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Summary 
This work focuses on the isolation of fetal cells from the blood of pregnant women, with 

the aim of developing safe, efficacious, non-invasive alternatives for prenatal diagnosis. 

Although the fetal cells were first detected in maternal blood in the 1893, an effective 

protocol for non-invasive analysis is still not firmly established. This is due, on the one 

hand, to the scarcity of fetal cells in maternal blood, which is of the order of 1 fetal cell to 

106 - 107 maternal nucleated cells and on the other hand, to the fact that fetal cells have no 

specific cell markers.  

Efforts were made to improve development and evaluation of new fetal cell enrichment 

procedures. One of the tasks of this study was to evaluate galactose specific enrichment 

via soybean agglutinin, a galactose-specific lectin for isolation of erythroblast from 

maternal blood, and to compare this new technique with the conventional CD71 

enrichment technique.  

Another technical obstacle which had to be overcome was how to analyze the 

chromosomal content of few fetal cells enriched from the maternal circulation. Since 

these fetal erythroblasts were not actively dividing it was impossible to use standard 

cytogenetic methods. To address this issue multicolor fluorescence in situ hybridisation 

(FISH), or single cell polymerase chain reaction (PCR) procedures for analysis of fetal 

cells were developed and optimized. In the largest series of articles published to date, the 

efficacy of detecting fetal cells by the use of FISH for X and Y chromosomes was below 

what was needed. We tried to optimize the FISH procedure by applying different 

treatments to the nucleus and using different kinds of fluorescent probes firstly on cord 

blood erythroblasts as a model system. Then, after optimization, the best FISH protocols 

were applied to electronically marked erythroblasts from maternal blood. The analysis of 

FISH signals in maternal blood revealed that about half of erythroblasts did not hybridize. 

Additionally, we checked whether the ability to successfully perform FISH depended on 

chromosome choice. FISH analysis for chromosome 18 gave the same result. Thereafter 

we searched for possible reasons of FISH signal absence. The morphometric analysis of 

erythroblasts indicated that erythroblasts which had hybridized efficiently were of larger 

nuclear size than those which had been impervious to the FISH procedure; that is, the 
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efficiency of FISH procedure is connected with nuclear size. We then compared the 

erythroblasts from maternal blood with those from cord blood. The morphometric 

analysis indicated a significant difference in size between erythroblasts circulating in 

maternal blood and cord blood. 

Additionally, we wanted to determine whether the presence of fragmented DNA hindered 

the FISH analysis. The results of Terminal deoxynucleotidyl Transferase Biotin-dUTP 

Nick End Labeling (TUNEL) analysis suggested that effective FISH analysis had been 

hindered by the presence of dense nuclei rather than nuclei containing fragmented DNA. 

A point of interest was for us to look for possible reasons for nucleus size reduction of 

erythroblasts in the maternal circulation. We hypothesized that the changes in the nuclear 

size of erythroblasts could be attributed to the different oxygen tensions in the fetal and 

maternal circulatory systems. We checked and confirmed this hypothesis on model 

systems such as culture at low and normal oxygen conditions. 

Another interesting issue for us was to look in detail at the chromatin and cytoplasm 

organization of erythroblasts on a spectral level, using spectral imaging analysis, and then 

to compare the results for erythroblasts from maternal and cord blood. This analysis also 

confirmed differences between erythroblasts from maternal and cord blood. 

Which fetal target cell is best suited for analysis remains an open question. Our task was 

to evaluate the ability to perform FISH analysis of fetal cells in whole blood without any 

enrichment. One further task was to improve fetal cell recovery by applying XYY FISH 

as alternative to conventional XY FISH  

As reported by many researchers, single cell PCR analysis of fetal erythroblasts is more 

effective than FISH analysis. We checked the fetal status of small dense erythroblasts 

which appeared to be refractory to FISH analysis by Taqman PCR after laser 

microdissection capture (pool). Furthermore, we explored the opportunity of single cell 

Taqman analysis of erythroblasts enriched by soybean lectin-based (SBA) method and 

microdissected by laser microdissection and pressure catapulting (LMPC) technology 

from membrane covered slides.  

All the above–listed questions comprised the subject matter for our investigation. In what 

follows, we give a detailed description of the studies performed. 
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Aim 
Main purpose of this study is to development of non-invasive analysis of fetal cells from 

maternal blood for prenatal diagnosis. 

 

In particular, the purposes of our study are: 

 

1) To evaluate galactose-specific enrichment via soybean agglutinin for isolation of 

erythroblasts from maternal blood and to compare it with conventional CD71 

enrichment; 

2) To optimize FISH on cord blood by comparing different types of probes and 

different protocols; 

3) To apply the FISH protocols after optimization on maternal blood; 

4) To check whether the efficacy of FISH depend on chromosome choice (18 

chromosome FISH); 

5) To compare the morphometrical measurements of erythroblasts, accordingly the 

FISH signals, from maternal blood and cord blood; 

6) To check apoptosis status of erythroblasts in maternal blood and cord blood, 

applying TUNEL; 

7) To check the effect of oxygen concentration on the number of erythroblasts and 

their morphometric properties at culture at low and normal oxygen conditions; 

8) To evaluate and to compare the ability to perform XY-FISH, YY-FISH and XYY-

FISH analysis of fetal cells in whole blood; 

9) To analyze and compare the chromatin and cytoplasm organization of 

erythroblasts from maternal and cord blood on a spectral level; 

10) To check the fetal status of erythroblasts without any FISH signals by Taqman-

PCR after laser microdissection capture (pool); 

11) To optimize the single cell RT-PCR after soybean lectin-based enrichment 
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1. Introduction 
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1.1. Disadvantages of diagnosis by invasive testing and blood screening 
Currently, prenatal diagnosis of fetal genetic traits relies on invasive procedures such as 

amniocentesis, chorionic villus sampling (CVS) or fetal blood sampling. However, all 

these approaches are connected with increased risk of fetal loss or maternal injury and 

face the problems of reliability and accuracy of the results. 

Amniocentesis is time consuming and faces problems of culture failure and culture 

artefact. Culture failure can occur in up to 1% of amniotic fluid samples and 

chromosomal mosaicism in 0.5% (Hsu and Perlis, 1984). Serious maternal complications 

such as lower abdominal cramps, vaginal blood loss and amniotic fluid leakage occur in 

up to 3% of women. Occasionally, significant loss of amniotic fluid may be associated 

with neonatal complications (Finegan et al., 1990). In the large randomised controlled 

trial, done in 4,606 low-risk healthy women between 25-34 years, it was shown that the 

excess risk of miscarriage due to amniocentesis was as high as 1% (Tabor et al., 1986). 

The problem with Chorion Villus Sampling (CVS) is that the discrepancies exist 

between the cytogenetic results of culture and the actual fetal karyotype. One reason for 

this is that placental mosaicism due to the structure of chorionic villi (Slunga-Tallberg 

and Knuutila, 1995). The incidence of confined placental mosaicism in CVS specimens is 

1.5% (Hahnemann and Vejerslev, 1997). Another reason for the discrepancies is 

phenomenon called trisomy rescue (Ledbetter and Engel, 1995). Natural selection against 

aneuploidy often leads to loss of the supernumerary chromosome in an originally trisomic 

embryo. In addition, it is accepted that CVS is a slightly more risky procedure than 

amniocentesis, with a procedure-related miscarriage rate around 2% (Rhoads et al., MRC 

Working Party, 1991).  

The Fetal Blood Sampling procedure is associated with a risk of miscarriage of about 2% 

(Buscaglia et al., 1996). The main causes of fetal loss are rupture of membranes, 

chorioamniotis, and puncture of the umbilical artery, bleeding from the puncture site and 

prolonged bradycardia. The frequency of procedure-related losses can be reduced by 

methods such as serum screening, which identify women with an increased risk of 

bearing abnormal fetuses. However, serum screening is a statistical method that identifies 

only 60-70% of fetuses with Down syndrome (with a 5% false positive rate) (Phillips et 

al., 1992). 



12 

Main disadvantage of all those tests is that they cannot be used to provide cells for 

chromosomal analysis. Because of the uncertainties of screening and the procedure–

related risks of invasive diagnosis methods, there is considerable interest in developing 

alternatives risk free non-invasive test for prenatal diagnostic. 

 

1.2. Alternative non-invasive diagnosis 
In quest for the development of non-invasive methods for prenatal diagnosis two 

strategies have emerged; the enrichment of rare circulatory fetal cells from maternal 

blood and the analysis of cell free fetal DNA in maternal plasma. 

1.2.1. History of recovery of fetal cells and cell-free DNA in maternal circulation 

In 1893, Schmorl first have described the appearance of fetal trophoblasts in the maternal 

pulmonary vasculature (Schmorl, 1893). Then, Douglas et al. (1959) have identified 

circulating trophoblasts in maternal blood. The definitive proof that fetal cells circulate in 

maternal blood only came when lymphocytes bearing the Y-chromosome were detected 

in the peripheral blood of mother carrying male foetuses (Walknowska et al., 1969). 

Herzenberg et al. (1979) first have isolated the fetal cells using fluorescence-activated 

cell sorting (FACS). Bianchi et al. (1990) have identified the fetal erythroblast cells by Y 

chromosome sequences in male pregnancies after FACS-enrichment. Many researchers 

have demonstrated the opportunity of identification fetal aneuploidies by applying 

fluorescence in situ hybridisation (FISH) after FACS-enrichment (Price et al., 1991; 

Bianchi et al., 1992; Elias et al., 1992b; Simpson and Elias, 1993). The similar results 

were obtained after magnetic-activated cell sorting (MACS) of the fetal erythroblasts 

(Ganshirt-Ahlert et al., 1992). 

Convincing evidence of the existence of fetal DNA in maternal blood came in 1990 with 

the application of sensitive molecular technique such as polymerase chain reaction 

(PCR). Lo et al. (1989) have demonstrated by PCR the existence of fetal cell-free DNA 

in maternal plasma, which was detected in relatively much more quantity than intact fetal 

cells. Although the PCR method has rapidly established itself as the method of choice for 

the analysis of more facile fetal genetic loci, such as the presence of the Y chromosome 

in pregnancies at risk for an X-linked disorder or the fetal RhD gene in pregnancies with 

a Rhesus constellation, it is currently not possible to examine for more complex fetal 
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genetic disorders such as chromosomal anomalies by this approach. On the contrary, the 

analysis of intact fetal cells would allow a wider range of diagnoses to be made, including 

the detection the fetal aneuploidy. 

Unfortunately, the fetal cells are present relatively rarely in maternal blood, they have not 

specific fetal cell markers, that makes difficult (but not impossible) to isolate and 

physically identify them. Currently, the research in fetal cell area focuses on aims how to 

isolate and use these ones for non-invasive prenatal diagnosis. Also it is of interest to 

know their biological role and effect in the mother.  

 

1.2.2. Variety of fetal cells in the maternal circulation 
Trophoblasts are epithelial cells, which shed in the maternal blood as early as sixth week 

of gestation (Ganshirt et al., 1995); (van Wijk et al., 1996), but unlike lymphoid and 

myeloid fetal cells, they do not persist for years after delivery (Bianchi, 1999). 

Trophoblast cells are unique and of critical importance for development and functioning 

of the placenta. The trophoblasts form cytoblasts layer and multinucleate trophoblastic 

syncytium of placental villi. In addition, a certain population of cytotrophoblas invades 

the walls of uterus and its spiral arteries. It is a long known fact that syncytiotrophoblasts 

find their way into maternal circulation and are at least partly trapped in the capillaries of 

the lungs, but the extent of cytotrophoblasts invasion is still unclear. 

The trophoblasts express the cytokeratins (Zvaifler et al., 2000) and they have relatively 

large size that permits definitive microscopic identification. The use of trophoblast cells 

for non-invasive prenatal diagnosis however has met with several difficulties. 

Trophoblast deportation into the maternal circulation does not appear to be a 

phenomenon common to all pregnancies (Sargent et al., 1994). These cells are invariably 

trapped in the lungs and rapidly cleared by the pulmonary circulation (ATTWOOD and 

PARK, 1961). Furthermore, they are originating from the placenta, which is known from 

chorionic villus sampling studies to have 1% incidence of chromosomal mosaicism 

(Henderson et al., 1996), which severely restricts the use of trophoblasts for accurate 

genetic diagnosis. The enrichment for these cells has often been hindered by the lack of 

specific antibodies (Covone et al., 1984; Covone et al., 1988; Bertero et al., 1988). 

However, some groups have successfully isolated the trophoblasts from maternal blood 
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by using the specific monoclonal antibodies against trophoblast cell surface antigens 

(Mueller et al., 1990) or by “isolation by size of epithelial tumor cells” (ISET) (Vona et 

al., 2002; Beroud et al., 2003).  

One of the earlier attractions of fetal leukocytes was their ability to proliferate in vivo. 

Walknowska et al. (1969) demonstrated the presence of the Y chromosome in mitogen-

stimulated leukocytes obtained from pregnant women who were carrying male fetus. 

Now this propensity is regarded as a disadvantage, since leukocytes can proliferate in 

vivo in maternal organs and persist in the maternal blood (Schroder, 1974; Ciaranfi et al., 

1977). Thus, the case in point is that enriched leukocytes may be the vestiges of previous 

pregnancies and they do not represent fetal genetic status in the current pregnancy. 

Further limitation of using fetal leucocytes for non-invasive diagnosis is the lack of 

monoclonal antibodies specific to fetal leukocyte antigens. However, Herzenberg et al. 

(1979) have recovered fetal leukocytes from maternal blood by FACS with antibodies 

against paternally-derived HLA-A2 antigens. The fetal gender and HLA type were 

successfully predicted also by Iverson et al. (1981). 

However, none of the resulting metaphases contained a fetal karyotype when the 

separated leukocytes were grown in tissue culture in another study (Tharapel et al., 1993). 

Zilliacus et al. (1975) and Wessman et al. (1992) have raised the possibility of using fetal 

granulocytes as targets for non-invasive prenatal diagnosis, and suggested that fetal 

granulocytes are transferred into the maternal compartment from as early as seven weeks 

and on a regular basis. The fetal granulocytes comprised on average 0.13% and 

occasionally as much as 0.26%, of all mononuclear cells in maternal blood. Available 

data do not support the use of granulocytes as suitable targets. 

Relatively recently, Campagnoli et al. (2001) identified a novel population of 

mesenchymal stem cells (MSC). These cells are present in fetal blood from 7 to 14 weeks 

of gestation where they account for 0.4% of fetal nucleated cells. The frequency of these 

cells declines with gestational age. Their immunophenotype is non-haemopoietic (CD45 

negative, CD14 negative), non-endothelial (CD31 negative, CD34 negative, no 

expression of von Willebrand factor) and myofibroblastic. Circulating fetal MSC express 

a number of adhesion molecules (e.g. Vimentin, Fibronectin, VCAM-1), are HLA-DR 
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negative, and are positive for the mesenchymal markers, SH2, SH3 and SH4 (Macek et 

al., 2002). 

The multilineage potential of MSCs can be demonstrated under appropriate culture 

conditions by their differentiation into osteocytes, adipocytes, neurons, muscle cells and 

chondrocytes, but they assume fibroblastic appearance and growth pattern when cultured 

in 10% fetal calf serum. Furthermore, these cells synthesise collagen when placed in 

culture. MSC are not known to be normally present in adult or maternal blood, they are 

currently only one cell type to be present in fetal blood and not in maternal blood. 

Although the presence and quantity of MSCs in maternal circulation remain to be 

elucidated (Zvaifler et al., 2000) and still no well-defined protocol for isolation of fetal 

MSC from maternal blood exist, the ease by which these cells can be propagated in 

culture suggests they are another possible target cell for non-invasive prenatal testing 

(Uitto et al., 2003). 

Haematopoietic progenitor cells are present in the first trimester fetal blood and account 

for 5% of the total CD45 positive cell population. They can be enriched based on the 

expression of the CD34 antigen and expanded in vitro (Campagnoli et al., 2000). Despite 

culture conditions favouring fetal cells, only limited expansion of these cells over 

maternal cells in vitro has been achieved, and with few exceptions, fetal haematopoietic 

progenitors have not been successfully identified in the maternal circulation before 16 

weeks of gestation (Jansen et al., 2000). 

Thus, the cell type chosen for non-invasive prenatal diagnosis should be short lived 

within the mother, have no or only limited capacity to proliferate, and have unique cell 

surface markers to facilitate enrichment. These requirements led to the choice of the 

erythroblasts as target cell. 

The erythroblasts (Nucleated red blood cells (NRBCs) are very abundant in the early 

fetal circulation, virtually absent in normal adult blood and by having a short finite life-

span, there is no risk of obtaining fetal cells which may persist from a previous 

pregnancy. In contrast to the leukocyte, they have many cell surface markers (the 

transferrin receptor and the glycophorin A cell surface molecule) and cytoplasmic 

markers (embryonic (ζ- and ε-) or fetal (γ-) hemoglobin) that can help them to 
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differentiate. Furthermore, unlike trophoblast cells, fetal erythroblasts are not prone to 

mosaic characteristics. 

Initially, all researchers believed that all erythroblasts isolated from a maternal sample 

were fetal in origin. Later on, the newer and more sensitive techniques of enrichment used 

to detect fetal cells have allowed discovering previously under-appreciated population of 

maternal erythroblasts that circulate during pregnancy (Slunga-Tallberg et al., 1995; 

Slunga-Tallberg et al., 1996). Thus, if fetal erythroblasts are to be used as target cells for 

accurate non-invasive prenatal diagnosis, a more specific identification system needs to be 

developed. 
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1.3. Non-invasive prenatal diagnosis using fetal erythroblasts in 
maternal blood: current state of the art 
 
1.3.1. Number of fetal cells in maternal blood at normal and aneuploid pregnancies 

The presence of fetal cells in maternal blood is a rare event - only one fetal cell per 105-109 

of maternal cells (Ganshirt-Ahlert et al., 1990; Price et al., 1991). Takabayashi et al. (1995) 

reported on average of 2 fetal cells in 1 ml of maternal blood. Bianchi et al. (1997) 

evidenced by applying quantitative PCR, that the average number of fetal cells that can be 

isolated from maternal blood is 1.6 cells per ml when the fetal karyotype is normal. Fetal 

cell number estimation based on PCR on whole blood includes all fetal cell types, whilst 

most studies are restricted to fetal erythroblasts but nevertheless they confirm the 

observation of Bianchi et al. (1997). 

Simpson and Elias (1993) and Ganshirt-Ahlert et al. (1993) have described that the number 

of fetal cells in maternal blood increases in aneuploid pregnancies. Increased numbers of 

fetal cells in maternal blood in aneuploid pregnancies could be due to several mechanisms. 

Firstly, the placental feto-maternal barrier could be impaired due to disturbed development 

or function of placental villi, leading to an increased feto-maternal transfusion (Genest et 

al., 1995; van Lijnschoten et al., 1993). Secondly, in the trisomic fetus itself, more fetal 

cells could be present. Genest et al. (1995) have described a lack of nucleated red blood 

cells in trisomic spontaneous abortions compared with eusomic ones. This could indicate 

altered haemotopoiesis in early trisomic embryo (Thilaganathan et al., 1995), leading to an 

increased erythroblasts content in feto-maternal transfusion. Thirdly, the number of 

trisomic erythroblasts in maternal blood could be higher because these ones have a longer 

survival. 

The fact that the number of fetal cells increases at aneuploid pregnancies probably may 

contribute to diagnosing the numerical chromosomal anomalies. 

