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Abstract

Risky economic decisions play an important role in everyone’s life. This dissertation

presents mathematical approaches to the analysis of these decisions. It discusses

how statistical measures can describe properties of choice options, and how these

properties can be used to describe the decision context. Also, this dissertation includes

a practical tutorial on a Bayesian approach to the hierarchical regression analysis in

management science. Therefore, the combined dissertation presents mathematical

and statistical tools in, and for better research of, decision making under risk.

The first manuscript proposes standardized covariance, a measure that can quan-

titatively describe the strength of the association and similarity between choice op-

tions’ outcomes. The standardized covariance can also describe how risky one option

is with respect to another. It can influence predictions of choice models. The second

manuscript shows experimentally how association measured with the standardized co-

variance can influence people’s choices. The third manuscript proposes applying the

expected shortfall of an option’s outcomes as a measure of risk in the standard risk-

value models. In an experiment, the risk-value shortfall model successfully predicted

people’s preference for options with higher expected value, lower variance and more

positively skewed distributions of outcomes, and outperformed competing models.

The fourth manuscript proposes a new version of a reinforcement learning model,

which can be applied in a social context. The proposed model can account for the

behavior of other people competing for a common pool resource. As experimentally

tested, the model could successfully predict human behavior and correlated with the

brain activity measured with an fMRI method.

The last manuscript outlines advantages of using Bayes factors instead of p-values

for interpretation of results from hierarchical regression analysis. As the results in the

manuscript show, the Bayesian approach and the standard null-hypothesis statistical

testing can lead to different conclusions.

5



General Introduction

”Mathematics is the queen of all sciences.”

Carl Friedrich Gauss

In this brief framework, I present a summary and discussion of my dissertation

titled Quantitative analysis of risky decision making in economic environments. This

dissertation applies mathematical tools and methods to the field of decision making

under risk. It shows how mathematical and statistical measures can be used to bet-

ter describe decision environments and how mathematical models can describe human

decision-making behavior and its underlying cognitive processes. Also, it describes

how statistical properties of numerical choice options, such as covariance and skew-

ness, influence people’s decisions. Additionally, it presents theoretical and practical

aspects (i.e., a tutorial) of applying Bayesian statistics in management science, to

conduct more accurate data analyses. Thus, this dissertation combines statistical,

mathematical and computational techniques used in, and for investigating, decision

making under risk.

Models of Economic Decision Making under Risk

People face risky decisions involving monetary consequences on an everyday basis.

For example, should one choose a well-paid job far from home, or a badly-paid job

in one’s home town? Which insurance provider should one choose to insure one’s

family? Should one buy real estate now, or should one wait to see if the price drops?

Should one invest in risky stocks, or rather choose safer, but less profitable bonds?

Every person faces similar questions during their lifetime. Therefore, understanding

how people make decisions is a valid and important research topic. Various models of

decision making can help us better understand the invisible cognitive decision process,
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which cannot be measured otherwise.

Standard economic theory of decision making (von Neumann & Morgenstern,

1944) assumes that people choose the option with the highest expected utility. How-

ever, many studies have shown that people do not always follow this rule (e.g. Gigeren-

zer & Goldstein, 1996; Kahneman & Tversky, 1979; Rieskamp, Busemeyer, & Mellers,

2006). Various theories of decision making have been proposed to explain how people

make decisions and what the cognitive processes underlying these decisions are. In

this section, I provide a brief overview of selected groups of models used in decision

making research, to which I will later refer in the article summaries. The choice of

models was motivated by the fact that different groups of models are sensitive to

different characteristics of the choice environment. Therefore, different models focus

on different properties of choice options and depending on the property of interest,

the models propose different process underlying the decision.

The group of fixed utility models consists of theories that assume that people

under- or overweight monetary values of their choices. Therefore, their expected gain

is expressed as an expected utility, rather than the expected value (von Neumann

& Morgenstern, 1944). This utility can be defined as a utility function u(.), where

a convex utility function for gains and a concave function for losses implies that

a person is risk averse, underweighting gains and overweighting losses. Opposite

shapes imply risk-loving decision makers. Further extensions of the expected utility

theory (von Neumann & Morgenstern, 1944), such as rank-dependent utility models

(Green & Jullien, 1989; Luce, 1990), assume that people order options’ outcomes

according to the probability of their occurence. The most prominent theory from

this group, prospect theory (Kahneman & Tversky, 1979), proposed that apart from

subjectively evaluating the options’ outcomes, people overweight low probabilities

of the occurrence of an outcome and underweight high probabilities. This can be

mathematically described with a probability weighting function. This group of models
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can explain how people respond to risk and provide explanation of how they value

monetary outcomes. However, it does not assume a context-dependent evaluation of

choice options.

Context-dependent models, such as regret theory (Loomes & Sugden, 1982), the

proportional difference model (González-Vallejo, 2002) and decision field theory (Buse-

meyer & Townsend, 1993) assume that people compare options’ outcomes with each

other. Regret theory (Loomes & Sugden, 1982) proposes that the subjective utility

of option A is measured as the perceived regret with respect to the forgone option

B. During a decision process, people would aim to reduce their regret, by comparing

options attribute-wise and estimating the expected loss for each outcome of option A

as compared to option B. The proportional difference model and decision field the-

ory assume that a decision process is stochastic. The proportional difference model

further assumes that the difference between respective outcomes of options A and B

is relative to the maximum outcome of the two. Decision field theory is a sequential

sampling model, according to which a decision maker repeatedly samples information

about options A and B, stochastically switching attention from one option to another.

By this means, evidence in favor of one option or another is accumulated over time.

A decision is made either when the accumulated information exceeds a predefined

threshold, or when the decision time is over. In the second case, the option for which

more evidence is accumulated would be chosen.

The first manuscript shows how predictions of context-dependent models are in-

fluenced by the strength of the association and similarity between two choice options.

Fixed-utility models cannot account for that. In the second manuscript, two models

from the group of fixed-utility models were be tested against two context-dependent

models. The results provide a clear evidence that the context of how options are

presented influences people’s decisions.

Risk-value models (see Sarin & Weber, 1993) take a different approach on evalu-
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ating choice options. Namely, this group of models proposes that a decision process

is based on a trade-off between the expected gain of an option and the risk it carries.

Various versions of these models provide different interpretations of the risk compo-

nent. In the third manuscript, we propose expected shortfall as a measure of risk and

rigorously test the model against other risk-value models and the expected utility

model.

The fourth manuscript proposes two new versions of a reinforcement learning

model. Reinforcement learning models (Sutton & Barto, 1998), assume that people

learn to make decisions over time, based on received feedback. Reinforcement learning

models are based on Markov decision process, meaning that a person’s choice at time

t depends on their choice at time t−1, but not at times t−n, n ≥ 2. At each time t, a

person’s choice i from a set of choices I is assigned a subjective value Qi,t. This value

is expressed as a subjective value of the same option in the previous trial updated

with the prediction error:

Qi,t = Qi,t−1 + α(Ri,t −Qi,t−1), (1)

where the prediction error is the difference between the reinforcement and the actual

choice in the previous trial (Ri,t −Qi,t−1). α is a learning rate parameter, where the

higher values of alpha indicate quicker learning. Different versions of reinforcement-

learning models provide different interpretations of the reinforcement component.

The fourth manuscript proposes a new version of the reinforcement learning model

that is sensitive to the depletion of common resources in social and private situations.

Importantly, the prediction of this model correlate with the activity of the ventrial

striatum, which is responsible for the monitoring of the resource depletion.
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Characteristics of Choice Options

As mentioned in the previous section, various models of decision making focus on

different aspects of choice options. For example, context-dependent models empha-

size the association between two choice options, whereas risk-value models focus on

the expected gain and riskiness of options. These aspects have specific mathematical

representations. Table 1 outlines a systematic classification of the statistical proper-

ties of choice options and their interpretations in the light of decision making under

risk.

Many models consider expected value as an interpretation of an expected gain from

the option (e.g. Busemeyer & Townsend, 1993; Sarin & Weber, 1993). The expected

value refers to the statistical mean of an option’s possible outcomes. Variance has

been the most popular measurement of risk, not only in decision making research (e.g.

Sarin & Weber, 1993), but also in the area of finance (see Fishburn, 1977; Markowitz,

1959; Weber, Shafir, & Blais, 2004). The higher the variance, the greater the range

of possible outcomes implying that both very high and very low outcomes can occur.

When variance is low, the option’s possible outcomes fall within a narrow range,

which means a safer option.

As listed in Table 1, there are more statistical properties that can describe riskiness

of a choice option. Previous literature points out skewness (see Burke & Tobler,

2011; Samuelson, 1970; Symmonds, Wright, Bach, & Dolan, 2011), which defines the

distribution of an option’s outcomes. A more positively skewed distribution indicates

that an option has more moderate-valued outcomes occurring with a relatively high

probability and a few very high outcomes occurring with a very low probability. A

non-skewed distribution means outcomes are evenly distributed. A negatively skewed

distribution is characterized by moderate outcomes occurring with high probabilities

and some very low outcomes occurring with low probabilities. Another measure of risk

is expected shortfall (Acerbi & Tasche, 2002), which can account for both the spread
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of outcomes and their distribution. The third manuscript makes a novel contribution

of applying this measure in risk-value models.

Finally, covariance between the outcomes of choice options reflects the relation-

ship between the options. This characteristic of choice options is investigated in

manuscripts one and two. The first manuscript proposes the standardized covari-

ance, a measure of association, similarity, and relationship between risk of one option

with respect to the other. Therefore, the second manuscript elaborates on expected

value, variance and covariance, and points out the relationships between these three

measures.

Table 1

Relationhip between mathematical properties, characteristics of risky choice options

and their cognitive interpretation.

Mathematical
Representation Notation Characteristic Interpretation
Expected value E[A] Gain/Loss Mean outcome
Variance σ2

A Risk Spread of outcomes
Covariance σAB Association Relationship between outcomes
Skewness γA Risk Distribution of outcomes
Expected shortfall ESc,A Risk Outcomes below expected level

Statistical Analysis

The last manuscript of this dissertation is a practical tutorial on conducting hi-

erarchical Bayesian regression. Hierarchical regression is one of the most popular

statistical methods in the field of management science, to which the tutorial is ad-

dressed. The name “hierarchical” is based on the fact that a researcher decides about

the hierarchy of the independent variables and adds them the analysis according to

this hierarchy in a stepwise fashion. In the standard null-hypothesis significance test-

ing (NHST), the statistical evidence is measured with the significance of the change in
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the explained variance (Cohen, Cohen, West, & Aiken, 2003), indicated by a p-value.

However, the NHST regression analysis can lead to substantially different con-

clusions than the analysis conducted using the Bayesian approach. Recent literature

points out flaws relying on p-values (c.f. Wagenmakers, 2007). Bayes factors (BFs,

Jeffreys, 1961; Kass & Raftery, 1995), provide an alternative way of testing hypothe-

ses in an objective way. Thus, the article outlines advantages of using Bayes factors

for hypothesis testing in the regression analysis, and points out the differences be-

tween the Bayesian and NHST approaches. It explains on a conceptual and practical

level, how to conduct a hierarchical regression analysis, with the use of BFs.
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Standardized Covariance

Andraszewicz, S. & Rieskamp, J. (2013). Standardized Covariance - A Measure of

Association, Similarity and Co-Riskiness between Choice Options. Manuscript sub-

mitted for publication.

This work proposes standardized covariance between two choice options A and

B, denoted σ∗
AB, as an easy-to-interpret measure that can reflect the association and

similarity between two risky choice options, and can reflect a ratio of how risky one

option is with respect to the other. We define the ratio of how risky one option

is relative to the other as the co-riskiness between two options. Association is a

relationship between two options and it implies statistical dependence between them.

Similarity defines how the features of one object are related to the features of another

object (Tversky, 2004).

Many prominent theories of decision making, such as priority heuristic (Brandstätter,

Gigerenzer, & Hertwig, 2006), the proportional difference model (González-Vallejo,

2002), regret theory (Loomes & Sugden, 1982) and decision field theory (Busemeyer

& Townsend, 1993), assume that people compare options in an attribute-wise fash-

ion, indicating that the association between the options’ outcomes should influence

people’s choices. In the second manuscript, we further experimentally showed that

the association systematically influences people’s preferences, even when controlling

for the difference between expected values.

There have been multiple attempts to measure similarity between choice options

(c.f. Tversky, 2004). For example, the contrast model (Tversky, 1977) measures the

amount of features that are the same for two objects (rather than risky choice options)

with respect to the number of features that are different. Along similar lines, the

similarity model (Leland, 1994, 1998; Rubinstein, 1988) assumes that when options

are similar on one dimension (attribute) but different on another, a decision maker
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should choose the option that is better in the dissimilar attribute. Busemeyer and

Townsend (1993) proposed covariance as a measure of similarity. However, covariance

depends on the range of possible outcomes which makes it hard to interpret.

Alternatively, one could use a correlation measure. Unfortunately, a large part

of the research on decision making is conducted using two-outcome gambles (e.g.

Birnbaum, 2008; González-Vallejo, 2002), for which the correlation is either 1 or −1

(see Rodgers & Nicewander, 1988). Therefore, we proposed standardized covariance,

which equals twice the non-standardized covariance between options A and B, divided

by the sum of variances of each option:

σ∗
AB =

2σAB

σ2
A + σ2

B

. (2)

The standardized covariance varies between -1 and 1, where σ∗
AB = 1 means strong

positive association, high similarity and high co-riskiness. In contrast, σ∗
AB = −1

implies strong negative association, high dissimilarity and high co-riskiness. When

σ∗
AB = 0, there is no association and similarity between choice options and the co-

riskiness between them is minimal. When σ∗
AB is positive, but close to 0, there is

a weak positive association, low similarity and low co-riskiness. Analogously, for

negative σ∗
AB, values close to 0 imply weak negative association, low dissimilarity and

low co-riskiness. The association of statistically independent options (i.e. options

depending on different external events) is 0. However, their outcomes can be quite

similar to each other. Therefore, for statistically independent options, we proposed a

similarity measure SAB.

Covariance between two choice options depends on both variances in a non-linear

fashion. Therefore, these two measures cannot be disentangled from each other. When

the standardized covariance of two stochastically non-dominant options is high and

positive (i.e. σ∗
AB → 1), variances of both options are similarly large (i.e. σ2

A ≈ σ2
B)
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and the covariance between them is high because the outcomes ai and bi of options

A and B corresponding to the same probabilities pi are similar to each other (i.e.

(ai − bi) → 0). Therefore, the options that carry a similar level of risk (i.e. high co-

riskiness), measured with variance, are strongly associated and similar to each other.

Swapping the outcomes of one option (i.e. a∗1 = a2 ∧ a∗2 = a1, where I ∈ {1, 2})

results in the same co-riskiness level, but in dissimilarity of the same strength and

the opposite association.

In contrast, when σ∗
AB → 0 the variance of one option is substantially larger than

the variance of the other option (i.e. σ2
A > σ2

B) and one option is almost a sure

option. This implies that the outcomes corresponding to the same probabilities are

not similar to each other and the covariance between the options’ outcomes is low.

Therefore, the co-riskiness between the options is low (i.e. one option is significantly

more risky than the other) and association and similarity between the options are

low. When variances of both options are equal, σ∗
AB = 1, which implies that the

options are identical and 2σAB = σ2
A + σ2

B. Therefore, the standardized covariance is

related to the difference between expected values (∆EV ). However, for every ∆EV

there is a wide range of options with various σ∗
AB.

Further, in a simulation, we showed that the standardized covariance and the

correlation measure are very strongly correlated with each other, r = .98, p < .001.

However, in some cases, the two measures would indicate different strengths of as-

sociation and similarity between the options (i.e. r = .95 and σ∗
AB = .32). This is

because correlation is a special case of association that measures the strength of linear

relationship between choice options. In contrast, the standardized covariance reflects

the distance of outcomes corresponding to the same probabilities.

Therefore, we conducted an experiment in which we asked 20 participants to

choose between 120 pairs of four-outcome options for which the difference between

their expected values was constant (i.e. ∆EV = 15), presented in a random order. In
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half of the trials, the standardized covariance between the options was low, σ∗
AB ≤ .2,

whereas the correlation was high, r ≥ .8 (“low covariance” condition). In the second

half of the trials, the standardized covariance was similarly high as the correlation

measure, σ∗
AB ≥ .8 and r ≥ .8 (“high covariance” condition). Based on a simulation

of model predictions, we hypothesized that if people’s choices are influenced only

by the statistical correlation between the choice outcomes, then we should observe

similar choices in both conditions. However, if people’s choices are influenced by the

standardized covariance between options, then people should choose the options with

the larger expected value more frequently in the condition with the high standardized

covariance. The participants chose the option with the larger expected value more

frequently in the high covariance condition (Me = 90%, SE = 9%) than in the low

covariance condition (Me = 80%, SE = 18%). We fitted three models assuming

interdependent evaluation of choice options: regret theory, decision field theory and

the proportional difference model to the behavioral data using a maximum-likelihood

approach. All models predicted higher choice probability in the high covariance con-

dition than in the low covariance condition and decision field theory fitted the data

best. Additionally, we asked the participants to indicate whether options within a

pair from the “low covariance” or “high covariance” condition are more similar to

each other. All participants pointed to the options from the high covariance con-

dition. This implies that the participants perceived the association and similarity

between choice options above the linear correlation and the standardized covariance

could successfully describe this association and similarity.

In sum, the standardized covariance is an easy-to-interpret measure that can quan-

tify the choice environment. This especially useful in testing models of decision mak-

ing because the standardized covariance influences models’ predictions, despite con-

stant difference between the expected values. Therefore, controlling for σ∗
AB apart

from the ∆EV can result in a more accurate experimental setting.
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Influence of Covariance on Choice Preference

Andraszewicz, S., Rieskamp, J., & Scheibehenne, B. (2013). How Associations be-

tween Consequences of Choice Options Affect Decisions Under Risk. Manuscript

re-submitted for publication.

In the first manuscript, we proposed a measure of association between choice

options. Here, we investigated how the association between the consequences of two

risky choice options influences people’s choices. We tested various models of decision

making against each other to see, which model can predict how people’s choices are

influenced by this association best.

The strength of the association can be illustrated with a choice between two

monetary gambles whose outcomes depend on the throw of a die, as shown in Figure

1 in the manuscript. In case 1, gamble A leads to substantially higher payoffs than

gamble B if the die lands on 1, 2, or 3, whereas for the numbers 4 to 6 gamble B has

a small advantage over A. Presumably, most people would prefer gamble A over B

due to the large advantage of A for numbers 1-3 and disregard the small disadvantage

for numbers 4-6. In contrast, in case 2, gamble A is worse than B* when throwing 1,

2, or 3, whereas it is better when throwing 4, 5 or 6, making the choice much more

complicated. However, gamble B and B* are identical as they both result in the same

outcomes with identical probabilities.

Standard economic theory (von Neumann & Morgenstern, 1944), as well as more

cognitively inspired fixed-utility theories, such as rank-dependent utility (see e.g.

Green & Jullien, 1989; Luce, 1990) and their most prominent version, cumulative

prospect theory (CPT, Kahneman & Tversky, 1979), assume that people evaluate

options independently of each other. However, previous literature has shown that

people compare options’ outcomes with each other (c.f. Rieskamp et al., 2006).

Context-dependent decision theories, such as the lexicographic semiorder heuristic
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(Tversky, 1969), priority heuristic (Brandstätter et al., 2006), elimination-by-aspects

(González-Vallejo, 2002), regret theory (RT, Loomes & Sugden, 1982) or decision field

theory (DFT, Busemeyer & Townsend, 1993), assume interdependent evaluations of

choice options. Previous research has indicated that the context in which choice

options are presented influences people’s choices. For example, Mellers and Cooke

(1994) and Mellers, Schwartz, and Cooke (1998) discussed the influence of other op-

tions, whereas Train (2009) proposed extending the probit model by incorporating

possible relationships between attributes of choice options. However, to our knowl-

edge, little work has been done to quantitatively define the influence of context on

decision making with respect to monetary gambles.

Therefore, the aim of this article was to quantify the choice context using the stan-

dardized covariance between the options’ outcomes (σ∗
AB, Andraszewicz & Rieskamp,

under review). In two behavioral experiments (N = 39 and 24 consecutively), we ex-

amined how different levels of association influence people’s choices and predictions

of four models of decision making: expected utility (EU, von Neumann & Morgen-

stern, 1944), CPT, RT and DFT. At the same time, we kept the difference between

expected values constant, such that ∆EV = 15. Given simulation results, we hy-

pothesized that the higher the standardized covariance between two choice options,

the higher the preference for the option with the larger expected value.

In both experiments, people repeatedly chose between 180 pairs of two stochasti-

cally non-dominant, statistically dependent gambles whose outcomes varied between

−100 and 100 points, presented in a random order. In the first experiment, the gam-

bles had two outcomes with their corresponding probabilities of either .4, .5 or .6,

whereas in the second experiment, they had four outcomes, with their correspond-

ing probabilities of either .1, .2, .3, or .4. Half of the gambles had only negative

outcomes and the other half, only positive outcomes. We classified the gambles into

three equal groups, according to the standardized covariance between the gambles:
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1) small (σ∗
AB ≤ .1), 2) medium (.4 ≤ σ∗

AB ≤ .5) and 3) large (.8 ≤ σ∗
AB ≤ .95).

As expected, in both experiments, participants chose more frequently the gamble

with the larger expected value when the standardized covariance was higher (Fried-

man’s test, experiment 1: p < .001, χ2(2) = 31.32, CI = 95%, experiment 2:

p < .001, χ2(2) = 15.48, CI = 95%). Also, the variance of these choices system-

atically decreased for larger σ∗
AB. We fitted the four models to the data, using a max-

imum likelihood approach. DFT and RT successfully predicted the effect observed in

the data, while EU and CPT could not. According to the Bayesian information cri-

terion, DFT had the best fit out of all models. In both experiments we observed the

same effect, which shows that the association between the choice options influences

people’s preferences independently of the amount of outcomes.

Our results indicate that the association between choice options measured with co-

variance systematically influences people’s choices, even when the difference between

the expected values of the options is kept constant. The choices between the op-

tions that are highly associated with each other are presumably easier because when

the association is high, some outcomes of each option, corresponding to the same

probabilities become very similar to each other, whereas for the remaining outcomes

the advantage of one option over another can be easily indicated. In contrast, when

the association is low, the advantage of one option over another is hard to classify.

We show that the standardized covariance of the options’ outcomes provides a useful

description of the choice context as it defines the difficulty of the choice situation.
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Expected Shortfall and Skewness of Choice Options

Andraszewicz, S., von Helversen, B., & Rieskamp, J. (2013). Expected Shortfall as a

Measure of Risk in Risk-Value Models. Working paper.

In this article, we propose expected shortfall as a measure of risk in the applica-

tion of risk-value models. Risk-value models (Sarin & Weber, 1993) assume that a

subjective value of option A is expressed as a trade-off between the expected gain of

the option and the risk carried by this option, such that

SV (A) = E[A]− βR(A), (3)

where β is a free parameter measuring weight which a person assigns to the risk.

Variance has been a commonly used measure of risk (e.g. Fishburn, 1977; Markowitz,

1959; Tobler, O’Doherty, Dolan, & Schultz, 2007; Weber et al., 2004). However, a

substantial amount of research indicates that the risk of a choice option is defined

not only by the range of the option’s outcomes (i.e. variance), but also by the out-

comes’ distribution (i.e. Chiu, 2005; Li, Qin, & Kar, 2010; Samuelson, 1970). The

distribution of an option’s outcomes is described by their skewness.

Previous research has shown that people are sensitive to skewness of choice options’

outcomes and that they prefer options that are more positively skewed (Burke &

Tobler, 2011; Chunhachinda, Dandapani, Hamid, & Prakash, 1997; Symmonds et al.,

2011). However, the standard two-element risk-value model (Sarin & Weber, 1993)

assumes that R(A) = σ2
A. As a consequence, some research included skewness (γA)

as another component of risk, resulting in a three-element risk-value model (i.e. Post,

van Villet, & H., 2006; Symmonds et al., 2011). Therefore, the subjective value of

option A could be expressed as SV (A) = E[A]− β1σ2
A + β2γA. In this form, SV (A)

is convex for gains and concave for losses.
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Another prominent measure of risk, used in financial Value-at-Risk model (VaR

Acerbi & Tasche, 2002), is the expected shortfall. Despite its popularity in the finance

area, to our knowledge, expected shortfall has not been applied as a psychological

measure of risk. It measures how much decision makers fall short in their expectations

about the possible gain from option A with I outcomes ai and their corresponding

probabilities pi:

R(A) = Ec,A =
I∑

i=1

pi[max(c− ai, 0)]. (4)

Parameter c is a person’s individual threshold below which outcomes are un-

desired. The expected shortfall can be large, either because the outcomes deviate

substantially from the threshold c and/or because these outcomes occur with a high

probability. The expected shortfall has a psychological interpretation, because deci-

sion makers in general want to avoid outcomes that fall short of their expectation

or “aspiration levels” (Lopes & Oden, 1999), in particular when the deviations are

large. This measure of risk can account for both the range of the options’ outcomes

(variance) and their distribution (skewness). We call the model incorporating this

form of risk the risk-value shortfall model.

We experimentally tested the proposed risk-value shortfall model by asking 24

participants to repeatedly choose between two risky options. The experiment con-

sisted of two blocks: 1) three-outcome options, and 2) five-outcome options, each

containing 100 randomly presented pairs of options. The 100 pairs were divided into

5 conditions: 1) low vs. high mean, 2) low vs. high variance, 3) positively skewed vs.

negatively skewed, 4) positively skewed vs. not-skewed, and 5) negatively skewed vs.

not-skewed. In the last three conditions the expected values and variances of both

options in each pair were the same and the options differed only with respect to their

skewness levels. Based on previous findings (Burke & Tobler, 2011) and simulations,

we hypothesized that participants would prefer options with higher expected value,

lower variance and more positively skewed outcomes.

21



We found positive evidence supporting our hypothesis. This effect was consistent,

independent of the amount of options’ outcomes, which provides a solid evidence

for the positive skewness preference. Further, we fitted four models: mean-variance

(Sarin & Weber, 1993), mean-variance-skewness (Symmonds et al., 2011), expected

utility theory (von Neumann & Morgenstern, 1944) and the risk-value shortfall model.

We included the expected utility model because depending on the value of its α-

parameter, the shape of the utility function could account for the expected value,

variance and skewness (see Kroll, Levy, & Markowitz, 1984). Therefore, we considered

it as a competitive model to the risk-value shortfall model. According to the Bayesian

information criterion (BIC), for 96% of the participants, all models fitted the data

better than the näıve baseline model assuming random choice, with the probability of

.5. According to the median and total BIC, the risk-value shortfall model fitted the

data best. Model comparison for individual participants, based on the Bayes factor,

showed strong and very strong evidence supporting the risk-value shortfall model and

against the expected utility model.

In sum, this study makes a novel contribution by proposing expected shortfall

as a measure of risk on a cognitive dimension and integrating it in a standard risk-

value model. It provides empirical evidence for the positive skewness preference. The

proposed model was rigorously tested against existing competitive models and fitted

the data best.
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The Neuroscience of the Tragady of the Commons

Klucharev, V., Andraszewicz, S., & Rieskamp, J. (2013). Neural Underpinnings of

Exploitation of Common Goods. Manuscript re-submitted for publication.

The 21st century’s big concern is the preservation of natural resources. Common-

pool resources (CPRs) are goods that can be accessed by every individual in society

(Ostrom, 1990). Economic theory predicts overexploitation of these resources by

self-interested people. The “tragedy of the commons” (Hardin, 1968) is a social

dilemma in which individuals acting independently and rationally, will ultimately

deplete a shared limited resource, even if it is in their long-term interest to preserve

the resource. One explanation for a tendency to overharvest CPRs refers to people’s

social preference for equity and reciprocal cooperation (Falk & Fischbacher, 2006;

Fehr & Schmidt, 1999): If others are cooperative, then people act cooperatively, but

if others free ride, people retaliate.

In this article, we hypothesized that the brain’s dopaminergic system monitors

not only a person’s own reward in the CPR games but also the behavior of others

who are using the same CPRs. In contrast, we hypothesized that when dealing with

private resources, the system monitors long-term sustainable use of the resource,

which results in resource preservation behavior. Here, we proposed a reinforcement

learning model, which predicts people’s behavior, as outlined in the hypotheses; its

parameters correlate with the neural activity of the brain structure that monitors the

use of the resource.

We conducted an fMRI experiment with 50 participants. In the scanner, the first

half of the participants played a game dealing with CPRs (“social” condition), while

the other half with the private resources (“private” condition). In 16 games, each

containing a maximum of 8 trials, the participants had to fish from a lake, where

they could fish either 1, 2 or 3 fish (net size). Initially, the lake contained 18 fish and
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the proliferation rate was 1.5. Each game ends prematurely if the resource becomes

repleted. In the social condition, participants were told that they play against two

other players (pre-recorded, competitive players), whereas in the private condition,

they were told that the resource depletes due to the outflow of the fish to another

lake.

On average, participants depleted the resource significantly faster in the social con-

dition (MNtrials = 7.0) than in the private condition (MNtrials = 6.3), t(1, 46) = 4.89,

p < .001. The participants showed different harvesting styles in the two conditions

such that the smallest net size was used less frequently in the social than in the pri-

vate condition. The fMRI analysis revealed that depletion of resources resulted in

a stronger deactivation of the ventral striatum (part of the dopaminergic system) in

the social than in the private condition. The deactivation of the ventral striatum

was positively correlated with the resource preservation in the private condition and

negatively correlated in the social condition. This indicates that the ventral striatum

monitors reward (resource) differently in the private as compared to the social con-

dition. To provide a computational explanation of these neurophysiological data, we

proposed a cognitive model whose parameters we used as predictors the parametric

analysis.

We created two versions of a reinforcement learning model (Sutton & Barto, 1998):

social and non-social. The social model assumes that the reinforcement of a decision

was defined as a weighted sum of the participant’s private reward and the reward

resulting from the social comparison with the competitors:

R = βPayoff + (1− β)Comparison, (5)

where β is the free weighting parameter of the model and Comparison is defined as
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the difference between the players’ choices and the average choices of the competitors:

Comparison = Payoff− 〈Others〉. (6)

According to this model, participants are punished when they harvest less than the

competitors implying self-interested behavior.

The non-social model assumes that reinforcement is defined as a weighted sum of

the participant’s private reward and a sustainability component:

R = βPayoff + (1− β)Sustain, (7)

where the Sustain component is defined as minus the absolute value of the difference

between the sustainable number of fish that can leave the lake (i.e. Sustainability =

6) to keep the resource level constant over all trials (Note: (18− 6) · 1.5 = 18):

Sustain = −|Sustainability − Payoff− FishOutflow|. (8)

Sustainability is a fixed task-dependent parameter. This model simultaneously pun-

ishes people for overexploiting the resources and not taking enough resources for

themselves, which is a trade-off between one’s short-term and long-term reward.

We fitted each model to its corresponding task using a maximum likelihood ap-

proach. According to the Bayesian information criterion (BIC), the social model fitted

the data better than the baseline model assuming random choices for 75% of the par-

ticipants, and the non-social model was better for the 69% of the participants. Paired

sample t-tests confirmed a significant difference between the learning models and the

baseline model (p < .001). On the qualitative level, average model predictions were

in line with the observed choices. Also, we conducted a reverse fitting (i.e. fitting
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social model to the private condition) and according to the BIC, the social model

fitted the data in the private condition better than the baseline model for only 50%

of the participants. The non-social model fitted the data from the social condition for

only 54% of the participants. Additionally, we fitted to both conditions two models

widely used in the previous literature: the Rescorla-Wegner model (Sutton & Barto,

1998) and the Fehr-Schmidt inequity aversion model (Fehr & Schmidt, 1999). In

both conditions, these models had a worse fit than the proposed social and non-social

learning models. Using parametric fMRI analyses, we found modulation of the right

ventrial striatum activity by the reward prediction error signal of the social model

in the social condition (p < .005, uncorrected). Similar analysis with the non-social

model did not reveal a significant modulation of the ventral striatum in the private

condition.

