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CHAPTER 1 

 

BONE REPAIR 

 

 

1.1 Bone tissue: biology, structure, and function 

 

Bone is a dynamic, highly vascular, and mineralized connective tissue, characterized by its 

hardness, resilience, growth mechanisms, and its capability to remodel itself throughout the life-time 

of an individual. 

Bone performs several key functions within the body: it not only provides structural support 

and protection to bodily organs, but is also responsible for maintaining mineral homeostasis, and is the 

primary site for the synthesis of blood cells. Furthermore, it is capable of maintaining an optimal shape 

and structure throughout life, via a continuous process of renewal and remodelling, through which it’s 

able to respond to changes in its mechanical environment, in order to meet different loading demands, 

thus maintaining an optimal balance between form and function [1]. 

Simply, bone is a dense multi-phase composite, made up of cells embedded in a very well-

organized matrix, which is composed of both organic and inorganic elements; however, both structure 

and proportion of its components widely differ with age, site and history, resulting in many different 

classifications of bone that exhibit various mechanical and functional characteristics. 

Histologically, mature bone is classified in two different types of tissue, one of which is 

relatively dense, known as cortical bone, while the other consists of a network of struts or trabeculae 

surrounding interconnected spaces, known as trabecular or cancellous bone (Fig.1). Bone surfaces 

consist of cortical bone, and the thickness of this protective layer increases in mechanically demanding 

regions, such as the shafts of long bones, while cancellous bone is found in the interior of bones, such 

as within the femoral head, and vertebra. 
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 Bone as an organ is composed of three main elements: (i) bone matrix, providing mechanical 

strength and acting as the body’s mineral store, (ii) bone cells, responsible for maintaining the 

structure of the matrix, regulating its oxygen and nutrient supply, and storing or releasing minerals as 

required, and (iii) bone marrow with its associated vascular network, providing the source of stem 

cells and representing the main means of communication and interaction with the rest of the body. 

 

 

 

Fig.1. Schematic diagram of cortical and trabecular bone, showing the different microstructures 
(Reproduced from Hayes WC: Biomechanics of cortical and trabecular bone: Implications for 
assessment of fracture risk). 

 

Bone extracellular matrix has two main components: the organic collagen fibres and the 

inorganic bone mineral crystals. Together they make up approximately 95% of the dry weight of bone, 
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the remainder being composed of other organic molecules, collectively known as the non-collagenous 

proteins. 

Collagen accounts for 70-90% of the non-mineralized components of the bone matrix; it 

consists of carefully arranged arrays of tropocollagen molecules, which are long rigid molecules 

composed of three left-handed helices of peptides, known as α-chains, which are bound together in a 

right-handed triple helix. Bone contains mostly type-I collagen, which is composed of tropocollagen 

molecules containing two identical and one dissimilar α-chains (α1(I)2 α2). 

The main inorganic phase within the bone matrix is usually incorrectly referred to as 

hydroxyapatite (HA), a hydrated calcium phosphate ceramic, with a similar crystallographic structure 

to natural bone mineral, which has a chemical formula of Ca10(PO4)6(OH)2; however, bone-apatite is 

characterized by calcium, phosphate and hydroxyl deficiency, internal crystal disorder, and ionic 

substitutions, thus resulting in the presence of significant levels of additional trace elements within 

bone mineral: it is not a direct analogue of HA, but more closely a carbonate-substituted apatite. All 

these factors contribute to an apatite that is insoluble enough for stability, yet sufficiently reactive to 

allow the in vivo crystallites to be constantly resorbed and reformed as required by the body. 

The most important non-collagenous organic constituents of bone matrix are four proteins: 

osteocalcin (OC), bone sialoprotein (BSP), osteopontin (OP) and osteonectin (ON). They are produced 

by bone cells and their relative composition within the bone matrix appears to be self-regulating 

through a feedback effect on their expression by osteoblasts. They all appear to be multi-functional, 

and are all involved in regulating bone mineralization and remodelling.  

Bone matrix also contains a great number of growth factors, including fibroblast growth 

factors (FGFs), insuline-like growth factors (IGFs), plateled-derived growth factors (PDGF), 

transforming growth factor-beta (TGFβ) superfamily, and bone morphogenic proteins (BMPs): they 

play several critical roles in regulating cell proliferation and differentiation, inducing the complete 

sequence of endochondral bone formation, when cartilage forms first and is subsequently replaced by 

bone. 

The major types of bone cells are osteoblasts, osteocytes and osteoclasts, respectively 

responsible for production, maintenance, and resorption of bone; they are highly specialized 
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differentiated cells, and they generally don’t proliferate. Less differentiated cells of the same lineage 

are required for the control of bone cell populations, and, as demands are made on or by the bone, 

these cells proliferate and differentiate as required: such cells are generally known as stem cells, and in 

the case of bone formation are often referred to as osteogenic cells.  

The osteogenic bone-forming cells originate from the mesenchymal bone marrow stromal cell 

line and exist in the endosteum and periosteum [2]. Biochemical signalling molecules stimulated 

during remodelling and fracture healing, result in a local increase of this cell population. However, the 

local environment also determines the route of differentiation undertaken by osteogenic cells, resulting 

in the evolution of either osteoblasts or chondroblasts: if the environment surrounding a differentiating 

osteogenic cell has a high vascular content, as in healthy bone, the cell will differentiate into an 

osteoblast which will produce bone; once the osteoblast has been surrounded by bone, it differentiates 

into an osteocyte, and becomes involved in the nutrition and maintenance of the local bone. In 

contrast, if the environment surrounding a differentiating osteogenic cell has little or no vascular 

content, as in a recent fracture site, the cell will differentiate into a chondroblast and cartilage will be 

produced; once the chondroblast is surrounded by cartilage, it then differentiates into a chondrocyte, 

which maintains the surrounding collagenous matrix until it’s replaced by bone during endochondral 

ossification. 

In contrast osteoclasts are derived from monocytes, thus they originate from the haemopoietic 

stem cell lineage: under the influence of specific signalling proteins or cytokines, mononuclear 

monocytes migrate to the resorption site and fuse with either other monocytes or a multi-nucleated 

macrophage, before differentiating into the specialized osteoclast, an aggressive cell responsible for 

bone resorption [3].  

 

 

 

 

 



 9

1.2 Bone formation: development, healing, and repair 

 

Bone is unique among all the vertebrate tissues in its ability to heal via formation of new bone: 

most of the other tissues, such as heart, muscle and brain heal by replacement with connective tissue 

rather than original tissue. Furthermore, in a mature animal, the molecular and cellular patterns of 

bone repair after injury are similar to bone formation in an embryo, suggesting analogous mechanisms 

for the control of bone formation in adult and embryonic skeletons [4]. In an embryo, a condensation 

of primitive mesenchymal cells can transform into bone via either intramembranous or endochondral 

ossification: intramembranous ossification occurs when the mesenchymal cells are transformed into 

osteoprogenitor cells and then directly into osteoblasts, resulting in the direct formation of bone; 

endochondral ossification occurs via a two-step process where mesenchymal cells transform into 

chondroblasts which lay down a collagenous template, subsequently ossified by invading osteoblasts. 

The final mature bone formed by both processes is virtually indistinguishable, and the mechanisms 

dictating which route is taken are poorly understood.  

Fractured bone heals through endochondral ossification: a haematoma is formed, resulting 

from injury to the periosteum and local soft tissue; as a consequence of this disruption in the blood 

supply, osteocytes nearest to the fracture die, resulting in local necrosis of the bone around the 

fracture; simultaneously, there is a demand for the repair of the bone, the stabilization of the damaged 

area and the removal of the dead tissue; in response to this, macrophages and fibroblasts are recruited 

to the site to remove tissue debris, and to express extracellular matrix, respectively. In response to 

growth factors and cytokines released by these inflammatory cells, mesenchymal stem cells recruited 

from the bone marrow and periosteum, proliferate and differentiate into osteoprogenitor cells. This 

leads to an apparent thickening of the periosteum and the production of collars of external fracture 

callus around the fracture site. Those osteoprogenitor cells that lie close to undamaged bone, 

differentiate into bone osteoblasts and form an osteoid, which is rapidly calcified into bone, while 

those farther away become chondroblasts and form cartilage; concurrent angiogenesis is induced, and, 

as soon as cartilage has formed and the fracture site stabilized, it is replaced by cancellous bone via 

endochondral ossification, in which osteoclasts and osteoprogenitor cells invade the cartilaginous 
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callus preceded by capillary formation. The uncalcified material is then resorbed, and new bone is 

deposited on the remaining spinicules of calcified cartilage. Woven bone is finally remodelled into 

lamellar bone, bone marrow is restored within cancellous regions, and successive layers of bone 

gradually fill the spaces between trabeculae of cortical bone. Load-bearing capabilities and a new 

vascular network are thus restored. 

Although the vast majority of bone defects spontaneously heal with minimal treatment, among 

the 6 millions fractures occurring every year in the United States, 5-10% require further treatment for 

compromised healing because of either interposition of soft tissue, improper fracture fixation, loss of 

bone, metabolic diseases, impairment of blood supply or infection. Furthermore, in certain clinical 

settings, large pieces of bone must be resected to treat benign and malignant tumours, osteomyelitis, as 

well as bone deficiences, and abnormal loss in the maxillo-facial area; in addition, bone is typically 

subject to progressive degeneration as a result of age and disease (i.e. osteoporosis).  

Considering all these challenging situations, bone function can often be restored only by 

surgical reconstruction: bone grafting, the procedure of replacing missing bone with material from 

either the patient’s own body (autografting) or that of a donor (allografting) is used in the surgical 

procedures since many years. Autologous bone harvested from donor sites such as the iliac crest, is the 

preferred treatment [5]: grafts of this kind are osteoconductive (they provide a scaffold on which bone 

cells can proliferate), osteoinductive (they induce proliferation of undifferentiated cells and their 

differentiation into osteoblasts), and osteogenic (they provide a reservoir of skeletal stem and 

progenitor cells that can form new bone); however, the amount of bone that can be safely harvested is 

limited, while the additional surgical procedure may be complicated by donor-site pain and morbidity. 

Modern allografting using material stored within bone banks overcomes these difficulties; however, 

the demand exceeds the supply, there is no assurance of freedom from disease, and healing can be 

inconsistent [6]. 

As an alternative to these two types of bone grafts, a wide variety of synthetic substrates have 

been developed and are actually in clinical use, with mixed success and surgical acceptance: such 

materials in fact are generally biocompatible and osteoconductive, thus supporting adhesion, 

proliferation, and differentiation of osteogenic cells from surrounding tissues, and ultimately leading 
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to bone formation; however, these materials are not osteoinductive, providing only the scaffold which 

has to be invaded by bone-forming bioactive cells [7, 8]: reasoning that they typically give good 

results only when implanted in small defects, where interactions between material’s surface and local 

cells and proteins are sufficient to repair the bone defect. In addition, metals, although providing 

immediate mechanical support at the site of the defect, exhibit poor overall integration with the tissue 

at the implantation site, and can fail because of infection or fatigue loading; on the other hand, 

ceramics have very low tensile strength and are brittle, thus they cannot be used in locations of 

significant torsion, bending, or shear stress [9]. 

Thus it’s clearly seen that repair of bone defects is actually still a big challenge for the 

orthopaedic, reconstructive, and maxillo-facial surgeons: it’s in this scenario that a promising field of 

science called Tissue Engineering is emerging since the last few years.  
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CHAPTER 2  

 

CELL-BASED ENGINEERING OF BONE TISSUE 

 

 

2.1 General concepts 

 

As defined by Langer and Vacanti [1], tissue engineering is an interdisciplinary field of 

research that applies the principles of engineering and the life sciences towards the development of 

biological substitutes that restore, maintain, or improve tissue function. In contrast to classical 

biomaterials approaches, it’s based on the understanding of tissue formation and regeneration, and 

aims at inducing new functional tissue, rather than implanting new spare parts: researchers foresee to 

reach this goal by combining knowledge from physics, chemistry, engineering, materials science, 

biology and medicine in an integrated manner. 

Engineering of osteoinductive grafts can be achieved by loading 3D scaffolds with either bone 

morphogenetic proteins, or osteogenic cells: regarding the first approach, the growth factor can be 

incorporated within a polymer scaffold, which, by degradation, will release the factor with defined 

kinetics, or, alternatively, injected directly at the site, together with an osteoconductive material, 

aiming at recruitment and differentiation of mesenchymal progenitor cells localized in the neighboring 

original bone tissue. The second approach does require osteogenic cells, which can be obtained from 

biopsies of different tissues (i.e. bone marrow, periosteum, adipose tissue...): typically, osteogenic 

cells are obtained from the bone marrow, where they represent a very small percentage (approximately 

0.01%) of the total number of nucleated cells. Therefore, to obtain a sufficient number of cells for 

bone tissue engineering applications, BMSC are typically first selected and expanded in vitro by 

sequential passages in monolayer (2D) prior to loading into three-dimensional (3D) porous scaffolds, 

which prime cell differentiation towards the osteogenic lineage and provide the template for the in 

vivo bone-like tissue formation [2, 3].  
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The growth factor-based approach, since it doesn’t require ex vivo cell processing, appears 

more simple, but, on the other hand, it opens biological questions, such as how the overdose of one 

single molecule could recapitulate the complex set of molecular events physiologically involved in the 

safe and stable formation of bone tissue. The cell-based approach, although it's apparently less 

convenient in terms of logistics and costs, is actually becoming more and more appealing because 

based on more physiologic signals, possibly inducing mechanisms of regeneration which are closer to 

those naturally occurring in normal functional living organisms. However, 2D-expanded BMSC have 

a dramatically reduced differentiation capacity in comparison with those found in fresh bone marrow 

[4, 5], placing potential limits on their clinical utility.   

Required components for cell-based bone tissue engineering are cells, extracellular matrix, 

intercellular communications, cell-matrix interactions, and growth factors; in addition, since bone has 

a three-dimensional (3D) configuration, a 3D structure, a scaffold, is typically used, in order to 

provide the template for tissue development in a 3D manner.  

