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 Summary 

Summary 
 

Obesity and its associated complications are a significant health problem in 

industrialized countries. This fact has generated great interest in the role of the gut in 

the regulation of food intake in the past three decades. Especially after the 

discoveries of gastrin, secretin and cholecystokinin (CCK), it was generally accepted 

that digestive processes are mainly regulated by hormones, but it has become 

apparent that there is a complex interplay between neural and hormonal pathways. 

Several systems seem to be involved in the regulation of bodyweight; one of them is 

primarily concerned with short-term regulation of food intake. The control circuits 

include central and peripheral signals. Much insight has been gained into 

physiological processes of satiety peptides like CCK, glucagon-like peptide-1 (GLP-1) 

and peptide tyrosine-tyrosine (PYY) in the past few years. The informations depicting 

their mechanism of action and potential interactions between different physiological 

signals involved in the short-term regulation of satiety are still limited in humans. The 

main interest of this thesis focuses on the further characterization of some of those 

signals, especially on the investigation in potential interactions between individual 

satiety factors. 

 

The study set-up applied in the projects was standardized and is similar to 

experimental conditions used in prior studies. Here are some examples: nearly in 

every study, volunteers received an intraduodenal (ID) perfusion. To investigate a 

potential interaction between the stomach and the small intestine, a preload was 

given or the stomach was distended by a balloon for a short period of time before the 

test meal was offered. After the preload or the distension of the stomach, a standard 

meal was presented to the subjects, and they were invited to eat and drink as much 

as they wished for 60 min. During the study subjects scored their subjective feelings 

for hunger and fullness for the duration of each experiment using a visual analogue 

scale (VAS) and blood was drawn in regular intervals. The study was finished 60 min 

after meal start. 

 

The stomach has an obvious role in the regulation of eating behavior, but until 

recently it was still unclear, if and to what extent pure mechanical distension of the 

fundus and the antrum can influence food intake. Therefore the first project was 
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designed to further understand the role of a) the gastric fundus and b) the gastric 

antrum in triggering satiation in healthy male volunteers. From previous study results 

it was anticipated that distension of the distal stomach could play a role in the 

generation of satiation. 

In the first part of our study the fundus was distended by a balloon with increasing 

volumes. When the fundus was distended, no effect on food intake was observed, 

but a short-lasting effect on feelings of hunger and fullness. Gastric distension only 

seems to trigger satiety as long as mechanoreceptors in the stomach are stimulated; 

the short-lasting effect could indicate that the signals are transmitted via afferent 

nerves to the central nervous system (CNS). 

The second part of this study was designed to examine the effect of antrum balloon 

distension on subsequent food intake; in addition, it was of interest to test whether ID 

fat could intensify the effect of distal gastric distension. Neither gastric distension 

alone nor in combination with ID fat reduced the subsequent calorie intake; also no 

effect was observed on feelings of hunger or fullness. ID fat does not seem to 

intensify gastric satiety signals induced by pure mechanical distension of the 

stomach. 

Neither fundus nor antrum distension altered CCK and PYY plasma concentrations. 

This fact implies that signals induced by pure mechanical gastric distension are not 

mediated by circulating CCK or PYY. During ID fat perfusion, CCK and PYY plasma 

concentrations were significantly increased. The increase of CCK after ID fat 

confirmed previous study results. However, this study was one of the first which could 

show an increase of PYY after ID fat in humans. 

Due to these study results pure mechanical gastric distension of the fundus or the 

antrum is presumably not a sufficient satiety signal to influence subsequent food 

intake. 

 

An interaction effect on food intake resulting from an intestinal and a gastric satiety 

signal was already explored for CCK, but not for GLP-1. It was therefore of interest to 

find out whether an interaction exists between a preload and intravenous (i.v.) GLP-1. 

In the second project GLP-1 was given i.v. in a dose which mimics physiological 

GLP-1 plasma concentrations; the dose reduced calorie intake confirming previous 

study results. One major observation of this study was the demonstration that a 

protein-containing preload together with i.v. GLP-1 enhanced the satiety-inducing 
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effects of GLP-1 compared to a water preload plus infusion of GLP-1. This result 

provides strong evidence that GLP-1 interacts with gastric signals to modulate food 

intake and satiety in humans. 

We inferred that GLP-1 is an important satiety factor which interacts with other satiety 

signals in order to control food intake and satiety. However, it still remains unclear 

whether the satiety effects of GLP-1 are directly mediated through peripheral or 

central receptors or indirectly by releasing other satiety peptides. 

 

The following study was designed to further understand the potential interaction 

between protein and fat in regulating food intake in humans. It is known that ID lipid 

infusions and protein given as an oral preload reduce food intake in humans and 

from previous study results we inferred that ID fat interacts with gastric signals to 

regulate food intake. In the third project we were interested in exploring the potential 

interaction of the stomach and the small intestine; we also wanted to see whether 

GLP-1 and PYY are associated with this interaction. 

ID fat perfusion alone reduced the amount of food eaten and the total calorie intake, 

but the reduction did not reach statistical significance. Although the design of the 

present study was similar to previous studies with respect to fat dose, experimental 

design and duration of fat perfusion, the variability of the individual responses to ID 

fat was greater than in previous studies and the reduction of food intake did not reach 

statistical significance. Due to these results it can be speculated that certain 

individuals have a reduced sensation to ID fat. The effects of ID fat on food intake do 

not seem to be mediated by changes in plasma GLP-1 or PYY levels, but they are 

largely dependent on CCK release, which is in agreement with previous findings. 

When subjects consumed an oral protein preload, calorie intake was significantly 

reduced. The increase of premeal plasma concentrations of GLP-1 and PYY did not 

differ compared to placebo. Therefore the inhibitory effect of oral protein on eating 

behavior is not mediated by changes in circulating plasma hormone levels. 

The simultaneous administration of an oral protein preload and ID fat did not show a 

synergistic reduction in calorie consumption, rejecting the hypothesis that oral protein 

and ID fat exert a positive synergistic effect.  

 

The fourth project examined the physiological and the pharmacological role of PYY in 

regulating eating behavior. Due to human study results it was supposed that  
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PYY (3-36) is a potent physiological regulator of satiety with a potential for 

therapeutic application. Because the physiological role of PYY in humans has not 

been investigated in detail, we first wanted to define a range of physiological PYY 

plasma levels after two meals differing in their calorie content. The results showed 

that only large meals are able to stimulate the release of larger amounts of PYY, 

whereas a low-calorie meal has minimal effects on postprandial hormone plasma 

levels. 

In the second part of the study we wanted to examine the effects of graded doses of 

i.v. PYY (3-36) on eating behavior in healthy human subjects. We found a dose-

dependent satiety effect of i.v. applied PYY (3-36). These results support the 

hypothesis that exogenously administrated PYY (3-36) is able to suppress food 

intake in humans. However, when the postprandial physiological levels of PYY after 

the high calorie meal are compared to those obtained after peripheral administration, 

it can be suggested that the significant satiety effect of PYY (3-36) is only seen at 

plasma concentrations higher than those after a large meal. The smallest 

administered dose of PYY (3-36) did not significantly reduce food intake and showed 

PYY plasma levels about in the same range as the physiological ones. Due to these 

results we infer that the PYY satiety effect seen with the middle and the highest dose 

of exogenous PYY (3-36) was rather a pharmacological than a physiological effect. It 

seems to be unlikely that PYY is a major physiological satiety factor, but still more 

information is necessary. 

Dose-dependent side effects of PYY (3-36) like nausea and vomiting could be 

observed. PYY (3-36) seems to have a narrow therapeutic window, which could limit 

its therapeutic potential. 

 

In summary it was shown in the present thesis that 1) pure gastric balloon distension 

of the fundus and the antrum is not a sufficient satiety signal to influence subsequent 

food intake; 2) the effect of gastric distension on eating behavior is not amplified by 

ID fat; 3) GLP-1 is an important satiety factor and seems to interact with gastric 

signals to modulate food intake and satiety in humans; 4) the satiating effect of 

protein as an oral preload cannot be amplified by ID fat; 5) the release of 

physiological PYY is dependent on the calorie content of a meal; 6) exogenous  

PYY (3-36) reduces food intake in a dose-dependent manner; 7) the effect of 
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exogenous PYY (3-36) on food intake seems to be a pharmacological rather than a 

physiological effect; 8) PYY (3-36) has a narrow therapeutic window.  
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 Aims and structure of the thesis 

Chapter 1: Aims and structure of the thesis 
 
The growing prevalence of obesity is one of the most important reasons why 

research focuses on the control of eating behaviour in humans. Over the last 30 

years many progresses in this field of research have been made. 

 

The aim of the present thesis was to further investigate the role of specific nutrients 

and the action of certain satiety peptides on food intake in humans. Furthermore, the 

potential interactions between different satiety factors was explored to better 

understand the regulation of appetite in healthy humans. 

 

In chapter 2 the most important facts about obesity are summarised. This chapter 

includes facts about the epidemiology, the symptomatology, possible causes and the 

treatment of obesity. 

 

Chapter 3 gives a general overview on the control of food intake in humans. The term 

satiation is explained, the development of research on satiation and the central, the 

short-term and the long-term regulation of food intake are discussed. 

 

Chapter 4 deals with signals such as gastric distension and gastrointestinal (GI) 

hormones which are involved in the regulation of food intake and satiety feelings. 

 

The role of fat and protein in the process of satiation is explained in chapter 5. 

 

Chapter 6 addresses the experimental measurement of food intake and human 

eating behaviour. It also discusses the basic principle of the study set-up and the 

validity of visual analogue scales used in the present thesis. 

 

Chapter 7 contains all the projects in detail which were performed for the present 

thesis. 

 

The most important findings of the projects described in the previous chapter are 

discussed in chapter 8 and an outlook on what could be done in future research is 

given.

 
 - 15 -



 Obesity 

Chapter 2: Obesity 
 

The World Health Organisation (WHO) has classified obesity as an epidemic. Obesity 

and its associated pathologic characteristics are major causes of illness and death 

worldwide. At its simplest level obesity can be defined as an imbalance between the 

energy that is ingested and the energy that is expended. The causes for obesity are 

however, much more complicated, because an interplay of different factors is acting. 

During the past 30 years, obesity as a disorder has dramatically increased in 

countries having an abundance of high calorie food products and low tendency to 

exercise. Numerous diseases arise from being overweight and obese with limitations 

for the quality of life and a lower life expectancy. In the United States (US) obesity 

accounts for about 300`000 deaths per year, and at current rates of increase it will 

displace smoking as the primary cause of preventable death (24). 

 

 

2.1. Epidemiology of obesity 
 

The body mass index (BMI) is the most widely used measure for classifying the 

different degrees of being overweight or obese, and is calculated by dividing the 

weight in kg by the height in m2. The most important definitions of overweight and 

obesity by BMI with the risk of co-morbidities are shown in Table 2.1. 

 

 
Table 2.1: Definitions of body weight disorders in adults by BMI (19) and corresponding risk of co-
morbidities (18) 
BMI (kg/m2) Classification Risk of co-morbidities 
18-25 (women) Normal weight Average 
19-25 (men)   
25-30 Overweight Increased 
30-50 Obesity Classes I-III Moderate-very severe 
50-60 Obesity Class IV (superobese) Very severe 
>60 Obesity Class V  

(super-super obese) 
Very severe 

 

 

Data collected from 1999 to 2002 in the United States estimate that among adults 

aged at least 20 years, 35% are overweight (BMI 25-30 kg m-2), 30% are obese (BMI 

≥ 30 kg m-2), and 5% are extremely obese. In Figure 2.1 the increase in prevalence 
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of obesity among US adults between 1991 and 2001 is illustrated (23). Among 

children aged 6 through 19 years in 1999-2002, one in six was overweight. Increased 

prevalence of excessive weight was noted among all age, gender and racial/ethnic 

groups. (2, 16). In Europe nearly every third person is overweight. In industrial 

countries almost 5% of the total medical costs are spent for the treatment of obesity 

or its consequences, that means about 2-3 billion (Mia) Swiss Francs per year. 

 

 
Figure 2.1: Prevalence of obesity among US adults between 1991 and 2001; by Mokdad et al. (23). 
 

 

2.2. Symptomatology of obesity 
 

Morbidity from complicating disorders, as well as overall mortality, has been shown to 

be closely associated with the degree of obesity (26, 32, 35). Depending on the 

particular medical complication examined, the risk may increase linearly (e.g. 

hypercholesterolemia) or exponentially (e.g. diabetes) with increasing BMI (Figure 

2.2). 

 

 
Figure 2.2: Relationship between body weight and cardiovascular risk factors (25) 
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More than 40 distinct disorders are caused, exacerbated, or made more likely by 

obesity, e.g. Diabetes mellitus type II; cardiovascular diseases like 

hypertriglyceridemia, hypercholesterolemia, hypertension, atherosclerosis, but also 

carcinoma etc. Table 2.2 shows possible medical complications of obesity (19). 

 

 
Table 2.2: Medical complications of obesity 
A Metabolic 
Diabetes mellitus, type II 
Hypertriglyeridemia 
Hypercholesterolemia 
Hypertension 
Fatty liver disease 
Pancreatis 
Central sleep apnea 
Reproductive dysfunction 
B Anatomic/structural 
Obstructive sleep apnea 
Gastroesophageal reflux disease (GERD) 
GERD-associated asthma 
Deep venous thrombosis 
Pulmonary embolism 
Decubitus ulcers 
C Degenerative 
Atherosclerotic cardiovascular disease 
Complications of diabetes (neurologic, ophthalmologic, renal) 
Hear failure 
Degenerative joint disease 
Vertebral disc disease 
D Neoplastic 
Carcinoma (breast, ovarian, endometrial, prostate, colorectal, gallbladder, pancreatic, esophageal, 
renal) 
E Psychological 
Anxiety disorders 
Depression 
Binge eating disorder 
 

 

2.3. What causes obesity? 
 

Despite the rapid increase in knowledge about the physiological mechanisms 

regulating body weight and energy balance, the causes of human obesity remain 

poorly understood. Human obesity appears to result from a combination of genetic, 

developmental, environmental, and psychological influences (22), as can be seen in 

Figure 2.3 It is likely that different defects or groups of defects in the cortical 

(including psychological), hypothalamic, GI, endocrine, and metabolic components of 

the weight regulatory system are responsible for the development of obesity. 
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 Obesity 

 
Figure 2.3: Influences on the development of human obesity 
 

 

2.3.1. Genetic factors 

Several lines of epidemiological evidence suggest that genetic factors account for up 

to 80% of a person`s predisposition to develop obesity (22). Evidence for a strong 

genetic contribution to human obesity comes from a variety of sources including twin 

and family studies, and animal studies (1, 22). However, the dramatically escalating 

rate of obesity documented in recent years has occurred in a relatively constant gene 

pool. Therefore together with a genetic predisposition abetting environmental factors 

seem to play a dominant role. 

Most of the previously existing mutations in mouse obesity genes have now been 

cloned, and several homologous mutations have been discovered as rare causes of 

human obesity. As an example, in 1994 Zhang et al (37) discovered a naturally 

occurring mutant, the obese (ob/ob) mouse (Figure 2.4). They discovered that this 

mouse has a mutation in the gene encoding for leptin, so that it is unable to produce 

any of this protein. As a result, these animals are stimulated to excessive food intake 

and profound energy conservation, leading to severe obesity. Although a few human 

individuals with severe obesity have been shown to lack leptin, nearly all obese 

individuals exhibit an excess of circulating leptin in direct proportion to their BMI (13). 
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Thus human obesity appears to result from functional resistance to the effects of 

leptin, much as type II diabetes results, in part, from resistance to the physiological 

effects of insulin. Not surprisingly, early clinical trials have shown little effect of leptin 

in substantially decreasing body weight in the large majority of obese individuals. The 

precise mechanism of leptin resistance in human obesity are currently unknown (10, 

11). The high plasma levels of leptin in obese only reflect one phenotypical character 

of obesity, but the causes are unknown. 

 

 

 
Figure 2.4: Obese mouse with leptin deficiency 
 

 

2.3.2. Eating behaviour 

Although genetic mechanisms strongly influence the regulation of body weight, the 

important role of the environment has been clearly demonstrated. During the past 

generation, the prevalence of obesity has doubled in the adult population and more 

than doubled in children and adolescents. Because our genes have not changed 

substantially during the past two decades, these dramatic changes underscore the 

influence of environmental factors on the regulation of body weight and their 

importance to the development of obesity. Several environmental factors have been 

proposed to explain the recent rise in the prevalence of obesity (31, 35). One way in 

which the current environment promotes obesity is by providing more frequent 

opportunities for the consumption of large quantities of food. A variety of highly 

palatable, inexpensive foods is available nearly everywhere. Changing patterns of 
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food consumption (e.g. irregular meals, snacks, rapid eating, “super sizing” of menus) 

and composition could also be potential environmental contributors to obesity. 

 

2.3.3. Physical activity 

Low levels of physical activity are associated with an increased risk of obesity (17), 

and our current environment tends to discourage physical activity. Work and leisure 

time activities are less and less likely to require physical exertion. Increased physical 

activity is, however, perhaps the single best correlate of long-term weight control 

(25). 

 

 

2.4. Treatment of obesity 
 

2.4.1. Treatment options of obesity 

There is a number of strategies of correcting the imbalance between energy intake 

and energy expenditure. Many different diets have been recommended over the past 

150 years, but none of them seems to have a lasting effect. Exercise can be an 

obvious way to increase energy expenditure, but for many people, exercise adds little 

extra weight loss to that produced by a diet program. Medications and surgical 

interventions (e.g. laparoscopic gastric banding or gastric bypass) should only be 

considered for clinically overweight individuals. 

 

2.4.2. Pharmacological treatment of obesity 

Current antiobesity drugs include appetite suppressants that act on the central 

nervous system (serotonin, neuropeptide Y (NPY) and adrenergic receptor ligands), 

and orlistat, which blocks the pancreatic lipase (5, 20, 34, 36). Most of those 

available drugs are only approved for short-term use and their efficacy is limited. To 

date only orlistat and sibutramine are approved for long-term treatment of obesity 

(25). Table 2.3 shows a few substances which represent the different 

pharmacological groups of the current treatment of obesity. 

 

 

 

 

 - 21 -



 Obesity 

Table 2.3: Pharmacological treatment of obesity 
Drug name Brand name (CH) Pharmacological 

action 
Side effects/ 
comments 

Orlistat Xenical® Pancreatic lipase 
inhibitor 

Oily stool, flatulence 

Sibutramine Reductil® Norepinephrine-
serotonin reuptake 
inhibitor 

Raises blood pressure 

Phentermine Adipex® Sympathomimetic 
drugs 

CNS, cardiovascular, 
GI 
Only for short-term use 

 

 

2.4.3. Potential future drugs for the treatment of obesity 

The increasing knowledge of the molecular basis of weight regulation has led to the 

identification of a large number of potential targets for antiobesity drugs (5, 21). 

Table 2.4 shows an overview of potential future peptides for the treatment of obesity. 

The physiological effects of those gut peptides are described in chapter 4. 

 

 
Table 2.4: Antiobesity peptides as potential future drugs and their physiological effects 
Peptide Food intake Gastric emptying Glucose 
Leptin ↓   
GLP-1 ↓ ↓ ↓ 
Exendin-4  
(GLP-1 analogue) ↓ ↓ ↓ 

CCK ↓ ↓  
PYY (3-36) ↓   
 

 

The initial hopes that leptin would provide a therapeutic breakthrough for the 

treatment of human obesity have not materialised because of a suggested leptin 

resistance in obese persons (34). 

In several human studies, GLP-1 infusions 1) reduced fasting and postprandial 

glucose levels, 2) delayed gastric emptying, and 3) induced a reduction in calorie 

consumption (7, 12, 14, 15, 27). Because GLP-1 has only a very short half life (8) 

and a sustained response requires therefore a continuous i.v. infusion, a great 

interest was generated in isolating a more stable GLP-1 which is resistant to 

enzymatic degradation (29). Exendin-4 is a 39-amino acid peptide isolated from Gila 

monster (type of lizard) salivary gland, which acts as an agonist of the GLP-1 

receptor (8, 29, 30). The pharmacological findings of exendin-4 are consistent with 
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those previously found with GLP-1. The preliminary results suggest that exendin-4 

may have a role in the treatment of obese patients with type 2 diabetes (8, 9). 

CCK reduces food intake in human beings and in experimental animals (5). It is 

possible that CCK agonists might be useful in the treatment of obesity. Peptide 

analogues have been developed, but clinical data have not yet been published. 

PYY (3-36) reduces food intake in several studies, in animals and humans when 

administered systemically (3, 4) although not all studies have documented an 

anorectic effect (33). While obese individuals are known to have leptin resistance, 

they do not appear to be resistant to the anorectic effects of PYY (3). Limiting factors 

for therapeutic use of PYY (3-36) could be the short half life and the narrow 

therapeutic range (6). 

None of the mentioned molecules can be taken orally, as they are peptides. 

Therefore it would be of special interest to find a non-invasive application-form for 

these peptides to substitute for the daily injections. A US pharmaceutical company 

has already finished three Phase I trials with PYY (3-36) in form of an intranasal 

application (28). 
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Chapter 3: Control of food intake 
 

The obesity epidemic continues unabated, bringing with it a series of serious 

complications such as diabetes, coronary heart disease, and cancer (see chapter 2). 

The WHO has described obesity as the greatest threat to human health, and 

therefore it has never been so important to understand the control of appetite. The 

regulation of energy homeostasis is complex and integrates neurobiology, 

endocrinology and metabolism. 

 

The present thesis mainly concentrates on endocrinology and deals with factors 

which influence the termination of a meal (satiation). The following introduction gives 

a general review on the process of satiation. 

 

 

3.1. The meaning of satiation 
 

Appetite as well as satiating processes can be considered as an interplay between 

biological, behavioural and environmental influences. All living organisms require 

food for growth and maintenance of tissues. Stability of body weight and body 

composition is controlled by regulatory systems, which on one hand strongly defend 

against undernutrition and on the other hand protect against overnutrition. To better 

understand the biological and physiological processes that stimulate and inhibit food 

consumption, a number of general terms need to be defined. The biological drive that 

impels individuals to search for food is hunger. The feeling of hunger is an important 

component in determining what, how much, and when to eat (3). When food 

consumption reduces hunger, physiological processes are stimulated to inhibit further 

eating; this process of feeling full and consequently terminating food consumption 

during the course of eating is termed satiation (intrameal satiety). Satiation develops 

during a meal and tends to bring the period of eating to an end. Satiation, therefore, 

reduces hunger and limits the amount of energy consumed during that meal (3). 

Satiety (intermeal satiety), on the other hand, develops after food has been ingested. 

