in soil through NPP and the C output 
from soils via Rs would become closer to 2:1. 
Hence, autotrophic and heterotrophic soil 
respiration, contribute similar fractions of total 
Rs. 
 
We conclude that Rs exhibits a rather robust 
relationship to substrate availability, rather than 
showing direct responses to N-availability. The 

results of this comparison of forests with 
contrasting N-input rates thus lines up with the 
results of our previous analysis of temperature 
relatedness, where forest litter production 
offered an almost exhaustive explanation of Rs 
(Caprez et al., under review in Oecologia). 
Taken together, these studies suggest, that soil 
CO2 release is tightly associated with soil C 
inputs, irrespective of N-availability or 
temperature. Our results offer no justification for 
modelling Rs by assuming either N or 
temperature to exert direct (independent) effects 
on Rs. Rs is largely driven by the labile fraction 
of NPP. In the long run, small deviations that are 
below the resolution of our analysis, could still 
affect the soil C-pool, provided element 
stoichiometry permits. 
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Abstract 
 
Soil organic matter is a heterogeneous mixture of pools that differ in turnover time; some soil carbon 
(C) pools turn over within hours, others have residence times of thousands of years. Climatic warming 
has often been suggested to induce substantial losses of old, recalcitrant C. The temporal dynamics of 
C fluxes from soils though strongly depend on the composition of the different soil C pools. We 
incubated forest soils from different elevations for 600 days and revealed information about the 
contribution of three soil C pools to total Rs, and how these respiratory components relate to the size of 
the respective C pools. We found that more than 90% of total Rs derived from plant root respiration, 
rhizosphere-derived C and the contribution of soil C fractions that decompose within a growing 
season. The soil C fractions turning over within this relatively short time though accounted for a minor 
part (<5%) of total soil C content. Thus, Rs was directly linked to short-lived NPP. The contribution of 
recalcitrant C to total Rs in contrast, was virtually negligible (1-7%), although this fraction accounted 
for the major part of total soil C content (>95%). We conclude that Rs, predominantly reflecting C 
turning over within days to months, cannot increase under warming to any significant extent 
independently from NPP. However, for long-term changes in soil C stocks, small warming-induced 
changes of old soil C fractions, can potentially become relevant. 
 
 
 
Key words 
 
Long-term incubation, soil organic matter, labile carbon, recalcitrant carbon



Chapter 4 

 39 

Introduction 
 
Soil organic matter is heterogeneous with 
respect to its physico-chemical structure. As a 
consequence, the turnover times of soil organic 
C vary from hours to millenia, depending on the 
fraction considered (van Veen and Paul 1981). 
Some photosynthates are exuded into the 
rhizosphere as easily available, low molecular-
weight organic compounds, which are rapidly 
consumed by soil micro-organisms; part of the C 
contained in these compounds is released as CO2 
in the course of this process. Other plant-derived 
soil C inputs turn over more slowly, with mean 
residence times of weeks to a few months, 
basically dead plant tissue. Radiocarbon 
measurements, however, indicate that the largest 
part of soil organic C is characterized by mean 
residence times of several hundred to thousands 
of years (O’Brian and Stout 1978). The structure 
of these soil C fractions remains partly elusive, 
but they are generally believed to consist of 
chemically and physically stabilised plant and 
microbially-derived higher molecular weight 
compounds (Figure 1). 
The rate of decomposition of soil organic matter 
is usually limited by temperature, at least when 
soil moisture is near to optimal. It thus has been 
hypothesized that global warming would result 
in substantial losses of “old” soil organic C and, 
as a consequence, further accelerate warming 
(Cox et al. 2000; IPPC 2007). However, net 
ecosystem C stock changes in an altered climate 
result from differential responses of primary 
production and associated soil C inputs on one 
hand, and responses of soil organic matter 
decomposition on the other hand. 
Decomposition and net primary productivity 
(NPP) also are tightly linked, i.e. via soil nutrient 
cycles (Kirschbaum 1995), and predictions of 
the balance of the responses of the two processes 
difficult. 
An increasing number of soil-warming field 
studies are currently underway. A general 
pattern observed is an initial warming-induced 
net loss of soil C to the atmosphere, which then 
decreases in the further course of the 
experiments (e.g. Melillo 2002; Bradford et al. 
2008). This soil respiratory “acclimation” has 
been attributed to changes in microbial 
community composition, physiological and 
ecological adjustments, and to an exhaustion of 
substrate supply (Luo et al. 2001). However, a 
main constraint of such experiments is the 
decoupling of effects on aboveground biomass 

production and soil organic matter 
decomposition, since soils are often warmed 
without a concomitant warming of the canopy. 
Also, warming treatments usually are 
implemented as a step-increase in temperature, 
which can result in substantial transitory 
imbalance between soil C pools. Comparative 
studies along natural temperature clines are an 
alternative route to investigate temperature 
effects of soil organic C dynamics; however, in 
contrast, these may underestimate transient 
responses as they may occur as consequence of 
the ongoing climatic warming. 
We have established study plots in forest stands 
spanning an elevational cline corresponding to a 
difference in mean annual temperature of 6K. 
The forest stands were composed of plots with 
or without tree species symbiotically associated 
with N2-fixing micro-organisms. Here we have 
studied the composition of soil organic C pools 
of these forest sites, and analyzed how these 
pools contribute to Rs. Using our data as an 
example, we discuss in more general terms 
which conclusions might (or might not) be 
drawn from our and similar data sets collected 
under experimental warming (i.e. from a near-
steady state situation and from a simulated step-
change in temperature). 
 
 
Materials and Methods 
 
Experimental design and field sites 
A field experiment was set up to study C 
dynamics in temperate deciduous forests at low 
and high elevation. The low-elevation forest 
stands were located on the Swiss Plateau at 
about 300 m a.s.l.; high-elevation forest stands 
were situated in the Swiss Central Alps at 1200 
to 1500 m a.s.l., corresponding to a topography-
driven temperature gradient of c. 6 K (mean 
annual temperature). At each elevation, we 
studied two forest stands (plots) with N2-fixing 
trees with two nearby plots of non N2-fixing 
trees as control plots. The N2-fixing plots were 
homogeneous stands of Alnus glutinosa (L.) 
Gaertn. and Alnus incana (L.) Moench, each at 
low and high elevation. The control plots were 
dominated by Acer platanoides or L.. A more 
detailed description of the study sites, as well as 
year-round temperature and soil moisture 
conditions are presented in chapter 3 of this 
thesis. 
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Soil organic C pools 
We excavated two soil profiles per plot at the 
core sites and sampled soils at 5, 10, 20 and 30 
cm depth using a 35 mm diameter × 50 mm 
length corer (at the high-elevational N2-fixing 
sites a profile depth deeper than 30 cm could not 
be accessed because of stony ground). All soil 
samples were sieved (2 mm), oven-dried at 105 
°C for 24 h, and fine earth density determined. 
Soil pH of subsamples was measured in 0.1 M 
KCl solution. Carbonates were removed from 
subsamples from each soil core by exposure to 
HCl vapour (Harris et al. 2001) and C and N 
contents determined by dry combustion 
(ThermoFinnigan FlashEA 1112, Milan, Italy).  
 