The in vitro culture of 3D cell-scaffold constructs under conditions that support efficient 

nutrition of cells, possibly combined with the application of mechanical forces to direct cellular 

activity and phenotype, is another important step towards the development of functional grafts for the 

treatment of lost or damaged tissues [6]. 

Thus, for a successful cell-based engineering of osteoinductive grafts, the following issues 

should be carefully addressed and combined: (i) identification of a reliable cell source, (ii) selection of 

the right scaffold material and architecture, (iii) development of the adequate 3D cell-scaffold culture 

system, and (iv) use of the appropriate culture media supplements. 

 

 

2.2 Cell sources 

 

Cell sourcing is the first issue to deal with for development of engineered bone grafts. The 

characteristics of an ideal cell source include: no immunorejection, graft-versus-host disease or 



 15

tumorigenicity, availability in pertinent quantities, controlled cell proliferation rate, consistent 

osteogenic potential, as well as controlled integration in the surrounding tissues. 

The first and most obvious choice for non-immunogenicity is the use of autologous osteoblasts 

harvested from a biopsy of the patient himself; unfortunately, relatively few cells are available for 

harvesting, potentially resulting in some degree of donor-site morbidity, and their expansion rate is 

relatively low, limiting the number of cells available to be seeded on the scaffolds, even following 

expansion in vitro [7]. 

An alternative is the use of xenogenic cells (obtained from non-human donors): this 

methodology would solve the issue of the low cell number, but potentially it would introduce serious 

problems, such as the immunogenic response and the transmission of infectious agents [8]. 

It is in this context that stem cell biology appears as the most valid and promising solution. 

Stem cells are defined as undifferentiated cells with the capacity for self- renew, and multilineage 

differentiation [9]. However, stem cells have different degrees of differentiation potential, ranging 

from the totipotency (ability to form the embryo and the trophoblast of the placenta) of the zygote, to 

the pluripotency (ability to differentiate into almost all cells that arise from the three germ lines) of 

embryonic stem cells, and lastly to the multipotentiality (capability of producing a limited range of 

differentiated progeny, related to the embryonic origin of the tissue where they are found) of adult 

stem cells, which are present in the fully differentiated tissues [9].  

In the field of bone tissue engineering, there has been a special interest in the stem cells 

located in the bone marrow, known as Mesenchymal Stem Cells (MSC). The idea that bone marrow 

contained some kind of osteogenic precursor cells started in 1963, when it was shown that by 

implanting pieces of bone marrow under the renal capsule, it was possible to obtain an osseous tissue 

[10]. After this, some in vivo studies by Friedenstein revealed the possible existence of osteogenic 

stem cells in the bone marrow [11], [12]: to better understand the nature and origin of these cells, he 

then developed a method to isolate fibroblast-like cells from the marrow, basing on their ability to 

adhere to cell culture plastic [13]; later he coined the term colony-forming units fibroblastic (CFU-f) 

to describe the fibroblastic, non-phagocytic and clonogenic nature of these cells [14]. Almost twenty 

years later, Caplan gave these cells the name they have today, Mesenchymal Stem Cells [15], and he 
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showed that these cells, when placed in the adequate conditions, can differentiate into different cells of 

mesenchymal origin, capable of giving origin to bone, cartilage, fat, tendon, as well as all the other 

tissues of mesenchymal origin [16].  

Although their high differentiation potential makes them a very appealing candidate as a cell 

source for bone tissue engineering, there are several key issues that still need to be addressed: (i) the 

percentage of MSC present in the bone marrow is very low (1 in every 105 cells) [16], thus their 

expansion is highly time consuming; (ii) with an increased number of passages, MSC progressively 

loose their differentiation potential [17]; (iii) although several stem cell surface markers for the 

isolation and characterization of MSC were described, the high heterogeneity of MSC cultures actually 

makes very difficult the establishment of universal markers to identify the MSC with multilineage 

potential within the whole bone marrow cell population [18]. 

For these reasons, attempts have been recently made to isolate MSC from alternative tissues 

rather than the bone marrow, e.g. fat [19] or periosteum [20]; however, in spite of the rather invasive 

procedure of bone marrow harvest, and the limited and highly variable amount of cells that can be 

isolated from this tissue [21], MSCs from bone marrow currently represent the most reliable and 

widely used cell source for the experimental induction of bone tissue formation.  

Based on these considerations, the experimental system we developed for generating 

osteoinductive constructs was based on MSC from the bone marrow, alternatively called bone marrow 

stromal cells (BMSC), or mesenchymal progenitor cells (MPC). 

 

 

2.3 Scaffolds 

 

Bone matrix in vivo is a 3D scaffold for bone cells, providing them with a tissue-specific 

environment and architecture, and serving as a reservoir of water, nutrients, cytokines, and growth 

factors: in this sense, and in order to restore function or regenerate bone tissue, one needs a template, a 

scaffold, that will act as a temporary matrix for cell proliferation and extracellular matrix deposition, 

with consequent bone in-growth until the new bone tissue is totally restored or regenerated, as well as 



 17

a template for the vascularization of the neo-tissue. This means that an appropriate 3D scaffold is an 

essential component for a successful tissue engineering strategy. 

A wide number of biodegradable and bioresorbable materials, as well as scaffold designs, 

have been experimentally and clinically studied. Ideally, a scaffold should have the following 

characteristics: (i) three-dimensional and highly porous interconnected structure, with a large surface-

to-volume ratios, for cell growth and flow transport of nutrients and metabolic waste; (ii) 

biocompatible and bioresorbable composition, with a controllable degradation and resorption rate to 

match cell/tissue growth; (iii) suitable surface chemistry for cell attachment, proliferation, and 

differentiation; (iv) mechanical properties to match those of the tissue at the site of implantation, and 

(v) easy structure to manufacture, sterilize and handle in the surgery room [22].   

Regarding the selection of the adequate material for bone tissue engineering applications, up 

to now several possibilities have been proposed, such as metals, ceramics, and polymers; metals 

however, as well as some ceramics, are not biodegradable, which reduces the choice of an appropriate 

material to: (i) biodegradable ceramics, both from natural (e.g. coralline hydroxyhapatite), or synthetic 

origin (e.g. synthetic hydroxyhapatite, β-tricalcium phosphate); and (ii) synthetic polymers (e.g. 

collagen, fibrinogen, hyaluronic acid, polycarbonates, poly-α-hydroxyacids, polyanhydrides) [23].  

Ceramics are well known to support the osteogenic phenotype of osteoblasts [24], and to 

prime the differentiation of MSC towards the formation of bone tissue [3]. Even though it seems 

possible to design a standardized hydroxyapatite ceramic scaffold with the help of rapid prototyping 

techniques [25], the scaffold architecture (i.e. size and interconnectivity of the pores), as well as its 

mechanical properties, are better controlled using synthetic polymers [26]; on the other hand, the 

ability of synthetic polymers to induce osteogenic differentiation is generally much lower than that of 

ceramics, unless growth factors are incorporated and released in a controlled fashion.  

Based on these considerations, our experimental system was based on porous ceramic 

scaffolds (8 mm diameter, 4 mm thickness) made of 100% hydroxyapatite, and with a porosity of 83% 

(Fin-ceramica Faenza, Faenza, Italy). 
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2.4 3D-culture systems 

 

Bone is a highly structured and mechanically active 3D tissue: the biological environment is 

derived from a dynamic interaction between active cells experiencing mechanical forces, and a 

continuously changing 3D matrix architecture [27]: in order to develop engineered bone tissue in vitro, 

it is thus needed to establish adequate cell/scaffold culture systems mimicking the dynamics of the in 

vivo environment. 

The first step in establishing the 3D culture is the cell seeding on 3D scaffolds, that is the 

dissemination of cells within a scaffold; there are evidences that the cell seeding phase might play a 

crucial role in determining the progression of tissue formation [28]: the initial distribution of cells 

within the scaffold in fact, has been related to the distribution of tissue subsequently formed within the 

final engineered construct [29], suggesting that uniform cell-seeding could establish the basis for 

uniform tissue generation. Although static loading of cells onto scaffolds is by far the most commonly 

used seeding method, several studies reported low seeding efficiencies [30, 31] and non-uniform cell 

distributions within the scaffolds [32], owing, in part, to the manual and operator-dependent nature of 

the process. 

In addition, if the obtained 3D cell/scaffold constructs are cultured in static conditions, 

although a three-dimensional structure is provided to the cells during their expansion, not only the 

dynamics of the in vivo environment are far from being reproduced [33], but even the needed supply 

of oxygen and soluble nutrients within the constructs represents a challenge:  in this regard, it has been 

shown that in static culture conditions, due to mass-transport limitations, viable osteogenic cells can be 

supported into 3D scaffolds for only short distances from the scaffold surface [34]. 

Therefore, the use of bioreactors, both for cell seeding on the 3D scaffolds, and for the 

subsequent culture of the obtained cell-scaffold constructs, likely appears to be a promising solution to 

overcome the above mentioned limitations of the “static approach”.  

Up to now, four main representative models of bioreactor systems for cell seeding and/or 

culture have been proposed: (i) spinner flasks [35], where scaffolds are attached to the needles hanging 

from the lid of the flask, and connective forces, generated by a magnetic stirrer bar, allow continuous 
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mixing of the medium surrounding the scaffolds, thus enhancing external mass-transfer; (ii) rotating 

wall vessels reactors [36], where scaffolds are maintained floating on an horizontal axis by a dynamic 

laminar flow; (iii) bioreactors applying computer-controlled mechanical forces, such as dynamic 

compression [37, 38], where constructs can be engineered under physiological loading conditions; (iv) 

bioreactors based on flow perfusion [27], where cell suspensions are perfused through the scaffold, 

and a very efficient and homogeneous cell distribution and nourishment throughout the scaffold can be 

achieved [32], thus increasing the mineralized matrix deposition [27]. 

In our study we aimed at obtaining a uniformly seeded construct, where cell growth and 

differentiation could be further sustained by efficient and widespread nourishment throughout the 

entire construct: considering how beneficial is perfusion flow for achieving these results, a perfusion 

bioreactor system was used in this work both for cell seeding and subsequent culture of BMSC on 3D 

porous ceramic scaffolds.  

 

 

2.5 Culture media supplements 

 

As a common basis of the many different approaches currently considered for cell-based 

engineering of bone tissue, there is the worldwide accepted concept that during the culture of 

osteogenic cells, it’s appropriate to apply specific growth factors, in order to enhance cell 

differentiation and proliferation, thus obtaining sufficient numbers of osteogenic cells which, 

combined with an osteoconductive scaffold, can then be implanted as an osteoinductive graft.  

Growth factors are cell secreted cytokines which, by binding to specific receptors, initiate 

intracellular signalling pathways, leading to different events such as promotion or prevention of cell 

adhesion, proliferation, migration, and differentiation, by up- or down-regulating the synthesis of 

several proteins, growth factors and receptors. In the field of bone regeneration, Urist first popularized 

the concept of a bone-generating protein in 1965, when he made the discovery of bone morphogenetic 

proteins (BMP) [39], which are including the most popular molecules used for bone tissue 

engineering. 
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Among the several different cocktails of growth factors currently proposed as the most 

appropriate for inducing osteogenic differentiation of MSC, the most typically used is containing 

dexamethasone, β-glycerophosphate, and ascorbic acid [40]. On the other hand, given the limited 

amount of available MSC, their proliferation is another key issue to keep into account in culturing 

them: it has been shown that, among different growth factors, fibroblast growth factor-2 (FGF-2) is the 

most effective in (i) promoting MSCs expansion in vitro, and (ii) maintaining them in a more 

immature state [3]. Interestingly, the combination of FGF-2 and dexamethasone, results not only in a 

high proliferation rate, but also in a final cell population with a high osteogenic commitment and bone 

forming capacity [41]. Nevertheless, it’s still controversial among the researchers whether it’s worth 

aiming at obtaining a cell population highly differentiated, or if it’s better to maintain it in a more 

immature state.  

 In order to increase both MSC proliferation and their osteogenic differentiation capacity, in 

our experimental system culture medium containing fatal bovine serum was supplemented with FGF-

2, dexamethasone, and ascorbic acid [3, 41, 42].  
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CHAPTER 3 

 

A NOVEL APPROACH FOR CELL-BASED ENGINEERING OF 

BONE TISSUE 

 

 

3.1 Rationale 

 

One of the major challenges to be faced for the routine clinical use of engineered bone-tissues 

is related to their manufacturing process, which, at present, is costly, impractical, and not enough 

standardized.  

In this context, we consider that likely in the future, specific tissues could be engineered 

within closed bioreactor units, with advanced control systems, that would facilitate streamlining and 

automating the numerous labour-intensive steps. Starting from a patient’s tissue biopsy, a bioreactor 

system could isolate, expand, seed and differentiate specific cell types on a scaffold, thereby 

performing the different processing phases within a single closed and automated system (Fig. 2), [1]. 

Such a bioreactor would (i) minimize operator handling, (ii) eliminate the need for large and 

expensive GMP (good manufacturing practice) facilities, and (iii) enable competent hospitals and 

clinics to carry out autologous bone-tissue engineering for their own patients, thus eliminating 

logistical issues of transferring specimens between locations. This would result in reducing the costs 

for engineering osteoinductive substitutes, which would not remain confined within the context of 

academic studies or restricted to elite social classes, but would become easily accessible for the health 

system and the community. 
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Fig. 2. Vision for a closed-system bioreactor for the automated production of tissue-engineered grafts. 
(a) The surgeon would take a biopsy from the patient and introduce it into the bioreactor located on-
site at the hospital. (b) All reagents (e.g. culture medium, medium supplements, and scaffolds) would 
be stored in compartments under appropriate conditions (i.e. temperature, humidity). The bioreactor 
system could then (c) automatically isolate the cells, (d) expand the cells, (e) seed the cells onto a 
scaffold, and (f) culture the construct until a suitably developed graft is produced. (g) Environmental 
culture parameters and tissue development would be monitored and inputs fed into a microprocessor 
unit for analysis. In conjunction with data derived from clinical records of the patient (h), the inputs 
would be used to control culture parameters at pre-defined optimum levels automatically (i) and 
provide the surgical team with data on the development of the tissue, enabling timely planning of the 
implantation (j). Figure generated by M. Moretti.(Trends Biotechnol. 2004;22:80-6) 
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3.2 Goals and experimental system 

  

The main aims of this thesis were (i) to identify and develop a system that could be 

reproducibly used to streamline manufacture of osteoinductive grafts based on human bone marrow 

stromal cells (BMSC) in the context of regenerative medicine (Chapter 4), (ii) to characterize the 

developed system in order to identify the key elements responsible for its reproducible and efficient 

performance (Chapter 5), and (iii) to extend its use to a sheep cell source (Chapter 6), thus opening the 

way to test the osteoinductivity of orthotopic implants in a large animal model, as a first step towards 

the potential extension of its use to clinical applications.  