It is the state of satiety that delays the onset of the next meal and may reduce food 

consumption at the next eating occasion (3). 
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Appetite and satiation are complex phenomenons arising from a sequence of 

interactions among peripheral and central mechanisms. The GI tract contains chemo- 

and mechanoreceptors that transmit the information about its nutrient content to the 

brain, mainly via peripheral nerves (vagus afferent fibres) (17), but also via the blood 

through receptors within the brain itself (34). Signals of appetite or satiation may arise 

from peripheral or central mechanisms. The overall process of food intake control is 

governed by a series of complex mechanisms. Not only are the macronutrient 

composition, the size, and the caloric density of the meals important, but also their 

organoleptic properties (sight, smell, taste and texture) play a role in the termination 

of satiation. The amount of energy ingested over 24 hours depends on the size of 

individual meals and the frequency with which meals are ingested. 

 

 

3.2. Development of research on satiation 
 

The understanding of the physiological regulation of food intake has advanced 

rapidly, because new and more refined techniques and measurement have been 

developed. Advances in the physiology of human feeding have arisen from two major 

routes. First, the role of organ function has been investigated by studying how food 

intake is affected by pharmacological agents available for human use, and by 

improvements in the techniques available for direct measurement and manipulation 

of organ function. Second, advances in the techniques of measurement of the 

feeding process itself have led to a better understanding of the underlying factors and 

of the impact of external factors (e.g. diet composition) (8). 

 

The conviction that the GI tract controls appetite for food is rooted in antiquity. 

Perhaps, the earliest account of satiation was mentioned by Plato. The situation has 

changed markedly in the last two centuries, during which time satiation has received 

quite a lot of attention. Much of this attention has been focused on the role of the GI 

tract. Compelling experimental evidence for GI involvement in satiation has been 

shown in the mid- to late 1800s. Human case reports indicated that people with 

gastric or intestinal fistulas remained hungry when most of the food they ate drained 

from the upper GI tract (21). In 1895, Shumova-Simonovskia and Pavlov reported 

that dogs with experimental esophageal fistulas ate continuously, suggesting that 
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stimuli for satiation were absent or attenuated (21). In 1902, only a few years later, 

Bayliss and Starling coined the term “hormone” when they isolated secretin from 

duodenal mucosa and observed that it stimulated pancreatic exocrine secretion. 

Some of the earliest experimental attempts to link the GI tract with control of food 

intake were undertaken in 1912 by W.B. Cannon and his student Washburn. Cannon 

and Washburn recorded and correlated the strength of gastric contractions with 

conscious sensations that Cannon termed “hunger pangs” (Figure 3.1). While 

Cannon`s efforts focused on the role of the GI tract in the sensation of hunger, the 

desire to seek and eat food, he was acutely aware of the process of satiation. Due to 

his experiments Cannon stated that satiation must, at least in part, derive from GI 

signals. Investigations of food intake by modern behavioural scientists still apply the 

basic principles illustrated by Cannon over 90 years ago, coupling objective 

measures of gastric function with reports of sensations (e.g. fullness, discomfort) and 

the additional behavioural measure of food intake. 

 

 

 
Figure 3.1: Experiment by W.B. Cannon in 1912 
 

 

In the following decades, especially after the discoveries of gastrin and CCK, it was 

generally accepted that digestive processes were mainly regulated by hormones. 

However, it was not until the 1970s that significant progress in GI endocrinology 

occurred, with over 40 novel hormones being discovered (30). During the following 

years the important finding came up that many GI hormones are also expressed in 
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the CNS and that many of them are relevant signals which transfer information 

between the GI tract and the brain (30). Looking back it seems to be strange that 

investigators have tended for decades to adopt an “all-or-nothing” approach to 

explain the regulation of the various digestive functions. Today it is accepted that 

digestive processes are regulated through an interplay of multiple neural and 

hormonal pathways (6). 

 

 

3.3. Central signals involved in the regulation of satiation 
 

Although much of the research on the control of food intake has been carried out in 

animals, parallels of these models could be shown in humans. Metabolism or energy 

balance is primarily regulated by the CNS, which uses a wide range of humoral and 

neural signals to sense the metabolic status and control energy intake. Appetite 

control is dependent on the peripheral physiology and the signals from metabolic 

processes which are transmitted to the brain. The general mechanism for appetite 

control involves the intake of food followed by the release of peptides from the GI 

tract, which then act as hormones or trigger visceral feedback signals to the brain. 

Hormones such as leptin, insulin or ghrelin pass through the blood-brain barrier 

(BBB) via the arcuate nucleus (ARC) to other hypothalamic areas which control 

energy balance, like the paraventricular nucleus (PVN). The visceral feedback 

signals include gastric distension or the release of CCK and are transmitted by 

afferent fibers of the vagal nerve via the nucleus tractus solitarius (NTS) to 

hypothalamic nuclei. Figure 3.2 shows the central anatomical sites involved in energy 

homeostasis in the lateral view and the transmission of peripheral signals to the brain 

(27). 
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Figure 3.2: Pathways by which satiety and adiposity signals interact with central anatomical sites 
involved in energy homeostasis; by Schwartz et al (27). AgRP, agouti-related peptide; ARC, arcuate 
nucleus; LHA, lateral hypothalamus area; NPY, neuropeptide Y; NTS, nucleus tractus solitarius; PFA, 
periformal area; POMC, pro-opiomelanocortin; PVN, paraventricular nucleus; SNS, sympathetic 
nervous system 
 

 

The ARC occupies almost half of the length of the hypothalamus and contains 

several functionally different populations of neurons. These include one that 

expresses the appetite-stimulating neuropeptides NPY (14, 19) and agouti-related 

peptide (AgRP). NPY is a 36 amino acid neuropeptide and a member of the 

pancreatic polypeptide (PP) family. Axons from these neurons in the ARC project to 

several other hypothalamic nuclei, including the PVN, a key brain area mediating a 

potent effect of NPY to stimulate feeding (29). NPY is one of the most potent 

appetite-stimulating agents known. A single intracerebroventricular (ICV) injection 

acutely stimulates feeding in rodents (11). Daily injection of NPY into the 

hypothalamic PVN not only causes sustained hyperphagia and weight gain (14, 18, 

29), but also metabolic actions that favour fat deposition. 
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Although there are many peripheral signals that can contribute to feeding behaviour 

and body weight regulation, it is important to recognize that so-called short-term and 

long-term signals regulate food intake and energy balance through different, but also 

interacting mechanisms (10). 

 

 

3.4. Short-term regulation of food intake 
 

In the present thesis the focus is above all laid on short-term signals triggering 

satiation. More in detail, signals which are stimulated in the GI tract. Particularly, the 

influence of fat and protein as short-term satiation signals will be addressed (see 

Chapter 5). 

 

In adult animals and humans, body weight tends to remain within a relatively narrow 

range, despite large day-to-day fluctuations in the amount of food consumed. Some 

peripheral so-called short-term signals, e.g. nutrients and GI hormones, are meal-

related and act primarily as determinants of satiation to limit the size of a single meal. 

These short-term signals have a different function than the long-term regulators of 

energy homeostasis that are activated in proportion to both body adipose stores and 

to the amount of energy consumed over a more prolonged period of time. Short-term 

signals are not primary determinants of body adiposity, since they can be overridden 

by long-term regulatory signals. Food intake and energy expenditure are influenced 

over the short term by input from a variety of situational and meal-related factors 

such as physiological, metabolic and GI signals (resulting e.g. from gastric 

distension, or the release of peptides from the GI tract in response to nutrient 

ingestion), emotional factors, palatability and nutrient content of food (31). Figure 3.3 

shows the origin of short-term satiety signals. 
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Figure 3.3: Peripheral and central physiological signals which influence the human appetite system 
 

Satiation factors are molecules responsible for short-term feeding control that provide 

information to the brain to inhibit feeding. They lead to meal termination, acting 

centrally via peripheral nerves or via the circulatory system (34). The most important 

peptides produced by the digestive tract are described in chapter “Gastrointestinal 

signals triggering satiation”. Figure 3.4 (10) is an overview on short-term signals 

regulating food intake. 

 

 
Figure 3.4: Short-term signals regulating food intake; by Havel (10) 
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3.5. Long-term regulation of food intake 
 

Long-term hormonal signals (see overview in Figure 3.5) not only influence signalling 

by central effector pathways to favour a particular change in energy balance, but they 

also modulate the sensitivity of the brain to afferent inputs generated in response to 

short-term factors. During weight-loss for example, a reduced concentration of long-

term adiposity signals is proposed to 1) diminish the efficacy of satiety-inducing 

inputs, 2) suppress catabolic effector pathways, and 3) activate anabolic effector 

pathways. These responses to weight loss are proposed to stimulate feeding and to 

reduce energy expenditure, thereby ensuring the recovery of depleted fuel stores 

(13). The hormones insulin and leptin are the two most important long-term 

regulators of food intake and energy balance. Both insulin and leptin are secreted in 

proportion to body adiposity and act in the CNS to inhibit food intake and to increase 

energy expenditure, most likely by activating the sympathetic nervous system. In 

contrast with short-term inputs, insulin and leptin exert effects in the CNS that are 

slow in onset and offset (hours to days), with an effect that is sustained over long 

intervals (22). 

 

3.5.1. Insulin 

The active form of insulin consists of two amino acid sequences, an α-chain with 21 

amino acids and a β-chain with 30 amino acids, and has a molecular weight of 6-kDa. 

Insulin was first proposed by Woods and colleagues (33) in the early 1970s to be a 

long-term regulator of food intake, energy balance, and body adiposity. Since that 

time, much additional evidence has been generated in support of this hypothesis (23, 

32). Insulin is secreted from islet β cells of the endocrine pancreas and is a well-

characterized adiposity signal. It circulates at levels proportional to fat mass and its 

concentrations are increased after food ingestion, specifically by glucose and amino 

acids. Insulin reaches the CNS via receptor-mediated transport across the BBB. CNS 

administration of insulin to rodents, either into the third ventricle or directly into the 

hypothalamus, causes a reduction in food intake (2). Insulin, like leptin, has been 

shown to inhibit arcuate nucleus NPY expression and NPY stimulation of food intake 

(25, 26). There is much evidence that insulin acts as a satiety factor on the brain in a 

manner similar to leptin. 
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3.5.2. Leptin 

The ob-gene product leptin is a 164-kDa protein. Leptin is mainly produced in 

adipose tissue and is secreted into the bloodstream. It circulates at concentrations 

proportional to body fat mass in rodents (7, 15) and humans (4, 5, 12, 15, 16, 28). 

Leptin can rapidly cross the BBB and appears to be transported into the CNS by a 

saturable receptor-mediated process (1). Consistent with the hypothesis that 

changes in fat mass are transmitted to the CNS by changes in leptin concentrations, 

plasma leptin concentrations decrease after weight loss (4, 15) and are strongly 

correlated with leptin concentrations in cerebrospinal fluid (24). Leptin secretion in 

adults displays a prominent circadian rhythm and is not affected by individual meals 

(28). In obese, serum leptin is elevated (15). 

Central and peripheral administration of leptin in rodents causes a profound decrease 

in food intake and weight loss (9). However, it is the central ICV route that is the more 

potent, suggesting that leptin`s actions are mediated mainly through the 

hypothalamus (20). 

 

 
Figure 3.5: Long-term signals regulating food intake; by Havel (10) 
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Chapter 4: Gastrointestinal signals triggering satiation 
 

GI factors, which are involved in the short-term regulation of food intake and trigger 

satiation, include gastric distension, exposure of small-intestine receptors to 

nutrients, and GI hormones. Figure 4.1 shows the anatomy of the human GI tract with 

some of the organs, where peripheral satiety signals are generated. 

 

 

 
Figure 4.1: Anatomy of the human GI tract 
 

 

4.1. Stomach distension 
 

It is obvious that the stomach (Figure 4.2) has an important role in the regulation of 

food intake, yet the mechanisms are only partly understood. Best appreciated are 

mechanisms related to mechanoreceptors involved in the reservoir and propulsive 

functions of the stomach, where distension is the adequate stimulus influencing all 

types of motility. The stomach is extensively innervated by afferent and efferent fibers 

of the vagus nerve. 
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Figure 4.2: Anatomy of the stomach 
 

 

4.1.1. Stomach and satiation 

Animal studies support the concept that the stomach is involved in the termination of 

a meal (104). In rats, stomach distension decreases the vagal firing rate and there is 

evidence that vagotomy blocks the satiating effect of stomach distension (119) 

supporting the hypothesis that the vagus plays an important role in peripheral 

signaling of satiety. In humans gastric distension causes a feeling of satiety (12, 15, 

67) and reduces food intake in young and obese subjects (37, 40). The role of 

stomach distension in satiety and food intake in humans is supported by a series of 

studies of Geliebter et al (38-40) and Geliebter (37). In one of the earliest of these 

studies, Geliebter showed that a gastric balloon with a volume > 400 ml reduced food 

intake. Intragastric balloons may reduce food intake, but the effect is very short 

lasting (123). In animals (97) and humans (129) the stomach can sense both nutrient 

quality and quantity; this information is used to alter the rate of gastric emptying and 

the amount of food ingested. 

 

4.1.2. Site of gastric distension and satiation 

Mechanical properties and neural innervation vary in different regions of the stomach 

(66), and it is uncertain whether the site of gastric distension (fundus or antrum) is 

important in mediating satiation (72, 125). In young subjects, distension of the 

proximal stomach with the use of a barostat (Figures 4.3) increases the perception of 

fullness (28, 57), but effects on food intake have not been evaluated. Observations in 

young subjects using ultrasound-technique established that the perception of 

postprandial fullness is closely related to antral content or area and not to the content 
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of the proximal stomach (68, 72, 125). In several studies of Sturm et al (131, 132) 

healthy young volunteers consumed oral preloads before a subsequent meal. By 

measuring antral area with an ultrasound machine, energy intake and satiety were 

both inversely related to antral area. Hence, antral rather than proximal gastric 

distension might be the dominant intragastric mechanism in the induction of appetite-

related sensations. It remains unclear, if and to what extent the mechanical induced 

afferent signals of gastric fundus and antrum distension can alter food intake. 

 

   
Figure 4.3: Distension of the fundus or the antrum by a balloon of the barostat 
 

 

4.1.3. Gastric chemoreceptors 

Although less well characterised, gastric chemoreceptors have a fundamental role in 

all aspects of gastric physiology involved in appetite regulation. For example, 

noncaloric liquid saline empties exponentially from the stomach, whereas nutrients 

empty rapidly during the first few minutes and afterwards at a steady linear rate until 

the stomach is completely empty. There is evidence that the pylorus detects the 

energy content of the food: a fixed number of calories empties into the duodenum per 

unit of time, regardless of the composition of the food (96). On the other hand, a 

study of our own group led to the suggestion that the stomach could sense the 

nutrient composition of an oral preload. Preloads with differing contents (protein vs. 

carbohydrate vs. water) had variable effects on appetite perception and food intake 

(21, 95). 
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4.1.4. Gastric hormones and appetite regulation 

As far as gastric hormones are concerned, gastrin-releasing peptide (GRP) and 

somatostatin are released from the antrum of the stomach. These two peptides have 

been shown to have satiating effects in laboratory animals and humans (48, 88). It is 

not clear whether those effects are systemic or local. A few years ago leptin has been 

found in rodent and human gastric mucosa (6), although it is not clear whether this 

has any implications for food intake. On the other hand, ghrelin is abundantly 

synthesized in the fundus of the human stomach (5) and is one of the first hormones 

that has a stimulating effect on appetite (18). It seems to work both in the short-term 

as well as in the long-term regulation of food intake (18). 

Under normal conditions, meal termination likely results from a combination of gastric 

and postgastric signals. 

 

 

4.2. Gut peptides 
 

The distal intestine plays an important role in the control of GI function. The anatomy 

of the intestine is shown in Figure 4.4. 

 

 
Figure 4.4: Anatomy of the small and the large intestine 
 

 

In 1973 Gibbs et al (42) reported that intraperitoneal injection of the intestinal peptide 

hormone CCK reduces meal size in rats, marking the start of the “peptide revolution” 

in the study of the control of food intake. To date, many peptide hormones released 

by the gut have been shown to decrease food intake. Many of those peptides are 
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ubiquitous and multifunctional with considerable redundancy and overlap. The ones 

which are relevant for the present thesis are described in the following chapter. 

Figure 4.5 shows hormones, which are produced by the gut and which are known to 

alter food intake and body weight. 

 

 
Figure 4.5: Hormones produced by the gut. Those shown in bold are known to alter food intake and 
body weight; by Druce et al. (22). 
 

There are several criteria in classical endocrinology to establish a physiological 

endocrine action of a given molecule (Table 4.1). Many of the following described 

gut-peptides have not been established yet and require further research. 

 

 
Table 4.1: Criteria for the identification of physiological effects of a hormone or neurotransmitter on 
eating; by Geary (36). 
Secretion Hormone secretion is associated with a change 

in eating 
Receptors Binding receptors for the hormone are expressed 

at its site of action 
Physiological dose i.v. infusions of the hormone reproduce the 

physiological patterns of the endogenous 
hormone according secretion and effect on 
eating 

Removal and replacement 1) Removal of the hormone or the receptors 
mediating the eating effect should prevent this 
effect (“Knockout”) 
2) When the hormone has been eliminated, i.v. 
replacement of this hormone at physiological 
doses should normalize the effect 

Antagonism i.v. infusion of a selective and potent antagonist 
to the hormone should prevent the effect of the 
endogenous or exogenously given hormone and 
evoke the opposite effect 
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4.2.1. Cholecystokinin (CCK) 

 

4.2.1.1. Physiology of CCK 

CCK is found in the brain and the GI tract and has a number of regulatory functions, 

both centrally and peripherally (103). In the brain, CCK acts as a neurotransmitter; it 

is present in high but variable concentrations. In the periphery, CCK is widely 

distributed throughout the GI tract, but is most concentrated in the endocrine I-cells of 

the duodenum and the jejunum (13, 128) and in enteric nerves (128). CCK has a 

number of physiological GI functions, including triggering satiation, inhibition of 

gastric emptying, stimulation of pancreatic secretion, gallbladder contraction and 

intestinal motility. 

CCK exists in several bioactive molecular forms ranging from 8 to 58 amino acid 

residues. All forms of CCK have retained the bioactive C-terminal portion, and the 

molecular forms CCK-8, -33 and –58 have all been shown to have biological effects 

in association with food intake (58, 85, 141). 

The receptors for CCK have been subdivided into CCK-A for “alimentary type” (new 

nomenclature: CCK1) and CCK-B for “brain type” (CCK2) (93, 143). CCK-A receptors 

were found mainly in the periphery, but also in some areas of the brain. In the GI tract 

CCK-A receptors have been found in the pancreas, gallbladder, lower esophageal 

sphincter, stomach, ileum and colon (140, 142). CCK-B receptors have been 

identified mainly in the brain, but also in the stomach. 

 

4.2.1.2. Nutrients and CCK release 

After food intake, CCK is released into the bloodstream from the endocrine I-cells of 

the duodenum and the jejunum. CCK is released in the blood as a function of the 

presence of fat (long-chain free fatty acids) or protein (amino acids) in the duodenum, 

where CCK has an effect on receptors of the nervus vagus (20). The nervus vagus 

transports the signal to the nucleus tractus solitarius in the brainstem and from there 

to the CNS (54). CCK levels gradually increase to a maximum 10-45 minutes 

following the start of a meal, then gradually decline, but remain elevated up to 3-5 

hours after eating (85). 

 

 - 43 -



 Gastrointestinal signals triggering satiation 

4.2.1.3. CCK and satiation 

The most widely investigated gut hormone in relation to appetite is CCK. In their 

classic paper in 1973, Gibbs, Young and Smith (42) demonstrated the ability of 

exogenously administered CCK to inhibit food intake in rats. From these results the 

feeding inhibitory action of exogenously administered CCK was proposed to mimick a 

physiological hormonal action of the endogenous peptide. This initial report has 

stimulated over 30 years of research aimed at demonstrating a physiological role for 

CCK in the control of food intake and at understanding the mechanisms of action 

through which CCK produces satiety. 

Studies in humans have repeatedly shown that exogenous CCK inhibits food intake 

(7, 79). The first report of the appetite-suppressing effect of CCK in humans is a 

study by Kissileff et al (79) showing that exogenous, peripheral (i.v.) administration of 

high nonphysiological doses of CCK suppressed food intake in a test meal in humans 

by 19%. Since that study, many studies to examine the effect of CCK on appetite in 

humans have been conducted (7, 11, 14, 18, 49, 86, 87, 89, 92, 106, 107, 118). 

In 1985 Welch and colleagues (144) observed in humans that infusion of lipids into 

the distal small intestine reduced food intake. They suggested that fat in the small 

intestine acts as a signal for short-term control of food intake, most likely via release 

of endogenous CCK. An i.v. infusion of a similar lipid emulsion had no effect on 

eating. Further experiments by Welch et al with lipid perfusion to the small intestine 

caused a decrease in food consumption, early satiety and a delay in gastric emptying 

(145, 146) These effects were paralleled by an increase in plasma CCK 

concentrations. Those observations formed the basis for the hypothesis that fat acts 

as a pre-absorptive signal to regulate food intake and that this effect is mediated by 

the release of endogenous CCK. CCK release depends on adequate fat hydrolysis 

(63); finally, only free fatty acids > 12 carbons are able to stimulate CCK release (94, 

98). Along the same lines of investigations, our group recently reported that long 

chain fatty acids are crucial for the secretion of CCK (94). 

On the basis of several studies in animals and humans it has been proposed that the 

increased gastric distension induced by slowing of gastric emptying may be one of 

the mechanisms by which CCK reduces food intake. The effect of CCK on food 

intake was shown to be an interaction of various factors: the satiating effect of a 

CCK-8 infusion in healthy volunteers was enhanced by gastric distension with liquid 

oral preloads or gastric balloon distension (78, 95, 100, 106, 107). Along these lines 
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of investigations results of a study conducted by our research group (49) led to the 

conclusion that the synergistic interaction between CCK-8 and an oral preload could 

be mediated by peripheral CCK-A receptors. 

 

4.2.1.4. Antagonists of CCK 

The availability of potent and selective CCK-A receptor antagonists has made it 

possible to further characterise the effect of endogenous CCK on satiety in humans. 

To test the hypothesis that CCK is mediating the effects of ID long chain fatty acids 

via endogenous CCK release and through CCK-A receptors, another series of 

studies with loxiglumide (LOX) was performed by our group (11). LOX is a potent and 

selective CCK-A receptor antagonist (60-62, 102). ID perfusion of long chain fatty 

acids significantly reduced food consumption and calorie intake. Concomitant i.v. 

infusion of the CCK-A receptor antagonist LOX completely abolished the satiation 

effects of ID long chain fatty acids (11). 