In sum, our results indicate that people use different harvesting strategies in social

and private situations. The resource depletion in each condition is monitored by

different strengths of deactivation of the ventral striatum. The two versions of the

social and non-social reinforcement learning model can effectively predict people’s

behavior in each situation and are correlated with the neural activity in the ventral

striatum.
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Bayesian Hierarchical Regression

Andraszewicz, S., Scheibehenne, B., Rieskamp, J., Grasman, R., Verhagen J., &

Wagenmakers E-J. (2013). A Pracical Tutorial on Bayesian Hierarchical Regression

in Management Science. Manuscript submitted for publication.

Regression analysis is one of the most popular statistical methods used in the em-

pirical sciences, in particular in management science. Usually, to judge the statistical

support of each independent variable researchers use p-values obtained in the course

of the null-hypothesis significance testing (NHST). This procedure will be referred to

as either classical, orthodox or frequentist. The p-value is the probability of encoun-

tering a test statistic at least as extreme as the one that was observed, given that

the null-hypothesis is true (Schervish, 1996). Unfortunately, p-values have a number

of limitations (c.f. Wagenmakers, 2007): 1) they overstate the evidence against the

null-hypothesis (e.g. Berger & Delampady, 1987; Sellke, Bayarri, & Berger, 2001), 2)

they cannot quantify the evidence in favor of a null-hypothesis (e.g. Gallistel, 2009;

Rouder, Speckman, Sun, Morey, & Iverson, 2009), and 3) they depend on the sam-

pling plan and on the researcher’s intention with respect to the data collection (Berger

& Wolpert, 1988).

Here, we outline the theoretical and practical advantages of using Bayes factors

(Jeffreys, 1961; Kass & Raftery, 1995) as an alternative to p-values. Bayes factors

(BFs) quantify the support that the data provide for one hypothesis versus another,

for example when the Bayes factor of hypothesis 1 (H1) to the null hypothesis (H0)

is BF10 = 5, it means that H1 is five times more likely than H0 and alternatively,

BF10 = .2 means that H0 is five times more likely than H1. Therefore, BF can

quantify evidence for any hypothesis including the null. Further advantages of Bayes

factors include independence of the result of the sampling plan.

BF is the ratio of the marginal likelihoods that the data were observed under
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hypothesis H1 and hypothesis H0: BF10 =Pr(D|H1)/Pr(D|H0). The marginal like-

lihoods are obtained by integrating or averaging the likelihood over a model’s prior

parameter space; this way, all predictions that the model makes are taken into ac-

count. Flexible models (i.e. models with many parameters, such as regression models

with many predictors) make many different types of predictions, and if most of these

predictions are incorrect the average likelihood is low (Lee & Wagenmakers, in press).

This way BFs implement Occam’s razor or the principle of parsimony, which states

that a model should be as complex as necessary to explain the data and as sparse as

possible to avoid redundancies (Myung, Forster, & Browne, 2000; Wagenmakers &

Waldorp, 2006).

In Bayesian inference, uncertainty about a model’s parameter values is expressed

by the prior belief about these parameter values, rather than by the confidence inter-

val. For example, when testing a correlation between the proportion of the popular

votes in the US presidential elections and the height ratio (i.e., height of the presi-

dent divided by the height of his closest competitor, see Stulp, Buunk, Verhulst, &

Pollet, 2013), one could assume that all values between -1 and 1 of the correlation

coefficient ρ are equally likely, which implies an uninformed prior ρ ∼ Uniform(−1, 1).

This prior belief would be later updated with evidence from the collected data. The

resulting posterior probability distribution tells us how likely it is that, for example

ρ ranges between .2 and .4. Alternatively, one could define a 95% credible interval

for ρ . In contrast to the frequentist 95% interval, it provides a “plausible inter-

val” for ρ, rather than an interval based on the normal distribution with the mean

equal 0 (Hoekstra, Morey, Rouder, & Wagenmakers, in press). Importantly, Bayesian

hypothesis testing answers the question “To what extent do the data support the

presence of correlation?” rather than providing a significant, or not-significant result.

We used an example of a recent study by Dierdorff, Rubin, and Bachrach (2012)

from the field of management science to illustrate Bayesian hierarchical regression.
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Using a self-reported questionnaire (N = 198), Dierdorff et al. (2012) investigated

the influence of five factors on citizenship behavior. Citizenship is defined as a “coop-

erative, helpful behavior extending beyond job requirements” (Barnard, 1938; Katz,

1964). Possible influences of these five factors were formulated as hypotheses H1−5.

Additionally, the authors expected that other factors, not included in any of the hy-

potheses, could influence the citizenship behavior. In the original study, the authors

conducted a three-step hierarchical regression analysis, where in step 1 they included

irrelevant factors, in step 2, they tested H1 and in step 3, they tested hypotheses 2-5

(see Table 3 of the manuscript). According to p-values obtained for each independent

variable, the authors found statistical evidence in favor of hypotheses 1 and 3-5.

Rouder and Morey (2012) proposed two ways of Bayesian hypothesis testing for

regression analysis: 1) covariance testing and 2) model comparison. Covariance test-

ing is based on building a full model (i.e. a model including all independent variables)

and excluding one independent variable at a time to test each hypothesis. Then, the

BF of the full model against the model without the variable testing the hypothesis

is computed. If the BF is substantially high, one could assume that there is strong

evidence in favor of the model including an additional predictor measuring the hy-

pothesis. We repeated this analysis to test hypotheses 2-5 and we found positive

evidence for hypothesis 5, negative evidence against hypothesis 2 and mixed evidence

in favor of hypotheses 3-4. Model comparison is based on comparing models contain-

ing different combinations of predictors. This method, despite its greater complexity,

allows controlling for possible correlations between independent variables. Using this

method, we again concluded did not find evidence in favor of these hypothesis 2, found

mixed evidence for hypotheses 3-4 and found strong evidence supporting hypothesis

5.

Therefore, Bayesian and classical inference can lead to different conclusions and

these differences cannot be neglected. This can have important implications for man-
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agement science research. BFs can be computed from R2, which can be obtained from

standard statistical software (see Rouder & Morey, 2012). Therefore, this manuscript

makes an important contribution to the area of management science by providing a

tutorial on how to easily apply Bayesian hypothesis testing in regression analysis, in

order to provide a more accurate hypothesis testing.
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Conclusion

In this dissertation, I use and develop three aspects of quantitative analysis of deci-

sion making: 1) modeling the decision process, 2) quantitative description of choice

options, and 3) statistical analysis of behavioral data. I argue that various models

of decision making can successfully describe the decision process, which cannot be

measured and observed otherwise, and can predict people’s behavior. Also, different

models react differently to various decision environments described by statistical prop-

erties of the choice options. I argue that the decision environment can be described

with the statistical and mathematical properties of choice options.

I make a novel contribution to the research of judgment and decision making

by proposing standardized covariance, a measure of association, similarity and co-

riskiness between choice options. In three experiments, I show that association mea-

sured with standardized covariance can describe the decision environment. It can

influence people’s preferences and predictions of models of decision making. De-

spite its similarities to the correlation measure, standardized covariance can quantify

similarity between two choice options above the linear relationship. Therefore, the

proposed mathematical measure can relate to people’s perceived association and sim-

ilarity between choice options.

I also argue that context-dependent evaluation measured with the proposed mea-

sure of association between choice options plays an important role in people’s deci-

sions. This is in contrast to fixed-utility theories, including their most prominent ver-

sion, CPT (Kahneman & Tversky, 1979). I show sufficient evidence favoring context-

dependent theories, in particular the DFT (Busemeyer & Townsend, 1993), which

predicted people’s behavior best. These results show, how the context-dependent

models are influenced by different strengths of the association.

Further, I provide evidence the risk carried by the outcomes’ distribution can be
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described by the expected shortfall, which accounts for outcomes that fall below a

person’s expectations, by measuring the distance of each outcome from the expecta-

tion (Lopes & Oden, 1999). Therefore, this measure can account for both the range

of the outcomes’ values and their distribution. This measure can be successfully used

as a measure of risk in standard risk-value models (Sarin & Weber, 1993).

Whereas the large part of this dissertation deals with human individual decisions,

in one paper, I develop a version of a reinforcement learning model that can account

for feedback resulting from the social environment. The model assumes that an

individual competing with others for common pool resources learns to behave in a

competitive and selfish way. That is, when others extensively harvest the resources, a

person learns to harvest a lot as well. In contrast, when in a private, non-competitive

environment, a decision maker learns to preserve the resource in order to sustain the

sufficient level of the resource. Importantly, this model not only predicted people’s

behavior but also correlated with neural activity, which supports the explanation the

neurophysiological data.

Finally, I argue in favor of Bayesian hypothesis testing in the regression analysis.

I show the differences and flaws of the NHST approach, in comparison to using BFs.

Re-analysis of the data of a prominent study in the area of management science

resulted in conclusions contrasting the original study. This, however, was not due to

the researchers’ mistake, but due to the inaccuracy of the commonly used statistical

method.

In sum, the overarching goal of my dissertation is to provide ways and measures of

quantitative analysis to improve and facilitate the research of decision making under

risk. Every person has to take risky decisions in their lives, especially those involving

monetary consequences. Therefore, I believe that this dissertation significantly con-

tributes not only to the research community, but also provides an important insight

on people’s economic decisions.
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strongly depend on the association between outcomes of choice options. In the
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1. Introduction1

People face risky decisions in their everyday lives. For example, a choice2

between two car insurance offers is a choice between risky options with payouts3

depending on the occurrence of an accident. An accident can occur with a certain4

probability that can be estimated based on the driver’s age, years of experience5

in driving a car and history of previous accidents. A person choosing between6

the two insurance offers would probably compare the coverage and conditions7

of both insurances with regard to specific situations such as a broken window,8

towing, help abroad etc., rather than evaluate each option independently of the9

other.10

Many models of decision making assume that during a decision process, peo-11

ple compare the options’ outcomes with each other, in an attribute-wise fashion.12

For instance, the priority heuristic (Brandstätter et al., 2006) assumes that peo-13

ple first compare all options with respect to their minimum outcomes. If these14

outcomes do not allow for discrimination between the options, the options are15

compared with respect to the probability of the minimum outcomes, and finally16

with respect to the highest outcomes. Regret theory (Loomes & Sugden, 1982),17

the proportional difference model (González-Vallejo, 2002), and decision field18

theory (Busemeyer & Townsend, 1993) are three other prominent computational19

models of decision making, which assume that decision makers compare out-20

comes of the choice options with one another. These comparisons are then accu-21

mulated to form an overall preference.22

Hence, all these models predict that the choice preference depends on the as-23

sociation between the options’ outcomes. Association is a relationship between24

two variables and it implies statistical dependence between them. Andraszewicz25

et al. (under review) experimentally showed that the strength of association be-26
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tween choice options influences people’s decisions, such that the stronger the27

association, the higher the probability that a decision maker chooses an option28

with the larger expected value, even when the difference between the expected29

values is the same for options with various strengths of the association.30

Studies on decision making under risk often overlook the association be-31

tween choice options and put the main focus on the difference between their32

expected values. However, the way choice options are selected has a crucial33

influence on testing choice models. As highlighted in the work on optimal ex-34

perimental design, selecting gambles for discriminating between various models35

of decision making is an essential issue that determines the effectiveness of an36

experiment (see Cavagnaro et al. 2013; Myung & Pitt 2009; Zhang & Lee 2010).37

Although optimal experimental design is still hard to apply in a simple experi-38

mental setting, one could easily control for the association between options to39

eliminate possible confound variables.40

The concept of associations between outcomes of choice options is related41

to the concept of similarity between options. Similarity defines how features42

of one object are related to the features of another object (Tversky, 2004, pp.43

3). Therefore, both association and similarity depend on the comparison of two44

options’ attributes with each other. However, in case of completely independent45

options the association between the options outcomes is zero, while the outcomes46

of the options could still be quite similar to each other.47

The literature on similarity (c.f. Tversky, 2004), reports some ways to de-48

scribe similarity. For example, one measure is a metric of dissimilarity between49

objects’ features. This metric, which ranges between 0 (no dissimilarity) and 150

(maximal dissimilarity), is based on calculating the distance between values of51

objects’ features in a coordinate space. Also, Tversky (1977) proposed a con-52
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trast model, which is based on a ratio of the number of features that are the same53

for both objects compared to the features which are different. Along similar54

lines, the similarity model (Rubinstein, 1988; Leland, 1994, 1998) assumes that55

when options are similar in one dimension (attribute) but different in another, a56

decision maker should choose the option that is better in the dissimilar attribute.57

A few measures of similarity have been proposed. For example, Tversky58

(1977) proposed that similarity can be measured with the probability judgment59

of how much one object is similar to another. Busemeyer and Townsend (1993),60

indicated covariance as a measure of similarity between choice options. In port-61

folio theory, covariance between financial assets is used as a measurement of62

association between two assets (i.e. Pafka & Kondor 2003; Disatnik & Benninga63

2007). Therefore, covariance could be a measure that reflects both the associ-64

ation and similarity of options. Unfortunately, covariance measure depends on65

the range of the outcome values, which makes it hard to interpret.66

A correlation measure would be an alternative. Tversky (2004) lists correla-67

tion as a possible measure of similarity. However, a large part of the research on68

decision making is conducted with two-outcome gambles (e.g. González-Vallejo69

2002; Birnbaum 2008), for which the correlation is either 1 or −1 (see Rodgers70

& Nicewander, 1988). As a consequence, the correlation measure is unable to71

capture the strength of the association between pairs of two-outcome options.72

Also, correlation is a special case of the association measure, which indicates73

the linear relationship between two variables. Consequently, for cases with small74

amounts of data (i.e. only two data points), correlation does not provide a useful75

approach.76

Therefore, we propose the standardized covariance, as a measure of the77

strength of the association and similarity between choice options. This measure78
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is meant for the application in risky numerical choices1. The main advantages79

of the standardized covariance is that 1) it ranges between -1 and 1, therefore its80

values can be interpreted similar to the correlation values; 2) it can be applied81

to choice options with only two outcomes, for which correlation does not pro-82

vide a meaningful solution. The specific standardization procedure applied in83

the standardized covariance also allows for measuring how risky is one option84

with respect to the other option in a pair. We call this as co-riskiness between85

two options.86

Co-riskiness defines how risky one choice option is relative to the risk of87

another option. When both options have a similar level of risk, then co-riskiness88

is high. When one option is not very risky (a safe option) and the other is very89

risky, co-riskiness is low. Co-riskiness should have an influence on decision90

process because when one option is substantially more risky than the other, the91

difference between riskiness should have a greater impact on a person’s decision,92

that is a person might prefer the safer option. However, if the co-riskiness is high93

(i.e. same level of risk), a decision maker would rely on other choice criteria, for94

instance giving more importance to the expected value of the options.95

In short, σ∗
AB = 1 means strong positive association, high similarity and high96

co-riskiness. In contrast, σ∗
AB = −1 implies a strong negative association, high97

dissimilarity and high co-riskiness. When σ∗
AB = 0, there is no association and98

similarity between choice options and the co-riskiness between them is minimal.99

When σ∗
AB is positive, but close to 0, there is a weak positive association, low100

similarity and low co-riskiness. Analogically, for negative σ∗
AB whose value is101

close to 0 we observe a weak negative association, low dissimilarity and low102

co-riskiness.103

1Most of the existing measures describe similarity between objects.
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In the following sections, we provide an in-depth description and analysis104

of properties of the standardized covariance, supported by examples and simula-105

tions. Importantly, we show the implications of controlling for the standardized106

covariance for the decision making research. We demonstrate applications of107

the standardized covariance not only as an alternative to the correlation measure108

between variables with two data points, but also as a stand-alone concept. We109

start the analysis with two-outcome options and later extend it for the applica-110

tion in options with many outcomes. We show the similarities and differences111

between the standardized covariance and the correlation measure. Finally, we112

test empirically whether people’s choices are influenced by the association be-113

tween the choice options measured solely by the correlation measure or by the114

standardized covariance.115

2. Properties of Standardized Covariance116

The standardized covariance between a pair of options A and B, labeled σ∗
AB,117

where the non-standardized covariance is denoted as σAB, is a ratio between118

twice the covariance and the sum of variances σA and σB of options A and B,119

respectively:120

σ∗
AB =

2σAB

σ2
A +σ2

B
. (1)

σ∗
AB is a continuous variable ranging from -1 to 1. σ∗

AB is not higher than 1121

or lower than -1 because 2σAB ≤ (σ2
A + σ2

B). In Appendix A, we provide the122

mathematical proof. When σ∗
AB = 0, either the options are completely unrelated123

(i.e. they are statistically independent) or the covariance between the options’124

outcomes is equal to 0. The second case occurs when one of the options is a sure125

option. When σ∗
AB approaches 0, variance of one option is low, and variance of126

the other option is high. Then, the association between the options is low. In127

6



Table 1, we show eight examples of statistically dependent pairs of options to128

demonstrate properties of σ∗
AB.129

Example 1130

Stochastically non-dominant options are identical only when131

σ∗
AB = 1 ⇐⇒ 2σAB = σ2

A +σ2
B.

Example 2132

Options become dissimilar by interchanging the outcomes of one option:133

σ∗
AB = −1 ⇐⇒ −2σAB = σ2

A +σ2
B.

We call this property symmetry for positively and negatively associated options.134

For any pair of options with σ∗
AB = x, interchanging the outcomes of one option135

results in σ∗
AB = −x.136

Example 3137

σ∗
AB decreases when one outcome of one option is altered so that the options138

are no longer the same.139

Examples 3 and 5140

The probabilities of the outcomes do not influence σ∗
AB. Interchanging the141

probabilities does not change the value of σ∗
AB.142

Example 6143

σ∗
AB = 1 when the difference between I outcomes ai of option A and bi of144

option B is the same and this difference equals the difference between expected145

values:146

σ∗
AB = 1 ⇐⇒ (ai −bi) = (ai+1 −bi+1) = ∆EV.
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Examples 1, 3 and 7147

The less similar the outcomes ai and bi corresponding to the same probabili-148

ties pi, the smaller σ∗
AB:149

(ai −bi) ↗ ⇐⇒ σ∗
AB ↘ .

Example 8150

When the outcomes of one option are almost the same, σ∗
AB → 0151

Examples 1, 3, 7 and 8152

σ∗
AB is a measure of how large the variance of outcomes (riskiness) of one153

option is with respect to the other option. We define this property as co-riskiness,154

such that155

| σ∗
AB |↗ ⇐⇒ co− riskiness ↗ .

3. Standardized Covariance vs. Correlation156

Examples presented in Table 1 indicate that the correlation and the standard-157

ized covariance are similar measures. Options in Example 1 are identical, in158

Example 2, opposite and in Example 6, all outcomes of option A are better than159

outcomes of option B, by the same amount of points. These examples are char-160

acterized by both the “perfect” correlation (i.e. r = 1) and the “perfect” stan-161

dardized covariance. Correlation coefficient r equals162

r =
σAB

σAσB
. (2)

Therefore, the relationship between the correlation coefficient and the standard-163

ized covariance is164

σ∗
AB =

2rσAσB

σ2
A +σ2

B
(3)
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and the correlation is equal to the standardized covariance when165

2σAσB = σ2
A +σ2

B. (4)

The correlation and the standardized covariance have exactly the same values166

in only two cases, such that r = σ∗
AB = −1∪ r = σ∗

AB = 1. Given that for options167

with two outcomes, the correlation is always either −1 or 1, then σAB = σAσB.168

Thus, when r = 1, the standardized covariance could also be written as169

σ∗
AB =

2σAσB

σ2
A +σ2

B
, (5)

when the association between the options’ outcomes is positive. When the asso-170

ciation between the options’ outcomes is negative, covariance equals minus the171

product of variances (i.e. σAB = −σAσB).172

4. Similarity of Statistically Independent Options173

Until now, we have been discussing choice options that depend on the same174

external events. However, researchers also consider statistically independent op-175

tions whose outcomes depend on different external events. In such cases, the176

association between the choice outcomes is zero and the covariance between177

them is 0, which results from178

σAB =
I

∑
i=1

J

∑
j=1

pi · p j(ai −E[A])(b j −E[B]), (6)

where pi and p j refer to the probabilities of occurrence of the respective out-179

comes ai and b j.180

However, it is still reasonable to consider how similar the two independent181

choice options are, using a similarity measure SAB. By modifying Equation 6,182
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we define the strength of the similarity between the outcomes of two options as183

sAB, such that184

sAB =
I

∑
i=1

J

∑
j=1

pi · p j

√
(ai −E[A])2(b j −E[B])2. (7)

Because Equation 7 always returns a positive value, one needs another pa-185

rameter, which defines whether the options are similar (SAB > 0) or dissimilar186

(SAB < 0). As a consequence, the strength of the similarity sAB should be multi-187

plied by a direction parameter dAB defined as188

dAB =





−1 if ∑I
i=1(pAi + pBi)/2 · (ai −E[A])(bi −E[B]) < 0

1 if ∑I
i=1(pAi + pBi)/2 · (ai −E[A])(bi −E[B]) > 0

. (8)

Therefore, for the statistically independent gambles we define similarity as189

SAB =
2dAB · sAB

σ2
A +σ2

B
. (9)

The proposed SAB and σ∗
AB measures lead to similar descriptions of the sim-190

ilarity of statistically dependent and independent options. Using four examples191

in Table 2, we demonstrate properties of similarity between two statistically in-192

dependent choice options.193

Example 9194

Probabilities of outcomes influence similarity of statistically independent195

gambles. Options A and B have the same outcomes, but different probabilities of196

occurrence of these outcomes. Therefore, the expected values and variances of197

the two options differ, such that E[A] = 20 and E[B] = 25, σ2
A = 100 and σ2

B = 75.198

Examples 9 and 10199

Similarity decreases when the outcome of one option is changed. When one200

option is a sure option, SAB = 0, which results from Equation 7.201
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Examples 9 and 11202

Similar and dissimilar statistically independent options are symmetrical (see203

also Section 2).204

Example 12205

When the difference between the riskiness of options increases (i.e. one op-206

tion has a substantially lower variance than the other), SAB decreases.207

Example 12208

E[A]−E[B] = 0 does not imply that SAB = 1. In contrast, for statistically de-209

pendent options, reducing the difference between expected values implies mak-210

ing the outcomes more similar to each other because the probabilities cannot be211

manipulated (compare with Section 2).212

5. Statistical Properties of Choice Options213

In the previous sections, we noticed that association, similarity and riskiness214

of choice options are related to the difference between expected values, variances215

and covariance between them. Hence, understanding the relationships among216

these measures helps to understand the properties of the standardized covariance.217

Variances of both options and the covariance between them depend on the same218

components, (Note: σAB = E[(a − E[A])(b − E[B])] and σ2
A = E[(a − E[A])2]),219

where these components define the distance of the outcome values from the ex-220

pected value of an option. Therefore, this section clarifies why the standardized221

covariance can explain the association, similarity and co-riskiness between op-222

tions and how it depends on the expected value difference.223
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5.1. Expected Value and Variance of Two-Outcome Options224

When two options are stochastically non-dominant, one option has higher225

variance than the other (compare range of outcomes of options A and B in Table226

1 in Examples 3, 4, 5, 7 and 8, to Example 6). Therefore the sum of variances227

is composed of a smaller and larger variance. To investigate the relationship be-228

tween variances of two options and the differences between their expected val-229

ues, we generated pairs of stochastically non-dominant pairs of non-identical230

two-outcome options with outcomes ranging between 0 and 100 points, and231

probabilities of these outcomes equal to 40%, 50% or 60%. The sample con-232

sisted of seven sets, where each set contained all possible pairs of gambles with233

the expected value difference (∆EV ) of 0, 5, 10, 15, 20, 25 and 30 points.2234

As shown in Figure 1 (left panel), when the options’ outcome values are235

defined within a fixed range (i.e. range ∈ [0,100]), the relationship between236

all possible values of variances is symmetric with respect to the diagonal. The237

smaller the ∆EV , the greater the possible range of both variances (Figure 1, right238

panel). Therefore, when ∆EV = 0, the variances of both options can become very239

similar to each other, whereas they cannot when the difference between ∆EV is240

large. This provides important information for the research in decision making241

under risk, because variance is the most common risk measurement of choice242

options (Sarin & Weber, 1993). The greater the ∆EV , the greater the difference243

between riskiness of one option in comparison to the other. Therefore, high co-244

riskiness can only occur in options with low ∆EV and for choices with large245

∆EV , the co-riskiness is low.246

2We later created options with the same properties, but having 1) only negative outcomes,

and 2) one positive and one negative outcome. These two groups of options exhibit the same

properties as the options with only positive outcomes.
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5.2. Covariance of Two-Outcome Options247

Covariance between two options is related to both variances in a non-linear248

fashion. This means that it is impossible to keep covariance constant while ma-249

nipulating variances, and the other way round. This motivates incorporating250

variances as the standardization component in standardized covariance and the251

correlation measure. Covariance is symmetric for positively and negatively re-252

lated options, i.e. in Examples 3 and 4, we observe that σ2
AExample3

= σ2
AExample4

∧253

σ2
BExample3

= σ2
BExample4

, but σABExample3 = −σABExample4 . Due to this property both254

the standardized covariance and the correlation measure can indicate relationship255

of the same strength for positively and negatively related options.256

Figure 2 (left panel) shows the area of possible relationships between covari-257

ance and the sum of the variances of two stochastically non-dominant choice258

options. The smaller the difference between expected values, the greater the area259

(Figure 2, right panel). When ∆EV > 0, standardized covariance does not over-260

lap with the correlation measure. The gray line in the left panel is outside the261

black area and it overlaps with black dashed line on the right panel. Although262

controlling for the difference between expected values reduces the amount of263

possible pairs of options, the range of properties of the options is still large.264

To further investigate the space of statistical properties of choice options265

when ∆EV is fixed, we measured the range of the standardized covariance, the266

ratio of the smaller to the larger variance in the pair and the number of possible267

pairs of options that can be found. According to Table 3, for any of the seven268

listed ∆EV s, there is a very large range of possible options, with various riskiness269

levels and strength of the association between the options in a pair. This shows270

that for any chosen difference between expected values, pairs of gambles of var-271

ious strengths of association and riskiness can be generated. This points out the272
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limitation of studies on decision making, which only control for the difference273

between expected values and do not control for variances and covariance.274

6. Influence of σ∗
AB on Models of Decision Making275

As described in section 1, prominent models of decision making emphasize276

the association between options’ outcomes. As a consequence, we tested how277

the strength of the association, expressed by σ∗
AB, influences predictions of three278

models: regret theory (Loomes & Sugden, 1982), decision field theory (Buse-279

meyer & Townsend, 1993), and the proportional difference model (González-280

Vallejo, 2002). We generated model predictions for pairs of stochastically non-281

dominant options with a fixed expected values difference (∆EV = 15). We used282

all 377500 pairs of two-outcome options with outcomes ranging between 1 and283

100 points and probabilities either 40%, 50% or 60%. At the same time, we ma-284

nipulated the standardized covariance and we separated all pairs of options into285

three groups: 1) small, σ∗
AB ≤ .2 (21.2%), 2) medium, .2 < σ∗

AB ≤ .5 (34.7%), and286

3) large .5 < σ∗
AB (44.2%). The model specifications are outlined in Appendix B.287

We averaged the probabilities of choosing the option with the larger expected288

value for each of the three groups. As shown in Figure 3, all three models predict289

higher probabilities when the association between the options is higher. This ef-290

fect can be best observed in the predictions of regret theory and decision field291

theory. The variances of predictions of regret theory, decision field theory and292

the proportional difference model also differ, where the first two models predict293

smaller variance of choices when the association is higher, whereas the propor-294

tional difference model predicts an increase of variance.295

Further, we checked the interaction between σ∗
AB and ∆EV , using seven popu-296

lations of options with the properties described above, but with various expected297
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value differences (i.e. ∆EV ∈ {0,5,10,15,20,25,30}3). Figure 4 shows that the298

models on average make different predictions depending on σ∗
AB, for every ∆EV299

level. Also, the variance of these predictions changes depending on σ∗
AB. The300

exception are predictions of decision field theory when ∆EV = 0, which are al-301

ways Pr(A|A,B) = .5. Overall, there are systematic differences in average and302

variance of predictions of the models, depending on the association, similarity303

and co-riskiness of the options, for every ∆EV level. For regret theory and de-304

cision field theory these differences decrease with the ∆EV increase. For the305

proportional difference model, it is the other way round.306

It is beyond the scope of this paper to investigate predictions of all existing307

models whose predictions could depend on the standardized covariance. How-308

ever, we selected models that reflect different aspects of σ∗
AB. Regret theory,309

in the regret function (see Equation B.1), incorporates the difference between310

options’ outcomes corresponding to the same probabilities (ai − bi). A similar311

assumption is made by the proportional difference of the proportional difference312

model (see Equation B.8). Decision field theory directly incorporates variances313

and covariance between options in its mathematical specification (see Equation314

B.6), where Busemeyer & Townsend (1993) interpret covariance as a measure315

of similarity between two choice options. Therefore, this model accounts for316

both riskiness of each option (expressed by variances) and relationship between317

choice options (expressed by covariance).318

In sum, the predictions of different choice models depend on an interaction319

between the difference between expected values and the strength of the associa-320

tion, similarity and co-riskiness between the choice options. This finding is very321

important, as it shows that results of studies that focus on differences between322

3The sizes of the populations are listed in Table 3.
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expected values can be confounded with unmeasured association between choice323

options.324

7. Options with More than Two Outcomes325

σ∗
AB is a stable measure and properties of the standardized covariance hold326

for options with more than two outcomes4. Therefore, we used four-outcome327

options, for which we were able to compute a meaningful correlation, to com-328

pare the standardized covariance with the correlation measure. Figure 5 shows329

a scatter plot between the two measures. The gray line indicates the regression330

line. As Figure 5 shows, the two measures are very strongly correlated with each331

other, r = .98, p < .001. Also, the slope of the regression line is high and the in-332

tercept is very small (see caption of Figure 5). Thus, the standardized covariance333

is a similar measure as correlation, but it has the advantage that it can be applied334

to both two-outcome options and options with several outcomes.335

The difference between the correlation measure and the standardized covari-336

ance is that the first describes a linear relationship between two variables, rather337

than how similar the values of two variables are to each other. In contrast, the338

standardized covariance measures the size of the distance between the outcomes’339

values of both variables. For demonstration, we selected one case from Figure 5340

for which correlation is much higher than standardized covariance, that is r = .95341

and σ∗
AB = .32. In Figure 6, we plotted the outcome values of both options as a342

function of four independent events (left panel) and the outcomes of option B as343

a function of the outcomes of option A (right panel). Despite the fact that in the344

right panel the outcomes lie very close to the regression line, their values are not345