Soil incubation 
We used long-term laboratory soil incubations to 
determine the decomposition dynamics of soil 
samples from all core sites. The aim of these 
incubations was not to determine in situ 
decomposition rates, but to estimate the size and 

decomposability of soil organic matter fractions 
under standardized conditions. Samples from the 
0-10 cm top soil layer were sieved (2 mm mesh 
size), adjusted to 50% water holding capacity, 
and 100g dry soil equivalent incubated for 600 
days at 25°C in gas-tight jars (6 replicates per 
plot). Soil CO2 evolution rates were determined 
16 times throughout the incubation by repeatedly 
sampling the jar’s headspace with a gas-tight 
syringe. Gas samples were injected into pre-
evacuated exetainers and analyzed for CO2 by 
gas chromatography (Agilent 7890 GC equipped 
with a flame ionization detector, Agilent 
Technologies Inc., Santa Clara, CA, USA). Soil 
respiration rates were calculated by linear 
regression of CO2 concentration of three 
subsamples against time; r2 was generally > 
0.97. The incubation jars were ventilated after 
every sampling to ensure sufficient oxygen 
supply. At the same time, the samples’ soil 
moisture content was re-adjusted with distilled 
water if required.  

Fig. 1 The global carbon 
cycle and the turnover of 
soil organic C pools, 
differing in turnover time 
(k). The mean residence 
time (MRT) of total soil 
organic matter is a function 
of the turnover rates of the 
different pools (Six & 
Jastrow 2002). 
 
 
. 
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Table 1 Soil properties along the soil profiles to a depth of 30 cm at the core sites at low and 
high elevation (mean ± SE; n = 2).     
            
      
  Low elevation High elevation 
Soil depth Control N2-fixing Control N2-fixing 
            
      0-5 cm     
 Bulk density (g cm-3) 0.96 ± 0.09 0.46 ± 0.05 0.71 ± 0.16 0.85 ± 0.12 
 C content (kg C m-2) 2.77 ± 0.13 2.61 ± 0.33 1.18 ± 0.38 5.20 ± 2.03 
 N content (kg N m-2) 0.18 ± 0.05 0.23 ± 0.05 0.12 ± 0.01 0.45 ± 0.12 
 pH(KCL) 6.26 ± 0.38 5.96 ± 0.72 5.25 ± 0.01 5.51 ± 0.65 
      
5-10 cm     
 Bulk density (g cm-3) 1.05 ± 0.06 0.59 ± 0.09 1.15 ± 0.01 1.02 ± 0.22 
 C content (kg C m-2) 3.50 ± 0.05 5.57 ± 2.26 1.58 ± 0.87 5.96 ± 1.08 
 N content (kg N m-2) 0.37 ± 0.03 0.47 ± 0.14 0.16 ± 0.05 0.38 ± 0.15 
      
 Cmic (mg (g dry soil)-1) 20.38 ± 1.86 67.84 ± 16.79 5.21 ± 0.65 38.17 ± 17.19 
 Nmic (mg (g dry soil)-1) 5.05 ± 0.49 14.76 ± 4.05 1.35 ± 0.02 8.10 ± 3.21 
      
10-20 cm     
 Bulk density (g cm-3) 1.10 ± 0.01 0.76 ± 0.20 1.27 ± 0.01 1.22 ± 0.22 
 C content (kg C m-2) 3.10 ± 0.08 4.37 ± 0.69 0.35 ± 0.09 5.87 ± 0.14 
 N content (kg N m-2) 0.30 ± 0.06 0.44 ± 0.09 0.03 ± 0.01 0.28 ± 0.22 
      
20-30 cm     
 Bulk density (g cm-3) 1.26 ± 0.02 0.84 ± 0.26 1.22 ± 0.09 1.07 ± 0.06 
 C content (kg C m-2) 2.44 ± 0.26 4.62 ± 2.69 0.35 ± 0.14 4.09 ± 0.75 
 N content (kg N m-2) 0.27 ± 0.04 0.39 ± 0.19 0.03 ± 0.01 0.35 ± 0.13 
         

         
Soil CO2 evolution was analysed by fitting a 
two-pool 1st order decomposition kinetic to the 
measured data: 
 
Rt = r0,labile · e (-klabile  t) + r0,recalcitrant · e (-krecalcitrant  t), 
 
where Rt is the soil respiration rate at time t, 
r0,labile and r0,recalcitrant is the respiration at t = 0 
originating from the decomposition of the labile 
and more recalcitrant soil organic matter fraction 
distinguished by the double-exponential model, 
and klabile and krecalcitrant are the respective first 
order decomposition rate constants. To 
discriminate against outliers, the double-
exponential model was fitted using a regression 
procedure adopting Tukey’s redescending 
bisquare M-estimator. The size of the labile soil 
pool was estimated as  
 

€ 

Rlabile ( t )

t= 0

∞

∫ dt =
r0,labile
klabile

 . 

 
The rhizosphere-derived pool was calculated as 
50% of mean daily Rs (measured in the field), 

multiplied by seven days (a rough estimate, 
assuming that this pool is decomposed within 
maximal 7 days). The recalcitrant soil C pool 
was estimated as the difference of total soil C 
content and the rhizosphere-derived plus the 
labile pool. The contribution of these pools to 
total Rs is calculated as follows: The respiration 
derived from the labile and the recalcitrant C 
pools is estimated by the initial respiration in the 
incubation, corrected for the mean annual 
temperature at the study sites (assuming a Q10 of 
2). The rhizosphere-derived respiration is then 
calculated as the difference of the heterotrophic 
Rs (50% of Rs) and respiration derived from the 
labile plus the recalcitrant pools.  
At the end of the incubation (when the “labile” 
pool was virtually completely decomposed), the 
temperature sensitivity of decomposition (Q10) 
of the remaining soil fractions was determined 
by measuring CO2 evolution rates at 20°C, 25°C 
and 30°C. 
 
Net primary production and soil respiration 
For the present study we refer to the NPP data 
estimated for above- and belowground  
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Table 2 The labile soil C pool: relative to the the incubated soil (% Clabile), its absolute size with regard to the C 
content in the upper 10 cm of the soils (Clabile (g m-2)), and its decomposition rate constant (klabile) estimated by 
means of the two-pool model. Given is the mean ± SE (n = 2), results of linear mixed models are presented on 
the right. 
          