In this work we used a previously developed bioreactor system [2] for perfusing three-

dimensional (3D) porous ceramic scaffolds first with cells (seeding phase), and subsequently with 

culture medium (expansion phase) within a single and closed environment: as shown in Fig. 3, 3D 

scaffolds were placed within chambers (one scaffold per chamber) which were positioned at the 

bottom of two vertical Teflon tubes, and connected each other at their base through a U-shaped tubing, 

whereas the top of the tubes were connected with a computer-controlled syringe pump (Fig. 4A).  

To avoid any risk of mechanically induced cell damage from a pumphead, the flow path didn’t 

recirculate the cell suspension through the scaffold and the pump: based on the bioreactor design 

previously developed for efficient and uniform cell seeding [2], the flow pathway was designed to 

pump the headspace above the cell suspension back and forth from one Teflon tube to the other, 

thereby generating an alternating flow of the cell suspension through the scaffolds. Cell settling and 

cell attachment to bioreactor components were minimized by its vertical orientation, component 

material properties, and by minimizing the surface area of horizontal surfaces where cells would tend 

to accumulate (Fig. 4B).  

3D scaffolds were lightly press-fit and clamped within the scaffold chamber, such that fluid 

flow couldn’t deviate around the scaffold, but had to flow through its pores. The chamber was 

manufactured from polycarbonate and polished until translucent, thus permitting the detection of 

possible air bubbles (Fig. 4C). Teflon FEP tubes (6 mm i.d.; Cole Parmer) were connected to 
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disposable three-way stopcocks (Hi-Flow™; Medex GmbH) via polypropylene luer adaptors (EM-

Technik GmbH), and stopcocks were then connected to the scaffold chamber via its luer connections. 

 

 

 

Fig.3. Schematic representation of the developed perfusion bioreactor system for uniform seeding and 
culture of BMSC on 3D porous scaffolds. 
 

 

After isolating the nucleated cells from human bone marrow aspirates, they were resuspended 

in medium containing fibroblast growth factor-2 (FGF-2), dexamethasone, and ascorbic acid, and cell 

suspension were introduced within each tube: starting from a status of equilibrium in the level of 

liquid present in the two "twin" tubes connected by the U-shaped tubing, flow of the cell suspension 

was induced by the use of the computer-controlled syringe pump, at the flow rate inserted by the user 

(400 µm/sec); the direction of the flow was then reversed when the selected volume (V1) of cell 

suspension had been perfused: in the following perfusion sequence, a double volume (V1 x 2) was thus  
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Fig. 4. Main components of the perfusion bioreactor system.  
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perfused in the opposite direction. This pattern was then repeating itself until all the cells were 

attached to the scaffold (5 days). 

Because scaffolds were press-fit into the chamber, the cell suspension could not deviate 

around the scaffold, and was therefore forced to flow through its pores. At the end of the cell seeding 

phase, stopcocks were simply rotated to divert flow through Interlink® injection sites (Becton 

Dickinson), which were connected to empty syringes, thus collecting the old medium without 

removing the system from the incubator; old medium was then replaced by fresh medium through an 

other syringe placed on the other side of the system, similarly connected to the stopcock of the twin-

tube via Interlink® injection sites. Medium was then perfused through the constructs at a lower 

velocity (100 µm/sec) for additional 14 days (cell expansion phase), with two media changes per 

week. 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

    Fig. 5. Complete bioreactor system placed in the incubator. 
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Following the total 19 days of perfusion within the bioreactor system (Fig. 5), constructs were 

either removed from the system and ectopically implanted in nude mice in order to assess their 

capability of bone formation, or further perfused with collagenase and trypsin solutions, respectively 

for 60 and 20 minutes, in order to extract the expanded cells from the generated constructs, and thus 

characterize them through several in vitro assays (cell number, colony-forming units efficiency [CFU-

f], Quantitative Real-time Reverse Transcription-Polymerase Chain Reaction [Real-Time PCR], 

Fluorescence-Activated Cell Sorting Analysis [FACS]), as described in detail in the following three 

Chapters. 

Using the defined experimental system, we first investigated whether human BMSC can be 

seeded, expanded and differentiated in 3D ceramic scaffolds by perfusing the nucleated cells of 

marrow aspirates through the scaffold pores, bypassing the conventional process of monolayer 

expansion. We then compared the osteoinductivity of the resulting 3D constructs with that obtained 

using monolayer-expanded BMSC (Chapter 4, [3]).  

In order to validate the possibility of extending the use of the developed 3D-culture system for 

generating osteoinductive grafts of clinically relevant size, we then investigated whether a minimum 

cell density is required for the reproducibile bone tissue formation (Chapter 5). 

We finally investigated whether the use of the developed 3D-culture system could be extended 

to engineer osteoinductive constructs based on ovine BMSC (Chapter 6, [4]): this would allow us to 

test the osteoinductivity of orthotopic implants in a sheep model. 
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CHAPTER 4  

 

THREE-DIMENSIONAL PERFUSION CULTURE OF HUMAN 

BONE MARROW CELLS AND GENERATION  

OF OSTEOINDUCTIVE GRAFTS 
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Abstract
Three-dimensional (3D) culture systems are critical to inves-
tigate cell physiology and to engineer tissue grafts. In this 
study, we describe a simple yet innovative bioreactor-based 
approach to seed, expand, and differentiate bone marrow 
stromal cells (BMSCs) directly in a 3D environment, bypass-
ing the conventional process of monolayer (two-dimensional 
[2D]) expansion. The system, based on the perfusion of bone 
marrow–nucleated cells through porous 3D scaffolds, sup-
ported the formation of stromal-like tissues, where BMSCs 
could be cocultured with hematopoietic progenitor cells in

proportions dependent on the specific medium supplements. 
The resulting engineered constructs, when implanted ectopi-
cally in nude mice, generated bone tissue more reproducibly, 
uniformly, and extensively than scaffolds loaded with 2D-
expanded BMSCs. The developed system may thus be used 
as a 3D in vitro model of bone marrow to study interactions 
between BMSCs and hematopoietic cells as well as to stream-
line manufacture of osteoinductive grafts in the context of 
regenerative medicine. Stem Cells 2005;23:1066–1072

Introduction
Bone marrow stromal cells (BMSCs) have received increas-

ing experimental and clinical interest, owing to their surprising 

degree of plasticity [1–3] and their potential use for treatment of 

genetic [4] or immunologic [5] pathologies. In the field of regen-

erative medicine, BMSCs have been most extensively used for 

bone repair because their default pathway seems to be osteogenic 

[6]. This has led to encouraging findings in heterotopic models 

[7, 8], in orthotopic implants [9, 10], and in a few clinical cases 

[11]. Given their low frequency among bone marrow–nucleated 

cells (approximately 0.01%), BMSCs are typically selected and 

expanded by sequential passages in monolayer (two-dimensional 

[2D]) cultures. However, 2D-expanded BMSCs have a dramati-

cally reduced differentiation capacity compared with those found 

in fresh bone marrow [12, 13], which limits their potential use for 

therapeutic purposes [6, 14].

Reasoning that a three-dimensional (3D) culture system may 

represent a more physiological environment than a Petri dish for 

a variety of cells [15, 16] and that fluid flow is an important com-

ponent for seeding and culturing BMSCs in 3D environments [17, 

18], we aimed in this work at developing an innovative procedure 

to seed and expand BMSCs directly into porous 3D scaffolds 

under perfusion. We demonstrated that perfusion of bone mar-

row–nucleated cells through the pores of 3D ceramic scaffolds 

resulted in the efficient expansion of clonogenic BMSCs and in 

the generation of highly osteoinductive grafts. Moreover, the 

developed system allowed us to coculture BMSCs with hemato-

poietic cells and to support hematopoiesis.

This material is protected by U.S. Copyright law. 
Unauthorized reproduction is prohibited. 
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Materials and Methods

Bone Marrow Cell Culture

Bone Marrow Aspirates
Bone marrow aspirates (20- to 40-ml volumes) were obtained 

from eight healthy donors (36–54 years old) during routine ortho-

pedic surgical procedures in accordance with the local ethical 

committee (University Hospital Basel) and after informed consent. 

Nucleated cells were isolated from aspirates by Ficoll density-gra-

dient centrifugation. The initial number of BMSCs, defined as the 

number of fibroblast colony-forming units (CFU-F) in the fresh 

marrow aspirates, averaged 21 ± 7 per 105 nucleated cells.

Culture Medium
Unless otherwise stated, medium (α-modified Eagle’s medium) 

containing 10% fetal bovine serum was supplemented with 

5 ng/ml fibroblast growth factor-2, 10 nM dexamethasone, and 

0.1 mM L-ascorbic acid-2-phosphate to increase BMSC prolif-

eration and osteogenic commitment [8, 19]. In some experiments, 

medium was alternatively supplemented with 2 ng/ml interleu-

kin-3, 10 ng/ml stem cell factor, and 20 ng/ml platelet-derived 

growth factor-bb to support maintenance of hematopoietic cells 

in culture [20] (hematopoietic medium).

3D Culture
Using a perfusion bioreactor system we previously developed 

for cell seeding of 3D scaffolds [18], an average of 18.4 ± 6.6 mil-

lion freshly isolated bone marrow–nucleated cells were perfused 

through 8-mm-diameter, 4-mm-thick disks of porous (total poros-

ity, 83% ± 3%; pore size distribution: 22%, <100 μm; 32%, 100–200 

μm; 40%, 200–500 μm; 6%, >500 μm) hydroxyapatite ceramic 

(Engipore; Fin-Ceramica Faenza, Faenza, Italy, http://www.fin-

ceramicafaenza.com) at a superficial velocity of 400 μm per sec-

ond (previously determined to result in efficient and uniform cell 

seeding). Based on CFU-F assays of five marrow aspirates, an esti-

mated average of 4.8 ± 2.6 × 103 BMSCs was perfused through each 

disk, corresponding to 4 BMSCs per cm2 of ceramic surface area. 

Such clonogenic BMSC seeding density was previously described 

to prolong BMSC lifespan and differentiation potential [14]. After 

5 days (cell seeding phase), harvested medium was plated in tis-

sue culture dishes to quantify the fraction of CFU-F not seeded. 

Fresh medium was then added to the system, and the cell-ceramic 

constructs were perfused for an additional 14 days (cell expansion 

phase) at a velocity of 100 μm per second (previously determined 

to support cell viability throughout the scaffold thickness), with 

medium changes twice a week. As a control, bone marrow–nucle-

ated cells from each donor were plated on tissue-culture dishes (2D 

expansion) using the same initial cell number/surface area as in the 

3D ceramic disks and cultured for 19 days without passaging, with 

the same schedule of medium changes as for the 3D culture.

Bone Formation Assays

Construct Implantation
Constructs from four independent experiments, after the cell 

seeding or cell expansion phases of 3D culture, were implanted 

ectopically in recipient nude mice (CD-1 nu/nu, 1 month old; 

Charles River Laboratories, Sulzfeld, Germany, http://www.

criver.com/index.html) in accordance with institutional 

guidelines. As a control, we implanted ceramics seeded with 

2D-expanded BMSCs at the same density as measured in the 

corresponding 3D cultured constructs after the cell expansion 

phase. Seeding of 2D-expanded BMSCs was performed by 

static loading of a cell suspension. We previously reported that 

the fraction of cells retained in the scaffolds after seeding by 

static loading was similar to that obtained using the described 

perfusion device, although cells seeded statically were less 

uniformly distributed [18].

Quantitative Assessment of Bone Tissue Formation
Eight weeks after implantation, constructs were fixed in 4% for-

malin, decalcified (Osteodec; Bio-Optica, Milan, Italy, http://

www.bio-optica.it), paraffin embedded, and sectioned at six dif-

ferent levels (5-μm-thick sections at 600-μm intervals). For each 

cross-section, stained by hematoxilin/eosin, six images (cover-

ing most of the total cross-sectional area) were used to quantify 

the amount of bone tissue normalized to the total available pore 

space, as previously described [21]. The uniformity of bone tis-

sue formation was quantitatively determined from the average (x) 

and standard deviation (s) of the bone amounts measured in each 

cross-section [18] as follows:

Cell Characterization

Scanning Electron Microscopy
Constructs cultured in the 3D system after the cell expansion 

phase were fixed in 4% formalin, dehydrated, critical point 

dried, and coated with 20 nm of Au. Scanning electron micros-

copy observation was performed with an ESEM XL 30 (Philips, 

Amsterdam, The Netherlands, http://www.philips.com) with 10-

kV acceleration.

Quantitative Real-Time Reverse Transcription–Polymerase 
Chain Reaction
mRNA was extracted using TRIzol (Invitrogen, Carlsbad, CA, 

http://www.invitrogen.com), treated with DNAse, and retrotran-

scribed into cDNA, as previously described [19]. Polymerase 

chain reaction was performed and monitored with the ABI Prism 

7700 Sequence Detection System (PerkinElmer/Applied Biosys-

tems, Rotkreuz, Switzerland, http://www.perkinelmer.com), and 

x
suniformity 1100%



1068 Perfusion Culture of Human Bone Marrow Cells

expression levels of genes of interest (bone sialoprotein [BSP], 

collagen type I [CI], and osteopontin [OP]) were normalized to 

the 18S rRNA. Previously determined levels of expression of the 

genes of interest in human osteoblast cultures, also normalized to 

18S rRNA [19], were used as reference.

Cell Extraction
After the cell expansion phase in the 3D culture system, cells 

were extracted from the ceramic pores by perfusing a solution of 

0.3% collagenase and 0.05% trypsin/0.53 mM EDTA at 400 μm 

per second. Extracted cells were assessed for the ability to form 

fibroblastic and hematopoietic colonies and characterized by 

flow cytometry, as described below.