 

1.3.2. Enrichment of fetal erythroblasts from maternal blood 

Since the erythroblasts are very rare in maternal venous blood (Oosterwijk et al., 1998a; 

Pertl and Bianchi, 1999; Ganshirt-Ahlert et al., 1990), various enrichment methods exist to 
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overcome this limitation: discontinuous density gradients, magnetic activated cell sorting 

(MACS), fluorescence activated cell sorting (FACS) and lectin-based enrichment. 

1.3.2.1. Discontinuous density gradient centrifugation 
The trend to use density gradient centrifugation as the first enrichment step to 

eliminate/reduce the abundance of maternal red blood cells followed a publication by Bhat 

et al. (1993). They demonstrated, using cord blood samples, that if Histopaque-1077 was 

used alone, 82.6% of erythroblasts would pellet. Nowadays, most groups use continuous 

Ficoll gradients of different specific densities varying from 1077 to 1119. Troeger et al. 

(1999a) have found in comparative study on artificial mixture of cord and adult blood that 

the most erythroblasts was recovered when Ficoll 1119 was used as compared with lower 

density gradients 1077, 1098, 1110. Bhat et al. (1993) also have shown that if a 

discontinuous double density gradient of Histopaque-1077 and 1119 was used, less than 

0.5% of erythroblasts would collect at the top interface but 78.6% would settle at 1119.  

In 1993 Bhat et al. were again the first to report the use of triple density-gradient 

centrifugation; they have demonstrated a 25-fold enrichment of fetal nucleated red blood 

cells (Bhat et al., 1993). 

In comparative study, Al Mufti et al. (2004) have demonstrated that triple density-gradient 

separation is more effective with regard to fetal cell yield than single density gradient 

separation on maternal blood samples.  

Since then, density gradient centrifugation has been used either alone or as the first step in 

most enrichment protocols (Cheung et al., 1996; Oosterwijk et al., 1998b). 

1.3.2.2. Surface antigens 
Erythroblasts express on their surface several antigens: the transferin receptor (CD71), 

thrombospondin receptor (CD36), blood type antigens (ABO, rhesus, MN, li, etc.), 

erythropoietin receptor (Valerio et al., 1996), the fetal liver surface antigens HAE9, FB3-2 

or H3-3 (Savion et al., 1997; Zheng et al., 1997) and possibly HLA-G (Steele et al., 1996). 

Potentially-useful surface antigens for positive selection of erythroblasts are glycophorin A 

(GPA) expressed on cells of erythroid differentiation; transferin receptor (CD71) expressed 

on all proliferating cells of both red and white cell lines and the thrombospondin receptor 

(CD36), being expressed on monocytes, platelets and erythroid cells (Table 1; Figure 1). 
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The surface antigens present on the surface of other blood cells can be used for negative 

selection, for example: CD35 is present on white blood cells; CD47 is present on 

erythrocytes, and many others. 

Fetal erythroblasts were first isolated from the peripheral blood of pregnant women using 

anti-CD71 (Bianchi et al., 1990). The transferin receptor, present on all cells that 

incorporate iron including activated lymphocytes and trophoblasts, is known to be 

expressed on erythroid cells from BFU-e to the reticulocyte stage (Loken et al., 1987). 

Zheng et al. (1997) have found that 89.6% of erythroblasts from multiple or structurally 

abnormal pregnancy in the first trimester fetal blood were CD71-positive.  

Most groups have used CD71 to enrich the fetal cells based upon these findings (Cheung et 

al., 1996; Durrant et al., 1996; Zhong et al., 2000; Al Mufti et al., 2001). However, the 

disadvantages of CD71-enrichment are poor yield, which has been attributed to low 

number of target cells within maternal blood, and the lack of purity due to the fact that 

other cell types also express CD71. 

Bianchi et al. (1993) have demonstrated that GPA alone or in combination with CD71 or 

CD36 improves the retrieval of fetal NRBC from maternal blood. Troeger et al. (1999a) 

have found the using of CD36 in MACS-based protocol to be less effective than GPA or 

CD71. Two other antigens that could achieve the same objective using negative selection 

are CD35 and CD47. CD35 (complement receptor type 1 (CR1)) is present on white blood 

cells and to a lesser degree on mature erythrocytes. CD47 (integrin-associated protein) has 

recently been identified as a marker of `self` on erythrocytes (Oldenborg et al., 2000). 

A major drawback of the above antibodies is that they do not distinguish between fetal and 

maternal erythroid cells, whereas most of the erythroblasts in maternal blood are of 

maternal origin (Slunga-Tallberg and Knuutila, 1995; Holzgreve et al., 1998). 

The disadvantages of all antibody enrichments are poor yield, which has been attributed to 

low number of target cells within maternal blood, and the lack of purity of target cells in 

positive population.  
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Type of cell Antibody 
erythrocytes CD 35, CD 44, CD 55, CD 59, CD 147 
CFU-E CD 36, CDw 123, CDw 131 
BFU-E CD 33, CD 34, CDw 123, CDw 131 
myeloid 
stem cell 

CD 33, CD 34, CD 117, CDw 123, 
CDw 131 

pluripotent 
stem cell 

CD 90, CD 123, CD 117, CD 135 

lymphoid 
stem cell 

 CD 34, CD 10, CD 38, CD 90, CD 
117, CD 124, CD 127 

granulocyte
s 

CD 11b, CD 11c, CDw 12, CD 13, CD 
31, CD 43, CD 45RO, CD 52, CD 66b, 
CD 66c, CD 87, CD 88, CD 114, CDw 
101, CD 123 

 

 

Table 1. Surface antigens. 

Stem
cell

BFU-E CFU-E Erythroblast Erythrocyte

CD 34
CD 71

CD 34
CD 71

CD 36
CD 71

CD 34
CD 71
GPA
HbF
HAE 9

GPA

 
Figure 1. Surface antigens 
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1.3.2.3. Devices for antibody labeled cell sorting 
Fluorescence-activated cell sorting (FACS) and magnetic activated cell sorting (MACS) 

are the two most commonly used systems for antibody labeled cell sorting.  

FACS: Herzenberg et al. (1979) were the first who have used the FACS. The advantages 

of this technique are its ability to enrich cells with high purity, to perform multiparameter 

sorting i.e. simultaneously analyzing several criteria on a single cell; and to be adapted for 

use with intracytoplasmic antigens. Its disadvantages are its cost, expensive maintenance, 

requirement for specially–trained laboratory personnel, limitation in the number of cells 

that can be put through the system in a reasonable amount of time, fading of the 

fluorochrome if exposed to FISH after sorting and cell loss (Wang et al., 2000). 

MACS: The use of MACS for non-invasive prenatal diagnosis was first suggested by 

Ganshirt-Ahler et al. (1992). It is a faster, less expensive, bench-top technique better suited 

to process large cell numbers and can be performed in most laboratories without the need 

to trained staff and high maintenance costs. Its major disadvantage is that the cell selection 

can be based upon only a single criterion. Negative and positive selection can be 

performed on the same population of cells within the same experiment but the enrichments 

need to be carried out one at a time. Its disadvantages are: the yield and purity poorer as 

compared with FACS, slides had more maternal cell contamination (Wang et al., 2000). 

However, the absolute numbers of fetal cells recovered are comparable. 

 

1.3.2.4. RosetteSep enrichment 
Bischoff et al. (2003) have reported on improved isolation using a simple whole blood 

progenitor cell enrichment approach (RosetteSep). They enriched the NRBCs by removing 

unwanted mature T-cells, B-cells, granulocytes, natural killer cells, neutrophils and 

myelomonocytic cells using CD2, CD3, CD14, CD16, CD19, CD24, CD56 and CD66 

RosetteSep progenitor antibody cocktail (StemCell Technologies, Canada). The detection 

(FISH) rate in this pilot study was 53%, which suggests great promise. 
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1.3.2.5. Soybean Lectin-based enrichment 
Kitagawa et al. (2002) have offered the new enrichment of erythroblasts from maternal 

blood using the adsorption of erythroblasts to slides containing galactose sites by 

galactose-bearing conjugation via soybean agglutinin (SBA), a galactose-specific lectin. 

Blood cells express saccharides on their surface, which play an important role in the 

control of cellular behavior and fate (Raedler et al., 1981). Cell-surface galactose 

associated with the development and maturation of the erythrocytes is highly expressed on 

the erythroid precursor cells (Skutelsky and Bayer, 1983). 

The selective attachment of the cells with the cell-surface galactose to substrate coated 

with a galactose-containing polymer (PV-MeA, Ne Tech) via galactose-bearing 

conjugation with soybean agglutinin (SBA – a galactose-specific lectin), allows to enrich 

the erythroblasts with good yield. As well as erythroblasts, leukocytes and erythrocytes are 

also adsorbed to the slides via SBA (Figure 2). The optimal conditions for isolating 

erythroblasts are possible to be obtained by adjusting the concentration of SBA. 

Using this lectin enrichment based on the FISH analysis, Kitagawa et al. (2002) have 

estimated that 65% of erythroblasts were of fetal origin and average number of 

erythroblasts was 3.4 per 1 ml of maternal blood during normal pregnancy. 

In comparative study Babochkina et al. (2005c) have found 7-fold increase in the yield of 

erythroblasts after lectin enrichment as compared with CD71 enrichment. This indicates 

that the lectin-based method is more efficacious than a MACS approach for the 

enrichment of erythroblasts from maternal blood and that this method may be a 

promising alternative for future investigations concerned with non-invasive prenatal 

diagnosis. 
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Figure 2. Scheme of galactose-bearing conjugation of blood cells via soybean agglutinin (SBA), a galactose-

specific lectin. 

Blood cells are attached to the solid support with PV-MeA, carrying α-1.6 galactose terminal, via SBA. 

Erythroblasts preferentially bind to the solid support with a low concentration of SBA. 

 

 

 

1.3.3. Identification and analysis of the enriched cells 

1.3.3.1. The identification of fetal origin of erythroblasts enriched from 
maternal blood 
To identify the fetal origin of enriched candidate cells it is possible to use morphological 

criteria and labeling for embryonic and fetal haemoglobin (Zheng et al., 1993; Mesker et 

al., 1998; Parano et al., 2001). 

1.3.3.1.1. Morphological properties 

 The erythroblasts have distinct morphometric characteristics such as small, condensed, 

rounded nuclei, big nucleus-cytoplasm (N/C) ratio, which allow differentiate them from all 

other cells.  

Many investigators have suggested that erythroblasts originating from the fetus have 

properties of nuclear morphology that are distinguishable from erythroblasts of maternal 
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origin (Wang et al., 2000; Samura et al., 2000; Samura et al., 2001; Ikawa et al., 2001). 

Cha et al. (2003) have presented a scoring system based on the distinct phenotypic 

characteristics of the fetal erythroblasts. Two of them are morphological characteristics, 

and another two – characteristics of gamma haemoglobin staining. The study demonstrates 

the ability to identify fetal cells without relying on the presence of the Y chromosome. 

1.3.3.1.1. Fetal haemoglobin labeling 

 Yolk sac erythroblasts synthesize ε-, ζ-, γ- and α-globins, these combine to form the 

embryonic haemoglobins. Between six and eight weeks, the primary site of erythropoiesis 

shifts from the yolk sac to the liver, the three embryonic haemoglobins are replaced by 

fetal haemoglobin (HbF) as the predominant oxygen transport system, and ε- and ζ-globin 

production gives way to γ-,α- and β-globin production within definitive erythrocytes 

(Peschle et al., 1985). HbF remains the principal haemoglobin until birth, when the second 

globin switch occurs and β-globin production accelerates. 

Zheng et al. (1993) suggest that fetal origin of erythroblasts can be confirmed by labeling 

intracytoplasmic, developmentally-specific fetal haemoglobin. Since then, there have been 

several attempts to develop fetal erythroblast specific antibodies for both enrichment 

and/or identification (Zheng et al., 1997; Zheng et al., 1999; Huie et al., 2001). Presently, 

most investigators use γ-globin for fetal cell identification. However, not only fetal 

erythroblasts but also maternal erythroblasts express γ-globin (Pembrey et al., 1973). The 

“leaky” expression of γ-globin in adults prompted Cheung et al. (1996) to suggest the use 

of the embryonic ζ-globin instead. They have demonstrated this principle in the case of 

sickle cell anaemia and also in the case of β-thalassaemia on micromanipulated, ζ-globin 

positive NRBCs enriched from maternal blood between 10-12 weeks. Luo et al. (1999) 

have shown that ζ-globin was present in 53% of definitive erythrocytes between 15-22 

weeks and 34% at term, because its expression is not completely switched off after 

embryonic period. Also, ζ-globin chains exist in adults with the α-thalassaemia trait 

(Chung et al., 1984). 

Mesker et al. (1998) have demonstrated the presence of other embryonic ε-globin positive 

NRBCs in male fetal erythroblasts from two post-CVS maternal blood samples. Mavrou et 
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al. (1999) in comparative study have found that ε-globin was more reliable and specific for 

the detection of the fetal NRBCs than ζ-globin.  

1.3.3.2. The analysis of fetal erythroblasts enriched from maternal blood 
The enriched fetal cells can be analyzed predominantly by polymerase chain reaction 

(PCR) and fluorescence in situ hybridization (FISH). 

1.3.3.2.1. Polymerase Chain Reaction (PCR) 

The main advantage of single-cell PCR based analysis is the good efficiency and 

specificity. The disadvantage is that the collection of single cells needs a lot of experience 

with regard to manipulation and transferring the cells to reaction tubes and is associated 

with a significant loss of the rare fetal cells.  

The ability of PCR to amplify minute quantities of DNA has been exploited by several 

investigators to demonstrate the possibility of prenatal diagnosis of monogenic disorders 

using fetal cells enriched from maternal blood.  

Sekizawa et al. (1996) have demonstrated that it was possible to select single fetal 

erythroblasts by micromanipulation and to potentially diagnose genetic conditions such as 

Duchenne muscular dystrophy by PCR. One limitation of that study was that erythroblasts 

identified by morphology alone were presumed to be fetal. In contrast, Cheung et al. 

(1996) used micromanipulation to pick ζ-globin positive fetal erythroblasts and diagnosed 

fetal haemoglobinopathy in two pregnancies between 10-12 weeks. They avoided the 

problem of allele dropout by pooling several erythroblasts in each PCR reaction. The 

usability of micromanipulation prior to PCR has since been confirmed by Watanabe et al. 

(1998) who demonstrated the prenatal diagnosis of the X-linked ornithine 

transcarbamylase deficiency syndrome and by Samura et al. (2001) who demonstrated the 

adjunctive use of PCR after FISH.  

1.3.3.2.2. Fluorescence in situ hybridisation (FISH) 

The main advantage of the FISH is that the counting of fetal cells could be realized 

automatically in the future. With such automatic analysis it could be possible to examine 
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large number of cells in short time. The disadvantage of FISH for fetal cells is low 

efficiency.  

The ability of FISH to detect fetal aneuploidies within fetal cells isolated from maternal 

blood was demonstrated by many researches. Price et al. (1991) have demonstrated the use 

of FISH technique for diagnosis of the trisomies 18 and 21. Elias et al. (1992a) have 

extended these observations by diagnosing fetal trisomy 21 in the maternal blood taken 

before CVS. The first series was reported by Ganshirt-Ahlert et al. (1993) who confirmed 

five cases of trisomy 18 and ten cases of trisomy 21 in erythroblasts enriched from 

maternal blood. Cacheux et al. (1992) have shown that sex chromosome aneuploidy could 

also be detected reliably and Bischoff et al.  (1995) have detected sex chromosome 

mosaicism by FISH in fetal cells enriched from maternal blood. Finally, Pezzolo et al. 

(1997) have described one case in which fetal triploidy was diagnosed by FISH on 

enriched fetal cells and confirmed by CVS. Some investigators have attempted to increase 

the number of chromosomes that could be analyzed by interphase FISH by performing 

simultaneous multicolour FISH (Bischoff et al., 1998) or by sequential hybridisation of 

chromosome pairs (Zhen et al., 1998).  

 

1.3.4. Clinical trials of non-invasive prenatal diagnosis 

The NICHD (National Institute for Child and Development) funded NIFTY (National 

Institute for Child and Development Fetal Cell Isolation Study), which began in 1994. The 

trial aimed to recruit 3000 women considered to be at “high risk” (women that are over 35 

years, have serum screening results indicating an increased risk of Down Syndrome, have 

fetal anomalies detected on ultrasound and have familial chromosomal rearrangement) for 

fetal aneuploidy. However, studies performed have indicated that fetal erythroblasts cannot 

be reliably isolated and analyzed despite the use of current state-of-the-art technologies. In 

these studies sensitivities as low as 16% were recorded by groups using flow cytometrical 

(FACS) enrichment strategies, whereas those using a magnetic cell sorting (MACS) 

approach were able to detect fetal cells with a sensitivity of 45% (Bianchi et al., 2002). 
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1.3.5. Limitation of clinical application of non-invasive diagnosis 

The disappointing results of detection and analysis of erythroblasts in maternal blood have 

initially been attributed to very low occurrence of erythroblasts within maternal blood 

(Hamada et al., 1993) and to the lack of suitable refined enrichment procedure using fetal 

cell markers specific enough to enrich and identify them. 

The recent studies have, however, indicated that fetal erythroblasts may express certain 

apoptotic traits, such as fragmentation of their nuclear DNA as detected by the TUNEL 

assay (Sekizawa et al., 2000; Kolialexi et al., 2004). This has raised the question of 

whether fetal erythroblasts are suitable for molecular genetic analysis, and have again 

voiced the concern whether these cells can indeed be detectable at all in the maternal 

circulation. 

 

1.3.6. Place of fetal cells in non-invasive prenatal diagnosis 

Currently it is envisaged that fetal cells derived from maternal blood could be used as a 

screening tool, alone or (more likely) in combination with other modalities such as cell-

free DNA biochemical tests and nuchal translucency scans. 

However, two changes in the current state of the art would allow enriched fetal cells to be 

used for screening and, more important, diagnosis. These include reliable enrichment of 

fetal erythroblasts in the first trimester and specific identification of the fetal origin of 

these cells. 

Fetal cells can be used for diagnosis only if a pure population of these cells can be 

obtained, or if there is a method of confirming the fetal origin of the erythroblasts being 

tested and distinguishing them from background maternal (Goldberg, 1997). 

The complete system for using fetal cells from maternal circulation for prenatal diagnosis 

of specific genes as well as chromosomal disorders is likely to be derived from 

investigating the following functional components, some of which may be procedurally 

combined: first, segregation of a population of nucleated blood cells enriched in fetal 

cells of one or more types; second, identification of cells that are probably of fetal origin 

within this population; third, isolation of the cells likely to be of fetal origin; fourth, 

confirmation of the cell(s) as fetal; and, fifth, analysis of the fetal cells (Bayrak-Toydemir 

et al., 2003). 
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Over the past two decades, investigators have developed and pursued strategies that draw 

upon several or all of these components in various combinations and sequences of step, 

but still today performing the cytogenetic and molecular analysis of fetal cell obtained 

non-invasively from maternal circulation is very desirable though elusive goal, and so far 

we have not yet an optimal protocol. 
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2. Results 
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2.1. FISH optimization on cord blood samples 
 

Introduction 

The enriched fetal cells can be analyzed by fluorescence in situ hybridisation (FISH) 

(Bianchi et al., 1992; Bischoff et al., 1998; Oosterwijk et al., 1998b; Al Mufti et al., 1999; 

Parano et al., 2001). 