                
 Low elevation High elevation  Effect (P-value) 
 Control N2-fixing Control N2-fixing  Elevation N2-fix N2-fix × Elev   
                 
         
% Clabile 0.94 ± 0.12 1.18 ± 0.22 4.94 ± 2.46 0.69 ± 0.24  n.s. n.s. n.s. 
Clabile (g m-2) 59.21 ± 10.81 91.24 ± 12.86 105.24 ± 6.03 74.25 ± 20.21  n.s. n.s. * 
klabile 0.023 ± 0.005 0.017 ± 0.005 0.027 ± 0.002 0.024 ± 0.003  n.s. * (*) 
             
             (*) 0.05 < P < 0.1; * P < 0.05 
 
    

components (canopy litter, understory biomass 
and fine root litter production), as well as to 
annual Rs data that were compiled for the study 
presented in chapter 3 of this thesis. A detailed 
description of the acquisition of these data is 
found in the methods section of chapter 3, and a 
compilation of NPP components and annual Rs is 
presented in Table 4 of chapter 3. 
 
Data analysis 
Effects of elevation (“low” vs. “high”) and N 
availability (control vs. N2-fixing plots) were 
tested using mixed-effects models fitted by 
restricted maximum likelihood (REML) with 
‘elevation’ and ‘N’ as fixed effects and ‘site’ as 
random effect. Error estimates in text and figures 
are standard errors of site means and effects 
were considered significant at P<0.05 whereas, 
due to the relatively low replication and 
therefore statistical power, P-values > 0.05 but < 
0.1 were considered marginally significant. All 
statistical analyses were carried out using R 
(version 2.10; mixed effects models were fit 
using the lme procedure from the nlme package; 
Pinheiro et al. 2008; R Development Core Team, 
2010; www.r-project.org). 
 
 
Results  
 
Soil C pools 
Soil organic C and N differed remarkably 
between plots, with higher average organic C (P 
< 0.05) and N contents (P < 0.1) in N2-fixing 
plots (Table 1). However, these differences 
might originate from variation between plots that 
is independent of the analyzed factors. Both C 
and N concentration decreased with soil depth in 

all plots. C/N was neither affected by elevation 
nor N2 fixation.  
 
Soil incubations 
The 600-day soil incubation revealed a typical 
double-exponential kinetic with two clearly 
distinguishable soil C pools (Figure 2). 
Respiration rates of all soils declined sharply 
within the first 100—200 days, indicating the 
mineralisation of a labile soil pool. Following 
this period, respiration decreased much more 
slowly with time. While the size of the labile soil 
C pool and the associated first order 
decomposition rate constant could adequately be 
determined, the decomposition kinetics of the 
more recalcitrant material was less well defined; 
fitting a reliable decomposition rate constant 
would have required a much longer incubation 
period. The first-order decomposition rate 
constant of the labile soil fraction averaged 
~0.023 d-1, corresponding to a mean residence 
time of 44 days under the incubation conditions. 
The decomposition rate constant was 19% lower 
in N2-fixing plots than in control plots (P<0.05; 
Table 2). Total respiration at the beginning of 
the incubation (r0,labile + r0,recalcitrant) varied from 
262 ± 40 µmol C (g dry soil)-1 in high 
elevational N2-fixing plots to 1489 ± 577 µmol 
C (g dry soil)-1 in high elevational control plots. 
CO2 originating from the decomposition of the 
labile C pool (r0,labile) accounted for 18% -27% of 
total initial respiration. Both total initial 
respiration and r0,labile did not significantly 
depend on elevation and symbiotic N2 fixation. 
The temperature sensitivity of decomposition of 
the slow soil fractions, determined by measuring 
CO2 evolution rates at 20°C, 25°C and 30°C at 
600 days, increased by a factor of 3.1-3.9 per 
10°C temperature increase in all plots (Q10). 
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Discussion 
 
In the present study we present an analysis of the 
soil organic C pools of temperate forests and 
discuss how these pools contribute to total soil C 
release (Rs). 
Root respiration generally accounts for a 
substantial fraction of soil CO2 evolution. 
Distinguishing autotrophic from heterotrophic 
soil respiration is notoriously difficult, for a 
number of reasons (cf. Kuzyakov and Larionova 
2005). Several methods have been used to 
answer this question, including the exclusion of 
plant roots by trenching, the isotopic labeling of 
CO2 fixed in plants with subsequent detection in 
Rs, sometimes including a manipulation of 
rhizosphere availability of unlabelled C, and 
large-scale tree girdling. These approaches 
resulted in an estimated contribution of root 
respiration to Rs in the range of 10 to 90%, 
depending on the studied system and method 
applied (Hanson et al. 2000). We here assume 
that 50% of measured soil respiration to 
originate from roots by referring to several 
studies (e.g. Bond-Lamberty et al. 2004; 
Högberg et al. 2001) as well as to our findings of 
the study presented in chapter 3 of this thesis. 
Based on this assumption, our incubation data 
can be used to tentatively assign the remaining 
heterotrophic respiration to three distinct 
sources. First, we subtract the temperature-

adjusted initial respiration rate measured in the 
laboratory incubations from the estimated 
heterotrophic respiration component, i.e. from 
50% of Rs measured in the field. The difference 
thereby obtained can be attributed to a soil 
organic C fraction that is very rapidly 
mineralized, i.e. that was already depleted when 
the laboratory incubation was started. In our 
study, this rapidly-cycling rhizosphere-derived C 
fraction contributed 20-30% to Rs, depending on 
plots. This rhizosphere-derived CO2 flux did not 
show any statistically significant signals of 
elevation or N2 fixation, but tended to exhibit the 
same pattern we found for total annual Rs 
(chapter 3, Table 4). Using the fitted double-
exponential kinetics, and, assuming a similar 
temperature sensitivity for the labile and 
recalcitrant fractions separated in the incubation 
study, the remaining ca. 20-30% of Rs can then 
be assigned to these two pools. In our study, the 
vast majority turns out to be derived from the 
labile soil fraction, turning over within 34-78 
days (1/k; Table 2), with only 1-7% of Rs 
originating from the decomposition of 
recalcitrant soil C pools. In summary, C released 
from soils within a year (excluding the 
autotrophic part) accounted for 40-50%, which is 
in line with results from tracer experiments (50-
68%: Taneva et al. 2006; 59%: Gaudinski et al. 
2000; 50-60% Trumbore 2000).  
 