CFU-F Assay
CFU-F assays of expanded cells were performed by plating four 

cells per cm2 in tissue culture dishes. After 10 days of culture, 

cells were fixed in 4% formalin and stained with 1% methylene 

blue, and the number of colonies was counted.

Hematopoietic Colony-Forming Unit Assay
Hematopoietic colony-forming unit assays were performed 

as previously described [22] to quantify the following types of 

hematopoietic clonogenic cells: neutrophils, macrophages, 

burst-forming-unit-erythroid, and granulocyte-erythroblast-

macrophage-megakariocyte. Briefly, 2.5 × 105 cells per ml were 

cultured in medium containing 1.75 U/ml erythropoietin, 2.625 

ng/ml granulocyte-colony stimulating factor, 40 U/ml granulo-

cyte macrophage colony stimulating factor, 40 U/ml interleukin-

3, and 62.5 ng/ml stem cell factor. After 14 days, the colonies were 

classified and counted.

Fluorescence-Activated Cell Sorting Analysis
Cell suspensions were incubated with antibodies against CD105 

(Serotec), STRO-1, BSP, CI, OP (all from Developmental Stud-

ies Hybridoma Bank, Iowa City, IA, http://www.uiowa.edu/

~dshbwww), nerve growth factor receptor (NGFR), or CD45 

(both from Becton, Dickinson and Company, Franklin Lakes, 

NJ, http://www.bd.com) and analyzed using a FACSCalibur 

flow cytometer (Becton, Dickinson and Company). Reactions 

with anti-BSP, -OP, or -CI were proceeded by membrane per-

meabilization with BD Cytofix/Cytoperm Plus Kit (Becton, 

Dickinson and Company). Positive expression was defined as the 

level of fluorescence greater than 95% of corresponding isotype-

matched control antibodies.

Results and Discussion

BMSC Expansion Under 3D Perfusion
Using a bioreactor system recently developed for efficient and 

uniform seeding of anchorage-dependent cells into 3D scaffolds 

[18], we perfused the nucleated cells of human bone marrow 

aspirates in alternate directions through the pores of disk-shaped 

ceramic scaffolds, and we hypothesized that BMSCs would attach 

to the ceramic substrate and proliferate. The number of BMSCs 

perfused through each scaffold, estimated by CFU-F assays, 

averaged 4.8 ± 2.6 × 103 cells. Medium was first changed after 5 

days (cell seeding phase), which resulted in the elimination of the 

non-attached cell population, containing negligible numbers of 

CFU-F (<1% of those seeded in the scaffolds). Fresh medium was 

further perfused for an additional 14 days (cell expansion phase), 

during which time the total number of cells, monitored by Alamar 

blue, was found to increase at a nearly exponential rate (Fig. 1). At 

19 days, the number of BMSCs found within the ceramic pores, 

calculated as the CD105+ fraction of the extracted cells, averaged 

9 ± 3 × 105 cells for each scaffold. These data demonstrate that 

BMSCs can be seeded and extensively expanded (average of 8.2 

± 0.9 doublings in 19 days) by perfusion of bone marrow cell sus-

pensions through 3D porous scaffolds, thereby avoiding typical 

2D expansion.

Bone Formation by Expanded BMSCs
The osteoinductivity of the constructs resulting from BMSC 

seeding and expansion in the porous ceramic under perfusion 

(total of 19 days culture) was verified by ectopic implantation 

in nude mice. Reproducible, extensive, and markedly uniform 

bone formation was found in implanted constructs from four 

out of four independent experiments, performed using aspirates 

from different donors. Mature lamellar bone, organized in typi-

cal bone/marrow ossicles [23], filled an average of 52.1% ± 7.7% 

of the total available pore space and was distributed throughout 

the scaffold volume with high uniformity (Fig. 2). In contrast, 

Figure 1. Total number of cells per construct detected in the three-

dimensional (3D) system by Alamar blue assays. At day 0, the num-

ber of cells corresponds to the total number of cells added to the 3D 

system. At day 5, after removing the non-adherent cells with the first 

medium change, the total number of cells corresponds to the cells 

attached to the scaffold.
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when 2D-expanded BMSCs from the same donors were loaded 

into ceramic scaffolds at the same density as measured in the 

corresponding 3D cultured constructs, bone tissue was formed 

in only one of the four experiments. Moreover, in those con-

structs positive for bone formation, bone tissue filled only 9.6% 

± 2.7% of the total available pore space and was localized to 

scattered peripheral regions (Fig. 2). The increased osteoinduc-

tivity of constructs generated using the developed system may 

have been supported by the ceramic substrate used for BMSC 

expansion [24], the 3D cell–cell interactions during culture 

[25], the regimen of fluid flow applied [17, 26], or combinations 

of these variables that remain to be further elucidated. Interest-

ingly, constructs implanted immediately after the cell seeding 

phase, in which BMSCs were attached to the ceramic but had not 

significantly expanded, were never osteoinductive. This sug-

gests that a critical density of osteoprogenitor cells is necessary 

to initiate bone formation and points out the limit of approaches 

based on direct implantation of scaffolds mixed with bone mar-

row aspirates, especially considering the known variability in 

the number of BMSCs per aspirate volume [27].

BMSC Characterization
We then preliminarily characterized the morphology, pheno-

type, and clonogenicity of cells seeded and expanded within the 

developed 3D system. Scanning electron microscopy indicated 

the formation of a stromal-like tissue within the ceramic pores, 

consisting of a 3D network of spheroidal cells in contact with 

heterogeneously shaped fibroblastic cells (Fig. 3A). The mRNA 

expression levels of genes encoding for the osteoblast-related 

proteins BSP, CI, and OP averaged, respectively, 3.6%, 35.3%, 

and 48.0% of those previously quantified in human osteoblast 

cultures [19] (Fig. 3B). Levels were similar to those measured in 

2D-expanded BMSCs and lower than those measured in BMSCs 

after osteogenic differentiation [19]. Fluorescence-activated cell 

sorting analyses indicated that 68% ± 18% of the cells extracted 

from the ceramic scaffolds were positive for CD105, a surface 

marker typically expressed by cells of the mesenchymal lineage 

(Fig. 3C). These CD105+ cells expressed low levels of STRO-1 

Figure 2. Bone tissue formation by bone marrow stromal cells 

(BMSCs) expanded in monolayers (two-dimensional [2D]) or under 

three-dimensional (3D) perfusion. (A, B): Representative hema-

toxilin/eosin-stained cross-sections of BMSC-ceramic constructs 

implanted ectopically in nude mice and harvested after 8 weeks. 

BMSCs expanded directly in the ceramic scaffolds in the 3D system 

yielded massive and uniformly distributed bone tissue (A), in con-

trast to BMSCs loaded in the ceramic after traditional 2D culture (B). 
White spaces correspond to the decalcified ceramic (c), whereas scaf-

fold pores are filled with fibrous (f), adipose (a), or bone (b) tissue. Bar 

= 400 μm. (C, D): Quantitative image analysis of constructs generated 

using bone marrow aspirates from four independent donors further 

highlighted the increased reproducibility, amount (C), and uniformity 

(D) of bone tissue formation after BMSC expansion under 3D com-

pared with 2D. Values are presented as mean and SE of the percent-

ages calculated for each cross-section. The crosses indicate no bone 

formation in any of the implanted constructs.

Figure 3. Morphology and phenotype of cells expanded under three-

dimensional (3D) perfusion. (A): Scanning electron microscopy 

images of the constructs generated by perfusion of bone marrow–

nucleated cells through the pores of ceramic scaffolds for 19 days. 

The ceramic pores were filled with a stromal-like tissue, consisting 

of a 3D network of heterogeneously shaped cells and extracellular 

matrix. Bar = 10 μm. (B): mRNA expression levels of bone sialopro-

tein (BSP), collagen type I (CI), and osteopontin (OP) in the cells. 

Values are presented as mean and SE of three independent experi-

ments. (C–H): Surface markers expressed by cells extracted from the 

ceramic scaffolds after 19 days culture. Cells positive for (C) CD105  

expressed low levels of (D) nerve growth factor receptor (NGFR) and 

(E) STRO-I and high levels of (F) BSP, (G) CI, and (H) OP. Light 

line, isotype control; dark line, specific antibody.
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(proposed as a marker of early mesenchymal progenitors [28]) 

and NGFR (proposed as a marker of multipotent BMSCs [29, 30]) 

and high levels of BSP, OP, and CI (Figs. 3D–3H). The percentage 

of CD105+ cells capable of forming a fibroblastic colony (CFU-

F) was markedly higher after expansion in the 3D than in typical 

2D cultures (29.4% vs. 10.7%, respectively). Taken together, these 

data suggest that BMSCs generated in the developed 3D system 

were neither early undifferentiated mesenchymal precursors nor 

fully differentiated osteoblast-like cells but comprised a large 

population of clonogenic osteoprogenitor cells. Future studies 

should address whether changes in the substrate used (e.g., scaf-

fold composition or architecture), flow rate, and culture medium 

composition will regulate the phenotype, proliferation, and mul-

tilineage differentiation capacity of the expanded BMSCs.

Hematopoietic Cell Characterization
The finding that a substantial fraction of the cells cultured in the 

developed 3D system was not of the mesenchymal lineage, as sug-

gested by the rounded morphology and demonstrated by the lack 

of expression of CD105, induced us to investigate whether both 

hematopoietic and mesenchymal cells were cocultured within 

the ceramic pores. Indeed, in the engineered constructs we found 

cells positive for CD45, a surface marker of hematopoietic cells, 

at percentages (30% ± 15%) equivalent to those of cells negative 

for CD105 (Figs. 4A–4I). It is likely that cocultured hematopoietic 

cells, possibly including CD14-positive adherent macrophages, 

regulated the phenotype of BMSCs [31] and played a critical role 

in determining the osteoinductivity of the constructs, possibly by 

maintaining a higher fraction of clonogenic BMSCs. It has been 

described that upon transplantation into a host animal, BMSCs 

form an ectopic ossicle in which bone cells, myelosupportive 

stroma, and adipocytes are of donor origin whereas hematopoiesis 

and the vasculature are of recipient origin [23]. Considering that 

in our 3D system human hematopoietic cells were coimplanted 

with BMSCs, future studies should aim at determining whether 

human cells contributed to hematopoiesis in this model.

We next hypothesized that, through the addition of specific 

medium supplements, the developed 3D culture model allows 

the regulation of the relative proportions of hematopoietic and 

mesenchymal cells. Using supplements typically used for culture 

of hematopoietic cells (i.e., interleukin-3, stem cell factor, and 

platelet-derived growth factor-bb, hematopoietic medium) [20], 

the fraction of CD45+ cells found after 19 days of 3D culture was 

increased to more than 90% (Fig. 4I) whereas BMSC prolifera-

tion capacity was still sustained (average of 4.5 ± 0.7 doublings 

in 19 days). Interestingly, the use of this culture medium further 

increased the percentage of CFU-F within CD105+ cells from 

29.4%–38.8% and generated relevant fractions of hematopoi-

etic CFUs, including those with a mixed phenotype, indicative 

of early multilineage progenitor populations (Fig. 4J). Remark-

ably, the use of the same medium supplements in 2D cultures was 

not able to modulate the fractions of hematopoietic/mesenchymal 

cells nor their clonogenicity, possibly due to the fact that most of 

the non-adherent cells were not entrapped within the 3D niches 

of the ceramic or newly formed stromal-like tissue and were thus 

discarded during medium changes. This evidence further high-

lights the potential of the developed culture system, in which the 

3D configuration under perfusion flow provides an extension of 

the concept of stromal feeder layer for the support and develop-

ment of hematopoietic cells [23, 32] and thus modifies standard 

paradigms for culture of bone marrow cells.

Conclusions
Our study validates the simple but innovative concept that BMSCs 

can be seeded and expanded by perfusion culture through the 

pores of 3D scaffolds starting from minimally processed bone 

marrow aspirates and avoiding 2D culture expansion. The devel-

oped approach was used for the reproducible, spatially uniform, 

highly efficient, and simplified manufacture of osteoinduc-

tive grafts. Incorporating in the system features like automated 

medium change, monitoring and control of pH, gases, and metabo-

lites are likely to lead to the development of a closed system for the 

automated and controlled production of autologous BMSC-based 

bone substitutes. Compared with previously proposed perfusion 

systems [17, 33], the elimination of the 2D culture would allow for 

Figure 4. Fraction and clonogenicity of hematopoietic cells. (A–H): 
Representative profiles of cells labeled for CD105 or CD45 after two-

dimensional (2D) or three-dimensional (3D) culture in standard or 

hematopoietic medium (HM). Light line, isotype control; dark line, 

specific antibody. (I): Percentages of CD105+ and CD45+ cells in the 

above conditions. Values are presented as mean and SE of four inde-

pendent experiments. (J): Quantification of the following types of 

hematopoietic colony-forming units present within the populations 

generated in the above conditions: neutrophils (CFU-N), macro-

phages (CFU-M), burst-forming-unit-erythroid (BFU-E), and gran-

ulocyte-erythroblast-macrophage-megakariocyte (CFU-GEMM).
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a one-phase, streamlined procedure that could thus generate engi-

neered bone grafts at reduced costs and make them commercially 

viable against alternative off-the-shelf osteoinductive materials 

(e.g., based on the delivery of growth factors). In this context, how-

ever, scaling up of the procedure to clinically relevant sizes will 

have to address the challenge of maintaining cell viability in larger 

constructs, both during in vitro culture and upon grafting.