The main advantage of the FISH is that the counting of fetal cells could be realized in the 

future automatically. The disadvantage of FISH for fetal cells is the low efficiency. 

As Troeger et al. (1999b) and many other authors have previously shown the erythroblasts 

isolated by micromanipulation could be reliably analyzed by PCR for a number of fetal 

genetic loci with a disparity appeared to exist between the analysis of fetal erythroblasts by 

PCR and FISH. 

This restriction for successful FISH analysis of erythroblasts circulating in maternal 

blood may be due to the fact that the nuclei in fetal cells are very small, the DNA in these 

cells is very dense, and it means, that access for penetration and hybridization of probes 

is difficult. In such case the major aspects for successful FISH are the kind of fixation, 

pretreatment of cells, choice of probes and optimization of hybridisation conditions. In 

our study we tried to improve the FISH efficiency on MGG stained slides by optimization 

of the FISH protocol. 

The choice of MGG staining was made, because such approach allows the cell 

morphology to be unchanged. The cell morphology helps to recognize the erythroblasts.  

To make easier the access to DNA of erythroblasts we have compared different kinds of 

pretreatment of cells: pepsin, HCl, pro K, and microwave activation. 

A further aspect, which plays a critical role in success of FISH is the choice of 

hybridization probes. We have compared Vysis two-color cocktail: X centromeric α-

satellite (spectrum green)/Y centromeric α-satellite (spectrum orange) and Qbiogene two-

color cocktail: X centromeric a-satellite (fluorescein)/Y centromeric a-satellite 

(rhodamine). Also we checked the probes for Y chromosome for centromeric region 

Yp11.1-q11.1 (α-satellite) and for region q12 (satellite III), alone and in combination. 

Then we used the combination of Qbiogene probes: two-color cocktail: X α-satellite 

(fluorescein) and Y α-satellite (rhodamine) in combination with Y III-satellite 
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(rhodamine) in one–step two–color XYY-FISH-hybridization. To optimize the FISH 

protocols we also checked different conditions of hybridization: melting temperature and 

time, duration of hybridization and washing conditions also. 

 

2.1.1. Pepsin, Proteinase K and HCL pretreatment 

Introduction 

The pepsin and proteinase K digest the protein matrix that surrounds the nucleic acid. The 

precise action of the HCL acid is not known, but it has been suggested, that it is connected 

with extraction of proteins and partial hydrolysis of the target sequence. 

Aim 

We have applied these pretreatments to improve access of the probe to target nucleic acid 

and to reduce non-specific background signals. The pretreatments were supposed to 

improve the efficiency of the FISH on erythroblasts enriched from maternal blood. 

Results 

By examination of different concentrations, temperature and duration of time, the 

following optimal conditions for pepsin pretreatment were determined: 0,005% solution of 

pepsin in water, for 30 sec at 370C. 

The efficiency for FISH on erythroblasts from cord blood under these experimental 

conditions with Vysis probes for MGG slides was 98%. The signals were bright and very 

good recognizable, but the morphology of cells was destroyed. The cells represented only 

nuclei with small rim of cytoplasm (Figure 6). 

Proteinase K and HCL treatments did not produce good results for MGG slides. They have 

demonstrated good FISH signals, but have destroyed the morphology of cells completely. 

After hybridization the slides have high non-specific background signals. 

 

2.1.2. Microwave pretreatment 

Introduction 

The microwave treatment has been suggested to enhance the exposure of the chromosomes 

to FISH probes (Durm et al., 1997). 

The mechanism and the reason for the accelerating of FISH efficiency by microwave 

treatment still are not well understood. It is considered that the microwave treatment 
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produces the local thermal effects which may contribute to DNA denaturation and exerts a 

considerable influence on proteins. 

Aim 

To improve the efficiency of the FISH analysis by the microwave treatment. 

Results 

1) Microwave conditions optimization 

The experimental conditions were systematically optimized using a household 

microwave oven. It was important to place the specimen slide onto a glass filled with 

PBS buffer in order to prevent “overdenaturation” of the sample and to maintain the 

nuclei architecture. The best position of the slide was determined in the centre of circled 

plate since the microwave field is not homogeneous. The best denaturation conditions 

were determined as 700 W for 40 sec (Table 2; Figure 4A).  

 

  180 W 360 W 700 W 
5 sec       
10 sec       
15 sec       
20 sec       
25 sec       
30 sec       
35 sec       
40 sec       
45 sec       
50 sec       
55 sec       
60 sec       

 

Table 2. Choice of conditions of microwave pretreatment. 

Red color – best conditions; orange – good; yellow – satisfactory; blue – bad. 

 

 

2) The conventional XY Vysis FISH with microwave pretreatment on MGG stained 

erythroblasts from cord blood 

Hybridization was performed with conventional Vysis two-color cocktail XY probes for 

6 hours. The average efficiency of X- and Y- signals on erythroblasts enriched from cord 

blood was 99% (SDev 0.01136, Var 0.00013) (8 cases). Under the same experimental 

conditions without the microwave pretreatment, the average efficiency for MGG-slides 
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was 73%. The fluorescence signals for Y- and X-chromosome were equal and bright, 

without dim, in nucleus position. Morphology of MGG-staining was kept well. 

3) The conventional XY Vysis FISH with microwave pretreatment on 

immunocytochemical (ICC) stained erythroblasts from cord blood 

Microwave pretreatment of the slides was used before FISH under the same experimental 

conditions also for ICC staining slides. The average efficiency of X- and Y-signals on 

erythroblasts enriched from cord blood was 83% (SDev 0.14, Var 0.02) (5 cases). Under 

the same experimental conditions without microwave pretreatment the average efficiency 

for ICC-slides was 65% (Table 3; Figure 3). 

 

2.1.3. Choice of probes for FISH analysis of erythroblasts 

Aim 

To compare Vysis and Qbiogene probes. 

Results 

For the comparison of Vysis and Qbiogene probes we have performed hybridisation with 

Vysis two-color cocktail probes: X centromeric a-satellite (spectrum green)/Y centromeric 

a-satellite (spectrum orange) and Qbiogene two-color cocktail probes: X centromeric a-

satellite (fluorescein)/Y centromeric a-satellite (rhodamine). The average efficiencies were 

75% and 79% for the Vysis and Qbiogene probes, respectively. Further we tried to use for 

our research the Qbiogene probes, because they are more suitable in hybridization and less 

expensive; in addition, the company offers the wide range of different fluorochromes and 

their combinations (Figure 5). 

 

2.1.4. The labeling of Y chromosome by two different probes in the one-step two-

color XYY-FISH 

The mathematical model 

The mathematical calculation of probability of labeling the fetal cells by XY-and XYY-

probes combinations gives the values 0.810 and 0.891, respectively (in the mathematical 

model we took equal FISH efficiency of 90% for X, Y (α-satellite) and Y (III-satellite) 

probes in the mathematical model, as described by the manufacturer). Thus, the labeling 

of Y chromosome by two different probes (α- and III-satellite) of the same color in the 
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one-step two-color XYY-FISH has the advantage in detecting fetal Y-chromosome. 

Theoretically the increase in the number of Y chromosome probes of the same color leads 

to increase in the probability of detection of Y-chromosome.  

Aim 

To test a possible improvement in the detection of Y-chromosome signal by applying 

one–step two–color XYY-FISH-hybridization in which the Y-chromosome was labeled 

by two different probes (α- and III-satellite) of the same color. 

Results 

Firstly, we have checked hybridization efficiency for Y α- and Y III-satellite Qbiogene 

probes. The average efficiencies on cord blood from male were 100% and 90% for Y α- 

and Y III-satellite Qbiogene probes, respectively. 

At the next step, we have compared the efficiency of Qbiogene probes: Y α- (fluorescein) 

and Y III-satellite (rhodamine) in one-step YY-FISH. The hybridization efficiency for both 

probes was the same and was equal to 98% (Figure 7). 

Then, we used the combination of probes: two-color cocktail: X α-satellite (fluorescein) 

and Y α-satellite (rhodamine) in combination with Y III-satellite (rhodamine) in one–step 

two–color XYY-FISH-hybridization. The average efficiency on cord blood from male 

was 100% (Figure 4 B, C, D, E). 

 

2.1.5. Development of a combined immunocytochemistry (ICC) for glycophorin A 

(GPA) (fetal cell identification) and FISH (as genetic diagnosis) protocol on cord 

blood samples 

Introduction 

The glycophorin-A (GPA) antigen has been shown to be expressed over a broad spectrum 

of erythropoietic development, and had previously been used for the highly successful 

enrichment of erythroblasts from maternal blood samples (Troeger et al., 1999a; Al Mufti 

et al., 2004; Choolani et al., 2003). A reason for choosing the GPA antigen and not other 

possible fetal erythroblast specific antigens, such as gamma and epsilon globin 

molecules, is that these latter proteins are frequently not expressed with equal abundance 

in all fetal erythroblasts. 
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The immunocytochemistry and FISH are fundamentally incompatible techniques. The 

harsh fixatives, high temperatures, formamide and stringent washes commonly used in 

FISH results in the protein damage. Conversely, the gentler fixatives used during 

immunocytochemistry hinders probe penetration into the nucleus and give poor FISH 

efficiency (Oosterwijk et al., 1998c). In order to combine the two techniques, every step 

needed to be analyzed separately. 

Aim 

To combine the immunocytochemistry and FISH techniques and to check the limitation 

of sensitivity and the specificity of the combined technique. 

Results 

The hybridisation efficiency of 65% was achieved when applying conventional XY Vysis 

FISH protocol on ICC slides. Unfortunately, cell morphology was poor and most of the 

nuclei and cytoplasm were damaged. In contrast, FISH efficiency when using MGG 

staining was 98%. The hybridisation efficiency on ICC slides can be improved up to 83% 

by using microwave pretreatment (Table 3; Figure3) (See also results of microwave 

pretreatment) 

 
 
 
 

 
Figure 3. XY Vysis FISH on ICC (GPA)-stained erythroblasts from cord blood. 
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Case Time of 
hybridisation, 

hours 

Probe Efficiency, 
% 

1 9 Vysis XY 97 
2 5 Vysis XY 78 
3 5 Vysis XY 76 
4 5 Vysis XY 98 
5 5 Vysis XY 67 
    
  Average 83 

 
Table 3. XY Vysis FISH with microwave pretreatment on ICC (GPA)-stained erythroblasts from cord 
blood. 
 

 

2.1.6. Conclusion of FISH optimization on cord blood samples 

In order to optimize the FISH protocol for hybridization of erythroblast we have tried 

different pretreatments of slides: pepsin, HCl, proteinase K and microwave activation. 

The best results were demonstrated by the microwave activation. This pretreatment 

allows achieving good FISH efficiency with keeping of good cell morphology. All other 

kind of applied pretreatments resulted in destroying the cell morphology which is 

significant disadvantage. 

Next critical aspect, which plays a critical role in the success of the FISH, is the choice of 

hybridisation probes. According to our results, the best FISH efficiency was 

demonstrated by the combination of two probes of the same color (rhodamine) for Y 

chromosome (α- and III-satellite) in combination with X (α-satellite) chromosome probe 

(fluorescein) in one–step two–colour XYY-FISH-hybridisation (Figure 4). 

The combination of the immunocytochemistry and FISH resulted in poor cell 

morphology and reduction of FISH efficiency. The applying of microwave pretreatment 

to ICC slides increases the FISH efficiency, but destroys the cell morphology to a great 

extent. 

Further, microwave and pepsin pretreatments as the best of investigated ones were used 

with XYY-FISH for erythroblasts enriched from maternal blood (See also results of 

“FISH analysis on maternal blood samples”). 
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Figure 6. Vysis XY FISH on cells from cord blood after pepsin preatreatment. 

Figure 7. YcenY III Qbiogene FISH on erythroblasts enriched from cord blood
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2.2. FISH analysis on maternal blood samples 

 

2.2.1. XY Vysis FISH 

Aim 

To perform conventional XY Vysis FISH analysis on memorized erythroblasts enriched 

from maternal blood and to analyze the structure of erythroblast population after FISH.  

Design 

The FISH signal was individually analyzed for every memorized erythroblast. The detected 

signals were noted as XX, XO, or OO (no signal), XY and XYY signals. Also the cases of 

loss of the cells were noted. 

Results 

1) Pregnancy cases with male fetus 

Seven maternal blood samples from pregnant women with male fetus were hybridized with 

Vysis probes, without microwave pretreatment according to the optimized protocols. 

Average number of erythroblasts was 16, ranging from 11 to 20 per slide. We found 

specific XX signal on average in 50.9% of the erythroblasts; XO signal on average in 

16.7% of the erythroblasts; OO signal on average in 21.0% of the erythroblasts; XY signal 

on average in 5.3% of the erythroblasts; XXY signal on average in 2.6% of the 

erythroblasts and loss of cells was determined on average in 3.5% of all memorized 

erythroblasts enriched from maternal blood samples (Table 5). 

2) Pregnancy cases with female fetus 

Seven maternal blood samples from pregnant women with female fetus were hybridized 

with Vysis probes following the optimized protocol. Average number of erythroblasts was 

8, ranging from 2 to 12 per slide. XX signal was found on average in 41.1% of the 

erythroblasts, XO signal was found on average in 5.4% of the erythroblasts, OO signal was 

found on average in 26.8% of the erythroblasts after applying Vysis FISH protocol and 

loss of cells was found on average in 26.6% of all memorized erythroblasts enriched from 

maternal blood samples (Table 6). 
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XX XO OO XY XXY Loss of 
cell

3054-4 Vysis No 6 15 9 4 1 1 2
3074-1 Vysis No 6 11 7 1 1 1 1 3
3065 Vysis No 6 13 9 2 1 1 2
3064 Vysis No 6 14 12 1 1 2
3096 Vysis No 6 11 5 5 1 2
3054-1 Vysis No 6 14 5 2 1 2 2 2 1
3107-2 Vysis No 6 15 4 2 7 2 6
3087-2 Vysis No 6 20 6 2 12 2

Average 15.7 8.4 2.2 4.2 1.6 1.2 2.8 3.0
Sum 113 58 19 24 6 3 4 20

In % 100% 50.9% 16.7% 21.0% 5.3% 2.6% 3.5%

Another cell 
(not 

memorized) 
with Y 
signal

Result of XY Vysis FISH on memorized cellsCase ID Type of 
probes

Pretrea
tment

Time of 
hybridisation

, hour

Number of 
memorized 

erythroblasts 
after MGG 

identification

Table 5. XY-Vysis-FISH analysis of morphologically assessed erythroblasts enriched from maternal blood 

with male fetus 

 

XX XO OO loss of cell

3073 Vysis No 16 2 1 1
3663-4 Vysis No 17 7 4 3
3055 Vysis No 17 12 1 5 6
3023 Vysis No 9 6 2 1 2 1
3114-1 Vysis No 9 8 3 3 2
3105 Vysis No 9 10 6 1 0 3
3104 Vysis No 9 11 6 1 2 2

Average 8.0 3.3 1.0 2.5 2.5
Sum 56 23 3 15 15

in % 100.0% 41.1% 5.4% 26.8% 26.6%

Result of XY Vysis FISH on memorized cells
Case ID Type of 

probes
Pretreatme

nt
Time of 

hybridisati
on, hour

Number of 
memorized 

erythroblasts 
after MGG 

identification

Table 6. XY-Vysis-FISH analysis of morphologically assessed erythroblasts enriched from maternal blood 

with female fetus 
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2.2.2. XYY Qbiogene FISH 

Aim 

To improve the FISH efficiency on erythroblasts enriched from maternal blood by 

applying XYY Qbiogene FISH protocol following the optimization on cord blood and to 

analyze the structure of memorized erythroblast population after FISH.  

Results 

1) Pregnancy cases with male fetus 

Eight maternal blood samples from male pregnant women were hybridized with the 

mixture of Qbiogene two-color cocktail: X centromeric α-satellite (fluorescein)/Y 

centromeric α-satellite (rhodamine) and Qbiogene Y III-satellite (rhodamine) probes, 

following the protocols optimized on cord blood. Average number of erythroblasts was 14, 

ranging from 6 to 19. We found specific XX signal on average in 61.5% of the 

erythroblasts, XO signal on average in 8.3% of the erythroblasts, OO signal on average in 

14.7% of the erythroblasts, XY signal on average in 6.4% of the erythroblasts, XXY signal 

on average in 0.9% of the erythroblasts and loss of cells was determined on average in 

8.1% cells from population of memorized erythroblasts (Table 7). 

2) Pregnancy cases with female fetus 

Eight maternal blood samples from female pregnant women were hybridized with the 

mixture of Qbiogene two-color cocktail: X centromeric α-satellite (fluorescein)/Y 

centromeric α-satellite (rhodamine) and Qbiogene Y III-satellite (rhodamine) probes, 

following the protocols optimized on cord blood. Average number of erythroblasts was 14, 

ranging from 5 to 35. 

XX signal was found on average in 47.8% of the erythroblasts, XO signal was found on 

average in 8.8% of the erythroblasts, OO signal was found on average in 38.9% of the 

erythroblasts and the loss of cells was found on average in 4.4% of the erythroblasts after 

Qbiogene FISH (Table 8). 
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XX XO OO XY XXY Loss of 
cell

3084 QbioXY+Y No 15 16 11 2 3 2
3085 QbioXY+Y No 15 17 13 1 3 3
3011 QbioXY+Y No 15 11 5 3 3 2
3063 QbioXY+Y No 15 11 5 3 3 3
3089 QbioXY+Y No 16 16 8 1 1 1 1 4 2
3091 QbioXY+Y No 16 6 6 5
3083 QbioXY+Y No 16 13 8 1 2 1 1 2
3077 QbioXY+Y No 16 19 11 5 2 1 3

Average 13.6 8.4 1.8 2.7 1.8 1.0 2.3 2.8
Sum 109 67 9 16 7 1 9 22

In % 100.0% 61.5% 8.3% 14.7% 6.4% 0.9% 8.1%

Another 
cell (not 

memorize
d) with Y 

signal

Result of XY Vysis FISH on memorized cellsCase 
ID

Type of 
probes

Pretre
atment

Time of 
hybridisati
on, hour

Number of 
memorized 

erythroblasts 
after MGG 

identification

Table 7. XYY-Qbiogene-FISH analysis of morphologically assessed erythroblasts enriched from maternal 

blood with male fetus 

 

XX XO OO Loss of 
cell

3117 Qbiogene XY-Y No 9 8 7 1
3110 Qbiogene XY-Y No 9 5 5
3111 Qbiogene XY-Y No 9 9 3 1 5
3109 Qbiogene XY-Y No 9 12 8 1 2 1
3062 Qbiogene XY-Y No 9 35 10 2 21 2
3055-2 Qbiogene XY-Y No 9 20 6 1 11 2
3663-2 Qbiogene XY-Y No 9 18 11 3 4
3023-2 Qbiogene XY-Y No 9 6 4 1 1

Average 14.1 6.8 1.4 7.3 1.7
Sum 113 54 10 44 5

In % 100.0% 47.8% 8.8% 38.9% 4.4%

Result of XY Vysis FISH on memorized cellsCase ID Type of probes Pretreat
ment

Time of 
hybridisati
on, hour

Number of 
memorized 

erythroblasts 
after MGG 

identification

Table 8. XYY-Qbiogene-FISH analysis of morphologically assessed erythroblasts enriched from maternal 

blood with female fetus 
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2.2.3. XY Vysis FISH on microwave pretreated slides 

Aim 

To improve FISH efficiency on erythroblasts enriched from maternal blood by applying 

microwave pretreatment of slides following the results of optimization on cord blood in 

conventional XY Vysis FISH procedure and to analyze the structure of memorized 

erythroblast population after FISH. 