Fig. 2 Two examples of the temporal evolution of decomposition-derived soil CO2-C fluxes of long-term 
incubated soils. Symbols denote the measured respiration rates (n = 6 per plot), lines are the modelled rates 
using a double exponential function. The white area below the solid line represents the ‘labile C pool’, the 
grey area below the dashed line represents the ‘recalcitrant C pool’. The right panel is the N2-fixing plot 
LOW1, the right panel is the control plot HIGH1. Please note the different scales of the y-axes. 
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These estimates are supported by the close linear 
relation we found between the sum of all short-
lived NPP components and annual Rs in the 
study presented in chapter 3, which hold 
irrespective of the presence of N2-fixing tree 
species or elevation. Since Rs predominantly 
reflected plant respiration and the decomposition 
of soil organic matter fractions with turnover-
times in the range up to weeks or a few months, 
this necessarily has to be the case, even if soil C 
pools would not be in equilibrium. 
 
How are these respiratory components related to 
the size of the respective soil C pools? Assuming 
a turnover time of a maximum of a few days for 
the rapidly-cycling rhizosphere-derived C pool 
and assigning the entire heterotrophic respiration 
to this pool, we obtain a safe upper bound of 
<1% (which certainly is a gross overestimate), 
and was larger at low compared to high 
elevation (P < 0.05). The size of the labile soil 
pool was directly estimated in our incubation 
experiments and amounts to 1-5% of total soil C. 
Similar proportions for active soil C pools were 
found in other incubation experiments (0.7-
4.3%: Townsend et al. 1997; 0.2-3.5%: Torn et 
al. 2005). The labile soil C pool (Table 2), 
similar to its contribution to total Rs, showed the 
same interactive effect of elevation and N2-
fixation as sum of the short-lived NPP 
components (chapter 3, Table 4). Finally, the 
recalcitrant soil C pool can be estimated as the 
difference between the total soil C and the 
rhizsphere-derived plus the labile C pool and 
accounts for >95% of total soil C. N2 fixation 
slightly increased this recalcitrant soil C pool (P 
< 0.1), possibly due to the high N availability, 
which can potentially accumulate soil organic 
matter (e.g. Aber et al. 1998). 
The conclusion emerging from this reasoning is 
that Rs is dominated by autotrophic respiration, 
and (to a similar extent each) by very quickly 
cycling rhizosphere C pools and the contribution 
from pools that turn over within a growing 
season; the contribution of older soil organic 
matter pools to Rs is virtually negligible. 
Therefore, under warming, Rs cannot increase to 
any significant extent independently from NPP. 
Changes in Rs are thus unsuitable to indicate 
changes in soil organic C stocks.  
 
Thus, the temporal dynamic of C fluxes from 
soils to the atmosphere after warming, such as in 
soil warming experiments, strongly depends on 
the composition of the different soil C pools. 

Soil warming experiments of a few years, 
without concurrent warming of the canopy, 
inevitably overestimate potential increases of Rs 
with temperature, because they mainly measure 
the transitory responses of labile soil C pools. 
Labile soil C pools though lag only a couple of 
months to years behind NPP, and after this pool 
is ‘depleted’, a new equilibrium of NPP and Rs 
will be established. Respiratory fluxes from 
recalcitrant C pools, in contrast, rather lag 
hundreds of years behind NPP, thus they are the 
greatest unknown in terms of long-term soil C 
losses to the atmosphere.  
 
Since the soil fractions of old, recalcitrant C 
constitute the largest part of total soil C, 
potentially effects of warming on these pools 
could become relevant for long-term changes in 
soil C. Several possibilities exist to detect effects 
on recalcitrant C dynamics in warming studies. 
First, if older soil C fractions possess sufficiently 
distinct isotopic signatures, then their 
contribution to Rs might be quantified. Tentative 
candidates for such a label are the radiocarbon 
bomb spike from thermonuclear bomb testing 
(e.g. Trumbore et al. 1993; Gaudinski et al. 
2000), and isotopic changes in plant-derived soil 
C inputs after changes in cultivation from crops 
with C3 to C4 photosynthetic pathway or vice 
versa (e.g. Balesdent et al. 1988). Another 
possibility might be to estimate turnover rates of 
old soil C fractions by selectively quantifying 
decomposition product characteristic of these 
pools, e.g. phenolics originating from lignin 
degradation (Otto et al. 2005; Hedges and Mann 
1979). However, increased decomposition rates 
of old soil organic matter fractions will only 
result in a decrease in the corresponding C 
stocks if there is no concomitant increase in soil 
C inputs from other soil C pools. 
 
In brief, we found the smallest soil C pools, 
which are tightly linked to NPP and turn over 
within days to months, to clearly dominate Rs, 
whereas the contribution of the majority of soil 
C to Rs is virtually negligible. 
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Abstract 
 
While nitrogen (N) cycling in most ecosystems is relatively closed, high external N inputs, such as 
fertilization, atmospheric N deposition or symbiotic N2 fixation can turn the closed N cycle into a 
“leaky” cycle. Enhanced N losses via leaching or gaseous emissions may result. High N input and thus 
availability in soils further has the potential to affect soil CH4 exchange in either direction, depending 
on the system. We compared fluxes of the highly potent greenhouse gases N2O and CH4 in N2-fixing 
Alnus stands and adjacent control forest stands at two elevations, and found that N2 fixation enhanced 
soil N2O emissions more than threefold at lower elevations and two and a half times at the higher 
elevations in the Alps. Concurrently, productivity estimates of these forest sites indicated that the 
Alnus stands reached N saturation at both elevations. Soil CH4 exchange did not show a coherent 
effect of N2 fixation. We conclude that N losses from soils to the atmosphere in form of N2O can 
substantially increase, once the biological demand for N reached saturation. 
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Greenhouse gases, N cycle, N deposition, CH4



Chapter 5 

 51 

Introduction 
 
Nitrogen (N) cycling in most natural ecosystems 
is relatively closed, with rather small N losses 
via soil gaseous emissions, volatilization and N-
leaching. Near equilibrium, N losses are 
balanced by biological N2 fixation or 
atmospheric N deposition. In forests subject to 
high external N inputs, such as through 
fertilization, atmospheric N deposition or 
symbiotic N2 fixation, the ideally closed N cycle 
can turn into a “leaky” cycle (Aber et al. 1998). 
As a consequence, losses of N via leaching (e.g. 
Schulze et al. 1989) or gaseous emissions 
(Vitousek et al. 1997; Hall and Matson 1999) 
will be enhanced. 
While the productivity of most temperate forests 
is limited by the supply of biologically available 
N (Vitousek et al. 2002), high rates of N supply 
through tree species symbiotically fixing 
atmospheric N2 can saturate the biological 
demand for N (Johnson and Lindberg 1992). 
Trees of the genus Alnus (i.e. alder) live in 
symbiosis with N2-fixing actinomycetes, which 
can add 100-150 kg N ha-1 a-1 to a forest 
ecosystem (Binkley et al. 1994; Schlesinger 
1991). In comparison, recently quantified N 
deposition across 17 sites all over Switzerland 
(averaged over 7 to 10 years) reached up to 31 
kg N ha-1 a-1, with intermediate rates at the Swiss 
Plateau (10-20 kg N ha-1 a-1) and lower rates in 
the Alps (< 5 kg N ha-1 a-1; Thimonier et al. 
2010). In response to excess N availability, 
nitrification and denitrification are often 
accelerated and result in increased N2O 
emissions to the atmosphere. This effect will 
mainly depend on whether or not the fixed N is 
taken up by plants.  
Although N2-fixing woody plant species are 
present in many temperate forests, their 
provision of substantial N inputs might be 
limited to early successional habitats (Rastetter 
et al. 2001). Alder species have been reported to 
invade (or be afforested on) relatively large areas 
of former arable land and meadows across the 
temperate and boreal zone (e.g. Anthelem et al. 
2001; Frelechoux et al. 2007; Uri et al. 2009). In 
the Swiss Alps for example, the N2-fixing shrub 
species Alnus viridis (Chaix) DC. (green alder), 
has significantly increased within the past two 
decades (Frelechoux et al. 2007), expanding by 
more than 1000 ha per year (Brändli 2010).  
Several studies found higher concentrations of 
most soil N forms and increased denitrification 
rates under Alnus trees relative to coniferous 