Beyond the relevance in the field of bone tissue engineering, 

our results validate the developed process as a first step toward 

ex vivo tissue engineering of bone marrow as a model to inves-

tigate proliferation, differentiation, and interactions among dif-

ferent types of bone marrow cells in a more physiological envi-

ronment than previously established systems (e.g., Petri dishes or 

spinner flasks [20]). The developed culture system may be fur-

ther explored for the expansion under perfusion of CD34+ hema-

topoietic stem cells from bone marrow or cord blood within an 

engineered 3D stromal network. Finally, the same paradigm of 

bypassing 2D expansion by direct 3D perfusion culture may be 

used for the engineering of other 3D tissues and organs.
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CHAPTER 5 

 

THE OSTEOINDUCTIVITY OF ENGINEERED BONE 

CONSTRUCTS IS RELATED TO THE DENSITY OF 

CLONOGENIC BONE MARROW STROMAL CELLS 

IMPLANTED 

 

 

Enclosed is the Paper currently in preparation. 
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Abstract 

 

Reproducibility in bone formation is a key issue for generating bone substitutes based on bone 

marrow stromal cells (BMSC) and three-dimensional (3D) scaffolds for clinical use. The concept that 

BMSC seeding density on 3D scaffolds may influence the reproducibility of subsequent bone 

formation may seem intuitive, but limited data are currently available. In this study we hypothesized 

that presence or absence of bone in ectopically implanted constructs is related not to the number of 

total BMSC, but to the number of clonogenic BMSC (colony forming unit-fibroblast, CFU-f) present 

in the constructs at the time of implantation.  

Human BMSC were seeded and expanded on 3D porous ceramic scaffolds by perfusing the 

nucleated cell fraction of marrow aspirates, and the generated constructs were assessed for cell 

number, cell clonogenicity, and for their osteoinductivity following ectopic implantation in nude mice.  

The number of clonogenic BMSC, but not the number of total BMSC, was positively 

correlated to the initial cell seeding density. The number of total BMSC was similar in osteoinductive 

and not osteoinductive constructs, whereas that of clonogenic BMSC was significantly different: an 

apparent threshold (at around 3.0E+05 CFU-f) could be observed, discriminating between 

osteoinductive and not osteoinductive constructs.  

These results indicate that CFU-f play a fundamental role in determining the capability of the 

constructs to form bone. The identification of specific markers for clonogenic BMSC after expansion 

will be necessary to establish protocols for predicting bone formation and/or to enrich CFU-f 

populations within expanded BMSC.  

 

 

Key words: Bone marrow stromal cells, clonogenicity, CFU-f, bone tissue engineering, 

osteoinductivity. 
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Introduction 

 

One of the most typical approaches for engineering osteoinductive tissues is based on seeding 

and possibly culturing bone marrow stromal cells (BMSC) into three-dimensional (3D) porous 

ceramic scaffolds, which prime cell differentiation towards the osteogenic lineage and provide the 

template for in vivo bone tissue formation [1, 2]. BMSC, which are typically defined by their capacity 

to adhere on plastic [3] and form a fibroblastic colony (CFU-f) [4], represent a very low fraction 

(approximately 0.01%) [5] among the nucleated cells of the bone marrow. In order to overcome such a 

low frequency, prior to statically loading them into ceramic scaffolds, BMSC are typically expanded 

in monolayer (2D). Culture expansion in 2D causes BMSC to progressively lose their early progenitor 

properties [6] and differentiation potential [7], and to decrease their capability to form colonies [8] and 

to induce bone tissue formation upon ectopic implantation in nude mice [6]. 

We recently demonstrated that human BMSC can be extensively expanded in 3D ceramic 

scaffolds by directly perfusing the nucleated cells of marrow aspirates through the scaffold pores, thus 

bypassing the conventional process of 2D-expansion [9]. BMSC expanded in the 3D perfusion system 

were found to be more clonogenic than those expanded in 2D, possibly due to a variety of reasons, 

including the maintenance of hematopoietic cells in culture. When the ceramic constructs containing 

the 3D-expanded BMSC were ectopically implanted in nude mice, bone tissue formation was more 

reproducible, abundant and uniform as compared to scaffolds loaded with the same number of 2D-

expanded BMSC [9]. In order to validate the possibility of using the developed perfusion-based 

approach for the generation of osteoinductive grafts in amounts sufficient for clinical use, it is 

mandatory to identify a lower limit of cell density allowing for reproducible bone tissue formation 

across different donors. The concept that BMSC seeding density may influence the reproducibility of 

bone formation in tissue-engineered constructs may seem intuitive, but limited data are currently 

available to support this conclusion. Recent studies showed that when hydroxyapatite scaffolds seeded 

with different BMSC densities were ectopically implanted in nude mice, constructs with higher 

seeding densities appeared to contain significantly more bone [10]. However, it is difficult to establish 

a reproducible relation between cell seeding density and bone forming capacity of engineered 
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constructs if cells are not uniformly distributed throughout the entire scaffold, as it typically occurs if 

cells are statically loaded into porous scaffolds [11].  

In this study, we aimed at investigating the relation between cell density and in vivo bone 

forming capacity of constructs generated in the developed 3D-system and then implanted in nude 

mice. The perfusion system used for generating the constructs allowed uniform cell distribution 

throughout the scaffolds, and the following ectopic implantation of the generated constructs allowed to 

determine their intrinsic osteoinductive properties in a supporting but not inducing environment. 

Considering the previously established association between the higher clonogenicity of BMSC 

expanded in the 3D-system and the more reproducible and extensive osteoinductivity of the resulting 

constructs, as compared to those based on 2D-expanded BMSC, we now hypothesized that the 

presence or absence of bone in the constructs following ectopic implantation is related not to the total 

number of implanted BMSC, but to the number of CFU-f present in the construct at the time of 

implantation.  

 

 

Materials and Methods 

 

Cell isolation and culture 

Bone marrow aspirates. Bone marrow aspirates (20-40 ml volumes) were obtained from 9 healthy 

donors (36-54 years old) during routine orthopedic surgical procedures, in accordance with the local 

ethical committee (University Hospital Basel) and after informed consent. Nucleated cells were 

isolated from aspirates by Ficoll density gradient centrifugation.  

CFU-f assay. The initial number of bone marrow stromal cells (BMSC), defined as the number of 

colony-forming units fibroblastic (CFU-f) in the fresh marrow aspirates, was identified by plating 

3.5E+03 nucleated cells/ cm2 in tissue-culture dishes. Following 10 days of culture, cells were fixed in 

4% formalin, stained with 1% methylene blue, and the number of colonies counted. Clonogenicity of 

marrow aspirates was expressed as the percentage of the initial nucleated cells which were able to 

form a fibroblastic colony. 
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Culture medium. Medium (α-Modified Eagle’s Medium) containing 10% fetal bovine serum was 

supplemented with 5 ng/ml fibroblast growth factor-2, 10 nM dexamethasone, and 0.1 mM L-ascorbic 

acid-2-phosphate, in order to increase BMSC proliferation and osteogenic differentiation capacity [12, 

13]. 

Cell culture. Using a perfusion bioreactor system we previously developed for seeding and culture of 

BMSC into the pores of 3D scaffolds [9, 11], freshly isolated bone marrow nucleated cells were 

perfused through disks (8 mm diameter, 4 mm thick) of porous (total porosity: 83 ± 3%; total surface 

area: 1260 cm2; total volume: 200 cm3) hydroxyapatite ceramic (Engipore, Fin-ceramica Faenza, 

Faenza, Italy) at a superficial velocity of 400 µm/sec (previously determined to result in efficient and 

uniform cell seeding), at concentrations ranging from 7.50E+05 to 2.25E+07. At the first medium 

change, after 5 days, unseeded cells were reintroduced into the system with fresh medium; the cell-

ceramic constructs were then perfused for an additional 14 days at a velocity of 100 µm/sec 

(previously determined to support cell viability throughout the scaffold thickness), with medium 

changes twice a week. The presence of unseeded CFU-f in the medium following the first medium 

change was negligible. 

 

Expanded cells characterization 

Cell extraction. Following 19 days of culture under perfusion, cells were extracted from the ceramic 

pores by perfusing a solution of 0.3% collagenase and of 0.05% trypsin/0.53 EDTA at 1000 µm/sec, 

respectively for 60 and 20 minutes. Efficiency of cell extraction, evaluated by assessing the amount of 

DNA in the cell-extracted scaffolds as previously described [14], averaged 85±5%. Extracted cells 

were assessed by cytofluorimeter for mesenchymal or hemopoietic surface markers expression and 

their ability to form fibroblastic colonies as described below. 

Cytofluorimetric analysis. Suspensions of extracted cells were labeled with APC-conjugated antibody 

against CD45 and FITC-conjugated antibodies against CD14, CD44, CD90, CD105, or PE-conjugated 

antibodies against CD34, CD29, CD73, or CD166 (all from Becton Dickinson and Company, Franklin 

Lakes, NJ). Positive expression was defined at a level of fluorescence greater than 97% of the 

corresponding isotype-matched control antibodies. Positive expression of CD45 was used to identify 



 47

cells of the hemopoietic lineage. Negative expression of CD14 and CD34, and positive expression of 

CD105, CD29, CD44, CD73, CD90, and CD166 (typical mesenchymal markers) were used to identify 

the mesenchymal lineage of CD45 negative cells, hereafter referred to as BMSC. 

Cell proliferation. The number of BMSC doublings was calculated from the initial number of CFU-f 

seeded and the total number of CD45- cells extracted from the constructs after 19 days culture, 

assuming that all seeded CFU-f attached to the scaffolds [9]. 

CFU-f assay. CFU-f assays of the expanded cells were performed by plating 35 cells/cm2 in tissue-

culture dishes. Following 10 days of culture, cells were fixed in 4% formalin, stained with 1% 

methylene blue, and the number of colonies counted. Clonogenicity was expressed as the percentage 

of expanded BMSC, and was used to calculate the final number of CFU-f in the ceramic scaffolds. 

 

Bone formation assay 

Following 19 days of culture under perfusion, 32 constructs from 16 experimental groups generated in 

9 independent experiments, i.e. with cells from 9 different donors, were harvested from the bioreactor 

system and ectopically implanted in recipient nude mice (CD-1 nu/nu, female, 1 month old; from 

Charles River, Germany), in accordance with institutional guidelines. Two constructs from the same 

experimental group were implanted in separate animals. Eight weeks after implantation, constructs 

were fixed in 4% formalin, decalcified (Osteodec, Bio-Optica, Italy), embedded in paraffin, cross-

sectioned at 3 different levels (5 µm thick sections, at 500 µm intervals), and stained by 

Hematoxilin/Eosin.  

 

Statistical analysis 

Values are presented as mean ± standard deviation. Differences among experimental groups were 

assessed by two-tailed Student’s t test or the Welch modified t test, in accordance with Levene’s test 

for homogeneity of variances, after assessment of normality by skewness and kurtosis. A value of 

p=0.05 was selected as the threshold of statistical significance. Correlations were assessed using 

Pearson’s test (two-tailed), and considered statistically significant with p< 0.05.  
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Results 

 

Initial clonogenicity and cell seeding densities 

Based on the clonogenicity of the marrow aspirates, which averaged 0.013% ± 0.005% of the initial 

nucleated cells, an estimated 60 to 4500 BMSC were initially perfused through the porous ceramics 

(Table 1). 

 

Donor 
number 

Initial number  
of nucleated cells  

per scaffold 

CFU-f  
in the marrow aspirate 
(% of nucleated cells) 

Initial number  
of BMSC  

per scaffold  
 

1 9.00 E+06  0.010 900 
2 4.20 E+06 0.016 670 
3 8.40 E+06 0.010 840 
4 1.00 E+07 0.010 1000 
5 7.50 E+06 0.010 770 
6 9.00 E+06 0.022 2000 

2.50 E+06 350 
7.50 E+06 1100 

7 
7 
7 2.25 E+07 

0.014 
0.014 
0.014 3200 

7.50 E+05 60 
7.50 E+06 600 

8 
8 
8 2.25 E+07 

0.008 
0.008 
0.008 1800 

7.50 E+05 150 
2.50 E+06 500 
7.50 E+06 1500 

9 
9 
9 
9 2.25 E+07 

0.020 
0.020 
0.020 
0.020 4500 

 

Table 1. Initial cell densities.  

 

Characterization of extracted cells 

Cell lineages. Cells extracted from ceramics were analyzed for the expression of CD45 by 

cytofluorimetry to quantify the relative fractions of CD45+/- cells and to further characterize the non-

hemopoietic (i.e., CD45-) population. The CD45- fraction was confirmed to be of the mesenchymal 

lineage by the expression of adhesion molecules (CD44 and CD166), integrin CD29, and additional 

mesenchymal markers (CD73, CD90, CD105) [7], and by the lack of expression of CD34 and CD14 

(Fig. 1).  
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Fig. 1. Phenotype of expanded BMSC. Expression levels of FITC-conjugated anribodies against 
CD14, CD44, CD90, CD105, and PE-conjugated antibodies against CD34, CD29, CD73, CD166, by 
expanded CD45 negative cells. 
 

 

Cell proliferation. As shown in Fig. 2a, as the initial number of CFU-f in constructs increased, a 

higher fraction of the final cell population consisted of hemopoietic cells (from 10%-52%). The 

complementary mesenchymal fraction of the final population was constituted by variable amounts of 

BMSC (Fig. 2b), ranging from 4.8E+05 to 2.4E+06 per construct, with no correlation to the number of 

initial CFU-f. The proliferation rate of BMSC decreased significantly with increasing initial CFU-f, 

such that the total number of doublings throughout 19 days of culture ranged from a maximum of 13 

BMSC doublings to a minimum of only 8 (Fig. 2c).  

Clonogenicity. In all experimental conditions, the final numbers of CFU-f following 19 days of culture 

were higher than the initial number seeded. Final numbers of CFU-f in the constructs were positively 

correlated to the initial numbers of CFU-f loaded in the ceramic scffolds (Fig 2e). Interestingly, 

increasing initial CFU-f densities gave rise to more clonogenic final BMSC populations, with 

percentages of CFU-f reaching 50% of the final BMSC population (Fig. 2d). 

 

 

 
CD105  CD90CD44CD14

CD166   CD73  CD29CD34

Fluorescence intensity Fluorescence intensity Fluorescence intensity Fluorescence intensity

CD105  CD105  CD90CD90CD44CD44CD14CD14

CD166   CD166   CD166   CD73  CD73  CD73  CD29CD29CD34CD34CD34

Fluorescence intensity Fluorescence intensity Fluorescence intensity Fluorescence intensity
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Fig. 2. Positive correlations between the initial number of seeded CFU-f and the final fraction of 
hemopoietic cells (A), the final fraction of CFU-f (D), and the final number of CFU-f (E). Negative 
correlation between the initial number of seeded CFU-f and the number of doublings of BMSC in 19 
days (C). No correlation between the initial number of seeded CFU-f and the final number of BMSC 
(B).  
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Bone formation 

A total of 32 specimens from 9 independent experiments were ectopically implanted in nude mice. 