Results 

Six maternal blood samples from male pregnant women were hybridized with XY Vysis 

probes, with microwave pretreatment following the optimized protocols. Average number 

of erythroblasts was 16, ranging from 10 to 24 per slide. We found specific XX signal on 

average in 50.4% of the erythroblasts, XO signal on average in 14.4% of the erythroblasts, 

OO signal on average in 17.1% of the erythroblasts, XY signal on average in 3.6% of the 

erythroblasts, XXY signal on average in 5.4% of the erythroblasts and loss of cells was 

determined on average in 9.0% of memorized erythroblasts (Table 9; Figure 8A). 

XX XO OO XY XXY loss of 
cell

3054-3 Vysis microwave 6 17 10 3 1 1 2 0
3074-2 Vysis microwave 6 17 8 4 0 3 2 1
3054-2 Vysis microwave 9 14 6 4 2 0 2 3
3094 Vysis microwave 6 10 5 2 1 2 1
3092 Vysis microwave 6 10 10 2
3107-1 Vysis microwave 6 24 8 3 6 1 6 5
3087-1 Vysis microwave 6 19 9 10 3

Average 15.6 8.4 2.4 3.6 1.5 1.3 2.7 2.9

Sum 111 56 16 19 4 6 10 15

In % 50.4% 14.4% 17.1% 3.6% 5.4% 9.0%

Result of XY Vysis FISH on memorized cells

Case ID Type of 
probes

Pretreat
ment 

Time of 
hybridisa
tion, hour

Number 
memorized 

erythroblast
s after MGG 
identification

Another 
cell (not 

memorized
) with Y 
signal

Table 9. XY-Vysis-FISH analysis (microwave pretreatment) of morphologically assessed erythroblasts 

enriched from maternal blood with male fetus 
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Figure 8. The comparison of microwave pretreatment on morphologically
assessed erythroblasts enriched from maternal blood samples from
male pregnancy cases

A. Fish analysis with Vysis XY-probes
B. Fish analysis with Qbiogene XYY-probes
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2.2.4. XYY Qbiogene FISH on microwave pretreated slides 

Aim 

To improve the FISH efficiency on erythroblasts enriched from maternal blood with male 

fetus using simultaneously the two protocols which show best results on cord blood: 

microwave treatment and applying of Qbiogene probes with double labeling of Y 

chromosome. 

Results 

Seven maternal blood samples from male pregnant women were hybridized with mixture 

of Qbiogene two-color cocktail: X centromeric α-satellite (fluoresceine)/Y centromeric α-

satellite (rhodamine) and Qbiogene Y III-satellite (rhodamine) probes, with pretreatment 

by microwave, following the optimized protocols. Average number of erythroblasts was 

20, ranging from 14 to 24. We found specific XX signal on average in 50.0% of the 

erythroblasts, XO signal on average in 5.0% of the erythroblasts, OO signal on average in 

28.3% of the erythroblasts, XY signal on average in 4.4% of the erythroblasts, XXY signal 

on average in 1.5% of the erythroblasts and loss of cells was determined on average 10.8% 

of all memorized erythroblasts (Table 10; Figure 8B). 

XX XO OO XY XXY Loss of 
cell

3087-3 QbioXY+Y microwave 19 21 3 1 11 1 5 3
3077-2 QbioXY+Y microwave 19 24 5 13 6 5
3083-2 QbioXY+Y microwave 18 14 11 1 1 1 4
3107 QbioXY+Y microwave 18 22 8 1 6 4 1 2 3
3089-2 QbioXY+Y microwave 19 19 13 3 3 4
3084-2 QbioXY+Y microwave 19 18 14 3 1 3
3091-2 QbioXY+Y microwave 18 20 15 1 2 1 1 5

Average 19.71 9.86 1.40 5.57 2.00 1.00 3.00 3.86
Sum 138 69 7 39 6 2 15

In % 100.0% 50.0% 5.0% 28.3% 4.4% 1.5% 10.8%

Case ID Type of 
probes

Pretreatme
nt

Time of 
hybridisati
on, hour

Number of 
memorized 
erythrobla
sts after 
MGG 

Result of XYY Qbiogene FISH on memorized 
cells

Another cell 
(not 

memorized) 
with Y signal

 

Table 10. XYY-Qbiogene-FISH analysis (microwave pretreatment) of morphologically assessed 

erythroblasts enriched from maternal blood with male fetus 
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Figure 9. Comparison of the different NRBC-populations, enriched from
maternal blood samples analysed with different XY-FISH protocols (%)
A. Different FISH protocols on erythroblasts from pregnancy with male fetus.
B. Different FISH protocols on erythroblasts from pregnancy with female fetus. 
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Figure 10. 
A. The structure of erythroblast population from maternalblood with male fetus.
B. The structure of erythroblast population from maternalblood with female fetus.
C. Comparison of of FISH result on erythroblasts enriched from pregnancies with

male and female.
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2.2.5. The separate analysis of erythroblasts population structure for pregnancies 

with male fetus with and without Y signal detected 

Aim  

To compare the structure of memorized erythroblasts population in the case of pregnancy 

with male fetus when the Y signal was detected and those with no Y signal detected.  

Results 

We have separately analyzed the cases of pregnancy (for which XY Vysis, XY Vysis 

mw, XYY Qbiogene, XYY Qbiogene mw protocols were applied) with male fetus (Table 

11), in which the Y signal was determined, and the results of hybridisation, in which no 

Y signal was detected. The analysis of population structure of erythroblasts with Y signal 

shows XX signal on average in 53% and XY signals on average in 10% of erythroblasts. 

The XO was determined on average in 13% of erythroblasts. XXY signal was determined 

on average in 5% of erythroblasts. The absence of any signals was observed on average 

in 13% of erythroblasts and 7% of the cells were lost. The analysis of structure of 

populations with no Y signal has shown that the XX signal was determined on average in 

56% of erythroblasts. The XO signal was determined on average in 12% of erythroblasts. 

The XXY signal was found on average in 1% of erythroblasts and the absence of signals 

was determined on average in 24% of erythroblasts. 7% of the cells were lost during the 

hybridization procedure. 

From the comparison of the structure of populations with Y signals and without those we 

can see considerable increase in percentage of erythroblasts without any signals (OO) in 

those cases when Y signal was not detected up to 24% compared with 13% in cases when 

the Y signal was detected. We can see also the decrease of XXY signals down to 1% in 

cases in which Y signal was not detected compare with 5% in cases in which Y signal 

was detected. All other data are approximately similar (Table 11; Figure 11). 
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FISH  Vysis,  
% 

Vysis, 
 mw, 
% 

Qbiogene 
XcYc-Y III, 

% 

Qbiogene  
XcYc-Y III, 

mw, 
% 

Average,  
% 

Signal 
detected 

No Y 
signal 

Y signal No Y 
signal 

Y signal No Y 
signal 

Y signal No Y 
signal 

Y signal No Y 
signal 

Y signal 

XX 34 64 55 50 73 54 61 43 56 53 
XO 23 15 12 23 8 10 5 5 12 13 
OO 39 6 20 5 14 12 24 29 24 13 
XY 0 9 0 8 0 13 0 10 0 10 

XXY 0 5 4 11 0 2 1 2 1 5 
Lost 
cells 4 3 9 4 5 9 9 11 7 7 
 

Table 11. Comparison of the structure of erythroblast population in pregnancies with male fetus with and 
without detected Y signal (mw refers to microwave treatment) 
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Figure 11. Comparison of the structure of erythroblast population in pregnancies with male fetus in which 
the Y signal was detected and was not.  
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2.2.6. XYY Qbiogene FISH on pepsin pretreated slides 

Aim 

To improve the FISH efficiency on erythroblasts enriched from maternal blood with male 

fetus using together the two protocols which show best results on cord blood: pepsin 

treatment and applying of Qbiogene probes with double labeling of Y chromosome. 

Results 

Eight maternal blood samples from male pregnant women were hybridized with mixture of 

Qbiogene two-color cocktail: X centromeric α-satellite (fluorescein)/Y centromeric α-

satellite (rhodamine) and Qbiogene Y III-satellite (rhodamine) probes, with pepsin 

pretreatment, following the optimized protocols. Average number of erythroblasts was 23, 

ranging from 8 to 69. We found specific XX signal on average in 31.0% of the 

erythroblasts, XO signal on average in 4.4% of the erythroblasts, OO signal on average in 

45.1% of the erythroblasts, XY signal on average in 1.0% of the erythroblasts, XXY signal 

on average in 0% of the erythroblasts with on average 18.5% of all memorized 

erythroblasts being lost (Table 12). 

XX XO OO XY XXY Loss of 
cell

3089-3 QbioXY+Y pepsin 15 17 12 1 3 1
3083-3 QbioXY+Y pepsin 15 17 13 1 3
3087-4 QbioXY+Y pepsin 16 27 4 3 19 1
3002-2 QbioXY+Y pepsin 16 12 7 4 1
2988 QbioXY+Y pepsin 16 8 1 1 1
3084-3 QbioXY+Y pepsin 16 19 8 1 10
3085-2 QbioXY+Y pepsin 16 15 12 1 1 1
2970 QbioXY+Y pepsin 16 69 0 1 55 17

Average 23 7.13 1.33 13.83 1 4.86
Sum 184 57 8 83 1 34

In % 100.0% 31.0% 4.4% 45.1% 1.0% 18.5%

Type of 
probes

Case ID Result of XY Vysis FISH on memorized cellsNumber of 
memorized 

erythroblasts 
after MGG 

identification

Time of 
hybridisati
on, hour

Pretreatme
nt

Table 12. XYY-Qbiogene-FISH analysis (pepsin pretreatment) of morphologically assessed erythroblasts 

enriched from maternal blood with male fetus 
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2.2.7. FISH analysis with Qbiogene Xc and 18c chromosome probes 

Introduction 

Every chromosome in interphase nuclei has special localization, and if, for example, Y 

chromosome was located in the center of the nuclei, the access to it is difficult. On the 

other hand, if Y chromosome is at the periphery of nuclei, it can be lost during procedure 

of hybridization. We performed the hybridization with chromosome 18 centromeric 

probe Qbiogene. Such choice was made, because chromosome 18 has the same size like 

Y chromosome and was established earlier to be located at nuclear periphery (Cremer 

and Cremer, 2001). 

Aim 

To check the hypothesis that efficiency of hybridization depends on chromosome choice 

for the probe. 

Results 

Six maternal blood samples from male pregnant women were hybridized with the mixture 

of Qbiogene X centromeric (rhodamine) and Qbiogene 18 chromosome (fluorescein) 

probes following the optimized protocols. Average number of erythroblasts was 16, 

ranging from 15 to 18. We found specific XX1818 signal on average in 52% of the 

erythroblasts, XX18O signal - on average in 5% of the erythroblasts, XXOO signal - on 

average in 1% of the erythroblasts, XO1818 signal - on average in 9% of the 

erythroblasts, XO18O signal - on average in 8% of the erythroblasts, XOOO signal - on 

average in 1% of erythroblasts and OO1818 signal on average in 1% of erythroblasts. 

OOOO signal was determined on average in 13% with on average 10% of erythroblasts 

from the population of fixed erythroblasts being lost (Table 13; Figure 12). 

The separate analysis of FISH efficiency for X and 18 chromosomes has shown, that XX 

signal was found in 58% erythroblasts, XO signal was found in 18% of erythroblasts and 

OO signal was found in 14% of erythroblasts. We found 1818 FISH signals in 62% of 

erythroblasts, O18 signal - in 13% of erythroblasts and OO signal was found in 15% of 

erythroblasts (Table 14). 
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XX1818 XX18O XXOO XO1818 XO18O XOOO OO1818 OOOO Loss 
of cell

3016 QbioXY+Y No 19 18 3 2 1 3 1 8

3020 QbioXY+Y No 19 18 11 1 1 3 2

3014 QbioXY+Y No 22 15 8 2 2 1 2

3064 QbioXY+Y No 22 16 9 1 6

3063 QbioXY+Y No 22 15 6 2 3 2 2

3065 QbioXY+Y No 20 16 13 3

Average 16.3 8.3 1.7 1 2.3 2.7 1 1 3.3 33.3

Sum 98 50 5 1 9 8 1 1 13 10

In % 100.0% 52.0% 5.1% 1.0% 9.2% 8.2% 1.0% 1.0% 13.3% 10.2%

Number of 
memorized 

erythroblasts 
after MGG 

identification

Result of XX1818 Qbiogene FISH on memorized cellsCase 
ID

Type of 
probes

Pretr
eatm
ent

Time 
of 

hybrid
isatio

n, 
hour

Table 13. XX1818-Qbiogene-FISH analysis of morphologically assessed erythroblasts enriched from 

maternal blood with male fetus 

 

 

XX1818
52%

XX18O
5%

XXOO
1%

XO1818
9%

X0180
8%

XOOO
1%

OO1818
1%

OOOO
13%

loss of cell
10%

XX1818 XX18O XXOO

XO1818 X0180 XOOO

OO1818 OOOO loss of cell

 
 
Figure 12. Result of Qbiogene FISH with X centromeric and 18 chromosome probes. 
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Analyzed 

FISH signal 
FISH signal 
(in nuclei) 

FISH 
signal, 

% 

Sum for 
analyzed 

FISH signal, 
% 

XX1818 52 
XX18O 5 

XX XXOO 1 58 

XO1818 9 
XO18O 8 

XO XOOO 1 18 

OO1818 1 
OO OOOO 13 14 

Loss of cells  10 10 
XX1818 52 
XO1818 9 

1818 OO1818 1 62 

XX18O 5 
XO18O 8 

O18 OO18O 0 13 

 XOOO 1  
 XXOO 1 

OO OOOO 13 15 
 
Table 14. Separate analysis of FISH with X centromeric and 18 chromosome probes (X- and 18 
chromosome signals were analyzed separately). 
 

 

 

2.2.8. Conclusion: FISH on maternal blood samples 

On average 13 (range 2-24) erythroblasts were recovered from each maternal blood 

sample analyzed following the enrichment with our standard anti-CD71 MACS protocol. 

Following positive identification, the position of each erythroblast on the glass slide was 

electronically marked using an automated location finder. Each cell was then individually 

examined by conventional FISH using conventional Vysis centromeric probes for the X 

and Y chromosomes. This analysis has indicated that in samples obtained from 

pregnancies with male fetuses, on average only 5.3% of the erythroblasts were XY 

positive, while 50.9% were clearly of maternal origin as they contained XX signals. 



53 

The remaining erythroblasts (>40%) had aberrant or no FISH signals (Table 15; Figure 

13; Figure 14). Although our hybridisation efficiencies on normal lymphoid cells were 

greater than 95%, we consider that these results may have been due to not completely 

optimal FISH procedure. Hence, we tested a variety of conditions, including the use of 

microwave and pepsin pretreatment, as well as a different source of FISH probes 

(Qbiogene) in which two different Y probes (α- and classical-satellite III) were used in 

combination with an α-satellite probe for the X chromosome. These examinations did not 

yield any significant improvements (Table 15). The best result was received by using 

XYY Qbiogene FISH protocol, when on average only 6.4% of the erythroblasts being 

identified as male, while more than 30% of the cells had aberrant or no FISH signals. We 

also have observed that in those cases when no Y positive erythroblasts were detected, 

the number of erythroblasts with no FISH signals increased. These data suggest that some 

erythroblasts can not be hybridized and as a result we can not detect Y chromosome 

signal in pregnancies with the male fetus. 

The inability to examine all erythroblasts by FISH did not appear to be restricted to 

pregnancies with male fetuses, as in pregnancies with female fetuses we also have 

observed that on average only 44.5% of the erythroblasts were XX positive, while the 

remaining erythroblasts had aberrant or no FISH signals (Table 15, Figure 13). In 

addition, this phenomenon was not restricted to the sex chromosomes, as we have 

observed similar results in an analysis of 6 cases for chromosome 18 in FISH 

hybridisation with X- and 18-chromosome probes, since only 52% of the erythroblasts 

were correctly hybridized. It means that the efficiency of hybridization is independent on 

chromosome choice for the probe (Babochkina et al., 2005a). 
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FISH 
probe 

Fetal 
sex 

Nr.  
of 

cases 

Total nr.   
of 

erythroblast 

XX 
% 

XY 
% 

OO 
% 

XO 
% 

XYY  
% 

Loss of 
erythroblasts 

% 

XY Vysis  male 7 113 50.9 5.3 21.0 16.7 2.6 3.5 

XY Vysis      
mw male 6 111 50.4 3.6 17.1 14.4 5.4 9.0 
XYY 
Qbiogene 

male 8 109 61.5 6.4 14.7 8.3 0.9 8.1 

XYY 
Qbiogene 
mw male 7 138 50.0 4.4 28.3 5.0 1.5 10.8 
XYY 
Qbiogene 
pepsin 

male 8 184 31.0 1.0 45.1 4.4 0.0 18.5 
XY Vysis 

female 7 56 41.1 0.0 26.8 5.4 0.0 26.6 
XYY 
Qbiogene 

female 8 113 47.8 0.0 38.9 8.8 0.0 4.4 
 

 

 

 

 

 

 

 

 

Table 15. FISH analysis of morphologically assessed erythroblasts enriched from maternal blood samples 

(mw refers to microwave treatment).  
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Figure 13. FISH analysis of erythroblasts enriched frommaternal blood. 

A, B. XX positive erythroblast, characterized by a large nuclear diameter, enriched from
a pregnancy with a male fetus. 
C, D. XX positive erythroblast, characterized by a large nuclear diameter, enriched from
a pregnancy with a female fetus.
E, F. XY positive fetal erythroblast, characterizedby an intermediate nuclear diameter, 
enriched from a pregnancy with a male fetus. 
G, H. FISH negative erythroblast, characterized by very small nuclear diameter. 

All images were taken at 630X magnification.

A                B                       C               D

E                  F                      G               H

 



56 

Figure 14. Loss of nucleus of erythroblasts during FISH  procedure and OO FISH 
signal.

A. MGG stained cells
B. FISH (signals are bleached) on same cells
C. Gimsa staining of same cells after FISH
D. Examples of loss of nucleus
E. OO FISH signal

A                             B                          C

D                                               E
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2.3. The comparative analysis of the erythroblasts at different oxygen 
concentrations 

 
Hypothesis 

We suggested that fetal erythroblasts undergo a fundamental change when they enter the 

maternal circulation, and that this change in phenotype involves an alteration in the 

morphology of the cells, particularly an alteration in nucleus structure.  

Aim 

To examine whether this change could be attributed to the different oxygen tensions in 

the fetal and maternal circulatory systems. To this aim we have cultured and analyzed 

post-partum cord blood samples under different oxygen concentrations mimicking those 

in fetal and maternal blood (3 and 20 %, respectively). 

Design 

Preincubated and incubated blood cells were thin smeared on glass slides. After drying, 

they were MGG stained. Erythroblasts were then morphologically identified and counted. 

The relative number of erythroblasts was calculated as the number of erythroblasts per 

100 nucleated cells. Then the diameter of nucleus and its circumference for every 

erythroblast were measured. 