forests (Van Miegroet et al. 1990; Binkley et al. 
1992; Griffiths et al 1998). More recent studies 
on a grey alder plantation (Uri et al. 2011) and a 
former red alder forest stand (Perakis et al. 
2011), however, reported increased soil N 
capital with N2-fixation, but did not assign soil 
N2O emission a significant role.  
In alpine ecosystems, methane (CH4) oxidation 
(uptake) in soils is usually high, and soil N 
inputs through biological fixation or atmospheric 
deposition in contrast rather low compared to 
lowlands (Schlesinger 1997). CH4 consumption 
by oxidising microorganisms and soil N 
availability are mechanistically linked, either 
positively or negatively, depending on the 
system (Bodelier and Laanbroek 2004). Hence, 
the high N availability through biological N2 
fixation could be expected to affect CH4 
oxidation. However, this interaction is complex 
and several other factors, soil water content in 
particular, play along. 
Here, we report fluxes of the highly potent 
greenhouse gases N2O and CH4 in forest sites 
composed of either symbiotically N2-fixing 
Alnus tree species, or non N2-fixing broadleaf 
trees, at two elevations (at the Swiss Plateau and 
the Swiss Central Alps). In situ gas fluxes were 
recorded at four site pairs of adjacent N2-fixing 
and non N2-fixing forest stands, whereas further 
indicators for N-cycling (standardized enzyme 
activity assays) were performed with a higher 
number of replicates (forest sites). We 
hypothesized that N2-fixation in temperate 
forests stimulates soils N transformation 
processes resulting in enhanced N2O emissions, 
and that this effect is more pronounced at the 
warmer lowland forest sites, since both 
nitrification and denitrification are restricted at 
low temperatures (Saad and Conrad 1993). Also, 
warmer temperatures and longer growing 
seasons enhance NPP, which in turn can 
improve the soil environmental conditions for 
dentirification, by providing organic carbon to 
denitrifiers, and, subsequently, enhancing soil 
respiration and thus removing soil O2 
(denitrifiers are facultative anaerob 
microorganisms). 
 
 
Methods 
 
Field site and experimental design 
Temperate deciduous forests sites differing in 
natural N availability were set up to study forest 
C and N fluxes. Seven ‘low-elevational’ sites 
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were located at the Swiss Plateau at elevations 
between 300 and 500 m a.s.l., and two ‘high-
elevational’ sites were located in the Swiss 
Central Alps, at 1200 and 1500 m a.s.l.. Each 
site was composed of a forest stand (plot) with 
N2-fixing trees and a nearby stand without N2-
fixing trees (site pairs). The control forest stands 
were dominated by Acer platanoides L. or Fagus 
sylvatica L. at low elevation and by Salix fragilis 
L. at high elevation, whereas the N2-fixing 
forests were homogeneous stands composed of 
Alnus glutinosa L. at low and Alnus incana (L.) 
Moench. at high elevation. All forest sites had a 
size of 50 x 50 m, a closed canopy, and were 
surrounded by a buffer zone of at least 10 m. 
Two of the low elevational sites and the two 
high elevational sites represented the ‘core sites’ 
of this study. A more detailed description of all 
study sites is presented in chapter 3. 
Mean annual air temperature (2 m height; 
HOBO TidbiT v2, Onset Computer Corp., 
Bourne, MA, USA) during the sampling period 
was 10.3 ± 0.1 and °C 4.3 ± 0.4 °C at low and 
high elevation respectively, corresponding to a 
topography driven temperature cline of c. 6 K, 
with no or minor differences between N2-fixing 
and control plots. Top-soil water content (VWC 
at 0-10 cm depth; EM50 data loggers connected 
to 10HS soil moisture probes, Decagon Devices, 
Pullman; USA) showed moderate changes and 
stayed relatively high at all plots throughout the 
sampling period (Figure 1). 
 
CH4 and N2O fluxes 
We measured net CH4 and N2O exchange in situ 
at the core sites at nine measurement dates from 
March 2009 to October 2009. Six static 
chambers per plot (20 cm in height, 32 cm in 
diameter) were installed at random locations, 
two to three weeks prior to the first 
measurement. After carefully pre-trenching the 
soil, the chamber collars were lowered 10 cm 
into the ground. The headspace volume of each 
chamber was calculated by measuring the height 
of the collar (~10 cm height, corresponding to 
~8.8 L). During flux measurements, the 
chambers were closed with detachable lids and 
headspace samples taken after 5, 20 and 
35minutes. These samples were injected into 
pre-evacuated exetainers and analyzed in the 
laboratory for N2O and CH4, using a gas 
chromatograph (Agilent 6890 equipped with a 
flame ionization and an election-capture 
detector, Agilent Technologies Inc., Santa Clara, 
CA, USA). Flux rates were calculated by linear 

regression of CH4 and N2O concentrations 
against time; r2 was generally > 0.98 when 
fluxes were different from zero. Soil temperature 
and soil moisture (top 10 cm) were recorded 
manually at the chamber location, concomitantly 
with the gas flux measurements (soil 
temperature: digital thermometer GTH 175/Pt, 
Greisinger electronic, Germany; soil moisture: 
ThetaProbe soil moisture sensor - ML2x, Delta-
T Devices Ltd., Cambridge, UK). 
 
Soil sampling for laboratory analyses 
Soil samples for laboratory analyses (potential 
nitrification and denitrification enzyme activity) 
were collected from 10 randomly distributed 
locations within each forest plot with a steel 
cylinder (∅ 2.5 cm, depth 10 cm). The samples 
were sieved (2 mm mesh size) and kept at 4 °C 
until analysis (2-7 days). Soil water content was 
determined by drying 10 g sieved soil (105 °C, 
24 hours). 
 