 

 

4.2.2. Peptide tyrosine-tyrosine (PYY) (3-36) 

 

4.2.2.1. Physiology of PYY 

Peptide tyrosine-tyrosine or PYY is a 36-amino-acid GI hormone and belongs to the 

NPY family together with NPY and PP. The L-cells are the major source of PYY, with 

highest levels found in the rectum, followed by the ileum and colon (2, 25). The same 

cells synthesize and release GLP-1. There are two main endogenous forms of PYY: 

PYY (1-36) and PYY (3-36) (44). PYY is secreted as PYY (1-36) and is then 

degraded to PYY (3-36) by dipeptidyl peptidase IV (DPP-IV) (43, 101). Receptors 

that mediate the effects of PYY include Y1, Y2, Y3, Y4, and Y5 (8). PYY (3-36) is a 

Y2 receptor agonist in the hypothalamus and inhibits the release of NPY. PYY 

plasma levels are low in obesity, suggesting that PYY could be involved in the 

pathogenesis of this disease (9). 

 

4.2.2.2. Nutrients and PYY release 

After a meal, PYY (3-36) is the major circulating form (43). Following ingestion of 

food, plasma levels increase within 15 min, reach a peak at approximately 90 min, 

and then remain elevated for up to 6 hours (2). These levels are influenced not only 
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by calorie intake but also by meal composition. Higher levels are seen following fatty 

meals compared with meals containing high protein or carbohydrate (90). The 

increase of plasma PYY occurs even before nutrients have reached the distal parts of 

the GI tract, where PYY is produced. This suggests a neuronal (probably through the 

vagus nerve) (32) or endocrine mechanism. 

 

4.2.2.3. PYY and satiation 

The effects of PYY (3-36) on appetite have only recently been discovered (9, 10). 

Peripheral administration of PYY (3-36) has been shown to acutely inhibit food intake 

in rodents by several groups (10, 16, 53). Batterham et al (10) have shown that 

chronic peripheral injections of PYY (3-36) reduce food intake and body weight gain 

in rodents. Furthermore, direct intra-arcuate injections of the peptide decreases food 

intake in rodents (10), which leads to the suggestion that peripheral PYY (3-36) 

inhibits food intake by acting through Y2 receptors in the hypothalamic ARC. 

However, the results of pharmacological experiments regarding PYY (3-36) as a 

satiety signal are controversial. First, the results of Batterham et al (10) on food 

intake after exogenous administration of PYY (3-36) in rodents, could not been 

replicated by Tschöp et al (136). Second, several reports indicate that PYY is an 

orexigenic peptide (17, 51, 52, 71, 105, 108), with feeding stimulatory properties 

superior to those of NPY. This is particularly the case when PYY is administered 

directly into the cerebral ventricles (51). In contrast, the anorectic effects of  

PYY (3-36) (administered peripherally), which have already been shown in rodents, 

have been effectively reproduced in humans. When given intravenously to both 

normal weight and obese volunteers, PYY (3-36) reduced food intake by more than 

30% (9, 10). Because of the controversial study results and the limited human data, it 

has to be proofed in further studies, if PYY (3-36) really is a physiological satiety 

factor. 

 

 

4.2.3. Glucagon-like peptide-1 (GLP-1) 

 

4.2.3.1. Physiology of GLP-1 

The proglucagon gene encodes two glucagon-like peptides, GLP-1 and GLP-2, that 

exhibit approximately 50% amino acid identity to pancreatic glucagon (23, 24, 76). 
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GLP-1 is released from enteroendocrine L-cells from the distal gut in response to 

food intake (46, 59, 113). The GLP-1 receptor is known to exist as a single receptor 

type in the brain, lung, stomach, skeletal muscle and adipose tissue (3, 82, 127, 139). 

Physiologically GLP-1 regulates postprandial blood glucose levels by enhancing 

insulin secretion and suppressing glucagon secretion after a meal (81, 117); 

furthermore it inhibits gastric emptying (110, 147). Like PYY (3-36), GLP-1 is believed 

to play an important role as one of the hormones of the “ileal brake mechanism” (24, 

64), an endocrine feedback mechanism that is activated by the presence of nutrients 

in the ileal lumen. This feedback mechanism results in inhibition of gastric emptying 

(91), decreased intestinal motility and transit (130), decreased pancreatic secretion 

(83) and inhibition of food intake (144). There is evidence that the effects of GLP-1 

on gastric functions are mediated via the vagus nerve, both in animals and humans 

(70, 148, 149). 

Following an initial nutrient-stimulated rise in circulating levels of GLP-1, the levels of 

the bioactive form of this peptide fall rapidly, largely due to renal clearance and 

degradation by DPP-IV (19, 77). The biologically active form of GLP-1, GLP-1 (7-36 

amide), is degraded by the peptidase to the inactive form GLP-1 (9-36) (77). GLP-1 

has a short half-life of a few minutes (55). The plasma increase of GLP-1 has been 

shown to be attenuated after a meal in obese persons (111, 120, 121). 

 

4.2.3.2. Nutrients and GLP-1 release 

GLP-1 is mainly stimulated by carbohydrates (65, 122) and to a lesser degree by 

other macronutrients. Oral glucose is a stimulus for GLP-1 release, whereas 

intravenously applied glucose has no effect on endogenous GLP-1. 

Feinle and coworkers (27, 29) have suggested that GLP-1 plasma levels rise after ID 

fat, but these findings could not be confirmed in the present thesis. Others have not 

found a substantial increase in plasma GLP-1 release after intestinal fat (122). 

 

4.2.3.3. GLP-1 and satiation 

GLP-1 has been proposed as playing a physiological regulatory role in controlling 

appetite and energy intake in humans (30, 50) as well as in animals (134, 138). 

Several reports have demonstrated that an intracerebroventricular injection of GLP-1 

in rats inhibits food intake (126, 138). Central administration of the GLP-1 agonist 

exendin-4 increases feeding in rats (138). No effect was seen after intraperitoneal 
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injections of GLP-1 in rats (138) suggesting a central mode of action for GLP-1. 

However, this loss of effect after peripheral application could also be explained by the 

rapid degradation of the peptide, particularly in rats (77). 

In humans, studies have shown that GLP-1 increases satiety and decreases food 

intake in normal weight (30, 31, 50), diabetic (47, 135) and obese subjects (109, 

112). In these studies, GLP-1 was administered by either i.v. or subcutaneous (s.c.) 

infusions. Two possible explanations for the effect of peripherally secreted or injected 

GLP-1 on central nervous regulation of food intake in humans are shown in  

Figure 4.6. 

Taken these findings together, the data indicate that GLP-1 acts as a physiological 

regulator of food intake. However, since GLP-1 is produced both in the periphery and 

in hypothalamic neurons, the extent to which GLP-1 from each of these sources 

participates in the physiological regulation of feeding behaviour is unclear. 

 

 

 
Figure 4.6: Two possible explanations for the effect of peripherally secreted or injected GLP-1 on 
central nervous regulation of feeding: A) indirect effects on fullness and satiety via distension of the 
stomach induced by delayed gastric emptying; B) direct effects on GLP-1 receptors in the CNS with 
afferent projections to the hypothalamus; by Meier et al (99). 
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4.2.4. Apolipoprotein A-IV (Apo A-IV) 

 

4.2.4.1. Physiology of Apo A-IV 

The role of apo A-IV was discovered about 27 years ago (133), but its physiological 

role was not firmly established until recently. Apo A-IV is a 46kDa glycoprotein 

secreted only by the small intestine in humans (4, 45). Its synthesis is higher in the 

jejunum than in the ileum (1). Apo A-IV is a major component of intestinal 

triacylglycerol-rich lipoproteins (chylomicrons, very low density lipoproteins (VLDL)) 

(45, 69, 114, 133). In response to a lipid-containing meal, apo A-IV is secreted into 

intestinal lymph on chylomicrons (45, 69, 114, 133). With regard to the stimulation of 

intestinal apo A-IV by dietary lipid, several lines of evidence support the hypothesis 

that assembly and transport of chylomicrons is necessary for the apo A-IV response 

to dietary lipid. This evidence is supported by studies in rats in which intestinal 

synthesis and lymphatic secretion of apo A-IV in response to intestinal infusion of 

fatty acids differing in chain length (and therefore different routes of transport from 

the intestine) was examined. Infusion of long-chain fatty acids, which are transported 

via the lymph on chylomicrons, stimulates synthesis and output of apo A-IV, whereas 

medium- and short-chain fatty acids, primarily transported as free fatty acids in the 

portal vein, elicited a negligible apo A-IV response (74). 

During plasma passage and metabolism of chylomicrons, apo A-IV dissociates from 

this lipoprotein. About 25% is then found circulating in the density range of high 

density lipoproteins; the rest is found in the lipoprotein-free fraction of plasma (41, 

84). 

Studies in rats could show that ileally infused lipid elicits an increase in proximal 

jejunal apo A-IV synthesis independent of the presence of jejunal lipid. These results 

suggest the existence of a signal, arising from the distal gut, capable of stimulating 

synthesis of apo A-IV in the proximal gut (75). It could be demonstrated both in 

humans and rodents that apo A-IV synthesis and secretion by the small intestine are 

also stimulated by PYY (137) (Figure 4.7). 

The stimulation of intestinal synthesis and the secretion of apo A-IV by lipid 

absorption are rapid (between 15 and 30 minutes). This was associated with 

significant stimulation of lymphatic output and plasma levels of apo A-IV by 30 

minutes after the gastric lipid load (124). Thus apo A-IV likely plays a role in the 

short-term regulation of food intake. Apo A-IV is also a physiological modulator of 
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upper GI function: it inhibits gastric acid secretion (115) and gastric emptying (116) in 

rats. 

 

 

 
Figure 4.7: Proposed pathway for control of apo A-IV by intestinal lipid. Fat in the proximal intestine 
stimulates synthesis and secretion of apo A-IV in a proximal-distal gradient in the intestine, depending 
upon the total lipid load. Fat in the distal gut (ileum, cecum) also stimulates apo A-IV, both in the ileum 
and in the proximal jejunum. This latter effect is independent of the presence of jejunal lipid and is 
presumably mediated by a signal released in response to the presence of lipid in the distal intestine. 
This signal may be PYY, although other gut hormones have not been ruled out; by Kalogeris et al (75). 
 

 

4.2.4.2. Nutrients and Apo A-IV release 

In rats it has been demonstrated that apo A-IV production by the small intestine is 

stimulated by active lipid absorption (4, 56, 73). Hayashi et al (56) demonstrated that 

the stimulation of apo A-IV production by lipid feeding is associated with the 

formation of chylomicrons. In vivo studies (33-35) have provided evidence that  

apo A-IV may be involved in the inhibition of food intake after the ingestion of fat. 

 

4.2.4.3. Apo A-IV and satiation 

I.v. infusion of apo A-IV at doses which reproduce plasma levels seen after a lipid 

meal (33) has been shown to depress feeding in animals (33, 34, 124). In a study of 

Fujimoto et al (35) cerebroventricular administration of apo A-IV decreased feeding in 
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rats in a dose-dependent manner. Because available evidence suggests that de novo 

synthesis of apo A-IV in the brain is unlikely (26), it has been proposed (33, 35) that 

apo A-IV released by the intestine may traverse the BBB and act in the CNS to 

influence feeding behaviour. Although further work is necessary to clarify the precise 

role of apo A-IV in the control of food intake, the available evidence suggests that it 

may act via the CNS. 

 

 

4.3. Summary 
 

It has become apparent, that redundant systems are active in the regulation of food 

intake. For example both CCK and GLP-1 are able to inhibit food intake. CCK-A 

receptor or GLP-1 receptor knockout mice do not affect the nutrient status of the 

animals (80, 138), supporting the hypothesis of redundant systems. These systems 

may replace either peptide when one is absent. However, still little is known about 

those redundant systems, as well as about interactions between different satiety 

signals. 

In Figure 4.8 and Table 4.2 the pathways of the most important satiety signals and 

their origin and effect on food intake are summarized. 
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Figure 4.8: Peripheral satiety signals. This figure shows the source and the connections to the CNS of 
peripheral satiety signals. Fat induced satiety signals are mediated through CCK via peripheral CCK-1 
receptors. CCK also inhibits gastric emptying. Insulin and leptin regulate energy homeostasis and 
body weight. Ghrelin is released from the stomach and induces feelings of hunger via the ARC. PYY 
and GLP-1 are both released from the L-cells, inhibit gastric emptying and induce satiety. Apo A-IV is 
secreted from the small intestine and also inhibits food intake. Gastric distension amplifies satiety 
signals via the NTS. 
 

 
Table 4.2: Origin and effects on food intake of GI satiety peptides 
Peptide Cell Type Physiological 

effect on food 
intake 

Exogenous effect 
on food intake 
(peripherally) 

Exogenous effect 
on food intake 

(centrally) 
CCK I  

(small intestine) ↓ ↓ ↓ 

GLP-1 L  
(small/large 
intestine) 

↓ ↓ ↓ 

PYY(3-36) L  
(small/large 
intestine) 

↓ (?) ↓ ↓/↑ 

Apo A-IV Villus epithelia 
(small intestine) ↓ ↓ ↓ 
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Chapter 5: The role of fat and protein in the process of satiation 
 

As mentioned before powerful satiety signals arise from the GI tract during the 

consumption of a meal. The release of GI peptides is above all triggered by 

orosensory stimulation, gastric distension, and most important, by the stimulation of 

specific chemoreceptors activated by nutrients in the lumen of the small intestine (21, 

22, 53-56). The impact of individual macronutrients on satiety is typically measured in 

experimental studies by using an oral preload design and/or GI perfusion of nutrients. 

In several studies it has been shown that the effects of oral preloads and ID 

perfusions on satiation vary between nutrient classes (i.e. carbohydrates, fat, 

protein). The impact of possible interactions between different nutrients on food 

intake have hardly been explored. 

 

 

5.1. Effect of different macronutrients on satiation 
 

Foods, and more specifically macronutrients, with the same caloric content exert 

different effects on satiation and satiety independent of their caloric value (7, 28). In 

other words, not all calories are treated equally by the body. In a review of Stubbs et 

al of the energy density of foods (calories/g) (47), they noted that under normal 

circumstances in which fat contributes disproportionately to energy density, protein, 

carbohydrate, and fat exert hierarchical effects on satiety in the order of  

protein > carbohydrate > fat; further studies have confirmed these findings (8, 29). 

Although most research has suggested that protein has the most potent action on 

satiety (8, 15, 29, 36), there is less clear consensus regarding the relative satiety 

values of carbohydrates and fats. The relative satiety values of carbohydrates and 

fats tend to vary depending on whether the macronutrients are studied in isolation or 

in foods (9) and the way they are administered. Studies using meal preloads, for 

example, often yield very different results when compared with studies in which 

macronutrients are infused directly into the gut. Research into the relative satiating 

efficiency of fat and carbohydrate reflects the relative abilities of different nutrients to 

suppress hunger, induce fullness and decrease subsequent food intake. Data 

supporting the hypothesis that carbohydrate has a greater physiological satiating 

efficiency than fat were derived from experiments using meal preloads (6, 43, 45, 51). 
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Other studies based on a meal preload design have failed to show any differences in 

the satiating efficiency of carbohydrate and fat (17, 19, 20, 44, 52). Controversial 

results are also observed when orosensory stimulation is eliminated by direct 

perfusion of nutrients into the GI tract. When fat and carbohydrate were administered 

as infusions directly into the stomach (11, 46) or into the small intestine (12), some 

data failed to demonstrate any differences in the short-term effects of fat and 

carbohydrate on hunger, fullness, and energy intake from a test meal. Other studies 

showed that nonobese, young men ate less after ID lipid infusions than after 

equienergetic carbohydrate infusions (1, 13, 14). Thus, to find out the relative 

satiating efficiency of fat and carbohydrate using oral preloads and direct GI infusions 

have produced inconsistent data. Cecil et al (12) hypothesised that reported 

differences in the relative satiating effects of fat and carbohydrate may be related to 

their differential effects on the influence of orosensory mechanisms when given as an 

oral preload. Other explanations could be due to differences in experimental 

methodology or to interindividual different sensitivities of the responses to nutrients. 

 

 

5.2. ID fat and food intake 
 

Administration of fat offers inconsistent effects on food intake in humans (6, 25, 31, 

42, 53) and rats. In rats infusion of fat into the small intestine (26, 41, 49, 57-60) or 

stomach (23, 24, 34, 35) decreases food intake rapidly. It has been suggested that 

satiety from fat is due to a preabsorptive signal, because infusion of lipids into the 

small intestine is associated with suppression of food intake to a much greater extent 

than when fat is given i.v. (53-56). Two decades ago it was observed that lipids 

perfused to the small intestine induced a cascade of events related to the regulation 

of appetite and satiety: Welch et al (53, 56) could show that perfusion of corn oil to 

the jejunum of healthy volunteers induced early satiety and reduced energy intake; 

furthermore jejunal infusions of corn oil decreased hunger feelings. On the basis of 

their work, Welch and coworkers suggested that the effects were caused by CCK 

release (56). Studies from our laboratory (37, 38) have confirmed these findings as 

we could show that a fat perfusion to the duodenum significantly reduced food intake 

compared to an ID saline perfusion. In the same study, it could also be shown that 

the inhibition of food intake in response to intestinal lipid is mediated by CCK. The 
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suggested preabsorptive site of action for the inhibitory effect of fats on short-term 

food intake in humans is supported by the following evidence: 1) i.v. infusion of fat 

has no effect on food intake (53, 56); and 2) when fats are infused into the small 

intestine of rats, food intake is reduced within 10 min of the start of the infusions, but 

radiolabeled fat does not appear in the blood until 30 min after the start of the 

infusions. In later studies it was documented that inhibition of fat hydrolysis through 

the specific lipase inhibitor orlistat abolishes the fat-induced satiety signals from the 

small intestine (37, 38). It was then shown that only long-chain fatty acids are able to 

reduce food intake and stimulate early satiety (Figure 5.1); medium-chain fatty acids 

on the other hand had no effect (37). The satiating effect of long-chain fatty acids is 

mediated by CCK, which binds at CCK-A receptors (5, 38). CCK slows down gastric 

emptying, thereby prolonging postprandial gastric distension. In general nutrients in 

the small intestine also delay the transit of food through the gut, and, therefore the 

time of absorption. 

Nevertheless research in humans has shown conflicting results. Several studies 

which have shown a decrease in food intake in humans after intestinal lipid infusions, 

have administered infusions at a supraphysiological rate. Infusions of fat emulsions 

(50% corn oil) into the ileum and the jejunum at a rate of 4.9 kcal/min for a total of 75 

min reduced food intake from a solid meal presented 30 min after the start of the 

infusion (18, 53, 56). However, when lipid infusions were administered into the small 

intestine at a physiological rate (2 kcal/min) over a period of 420 min, they failed to 

show a reduction of food intake from a self-selection, buffet-style meal presented 10 

min after the infusion had finished (10). 

It is likely that the controversial results of the effects of intestinal nutrient infusion on 

food intake shown in human studies are produced by differences in the 

methodological design. The timing of the test meal in relation to the infusion, the 

amount of energy delivered, the perfusion rate, the duration of perfusion and the 

nature of the test meal are all critical factors in measuring the effects of infusions on 

food intake (10). Effects of ID infusions on reduction of food intake are likely to be a 

combination of the number of kcal infused, the duration of exposure of any one 

segment of duodenum to nutrients, and the length of intestine exposed to nutrients 

(26, 32, 33, 41). 
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Figure 5.1: Triglycerides from an ingested fatty meal are hydrolysed by the lipase to monoglycerides 
and free fatty acids. The generation of long-chain free fatty acids is a crucial step for the stimulation 
and the release of CCK. FFA, free fatty acids; MG, monoglycerides; TG, triglycerides;. by Beglinger et 
al. (4). 
 

 

5.3. Protein and food intake 
 

Compared to the macronutrients carbohydrate and fat quite little is known about the 

effect of protein on eating behavior in humans. However, several short-term studies 

have been done to examine the satiating effect of oral protein preloads in healthy 

human volunteers (16, 27, 30, 36, 39, 40, 43, 48, 50, 52). Thus evidence suggests 

that protein is more satiating than carbohydrate and fat. These various studies 

compared a variety of nutrient preloads, from ingested whole foods to modified 

preloads. Subjects felt less hungry and food intake was decreased after the 

consumption of high-protein compared to high-carbohydrate preloads (3, 24, 40, 50). 

Protein may differ in its effects on appetite depending on the protein source and 

therefore variation in digestion and absorption (27). Ballinger et al. examined the 

effect of amino acids given intraduodenally (2). Subjects consumed significantly less 

calories and CCK plasma levels were increased after the perfusion of  

L-phenylalanine compared to placebo. 
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Chapter 6: Experimental measurement of food intake and human 
eating behaviour 
 

An understanding of the factors that control appetite and eating behaviour is often 

confounded by differences in experimental methodology. The study of appetite 

control asks for an establishment of a legitimate set of measurements which can be 

used to measure human eating behaviour under diverse experimental circumstances. 

One of the dilemmas of researchers in the field of food intake concerns the 

relationship between “precision” and “naturalness”. On one hand the measurement of 

eating behaviour should be as accurate and precise as possible. This means that the 

measurements will be conducted under scientifically controlled conditions in a 

laboratory environment. Studies of this kind have a high validity and the capacity to 

establish good cause-effect relationships. However, the problem with those studies is 

external validity or the power of generalisation. On the other hand, food intake 

studies under “natural” conditions, i.e. that people are allowed to eat freely, have a 

high external validity and appear to have real meaning. Unfortunately, the precision 

of measurement is lower. Errors occur in recording what people are eating and it is 

much more difficult to establish the effects of experimental manipulations. Another 

important advantage of human food intake studies in a laboratory environment is the 

statistical power. Observed effects of manipulations on variables of eating behaviour 

under controlled laboratory investigations may achieve adequate statistical power 

with a group of 16 or 20 subjects. Within less controlled environments, a similar 

degree of statistical power would only be achieved with perhaps 200 or even 2000 

subjects (8). However, ideally the best method would optimise both forms of validity, 

but for the moment researchers usually have to make some compromise between 

precision and naturalness in the design of studies (8). 

 

 

6.1. Measurement of food intake 
 

Observing eating behaviour is a strategy which has its roots in the study of animal 

behaviour. The aim is to quantify eating behaviour components. Automated 

apparatuses, which deliver and monitor the food intake of animals, are known for a 

long time. For humans that kind of machine was described about 40 years ago, when 
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the food intake of a patient with a carcinoma of the lip was detected. A tubing with a 

mouthpiece was connected to a reservoir containing a liquid diet. When the patient 

pressed a button, a pump was activated and a fixed amount of food was delivered 

through the mouthpiece. The activation of the pump was recorded and allowed the 

record of liquid food intake (6). The idea of this technique was further enhanced and 

has been used to develop intragastric feeding (via a naso-gastric tube) (11). 

An alternative method to monitoring the liquid food intake is to measure the changes 

in the weight of food as it is being eaten. This is achieved by the continuous weighing 

of the subject`s plate (or other vessel) with a concealed electronic balance on which 

the plate rests (12). The advantage of this method is, that liquid as well as solid food 

can be recorded. 

