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Abstract 

 

Pathogens belonging to the genus Bartonella employ a unique stealth infection strategy that 

involves evasion from the host immune system, replication in the endothelium and persistence in 

erythrocytes. A key factor in colonization of the replicative niche is the manipulation of nucleated 

cells to the benefit of bacterial uptake, survival, proliferation or spreading. To this end, 

Bartonella spp. translocate a set of bacterial effectors via a VirB/VirD4 type IV secretion system 

(T4SS) into the host cell. Upon translocation, several Bartonella effector proteins (Beps) hijack 

host cell signaling cascades, thus, subverting host cellular functions to promote pathogenicity, yet 

their underlying mechanism remains largely elusive. 

Although pathogenicity factors evolved independently in radiating lineages of Bartonellae, Beps 

share a common domain architecture. The C-terminal part of all Beps consists of a Bartonella 

intracellular delivery domain (BID) and a positively charged tail region that primarily serve as a 

bi-partite secretion signal. Apart from translocation, some BID-domains acquired additional 

functions and interfere with host cell signaling resulting in cytoskeletal rearrangements during 

pathogen entry.  The N-terminal part is less conserved and can harbor phospho-tyrosine motifs, 

additional BID-domains or share the ancestral domain architecture with a filamentation induced 

by cAMP (FIC) domain. This domain was recently shown to catalyze the transfer of an AMP-

moiety onto target proteins, a process called AMPylation or adenylylation. Although the FIC-

domain is widely distributed and can be found in all kingdoms of life, the only identified targets 

are small GTPases of the Ras superfamily. In this study, we aimed to identify target proteins of 

different Beps and to gain insights into their molecular function. 

In Research Article I, we describe that BepA of B. henselae elevates intracellular cAMP-levels 

by activating eukaryotic adenylyl cyclase (AC) synergistically with the α-subunit of stimulating 

heterotrimeric G-protein (Gαs). Further we could show that BepA is a conditional activator of AC 

and directly interacts with at least one of the catalytically active cytosolic AC domains. 

Furthermore, we established a mass spectrometry based strategy to identify targets of post 

translational modifications on the example of AMPylation that is presented in Research 

Article II. To this end, we used stable isotope-labeled ATP in in vitro AMPylation assays on 

crude cell lysates which results in the formation of reporter ion clusters in subsequent LC-MS 

analysis. Applying this strategy on an exemplary Fic protein, Bep2 of B. rochalimae, we 
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identified vimentin as a target protein. As vimentin is not structurally related to small GTPases, 

we exhibit cytoskeletal components as a new target class of Fic protein-mediated AMPylation. 

 

Taken together, Bartonella effector proteins target a plethora of host cell proteins and are thereby 

manipulating key elements of host cell signaling. Therefore, they developed a high level of 

versatility in their target proteins and molecular mechanisms ranging from complex formation to 

posttranslational modifications. We hypothesize that both of these attributes play fundamental 

roles in the establishment of chronic infections. Furthermore, the understanding of these basic 

functionalities will be useful in the development of cell biology tools or of innovative 

therapeutics. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



                                                                                                                                                -Index- 

vii 

 

Index 

1. Introduction ................................................................................................................................ 1 

1.1 Host pathogen interactions ..................................................................................................... 2 

1.1.1 Bacterial effectors and toxins ........................................................................................... 2 

1.1.2 The type IV secretion system is evolutionary related to conjugation machineries .......... 3 

1.1.3 The genus Bartonella ....................................................................................................... 4 

1.1.4 Bartonella effector proteins share a common domain architecture ................................. 7 

1.2 The FIC-domain ..................................................................................................................... 8 

1.2.1 Fic protein-mediated AMPylation of targets ................................................................. 11 

1.2.2 Target recognition is dependent on main chain-main chain interactions ...................... 14 

1.3 The BID-domain ................................................................................................................... 16 

1.3.1 BIDBepA of B. henselae increases intracellular cAMP levels ......................................... 17 

1.4 Targets of Bartonella effector proteins ................................................................................ 17 

1.4.1 The role of small GTPases in pathogenicity .................................................................. 18 

1.4.2 Pathogen internalization is dependent on small GTPase signaling ............................... 18 

1.4.3 Rac1 activation in immune response ............................................................................. 20 

1.4.4 Synthesis of cAMP: one key for many locks ................................................................. 21 

1.4.4 cAMP-signaling in apoptosis ......................................................................................... 25 

1.4.5 Microtubules and intermediate filaments ....................................................................... 27 

1.5 References ............................................................................................................................ 32 

2. Aim of Thesis ............................................................................................................................ 41 

3. Results ....................................................................................................................................... 43 

3.1 Research Article I (published) .............................................................................................. 44 

3.2 Research Article II (submitted) ............................................................................................. 65 

3.2.1 Summary ........................................................................................................................ 66 

3.2.2 MAIN TEXT .................................................................................................................. 67 

3.2.3 Supporting Information .................................................................................................. 76 

3.3 Bep2 AMPylates β-tubulin ................................................................................................... 86 

3.3.1 Introduction .................................................................................................................... 86 

3.3.2 Materials and Methods ................................................................................................... 88 

DNA manipulations ............................................................................................................ 88 



-Abstract- 

viii 

 

Expression and purification of recombinant proteins ........................................................ 89 

TOG-tubulin interaction assays .......................................................................................... 89 

AMPylation quantification ................................................................................................. 90 

Cell lines and cell culture ................................................................................................... 90 

Co-localization and microtubule dynamics ........................................................................ 91 

Immunofluorescent labeling ............................................................................................... 92 

3.3.3 Results ............................................................................................................................ 93 

Bep2 harbors an AMPylation activity ................................................................................ 93 

Bep2 is co-localizing with microtubules ............................................................................ 94 

AMPylation of tubulin affects TOG-tubulin interaction .................................................... 95 

3.3.4 Discussion and Outlook ................................................................................................. 98 

3.4 Role of antitoxin in pathogenicity ...................................................................................... 110 

3.4.1 Introduction .................................................................................................................. 110 

3.4.2 Material & Methods ..................................................................................................... 112 

DNA Manipulations ......................................................................................................... 112 

Protein Purification .......................................................................................................... 112 

Immunoblot Analysis ....................................................................................................... 113 

Infection Assay and Indirect Immunofluorescent Labeling ............................................. 113 

3.4.3 Results .......................................................................................................................... 114 

BepA stably interacts with BiaA of B. henselae .............................................................. 114 

BiaA does not influence BepA expression of B. henselae ............................................... 114 

BiaA is not essential for Fic protein translocation ........................................................... 115 

3.4.4 Discussion and Outlook ............................................................................................... 116 

3.5 BepC induces actin polymerization and bacterial aggregation .......................................... 122 

3.5.1 Introduction .................................................................................................................. 122 

3.5.2 Materials and Methods ................................................................................................. 124 

Cell culture and bacterial strains ...................................................................................... 124 

In vitro infections assays .................................................................................................. 124 

Immunofluorescent labeling ............................................................................................. 124 

3.5.3 Results .......................................................................................................................... 125 

BepC is increasing F-actin polymerization ...................................................................... 125 



                                                                                                                                                -Index- 

ix 

 

3.5.4 Conclusion and Outlook .............................................................................................. 126 

4. Conclusions and Outlook ....................................................................................................... 129 

4.1 Cell type dependence of BepA homologs .......................................................................... 130 

4.2 cAMP in pathogenicity ....................................................................................................... 131 

4.3 Fic proteins subvert host cell function by introducing post translational modification ..... 133 

4.4 Diversification of target recognition by Fic proteins .......................................................... 135 

4.5 AMPylation may regulate vimentin filaments .................................................................... 136 

4.6 The impact of tubulin AMPylation ..................................................................................... 138 

4.7 Fic protein activity is limited to AMPylation ..................................................................... 139 

4.8 Fic proteins are highly versatile modulators ....................................................................... 140 

5. References ............................................................................................................................... 142 

6. Acknowledgments ................................................................................................................... 149 

7. Curriculum Vitae ................................................................................................................... 152 

8. Appendix ................................................................................................................................. 156 



 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 



-Introduction- 

Page | 2 

 

1.1 Host pathogen interactions 

During evolution, mammalian hosts developed the innate and adapted immune system that 

provides strategies for intervention, control and elimination of pathogens. Yet, pathogens 

acquired in parallel a variety of weapons to fight or avoid the host immune system and establish 

acute or chronic infections. These weapons are not only used to fight immune cells but also to 

manipulate immune signaling and to establish a primary niche for replication and persistence. 

Central components of bacterial manipulation of the host are secreted proteins that interfere in 

signaling cascades mostly by altering the activity of host cell proteins.  

 

1.1.1 Bacterial effectors and toxins 

In order to establish a replicative niche, bacterial pathogens are actively manipulating host cell 

functions and processes. In most cases, this is accomplished by either proteins called exotoxins 

(or toxins) that are secreted into the extracellular matrix (1) or bacterial effector proteins that are 

targeted directly into the host cell (2, 3).  

Upon secretion into the extracellular matrix, cellular entry of toxins is mediated by either surface 

association and subsequent endocytic internalization (e.g. clathrin dependent-endocytosis of 

Shigella toxin) (4) or by a pore forming activity. In addition to the internalized toxin domains, 

perturbation of the membrane by pore forming toxins can be lethal as described for CytolysinA of 

Escherichia coli (5).  In contrast to toxins, bacterial effectors are transferred directly into the host 

cell via dedicated machineries, called secretion systems (6-8). 

Apart from the translocation process, the most fundamental difference between toxins and 

bacterial effector proteins is the level of regulation. The activities of bacterial effectors are highly 

orchestrated resulting in an efficient yet minimalized manipulation of host cell signaling. To 

achieve the required level of regulation, bacteria adapted a whole battery of regulation systems 

ranging from conditional expression to counteracting activities whereas stand-alone effectors are 

rare (e.g. CagA of Helicobacter pylorii). Instead, a set of effectors secreted often with opposing 

activities needing a temporal regulation that is provided by the secretion system or protein 

degradation. One example is Salmonella typhimurium that secretes among others the effector 
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proteins SopE and SptE. While the early secreted SopE is a RhoA activating proteins and is 

quickly degraded, SptE is inactivating RhoA and slower degraded than SopE (9). 

Alternatively, the opposing activity can be harbored within the same effector as described for the 

Legionella pneumophilia protein DrrA that is on the one hand activating Rab1 (10) but can also 

deactivate Rab1 through a covalent modification (11) that is reversed by yet another Legionella 

effector SidD (12). In addition, DrrA also represent a strategy for spatial regulation of effectors 

by its Phosphatidylinositol 4-phosphate-binding motif that directs it to the membrane of 

Legionella containing vacuole (LCV) (13). 

In contrast to bacterial effectors, toxins are generally highly effective in generating one single 

effect that changes a multitude of signaling events in the host cell. However, the specificity and 

regulation of bacterial effectors may allow co-existence of the host and pathogen and are thus key 

factors in the persistence of bacterial infection. Distinct secretion machineries are required to 

direct bacterial effectors to the target cell. 

 

1.1.2 The type IV secretion system is evolutionary related to conjugation 

machineries 

In order to establish initial contact to the host, bacteria are utilizing distinct strategies that are 

mostly conserved, e.g. adhesions, receptor coupling etc. One of these strategies involves secretion 

systems that on the one hand establish adherence of pathogens to the host during symbiosis and 

virulence but are also essential in the manipulation of the host (14). 

While some of the known secretion systems are delivering effectors indirectly requiring multiple 

steps for the effectors to reach their targets within the host cell, others form tunnel like complexes 

that span the inner and outer bacterial membrane as well as the eukaryotic plasma membrane like 

the Type III (T3SS) and Type IV (T4SS) secretion systems. 

The T3SS is characterized by the injectisome, a multiprotein complex that is ancestrally related to 

the flagellar export machinery (15, 16). Within the last 10 years, the temporal regulation of T3SS 

effector secretion could be linked to chaperones as reviewed by J.E. Galán and H. Wolf-Watz (8). 

These chaperones were shown to regulate effector expression (17, 18) and to bind the partially 

unfolded effectors and direct them to the secretion machinery (19, 20). 
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Although the temporal regulation of effector secretion is rather well resolved for T3SS effectors, 

it is only poorly understood in the context of machinery expression for T4SS.  

The T4SS evolved several times in parallel from bacterial conjugation machineries (21). Like the 

T3SS, it is proposed to form a channel like protein complex with a rod that spans through both 

bacterial membranes (6). In addition, they harbor docking proteins that recognize substrates 

which are then passed through the channel into the host cell.  

The best understood virulence-associated T4SS is the VirB/VirD4 system of the plant pathogen 

Agrobacterium tumefaciens that is encoded on the tumor-inducing plasmid that is required for 

virulence (22). The VirB/VirD4 T4SS mediates the conjugation of tumorigenic T-DNA into 

infected plant cells (23). It is composed of proteins from the virB operon (VirB1 to VirB11) and 

the coupling protein VirD4. While VirB3, VirB4 and VirB6-11 form the rod that spans both 

bacterial membranes, VirB2 and VirB5 form the pilus (24). VirB4, VirB11 and the coupling 

protein VirD4 are ATPases that energize machine assembly and substrate translocation (25). 

VirD4 binds to the relaxase and thereby induces the translocation process (26). 

Upon horizontal inter-bacterial gene transfer, conjugation machineries functionally diverged, e.g. 

from transfer of DNA to proteins. Mammalian pathogens utilize T4SS to dock onto host cells or 

to transmit virulence factors (26). 

One example of this evolutionary adaptation is the taxonomic group of Bartonellae that acquired 

three distinct T4SS, the Vbh-, the VirB/VirD4- and the Trw- T4SS.  