Results 

1) Effect of oxygen concentration on the number of erythroblasts 

With the preincubation erythroblasts number designated as 100%, the average number of 

erythroblasts after incubation at 20% oxygen was 50% (range 33–57%). The average 

number of erythroblasts after incubation at 3% oxygen was 85% (range 58–100%). The 

number of erythroblasts decreased significantly after incubation at 20% oxygen (P=0.027 

<0.05; Wilcoxon sign-rank test), whereas the number of erythroblasts did not decrease 

significantly after incubation at 3% oxygen (P=0.066<0.05; Wilcoxon sign-rank test) 

(Table 16; Figure 15). The difference between the results at 3% and 20% is significant 

(P=0.027<0.05; Wilcoxon sign-rank test). 
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Post-partum blood After 3% O 2 (24h) After 20% O2 (24h) Case 

Number of 
erythroblas
ts per 100 
nucleated 

cells 

% Number of 
erythroblas
ts per 100 
nucleated 

cells 

% Number of 
erythroblas
ts per 100 
nucleated 

cells 

% 

1 8 100% 8 100% 4 50% 
2 13 100% 13 100% 5 38% 
3 9 100% 8 89% 4 44% 
4 25 100% 23 92% 20 80% 
5 7 100% 5 71% 4 57% 
6 12 100% 7 58% 4 33% 
       

average   11 85% 7 50% 
 

 

Table 16. Effect of oxygen concentration on the number of erythroblasts. 
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Figure 15. Comparison of erythroblasts (percentage) after incubation at 3% and 20% oxygen. 
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2) Effect of oxygen concentration on erythroblast nuclear size 

With preincubation diameter of erythroblasts designated as 100%, the average diameter 

of erythroblasts after incubation at 20% oxygen was 88% (range 84-94%). The average 

diameter of erythroblasts after incubation at 3% oxygen was 99% (range 92-113%). 

This experiment clearly showed that the erythroblast nuclei did indeed shrink 

significantly (P=0.028<0.05; Wilcoxon sign-rank test) at the higher oxygen concentration 

(20%) when compared to the lower oxygen concentration (3%) (P=0.463>0.05; 

Wilcoxon sign-rank test) (Table 17; Figure 16). 

The difference between the results at 3% and 20% is also significant (P=0.028<0.05; 

Wilcoxon sign-rank test). 

Conclusion 

As the maternal circulation is higher in oxygen concentration than fetal circulation, the 

present results suggest that the high oxygen environment of maternal circulation induces 

morphometric changes in fetal erythroblasts transferred to the maternal circulation. This 

morphometric changes can be connected with apoptotic changes resulted in nuclei loss. 

This suggests that high oxygen concentration induces significant decrease in erythroblasts 

number. All this leads to clearance of erythroblasts from the maternal circulation. 

This phenomenon may be important to maintain the pregnancy because persistence of 

fetal cells in maternal circulation would stimulate the maternal immune system 

(Babochkina et al., 2005a). 
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Post-partum blood After 3% O2 (24h) After 20%  O2 (24h) Case 

Diameter, µm in %  Diameter, 
µm 

in %  Diameter, 
µm 

in %  

1 5.11 100% 5.76 113% 4.45 87% 
2 5.46 100% 5.17 95% 4.60 84% 
3 5.33 100% 4.89 92% 4.63 87% 
4 5.37 100% 5.10 95% 4.63 86% 
5 5.24 100% 4.96 95% 4.66 89% 
6 5.26 100% 5.45 104% 4.93 94% 
       

average   5.22 99% 4.65 88% 
 

 

Table 17. Influence of oxygen concentration on erythroblast nuclear size (average diameter, in µm).  
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Figure 16. Comparison of erythroblast diameter (µm) after incubation at 3% and 20% oxygen.
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Figura 17. Effect of oxygen concentration on NRBCs number (A) and diameter of NRBCs nuclei 

A. The relative number of NRBCs decreased significantly after incubation under 20% oxygen, whereas the 

number of NRBCs did not decrease significantly after incubation under 3% oxygen (Wilcoxon sign-rank 

test, P<0.05). 

B. The diameter of NRBCs decreased significantly after incubation under 20% oxygen, whereas the 

diameter  of NRBCs did not decrease significantly after incubation under 3% oxygen (Wilcoxon sign-rank 

test, P<0.05). 
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Figure 18. Influence of oxygen concentration on erythroblast nuclear size. Cord blood erythroblasts were 
briefly cultured at 3% and 20% oxygen concentrations, after which morphometric characteristics of their 
nuclei were examined. The data are presented by box plots, indicating the median value (line in the box), 
the 75th and 25th percentiles (limits of the box), and the 10 th and 90 th percentiles (upper and lower 
horizontal bars). Outliers are indicated by empty circles.  
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2.4. FISH after incubation at 3% and 20% oxygen concentrations 
Aim 

To determine whether the 24 hours exposure to high oxygen concentration hampered the 

analysis of erythroblasts by FISH. 

Results 

The FISH (vysis XY probe) signals at high oxygen concentration were found in 59% 

(range 25-77%) of erythroblasts, when compared to those at low oxygen concentration 

(average 88%; range 69-94%) and untreated control samples (average 91%; range 86-

95%) (Table 18). 

Conclusion 

The 24 hours exposure at high oxygen concentration has hampered reliable analysis of 

these erythroblasts by FISH (Babochkina et al., 2005a). 

 
 

Case Post-partum 
blood 

3% oxygen 
culture 

20% oxygen 
culture 

1 90% 69% 25% 
2 95% 93% 77% 
3 95% 96% 68% 
4 86% 85% 68% 
5 88% 94% 65% 
6 91% 92% 53% 
    

average 91% 88% 59% 
min 86% 69% 25% 
max 95% 94% 77% 

 

Table 18. The comparison of FISH efficiency (%) before and after incubation at 3% and 20% oxygen. 

 

2.5. Measurements of erythroblasts 
 
Aim and design 

In order to determine why only one fraction of the circulatory erythroblasts was readily 

analyzable by FISH we have examined their morphological characteristics more closely. 
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Then we have compared the morphometric characteristics of FISH positive and FISH 

negative erythroblasts from maternal blood with those of erythroblasts from cord blood. 

Results 

The measuring of 286 erythroblasts from maternal blood was performed. The average 

diameter of nuclei of erythroblasts with XX- and XX1818chromosome signals (in case of 

X 18 chromosome FISH) were 6.5 µm, average circumference of nuclei was 23.17 µm 

and average nucleus/cytoplasm ratio was 0.47 (Table 19). 

The measuring of 10 erythroblasts from maternal blood with XY signal was performed. 

The average diameter of nuclei of erythroblasts with XY signals was 6.22 µm, average 

circumference of nuclei was 22.95 µm and average nucleus/cytoplasm ratio was 0.51. 

The measuring of 21 erythroblasts from maternal blood with XO signal was performed. 

The average diameter of nuclei of erythroblasts with XO signals was 6.22 µm, average 

circumference of nuclei was 22.67 µm and average nucleus/cytoplasm ratio was 0.43. 

127 cells without any hybridization signals (OO) show average diameter of nuclei 4.92 

µm, average circumference 18.10 µm and average nucleus/cytoplasm ratio was 0.28 

(Table 19). 

The statistic analysis using the T-test shows that differences in the diameter average size 

of nuclei with XX FISH signals and those without FISH signals (OO) are statistically 

significant (p=1.044exp-14<0.05). Also, T-test shows that the differences in the average 

circumference of nuclei with XX FISH signals and those without FISH signals are 

statistically significant (p2.31exp-17=<0.05). The statistic analysis using the ANOVA 

test shows that differences in the diameter, circumference and nucleus/cytoplasm (N/C) 

ratio of erythroblasts from maternal blood: with XX signals, those without FISH signal 

and erythroblasts from cord blood are statistically significant (P<0.0001 for all cases). 

Conclusion 

The morphometric analysis has indicated that those erythroblasts in maternal blood which 

had been hybridized efficiently had a significantly larger nuclear diameter and 

circumference and N/C ratio than those which had been impervious to the FISH 

procedure (Babochkina et al., 2005a). The erythroblasts which had been impervious to 

the FISH procedure are significantly different also from erythroblasts in cord blood  
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Type of 
measurements  

Maternal blood Cord blood 

  

with XX 
signal 

(number of 
measured 

cells) 

without signal 
(number of 
measured 

cells)  

Average 
diameter 

female 
pregnancy 

average 6.31  
mode 6.60  
(n=84) 

average 4.53 
mode 4.20  
(n=60)   

  male pregnancy 

average 6.62  
mode 6.70  
(n=155) 

average 4.92 
mode 5.20 
(n=59) 

average 5.96 
mode 5.80  
(n=106) 

  

18 X 
chromosome 
hybridization 

average 6.59  
mode 6.24 
(n=47) 

average 5.32 
mode 5.50   
(n=8)   

  average 

average 6.50 
mode  6.51     
(n=286) 

average 4.92    
mode 4.97    
(n=127) 

average 5.96
mode 5.80  
(n=106) 

         

Circumference 
female 
pregnancy 

average 22.39 
mode        21.70 

average 16.45 
mode        16.70   

  male pregnancy 
average 24.22 
mode        22.60 

average 18.61 
mode        16.60 

average 21.93 
mode        21.60 

  

18 X 
chromosome 
hybridisation 

average 22.90 
mode        24.71 

average 19.24 
mode        19.00   

  average 

average 23.17 
mode   23.00   
(n=286 ) 

average 18.10    
mode   17.43  
(n=127 ) 

average 21.93 
mode 21.60 
(n=106 ) 

         
         

N/C ratio 
female 
pregnancy 

average 0.49 
mode          0.50 

average 0.26 
mode          0.30   

  male pregnancy 
average 0.48 
mode          0.50 

average 0.26 
mode          0.20 

average 0.32 
mode          0.30 

  

18 X 
chromosome 
hybridisation 

average 0.45 
mode          0.50 

average 0.31 
mode          0.30   

  average 

average 0.47 
mode  0.50       
(n= 286) 

average 0.28    
mode  0.27       
(n= 127) 

average 0.32 
mode 0.30     
(n= 106) 

 
Table 19. Measurements of diameter, circumference and nucleus/cytoplasm (N/C) ratio of erythroblasts in 
maternal and cord blood. 
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Circumference
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C 
Figure 20. 
A. Comparison of erythroblasts diameter measurement in maternal blood (cells with and without signal) 
and in cord blood. 
B. Comparison of erythroblasts circumference measurement in maternal blood (cells with and without 
signal) and in cord blood. 
C. Comparison of erythroblasts N/C measurement in maternal blood (cells with and without signal) and in 
cord blood. 
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Figure 21. Measurement of erythroblasts  
Red pointers. Measurement of diameter. 
Blue pointer. Measurement of circumference of nucleus. 
Green pointer. Measurement of circumference of cell. 
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2.6. Deoxynucleotidyl Transferase Biotin-dUTP Nick End Labeling 
(TUNEL) analysis of erythroblasts 
 

2.6.1. TUNEL and FISH analysis of erythroblast nuclei in cord blood 

Aim 

Since the differentiation of erythroblasts into enucleated erythrocytes involves 

fragmentation of the nuclear DNA, which can be detected by the TUNEL assay, we next 

examined the presence of fragmented DNA (TUNEL positive signal in the nucleus) in 

erythroblasts from cord blood in correlation with result of FISH analysis of these cells. 

Design 

Lymphocyte fraction was isolated by Ficoll, MGG–stained and 2 slides from each case 

were used for FISH (Vysis XY probe) and 2 slides for TUNEL. 

Results 

Our analysis of erythroblasts in cord blood indicated that although a high proportion of 

these erythroblasts were TUNEL positive (57.3%), almost all erythroblasts could be 

reliably analyzed by FISH (83.2%) irrespective of being TUNEL positive or negative. Of 

interest is that our analysis of these post-partum cord blood erythroblasts has indicated 

that these cells had relatively large nuclear diameter and circumference (average = 6.0 

µm and 21.93 µm), which is larger than the group of erythroblasts in maternal blood 

which could not be analyzed by FISH (average diameter = 4.7 µm and average 

circumference = 17.5 µm) (Table 20). 

Case 
Gender TUNEL 

positive cells 
(%) 

FISH    
positive cells 

(%) 

1 male 64.0 94.0 
2 male 65.0 84.0 
3 male 61.5 100.0 
4 male 60.5 66.0 
5 male 71.0 83.0 
6 male 56.0 60.0 

Average male  63.0 81.2 
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Case 
Gender TUNEL 

positive cells 
(%) 

FISH   
 positive cells 

(%) 

8 female 43.0 86.5 
9 female 49.0 86.0 
10 female 53.0 87.5 
11 female 44.0 83.0 
12 female 63.5 85.5 

Average female  50.5 85.7 

Total average  57.3 83.2 

 

Table 20. TUNEL and FISH analysis of erythroblasts in cord blood. 

 

2.6.2. TUNEL analysis of erythroblast nuclei in maternal blood 

Aim 

To examine the presence of fragmented DNA (TUNEL positive signal in the nucleus) in 

erythroblasts enriched from maternal blood and to analyze these results in correlation 

with nuclear size of these cells. 

Results 

69 erythroblasts enriched from 10 maternal blood samples were recorded and measured 

(Axiovision 3.1, Carl Zeiss, Zürich, Switzerland), and then the TUNEL assay was 

applied. This analysis has demonstrated that approximately 69% of erythroblasts with 

nuclei having the diameter larger than 5.6 µm were negative for the TUNEL assay, 

whereas almost 92% of those with the diameter smaller than this value contained 

fragmented DNA (Table 21; Figure 22; Figure 23).  

This latter phenomenon supports the notion that erythroblasts with a small nuclei 

containing fragmented DNA are of fetal origin, as it has previously been shown that these 

cells become TUNEL positive upon entering the maternal circulation.  

Conclusion 

These results suggest that the presence of a dense nucleus rather than a nucleus 

containing fragmented DNA hinders the effective analysis of erythroblasts by FISH 

(Babochkina et al., 2005a). 
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Figure 22. TUNEL analysis and diameter of erythroblast nuclei.     Table 21. TUNEL analysis and diameter 

of erythrocytes. 
 

A B

C D

 
Figure 23. Examination of erythroblast nuclear size and presence of fragmented nuclear DNA in maternal 
blood.  
A, B. Erythroblast with a small dense nucleus which is TUNEL positive.  
C, D. Erythroblast with a large nucleus which is TUNEL negative. All image were taken at 630X 
magnification. 

Parameter Small 
nuclei (like 

FISH 
negative) 

Big nuclei   
(like 
FISH 

positive) 
Average 
diameter 

under or 
equal 5.6 

above           
5.6 

     
Number of cells 24 45 

   
TUNEL 
positive 92% 31% 
TUNEL 
negative 8% 69% 
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2.7. Detection of fetal cells in whole blood 
 (Detection of fetal cells in maternal blood using a combination of two different Y 
chromosome-specific and a single X chromosome-specific FISH probes) 

 

The mathematical model 

The mathematical calculation of probability of labeling the fetal cells by XY-, YY-and 

XYY-probes combinations gives the values 0.81, 0.81 and 0.891, respectively (we took 

equal FISH efficiency of 90% for X, Y (α-satellite) and Y (III-satellite) probes in the 

mathematical model, as described by the manufacturer). Thus, the labeling of Y 

chromosome by two different probes (α- and III-satellite) of the same color in the one-

step two-color XYY-FISH has the advantage in detecting fetal Y-chromosome over other 

methods of labeling mentioned above. Theoretically the increase in the number of Y 

chromosome probes of the same color leads to increase in the probability of Y-

chromosome detection.  

Aim 

To test a possible improvement in the detection of Y-chromosome signal of fetal cells in 

maternal blood by applying one–step two–color XY-FISH-hybridization in which the Y-

chromosome was labeled by two different probes (α- and III-satellite) of the same color 

and to compare the results of XYY-FISH with conventional two-color XY-FISH 

protocol. 

Results 

Our blinded manner analysis of the 19 maternal blood samples by the combination of two 

Y chromosome-specific FISH probes in combination with a FISH probe for the X 

chromosome (XYY-FISH) has indicated that male fetal cells could be detected with 75% 

specificity and 91% sensitivity (Tables 22; Table 23), indicating that male fetal cells 

could be detected in 10 out of the 11 pregnancies with male fetuses. 

Our parallel analysis of 9 of these samples by conventional XY-FISH has indicated that 

male fetal cells could be detected with 50% specificity and 60% sensitivity (Tables 22; 

Table 23). On the other hand, when the same samples were analyzed by our new XYY-

FISH approach male fetal cells could be detected with 100% specificity and 100% 

sensitivity (Table 23). Therefore, the use of two different Y chromosome-specific FISH 
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probes in combination with an X chromosome-specific FISH does appear to yield a better 

result than that obtained by conventional XY-FISH. Furthermore, it appeared that more 

male fetal cells were detected by the XYY-FISH approach, where 1 to 4 fetal cells were 

recorded per slide, (yielding an average concentration of between 8 to 32 fetal cells per 

ml of maternal blood), compared to 1 to 2 fetal cells recorded per slide using 

conventional XY-FISH (Table 22; Table 23). We also have observed that the signals for 

the Y chromosome were more readily identifiable using the XYY-FISH approach when 

compared to those detected by conventional XY-FISH (Figure 24; Figure 25). 

Conclusion 

In our present study we demonstrated the results which confirm our mathematical 

prediction. This XYY detection system has demonstrated the real improvement as 

compared to conventional one (Babochkina et al., 2005b).  

 

Case Gestation Number of male 
fetal cells detected 

by XYY-FISH 
(in 1 ml) 

Number of male 
fetal cells detected 

by XY-FISH 
 (in 1 ml) 

Gender 

1 37+2 24 12 male 
2 26+4 16 12 male 
3 12+1 0 8 f.p. female 
4 12+4 0 0 female 
5 12+0 0 8 f.p. female 
6 14+3 0 0 female 
7 26+4 32 0 male 
8 25+1 32 0 male 
9 28+2 32 20 male 
10 12+3 8 f.p. n.t. female 
11 16+1 0 n.t. male 
12 35+0 0 n.t. female 
13 20+0 8 n.t. male 
14 20+2 16 n.t. male 
15 37+2 32 n.t. male 
16 14+5 8 n.t. male 
17 26+2 0 n.t. female 
18 25+3 24 n.t. male 
19 13+3 8 f.p. n.t. female 

 
Table 22. Detection of male fetal cells by two different FISH strategies. (f.p. – false positive, n.t. – not 
tested). 
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      QbioXY+Y     
     19 cases   gender  
          male female  

      male 10 2 12 
      F

IS
H

 

female 1 6 7 
        11 8 19 
           
       false positive 25%   

       
false 
negative 9%   

           
           
       sensitivity 91%   
       specificity 75%   
           
           
Vysis XY      QbioXY+Y     
9 cases   gender   9 cases   gender  
    male female       male female  

male 3 2 5  male 5 0 5 

F
IS

H
 

female 2 2 4  F
IS

H
 

female 0 4 4 

  5 4 9    5 4 9 
           

 
false 
positive 40%     false positive 0%   

 
false 
negative 50%     

false 
negative 0%   

           
           
 sensitivity 60%     sensitivity 100%   
 specificity 50%     specificity 100%   
           
 
 
 
 
 
 
 
Table 23. Sensitivity and specificity of XYY- and XY- FISH. 
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Figure 24 A, B. Detection of a male fetal cell in maternal blood by conventional
XY-FISH.