Another alternative record of food intake is to prepare a standardised test meal and 

offer food in small fixed portions and in excess like in the conducted studies of the 

present thesis. The strength of this technique lies in collecting data concerning 

manipulations of food deprivation, preloading and comparisons of lean and obese 

subjects (18, 19). 

 

The test meal applied in this thesis (Table 6.1) consisted of a) orange juice; b) ham 

sandwiches (73 g white bread, 10 g butter and 25 g ham); c) chocolate pudding; and 

d) coffee with cream and sweetener (cream and sweetener for the coffee were 

optional). The order of food intake had to follow the above schedule. To reduce the 

participant`s awareness of the amount of food eaten, food was presented in small 

samples and in excess. 
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Table 6.1: Composition of the test meal with corresponding nutritive values 

Nutrients Carbohydrates (g) Protein (g) Fat (g) Energy (kcal) 

Orange juice (1l) 100 <1 0 430 

Ham sandwich (108 g) 
White bread (73 g) 
Ham (25 g) 
Butter (10 g) 

 
39 
39 
<1 

0.05 
 

5 
6.6 
5 

0.05 

10 
0.8 
1.1 
8.2 

 
298 
194 
31 
73 
 

Chocolate pudding (30 g) 6 1.1 1.2 40 

Coffee (113 ml) 
Coffee 
Cream (12 g) 
Assugrin 

 
- 

0.5 
 

 
- 

0.5 
- 

 
- 

1.8 
- 

20 
0 

20 
0 

 

 

6.2. Measurement of eating behaviour 
 

A number of systems has been devised to ask subjects specific questions relating to 

aspects of their motivation to eat. One of the most productive and popular systems is 

the use of VAS, which have become particularly popular in pain (2, 15) and appetite 

research (1, 7, 14). VAS for assessing feelings of hunger and satiation are routinely 

used in studies of human eating behaviour. Silverstone and Stunkard (17) were 

among the first who published results obtained with this method. Basically, VAS 

consist of a horizontal 100 or 150 mm line anchored at one end with a description 

such as “not hungry (or full)” and at the other end with a description such as “as 

hungry as I have ever felt” or “extremely full” (7). 

VAS used in the present thesis have been designed and described by Drewe et al (3) 

and Welch et al (22). In brief, a score of zero for hunger indicated that the subject 

was not hungry at all, two indicated “slightly hungry”, five indicated “moderately 

hungry”, eight indicated “very hungry”, and 10 indicated “absolutely ravenous”. The 

score for fullness was similar. 

Such VAS have the advantage of being simple and quick to use and easy to 

interpret. They are presented in a standardized format that can be compared under a 

variety of different experimental manipulations. Hunger and fullness VAS are best-

measured in within-subject, repeated-measures designs, because the amount of 
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perceived hunger or fullness will differ between individuals in a given situation and 

will differ within an individual in different situations (21). 

If subjective ratings of hunger and satiation are applied, analyzed and interpreted 

appropriately, they have been shown to be reproducible, sensitive to exposures of 

food components, and predictive of food intake (4, 21). They are therefore an 

invaluable instrument for food intake research. VAS can be useful as an internal 

control in order to evaluate whether volunteers eat till their individual point of 

satiation. However, the results obtained from VAS are neither objective nor strictly 

quantitative and offers the most valuable information when combined with other 

aspects of feeding behaviour. It is important to recognize that subjectively rated 

motivation to eat is not an inevitable outcome of underlying physiological processes. 

Rather it is the subject`s own interpretation of their own sensations, which are, 

among other factors, influenced by underlying physiological processes. 

 

 

6.3. The study set-up 
 

The study set-up applied in this thesis is similar to the experimental conditions 

chosen by Welch et al (23). Welch et al could observe that an infusion of a lipid 

emulsion into the jejunum or the ileum reduced food intake. The small intestine is an 

important source of satiety signals and it has been well documented that infusion of 

different nutrients into the small intestine is associated with suppression of food 

intake in humans to a much greater extent than when nutrients are given 

intravenously (13, 22). It is possible that direct infusion of nutrients into the 

duodenum bypasses several suprapyloric mechanisms that reduce the satiating 

effect of lipid. These mechanisms include a nutrient-specific effect on the rate of 

gastric emptying. Ingestion of fat delays gastric emptying, largely because of 

feedback signals arising from the contact of nutrients with small-intestinal receptors 

(9, 10, 16, 20). On the other hand the technique of direct infusion of fat into the small 

intestine eliminates the effects of orosensory factors and of the stomach so that the 

isolated direct effect of nutrients on appetite, feeding behaviour and gastrointestinal 

mechanisms can be examined (5). Caution must nevertheless be exerted when 

extrapolating findings to the normal feeding condition. 
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Much of the current understanding of the regulatory processes involved in human 

eating behaviour comes from preload studies. Many studies have been conducted to 

examine the effects of a food preload with a defined nutrient composition, energy 

content and/or volume on subsequent food intake. In the present thesis the preload 

strategy has been used to investigate the satiating power of protein and to examine 

possible interactions between signals arising from the stomach and signals caused 

by nutrients in the small intestine. It is very difficult, however, to manipulate protein 

within a preload without large effects on the orosensory properties of the preload, as 

well as different direct sensory effects on appetite. Another important weak point of 

those preload-studies is the fact that the preload-macronutrient concentrations often 

exceed those in the usual diet. Preload-studies do not reflect free-living conditions 

where foods consumed are of mixed nutrient composition. Thus, while studies 

suggest the existence of a macronutrient satiating effect, they have not determined 

whether this is also present when people are free to eat. 

 

The study-design (Figure 6.1) of the present thesis used for food intake studies is 

briefly explained below. The detailed study set-up is explained in chapter 7. 20 or 

less healthy male volunteers were included for a given protocol. The single 

treatments, separated by at least 7 days, were randomly performed in each subject 

under different conditions. Nearly in every of the performed food intake studies 

volunteers received an ID perfusion. To investigate a potential interaction between 

the stomach and the gut a preload was given or the stomach was distended for a 

short period of time before the test meal. After the preload was ingested or the 

distension of the stomach was done, a standard meal was presented to the subjects, 

and they were invited to eat and drink as much as they wished for 60 min. During the 

study subjects scored their subjective feelings for hunger and fullness for the duration 

of each experiment using a VAS. Blood was drawn in regular intervals for hormone 

analyses. The study was finished 60 min after meal start. 
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Figure 6.1: Study Set-Up 
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Abstract 
 

The factors that regulate food intake and satiation are complex; it has been 

suggested that signals arising from the small intestine and the stomach play an 

important role. It is still unknown, to what extent pure mechanical distension of the 

gastric fundus and antrum can alter food intake. Our aim was therefore to investigate 

whether gastric fundus and antrum distension can trigger satiation in healthy 

humans. Two sequential, randomized, double-blind, 4-period cross over designed 

studies were performed in 24 healthy male volunteers: 1) Twelve subjects underwent 

four intragastric balloon distension experiments of the fundus (0, 400, 600, 800 ml) 

before a standard meal intake; 2) Twelve subjects underwent one of the following 

four treatments: 0 ml balloon distension of the gastric antrum plus intraduodenal (ID) 

saline or ID fat and 300 ml gastric distension plus ID saline or ID fat. Shortly after the 

distension period, subjects were free to eat and drink as much as they wished. 

Neither gastric fundus nor antrum distension showed a reduction in calorie intake. 

Distending the fundus affected the mean Visual Analogue Scale (VAS) in the 

premeal period: subjects experienced a reduced degree of hunger and a concomitant 

feeling of fullness, but the effect was short-lasting and was only apparent with a 

volume of 600 ml or even 800 ml. Cholecystokinin (CCK) and peptide YY (PYY) were 

not altered by gastric distension. Neither pure mechanical distension of the fundus 

nor the antrum seems to be a major trigger of satiation. 

 

 

Key words: eating behavior, balloon distension 
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Introduction 
 

The factors that regulate food intake and satiation are complex. Food intake is 

regulated by chemical and mechanical factors acting in concert to produce 

sensations of satiety. The stomach has an obvious role in the regulation of food 

intake, yet its importance of triggering satiety and the mechanisms involved are only 

partly understood. Animal studies support the concept that the stomach is involved in 

the termination of a meal (29). In rats, stomach distension decreases the vagal firing 

rate and there is evidence that vagotomy blocks the satiating effect of stomach 

distension (31) supporting the hypothesis that the vagus plays an important role in 

peripheral signaling of satiety. Also, in animals (27) and humans (37) the stomach 

can sense both nutrient quality and quantity; this information is used to alter the rate 

of gastric emptying and the amount of food ingested. Finally, gastric distension 

causes a feeling of satiety in humans (4, 5, 18) and an unpleasant feeling of fullness 

can occur with balloon distension. Intragastric balloons may reduce food intake in 

obese subjects, but only with a short-lasting effect (32). 

The site of gastric distension (fundus or antrum) may also be important in regulating 

satiation (20, 36). For example, in a study by Jones et al (20) the perception of 

postprandial fullness after ingestion of a glucose drink was much more strongly 

related to the antral area and content than the content of the proximal or total 

stomach. Similarly, after ingestion of a liquid preload, Sturm et al (38) found a close 

relationship between food intake at a subsequent meal and antral area in both 

healthy young and older subjects. All these data support the concept of an important 

role for the distal stomach in the generation of “appetite-related” sensations and 

satiation. 

It remains unclear, if and to what extent the mechanical induced afferent signals of 

gastric fundus and antrum distension can alter food intake. Hence, this study was 

designed to further understand the role of pure mechanical distension of the gastric 

fundus and the antrum in the regulation of food intake in healthy subjects. The 

studies were performed sequentially. When the results of fundic distension were 

analyzed, the design of the antral distension part was modified. By perfusing fat to 

the small intestine, we felt that a potential effect of antral distension could be 

enhanced. An interaction between intraduodenal (ID) fat and gastric distension 

(induced by an oral preload) has previously been documented (26). Furthermore, ID 
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fat slows gastric emptying (16) and reduces hunger feelings and subsequent food 

intake (7, 23-25). The gastric antrum was therefore distended to stimulate gastric 

distension; in combination with ID fat, the gastrointestinal (GI) satiety hormones 

cholecystokinin (CCK) and peptide YY (PYY) should be released. 

 

 

Methods 
 

Overview 

Two experimental series were sequentially performed. 

First, a randomized, double-blind, four-period, Latin square design was carried out in 

12 healthy, paid, male volunteers. Each participant underwent tests on four 

experimental days, separated by at least 1 week. On each experimental day, 

subjects swallowed a barostat assembly which was positioned in the fundus of the 

stomach. The balloon of the barostat was then inflated for a total of 10 min. The 

volumes of 0 (control), 400, 600 and 800 ml were applied separately on a single 

experimental day. When the balloon had been deflated and the tube taken out, 

subjects were invited to eat and drink as much as they wished for 60 min. 

The design of the second series was similar: 12 healthy male subjects were studied 

in a randomized, double-blind, four-period crossover fashion. Each participant 

underwent four tests separated by at least 1 week. On each experimental day, 

volunteers swallowed a barostat assembly. The tip of the tube was positioned in the 

duodenum and the balloon of the barostat was positioned in the gastric antrum. A 

continuous ID perfusion of either fat or saline (control experiment together with 0 ml 

distending volume) was given for the next 90 min. 70 min after starting the respective 

ID perfusion, the balloon of the barostat was either inflated with the volume of 0 or 

300 ml for 20 min. When the balloon had been deflated and the tube had been taken 

out, subjects were invited to eat and drink as much as they wished for 60 min. 

 

 

Subjects 

Each subject gave written informed consent for the study. The protocol was approved 

by the Human Ethics Committee of the University Hospital in Basel. Before 

 - 82 -



 Projects 

acceptance, each participant was required to complete a medical interview and 

received a full physical examination. Inclusion criteria were:  

1) BMI within 15% of desirable weight for height 

2) Age between 18-45 years 

3) Non-smokers 

4) No active medical problems 

5) Taking no medication 

6) No allergies including food allergies 

7) No history of GI disorders or weight problems 

 

Experimental procedure 

 

Part one: Effect of increasing gastric volumes induced by balloon distension of the 

fundus on food intake 

Four treatments, separated by at least seven days, were performed in 12 healthy 

male subjects in a randomized order. On each study day, subjects ate a liquid 

breakfast before 8 am. At noon, after insertion of a catheter into a forearm vein for 

blood drawings, the experiment started with a baseline period of 60 min. Subjects 

swallowed a barostat assembly which was positioned in the fundus of the stomach. 

After placement of the barostat assembly, the minimal distending pressure was 

assessed during the following 10 min. After a recovery period of 30 min the balloon of 

the barostat was inflated. Starting from the minimal distending pressure level (MDP), 

one of the following volumes was applied on a single experimental day: 0 (control), 

400, 600 and 800 ml. The order of volumes was randomized; furthermore, the 

computer, which was connected to the barostat unit, was controlled by a person who 

was not involved in the experiment. The investigator and the subject were unaware of 

the respective treatment thereby making it possible to perform treatments in a 

double-blind manner. The barostat balloon was inflated for a total of 10 min; then the 

balloon was deflated and the tube was taken out. Ten minutes later, subjects were 

invited to eat and drink as much as they wished for 60 min. The study design is 

shown in Figure 7.1.1. 
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Figure 7.1.1: Experimental design of study part one. VAS, Visual Analogue Scale. 
 

 

The meal consisted of a) orange juice, b) ham sandwiches (60 g white bread; 10 g 

butter and 25 g ham), c) chocolate pudding, and d) coffee with cream and sugar 

(coffee could be sweetened if desired; therefore cream and sugar were optional). The 

composition of the test meal with its corresponding nutritive values is listed in Table 

7.1.1. The order of food intake had to follow the above schedule. To reduce the 

participants` awareness of the amount of food eaten, food was presented in small 

samples and in excess. The amount of food eaten and the volume of fluid drunk were 

quantified for each subject. From these observations, the total calorie intake could be 

calculated. Blood was taken at regular intervals for plasma CCK determinations in 

EDTA-coated tubes (6μmol/l) containing aprotinin (500 KIU/ml blood). Plasma 

samples were kept frozen at –20°C until analysis. Subjects scored their subjective 

feelings of hunger and fullness in regular intervals for the duration of each 

experiment using a VAS from 1 to 100 and indicated their scores on a ruler. The 

scale and scores have previously been designed and described in detail by Welch et 

al (40). 

 
Table 7.1.1: Composition of test meal with corresponding nutritive values. 

Nutrients Carbohydrates (g) Protein (g) Fat (g) Energy (kcal) 

Orange juice  
(100ml) 10 <1 0 43 

Ham sandwich 
(100g) 36 5 9 274 

Chocolate pudding 
(100g) 20 4 4 132 
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Part two: Effect of ID fat perfusion combined with balloon distension of the antrum on 

food intake 

The procedures in this part were similar to part one except for the site of distension 

and the ID perfusion. Four treatments, separated by at least 7 days, were randomly 

performed in each subject. The barostat had an opening at the tip of the tube, 

through which the fat could be perfused. The tip of the tube was inserted into the 

duodenum and the balloon of the barostat was positioned in the gastric antrum. After 

placement, the position of the tube was located fluoroscopically. To prevent further 

progression of the tube during the experiment, a small balloon (60 ml), which was 

located 3-3.5 cm distally from the barostat-bag, was inflated in the duodenum. 

At noon, after insertion of a catheter into a forearm vein for blood drawings, the MDP 

was defined. Then the experiment was started with a continuous ID perfusion. The 

treatments were identical in design except for the ID perfusions and the distending 

volumes. 

The first treatment consisted of an ID perfusion of saline for the duration of 90 min. 

Seventy minutes after starting the perfusion, the bag was inflated with 0 ml (control 

experiment) above the MDP level. After twenty min, the bag was deflated and the 

tube was taken out. After removing the barostat tube, subjects were invited to eat and 

drink as much as they wished. The standard meal has already been described in part 

one. The second treatment was similar. ID saline was given, but the bag was inflated 

with 300 ml above the MDP level. In the third and fourth experiment ID fat (corn seed 

oil) was perfused instead of saline, combined with inflation of the bag with either 0 ml 

or 300 ml above the MDP level. A perfusion rate of 0.5 ml/min for a total of 90 min 

(load 41 g of fat; total energy content: 371 kcal) was chosen derived from previous 

experiments (8, 30, 40). The study design is shown in Figure 7.1.2. 

 

 
Figure 7.1.2: Experimental design of study part two. ID, intraduodenal; VAS, Visual Analogue Scale. 
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The ID fat perfusion solution was filled in a black syringe which made it 

indistinguishable in appearance from the control solution (saline), and the person in 

charge of the experiments was unaware of the respective treatment, thereby making 

it possible to deliver treatments in a double-blind fashion. Blood was taken at regular 

intervals for plasma CCK and PYY determinations in EDTA-coated tubes (6μmol/l) 

containing aprotinin (500 KIU/ml blood). Plasma samples were kept frozen at –20°C 

until analysis. 

After the start of the perfusion, subjects scored their subjective feelings for hunger 

and fullness at regular intervals for the duration of each experiment using a VAS from 

1 through 10 and indicated their scores on a questionnaire. The scale and scores 

have previously been designed and described in detail (8, 40). In brief, a score of 

zero for hunger indicated that the subject was not hungry at all, two indicated “slightly 

hungry”, five indicated “moderately hungry”, eight indicated “very hungry”, and 10 

indicated “absolutely ravenous”. The score for fullness was similar. The study was 

finished 60 min after meal start. 

 

Barostat 

The barostat consisted of a strain gauge linked by an electronic relay to an air 

injection-aspiration system. Both the strain gauge and the injection system were 

connected by means of a polyvinyl tube to an ultra-thin polyethylene bag (First part: 

1100 ml capacity, 20 cm maximum diameter; second part: 500-570 ml capacity and 

12 cm maximum diameter). In the first part a double-lumen polyvinyl tube was used, 

in the second part the tube had seven lumen. The barostat measures the volume or 

the pressure within this flaccid, air filled bag maintained at a constant pre-selected 

level by the electronic feedback mechanism (2, 3). A dial in the electronic system 

allows selection of the desired volume level or pressure level to be maintained within 

the bag. The barostat can be used to induce gastric distension, continuously 

recording the resulting intragastric bag volume and pressure. 

The bag of the barostat, finely folded, was introduced through the mouth into the 

stomach. After placement of the barostat assembly, the participant was placed in a 

30° recumbent position and asked to relax comfortably. To unfold the gastric bag, 

one lumen of the connecting tube was connected to a pressure transducer and the 

bag was slowly inflated through the other lumen of the tube with the respective 
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volume in ml of air. Thereafter, the bag was completely deflated and connected to the 

barostat. 

Using the pressure-selection dial of the barostat, intrabag pressure was gradually 

increased by 2 mm Hg stepwise increments every 3 min, to designate the MDP 

defined as the pressure that first provides intrabag volume variation induced by 

respiratory motion (34, 35). After deflation of the barostat bag to the MDP for 30 min, 

the intrabag volume was increased to the pre-determined volume level. The patient 

as well as the investigator were unaware of the distending volume levels. 

 

Biochemical analysis 

Plasma immunoreactive CCK concentrations were measured by a sensitive 

radioimmunoassay (RIA) based on an antiserum against CCK-8. It has a negligible 

cross-reactivity to gastrin. Plasma samples were extracted with ethanol. The 

detection limit of the assay was 0.3 pmol/l plasma using CCK-8 as a standard. 

Details of the assay have already been described (14). Total PYY concentrations 

were measured by a sensitive RIA based on an antiserum against PYY 1-36 and  

3-36. The lowest level of PYY which could be detected by this assay was 10pg/ml 

when using a 100μl sample size. There is no crossreactivity between the antiserum 

and other members of the pancreatic polypeptide (PP) family. 

 

Statistical analysis 

The amount of food eaten (g) and the amount of fluid drunk (ml), including the 

corresponding energy intake (kcal), were compared between the treatments by 

analysis of variance (ANOVA). In case of significance ANOVA was followed by 

multiple paired t-tests with Bonferroni correction. For part two Plasma CCK and PYY 

data were evaluated by calculating area under the plasma concentration/time curve 

(AUC). AUC was calculated by linear trapezoidal rule from T 0 to 80 min for CCK and 

PYY. CCK and PYY data were analyzed by ANOVA. If significant differences were 

detected, ANOVA was followed by a paired t-test with Bonferroni correction or, in 

case of non-normal distributed data, non-parametric ANOVA (Friedman-test) was 

followed by Dunn correction. Differences in scores for hunger and fullness were 

obtained by subtracting the feelings at 45 respectively 90 min from the baseline-

value. The differences between the treatments were compared using the same 

statistical procedures described above. 

 - 87 -



 Projects 

Results 
 

Food Intake 

 

Part one 

The amount of food eaten, the amount of fluid consumed and the corresponding 

calorie intake were not significantly affected by increasing volumes of gastric balloon 

distension of the fundus compared to the control treatment (0 ml distending volume). 

Data are shown in Table 7.1.2. 

 

 
Table 7.1.2: Effect of balloon distension of the fundus (0, 400, 600, 800 ml) on eating behavior in 12 
healthy male subjects. 
Treatment Food Intake (g) Calories (kcal) Volume drunk (ml) 
a) 0 ml 775 ± 49 2337 ± 117 777 ± 101 
b) 400 ml 805 ± 58 2241 ± 119 727 ± 89 
c) 600 ml 773 ± 53 2251 ± 121 696 ± 91 
d) 800 ml 787 ± 73 2230 ± 146 744 ± 88 
Data are means ± SE. 
 

 

Part two 

The amount of food eaten and the corresponding calorie intake were not significantly 

affected by gastric balloon distension of the antrum with 300 ml above the MDP level 

compared to the control treatment (ID saline plus 0 ml distending volume). ID fat 

combined with distension of the antrum with 0 or 300 ml above the MDP level 

decreased the amount of food eaten and the corresponding calorie intake compared 

to the control experiment, but the reductions did not reach statistical significance. 

Fluid intake was neither affected by ID saline or fat plus gastric balloon distension 

with 300 ml above the MDP level compared to the control treatment. Data are shown 

in Table 7.1.3. 
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Table 7.1.3: Effect of ID saline or ID fat together with a distension of the antrum with either 0 or 300 ml 
on eating behavior in 12 healthy male subjects. 
Treatment Food Intake (g) Calories (kcal) Volume drunk (ml) 
a) Saline/0 ml 446 ± 47 1213 ± 96 484 ± 63 
b) Saline/300 ml 446 ± 53 1217 ± 105 484 ± 56 
c) Fat/0 ml 355 ± 36 1033 ± 98 449 ± 57 
d) Fat/300 ml 371 ± 44 1038 ± 120 475 ± 69 
Data are means ± SE. 
 