 

1.1.3 The genus Bartonella 

Bartonella spp. are facultative intracellular pathogens that cause a characteristic infection of 

erythrocytes. Bartonella spp. infect specific mammalian hosts called reservoir host, upon 

transmission via an arthropod, and several species were found to infect humans either as reservoir 

or as an incidental host with the most prominent examples of B. bacilliformis (Bb), B. quintana 

(Bq) and B. henselae (Bh). If not treated with antibiotics, infections with Bb cause the biphasic 

Corrion`s disease with the acute phase (Oroya fever) that is frequently accompanied with 

haemolytic anemia and the chronic stage (verruga peruana) that is characterized by vascular 

tumor formation caused by colonization of endothelial cells. The colonization of endothelial cells 

is also seen for Bq, the causative agent of trench fever, and Bh that leads to bacilliary 
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angiomatosis in immune-compromised patients and can be the causative agent of pathologies like 

bacillary angiomatosis and peliosis that are characterized by tumor-like lesions of the vasculature.  

 
Figure 1.1.1: Phylogenic tree of the genus Bartonella. The phylogeny is based on a maximum-likelihood analysis 

using an alignment of 478 genes from the core genome of ten sequenced Bartonella species (bold and underlined) 

and Brucella abortus. Additional Bartonella species have been added using the sequences of four housekeeping 

genes as described previously (27). The primary mammalian hosts as well as key virulence factors are indicated for 

each species. The deadly human pathogen B. bacilliformis forms a deep-branching ancestral lineage. All modern 

species harbor a type IV secretion system allowing the exploration of new niches. The Vbh and Trw T4SSs are 

characteristics of lineage 2 and 4 respectively. Adapted from (28). 

 

While untreated Bb infections can lead to a mortality rate of 80%, Bh causes comparably mild 

symptoms indicating a difference in infection strategy. 

Phylogenetic analysis allowed the classification of Bartonella spp. that differ in the acquisition of 

the T4SS. As each acquisition coincided with a radiation, the genus Bartonella was originally 

subdivided into four lineages (lineage 1-4) (27, 29) placing the T4SS-free pathogen Bb into 

lineage 1. While lineage 2 species harbor a Vbh (VirB homologous) T4SS, lineage 3 and 4 
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acquired the VirB/VirD4 system. Lineage 4 species additionally encode for Trw T4SS that is 

associated with the contact establishment to erythrocytes.  

Although all species belonging to the lineage 2 harbor the Vbh T4SS, its role in virulence 

remains unclear. The Vbh T4SS is encoded on a plasmid and is associated with conjugation. In 

addition to the genes encoding the secretion machinery and the proteins required for 

conjugational DNA transfer, the Vbh plasmid also encodes an effector protein (VbhT). Although 

this protein contains a secretion signal its secretion into and target within the host cell remains to 

be investigated. 

 
Figure 1.1.2: Infection model of Bartonella spp. Depicted is the general multi stepped infection model of arthropod 

transmitted bartonellae (a) that likely colonize the primary niche utilizing migratory cells (b) for the transport to 

vascular endothelium (c) where the pathogen persists intracellularly. From the primary niche, the pathogen is seeded 

into the bloodstream (d) where it invades erythrocytes and re-infects the primary niche. Upon replication in 

erythrocytes (e), Bartonella persists (f) and is competent for retransmission into an arthropod vector (g). Adapted 

from (28). 

 

 

Both lineage 3 and lineage 4 harbor the VirB/VirD4 T4SS that is evolutionary related to the 

AvrB/TraG conjugation machinery of A. tumefaciens. It is encoded by an operon comprising 10 
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genes (virB2 - virB11) and a downstream encoded coupling protein VirD4. Upon infection the 

VirB/VirD4 T4SS of Bartonella is translocating effector proteins called Beps (Bartonella effector 

proteins) into the eukaryotic host cell (30) but is also retained the ability to interact with an 

ectopically expressed relaxase and to mediate conjugational DNA transfer (31). This T4SS was 

first shown to be essential for colonization of the replicative niche (32) in the lineage 4 species 

B. tribocorum where it is dispensable for subsequent erythrocyte infection. Assuming that 

endothelial cells are an important component of the primary niche, the VirB/VirD4 T4SS was 

envisioned to be required during infection of endothelial cells. In fact, the virB-operon was found 

to be induced during in vitro infection of endothelial cells (33). Furthermore, our group was able 

to show that expression of the virB-operon is induced at the physiological pH of blood by the two 

component system BatR/BatS (34). While Beps are encoded within one locus in lineage 4, they 

are scattered within lineage 3 genome (27) possibly allowing differential expression during 

infection.  

Additionally to the VirB/VirD4 system, species of the lineage 4 also harbor a Trw T4SS that was 

most likely acquired from the conjugative Escherichia coli Trw system that is encoded on the 

R388-plasmid. Yet, a coupling protein as it can be found in the E. coli Trw-system is not encoded 

within the Bartonella trw locus. All genes of the trw locus are co-regulated by the heterodimeric 

repressor system KorA/KorB-complex (21). In previous studies, the Trw T4SS of B. tribocorum 

was found to be essential for erythrocyte infection (21) by mediating adhesion between bacterium 

and erythrocyte (35). 

 

1.1.4 Bartonella effector proteins share a common domain architecture 

In the current understanding, the VirB/VirD4 secretion system and its secreted effector proteins 

play a central role in infection of endothelial cells and colonization of the primary niche (28). In 

silico analysis revealed that Bartonella effector proteins (Beps) share a common domain 

architecture that includes a C-terminal Bartonella intracellular delivery (BID) domain followed 

by a positively charged C-tail. Together, they form a bi-partite secretion signal that results in 

recognition by the T4SS coupling protein VirD4 and translocation of the Bep into the eukaryotic 

host cell (30, 36). While the composition of the C-terminus is conserved in all Beps, the N-
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termini show a diverse composition that involves additional BID-domains, tyrosine rich regions 

or filamentation induced by cAMP (FIC) domains (27).  

While several Beps of lineage 4 species carry additional BID-domains in their N-terminus, the 

vast majority of Beps of the lineage 3 species harbor a FIC-domain. Although the FIC-domain 

was long thought of as the putative effector domain of the Beps, so far most physiological 

phenotypes were linked to the BID-domains (37-39). 

In order to understand evolutionary relations between the Beps of different species of both 

lineage 4 and lineage 3, phylogenetic analysis were inferred on the primary amino acid 

sequences. This allowed classification of orthologous Beps into distinct clusters that are named in 

lineage 3, clade 1-10 and in lineage 4, clade A-I. Due to the conserved architecture and sequence 

similarities of individual domains, it is hypothesized that Beps derived from an ancestral effector 

with a FIC-BID architecture and evolved by gene duplication and gene diversification (27). 

 

1.2 The FIC-domain 

The name “filamentation induced by cAMP” (FIC) refers to a mutant within the fic gene of 

E. coli that impairs cell division and causes a filamenting phenotype when bacteria are grown at 

elevated temperature (43°C) and high extracellular concentrations of cAMP (1.5 mM) (40, 41). 

The FIC-domain is evolutionary highly conserved and can be found in all kingdoms of life from 

bacteria to viruses, archaea and eukaryotes (42).  

FIC-domain containing proteins, also referred to as Fic proteins, are classified together with DOC 

(death on curing) proteins, a toxin-antitoxin module found in E. coli phage P1, in the Fic/Doc 

protein family which was later named fido superfamily (43, 44). Although this family comprises 

thousands of proteins, only few were successfully investigated on a structural level (e.g. PDB 

codes 2G03, 2F6S, 3EQX, and 3CUC) (45-47). Based on these observed structures, the FIC-

domain is defined by eight α-helices where four of them (α2- α5) form the Fic core as defined by 

Pfam (44) and four are surrounding the core. The conserved fido motif (HPFx[D/E]GN[G/K]R) 

lies embedded in the Fic core in between helix α4 and α5. One additional helix that can be found 

N- or C-terminally (α`-helix) lies, close to the motif and completes the fold. 

In addition to the α-helices, a β-hairpin loop that is located between α2 and α3 is a common 

feature of Fic proteins.  
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Figure 1.2.1: VopS of V. parahaemolyticus AMPylates small GTPases and inhibits downstream signaling. A) 

GTPases get activated by GEF proteins that induce the exchange of GDP for GTP. While GTP-hydrolysis can be 

accelerated by GAP, VopS recognizes activated small GTPases and transfers an AMP-moiety onto their switch I 

region and thus prohibits binding of downstream effector proteins. Adapted from (49). B) Crytal structures of VopS 

and IbpA reveal that both proteins harbor a FIC-domain (magenta) with the signature motif shown in yellow, the Fic 

core shown in red and the arm-domain in green. Proteins are shown in ribbon style. PDB codes 3LET (VopS), 4ITR 

(IbpA).  

 

The family of Fic proteins is divided into three classes that are distinguished by an α-helix, αinh, 

that is positioned at the Fic core and has been shown to inhibit AMPylation. Structural analysis 

revealed that a conserved glutamic acid interferes with substrate coordination by interaction with 

the arginine with the active site (42, 48). While this helix is encoded in a separate protein called 
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the antitoxin for class I Fic proteins, it is encoded N- or C-terminally in class II or class III Fic 

proteins, respectively (42). 

Although the FIC-domain was long thought of as the putative effector domain of Beps, its role in 

establishing infections remained elusive.  

Only recent studies of Yarbrough et al. and Worby et al. on T3SS effector proteins provided first 

insights into the function of Fic proteins showing that VopS of Vibrio parahaemolyticus (50) and 

IbpA of Histophilus somni (51) are adenylylating small GTPases of the Rho family. 

Upon ingestion, V. parahaemolyticus can cause acute infections with severe symptom like 

gastroenteritis and can even be lethal in immune-compromised patients. In vitro infections with 

V. parahaemolyticus leads to an increase of autophagy (52) and collapse of the cytoskeleton in a 

T3SS-dependent manner. T3SS effector VopS was found to be sufficient to induce cytoskeletal 

collapse and cell death by targeting small GTPases of the Ras superfamily (47). Using 

enrichment strategies and subsequent mass spectrometry analysis, VopS was identified to 

adenylylate a conserved threonine of Rho GTPases that is located in the switch I region (53). This 

post translational modification (PTM) impairs the interaction of small GTPases with downstream 

binding proteins and is thus disrupting signaling cascades which ultimately leads to cytoskeletal 

collapse (50).  

VopS consists of an N-terminal T3SS secretion signal within the first 30 aa and a FIC-domain 

that is characterized by a conserved Fic fold and an active site motif (HxFx[D/E]GNGRxxR). A 

histidine to alanine mutation within this motif abolishes adenylylation activity and is no longer 

inducing cell rounding. 

In parallel, another T3SS effector protein IbpA, a multidomain protein of H. somnus, was also 

found to target small GTPases of the Ras superfamily and to induce cytoskeletal collapse. 

Although IbpA is not AMPylating the threonine T35 but the neighboring tyrosine residue Y32 

instead it also impairs GTPase signaling leading to cytoskeleton collapse like VopS (51).  

Despite the high abundance of Fic proteins, only one other Fic protein, HYPE, was identified to 

also harbor an AMPylation activity. HYPE is the only Fic protein in humans and is associated 

with Huntington`s disease as it was found to interact with Huntingtin that when mutated causes 

the fatal neurodegenerative disease. While in vitro experiments with purified protein revealed an 

adenylylation activity of HYPE towards Rho family GTPases as observed for IbpA and VopS, 

endogenous AMPylation of the small GTPases could not be monitored. As over expression of 
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HYPE is not as lethal as described for IbpA or VopS, HYPE might be tightly regulated or target 

other proteins in its physiological role that are yet unknown (51). 

In contrast to VopS and IbpA, the T4SS effector AnkX of L.a pneumophilia is not targeting Rho 

GTPases but Rab1 and Rab35 which is crucial for the maturation of Legionella containing 

vacuoles (LCVs) to an ER-like replicative niche (54). Yet, AnkX is not only target another 

subclass of the Ras superfamily, but is also performing phosphocholination instead of 

AMPylation. Rab1 phosphocholination can be reversed by another Legionella effector, Lem3, 

allowing a fine tuned regulation of Rab1 activation state (55).  

These recent advances in the understanding of different Fic proteins functions provided valuable 

indications for a possible role of the FIC-domain in Bartonella effector proteins. Yet, the 

differences between VopS/IbpA to AnkX indicate that Fic proteins have diverged in substrate and 

target recognition during evolution. 

 

1.2.1 Fic protein-mediated AMPylation of targets 

AMPylation, or adenylylation, is already known since the 1960s where it was studied in the 

context of E. coli glutamine synthetase (GS) that catalyzes the condensation of ammonia with 

glutamate to produce glutamine. This reaction is highly dependent on nitrogen levels and is thus 

regulated by a bi-functional protein called ATase that contains two nucleotidyl transferase 

domains in addition to a regulatory domain (56).  

If nitrogen levels are high, glutamine binds to ATase leading to an activation of the adenylylation 

domain resulting in an adenylylation of GS. The AMP-moiety is supposedly blocking the active 

site of GS thus inhibiting the catalysis. If nitrogen levels are low, the second nucleotidyl 

transferase domain (adenylyl removase) is activated by α-ketoglutarate leading to a de-

adenylylation of GS and is restoring GS-activity (57). 

ATase is AMPylating a hydroxyl group of a tyrosine and is thereby introducing a stable 

phosphodiester (C-O-P-O-C). Yet, other enzymes were reported to catalyze the formation of less 

stable groups like carboxylate-phosphate anhydrid ((COO)-P-O-C) or phosphoamides (C-N-P-O). 