Following 8 weeks in vivo, extensive and uniform bone formation was found in 16 implanted 

constructs, whereas only fibrous tissue was observed in the other 16 implants. The presence or absence 

of bone formation was then related to the number of CFU-f and/or BMSC within the ceramics at the 

time of implantation. There was no significant difference (p = 0.164) between the final number of 

BMSC in constructs that contained either bone or only fibrous tissue (Fig. 3a). In fact, constructs with 

BMSC densities ranging from the low through high end of our range resulted in both osteoinductive 

and non-osteoinductive grafts. In contrast, there was a significant difference (p = 0.010) between the 

final number of CFU-f in constructs that generated bone or no bone (Fig. 3b). An apparent threshold in 

the number of implanted CFU-f could be observed, discriminating between ostoinductive (containing>  

3.0E+05 CFU-f) and not osteoinductive (containing < 3.0E+05 CFU-f) constructs (Fig. 3c). 

 

 
 
Fig. 3. Relation between the presence (shaded) or absence (white) of bone in the generated constructs 
and the number of implanted BMSC (A) or CFU-f (B): osteoinductive and not osteoinductive 
constructs contained similar numbers (p = 0.164) of BMSC (A) but statistically different numbers (p = 
0.010) of CFU-f (B). In C, each dot represents the numbers of implanted BMSC and CFU-f in each 
experimental group (2 constructs per group) which formed bone (filled dots) or fibrous tissue (unfilled 
dots). The dashed line indicates the threshold in the number of CFU-f (3.0E+05) discriminating 
between osteoinductive and not osteoinductive constructs. 
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Discussion 

The aim of this study was to identify a relation between cell density and in vivo bone forming 

capacity of constructs based on bone marrow stromal cells (BMSC) and porous ceramic scaffolds 

ectopically implanted in nude mice.  

By using a recently developed 3D-system for the uniform seeding and culture of BMSC on 3D 

porous ceramic scaffolds, we demonstrated that bone forming capacity of the generated constructs is 

related to the number of implanted colony-forming units fibroblastic (CFU-f). We identified in 

3.0E+05 CFU-f the apparent threshold discriminating between osteoinductive and not osteoinductive 

constructs. These results indicate that constructs are osteoinductive if containing a minimum number 

of CFU-f, and suggested that the presence of high amounts of CFU-f plays a fundamental role in 

determining the capability of the constructs to form bone.  

Several factors could promote the production of constructs containing high numbers of CFU-f. 

The most obvious parameter influencing the final number of CFU-f is their initial number: in fact we 

observed that increasing initial densities of CFU-f resulted in a final BMSC population which was 

much more clonogenic than that obtained seeding low numbers of CFU-f. In addition we observed that 

increasing initial numbers of CFU-f resulted in a final population containing higher fractions not only 

of clonogenic BMSC, but also of hemopoietic cells: basing on recent studies indicating the existence 

of a crosstalk between hemopoietic and mesenchymal bone marrow cells enhancing the number of 

CFU-f [15], the high clonogenicity obtained in the osteoinductive constructs could have been 

determined by the co-culture of high fractions of hemopoietic cells. Further studies should investigate 

the correlation between the maintenance of high fractions of hemopoietic cells and the 

osteoinductivity of the generated constructs. 

 On the other hand we observed that the total number of final BMSC is related neither to the 

number of CFU-f initially seeded nor to the bone forming capacity of the generated constructs: these 

results suggest that that final number of BMSC cannot be considered as a parameter to predict the 

osteoinductive capacity of the constructs.  

The phenotypic characterization of BMSC expanded in the developed 3D-system showed a 

uniform expression of mesenchymal markers: this indicates that the markers monitored in this study 
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could not discriminate between clonogenic and not clonogenic BMSC. There has been an increasing 

interest in the last decade in the identification of specific markers for the osteoprogenitor cells 

contained in the bone marrow. Simmons demonstrated [16] the use of STRO-1 antibody for 

enrichment of mesenchymal precursors: this antibody was shown to bind to all the cells associated 

with CFU-f activity of human bone marrow [17] and was used to identify CFU-f of the bone marrow 

with osteoprogenitor properties [18]. Other studies [19-21] suggested several other markers (CD73, 

CD49a, CD63/HOP-26, CD166/SB-10) identifying bone marrow subsets containing all the CFU-f. 

The identification of specific markers for clonogenic BMSC following in vitro expansion, will allow 

to prospectively isolate CFU-f-enriched populations prior to their implantation. 

Considered that (i) constructs were osteoinductive if containing at least 3.0E+05 CFU-f, (ii) 

this final number of CFU-f was achieved by seeding at least 1.5E+03 CFU-f, and (iii) the typical 

clonogenicity of human bone marrow aspirates is 1.0E+02 CFU-f per million of nucleated cells, we 

can derive that by seeding at least 1.5 E+07 nucleated cells per scaffold, the resulting construct should 

be predictably osteoinductive. Therefore, in order to scale-up the generation of osteoinductive 

constructs based on 100% hydroxyapatite scaffolds for producing implants of clinical-relevant size 

(e.g. scaffolds of 5 cm3), at least 3.75 E+08 nucleated cells per 5 cm3 scaffold should be seeded. 

However, preliminary studies should demonstrate that the increment of the scaffold size would not 

negatively effect (i) the uniform cell distribution and nourishment within the scaffold during in vitro 

culture, and (ii) the in vivo survival of the cells throughout the entire construct, which were obtained 

in this study. In addition, such a large number of nucleated cells cannot be easily obtained from the 

typical amount of harvested bone marrow (20-40 ml). Combining protocols for the selection of 

purified populations of CFU-f from the bone marrow [22] and/or culture conditions for the selective 

survival of subset of cells enriched in CFU-f [8], it will be likely possible in the future to obtain from 

limited bone marrow volumes highly clonogenic cell populations, i.e. containing sufficient numbers of 

CFU-f for generating reproducibly osteoinductive constructs of clinically-relevant size.  
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Abstract: In this work, we investigated whether osteo-
inductive constructs can be generated by isolation
and expansion of sheep bone marrow stromal cells
(BMSC) directly within three-dimensional (3D) ceramic
scaffolds, bypassing the typical phase of monolayer (2D)
expansion prior to scaffold loading. Nucleated cells from
sheep bonemarrowaspiratewere seeded into 3D ceramic
scaffolds either by static loading or under perfusion flow
and maintained in culture for up to 14 days. The resulting
constructswereexposed toenzymatic treatment toassess
the number and lineage of extracted cells, or implanted
subcutaneously in nude mice to test their capacity to
induce bone formation. As a control, BMSC expanded in
monolayer for 14 dayswere also seeded into the scaffolds
and implanted. BMSC could be isolated and expanded
directly in the 3D ceramic scaffolds, although they
proliferated slower than in2D.Uponectopic implantation,
the resulting constructs formed a higher amount of bone
tissue than constructs loaded with the same number of
2D-expanded cells. Constructs cultivated for 14 days
generated significantly more bone tissue than those
cultured for 3 days. No differences in bone formation
were found between samples seeded by static loading or
under perfusion. In conclusion, the culture of bone
marrow nucleated cells directly on 3D ceramic scaffolds
represents a promising approach to expand BMSC and
streamline the engineering of osteoinductive grafts.
� 2005 Wiley Periodicals, Inc.

Keywords: mesenchymal stem cells; perfusion; 3D culture;
bone formation; bone marrow cells; tissue engineering

INTRODUCTION

Bone marrow stromal cells (BMSC) represent a phenotypi-

cally and functionally heterogeneous population of mesen-

chymal precursors providing support for hematopoieses and

contributing to the physiological regeneration of bone,

cartilage, adipose, muscle, and other connective tissues.

For bone tissue engineering applications, BMSC are typi-

cally first expanded in monolayer (2D), in order to overcome

their very low fraction among bone marrow cells. The

expanded cells are then statically loaded into three-dimen-

sional (3D) porous ceramic-based scaffolds,which prime cell

differentiation towards the osteogenic lineage and provide

the template for bone tissue formation (Haynesworth et al.,

1992; Martin et al., 1997). The resulting constructs have

been demonstrated to be osteoinductive in ectopic models

(Cancedda et al., 2003; Muraglia et al., 1998), and to support

repair of large segmental defects in sheep (Kon et al., 2000;

Petite et al., 2000) and in humans in a few clinical cases

(Quarto et al., 2001). In some studies, it was further proposed

that in vitro culture of 2D-expanded BMSC in 3D scaffolds

under appropriate conditions could accelerate and enhance in

vivo bone tissue formation (Kruyt et al., 2004; Mendes et al.,

2002; Sikavitsas et al., 2003b; Wang et al., 2003).

In all these approaches, the phase of BMSC expansion in

2D is associated not only with biological concerns, such as

the loss of cell differentiation capacity with serial passaging

(Banfi et al., 2000), but also with a non-standardized and

labor-intensive production of the osteoinductive grafts (e.g.,

for serial passaging or seeding of the expanded cells into a 3D

scaffold). In addition, the static loading of the cells into 3D

scaffolds may result in non-uniform distributions, with

higher cellular density at the surface layers (Wendt et al.,

2003).

Based on these considerations, in this study we aimed at

generating osteoinductive constructs exclusively within a 3D

culture environment. In particular, we tested the hypothesis

that ovine BMSC can be isolated and expanded within 3D

ceramic scaffolds by direct loading and culture of bone

marrow nucleated cells into the scaffold pores. The ectopic
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osteoinductivity of the resulting constructs was compared to

that of ceramics loaded with 2D-expanded BMSC or with

bone marrow nucleated cells, implanted without 3D pre-

culture. Moreover, based on the demonstrated efficacy of 3D

perfusion systems to improve the efficiency and uniformity

of cell seeding within porous 3D scaffolds (Bancroft et al.,

2002; Sikavitsas et al., 2003; Wendt et al., 2003), we

investigated whether dynamic perfusion seeding of bone

marrow nucleated cells within 3D ceramics could improve

the amount and uniformity of bone formed in vivo as

compared to static cell loading.

MATERIALS AND METHODS

Generation and Implantation of Constructs

Isolation of Bone Marrow Nucleated Cells

Bone marrow aspirates (10 mL volume) were obtained from

the iliac crest of two adult sheep (average age: 3 years) under

total anesthesia and diluted 1:3 with phosphate buffered

saline (PBS). Bone marrow nucleated cells were isolated

using a density gradient solution (Ficoll, Histopaque1,

Sigma Chemical, Buchs, CH) and counted with a standard

nuclear stain (methylene blue, Fluka Chemie GmbH, Buchs,

CH).

Culture Medium

Cells were cultured in alpha-modified Eagle’s medium

(a-MEM) supplemented with 10% fetal bovine serum

(FBS), 2 mM glutamine, 100 U/mL penicillin, 100 mg/mL

streptomycin, 10mMHEPES buffer, 1mMsodiumpyruvate,

and 1 ng/mL fibroblast growth factor-2 (FGF-2). FGF-2 was

used in order to enhance BMSC proliferation and main-

tenance of the post expansion bone formation capacity

(Martin et al., 1997). All cultures were performed within

378C/5% CO2 humidified incubators.

Scaffolds

Ceramic scaffolds (Engipore, Finceramica Faenza, Italy)

were porous discs (8 mm diameter, 4 mm thick) with

80%� 3% macro-porosity. The scaffolds were made of

100% hydroxyapatite, with a 1.67 Ca/P ratio, 0.63 g/cm3

density, and 0.93 m2/g specific surface, resulting in about

1,200 cm2/scaffold.

Bone Marrow Cell Culture in 3D

Freshly isolated bone marrow nucleated cells were seeded in

the pores of the ceramic scaffolds (1.1Eþ 07 nucleated cells/

scaffold) either by static loading or by direct perfusion. For

static loading, scaffolds were pre-wet in culture medium,

blotted dry on a sterile gauze, and transferred into 12-well

plates previously coated with a thin layer of 1% agarose, in

order to prevent cell adhesion. Cells were resuspended at a

density of 2.8Eþ 08 cells/mL, and 40 mL aliquots of the

suspension were slowly dispersed over the top surface of

the scaffolds with a micropipette. After 1 h, 4 mL of culture

medium were gently added along the side of the wells.

Constructs were maintained in culture for up to 14 days, with

medium changes twice a week.

For perfusion seeding, 1.1Eþ 07 bone marrow nucleated

cells were resuspended in 4 mL of medium and perfused in

alternate directions at a flow rate of 1.2 mL/min through the

pores of each scaffold, using a previously developed bio-

reactor system (Wendt et al., 2003). After 3 days, constructs

were transferred into 12-well plates in fresh medium, and

maintained in static culture for up to an additional 11 days

(total¼ 14 days from the beginning of cell seeding), with

medium changes twice a week.

Bone Marrow Cell Culture in 2D

Freshly isolated bone marrow nucleated cells were plated

in plastic dishes (approximately 1Eþ 05 cells/cm2), with

medium changes twice aweek. After approximately 10 days,

when dishes were subconfluent, attached cells were har-

vested with 0.05% trypsin/0.53 mM EDTA and replated at

3Eþ 03 cells/cm2. Following 14 days of 2D expansion, cells

were statically loaded into ceramics using a number equi-

valent to, or 10-fold higher than the number of BMSC

measured in the 3D cultured constructs.

Construct Implantation

The osteoinductive capacity of generated constructs was

assessed by ectopic implantation in nude mice (CD-1 nu/nu,

Charles River, Sulzfeld, Germany) for 8 weeks. Constructs

based on 3Dculture of bonemarrowcellswere implanted 3 or

14 days after the beginning of the seeding. Ceramics seeded

with 2D-expandedBMSCwere directly implanted, without

3D pre-culture. Three constructs for each experiment and

experimental group were implanted in separate mice.