A B

Figure 25 A, B. Detection of a male fetal cell in maternal blood by the use of two Y 
chromosome-specific (α- and III-satellite) FISH probes in combination with a FISH 
probe specific for the X chromosome (XYY-FISH). 

A B
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2.8. Evaluation of Soybean Lectin-based method for the Enrichment of 
erythroblasts 
 
Introduction 

Different approaches have been proposed for the enrichment of erythroblasts from 

maternal blood. However, none of these methods has been shown to obtain fetal cells 

from maternal blood with sufficient reliability for routine prenatal diagnosis. Recent 

studies have indicated that enrichment based on galactose-bearing conjugation may lead 

to more promising results.  

Erythroblasts express galactose on cell surface to a larger extent than other cell types. 

The selective attachment to substrate coated with a galactose-containing polymer (PV-

MeA, Ne Tech) via soybean agglutinin, a galactose-specific lectin, allows enrich the 

erythroblasts (Kitagawa et al., 2002). 

Aim 

To evaluate Soybean Lectin-based method we have performed a comparative study on  

maternal blood samples, with one half of the blood sample being subjected to enrichment 

by standard CD-71 MACS protocol and the other half being enriched by the lectin 

protocol.  

Design 

The lectin enrichment and the MACS/CD 71 methods were performed as described 

previously (Kitagawa et al., 2002) and (Troeger et al., 1999a). In both instances the 

enriched cells were stained with MGG and the number of recovered erythroblasts was 

scored. The cells with low nucleus-to-cytoplasm ratio, dense and small nucleus, and 

orthochromatic, non-granular cytoplasm were considered as erythroblasts at light 

microscopy analysis (Axioplan 2, Carl Zeiss, Zürich, Switzerland). 

The number of erythroblasts on slides isolated by CD-71 MACS enrichment was 

accounted for 2 cytospin slides (2 x (1 x 105 cells)) and recalculated for 1 ml of maternal 

blood. The number of erythroblasts in 1 ml of maternal blood after SBA-lectin 

enrichment was recalculated after analysis for 1 chamber (2 x 106 cells) 

Results 

The average number of erythroblasts after CD 71 enrichment was 2.4 cells (range 0-6) 

per 1 ml of maternal blood. The average number of erythroblasts after SBA-lectin 
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enrichment was 15.7 cells (range 2-59) per 1 ml of maternal blood. Our results (Table 23; 

Figure 25; Figure 26) indicate that significant differences (p=0.0033<0.05; Wilcoxon 

signed rank test for paired samples) exist between the two enrichment methods, with 

almost 7 fold more erythroblasts being recovered per ml of maternal blood by the SBA-

lectin method  when compared with standard MACS approach. 

Another apparent advantage of the SBA-lectin method is that the enriched cells appeared 

to have a better morphology, facilitating easier recognition and analysis, than cells which 

had been treated by the MACS protocol. This aspect is to be explored in an extended 

study. 

Conclusion 

Although the efficiency of the erythroblast recovery by MACS that we have achieved in 

this study is comparable with the data from other studies, it is clear that the SBA-lectin 

method offers a better recovery. The present study also serves to indicate that numerous 

erythroblasts are therefore being lost during the MACS procedure. In this regard, it has 

previously been calculated, that cell loss due to centrifugation can be as high as 2-4% and 

that the most significant loss (almost 10-20%) occurred during the transfer of enriched 

cells onto microscope slides by cyto-centrifugation (Oosterwijk et al., 1998a). It is also 

likely that target cells are lost during the MACS procedure, in that they may be retained 

by the column or lost during the washing steps. Hence, it is possible, that the lack of such 

steps may contribute to the overall improved recovery by the SBA-lectin method. 

Our results suggest that SBA lectin-mediated procedures may provide a better 

opportunity for the enrichment of rare fetal erythroblasts from maternal blood. Our 

preliminary FISH results on lectin- enriched erythroblasts demonstrated a better FISH 

signal quality (Figure 27). 



77 

1 2 3 4 5 6 7 8 9 10 11 Average

0

10

20

30

40

50

60

number
 in 1 ml

cases and average

NRBC in 1 ml Mat blood CD 71

NRBC in 1 ml Mat blood Lectin

 

 

Figure 25. Comparison of enrichment efficiency: CD-71 MACs vs Lectin. 

Table 23. Comparison of enrichment efficiency: CD-71 MACs vs Lectin 

 

A B

 

Figure 26. A. MGG stained erythroblasts from maternal blood after CD-71 B. Lectin-based enrichment. 

Case Gestation 

age 

Erythroblasts 

in 1 ml 

Maternal 

blood CD 71 

Erythroblasts 

in 1 ml 

Maternal 

blood Lectin 

1 36+6 0.0 1.6 

2 15+4 1.4 9.4 

3 27+6 6.2 58.9 

4 12+5 0.9 5.1 

5 12+3 0.2 7.4 

6 14+6 3.0 6.0 

7 40+0 2.7 18.4 

8 36+1 4.5 34.3 

9 35+6 4.6 18.3 

10 14+2 0.4 6.0 

11 12+4 2.4 6.8 

    

 Average 2.4 15.7 
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Figure 27. FISH analysis of 
cells enriched from
maternal blood by lectin-
based method. 
A, B, C.  XY positive cells
(proK treatment). 
D.  XY positive 
erythroblast. 
E. FISH negative 
erythroblast

A

B

C

D

E
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2.9. Spectral morphometric comparative analysis of erythroblasts from 
maternal and cord blood 
 
Aim 

The present study is the attempt to identify and evaluate erythroblasts from maternal and 

cord blood using technique of spectrally resolved image analysis. 

Design 

Firstly we determined the localization of different spectral components in nuclei and 

cytoplasm of erythroblasts cells from maternal and cord blood stained with MGG 

employing classification algorithm based on minimal square error matching (MSE). Then 

we compared the chromatin and cytoplasm organization for erythroblasts from maternal 

and cord blood using the computational morphometrical analysis of spectral map. 

Results 

Spectral imaging was performed on MGG-stained blood specimens from 8 cord blood 

(93 cells) and from 12 maternal blood samples (53 cells).  

Figure 29A and 29C show the spectral cube image of some MGG-stained erythroblasts 

from cord and maternal blood, respectively. Using the spectra library, all cells in the 

database were scanned and to each nuclear domain there were assigned the color of the 

library spectrum most similar to its spectral characteristics. The scan produced a 

classified image for each cell using a classification algorithm, as described in Materials 

and Methods.  

Several examples of pseudo-colored spectral mapped images of cord and maternal blood 

cells are shown in Figure 29B and 29D, respectively. The classified images represent the 

spectrally similar regions with the match to the reference spectra of the library.  

The spectral classified image reveals the visually distinct spectral regions in each cellular 

compartment and has demonstrated that erythroblasts from maternal and cord blood 

displayed distinct spectral characteristics. 

To create the histograms of spectral distribution, the computational morphometric 

measurements were performed on the spectrally classified images for 53 erythroblasts 

from maternal blood and 14 ones from cord blood. The area of all spectra domains of the 

nuclei was calculated. The pixels within the distinct nuclear spectral domains were used 
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also to generate histograms that represent relative area of spectral domain in percentage. 

An analysis of the nuclear color content is shown in Figure 28. An inspection of the color 

histograms reveals that the dominant spectrum (67%) in maternal blood erythroblasts was 

the spectrum designated as number 1 (No. 1) in spectral library, while in cord blood 

erythroblasts the spectrum No. 1 was not so dominant, (40% only). Spectrum No. 2 was 

represented by contrast in 16% of maternal blood and in 42% of cord blood erythroblasts. 

Spectrum No.3 was represented in approximately same percentages for maternal and cord 

blood, 17% and 18%, respectively. It means that difference between the nuclei of 

erythroblasts from maternal and cord blood on spectral level is in the distribution of 

spectra 1 and 2. We consider that spectrum No. 1 can correspond to condensed chromatin 

in the nuclei.  

For detailed analysis of spectral domain No.1, as marker of condensed chromatin, we 

have performed measurements on 93 erythroblasts from cord blood and 53 erythroblasts 

from maternal blood. The spectral domain was found in 97% of erythroblasts from cord 

blood and in 100% of erythroblasts from maternal blood. The spectral domain No.1 did 

not appear in the nucleus of 3% of the cord blood erythroblasts, for which only spectral 

domains No. 2, 3 were found.  

Statistical analysis (t-Test) has revealed significant differences (p≤0.0001) in the 

distribution of spectra No.1 between maternal and cord blood erythroblasts. 

Table 24 presents relative area in % of the spectral domain No.1 in the nuclei of 

erythroblasts from maternal and cord blood in connection with results of morphometric 

measurements of diameter, circumference and nuclei-cytoplasm ratio and FISH results 

(results partially published by (Babochkina et al., 2005a).  

For analysis of spectrum No. 4, as marker of cytoplasm content, we performed 

measurements on same cells (53 and 93 erythroblasts from maternal and cord blood, 

respectively).  

The morphometrical analysis of distribution spectrum of No.4 as a marker of cytoplasmic 

content, for this cells has revealed that this spectrum was observed for 93% of 

erythroblasts from cord blood (on average 26% of cytoplasm area) and for 99% of 

erythroblasts from maternal blood (on average 45% of cytoplasm area). The difference in 
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distribution of spectrum No.4 in cells from the two classes is statistically significant (t-

Test, p≤0.0001).  

 

Analysis Cord blood Maternal blood 

FISH analysis vysis XY probe, 
efficiency , % 98% 

xx-51% 
xy- 5% oo-21% 

diameter 5.96 6.47 4.73 

circumference 21.93 23.31 17.53 

Morphometric 
analysis 

N/C 32% 47% 28% 
Spectral analysis Spectrum No.1 

(red in nuclei) on 
average 40%  67% 

 Spectrum  No.4 
(green in 

cytoplasm) on 
average 26%  45% 

 
Table 24. Comparison of erythroblasts in cord and maternal blood by FISH, morphometric measurements 
and spectral imaging analysis. 
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Figure 28. Spectral arrays for erythroblasts from: A. maternal blood; B. cord blood. Area of each spectrally 
similar region in the nucleus was calculated and represented as the percentage of the nuclear area 
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A B C D

Figure 29.  Spectral imaging and spectral classification of erytroblasts
A, C.  Spectral cube imaging of erythroblasts from cord and maternal blood, 
correspondingly.  
B, D.  Pseudo-colored spectral mapped images same cells from cord and maternal
blood, correspondingly, after applying a classification algorithm. Each coloured
domain represents a spectrally similar region.
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2.10. Single cell Taqman PCR analysis of erythroblasts isolated using 
Laser Microdissection and Pressure Catapulting (LMPC ) technology 
 

Introduction 

The enriched fetal cells can be isolated by micromanipulation and analyzed by single cell 

Taqman PCR (Troeger et al., 1999b). The analysis of single cells will always be 

hampered by limiting amount of target template. The several strategies can be adopted to 

overcome this problem, including optimization of microdissection (using slides with and 

without membrane), application of different cell lysis protocols, choice of Taqman 

probes, raising the denaturation temperature.  

In our study we tried to optimize the single cell Taqman PCR analysis firstly on cord 

blood. Next we have applied the best protocol for analysis of erythroblasts with small 

dense nucleus from maternal blood. 

 
2.10.1. Taqman PCR analysis of erythroblasts microdissected from cord blood 

 

Aim 

To optimize the Taqman PCR analysis of erythroblasts microdissected by PALM laser-

mediated micromanipulation system from cord blood (from slides with and without 

membrane) by using different choice of probes. 

Design 

The erythroblasts from cord blood were transferred onto glass slides with and without 

membrane by cytocentrifugation and MGG stained. Single erythroblasts were isolated by 

the LPC microdissection method and examined by a multiplex Taqman PCR which had 

been optimized for the analysis of single cells. 

In order to optimize protocol of cell collection we have tried the PALM microdissection 

of erythroblasts from glass slides with and without membrane. To optimize the Taqman 

protocol for amplification of single cells we have used SRY labeled with fluorochrome 

FAM (SRY-FAM) and GAPDH labeled with fluorochrome VIC (GAPDH-VIC) probes 

for to detect the fetal loci and to control the PCR reaction, respectively. The control loci 

had previously been shown to be very effective in monitoring the efficacy of the PCR 

reaction and in ascertaining whether a single cell had indeed been transferred to the 
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reaction vessel. The efficiency for single cell Taqman PCR analysis was tested for every 

probe alone and for their combination. Besides, we have tested the 21 chromosome and 

18 chromosome specific probes as control of DNA amplification in combination with 

SRY probe.  

Results 

Thirty two erythroblasts were collected by PALM microdissection from membrane slides 

and analyzed by single cell Taqman PCR analysis with GAPDH–VIC probes. The 

amplification efficiency was 43.3% (Table 25). 

Case Number of 
microdissected 

cell 

Number of 
GAPDH-

VIC positive 
cells 

Efficiency, 
% 

1 20 9 45.00 

2 12 5 41.67 
    

SUM 32 14 43.33 
 

Table 25. Single cell Taqman PCR analysis with GAPDH-VIC probe on erythroblasts microdissected from 

cord blood 

 

Forty erythroblasts were collected by PALM microdissection from membrane slides and 

analyzed by single cell Taqman PCR analysis with SRY-FAM probes. The amplification 

efficiency was 64.6% (Table 26). 

Case Number of 
microdissected 

cell 

Number of 
SRY-FAM 

positive cells 

Efficiency, 
% 

1 24 16 66.67 

2 16 10 62.50 
    

SUM 40 26 64.58 
 

Table 26. Single cell Taqman PCR analysis with SRY-FAM probe on erythroblasts microdissected from 

cord blood 
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The multiplex Taqman PCR analysis with SRY-FAM and GAPDH–VIC probes was 

performed for 62 erythroblasts, collected in the same way. The amplification efficiency 

was 28.0% and 53.8% for GAPDH and for SRY loci, respectively. In total, the amount of 

Taqman positive cells was 53.8% (Table 27). 

 

Case Number 
of 

microdiss
ected cell 

Number of 
GAPDH-VIC 
positive cells 

GAPDH 
efficiency, 

% 

Number of 
SRY-FAM 

positive 
cells 

SRY 
efficiency, 

% 

Taqman 
positive 
cells, % 

1 30 3 10.00 9 30.00 30.00 
2 16 4 25.00 9 56.25 56.25 

3 16 8 50.00 12 75.00 75.00 
       

SUM 62 15 28.33 30 53.75 53.75 
 

Table 27. Single cell multiplex Taqman PCR analysis with GAPDH-VIC and SRY-FAM probes on 

erythroblasts microdissected from cord blood 

 

The multiplex Taqman PCR analysis with SRY-VIC and 21 chromosome-FAM probes 

was performed for 32 erythroblasts, collected by PALM microdissection from membrane 

slides. The amplification efficiency was 34.4% and 87.5% for SRY and for 21 

chromosome loci, respectively. In total the amount of Taqman positive cells was 87.50% 

(Table 28). 

 

Case Number of 
microdissec

ted cell 

Number of 
SRY-VIC 
positive 

cells 

SRY 
efficiency, 

% 

Number of 
21chromoso

me-FAM 
positive cells 

21 
chromosom
e efficiency, 

% 

Taqman 
positive 
cells, % 

1 16 2 12.50 14 87.50 87.50 

2 16 9 56.25 14 87.50 87.50 
       

SUM 32 11 34.38 28 87.50 87.50 
 

Table 28. Single cell multiplex Taqman PCR analysis with SRY-VIC and 21 chromosome FAM probes on 

erythroblasts microdissected from cord blood. 
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The multiplex Taqman PCR analysis with SRY-FAM and 18 chromosome-VIC probes 

was performed for 68 erythroblasts, collected by PALM microdissection from slides 

without membrane. The amplification efficiency was 18.1% and 32.5% for SRY and for 

18 chromosome loci, respectively. In total the amount of Taqman positive cells was 

35.56% (Table 29). 

 

Case Number of 
microdissec

ted cell 

Number of 18 
chromosome-
VIC positive 

cells 

18 
chromosome 
efficiency, % 

Number 
of SRY-

FAM 
positive 

cells 

SRY 
efficiency, 

% 

Taqman 
positive 

cells, 
% 

1 24 7 29.17 4 16.67 33.33 
2 20 7 35.00 5 25.00 40.00 
3 24 8 33.33 3 12.50 33.33 
       

SUM 68 22 32.50  18.06 35.56 
 

Table 29. Single cell multiplex Taqman PCR analysis with 18 chromosome VIC and SRY-FAM probes on 

erythroblasts microdissected from cord blood. 

 

Conclusion  

The best efficiency of single cell Taqman PCR for detection of Y chromosome was 

achieved when SRY probe labeling by FAM was applied. Therefore, the isolation of 

single cells by PALM from slides with membrane is more effective than that from slides 

without membrane. A major factor to consider here is that membranes prevent the cell 

from damaging during transfer.  

 

2.10.2. Taqman PCR analysis of erythroblasts microdissected from maternal blood 

 
Aim 

To analyze the origin of erythroblasts from maternal blood with small dense nuclei and 

resistant for FISH analysis. 

Design 

For experiment 1 the CD 71 enriched erythroblasts from maternal blood were transferred 

onto glass slides without membrane by cytocentrifugation and MGG stained. Single 
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erythroblasts with small dense nucleus, which were resistant to FISH analysis were 

isolated by the LPC microdissection method, collected in pool and examined by a 

multiplex Taqman PCR. 

For experiment 2 the erythroblasts enriched from maternal blood by Soybean Lectin-

based method were transferred onto membrane slides and MGG stained.  

Single erythroblasts with small dense nucleus, which were resistant to FISH analysis, 

were isolated by the LPC microdissection method and every cell was examined by a 

multiplex single cell Taqman PCR which had been optimized for the analysis of single 

cells.  

Results 

1) Taqman PCR analysis of pooled erythroblasts microdissected from maternal blood 

Our in blinded way examination of 6 samples obtained from pregnant women has 

indicated that in 2 from 4 cases the fetal gender was determined by Taqman PCR analysis 

on pool of collected erythroblasts. The sensitivity and specificity of our analysis were 

50% and 100%, respectively. 

Thirty two erythroblasts were collected by PALM microdissection from membrane slides 

and analyzed by single cell Taqman PCR analysis with GAPDH–VIC probes. The 

amplification efficiency was 43.3%. On average 28 erythroblasts was microdissected 

(Table 30). 

 

Cases 
ID 

Gender Number of 
cells in the 

pool 

GAPDH SRY 

3087 male 31 positive positive 
3107 male 10 positive negative 
3697 male 20 positive negative 
3699 female 29 positive negative 
3031 male 31 positive positive 
3039 female 45 positive negative 

 

Table 30. Taqman PCR analysis of pooled erythroblasts microdissected from maternal blood 
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2) Single cell Taqman PCR analysis of erythroblasts microdissected from maternal blood 

Our in blinded way examination of 6 samples obtained from pregnant women has 

indicated that in 2 from 2 cases the fetal gender was determined by single cell Taqman 

PCR analysis with GAPDH-VIC and SRY-FAM probes. On average 14 erythroblasts 

(range from 4 to 24) were microdissected. The average amplification efficiency was 

52.0%. The sensitivity of our analysis for detection fetal gender was 100% and specificity 

100% (Table 31). But the proportion of fetal cells from all successfully amplified 

erythroblasts was in the first case (ID 3842) 33%, in the second case (ID 3843) 20%.  