Thus, unreactive groups can be activated by AMPylation to form intermediates with more 

efficient leaving groups like reported for i) loading of tRNA with acetylated amino acid (58), ii) 
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synthesis of cofactors (59, 60) or iii) activation of phosphorylated sugars during glucagen 

synthesis (61).  

All so far described Fic proteins perform PTMs on hydroxyl groups of tyrosines or threonines of 

target proteins forming stable phosphodiesters. This PTM results in a change of size and/or 

charge und is thus interfering with protein-protein interactions of the targets with their interaction 

partners (50).   

 

 

Figure 1.2.2: substrate coordination by Fic proteins favors an in-line attack on the ATP . A) 

VbhAE24G/VbhT(FIC) in complex with ATP/Mg2+; B) SoFicE73G, C) NmFicE186G, both in complex with 

AMPPNP/Mg2+. Mg2+-ions are shown as magenta spheres. The 2Fo-Fc simulated annealing omit maps covering the 

nucleotide/Mg2+ ligands are contoured at 1.1 σ. D) Stereo view of the superposition of the ligand structures shown in 

panels B) and C) onto the VbhAE24G/VbhT(FIC) complex (same as in panel A). Note that the nucleotides of the 

various complexes are distinguished by their carbon color (VbhAE24G/VbhT(FIC) ATP in green, SoFicE73G AMPPNP 

in orange and NmFicE186G AMPPNP in pink). The residues of the HxFx(D/E)GNGRxxR signature motif are labeled 

with the phenylalanine not shown. Also shown is the modifiable hydroxyl side-chain Y32 of Cdc42 (blue) after 

superposition of the IbpA(FIC2)/Cdc42 complex (46) onto VbhAE24G/VbhT(FIC). For the superposition, only the Fic 

active site loops were used. The α-phosphate moieties appear well-suited for in-line attack of the target hydroxyl 

group (broken line in magenta). Taken from (48). 

 

First structural insights into the mechanism of AMPylation were gained by a complex of the 

Staphylococcus aureus Kanamycin resistance adenylyl transferase with Kanamycin and a non-
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hydrolysable ATP analoga revealing an in-line nucleophilic attack of the Kanamycin hydroxyl 

group on the α-Phosphate of ATP (62).  

Recent studies on the Fic protein IbpA in complex with its target Cdc42 confirmed a similar 

mechanism for FIC-domain mediated AMPylation (46). Like seen in the complex of the 

S. aureus adenylyl transferase with Kanamycin, the hydroxyl group of Cdc42 tyrosin (Y32) 

performs a nucleophilic attack on the α-Phosphate of ATP. The low nucleophilicity of the 

tyrosine Y32 hydroxyl group of Cdc42 is increased by the histidine residue within the active side 

motif of IbpA that is inducing the de-protonation of Cdc42 at Y32 by an acid-base reaction. 

While several mutations within the active motif with the exception of the first Glycine and first 

Arginine impaired AMPylation activity of Fic domains (46), not all mutations may abolish 

catalytic activity but rather lead to an alternative substrate specificity. The first known example of 

a substrate switch is AnkX of L. pneumophilia. The Rab1 phosphocholinating protein carries a 

mutation within the first Glycine that is exchanged for Alanine (HPFRDANGR). This recent 

finding is a first indication that Fic proteins might have further evolved in target and substrate 

recognition. 

To achieve AMPylation instead of phosphorylation, the substrate needs to be coordinated by the 

nucleotidyl transferase. First insights into substrate coordination were gained by structural 

investigation of nucleotidyl transferases of the nucleotidyltransferase//-phosphodiesterase 

superfamily involved in cofactor synthesis like the Nicotinamide/nicotinic acid mononucleotide 

adenylyltransferase (NMNAT) of NAD+ synthesis (63), Flavin mononucleotide 

adenylyltransferase (FMNAT) to form FAD (PDB code: 1T6Y, to be published)  and 

Phosphopantetheine adenylyltransferase (PPAT) (64) that is involved in Coenzyme A synthesis . 

The structures revealed a high conservation between all three enzymes which contain a 

nucleotide binding Rossmann fold, a defined secondary structure where α-helices are connected 

by β-sheets. In addition, all three proteins harbor the signature motif (H/T)xGH which a key 

element of nucleotide binding. Flanking histidines of the transferases are coordinating the 

substrates phosphates and act as proton donors for the negatively charged phosphates. A Mn2+ ion 

is additionally stabilizing the α- and γ-phosphates in PPAT. 

Nucleotides are similarly coordinated in Fic proteins as shown in the complex structure of 

Neisseria meningitidis Fic protein with ATP (NmFic), VbhA/VbhT of B. schoenbuchensis, the 

Fic protein of Shewanella oneidensis but also the phosphocholinating protein AnkX of 
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L. pneumophila (PDB codes of histidine to alanine mutants 3ZEC, 3ZCB, 3ZCN and 4BER) (42, 

48, 65). 

In NmFic, a Mg2+-ion complexes the α- and β-Phosphate of ATP and the arginines, R115 and 

R118, stabilize the β- and γ-Phosphates. In AnkX, however, the second arginine is not present 

und the nucleotide is only coordinated by one arginine R236. 

While some Fic proteins seem to have a spacious active pocket and are thus more flexible in 

binding ATP-analoga (e.g. VopS that can bind to an alkyl ATP analoga), others seem to have a 

narrower pocket and are therefore restricted in substrate recognition. The substrate recognition is 

a major restriction in the development of tools to identify new AMPylation targets as most ATP-

analoga that are used in enrichment strategies have an increased size or charge.  

 

1.2.2 Target recognition is dependent on main chain-main chain interactions 

In addition to Doc, Fic proteins also show structural similarities with the T3SS effector protein 

AvrB of plant pathogen Pseudomonaa syringae. Upon secretion, AvrB up-regulates hormone 

signaling and increases thereby the plants susceptibility. To this end, AvrB interferes in the 

signaling cascades of jasmonic acid response by inducing phosphorylation of RIN4, an 

interaction partner of RPM1 (resistance to P. maculicula protein 1). Although in recent studies, 

AvrB was identified to induce indirectly RIN4 phosphorylation by activation of the MAP-Kinase 

MPK4, it was long thought of to be directly targeting RIN4 and was even co-crystallized with 

ADP (the end production after phosphorylation) and a short peptide of RIN4. In this structure, 

RIN4 and the ADP moiety are facing each other in the presumable active pocket of AvrB. The 

main chains of the β-hairpin are binding to the target peptide via hydrogen bonds forming an anti-

parallel β-strand. Furthermore, mutations in these AvrB-residues impaired in vivo the increase of 

plant susceptibility confirming their role on a functional level (66, 67).  

The only Fic protein that was yet crystallized in complex with its target protein is IbpA binding to 

AMPylated Cdc42. Like seen in AvrB, IbpA is interacting with Cdc42 via its β-hairpin loop 

forming an anti-parallel β-strand. Target recognition at the active center is thus not mediated by 

ionic or hydrophobic interactions but by main chain-main chain interactions which is mostly 

sequence unspecific. The specificity towards one residue with thin target is therefore probably 

received by the features of the AMPylation region, e.g. position of the targeted site within the 
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quaternary structure, or by additional interaction sites of the Fic protein, e.g. localizing domains. 

Additionally, side chains of L3668 and K3670 of IbpA form a clamp that holds the target tyrosine 

of Cdc42 in a potent conformation. 

 

 
Figure 1.2.3: Target recognition by IbpA is mediated by its β-hairpin loop and an arm domain.  

IbpAFic2H3717A:Cdc42 complex is shown in ribbon style. A) Structural analysis of a complex of tyrosine Y32-

AMPylated (dark blue, sticks) Cdc42 (blue) with IbpAFic2 reveals target recognition is mediated by an arm domain 

(green) of IbpA that interacts with the switch II region of Cdc42 (46). The HPFAEGNGRMAR motif of IbpA is 

colored in yellow, the Fic-domain is shown in magenta with the Fic core in red. The two arginines (R3725 and 

R3728) within the motif as well as the AMPylated tyrosine Y32 are shown as sticks. B) Zoom-in on the active site 

motif within the IbpAFic2H3717A:Cdc42 complex. The β-hairpin loop if IbpA forms an antiparallel β-sheet with the 

target switch I region of Cdc42 (PDB code 4ITR).  

 

As target recognition is mediated by main chain-main chain interactions and therefore not 

restricted to any sequence properties, the range of potential targets is unlimited. Yet, IbpA and 

VopS were only shown to target small GTPases but not any other unrelated protein class 

indicating that in addition to the β-hairpin loop another part of the protein is required for target 

recognition. Consistently, both IbpA and VopS harbor a region that interacts with the switch II 

region of small GTPases.  

Apart from the FIC-domain, several Fic proteins harbor additional domains, like DNA-binding 

domains, that might mediate Fic protein localization but might also play a role in target 

recognition.   
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1.3 The BID-domain  

As stated above, the BID-domain of Beps forms together with the positively charged C-tail a bi-

partite secretion signal that allows recognition of the Beps by the coupling protein VirD4. As the 

bipartite C-terminus can also be found in conjugal relaxases, its evolutionary origin is most likely 

found within conjugation systems. 

Yet, several Bep proteins of the lineage 4 Bartonellae harbor more than one BID domain 

indicating that it may have adapted additional functions. Consistent with this hypothesis, most 

Bep-induced cellular phenotypes were linked to the BID-domain (37-39) ranging from small 

GTPase function to activation with adenylyl cyclases. 

The first described Bep with functional BID-domains was BepG of B. henselae that was shown to 

be sufficient to inhibit endocytic uptake of bacteria and to induce invasome formation in 

endothelial cells. BepG harbors four BID-domains that show homology to previous described 

proteins. Although the first BID-domain of BepG harbors the signature motif WxxxE that is 

typically for Guanine nucleotide exchange factors (GEF) proteins, mutation of this motif did not 

impair BepG-mediated invasome formation (39) indicating that BepG is not a GEF. Consistently, 

BepG acts independently of cofilin1, a downstream effector of small GTPases.  

In addition to BepG, also the combined action of BepF and BepC was shown to induce invasome 

formation (68). BepF consists of three BID domains in addition to the positively charged C-tail 

and a tyrosine-rich N-terminus while BepC harbours a FIC domain and the bipartite secretion 

signal. In contrast to BepG, the first two BID-domains of BepF are activating the small GTPase 

Cdc42 which is a critical step in actin nucleation (68). As BepF is activating small GTPases, yet, 

over-expression of Cdc42 and Rac1 were shown to decrease invasome formation, it is speculate 

that BepC might counteract BepF for optimal regulation of Cdc42 and Rac1. Yet, the target as 

well as the function of BepC remains elusive at this point. 

Effector translocation and thus effector influence on the cytoskeleton that lead to invasome 

formation can result in sever damages for migrating cells. Recently, our group was able to show 

that these unwanted side effects can be overcome by an additional effector protein, BepE. BepE 

consists of two BID-domains in addition to the C-tail and a tyrosine-rich N-terminus. Again, the 

BID-domains alone acting synergistically are sufficient to reduce migration defects. Furthermore, 

the data indicate that BepE activates RhoA and is thereby inducing rear end retraction (69). 
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In contrast to the Beps that target F-actin regulating components, BepA was shown to inhibit host 

cell apoptosis by increasing intracellular cAMP-levels via its BID-domain (70). 

 

1.3.1 BIDBepA of B. henselae increases intracellular cAMP levels 

A prominent phenotype upon in vitro infection with B. henselae is the inhibition of endothelial 

cell apoptosis which is believed to contribute to the unique vasculotumorigenic activity of 

B. henselae (70). 

BepA is one of seven T4SS effector proteins in B. henselae that get translocated into host cell 

upon infection. It consists of an N-terminal FIC-domain and a C-terminal BID-domain (BIDBepA). 

BIDBepA localizes to the plasma membrane of host cells where it is sufficient to inhibit apoptosis 

(37, 70) .  

Furthermore, BepA was shown to reduce activation of apoptosis associated protease Caspase-3 

and to increase expression of cAMP response genes pde4B and crem. Utilizing cAMP-ELISA 

assays, BepA-dependent increase of intracellular cAMP-levels were confirmed (70). 

BepA shares a common domain architecture with its paralogs BepB and BepC. While BepC plays 

a role in bacterial uptake into the host cell, the cellular function of BepB remains unknown. 

Although both ectopically expressed proteins, BepB and BepC, localize to the plasma membrane 

neither BepB nor BepC inhibited apoptosis in endothelial cells (70). 

 

1.4 Targets of Bartonella effector proteins 

In previous studies, a variety of targets for bacterial effector proteins were identified like the Rho 

GTPase that are covalently modified by the Fic proteins IbpA and VopS. Similarly, the 

predominant target class of proteins of Bartonella effector proteins seemed to be small GTPases 

as found for BepF of B. henselae and Bep1 of B. rochalimae. In this study, we furthermore 

present adenylylate cyclases (ACs) as a target of BepA of B. henselae and tubulin and vimentin 

as targets of Bep2 of B. rochalimae.  
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1.4.1 The role of small GTPases in pathogenicity 

In humans, there are 18 members of Rho GTPases that belong to the Ras superfamily with the 

best investigated members being Rho, Rac and Cdc42. They function as a molecular switch in 

signal transduction and can be converted from an inactive GDP-bound form into an active GTP-

bound form. An intrinsic GTPase activity catalyzes the hydrolysis of GTP to GDP and is thereby 

reversing the activation (71). The switch in activity can be promoted by guanine nucleotide 

exchange factors (GEFs) that induces the GDP to GTP-exchange or by GTPase activating 

proteins (GAPs) that increase the intrinsic GTPase activity and are therefore de-activating (72). 