Analytical Methods

Fibroblastic Colony Forming Unit (CFU-f) Assays

In order to determine the fraction of clonogenic fibroblastic

cells in the bone marrow aspirate, 2Eþ 05 nucleated cells

were plated in 28 cm2 tissue culture dishes; medium was

changed after 3 days and twice a week thereafter. When

colonies were clearly visible but not yet overlapping (after

approximately 2 weeks), they were fixed in 4% buffered

formalin, stained with 1% methylene blue and counted.

Scanning Electron Microscopy

Following 14 days of 3D culture, constructs seeded by static

loading or perfusion were assessed for cell morphology by

scanning electron microscopy. Scaffolds were washed in

cacodylate buffer at 48C for 10 min, fixed in 2.5% buffered
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glutaraldehyde for 30 min at 48C, and washed three times

in cacodylate buffer at 48C. Scaffolds were then dehydrated

and imaged (Leo Stereo Scan 440 S, link-GEM, Oxford,

UK).

Stain for Living Cells

The spatial distribution of living cells within the scaffold

after the seeding phasewas qualitatively assessed by staining

with MTT (Sigma, St. Louis, MO). Constructs seeded by

static loading or by perfusion were bisected, rinsed in PBS,

placed in 12-well plates, and incubated at 378C for 1.5 h with

3 mL of 0.12 mMMTT. Insoluble purple salts formed in the

presence of living cells.

Cell Proliferation

Following 14 days of 3D culture, cells were extracted from

the pores of the scaffolds by sequentially perfusing the

constructs with 0.3% collagenase for 30 min followed by

0.05% trypsin/0.53 mM EDTA for 10 min (Braccini et al.,

2005). To evaluate the efficiency of cell extraction, the

amount of DNA in the cell-extracted scaffolds was then

assessed using the CyQUANT1Cell Proliferation Assay Kit

(Molecular Probes, Eugene, OR), following overnight

digestion with 1 mL protease K solution, using amounts of

known cell numbers as standards (Wendt et al., 2003). Cells

expanded in 2D were also detached after 14 days, using the

same reagents. Cell proliferation was defined as the number

of doublings during the expansion phase, based on the initial

number of CFU-f seeded.

Cytofluorimetric Analysis

Analysis with collagen type I labeling was performed to

identify the fraction of mesenchymal cells in the different

experimental groups. Cells expanded in 2D or extracted from

3D scaffolds were permeabilized with 250 ml Cytofix/

Cytoperm PlusTM (Becton Dickinson, San Diego, CA),

incubated with an antibody against collagen type I (SP1D8,

Developmental Studies Hybridoma Bank, Iowa), rinsed,

stained with FITC-conjugated goat anti-mouse IgG, and

assessed cytofluorimetrically using a FACSCalibur flow

cytometer (Becton Dickinson).

Quantification of Bone Formation

Explants were fixed in 4% buffered formalin for 24 h,

decalcified with Osteodec (Bio Optica, Milan, Italy) for 5 h,

paraffin embedded, cross-sectioned (5 mm thick) at six

different levels and stained with hematoxylin–eosin. All

sections were quantitatively analyzed by computerized bone

histomorphometry following acquisition of microscopical

images both in transmitted and fluorescent light (excitation

wavelength 546 nm, emission wavelength 590 nm), as pre-

viously described (Martin et al., 2002). Briefly, the amount of

bone tissue was quantified in each section as the area of

fluorescent tissue, and the area available for tissue ingrowth

was determined by subtracting the area of undegraded

scaffold, quantified in the transmitted light images, from the

total cross-sectional area. For each section, the amount of

bone tissue was then calculated as a percentage of the total

space available for tissue ingrowth. Each construct was

assessed in two cross-sections at each of the six levels of

depth. For each construct, the amount of bone formation was

determined as the average of the percentages measured in

the 12 sections. The percent uniformity of bone tissue

formation was determined as 100%� (1�Cv), where Cv is

the coefficient of variation (i.e., the standard deviation

divided by the average) of the percentagesmeasured in the 12

sections.

Statistical Analysis

Two experiments were independently performed using cells

from the different sheep. Data on bone tissue formation are

presented asmean� standard deviation of values determined

for each construct in the two independent experiments (N¼ 3

constructs per experiment). Differences were assessed using

Mann–Whitney U-tests and considered statistically signifi-

cant with P< 0.05.

RESULTS

Cell Morphology and Lineage

Seeding and culture of bone marrow nucleated cells in the

ceramic scaffolds resulted after 14 days in the presence of

cells adhered to the scaffold surface (Fig. 1). Themorphology

of the cells did not appear different following seeding by

perfusion (Fig. 1A) or by static loading (Fig. 1B).

Enzymatic extraction of cells from the ceramic scaffolds

under perfusion was highly efficient, with less than 15% of

the total cells remaining in the scaffolds. Essentially all cells

extracted from the constructs after 14 days of 3D culture,

independent of the seeding modality, were positive for the

expression of collagen type I, similarly to cells expanded in

2D (Fig. 2). This result indicates that cells isolated and

expanded in the 3D system, starting from the diverse

population of bone marrow nucleated cells, were of mesen-

chymal and not hematopoietic lineage. Consistent with the

typical findings in 2D cultures, these mesenchymal cells are

thus the progeny of the initial CFU-f, and will be referred to

as BMSC.

Cell Proliferation

The average number of CFU-f in the fresh bone marrow

aspirates was 0.011%� 0.005% of the total number of

nucleated cells. Assuming that all CFU-f attached to the

ceramic scaffolds, approximately 1.2Eþ 03 CFU-f were

initially seeded in each scaffold. After 14 days of 3D culture,

the average number of extracted cells was increased to

5Eþ 05 per scaffold. The fact that cells were of the
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mesenchymal lineage, based on the expression of collagen

type I, indicates that a large progeny of BMSCwas generated

within the ceramic scaffolds by extensive proliferation of the

seeded CFU-f (Fig. 3). The number of doublings was similar

if cells were seeded by static loading or by perfusion, but

significantly higher if cells were expanded in 2D for the same

time period.

In Vivo Bone Formation

Ceramic scaffolds seeded with bone marrow nucleated cells,

either by static loading or by perfusion, with or without

additional 3D culture, were all able to form bone tissue upon

ectopic implantation in nude mice for 8 weeks, as assessed

by hematoxylin–eosin staining. In all groups, the pattern of

bone formation was typical of the so called ‘‘ossicles,’’ with

bone tissue starting from the ceramic surface, gradually

filling the pore cavities and leaving space for marrow

elements (Bianco et al., 1998) (Fig. 4A). The extent of bone

tissue ingrowth within the ceramic pores qualitatively appe-

aredmore progressed in constructs implanted after 14 days of

3D culture (Fig. 4C) than in those implanted immediately

after the 3 days required for cell seeding (Fig. 4B).

The amount of bone formed in the different experimental

conditions, expressed as a percentage of the area available for

tissue ingrowth, was quantified using computerized image

analysis (Fig. 5A). After 8 weeks of implantation, constructs

generated by 3D culture of bone marrow cells formed

approximately twice the amount of bone than those directly

implanted following seeding. The modality of the cell

seeding (i.e., by static loading or by perfusion) did not

influence the amount of formed bone. Scaffolds loaded with

2D expanded cells formed bone tissue at amounts compar-

able to those of 3D cultured constructs only if they were

seeded with 10-fold the number of cells measured in the 3D

constructs. The percentages of bone formation measured in

this study were overall comparable to those reported in

previous works using goat (Kruyt et al., 2004) or human cells

(Martin et al., 2002).

The uniformity of bone tissue formation appeared to

be higher in constructs cultured for 14 days than in those

implanted directly after cell loading, independent of the

seeding modality (Fig. 5B). However, due to the relatively

large variabilities, no statistically significant differences

between experimental groups were found.

DISCUSSION

In this study, we demonstrated that osteoinductive grafts can

be generated using exclusively a 3D culture system, by direct

isolation and expansion of ovine BMSC within 3D porous

ceramic scaffolds. Upon ectopic implantation, the resulting

constructs formed more bone tissue than those implanted

without any 3D pre-culture or those based on the same

Figure 1. Scanning electronic microscopy of three-dimensional (3D) constructs. Representative images of ceramic 3D scaffolds cultured for 14 days

following seeding of bone marrow nucleated cells by perfusion (A) or static loading (B). Cells were adhered to the ceramic scaffolds and displayed a similar

morphology in the two conditions. Scale bar¼ 10 mm.

Figure 2. Expression of collagen type I. Representative cytofluorimetric analysis of collagen type I expression by bone marrow cells seeded on 3D scaffolds

by perfusion (A) or by static loading (B), as compared to cells expanded in 2D (C). In each group, essentially all cells were positive for collagen type I and thus

appeared to belong to the mesenchymal lineage.
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number of 2D-expanded cells.Moreover, the amount of bone

formed was similar if bone marrow cells were seeded by

static loading or by perfusion.

BMSC isolation and expansion within 3D scaffolds was

achieved by seeding the whole population of bone marrow

nucleated cells, containing only a minor fraction of clono-

genic mesenchymal precursors (CFU-f). During culture,

BMSC were selectively expanded due to their capacity to

attach to the ceramic surface, whereas cells of the hema-

topoietic lineage were progressively eliminated from the

system, likely due to the lack of specific medium supple-

ments and/or to the removal of non-adherent cells at each

medium change. The possibility of selectively expanding

BMSC directly within 3D scaffolds opens new opportunities

to the simplified and streamlined production of osteoinduc-

tive grafts, bypassing the typical phases of 2D cell passaging

and 3D scaffold seeding/culture. Interestingly, the density of

CFU-f initially seeded, calculated from the surface area of the

scaffold and the fraction of CFU-f in the marrow aspirate,

was as low as 1 cell/cm2. While it is remarkable that a large

number of BMSC could be generated within the scaffolds

starting from such a small density of CFU-f, it would be

important for scale-up purposes to identify a minimal thres-

hold in the CFU-f density, which is sufficient for the gene-

ration of osteoinductive grafts in our system.

The finding that BMSC directly expanded in 3D scaffolds

were able to induce more efficient formation of bone than

cells expanded in 2D for the same time could be explained

by a number of factors, including (i) cell interactions with a

ceramic substrate (Ducheyne and Qiu, 1999; Ohgushi et al.,

1996), (ii) the lower number of cell doublings, known to be

associated with a progressive decrease in the osteogenic

capacity (Banfi et al., 2000; Derubeis and Cancedda, 2004;

Sugiura et al., 2004), and/or (iii) the likely deposition of

pericellular and extracellular matrix during 3D culture

(Bancroft et al., 2002; Mendes et al., 2002; Sikavitsas et al.,

2003). It is noteworthy that as compared to cells expanded in

3D scaffolds, BMSC expanded in 2D could generate similar

amounts of bone tissue if seeded at a 10-fold higher number.

Figure 3. Cell proliferation in 2D or 3D. Cell proliferation was measured

after 14 days of culture either in monolayer (2D) or within 3D ceramic

scaffolds, seeded by perfusion or by static loading of a cell suspension. Cells

proliferated extensively in all experimental groups, although the number of

doublings was significantly higher by 2D expansion.

Figure 4. Histological sections of explants. Representative hematoxilin–

eosin stained cross-sections of constructs implanted ectopically in nudemice

and harvested after 8weeks.A: In all groups, bone tissue formation displayed

the typical pattern of an ‘‘ossicle,’’ with lining osteoblasts (o) depositing

bone matrix (b) starting from the ceramic (c) surface, gradually filling the

pore cavities and leaving space for marrow elements (m). Constructs were

implanted after 3 days (B) or 14 days (C) of 3D culture, following static

loading of bone marrow cells. Similar results were achieved following

perfusion seeding of bone marrow cells. Arrows in B and C indicate

deposited bone matrix. Scale bar¼ 100 mm (A) or 300 mm (B, C). [Color

figure can be seen in the online version of this article, available at

www.interscience.wiley.com.]
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Considering that BMSC proliferation was considerably

faster in 2D than in 3D (i.e., approximately eight more

doublings in 14 days), it follows that under the described

conditions the typical 2D expansion of BMSCwould support

the generation of larger osteoinductive constructs as

compared to expansion in 3D scaffolds. Thus, while the

demonstrated paradigmof expandingBMSCdirectly in 3D is

highly relevant to overcome practical issues of 2D–3D cell

manipulation in the generation of osteoinductive grafts,

future studies will have to address the development of

improved protocols for BMSC expansion in 3D, whichmight

also lead to enhanced cell proliferation.

Scaffolds loaded with bone marrow cells and pre-cultured

for 14 days generated higher amounts of bone than those

implanted only 3 days after seeding. A prolonged cultivation

time may have enhanced the osteoinductivity of the engin-

eered grafts by allowing (i) more efficient colonization of the

scaffold pores by an increased number of cells, (ii) BMSC

differentiation towards a more committed osteoblastic

phenotype, and/or (iii) increased deposition of a bone-like

matrix within the scaffold. The deposition of extracellular

matrix has been previously postulated as themain reasonwhy

3D pre-culture of 2D-expanded BMSC within 3D scaffolds

enhances the osteoinductivity of the resulting implant (Kruyt

et al., 2004;Mendes et al., 2002). It is worth noting that in our

system the deposition of extracellular matrix would not

require an additional culture phase, but would be accom-

plished during cell expansion within the porous scaffold.

Using a recently developed perfusion bioreactor system

(Wendt et al., 2003), we demonstrated that ovine BMSC can

also be seeded within ceramic scaffolds by perfusing bone

marrow nucleated cells in alternate directions through the

scaffold pores. Although this seeding technique did not result

in superior uniformity or amount of bone tissue formation as

compared to static cell loading, the method would be more

suitable for standardization in closed bioreactor systems. In

addition, considering the importance of perfusion flow for

enhancing mass transport and application of shear forces

during the culture of osteogenic cells in a 3D environment

(Bancroft et al., 2002; Botchwey et al., 2003; Cartmell et al.,

2003; Gomes et al., 2003; Martin et al., 2004; Mauney et al.,

2004; Meinel et al., 2004; Sikavitsas et al., 2003a,b; Wang

et al., 2003; Wendt et al., 2003), it will be interesting to

address whether prolonged perfusion after the phase of cell

seeding would further enhance the osteoinductivity of the

grafts engineered in our system as compared to a static 3D

culture.