4We tested these properties in options with more than two outcomes.
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close to each other on the left panel. Therefore, the correlation is a measure of a346

linear relationship between options, whereas standardized covariance measures347

association as a similarity between options’ outcomes.348

7.1. Behavioral Experiment349

We have discussed differences and similarities between the standardized co-350

variance and the correlation. Andraszewicz et al. (under review) showed that351

choice situations that differ by σ∗
AB or r influence people’s preferences. However,352

their study tested the influence of the standardized covariance independently of353

the correlation, where cases similar to the one presented in Figure 6 did not oc-354

cur. Therefore we conducted a behavioral study to examine whether differences355

in the standardized covariance affect peoples decisions under risk beyond the as-356

sociation measured by the correlation. We have also asked participants to judge357

similarity of gambles expressed by the correlation and the standardized covari-358

ance.359

7.1.1. Method360

20 students (N f emale = 15, Mage = 21) of the University of Basel participated361

in the experiment and received course credit for compensation. During 120 trials362

presented in a random order, they repeatedly chose between two four-outcome363

pairs of gambles that were stochastically non-dominant and positively related to364

each other. The pairs were presented graphically on a screen as hypothetical365

stocks (see Figure 7). Sixty trials contained pairs of gambles for which σ∗
AB ≤ .2366

and r ≥ .8 (“low covariance” condition). The other 60 trials contained pairs of367

options for which σ∗
AB ≥ .8 and r ≥ .8 (“high covariance” condition). At the end368

of the experiment, one gamble was chosen and played out, where the outcome369

was paid to the participants as a bonus of 0-2 Swiss Francs (≈ 0−2 US Dollars).370
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In both conditions, ∆EV = 15. Further specification of the gambles’ generation371

can be found in Appendix C. If people’s choices are influenced only by the sta-372

tistical correlation between the choice outcomes, then we should observe similar373

choices in both conditions. However, if people’s choices are influenced by the374

standardized covariance between options, then people should choose the options375

with the larger expected value more frequently in the condition with the high376

standardized covariance.377

Afterwards, the participants were asked to fill out a short demographics ques-378

tionnaire and answer in which condition stock A is more similar to stock B.379

Two examples of pairs of gambles, each from each condition, were presented380

on paper and for the first half of the participants, the left example contained381

gambles from low covariance condition and right picture contained an example382

from high covariance condition. For the other half of the participants, it was383

the other way round. The aim of this last question was to explicitly ask partici-384

pants whether they find gambles with low standardized covariance less similar to385

each other than the gambles with high standardized covariance. Due to the sim-386

ilar correlation value both situation should be judged identically whereas they387

should be judged differently according to the standardized covariance, that is388

rLowCovariance = .97 and rHighCovariance = .81, whereas σ∗
ABLowCovariance

= .08 and389

σ∗
ABHighCovariance

= .80.390

7.1.2. Results391

For each participant, we calculated the average frequency of choices of the392

gamble with the larger expected value for the high and low covariance condi-393
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tions. According to the Wilcoxon summed-rank test5, the frequency was higher394

in high covariance condition (Me = 90%, SE = 9%) than in the low covariance395

condition (Me = 80%, SE = 18%), p < .001. We obtained similar results in a396

simulation study, where we found that decision field theory, regret theory and397

the proportional difference model predict higher choice probabilities of the gam-398

bles with the larger expected value in the high covariance condition than in low399

covariance condition6.400

Therefore, in situations with low standardized covariance, despite the high401

correlation, choices of the option with the larger expected value were less fre-402

quent as compared to a situation in which the standardized covariance was high.403

These results clearly indicate that people’s choices are affected by the similarity404

of choice options as described by the standardized covariance. Also, in the final405

question, all participants indicated that the gambles in the pair from the high co-406

variance condition were more similar to each other than the gambles in the pair407

from low covariance condition.408

Further, we fitted regret theory, decision field theory and the proportional409

difference model to the behavioral data using a maximum-likelihood approach.410

According to the Bayesian information criterion (BIC), all models performed411

better than a naı̈ve baseline model assuming random choices, for the majority412

of participants (95% for decision field theory and regret theory and 65% for the413

proportional difference model). As displayed in Figure 8, on average all three414

models predict higher probability (Wilcoxon summed-rank test: p < .005 for415

decision field theory and regret theory, p < .001 for the proportional difference416

5According to Kolmogorov-Smirnov test, the mean frequencies in each condition were not

normally distributed.
6Parameter values were the same as in section 6.
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model) in the high covariance condition as compared to the low covariance con-417

dition. Variances of predictions of decision field theory and regret theory were418

smaller in the high covariance condition than in the low covariance condition. It419

was the other way round for the proportional difference model. According to me-420

dian and total BIC, decision field theory predicted the data best (BIC = 1928.60,421

MeBIC = 94.18), followed by regret theory (BIC = 2175.40, MeBIC = 107.34)422

and the proportional difference model (BIC = 3228.20, MeBIC = 163.03)7. All423

three models make different predictions for the high and low covariance con-424

dition, given the same set of parameters used in both conditions. Despite its425

relatively bad fit in comparison to decision field theory and regret theory, the426

proportional difference model also predicts higher choice probabilities in the427

high than the in low covariance condition.428

In sum, we replicated the results of Andraszewicz et al. (under review), such429

that the higher the association between the outcomes of the choice options, the430

higher the probability of choosing the gamble with the larger expected value. In431

their study, the strength of the association could be described equally well by the432

correlation and the standardized covariance. In the present study, we illustrated433

the usefulness of the standardized covariance measure. In situation with identical434

statistical correlation between the outcomes of the choice options, the standard-435

ized covariance, could be varied. In cases with the high standardized covariance,436

the choices became easier and the options with the larger expected value was437

chosen more often as compared to the low covariance condition. This effect was438

predicted by all three choice theories, in particular decision field theory which439

also described the data best.440

7Estimated models’ parameters, individual model fits and data are available online on

http://psycho.unibas.ch/fakultaet/personen/profil/person/andraszewicz/
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8. Discussion441

In the current paper, we have shown that the strength in the association and442

similarity between risky choice options are related quantities that can be mea-443

sured with the use of the standardized covariance. We have also shown that444

standardized covariance reflects how risky one choice option is relative to the445

second choice option. We call this property of choice options the co-riskiness.446

The standardized covariance and the correlation are related measures. However,447

correlation is a special case of association measure, which describes a linear re-448

lationship between choice options. As we have experimentally shown, people’s449

choices between options were substantially affected by the differences in the450

standardized covariance. Likewise options with high standardized covariance451

were perceived as more similar than options with low standardized covariance452

besides similar levels of correlation values.453

The proposed measure is related to theories and models of similarity. For454

example, when σ∗
AB → 1, some attributes of both options are almost the same,455

whereas for others there is a substantial difference. Therefore, according to the456

similarity model (Rubinstein, 1988; Leland, 1994, 1998), attributes that are al-457

most the same can be discarded and the option that is better for the remain-458

ing attributes should be chosen. Also, when attributes are almost the same, the459

distance function between them is very small and these attributes could be ac-460

counted as “shared” by two options (Tversky, 2004). Therefore, the standardized461

covariance provides an objective quantitative dimension of aspects of similarity462

that appeared in the previous literature.463

In section 6, we showed that different models of decision making make dif-464

ferent predictions depending on various levels of σ∗
AB, while ∆EV was constant.465

Therefore, in research involving decision making models, not controlling for the466
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association between choice options may include additional noise in model pre-467

dictions. Andraszewicz et al. (under review) showed that this noise reduction can468

be observed in a decrease of variability of human choices of option with higher469

σ∗
AB. The level of this noise depends on the model assumptions. For example,470

decision field theory and regret theory react very strongly to the association and471

similarity of choice options. In contrast, expected utility-based models (e.g. cu-472

mulative prospect theory, Kahneman & Tversky (1979)) would make the same473

predictions independently of the association between choice options because this474

group of models assumes that options are evaluated independently of each other.475

The standardized covariance is not robust against using different measure-476

ment scales of two variables. However, this can be solved in the process of477

normalization of the variables’ scales first. This solution makes the standardized478

covariance applicable in more domains than decision making research. Measure-479

ment of non-linear association, similarity and co-riskiness between two variables480

could be used in other fields of research. Also, the standardized covariance can481

be used as a measurement of association of any two variables with only two data482

points.483

Interestingly, although the standardized covariance is not robust against the484

different measurement scales of the variables, the value of the standardized co-485

variance would fall within the range R∩ [−1,1] (see proof in Appendix A), and486

for positively related variables the standardized covariance would never fall be-487

low 0, and above 0 for the negatively related variables. This is because the488

direction of the relation between variables is determined by the covariance. Pa-489

rameter dAB (see Equation 8) is robust against the scales inconsistency because490

the variances and covariance are related to each other in a non-linear fashion.491

In sum, this work presents an easy-to-interpret measure that can describe im-492
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portant properties of choice options, namely the associations between the conse-493

quences of the options, similarity between them, and a relationship of riskiness494

of one option to the other. These properties are often neglected in the decision495

making literature. As a consequence, we describe how one could easily use this496

measure to characterize decision making situations to create more accurate ex-497

perimental designs. The standardized covariance can be especially useful to mea-498

sure association of options with only two outcomes (i.e. two-outcome gambles),499

for which the correlation measure does not provide a meaningful interpretation.500

Also, we have shown that in specific cases, standardized covariance can more501

effectively describe similarity between risky choice options than the correlation502

measure. Thus, the standardized covariance should be of special interest to the503

researchers in the field of judgment and decision making.504
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Table 1: Eight examples of options with different standardized covariance. In each example,

the top row indicates the probability of the occurrence of two outcomes. Two consecutive rows

display the possible outcomes of option A and option B.

σ∗
AB = 1 σ∗

AB = −1

Example 1 60% 40% Example 2 60% 40%

A 80 55 A 80 55

B 80 55 B 55 80

σ∗
AB = .80 σ∗

AB = −.80

Example 3 60% 40% Example 4 60% 40%

A 80 55 A 80 55

B 80 30 B 30 80

σ∗
AB = .80 σ∗

AB = 1

Example 5 40% 60% Example 6 40% 60%

A 80 55 A 80 55

B 80 30 B 70 45

σ∗
AB = .32 σ∗

AB = .05

Example 7 60% 40% Example 8 60% 40%

A 80 20 A 42 40

B 50 40 B 80 6
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Table 2: Examples of statistically independent pairs of two-outcome options. The percentages

correspond to the probability of occurrence of outcomes listed for options A and B.

SAB = .86 SAB = .79

Example 9 50% 50% Example 10 50% 50%

A 10 30 A 10 30

25% 75% 25% 75%

B 10 30 B 15 30

SAB = −.86 SAB = .54

Example 11 50% 50% Example 12 50% 50%

A 10 30 A 10 30

25% 75% 25% 75%

B 30 10 B 14 22

Table 3: Ranges of values of the standardized covariance, ratio of the smaller to the larger vari-

ance and the amount of pairs of options generated for each of the seven differences between

expected values of the options.

∆EV σ∗
AB

min(σ2
A,σ2

B)

max(σ2
A,σ2

B)
N

0 .02-1 .00-.96 570400

5 .02-.99 .00-.81 859052

10 .02-.99 .00-.72 975021

15 .02-.94 .00-.49 377750

20 .02-.94 .00-.49 418251

25 .02-.94 .00-.49 244734

30 .02-.89 .00-.36 119241
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Figure 1: Left: Relationship between variances of two two-outcome options. Each point defines

one pair of options (N = 377750). Empty space around the diagonal of the graph and symmetry

of the distribution of both variances indicates a systematic relationship between variances and

difference between expected values. Red lines correspond to upper boundaries of variances of

each option in a pair; Right: Upper boundaries of variances for various differences between ex-

pected values. The smaller the difference between expected values, the smaller the gap between

the lines of the same color. Therefore, when the difference between expected values decreases,

the variances of two options can be either very similar or very different. When ∆EV is high, one

option has substantially higher variance than the other option.
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Figure 2: Left: Relationship of the sum of variances to twice the covariance. Black area shows

the space of possible combinations of sum of variances with respect to covariance. The gray

line indicates the cases for which the standardized covariance overlaps with the correlation mea-

sure, such that σ∗
AB = r = 1 or σ∗

AB = r = −1; Right: Boundaries of covariance and sum of

variances depending on the difference between expected values. Therefore, the greater the ∆EV ,

the smaller the area of possible relationships of variances to covariance (i.e. the area inside the

boundaries).
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Figure 3: Average predictions of regret theory and decision field theory and the proportional

difference model. To generate predictions the following parameters were used: regret theory

β = .05, θ = 4.6, decision field theory θ = 1.19, proportional difference model γ = .12, σPD = .63.

The parameter of decision field theory was based on Rieskamp (2008) and the parameters of

regret theory and the proportional difference model were adjusted so that the predictions of all

models are comparable (i.e. all predict Pr(A|A,B) > .65). Error bars indicate standard deviation.
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indicate standard deviation. The parameter values are the same as in Figure 3. The populations

of pairs of options are described in section 5.1
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tween options with four outcomes. Each point corresponds to one of 10000 randomly generated

pairs of stochastically non-dominant statistically dependent pairs of four-outcome options. Their

outcomes range between 0 and 100 points and the corresponding probabilities range between 1%

and 40%. The gray line indicates the regression line, with a slope of .87 and intercept .0027.
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events; Right: Scatter plot of outcomes of option A against option B. The gray line indicates the

regression line. In both panels the same pair of options is shown, for which r = .95 and σ∗
AB = .32
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Figure 7: Left: Example of a stimulus from the “low covariance” condition; Right: Example of

a stimulus from the “high covariance” condition.
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larger expected value (i.e. E[A] > E[B]) in the low covariace condition (left panel) and the

high covariance condition (right panel). Probabilities correspond to predictions of three models:

regret theory, decision field theory and the proportional difference model. Error bars correspond

to bootstrapped standard error.
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Appendix A: Mathematical Proof551

Proof. 2σAB ≤ (σ2
A +σ2

B)552

From definitions of variance and covariance,553

2E [(a−µA)(b−µB)] ≤ E
[
(a−µA)2]+E

[
(b−µB)2],554

where a and b are outcomes of options A and B respectively, and µA and µB are555

their expected values. Given that both options have exactly I outcomes, with556

their corresponding probabilities pi,557

0 ≤ ΣI
i=1

[
pi(ai −µA)2 + pi(bi −µB)2 −2pi(ai −µA)(bi −µB)

]
558

0 ≤ ((ai −bi)− (µA −µB))2
559

Let (ai −bi)− (µA −µB) = m.560

Then 0 ≤ m2.561

lim
m→±∞

m2 = 0 ⇐⇒ m ∈ R562

Appendix B: Models Specification563

Regret Theory564

Following Pathan et al. (2011), we defined the regret function of choosing565

option A over option B with I outcomes ai and bi respectively as566

RiA = ln(1+ exp(β(ai −max(ai,bi)))). (B.1)

The total regret from choosing option A equals to567

RA = Σ2
i=1RiA. (B.2)

Further, the probability of choosing option A over option B is estimated using568

the softmax rule569

Pr({A|A,B}) =
1

1+ exp(θ(RB −RA))
. (B.3)
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β and θ are free parameters of the model. More details regarding regret theory is570

provided in Loomes & Sugden (1982).571

Decision Field Theory572

We implemented a parsimonious version of decision field theory (Busemeyer573

& Townsend, 1993). The expected value of option A is calculated as574

E[A] =
N

∑
i=1

= piai. (B.4)

Decision field theory assumes that the decision maker compares two options with575

each other. The difference between options A and B is defined as576

dDFT = E[A]−E[B]. (B.5)

This theory also assumes that the comparison of two options is a dynamic pro-577

cess, where the variance of the difference dDFT defined as578

σ2
DFT = σ2

A +σ2
B −2σAB. (B.6)

σ2
A and σ2

B are variances of options A and B correspondingly, while σAB is the579

covariance of two options’ outcomes. They are defined as σ2
A = E[(A − E[A])2]580

and σAB = E[(A−E[A])(B−E[B])].581

The probability of choosing option A over option B equals582

Pr(A|{A,B}) =
1

1+ exp[−θ(2dDFT /σDFT )]
. (B.7)

Proportional Difference Model583

We implemented the proportional difference model according to (González-584

Vallejo, 2002). The proportional difference between the outcomes of options A585

and B corresponding to the same probabilities is defined as586

π(ai,bi) =
max{|ai|, |bi|}−min{|ai|, |bi|}

max{|ai|, |bi|}
. (B.8)
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The decision threshold is defined as a difference between proportional differ-587

ences such that588

dPD =





π(ai,bi)−π(a j,b j) ⇐⇒ ai > bi

π(a j,b j)−π(ai,bi) ⇐⇒ ai < bi

(B.9)

where i and j are two different events. The probability that a decision maker589

chooses option A over option B is defined by a cumulative normal distribution590

defined by the function591

Pr(A|{A,B}) = f
(

dPD −δ
σPD

)
. (B.10)

δ and σPD are free parameters of the model, where δ represents how much a592

decision maker weights attribute differences. σPD is a variance of the trade-off593

process.594

Appendix C: Description of Gambles in the Behavioral Experiment595

In the behavioral experiment, we randomly generated four-outcome, stochas-596

tically non-dominant pairs of gambles with possible outcomes ranging between597

0 and 100 points and their corresponding probabilities equal to either 10%, 20%,598

20% or 40%. Gambles were displayed as hypothetical stocks, upper Stock A599

and lower Stock B. In each pair, gamble A had two better outcomes than gam-600

ble B. The order of the better outcomes was randomly chosen for each gamble601

from a predefined list. Outcomes corresponding to the same external events602

were marked with the same color and the order of the colors was the same603

for all gamble pairs. The difference between expected values of the gambles604

was constant, ∆EV = 15. For 57% of gamble pairs, upper gamble A had a605

larger expected value than lower gamble B. For 54% of gamble pairs, the gam-606
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ble with the larger expected value had the lower variance and for the remain-607

ing pairs it was the other way round. Half of the pairs of gambles were as-608

signed to the “low covariance” condition, for which Meanr = .89,SDr = .05 and609

Meanσ∗
AB

= .15,SDσ∗
AB

= .04, and the other half to the “high covariance” condi-610

tion, for which Meanr = .89,SDr = .05 and Meanσ∗
AB

= .84,SDσ∗
AB

= .03.611
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Abstract 

Many economic theories of decision making assume that people evaluate options 

independently of other available options. However, recent cognitive models suggest that 

people’s evaluations rely on a comparison of the options’ potential consequences with each 

other such that the subjective value of an option critically depends on the context in which it 

is presented. To test these opposing predictions, we examined pairwise choices between 

monetary gambles and varied the degree to which the gambles’ outcomes covaried with one 

another. When people evaluate options based on comparisons of their consequences then a 

high covariance between the outcomes should make a decision easier. In line with this 

prediction, the observed choice proportions in two experiments (N = 39 and 24, respectively) 

were influenced by magnitude of the covariance. These results confirm that interdependent 

evaluations of options play an important role in human decision making under risk and show 

that covariance can quantitatively describe the choice context. 

 

Keywords: decision making under risk, cognitive modeling, outcome associations, 

covariance, sequential sampling models  
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How Associations between the Consequences of Choice Options  

Affect Decisions Under Risk 

Decisions under risk and uncertainty play an important role in daily life. Explaining 

and predicting risky decisions is an important area of research in psychology, economics, and 

cognitive science. Many cognitive models of decision making predict that people compare 

the potential consequences of options with each other, yielding context-dependent 

evaluations. For example, when choosing between health insurances, decision makers might 

compare the coverage for different illnesses against each other. However, standard economic 

theory of decision making such as expected utility theory (von Neumann & Morgenstern, 

1974) assumes that the subjective value of a single offer is independent of its alternatives.  

Theories of Decision Making 

Previous literature has shown that people compare options’ outcomes with each other, 

rather than evaluating each option independently of other available options (cf. Rieskamp, 

Busemeyer, & Mellers, 2006). For example, Tversky and Shafir (1992) found that people’s 

preferences depend on the context of other choice options in which an option is presented. 

According to Tversky’s (1969) lexicographic semiorder heuristic, a person choosing between 

two health insurances might order attributes (i.e. coverage in case of different illnesses) of the 

two insurance offers according to their importance for the person. If one of the offers is 

substantially better than the other for the most important attribute, this offer should be 

chosen. If both offers are comparable for the most important attribute, the decision should be 

based on the second best attribute, and so on. 

Context-dependent decision theories, such as Tversky’s (1969) lexicographic 

semiorder heuristic, Tversky’s (1972) elimination-by-aspects theory, Gonzàlez-Vallejo’s 

(2002) stochastic difference model, or Brandstätter, Gigerenzer, and Hertwig’s (2006) 

priority heuristic, predict that options are compared relative to each other. A further example 
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is regret theory (RT, Loomes & Sugden, 1982), which assumes that decision makers 

anticipate feelings of regret when obtaining lower outcomes relative to forgone outcomes of 

alternative options. The association between choice options is represented by the regret utility 

function that expresses the summed regret of each attribute of an option compared to the 

regret of the forgone option. 

Another distinguished theory is decision field theory (DFT, Busemeyer & Townsend, 

1993), which assumes that preferences accumulate over time by comparing the outcomes of 

the options with each other one at a time and by accumulating the differences between the 

outcomes. The attention to the different outcomes shifts stochastically. A decision is reached 

when the accumulated differences exceed a predefined threshold, or when a predefined time 

limit has been reached. Both RT and DFT will be of special interest in the current work 

because they not only provide two possible mechanisms of the decision process, but also 

allow quantitative predictions. RT and DFT directly stress the importance of the association 

between choice options. 

In contrast, the class of fixed-utility theories assumes that each option can be assigned 

a value representing the option’s subjective value to the decision maker and this value is 

independent of other options in the choice set. Standard expected utility theory (EU) 

represents the most eminent fixed-utility theory. However, similar to EU theory, the 

assumption of independence can also be traced in more descriptively inspired decision 

theories such as rank dependent utility theories (see e.g., Green & Jullien, 1989; Luce, 1990). 

A prominent example, cumulative prospect theory (CPT, Tversky & Kahneman, 1992), 

distinguishes gains and losses and includes a weighting function to represent subjective 

probabilities, but in the end still assigns a context-independent value to each option.  

The idea of context-dependent evaluations can be illustrated with a choice between 

two monetary gambles whose outcomes depend on the throw of a die, as shown in Figure 1. 
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In case 1, gamble A leads to substantially higher payoffs than gamble B if the die lands on 1, 

2, or 3, whereas for the numbers 4 to 6 gamble B has a small advantage over A. Presumably, 

most people would prefer gamble A over B due to the large advantage of A for numbers 1-3 

and disregard the small disadvantage for numbers 4-6. In contrast, in case 2, gamble A is 

worse than B* when throwing 1, 2, or 3, whereas it is better when throwing 4, 5 or 6, making 

the choice much more complicated. However, gamble B and B* are identical as they both 

result in the same outcomes with identical probabilities. Thus, EU and CPT cannot predict 

any difference for the two choice situations, whereas context-dependent theories can. 

Research Goal  

Past research has provided substantial evidence that the context in which the choice 

options are presented influences people’s preferences. Nevertheless, so far only a few 

attempts have been made to quantify the relevant characteristics of the choice environment 

that govern these changes. For example, Mellers and Cooke (1994), and Mellers, Schwartz 

and Cooke (1998) discussed the influence of other available options. Other attempts to 

incorporate possible relations between attributes of choice options include extensions of the 

probit model in the area of consumer choice (e.g. Train, 2009). Also, Tversky (1977) 

discussed the influence of similarity between two items such as countries, faces, letters and 

shapes, on the choice context. However, to our knowledge, little work has been done to 

quantitatively define the context and its’ influences on decision making, with respect to 

monetary gambles. 

In the present work, we make the novel contribution of quantifying the influence of an 

important aspect of the choice context, namely the covariance between the choice outcomes, 

and we analyze how the size of the covariance affects people’s preferences. In particular, we 

will 1) quantify the strength of the associations between options’ outcomes, 2) examine by 

simulation how the predictions of different decision models are affected by the strengths of 
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the associations 3) examine on empirical grounds how different association strengths actually 

influence people’s decisions, and 4) rigorously compare models of decision making against 

each other on qualitative and quantitative basis, to see what cognitive processes could explain 

context-dependent choice comparison. In sum, our work should lead to a better understanding 

of the cognitive process underlying decisions under risk. 

Characterizing the Association Between Choice Options 

 Figure 1 illustrates how different degrees of covariance may influence people’s 

choices between gambles. In case 1, the covariance of 78.7 is much higher than in case 2 with 

24.7. However, the main drawback of covariance as an association measure is that its scale 

depends on the range of the outcomes. Using correlations instead also does not provide a 

feasible solution because for gambles with only two outcomes, it equals either -1 or 1 (see 

Rodgers & Nicewander, 1988). As an alternative scaling, we use a standardized covariance 

! AB
*

 (Andraszewicz & Rieskamp, 2013, in preparation), which equals twice the original 

covariance ! AB  divided by the two gambles’ sum of variances: 

! AB
* =

2! AB

! A
2 +! B

2
       

(1) 

! AB
*  is a continuous variable that ranges from 1 (maximum positive association) to -1 

(maximum negative association), whereas ! AB
* ! 0  characterizes options with low 

association or low internal variability. When ! AB
* = 0 , the options are statistically 

independent of each other or one option is a sure option whose variance is 0. Appendix A and 

Andraszewicz and Rieskamp (2013, in preparation) provide an elaborated description of the 

standardized covariance’s properties.  

Figure 2 plots the variances of two gambles against their covariance and shows that 

! AB
*  is high when the covariance between the options is high and both variances are high 

(upper right corner of Figure 2). In this case, each gamble has both a large advantageous 
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outcome and a very disadvantageous outcome. The advantageous outcomes of both options 

occur at the same event with the same probability, and so do the disadvantageous outcomes. 

Outcomes of options with medium ! AB
*  (center of Figure 2) vary less compared to gambles 

with high ! AB
* . Options with low ! AB

*  have low covariance (lower left corner of Figure 2). 

This means that the outcomes of one gamble are very similar and the other gamble has one 

lower and one higher outcome. 

The idea of incorporating both the covariance and variances of two choice options in 

one measure follows from the normalization of covariance, in computing the correlation 

measure, by division of the product of variances. Variances and covariance are non-linearly 

related measures, such that it is impossible to manipulate one while keeping the other 

constant. Therefore, covariance carries some information about variances that cannot be 

analytically classified. As a consequence, a normalized measure of covariance relative to the 

variances is needed, to effectively quantify the strength of the association between choice 

options. 

Associations Between Options’ Outcomes Affect the Predictions of Decision Theories  

 To explore how choice probabilities are influenced by the association between the 

consequences of the choice options as measured by the standardized covariance, we ran a 

simulation study. This simulation study also allows us to test possible differences in model 

predictions, depending on the standardized covariance. It is difficult to analytically derive the 

exact impact of the standardized covariance on the models’ predictions. We chose RT and 

DFT to represent two context-dependent decision theories. As a comparison benchmark, we 

include EU and CPT to represent the fixed-utility theories, whose predictions should not be 

influenced by standardized covariance. Appendix B provides mathematical specifications of 

the respective models. All models make a probabilistic prediction that a decision maker 

chooses one gamble over another one in a pair. 
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Materials 

We used pairs of stochastically non-dominant gambles whose outcomes varied 

between 0 and 100 integer points with outcome probabilities equal to either .4, .5, or .6. The 

absolute difference in expected value (!EV ) within each pair of gambles was kept constant 

at 15 points. Within these bounds, we created all 377,750 possible gamble pairs. We grouped 

each pair of gambles into one of three categories indicating small (! AB
* ! 0.2 , 21.2% cases), 

medium (0.2 <! AB
* ! 0.5 , 34.7% cases), or large ( 0.5<! AB

* , 44.1% cases) ! AB
* . Finally, we 

converted all the outcomes from gains to losses to create the set of negative gambles. 

Results and Discussion 

Results of the simulation indicate that ! AB
*  had a strong effect on the average 

predictions of DFT and RT, whereas, as expected, no effect was observed for EU and CPT. 

As shown in Figure 3, for DFT and RT the predicted choice shares of the gambles with the 

larger expected value increased with standardized covariance. Presumably, higher ! AB
*  makes 

the comparison process easier. This positive relation is systematic and non-linear, such that 

there is a greater difference between large and medium covariance conditions, than between 

medium and small. 

Interestingly, the standardized covariance also affects the variability of the models’ 

predictions. Figure 3 shows that the larger ! AB
* , the smaller is the variability of DFT’s and 

RT's predictions, whereas again no effect was observed for EU and CPT. Thus, according to 

DFT and RT, choices with small ! AB
*  should be more difficult and the models predict less 

consistent choices; that is, larger variability in the predicted choice probabilities. Across the 

whole range of gambles, RT predicts more variability than DFT. 
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Study 1 

 The simulation illustrates that the two context-dependent theories, DFT and RT, but 

not EU and CPT, predict that a stronger association between two choice options leads to a 

stronger preference for one option. In Study 1, we tested whether the systematic differences 

observed in the simulation are reflected by observed human choice behavior. 

Participants 

 A total of 39 people (16 male), aged 19-52 years (Mage = 25 years), mainly students 

from the University of Basel, participated in the study. Four participants were excluded from 

further analyses because they made purely random choices, which resulted in data outliers. 

Material 

 We randomly selected three times 60 pairs of two-outcome gambles from the 

simulation study for three sets with small, medium, and large positive covariances, with the 

following constraints: half of the gambles had only positive outcomes and the other half only 

negative (with all outcomes smaller than 0). Gambles were randomly assigned as the upper 

gamble A or the lower gamble B on the screen, so that in 53% of all pairs of gambles, gamble 

A had a larger expected value. In the simulation, we used the whole population of gambles 

with the predefined described properties. In Study 1, we narrowed down the values of ! AB
*  

ranges to obtain a clear-cut distinction among small, medium and large ! AB
* , given the 

limited amount of stimuli we could present to the participants. Therefore, 60 pairs of gambles 

had a standardized covariance such that ! AB
* ! .1 , another 60 pairs .4 !! AB

* ! .5 , and a third 

set .8 !! AB
* ! .95 . For half of the gamble pairs, the outcomes of the gamble with the larger 

expected value varied less, whereas in the remaining half of pairs it was the other way round. 

Procedure 

 In the main part of the experiment, participants repeatedly chose from each pair of 

gambles on a computer screen presented in a random order, as shown in Figure 4. Gambles 
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were framed as hypothetical stocks with outcomes representing the return on investment 

along the corresponding probabilities of occurrence. The outcomes were matched by color 

with their corresponding probabilities and the same colors were used for both gambles to 

indicate that the outcomes of both were dependent on the same external event. At the end of 

the experiment, one gamble was randomly chosen and played out. Two percent of the 

gamble’s outcome was added to or subtracted from the initial endowment of 8 Swiss Francs 

(≈ 8 USD). Participants were informed about the payment procedure before they started the 

experiment. The experiment was completely self-paced. 

The main part of the experiment was preceded by six practice trials presented in a 

fixed order. During the practice trials, the gambles were played out and the participants saw 

the results. After the experiment, the participants were asked to fill out a short questionnaire 

regarding their demographic data. 

Results and Discussion 

 Figure 5 shows that the observed choice proportions were systematically influenced 

by the strength of the association between the gambles: The share of choices of gambles with 

the larger expected value systematically increased in a non-linear fashion when ! AB
*  

increased. We computed for each participant an average proportion of choices of the gamble 

with the higher expected value, separately for the three conditions. There were significant 

differences in the choice proportions, p < .001, ! 2 (2) = 15.48, CI = 95% according to a 

Friedman’s test1. We applied a series of post-hoc paired-comparisons using one-sided 

Wilcoxon signed-rank tests with Bonferroni correction of α. There was a significant 

difference between the large and small (p  < .001), and large and medium (p < .001) 

covariance conditions, but no differences between the medium and small covariance 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
1 The data untransformed and transformed were not normally distributed, thus we relied on 
non-parametric tests. 



Running head: INFLUENCE OF COVARIANCE ON CHOICE PREFERENCE 

 11 

conditions (p = .18). There was a greater difference between medium and large conditions 

than between medium and small, which confirms the relation found in the simulation study. 

To compare the predictions of EU, CPT, RT and DFT we estimated their parameters 

using maximum log-likelihood approach. Table C1 in Appendix C presents individual 

parameter estimates and model fits. We compared the models using their Bayesian 

Information Criterion (BIC, Kaas & Raftery, 1995), which takes the models’ fit and 

complexity into account. Table 1 shows that on average all models describe the observed 

decisions substantially better than a baseline model2. According to BIC, DFT provides the 

best description of the observed data, followed by RT, EU, and CPT (see Table 1). EU 

predicted the behavior relatively well. This result seems mainly due to EU’s small number of 

parameters and the ability to account for people’s risk attitudes with a corresponding utility 

function3. When comparing DFT with EU on an individual level by their BICs, 74% of the 

participants are better described by DFT. Figure 6 shows the corresponding Bayes factors 

(Kaas & Raftery, 1995) when comparing DFT with EU for each participant separated for the 

three covariance conditions. In each condition, the majority of participants are better 

described by DFT than EU and the evidence is strong or very strong (compare upright to 

downright bars in Figure 6). 