Potential nitrification 
Potential nitrification was estimated as NO3

- 
production in a short-time laboratory incubation 
with excess NH4

+ available (Schmidt and Belser 
1994). In brief, fresh soil, equivalent to 10 g of 
dry soil, was mixed with 100 mL of buffer 
solution (0.5 mM KH2PO4/K2HPO4, adjusted to 
a pH of 7.0 by adding K2CO3) and incubated at 
25°C on a slowly-moving table shaker. 1 mL of 
0.05 M (NH4)2SO4) solution was added to the 
suspension, and aliquots taken after 1, 4, 7 and 
23 hours. These aliquots were then centrifuged, 
filtered, and analyzed for NO3

- concentrations 
using a flow-injection analyser (Skalar SAN+. 
Skalar, Breda, The Netherlands). Potential 
nitrification rates were calculated by linear 
regression of NO3

- concentrations against time. 
Potential nitrification was measured in March 
for the core sites and in June and October for all 
site pairs. 
 
Denitrification enzyme activity (DEA) 
Denitrifying enzyme activity (Tiedje et al. 1989) 
was estimated as short-term N2O production 
under anaerobic conditions, in the presence of 
excess NO3 and available organic C. DEA 
reflects the denitrification potential at the time of 
sampling; incubation times are kept short to 
avoid bias due to de novo synthesis of enzymes 
(Tiedje et al. 1989). Fresh soil, equivalent to 5 g 
dry mass, was placed in a 150 ml serum bottle. 
The headspace of each flask was evacuated and 
replaced by a 90:10 He-C2H2 mixture to provide 
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anaerobic conditions and inhibit N2O-reductase 
activity (i.e. the conversion of N2O to N2). 
Demineralised water and a solution containing 1 
mg glucose C g-1 dry soil, 1 mg glutamic acid C 
g-1 dry soil and 0.1 mg NO3

--N g-1 dry soil were 
added to each sample to provide excess NO3

- and 
organic C, and to raise moisture levels above 
water holding capacity. The soil samples were 
then incubated at 26 °C and headspace samples 
taken after 60, 90 and 120 minutes. N2O 
concentrations were analysed by gas 
chromatography as described above. DEA was 
calculated as N2O production per unit time. DEA 
was measured in July and September for the core 
sites and in June and October for all site pairs. 
 
Forest NPP 
Stem basal area was estimated by measuring 
stem circumference at breast height (1.3 m 

above ground), within 3 areas of 10 m × 10 m in 
each plot. At low elevation this resulted in c. 40 
trees per plot at low-elevational sites and c. 70 
trees per plot at high-elevational sites. Canopy 
litter fall was collected in litter traps (0.25 m2 

ground area plastic sieves); Six randomly placed 
traps per plot were emptied at least every two 
weeks during two subsequent autumns. Leaf 
litter C and N content (before and after leaf litter 
fall) was quantified (Elementar Vario EL III, 
Hanau, Germany). Peak biomass of understory 
vegetation was harvested at ground level (2 × 1 
m2 per core site). Fine root production was 
assessed using ingrowth cores: 40 mesh 
cyclinders (3.5cm diameter × 12 cm depth), 
filled with root-free soil were placed at random 
location in each plot. After one year, ingrowth 
cores were harvested and washed carefully. 
Biomass of all NPP components harvested was 
dried at 80°C. A more detailed description of 
forest NPP measurements at the present study 
sites is presented in chapter 1 of this thesis. 
 
Statistical analyses 
Effects of elevation (“low” vs. “high”) and N 
availability (control vs. N2-fixing sites) were 
tested using mixed-effects models fitted by 
restricted maximum likelihood (REML) with 
‘elevation’ and ‘N’ as fixed effects and ‘site’ as 
random effect. N2O emissions, CH4 exchange, 
potential nitrification and DEA were log-
transformed for statistical analyses. Error 
estimates in text and figures are standard errors 
of site means and effects were considered 
significant at P < 0.05 whereas, due to the 
relatively low replication and therefore statistical 
power, P-values > 0.05 but < 0.1 were 
considered marginally significant. All statistical 
analyses were carried out using R (version 2.10; 
mixed effects models were fit using the lme 
procedure from the nlme package; Pinheiro et al. 
2008; R Development Core Team, 2010; www.r-
project.org). 
 
 
Results  
 
Soil N2O emission  
Measured N2O emissions ranged from close to 
zero to 234 µmol m-2 d-1, with the maximum 
measured in N2-fixing plots at low elevation. 
However, the temporal resolution of our 
measurements was too low to capture the very 
dynamic changes typically occurring when N2O 
fluxes are driven by denitrificaton; we therefore 

Fig. 1 N2O emissions at the core sites in 
dependence of elevation and N availability (N2-
fixing vs. control sites; mean ± SE, n = 2). 
Shown are averages of the nine measurement 
dates from March 2009 to October 2009. 
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restrict our analysis to plot-level averages of log-
transformed fluxes. Our data indicate higher soil 
N2O emissions from N2-fixing plots (P < 0.05; 
Figure 1) but no significant effect of elevation. 
 
Potential nitrification and denitrification enzyme 
activity 
Potential nitrification was significantly higher in 
N2-fixing than in control forest plots (P < 0.05 
for core sites; P < 0.01 for all sites), and 
elevation reduced potential nitrification rates (P 
< 0.1 for core sites; P < 0.01 for all sites; Figure 
2). 
Denitrifying enzyme activity revealed the same 
effects than potential nitrification, with higher 
rates in N2-fixing compared to control plots (P < 
0.05 for core sites; P < 0.01 for all sites) and 
elevation generally reducing DEA, although this 
effect was statistically significant for the core 
sites only (P < 0.05; Figure 2).  
 
Soil CH4 exchange  
Symbiotic N2 fixation did neither affect CH4 
oxidation, nor CH4 emission at any plot of the 

cores sites. Net soil CH4 oxidation was observed 
on some dates at all low elevation sites; in 
contrast, high elevation plots were net methane 
sources on all, except for two dates in high 
elevational control plots (elevation: P > 0.1). 
Averaged over all sampling dates, low-
elevational sites were net CH4 sinks, since fluxes 
were dominated by CH4 oxidation, whereas at 
high elevation all soils were net CH4 sources.  
 