 

Eating behavior 

 

Part one 

Increasing gastric volumes affected the mean VAS (Figures 7.1.3a and 7.1.3b) in the 

premeal period: subjects experienced a reduced degree of hunger and a concomitant 

feeling of fullness, but the effect was short-lasting. When we compared baseline 

scores with the 45 min values, the difference reached statistical significance for 

hunger (p < 0.01) as well as for fullness (p < 0.01) for 600 ml balloon distension, but 

only for fullness with 800 ml balloon distension (p < 0.01). 

 
Figure 7.1.3a: Subject sensations for fullness experienced by 12 healthy male subjects before and 
after food ingestion during gastric fundus distension with increasing volumes (0, 400, 600, 800 ml). 
Ten minutes before food consumption the gastric fundus was distended for ten minutes. Results are 
expressed as means ± SE.  
* indicates p<0.01, all vs. control (0 ml). Analyzed by ANOVA followed by multiple paired t-tests with 
Bonferroni correction. 
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Figure 7.1.3b: Subject sensations for hunger experienced by 12 healthy male subjects before and 
after food ingestion during gastric fundus distension with increasing volumes (0, 400, 600, 800 ml). 
Ten minutes before food consumption the gastric fundus was distended for ten minutes. Results are 
expressed as means ± SE.  
* indicates p<0.01, all vs. control (0 ml). Analyzed by ANOVA followed by multiple paired t-tests with 
Bonferroni correction. 
 

 

Part two 

ID fat in combination with 300 ml balloon distension influenced the mean VAS 

(Figures 7.1.4a and 7.1.4b). Subjects experienced a reduced degree of hunger and a 

concomitant increased feeling of fullness in the premeal period, but the difference did 

not reach statistical significance. When we compared baseline scores with 90 min 

values, the difference did neither reach statistical significance, although subjects felt 

less hungry and fuller with ID fat plus 300 ml distending volume (data not shown). 

Antrum distension alone did not have any effect on feelings of hunger or fullness. 

These data indicate that antrum distension alone does not influence feelings of 

hunger or fullness detected with VAS. 
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Figure 7.1.4a: Subject sensations for fullness experienced by 12 healthy male subjects before and 
after food ingestion during gastric antrum distension (0/300 ml) with either ID saline or fat perfusion. 
Shortly before food consumption the gastric antrum was distended for twenty minutes. Results are 
expressed as means ± SE. 
 

 
Figure 7.1.4b: Subject sensations for hunger experienced by 12 healthy male subjects before and 
after food ingestion during gastric antrum distension (0/300 ml) with either ID saline or fat perfusion. 
Shortly before food consumption the gastric antrum was distended for twenty minutes Results are 
expressed as means ± SE. 
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Plasma Hormones 

 

Part one 

During gastric fundus distension CCK plasma hormone responses remained 

unchanged in the premeal period (data not shown), independently of the distending 

volume. 

 

Part two 

During the control treatment (ID saline plus 0 ml distending volume), plasma 

hormone responses (CCK, PYY) remained stable in the premeal period. The 

distension of the antrum with 300 ml above the MDP level did not stimulate plasma 

CCK and PYY concentrations. During ID fat, a significant increase in plasma CCK (p 

< 0.01) was obtained compared to the control experiment. PYY levels significantly 

increased when ID fat was given compared to the control experiment (pooled data; p 

< 0.01). The PYY data of ID fat and of the control experiment were pooled for both 

distending volumes. The data are shown in Figures 7.1.5a and 7.1.5b. 

 

 

 
Figure 7.1.5a: Area under plasma concentration/time curve (AUC) plasma CCK responses to gastric 
antrum distension (0/300 ml) together with ID perfusion of saline (Sal) or fat. Results are expressed as 
means + SE. * = p<0.01. Significant difference between control (saline/0 ml) and ID fat (with and 
without gastric distension). Analyzed by ANOVA followed by multiple paired t-tests with Bonferroni 
correction. 
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Figure 7.1.5b: Area under plasma concentration/time curve (AUC) plasma PYY responses to gastric 
antrum distension (0/300 ml) together with ID perfusion of saline (Sal) or fat. Results are expressed as 
means + SE. * = p<0.001. Significant difference between ID saline plus 300 ml distending volume and 
ID fat. # = p<0.01. Significant difference between ID saline plus 300 ml distending volume and and ID 
fat with 300 ml distending volume. Analyzed by ANOVA followed by multiple paired t-tests with 
Bonferroni correction. 
 

 

Discussion 
 

The classical approach for studying inhibitory controls of food intake involve the 

manipulation of specific organs associated with regulation of eating. In the present 

study we have examined the effect of both gastric fundus and antrum distensions by 

balloon inflation on food intake and appetite sensations in healthy male subjects. The 

results can be summarized as follows: 1) Gastric fundus distension with increasing 

volumes (400, 600, 800 ml) did not lead to a reduction in food intake compared to the 

control treatment; 2) Hunger ratings fell significantly with a distending volume of 600 

ml and fullness ratings rose significantly with both 600 and 800 ml distending 

volumes of the fundus, but the change in ratings was only short-lasting; 3) Gastric 

antrum distension alone did not lead to a reduction in food intake compared to the 

control treatment; 4) ID fat in combination with antrum distension reduced food 

intake, but non-significantly; 5) Gastric antrum distension alone did not change 

hunger or fullness ratings, but in combination with ID fat subjects experienced a 

reduced degree of hunger and a concomitant increased feeling of fullness; 6) CCK 

and PYY plasma levels were not altered by gastric antrum distension, but they 

showed a significant increase after ID fat in the premeal period. 
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Gastric distension is considered to be an important factor in the regulation of food 

intake and in triggering satiety in animals and humans. The role of stomach 

distension on satiety and food intake has been described in a series of studies by 

Geliebter et al (10-13). In two of his earlier studies, Geliebter et al (10, 13) examined 

the effects of various levels of gastric distension on food intake. The stomach was 

distended with a balloon, by filling it with different volumes (0-800 ml) of water. Food 

intake decreased significantly with increasing balloon volumes, but only when the 

volume was equal or greater than 400 ml. Further evidence for a role of gastric 

distension on appetite is derived from studies by Melton et al (28) and Cecil et al (6). 

Melton et al (28) showed in 4 subjects a positive correlation between gastric pressure 

rise due to balloon inflation and fullness ratings. Cecil et al (6) discovered in a study 

with 9 subjects that intragastric infusion of tomato soup suppressed appetite in 

contrast to ID infusions of soup. Rolls and Roe (33) showed that by increasing the 

volume, but not the energy content, of gastrically infused food, hunger ratings and 

food intake in 29 obese and 25 nonobese women were reduced. In summary, there 

is substantial evidence for a direct, inverse relationship between gastric distension 

and appetite. However, the mechanisms of action and the importance of the site of 

gastric distension are still unclear. Therefore our main interest was the investigation 

of a potential reduction of energy intake induced by gastric antrum distension 

compared to the distension of the fundus. 

The present study is above all based on the ideas of Geliebter et al (10, 13) with two 

main differences. First, the position of the balloon was not precisely defined, in those 

studies, we therefore chose the more specific barostat method to place the balloon of 

the tube fluoroscopically either in the fundus or the antrum. Second, Geliebter et al 

(10, 13) removed the balloon only after the subjects had finished the meal, whereas 

in our study the tube was already taken out before volunteers began to eat. We were 

interested to test pure mechanical distension of the fundus or antrum on subsequent 

food intake. 

Differences in the properties and functions between the proximal and distal stomach 

have previously been recognised. Mechanical properties and neural innervation vary 

in different regions of the stomach (17, 21) and it is uncertain whether the site of 

gastric distension is important in mediating appetite related sensations. In young 

subjects, distension of the proximal stomach (with the use of a barostat) increased 

the perception of fullness (9, 15), but effects on food intake have not been evaluated. 
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Observations suggest that antral distension, rather than the overall rate of gastric 

emptying or the content of the proximal stomach, is a major determinant of satiety 

(19, 20, 36, 39). The mechanisms also remain to be defined. The perception of 

fullness is likely, at least in part, to reflect the activation of gastric stretch receptors by 

gastric distension (39). Possibly there are regional differences in the sensitivities of 

gastric fundus and antral mechanoreceptors (22). 

In this study neither increasing volumes of gastric distension of the fundus (400, 600, 

800 ml) nor distension of the antrum with 300 ml reduced the amount of food eaten 

and the corresponding calorie intake. When the fundus was distended, 600, 

respectively 800 ml were necessary to reduce feelings of hunger and increase 

feelings of fullness, but the effect was only short-lasting. The volume of 300 ml for 

distending the antrum was apparently too small to significantly influence hunger and 

fullness ratings. As soon as the bag of the barostat was deflated and the tube taken 

out, the feelings of hunger and fullness reached basic ratings again. The fact that 

pure mechanical distension had only a short-lasting effect on hunger and fullness 

ratings, explains why total calorie intake after gastric distension was not reduced 

compared to the control treatment. Therefore, mechanical distension of the stomach 

only seems to play a role in triggering satiety as long as mechanoreceptors are 

stimulated. The short-lasting effect of pure mechanical distension on feelings of 

hunger and fullness could indicate that impulses from mechanoreceptors of the 

stomach are transmitted via neural pathways. 

In the second part of the study we aimed to evaluate whether satiety signals from the 

distal stomach can be intensified by ID fat. ID fat in combination with distension of the 

antrum non-significantly reduced the amount of food eaten and the corresponding 

calorie intake. On the basis of these results ID fat does not seem to intensify gastric 

satiety signals. 

CCK as satiety peptide was measured in both parts of the present study. In the study 

with gastric antrum distension we additionally measured the release of PYY. Both 

peptides have been shown to modulate short-term control of food intake during a test 

meal intake. Gastric distension of either the fundus or the antrum did not alter CCK 

plasma levels compared to the control treatment. We observed a significant increase 

in the premeal period both in plasma CCK and PYY after ID fat. With the increase of 

CCK after ID fat we could confirm previous observations (26). Indeed, the present 

study is one of the first studies in humans investigating the effect of ID fat on the 
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secretion of PYY. PYY is characteristically released in proportion to both the calorie 

content of a meal and its energy source composition. Increasing ingested amounts of 

an identical meal lead to proportionally increased plasma levels of PYY (1). With 

isocaloric meals consisting exclusively of either fat, carbohydrates or proteins, the 

highest levels of plasma PYY were detected after the fat meal followed by the 

carbohydrate meal and very little with the protein meal (1). On the other hand gastric 

distension of the antrum did not have any influence on the release of CCK and PYY. 

These data imply that signals elicited by pure mechanical gastric distension are not 

mediated by CCK or PYY. 

To summarize the findings of this study, we have observed that neither mechanical 

distension of the fundus nor the antrum reduced the amount of food eaten and the 

corresponding calorie intake. The alteration of feelings of hunger and fullness was 

dependent on the gastric distending volume and was only short-lasting. ID fat and 

gastric distension of the antrum do not seem to exhibit synergistic effects on food 

intake. Pure mechanical distension of the gastric fundus and antrum induced by 

barostat controlled balloon inflation do not seem to be a sufficient signal to promote 

satiety. Much more information is necessary to understand the basic physiological 

mechanisms that control food intake and satiety. 
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Abstract 
 
Background / Aims: Glucagon-like peptide-1 (GLP-1) inhibits food intake in animals 

and humans. Whether GLP-1 interacts with other satiety signals to modulate food 

intake is unknown. We investigated therefore in healthy volunteers the potential 

interactions of GLP-1 with signals from the stomach in regulating food intake. 

Methods: Three sequential, double-blind, crossover studies were performed in male 

subjects: I) fourteen subjects underwent three experiments (preloads) 20 min before 

meal intake; II) twelve volunteers received intravenous (iv) GLP-1 (0.9 pmol/kg/min) 

or saline; III) fifteen subjects received iv GLP-1 or saline (control) together with a 

preload of either 400 ml water or 400 ml protein shake. The effect of these treatments 

on food intake and feelings of hunger was quantified. Subjects were free to eat and 

drink as much as they wished. Results: GLP-1 induced a reduction in food and 

calorie intake (p<0.005) compared to controls. If combined with a protein preload, the 

inhibitory effect of GLP-1 on food intake was markedly increased (p<0.001). 

Furthermore, a decrease in hunger feelings and an increase in satiety feelings was 

documented. Conclusion: GLP-1 interacts with signals from the stomach to 

modulate energy intake in humans. 

 

 

Key words: eating behaviour, gastric signals, GLP-1 
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Introduction 
 

The pro-glucagon-derived peptide glucagon-like peptide-1(7-36) amide (GLP-1) is a 

gastrointestinal hormone that is released in response to food intake from the distal 

small intestine (1, 2, 9). Its biological effects include a glucose-dependent 

insulinotropic action and inhibition of gastric emptying (18, 19). The last effect can be 

interpreted as being part of the “ileal break mechanism”, an endocrine feedback loop 

that is activated by nutrients in the ileum (10). This feedback loop inhibits upper 

gastrointestinal digestive functions (gastric acid secretion, gastric emptying, exocrine 

pancreatic secretion), but also affects appetite and food ingestion (3, 5, 7). 

A series of remarkable discoveries and the emergence of obesity as major health 

problem have stimulated research efforts into how the body controls appetite and 

food intake. The close relationship between the gastrointestinal endocrine system 

and the brain in regulating food intake and satiety requires a co-ordinated interplay, 

in which circulating hormones convey information about food consumption and 

appetite to brain centers that control eating. The regulatory circuits are complex and 

several pathways act in parallel. However, little is known about the interactions of 

various physiological satiety signals that control food intake. The interaction effect on 

food intake resulting from an intestinal satiety signal and a gastric signal has 

previously been explored for hormone cholecystokinin (CCK), but not for GLP-1. This 

interaction was reported as a greater reduction in food ingestion in healthy volunteers 

when CCK8 was given together with a large soup preload (13). Previous work from 

our laboratory has extended these observations by demonstrating that the appetite-

suppressing effect of a carbohydrate preload together with CCK8 infusion was 

mediated by CCK-1 receptors (6, 11). Similar interactions are likely to occur with a 

variety of satiety signals; it has, however, not been tested whether similar interactions 

occur with GLP-1. It was therefore of interest to determine whether an interaction 

exists between a preload and intravenous GLP-1, and to evaluate how important the 

preload was for the effectiveness of GLP-1 to reduce food intake. Hence the present 

study was designed to further understand the role of GLP-1 in regulating food intake 

in healthy male subjects. 

Three consecutive experimental series were performed. In the first series we tested 

the effect of different nutrient preloads on subsequent food consumption in order to 

test whether gastric distension alone was able to modulate food intake. In the second 
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series, we determined the effect of intravenous GLP-1 in comparison to saline for 

initiating feedback inhibition of food intake. In the third series, we tested the 

hypothesis that the feedback response on food intake initiated by GLP-1 is 

modulated by a nutrient preload.  

 

 

Experimental procedure 
 

Part I: Effect of different preloads with variable nutrient composition on food intake 

Three treatments, separated by at least seven days, were performed in 14 healthy 

male subjects in a randomised order. On each study day, subjects ate a liquid 

breakfast before 8 am. At noon, the experiment started with a baseline period of 60 

min. Forty minutes later, a preload of 400 ml was given. After an additional 20 min, 

subjects were invited to eat and drink as much as they wished (for details, see Figure 

7.2.1). The three treatments were similar but differed with respect to the composition 

of the preload. The following preloads were tested: 400 ml water, 400 ml of protein 

shake, and 400 ml of carbohydrate shake. The protein shake was made of 47.4 g 

milk protein, 5.3 g chicken protein, 0.05% aspartam and 0.3% vanilla flavour and 

mixed with water to a total volume of 400 ml; total energy content 200 kcal. The 

carbohydrate shake was made of 100 g whey, 100 g banana and 16 g sugar mixed 

with water to a total amount of 400 ml (total energy content: 200 kcal). During each 

study, blood was drawn in regular intervals for glucose and hormone (CCK, GLP-1) 

determinations. 

 

 
Figure 7.2.1: Experimental design of part I. 
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The meal consisted of a) orange juice; b) ham sandwiches (60 g wheat bread; 10 g 

butter, and 25 g ham); c) chocolate pudding; and d) coffee with cream and sugar 

(coffee could be sweetened if desired; therefore cream and sugar were optional). The 

order of food intake had to follow the above schedule. To reduce the participant’s 

awareness of the amount of food eaten, food was presented in small samples and in 

excess. The amount of food eaten, volume and fluid drunk, and the time for each 

subject to complete a meal were quantified. From these observations the total calorie 

intake was calculated. Subjects scored their subjective feelings of hunger and 

fullness in regular intervals for the duration of each single experiment using a visual 

analogue scale from 0 to 100 and indicated their scores on a ruler. The scale and 

scores have previously been designed and described in detail (22). 

 

Part II: Effect of GLP-1 on food intake 

16 healthy male subjects participated in this part. The study was designed as a 

randomised, double-blind, two-period crossover trial. On each test day, subjects 

arrived in the research unit towards 11 am after fasting overnight. At 11 am, two 

Teflon catheters were inserted into the anticubital veins of each arm, one for infusion, 

the other one for blood drawing. At 11:30 am, a pre-study blood sample was taken 

and the infusion was started (either GLP-1 at a dose of 0.9 pmol/kg/min or saline as 

placebo) and continued for the next two hours. This dose was chosen from previous 

experiments (5, 7). Infusions were delivered by ambulatory pumps. Sixty minutes 

after the start of the respective infusion, the test meal described in part I was 

presented, and the participants were invited to eat and drink as much as they liked. 

Beginning with the infusions, participants scored their subjective feelings of hunger 

and fullness in 15 min intervals throughout the experiments using the VAS described 

before. In the pre-meal period and after eating, blood samples were taken in regular 

intervals (0, 20, 40, 60, 80, 100, 120 min) for glucose and hormone determinations. 

 

Part III: Effect of GLP-1 in combination with a preload on food intake  

Three treatments, separated by at least seven days, were performed in each of 15 

subjects. At 11 am, experiments were prepared as in part II. At 11:30 am, a pre-study 

blood sample was taken and the test started with a continuous infusion. The 

treatments were identical in design except for the intravenous infusion and the 

preloads (see Figure 7.2.2). 
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Figure 7.2.2: Experimental design of part III. 
 

 

The first treatment consisted of an intravenous infusion of GLP-1 (0.9 pmol/kg/min) 

for the duration of the experiment. Forty minutes after starting the infusion, a preload 

of 400 ml water was given. After an additional 20 min, subjects were invited to eat 

and drink as much as they wished. The second treatment was similar: an intravenous 

GLP-1 (0.9 pmol/kg/min) infusion was given throughout the test, but 400 ml of protein 

shake was given instead of water. The third experiment used intravenous saline 

(placebo) throughout the entire study instead of GLP-1 combined with water as a 

preload. A protein shake was chosen for this experimental series, because the 

glucose (1.4 g carbohydrates) and fat (0.9 g fat) contents of this protein preload were 

very low to avoid stimulation of endogenous GLP-1; total energy content 200 kcal. 

During each study, blood was drawn in regular intervals for glucose and hormone 

determinations. 

 

Infusions 

For the GLP-1 infusions, recombinant human GLP-1 (7-36) amide was used, a kind 

gift of Bionebraska, Omaha, USA. The peptide was dissolved in 0.9% saline solution 

containing 0.5% human serum albumin and prepared under aseptic conditions by the 

University of Basel Hospital Pharmacy. Aliquots of 50 µg/ 5 ml were stored at –20°C. 

Infusion solutions were prepared by diluting appropriate amounts of GLP-1 with 0.9% 

saline containing 0.1 % human serum albumin. Control solutions contained albumin 

in saline alone. The solutions were prepared by a person who was not involved in the 

study. The physician in charge of the study was therefore not aware of the respective 

treatment thereby making it possible to conduct treatments in a double-blind fashion. 
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Laboratory analysis 

Blood was drawn through an indwelling anticubital cannula into EDTA (6µmol/l) and 

aprotinine (1000kIU/ml). After centrifugation, plasma samples were kept frozen at –

20°C until analysis. Plasma glucose was analysed by the hexokinase method. GLP-1 

was measured as previously described (5, 7). 

 

Statistical analysis 

The amount of food eaten and the amount of fluid drunk, the corresponding energy 

intake as well as the eating rate, were compared between the different treatments by 

analysis of variance (ANOVA). The eating rate was calculated by adding the number 

of sandwich and chocolate mousse units per time. For significant differences, multiple 

paired tests with Bonferroni’s correction were performed. The same statistical 

procedure was used to analyse the results of plasma hormone concentrations using 

area under the curve analysis. Scores for hunger and fullness were compared by 

comparing area under the curve analysis; in addition scores were compared by 

calculating the delta score from baseline (0 min) to values observed under gastric 

distension induced by drinking a preload (45 min) using the Wilcoxon signed ranks 

test. Differences were considered significant if p was < 0.05. 

 

Results 
 
Part I 

The effects of the different preloads on food parameters are given in Table 7.2.1. 

Compared to 400 ml water ingestion, a 400 ml protein or a 400 ml carbohydrate 

preload reduced the total calorie intake by 10% and 9%, respectively (non-

significantly). Food and fluid consumption were both slightly reduced with both oral 

nutrient-based preloads, but the respective reductions did not reach statistical 

significance. 

 
Table 7.2.1: Effect of different preloads on food parameters in 14 healthy male subjects. 
 400 ml water 

(control) 
400 ml 

CH-shake 
400 ml 

protein shake 
Calorie intake (kcal) 1968 ± 120 1802 ± 91 1773 ± 125 
Amount of food (g) 654 ± 42 616 ± 33 621 ± 47 
Amount of fluid (ml) 713 ± 36 645 ± 48 633 ± 50 
Data are means ± SE. 
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Hunger and fullness sensations (VAS) were found to be reduced shortly after the 

consumption of the two nutrient-based preloads, but the difference did not reach 

statistical significance compared to water ingestion (data not shown). 

 

Part II 

Intravenous infusion of synthetic GLP-1 (0.9 pmol/kg/min) reduced the amount of 

food eaten (p<0.01) and the amount of calories consumed (p< 0.005); the amount of 

fluid consumption was not significantly affected. The maximal reduction in food 

consumption with GLP-1 amounted to 17% resulting in a decrease in calorie intake of 

16% (Table 7.2.2). 

 

 
Table 7.2.2: Effect of intravenous GLP-1 (0.9 pmol/kg/min) or saline on food parameters in 16 healthy 
male subjects. 
 Saline IV GLP-1 
Calorie intake (kcal) 1875 ± 68* 1597 ± 73 
Amount of food (g) 644 ± 24† 532 ± 29 
Amount of fluid (ml) 785 ± 47 698 ± 53 
Data are means ± SE. * = p ≤ 0.005, † = p ≤ 0.01, all vs. control (IV saline). 
 

 

None of the participants reported any abdominal discomfort or side effects during 

infusion of GLP-1. Furthermore, when questioned at the end of each experiment, 

none of them experienced or reported any adverse reaction. 

Subjects felt less hungry and fuller with GLP-1 in the pre-meal period, but the 

difference did not reach statistical significance. 