Additionally, we tested the models’ predictions (using the models’ estimated 

parameters) on a qualitative level by comparing them with the observed data. We averaged 

the predictions generated for each participant across each of the 180 pairs of gambles. RT 

predicts increasing choice proportions for the three covariance conditions, whereas DFT 

predicts a stronger increase between the medium and large covariance conditions and almost 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
2 Baseline model predicts all choices with the probability of .5. 
3 Thus, we implemented DFT with the utility function defined the same as in the expected 
utility theory (Equation B2). The fit measured with the log-likelihood function improved; 
however, BIC was worse than for the DFT with the utility function defined as u(x) = x, 
indicating that the additional parameter α did not improve the model’s predictive power. 
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no differences between the small and medium covariance condition, which is consistent with 

the observed choice patterns (Figure 7). 

Study 2 

The association between choice options might systematically influence people’s 

preferences in a non-linear fashion for very simple choice problems such as gambles with 

two outcomes. Study 2 examines whether the findings from Study 1 can be generalized to 

more complex gambles with more than two outcomes. Also, by using gambles with more 

than two outcomes, we are able to compare ! AB
* with the correlation measure. 

Participants 

Twenty-four people (7 male), aged between 19 and 52 years (Mage = 28 years), 

recruited through the participant database at the University of Basel, participated in the study. 

Materials and Procedure 

 The gambles were again presented in pairs. Each gamble had four possible outcomes 

that varied between -100 and 100 points, with outcome probabilities of .1, .2, .3, or .4. In 

each gamble pair, gamble A had two outcomes that were higher and two outcomes that were 

lower than the respective outcome of gamble B. The order of the better outcomes was 

randomized. Due to the large number of possible combinations of gambles, we randomly 

generated exactly 180 different pairs of gambles with the properties described here. Ninety 

pairs had positive outcomes, while the other 90 pairs had only negative outcomes. Within 

each of these, there were 30 gambles with small (! AB
* ! .1), 30 with medium (.4 !! AB

* ! .5 ), 

and 30 with large (.8 !! AB
* ! .95 ) standardized covariance. For 53% of the gamble pairs, the 

outcomes of the gamble with the larger expected value varied less, whereas for the remaining 

43%, it was the other way round. The procedure was exactly the same as in Study 1. The base 

payment for participants was 15 Swiss Francs, with the bonus equal to 20% of the outcome of 

a randomly chosen and played out gamble. 
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To test the validity of the standardized covariance, we computed the correlation 

coefficient of the gamble pairs. The mean correlation coefficient in each of the three groups 

of gambles was similar to the standardized covariance, such that small Mrsmall
= .06(SD = .05) , 

Mrmedium
= .56(SD = .14) , Mrlarge

= .88(SD = .06) . Only six pairs of gambles in the medium 

condition were correlated with the strength r > .8. The correlation coefficients of pairs in the 

small and large conditions did not exceed the ranges of standardized covariance defined for 

each group. The two measures were very strongly correlated to each other (r = .98, p < .001). 

Thus, the standardized covariance is a very similar measure to the correlation. 

Results and Discussion 

 The larger ! AB
*  between the outcomes of the gambles, the higher the choice 

proportions of the option with the larger expected value (see Figure 8), which replicates the 

results from Study 1. People’s preferences differed among the three conditions, as indicated 

by a Friedman’s test (p < .001, ! 2 (2) = 31.32). A series of Wilcoxon signed-rank tests with 

Bonferroni correction (CI=95%) indicated significant differences among all covariance 

conditions (p < .001 for all comparisons)4. The variance of these people’s choices 

systematically decreased when ! AB
*  increased. 

 To compare the models’ ability to predict the observed choices we again estimated the 

models’ parameters (see Table C2 of Appendix C). We compared parameters estimated for 

the first and second experiment with Wilcoxon rank sum tests (the parameters were not 

normally distributed). Parameters for all models apart from CPT did not differ between the 

two experiments5. According to BIC, all models predicted the data better than the baseline 

model, but only DFT did so for all participants (see Table 2). Similar to Study 1, DFT was 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
4 We relied on non-parametric tests, because neither the untransformed nor the log-, 
reciprocal- and square-root-transformed data were normally distributed. 
5	  According to the estimated parameters of CPT, participants in Study 1 were risk-averse, 
whereas participants in Study 2 were risk-seeking	  
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the best model to predict the data, followed by EU. For 79% of the participants the BF was in 

favor of DFT compared to EU. Figure 9 shows this advantage separately for each condition. 

Again, only, RT and DFT correctly predict the increased choice proportions for 

gambles with larger ! AB
* . However, RT overall predicts less extreme choice probabilities and 

greater variance of these probabilities than observed in the data. This is due to the averaging 

of the predictions across the participants. In contrast, DFT predicts the observed differences 

between the conditions and observed choice proportions more accurately. Similar to Study 1, 

there is a bigger difference between medium and large conditions than between small and 

medium. This finding holds for observed choice proportions and RT and DFT predictions. 

However, in Study 2, the difference between small and medium conditions was more similar 

to the difference between medium and large conditions, as compared to Study 1. Importantly, 

RT’s and DFT’s predictions matched this pattern. 

General Discussion 

The present work examines how much the association between choice options 

influences people’s preferences. To characterize the association between the consequences of 

options, we used the standardized covariance as an easy-to-interpret measure. We showed 

that this measure systematically influences predictions of context-dependent models 

consistent with people’s decisions under risk. To explain the specific choice effects, we tested 

different context-dependent choice models against fixed-utility models. The four models 

were rigorously tested against each other. In two behavioral experiments, decision field 

theory predicted the data best. 

 Our results provide clear evidence that the context in which options are presented, can 

be quantitatively described by the strength of the association between choice options. The 

larger the association, the higher the chances that people choose the option with the larger 

expected value. To characterize this association, we used the standardized covariance. It is a 
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ratio of how much two choice options co-vary with each other to how risky each of them is, 

where risk is defined by variances of the options’ outcomes. This measure can readily be 

applied for options with only two outcomes where the conventional correlation measure does 

not lead to meaningful descriptions. When examining options with more than two outcomes, 

the standardized covariance highly overlaps with the correlation measure.  

The standardized covariance and, if applicable, the correlation apparently provide a 

feasible measurement that quantifies the difficulty of the choice. If the standardized 

covariance is large, the choice gets easier, because when comparing the outcomes of the 

choice options they all point in the same direction. In contrast, if the standardized covariance 

is small, comparing the different outcomes yields conflicting information. Here, people have 

to make real trade-offs and identifying the option that is most preferable to them gets more 

difficult. For example, when choosing between investments in two stocks with similar price 

listings over the last month (indicating high correlation), it is easier to indicate the one whose 

ratings increased more over the last week than if the ratings of the stocks are completely 

uncorrelated. 

Theory Based Explanation of Results 

How can the observed effects of associations between the consequences of choice 

options be explained? Decision field theory assumes that people while comparing options 

accumulate differences between the outcomes over time until a decision threshold is reached. 

The smaller the variance of the differences the more likely that the threshold for the option 

with the larger expected value will be passed. This variance of the difference incorporates 

variances (riskiness) of both choice options and the covariance (association) between them. 

Busemeyer and Towsend (1993, p. 439) noted that increasing the similarity, expressed by the 

covariance between outcomes, makes the better choice option easier to discriminate. They 

name the valence difference divided by the variance of this difference the “discriminability 
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ratio”. The closed form representation of DFT reflects the process of accumulation of 

evidence by this discriminability ratio, such that the smaller the discriminability ratio, the less 

evidence is accumulated. This ratio is multiplied by the decision threshold, which reflects 

how much information has to be accumulated for the decision to be made. 

Our study has shown that this discriminability ratio can reflect the choice difficulty. 

Because in this paper we kept the valence difference constant, the discriminability ratio 

depended only on the variance of the differences. When the variance of the difference is 

large, the choice is difficult and the decision maker accumulates only little evidence. In 

contrast, when this variance is low, the choice is easy and sufficient evidence is accumulated 

in favor of the preferred option. 

Regret theory (Loomes & Sugden, 1982) incorporates the variance of the valence 

difference in the regret function. When for some events two choice options are similar, the 

regret of not having chosen the slightly better option is very low, whereas it is high for the 

events for which the options differ substantially. When two options are dissimilar for all 

events, the total regret will be large, which makes the choice difficult. 

DFT and regret theory are not the only theories that can explain how the covariance of 

the options’ outcomes can affect people’s preferences. For example, the similarity model 

described by Rubinstein (1988) or Leland (1994, 1998) provides an alternative account. The 

similarity model assumes that attributes for which the two choice options have similar values 

are disregarded when comparing the options with each other. Therefore the decision is then 

based on the attributes for which one of the options has a clear advantage.  

Gonzàllez-Vallejo’s (2002) proportional difference model proposes that options are 

compared attribute-wise and for each attribute the proportional differences between options 

are accumulated to favor one or the other option (see also Scheibehenne, Rieskamp, & 

Gonzàllez-Vallejo, 2002). Analogically, Payne, Bettman, and Johnson (1988) investigated a 
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series of decision strategies, including lexicographic rules, assuming a comparison of the 

options’ outcomes with each other (see Rieskamp & Hoffrage, 1999; 2008). 

The transfer of attention exchange (TAX) model (see Birnbaum, Patton & Lott, 1999; 

Birnbaum, 2008) proposes that more important attributes should receive more attention. 

Attention switches between the two options. If one attribute receives significantly more 

attention than others and option A is worse than option B for this attribute, the advantage of 

option A with respect to option B for the remaining attributes would be ignored. This is 

because the remaining attributes would not receive sufficient attention. Therefore, this model 

could also account for the effect of covaraiance with the assumption that attention is shifted 

to the attributes for which the options differ the most.  

 In contrast, fixed utility theories including expected utility theory and cumulative 

prospect theory that assume independent option evaluations, cannot explain why people’s 

preferences differ for situation with different associations of the choice outcomes. However, 

we might speculate whether one could modify the standard EU and CPT approach by adding 

an error model to the theory. Accordingly one could specify a choice rule that determines the 

choice probabilities by taking the covariance into account (see Appendix B). Despite the fact 

that such an amendment might improve the prediction of the theory, it lacks the 

psychological explanation that RT and DFT provide. Nevertheless we also estimated EU 

model with a choice rule that included the error ! d defined as in Equation B14. 

Here, the only mathematical difference between EU with the error model and DFT 

was that EU defined the difference between utilities rather than between the valences. EU 

with the error model successfully predicted the pattern observed in the data and improved 

log-likelihood as compared to DFT. However, the fit measured with the BIC was worse than 

of DFT and the estimated !  parameters in both experiments oscillated around 1 for most of 
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the participants, indicating that the variance of the difference already accounts for both the 

association and riskiness of the options. 

In sum, there is a large body of research showing that people make choices by 

comparing options against each other. The present work shows that the associations between 

the options’ outcomes, as measured by the standardized covariance, affect people’s decision. 

The larger the covariance, the easier the choice becomes. The effect can be explained by 

various theories assuming interdependent evaluations of choice options. When the association 

is high, the options are more similar to each other and the choice becomes easier. When the 

association is low, the choice becomes more difficult, which introduces high noise levels in 

the decision process. DFT and RT propose different cognitive explanations for introducing 

the noise. We show that the covariance of the options’ outcomes provides a useful description 

of the choice context as it defines the difficulty of the choice situation. The strength of the 

association has a systematic, non-linear influence on people’s preferences.  
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Table 1 

Estimated parameter values (standard deviations) and results of 
model comparison (BIC) for each of the four models.6 

Model 
Median 

Parameters (SD) BIC 
Individual 

BIC<Baseline 

Baseline None 5489.7 - 

EU ! =.90 (.25) 

! = .24 (.70) 

4897.3 89% 

CPT ! =.82 (.38) 

! =.87 (.52) 

! =.89 (.37) 

! =.42 (.41) 

! =.27 (1.8) 

5361.8 83% 

RT ! =.04 (.05) 

! =7.16 (10.60) 

4881.4 89% 

DFT ! = 1.48 (.92) 4702.9 91% 

 

 

 

 

 

 

 

 

 

 

 

	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  	  
6 EU: expected utility theory, CPT: cumulative prospect theory, RT: regret theory, DFT: 
decision field theory 
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Table 2 

Estimated parameter values (standard deviation) and results of 
model comparison (BIC) for each of the four models. 

Model 
Median 

Parameters (SD) BIC BIC<Baseline 

Baseline None 5988.8 - 

EU ! =.78 (.37) 

! = .42 (1.16) 

2865.9 96% 

CPT ! =1.29 (.4) 

! =1.35 (.36) 

! =1.0 (.26) 

! =1.0 (.25) 

! =.04 (1.03) 

3616.3 92% 

RT ! =.04 (.03) 

! =5.66 (2.75) 

3502.4 92% 

DFT ! = 2.00 (1.14) 2856.7 100% 
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Case 1) 

 
Event 1 2 3 4 5 6 
Gamble A 20 10 25 30 15 30 

A - B 5 5 5 -1 -1 -1 

Gamble B 15 5 20 31 16 31 
       
Case 2)  

 
Event 1 2 3 4 5 6 
Gamble A 20 10 25 30 15 30 

A - B -11 -6 -6 15 10 10 

Gamble B* 31 16 31 15 5 20 
 

Figure 1. Choice between two monetary gambles A and B whose outcomes depend on the 
throw of a die. In case 1, the gambles appear similar and in case 2, they appear dissimilar. 
Gamble B is identical to gamble B*, with the only difference that the outcomes have been 
swapped for the events 1-3 and 4-6. For both pairs of gambles, the expected value difference 
is 4, but the covariance of the outcomes is 78.67 for the first and 24.67 for the second case.  
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Figure 2. Landscape with examples of pairs of gambles, arranged on a plane with respect to 
the size of their variances and covariance. The difference in expected values ranges between 
14.6 and 17 points. Gamble A is more advantageous in the first three examples. The gradient 
background indicates the strength of the standardized covariance. The gradient is triangular 
because the covariance values do not exceed the sum of the variances. 
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Figure 3. Mean predictions of EU, CPT, RT, and DFT depending on the size of the 
standardized covariance. The error bars depict population standard deviations. Pr(A|A,B) 
refers to the probability of choosing the gamble with the larger expected value. 
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Figure 4. A) Example of a stimulus used in the experiment; B) Experimental paradigm. 
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Figure 5. Average observed probabilities of choosing the gamble with the larger expected 
value. Error bars indicate standard error obtained with a bootstrap method. 
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Figure 6. Evidence of DFT as compared to EU expressed by the logarithm of the Bayes 
factor. The strength of the evidence is categorized following Kass and Raftery (1995). 
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Figure 7. Mean predictions of EU, CPT, RT, and DFT for each covariance condition. The 
error bars indicate the bootstrapped standard errors. Gray bars indicate the observed data (as 
in Figure 5) and are the same in all four cells. 
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Figure 8. Mean predictions of EU, CPT, RT, and DFT for each covariance condition. The 
error bars indicate the bootstrapped standard errors. Gray bars (identical for all panels) show 
the observed data.  
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Figure 9. Evidence in favor of DFT over EU expressed by the logarithm of the Bayes factor. 
The strength of the evidence is categorized following Kass and Raftery (1995). 
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Appendix A – Properties of the Standardized Covariance 

The value of ! AB
*  is defined by the value of the covariance between options relative to 

the options’ variances. For positively correlated options, ! AB
*  takes values between 0 and 1. 

When twice the covariance is similar to the sum of variances, then ! AB
*  is approximately 1: 

 
2! AB ! ! A

2 +! B
2"# $%&! AB

* !1
. 

When twice the covariance is smaller than the sum of variances, ! AB
*  is smaller than 1 minus 

the value of h 

2! AB < ! A
2 +! B

2!" #$%! AB
* &1' h ( h )*+ . 

Note that twice the covariance cannot be greater than the sum of the variances, as the 

following proof shows. In stochastically non-dominant options the variances of options’ 

outcomes are unequal, thus  

! A
2 <! B

2 ! ! A
2 >! B

2 .   

As a consequence, we can write that 

! A
2 <! B

2 !! B
2 =! A

2 + s " s #$+ . 

Then, 

ABA

AAAB

s
s

σσ

σσσ

−+>

++>

2
0

2

2

22

 

0 > E[a2 ]+ E[b2 ]!E[a2 ]
2

!E[a "b] , 

where a and b are the expectations of gambles A and B minus values of outcomes of A and B. 

From ! A
2 <! B

2  we derive that 

 E[a2 ]< E[b2 ]! b = a+ g " g#$+ , 

such that g is the difference between a and b. By expanding the inequality we get 
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2
0

2g
>

. 

Because 02 >g , the inequality is false. 

2
0

2g
≤

 is true. 

Further, the ! AB
*  is sensitive to the difference between expected values of the choice 

options. As shown in the Figure A1, the bigger the expected value difference the more 

narrow the range of the ! AB
*  values. The following mathematical proof shows that the greater 

the expected value difference, the smaller the maximum value of ! AB
* . 

Mathematical proof that !EV "#! AB
* $. 

For two options with expected values of E[A] and E[B], such that  

E[A] ≠ E[B], we can define the expected value of option A as 

 E[A] = E[B] + l,  where l=const., l !" . 

If the options are not identical, we define that their outcomes xAi and xBi for each event i ! I , 

are in the relation xAi ≠ xBi. We can also define the difference between the outcomes of the 

options, corresponding to the same external event as 

xAi = xBi  + mi , where mi = const., so  

 )(][][ lmblBEmxAExa BA −+=−−+=−= . 

In sum, m is the difference between outcome values of option A and B, whereas l is the 

difference between the expected value of the options. We can define the difference between 

the outcomes’ difference and the expected value difference as not negative value k, such that 

 k = m – l. 

We can rewrite the variances and the covariance of the options as 
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[ ]
[ ]
[ ] [ ]
[ ]22

22

2

22

2
)(

bE
kbkEbE

kbE
aE

B

A

=

++=

+=

=

σ

σ

 

 
! AB = E ab[ ]

= E b2!" #$+ kE b[ ].
  

We rewrite ! AB
*  as 

 
! AB
* =

2! AB

! A
2 +! B

2

=
u

u+ k2
! u = 2E b2"# $%+ 2kE b[ ].

 

Thus, the relation between ! AB
*  and k is as follows 

 k!"! AB
* #. 

Further, the difference l between the expected values of the options with two outcomes x and 

probabilities p depends on the difference m of the outcomes’ values. If we write l as a 

 

l = E A[ ]!E B[ ]

= pxA1 + (1! p)xA2 ! pxB1 ! (1! p)xB2( )

= p xA1 ! xB1 ! (xA2 ! xB2 )( )+ xA2 ! xB2

= p m1 !m2( )+m2

= pm1 + (1! p)m2

= E m[ ] " mi = xAi ! xBi,

 

then the value k on which ! AB
*  depends equals 

 k =m!E m[ ] . 

 Finally, the value of ! AB
*  depends on the difference between values of outcomes of 

option A and B, such that the higher the difference, the lower ! AB
* :  
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m!"! AB
* # . 
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Figure A1. Relationship between the options’ expected value difference and the range of 
values of ! AB

* . For each expected value difference, a sample of 1000 pairs is presented. The 
bigger the difference between expected values of two gambles, the smaller the range of the 
! AB
*  and the smaller the maximum value of the ! AB

* . 
 
 

The stimuli created for each of the three conditions in Study 1 had specific properties 

regarding the relationship between their variances and covariance. Figure A2 shows these 

relations for each of the groups. The mean distance is greater between the medium and large 

group than between the small and medium group. Also, the coverage of the sum of variances 

almost completely overlaps for the small and medium group, whereas it only partially 

overlaps for the medium and large group. Nevertheless, the covariance values do not overlap 

for any of the groups. 
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Figure A2. Variances and covariances of gambles in each condition of Study 1. Straight lines 
represent regression lines. The higher ! AB

* , the steeper the slope is, which indicates that the 
higher ! AB

* , the stronger the relation between variance and covariance within each gamble. 
The Euclidean distance from the mean in condition large to the mean of condition medium is 
larger than the distance between condition medium and small, which is in line with the 
expectation that the difference in preferences will be greater. 
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Appendix B – Specification of Selected Models of Decision Making 

 

Expected Utility Theory 

EU defines the expected utility of an option A with I outcomes by:   

∑
=

=
I

i
ii xupAEU

1

)()( ,       (B1) 

where p represents the probability that outcome i will occur and x is the outcome. We defined 

the utility of an outcome xi (i.e., a monetary payoff) by a power function: 

⎪⎩

⎪
⎨
⎧

<−−

≥
=

0,)(

0,
)(

ii

ii
i

xx
xx

xu
α

α

      (B2) 

where the parameter α determines a person’s risk attitude. The probability with which an 

option is chosen is defined by an exponential choice rule:  

 
( )[ ])()(exp1

1),|Pr(
AEUBEU

BAA
−+ θ

    (B3) 

 

Cumulative Prospect Theory 

The overall subjective value of option A is defined as  

)()()(
1

i

I

i
i xvpAV ∑

=

⋅= π       (B4) 

where the subjective value of an outcome is defined as:  

⎪⎩

⎪
⎨
⎧

<−−

≥
=

0,)(

0,
)(

ii

ii
i xx

xx
xv

β

α

λ
      (B5) 

where !  and !  define the curvature of the utility function of gains and losses 

correspondingly; ! !1  specifies loss aversion.  

 The probability weighting function ! (pi ) accounts for the individual perception of the 

outcomes’ probabilities and is defined as:  
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with γ=c for positive and zero payoffs and δ=c for negative payoffs. The choice 

probability of CPT can be defined by Equation B3.  

 

Regret Theory 

In the current work, following Pathan et al. (2011), we define the regret function iR  

of choosing option A  with outcomes ix , },...,1{ Ii∈  and probabilities ip over option B  with 

outcomes iy  and probabilities pi as 

 ( )( )( )),max(exp1ln iiiiA yxxR −⋅+= β      (B8) 

where !  is a parameter of the sensitivity to the losses and corresponds to the curvature 

steepness of the exponential function. The total regret of choosing an option with several 

possible outcomes is 

 ∑
=

=
I

i
iAA RR

1  
.       (B9) 

The probability of choosing A  over B  is estimated using an exponential choice rule:  

 
( )[ ]AB RR

BAA
−+

=
θexp1
1),|Pr(      (B10) 

with θ  as a free sensitivity parameter of the model (in contrast Pathan, et al., 2011 used a 

constant sensitivity parameter of! =1 ). 
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Decision Field Theory 

Assuming a predefined threshold, the probability of choosing option A over B can be 

approximated by  

 

⎥
⎦

⎤
⎢
⎣

⎡
⎟⎟
⎠

⎞
⎜⎜
⎝

⎛
⋅−+

=

DFT
d

d
BAA

θ
σ

2exp1

1),|Pr(     (B11) 

where d  represents the expected difference between the two options, dσ  represents the 

variance of that difference, and !DFT  is the decision threshold. DFT is similar to the 

probabilistic versions of the RT such that the regret effects results from dividing the mean 

valence difference by the standard deviation of the valence difference (Busemeyer and 

Towsend, 1993). The difference between the options can be determined by 

d = v(A)! v(B)        (B12) 

where v is an option’s subjective value defined as  

∑
=

=
I

i
ii xupv

1

)(         (B13) 

and I  is the number of possible outcomes, W  is a continuous random variable representing 

attention weight assigned to each possible outcome of an option and (.)u  represents the 

utility of outcome x. In the current study, we assume that ii ppW =)(  and ii xxu =)( . The 

variance of the difference ! d  is defined as 

 ! d = ! A
2 +! B

2 ! 2! AB       (B14) 

where ! AB  defines the strength of relationship between the options’ outcomes, such that 

when ! AB = 0  the options’ outcomes are independent and the higher ! AB  the stronger the 

statistical relationship between the options’ outcomes. The decision threshold chosen by the 

decision maker !DFT
*  is proportional to the standard deviation of the differences and the 

threshold !  is equal to !DFT
* /" d . 
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Expected Utility Theory with an Error Model 

The probability of choosing gamble A over gamble B is expressed as a choice rule of 

EU model (see Equation B3) with an error model ! d  defined in Equation B14, is defined as 

Pr(A | A,B) 1

1+ exp
! EU(B)!EU(A)( )

! d

"

#
$

%

&
'

 .    (B15) 

Simulation and Parameter Estimation 

Following Harrison and Rutström (2009) and Rieskamp (2008), the predictions in the 

simulation are based on the parameters adjusted to generate probability predictions at the 

same level: EU: ! = .867 , ! = .23 , CPT: ! = .93 , ! = .89 , ! = .77 , ! = .76 , ! =1 , ! = .18 , 

RT: ! = .05 , ! = 4.6 , DFT: ! =1.19 . 

In Study 1 and Study 2, we estimated parameters using maximum log-likelihood 

approach. The allowable parameter estimates were as follows. The parameter space was 

restricted to reasonable ranges: EU: ! ! [0,3] , CPT: ! ! [0,3] , ! ! [0,3] , ! ! [0,1] , 

! ! [0,1] , RT: ! ! [0,1]. The loss aversion parameter λ  of CPT was irrelevant as no mixed 

gambles were included (i.e., ! =1 ). The sensitivity parameters (!  or ! for CPT) ranged 

between 0 and 40. 
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Appendix C – Additional Tables and Figures 

Table C1 

Fit and the parameter estimates for expected utility theory, cumulative prospect 
theory, regret theory and decision field theory for the two-outcome gambles. 
 
 EU CPT Regret DFT 
Ppt BIC !  !  BIC !  !  !  !  !  BIC !  !  BIC !  
1 171.14 0.72 0.42 185.61 0.78 0.82 0.77 1 0.29 165.81 0.08 4.77 165.49 1.16 

2 122.54 1.09 0.1 134.12 0.98 1.21 0.69 0.33 0.18 122.53 0.01 18.61 130.74 1.53 

3 75.838 0.96 0.25 82.594 0.99 0.87 0.23 0.4 1.18 73.339 0.01 26.55 81.294 2.21 

4 164.97 0.58 0.92 178.61 0.58 0.56 0.57 0.76 1.1 175.3 0.03 5.61 176.41 1.06 

5 171.62 0.86 0.21 157.39 0.79 1.84 1 0.12 0.26 147.77 0.11 6.06 150.33 1.32 

6 55.316 1.15 0.12 67.921 1.05 1.1 0.67 0.39 0.26 57.065 0.01 30.5 69.881 2.43 

7 122.96 1 0.15 128.14 0.87 1.36 1 0.21 0.25 102.85 0.1 8.83 103.59 1.86 

8 106.18 0.79 0.47 121.45 0.83 0.86 1 1 0.35 112.87 0.08 7.35 90.214 2.06 

9 258.42 1.06 0.01 275.5 0.01 0.01 0.01 0.01 0.01 257.88 0.01 1.65 254.11 0.08 

10 32.076 0.9 0.49 44.965 0.82 1.68 1 1 0.63 36.872 0.01 37.94 33.132 3.54 

11 238.89 1.33 0.01 275.5 0.01 0.01 0.01 0.01 0.01 229.82 0.19 2.89 222.68 0.61 

12 208.26 0.97 0.09 223.46 0.91 0.95 1 1 0.11 220.81 0.1 2.7 191.02 0.92 

13 40.432 1.13 0.15 54.535 1.1 1.11 0.45 0.39 0.31 39.577 0.02 21.12 39.014 3.29 

14 96.037 0.7 0.82 107.8 0.62 0.77 0.89 0.42 1.17 98.291 0.04 8.61 98.496 1.94 

15 163.18 0.77 0.35 178.97 0.83 0.84 1 1 0.25 166.91 0.1 4.93 146.72 1.35 

16 131.58 0.74 0.51 135.47 0.56 1.26 1 0.15 1.22 139.41 0.03 7.35 135.2 1.48 

17 86.963 0.44 4.07 94.743 0.4 0.52 0.75 0.69 4.38 106.16 0.09 8.11 104.21 1.86 

18 40.607 1.09 0.18 95.046 1.45 1.42 0.83 0.82 2.64 40.821 0.07 15.35 29.839 3.71 

19 254.95 0.22 1.16 275.5 0.01 0.01 0.01 0.01 0.01 256.08 0.01 2.27 254.2 0.07 

20 239.17 0.66 0.24 275.5 0.01 0.01 0.01 0.01 0.01 239.72 0.04 2.09 235.59 0.46 

21 146.45 1.16 0.06 156.62 1.21 1.11 0.61 0.6 0.07 146.88 0.03 6.97 144.93 1.37 

22 146.98 0.87 0.24 162.37 0.86 0.83 1 1 0.27 146.88 0.07 5.5 138.16 1.44 

23 253.07 1.21 0.01 275.5 0.01 0.01 0.01 0.01 0.01 254.9 0.02 1.51 248.49 0.25 

24 126.34 1.13 0.08 121.28 0.66 1.74 1 0.12 0.85 112.07 0.09 7.69 106.02 1.83 

25 174.62 0.83 0.24 190.22 0.84 0.81 1 1 0.23 167.62 0.1 4.9 157.44 1.24 

26 48.552 1.06 0.19 64.528 1.01 1 1 1 0.23 58.857 0.04 11.88 44.375 3.09 

27 111.48 0.81 0.41 126.36 0.8 0.84 1 1 0.39 118.69 0.06 6.82 103.63 1.86 

28 157.89 0.65 0.68 127.41 0.26 1.62 0.7 0.09 10 136.85 0.13 7.35 141.86 1.4 

29 169.41 0.57 0.94 185.32 0.6 0.59 1 1 0.76 166.4 0.11 5.11 157.56 1.24 

30 62.662 0.92 0.33 76.644 0.95 0.94 0.58 0.85 0.33 64.123 0.01 28.64 73.238 2.36 

31 89.714 0.77 0.59 101.11 0.68 1.01 1 0.26 0.87 91.416 0.06 8.42 82.529 2.19 

32 122.87 1.05 0.12 138.11 1.01 1.04 0.96 1 0.13 126.42 0.05 6.6 117.31 1.69 

33 88.082 1.3 0.05 92.073 0.93 1.66 1 0.14 0.33 83.148 0.08 9.6 76.468 2.3 

34 160.91 0.84 0.25 175.95 0.83 0.86 1 1 0.25 161.22 0.08 4.96 148.2 1.34 

35 257.12 1.11 0.01 275.5 0.01 0.01 0.01 0.01 0.01 256.07 0.18 0.92 250.53 0.21 
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Table C2 

Fit and the parameter estimates for expected utility theory, cumulative prospect 
theory, regret theory and decision field theory for the four-outcome gambles. 
 