Within the human genome, 67 GAP proteins for Rho GTPases, 71 GEFs with a Dbl homology 

(DH) domain and another 11 GEFs of the DOCK family that are specifically targeting Rac and 

Cdc42 (73) were identified. In addition to GEFs and GAPs, G-protein activity is regulated by 

guanine nucleotide dissociating inhibitors (GDIs) that are impairing the dissociation of GDP from 

the GTPase and are thereby locking the GTPase in its inactive form (74). In the human genome, 

three GDIs were identified. The high abundance of G-protein regulators implicates a complex 

network of regulation (75). 

Although the extend of the regulatory network is still not completely resolved, many interaction 

partners of Rho GTPases were identified within the last 30 years and their function was linked to 

most major pathways of eukaryotic signaling. Among the targets of Rho GTPases are 

approximately 30 kinases and a huge variety of scaffolding and adaptor-like proteins but also 

crosstalk between GTPases themselves has been described. 

Hence, it is not surprising that several pathogens were found to influence G-protein activities 

either indirectly or directly by an intrinsic GEF activity or covalent modification to hijack host 

cell pathways and influence them in favor of bacterial internalization and colonization of the 

pathogens replicative niche. 

 

1.4.2 Pathogen internalization is dependent on small GTPase signaling 

Internalization of pathogens into a host cell can be solely host-dependent or pathogen-driven. In 

the first case, specialized phagocytic cells internalize the pathogen without its active contribution. 

In order to invade host cells which are not professional phagocytes, pathogens have developed an 
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arsenal of fine-tuned tools to manipulate host cell functions. Pathogen internalization is described 

by either a “zipper” or “trigger” mechanism (76).  

Salmonella typhimurium and S. enterica utilize a trigger mechanism to induce their 

internalization. To this end, effector proteins are secreted via a type III secretion system into the 

host cell insertion of the translocon proteins SipB/SipC into the plasma membrane. SipC harbors 

to functional cytoplasmic domains where the N-terminal domain binds actin while the other is 

inducing actin nucleation (77). In a following step, SopE1 and SopE2 are secreted into the cell 

and activate the small GTPases Cdc42 and Rac1 that further induce actin nucleation (78). Next, a 

phosphatidylinositol phosphatase, SopB stimulates actin rearrangements while SipA stabilizes 

existing actin fibers (79, 80). Last, SptP is secreted that regulates MAPK (mitogen‐activated 

protein kinase) through a tyrosine phosphatase activity and deactivates Cdc42 via a GAP activity 

thus leading to cup closure, actin depolymerization and pathogen internalization (81).  

Another example of a pathogen utilizing a trigger mechanism is Listeria that cross the blood-

brain and blood-placenta barriers by infecting non-phagocytic cells like epithelial cells via two 

adhesins InlA and InlB that interact with E-cadherin (82) and Met (83), respectively . InlA binds 

to E-cadherin that binds intracellularly via catenin to actin and induces de novo actin nucleation 

by the Arp2/3 complex (84-87). InlB binds to the Met receptor and induces its 

autophosphorylation that in turn activates Rac1/WAVE/Arp2/3 complex and cofilin activation 

(88).  

Apart from adhesions that dock pathogens onto the host cells, a variety of pathogens like 

Yersinia enterocolitica and Y. pseudotuberculosis but also B. henselae have been shown to bind 

to β-integrins (89, 90). Our group demonstrated that interaction of B. henselae with integrin-β1 is 

required for invasome formation as integrin-β1 signaling leads to activation of Rac1 by 

recruitment and autophosphorylation of the focal adhesion kinase FAK (90).  

Auto-phosphorylation of FAK creates a binding site for Scr-kinase that in return increases 

phosphorylation of FAK (92). The complex of integrin-β1/FAK/Scr also binds the scaffolding 

protein p180Cas (93) that binds the unconventional Rac1-GEFs, Dock180 and ELMO1 (94), 

through the adaptor protein Crk. In addition, β-integrin1/FAK/Scr complex also interacts with 

paxillin which subsequently recruits β-PIX, a GEF for Cdc42 and Rac1 (95). Rac1 in turn binds 

to a number of interaction partners that directly influence actin polymerization, e.g. by activating 

the Arp2/3 complex.  
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Next to the activation of the Arp2/3 complex and subsequent rearrangements of the cytoskeleton, 

Rho GTPases also influence cell responses in respect to cell migration inflammation signaling 

that play crucial roles in pathogenicity. 

 

 
Figure 1.4.1: Integrin signaling engages Rho GTPases to control actin polymerization. Upon stimulus binding to 

integrin, a signaling complex involving several kinases and adaptor proteins is formed at the cytoplasmic site of 

integrin. Phosphorylation events then lead to the activation of small GTPases that interact with a variety of actin 

polymerization regulators. The complexity of the signaling network indicates a fine tuned system that allows distinct 

F-actin formation locally or globally. Adapted from (91). 

 

1.4.3 Rac1 activation in immune response 

A central factor in pathogen defense strategies of host cells is the NF-κB complex that 

translocates one out of five subunits, p65, into the cell nucleus and induces the transcription of 

cytokine precursors (96). Once translated, precursors are processed by activated caspase-1 and 

secreted into the tissue where they promote inflammation (97). The protein levels of pro-

inflammatory signals are orchestrated by a variety of signaling processes including TOLL-like 



                                                                                                                                      -Introduction- 

 

Page | 21  

 

receptors (TLRs) and NOD-like receptors (NLRs). While TLRs as well as NLR1 and NLR2 are 

regulating NF-κB and thereby transcription of pro-inflammatory genes, other NLRs like NLR3 

are involved in the processing of precursors via the inflammasome. The inflammasome protein 

complex is formed upon NLR-stimulation by PAMPs (pathogen-associated molecular patterns) 

and induces the activation of caspase-1 (97).  

Interestingly, the small GTPases Cdc42 and mainly Rac1 are associated with the regulation of 

both TLRs and NLRs. 

Upon stimulation of TLR2, Rac1 and PI3K (Phosphoinositol-3 kinase) make part of an active 

protein complex located at TLR2 (98). In this complex, Rac1 binds to the regulatory subunit of 

PI3K that in turn binds to phosphorylated tyrosines of TLR2. Rac1 induces PI3K activation and 

the phosphorylated lipid products generated by PI3K induce autophosphorylation of Akt that 

promotes the localization of p65 subunit into the nucleus (98). 

Recently, activation of Rac1 was shown to up-regulate inflammasome formation and caspase-1 

activation. Although the mechanism behind Rac1-mediated inflammasome formation is not 

resolved, effectors of both S. typhimurium and Chlamydia pneumoniae were shown to induce 

caspase-1 activation in a Rac1-dependent manner thus influencing the immune response of the 

host (99, 100). 

 

1.4.4 Synthesis of cAMP: one key for many locks 

A common strategy in pathogenicity is elevation of cAMP that has a broad influence on the host 

cell signaling including phagocytosis, apoptosis and cytokine expression. cAMP is produced by 

adenylyl cyclases (also known as adenylate cyclase, AC). Most eukaryotic ACs are 

transmembrane proteins with the exception of one cytosolic AC.  

Once activated, AC produces cAMP that in turn activates a variety of different proteins. Apart 

from calcium and potassium ion channels, PKA (protein kinase A), Epac-1 and Epac-2 

(Exchange proteins directly activated by cAMP) are the best studied downstream effectors. All of 

these proteins, PKA and Epacs, consist of a regulatory and a catalytic subunit that are interacting 

with each other in an inactive state of the protein (101). 

Upon binding of cAMP to the regulatory subunit, the catalytic subunit is released and activates 

downstream effectors either through phosphorylation or GEF activity. The catalytic subunit of 
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Epac exhibits a GEF activity in particular towards the small GTPases Rab1 and Rab2 and thus 

influences cell attachment, calcium fluxes and exocytosis (102), PKA instead phosphorylates a 

variety of proteins including ERK and the CREB (cAMP response element binding protein) 

ultimately leading to a change on the transcription level of target genes (103). 

 

 
Figure 1.4.2: cAMP synthesis induces transcription of genes under the CRE-promoter. Receptor activation 

induces the exchange of GDP for GTP within the alpha subunit of stimulating heterotrimeric G-protein (Gαs) and its 

release from the receptor complex. The GTP-bound Gαs binds to both cytosolic domains of adenylyl cyclase (AC) 

and induces cAMP production which can be increased by the plant diterpene Forskolin. cAMP then can be degraded 

by phosphodiesterase (PDE) that can be inhibited by IBMX or it can bind to the regulatory subunit of protein kinase 

A (PKA). Upon binding of cAMP, the complex of regulatory and catalytic subunits of PKA dissociate and the 

catalytic subunits phosphorylate cAMP response element binding protein (CREB). Phosphorylated CREB 

translocates into the nucleus and induces transcription of genes under the CRE-promoter which inhibit Caspase-3 

activity.  
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The tremendous number of downstream effectors allows a multifaceted response to the elevation 

of cAMP levels and requires a tight and often cell type specific regulation. One level of 

regulation is provided by spatial restriction that is mediated by lipid rafts or AKAPs (A-kinase 

anchoring proteins). AKAPs form multiprotein complexes and thus lock PKA to distinct 

upstream and downstream effectors. This compartmentalization leads to an increased efficiency 

of the cAMP-response. They were originally identified in 1982 by Theurkauf et al. (104) and are 

highly diverse with the exception of a PKA docking motif (105). To date, more than 50 AKAPs 

are identified with different subcellular localization. Another important aspect of AKAPs is the 

intrinsic feedback loop that allows temporal control of the cAMP response (106). As AKAPs are 

expressed in a cell type-dependent manner, cAMP responses are also cell type dependent and 

often opposing effects are described. Similarly to AKAPs, also cAMP-producing ACs are subject 

to cell type specificity and spatial regulation. 

All nine isoforms of transmembrane AC can be inhibited by adenosine analogs named P-site 

inhibitors (107, 108) and (with exception of AC9) are activated by the α-subunit of stimulating 

heterotrimeric G-protein (Gαs) (109). Apart from these shared features and the common domain 

architecture comprising two membrane spanning and two cytosolic domains, the nine isoforms 

mostly differ in respect to their regulation patterns (110). While AC1 and AC8 are inhibited by 

the βγ-subunit of heterotrimeric G-proteins, βγ-subunit  was found to be a conditional activator of 

AC5 and AC6 (111) and while AC3 is inhibited by Ca2+, AC1 and AC8 are stimulated upon 

Ca2+-influx (112). 

The complex network of AC regulators comprises several cytosolic or receptor-coupled G-

proteins, Calmodulin signaling, RGS (regulators of G-protein signaling) and phosphoinositol-

signaling. The most generic and thus best understood activator is Gαs that is coupled by the βγ-

subunit of heterotrimeric G-proteins to receptors e.g. to the β-adrenergic receptor (βAR). Upon 

hormone stimulation, the receptor binds the C-terminus of Gαs which leads to a reorganization of 

β6-α5 region that is engaged in GDP-coordination via its purine moiety. Additionally, the 

receptor interacts with the N-terminus of Gαs which abolishes the stabilization of the diphosphate 

of GDP. This leads to the release of the co-factor and leaves the Gαs in an opened conformation. 

This opened form can either bind GDP and return to its inactive form or GTP inducing the release 

of Gαs from the receptor (113). 



-Introduction- 

Page | 24 

 

Once dissociated from the receptor, Gαs can interact with both cytosolic domains (C1- and C2-

domain) of AC thereby holding both domains together in an active conformation (114-116). At 

the interface between the C1 and C2, the active pocket is formed where ATP is converted to 

cAMP. A pocket similar to the active site is also positioned in the interface between C1 and C2. 

In this latter pocket, the plant diterpene Forskolin can bind and, similarly to Gαs, increase the 

interaction between C1 and C2 (117). Together, Forskolin and Gαs can synergistically active ACs 

(118, 119). 

 

 
Figure 1.4.3: GαS interacts with C1 and C2 cytosolic domains of adenylyl cyclases. The crystal structure of a 

complex of Gαs (green), the C1-domain of AC5 (orange), and the C2-domain of AC2 (red) shows that Gαs interacts 

via its switch II region (marine) with both AC domains. Chains are represented as cartoons; cofactors are shown as 

sticks with GDP in magenta, Forskolin in purple, and 2'-deoxy-adenosine 3'-monophosphate together with 

pyrophosphate in cyan. Coordinating Mg2+-ions are shown as blue spheres. PDB code 1CUL. 

 

In contrast to Gαs, Gαi inhibits the formation of the C1/C2 dimer and the formation of an active 

pocket thus dampening cAMP production (120). Yet, Gαi like Gαs binds to and acts on the C1 

domain of ACs (121). 

Apart from the cytosolic domains C1 and C2, also the cytosolic N-terminus of ACs, in particular 

the one of AC5, was reported to play a key role in regulation of AC activity by interacting with 

and thus directing regulatory proteins to the AC. Ric8a (122), a GEF for the inactivating G-
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protein Gαi, AKAPs (123), Gβγ (124), phosphatases (125) or calmodulin were shown to 

influence AC activity by binding to the AC N-terminus (126). 

Due to the huge variety of downstream effectors, cAMP is a very generic component of cellular 

signaling and is in fact found to be often misregulated in diseases like microbial infection. 