Forest NPP 
Basal area increment did neither differ between 
N2-fixing and control plots, nor across elevation. 
Annual leaf litter was slightly higher in N2-
fixing compared to control plots (+35%, P < 0.1) 
and also enhanced at low compared to high 
elevation (+49%, P < 0.05). Understory biomass 
production was neither enhanced under N2-
fixing trees nor differed between elevations. Fine 
root ingrowth, our proxy for belowground litter 
production, showed reversed trends at the two 
elevations: at low elevation, fine root ingrowth 
was enhanced at N2-fixing compared to control 
plots, whereas it was the other way round at

Fig. 2 Potential nitrification and denitrifying enzyme activity (DEA) for the core sites (mean ± SE, n = 2), 
and for all site pairs (low elevation: n = 7; high elevation: n = 2). Shown are averages across measurements. 
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Table 1 Leaf litter and soil properties (0-30 cm depth) at the core sites (mean ± 
SE, n = 2). 
      Low elevation High elevation 
 Control N2-fixing Control N2-fixing 
          
     Leaf litter N (%) 2.7 ± 0.2 3.6 ± 0.2 3.1 ± 0.2 3.7 ± 0.4 
Leaf litter C/N 18.5 ± 1.2 14.4 ± 0.5 17.8 ± 1.7 14.3 ± 2.0 
     
Soil C content (kg C m-2) 11.8 ± 0.2 17.2 ± 6.0 3.5 ± 1.5 21.2 ± 1.9 
Soil N content (kg N m-2) 1.1 ± 0.1 1.5 ± 0.1 0.4 ± 0.1 1.7 ± 0.2 
Soil C/N  10.7 ± 1.3 11.1 ± 0.4 9.8 ± 2.7 13.1 ± 2.3 
     

          
high elevation, resulting in no overall N2-
fixation or elevational-effect. NPP data are 
compiled in chapter 3, Table 4 of this thesis. 
 
Litter quality 
N2 fixation increased leaf litter N content (P < 
0.01; +143%) and, as a result, significantly 
decreased the C/N (P < 0.05; Table 1). Elevation 
did not affect leaf litter C and N concentrations. 
N resorption, calculated as difference in autumn 
leaf N concentration before and after litterfall 
was lower for N2-fixing trees (A. glutinosa: 
37%; A .incana: 19%) than for non N2-fixing 
trees (A. platanoides: 63%; S. fragilis: 58%).  
 
 
Discussion 
 
Clearly, N2O emissions were higher under N2-
fixing trees, both at the lowland sites and in the 
Alps (Figure 1). Denitrifying enzyme activity 
and potential nitrification rates validated these 
findings with a higher sample (Figure 2). 
Productivity data indicate that Alnus plots 
already reached N saturation at both elevations. 
Whether wood increment, nor cumulative above- 
and belowground plant litter production was 
significantly higher with N2 fixation (only leaf 
litter production was slightly enhanced in N2-
fixing plots). Obviously, the high N inputs with 
N2 fixation turned N cycling in an open cycle, 
with higher losses of N2O to the atmosphere. 
At the lower elevation we generally recorded 
higher N2O emissions than in the 6 K colder 
sites in the Alps. The year-round higher 
temperatures and the longer growing season are 
likely to (1) favour N2 fixation (Roughley and 
Dart 1970), and thus enhancing substrate for 
further N transformation processes releasing 
N2O (Vitousek et al. 2002), and to (2) enhance 
the supply of organic C as energy source for 

denitrification. We also found the relative N2 
fixation effect to be more pronounced at higher 
temperatures; N2O emissions under N2-fixing 
trees exceeded N2O emissions from control 
forest stands by 332% at low elevation, and by 
246% at high elevation. 
Approximations of the N2O fluxes in the Alnus 
stands for a whole here yielded 1.15 kg N2O-N 
ha-1 a-1 at the lowlands (black alder) and 0.51 kg 
N2O-N ha-1 a-1 in the Alps (grey alder). These 
values are in line with estimates from a riparian 
black alder forest in Germany (0.4-7.8 kg N2O-N 
ha-1 a-1, Mander et al. 2008) and a grey alder 
stand in Estonia (0.50 ± 0.45 kg N2O-N ha-1 a-1, 
Uri et al. 2011). N2O emission rates we 
measured in N2-fixing plots were also within the 
(wide) range reported for several fertilizer 
experiments in temperate deciduous forests and 
for temperate deciduous forests receiving high N 
deposition (compiled by Eickenscheidt et al. 
2011).  
According to the net flux of CH4 over all 
sampling dates, soils at the high elevational sites 
were CH4 sources, whereas soils at low elevation 
were CH4 sinks. This result contrasts the general 
assumption, that upland soils are sinks for CH4 
(Le Mer and Roger 2001). We further found no 
evidence of large inhibition of N on CH4 
oxidation. However, the limited spatial and 
temporal resolution of these soil CH4 exchange 
data does not allow the drawing of general 
conclusions. 
 
In summary, we found high ecosystem N inputs 
through symbiotic N2-fixation to strongly 
stimulate nitrification and denitrification rates 
and subsequent soil N2O emissions. We reason 
that N losses from forest soils to the atmosphere 
in form of N2O can substantially increase, once 
the biological demand for N reached saturation.
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General summary and conclusions 
 
 
This PhD thesis addressed the carbon (C) 
balance of temperate deciduous forests across 
natural gradients of temperature and nitrogen 
(N) availability, the major drivers of net primary 
production (NPP) and the soil C balance. A 
mean annual temperature difference of 6 K 
across a 1200 m change in elevation from the 
Swiss Plateau to the Central Swiss Alps, and the 
presence or absence of the N2-fixing tree species 
Alnus glutinosa or Alnus incana within each 
elevation, offered the framework (1) to test the 
hypothesis that cumulative annual soil 
respiration (Rs) at contrasting temperatures 
reflects the difference in the production of short-
lived biomass in the longer run; (2) to test 
whether or not high rates of N inputs increase 
the rate of C-cycling by accelerating both, NPP 
and Rs; (3) to analyze the composition of soil 
organic C pools and their contribution to Rs in 
response to elevation and N-availability; and (4) 
to test whether high-N-input Alnus forests 
stimulate soil N transformations, resulting in 
enhanced N2O emissions. 
 