 EU CPT Regret DFT 

Ppt BIC !  !  BIC !  !  !  !  !  BIC !  !  BIC !  
1 180.92 0.76 0.32 184.05 0.78 0.94 1 0.9 0.19 184.18 0.01 6.52 178.72 1.19 

2 69.50 0.55 2.23 97.078 1.17 1.26 0.97 0.96 0.07 96.91 0.03 7.51 82.86 2.61 

3 243.22 1.3 0.01 257.35 0.73 0.98 1 1 0.06 275.45 0.12 0.84 234.04 0.53 

4 68.84 0.82 0.52 91.259 1.37 1.44 0.85 1 0.03 91.66 0.03 7.71 65.87 3.02 

5 75.76 0.95 0.26 89.672 1.29 1.3 1 1 0.05 89.36 0.05 6.05 58.44 3.24 

6 40.24 0.78 0.82 95.046 1.97 1.94 0.89 0.88 5.09 95.05 0.03 9.93 30.17 4.47 

7 169.92 1.52 0.01 185.41 1.44 1.57 1 1 0.01 187.18 0.09 2.58 150.48 1.52 

8 252.13 0.15 3.07 275.5 0.01 0.01 0.01 0.01 0.01 275.5 0.01 1.83 248.42 0.28 

9 48.58 1.11 0.15 67.053 1.57 1.53 0.78 1 0.02 67.25 0.04 8.77 44.54 3.73 

10 198.68 0.44 0.44 203.78 1.26 1.34 0.29 0.4 0.04 204.13 0.01 7.33 198.93 0.96 

11 209.50 0.71 0.31 233.97 1.29 1.38 1 1 0.01 232.44 0.08 1.75 196.85 0.98 

12 120.38 0.72 0.61 144.4 1.14 1.13 1 1 0.08 145.36 0.06 3.68 104.47 2.19 

13 106.63 0.71 0.7 121.07 1.19 1.38 0.9 1 0.05 126.24 0.04 5.12 100.20 2.27 

14 46.32 1.36 0.05 60.323 1.72 1.6 0.54 1 0.02 80.66 0.04 9.69 38.486 4.01 

15 73.74 0.73 0.79 100.8 1.3 1.33 0.76 1 0.04 105.28 0.04 6.98 66.047 3.02 

16 80.62 0.78 0.58 96.678 1.48 1.53 0.51 0.71 0.02 106.38 0.03 9.86 71.06 2.89 

17 153.98 0.3 5 192.17 0.79 0.91 1 0.45 0.23 192.22 0.01 7.88 172.93 1.25 

18 69.47 0.93 0.3 84.526 1.49 1.31 1 1 0.04 97.61 0.04 6.49 60.70 3.17 

19 131.06 0.84 0.31 160.65 1.26 1.28 1 0.99 0.04 163.88 0.03 4.29 131.90 1.77 

20 135.08 0.59 1.09 162.8 1.08 1.25 1 1 0.05 165.07 0.04 3.89 129.45 1.81 

21 176.85 0.55 0.98 198.16 0.88 1.03 1 1 0.11 198.25 0.04 2.88 176.21 1.22 

22 162.51 0.96 0.14 185.65 1.48 1.55 0.6 0.65 0.01 196.50 0.02 5.28 159.82 1.41 

23 100.87 1.47 0.02 124.04 1.55 1.56 1 1 0.01 132.58 0.06 4.65 83.69 2.59 

24 183.61 1.49 0.01 204.91 1.39 1.54 1 1 0.01 214.31 0.05 2.01 188.72 1.07 
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Abstract 

Models of decision making under risk propose different definitions of risk. The most 

commonly used definition is variance of choice option’s outcomes. Further developments of 

the standard risk-value models incorporate skewness in the model specification. In contrast, 

expected utility theory assumes people’s risk aversion results from the curvature of the utility 

curve. Here, we propose expected shortfall, as an established in finance measure of risk, 

which provides a plausible psychological interpretation of risk, where a decision maker falls 

short of their aspiration expected outcome. We integrate this measure in the standard risk-

value models assume a trade-off between the expected gain and expected risk. We test the 

new risk-value shortfall model against the existing models in two behavioral experiments. 

Our results indicate that the proposed model can successfully predict people’s preference for 

options with the higher expected value, lower variance and more positively skewed 

distribution. Also, we showed the advantage of the risk-value shortfall model over expected 

utility model. 

 

Keywords: skewness, risk-value model, expected shortfall, risky measurement 
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Introduction 

Risk and uncertainty are an integral part of decision making. Indeed, in decisions ranging 

from daily activities such as taking a taxi or the bus to investing one life savings’ in bonds or 

stocks one needs to consider if what one stands to gain by taking one option is worth what 

one can loose. Not surprisingly, the question how much risk humans are willing to take has 

attracted a lot of research in psychology, economics and cognitive science (e.g. Weber, 

Shafir, & Blais, 2004; Fishburn, 1977; Lopes, 1984; Holt & Laury, 2002). Frequently it is 

assumed that people make decisions under risk by weighing the expected gain against the 

risk, with risk commonly measured by the variance in outcomes (e.g. Markowitz, 1959; 

Tobler at al., 2007; Weber, Shafir & Blais, 2004; Fishburn, 1977). 

However, a substantial amount of literature suggests that also higher statistical 

moments, such as skewness and kurtosis affect how people make risky decisions (Payne, 

1973; Symmonds et al., 2011, Burke & Tobler, 2011). This suggests that using variance as a 

measure of risk, is insufficient to capture human behavior in decisions under risk (see also 

Bontempo, Bottom, & Weber, 1997; Luce & Weber, 1986; Weber et al., 2004;). Here, we 

suggest that peoples’ choices can be better explained when using an alternative measure of 

risk, the expected shortfall. The expected shortfall is a common measure of risk in finance 

(Acerbi & Tasche, 2002) and, as we will show, it can explain peoples’ preferences for 

variance and skewness in a single measure.  

Using the expected shortfall as a measure of risk has several advantages. For one, it 

captures a choice option’s variance and skewness in a single measure and thus represents a 

more frugal account than incorporating both variance and skewness. Furthermore, it is a 

psychologically plausible that the expected shortfall underlies decisions under risk, because 

research suggests that decision makers frequently try to avoid outcomes that fall short of their 

expectation or “aspiration levels” (see Lopes & Oden, 1999). 



Running head: EXPECTED SHORTFALL AS A PSYHCOLOGICAL RISK MEASURE 

 3 

In an experimental study, we show that using the expected shortfall as a measure of 

risk can explain human choices better than traditional models using variance as a measure of 

risk as well as models that additionally incorporate a preference for skewness such as the 

mean-variance-skewness model and expected utility theory (von Neumann & Morgenstern, 

1953). 

The influence of skewness on risky choice 

When making choices between risky options, it as assumed that people trade off the 

expected gain of an option with the risk involved in choosing it. Commonly, the gain of an 

option is reflected by the expected value and risk by the variance that is the spread of the 

outcomes (Sharpe, 1964; Weber et al., 2004; Markowitz, 1959). However, the sole use of 

variance as a measure of risk has been criticized (Weber et al., 2004; Luce & Weber, 1986). 

In particular, it has been suggested that beside variance people pay attention to higher 

moments such as the skewness of the outcome distribution (e.g. Symmonds et al., 2011). 

Skewness refers to asymmetries in the distribution of outcomes, that is the more unevenly the 

potential outcomes are distributed, the higher the skewness. Statistically skewness of 

outcomes of option A is defined as,   

!A =
E (A!E A[ ])3"# $%

! A
3        (1) 

with positive skewness referring to distributions in which low outcomes are more frequent 

than high outcomes and negative skewness referring to distributions in which high outcomes 

are more frequent than low outcomes.  

For instance, imagine three assets that differ in their prospective returns. The price of 

Asset A will be 90, 92 or 120 Swiss Francs, the price of asset B will be 81.5, 109.5, 111.5 

Swiss Francs and the price of asset C 83.8, 101 and 117.3 Swiss Francs. Although all three 

assets have the same expected price of 101 and the same variance (! A
2 =! B

2 =!C
2 = 281), they 
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differ in their skewness (see Figure 1). Whereas the prices of asset B are evenly distributed, 

the prices of asset A are positively skewed and the prices of asset C are negatively skewed. 

How does skewness affect human decision-making? 

Prior research suggests that when expected value and variance are kept constant 

people – and animals – prefer options with a positive skew (i.e. Burke & Tobler, 2011; 

Chunhachida et al.1997; Symmonds et al., 2011). Furthermore, Garrett and Sobel (1999) 

argue that a preference for positive skewness can explain why people play lotteries. In 

addition research in finance and economics suggests that people take skewness into account 

when selecting portfolios (see Samuelson, 1970; Chiu, 2005; Li, Quin, & Kar, 2010). 

Models of Decision Making: Accounting for Skewness Preferences 

Various models have been proposed to describe how people make decisions under 

risk with two types of models dominating the literature: (1) expected utility models (von 

Neumann & Morgenstern, 1953) and (2) risk-value models (Sarin & Weber, 1993). Both 

models have been adapted to take preferences for skewness into account. In the following, we 

shortly describe these models and how they can account for a preference for skewness. Then 

we introduce the risk-value shortfall model as an alternative approach to understand risky 

decision-making. 

Risk-Value Models 

Risk-value models assume that risky choices can be understood as a trade-off between 

the expected gain and the risk associated with an option. In its most classical version, risk is 

defined as variance of the outcomes of risky options, which defines the range of the possible 

outcomes. The classic mean-variance model (MV) cannot account for skewness, but it has 

been recently extended to the mean-variance-skewness model (MVS, see Symmonds et al. 

2011; see also Jondeau & Rockinger, 2006; Post, van Vilet & Levy, 2006 for a similar 

extension of the Capital Asset Pricing Model (CAPM)). The MVS model incorporates 
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preferences for skewness, assuming that the subjective value (SV) of a risky option A is a 

weighted sum of the mean (µA)1, variance (! A
2 ) and skewness (γA) of the option, 

 SV (A) = !1µA !!2" A
2 +!3#A .       (2) 

The MVS model successfully accounted for participants’ choices in a study by 

Symmonds et al. (2011) outperforming the classical mean variance model. Furthermore 

Symmonds et al. (2011) identified separate neural correlates for preferences for skewness and 

variance suggesting that people are sensitive to both measures. 

Expected Utility Models  (EU) 

Expected utility models assume that preference is driven by the subjectively 

experienced utility of an option that depends on the options outcomes weighted by their 

(subjective) probabilities (von Neumann & Morgenstern, 1953; Tversky & Kahneman, 1979). 

Expected utility theory (von Neumann & Morgenstern, 1953) can account for preference for 

skewness, if the utility function is appropriately specified.2 Specifically, the standard one-

element utility function of outcomes a (von Neumann & Morgenstern, 1953), defined as 

 u(a) =
a! iff a ! 0

"("a)! iff a < 0

#

$
%

&%
,     (3) 

can account for choices of higher expected value, lower variance and positive skewness when 

the free parameter α is restricted such that ! !"+# 0,1( ) . Specifically, when 1<! < 2 , the 

                                                
1 Note that throughout the paper, we define the statistical mean as the expected value, µA= 
E[A]. 
2 Golec and Tamarkin (1998) proposed the extension of expected utility to the three element 
utility function (u(a) ), where the utility an outcome x is a weighted sum of the first three 
elements of the Taylor’s series, u(x) = b0 + b1a+ b2a

2 + b3a
3  with positively valued weights b1 

and b3 and negatively valued b2. This expansion can account for choices according to the 
higher expected value, lower variance and positive skew. Accordingly any utility function 
can for which u '(a)> 0 , u ''(a)< 0  and u '''(a)> 0  , because it would have the same properties 
as the utility function obtained from the Taylor series expansion (Kroll, Levy, & Markowitz, 
1984). 
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utility function can account for variance and expected value, and when ! ! 2 , the function 

can only account for the preference for higher expected value. ! = 0 , in turn, indicates that a 

decision maker is insensitive to any outcome value. 

 In sum, classical expected utility models as well as extensions such as cumulative 

prospect theory can account for positive skewness if the α parameter is specified accordingly.  

However, even though expected utility theory leads to a preference for options with 

positively skewed distributions, it does not assume that people actually evaluate the 

distribution of the outcomes. Instead the skewness preference implicitly results from the 

curvature of the utility function, which is difficult to reconcile with the findings of 

Symmonds et al. (2011). 

The Risk Shortfall Model (Short) 

 Alternatively, we propose risk-value shortfall model. Similar to the MV and MVS 

models, the risk-value shortfall model assumes that the subjective value of a choice option 

can be represented by the expected value (E[A]) of the option A and its risk (R). 

 SV A[ ] = E A[ ]!! "R A( ) .     (4) 

In contrast, to the MV model, we suggest that risk should not be measured by the variance 

but by the expected shortfall of an option. The expected shortfall reflects the decision 

maker’s expectations about possible losses associated with a choice option. It is a frequently 

used as a measure of risk in finance for portfolio optimization  (Bertsimas, Lauprete, & 

Samarov, 2004) and in the insurance industry (Embrechts, McNeil, & Straumann, 2002). In 

finance, it is usually defined as the “average loss in the worst c% of cases”, where c a free 

parameter that can be adjusted depending on the decision maker or the task (Acerbi & 

Tasche, 2002). Statistically, the expected shortfall (ESc,A) of choice option A with I outcomes 

ai and their corresponding probabilities pi is defined as  
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R A( ) = ESc,A = pi
i=1

I

! max c" ai, 0( )#$ %& .     (5) 

To be able to apply the expected shortfall as a measure of risk in options with only 

positive outcomes, we here define the expected shortfall as the average expected outcome, 

which falls below a decision maker’s aspiration level. A decision makers’ aspiration level is 

captured by the threshold parameter c (Lopes  & Oden, 1999). Furthermore, we assume that 

the aspiration level c depends directly on the expected value of the option A, such that  

  c = !E A[ ] ,       (6) 

where δ is a free parameter of the model, such that ! ! 0,1[ ] . 

Accordingly, the value of the expected shortfall is a function of the distance between 

the outcomes, the threshold c and the probability with which the outcomes occurs.  To test 

the psychological plausibility of the risk-value shortfall model, we conducted an 

experimental study in which we rigorously test the risk-value shortfall (Short) model against 

the expected utility theory (EU), and mean-variance-skewness model (MVS). For the sake of 

completeness, we included the mean-variance model (MV), even though it does not account 

for a preference for skewed distributions.  

Behavioral Experiment 

 To test the models we conducted a study following the experimental procedure used 

by Burke and Tobler (2011). Burke and Tobler (2011) had provided first evidence that 

skewness influenced peoples’ decision between options with three outcomes. In their study, 

they investigated the influence of expected value, variance and skewness in choices between 

gambles varying each factor independently. However, due to the scarcity of the behavioral 

lab experiments on skewness preference3, and the fact that Burke and Tobler (2011) 

                                                
3 Most of the studies on skewness preference either focused on portfolio selection (i.e. Li, 
Qin, Kar, 2010; Post, van Vilet & Levy, 2005; Jondeau & Rockinger, 2006), or investigating 
neural correlates of processing skewness (i.e. Symmonds et al. 2011; Burke & Tobler, 2011). 
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repeatedly used only 5 gambles, we aimed to replicate their results using a wider variety of 

gambles. Also, we aimed at testing the generalizability of the effect observed by Burke and 

Tobler (2011) by using gambles with more than three outcomes. 

Method 

Participants. 24 (Nfemale = 15) persons, aged between 20 and 52 years (Mage = 27.4), 

participated in the study. Most participants were students at the University of Basel. One 

participant was excluded from the analysis because she chose the gamble with the lower 

expected value in almost all control trials, suggesting that she did not understand the task. 

Participation took between 20 and 30 min. The participants received a show-up fee of 10 

Swiss Francs and a bonus ranging between 0 and 2 Swiss francs. 

Materials. As stimuli we used two blocks of 100 pairs of gambles, the first block 

contained gambles with three outcomes, the second block gambles with five outcomes. 

Following Burke and Tobler (2011), we varied the expected mean, the variance, and the 

skewness such that each pair of gambles differed with respect to only one property, resulting 

in five sets of 20 pairs of gambles: 1) low mean vs. high mean, 2) low variance vs. high 

variance, 3) positively skewed vs. negatively skewed, 4) positively skewed vs. not-skewed, 5) 

negatively-skewed vs. not-skewed. The gambles in the first set had the same variances and 

not-skewed distributions, whereas the gambles in the second set had the same expected 

values, not-skewed distributions but different variances. The last three sets of trials contained 

of gambles with the same expected values and variances but differently skewed outcome 

distributions. 

In our study, the same expected values, variances and skewness distributions means 

that E[X]=35±.5 points, σ2=450±7 points, γ=0±.05 points. The skewness of the positively 

skewed gambles ranged between .48 and .70, and of the negatively skewed gambles between 
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-.70 and -.42. Positively and negatively skewed gambles in group 3 were matched such that 

their skewness was symmetric across 0 (i.e. -.7 and .7). 

One block of trials contained gambles with three outcomes, whereas the second the 

gambles with five outcomes. In both cases the probabilities of these outcomes were equal, 

which means in the first case the probabilities were 1/3 and in the second 1/5. The outcome 

values ranged between 0 and 100 points. Graphically, the values of probabilities were 

presented as height of bars, whereas the values of outcomes were marked on the x-axis (see 

Figure 2A). Three-outcome gambles had three bars (Figure 2A), while the five-outcome 

gambles had five bars (Figure 2B). 

Procedure. Participants were randomly assigned to one of two conditions. 

Participants in condition 1 started the experiment with the block containing 3-outcome 

gambles and participants assigned to condition 2 started the experiment with the block 

containing 5-outcome gambles. In each block, the gamble pairs were presented in a random 

order, which was varied for every participant. Each time, the participants were asked to 

choose between two gambles, A (presented on the left) and B (presented on the right) by 

choosing buttons “A” or “B” on the keyboard. In about 50% of the pairs the left gamble was 

“the better gamble” (i.e. having higher expected value, lower variance, more positively 

skewed distribution). 

Before the start of the experiment the participants were provided with instructions on 

the computer screen. They were not informed that some gambles differed in their expected 

values, variances and distributions. They were asked to choose at each time the gamble that 

they prefer, but their bonus would depend on their performance. At the end of the 

experiment, one gamble pair form both blocks was randomly chosen and played out. The 

outcome of the gamble was divided by 5 and paid out as a bonus. Afterwards, the participants 
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were asked to fill out a demographic questionnaire. This experimental design (Figure 2C) 

was tested earlier in a pilot study. 

Results and Dicusssion 

Data Analysis. As shown in Figure 3, overall, in both blocks of gambles people 

preferred the gambles with a higher mean, followed by lower variance and more positively 

skewed gambles, 3-outcomes: p < .001, ! 2 (3) = 53.81, 5-outcomes: p < .001, ! 2 (3) = 

57.794. Additionally, we compared the distributions of average frequencies of choices in the 

three skewness conditions against the uniform distribution of choice frequency of .5, with the 

series of two-sampled Kolmogorov-Smirnov tests, with Bonferroni correction of α. We found 

significant differences of the frequency distributions in all three skewness conditions.  As 

expected, participants preferred positively skewed options to negatively skewed options and 

this preference was stronger than the preference of positively skewed to non-skewed options. 

Participants preferred negatively skewed options to non-skewed options (see Figure 3). 

However, this preference was not as strong as the preference for the positively skewed 

options. This last finding is in contrast to our expectations, and contrary to previous findings 

(see Burke & Tobler, 2011). 

Models of Decision Making. We fitted four models: MV, MVS, EU and Short to the 

data of every participant from both conditions, using the maximum likelihood method. The 

exact models’ specifications are outlined in Appendix A. We constrained the parameters as 

follows MV: ! ! 0,15{ } , ! ! 0,100{ } , MVS: !1 ! 0,15{ } ,!2 ! 0,15{ } , ! ! 0,100{ } , EU: 

! ! 0,3{ } , ! ! 0,100{ } , Short: ! ! 0,1{ } , ! ! 0,1500{ } , ! ! 0,100{ } . Overall, all models 

predicted the data better than the baseline model for 96% of the participants (see Table 1). 

The estimated parameters are consistent across MV, MVS and EU (see Table B1 in Appendix 

B). This means that when βMV = 0, then β1 MVS = 0, and when β2 MVS = 0, then αEU ≥ 1. 

                                                
4 According to Kolmogorov-Smirov test, the data were not normally distributed. 
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Therefore, if according to one model’s parameter estimates, a decision maker is not sensitive 

to variance and/or skewness, the same conclusion could be drawn from another model’s 

parameter estimates. Short’s parameter estimates do not exhibit such regularities, which 

confirms that Short assumes a different decision process than the three other models. 

According to the median Bayesian information criterion (BIC), Short model had the 

best fit, followed by MV, MVS and EU (see Table 1). According to total BIC, Short model 

had the best fit, followed by EU, MVS and MS. As expected, MV did not predict skewness 

preference, while EU, MVS and Short successfully did. These three models have also 

successfully predicted the strongest preference for gambles with high mean, slightly lower 

preference for gambles with lower variance and small variations among three skewness 

conditions. These results are not surprising for EU and MVS. However, in this experiment, 

we show for the first time that on the qualitative level, expected shortfall can effectively 

predict people’s risk avoidance with respect to mean, variance and skweness. 

In addition to this, overall, Short had the best fit on the individual level. According to 

BIC, it had a better fit than EU for 56% of participants, and than MVS for 39% of the 

participants. MVS model had a better fit than EU for 52% of the participants. We compared 

the models based on the individual Bayes factor (Kass & Raftery, 1995), which quantifies 

how much better is one model over the other while incorporating the complexity of the 

model, of Short with respect to MVS and EU. According to the median logistic BF there was 

a substantial evidence in favor of Short and against EU, Me 2 logBFShort _EU( ) = 5.96  and there 

was no difference between Short and MVS, Me 2 logBFShort _MVS( ) = !.13 . Also, MVS had a 

better fit than EU, Me 2 logBFMVS _EU( ) = 5.32  (see Kass & Raftery, 1995 for interpretation of 

BF values). As shown in Figure 5, for the majority of the participants there was a strong and 

very strong evidence in favor of Short and against EU. The fact that Short performed better 

than (according to the BIC) or similar to (according to the BF) MVS shows that the more 
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cognitively inspired model can successfully make the same predictions as the purely 

mathematical model. 

General Discussion 

In this study, we showed that using the expected shortfall as measure of risk can 

improve the ability to predict how people make decisions under risk. Overall, Short model 

predicted participants’ responses better than three alternative models that have been proposed 

in the literature, EU, MV, and MVS. This suggests that the expected shortfall is well suited to 

capture how people perceive the risk associated with an option when making decisions under 

risk. A frequent measure of risk in finance (Bertisas et al., 2004), the expected shortfall is 

based one the idea that when making decisions under risk people compare the number of 

outcomes that will fall below their level of aspiration. This idea resonates with the research of 

Lopes and Oden (1999) saying that people try to avoid outcomes that fall below their level of 

aspiration, which provides further support for the psychological plausibility of the expected 

shortfall as a measure of risk. 

Using expected shortfall as a measure of risk implies that people not only consider the 

variance but also the skewness of the outcomes’ distribution. Indeed, our results suggest that 

Short outperformed the MV model, because it takes the skewness of the outcome distribution 

into account. The idea that skewness influences decision making under risk has been widely 

supported in research on portfolio selection (i.e. Li et al., 2010; Post, van Vilet & Levy, 2005; 

Jondeau & Rockinger, 2006), but very few experimental test have been provided so far (for 

exceptions see Burke & Tobler, 2011; Symmonds et al., 2011). By replicating the results 

obtained by Burke & Tobler (2011) with larger set of gambles, we found that people not only 

consider the expected value and the variance when making risky choices (Sarin & Weber, 

1993), but also the skewness of the outcome distribution. Although the effect of skewness 

was smaller than the effect of expected value or variance, participants reliably preferred 
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options with positively skewed outcome distributions to options without skew or negatively 

skewed outcome distributions. These results dovetail with the literature on portfolio selection 

(see Chiu, 2005). In addition to this, the results provide further evidence for a preference for 

skewness in experimental fully controlled conditions – an analysis that usually is not possible 

in portfolio selection because the distribution of market assets is generally skewed (Li et al., 

2010). 

Unexpectedly, we did not find any evidence that people would prefer gambles without 

skew to gambles with a negatively skewed outcome distribution. One possible explanation is 

that the possible bonus that could be obtained was relatively low (up to 2 Swiss francs), and 

therefore, the negatively skewed gambles would have not been perceived as particularly 

risky. Alternatively, it is possible, that the range of negative skweness -.70 to -.42 has been 

too large, meaning that gambles with γ = -.42 has not been perceived as sufficiently risky. 

Burke and Tobler (2011) used gambles with one negative skewness level, namely γ = -.7. 

However, there are very few gambles with this exact skenwess level, and expected value and 

variance as defined in the methods section. Therefore, to diversify the range of gambles, we 

had to extend the range of skewness. 

 The preference for skewness was supported by the model comparisons. From the four 

models in the comparison three – EU, Short and MVS – predicted a preference for positively 

skewed outcome distributions, in line with the observed data. In contrast, the MV model did 

not predict a preference for skewness and, accordingly, was outperformed by the other three 

models in terms of the total BIC. However, it should be noted, that although the majority of 

participants (57%) showed a preference for positively skewed options, a considerable 

minority of participants was not sensitive to skewness. For these the MV provided better fit 

than MVS, but not necessarily better fit than EU and Short. This means, that MVS’ 
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complexity is only feasible for participants who are skewness-sensitive, whereas EU and 

Short provide a very good fit, even when people are not sensitive to skewness. 

 Short outperformed the competing models EU and MVS based on the total BIC. In 

addition, when classifying participants according to the BIC, the majority of participants 

were classified as using Short, suggesting that overall Short was best to describe participants 

choices. However, based on the BF, there was a comparable evidence for Short and MVS, but 

very strong evidence in favor of Short. Also, when comparing MVS to EU, the advantage of 

MVS over EU was slightly lower than the evidence of Short over EU. The good fit of the 

MVS model, however, is not surprising, because it directly considers the skewness of the 

choice options and thus will generally predict the same choice as Short in our design. Here, 

conducting a more focused model comparison is necessary to tease apart the predictions of 

these two models. 

 In sum, the results of this study indicate that in general, people prefer choice options 

with more positively skewed outcome distributions to the options with non- or negatively 

skewed distributions. This suggests that when evaluating the risk associated with a choice 

option people not only consider the spread of its outcomes, but also by the distribution of 

these outcomes. Furthermore, our results suggest that that the perceived risk of the option can 

be captured by the expected shortfall, which takes variance and skewness of an option’s 

outcomes into account. In line with this idea, using the expected shortfall as a risk measure in 

the standard risk-value models improved the models fit outperforming the mean-variance 

model and expected utility, and performed at least as good or better than the mean-variance-

skewness model.  
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Table 1 

Model fits according to median and total Bayesian Information Criterion of each model with 

respect to the baseline model. 

Model Me(BIC) Total BIC 

Mean-Variance 211.80 4900.5 

Mean-Variance-Skewness 212.41 4607.2 

Expected Utility 213.04 4589.0 
Risk-Value Shortfall 210.81 4360.3 
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Figure 1. Examples of price distributions of three risky assets whose expected prices and 
variances are the same, whereas their skewness differs such that γA = .70, γB = -.70, γC = 0. 
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Figure 2. A) Graphical representation of three types of differently skewed three-outcome 
gambles. Numbers on x-axis correspond to the outcome values, whereas values on y-axis 
correspond to the probabilities of these outcomes; B) Example of a negatively-skewed five-
outcome gamble; C) Experimental design of study 1. 
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Figure 3. Average frequencies of people’s choices of gambles with positively vs. negative (+ 
vs. -) skewed, positively vs. non-skewed (+ vs. 0), negatively vs. non-skewed (- vs. 0) 
distributions, lower variance and higher mean. White bars show results for the 3-outcome 
gambles, whereas the gray gambles correspond to the results for 5-outcome gambles. Error 
bars correspond to bootstrapped standard error. 
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Figure 4. Average predicted probabilities of choosing a gamble with positively vs. negative 
(+ vs. -) skewed, positively vs. non-skewed (+ vs. 0), negatively vs. non-skewed (- vs. 0) 
distributions, lower variance and higher mean, of four models: Mean-Variance, Mean-
Variance-Skewness, Expected Utility and Risk-Value Shortfall, in two experimental 
conditions: 3-outcome gambles and 5-outcome gambles. For reference, each cell of the figure 
includes observed choice frequencies in both conditions, which are the same as in Figure 3. 
Error bars correspond to bootstrapped standard errors. 
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Figure 5. Model comparison of Short and EU, based on logistic Bayes factor. The darker the 
bar, the stronger the evidence. Bars above 0 indicate evidence in favor of Short, whereas bars 
pointing downwards indicate evidence in favor of EU. The legend explains the interpretation 
of the strength of the evidence, as outlined in Kass and Rafter (1995). 
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Appendix A 

Expected Utility Theory 

For a gamble A with I outcomes ai , with corresponding probabilities pi , the utility of each 

outcome is expressed as in Equation 3, where α is a free parameter which defines decision 

maker’s risk attitude. Total expected utility of the gamble equals to 

 U A( ) = piu(ai )
i=1

I

! .       (A1) 

The probability that a decision maker chooses gamble A over gamble B is defined by the 

softmax rule: 

 Pr(A | {A,B}) = 1
1+ exp ! U(B)!U(A)( )"# $%

.    (A2) 

 

Mean-Variance Model 

The mean-variance model assumes the subjective value of gamble A is expressed as 

trade-off between expected value and the expected risk 

 SV A[ ] = E A[ ]!! "" A
2 ,      (A3) 

where β is a free parameter which defines decision maker’s risk sensitivity. Expected value of 

gamble A with I outcomes ai , with corresponding probabilities pi , equals 

 E A[ ] = piai
i=1

I

! .       (A4) 

The probability of choosing gamble A over gamble B is expressed by the softmax rule 

 Pr(A | {A,B}) = 1
1+ exp ! SV B[ ]! SV A[ ]( )"# $%

.    (A5) 
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Mean-Variance-Skewness Model 

 Mean-skewness model assumes that the subjective value of gamble A is expressed as 

a trade-off between expected value and distribution of gambles’ outcomes 

 SV A[ ] = E A[ ]!!1 "" A
2 +!2 "#A ,     (A6) 

where E[A] and probability of choosing gamble A over gamble B is expressed the same as in 

equations A4 and A5 respectively. !A  denotes skenwess of gamble’s outcomes defined as in 

Equation 1. 
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Appendix B 

 

Table B1 

Estimated parameters and individual model fits measured with Bayesian information 

criterion in the behavioral experiment. 

 MV MVS EU Short 

Ppt. β θ BIC β1 β2 θ BIC α θ BIC δ β θ BIC 

1 0 0.27 241.2

8 

0 0 0.26 244.4

6 

1.02 0.25 241.2

6 

0.03 1282.

4 

0.26 233.8

9 2 5 0.81 165.7 0.42 1.13 0.54 156.9

1 

0.63 4.27 169.2

7 

0.76 0.75 0.57 162.6

8 3 3.62 0.61 169.6

9 

0.09 0.98 0.62 164.2

6 

0.65 4.15 168.6

6 

0.72 0.62 0.68 163.1

2 4 0.55 0.3 199.3

5 

0.62 0 0.25 234.8

6 

0.54 2.55 213.0

4 

1 0.94 0.29 201.8

4 5 5 0.52 171.0

4 

0.25 0 0.47 173.4

8 

0.78 1.61 209.0

8 

1 0.71 0.48 183.5

3 6 0.01 1.4 213.4

5 

0 0 1.45 216.4

6 

1 1.43 213.4

7 

0 0 1.41 207.2 

7 1.09 0.4 176.0

3 

0.02 10.32 0.69 25.76

7 

0.31 100 24.02

3 

0.39 2.17 4.39 9.313 

8 0.01 1.07 218.9

9 

0 0 1.08 222.1

2 

1.05 0.87 216.5 0 0 1.08 212.8

7 9 0 3.95 171.3

8 

0 0 3.97 174.5

2 

1.01 3.86 168.8

7 

0 0 3.94 165.1

1 10 0.42 0.18 241.0

9 

0.01 2.85 0.18 237.2

8 

0.41 2.7 238.6

8 

0.69 1.38 0.15 228.6

2 11 0 0.09 273.3

1 

0 0 0.1 276.5 1.27 0.03 272.5

1 

0 0 0.08 267.1

9 12 0.29 0.48 195.1

5 

0.01 3.4 0.58 138.6

5 

0.08 89.61 137.4

1 

0.29 4.99 0.33 126.6

8 13 0.12 0.04 281.6

1 

0 5.14 0.04 283.7

8 

0.42 0.45 281.2
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Abstract.  

Why do people often exhaust unregulated common natural resources but 

successfully sustain similar private resources? To answer this question the present work 

combines a neurobiological, economic, and cognitive modeling approach. Using 

functional magnetic resonance imaging we showed that sharp depletion of a common 

(shared) and a private resource deactivated the ventral striatum, that is involved in the 

valuation of outcomes. Across individuals the observed inhibition of the ventral striatum 

negatively correlated with attempts to preserve the common resource, but the opposite 

pattern was observed when individuals dealt with their private resource. The results 

indicate that the basic neural value signals differentially modulate people's behavior in 

response to the depletion of common versus private resources. The computational 

modeling of the results suggests that the overharvesting of common resources is 

facilitated by social comparison. Overall, the results could explain some aspects of 

people’s tendency to overexploit unregulated common natural resources.  
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The sustainability of environmental resources is of worldwide concern in the 21st 

century. Currently the world faces a rapid decline of many natural resources, such as fish, 

clean air, and primeval forests (Ostrom, 2009). In the present article we explore the 

neurobiological underpinnings of resource overexploitation. We combine neurobiological, 

economic and computational approaches to explain why humans treat a resource 

differently in a competitive social environment as compared to a private environment. 