Figure 7.2.3 depicts blood glucose concentrations. With GLP-1, blood glucose levels 

were significantly lower (AUCglucose = 316 ± 6 mmol/l x 60 min with GLP-1 vs 402 ± 10 

mmol/l x 60 min with saline; p < 0.0001). 
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Figure 7.2.3: Plasma glucose concentrations in response to intravenous GLP-1 or saline (control) in 12 
healthy male volunteers. Data are means ± SE. * = p < 0.05 vs. control (i.v. saline). 
 

 

Part III 

The amount of food eaten and the corresponding calorie intake were both 

significantly (p < 0.005) reduced after the application of intravenous GLP-1 together 

with a preload (PL) of water (Table 7.2.3). The reduction amounted to 18 % for food 

eaten and 13 % for calorie intake, respectively, in comparison to the control treatment 

(intravenous saline plus PL water). The combination of intravenous GLP-1 plus 

protein shake as PL resulted in the strongest reduction (p < 0.001) in the amount of 

food consumed (31 %) with consequently reduced calorie intake (25 %). Therefore, 

calorie and food intake were reduced on both treatment days with intravenous  

GLP-1; the effect was most striking after the combination GLP-1 plus protein shake. 

Fluid intake was not affected by any treatment (Table 7.2.3). 

 

 
Table 7.2.3: Effect of intravenous (IV) GLP-1 or saline together with a preload (PL) of water or protein 
shake on food parameters in 12 healthy male subjects. 
 IV Saline 

Plus PL Water 
IV GLP-1 

Plus PL Protein 
IV GLP-1 

Plus PL Water 
Calorie intake (kcal) 1773 ± 761,3 1326 ± 672 1552 ± 70 
Amount of food (g) 622 ± 251,3 430 ± 272 509 ± 33 
Amount of fluid (ml) 581 ± 42 598 ± 45 564 ± 28 
Data are means ± SE. 
1) = p ≤ 0.005 IV GLP-1 plus PL protein versus control (IV saline plus PL water) analysed by analysis 
of variance (ANOVA) followed by multiple paired t-tests with Bonferroni’s correction. 
2) = p ≤ 0.05 IV GLP-1 plus PL protein versus IV GLP-1 plus PL water. 
3) = p ≤ 0.05 control (IV saline plus PL water) versus IV GLP-1 plus water. 
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As expected, hunger ratings fell and fullness ratings rose significantly (p < 0.05) after 

the subjects had drunk the protein shake preload together with intravenous GLP-1. 

The administration of GLP-1 plus water preload did not significantly affect hunger and 

fullness feelings in comparison to the control treatment (intravenous saline plus water 

preload) (Figures 7.2.4a and 7.2.4b). 

 

 
Figure 7.2.4a: Feelings of hunger in response to GLP-1 plus protein preload vs GLP-1 plus water 
preload or intravenous saline plus water preload in 12 healthy male volunteers. Data are means ± SE. 
* indicates significant difference of hunger ratings at experimental time 0 and 20 min between IV  
GLP-1 plus PL protein and IV saline plus PL water (p < 0.05). 
 

 
Figure 7.2.4b: Feelings of fullness in response to GLP-1 plus protein preload vs GLP-1 plus water 
preload or intravenous saline plus water preload in 12 healthy male volunteers. Data are means ± SE. 
* indicates significant difference of fullness ratings at experimental time 0 and 20 min between IV  
GLP-1 plus PL protein and IV saline plus PL water (p < 0.05). 
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Fasting prestudy glucose concentrations were similar in the different experiments; 

with both GLP-1 infusions, a significant (p < 0.001) decrease in glucose 

concentrations was seen thereby documenting the biological potency of the peptide 

(Figure 7.2.5). 

 

 

 
Figure 7.2.5: Pre-meal glucose concentrations, expressed as means ± SE (n=12). IV, intravenous; PL, 
preload. 
1: indicates significant difference of treatment in comparison to control  
(p< 0.0001). 
2: indicates significant difference of treatment at experimental time –5 min compared to fasting plasma 
glucose (p<0.0001). 
 

 

Discussion 
 
The role of exogenous GLP-1 in the induction of meal-ending satiety has been 

previously studied in healthy human subjects, in patients with diabetes mellitus type 2 

and in patients with obesity (3-5, 7, 14, 16, 17). The potential interactions of GLP-1 

with other satiety signals has, however, not been investigated in detail yet. 

Such interactions have previously been described for CCK: Muurahainen et al. (12, 

13) have provided compelling evidence that the satiety-inducing effects of CCK can 

be enhanced by giving a soup as a preload shortly before meal intake. Our own 

group has confirmed these data by documenting that exogenous and endogenous 

CCK interacts with a nutrient preload to modulate satiety in humans through 

activation of CCK-1 receptors (6, 11). 
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In the present study we have used the same approach to document an interaction 

between exogenous GLP-1 infusion with gastric signals on food intake. The results 

can be summarised as follows: 

1) Exogenous GLP-1 in a dose which mimics physiological GLP-1 plasma 

concentrations induced a reduction in food and calorie intake confirming previous 

reports (5, 21). 

2) Exogenous GLP-1 together with a 400 ml preload of protein shake enhanced the 

satiety-inducing effects of GLP-1 compared to controls. 

3) GLP-1 infusion together with a water preload induced a significant reduction in 

food intake compared to the control treatment (saline infusion plus water preload). 

 

The results provide strong evidence for the hypothesis that GLP-1 interacts with 

gastric signals to modulate food intake and satiety in humans. There are several 

possible explanations for these observations, and we will consider them with their 

relative strengths and weaknesses. 

 

Preload may release endogenous GLP-1. In the first series of the present study, we 

have determined the GLP-1 releasing effects of different preloads (carbohydrate, 

protein, non-nutrient). The data reveal that the protein preload used in the present 

study does not stimulate endogenous GLP-1 release. This is not surprising, as the 

main components of the preload, mainly proteins, are not particularly good 

secretagogues for GLP-1 release (8). It is therefore highly unlikely that GLP-1 release 

from endogenous stores in response to the preload was able to produce the 

observed interaction. 

GLP-1 inhibits gastric emptying. Gastric emptying is a major determinant in the 

regulation of food intake (20). Exogenous administration of GLP-1 has been shown to 

retard gastric emptying of liquids and solids (15, 19). A second possible explanation 

for our findings is therefore that GLP-1 slowed gastric emptying of the protein-rich 

preload. The stomach could therefore be fuller after the protein-rich preload with 

GLP-1 infusion compared to the treatment with water preload plus GLP-1 or with 

water plus saline infusion. After either of these latter two combinations (water preload 

with concomitant GLP-1 or water preload with saline infusion) the stomach could be 

relatively empty. The greater fullness of the stomach in response to the protein shake 

plus GLP-1 could have triggered an inhibitory signal. Increased gastric fullness 
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induced by slowing down gastric emptying could be the principal mechanism of 

action of GLP-1 on food intake. Previous studies with GLP-1 infusion have shown, 

however, that GLP-1 can reduce hunger and stimulate fullness feelings in the fasting 

state suggesting that at least some of the effects are independent of gastric emptying 

(21). Additional experiments are therefore required to fully understand this 

mechanism. 

GLP-1 amplifies gastric signals. One major observation of this study is the 

demonstration that a protein-containing preload together with intravenous GLP-1 

produced an augmented effect on food intake compared to a water preload plus 

infusion of GLP-1. These findings suggest that GLP-1 amplified signals from the 

stomach that would stimulate satiety. Without this amplification, it is difficult to 

understand how a 113 g difference in food consumption (resulting in a 221 kcal 

difference in energy consumption) between GLP-1 with water preload in comparison 

to saline plus water preload could be explained in the present study. Detailed 

comparisons on the correlation between the inhibition of gastric emptying and the 

inhibition of food intake with GLP-1 infusion have not been done so far. At this stage 

it is therefore not possible to decide whether a satiety action of GLP-1 exists 

independent of its effect on gastric emptying; the experimental evidence discussed 

before supports, however, such a role. 

Several key issues remain unclear. Does GLP-1 inhibit food intake directly in the 

gastrointestinal tract by binding to peripheral receptors or does it act through central 

receptors? Does it act indirectly by releasing other satiety factors? Here we have 

observed that the combination of protein preload plus GLP-1 infusion did not 

stimulate significant amounts of endogenous CCK (data not shown). This is in 

keeping with previous observations from our laboratory (21) where we could 

document that similar doses of GLP-1 did neither stimulate CCK nor leptin release 

before meal ingestion making it unlikely that the latter two satiety peptides are the 

mediators of this response. 

Facilitation of satiety. Hunger and satiety as an integration of neural signals brings us 

to another possible explanation for the observed effects, namely that consumption of 

the protein preload brought the subjects closer to satiety. If we accept the notion that 

GLP-1 promotes satiety, it would be more effective when satiety had already been 

partially achieved. Indeed, the hunger and satiety ratings were significantly affected 

by the combination protein preload plus GLP-1 but not with GLP-1 infusion and water 
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preload. The idea that the preload affects the response to GLP-1 by enhancing 

satiety (decreasing hunger) is supported by the correlation between hunger scores 

and intake. When the plasma GLP-1 concentrations of this study are compared with 

digestive effects of GLP-1 (stimulation of insulin secretion, inhibition of gastric 

emptying), they can be termed physiological. The protein shake itself did not 

stimulate GLP-1 release. Therefore it is unlikely that circulating levels of GLP-1 

mediated these effects.  

Taken together, we have seen in the present study that a protein-rich preload 

together with GLP-1 infusion induces an enhanced inhibition of food intake compared 

to GLP-1 infusion plus water preload. Under all treatments with GLP-1 infusion, food 

intake was reduced compared to saline controls. These results suggest that GLP-1 

interacts with nutrient-based signals from the stomach. The results furthermore 

indicate that hunger ratings are more sensitive predictors of intake when the stomach 

is relatively full than when it is almost empty. We infer that GLP-1 is an important 

satiety factor interacting with other regulatory circuits to control food intake and 

satiety. 
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Abstract 
 

The control of food intake and satiety requires a coordinated interplay. Oral protein 

and duodenal fat inhibit food intake and induce satiety, but their interactive potential 

is unclear. Our aim was therefore to investigate the interactions between an oral 

protein preload and intraduodenal (ID) fat on food intake and satiety feelings. Twenty 

healthy male volunteers, were studied in a randomized, double-blind, 4-period 

crossover design. On each study day, subjects underwent one of the following 

treatments: a) water preload plus ID saline perfusion; b) water preload plus ID fat 

perfusion; c) protein preload plus ID saline perfusion; d) protein preload plus ID fat 

perfusion. Subjects were free to eat and drink as much as they wished. An oral 

protein preload significantly reduced caloric intake (19%, p < 0.01). The simultaneous 

administration of an oral protein preload and ID fat did not result in a positive 

synergistic effect with respect to caloric consumption, rejecting the initial hypothesis 

that the two nutrients exert a positive synergistic effect on food intake. An oral protein 

preload but not ID fat altered the feelings of hunger and fullness. These data indicate 

that the satiety effect of an oral protein preload is not amplified by ID fat: indeed, the 

effect of a protein preload does not seem to be mediated by cholecystokinin (CCK), 

glucagon-like peptide-1 (GLP-1) or peptide YY (PYY). Much more information is 

necessary to understand the basic physiological mechanisms that control food intake 

and satiety. 

 

 

Key words: eating behavior; gastrointestinal satiety signals 
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Introduction 
 

Obesity and its associated complications are a significant health problem in 

industrialized countries. By current estimates, one-third of US adults are obese and 

another third are overweight (13). Similar trends can be seen worldwide and there is 

no sign that this trend is abating. Obesity is a major risk factor for various diseases 

such as type II diabetes, cardiovascular diseases, stroke and several types of cancer 

(breast cancer, colon cancer) (18). Several systems seem to be involved in the 

regulation of bodyweight; one of them is primarily concerned with short-term 

regulation of food intake, i.e. how often and how much is eaten on a given day. Over 

the past years numerous components of this regulatory network have been identified 

and the gastrointestinal (GI) tract has been found to be a major player. The close 

relationship between the GI system and the brain in regulating food intake and satiety 

requires a coordinated interplay. However, little is known about the interaction 

between different physiological signals and processes that control food intake and 

satiety in humans. 

On the basis of animal experiments, it is assumed that food intake is suppressed by 

stimulation of specific receptors within the GI tract. Inspired by this hypothesis, Welch 

et al. observed some 20 years ago that a lipid emulsion infused into the ileum 

reduced food intake in healthy volunteers, but eating habits were not influenced by 

an intravenous administration of a similar fatty emulsion (23). In follow-up studies, we 

and others extended these observations by documenting a satiating effect of 

duodenal fat perfusions with the following key elements: 1) decreased food 

consumption, 2) decreased feelings of hunger, and 3) increased plasma 

cholecystokinin (CCK) release (17). Additional effects of duodenal lipid infusion 

include early fullness and a delay in gastric emptying (6). Other gastrointestinal 

peptides that have been associated with nutrient stimulated inhibition of food intake 

include glucagon-like peptide-1 (GLP-1) and peptide YY (PYY3-36) (3, 11). 

Nevertheless, the interactions between different macronutrients in the regulation of 

appetite and food intake have hardly been explored. In general, protein as an oral 

preload is considered to be the most satiating component, followed by fat (8). In 

humans, the interactions between protein and fat have not been investigated. 

The present study is thus designed to further understand the potential interaction 

between protein and fat in regulating food intake in humans. We were particularly 
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interested to see whether GLP-1 and PYY are associated with this interaction. The 

aim of this study was to better understand the regulation of food intake in humans by 

exploring the interaction of the stomach and the small intestine. An oral protein 

preload was given to stimulate gastric signals, together with intraduodenal (ID) fat 

perfusion, which should trigger intestinal signals (CCK, GLP-1, PYY). 

 

 

Methods 
 

Overview 

A randomized, double-blind, four-period, Latin square design was carried out in 20 

healthy, paid male volunteers. Each participant underwent tests on four experimental 

days, separated by at least 1 week. On each experimental day, the intake of a 

standardized meal with related variables was measured. A continuous ID perfusion of 

either fat or saline (control) was given throughout the entire experiment. Forty 

minutes after starting the respective ID perfusion, an oral preload of either 400 ml of 

water or 400 ml of protein shake was given. After an additional 20 min, subjects were 

invited to eat and drink as much as they wished. The experimental design is shown in 

Figure 7.3.1. 

 

 

 

Figure 7.3.1: Experimental design of study. ID, intraduodenal; VAS, Visual Analogue Scale. 
 

 

Subjects 

Each subject gave written informed consent for the study. The protocol was approved 

by the Human Ethics Committee of the University Hospital in Basel. Before 

 - 119 -



 Projects 

acceptance, each participant was required to complete a medical interview and 

received a full physical examination. Inclusion criteria were:  

8) BMI within 15% of desirable weight for height 

9) Age between 18-45 years 

10) Non-smokers 

11) No active medical problems 

12) Taking no medication 

13) No allergies including food allergies 

14) No history of GI disorders or weight problems 

 

Twenty male subjects completed the study (mean age 26.7 ± 4.9 years, range 21-43 

years; BMI 22.2 ± 1.3 kg/ m2 , range 20.1-24.5 kg/ m2). 

 

Experimental procedure 

Four treatments, separated by at least 7 days, were randomly performed in each 

subject. Shortly before each experiment, a radiopaque polyvinyl feeding tube 

(external diameter: 8 French) with an opening at the tip of the tube was inserted 

through the nose into the duodenum. This procedure allowed subjects to eat and 

drink with a minimum amount of discomfort from the tube. After placement, the 

position of the tube was located fluoroscopically and the tip of the tube was 

positioned 100 cm distally to the teeth. It was firmly attached to the skin behind the 

ear to prevent further progression of the tube during the experiment. 

On the day of the experiment, each subject ate a light breakfast (if this was his 

normal habit), but no snacks were allowed after 8 AM. At noon, after insertion of a 

catheter into a forearm vein for phlebotomy, the experiment was started with a first 

continuous perfusion. The treatments were identical in design except for the ID 

perfusions and the oral preloads. 

The first treatment consisted of an ID perfusion of saline for the duration of the 

experiment. Forty minutes after starting the perfusion, an preload of 400 ml of water 

was given orally. After an additional twenty min, subjects were invited to eat and drink 

as much as they wished. The second treatment was similar: ID saline was given 

throughout the whole experiment, but 400 ml of an oral protein shake was given 

instead of water. The third and fourth experiments used ID fat (corn seed oil) 

throughout the entire experiment instead of saline, combined with either water or 
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protein shake as respective preloads. A perfusion rate of 0.375 ml/min for a total of 

120 min (load 41 g of fat; total energy content: 371 kcal) was chosen from previous 

experiments (5, 23). 

The preload used in this study was based on experiments performed by Matzinger et 

al. (16). The shake was made of protein mixed with water to equal a total of 400 ml. 

The shake contained the following nutrients: 52.7 g milk protein, 0.29 g 

carbohydrates, 0.58 g fat, 0.05% aspartam and 1.3% vanilla flavor (total energy 

content: 218 kcal). 

Twenty minutes after the preload, a standard meal was presented to the subjects, 

who were then invited to eat and drink as much as they wished for 60 min. The meal 

consisted of 1) orange juice, 2) ham sandwiches (72 g wheat bread, 10 g butter, and 

25 g ham) and 3) chocolate pudding. The composition of the test meal with its 

corresponding nutritive values is listed in Table 7.3.1. Non-sparkling water could be 

taken during the meal as a non-caloric beverage. The order of food intake had to 

follow the above schedule. To reduce the participants` awareness of the amount of 

food eaten, food was presented in small samples and in excess. The ID fat perfusion 

solution was filled in a black syringe which made it indistinguishable in appearance 

from the control solution (saline), and the person in charge of the experiments was 

unaware of the respective treatment, thereby making it possible to deliver treatments 

in a double-blind fashion. The amount of food eaten, the volume of fluid imbibed, and 

the time for each subject to complete the meal were quantified. From these 

observations, the total calorie intake could be calculated. Before, during, and after 

the preload, blood was drawn at 20 min intervals for plasma CCK, GLP-1 and PYY 

determinations in EDTA-coated tubes (6 μmol/l) containing aprotinin (500 KIU/ml 

blood). Plasma samples were kept frozen at –20°C until analysis. 

After the start of the perfusion, subjects scored their subjective feelings for hunger 

and fullness at 15 min intervals for the duration of each experiment. A visual analog 

scale (VAS) that ranged from 1 through 10 indicated their respective scores on a 

questionnaire. The scale and scores have previously been designed and described in 

detail by Drewe et al. (5) and Welch et al. (23). In brief, a score of zero for hunger 

indicated that the subject was not hungry at all, two indicated “slightly hungry”, five 

indicated “moderately hungry”, eight indicated “very hungry”, and 10 indicated 

“absolutely ravenous”. The score for fullness was similar. The study was finished 60 

min after meal start. 
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Table 7.3.1: Composition of test meal with corresponding nutritive values 

Nutrients Carbohydrates (g) Protein (g) Fat (g) Energy (kcal) 

Orange juice  
(100ml) 10 <1 0 43 

Ham sandwich 
(100g) 36 5 9 274 

Chocolate pudding 
(100g) 20 4 4 132 

 

 

Biochemical analysis 

Plasma immunoreactive CCK concentrations were measured by a sensitive 

radioimmunoassay (RIA) based on an antiserum against CCK-8. It has a negligible 

cross-reactivity to gastrin. Plasma samples were extracted with ethanol. The 

detection limit of the assay was 0.3 pmol/l plasma using CCK-8 as a standard. 

Details of the assay have already been described (10). GLP-1 (bioactive form) 

immunoreactivity was measured as previously described (9). The antiserum is 

specific for GLP-1 and does not cross-react with any other members of the glucagon 

family of peptides. The detection limit of the assay was 3 pmol/l. Before the RIA, 

plasma samples were extracted with ethanol. 

Total PYY concentrations were measured by a sensitive RIA based on an antiserum 

against PYY 1-36 and 3-36. The lowest level of PYY which could be detected by this 

assay was 10 pg/ml when using a 100 μl sample size. There is no cross-reactivity 

between the antiserum and other members of the glucagon family of peptides. 

 

Statistical analysis 

The power calculations of this study are based on previous studies. The expected 

reduction of food intake (kcal) by ID fat was assumed to be 12% compared to the 

control treatment (water preload and ID saline), whereas the expected reduction of 

food intake in response to a protein preload was assumed to be 20%. Accepting a 

significance level of 95% and a power of 80% the required sample size had to be at 

least 18 subjects. 

The amount of food eaten (g) and the amount of fluid drunk (ml), including the 

corresponding energy intake (kcal), were compared between the treatments by 

analysis of variance (ANOVA). In case of significance, ANOVA was followed by 
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multiple paired t-tests with Bonferroni correction. Plasma hormone data were 

evaluated by calculating the area under the plasma concentration/time curve (AUC). 

AUC was calculated by a linear trapezoidal rule from T 0 to 80 min. Hormone data 

were analyzed by ANOVA. If significant differences were detected, ANOVA was 

followed by a paired t-test with Bonferroni correction. Differences in scores for hunger 

and fullness were obtained by subtracting the feelings at 60 min from the baseline 

value. The differences between the treatments were compared using the same 

statistical procedures described above. 

 

 

Results 
 

All subjects tolerated the study procedures well. None of the volunteers experienced 

any side effects such as nausea. 

 

Food Intake 

The amount of food eaten and the corresponding caloric intake were both reduced 

after perfusion of fat into the duodenum (Table 7.3.2). Indeed, when compared to the 

control treatment, 15 of 20 subjects ate less and consumed fewer calories with fat 

perfusion, but these effects did not statistically differ from controls. When ID fat was 

given with a water preload, the reduction in the amount of food eaten was 13%, 

resulting in an 11% reduction in caloric intake compared to the control experiment (ID 

saline and water preload). Fluid intake was not affected by ID fat, but eating time was 

reduced by 12%. An oral protein shake given in combination with ID saline perfusion 

significantly reduced the amount of food eaten (20%), with a corresponding 19% 

reduced caloric intake compared to the control experiment (p < 0.01 and p < 0.01, 

respectively). Fluid intake was not significantly affected, but eating time was reduced 

(p < 0.05). Finally, the administration of ID fat plus an oral protein shake preload 

resulted in the strongest reduction in the amount of food consumed (29%) and 

reduced caloric intake (27%). The reduction in food intake and caloric consumption 

was, however, neither significantly different from the combination protein shake 

preload plus saline ID perfusion nor from the combination water preload plus ID fat. 

Fluid intake was lowest with the combination of a protein preload plus ID fat, but the 

difference was only significant in comparison to the control treatment (water preload 
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with ID saline) (p < 0.01). The decrease in food and fluid intake after a protein 

preload and ID fat was accompanied by a significantly reduced eating time (Table 

7.3.2, p < 0.01). 