Several pathogens have been described to alter inflammatory responses by increasing cAMP-

levels by either directly synthesizing cAMP either intracellularly (Bordetella pertussis, 

Pseudomonas aeruginosa) or extracellularly (Mycobacterium tuberculosis), by stimulating 

receptor proteins (Bacillus thuringiensis) or by altering the activity state of host cell proteins. The 

latter is well understood for Vibrio cholerae toxin that ADP-ribosylates an arginine residue 

within Gαs which converts the G-protein into a constitutively active form (127). In contrast, 

Pasteurella multocida toxin activates Gαi by deamidation thus disabling the intrinsic GTPase 

activity and thereby keeps Gαi in a constitutively active form (128).  

 

1.4.4 cAMP-signaling in apoptosis 

There are two pathways that lead to cell death by apoptosis that are distinguished by the initiating 

signal into the extrinsic and the intrinsic pathway. While extrinsic apoptosis is induced by an 

external signal that stimulates death receptors, the intrinsic pathway starts with mitochondria and 

leads to release of cytochrome c.  

One family of death receptors is the family of TNF-receptors (tumor necrosis factor) that has 

cysteine rich extracellular domains that trimerize upon an incoming signal (129). In turn, the 

intracellular death domains (DD) sequester DD-containing adaptor proteins like FADD or 

TRADD thereby forming the DISC (Death inducing signaling complex) as reviewed by 

Ashkenazi (130, 131). In addition to DD, FADD also contains a DED (death effector domain) 

that recruits DED-containing procaspase-8 through homotypic DED-DED interaction leading to 

autocleavage of procaspare-8 to active caspase-8. In typeI cells, this starts a signaling cascade of 

caspase activation eventually resulting in cell death (132). Yet, in type II cells, the caspase 

signaling is not sufficient to results in apoptosis. Instead, the pathway of intrinsic apoptosis is 

activated through Bid, a member of the Bcl-2 family that is cleaved by caspase-8 and translocates 

into mitochondria (133). 
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Apart from Bcl-2 proteins, the intrinsic pathway of apoptosis can be induced e.g. by DNA 

damage, oxidative stress or starvation (135). This leads to a disruption of mitochondrial inner 

transmembrane potential (Dy) and permeability transition (PT) inducing an influx of water and 

subsequently to a swelling of mitochondria and the release of proapoptotic proteins like 

cytochrome c. Cytosolic cytochrome c is binding to monomeric Apaf-1 which in an dATP-

dependent manner forms wheel like oligomers with a 7-fold symmetry called apoptosome that 

triggers the activation of caspase-9. Caspase-9, like caspase-8, starts a signaling cascade of 

caspase activation (136). 

 

 
Figure 1.4.4: The extrinsic and intrinsic pathways of apoptosis. Schematic overview of extrinsic or intrinsic 

induced apoptosis. Death receptor signaling activates caspase-8 via the adaptor proteins TRADD and FADD 

consisting of DD (death domain) and DED (death effector domain) forming the DISC complex (death inducing 

signaling complex). Active Caspase-8 either activates Caspase-3 and directly induces apoptosis or additionally 

induces the intrinsic pathway through activation of the Bcl2-family member BID. Cleaved BID translocates into 

mitochondria and induces the release of Cytochrome C that binds to Apaf-1 in the cytosol. Cytochrome C bound 

Apaf-1 forms the apoptosome with a 7-fold symmetry and activates Caspase-9. Caspase-9 in turn can activate 

Caspase-3 leading to apoptosis. Adapted from (134). 
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Ultimately, both pathways lead to the activation of caspase-3 that induces cell death (136). Yet, 

caspase-3 but also other caspases can be inhibited by IAPs (inhibitors of apoptosis proteins) that 

interact with and inhibit caspases through a BIR-domain (baculovirus IAP repeat) (137). 

Additionally, some IAPs harbor a RING-domain that has an E3 ubiquitin ligase activity through 

which IAPs ubiquitinate themselves and induce protein degradation of themselves but possibly 

also of their interactors (138). 

While cAMP is not prohibiting the autocleavage of procaspase-3 leading to activate caspase-3, it 

was shown to elevate expression of IAPs and thereby to inhibit caspase-3 activity resulting in and 

anti-apoptotic effect (139). 

1.4.5 Microtubules and intermediate filaments 

Microtubules (MTs) are an essential component of the eukaryotic cell and were found to play key 

roles in most cellular processes like cell division, migration or trafficking. They are filamentous 

structures formed by polymerization of heterodimers of α- and β-tubulin (αβ-tubulin). The 

polymer network stabilizes the cell shape and protrusions like lamellipodia. MTs are associated 

with a variety of scaffolding proteins that are spatially directed by but also dependent in their 

activity on MT dynamics. Hence, MTs are regulated by but also regulate and influence 

themselves a broad signaling network as reported for migration, endosomal maturation (140) or 

autophagy (141). 

Both, α- and β-tubulin, are P-loop GTPases that bind GDP in their curved, heterodimeric form. 

Upon nucleotide exchange for GTP, αβ-dimers can assemble to form polar polymers with a slow 

growing minus-end exposing α-tubulin and a fast growing plus-end exposing β-subunits. In 

mammalian cells, the minus-end is often anchored to cellular structures, e.g. the Golgi, while the 

plus end is elongating. During polymerization, the αβ-tubulin is changing its conformation so that 

the curved heterodimer completely straightened within the polymer (MT lattice). Along with the 

switch in conformation, GTP is hydrolyzed by the intrinsic GTPase activity of tubulin leaving the 

vast majority of the MT lattice intact, but in a GDP bound form (142). 

For the maintenance of MT organization, a high level of regulation is required that is provided in 

part by MT plus-end tracking proteins (+TIPs). +TIPs are a structurally and functionally diverse 

group of proteins that can be distinguished by their accumulation on MTs. They are classified by 

protein components that mediate MT accumulation and polymerization (144). The first described  
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Figure 1.4.5. Models for the regulation of MT dynamics by TOG-domain containing proteins.  A) XMAP215 

binds tubulin dimers via its TOG-domains and the MT lattice via its SK domain. XMAP215-tubulin complexes 

accumulate at the MT plus end, which accelerates MT assembly. Model 1: XMAP215 cycles to load its TOG-domain 

bound tubulin dimer at growing MT ends that induces the release of the tubulin dimer. Model 2: XMAP215 

stabilizes the assembly conformation of a microtubule by binding and stabilizing polymerized-tubulin conformation 

(yellow) with its TOG domains. B) CLASP family proteins promote MT rescues and inhibit MT catastrophes. 

CLASP binds tubulin dimer via its TOG domains and binds MT lattices with high affinity via its SR-rich domain 

similar to XMAP215. The high affinity of CLASP leads to sites of high concentration along MTs. When a dynamic 

MT undergoes catastrophe, MT disassembly occurs until the plus end reaches a site of high CLASP concentration 

(lower middle). There, CLASP locally promotes rescue in which MT depolymerization halts and MT assembly 

reinitiates. Model 1: CLASP molecules release their loaded tubulin dimer into the MT plus end and reinitiate 

polymerization. Model 2: CLASP molecules utilize their loaded tubulin to prevent MT disassembly and restore MT 

to the assembly phase. Adapted from (143). 

 

+TIP was the cytosolic linker protein with a molecular weight of 170 kDa (CLIP-170, officially 

known as CLIP1) (145). 

While some +TIPs were found to recognize the growing end of MTs autonomously, others 

require adaptors or motor proteins like kinesin to hitchhike to the plus-end. Examples of adaptor 
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proteins are provided by the EB (end-binding) protein family that can interact with most +TIPs 

by interaction of their EBH-domain and an SxIP-motif on the +TIP. EB proteins can bind through 

their C-terminal EEY/F motif together with the same C-terminal motif on α-tubulin to CAP-Gly 

proteins like CLIP-170 (146).  

Such motif based interactions can be interrupted by post translational modifications like the 

serine-phosphorylation in the proximity of SxIP or the de-tyrosination of the α-tubulin EEY/F 

motif. 

In recent studies, the autonomous +TIP class of XMAP215/Dis1 and CLASP protein families 

were found to catalyze polymerization or rescue after spontaneous depolymerization 

(catastrophe) through their TOG-domains that on the one hand can bind to plus-end or lattice of 

MT but also to free αβ-dimers. Furthermore, all proteins of the XMAP215/Dis1 and CLASP 

families harbor SK- or SR-rich sequences that are thought to mediate attachment to the MT-

lattice (147, 148) in addition to the TOG-mediated association to curved or straightened tubulin. 

Through their C-tail region, many members of both families were reported to bind to different 

+TIPs thereby mediating directionality of MT assembly. 

Structural investigation of the TOG-domain of yeast Stu2 protein belonging to the 

XMAP215/Dis1 family, revealed that this domain is interacting simultaneously with both the α- 

and β-tubulin subunits. The TOG1-domain of Stu2 is interacting via its Loop5 region with α-

tubulin and via its Loop1 region with Y106 β-tubulin. The interaction between TOG and tubulin 

was found to be partly mediated by salt bridges between the hydroxyl group of β-tubulin Y106 

and R116 of Stu2 (149). 

Further, both TOG1 and TOG2 were found to preferably bind to the curved form of αβ-tubulin 

independent of the nucleotide bound to tubulin. This indicates that the nucleotide itself does not 

suffice to induce straightening of the heterodimer (149).  

As both TOG domains bind to curved tubulin, it is envision that the TOG2 binds to the plus-end 

thereby localizing the protein while the TOG1-domain captures free αβ-dimers. In this model, 

Stu2 would recruit free tubulin and to the growing MT-filament. Polymerization would then 

induce straightening of the captured αβ-dimers leading to the dissociation of the TOG1-tubulin 

complex (149). 

However, structural studies of CLASP proteins revealed the opposite behavior: This family 

shows a binding preference for straightened αβ-dimers offering a first hypothesis on how the 
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different functionalities of TOG-domain containing proteins evolved (150). It remains unclear, id 

CLASP proteins rescue MTs upon an MT-catastrophe by merely stabilizing the polymer via 

TOG-tubulin interactions or by actively inducing the re-polymerization (150). 

In comparison to microtubules, little is known about the function of vimentin intermediate 

filaments. Only within the last 10 years, vimentin was found to be engaged in several cellular 

processes ranging from lymphocyte migration to autophagy regulation. Vimentin can be found 

from the cell nucleus to the extracellular matrix making it difficult to assess and study distinct 

functionalities. The expression of vimentin is cell type dependent which could imply an 

expression regulation and thus an importance of vimentin and vimentin knockout mice can 

develop without any prominent abnormalities (151). 

 

 
Figure 1.4.6: TOG1-domain of Stu2 interacts with α- and β-tubulin. Crystal structure of the complex with α- 

(orange) and β-tubulin (green) with TOG1-domain (purple) of Stu2 from S. cerevisiae, a member of the XMAP215 

family. Chains are shown as cartoons and the residues contributing to complex formation are depicted as spheres. 

Tubulin-bound GTP molecules are shown as stick in cyan, coordinating Mg2+-ions are shown as blue spheres. PDB 

code 4FFB (149) 

 

Vimentin consists of an N-terminal head domain, an α-helical rod and a C-terminal tail. Its 

polymerization as well as its secretion by monocytes is dependent on the serine phosphorylation 
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in the N-terminal head domain. One kinase that catalyzes vimentin phosphorylation is PKC. 

Consistently, the anti-inflammatory cytokine IL-10 that inhibits PKC is also decreasing vimentin 

secretion while the pro-inflammatory cytokine TNF-α increases secretion. As phagocytic 

monocytes are producing reactive oxygen species (ROS) upon stimulation with 12-O-

tetradecanoylphorbol-13-acetate or particulate agents, vimentin was tested for its ability to 

influence ROS levels and in fact extracellular vimentin was found to increase ROS levels and 

microbicidal activity of E. coli challenged macrophages through an unknown signaling pathway 

(152). 

In addition to PKC, other kinases like PKA or p35cdc2 were reported to phosphorylate the N-

terminal head domain of vimentin on S38, S55, S56 and S72 which induces the disassembly of 

vimentin filaments (153, 154). As the polymer binds to a variety of scaffolding proteins, the 

dynamics of filamentation are a regulating factor of other cellular processes. The interrelation 

between vimentin and autophagy was recently described to be mediated by the scaffolding 

protein 14-3-3 that binds to vimentin intermediate filaments but also to phosphorylated 

Beclin1where the association of Beclin1 with vimentin is inhibiting Beclin1-induced autophagy 

(155).  

Furthermore, vimentin was identified to stabilize focal adhesion sites thereby increasing 

attachment of the cells. To this end, plectin that is hitchhiking via kinesin on MTs to integrin-β3 

recruits intermediate filaments to focal adhesion sites (156). 

Despite these recent advances in understanding the cellular function of vimentin, its active 

contribution to pathogenicity remains to be investigated. 
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Aim of thesis 

 

The primary aim of my thesis, starting in February 2010, was to investigate how Bartonella 

effector proteins manipulate host cell signaling to promote bacterial uptake or survival including 

the identification of effector targets and the analysis of the molecular mechanism of effector 

functions. 

I validated adenylyl cyclases (AC) and the α-subunit of the stimulatory G-protein (Gαs) as 

targetproteins of BepA from B. henselae. To this end, I established a biochemical assays to 

monitor in vitro AC activity and applied biochemical techniques to further investigate protein-

protein interactions. 

Furthermore, I established an experimental strategy to identify targets of posttranslational 

modifications on the example of AMPylation performed by FIC-domain containing effectors. I 

could identify vimntin and tubulin as target proteins of Bep2 of B. rochalimae. I then focused on 

elucidating the influence of AMPylation on tubulin polymerization by studying the interaction of 

AMPylated tubulin with the polymerization catalysor Stu2. 