Economic theory predicts the overexploitation of common resources by self-

interested people. This claim is illustrated by the “tragedy of the commons” (Hardin, 

1968): a dilemma in which multiple individuals, acting independently and rationally, will 

ultimately deplete a shared limited resource even if it is against their long-term interest. 

For example, a group of people sharing fishing grounds often realize that they greatly 

benefit from increasing their own catch. Yet if every person increases his or her own 

profit this will destroy the fish stock as a whole. This social dilemma is commonly 

conceptualized as a common-pool resource (CPR) situation. In such a situation a natural 

or urban system generates benefits that can be consumed by individuals who cannot be 

excluded from consumption (Ostrom, 1990). According to economic theory, open-access 

CPRs that anyone can enter and/or harvest are likely to be overharvested and destroyed. 

However, behavioral economics also gives many examples in which people behave fairly 

and cooperatively contrary to the standard self-interest model (Fehr & Schmidt, 1999): 

Under some conditions, in particular in two-person interactions, people often show high 

rates of cooperation. Why, then, is it so difficult even for cooperative people to overlook 

short-term benefits and sustain CPRs for larger, long-term benefits?  

It have shown that overharvesting is particularly high in social groups containing a 

substantial number of “free riders”, that is, people who take benefits without paying any 

costs (Camerer, 2003). One explanation for a tendency to overharvest CPRs refers to 

people's social preference for equity and reciprocal cooperation (Falk & Fischbacher, 

2006; Fehr & Schmidt, 1999): If others are cooperative, then people act cooperatively, 

but if others free ride, people retaliate. Accordingly, in a group that contains few free 

riders, overall average consumption of the CPR will be higher than consumption of its 

cooperative members. If cooperative members behave reciprocally by choosing the 
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average consumption rate for the future, this will lead to an upward spiral of consumption 

and to final overexploitation of the CPR (for details see (Fehr & Fischbacher, 2003)). 

Thus, overexploitation can result even for cooperative people who monitor their own and 

others' behavior and act reciprocally.  

Here we hypothesized that the brain dopaminergic system, a set of brain areas 

involved in reward and performance monitoring, not only continuously monitors our own 

outcomes during CPR games but also monitors the outcomes of others. The dopaminergic 

system has been previously implicated into social comparison (Bault, Joffily, Rustichini, 

& Coricelli, 2011; Dvash, Gilam, Ben-Ze'ev, Hendler, & Shamay-Tsoory, 2010; 

Fliessbach et al., 2007) – people's strong tendency to compare their own behavior with 

that of others (Festinger, 1954). We suggest that when dealing with CPRs, the 

dopaminergic system continually compares personal outcomes with the outcomes of 

others and facilitates overharvesting in response to free-riding behavior of others causing 

inequality. But when dealing with private resources, the dopaminergic system monitors 

deviation from outcomes that maintain long-term resource sustainability. More 

specifically, we hypothesize that individual overexploitation tendencies have to be 

depicted in the ventral striatum activity or in the functional connectivity of the ventral 

striatum with the dorsal prefrontal cortex, known to be involved in control processes that 

are necessary to achieve long-term harvesting goals (Koechlin & Hyafil, 2007; McClure, 

Laibson, Loewenstein, & Cohen, 2004). To find a computational explanation of the 

increasing CPR depletion, we developed a computational model suggesting that the 

ventral striatum generates a reward prediction-error signal that compares a player’s own 

outcome with the harvesting behavior of others. This model of social comparison follows 

the classic idea of people's social preference for equity (Falk & Fischbacher, 2006; Fehr 

& Schmidt, 1999), with the difference that we assumed that receiving more than the 

competitors is a positive outcome (see, e.g., Fliessbach et al., 2007 for a similar concept). 

Thus, we hypothesized that social comparison is encoded in the neural learning signal 

that facilitates overharvesting of the common natural resources.  
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Materials and Methods 

Participants. Fifty young healthy right-handed students participated in the neuroimaging 

experiment (aged 18–32 years, mean 23.4 years, 26 females). Subjects were randomly 

assigned to the social or private condition (with N = 24 for the social and N = 26 for the 

private condition). None of the subjects reported a history of drug abuse, head trauma, 

neurological or psychiatric illness. Three participants were rejected from the fMRI 

analysis due to large head motions exceeding 3 mm; one subject was excluded due to a 

misunderstanding of the instructions and a high level of error. The study was approved by 

the local ethics committee of the canton of Basel. 

Experiment. Participants were confronted with a resource of fish. In order to avoid any 

demand effects and suspicion toward the two different (but structurally identical) 

conditions, we implemented a between-subjects design: Subjects were randomly assigned 

to the social or private condition of the CPR. Overall they encountered 16 sessions (8 

trials per session). In every trial, participants decided between three possible net sizes for 

fishing one, two, or three fishes. Their task was to collect as much fish as possible and 

each collected fish led to a monetary payoff (0.25 Swiss Franks per fish). In the social 

version of the experiment (social condition), two other participants (pre-recorded in a 

behavioral pre-study) also decided between the three net sizes. In the non-social version 

of the experiment (private condition), the same number of fishes “migrated” to two 

neighboring lakes. Importantly, the change of the resources due to the two other pre-

recorded participants or the "migration" to the two neighboring lakes was identical in 

both conditions. Subjects were informed that although the number of fishes in the lake 

decreases by fishing, it also grows naturally due to proliferation of fish. Therefore, at the 

end of every trial, the remaining number of fish in the lake was multiplied by 1.5, which 

gave the total number of fishes for the next trial (with a maximum number of 16 fishes 

representing the utmost capacity of the lake). In case no fish remained for the next trial, 

the whole session ended automatically. The instructions clearly explained to the subjects 

that the amount of fish removed by the players could increase, sustain, or decrease the 

fish population. For example, the participants were informed that whenever the total 

number of fishes collected by the three participants was smaller than six, the fish 

population would increase over the trials. In contrast, whenever the total number of fishes 
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collected by the three participants was larger than six, the fish population would decrease 

over the trials. If the total number of fishes collected by the three persons was equal to six, 

the fish population would stay constant over the trials. Thus, the net size of 2 fishes 

corresponded to a cooperative/sustainable level of harvesting. The experiment started 

with a short training session. On average, subjects earned 33.3 Swiss Francs (30 SFR – 

participation fee, 3.3 SFR – monetary payoff) for their participation.  

MRI Data Acquisition. Functional MRI was performed with ascending slice acquisition 

using a T2*-weighted echo-planar imaging sequence (3T Siemens Magnetom Verio 

whole-body MR unit equipped with a twelve-channel head coil; 40 axial slices; volume 

repetition time (TR), 2.28 s; echo time (TE), 30 ms; 80° flip angle; slice thickness 3.0 

mm; field of view 228 mm; slice matrix 76x76). For structural MRI, we acquired a T1- 

weighted MP-RAGE sequence (176 sagittal slices; volume TR 2.0 s; TE, 3.37 ms; 8° flip 

angle; slice matrix 256x256; slice thickness, 1.0 mm; no gap; field of view, 256 mm). 

MRI Data Analysis. Image analysis was performed with SPM8 (Wellcome Department 

of Imaging Neuroscience, London, UK). The first four EPI volumes were discarded to 

allow for T1 equilibration, and the remaining images were realigned to the first volume. 

Images were then corrected for differences in slice acquisition time, spatially normalized 

to the Montreal Neurological Institute (MNI) T1 template, resampled into 3x3x3 mm3 

voxels, and spatially smoothed with a Gaussian kernel of 8 mm full-width at half-

maximum. Data were high-pass filtered (cutoff at 1/128 Hz). All five time windows 

(frames) of the trial were modeled separately in the context of the general linear model as 

implemented in SPM8. The last trials in each session were excluded from the analysis of 

interest. Motion parameters were included in the GLM as covariates of no interest.  

We constructed separate regressors for different scenarios of resource depletion: The 

feedbacks on sharp or moderate resource depletion (due to harvesting behavior of others 

or migration) were modeled as individual hemodynamic responses (2000 ms after trial 

onset). Based on the ensuing parameter estimates, contrasts of interest were generated. 

For an additional group analysis, the contrast images were then entered into a second 

level analysis with subjects as a random effect. To examine regions monitoring perceived 

fluctuations of the CPR in a separate analysis, one regressor specified for all feedbacks, 
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regardless of specific scenarios of resource depletion, was parametrically modulated by 

the total amount of fish removed from the lake in each trial (by all parties). In addition, 

different cognitive models were used to analyze the data: To examine regions generating 

the reward prediction errors, one regressor specified for all feedback, regardless of 

specific scenarios of resource depletion, was parametrically modulated by the reward 

prediction error that was calculated for each trial based on a social or non-social version 

of the reinforcement learning models (see below, for details). We also calculated a 

psychophysiological interaction (PPI) analysis (Friston et al., 1997) investigating the 

functional connectivity of the right ventral striatum. PPI analysis was performed by 

extracting signal time series from a sphere (5 mm) centered at [9, 5, -5] – the overall 

group maximum of the right ventral striatum deactivation to the sharp depletion of the 

resource calculated using a second-level random effects analysis that included all subjects 

in both conditions.  

Social Reinforcement Learning Model. To explain the effect of the social context on 

harvesting behavior in the CPR task, we constructed a reinforcement learning model 

(Sutton & Barto, 1998). The model assigns to each choice option a subjective expectation 

value, which is updated on a trial-by-trial basis. The probability pi,t of choosing an option 

(net size) i at time t depends on the options’ subjective expectations, as specified by a 

softmax choice rule:  
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where Qi,t-1 is the current subjective expectation for choice option i, θ (θ>0) is the inverse 

temperature parameter that denotes the stochasticity of the choice process. A larger value 

for θ implies that the option with the higher expectation value is chosen with a large 

probability, whereas low values for θ imply random choices. The expectations Qi,t are 

updated in each trial after the participant makes a decision and obtains the feedback about 

the two competitors’ decisions (social condition) or migration (private condition). Thus, 

in all trials t, such that [ ] Ζ∩∈ 8,1t  we calculated the value expectations for each choice 

option i: 
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where, Ri,t is the participants’ reinforcement from the current choice and where (Ri,t – Qi,t-

1) represents the prediction error between the participants’ expectation and the actual 

reinforcement from the choice. The parameter α denotes a learning rate (α ∈ [0,1]). 

Unlike standard reinforcement models (Sutton & Barto, 1998), we assumed that not only 

the expectation of the chosen option is updated, but also the expectation of the two not 

chosen options (Camerer & Ho, 1999). Therefore, our model represents a variant of a 

standard reinforcement model with the difference of updating all options as suggested by 

fictive updating (Montague, King-Casas, & Cohen, 2006) and recent work in the 

neuroimaging literature on fictitious prediction errors (Glascher, Hampton, & O'Doherty, 

2009; Hampton, Adolphs, Tyszka, & O'Doherty, 2007; Hampton, Bossaerts, & 

O'Doherty, 2008). For the un-chosen option, the hypothetical payoff given the 

hypothetical choice was used to determine the fictive prediction error. For the fMRI-

analysis, we used the prediction error for the chosen option as a parametric modulator.  

 The model assumes that when a participant starts fishing in the first trial t = 1, she 

has an a priori expectation about her choice (Qi,t=0). To estimate this expectation, we 

calculated the actual frequencies of choosing net size 1, 2, and 3 in the first trials of all 

sessions multiplied by 4: 

 4)/( 11,0, ⋅= === ttiti NnQ
        (3)

  

where ni,t=1 is the number of a particular choice (i.e. net size 2) in the first trial in each 

session, divided by the total number of the sessions Nt=1. The expected frequencies were 

multiplied by four to scale the initial expectancies to the real range of rewards that could 

be obtained in the task (number of fishes: 1, 2, and 3). Qi,t=0  is different for every 

participant, but is constant for each participant and is not estimated as a free parameter 

when fitting the model. We further suggested that in the social condition people do not 

only take their personal payoff into account but also compare their payoff with the other 

players’ payoffs. Therefore, the reinforcement of an outcome results from the personal 

payoff and a social comparison component. According to the social comparison 

component of our model, the participant received a negative reinforcement if the 

participant’s payoff was lower than the other players’ average payoff. When the 
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participant took more than the other players took on average this led to a reward. 

Therefore, in the social learning model, the reinforcement Ri,t is a weighted sum of the 

direct reward from the resource received in a given trial and the social Comparisoni,t:  

 tititi ComparisonPayoffR ,,, )1( ⋅−+⋅= ββ      (4) 

where 0≤β≤1 indicates the relative weight given to the personal payoff and the social 

comparison component. The Comparisoni,t is calculated at every trial t for the three net 

sizes i and is defined as the difference between a person’s own payoff )( ,tiPayoff  and the 

average payoff of the other players )( tOthers : 

 ttiti OthersPayoffComparison −= ,,       (5) 

Overall, the social learning model has three free parameters, the learning rate α, the 

importance weight for the individual outcome β, and the sensitivity parameter θ.  

Non-Social Learning Model. We suggest that in the non-social (private) condition, 

people take their personal payoff into account but are also motivated to sustain the 

resource in order to maintain a personal payoff in the future. Therefore the reinforcement 

of an outcome results from the weighted personal payoff and a sustainability component:  

 tititi SustainPayoffR ,,, )1( ⋅−+⋅= ββ       (6) 

The Sustaini,t component is determined by the negative value of the absolute value of the 

difference between the optimal (sustainable) total number of fishes removed from the 

resource (i.e. Sustainability = 6 fishes) and the actual number of fishes taken from the 

resource by the subject (i.e. Payoffi,t) and the total number of fishes that migrated to 

another lake (i.e. FishOutflowi,t):  

ti,ti,, wFishOutfloPayofflitySustainabiSustain ti −−−=    (7) 

Taking the absolute value of this difference implies that the reinforcement is either zero 

when the sum of fishes taken from the resource is equal to the sustainable number or it 

leads to a punishment whenever “too much” or “too little” is taken from the resource. 

The rationale behind this punishment is that taking “too little” harms the personal payoff 

and taking “too much” harms the sustainability of the resource and thereby future payoffs. 

Thus, according to the sustainability reinforcement component, a participant is penalized 

for taking too much from the resource if the migration is large. Similarly, the participants 
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are also penalized for taking too little if the migration is small. Importantly, in the social 

and the private condition of the experiment, the participants were clearly informed in the 

instructions of the experiment that when the resource decreased by 6 fishes the number of 

fishes in the lake would stay constant over time. The non-social learning model also has 

three free parameters: the learning rate α, the importance weight for the individual 

outcome β, and the sensitivity parameter θ. 

Evaluation of the Models.  We used a maximum-likelihood approach to estimate the 

three parameters of the two learning models for each participant separately. The 

evaluation of the models was done by comparing it with a baseline model assuming a 

random choice between the three choice options (i.e. predicting a choice probability of 

1/3) using the Bayesian Information Criterion (BIC, (Schwarz, 1978)). BIC takes the 

models’ complexities (i.e. the number of free parameters, with three free parameters for 

the two learning models) into account. In the social condition, the social learning model 

was better than the baseline model for 75% of the participants according to BIC and in 

the private condition, the non-social learning model was better than the baseline for 69% 

of the participants. Paired samples t-tests confirmed a significant difference between the 

learning models and the baseline model (p=0.0001).  

To further examine the empirical validity of the models, we compared the social learning 

model with the non-social learning model by following a reverse fitting approach: We 

fitted the non-social model to the participants in the social condition and the social 

learning model to the participants in the private condition. This reversed fitting approach 

should show that the models are inadequate if they are used in 

the ”inappropriate“ condition. BIC applied to the reversely fitted models prove the lack of 

fit. The BIC values for the social model fitted to the private condition data was only 

better than the baseline model for 50% of the participants, and the non-social learning 

model fitted to the social condition was only better than the baseline model for 54% of 

the participants.  

We also tested the two learning models against two competing models. Therefore, we 

additionally implemented a modified reinforcement learning model (Rescorla and 

Wagner, 1972)  and a modified equity aversion model (Fehr and Schmidt 1999). The 

reinforcement model only considered the personal payoffs in the task as reinforcement 
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and had no sustainability component, thus it basically is nested within the non-social 

learning model assuming β = 1. The equity aversion model is identical to the social 

learning model, but assumes that the comparison component is defined as:  

( )∑
=

+−×−=
2

1
,,,,, 0,max

j
titjititi PayoffOthersPayoffComparison δ  

( )∑
=

−−
2

1
,,, 0,max

j
tjiti OthersPayoffγ     (8) 

We tested the social and non-social learning models against the two competitive models 

relying on the BIC. According to this measure, Rescola-Wegner model was better than 

the baseline model for 62.5% of the participants in the social condition and for only 13% 

of the participants in the private condition. Fehr-Schmidt model was worse than the 

baseline model was better for 62.5% of the participants in the social condition and for 

37.5% participants in the private condition. Therefore, the social learning model and the 

non-social learning model performed better than the two competing models. To further 

express the evidence, we have compared the BIC values of social vs. Fehr-Schmidt 

model and non-social vs. Rescola-Wegner model. BIC for the social model was better 

than the Fehr-Schmidt model for 96% of the participants and the non-social model was 

better than the Rescola-Wegner model for 96% participants. 

 

Results 

Behavioral results. As expected, subjects depleted the resource of fish significantly 

faster in the social condition than in the private condition (mean number of trials in the 

social condition = 6.3 vs. mean number of trials in the private condition = 7.0), t(1,46) = 

4.89, p = 0.0001. Furthermore, different styles of harvesting in the two conditions were 

indicated by a significant interaction of Net Size (one, two, or three fish) × Condition 

(private, social), F(2.45) = 15.41, p = 0.0001. Subjects used the smallest net size more 

often in the private condition than in the social condition (Fig. 2), whereas the largest net 

size was selected more often in the social condition than in the private one. Most 

importantly, in the social condition after the overexploitation of the fish resource by 

others (six fish were collected by other players), subjects in return also overexploited the 
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resource in the next trial. In the private condition, in contrast, a similar reduction of the 

fish stock (six fishes migrated) triggered a trend toward resource preservation. This 

observation was supported by a significant interaction of Resource Reduction (small, 

large) × Condition, F(2.45) = 9.67, p = 0.003 (Fig. 2C).  

Neuroimaging results. The sharp depletion of the resource (subtraction of six fish 

as a result of overexploitation by others or extensive migration) deactivated the ventral 

striatum more strongly than a moderate change in the resource (subtraction of four or 

fewer fish) in both conditions (Fig. 3A,  Tables S1, p = 0.001, uncorrected). However, in 

the social condition, overexploitation by others evoked stronger deactivation of the 

ventral striatum than the similar extensive migration (private condition, Fig. 3B). We 

hypothesized that interindividual variation in the ventral striatum deactivation evoked by 

the resource depletion would correlate with individual harvesting strategies. Indeed, in 

the social condition the relative deactivation levels (contrast estimates) evolved by a 

moderate change in the resource versus a sharp depletion of the resource—observed 

within peak of the right ventral striatum—negatively correlated with subjects’ individual 

tendency to overcompensate for the resource depletion (Fig. 3C). Thus, the ventral 

striatum response to the depletion of the resource correlated with opposite behavioral 

strategies in the two conditions.  

To further test the hypothesis that the ventral striatum differently monitors the 

resource changes in social and private contexts we conducted a more detailed parametric 

analysis. Using the total number of fish removed from the lake in each trial (by all 

parties) as the modulation parameter, we found a significant effect of the total resource 

change on the activity of the ventral striatum: Activity of the ventral striatum negatively 

correlated with the CPR depletion (total decrease of the CPR, Fig. 4A middle, p = 0.001, 

uncorrected). The resource-monitoring modulation of the right ventral striatum activity 

was significantly stronger in the social condition than in the private condition (Table S2). 

As shown in the lower part of Fig. 4, the overexploitation of the CPR was 

successfully predicted by our social learning model. Using parametric fMRI analyses, we 

found modulation of the right ventral striatum activity by the reward prediction error 

signal (encompassing private and social comparison rewards) in the social condition 
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using a more liberal threshold (Fig 4A, right and Suppl. Table S2, p = 0.003, 

uncorrected). Similar analysis did not reveal significant modulation (p < 0.005) of the 

ventral striatum activity in the private condition (Suppl. Table S2). These results indicate 

that the right ventral striatum differentially monitors resources in the social and private 

conditions. Moreover, the activity of the right ventral striatum is sensitive to the social 

comparison of the outcomes during CPR depletion. In the social condition, we observed 

positive task-related functional connectivity (sharp depletion < moderate depletion) 

between the ventral striatum and the anterior dorsolateral prefrontal cortex (anterior 

DLPFC): Both decreased activity in response to the overexploitation of the resource by 

others (Fig. 5, Suppl. Table S3, p = 0.001, uncorrected).. In the private condition, anterior 

DLPFC–ventral striatum connectivity was reduced as a result of a trend toward negative 

connectivity (Fig. 5, right). Interestingly, in the private condition the negative 

connectivity strength correlated with the tendency to preserve the resource. Thus, the 

anterior DLPFC could be involved in controlling ventral striatum activity in the context 

of the private resource, but this control is suppressed during social competition.  

 

Discussion  

The results of our study indicate that during the CPR task the ventral striatum encoded 

opposite harvesting strategies: Relative deactivation of the ventral striatum in response to 

resource depletion correlated positively with subjects’ attempts to preserve their own 

private resource and correlated negatively with their attempts to preserve the CPR. The 

ventral striatum receives dopamine projections from the midbrain and is activated by a 

wide range of rewarding stimuli, from foods, odors, and drugs to beautiful faces (Aharon 

et al., 2001; Breiter et al., 1997; Gottfried, O'Doherty, & Dolan, 2002; O'Doherty et al., 

2004). Activity of the ventral striatum was also associated with social comparison of 

collected rewards (Fliessbach et al., 2007), voluntarily donations (Harbaugh, Mayr, & 

Burghart, 2007; Moll et al., 2006), mutual cooperation (Rilling et al., 2002; Rilling, 

Sanfey, Aronson, Nystrom, & Cohen, 2004), and even the punishment of others who 

have previously behaved unfairly (de Quervain et al., 2004; Singer et al., 2006). A 

previous study showed that the ventral striatum exhibited more activity when players 

chose cooperation following a cooperative choice by her partner in the previous round of 
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the iterated Prisoner’s Dilemma Game (Rilling et al., 2002). Furthermore, persons with a 

higher desire for revenge against unfair partners exhibited activation in the nucleus 

accumbens (Singer et al., 2006). Subjects who made more costly donations to real 

charitable organizations also exhibited more activity in the striatum (Moll et al., 2006). 

Overall, our results are consistent with the previous studies indicating the critical role of 

the ventral striatum in the cooperative behaviour.  

To find a computational explanation of the CPR depletion, we developed a 

computational model suggesting that the ventral striatum generates a reward prediction-

error signal where the reward of an outcome is composed of the own monetary reward 

and a comparison of a person’s own outcome with the outcome of others.  Our fMRI 

results indicate that the dopamine system is involved in social comparisons and generates 

a negative prediction error when a person receives less than the competitors and a 

positive prediction error when receiving more than the competitors. Thus, ventral 

striatum activity not only monitors outcomes (resource depletion) but also integrates 

outcomes into the specific social context. Perhaps the dual nature of the reward-

monitoring activity explains our observation that behavioral tendencies underlying 

competitive depletion of resources are differentially encoded in the activity of the ventral 

striatum in social and nonsocial contexts. Overall, our results are consistent with the 

hypothesis that social rewards and social preferences are represented in the ventral 

striatum similar to primary or monetary rewards (Fehr & Camerer, 2007; Montague & 

Berns, 2002). 

Modeling of the behavioral results further supported the role of social comparisons 

in overharvesting of CPRs. Perceived depletion of CPRs by others facilitated 

overharvesting behavior in subsequent trials, particularly by subjects who were more 

sensitive to social comparison: The individual weights of the model given to the social 

comparison significantly correlated with the relative increase of harvesting in the trials 

following CPR depletion (i.e., mean selected net size in the trials following resource 

depletion by others minus mean selected net size in the trials following resource 

preservation by others), r = .49, p = 0.015, n = 24.  

Interestingly, the tendency to preserve private resources also correlated with 

negative connectivity between the ventral striatum and the anterior DLPFC, which can 
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indicate successful self-regulation of conflicting short-term and long-term goals in the 

context of private possession. Anterior DLPFC activation has been observed in a variety 

of response-conflict paradigms (Bench et al., 1993; Carter, Mintun, & Cohen, 1995; van 

Veen, Cohen, Botvinick, Stenger, & Carter, 2001). Other imaging data have implicated 

the anterior DLPFC in voluntary decision making under risk (Rao, Korczykowski, Pluta, 

Hoang, & Detre, 2008) and in second-order control processes, such as integration 

mechanisms, that are necessary to satisfy more complex or long-term goals (Badre & 

Wagner, 2004; Braver & Bongiolatti, 2002; Koechlin & Hyafil, 2007; McClure et al., 

2004). Our findings indicate a DLPFC influence on the ventral striatum: As it deals with 

a private resource, the DLPFC can give priority to a more sustainable harvesting strategy 

that allows for future consumption.  

The conclusions of our study need to be limited. Similar to other standard 

behavioral games participants in our study acted fully anonymously and independently of 

each other. They were given no opportunity to discuss the situation or to change the 

institutional rules. However, these opportunities might exist in real-life situations and 

could also provide a way of avoiding the depletion of the resource (Ostrom, E.,1990). 

Thus, further studies are clearly needed to investigate strategic aspects of common-pool 

depletion. Additionally our model of social comparison assumes that receiving more than 

the competitors is perceived as a positive reward. Although on average this assumption 

led to a good description of the overall results, there might be an individual difference in 

social preferences which the model could not account for. Also the follow-up studies will 

help to examine alternative interpretations of the activity of the ventral striatum observed 

in our study, e.g. as a neural correlate of the perceived violation of warm glow 

preferences (Andreoni J., 1990; Harbaugh WT et al., 2007) or of the altruistic norm by 

others. 

For a long time behavioral economics focused on examining factors that favor CPR 

preservation, including best possible rules, institutions, and communication (Ostrom, 

1990). Social psychologists searched for psychological determinants of individual 

cooperative versus self-interested behavior in commons-dilemma situations (Messick et 

al., 1983). Our results show that the context of a shared resource versus a private resource 

(with similar control over the resources in both contexts) modulates neural activity and 



 16 

connectivity of the ventral striatum—a brain area strongly associated with the valuation 

of outcomes. Overall, the notion of the neurobiological underpinnings of resource 

overexploitation could help us to develop efficient boundary rules and a better 

understanding of global commons governance.  
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Figures  

 

Fig. 1. The private and social versions of the common-pool resource (CPR) task. The 

sequence of events within a trial is shown. Subjects removed 1, 2, or 3 fish from the CPR 

and observed follow-up “migration” of the fish into two neighboring lakes (private 

condition) or “harvesting of fish” by two prerecorded subjects (social condition). At the 

end of each trial and at the beginning of the next trial subjects were informed about the 

remaining number of fish in the CPR. ISI: interstimulus interval.  
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Fig. 2. The effects of experimental conditions on resource depletion in Behavioral Study 

2. Subjects used the larger net size and depleted the fish resource faster in the social 

condition than in the private condition, similar to the main fMRI study. A) Mean number of 

trials per session in two experimental conditions. The graph illustrates faster depletion of the resource in the 

social condition than in the private one. Each session continued as long as the resource was sustained, with 

a maximum of 8 trials. B) Mean harvest decision. Subjects decided to take one fish more often in the social 

condition than in the private one. The opposite was true for the largest net size of three fishes. C) Mean 

harvest decision (in next trials) following resource depletion / preservation due to behavior of others or 

migration. After the depletion of the resource by others (social condition), subjects also depleted the 

resource in the next trial, whereas in the private condition, identical reduction of the fish stock followed by 

a trend of resource preservation. 
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Fig. 3. General effects of resource depletion: neural response to sharp resource depletion 

(6 fish removed from the resource as a result of migration or overharvesting by others) vs. 

neural response to resource preservation (2–4 fish removed from the resource). (A) Z-

maps of deactivations induced by resource depletion in both experimental conditions. (B) The 

signal change of the hemodynamic response evoked by overexploitation/preservation (social 

condition, n = 25) or by large/moderate migration (private condition, n = 21). (C) The ventral 

striatum recruitment (MNI: 9, 5,-5) evoked by perceived resource depletion predicted individual 

differences in resource preservation. Interestingly, in the social condition (left side) stronger 

deactivation of the ventral striatum evoked by others’ common-pool resource (CPR) 

overexploitation negatively correlated with subjects’ own CPR preservation behavior (proportion 

of the smallest net size in harvest decisions). In contrast, in the private condition (right side) 

stronger deactivation of the ventral striatum evoked by extensive migration positively correlated 

with subjects’ own resource preservation behavior. 

The data is thresholded at p < 0.001, uncorrected.  
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Fig. 4. The computational mechanism of the resource depletion: the right ventral striatum 

monitors crucial aspects of CPR exploitation.  

(A) The role of the ventral striatum in CPR monitoring. Left side: The right ventral striatum 

reacted to the sharp depletion of CPR by others. Center: Furthermore, activity of the right ventral 

striatum was involved into in depth monitoring of the overall size of CPR: the activity was 

parametrically modulated the by the total change of the size of CPR in each trial. Right side: 

Importantly, the right ventral striatum generated the learning signal (reward prediction error 

signal encompassing private and social comparison rewards) underlining overexploitation of 

CPR*.  

(B) The social learning model (incorporating the reward-prediction error signal) correctly 

predicted the actual behavioral patterns in the social condition. Left side: Average probability of 

choosing Net size ∈ {1,2,3} after the CPR depletion by others in the previous trial (six fishes had 

been removed from the lake by others) accurately predicted the observed high frequency of the 

overharvesting (selection of the largest Net size). Right side: the model also accurately predicted 

the strong tendency for the CPR preservation after the CPR preservation by others in the previous 

trial (four fishes had been removed from the lake by others). On both sides, model predictions 

refer to the probability values obtained from the models with fitted parameters, whereas the data 

is the observed frequency of choices. 

* fMRI data for Fig.3A, Left and Center is thresholded at p < 0.001, for Fig.4A, Right at p < 0.003, 

cluster size =3, uncorrected. 
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Fig. 5. Stronger functional connectivity between the right ventral striatum and the 

anterior dorsolateral prefrontal cortex (DLPFC) in the social condition.  

(A) Z-maps for psychophysiological interaction (PPI).  

(B) A trend toward negative connectivity of the right ventral striatum and the anterior 

DLPFC was observed in the private condition. The effect negatively correlated with 

resource preservation behavior.  

The data is thresholded at p < 0.001, uncorrected.  
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Supplemental Experimental Procedures 

I. Behavioral Study 1. 

The first behavioral study consisted of a common pool resource (CPR) experiment. The 

aim of the experiment was to test the CPR paradigm and to collect behavioral data for the 

follow-up behavioral and imaging studies. 

Participants. In the experiment, three persons interacted simultaneously with each other 

facing the CPR. The participants (N = 24, aged 18–28 years, mean 21.8 years, 9 females) 

simultaneously participated in a common pool resource (CPR) task (see Fig.1 in the main 

text). Participants encountered 20 sessions of the CPR task (8 trials per session). The task 

was performed in large groups (6 people) in separate cubicles to ensure subjects’ 

anonymity.  

Experiment. Subjects were confronted with a “common” resource of fish. Subjects were 

informed that they were participating in a “Fishing Study” project investigating decision 

making. Participants had to imagine that they were fishing at a lake together with two 

other fishermen. Their task was to collect as much fish as possible and each collected fish 

led to a monetary payoff (0.25 Swiss Franks per fish). In every trial, participants decided 

between three possible net sizes for fishing one, two, or three fishes. Overall, depletion of 

the resource was caused by own behavior and the behavior of two other anonymous 

players present in the room. Subjects were informed that although the number of fishes in 

the lake decreases by fishing, it also grows naturally due to proliferation of fish. 