 

 
Table 7.3.2: Effect of ID saline or ID fat together with a preload of either water or a protein shake on 
eating behavior in 20 healthy male subjects. 
Treatment: 
Preload/ID 
perfusion 

Food Intake (g) Calories (kcal) Eating time (min) Volume imbibed (ml)

a) Water/saline 470 ± 27 1243±74 26±2 361±44 
b) Water/fat 408 ± 30 1100±78 23±2 310±40 
c) Protein/saline 376±39† 1013±112† 21±2* 332±50 
d) Protein/fat 334±34‡ 906±102‡ 19±2† 263±31†

Data are means ± SE. ID, intraduodenal. *= p<0.05, †= p<0.01, ‡= p<0.001, all vs. control 
(water/saline). Analyzed by ANOVA followed by multiple paired t-tests with Bonferroni correction. 
 

 

To further analyze potential interactions, the following contrasts were calculated: 

water/saline – protein/saline – (water/fat – protein/fat). The data presented in Table 

7.3.3 clearly indicate that the disparity between water/ID saline and protein shake 

plus ID saline on the one hand, and that between water/ID fat and protein shake plus 

ID fat on the other, showed no significant difference either for the amount of food 

eaten and the resulting caloric intake or for the amount of fluid imbibed. 

 

 
Table 7.3.3: Effect of treatments on food parameters. 
Parameter Food Intake (g) Calories (kcal) Volume imbibed (ml) 
Results 20 ± 36 35 ± 81 -18 ± 41 
t-value 0.55 0.43 0.44 
p-value 0.59 0.67 0.67 
Data are means ± SE. Intrasubject differences between treatments were calculated by the formula: 
water/ID saline – protein/ID saline – (water/ID fat – protein/ID fat). Differences were analyzed by the 
paired t-test. 
 

 

We also analyzed whether the potential interactions between the oral protein preload 

and ID fat were additive or positive/negative synergistic: the measured value from the 

combined treatment (the delta between protein preload plus ID fat and control) was 

compared to the calculated value of both treatments alone (the sum of the deltas 

between protein preload and control and ID fat and control). The data are presented 

in Table 7.3.4. 
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Table 7.3.4: Comparison of the mean (± SE) difference in calorie intake from the combined treatment 
of protein preload and ID fat with the calculated values of both treatments when given alone. 

Parameter Combined treatment Treatments given alone 

Calories [kcal] 337 ± 74 372 ± 94 
Data are mean ± SE. The difference between the measured value from the combined treatment and 
the calculated value of both treatments alone was calculated by the formula: (water/ID saline – 
protein/ID fat) – [(water/ID saline – protein/ID saline) + (water/ID saline – water/ID fat)]. 
 

 

Eating behavior 

The protein preload significantly influenced the mean VAS (Figures 7.3.2a and 

7.3.2b). Subjects experienced a reduced degree of hunger and a concomitant 

increased feeling of fullness in the premeal period with administration of the protein 

preload. 

 

 
Figure 7.3.2a: Subjective sensations for fullness experienced by 20 healthy male subjects before and 
after food ingestion during ID perfusion of saline (Sal) or fat. Twenty minutes before food consumption 
volunteers received a preload of either water or protein (400 ml). Results are expressed as means +/- 
SE. * = p<0.01, all vs. control (water/saline). Analyzed by ANOVA followed by multiple paired t-tests 
with Bonferroni correction. 
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Figure 7.3.2b: Subjective sensations for hunger experienced by 20 healthy male subjects before and 
after food ingestion during ID perfusion of saline (Sal) or fat. Twenty minutes before food consumption 
volunteers received a preload of either water or protein (400 ml). Results are expressed as means +/- 
SE. * = p<0.01, all vs. control (water/saline). Analyzed by ANOVA followed by multiple paired t-tests 
with Bonferroni correction. 
 

 

When we compared baseline scores with 60 min values, the difference reached 

statistical significance (Table 7.3.5). Subjects felt less hungry and fuller with the 

protein preload compared to ID saline or fat. Fat perfusion alone to the duodenum 

had no significant effect; furthermore, the combination of a protein preload plus ID fat 

was not more effective than protein preload plus ID saline. These data indicate that 

the protein preload was largely responsible for the observations. 

 

 
Table 7.3.5: Baseline and 60 min scores after ID saline or fat with a preload of water or protein in 20 
healthy male subjects. 
Fullness Water/saline Water/fat Protein/saline† Protein/fat* 
Baseline 1.6 ± 0.4 1.1 ± 0.3 1.7 ± 0.3 1.2 ± 0.3 
60min 2.2 ± 0.5 2.5 ± 0.4 4.4 ± 0.5 3.5 ± 0.6 
     
Hunger Water/saline Water/fat Protein/saline* Protein/fat‡

Baseline 7.5 ± 0.5 8.0 ± 0.3 7.8 ± 0.3 8.2 ± 0.3 
60min 7.9 ± 0.5 7.4 ± 0.4 6.1 ± 0.5 6.1 ± 0.6 
Data are mean ± SE. *p < 0.05, †p < 0.01, ‡p < 0.001, all vs. control (water/saline). Analyzed by 
ANOVA followed by multiple paired t-tests with Bonferroni correction. 
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Plasma Hormones 

During the control treatment (water preload plus ID saline), plasma hormone 

responses (CCK, PYY and GLP-1) remained stable in the premeal period (Figures 

7.3.3a and 7.3.3b, data for CCK not shown).  

 

 
Figure 7.3.3a: GLP-1 plasma responses to ID perfusion of saline (Sal) or fat together with a preload of 
water or protein shake. Results are expressed as means +/- SE. 
 

 

 
Figure 7.3.3b: PYY plasma responses to ID perfusion of saline (Sal) or fat together with a preload of 
water or protein shake. Results are expressed as means +/- SE. 
 

 

 - 127 -



 Projects 

The protein preload (400 ml) did not stimulate plasma CCK, PYY or GLP-1 

concentrations. With the fat ID perfusion, PYY and GLP-1 concentrations slightly 

increased, but not significantly (Figures 7.3.3a and 7.3.3b). However, the ID fat 

perfusion did evoke a significant increase (p < 0.05) in plasma CCK levels (Figure 

7.3.4).  

 

 

 
Figure 7.3.4: Area under plasma concentration/time curve (AUC) plasma CCK responses to ID 
perfusion of saline (Sal) or fat together with a preload of water or protein shake. Results are expressed 
as means + SE. * = p<0.05. Significant difference between control (water/saline) and ID fat plus water 
preload. Significant difference between control and ID fat plus protein preload and between ID saline 
plus protein preload and ID fat plus protein preload. Analyzed by ANOVA followed by multiple paired t-
tests with Bonferroni correction. 
 

 

Discussion 
 

In the present study we have examined the interactions evoked by an oral protein 

preload with duodenal fat perfusion on food intake and appetite sensations in healthy 

male subjects. 

The role of ID fat in initiating short-term satiation was first extensively explored in 

animals. On the basis of these observations, it was assumed that food intake is 

suppressed by stimulation of specific receptors within the GI tract. Inspired by this 

hypothesis, Welch et al. (23) observed that the infusion of a lipid emulsion into the 

ileum reduced food intake in healthy volunteers. Studies from our laboratory (15) 

have confirmed these findings as we could show that a fat perfusion to the 
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duodenum significantly reduced food intake compared to an ID saline perfusion. In 

the same study, it could also be shown that the inhibition of food intake in response 

to intestinal lipid was mediated by CCK. In the present study, ID fat perfusion alone 

also reduced the amount of food eaten (13% compared to placebo) and the total 

caloric intake (11% compared to placebo), but the reduction did not reach statistical 

significance. Although the design of the present study was similar to previous studies 

with respect to fat dose, experimental design and duration of fat perfusion, the 

variability of the individual responses to ID fat was greater than in previous studies 

and the reduction of food intake did not reach statistical significance. Fifteen 

volunteers ate less when ID fat was perfused (water as preload) compared to the 

control treatment, but the five remaining volunteers ate less under placebo conditions 

compared to a water preload and ID fat perfusion. Due to these results it can be 

speculated that certain individuals have a reduced sensation to ID fat. 

It is well-established that, among all macronutrients, protein is more satiating than 

carbohydrate or fat as oral preloads (12). Several short-term studies have been done 

to examine the satiating effect of oral protein preloads in healthy human volunteers 

(4, 12, 19, 20, 22). These various studies compared a variety of nutrient preloads and 

examined the effect of amino acids given intraduodenally (2), but none has examined 

the interaction between an oral protein preload and ID fat. Our main interest was the 

investigation of potential interactions between gastric satiety signals induced by the 

protein shake and satiety signals induced by ID fat. Both macronutrients, when given 

alone, can reduce food intake and trigger satiety, but do they exert additive or 

synergistic effects when combined? We have previously seen that a nutrient-based 

preload interacts with ID fat (17), whereas gastric distension induced by a non-

nutrient based distension with barostat did not produce such an effect (unpublished 

data). When we investigated the interaction of an oral carbohydrate-based preload in 

combination with ID fat, a synergistic inhibitory effect was observed. From these 

results we inferred that ID fat interacts with gastric signals to regulate food intake. 

The results of the present study illustrate that an oral protein preload with ID fat or ID 

saline reduced the amount of food eaten and the total caloric intake to a similar 

extent compared to the control treatment. There was no statistically significant 

difference between the two experimental conditions protein preload/ID saline and 

protein preload/ID fat. Further analyzing the data, the measured value from the 

combined treatment (the delta between protein preload plus ID fat and control) did 
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not differ from the calculated value of both treatments alone (the sum of the deltas 

between protein preload and control and ID fat and control). This result implies that 

the simultaneous administration of an oral protein preload and ID fat resulted in no 

synergistic reduction in caloric consumption, thereby rejecting the hypothesis that the 

two nutrients exert a positive synergistic effect on food intake. The potential 

interaction between an oral protein preload and ID fat seems to be additive. These 

observations have been made with one single dose of ID fat and oral protein. 

Different doses of ID fat and/or different amounts of a protein preload could show 

differing results with respect to potential interactions. 

Two observations were unexpected: 1) the fact that the reduction of food intake 

caused by ID fat did not reach statistical significance and 2) that the interaction 

between an oral protein preload and ID fat seems to be additive. There are several 

possible explanations for these unexpected observations, and we will consider them 

with their relative limitations. One potential limitation is the time interval between the 

preload and the test meal. Gastric emptying is a major determinant in the regulation 

of food intake (7, 8, 17). Perfusion of fat to the small intestine has been shown to 

retard gastric emptying (7, 8). The rate of gastric emptying of the oral preload could 

be relevant, if the satiety effects induced by the preload are mediated by intestinal 

rather than gastric mechanisms. The stomach would therefore be fuller after the 

protein-rich preload with fat perfusion compared to the treatment with water preload 

plus ID saline perfusion. On the other hand, if the oral protein preload activates 

intestinal mechanisms rather than gastric signals, a delay in gastric emptying would 

retard activation of the intestinal mechanisms. Our initial hypothesis was based on 

the assumption that the oral preload would stimulate gastric signals, which would be 

synergistic to the intestinal mechanisms induced by fat. The results clearly illustrate 

that this is not the case. Another potential problem is the difference in taste between 

the oral protein preload and the water preload. Orosensory differences can affect 

eating behavior. This could have been avoided by a direct intragastric infusion of the 

preload, but at the expense of additional discomfort for the volunteers as this would 

have required a second tube. 

ID fat stimulates the secretion of a number of gastrointestinal hormones, some of 

which are associated with the regulation of food intake. In the present study we 

measured the increase in plasma concentrations of the satiety peptides, CCK, GLP-1 

and PYY. All three peptides have been shown to modulate short-term control of food 
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intake during a test meal intake. Here we observed a significant increase in plasma 

CCK after ID fat, confirming previous observations. On the other hand, no significant 

changes in plasma GLP-1 or plasma PYY concentrations occurred in the premeal 

period. GLP-1 is mainly stimulated by carbohydrates (14, 21) and less so by other 

macronutrients. 

Feinle and coworkers (6, 7) have suggested that GLP-1 plasma levels rise after ID 

fat, but these findings could not be confirmed in the present study: a small, but non-

significant, increase in GLP-1 secretion could be seen after 60 min of duodenal fat 

perfusion. It is conceivable that the 60 min perfusion of fat used in the present study 

was too short to induce a significant increase in GLP-1 release. On the other hand, 

the release of PYY is clearly dependent on the caloric load and on duodenal fat. The 

amount of fat delivered to the small intestine seems to be a crucial factor, as small 

loads of calories or fat are not associated with significant changes in plasma PYY 

concentrations (1). In the present study we could not detect any significant change in 

plasma PYY in response to the small duodenal fat load given. This finding concurs 

with previous observations investigating PYY responses to various types of nutrients 

(1). Indeed, the present study is one of the first attempts in humans investigating the 

effect of intraduodenal fat administration on the secretion of PYY. PYY is 

characteristically released in proportion to both the caloric content of a meal and its 

energy source composition. Increasing ingested amounts of an identical meal lead to 

proportionally increased plasma levels of PYY (1). With isocaloric meals consisting 

exclusively of either fat, carbohydrates, or proteins, the highest levels of plasma PYY 

were detected after the fat meal, followed by the carbohydrate meal, while very little 

PYY was noted with the protein meal (1). Under the present experimental conditions, 

neither ID fat perfusion nor the protein meal were able to stimulate significant 

amounts of PYY, indicating that the caloric load of both macronutrients was too small 

to induce PYY release. Data from our laboratory suggest that mixed meals with less 

than 500 kcalories do not stimulate PYY secretion (C Beglinger and G Gamboni, 

unpublished observations). Taken together, the plasma hormone data imply that the 

inhibitory effects of the oral protein preload on food intake and appetite sensation are 

not mediated by changes in circulating plasma hormone concentrations. 

Furthermore, the effects of duodenal fat are not mediated by changes in plasma 

GLP-1 and/or plasma PYY levels, but largely dependent on CCK release. These 

observations are in agreement with our previous findings: the reduction of food intake 
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induced by ID fat plus a liquid shake was reversed by administration of a CCK-A 

receptor antagonist (15, 17) suggesting that CCK is indeed the mediator of this effect. 

To summarize the findings of the present study, we have observed that an oral 

protein preload significantly reduced caloric intake. The protein preload and ID fat in 

combination resulted in no additive reduction in calorie consumption, which means 

that protein and ID fat do not exhibit synergistic effects on food intake. As a 

consequence, the satiety effects of an oral protein preload are not amplified by ID fat. 

A protein preload triggers GI signals to induce satiety, but this effect does not seem 

to be mediated by CCK, GLP-1 or PYY. Much more information is necessary to 

understand the basic physiological mechanisms that control food intake and satiety. 
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Abstract 
 

Background and Aims: Studies in animals and humans suggest a role for peptide 

YY (PYY3-36) in regulating satiety. The physiological role of PYY3-36 has, however, not 

been investigated in detail. Methods: The present study was therefore designed to 

examine the PYY release in response to two meals differing in their calorie content 

and to relate the plasma levels to those obtained after exogenous infusion. In a 

second step, the effect of graded intravenous doses (0, 0.2, 0.4 and 0.8 pmol/kg per 

minute) of synthetic human PYY3-36 on food intake was investigated in healthy male 

volunteers in a double-blind, placebo-controlled fashion. Results: Plasma PYY 

concentrations rose in response to food intake reflecting the size of the calorie load. 

Graded PYY3-36 infusions resulted in a dose-dependent reduction in food intake 

(maximal inhibition 35%, p < 0.001 vs control) and a similar reduction in calorie intake 

(32%; p < 0.001). Fluid ingestion was also reduced by PYY (18% reduction, p < 

0.01). Nausea and fullness were the most common side effects produced by PYY, 

especially at the highest dose. Furthermore, subjects experienced less hunger and 

early fullness in the pre-meal period during PYY3-36 infusion at the highest dose (p < 

0.05). Conclusions: This study demonstrates that intravenous infusions of PYY3-36 

decreases spontaneous food intake; the inhibition is, however, only significant at 

pharmacological plasma concentrations. Whether PYY3-36 has a physiological role in 

the regulation of satiety in humans remains to be defined. 
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Introduction 

 

The World Health Organization has classified obesity as an epidemic. Obesity and its 

associated pathologic features are major causes of illness and death worldwide. In 

the United States, obesity accounts for about 300’000 deaths annually, and at current 

rates of increase it will supplant smoking as the primary cause of preventable death 

(1, 18). To date there have been few effective treatments for obesity, although 

surgery has been shown effective in certain patient populations. 

How do we decide when and how much to eat? Important advances have been made 

in the past 10 years in our understanding of the peripheral signals that regulate 

appetite and energy homeostasis (21-24). Several peptides synthesized and 

secreted within the gastrointestinal tract are known to modulate eating behavior: 

cholecystokinin, GLP-1, ghrelin and PYY . These peptides respond to nutrients within 

the gut and interact with specific receptors to modulate appetite (22). 

Peptide tyrosine-tyrosine (PYY) is one of these gut-derived hormones. Like 

proglucagon-derived peptides, PYY is synthesized and released from endocrine L-

cells from the distal gut in response to food consumption (2, 3). Fat is a strong 

stimulus for PYY release, whereas intravenously applied lipids have no effect on 

circulating PYY concentrations. PYY is converted into PYY3-36 by the enzyme 

dipeptidyl peptidase IV (4). Receptors that mediate the effects of PYY belong to the 

NPY receptor family and include Y1, Y2, Y3, Y4, and Y5 (4). Once PYY3-36 is formed, 

it binds with high affinity to the Y2 receptor. Recently, the effect of the truncated form 

of PYY, PYY3-36, on appetite and food intake has been reported (5, 6). Intravenous 

infusion of a single dose of PYY3-36 reduced appetite and food consumption by > 30% 

in lean and obese subjects (5). The authors also reported that PYY3-36, when injected 

into rodents, dampened appetite for 12 hours or more (6). The animal results were 

recently questioned, as several groups were unable to reproduce these effects (11). 

A dose response curve to increasing amounts of PYY3-36 on food intake in humans 

has, however, not been investigated before. To more fully characterize the potential 

appetite reducing effects of PYY3-36, the present study was designed to investigate 

the effects of graded intravenous infusions of synthetic human PYY3-36 on food 

intake, meal duration, satiety and fullness feelings in healthy male subjects. The 

plasma concentrations achieved after exogenous infusion were then compared to 
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levels obtained after meal intake in order to test whether the appetite inhibiting 

effects occurred at physiological plasma concentrations. 

 

 

Materials and Methods 

 

Subjects 

28 healthy subjects aged 23.6 ± 0.5 years participated in the study. The weight of all 

subjects was within normal range considering their age, sex, and height. 

Each subject gave written informed consent for the study. The protocols were 

approved by the Human Ethical Research Committee of the University Hospital of 

Basel. Before acceptance, each participant was required to complete a medical 

interview, receive a full physical examination, and participate in an initial laboratory 

screening. No one was taking any medication or had a history of food allergies or 

dietary restrictions. 

 

Part I: Plasma Peptide YY release after meal intake 

Fasting and postprandial blood samples were taken from 12 healthy subjects aged 

20-25 years. On different days and in random order subjects had blood samples 

taken after two different test meal stimuli: a light lunch (500 kcal) or a large lunch 

(1500 kcal); the meals were identical in their composition, but differed in their calorie 

content: orange juice as an appetizer (430 kcal per l); ham sandwiches (68 g bread, 

10 or 20 g butter, 25 g ham; 284 or 357 kcal per sandwich) and chocolate pudding 

(133 kcal per 100 g). In each case the subjects had fasted for at least 6 hours before 

sampling. 

 

Part II: Dose response curve to PYY3-36

Four treatments, separated by at least 7 days, were performed in 16 male subjects. 

The treatments were identical in design (Figure 7.4.1) except for the intravenous 

infusion (isotonic saline as placebo control or one dose of PYY3-36); the order of the 

experiments was randomized. An identical standard meal was presented to the 

subjects on each occasion. The meal consisted of a) orange juice as an appetizer 

(430 kcal per l); ham sandwiches (68 g bread, 10 g butter, 25 g ham; 284 kcal per 

sandwich) and more orange juice and chocolate pudding (133 kcal per 100 g); coffee 
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with cream and sugar (coffee could be sweetened if desired; therefore both cream 

and sugar were optional: 12 g cream = 20 kcal, 4.5 sugar = 18 kcal). No additional 

food or fluid was allowed during the study. At the end of the experiment, the amount 

of food eaten and the amount of fluid ingested was measured by absolute weight 

from which total calorie intake (food and fluid intake) was calculated. 

 

 

 
Figure 7.4.1: Daily time course of procedures for studies with exogenous PYY3-36. 
 

 

Each subject was free to eat and drink as much as he wished, but the order of food 

intake had to follow the above schedule. To reduce participant’s awareness of the 

amount of food being provided, food was served in excess. 

On the day of the experiment, each subject ate breakfast if this was his normal 

custom, but no snacks were allowed after 8.00 am. At 12.00 noon, an intravenous 

infusion of saline or one dose of synthetic PYY3-36 (0.2, 0.4 or 0.8 pmol / kg per min, 

dissolved in isotonic saline containing 0.1% human serum albumin) was started and 

continued for the duration of each test. Infusions were delivered by ambulatory 

infusion pumps through a teflon catheter inserted into a forearm vein. Participants 

were able to sit, eat, stand, and walk comfortably while receiving infusions. At 60 

minutes after the start of the respective infusion, the test meal was presented and 

each participant was invited to eat and drink as much as he liked. 

Beginning at 12.00 noon, the subjects scored their subjective feelings of hunger and 

fullness at 15 minute intervals throughout the experiments using a visual analogue 

scale of 0-10 and indicated the scores on a questionnaire. The scales and scores 

were designed as previously described (12-14). For example, a score of 0 for hunger 

indicated the subject was not hungry at all, 2 indicated slightly hungry, 5 indicated 

moderately hungry, 8 indicated very hungry, and 10 indicated absolutely ravenous. 
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The quantity of food eaten and volume of fluid drunk was measured. The time for 

each subject to complete his meal was also measured. From these observations, the 

average rate of food and fluid intake as well as the calorie intake could be calculated. 

In the pre-meal period and after eating, blood was drawn in regular intervals in 

ethylenediaminetetraacetic acid (EDTA) tubes containing aprotinine (500 KIU / ml 

blood) for hormone determinations. Adverse effects were assessed by the attending 

physician through close observation of each subject; in addition, each participant was 

questioned after each experiment and after he had completed all tests whether he 

had experienced any adverse effects. 

 

Infusions 

The PYY3-36 infusions were prepared from a freeze-dried synthetic powder, PYY3-36, 

purchased from Bachem (Bubendorf, Switzerland). The peptide was dissolved in 

isotonic saline containing 0.5% human serum albumin, and prepared under aseptic 

conditions by the University of Basel Hospital Pharmacy. Aliquots of 50 µg/5 ml were 

stored at -20° C. Infusion solutions were prepared by diluting appropriate amounts of 

PYY3-36 with saline containing human serum albumin 0.1%. Control solutions 

contained albumin in saline alone; they were indistinguishable in appearance from 

PYY3-36 infusions. 