Additionally, I aimed to reveal the role of Fic protein regulators in the context of bacterial 

infection. 
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3.1 Research Article I (published) 

 

A bacterial effector binds host cell adenylyl cyclase to potentiate Gαs-dependent cAMP 

production 

 

Arto T. Pulliainen*, Kathrin Pieles*, Barbara Hauert, Alex Böhm, Maxime Quebatte, Alexander 

Wepf, Matthias Gstaiger, Cameron S. Brand, Ruedi Aebersold, Carmen W. Dessauer, and 

Christoph Dehio   

 

* These authors contributed equally to this work 

 

PNAS, Jun 2012, vol. 109, no. 24, pp. 9581-9586 

 

 

 

 

Statement of my own contribution 

 

I contributed to this publication by expressing and purifying MBP-BepA305-544, MBP-BepB303-542, 

MBP-BepC292-532, His-Gαs and His-C2 of AC2. I also performed in vitro AC-activity assays with 

and analyzed protein-protein interactions using SPR. I furthermore reproduced the bi-molecular 

fluorescent cytometry and MacConkey experiments that were initially established by A.T. 

Pulliainen with the help of A. Boehm and B. Hauert.  

The manuscript was written by me, A.T. Pulliainen, and C. Dehio. 
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3.2 Research Article II (submitted) 

 

An experimental strategy for the identification of AMPylation targets from complex protein 

samples 

 

Kathrin Pieles*, Timo Glatter*, Alexander Schmidt, Christoph Dehio 

 

* These authors contributed equally to this work 

 

Manuscript submitted to PROTEOMICS 

 

Statement of my own contribution 

 

I contributed to this publication by expressing and purifying of Bep2 and Bep21-360 in complex 

with BiaAE61G. I also performed the presented in vitro AMPylation assays and in-gel digestions 

of the analyzed samples.  

The manuscript was written by me, T. Glatter A. Schmidt and C. Dehio.
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3.2.1 Summary 

 

AMPylation is a posttranslational modification (PTM) that has recently caught much attention in 

the context of bacterial infections as pathogens were shown to secrete Fic proteins that AMPylate 

Rho GTPases and thus interfere with host cell signaling processes. Although Fic proteins are 

widespread and found in all kingdoms of life, only a small number of AMPylation targets is 

known to date. A major obstacle to target identification is the limited availability of generic 

strategies allowing sensitive and robust identification of AMPylation events. Here, we present an 

unbiased mass spectrometry (MS) based approach utilizing stable isotope-labeled ATP. The ATP 

isotopes are transferred onto target proteins in crude cell lysates by in vitro AMPylation 

introducing specific reporter ion clusters that allow detection of AMPylated peptides in complex 

biological samples by MS-analysis. Applying this strategy on the secreted Fic protein Bep2 of 

Bartonella rochalimae, we identified the filamenting protein vimentin as an AMPylation target 

which was confirmed by independent assays. Vimentin represents a new class of target proteins 

and its identification emphasizes our method as a valuable tool to systematically uncover 

AMPylation targets. Furthermore, the approach can be generically adapted to study targets of 

other PTMs that allow incorporation of isotopically labeled substrates. 
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3.2.2 MAIN TEXT 

Protein AMPylation (also known as adenylylation) is a post-translational modification (PTM) in 

which an AMP moiety is transferred onto threonine or tyrosine residue of a target protein. 

AMPylation was discovered in the 1960s in the context of regulation of glutamine synthetase 

activity in E. coli (1). Recently, proteins belonging to the Fic family (Filamentation induced by 

cAMP) were also shown to catalyze protein AMPylation. Fic proteins are found in all kingdoms 

of life and are conserved from bacteria to human (2-4). Although this protein family comprises 

thousands of proteins, for only two Fic proteins physiological roles have emerged. Yarbrough and 

co-workers were first to demonstrate that a translocated bacterial Fic protein subverts host cell 

defense mechanisms within bacterial infection processes (5). In particular, a type III secretion 

system (T3SS) effector from Vibrio parahemolyticus, VopS,  is secreted into the host cell where 

it AMPylates a conserved threonine (T35) of Rho family GTPases.  AMPylation impairs binding 

of GTPase interaction partners and thereby interferes with the host cell signaling machinery 

leading to cytoskeleton collapse and cell death (6). Similarly, the surface antigen IbpA of 

Histophilus somni was shown by Worby and co-workers to target Rho GTPases. Though IbpA 

does not modify T35 but the neighboring tyrosine (Y32), it also impairs GTPase signaling 

leading to cytoskeleton collapse (7, 8). Moreover, the human Fic protein HYPE was identified to 

target Rho GTPases in vitro, yet, its physiological role and potential in vivo targets remain elusive 

(7).  

Despite this recent progress, comprehensive functional details into Fic protein-mediated 

AMPylation and its impact on cellular signaling events are still in its infancy. This is underlined 

by the fact that among the large number of existing Fic proteins only a handful are characterized 

as AMPylators (4) with small GTPases representing the only identified target class. The main 

reason for the limited insights into the biological role of Fic proteins and Fic-mediated target 

AMPylation is the limited availability of selective enrichment strategies specifically targeting the 

AMPylated moiety. This hampers the systematic analysis of AMPylation events and renders 

target identification a challenging task. Though target enrichment advanced with the introduction 

of an antibody raised against AMPylated threonine (9), tyrosine modified peptides and proteins 

would escape purification. Another promising step forward was recently presented by a strategy 

utilizing a functionalized ATP analogue which can be trapped by an azide alkyne cycloaddition 
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(also known as CLICK chemistry approach) to enrich for modified proteins (10, 11). Yet, the 

modification of ATP goes along with changes in size and electron density of the substrate, which 

might impair binding to the substrate binding site of Fic proteins (10). Therefore, experimental 

strategies enabling unbiased and specific identification of AMPylated proteins are required to 

further elucidate the biological mechanism underlying protein AMPylation and its effect on 

cellular signaling. Here, we present an unbiased method to identify AMPylated targets from cell 

lysates building on in vitro activity assays using stable isotope-labeled ATP substrates. The in 

vitro reaction generates AMPylated peptide isotopes that can be detected as reporter ion clusters 

with defined mass shifts in mass spectrometry (MS) analysis.  

In the first step, an in vitro reaction of lysates of E. coli expressing an AMPylator and a 

eukaryotic cell extract is performed in the presence of α32P-ATP to screen for possible 

AMPylation events (Figure 1A). As AMPylation includes the transfer of the radioactive α-

phosphate of the ATP, potential AMPylation targets and their apparent molecular weight can be 

visualized by autoradiography. Once an AMPylation event is detected, an in vitro reaction is 

performed in which a 3-plexed labeled ATP mix is used as a substrate. The substrate mix 

contains unlabeled ATP (15N0
13C0-ATP), medium-labeled ATP (15N5

13C0-ATP) and heavy-

labeled ATP (15N5
13C10-ATP), which after AMP transfer will result in predictable mass shifts of 

the AMPylated peptides that are detectable by MS-analysis and serve as a reporter cluster 

specific for an AMPylation event. The AMPylated targets and modified residues are identified 

after an in-gel digest performed on excised gel bands corresponding to the known molecular 

weight of the target proteins by LC-MS analysis (Figure 1A). Building on recently introduced 

experimental strategies that used a mix of isotope-labeled crosslinker in post lysis reactions to 

ultimately increase specificity in crosslinked peptide identification (12, 13), we used a mixture of 

unlabeled and stable isotope-labeled forms of ATP to increase the specificity and reliability in 

detecting an AMPylation event on target proteins. In our strategy, next to the MS-based 

sequencing information, the AMP-peptide isotopes are used as a reporter cluster displaying an 

additional level of information for AMPylation detection. Thus, the detection of these isotopic 

peptide ion triplets of AMP-peptides may also serve as an indication of an AMPylation if MS-

sequencing identification scores are close to or below a given significance threshold. This 

improves target detectability and reliability even for low abundant target proteins. Subsequently, 

the fragment spectra of these triplets can be subjected to manual interpretation or the sample can 
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be re-analyzed using optimized MS-parameters or different fragmentation techniques in 

combination with directed LC-MS analysis to increase the number of unambiguous 

identifications (14). 

In order to evaluate our experimental strategy, we recapitulated the experiments done by 

Yarbrough et al. and incubated VopS with the purified small GTPase RhoA in the presence of 3-

plexed ATP. Following protein digestion by AspN and MS analysis, we identified the peptide 

DQFPVYVPTVFENYVA with increment masses matching to the three incorporated isotopically 

labeled substrates (+329, +334, +344) indicating an AMPylation event (Supporting Information 

Figure 1). Closer inspection of the fragment spectra then indicated an AMPylation of RhoA on 

T35 by VopS as previously described by Yarbrough et al. (5). This finding emphasizes the 

applicability of our experimental workflow in detecting AMPylation events. 

In contrast to pathogens like V. parahaemolyticus that secrete only one Fic protein, pathogens 

belonging to the genus Bartonella translocate a variety of FIC-domain containing effector 

proteins (Beps) into the host cell (15). Yet, Bartonella infections are typically benign despite high 

pathogen load both on the cellular and organismic level (16). This implies that Bartonella 

effectors likely target a variety of different host proteins for subtle alterations of host cell 

functioning. In order to gain first insights into the target specificity of Beps, we applied our 

strategy on the effector Bep2 of Bartonella rochalimae. 

To screen for a possible AMPylation activity of Bep2 we performed in vitro AMPylation assays 

with E. coli cells expressing Bep2 and crude cell lysates derived from J774 mouse macrophages 

in the presence of α32P-ATP. Following SDS-PAGE a protein band with an apparent molecular 

weight of 50 kDa was detected on the autoradiogram indicating that Bep2 indeed AMPylates a 

target protein in J774 mouse macrophages (Figure 1B). The molecular size estimation already 

indicates that the potential target is unlikely to fall in the class of small GTPases, which is the 

only known class of AMPylation targets and are represented by lower molecular weight (4). 

In order to identify this protein we performed in-gel digestion and LC-MS analysis of a parallel 

processed sample that underwent in-vitro AMPylation reaction using the 3-plexed ATP mix. 

Upon LC-MS analysis and database search including the phospho-adenosine modification in all 

isotopic versions as a variable modification, we obtained a positive hit identifying a potential 

AMPylation on the peptide SLYSSSPGGAYVTR matching to the intermediate filament protein 

vimentin (Supporting Information Figure 2). We found further evidence confirming the 



-Results: Research Article II- 

Page | 70 

 

AMPylation event on this peptide when examining its isotopic distribution. As three isotopically 

labeled ATPs (unlabeled ATP, 15N5-ATP, 15N5
13C10-ATP) were used for AMP transfer reaction 

we observed an peptide ion reporter cluster with three distinct peaks matching the expected mass 

shifts introduced by the different labels (Figure 1C). Closer examination of the three AMP-

peptide peaks showed that equal amounts of modified peptides were generated in the in vitro 

reaction emphasizing that no detectable background AMPylation by potential endogenous 

AMPylating proteins occurred.  

In order to show that the observed AMPylation event is based on the activity of the FIC-domain, 

we generated a catalytically inactive Bep2 mutant (Bep2°) by replacing the histidine within the 

conserved Fic motif with an alanine (H161A). As the histidine is considered to act as general 

base to increase nucleophilicity of the AMPylation acceptor amino acid of the target, the 

replacement with alanine inhibits AMPylation as previously demonstrated for VopS and IbpA (5, 

7). Then wild-type and mutant Bep2 were separately incubated with J774 mouse macrophage 

lysates to perform in vitro AMPylation reaction using 15N5
13C0-ATP for wild-type and 

15N5
13C10-ATP for mutant Bep2. Samples were pooled and proteins were separated by SDS-

gelelectrophoresis. Upon in-gel digestion and LC-MS analysis, we obtained 

SLYSSSPGGAYVTR to be AMPylated only with 15N5-ATP but not with 15N5
13C10-ATP. This 

indicates that in vitro reaction with wild-type Bep2, but not with the catalytically inactive Bep2-

mutant protein, leads to AMPylation of SLYSSSPGGAYVTR, confirming that the reaction is 

specifically catalyzed by the active FIC-domain of Bep2 (Figure 2 A and B).  

In order to confirm vimentin as a target protein of Bep2, we performed in vitro AMPylation 

assays with α32P-ATP and purified proteins. To increase Bep2 solubility, we deleted the C-

terminal BID domain of Bep2 that serves as a signal for translocation into the host cell via a type 

IV secretion system but apparently does not contribute to the AMPylation activity (17). Solubility 

was further increased by co-expression of BiaA(E34G), a mutant of the Bep2-interacting 

antitoxin BiaA of B. rochalimae that binds Bep2 without impairing AMPylation activity (Figure 

2C). Following purification by metal affinity and size exclusion chromatography, purified Bep21-

360 complexed with BiaA(E34G) was used in AMPylation assays with α32P-ATP and purified 

vimentin or BSA that was used as negative control. While there was no apparent AMPylation 

band in addition to the auto-AMPylation of Bep2 in the negative control, a clear AMPylation 

signal at the size of 50 kDa was detected in samples containing the Bep2-construct and vimentin 
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confirming that vimentin is indeed a target protein of Bep2-mediated AMPylation (Figure 2C). 

Furthermore, as vimentin is a component of the cytoskeleton and shows no homology to small 

GTPases, it represents a new class of target proteins of Fic protein-mediated AMPylation.  