Therefore, at the end of every trial, the remaining number of fish in the lake was 

multiplied by 1.5, which gave the total number of fishes for the next trial (with a 

maximum number of 20 fishes representing the utmost capacity of the lake). In case no 

fish remained for the next trial, the whole session ended automatically. The instructions 

clearly explained to the subjects that the amount of fish removed by the players could 

increase, sustain, or decrease the fish population. For example, the participants were 

informed that whenever the total number of fishes collected by the three participants was 

smaller than six, the fish population would increase over the trials. In contrast, whenever 

the total number of fishes collected by the three participants was larger than six, the fish 

population would decrease over the trials. If the total number of fishes collected by the 
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three persons was equal to six, the fish population would stay constant over the trials. 

Thus, the net size of 2 fishes corresponded to a cooperative/sustainable level of 

harvesting. The experiment started with a short training session. The CPR was 

programmed with the software z-Tree (Fischbacher U., 2007). The study design was 

similar to the social version of the CPR task in the follow-up fMRI study, with the 

difference that all participants in the lab made decisions at the same time.   

Results. Overall, the participants did not follow the game-theoretical prediction of 

completely self-interested people who would always select the largest net size for all 

trials in the game. Nevertheless the participants overharvested and depleted the CPR: on 

average 58.7% (SD = 32.5) of sessions were completed before the 8th trial, which 

indicated overharvesting behavior (mean number of trials in a session = 7.4). The average 

selected net size (net size = 2.3) was significantly higher than the “sustainable” size of the 

net (net size = 2), t(1,23) = 5.73, p = 0.000008. Two highly competitive subjects (the 

average net size = 2.6 and 2.7) were selected for the fMRI version of the study and their 

behavioral results were used in the social and private conditions.  

 

II. Behavioral Study 2. 

The goal of the second behavioral study was to examine how people deal with a social as 

compared to a private resource situation. We used a modified version of the CPR task 

from Behavioral Study 1. The experiment was identical to the fMRI experimental design, 

but it was conducted in a behavioral experimental laboratory.  

Participants. We invited thirty-seven healthy students to test the CPR task for the 

follow-up fMRI study. In order to avoid any demand effects and suspicion toward the 

two different (but structurally identical) conditions, we implemented a between-subjects 

design: Subjects were randomly assigned to the social or private condition of the CPR 

task (with N = 19 for the social and N = 18 for the private condition). Overall they 

encountered 16 sessions (8 trials per session).  

Experiment. In every trial, participants decided between three possible net sizes for 

fishing one, two, or three fishes. In the social version of the experiment (social condition), 

two other participants (pre-recorded from Study 1) also decided between the three net 
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sizes. In the non-social version of the experiment (private condition), the same number of 

fishes “migrated” to two neighboring lakes. Importantly, the change of the resources due 

to the two other pre-recorded participants or the "migration" to the two neighboring lakes 

was identical in both conditions.  

Results. Similar to the fMRI experiment, subjects depleted the resource of fish 

significantly faster in the social condition than in the private condition (mean number of 

trials in the social condition = 6.24 vs. 7.00 in the private condition, t(1,35) = 3.30, p = 

0.002, Fig.S1a). The average selected net size was significantly larger in the social 

condition (2.09) than in the private condition (1.85), t(1,35) = 2.25, p = 0.015. We 

observed different styles of behavior in the two conditions as indicated by a significant 

interaction net size (one, two, three fishes) × condition (private, social): F(2.34) = 3.99, p 

= 0.028: Fig. S1 illustrates that subjects more often used the smallest net size in the 

private condition than in the social condition (Fig.S1b) and the largest net size was 

selected more often in the social condition than in the private one. Similar to the results in 

the fMRI study, in the social condition, after the overexploitation of the fish resource by 

others (6 fishes were collected by other players), subjects then also overexploited the 

resource in the next trial. However, in the private condition, a similar reduction of the fish 

stock (6 fishes migrated) led to resource preservation. This observation was supported by 

a significant interaction resource reduction (small, large) x condition, F(1.35) = 7.44, p = 

0.010 (Fig.S1c). Overall, the results were later replicated in the behavioral results of the 

fMRI study reported in the main text, providing independent additional evidence for the 

observed results. 

 

III. Game-theoretical analysis of the CPR task  

What is the game-theoretical solution for the fishing game when assuming only self-

interested (i.e. payoff-maximizing) players? In the CPR situation, the solution can be 

easily determined by backward induction. The task has a final number of trials which are 

common knowledge to all players. Therefore it is clear that in the very last trial, it is best 

for everyone to choose the largest net size to maximize payoffs. Given this behavior, it is 
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also rational to choose the largest net size in the second-last trial, and so on. Therefore the 

game-theoretical solution is to choose the largest net size in all trials of the task.  

How should a self-interested player behave in the non-social situation (private condition), 

in which no other players are involved? Here the solution depends on a person’s belief 

about the amount of fish that migrates to the two other lakes. If a person believes that the 

migration rate is low, then the person should choose the largest net size all the time. In 

contrast, if the player believes that the migration rate is high, it can be payoff-maximizing 

to choose a small net size to sustain the resource to allow for future consumption. 

However, the optimal behavior will depend on the specific beliefs about the migration 

rate. When assuming uniform priors of players’ beliefs about the migration rate, it can be 

predicted that the consumption rate should be lower in the private condition than in the 

social condition, which is in line with the behavioral findings.  

More specifically, we determined the optimal behavioral strategy for the game in the 

private condition given different beliefs about the migration rate. The migration to the 

first lake is represented by 1
tL , the migration to the second lake by 2

tL , and its sum 

represents the total migration Lt for trial t. The beliefs about migration can be represented 

by the probability with which a player believes that the particular migration rate occurs, 

that is )Pr( 1
tL  and )Pr( 2tL  (note the migration to each lake is discrete and ranges between 

1 and 3 fishes).  

We implemented three different assumptions about the players’ beliefs: First, we 

assumed uniform priors, that is all three possible migration rates for each lake were 

equally likely. Second, we assumed that the players’ beliefs about the different migration 

rates would reflect the average migration observed in the whole task (thus, if a migration 

of 2 fishes to one lake occurred in 50% of all trials and sessions, the probability would 

be .50). Third, we assumed that a player would start with an initial belief that every 

migration rate would be equally likely. After completing the first session, this belief is 

updated according to the observed migration rates in each trial. To update the belief after 

the completion of session S we determine:  

 [ ] )1/()(1)Pr(
1

++= ∑ =
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where L represents the three possible migration rates of 1, 2, or 3 to one of the two lakes i, 

and f(.) represents an indicator function that takes a value of 1 if the particular migration 

occurred in the trial t and a value of 0 otherwise.  

Given the players’ beliefs about the possible migration rates, we determined the optimal 

strategy for the whole task, specifying the chosen net size for each trial of the task using a 

dynamic programming approach. For the very last trial (i.e. the eighth trial) it is possible 

to determine the expected payoff of choosing each of the three possible net sizes. The 

expected payoff in the eighth trial depends on the chosen net size, the remaining number 

of fishes, and the probability of the different migrations rates. It can be easily seen that 

the highest expected payoff will always result from choosing the largest net size in the 

last trial. From this eighth trial we determine the optimal strategy in the seventh trial. 

Here, a complete strategy specifies the chosen net size for the seventh trial and the eighth 

trial. The expected payoff for the strategies in trial seven depends on the payoff in the 

seventh and the eighth trial. The payoff in the eighth trial depends on the remaining 

number of fishes, which depends on the chosen net size and migration in the seventh trial. 

Thus, the chosen net size in the seventh trial does not only influence the immediate 

payoff but also the possible payoffs in the eighth trial. Following this approach, the 

optimal strategy can be determined for the sixth trial, where the expected payoffs of all 

possible strategies depend on the chosen net size in the sixth trial and the chosen net sized 

in the seventh and eighth trial. Following this backward analysis one can determine the 

overall best strategy for the whole task starting in the very first trial.  

Mathematically, the expected payoff given a player’s strategy for the whole task is 

calculated as the total payoff that can be obtained in the task multiplied by the probability 

of obtaining this payoff given a particular strategy:  

 

∑ =⋅= payoff StrategypayoffPayoffpayoffStrategyPayoffEV )|Pr(]|[    (2) 

 

The probability of obtaining a specific total payoff depends on the strategy. On the one 

hand, the strategy defines the net size and affect the payoffs, but it also affects the 

development of the resource and thereby the size of the resource in subsequent trials .  
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The results of this analysis are illustrated in Figure S2. When assuming that all migration 

rates are equally likely ("Belief 1"), then according to the best strategy, one should 

choose a net size of 1 in the very first trial, increase the net size to 2 in trial two to four 

and starting from trial five, one should always choose net size 3. When assuming that the 

players would know the actual migration rates in all trials, they should also choose net 

size 1 in trial 2, and net size 2 for trials two to four, and always a net size of 3 from trial 

five onwards. Finally, when assuming equal priors for the first trial that are updated on 

the observed migration rates, then it is optimal to choose net size 1 for trial 1 and to 

increase the net size for the following trials with a net size of 3 starting from trial six 

onwards. Overall, the analysis shows that given a variety of beliefs, the payoff 

maximizing strategy is not to choose the largest net size at the beginning of the task in the 

private condition, but to choose the largest net size at the end, starting at the sixth trial at 

the latest. Thus, according to this analysis, one would expect smaller net sizes in the 

private as compared to the social condition at the beginning of the task, which is 

consistent with the experimental findings.  
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Fig. S1. The effects of experimental conditions on resource depletion in Behavioral Study 

2. Subjects used the larger net size and depleted the fish resource faster in the social 

condition than in the private condition, similar to the main fMRI study. A) Mean number of 

trials per session in two experimental conditions. The graph illustrates faster depletion of the resource in the 

social condition than in the private one. Each session continued as long as the resource was sustained, with 

a maximum of 8 trials. B) Mean harvest decision. Subjects decided to take one fish more often in the social 

condition than in the private one. The opposite was true for the largest net size of three fishes. C) Mean 

harvest decision (in next trials) following resource depletion / preservation due to behavior of others or 

migration. After the depletion of the resource by others (social condition), subjects also depleted the 

resource in the next trial, whereas in the private condition, identical reduction of the fish stock followed by 

a trend of resource preservation. 
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Fig. S2 The optimal behavioral strategy to maximize payoff in the non-social condition. 

Belief I assuming equal prior beliefs for the three possible migration rates. Belief II 

assuming beliefs corresponding to the actual migration rates. Belief III assuming equal 

prior beliefs for the three possible migration rates for the first round of all games and 

updating of these beliefs for the following rounds.  
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Supplementary Table S1. Significant activation clusters to sharp resource depletion in 

both experimental conditions. 

Brain Region x y z No. of 
Voxels Z 

moderate depletion of the resource < sharp depletion of the resource 
Superior temporal gyrus, BA42 66 -31 22 46 4.45 
Postcentral gyrus, BA43 51 -13 19 43 3.83 
Superior temporal gyrus, BA38 45 17 -23 11 3.46 
Amygdala/Parahippocampal gyrus 27 -7 -17 7 3.44 
      

moderate depletion of the resource > sharp depletion of the resource 
Middle frontal gyrus, BA46 -48 23 31 196 5.22 
Cerebellum 42 -67 -41 356 4.74 
Cerebellum -36 -73 -47 175 4.65 
Middle frontal gyrus, BA9 48 29 31 522 4.60 
Ventral striatum  -12 2 -8 55 4.57 
Superior parietal lobule, BA7 -33 -52 49 277 4.41 
Ventral striatum 9 5 -5 128 4.39 
Inferior parietal lobule, BA40 42 -43 46 258 4.27 
Superior frontal gyrus, BA10 -30 59 10 154 4.10 
Cuneus, BA17 15 -88 4 117 4.08 
Middle frontal gyrus, BA6 30 17 58 94 4.04 
Middle frontal gyrus, BA6 -24 17 61 37 3.84 
Thalamus  24 -19 19 7 3.57 
Middle occipital gyrus, BA18 -24 -85 -5 26 3.56 
Middle occipital gyrus, BA18 -21 -91 10 12 3.55 
Precuneus, BA7 12 -58 43 14 3.52 
Precentral gyrus, BA6 36 -1 28 8 3.51 
White matter/ Parahippocampal 
gyrus, BA19 30 -46 22 6 3.38 
Middle temporal gyrus, BA20 57 -43 -11 7 3.28 
      

Local maxima within these clusters are reported together with the number of voxels (No. of 
Voxels); BA, Brodmann area; x, y, z are MNI coordinates of the local maximum. 
Thresholded at p < 0.001, cluster size =3. 
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Supplementary Table S2. Brain regions parametrically modulated by the social and 
non-social versions of prediction error in the social and private conditions, 
correspondingly. 

Brain Region x y z No. of 
Voxels Z 

Social  condition 
negative modulation 

Inferior parietal lobule, BA40 -42 -43 43 102 3.40 
Middle frontal gyrus, BA8 -24 8 43 7 3.10 
Cerebellum 30 -73 -47 9 3.03 
Middle frontal gyrus, BA6 -27 -4 52 6 2.94 
Cerebellum -39 -58 -32 30 2.93 
Middle frontal gyrus, BA46 -45 38 19 13 2.91 
Ventral striatum 12 17 -11 4 2.75 
      

positive modulation 
Inferior frontal gyrus, BA47 -33 26 -20 38 4.28 
Cingulate gyrus, BA32 -15 20 40 11 3.90 
Putamen -33 -22 -5 17 3.68 
Medial frontal gyrus/Anterior cingulate 
BA10/32 -6 47 13 78 3.55 
Cingulate gyrus, BA24 12 -1 37 21 3.52 
Superior temporal gyrus, BA42 66 -13 7 19 3.39 
Superior temporal gyrus, BA22 -51 -13 -8 35 3.38 
Middle temporal gyrus, BA22 -60 -37 4 48 3.28 
Superior frontal gyrus, BA6 -9 26 61 22 3.21 
Cingulate gyrus, BA24 -6 -10 40 11 3.21 
Precentral gyrus, BA6 54 -1 31 10 3.13 
Midbrain 0 -31 -5 17 3.06 
Insula, BA13 -33 -25 16 12 3.00 
Precentral gyrus, BA4 48 -16 55 19 2.99 
Fusiform gyrus, BA37 -42 -46 -17 5 2.99 
Cuneus, BA18 18 -85 22 8 2.90 
Precentral gyrus, BA6 -51 -7 10 4 2.90 
Thalamus, BA 3 -13 -2 11 2.88 
Superior frontal gyrus, BA9 -15 50 31 19 2.84 
Middle temporal gyrus, BA39 -51 -61 7 18 2.81 

Private condition      
negative modulation 

none      
positive modulation      
Insula, BA 13 -39 3 20 103 3.75 
Insula, BA 13 -36 -21 10 17 3.74 
Cingulate gyrus, BA 24/32 9 7 45 75 3.66 
Precentral gyrus, BA 4/6 56 -11 32 59 3.50 
Cingulate gyrus, BA 32 -15 21 36 36 3.42 
Cingulate gyrus, BA 24 -9 1 42 25 3.31 
Cerebellum -12 -37 -25 9 3.18 
Precuneus/Cingulate gyrus BA 7/31 21 -48 42 6 3.11 
Thalamus, medial dorsal nucleus 12 -21 10 7 3.09 
Inferior frontal gyrus, BA 45 -39 23 5 12 3.07 
Medial frontal gyrus, BA 6 -12 -25 52 6 3.06 
Superior temporal gyrus, BA 22 53 -10 4 5 3.05 
Insula, BA 13 33 -18 18 19 3.04 
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Superior temporal gyrus, BA 22 -50 -12 4 35 3.01 
Cingulate gyrus, BA 31 15 -23 35 25 2.94 
Inferior frontal gyrus, BA 45 59 15 22 5 2.87 
Middle temporal gyrus, BA 37 53 -56 -1 6 2.84 
Middle temporal gyrus, BA 39 -45 -75 30 6 2.75 
	  
Thresholded at p < 0.003, cluster size =3.  
  
 

Supplementary Table S3. Stronger functional connectivity between the (deactivated) 

right ventral striatum and the anterior DLPFC in the social condition. 

Brain Region x y z No. of 
Voxels Z 

negative modulation 
none      

positive modulation 
Cingulate gyrus, BA 13 /white matter -24 -16 34 28 4.00 
Cingulate gyrus, BA 31  18 -46 37 9 3.91 
DLPFC:Medial frontal gyrus, BA 9 24 32 28 12 3.82 
 
Thresholded at p < 0.001, cluster size =3.  
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ABSTRACT 

In management science, hierarchical regression models are almost always analyzed using null-

hypothesis significance testing (NHST). Here we outline the conceptual and practical advantages 

of an alternative analysis method: Bayesian hypothesis testing and model selection using the 

Bayes factor. In contrast to NHST, Bayes factors allow researchers to quantify evidence in favor 

of the null-hypothesis. Also, Bayes factors do not require adjustment for the intention with which 

the data were collected. The use of Bayes factors for hierarchical regression is demonstrated with 

an extended example based on the design of an experiment recently published in the Journal of 

Management (Dierdorff  et al., 2012). 

 

Key words: Bayes factor, statistical evidence, optional stopping 
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A PRACTICAL TUTORIAL ON BAYESIAN HIERARCHICAL REGRESSION IN 

MANAGEMENT SCIENCE 

Across the empirical sciences, one of the most popular and well-known statistical tools is 

regression analysis: a dependent or criterion variable (e.g., income) is accounted for by a 

weighted combination of independent or predictor variables (e.g., level of education, age, gender, 

etc.). In management science, the inclusion of particular predictor variables often amounts to the 

test of a specific theory or hypothesis, in the sense that statistical support for the inclusion of the 

predictor variables yields conceptual support for the theory that postulated the importance of 

those variables. 

Almost always, researchers gauge the statistical support for the inclusion of particular 

predictors by means of the p-value obtained from null-hypothesis significance testing (NHST). 

Formally, the p-value is defined as the probability of encountering a test statistic at least as 

extreme as the one that was observed, given that the null-hypothesis is true (Schervish, 1996). 

Predictors whose weights are significantly different from zero (i.e., p < .05) are cause to reject 

the null-hypothesis, and the lower the p-value, the more compelling the evidence against the 

null-hypothesis. 

Unfortunately, p-values have a number of serious statistical limitations (e.g., 

Wagenmakers, 2007). In particular, p-values cannot quantify evidence in favor of a null-

hypothesis (e.g., Gallistel, 2009; Rouder, Speckman, Sun, Morey, & Iverson, 2009), they 

overstate the evidence against the null-hypothesis (e.g., Berger & Delampady, 1987; Edwards, 

Lindman, & Savage, 1963; Johnson, in press; Sellke, Bayarri, & Berger, 2001), and they depend 

on the sampling plan, that is, they depend on the intention with which the data were collected 

(e.g., Berger & Wolpert, 1988). 
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The most prominent alternative to orthodox hypothesis testing using p-values is Bayesian 

hypothesis testing using so-called Bayes factors (e.g., Jeffreys, 1961; Kass & Raftery, 1995). 

Bayes factors quantify the support that the data provide for one model versus another; using 

Bayes factors, researchers can quantify evidence for any hypothesis (including the null), and 

monitor this evidence as the data come in. In Bayesian inference, the intention with which the 

data are collected is irrelevant. As will be apparent later, inference using p-values can differ 

dramatically from inference using Bayes factors. We believe that such differences should be 

acknowledged rather than ignored. 

The main goal of this article is to explain the conceptual foundations and practical 

complications of model selection and hypothesis testing using Bayes factors. For concreteness, 

we focus on the case of hierarchical regression analysis as it is commonly conducted in 

management science. To set the stage, below we first provide an overview of the current analysis 

method for hierarchical regression. Next, we outline the conceptual basis of Bayesian inference 

in general and Bayesian hypothesis testing using Bayes factors in particular. We then apply the 

Bayes factor methodology to a concrete example inspired by the recent work of Dierdorff, 

Rubin, and Bachrach  (2012). The appendix provides R code that allows the reader to carry out 

Bayes factor hierarchical regression analysis on other data sets. 

HIERARCHICAL REGRESSION IN MANAGEMENT SCIENCE:  

CURRENT STATUS 

 In a hierarchical regression analysis, predictor variables are added to the regression 

equation sequentially, either one by one or in batches. The sequence by which the predictors are 

entered is determined by their hierarchy, which is motivated by theoretical considerations and the 

structure of the data. Usually, the batch of predictors added in the first step represent nuisance 
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variables that are outside the immediate focus of interest. Such variables may include 

demographic information such as socioeconomic status, gender, and age. In the next step, the 

researcher adds a variable of interest (e.g., communication style) and judges the extent to which 

this variable adds anything over and above the nuisance variables that were added in the first 

step. At every next step, new predictors can be added to the regression equation, and the order of 

inclusion usually reflects an increasing level of sophistication of the hypotheses under 

consideration. For instance, the third step may feature a predictor that quantifies the interaction 

between communication style and pro-social role expectations. At any step, the statistical support 

for the hypothesis that postulates the presence of the new predictors is determined by the 

increase in variance explained as formalized by an F-test (Cohen & Cohen, 1983). 

To illustrate the standard hierarchical multiple regression analysis procedure we turn to a 

classical example from Cohen and Cohen (1983). Length of the stay in a psychiatric hospital was 

hypothesized to depend on (1) the patient's demographic characteristics such as age or 

socioeconomic status; (2) the patient's personality; and (3) the hospital the patient was assigned 

to. 

To assess the evidence for each of the above three hypotheses, Cohen and Cohen (1983) 

conducted a hierarchical regression analysis. In the first step, the regression model featured 9 

demographic measures. Table 1 shows that, compared to the null model without predictors, the 

increase in variance explained is highly significant. Hence, the first hypothesis is supported: 

demographic characteristics matter for determining length-of-stay. 

In the second step, the regression model is expanded to include 9 scales of the Minnesota 

Multiphasic Inventory (MMPI), a widely used personality test, and a dichotomous variable 

indicating missingness (number of independent variables k = 10). Table 1 shows that, compared 
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to the model that includes the demographic predictors, adding the personality predictors 

increased the explained variance by only 2%. This increase is not statistically significant, and 

hence there is no evidence that a patient's personality impacts length-of-stay. 

In the final and third step, the regression model is further expanded to include 

8 hospitals (number of independent variables k=7, as one of the hospitals serves as the reference 

group). In total, the third model featured 26 predictors. As shown in Table 1, inclusion of the 

hospital predictor variables resulted in an 11% increase in the proportion of variance explained. 

This increase is highly significant, and therefore the data support the hypothesis that length-of-

stay is determined partly by the hospital that a patient is assigned to. 

-------------------------- 

Insert Table 1 about here 

-------------------------- 

 Although the standard hierarchical regression analysis procedure seems straightforward, 

the statistical inference ultimately hinges on p-value methodology. This methodology is based on 

classical, orthodox, or frequentist statistics, in which probability is conceptualized as the 

proportion of occurrences in the large-sample limit. An alternative statistical paradigm, whose 

popularity has risen tremendously over the past 20 years (e.g., Poirier, 2006), is Bayesian 

inference. In Bayesian inference, probability is used to quantify uncertainty or degree-of-belief. 

As we demonstrate in the next section, the differences between frequentist and Bayesian 

statistics are considerable, both in theory and in practice.   

BAYESIAN INFERENCE 

 The many aspects of Bayesian inference are explained in detail elsewhere (e.g., Dienes, 

2008; Lee & Wagenmakers, in press; Kruschke, 2010; and the articles in this special issue, such 
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as Zyphur & Oswald, in press). Here we explain the essentials in as far as they are required to 

understand, at a conceptual level, the material covered in later sections. 

 For concreteness, consider the height advantage of candidates for the US presidency 

(Stulp, Buunk, Verhulst, & Pollet, 2013). The data from 46 US presidential elections can be 

analyzed in multiple ways, but here we are concerned with the Pearson correlation between the 

proportion of the popular vote and the height ratio (i.e., height of the president divided by the 

height of his closest competitor). Figure 1 shows that taller candidates tend to attract more votes; 

the sample correlation is .39 and is significantly different from zero (p = .007, two-sided test).   

-------------------------------------- 

Insert Figure 1 somewhere here 

-------------------------------------- 

 A Bayesian analysis may proceed as follows. The model under consideration assumes 

that the data come from a bivariate normal distribution, and interest centers on the unknown 

correlation coefficient ρ. In Bayesian statistics, the uncertainty about ρ before seeing the data is 

quantified by a probability distribution known as the prior. Here we specify a default prior 

distribution, one that expresses that we do not have any knowledge about the size of the 

correlation coefficient beforehand and  stipulates that every value of ρ is equally plausible a 

priori (Jeffreys, 1961); this yields a uniform distribution ranging from -1 to 1, shown in Figure 2 

as the dashed line. It is possible to specify different models by changing the prior distribution. 

For instance, we could have incorporated the knowledge that ρ is expected to be positive and 

used a uniform prior distribution that ranges only from 0 to 1. We refrain from doing so here 

because the frequentist analysis is also two-sided, but we note that a complete analysis of this 

data set requires one to explore whether the statistical conclusions hold across a range of 
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plausible priors.   

-------------------------------------- 

Insert Figure 2 somewhere here 

-------------------------------------- 

 Next, the prior is combined with the information coming from the data (i.e., the 

likelihood) and the result is a posterior distribution. This posterior distribution quantifies the 

uncertainty about ρ after having seen the data. Figure 2 shows that compared to the prior 

distribution, the posterior distribution assigns relatively little mass to values lower than 0 and 

higher than .7. Using the posterior distribution, one can quantify how likely it is that ρ falls 

between, say, .2 and .4; or one can provide a 95% credible interval for ρ. In contrast to the 

frequentist 95% confidence interval, the Bayesian credible interval has a direct and intuitive 

interpretation as “the plausibility that ρ is in the specified interval” (Hoekstra, Morey, Rouder, & 

Wagenmakers, in press). 

Bayesian Hypothesis Testing 

 The posterior distribution allows one to answer the general question “What do we know 

about the correlation between height and popularity in the US elections, assuming from the 

outset that such a correlation exists?” From this formulation, it is clear that we cannot use the 

posterior distribution alone for the purpose of hypothesis testing. As stated by Berger (2006, p. 

383): “[...] Bayesians cannot test precise hypotheses using confidence intervals. In classical 

statistics one frequently sees testing done by forming a confidence region for the parameter, and 

then rejecting a null value of the parameter if it does not lie in the confidence region. This is 

simply wrong if done in a Bayesian formulation (and if the null value of the parameter is 

believable as a hypothesis).”    
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 Hence, when the goal is hypothesis testing, Bayesians need to go beyond the posterior 

distribution. To answer the question “To what extent do the data support the presence of a 

correlation?” one needs to compare two models: a null-hypothesis that states the absence of the 

effect (i.e., H0: ρ = 0) and an alternative hypothesis that states its presence. In Bayesian statistics, 

this alternative hypothesis needs to be specified exactly. In our scenario, the alternative 

hypothesis is specified as H1: ρ ~ Uniform(-1,1), that is, ρ is distributed uniformly ranging from 

-1 to 1. 

  In Bayesian hypothesis testing, hypotheses or models have prior plausibility. Before 

having seen the data, the relative plausibility of the competing models is known as the prior 

model odds, that is, p(H1)/p(H0). After having seen the data, the relative plausibility is known as 

the posterior model odds, that is, p(H1 | D)/p(H0 | D). The change from prior to posterior odds 

that is brought about by the data is referred to as the Bayes factor, that is, p(D | H1)/p(D | H0). 

Because of the inherently subjective nature of the prior model odds, the emphasis of Bayesian 

hypothesis testing is on the amount by which the data shift one's beliefs, that is, on the Bayes 

factor. 

 Thus, when the Bayes factor BF10 equals 10.5, the data are 10.5 times more likely under 

H1 than under H0. When the Bayes factor equals BF10 = 0.2, the data are 5 times more likely 

under H0 than under H1. Even though the Bayes factor has an unambiguous and continuous 

scale, it is sometimes useful to summarize the Bayes factor in terms of discrete categories of 

evidential strength. Jeffreys (1961, his Appendix B) proposed the classification scheme shown in 

Table 2. We replaced the labels “worth no more than a bare mention” with “anecdotal”, 

“decisive” with “extreme”, and “substantial” with “moderate” (Wetzels, van Ravenzwaaij, & 

Wagenmakers, in press). These labels facilitate scientific communication but should be 
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considered only as an approximate descriptive articulation of different standards of evidence. 

 Bayes factors represent “the standard Bayesian solution to the hypothesis testing and 

model selection problems” (Lewis & Raftery, 1997, p. 648) and “the primary tool used in 

Bayesian inference for hypothesis testing and model selection” (Berger, 2006, p. 378). 

Nevertheless, Bayes factors come with two important challenges. 

-------------------------- 

Insert Table 2 about here 

-------------------------- 

Challenges for Bayesian Hypothesis Testing   

  The first challenge for Bayesian hypothesis testing is the specification of sensible prior 

distributions for the parameters that are subject to test. For Bayesian hypothesis testing, it matters 

whether we test H0 versus H1: ρ ~ Uniform(-1,1) (the correlation can take on any value), versus 

H2: ρ ~ Uniform (0,1) (the correlation is positive), or versus, say, H3: ρ ~ Uniform(-0.1, 0.1) 

(there is a correlation but it is small). The fact that the result depends on the prior specification is 

not in itself a challenge or a limitation; in fact, it is desirable that different results are obtained 

for different models: H1 is a relatively flexible model that keeps all options open; H2 is less 

flexible than H1, because it rules out the possibility that ρ is negative. Finally, H3 is the most 

parsimonious, least flexible alternative model – it is very similar, in fact, to H0 and therefore a 

relatively large number of data points will be required before H3 can be discriminated from H0 

with much confidence. 

 Because the Bayesian hypothesis test is relatively sensitive –as it should be– to the prior 

distributions, the specification of these prior distributions requires considerable care. In the case 

of the Pearson correlation we may follow Jeffreys (1961) and place a uniform prior on ρ, but this 
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is not feasible for variables with unbounded support, such as the mean of a Normal distribution. 

Considerable effort has been spent to develop “default” prior distributions, that is, prior 

distributions that work well across a wide range of substantively different applications. For 

instance, the default priors we use for linear regression are known as the Jeffreys-Zellner-Siow 

priors (Jeffreys, 1961; Zellner & Siow, 1980; Liang, Paulo, Molina, Clyde, & Berger, 2008; 

Rouder & Morey, 2012); as discussed later, these priors fulfill several desiderata and can provide 

a reference analysis that may, if needed, be fine-tuned using problem-specific information. 

 The second challenge for Bayesian hypothesis testing is computational: Bayes factors can 

be relatively difficult to obtain. The Bayes factor is the ratio of marginal likelihoods, for instance 

BF10 = p(D | H1) / P(D | H0), where numerator and denominator indicate the probability of the 

observed data under the hypothesis at hand. The marginal likelihoods are obtained by integrating 

or averaging the likelihoods over a model's prior parameter space; this way, all predictions that 

the model makes are taken into account. Flexible models make many predictions, and if most of 

these predictions are wrong this drives down the average (Lee & Wagenmakers, in press). This is 

how Bayes factors implement Occam's razor or the principle of parsimony (e.g., Myung, Forster, 

& Browne, 2000; Wagenmakers & Waldorp, 2006). 

  Although integrating the likelihood over the prior distribution is vital to obtain Bayes 

factors and penalize models for undue complexity, the integration process itself can be 

analytically infeasible and computationally demanding (e.g., Gamerman & Lopes, 2006). 

Fortunately, the details of the specific situation may allow Bayes factors to be obtained without 

conducting the integration process. For instance, consider the set of models for which p-values 

can be computed; this set features a comparison between a null-hypothesis which is a simplified 

version of a more complex alternative hypothesis – in the previous example on the US 
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presidents, H1: ρ ~ Uniform(-1,1) can be simplified to H0 by setting ρ equal to zero. For such a 

comparison between nested models, one can obtain the Bayes factor by the Savage-Dickey 

density ratio (e.g., Dickey & Lientz, 1970; Wagenmakers et al., 2010). 