The person in charge of the experiments was unaware of the respective treatment 

thereby making it possible to deliver treatments in a double-blind fashion. 

 

Plasma Hormone Determinations 

Specimen Collection and Storage: Samples were collected on ice with tubes 

containing aprotinin at a final concentration of 500 KIU/ml of blood; they were 

processed as quickly as possible and kept on ice to retard the breakdown of PYY. 

Radioimmunoassay of PYY: PYY was measured with a commercially available kit 

(Linco Research Inc. St. Charles, Missouri, USA). The antibody, raised in guinea 

pigs, displays 100% cross-reactivity with human PYY1-36 and human PYY3-36, but 

no cross-reactivity with human pancreatic polypeptide, NPY and unrelated peptides 

such as leptin and ghrelin. 125I-PYY was used as a label; the labeled peptide was 

purified by HPLC (specific activity 302 µCi/µg). The lowest level of PYY that can be 

detected by this assay is 10 pg/ml when using a 100 µl plasma sample size. 
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Ghrelin was measured with a commercially available kit (Linco Research Inc. St. 

Charles, Missouri, USA). 

 

Statistical Analysis 

Data are presented as mean ± SEM unless stated otherwise. The amount of food 

eaten and the amount of fluid drunk, the corresponding energy intake, and the 

duration of meal consumption were compared between the four treatments by one-

way analysis of variance (ANOVA) using the general linear model (GLM) procedure 

of the SPSS software package. In the event of significant differences, ANOVA was 

followed by the Dunnett multi-comparison test for pair-wise comparisons. The same 

statistical procedure was used to analyse the results of PYY3-36 induced changes in 

plasma hormone concentrations using area under the curve (AUC) analysis. Scores 

for hunger and fullness were compared at the different time points before and after 

the meal between the different treatment using multiple paired t-tests with Bonferroni 

correction. 

 

 

Results 
 

Peptide YY in plasma after meal intake 

The mean fasting plasma PYY concentrations were 126 ± 6 pg/ml in 12 healthy 

subjects. After ingestion of the light lunch, a small, albeit significant (p<0.05) increase 

in plasma PYY concentration was observed (Figure 7.4.2). 
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Figure 7.4.2: Plasma PYY concentrations after ingestion of a light lunch (500 kcal) or a large lunch 
(1500 kcal) in 12 healthy subjects. Data are mean ± SEM.  
 

 

After ingestion of the large lunch, a marked and sustained increase in PYY levels 

was seen; the size of the postprandial PYY response clearly reflected the calorie load 

of the meal. The AUC of the postprandial PYY responses to the two meals is 

depicted in Figure 7.4.3. 

 

 
Figure 7.4.3: AUC over 120min of PYY measured in the plasma (pg/ml) in response to two different 
meals or to graded doses of intravenous PYY3-36 or placebo. Data are mean ± SEM. 
 

 

Effect of graded infusion of PYY3-36 on food intake 

Intravenous infusion of graded doses of synthetic human PYY3-36 dose-dependently 

reduced the amount of food eaten and the amount of calorie consumption (p < 0.001 
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and p < 0.01 respectively, Table 7.4.1). The maximal reduction in food consumption 

with the highest dose of PYY3-36 (0.8 pmol/kg per min) amounted to 35 % resulting in 

a decrease in calorie intake of 32 % (p < 0.001; Table 7.4.1). Fluid ingestion was also 

reduced by PYY3-36 (18% reduction, p < 0.01). Meal duration during PYY3-36 infusions 

were also dose-dependently decreased compared to those with saline infusion and 

reached statistical significance at the highest dose (p < 0.05). 

 

 
Table 7.4.1: Effect of graded doses of human PYY3-36 or saline (control) on eating behaviour in 16 
healthy male subjects (data are mean ± SEM). PYY3-36 doses are given in pmol/kg per minute. 
Treatment Control PYY3-36 

0.2 pmol/kg/min-1
PYY3-36 

0.4 pmol/kg/min-1
PYY3-36 

0.8 pmol/kg/min-1

Food quantity (g) 587 ± 36 531.0 ± 35* 516 ± 40* 384 ± 34*** 
Calorie intake (kcal) 1627 ± 97 1520 ± 95 1451 ± 101* 1107 ± 84*** 
Meal duration (min) 38 ± 3 35 ± 3 34 ± 3* 30 ± 3* 
Fluid intake (ml) 708 ± 57 748 ± 52 689 ± 48* 584 ± 45** 
* p < 0.05, ** p < 0.01, *** p < 0.001 vs control. 
 

 

Effect of PYY3-36 on eating behaviour 

No statistical differences were observed for hunger and fullness scores with the two 

lower doses of treatment, neither in the premeal period nor after meal intake (Figure 

7.4.4). The highest dose of PYY reduced hunger feelings in the premeal period 

(change in hunger scores form baseline (-60 min) to begin of meal intake (0 min): 1.6 

± 0.3 for PYY vs 0.7 ± 0.3 for saline control (p<0.05). 

 

 
Figure 7.4.4: Subjective sensations of hunger experienced by healthy male subjects before and after 
food intake during intravenous infusion of saline (control) or one dose (0.2, 0.4 or 0.8 pmol/kg per 
minute) of human PYY3-36. Results are expressed as mean ± SEM. N=16. 
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Effect of PYY3-36 on hormone levels 

Graded doses of exogenous PYY3-36 produced dose-dependent increases in plasma 

PYY3-36 concentrations (Figure 7.4.5). 

 

 

 
Figure 7.4.5: Plasma PYY (pg/ml) in response to graded doses of intravenous PYY3-36 or placebo. 
Data are mean ± SEM. 
 

 

An excellent correlation (R=0.999, p< 0.001) was obtained between the infused dose 

and the measured plasma concentrations (Figure 7.4.6). The PYY concentrations 

observed after the lowest dose of peptide infusion produced plasma levels within the 

postprandial range; they can therefore be considered physiological concentrations. 

The higher two doses of exogenous PYY3-36 produced plasma levels which are 

clearly above the postprandial range; we infer from these data that they are 

pharmacological rather than physiological plasma concentrations. 
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Figure 7.4.6: Correlation between graded doses of exogenous human PYY3-36 and plasma PYY 
concentrations (expressed as AUC). Data are mean ± SEM. 
 

Ghrelin levels increased throughout the pre-meal period on the day the subjects 

received saline and then fell postprandially 30 min after the meal began (Figure 

7.4.7). The lower two doses of PYY3-36 did not significantly change fasting and 

postprandial ghrelin concentrations (data not shown). The highest dose of PYY 

infusion, however, significantly (p<0.05) decreased ghrelin levels during the premeal 

period and reduced the early increase after the begin of meal intake (see Figure 

7.4.7). The area under the curve for ghrelin was 97677 ± 4637 pmol per 120 min/ml 

on the day subjects received saline and 84587 ± 5136 pmol per 120 min/ml on the 

day they received the highest dose of PYY3-36 (P<0.05). 

 

 
Figure 7.4.7: Ghrelin concentrations measured in plasma (ng/ml) in response to graded doses of 
intravenous PYY3-36  or placebo. Data are mean ± SEM. 
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Adverse events 

The most common adverse events after intravenous PYY3-36  were nausea, 

abdominal discomfort and sweating. The adverse events were clearly dose-

dependent and largely occurred with the highest dose of PYY3-36.  In one subject, the 

infusion had to be stopped prematurely (highest dose of PYY3-36) because of 

vomiting. The plasma concentrations leading to nausea were in the order of >300 

pg/ml (total PYY). This indicates a relatively narrow therapeutic range. All adverse 

events disappeared spontaneously within a few minutes without any specific 

treatment or after stopping the infusion. 

 

 

Discussion 
 

In animals, expression of Y2 receptors has been found in the hypothalamus, the 

medulla, pons, but not in the cortex (7, 9, 15). Furthermore, PYY immunoreactivity 

has been reported in the CNS, in the hypothalamus, the medulla and pons (9, 15, 

20). With the presence of Y2 receptors at sites where administration of exogenous 

PYY3-36 appears to cause satiety, one is faced with attempting to determine if the 

satiety effect of PYY3-36 is physiological, and if so, whether it is a major satiety factor. 

Recent data obtained in rodents and humans have provided experimental evidence 

that PYY3-36 can function as a mediator of food-induced satiety. Intra-arcuate injection 

of PYY3-36 reduced food intake in mice. In addition, the effects of PYY3-36 were 

abolished in Y2-/- mice. Intraperitoneal PYY3-36 reduced dark phase and fasting-

induced feeding in rodents (6). Repeated PYY3-36 administration reduced food intake 

and body weight gain. Finally, similar anorectic effects were seen in humans (4-6). 

These findings prompted the authors to suggest that PYY3-36 is a potent physiological 

regulator of satiety with a potential for therapeutic application. However, other 

laboratories were unable to reproduce the results in laboratory animals causing a 

controversy on the biological importance of PYY3-36 as a physiological satiety factor 

(11). A set of criteria has been defined in classical endocrinology for establishing a 

physiological endocrine action of a given molecule (10). According to these criteria, a 

physiological action of PYY3-36 has not yet been established and urgently requires 

further research. 
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The purpose of this study was therefore twofold: 1) hormone secretion: first, we 

studied the effect of two different calorie loads of an identical meal on PYY secretion 

in order to define the range of postprandial plasma PYY concentrations; 2) second, 

we constructed a dose response curve and examined the effect of graded doses of 

intravenous synthetic human PYY3-36 on eating behaviour and satiety in healthy male 

subjects in order to define the physiological dose of the peptide that reproduces the 

secretion pattern of the endogenous peptide that is associated with changes in food 

intake. In the following we will analyze our results according to these criteria. 

Secretion. PYY is synthesized and released by the L-cells in the distal small 

intestine (2). Although the specific stimuli for PYY secretion are unknown, the 

increases in plasma concentration of PYY after meals and the low concentrations in 

the fasting state are consistent with a satiety-inducing action. The circadian pattern of 

PYY secretion has, however, not been studied in humans in detail yet. The results of 

the present study confirm that only large meals are able to stimulate the release of 

larger amounts of PYY into the circulation, whereas a 500 kcal meal has minimal 

effects on postprandial hormone concentrations (2). Graded intravenous infusions of 

PYY3-36 increased plasma PYY concentrations 2-5 fold over fasting levels, indicating 

that only the lowest dose mimicked physiological PYY levels, whereas the upper two 

doses produced plasma levels which were clearly out of the physiological range. 

Physiological dose. The results of the study clearly illustrate that dose-dependent 

satiety effects can be induced by peripherally infused PYY3-36 in human subjects; the 

results support the hypothesis that exogenously administered PYY3-36 can suppress 

food intake in man. The lack of a specific PYY3-36 receptor antagonist that could be 

given to humans prevents us for the moment from deciding whether the effects 

produced by the exogenous administration of PYY3-36 (as used in this study) are true 

physiological effects. Comparison of the plasma concentrations seen after 

exogenous infusion to the levels seen after a 1500 kcal meal suggests, however, that 

the significant satiety effects of PYY3-36 were only seen at plasma concentrations, 

which were above those of a high calorie meal. Indeed, the pharmacological nature 

of the upper two doses is indicated by these observations, as a significant inhibitory 

effect on food parameters was only observed under these experimental conditions. 

Thus more work is required to determine if PYY3-36 meets the criterion for a fully 

coupled physiological hormonal effect. We infer that the results of this study 

represent a pharmacological rather than a physiological effect of PYY3-36. The early 
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reports form Batterham and coworkers (5, 6) used only one dose of peptide to induce 

satiation in healthy subjects and in obese people; the plasma concentrations 

observed in these experiments suggest that a pharmacological dose of PYY3-36 was 

infused. More important, the inhibition of feeding induced with these pharmacological 

doses was accompanied with subjective side effects in the present study, whereas 

the physiological dose (0.2 pmol/kg per min) was insufficient to reduce meal size or 

calorie intake. The results therefore indicate that under these experimental conditions 

PYY3-36 satiation does not meet the criterion for a physiological hormonal effect. 

Mechanism of action. The mechanism by which PYY3-36 inhibits food intake is not 

clear and could possibly be due to different actions. Is the effect directly mediated by 

binding to peripheral or central receptors or is it mediated through stimulation of other 

satiety factors? The question cannot be answered at the present time as a 

demonstration of a direct action of PYY3-36 would require experiments with a selective 

PYY3-36 receptor antagonist specifically blocking endogenous PYY3-36. Is the effect 

peripheral or mediated by central receptors? Does PYY3-36 act as a hormone and 

does it cross the blood-brain barrier? A direct central mechanism of PYY3-36 rather 

than a peripheral effect is derived from an experimental model of the blood brain 

barrier (16, 17, 19). These data suggest that PYY3-36 is selectively transported 

through the blood brain barrier. 

Does PYY3-36 inhibit food intake by stimulating the release of other peptides which 

are known to be involved in the regulation? In the present study we have measured 

the effect of PYY3-36 on plasma ghrelin concentrations. The results presented in this 

study confirm that ghrelin levels are decreased in response to high doses of PYY3-36 

in the premeal period (5). Plasma levels of ghrelin rise before a meal ingestion and 

administration of ghrelin increases food intake in humans suggesting that ghrelin has 

a role in the regulation of meal initiation (8, 25). The suppression of ghrelin levels 

seen with high doses of PYY suggest an interaction between these two regulatory 

circuits. Whether this interaction is a pharmacological effect or a true physiological 

action remains to be determined. 

In conclusion, we have shown that graded doses of human PYY3-36 reduce intake of 

food in nonobese, healthy male subjects. The effect is a pharmacological rather than 

a physiological action of the peptide. The mechanism of action has to be clarified. 

Further investigation is needed to define a potential physiologic role of PYY3-36 in the 

control of human food intake. Whether the peptide can emerge as a powerful 
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antiobesity drug remains to be seen; the present results suggest that the therapeutic 

window is rather narrow. 
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Chapter 8: Discussion and Outlook 
 

In the past three decades much insight has been gained into physiological processes 

that regulate food intake and appetite. Within this control circuit satiety peptides like 

CCK, GLP-1 and PYY have received a lot of attention. The information with respect 

to their mechanism of action and potential interactions between different 

physiological signals involved in the short-term regulation of satiety are still limited. 

The main interest of this thesis is focused on a further characterization of some of 

those signals; we were especially interested in the investigation of potential 

interactions between individual satiety factors. 

 

Previous study results had suggested that distension of the distal stomach could play 

a role in the generation of satiation (6, 9, 10). Therefore the first project (chapter 
7.1.) was designed to further understand the role of the gastric fundus and the 

antrum in triggering satiation in healthy male volunteers. In contrast to previous 

studies with a similar background but with serious methodological concerns, we 

chose a different approach (3, 4). The balloon was precisely positioned under 

fluoroscopic control and the barostat method was chosen to distend either the fundus 

or the antrum. 

When the fundus was distended, food intake was not reduced compared to the 

control treatment and the effect on satiety feelings was only short-lasting. This fact 

can explain that the subsequent food intake was not influenced by the balloon 

distension. Gastric distension seems to trigger satiety as long as mechanoreceptors 

in the stomach are stimulated; the short-lasting effect could indicate that the signals 

are transmitted via vagal afferent nerves to the CNS. 

The second part of this study was designed to examine the effect of antrum balloon 

distension (0, 300 ml) on subsequent food intake; in addition it was investigated 

whether ID fat could intensify the effect of distal gastric distension. Calorie intake was 

not changed neither with gastric distension alone nor in combination with ID fat. 

Feelings of hunger or fullness were unaltered compared to the control treatment, 

these results show that the volume of 300 ml was obviously too small to significantly 

influence satiety feelings. ID fat does not seem to intensify gastric satiety signals 

induced by pure mechanical distension of the stomach. 
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Finally, the satiety hormones CCK and PYY were measured. Neither fundus nor 

antrum distension altered CCK, respectively PYY plasma concentrations compared 

to placebo. This fact implies that signals induced by pure mechanical gastric 

distension are not mediated by CCK or PYY. During ID fat perfusion CCK and PYY 

plasma concentrations were significantly increased. The increase of CCK after ID fat 

confirmed previous study results (7). However, this study was one of the first which 

could show an increase of PYY after ID fat in humans. 

Based on these study results we infer that pure mechanical gastric distension of the 

fundus or the antrum is not a sufficient satiety signal to influence subsequent food 

intake. 

 

An interaction effect on food intake resulting from an intestinal and a gastric satiety 

signal has previously been explored for CCK, but not for GLP-1. It was therefore of 

interest to find out whether an interaction exists between a preload and i.v. GLP-1.  

In the second project (chapter 7.2.) GLP-1 was given i.v. in a dose which mimics 

physiological GLP-1 plasma concentrations and reduced calorie intake confirming 

previous study results (5, 12). One major observation of this study was the 

demonstration that a protein-containing preload together with i.v. GLP-1 enhanced 

the satiety-inducing effects of GLP-1 compared to a water preload plus infusion of 

GLP-1. This result provides strong evidence that GLP-1 interacts with gastric signals 

to modulate food intake and satiety in humans. 

We inferred that GLP-1 is an important satiety factor which interacts with other satiety 

signals in order to control food intake and satiety. However, it still remains unclear 

whether the satiety effects of GLP-1 are directly mediated through peripheral or 

central receptors or indirectly by releasing other satiety peptides. 

 

The third project (chapter 7.3.) was designed to further understand the potential 

interaction between protein and fat in regulating food intake in humans. From 

previous study results (7) we inferred that ID fat interacts with gastric signals to 

regulate food intake. In our study we were above all interested in exploring the 

interaction of the stomach and the small intestine and secondly we wanted to see 

whether GLP-1 and PYY are associated with this interaction. 

ID fat perfusion alone reduced the amount of food eaten and the total calorie intake, 

but the reduction did not reach statistical significance. Although the design of the 
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present study was similar to previous studies with respect to fat dose, experimental 

design and duration of fat perfusion, the variability of the individual responses to ID 

fat was greater than in previous studies and the reduction of food intake did not reach 

statistical significance. Due to these results it can be speculated that certain 

individuals have a reduced sensation to ID fat. The effects of ID fat on food intake do 

not seem to be mediated by changes in plasma GLP-1 or PYY levels, but they are 

largely dependent on CCK release, which is in agreement with previous findings (7). 

When subjects consumed an oral protein preload, calorie intake was significantly 

reduced compared to the control treatment. The increase of premeal plasma 

concentrations of GLP-1 and PYY did not differ compared to placebo. Therefore the 

inhibitory effect of oral protein on eating behavior is not mediated by changes in 

circulating plasma hormone levels. 

The simultaneous administration of an oral protein preload and ID fat did not show a 

synergistic reduction in calorie consumption, rejecting the hypothesis that oral protein 

and ID fat exert a positive synergistic effect. There are several explanations for this 

unexpected result: 1) the observations of this study have been made with one single 

dose of ID fat and oral protein. Different doses of ID fat and/or different amounts of a 

protein preload could show differing results with respect to potential interactions; 2) a 

potential limitation could be the time interval between the preload and the test meal. 

It was assumed that the satiety effects of the oral protein preload would mainly be 

mediated by gastric signals. Otherwise, if those effects would be mediated by 

intestinal signals, the delay in gastric emptying by fat must have been considered; 3) 

another important limitation of this study design was the difference in taste between 

the protein and the water preload. Orosensory differences can affect eating behavior. 

This could have been avoided by a direct intragastric infusion of the preload with a 

second tube, but an oral administration of the protein preload was chosen to keep the 

discomfort for the volunteers on a minimal level. 

 

Project 4 (chapter 7.4.) examined the physiological and the pharmacological role of 

PYY in regulating eating behavior. Due to human study results it was supposed that 

PYY (3-36) is a potent physiological regulator of satiety (1, 2) with a potential for 

therapeutic application. 

Because the physiological role of PYY in humans has not been investigated in detail, 

we first wanted to define a range of physiological PYY plasma levels after two meals 
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differing in their calorie content. The results showed that only large meals are able to 

stimulate the release of larger amounts of PYY, whereas a low-calorie meal has 

minimal effects on postprandial hormone plasma levels. 

In a second part we wanted to examine the effects of graded doses of i.v. PYY (3-36) 

on eating behavior in healthy human subjects. We found a dose-dependent satiety 

effect of i.v. applied PYY (3-36). These results support the hypothesis that 

exogenously administered PYY (3-36) is able to suppress food intake in humans. 

However, when the postprandial physiological levels of PYY after the high calorie 

meal are compared to those obtained after peripheral administration, it can be seen 

that the significant satiety effect of PYY (3-36) is only seen at plasma concentrations 

higher than those after a large meal. The smallest administered dose of PYY (3-36) 

did not significantly reduce food intake and showed PYY plasma levels in the same 

range as the meal stimulated concentrations. Due to these results we infer that the 

PYY satiety effects seen with the middle and the highest dose of exogenous  

PYY (3-36) is rather a pharmacological than a physiological effect. Due to 

methodological difficulties these suggestions are supported by the fact that total PYY 

and not only PYY (3-36) was measured; the difference between physiological PYY 

plasma concentrations and those obtained after exogenous administration of  

PYY (3-36) would therefore be even greater. It seems to be unlikely that PYY is a 

major physiological satiety factor, but still more information is necessary. 

Dose-dependent side effects of PYY (3-36) like nausea and vomiting could be 

observed after the middle and especially after the highest dose. PYY (3-36) seems to 

have a narrow therapeutic range, which could limit its therapeutic potential. 

 

 

Interactions between different satiety signals seem to be important in triggering 

satiety, but the mechanisms are difficult to detect and more research in this field is 

necessary. 

The development of more specific receptor antagonists of satiety peptides would be 

needed to further examine their mechanisms of action and their physiological role in 

the short-term regulation of food intake. A selective PYY (3-36) receptor antagonist 

could be useful to further analyze the mechanism by which PYY (3-36) inhibits food 

intake and it could help to answer the question whether PYY really is a physiological 

satiety factor. 
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It has become apparent, that redundant systems are active in the regulation of food 

intake. That means that a peptide may be replaced by another. However, not enough 

information is available with respect to these redundant systems. An additional 

problem is the role of interactions between different satiety signals, which have hardly 

been explored. One group has recently examined possible synergistic interactions 

between exendin-4 and PYY in mice and their findings suggest that administration of 

low doses of exendin-4 together with PYY (3-36) may increase the suppression of 

food intake (11). Further research in humans will be necessary. 

Another chance of future research lies in the field of therapeutic treatment of obesity. 

Nastech Pharmaceutical Company, to give an example, has developed a nasal spray 

with PYY (3-36) and has already initiated a phase I trial (8). However, one problem 

could be the narrow therapeutic window of PYY (3-36). It still has to be proved that 

PYY (3-36) really has the potential for therapeutic application. 
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