In our study, we presented an experimental strategy for the identification of protein AMPylation 

events in complex biological samples.  We use stable isotope-labeled ATP in activity-based 

assays to introduce an AMP-reporter cluster to increase specificity of AMPylation target 

detection by mass spectrometry. The relative intensity of peptide isotopes additionally allows us 

to distinguish between background signal of intrinsic AMPylation and specific target AMPylation 

of the introduced Fic protein. Certainly, peptides generated from proteolytic digests have to be 

within MS compatible size range. Therefore it may be important to incorporate alternative 

digestion schemes in case in vitro AMPylation assays indicate a protein modification, but MS 

results did not reveal any significant hits. In addition we anticipate that our strategy will improve 

the detection of AMPylation events on low abundant proteins as the use of reporter clusters is 

largely independent of the known under-sampling effect in MS/MS based identification (18). 

Although we established the procedure to specifically identify AMPylation targets, it is generally 

applicable to any protein modification for which isotope-labeled analogs are available and the 

modified peptides result in MS detectable reporter ion clusters. 
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Figure 1: Workflow overview and target identification of Bartonella rochalimae effector protein Bep2. A) 

Overview on the experimental workflow. Depicted is the workflow for identification of potential AMPylation targets 

on the example of Bep2. AMPylation assays are performed with radioactively labeled α32P-ATP to estimate size of 

potential targets (left). In parallel, assays are performed with 3-plexed ATP (15N0 
13C0-ATP, 15N5-ATP and 15N5

13C10-

ATP), and the gel area at the running height of expected targets is excised and used for in-gel digestion and mass 

spectrometry analysis (right). AMPylated peptides are identified by the AMP-reporter cluster characterized by 

specific mass shifts between the AMPylated peptide isotopes introduced by the 3-plexed ATP substrate mix. B) 

Initial target screen by autoradiography. Representative autoradiogram of an in vitro AMPylation assay with active 

and inactive Bep2 is depicted.  In vitro AMPyation assays were performed on wild-type and the inactive mutant of 
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Bep2 and mouse macrophage lysates in the presence of α32P-ATP . After SDS-gel electrophoresis, AMPylated 

proteins were visualized via autoradiography. C) Target identification by AMPylation specific reporter ion clusters. 

Samples derived from in vitro AMPylation assays with Bep2 using 3-plexed ATP were analyzed by in-gel digest and 

LC-MS/MS. The mass spectrum shows the m/z of the 3-plexed AMPylated peptide SLYSSSPGGAYVTR matching 

to the protein vimentin. The reporter ion cluster specifically encoding for an AMPylation modification by the 

characteristic mass shift between peptide isotopes are highlighted by color shading.  
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Figure 2: Validation of vimentin as an AMPylation target of Bep2. A) Mass spectrum of AMP-reporter ions in 

the presence and absence of active Bep2. Samples derived from AMPylation assays with either Bep2 and 15N5
13C0-

ATP or the inactive mutant of Bep2 (Bep2°) and 15N5
13C10-ATP were pooled and analyzed by LC-MS/MS. Depicted 

is a mass spectrum zoomed on the m/z range of the reporter clusters. B) Extracted-ion chromatogram (XIC) of 

samples derived from in vitro AMPylation assays. Assays were performed on wild type Bep2 incubated with 15N5-

ATP  and Bep2° incubated with 15N5
13C10-ATP. Samples were pooled and analyzed by LC-MS/MS. The XIC of 

AMPylated SLYSSSPGGAYVTR is shown for 15N5-AMP reporter channel for Bep2 (top) and 15N5
13C10-AMP for 

Bep2° (bottom). C) Validation experiments on vimentin as an AMPylation target of Bep2. In vitro AMPylation 

assays were performed with purified Bep21-360 in complex with BiaA(E34G) and either buffer, vimentin or BSA in 

the presence of α32P-ATP. AMPylated proteins were visualized by autoradiography (top). The SDS-gel used for 

autoradiography was then stained with Coomassie to visualize all proteins (bottom). 
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3.2.3 Supporting Information  

Material and Methods 

DNA manipulations 

E. coli Expression Constructs - Bep2 of B. rochalimae was amplified with the primers  prAH072 

(CCGCTCGAGATGAAGAAAAGTGAAATGATGATA) and prAH073 (CCGCTCGA 

GTTAACAAACCATAGCTGTCGC) from genomic DNA of B. rochalimae and cloned via XhoI 

into pET15b to achieve pAH019. Using primers prAH110 

(CAATTATATTGCACCTTTTAGGGAAGGTAATGGACG) and prAH111 

(CCTAAAAGGTGCAATATAATTGATAGAGCCAAATATTTTTG) in site-directed 

mutagenesis (2), pAH051 encoding for the inactive site mutant of Bep2 was achieved. BiaA of 

B. rochalimae that is homologous to VbhA which is a small protein inhibiting the Fic protein 

VbhT of B. schoenbuchensis (3), was amplified using prAG0013 

(GCCCATGGTGAAAAAAACAACTGATCATTCTAC) and prAG0014 (GCGGATCCTTA 

TAGTGTTGCATTGTCCATAAGAG) from genomic DNA of B. rochalimae and cloned via 

NcoI and BamHI restriction into pRSFDUET-1 to achieve pAG0056. The FIC-domain of Bep2 

was amplified using prAG029 (GGGAATTCCATATGGATATTAACATC CCTTCTCC) and 

prAG035 (CGACCTCGAGTTAGTGATGGTGATGGTGATGTTCA CTCAAAGCAGCTAA 

TTTTTC) and introduced via NdeI and XhoI into pAG0056 to achieve pAG0061. In a next step, 

biaA was then mutated via site directed mutagenesis PCR to abolish its inhibitory activity using 

prAG047 (GCAATTGGAG GAATCACTCTTCATTCTAAAACG) and prAG048 

(GAGTGATTCCTCCAATTG CATGTGTACTAATAG) to achieve pKP090. 

RhoA was amplified using prAH179 (GAAACTGGTGATTGTTGGTGATGGAGCCTGTG 

GAAAGACATGC) and prAH180 (CCACAGGCTCCATCACCAACAATCACCA 

GTTTCTTCCGGATGGC) from pRK5myc-RhoA (4) and cloned via BamHI and XhoI into 

pGEX-6p-1 to achieve pAH049. 

Constructs for E. coli expression of GST-VopS30-387 and GST-VopSH348A30-387 were a kind gift 

of K. Orth (1). 
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Preparation of cell lysates 

J774 mouse macrophages were cultured in DMEM supplemented with 10% FCS up to a 

confluence of 90%. Cells were trypsinized, resuspended extensively in 10mL DMEM 

supplemented with 10% FCS, pellet at 3000 rpm and resuspended in 400uL Lysis buffer (10mM 

Tris, pH=8.0, 150mM NaCl, 10mM MgCl2, 5mM βME). Cells were lysed by 3x 10 pulses of 

sonication and centrifuged for 15min at 4°C and 4500rpm. Supernatants were stored in aliquots at 

-80°C. 

 

Expression and purification of recombinant proteins 

For recombinant expression of Bep2 or its inactive mutant (Bep2°) of B. rochalimae, Ca-

competent E. coli were transformed with pAH019 or pAH051 and cultured at RT in Terrific 

Broth media containing 200 mg/L Ampicillin. At an OD600=0.5 expression was induced with 

100 μM IPTG (Promega). After 18 h, cultures were harvested, aliquoted and stored at -20°C. 

Frozen bacteria were thawed and lysed in AMPylation buffer (10 mM Tris pH=8.0, 150 mM 

NaCl, 10 mM MgCl2, 2.5 mM βME)  supplemented with 2 mg DNaseI from bovine pancreas 

(Roche) and Complete EDTA-free Protease Inhibitor Cocktail (Roche) [40 l/ml of stock 

solution (1 tablet / 2 ml H2O]. For AMPylation assays with full lysates, bacteria were lysed with 

3x 15pulses of sonication, centrifuged for 5 min at 13000 rpm and supernatents utilized for 

AMPylation assays.  

In order to purify Bep21-360, Ca-competent E. coli were transformed with pKP090 and cultured at 

RT in 6 L Terrific Broth media containing 50 mg/L Kanamycin. At an OD600=0.5, expression 

was induced with 100 μM IPTG (Promega). After 18 h, cultures were harvested, and stored at -

20°C.  Frozen pellets of bacteria were thawed and lysed using French Press and cell debris was 

removed by high speed centrifugation (1 h, 100 g, 4°C). Bep21-360 was purified using metal 

affinity utilizing Ni-NTA columns and elution with 200 mM imidazole. Peak fractions were 

pooled and loaded onto a Superdex 200 10/300 column (GE Healthacre) for size exclusion 

chromatography. 10 μL of the peak fractions were separated via SDS-PAGE using 12% SDS-gel 

and stained with Coomassie staining solution. Fractions containing Bep21-360 were pooled and the 

concentration was measured via absorbance at 280 nm with Nanodrop-1000 (Nanodrop 

Technologies, Wilmington, USA). Protein was stored at 4°C. 
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For recombinant expression of GST-fusion proteins, Ca-competent E. coli were transformed with 

pVopS or pVopSH348A (1) or pAH049 and cultured at RT in Terrific Broth media containing 

200 mg/L Ampicillin. At an OD600=0.5 expression was induced with 50 μM IPTG (Promega). 

After 8 h, cultures were harvested and stored at -20°C. Frozen bacteria were thawed and lysed in 

PBS buffer supplemented with 5mM βME, 2 mg DNaseI from bovine pancrease (Roche) and 

Complete EDTA-free Protease Inhibitor Cocktail (Roche) [40 l/ml of stock solution (1 tablet / 2 

ml H2O]. For AMPylation assays with full lysates, bacteria were lysed with 3x 15 pulses of 

sonication, centrifuged for 5 min at 13000 rpm and supernatents were used in AMPylation 

assays. 

In order to purify GST-fusion proteins, cells were lysed using French Press and cell debris was 

removed by high speed centrifugation (1 h, 100 g, 4°C). GST-VopS, GST-VopSH348A or GST-

RhoA were purified using affinity chromatography utilizing GST-Trap columns (GE Healthcare) 

and elution with 10 mM Glutathion (Sigma) in AMPylation buffer (10 mM Tris pH=8.0, 150 mM 

NaCl, 10 mM MgCl2, 2.5 mM βME). Peak fractions were pooled and 10μL of the peak fractions 

were separated via SDS-PAGE using 12% SDS-gel and stained with Coomassie staining solution. 

The concentration of fractions containg VopS was measured via absorbance at 280 nm with 

Nanodrop-1000 (Nanodrop Technologies, Wilmington, USA). Protein was stored at 4°C. 

 

AMPylation assays 

In order to determine the size of potential target proteins, in vitro AMPylation assays with 

radioactive labeled α32P-ATP were performed using full cell lysates as described in previous 

studies (3). To this end, aliquots of eukaryotic cell lysates were thawed on ice and bacterial 

lysates were freshly prepared. Then, 25 uL of eukaryotic cell lysates mixed with 1.5 µL of 7.5 

mg/mL RNAseI (Roche), 25 µL freshly prepared E. coli lysates and 1 µL of α32P-ATP 

(Hartmann Analytics, SRP-207). Alternatively, 250 pmol of purified Bep21-360 were mixed with 

1.5 uL of 7.5 mg/mL RNAseI, 1 uL of α32P-ATP and either AMPylation buffer, 200 pmol 

vimentin or 250 pmol of BSA. Samples were then incubated for 1 h at 30°C, reactions were 

stopped by the addition of 25 uL SDS-loading buffer and incubated for 5 min at 95°C. Samples 

were loaded onto pre-cast gradient SDS-gels (Bio-Rad). Electrophoresis was performed 150 V 

for 52 min. Proteins were fixed for 1 h in Fixation buffer (50% water, 40% MeOH, 10% glacial 
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acid), gels were sealed in plastic bags and exposed on autoradio-screens overnight. Screens were 

developed using a Typhoon FLA 7000  system (GE Healthcare)  

 

Target identification by mass spectrometry 

After target size determination via radioactive AMPylation assays, AMPylation assays were 

repeated using heavy isotope labeled ATP (3-plexed), gel area from approximately 35 kDa to 

70 kDa proteins was excised and divided into 5 pieces. In-gel digestion was adopted from 

Shevchenko et al. (5). 

Prior to mass spectrometry analysis the peptides were purified using C18 Microspin columns 

(Harvard Apparatus) according to the manufactures instruction. 

LC-MS/MS analysis was performed on a dual pressure LTQ-Orbitrap mass spectrometer 

(Thermo Electron), which was connected to an electrospray ion source (Proxeon Biosystems). 

Peptide separation was carried out using an easy nano-LC systems (Proxeon Biosystems) 

equipped with an RP-HPLC column packed with C18 resin (Magic C18 AQ 3 μm; Michrom 

BioResources). A 0.2 μl/min linear gradient from 96% solvent A (0.15% formic acid, 2% 

acetonitrile) and 4% solvent B (98% acetonitrile, 0.15% formic acid) to 40% solvent B over 60 

min was applied. The data acquisition mode was set to obtain one high-resolution MS scan in the 

FT part of the mass spectrometer at a resolution of 60,000 FWHM followed by MS/MS scans in 

the linear ion trap of the 20 most intense ions. For peak detection and extraction of peptide 

intensities Progenesis (Nonlinear Dynamics) was used in default settings. 

Peptide identification was carried out using the Mascot and SEQUEST search tool and the mouse 

swissprot protein database containing forward and reversed-decoy protein sequences and 

containing target protein sequences. The search criteria were set as follows: full tryptic specificity 

was required (cleavage after lysine or arginine residues); 2 missed cleavages were allowed; 

carbamidomethylation (C) was set as fixed modification; oxidation (M) and AMPylation 

(Phospoadenosine, T, Y) as variable modifications. For AMP-modifications, masses of the 15N0 

13C0-, 
15N5- and 15N5

13C10-AMP labeled moieties were included in the search. 