  Figure 2 visualizes the Savage-Dickey density ratio by the dots that indicate the height of 

the prior and posterior distribution at ρ = 0. Specifically, Figure 2 indicates that, under H1, the 

prior density at ρ = 0 is higher than the posterior density – in other words, the data have 

decreased the belief that ρ = 0. The ratio between prior and posterior height equals 6.33, and this 

ratio equals the Bayes factor. Thus, for nested models one can obtain the Bayes factor without 

integrating over the prior parameter space; instead, one can consider the prior and posterior 

distribution for the parameter that is subject to test, and the Bayes factor is given by the ratio of 

the ordinates. 

Advantages of Bayesian Hypothesis Testing 

Bayesian hypothesis testing through Bayes factors provide the researcher with several 

concrete and practical advantages. First and foremost, the Bayes factor quantifies evidence for 

and against statistical hypotheses. It does not matter whether one of the hypotheses under 

consideration is a null-hypothesis. Hence, evidence can be quantified in favor of the null-

hypothesis, something which is impossible using the p-value (e.g., Gallistel, 2009; Rouder, 

Speckman, Sun, Morey, & Iverson, 2009). 

Related to the previous point, the Bayes factor is inherently comparative: it weighs the 

support for one model against that of another. This contrasts with the p-value, which is 

calculated conditional on the null-hypothesis being true; the alternative hypothesis is irrelevant 

as far as the calculation of the p-value is concerned. Consequently, data that are unlikely under 

H0 may lead to its rejection, even though these data are just as unlikely under H1 – and are 
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therefore perfectly uninformative. Consequently, p-values are known to overstate the evidence 

against H0 (e.g., Berger & Delampady, 1987; Edwards, Lindman, & Savage, 1963; Johnson, in 

press; Sellke, Bayarri, & Berger, 2001). This is also evident from the election example, where a 

correlation of .39, displayed in Figure 1, yields p = .007 and BF10 = 6.33. Even though in this 

particular case both numbers support the same conclusion, we believe that the p-value suggests 

that the evidence is compelling, whereas the Bayes factor leaves room for doubt (for an extensive 

empirical comparison between p-values and Bayes factors see Wetzels et al., 2011). 

An additional advantage is that –in contrast to the p-value– the Bayes factor is not 

affected by the sampling plan, or the intention with which the data were collected. Consider 

again the election example and the data shown in Figure 1. We reported that for this correlation, 

p = .007. However, this p-value was computed under a fixed sample size scenario; that is, the p-

value was computed under the assumption that an experimenter set out to run 46 elections and 

then stop. This sampling plan is certainly incorrect, and by extension, so is the p-value. But what 

is the correct sampling plan? It could be something like “US elections will continue every four 

years until democracy is replaced with a different system of government or the US ceases to 

exist”. But even this sampling plan is vague – we only learn that we can expect quite a few 

elections more. 

In order to compute a p-value, one could settle for the fixed sample size scenario and 

simply not worry about the details of the sampling plan. However, consider the fact that new 

elections will continue be added to the set. How should such future data be analyzed? One can 

pretend, after every new election, that the sample size was fixed. However, this myopic 

perspective induces a multiple comparison problem – every new test has a probability of 5% of 

falsely rejecting the null-hypothesis, and the myopic perspective therefore fails to control the 
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overall Type I error rate. 

For Bayes factors, in contrast, the sampling plan is irrelevant to inference (as dictated by 

the stopping rule principle; Berger & Wolpert, 1988). This means that researchers can monitor 

the evidence (i.e., the Bayes factor) as the data come in, and terminate data collection whenever 

they like, such as when the evidence is deemed sufficiently compelling, or when the researcher 

has run out of resources. Figure 3 illustrates the process for the election example. The Bayes 

factor is monitored from the third election onward (the first two elections do not allow the 

calculation of a Bayes factor, which was therefore set to 1). The evidence in favor of the 

alternative hypothesis gradually increases until the 46th election, when it stands at a Bayes factor 

of BF10 = 6.33. Clearly, new election results can be added and the evidence can be updated, 

continually and indefinitely, for as long as there are US elections. 

-------------------------------------- 

Insert Figure 3 somewhere here 

-------------------------------------- 

BAYESIAN HYPOTHESIS TESTING FOR REGRESSION MODELS 

 The principles outlined in the previous section also hold for regression models (e.g., 

Liang et al., 2008; Rouder & Morey, 2012). In regression models, the key question concerns the 

quantification of statistical evidence for the inclusion of a particular predictor or set of 

predictors. 

 Suppose model MX includes x predictors, and model MY includes one additional 

predictor. The evidence for the inclusion of this additional predictor is then given by BFYX = p(D | 

MY) /  p(D | MX). Now suppose a third model, MZ, again includes one predictor more than MY. 

The evidence for MZ over MX is BFZX = p(D | MZ ) /  p(D | MX). Thus, we know the strength of 
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evidence for both MY and MZ vs. the simplest model MX. Then it is easy to see that the evidence 

for MY vs. MZ can be obtained by transitivity, as follows: BFZY = BFZX / BFYX. Thus, all that is 

required to assess the evidence for and against the inclusion of predictors is the ability to 

compute the Bayes factor for any specific model against a common null model without 

predictors; the Bayes factors for different non-null models against each other can then be 

obtained through transitivity. 

 The remaining difficulty is to specify suitable priors for the beta regression coefficients. 

Here we adopt an objective Bayesian perspective and specify priors based on general desiderata 

instead of on substantive knowledge that is unique to a particular application. In linear regression 

models, the most popular objective prior specification scheme is inspired by the pioneering work 

of Harold Jeffreys and Arnold Zellner. This Jeffreys-Zellner-Siow prior specification scheme 

(Jeffreys, 1961; Zellner & Siow, 1980; Liang et al., 2008; Rouder & Morey, 2012) assigns a 

multivariate Cauchy distribution to the regression coefficients. The Cauchy distribution is a t-

distribution with one degree of freedom. Compared to the Normal distribution, the Cauchy 

distribution has more mass in the tails. 

 Detailed mathematical derivation, explanation, and motivation for the Jeffreys-Zellner-

Siow prior is provided elsewhere (i.e., Liang et al., 2008; Rouder & Morey, 2012; Wetzels, 

Grasman, & Wagenmakers, 2012). Here the emphasis is on the conceptual interpretation and 

practical utility of the Bayes factors associated with the Jeffreys-Zellner-Siow (JZS) 

specification. In this context, it is important that there exists user-friendly software to obtain the 

JZS Bayes factors – in particular, we attend the reader to the web-applet from Jeff Rouder 

(http://pcl.missouri.edu/bf-reg) and the BayesFactor package in R. The appendix includes the R 

code that we used for the analysis of the examples in this article. 
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 Before turning to a more detailed example related to management science, consider again 

the prototypical data on the length of hospital stays presented by Cohen and Cohen (1983; see 

Table 1). The null model, M0, contained no predictors and functions as the common null model. 

Hypothesis 1 was implemented as model M1 that contains 9 predictors (i.e., 9 beta coefficients, 

which are the additional free parameters of M1 compared to M0). As shown in Table 1, the JZS 

Bayes factor indicates that the data are 10.34×1013 times more likely to have occurred under 

model M1 than under model M0. This is extreme evidence in favor of M1 over model M0. 

 Hypothesis 2 was implemented as model M2 containing 19 predictors, 10 predictors 

more than model M1. Again, the JZS Bayes factor indicates that the data are much more likely 

under M2 than under model M0, that is, BF20 = 19.30×107. As explained above, we can now 

determine the Bayes factor for M2 versus M1 by transitivity, and conclude that BF21 = 1.89×10-6, 

extreme evidence against the inclusion of the 10 additional predictors. Note that this is evidence 

in favor of a null-hypothesis that postulates the absence of predictor effects. 

 Finally, hypothesis 3 was implemented as model M3 containing 26 predictors, 7 

predictors more than M2. Repeating the previous steps (i.e., computing the JZS Bayes factor 

against the common null model, and obtaining the desired Bayes factors through transitivity) 

shows that there is extreme evidence in favor of M3, both when compared against M1 (i.e., BF31 

= 54.41×103) and when compared against M2 (i.e., BF32 = 29.14×109). 

 The analysis of this simple, prototypical example highlights that Bayes factors can 

quantify evidence in favor of either the simpler model or the more complex model. The strength 

of evidence is quantified on a continuous scale, providing a more informative assessment than 

whether the p-value is smaller than .05, .01, or .001.      

 The remaining section provides a more realistic and detailed example, inspired by an 
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article recently published in the Journal of Management (i.e., Dierdorff et al., 2012). 

AN EXAMPLE FROM THE JOURNAL OF MANAGEMENT 

The goal of this section is to underscore the advantages of JZS Bayes factor hypothesis 

testing for hierarchical regression when applied to a practical analysis problem in management 

science. We will outline two different ways in which Bayes factors allow researchers to assess 

the importance of predictors: covariance testing and model comparison (Rouder & Morey, 2012). 

For concreteness, our points are illustrated using a design from Dierdorff et al. (2012). 

Unfortunately, the authors declined our request to use their data for this article, and we therefore 

chose to make our points using simulated data, generated to yield summary statistics as similar as 

possible to those that were reported for the original data. These simulated data form the basis of 

our analysis; the file with simulated data can be found online1 so that the interested reader can 

confirm the analysis. Because the data are simulated, no substantive conclusions can be attached 

to the results. Instead, our aim is to illustrate the JZS Bayes factor procedure using an example of 

realistic complexity.  

Theoretical Background of the Dierdorff et al. Study 

The study of Dierdorff et al. (2012) focused on citizenship, a concept defined as the set of 

“cooperative, helpful behaviors extending beyond job requirements” (Dierdorff et al., 2012, p. 

573). Citizenship is affected both by work context and by role expectations, that is, the “beliefs 

about what is required for successful role performance” (Dierdorff et al., 2012, p. 575). 

Based on an extensive literature review and detailed reasoning process, Dierdorff et al. 

(2012) proposed the following five hypotheses about the effects of work context and role 

expectations on citizenship: 
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“Hypothesis 1: Prosocial role expectations are positively related to citizenship behavior.” 

(Dierdorff et al., 2012, p. 577) 

 

“Hypothesis 2: The relationship between role expectations and citizenship is stronger in more 

interdependent contexts.” (Dierdorff et al., 2012, p. 579) 

 

“Hypothesis 3: The relationship between role expectations and citizenship is stronger in more 

socially supportive contexts.” (Dierdorff et al., 2012, p. 580 ) 

 

“Hypothesis 4: The relationship between role expectations and citizenship is stronger in more 

autonomous contexts.” (Dierdorff et al., 2012, p. 581) 

 

“Hypothesis 5: The relationship between role expectations and citizenship is weaker in more 

ambiguous contexts.” (Dierdorff et al., 2012, p. 581) 

 In the Dierdorff et al. study, these hypotheses were tested using data from two sources: 

(1) self-report surveys filled out by 198 full-time employees; (2) a performance evaluation form 

completed by the employee's immediate supervisor. 

Frequentist Analysis 

As mentioned above, we used the information reported in the Dierdorff study to create a 

simulated data set that was as similar as possible to the original. All of the following analyses 

were conducted on the simulated data set. In this section, we discuss the frequentist analysis plan 

as followed by Dierdorff and colleagues. Table 3 summarizes the main findings (cf. Table 2 in 

Dierdorff et al., 2012). 
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As is customary in hierarchical regression, the predictors of interest were added in steps. 

In the first step, the control variable “task-specific performance” was included as a predictor (i.e., 

Model 1), and this yields R2 = .37. In the second step, the variable “role expectations” was added 

(i.e., Model 2), allowing a test of Hypothesis 1. As expected, Hypothesis 1 was confirmed: 

inclusion of “role expectation” increases R2 from .37 to .57; in addition, the beta coefficient 

equals .42 (p < .001). In the third step, all remaining variables were added simultaneously (i.e., 

Model 3). The assessment of Hypothesis 2-5 then proceeds by inference on the beta-coefficients 

for the specific predictors from Model 3. 

In particular, frequentist inference suggests that the data do not support Hypothesis 2 (β = 

-.04, p > .05), but they do support Hypotheses 3, 4, and 5 (β = -.04, p < .05; β = .07, p < .05; β = 

-.17, p < .001, respectively).2 

-------------------------- 

Insert Table 3 about here 

-------------------------- 

Bayesian Analysis 

 From R2, the number of predictors, and the sample size one can compute the JZS Bayes 

factors for Models 1, 2, and 3 against the null model (see appendix for R code using the 

BayesFactor package); as before, the other Bayes factors can then be obtained by transitivity. 

Consistent with the frequentist analysis, the JZS Bayes factors indicated decisive support for 

Model 3 over Model 2 (i.e., BF32 = 2.10×108), Model 2 over Model 1 (i.e., BF21 = 3.04×1014), 

and Model 1 over the null model (BF10 = 3.43×1018). 

 Unfortunately, Model 3 comprises eight additional predictors, four of which connected to 

specific hypotheses. To evaluate the evidence that the data provide for the inclusion of particular 
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predictors and the associated hypotheses we now turn to a more detailed analysis (see also 

Rouder & Morey, 2012). 

Bayesian Method 1: Covariance testing. This approach is most similar to the NHST 

approach that is currently popular in management science and other social sciences (Faraway, 

2002). With covariance testing, the researcher assesses the importance of specific predictors or 

covariates by eliminating them from the full model that includes all predictors. This method, 

applied to the simulated Dierdorff data, is illustrated in Table 4. As before, Model 3 is the full 

model that contains all predictors. To test each of the four hypotheses (i.e., Dierdorff's 

Hypothesis 2-5), four matching regression models were created by excluding a single predictor 

of interest from the full model. 

 Using the same tools as in the previous sections, we then computed the Bayes factors for 

each of the simpler regression models against the full model. When the JZS Bayes factor BFnf > 

1 this signifies evidence in favor of the simpler model representing the null hypothesis of no 

effect, and against the hypothesis under investigation. 

As Table 4 shows, covariance testing indicates moderate evidence against Hypothesis 2 

(i.e., BF2f = 7.16) and in favor of the simpler regression model that lacks the relevant predictor. 

This illustrates the point that Bayes factors can quantify support in favor of a null hypothesis. For 

Hypotheses 3 and 4, the evidence provided by the data is anecdotal and does not warrant any 

conclusions (i.e., BF3f = 1.93 and BF4f = 0.87, respectively). This illustrates the point that p-

values overestimate the evidence against the null-hypothesis; in the corresponding frequentist 

analysis, the beta coefficients corresponding to Hypothesis 3 and 4 both yielded p < .05, 

prompting researchers and readers to reject the null-hypothesis. 

Finally, the data provide extreme support in favor of Hypothesis 5 (BF5f = 1,630,000). 
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This illustrates the point that the Bayes factor provides a more informative measure of evidence 

than the p-value cut-off, “p < .001”. 

 Covariate testing is straightforward and conceptually similar to standard testing 

procedures. However, covariance testing may fail in the presence of collinearity (Rouder & 

Morey, 2012). Specifically, assume that two predictors (e.g., a person's weight and height) are 

highly correlated. Leaving only one of the two predictors (e.g., weight or height) out of the full 

model will do little harm, as the other predictor is able to take over and accommodate the data. 

Based on covariance testing, one may therefore conclude that the highly correlated predictors are 

irrelevant; this reasoning, however, ignores the possibility that the fit may worsen dramatically 

when both predictors are left out of the model at the same time.    

-------------------------- 

Insert Table 4 about here 

-------------------------- 

Bayesian method 2: Model comparison. In contrast to covariance testing, model 

comparison represents a more elaborate and complete approach to the variable selection 

problem. In the Dierdorff design, there are four crucial predictors, each of which is associated 

with a specific hypothesis. By including or excluding each of these four predictors 

independently, one can create 15 different regression models, listed as the first column in Table 

5. 

 The full model Mf includes all four hypotheses and is equivalent to Model 3 in the 

original study. All other models are simpler and include either 3, 2, or 1 hypotheses. The right-

most column of Table 5 provides for each of these 14 models, their Bayes factors against the full 

model. Whenever the Bayes factor BFnf is greater than 1, the data provide evidence in favor of 
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the simpler model over the full model. 

-------------------------- 

Insert Table 5 about here 

-------------------------- 

 As is evident from Table 5, the data provide strong support in favor of Hypothesis 5: all 

models that outperform the full model (M4, M9, M10, M14) feature the predictor that represents 

Hypothesis 5. In addition, the data show little support for Hypothesis 2, neither in isolation (M11) 

nor in combination with other predictors. 

 The evidence for Hypothesis 3 and 4 is mixed; These hypotheses do not fare well alone 

(M12 and M13), or together (M8), but added to the predictor for Hypothesis 5 they perform 

reasonably well, both separately and together (M4, M9, M10). The crucial element appears to be 

the omission of the predictor for Hypothesis 2. 

  Overall, these conclusions are similar to those obtained with covariance analysis: the data 

provide support for Hypothesis 5 and against Hypothesis 2, whereas the support for Hypothesis 3 

and 4 is ambiguous. A more precise quantification of evidence using model comparison makes 

use of model averaging (e.g., Hoeting, Madigan, Raftery, & Volinsky, 1999; Liang et al., 2008); 

in model averaging, one computes the overall inclusion probability for each predictor as the sum 

of relevant posterior model probabilities – for instance, the inclusion probability for the predictor 

corresponding to Hypothesis 3 is the sum of posterior model probabilities for Mf, M1, M2, M4, 

M5, M8, M9, and M12. 

BAYES FACTORS VERSUS ABSOLUTE GOODNESS OF FIT 

The Bayes factor is inherently comparative: it assesses the support that the data provide 

for one model versus another. This is useful and informative, but it can also be misleading: even 
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though a specific model may outperform another in terms of the Bayes factor, both models may 

provide a poor account of the data, invalidating the inference. Thus, before drawing conclusions 

it is important to assess absolute goodness-of-fit and confirm that the best model is also a good 

model. 

This important issue is highlighted in Anscombe's quartet (Anscombe, 1973), shown here 

as Figure 4. Each panel shows a different data set, carefully constructed so that the variables 

have the same means, variances, and linear regression coefficient. For each data set, the Bayes 

factor is 23, indicating strong support for the presence of a linear association. A casual glance at 

Figure 4, however, convinces one that the statistical models and associated inference are valid 

only for panel A. 

Model misfit can be assessed in several ways. Anscombe's quartet suggests that 

inspecting data by eye can often be highly informative. In general, one can inspect structure in 

the residuals and assess the impact of individual data points by successively leaving them out of 

the analysis. Such methods for assessing absolute model fit can be carried out within both the 

frequentist and the Bayesian paradigm.    

-------------------------------------- 

Insert Figure 4 somewhere here 

-------------------------------------- 

CONCLUDING COMMENTS 

Using Bayes factor hypothesis testing, researchers may monitor evidence as the data 

come in; they may quantify support in favor of the null-hypothesis; and they may prevent 

themselves from prematurely rejecting the null-hypothesis. To the best of our knowledge, the 

combination of these benefits is unique to the Bayesian statistical paradigm.   
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The JZS Bayes factor regression analysis is relatively easy to carry out. Researchers can 

construct their regression models and apply either the covariance testing or model comparison 

method described in the previous sections. Scripts and data used for our analysis are available 

online for download. 

One may argue that in many situations the data will pass the “interocular traumatic test” 

(i.e., when the pattern in the data is so evident that the conclusion hits you straight between the 

eyes; Edwards et al., 1963), and the results will be clear no matter what statistical paradigm is 

being used. Luckily this is true; however, some data fail the interocular traumatic test and the 

results may indeed depend on the statistical paradigm that is used. In such cases, it seems 

counterproductive and potentially misleading to base one's statistical inference on frequentist 

methods alone. 
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FOOTNOTES 

1 The link to the simulated data is: https://drive.google.com/folderview?id=0B5vDt-

Crky_DeHkyYndTS2tMVU0&usp=sharing 

2 In what follows we deliberately ignore the complication that, for the simulated data set, the beta 

coefficient corresponding to Hypothesis 3 (social support × role expectations) does not have the 

correct sign – in the original data, the beta coefficient was estimated to be +.11 instead of -.04. 

This qualitative mismatch reveals that, despite considerable effort, we were unable to generate 

simulated data that matched the original data exactly. 
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TABLES 

Table 1 

Hierarchical Regression for the Classic Psychiatric Hospital Stay Example from Cohen and 

Cohen (1983). Bayes Factors (BF) Are Discussed in a Later Section. 

Model/ 
Hypothesi

s 
No Predictors R2 ΔR2 BFn0 BFn1 BFn2 

1 9 .20 .20*** 10.34×1013   

2 19 .22 .02 19.30×107 1.89×10-6  

3 26 .33 .11*** 56.25×1017 54.41×103 29.14×109 
N = 500 
*p<.05; **  p<.01; ***p<.001 
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Table 2 

Evidence Categories for the Bayes Factor BF12 (Jeffreys, 1961). 

            Bayes factor BF12 Interpretation 
 > 100 Extreme evidence for M1 

30 - 100 Very Strong evidence for M 1 

10 - 30 Strong evidence for M 1 

3 - 10 Moderate evidence for M 1 

1 - 3 Anecdotal evidence for M 1 

 1  No evidence 

1/3 - 1 Anecdotal evidence for M 2 

1/10 - 1/3 Moderate evidence for M 2 

1/30 - 1/10 Strong evidence for M 2 

1/100 - 1/30 Very Strong evidence for M2 

 < 1/100 Extreme evidence for M 2 
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Table 3 

Hierarchical Regression Results for Simulated Data Based on the Study of Dierdorff et al. 

(2012). 

 
Predictors Βeta parameters 

	   Model 1 Model 2 Model 3 
Task-specific 
performance .61*** 	   	  

Role expectations 	   .42*** 	  
Interdependence 	   	   .19** 
Social support 	   	   .23*** 

Ambiguity 	   	   .17** 

Autonomy 	   	   .04 
Interdependence × Role 
expectations 	   	   -.04 

Social support × Role 
expectations 	   	   -.04* 

Ambiguity × Role 
expectations 	   	   -.17*** 

Autonomy × Role 
expectations 	   	   .07* 

R2 .37 .57 .71 
ΔR2 .37*** .20*** .14*** 

BFn0 3.43×1018 1.04×1033 2.18×1043 

BFn1  3.04×1014 6.36×1022 
BFn2   2.10×108 
N = 198 
*p<.05; **p<.01; ***p<.001 
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Table 4 

Covariance Testing Results for Simulated Data Based on the Study of Dierdorff et al. (2012)  

  Hypotheses 

Predictors Full Model 2 3 5 4 
Task-specific per-
formance + + + + + 

Role expectations + + + + + 
Interdependence + + + + + 

Social support + + + + + 

Ambiguity + + + + + 
Autonomy + + + + + 
Interdependence × 
Role expectations + - + + + 

Social support × 
Role expectations + + - + + 

Ambiguity × Role 
expectations + + + - + 

Autonomy × Role 
expectations + + + + - 

R2 .6883 .6879 .6835 .6325 .6808 
ΔR2 .6883 -.0004 -.0048 -.0558*** -.00075* 
BFnf	   1 7.16 1.93 1.63×10-6 0.87 

N = 198 
*p<.05; ***p<.001	  
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Table 5 

Model Comparison Results for Simulated Data Based on the Study of Dierdorff et al. (2012) 

 
Model Hypotheses R2 BFnf 
Mf H2+H3+H4+H5 .6883 1 
M1 H2+H3+H4 .6325 1.63×10-6 
M2 H2+H3+H5 .6808 0.87 
M3 H2+H4+H5 .6835 1.93 
M4 H3+H4+H5 .6879 7.16 
M5 H2+H3  .6310 8.75×10-6 
M6 H2+H4 .6213 7.81×10-7 
M7 H2+H5  .6760 1.81 
M8 H3+H4 .6328 1.39×10-5 
M9 H3+H5 .6810 7.81 
M10 H4+H5 .6821 10.81 
M11 H2 .6201 4.68×10-6 
M12 H3 .6315 8.35×10-5 
M13 H4 .6202 4.80×10-6 
M14 H5 .6754 13.55 

Mf	  = full model	  
H2 = Hypothesis 2 
H3 = Hypothesis 3 
H4 = Hypothesis 4 
H5 = Hypothesis 5 
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FIGURES 

Figure 1 

Correlation between the Proportion of the Popular Vote and the Height Ratio between a US 

President and his Closest Competitor. 
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Figure 2 

Prior and Posterior Distribution for the Correlation between the Proportion of the Popular Vote 

and the Height Ratio between a US President and his Closest Competitor. 
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Figure 3 

Sequential Analysis of the Evidence for and against a Height-Effect in the US Presidential 

Elections. 
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Figure 4 

Anscombe’s Quartet. Gray Regions Indicate the 95% Bayesian Posterior Predictive Interval 

(Gelman, 2010; Meng, 1994). 
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APPENDIX 

Below we provide functions implemented in R programming language which can be used 

to 1) compute a p-value given the R2 change, number of predictors and sample size (function 

“R2.to.p”), 2) compute a Bayes factor from the R2 given the number of predictors and sample 

size (function “R2.to.bf”), and 3) generate a dataset given means, standard deviations, 

correlations and regression coefficients of the original data. 

In order to use these functions you need to have the R programming language (version 

2.15.2 or higher) installed on your computer (http://cran.r-project.org/). Make sure that you 

install R-version which is not older than 2.15.2. You should install from the following packages, 

which are not part of the standard R-version: BayesFactor, caTools, coda, lattice, mvtnorm, 

pbapply, bitops.  

When you already have R and all necessary packages installed on your computer, you are 

ready to use the functions that we provide. Copy the text and save it in a file with .R extension. 

Alternatively, the files can be downloaded from 

https://drive.google.com/folderview?id=0B5vDt-Crky_DeHkyYndTS2tMVU0&usp=sharing. 

Before calling the functions, you have to “source” the file, in which you saved the functions. 

Type in the R-console source(“path-to-your-file”). Then, you can simply call the functions from 

the console, by typing for example: 

>  p <- R2.to.p(500, ) 
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Obtaining P-value from the R2 Change 

R2.to.p <- function(n, nPred1, nPred2, r21, r22) { 
  # Calculator of p-values for the R^2 change                        
  # Author: Sandra Andraszewicz, University of Basel                 
  # Last update: 09-11-2012                                          
  # Args: 
  #   n: Sample size 
  #   nPred1: Number of predictors in Model 1 
  #   nPred2: Number of predictors in Model 2 
  #   r21: R^2 of Model 1 
  #   r22: R^2 of Model 2 
  # Returns: 
  #   p: significance level of the regression test 
  # The function prints out the input R^2 and the corresponding p-value 
 
  deltaR2 <- r22 - r21 #Change in R^2 from Model 1 to Model 2 
 
  #Conduct F-test for the R^2 change and obtain p-value 
  fchange <- ((n-nPred2-1) * (r22-r21)) / ((nPred2 - nPred1) * (1-r22)) #F-statistic 
  df1 <- nPred2 - nPred1 #Degrees of freedom related to the nominator 
  df2 <- n-nPred2 - 1 #Degrees of freedom related to the denominator 
  p <- pf(fchange, df1, df2, lower.tail=FALSE) #p-value from F-distribution 
 
  #Display the results 
  print("The R^2 change equals:") 
  print(deltaR2) 
  print("The p-value of the R^2 change is:") 
  print(p) 
   
  return(p) 
} 
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Obtaining Bayes Factor from R2 

 
R2.to.bf <- function (n, nPred, r2) { 
  # Computes Bayes factor of Models M to the Null Model and to all other models   
  # from R^2 obtained from hierarchical regression analysis 
  # The output can be provided for all models conducted for the same sample 
  # Author: Sandra Andraszewicz, University of Basel                 
  # Last update: 06-11-2012                                     
  # Args: 
  #   n: Sample size 
  #   nPred: an array containing mount of predictors 
  #   r2: an array containing R^2 values 
  # Returns: 
  #   output: a matrix containing combinations of all Bayes factors 
  #           first two columns correspond to the models, e.g. 2 1 
  #           is a Bayes factor of model 2 to model 1 
  # Additionally, the function displays the output in a descriptive form 
  # in the console 
  # Example: 
  #   Hierarchical regression analysis was conduced for 500 participants, 
  #   where the predictors are entered in 3 steps: 
  #   Step 1) 9 predictors, R^2=.20 
  #   Step 2) 19 predictors, R^2=.22 
  #   Step 3) 26 predictors, R^2=.26 
  #   To obtain Bayes factors type in the console: 
  #   R2.to.bf(500, c(9, 19, 26), c(.20, .22, .26)) 
 
  #Load neccessary packages 
  library(BayesFactor) 
  library(caTools) 
  library(coda) 
  library(lattice) 
  library(mvtnorm) 
  library(pbapply) 
  library(bitops) 
 
  nModels <- length(r2) #Aomunt of models 
 
  #Initialise output Bayes Factors comparing Model M to the Null Model 
  bfm0 <- c(rep(0, nModels)) 
 
  #Obtain Bayes Factors comparing Models M to the Null Model 
  for(i in seq(1:nModels)) { 
    bfm0[i] <- linearReg.Quad(n, nPred[i], r2[i], logbf <- FALSE) 
  } 
 
  #Obtain Bayes factors comparing Models M with each other 
  myCombs <- combs(seq(1:nModels), 2) #Create all combinations of BF 
  bfmm <- c(rep(0, nrow(myCombs))) #Initialise vector containing BF among other models 
  bfmmnames <- c(rep("", nrow(myCombs))) #Initialise vector containing names of BFs 
  for(i in seq(1:nrow(myCombs))){ 
    bfmm[i] <- bfm0[myCombs[i, 2]] / bfm0[myCombs[i, 1]] 
    bfmmnames[i] <- paste("BF", paste(as.character(myCombs[i, 2]), 
      as.character(myCombs[i, 1]), collapse=NULL), collapse=NULL) 
  } 
 
  #Display all results in the console 
  for(i in seq(1:nModels)){ 
    print(c(paste("BF", paste(as.character(i),as.character(0), collapse=NULL), 
      collapse=NULL), bfm0[i])) 
  } 
  #Display the results in the console 
  for(i in seq(1:nrow(myCombs))){ 
    print(c(bfmmnames[i], bfmm[i])) 
  } 
  output <- cbind(myCombs, bfmm) 
  return(output) 
} 
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Generating Data from a Regression Model 
 
regrconstr.datgen = function(n, R, means, sds, model, beta) { 
 # This function generates multivariate normal data such that the predictors 
 # have the same means, sd's and correlations as given by 'means', 'sds' & 'R', 
 # respectively, and will give the regression coefficients 'beta' if the 
 # linear regression model 'model' is fit with lm. The model must be specified 
 # in terms of the variable names V1, V2, V3, etc. where the order in the 
 # means and sds vector and correlation matrix R is used. 
 # 
 # Example usage generating 20 observations: 
 #  regrconstr.datgen(20, matrix(.5,3,3)+diag(.5,3), rep(1,3), 1:3, 
 #     V3 ~ V1*V2, c(0, .5, .5, .25)) # don't forget the intercept coefficient! 
 # 
 M = means; 
 SD = sds; 
 N = n; 
  
 # generate multivariate normal data with the same correlations, sd's and means 
 m = nrow(R) 
 C = diag(SD) %*% R %*% diag(SD) 
 Xc = scale(matrix(rnorm(N*m),N),TRUE,FALSE) 
 Xc = Xc %*% solve(chol(cov(Xc))) %*% chol(C) 
 X = as.data.frame(t(t(Xc)+M)) 
  
 # adjust the simulated dependent variable such that the covariance remains as 

# specified and the model coefficient estimates are exactly as specified 
 fit = lm(model, data = X, x = TRUE, y = TRUE) 
 x = fit$x # matrix of used predictors 
 y = fit$y # dependent variable 
 # The covariance- and beta coefficient-constraints boils down to y lying in a 

# subspace of R^N: 
 # Projections are computed from qr decompositions of the Model matrix of 

# predictors and from 
 # the matrix of variables. 
 U = qr.Q(fit$qr) 
 D = qr.R(fit$qr) 
 Y1 = U %*% solve(t(D)) %*% t(D) %*% D %*% beta 
 IPu = (diag(nrow(U)) - U %*% t(U)) 
 Y = Y1 + IPu %*% y 
 X[,as.character(model[[2]])] = Y 
 X 
} 

 
 

 