 

Case ID Gender Number of 
microdissected 

cell 

Number of 
GAPDH-

VIC 
positive 

Number of 
SRY-FAM 
negative 

Tagman 
efficiency, 

% 

3841 female 20 10 0 50.00 
3842 male 16 2 1 18.75 
3843 male 24 5 1 25.00 
3868 female 4 3 0 75.00 
3885 female 6 5 0 83.33 
3886 female 20 12 0 60.00 

      
 Average    52.01% 

 

Table 31. Single cell Taqman PCR analysis of erythroblasts enriched by Lectin method from maternal 

blood and microdissected from membrane covered slides.  

 

Conclusion 

We have demonstrated that the use of membrane-coated slides for lectin enrichment for 

LPC microdissection restricts severely the use of this approach because of the very high 

level of background of those slides that influences the quality of analysis. The percentage 

of fetal erythroblasts among all those amplified successfully was on average only 25%. 

Our preliminary data have indicated that the single cell Taqman PCR analysis on 

erythroblasts microdissected by PALM technique is reliable for the detection of fetal 

origin of erythroblasts but this issue will have to be explored in an extended study. 
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Figure 30. Single cell singleplex Taqman PCR analysis on erythroblasts from cord
blood (amplification efficiency for SRY locus is 63%). 

Figure 31. Single cell multipley Taqman PCR analysis on erythroblasts from cord
blood (amplification efficiency for SRY locus is 75%).
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3. Discussion  
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



91 

3.1. The majority of erythroblasts in maternal blood are impervious to 
the analysis by FISH 
The results of our study of erythroblasts in maternal blood have indicated that only half 

of the erythroblasts could be efficiently analyzed by FISH, and that these were largely of 

maternal origin, as they had a XX genotype. Only a small fraction of the erythroblasts 

(<5%) in maternal blood could be reliably identified as being of fetal origin on the basis 

of clear FISH signals for the X and Y chromosomes. The remaining portion of this pool 

of circulating erythroblasts appeared to be refractory to FISH analysis. 

This feature was evident not only for the Y chromosome, but also for the analysis of 

chromosomes X and 18. Furthermore, this feature could not be overcome by employing 

microwave treatment, which hade previously been shown to be effective for the FISH 

analysis (Durm et al., 1997).  

Our data further indicate that this group of erythroblasts differs from those which are 

clearly of maternal origin in that they have a small dense nucleus containing fragmented 

DNA. However, we have determined that the inability to analyze these cells efficiently 

by FISH was most likely not due to the presence of fragmented DNA but rather due to a 

small dense compact nucleus.  

This result was most evident in our analysis of cord blood erythroblasts, whose nuclei 

could all be efficiently analyzed by FISH despite being TUNEL positive. In previous 

studies using single-cell PCR on individual erythroblasts isolated by micromanipulation, 

it was observed that almost 50% of the erythroblasts in the maternal circulation were of 

fetal origin (Troeger et al., 1999b). Although these cells were not selected on the basis of 

having a small dense TUNEL positive nucleus, it would appear that the erythroblasts, 

which are impervious to FISH analysis, are also of fetal origin. This hypothesis is 

supported by our ongoing studies using PCR which indicate that a number of these 

erythroblasts with small dense nuclei are indeed of fetal origin. 

Our data also provide a possible reason for this difference between putative fetal and 

maternal erythroblasts in the maternal circulation. Probably, this change in the nuclear 

phenotype may be triggered by the difference in oxygen tensions existing between the 

mother and fetus. In this regard, it is interesting to note that previous studies have shown 

that when fetal erythroblasts enter the maternal circulation, their nuclear DNA becomes 
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fragmented (Sekizawa et al., 2000), as detected by the TUNEL assay, and that this affect 

can be mimicked by exposing such cells to elevated oxygen concentrations (Kondo et al., 

2002). The investigations of Hristoskova et al. (2003) have suggested that this process of 

nuclear cleavage is associated rather with terminal differentiation and subsequent 

enucleation, than with apoptosis, as these cells do not express other characteristic 

apoptotic markers. In our current analysis we have demonstrated that 24-hour culture 

under elevated oxygen conditions leads to a significant reduction in the size of fetal 

erythroblast nuclei, and that this significantly influences the efficacy of these 

erythroblasts to be analyzed by FISH. 

As we have tested only a single 24-hour time point, it is currently unclear whether shorter 

periods of exposure also lead to similar nuclear condensation. This aspect, which remains 

to be explored, may help to explain why under certain conditions, such as immediate 

post-termination, fetal erythroblasts can be reliably detected by FISH analysis (Choolani 

et al., 2003). 

Taken together, our data suggest that a large proportion of the erythroblasts in the 

maternal circulation cannot be reliably analyzed by FISH, and that it is probable that 

many of these cells are of fetal origin. It appears also that decrease in nucleus diameter is 

induced by the higher oxygen tension present in the maternal circulation. 

Our data also hint at why fetal erythroblasts were detected with lower efficacies when 

using FACS-based procedures compared to MACS-based ones (Bianchi et al., 2002). In 

the studies using FACS, tight constraints were placed on enriching cells with well defined 

fetal erythroblast specific characteristics (expression of gamma globin), whereas in the 

studies using MACS, the cells were enriched only on the basis of CD-71 expression, and 

no attempt was made to determine whether the fetal cells being examined were indeed 

erythroblasts. It is therefore possible that in the latter instance fetal cells other than 

erythroblasts may have been examined. 

Although we have examined exclusively the well defined mature erythroblasts in this 

study, it is possible that these data may be extendable to more immature fetal 

erythroblasts, such as those expressing fetal or embryonic globin molecules. The reason 

for this is that in most instances, the detection of such fetal cells by FISH has not been 

very reliable, except in samples obtained immediately after a termination of pregnancy or 
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an invasive procedure, such as chorionic villus sampling (CVS). It is therefore possible 

that under normal conditions these early fetal erythroblasts undergo nuclear changes once 

they enter the maternal circulation similar to that which we have seen in this study. 

In summary, our data provide an explanation for the apparent lack of fetal erythroblasts 

in the maternal circulation, or the inability to detect them with high degree of sensitivity 

when using FISH for their analysis (Bianchi, 1999). This facet will have to be considered 

in future potential diagnostic approaches.  

Alternative strategies may, hence, focus on the use of primed in situ-labelling (PRINS), 

as this method relies on smaller molecules than current FISH-probes for the detection of 

fetal specific sequences, which may be able to enter the dense fetal erythroblast nuclei 

more successfully. 

 

3.2. Soybean Lectin-based enrichment 
Although the efficiency of the erythroblast recovery by MACS that we have achieved in 

this study is comparable with data from other studies, it is clear that the SBA-lectin 

method offers a better recovery. The present study also serves to indicate that numerous 

erythroblasts are being lost during the MACS procedure. In this regard, it has previously 

been calculated, that cell loss due to centrifugation can be as high as 2-4% and that the 

most significant loss (almost 10-20%) occurred during the transfer of enriched cells onto 

microscope slides by cyto-centrifugation (Oosterwijk et al., 1998a). It is also likely that 

target cells are lost during the MACS procedure, in that they may be retained by the 

column or lost during the washing steps. Hence, it is possible, that the lack of such steps 

may contribute to the overall improved recovery by the SBA-lectin method. 

Another apparent advantage of the SBA-lectin method is that the enriched cells appeared 

to have a better morphology, facilitating easier recognition and analysis, than cells which 

had been treated by the MACS protocol. This facet will have to be explored in a larger 

study. 

A major drawback of all current enrichment methods, and especially that of the SBA-

lectin method, is that the final enriched cell population is contaminated by a vast number 

of maternal cells. Although the recovery by the SBA-lectin method is greater than that 
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attained by the MACS method, the purity is significantly lower. This implies that a 

considerable effort still has to be made to locate potential fetal cells after the lectin 

enrichment procedure, which renders the analysis tedious and time consuming. Therefore 

it will be necessary to employ systems which permit the automated recognition and 

recovery of potential fetal cells, in order to obtain the optimal efficiency required for 

clinical applications. For this reason studies are ongoing which explore the use of systems 

facilitating automated recognition of rare events and their subsequent contact free 

isolation by laser pressure catapulting (Hahn et al., 2002).  

In summary, our study indicates that the lectin-based method is more efficacious than 

MACS approach for the enrichment of erythroblasts from maternal blood, and that this 

method may be a promising alternative for future investigations concerned with non-

invasive prenatal diagnosis.  

 

3.3. XYY – FISH on whole blood 
Krabchi et al. (2001) have shown 100% specificity for 12 male pregnancies in a non-

blinded manner using hypotonic treatment combined with Carnoy`s fixation. Ten of these 

pregnancies were analyzed by conventional XY-FISH and two – by XY-chromosomal 

PRINS. Although these studies yielded important information concerning the number of 

circulating fetal cells in maternal blood, the results are possibly skewed by the fact that 

they were not conducted in a blinded manner concerning the sex of the fetus. 

Using the same experimental set-up like Krabchi et al. (2001) but in a blinded manner we 

have obtained specificity 69.4% and sensitivity 52.4% in our previous study 

(Mergenthaler et al., 2005). The increase in specificity up to 89.5% in this study has been 

achieved by substituting the X-chromosomal probe with a second Y-chromosomal probe 

from a different region of the Y-chromosome (α- and III-satellite). However a slight 

reduction in sensitivity (down to 42.9%) was detected. Although this study did indicate 

that male fetal cells were present in the vast majority of pregnancies with male fetuses, 

we were anxious to improve upon the accuracy of our method. For this reason we have 

again used two similar Y chromosome-specific FISH probes (α- and III-satellite) but now 

in combination with an X chromosome-specific FISH probe (one-step two-color XYY-

FISH). The present investigation indicated that circulatory male fetal cells can now be 
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detected with 75% specificity and 91% sensitivity, which is a considerable improvement 

over our previous results. The efficacy of this approach also becomes readily apparent in 

our parallel assessment of the same samples by conventional XY-FISH, where male fetal 

cells could be detected only with 50% specificity and 60% sensitivity which is 

comparable with data in our previous study (Mergenthaler et al., 2005).  

The mathematical calculation of probability of labeling the fetal cells by XY-, YY-and 

XYY-probes combinations gives the values 0.81, 0.81 and 0.891, respectively (in the 

mathematical model we took equal FISH efficiency of 90% for X-, Y- (α-satellite) 

centromeric and Y (III-satellite) probes, as described by the manufacturer). Thus, the 

labeling of Y chromosome by two different probes (centromeric Yp11.1-q11.1 and q12 

regions) by the same color in the one-step two-color XYY-FISH has advantage in 

detecting fetal Y-chromosome over other methods of labeling mentioned above. 

Theoretically, the increase in the number of Y chromosome probes labeled by the same 

color leads to an increase in the probability of Y-chromosome detection. In our present 

study we demonstrate the results which confirm this mathematical prediction. 

Our data were also quite encouraging concerning the number of male fetal cells detected 

per 1 ml of maternal blood. The actual frequency of erythroblasts in the maternal 

circulation is difficult to assess, and it varies considerably according to the enrichment 

technique used and methods of evaluation. In an interstudy–comparison regarding fetal 

cell number the average concentration of 2 fetal cells per 1 ml of maternal blood found by 

Krabchi et al. (2001) matches approximately the concentration of 1.2 fetal cell 

equivalents per 1 ml of maternal blood found by Bianchi et al. (1997) using PCR. Our 

previous results (Mergenthaler et al., 2005) exceed these average cell numbers. In the 

present study we have enumerated from 8 to 16 and from 8 to 32 fetal cells per 1 ml of 

maternal blood by XY- and XYY FISH, respectively. It means that more male fetal cells 

were detected by the XYY-FISH approach in comparison with conventional XY-FISH. 

The reasons for differences in the values between our study and studies of other 

researchers might be due to the much broader range of gestational age of our patients, due 

to the different manner of evaluation (blinded and non-blinded), due to the procedure-

inherent factors influencing the FISH efficiency (Hromadnikova et al., 2002) and due to 
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the number of cases used for these studies which is non-sufficient for all mentioned 

above studies the statistically reliable result. 

Akin to our previous study, male fetal cells could be detected in the majority of maternal 

blood samples examined. No male fetal cells could be detected in 3/10 (30%) of XY-

FISH experiments and in 1/11 (9%) of XYY-FISH experiments of pregnancies with a 

male fetus. One of the reasons for this is that we used the amount 0.125 – 0.25 µl (1-2 

slides) of maternal whole blood that does not seem to be sufficient to guarantee the 

presence of a reliable number of fetal cells. 

Our study has revealed that the using double labeling of Y-chromosome (XY-Y-

Qbiogene protocol) results in improved fetal cells recovery and enables a reliable 

prospective non-invasive fetal sex determination.  

 

3.4. Spectral morphometric comparative analysis of erythroblasts from 
maternal and cord blood 
Spectral morphometric analysis was used in the present study for the characterization of 

erythroblasts from maternal and cord blood on the basis of spectral nuclear and 

cytoplasm features.  

In 1991, Haaf and Schmid (1991) stated that the existence of highly ordered 

organizational patterns in the cell nucleus probably could provide a structural framework 

for efficient processing of nuclear events. Therefore, in 1992, Sorensen hypothesized that 

the nuclear structure is a reflection of the metabolic state of the nucleus. In support of this 

hypothesis, many other researches suggest also that the specific nature of the 

compartmentalization could reflect the physiological state of a given cell (Popp et al., 

1990; van Dekken et al., 1990; Vourc'h et al., 1993). 

Zirbel et al. (1993) have proposed a model predicting that the surface of chromosome 

territories and a space formed between them provide a network-like three-dimensional 

nuclear compartment for gene expression, mRNA splicing, and transport, termed the 

interchromosome domain compartment.  

During erythropoesis major nuclear components, such as DNA, RNA, histone and 

nonhistone proteins, inorganic materials, water and cytoplasmic content, for example, 

haemoglobin, as well as nucleo-cytoplasmic (N/C) ratio could undergo changes. These 
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changes may be different in erythroblasts in maternal blood and in cord blood and as a 

result, this could produce different spectral patterns in these cells. 

On the basis of the present results, we assume that the circular patterns in erythroblasts 

from maternal blood and windmill patterns in erythroblasts from cord blood revealed by 

spectrally resolved imaging define a different three-dimensional compartmentalization of 

chromatin in the nucleus of these cells. 

The symmetry observed in the nuclei may be maintained by electric forces. According to 

Zirbel et al. (1993), short-range and long-range electric forces resulting from charge 

distribution effects of chromosome territories and other nuclear components may be 

involved in the maintenance of the interchromosomal domain. 

In our study we present the possibility of spectral morphometry for the disclosure of the 

distinctions of the erythroblasts. Although the MGG stained erythroblasts in maternal 

blood and in cord blood look similar, display similar properties, we have detected 

spectral distinctions between them. 

In erythroblasts from maternal blood the reference spectra No.1 of the spectral library 

dominated in comparison with that in erythroblasts from cord blood. The reference 

spectra No.1 may be associated with high degree of condensation of the nuclei in 

maternal blood, whereas in the cord blood the nuclei are less condensed. These data are 

in good correlation with results of morphometric measurements and with results of FISH.  

In erythroblasts from maternal blood the highly condensed chromatin was symmetrically 

condensed, whereas in the cord blood it shows windmill-like structure. In other study 

Rothman et al. (1997) have detected by spectral imaging the windmill-like structures of 

high symmetry in basophilic, polychromatic, and orthochromatic normoblast cells from 

bone marrow. They also have determined that apoptosis was associated with a gradual 

breakdown of the ordered arrays in the nuclei. 

The reference spectra No.4 may be associated with accumulation of haemoglobin and 

other molecules or may be due to accumulation of degraded DNA in the cytoplasm of 

erythroblasts (Hendzel et al., 1998). We suppose that in erythroblasts from maternal 

blood the nucleus is more condensed and the DNA is accumulated in cytoplasm as a 

result of apoptosis. 
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The spectral imaging morphometry has advantages over the image analysis systems now 

in use. In addition to standard morphometric parameters, spectra (400-850 nm) are 

obtained for each pixel of an image, providing more information than conventional image 

analysis.  

Today, the micromorphometry plays an increasing role in clinical diagnosis by providing 

clue derived from the shape and structure determinations of cell nuclei. Spectral imaging 

enhances the information obtained with light microscopy by providing multipixel spectra 

that otherwise are impossible to obtain from cytological specimens (Malik et al., 1996; 

Malik et al., 1997; Rothmann et al., 1997; Rothmann et al., 1998; Barshack et al., 1999; 

Greenspan et al., 2002). We propose that spectral morphometric analysis may serve as an 

additional diagnostic tool for detection of erythroblasts in maternal blood specimen. 

 

3.5. Future directions 
A long-term goal of all obstetricians and gynecologists is the development of simple, 

rapid, accurate, non-invasive tests for prenatal diagnosis. There is no doubt that fetal cells 

in maternal circulation do exist and that they can be used for the analysis of fetal 

aneuploidies and inherited Mendelian genetic disorders, but until now there exist some 

limitations for diagnostic applications. For example, the efficiency of FISH analysis on 

erythroblasts enriched from maternal blood is very low. In our study we have 

demonstrated that nuclear structure of erythroblasts is not suitable for FISH analysis. Our 

discovery that fetal erythroblasts in maternal circulation have small dense nuclei appears 

disappointing at present. However, more tests are needed to be done and a large number 

of samples are needed to be processed to confirm this and to understand more details on 

the nature and mechanisms of erythroblasts degradation in maternal blood. 

In order to use the fetal cells in clinical applicability a significant amount of work have to 

be done concerning the choice of fetal cells for analysis, selection of specific fetal 

markers, as well as development of optimal enrichment procedures which have to be 

more effective and not so labour-intensive as current ones. It will also be important to 

determine more closely at what stage of pregnancy circulatory cells can be detected 

reliably, as in our current study we have examined a broad spectrum of gestational ages. 

Next important moment is to determine the frequency of fetal cells at early stages of 



99 

pregnancy at those stages when they may be useful as the basis for a non-invasive 

prenatal diagnosis during the first trimester. Furthermore, the fetal source (placental or 

haemopoietic) of fetal cells is also of considerable interest, as this may lead to the 

development of new tools permitting the efficacious isolation of fetal cells from maternal 

blood samples. 

Therefore, the expansion of the molecular genetic diagnostic options, for example the 

primed in situ hybridisation (PRINS) analysis, needs to be optimized for use with fetal 

cells from maternal blood, or new techniques are to be developed. 

The rapid PCR analysis of single fetal cells could be improved by the adaptation of laser 

micromanipulation protocols and by optimization of amplification procedures, for 

example applying the whole genome amplification procedures.  

Finally, for clinical applicability, once all aspects of the non-invasive prenatal diagnostic 

technique have been optimized, these can be automated. The automated scanning 

technique (Metafer P; MetaSystems; Germany) can be combined with laser 

microdissection and pressure catapulting (LMPC; Germany), allowing automatic 

detection, isolation and collection of single fetal cells from maternal blood. 

Such possibility has the promise of being a big step forward in developing protocols for 

non-invasive prenatal diagnosis.  
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4. Materials and Methods  
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Samples 

The study was approved by the Cantonal Review Board of Basel and written informed 

consent was obtained in all instances. Cord blood samples were collected with EDTA 

immediately after birth from women with normal gestation who delivered normal infants. 