In conclusion, in this work we have demonstrated the

possibility, starting from ovine bone marrow, to generate

osteoinductive grafts using exclusively a 3D culture system,

bypassing the conventional phase of BMSC expansion in 2D.

Ongoing studies are aimed at using the same principle to

generate constructs of size and shape relevant for orthotopic

implantation in experimental bone defects. These experi-

ments, together with the recent finding that the described

paradigm is also applicable to a human cell source (Braccini

et al., 2005), will open theway to the streamlined engineering

of osteoinductive grafts for use in defined clinical applica-

tions.

We thank Roberta Martinetti (Finceramica, Faenza, I) for provision of

the ceramic scaffolds and to Mauro Alini (AO Research Institute,

Davos, CH) for the procurement of sheep bone marrow.
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CHAPTER 7  

 

SUMMARY AND CONCLUSIONS 

 

 

7.1 Summary: aims and results of this work 

 

The main aims of this thesis were (i) to identify and develop a system that could be 

reproducibly used to streamline manufacture of osteoinductive grafts based on human bone marrow 

stromal cells (BMSC) in the context of regenerative medicine, (ii) to characterize the developed 

system in order to identify key elements responsible for its reproducible and efficient performance, 

and (iii) to extend its use to a sheep cell source, thus opening the way to test the osteoinductivity of 

orthotopic implants in a large animal model. 

Bone Marrow Stromal Cells (BMSC), which are typically defined by their capacity to adhere 

on plastic [1] and form a fibroblastic colony (CFU-f) [2], represent a very low fraction (approximately 

0.01%) among the nucleated cells of the bone marrow. Therefore, to obtain a sufficient number of 

cells for bone tissue engineering applications, BMSC are typically first selected and expanded in 

monolayer (2D) prior to loading into 3D scaffolds. However, 2D-expansion causes BMSC to 

progressively lose their early progenitor properties and differentiation potential [3-5], and to decrease 

their capability to form colonies and to induce bone tissue formation upon ectopic implantation [3], 

placing several potential limits on their clinical utility. To bypass the process of 2D-expansion and its 

associated limitations, we used an innovative bioreactor-based approach to seed, expand, and 

differentiate BMSC directly in a 3D ceramic scaffold [6]. Nucleated cells, freshly isolated from a bone 

marrow aspirate, were introduced into the bioreactor system and perfused through the pores of 3D 

ceramics for five days, then further cultured under perfusion for an additional two weeks. Using the 

developed procedure, BMSC could be seeded and extensively expanded within the 3D environment of 

the ceramic pores. Interestingly, we found that the 3D-generated constructs contained both 
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hemopoietic cells and BMSC, whose relative fractions could be modulated by appropriate media 

supplements, and that a consistent fraction of expanded BMSC was clonogenic. In contrast, following 

the typical 2D-expansion, cells of the hemopoietic lineage could not be maintained, and, consistently 

with previous studies, only a minor fraction of expanded BMSC was still clonogenic. When constructs 

were ectopically implanted in nude mice, those engineered in the bioreactor reproducibly generated 

bone tissue that was uniformly distributed throughout the scaffold volume and filled up to 60% of the 

ceramic pores. In marked contrast, when similar numbers of 2D-expanded BMSC were loaded into 

ceramic scaffolds and implanted, bone was infrequently generated, and even in the most 

osteoinductive constructs, it was localized to peripheral regions, filling only 10% of the ceramic pore 

volume [6].  

Considering the need of reproducibility or at least of predictability in the osteoinductive ability 

of the constructs for their standardized clinical use, in order to validate the possibility of extending the 

use of the developed bioreactor-based approach for generating osteoinductive grafts of clinically 

relevant size, we then investigated whether a minimum cell density was required for the reproducible 

bone tissue formation. Based on the established association between the higher clonogenicity of 

BMSC expanded in the 3D-system and the more reproducible and extensive osteoinductivity of the 

resulting constructs, as compared to those based on 2D-expanded BMSC, we demonstrated that 

presence or absence of bone in the constructs following ectopic implantation is related not to the total 

number of implanted BMSC, but to the number of CFU-f present in the construct at the time of 

implantation. In particular, we identified an apparent threshold in the amount of CFU-f discriminating 

between osteoinductive and not osteoinductive constructs.  

The developed bioreactor-based approach has been validated in a heterotopic model. Before 

envisioning a clinical trial in human, a study in a large animal model is needed to validate the safety 

and the surgical feasibility of the overall procedure. Thus, in the perspective of testing our novel 

approach for repairing experimental bone defects in a sheep model, it was first necessary to validate 

our system using ovine BMSC. We demonstrated that osteoinductive constructs can be generated by 

perfusing 3D ceramic scaffolds with the nucleated cell fraction of ovine bone marrow aspirates [7]. 

Ongoing studies in the context of an EU-funded Project are aimed at testing the capability of the 
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generated constructs to repair large bone defects in sheep (i.e. defects around titanium implants 

inserted into trabecular bone of the proximal humerus, and postero-lateral spinal fusion in lumbar-

region). 

 

 

7.2 Relevance of the achieved results and future perspectives 

 

Possible uses of the developed system  

This study has significant implications for clinical applications of osteoinductive grafts 

considering that the elimination of the 2D-expansion phase would facilitate the development of a more 

streamlined, effective, reproducible, and economical manufacturing process of autologous BMSC-

based bone grafts [8]. 

The developed system represents also a promising approach towards establishing a 3D in vitro 

model system of bone marrow, which could be used to investigate interactions between different 

populations of bone marrow cells in a more physiological environment than previously established 

systems [9]. 

The same paradigm of bypassing 2D-expansion by direct 3D culture under perfusion of 

BMSC on 3D scaffolds may be used for generating other tissues and organs of mesodermic origin (e.g. 

cartilage [10, 11], tendons and ligaments [12], heart [13]). 

The innovative 3D-culture system used in this work for generating osteoinductive grafts gave 

the interesting result of yielding a final BMSC population which was more clonogenic than following 

the typical 2D-culture. Thus, the developed system could be used to extensively expand cells for all 

those therapeutic purposes where large amounts of mesenchymal progenitors are needed [14, 15]. 

Finally, the characterization by microarrays of differential gene expression in 3D- and 2D-

expanded BMSC, could open the way to identify gene sets involved in the maintenance of progenitor 

cells features. 
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Up scaling of bone tissue engineering  

One of the most obvious relevance of the present work is represented by the possibility to 

extend the innovative bioreactor-based approach to the generation of osteoinductive grafts of 

clinically-relevant size. In this context, several issues should be addressed.  

First of all scaling up the procedure to clinically relevant sizes will have to face the challenges 

of uniformly seeding the cells throughout larger constructs, and maintaining their viability both during 

in vitro culture and upon grafting. Even following successful seeding and culture, cell viability in large 

constructs cannot be maintained after in vivo transfer, unless early blood supply is achieved. However, 

invasion of host blood vessels requires several days to weeks, depending on the size and porosity of 

the construct. Therefore, cells in the center of the construct which are not supplied by diffusion would 

die before they can be reached by growing vessels. One of the possible solutions to the mentioned 

issue is constituted by co-culturing BMSC with endothelial progenitor cells, which could potentially 

generate a new vascular network after implantation by anastomosing to the host vessels directly and/or 

by releasing angiogenic factors [16].  

In this work we established a relation between the clonogenicity and the osteoinductivity of 

BMSC. In order to predictably generate osteoinductive grafts of clinically relevant size, based on our 

results, a very large amount of CFU-f should be initially seeded. However, relatively limited numbers 

of CFU-f can be easily obtained from the typical amount of harvested bone marrow. Recent studies 

proposed several markers identifying CFU-f in the fresh bone marrow with osteoprogenitor properties 

[17-20]. Further studies should identify specific markers for clonogenic BMSC after expansion, thus 

allowing the establishment of protocols for enriching CFU-f populations within expanded BMSC.  

 

Role of hemopoietic cells  

The high clonogenicity of BMSC cultured in the 3D bioreactor system could be due to a 

variety of factors, including the maintenance of substantial fractions of hemopoietic cells in culture, 

which was observed in our system. Interestingly, when high numbers of cells were initially seeded, we 

observed an up-regulation of both fractions of hemopoietic cells and CFU-f.  
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Recent studies indicate the existence of a crosstalk between hemopoietic and mesenchymal 

bone marrow cells enhancing the growth of CFU-f [21]. Based on the established association of the 

high clonogenicity of BMSC both with the co-culture of hemopoietic cells and with a reproducible 

osteoinductive capacity of the resulting constructs, further studies should investigate whether 

hemopoietic cells enhance the osteoinductivity of the constructs not only indirectly (e.g., by 

maintaining BMSC more clonogenic) but also directly (e.g., by releasing specific cytokines in vivo).  

In our study we demonstrated that fractions of hemopoietic and mesenchymal cells can be 

modulated by using specific culture conditions: it would be interesting to test whether by 

maintaining/expanding an increased number of hemopoietic cells, it could be possible to enhance the 

osteoinductivity of the generated constructs.  

 

Possible improvements of the developed system  

The approach used in this work for cell-based engineering of osteoinductive grafts was based 

on (i) bone marrow nucleated cells as a source of BMSC, (ii) 100% Hydroxyapatite (HA) ceramics as 

3D scaffolds, (iii) 3D perfusion flow as a culture system, and (iv) culture medium containing fetal 

bovine serum, and supplemented with FGF-2, dexamethasone, and ascorbic acid. The combination of 

these parameters gave rise to the reproducible, uniform, and extensive bone formation upon ectopic 

implantation of the generated constructs in nude mice. Results obtained in this study were very 

encouraging, but alternatives for the mentioned elements could further improve the developed system. 

Cell source. The ideal source of autologous mesenchymal progenitor cells should provide 

large number of cells from living individuals without using invasive procedure, meaning without any 

patient morbidity: such a cell source could be represented by human blood. Very recent studies 

indicate the presence of human circulating CD14+ monocytes exhibiting mesenchymal differentiation 

potential [22], and of circulating osteoblast-lineage cells expressing bone-related markers [23]. Likely 

in the future, the development of methods to harvest large amounts of these cells from peripheral 

blood might lead to generating bone substitutes with minimal patient morbidity. 

Scaffolds. The ideal 3D-scaffold for engineering bone should provide an initial support for 

osteoprogenitor cells to deposit mineralized bone matrix; then it should be slowly resorbed at the same 
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time newly formed bone tissue grows inside the scaffold. A high porosity and a high degree of 

interconnection among the pores are an absolute requirement for the vascularization of the implant and 

the new bone formation; chemical composition plays a major role in the resorbability of the 

biomaterial. Scaffolds used in this study (100% HA) have high osteoconductive properties and high 

porosity (83%), but low resorption rate. Composite scaffolds based on tricalcium phosphate/HA 

(TCP/HA) have been recently proposed as a valid alternative to the 100% HA ceramics for their faster 

resorption upon orthotopic implantation in large animal models [24]. Ongoing studies are aimed at 

determining the feasibility of using our perfusion bioreactor system to generate osteoinductive grafts 

based on several types of biphasic bioceramic scaffolds (e.g. TCP/HA, carbonated/HA, collagen/HA). 

In addition, adsorption of extracellular matrix molecules such as fibronectin [25] or collagen [26] onto 

the HA surface has been shown to significantly increase cell adhesion and proliferation, and thus 

represents a further potential improvement of our system.  

3D-culture system. Concerning the perfusion bioreactor system used in this study for 

producing osteoinductive constructs, several features should be included in the developed design in 

order to make it clinically usable at large scale. An automated, reproducible, controlled, GMP-

compatible production unit for the generation of engineered bone should include (i) on-line monitoring 

and control of the chemico-physical parameters of the cell-culture (e.g. pH, gases, metabolites) in 

order to monitor cell growth, predict the effective number of cells present in the graft and determine 

the appropriate time for implantation, (ii) automated medium change, thus excluding manual 

intervention and reducing costs of manufacture and risk of contamination, and (iii) reduced size, in 

order to allow easy location in dedicated areas, possibly within hospitals.  

Culture media supplements. In our system BMSC were cultured in medium containing fetal 

bovine serum (FBS) and supplemented with several growth factors. However, for widespread clinical 

applications, contact with FBS must be minimized since it is putative source of prion or virus 

transmission, and the use of exogenous recombinant growth factors should be avoided for their 

unknown long-term effects in human cells. Platelet lysis releases a wide variety of growth factors 

including FGF-2, and platelet lysate has been recently described as a powerful and safe substitute for 

fetal bovine serum, promoting BMSC proliferation without loss of their intrinsic differentiation 
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properties [27]. Likely in the future, the platelet lysate, being itself a source of growth factors, could 

be considered not only as a substitute of FBS, but also as the only culture medium supplement needed 

during culture of BMSC to be used in clinical applications. Based on recent studies in large animal 

models, BMSC combined with platelet-rich plasma are proven to be potent angiogenic inducers [28], 

thus representing a promising solution not only to overcome problems related to the use of serum and 

growth factors during in vitro culture, but also to possibly improve the in vivo bone graft 

vascularization and integration. 

 

 

7.3 Schematic summary 

 

The most relevant results generated in this work can be summarized as follow: 

• Human or ovine BMSC can be seeded and extensively expanded on 3D ceramic scaffolds by 

perfusing directly the nucleated cell fraction of marrow aspirates through the scaffold pores, 

thus bypassing the conventional 2D-expansion phase. 

• 3D-generated constructs are more reproducibly, extensively and uniformly osteoinductive than 

those based on 2D-expanded cells. 

• The used bioreactor-system allows co-culture of hemopoietic cells and BMSC. 

• The relative fractions of hemopoietic cells and BMSC can be modulated by using appropriate 

media supplements. 

• 3D-expanded BMSC are more clonogenic than following 2D-expansion. 

• Bone formation occurs if a sufficient density of CFU-f is implanted. 

• Bone formation is not related to the number of implanted BMSC. 

• High initial cell densities generate constructs containing high fractions of both hemopoietic cells 

and of CFU-f.  
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