 
Chaper 2: Forest soil respiration reflects plant 
productivity across a temperature gradient in 
the Alps 
 
In forests, the biomass components of interest 
for Rs are those undergoing rapid recycling, i.e. 
litter production by the canopy, understory and 
fine root system. Despite the 6 K difference in 
temperature and a difference in the length of the 
growing season of three months moving from 
the high to the low elevational sites, total annual 
litter production did not change. This is 
surprising, in view of the estimated doubling of 
annual wood increment from high to low 
elevation, that largely resulted from the 
difference in the length of the growing season. 
Stem growth and total NPP signals almost 
disappeared when expressed per day available 
for growth. Although following temperature 
variability throughout the seasonal course, 
cumulative annual Rs did not differ across 
elevations on a full-year basis. Within each 
elevation, the short-term temperature response of 
Rs (Q10) was close to 2, which is in accordance to 

the often assumed more than doubling in 
respiration for a 10 K warming. However, when 
calculated across sites, i.e. from high to low 
elevation, the apparent Q10 dropped to ~1.2, 
implying a down-regulation of Rs at higher 
temperatures, close to homeostasis. In other 
words, across the sites adapted to different 
temperatures, temperature was not exerting a 
strong net influence on Rs. Adopting a simple C 
budget that assumes 50% of total Rs is derived 
from autotrophic root respiration, we arrive at c. 
40% of the respiratory soil C release from 
concurrent litter production, both for high- and 
low-elevational sites. Whereas the remaining 
unaccounted 10% are a reasonable estimate for 
root exudates and mycorrhizal consumption in 
temperate forests. Cumulative annual soil CO2 
release thus largely reflected the input of labile 
C to soil, and not temperature per se. Climatic 
warming of the past decades most probably was 
slow enough, so that metabolism could track it, 
causing no significant deviation from a thermal 
equilibrium at our test sites. These results 
caution against expectations of strong positive 
effects of climatic warming on Rs. 
 
 
Chapter 3: Does nitrogen input enhance 
respiratory carbon release from temperate forest 
soils? 
 
In forests with the symbiotically N2-fixing genus 
Alnus forest, we found that biological N2-
fixation enhanced total litter production (the sum 
the above- and belowground forest litter 
components) and facilitated higher Rs at low 
elevation only. At high elevation, enhanced N 
input was associated with lower litter production 
and lower Rs, compared to non N2-fixing stands. 
Hence, Rs remained in proportion to forest litter 
production, irrespective of the effect of N-
availability or site temperature. Annual litter C 
production and annual soil C release via Rs 
correlated well (r2 = 0.85), at a ratio of litter C to 
annual C release of 2.4:1. Thus, total plant litter 
C explained ~ 40% of Rs. Assuming a ~ 10% 
contribution of C input to soils by root exudates 
and micorrhizal C consumption, the balance of C 
input in soil through NPP and the C output from 
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soils via Rs would become closer to 2:1. Hence, 
autotrophic and heterotrophic soil respiration, 
contribute similar fractions to total Rs. In 
conclusion, the results of this comparison lines 
up with the results of chapter 2, suggesting that 
Rs exhibits a rather robust relationship to 
substrate availability, rather than showing direct 
responses to N availability and temperature. 
These findings offer no justification for 
modelling Rs by assuming either N or 
temperature to exert direct (independent) effects 
on Rs. In the long run though, the soil C pool 
could still be affected by small deviations from 
this relationship, provided element stoichiometry 
permits. 
 
 
Chapter 4: Soil organic carbon pools and their 
contribution to soil respiration 
 
In this study we compared C release from forest 
C pools by means of a 600-day incubation, that 
revealed information about the contribution of 
three soil C pools to total Rs, and how these 
respiratory components related to the size of the 
respective C pools. We identified three 
heterotrophic sources sources of C for Rs: 
rapidly cycling rhizosphre-derived C with a 
maximum turnover time of a few days, labile 
soil C turning over within a few weeks to 
months, and recalcitrant soil C with a residence 
time of several years. We found that more than 
90% of total Rs is explained by the sum of 
autotrophic (root) respiration, rhizosphere-
derived C and the contribution of soil C fractions 
that decompose within a growing season. The 
soil C fractions turning over within this 
relatively short time, however, accounted for a 
minor part (<5%) of total soil C. In other words, 
Rs was directly linked to short-lived NPP. The 
contribution of recalcitrant C to total Rs in 
contrast, was virtually negligible (1-7%), 
although this fraction accounted for the major 
part of total soil C (>95%). We thus conclude 
that Rs, in essence emerging from C pools 
turning over within days to months, cannot 
increase under warming to any significant extent 
independently from NPP. However, for long-
term changes in soil C, small warming-induced 
changes of old soil C fractions can potentially 
become relevant.  
 
 
Chapter 5: N2 fixation by Alnus tree species 
enhances forest soil N2O emissions 

 
The comparison of fluxes of greenhouse gases 
from soils of N2-fixing and adjacent control 
forest plots clearly revealed in enhanced soil N 
transformation and subsequent N2O emissions in 
high N-input Alnus stands. Concurrently, 
productivity data, recorded for the study 
presented in chapter 3, indicated that all Alnus 
stands reached N saturation. Obviously, the high 
N inputs with N2-fixation turned N-cycling into 
an open cycle, with higher losses of gaseous N 
to the atmosphere. While the N2O emissions 
were generally higher at lower elevations than in 
the 6K colder forest stands in the Alps, the effect 
of N2 fixation was also more pronounced at 
lower elevation. Yet, with an increase in N2O 
losses of 330% and 250% in Alnus stands 
relative to controls though, the effect was 
considerable at both elevations. While soil CH4 
exchange did not show a conclusive effect of N2 
fixation, soils at the high elevation were CH4 
sources and soils at low elevation were CH4 
sinks over a complete season. The findings of 
this study suggest that N losses from soils to the 
atmosphere in form of N2O can substantially 
increase, once the biological demand for N 
reached saturation. 
 
 
The main conclusions 
 
The main conclusions that can be drawn from 
this thesis are: (1) cumulative annual C release 
from forest soils largely reflects the input of 
labile C to soil, and not temperature per se; (2) 
this robust relationship of Rs to substrate 
availability also holds across forest sites with 
high N-inputs, such as under N2-fixing trees; and 
(3) N2O losses from forest soils to the 
atmosphere can substantially increase, once the 
biological demand for N reached saturation. 
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Abstract 
 
Background: The presence of plants is crucial in securing steep slopes against soil erosion. 
Inappropriate land use in mountains often leads to vegetation loss and thus soil degradation.  
Aims: Here we ask, if the edges of large erosion gullies select for specialist plant species that reduce or 
prevent the progression of soil loss.  
Methods: We quantified species presence and abundance across micro-transects from intact mountain 
pastures toward the edge of erosion gullies at ca. 1900 m elevation in the Central Caucasus, Georgia.  
Results: Out of a large species pool, one particular species, Festuca valesiaca, was the dominant 
species at the very edge of erosion gullies. Increased δ13C values in Festuca valesiaca leaves by 1.1 ‰ 
towards the edge confirmed that this species copes best with the dry conditions at the edge.  
Conclusion: Our findings illustrate the insurance effect of a highly diverse vegetation. The importance 
of a single species out of this diverse species suite to sustain key ecosystem functions becomes 
apparent only under extreme environmental conditions, in this case at edges of erosion gullies.  
 
 
Key words 
 
Central Caucasus, pasture, drought resistance, Festuca valesiaca, δ13C, gully erosion, insurance effect, 
slope stability 
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