Maternal blood samples were collected with EDTA at 10 to 40 gestational weeks from 

women with normal singleton pregnancies. All samples were processed within 6 hours 

after blood sampling.  

 

CD 71 Enrichment 

We performed the CD 71 enrichment according to the protocol which had been 

established in our laboratory (Troeger et al., 1999a). In brief, the mononucleated cells 

were separated with a single density gradient using Histopaque 1083 (Sigma, Fluka 

Chemie GmbH, Buchs, Switzerland). After washing, for the positive selection, cells were 

incubated with anti-CD71 microbeads (Miltenyi Biotec GmbH, Bergisch Gladbach 

Germany) and separated using miniMACS separation columns following the 

manufacturer’s instructions (Miltenyi Biotec GmbH, Bergisch Gladbach Germany). 

 

Slide Preparation and May-Grünwald-Giemsa (MGG) staining 

The positively enriched cell fraction was transferred onto Superfrost PLUS glass slides 

(Mentzel-Gläser, Germany) by cytocenrifugation (Shandon, Frankfurt, Germany) in 

amount of 105 cells per one slide. The slides were stained differentially by May-Grünwald-

Giemsa (MGG) (Sigma, St. Louis, MO, U.S.A.). 

 

SBA galactose-specific lectin enrichment 

The lectin enrichment method was performed as described previously (Kitagawa et al., 

2002), except that a concentration of 100 µg/ml soybean agglutinin (Vector, Geneva, 

Switzerland) was used. In brief, for SBA enrichment the blood (7-8.5 ml) was diluted 

with phosphate-buffered saline (PBS) and the mixture was layered over 3 ml Histopaque 

1077 (Sigma, Fluka Chemie GmbH, Buchs, Switzerland) that was adjusted to density 

1.095 g/ml by adding sodium diatrizoate (Sigma, Fluka Chemie GmbH, Buchs, 

Switzerland). After centrifugation at 400g for 30 min at RT without break, the 
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mononuclear cells were collected and washed three times with PBS by centrifuging once 

at 750g for 10 min, and twice at 400g for 5 min at RT. The pellet was resuspended in 3 

ml of panning solution (RPMI 1640 (Invitrogen AG, Basel, Switzerland) +5% FCS). The 

mixture of cells for negative enrichment was placed on dish coated with 5% inactivated 

FCS in panning solution and incubated at 37°C for 30 min. The attachment of cells was 

controlled under the microscope. After incubation, the suspension containing unattached 

cells was collected after several washes of the dish and washed by centrifugation at 400g 

for 5 min at 20°C. The suspension was diluted with SBA solution (100 µg/ml soybean 

agglutinin (SBA) (Vector, Geneva, Switzerland) in PBS-buffer) to a concentration of 

2x106 cells/ml. 1 ml of this suspension was put in each chamber of the slides (Nalge 

Nunc International, Millian, Geneva, Switzerland) coated with PV-MeA (Poly-[N-p-

vinylbenzyl-O-a-D-galactopyramnosyl-(1-6)-D-gluconamide]) (NeTech, Kanagawa, 

Japan) at a concentration of 200 µg/ml and incubated at 15°C for 30 min while shaking 

the slides gently every 10 min.After incubation, the suspension containing unattached 

cells was decanted from the chamber slide, and the attached cells were washed with PBS 

buffer. 2 ml hypotonic solution (FCS/Water, 3:2) were added to every chamber and 

chamber slides were centrifuged at 17g for 5 min at 20°C. After centrifugation the 

medium was decanted from chamber and chambers were separated from the slides. The 

slides were centrifuged vertically at 68g for 10 min at 20°C and immediately dried with 

air for 30 min. The slides were incubated in a humid camera overnight at RT and then 

fixed in 95% mathanol for 20 seconds, in 50% methanol in 1/15 M phosphate-buffer for 

20 seconds at RT and in 2% methanol in 1/15 M phosphate-buffer for 3 min at RT, 

washed briefly in Millipore water. Cells immobilized on the slides were MGG stained.  

 

Light Microscopic Evaluation 

Using a conventional microscope (Axioplan 2 imaging microscope system, Carl Zeiss, 

Zürich, Switzerland), every slide from cord blood and maternal blood after MGG staining 

was analyzed for cells content according to next criteria: a) optimal density of cells; b) 

undestroyed cellular morphology; c) good MGG staining. The cells with low nucleus-to-

cytoplasm ratio, dense and small nucleus, and orthochromatic, non-granular cytoplasm 

were considered as erythroblasts. 
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For maternal blood slides total number of erythroblasts on the slide was accounted and 

position of every erythroblast was electronically marked using a digital automated location 

finder software (Axiovision 3.1, Carl Zeiss, Zürich, Switzerland) and MGG image for 

every cell was captured, using CDC camera (AxioCam, Carl Zeiss, Zürich, Switzerland). 

 

Carnoy`s fixation on whole blood. 

One milliliter of whole maternal peripheral EDTA-blood was processed within 6 hours 

after sampling. After washing with 8 ml RPMI 1640 (Invitrogen, Basel, Switzerland) by 

centrifugation at 1000 rpm for 8 min at RT the samples were incubated with 10 ml of pre-

warmed 0.4% KCL for 20 minutes at 37°C, fixed several times with freshly prepared pre-

cooled Carnoy`s fixative (methanol: glacial acetic acid, 3:1) and centrifuged at 1000 rpm 

for 8 min at RT and incubated overnight at –20°C. Then the cells were washed in 1% 

BSA/PBS, resuspended by pipetting. The slides were prepared by cytocentrifugation (8 

slides per case). 

Pretreatment of slides involved 0,005% pepsin digestion for 10 min and fixation for 10 min 

in 1% formaldehyde. 

 

Immunocytochemistry (ICC) 

The slides were fixed in 100% methanol for 10 min, 100% acetone for 10 min and in 10% 

formaldehyde for 10 min. Then they were incubated with 20% goat serum (Sigma) diluted 

in 1% BSA-PBS for 45 min followed by incubation with monoclonal mouse anti-human 

Glycophorin A (GPA) antibodies (1:2000 diluted in PBS) (Dako A/S, Denmark) for 10 

min. Subsequent incubations were performed with biotinylated anti-mouse 

immunoglobulins (Dako A/S, Denmark), and with streptavidin (Dako A/S, Denmark), both 

were incubated for 10 min. Then the slides were stained by Vector blue alkaline 

phosphatase substrate (Kit III, Vector Laboratories, Burlingame, USA) for 15 min. 
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Fluorescence In Situ Hybridization (FISH) 

 

Pretreatments: 

Microwave – activated pretreatment: The slides were mounted on a small glass filled with 

30 ml PBS and placed in the center of circling plate of commercially available microwave 

oven (Bosch, Germany). Activation was performed at 700 W for 40 sec. 

Pepsin treatment: With examined different concentration, temperature and duration of 

time, the following optimal conditions were determined: 0.005% pepsin/water, for 30 sec 

at 37ºC (Table 2). 

Proteinase K treatment: The concentrations 0.5 mg/ml and 1 mg/ml and time of treatment 

from 1 min to 30 min were examined. 

HCL treatment: The concentrations 0.1 M and 0.2 M and time of treatment from 30 sec 

min to 20 min were examined. 

 

Choice of Probes: 

For the comparison of the efficiency of different direct labeled fluorescence DNA probes 

the MGG-stained slides were hybridized in different FISH-experiments with probes from 

Vysis and Qbiogene companies (Table 4; Figure5). 

Vysis: two–color chromosome X/Y cocktail probe (CEP X spectrum green, alpha satellite, 

region centromeric Xp11.1-q11.1; CEP Y spectrum orange, alpha satellite, region 

centromeric Yp11.1-q11.1).  

Qbiogene: two–color chromosome X/Y cocktail probe (X centromeric (DXZ1), alpha 

satellite, fluorescein and Y centromeric (DYZ3), alpha satellite, rhodamine).  

Besides, we examined different combinations of Qbiogene probes: 

Mixture of chromosome X centromeric (DXZ1), alpha satellite, rhodamine and 

chromosome 18 satellite probe, fluorescein, in proportion 1:1; 

Mixture (and separately) of chromosome Y centromeric (DYZ3), alpha satellite probe, 

fluorescein and chromosome Ygh, classical satellite probe, rhodamine, in proportion 1:1; 

Mixture of two-color chromosome X/Y cocktail probe (X centromeric fluorescein, Y 

centromeric rhodamine) and Ygh classical satellite probe, rhodamine; in proportion 1:1. 
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Hybridisation procedure: 

The FISH procedure was performed according to the manufacturer’s instructions with 

slight modifications. 

Vysis probes hybridisation 

For each slide, hybridization reaction was prepared by mixing 7 µl of CEP hybridization 

buffer (for repetitive sequence DNA probes) with 1 µl of probe and 2 µl of deionized water 

in Eppendorf  tube for total 10 µl of hybridisation solution. The slides were dehydrated 

with 70%, 85%, and 96% ethanol, 2 min each, and then allowed to air dry. 

After air-drying the slides, 10 µl of probe mixture were applied to slide and covered by 

coverslips. The slides were placed in HYBrite hot plate (Vysis). The probes and DNA were 

denatured at 72ºC for 2 min and then hybridized 37ºC for 16 hours.  

The post-hybridization washes were made by transferring the slides to a bath of 0,4xSSC 

0.3% Nonidet P-40 (NP-40) for 2 min at 72ºC and then were washed briefly in 2xSSC 

0.1% NP-40 for 30 sec at RT. Then the slides were kept in the dark until air drying. Then 

for every slide DAPI/Antifade was applied and the slides were covered with glass 

coverslips. 

Qbiogene hybridisation 

The procedure was performed according to manufacturer`s protocol with slight 

modifications. The pretreatment of slides was made in 2XSSC, pH 7.0/0.5% Igepal (NP-

40) at 37 C for 10 minutes. Then the slides were dehydrated with 70%, 80% and 95% 

Ethanol for 2 minutes each and then allowed to air dry. The probes were pre-warmed at RT 

and were applied in amounts of 10 µl to slides and covered by coverslips. The sample and 

probe were co-denatured in HYBrite hot plate (Vysis) at 80ºC for 2 min. The hybridization 

was at 37ºC overnight. The post-hybridization washing was performed in 

0.5XSSC/0.1%SDS for 5 min at 37ºC without agitation. Then DAPI/Antifade was applied 

and the slides were covered with applied glass coverslips. 

 

Fluorescence microscopy analysis 

The FISH efficiencies for cord blood samples were determined by scoring the 100 cells 

from erythroblast population. All the erythroblasts that showed two clearly distinctive 
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hybridization signals were registered as correctly hybridized. Those erythroblasts that were 

recorded as XO, YO or OO were considered as a failure of the hybridization. All the 

signals observed with the triple band pass filter were confirmed with fluorochrome specific 

monochromatic filters (Carl Zeiss, Zürich, Switzerland). 

After FISH the slides from maternal blood were rechecked for every recorded position of 

erythroblasts. The FISH result was evaluated according to the criteria, described above. 

Then Y signal screening for all slides was performed. The cells showed the representative 

signals were captured using CCD camera. 

 

Morphometric analysis 

The measurements were made on MGG images using the Zeiss Axiovision 3.1 

measurement software (Carl Zeiss, Zürich, Switzerland). Every nucleus was measured 

along the longest axis and along shortest axis. The average of such two measurements for 

every nucleus was taken as “diameter” for further analysis. For every nucleus, the 

circumference of the nucleus was also measured. The N/C ratio was calculated from 

measurements of area of the nucleus and the cell 

 

Terminal dUTP Nuclear End Labeling (TUNEL) 

TUNEL staining was performed using a commercially available in situ cell death 

detection kit (Roche Molecular Biochemicals) according to the manufacturer’s 

instructions. In brief, the cells were cytospinned on a glass slide, stained by the May-

Grünwald-Gimsa (MGG) method and fixed with 4% paraformaldehyde/PBS solution at 

RT for 30 minutes. After washing with PBS the slides were permeabilized with 0.1% 

Triton X-100/0.1% sodium citrate for 5 minutes on ice and washed twice with PBS. Cells 

were then incubated with 50µl TUNEL mixture for 1h at 37º C in a humidified chamber. 

After washing twice, the slides were incubated with 50 µl Converter-AP for 30 minutes at 

RT, followed by incubation with the DAKO Fuchsin Substrate-Chromogen (DAKO) for 

10 minutes at room temperature. As positive and negative controls, the samples were 

incubated with DNAase I and with label solution devoid of terminal deoxynucleotidyl 

transferase (TdT), respectively. The TUNEL staining result was checked by a light 

microscope (Zeiss Axioskop, Germany) for every recorded erythroblast. 



107 

 

Culture at different oxygen concentrations 

Eight hundred microliters of cord blood were added immediately after delivery to 10 ml 

of PB-MaxTM (Gibco, Invitrogen AG, Basel, Switzerland) with 100 µl of 

Antibiotic/antimycotic solution.  

Cells were then incubated for 24 hours under two different oxygen concentrations: 3% O2 

and 20% O2 at 37oC. To equilibrate the oxygen concentration in the medium, the medium 

was preincubated in the incubators for 2 hours at least. After 24 h of incubation the cells 

were transferred from the flask to 15 ml tubes and centrifuged at 1600 rpm x 10 min. The 

smears were made from fresh cord blood and from the same cases after cultivation. The 

slides were stained by MGG. The erythroblasts were then identified morphologically and 

counted. The relative number of erythroblasts was calculated as the number of 

erythroblasts per 100 nucleated cells. 

 

Statistics 

We used the Wilcoxon sign-rank test to analyze differences between the results for 

culture at 3% and 20% oxygen. P value (Asymp. Sig. (2-tailed)) less than 0.05 was 

considered as indicating the statistical significance. 

To check the significance of difference in size between nuclei with XX FISH signals and 

without any signal and to analyze differences in distribution of spectra No.1 and spectra 

No.4 between cord blood erythroblast and the ones from maternal blood we used the 

Student’s t-Test (2-tailed) assuming unequal variances, with a p value less than 0.05 

indicating statistical significance. To check the significance of difference in size between 

nuclei with XX FISH signals and without any signal we applied ANOVA test also. 

Laser Microdissection and Pressure Catapulting (LMPC) technology 

MGG slides with and without special membrane from maternal blood cases which have 

demonstrated many erythroblasts and no FISH signals on them were subjected to laser 

microdissection and Pressure Catapulting (LMPC) (P.A.L.M. Microlaser Technologies, 

Bernried, Germany). 
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Single cell or pool of cells were collected in 15 µl of pro K solution/SDS (400ng/1µl) 

from every such case and frozen –20˚C overnight. After unfreezing the cells were 

centrifuged at 16000 rpm for 5 min and subjected to proteinase K (pro K) treatment at 

56˚C for 8 hours with following inactivation pro K at 96˚C during 10 min. Thereafter the 

cells were centrifuged at 16000 rpm for 5 min and were tested by Real-Time PCR. 

 

Real-Time Polymerase Chain Reaction (PCR) 

Real-Time PCR specific for the SRY (sex-determining region Y-chromosome) and 

GAPDH (glyceraldehyde-3-phosphate dehydrogenase) genes or for 18 chromosome and 

21 chromosome was carried out using a Perkin Elmer Applied Biosystems 7000 

Sequence Detector (TaqMan, Applied Biosystems, Boston, USA). In brief, the 50 µl of 

amplification reaction mixture consisted of 300 nM of each primer and MGB labeled 

TaqMan probe, 25 µl TaqMan Universal PCR Master Mix (3.5 mM magnesium chloride, 

100 mM dNTPs, 0.025 U AmpliTag Gold and 0.01 U Amp Erase (Perkin-Elmer, USA)). 

The following primers were used: 

GAPDH forward primer 5`CCCCACACACATGCACTTACC3` 

GAPDH reverse primer 5`CCTAGTCCCAGGCCTTTGATT3` 

GAPDH MGB Probe 5`AAAGAGCTAGGAAGGACAGGCAACTTGGC3` 

SRY forward primer 5`TCCTCAAAAGAAACCGTGCAT3` 

SRY reverse primer 5`AGATTAATGGTTGCTAAGGACTGGAT3` 

SRY MGB probe 5`CACCAGCAGTAACTCCCCACAACCTCTTT3` 

18 chromosome forward primer 5`TGACAACCAAACGTGTGTTCTG3` 

18 chromosome reverse primer 5`AGCAGCGACTTCTTTACCTTGATAA3` 

18 chromosome MGB probe 5`GGTGTTTTGGAGGAGTT3` 

21 chromosome forward primer 5`CCCAGGAAGGAAGTCTGTACCC3` 

21 chromosome reverse primer 5`CCCTTGCTCATTGCGCTG3` 

21 chromosome MGB probe 5`CTGGCTGAGCCATC3` 

The following conditions were used for the PCR amplification: an initial incubation at 

50ºC for 2 minutes and at 95ºC for 10 minutes, followed by 45 cycles of 60ºC for 1 

minute and 95ºC for 15 seconds. In each real-time PCR analysis positive and negative 

controls were included.  
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Spectral Imaging 
Fourier Transform Multipixel Spectrometry System for Microscopy. Spectral Imaging 

was performed using the SpectraCube SD-200 (Applied Spectral Imaging; Migdal 

HaEmek, Israel), (Malik et al., 1996), attached to a microscope (Axioscope 2 plus). 

Multipixel spectra were obtained from each cell in the range from 450 to 800 nm. A 

detailed description of the optical system is described by Malik et al., (1996) and 

Rothmann et al., (1997). 

Library. The different spectra from normal erythroblast cells were analyzed. Five 

distinctive spectra: three from nuclei and two from cytoplasm, were collected into 

spectral library and a distinct pseudo color was assigned to each one of them. Reference 

spectrum No. 1 sampled from the condensed nuclei region was assigned red; reference 

spectrum No. 2 from the less condensed nuclei region, blue-violet; reference spectrum 

No. 3 from minimally condensed chromatin on the rim of the nuclei region, pink. 

Reference spectra No. 4 and No. 5 representing two distinct cytoplasm domains, were 

assigned green and blue, respectively.  

Classification Analysis. To match each pixel in the analyzed image to the reference 

spectrum from library, so that spectral similarities were apparent, the classification 

algorithms were used. The criterion for this matching is minimal square error (MSE) 

mathematical function. The minimal square error algorithm measures the difference 

between the spectrum of each pixel composing an image and that of each reference 

spectrum. In such way, each pixel in the input image was identified with the most similar 

spectrum of the library; then, each pixel was displayed in an artificial color that 

represents a reference spectrum from library. The reconstructed image composed of 

artificial colors, reveals the degree of similarity between the library spectra and spectra of 

the image.  

Standardization and normalization. In order to overcome differences in slides that 

resulted from the fact that the specimens were taken from different patients and were 

stained on distinct days and by a different batch of stain, the standard fixation and 

staining protocols were used. To eliminate the influence of light conditions during 

spectral capturing the same setup for microscopy was used. Variation in spectra may also 

result from differences in intensity. In order to neutralize the effect of intensity variations, 
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the classification was performed using normalized spectra and library. Normalization 

steps at classification were needed in order to treat uniformly the individual samples and 

to preserve a comparison consistent with the prelabeled spectral library. 

Computational morphometric analysis. To provide objective quantitative data for cell 

characterization the region-of–interest being assessed was extracted from the pseudo-

colored image and the area of this region in pixel was measured, then the percentage of 

area was calculated. 
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