The mass tolerance was set to 10 ppm for precursor ions and 0.6 Da for fragment ions.  
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Figure S1: Workflow validation by confirming RhoA as AMPylation target of VopS. A) Target identification by 

AMPylation specific reporter ion clusters. In vitro AMPylation assay was performed on purified RhoA and VopS in 

the presence of 3plexed ATP. The sample was then analyzed by in-gel digest and LC-MS/MS. The mass spectrum 

shows the m/z of the 3plexed AMPylated peptide DQFPVYVPTVFENYVA confirming RhoA as an AMPylation 

target of VopS as reported previously (1). More details are shown in the Material and Method section provided as 

Supporting Information. B) Ion series of the AMPylated peptide of RhoA. The ion series are shown and b/y-ions 

covering the AMPylated residue are indicated. C) VopS-mediated AMPylation of RhoA. In vitro AMPylation assays 

were performed with purified GST-VopS or the inactive mutant GST-VopS° and purified GST-RhoA in the presence 

of α32P-ATP.  AMPylated proteins were visualized by autoradiography (top). The SDS-gel used for autoradiography 

was then stained with Coomassie to visualize all proteins (bottom).   
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Figure S2: Ion series and MS/MS spectrum of AMPylated vimentin peptide SLYSSSPGGGAYVTR. A) Ion 

series of detected fragment ions derived from SLY(AMP)SSSPGGGAYVTR. Samples derived from in vitro 

AMPylation assays with Bep2 using 3plexed ATP were analyzed after in-gel digestion by LC-MS/MS. B) MS/MS 

spectrum of SLY(AMP)SSSPGGGAYVTR. From mapped ion series and fragment spectra tyrosine 3 in the peptide 

sequence  is the most likely residue carrying the AMPylation PTM.  
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Table S1: Peptides detected by in-gel digest and LC-MS analysis. List of all peptides detected by in-gel digest 

and LC-MS analysis over the linear gradient (0-60min) upon activity based assays using 3-plexed ATP in the 

presence of Bep2 and J774 mouse macrophage lysates. Peptide FDR was adjusted to 1% using the reverse decoy 

strategy. 

(Extract shown here) 

 

Protein ID  Protein description  modification 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 
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sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Oxidation (M) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3  Phosphoadenosine (Y) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3 
Phosphoadenosine_5_N15(Y) 

(Y) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3 
Phosphoadenosine_5_N15_10_

C13(Y) (Y) 

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    

sp|P20152|VIME_MOUSE  Vimentin OS=Mus musculus GN=Vim PE=1 SV=3    
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3.3 Bep2 AMPylates β-tubulin 

3.3.1 Introduction 

 

Upon bacterial infection, intracellular pathogens hijack the eukaryotic host cell networks in order 

to facilitate their uptake, survival and replication. To this end, bacteria secrete a set of effector 

proteins that manipulate host cell signaling by either allosteric or covalent modifications of 

distinct proteins (1). The best understood covalent modifications are phosphorylation, 

glycosylation, acetylation and ADP-ribosylation. Recently, another modification, called 

AMPylation, came back into the focus of research (2). AMPylation, also known as adenylylation, 

describes the transfer of an AMP-moiety onto the hydroxyl group of tyrosine or threonines and is 

well understood in the context of glutamine synthetase regulation by so called AMPylators (3, 4).  

In recent studies, proteins belonging to the family of Fic-proteins (filamentation induced by 

cAMP) were found to perform AMPylation (2). Although this protein family consists of 

thousands of proteins that are found in all kingdoms of life, their physiological role remains 

largely elusive with the exception of a few bacterial effectors that get secreted into host cells (5). 

The first Fic-proteins that were identified to perform AMPylation on target proteins are the type 

III secretion (T3S) effectors VopS of Vibrio parahaemolyticus and IbpA of Histophilus somni (2, 

6). While VopS is AMPylating a conserved threonine (T35) within the switch I region of Rho 

family GTPases, IbpA is targeting the same GTPases but modifies a neighboring tyrosine (Y32) 

instead of threonine T35. Both of the modifications impair the binding of downstream signaling 

partners of the small GTPases and are thereby interrupting GTPase signaling leading to a collapse 

of the cytoskeleton and a cell rounding phenotype (7). Apart from these secreted proteins, only 

the human homolog HYPE was identified to perform AMPylation. HYPE is the only Fic protein 

in eukaryotes and was found to target Rho GTPases in in vitro studies. Yet, its physiological role 

is not understood and further potential targets remain unknown (7). 

Zoonotic gram negative pathogens belonging to the genus Bartonella cause chronic infections of 

their natural host that often persist symptom-free (8). Upon infection, Bartonella translocates a 

set of effector proteins called Beps (Bartonella effector protein) into the eukaryotic host cell via a 

type IV secretion system (T4SS) (1, 8, 9).  
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Once translocated, Beps interfere in several intracellular processes leading to an inhibition of host 

cell apoptosis (10), cytoskeleton rearrangements (11), activation of Nfκb-response and promotion 

of β-integrin-dependent bacterial uptake (12). The majority of Beps consists of a canonic domain 

architecture with a C-terminal BID-domain (Bartonella intracellular delivery) that serves as a 

translocation signal and is required for the secretion of Beps into the host cell via a T4SS, and an 

N-terminal FIC-domain that is thought to be the putative effector domain (13, 14). In contrast to 

V. parahaemolyticus that is only secreting one FIC-domain containing effector, Bartonellae are 

secreting several Fic proteins into the host, yet, translocation of Beps is generally not cytotoxic 

(15). This indicates that Beps differ from previously described Fic proteins like VopS or IbpA 

either in their activity or in their target specificity.  

We recently introduced a mass spectrometry based method to identify AMPylation targets by 

utilization of stable isotope labeled ATP and identified the filamenting protein vimentin as one 

target protein of Bep2, an effector protein of B. rochalimae. Bep2 is therefore the first described 

Fic-protein that does not target small GTPases but a component of the cytoskeleton (see Research 

Article II). 

Here, we present the identification of β-tubulin as a second AMPylation target of the same 

protein, Bep2 of B. rochalimae. β-tubulin is found in heterodimers together with α-tubulin that 

can polymerize to form microtubules (MTs) that are key elements in intracellular organization 

and chromosomal segmentation. Upon polymerization, the αβ-tubulin heterodimer exchanges its 

bound GDP for GTP. The formation and stabilization of the dynamic MT-polymers is mainly 

mediated by TOG-domain containing proteins belonging to the Stu2/XMAP215 and CLASP 

families (16-18). 

We further show preliminary results indicating that AMPylation of β-tubulin influences the 

interaction between tubulin and TOG-domain containing proteins which catalyze tubulin 

polymerization to microtubules (MTs) and stabilize the formed structures (18-20). 
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3.3.2 Materials and Methods 

DNA manipulations 

E. coli expression constructs - Bep2 of B. rochalimae was amplified with primer prAH072 

(CCGCTCGAGATGAAGAAAAGTGAAATGATGATA) and prAH073 (CCGCTCGA 

GTTAACAAACCATAGCTGTCGC) from genomic DNA of B. rochalimae and cloned via XhoI 

into pET15b to achieve pAH019. Using prAH110 

(CAATTATATTGCACCTTTTAGGGAAGGTAATGGACG) and prAH111 

(CCTAAAAGGTGCAATATAATTGATAGAGCCAAATATTTTTG) in site directed 

mutagenesis, pAH051 was produced. BiaA was amplified from genomic DNA of B. rochalimae 

using prAG0013 (GCCCATGGTGAAAAAAACAACTGATCATTCTAC) and prAG0014 

(GCGGATCCTTA TAGTGTTGCATTGTCCATAAGAG) and was cloned via NcoI and BamHI 

restriction into pRSFDUET-1 resulting in pAG0056. The FIC-domain of Bep2 was amplified 

using prAG029 (GGGAATTCCATATGGATATTAACATCCCTTCTCC) and prAG035 

(CGACCTCGAGTTAGTGATGGTGATGGTGATGTTCACTCAAAGCAGCTAA TTTTTC) 

and introduced via NdeI and XhoI into pAG0056 giving pAG0061 which was then mutated using 

prAG047 (GCAATTGGAGGAATCACTCTTCATTCTAAAACG) and prAG048 

(GAGTGATTCCTCCAATTGCATGTGTACTAATAG) to obtain pKP090. 

Constructs for Eukaryotic Expression – mCherry was amplified with prKP199 

(AGTAGCAACAGGAGGATCACCCTTGTACAGCTCGTCCATGCCGCCGGTG) and 

prKP200 (CACCCTTGTACAGCTCGTCCATGCCGCCGGTGGGATCCGCCCTCGAGTAA 

GAATTCGTCGACAATC) and introduced into pMDK124CM via restriction with EcoRI and 

BamHI and in-fusion ligation to achieve pKP071. The sequence of Bep2 was codon optimized 

for eukaryotic expression (Invitrogen) and then amplified with prKP201 

(ACACCGACTCTAGAGGATCCGCCACCATGGGAAGCTCTCAC) and prKP214 

(GGAGGATCACCCTCGAGCTCGCTCAGGGCGGCCAGCTTTTCCTCGGG) and cloned into 

pKP071 to get pKP100. The Fic motif was then mutated using prKP212 

(CAACTACATCGCACCCTTCCGCGAGGGCAAC) and prKP213 (CGCGGAAGGGTG 

CGATGTAGTTGATGGAGCCG) to achieve pKP102. 
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Expression and purification of recombinant proteins 

Expression and purification of Bep2 from B. rochalimae. Bep2 was expressed and purified as 

previously described (Research article II). In brief, Bep2 was expressed in E. coli (DE3) BL21 

for 24 h at 25 °C upon induction with 100 µM IPTG (Promega). After lysis in AMPylation buffer 

(10 mM Tris pH=8.0, 150 mM NaCl, 10 mM MgCl2, 2.5 mM βME) supplemented with 2 mg 

DNaseI from bovine pancrease (Roche) and Complete EDTA-free Protease Inhibitor Cocktail 

(Roche) [40 l/ml of stock solution (1 tablet / 2 ml H2O], Bep2 was purified using metal affinity 

and size exclusion chromatography. Purified protein was stored at 4 °C. 

Expression and purification of TOG-domain of Stu2 from S. cerevisiae. The N-terminal domain 

of Stu2 was purified as described by Widlund et al (21). For recombinant expression of the TOG 

of Stu2 from S. cerevisiae, Ca-competent E.coli were transformed with pStu21-306 (addgene, 

Plasmid 38315: pGEX-6P-1 Stu2 1-306) and cultured at RT in Terrific Broth medium containing 

200 mg/L Ampicillin. At an OD600=0.5 expression was induced with 200 μM IPTG (Promega). 

After 18 h of expression at RT, cultures were harvested by centrifugation and stored at -20 °C. 

Frozen bacteria were thawed and lysed in 2xPBS buffer supplemented with 5mM βME, 2 mg 

DNaseI from bovine pancrease (Roche) and Complete EDTA-free Protease Inhibitor Cocktail 

(Roche) [40 l/ml of stock solution (1 tablet / 2 ml H2O]. Bacteria were lysed using French Press 

and cell debris were removed by high speed centrifugation (1 h, 100 xg, 4 °C). Stu21-306  was 

purified by affinity chromatography using GST-Trap columns. The protein was eluted with 

10 mM Glutathion (Sigma) in AMPylation buffer (10 mM Tris pH=8.0, 150 mM NaCl, 10 mM 

MgCl2, 2.5 mM βME). Peak fractions were pooled and 10 μL of the peak fractions were 

separated by SDS-PAGE on a 12% SDS-gel which was subsequently stained with Coomassie 

staining solution. Glutathion was removed from pooled peak fractions utilizing PD10 desalting 

columns (GE Healthcare) with AMPylation buffer. The concentration of desalted Stu2 was 

measured with Nanodrop-1000 (Nanodrop Technologies, Wilmington, USA) via absorbance at 

280 nm. Purified protein was stored at 4°C. 

 

TOG-tubulin interaction assays 

In order to analyze the impact of tubulin AMPylation on the interaction of tubulin with the TOG-

domain of Stu2, the FIC-domain of Bep2 and the TOG-domain of Stu2 were purified as 
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described above. 50 µL of Protein A/G UltraLink resin (Thermo Scientific, 53132) were washed 

2x with 1 mL water and 3x with 1 mL PBS. To couple the TOG-domain to beads, 0.4 mg purified 

TOG-domain was incubated with the washed resin and 50 µL of primary mouse polyclonal anti-

GST antibody (Abcam, ab9085) overnight at 4 °C on a rolling shaker. On the next day, resin was 

washed 3x with 300 µL PBS and used for tubulin pull-down. 

1 nmol of purified tubulin (Cytoskeleton, T240-A) were incubated for 5 h at 30 °C with 1 µL of 

100 mM N15C13-labeled ATP in the presence (sample) or absence (reference) of 1 nmol purified 

FIC-domain of Bep2 in a final volume of 50 µL in AMPylation buffer (10 mM Tris pH=8.0, 

150 mM NaCl, 10 mM MgCl2, 2.5 mM βME). 5 µL of the reaction mixtures were directly used 

for mass spectrometry, 40 µL of each mixture were incubated separately with 25 µL of TOG-

coupled resin for 1 h at RT. Supernatants were kept for analysis and the resin was washed 4x with 

300 µL PIPES buffer. Proteins were eluted with 2% DOC in PBS at 60 °C for 20 min. Reaction 

and elution samples were reduced with TCEP at 37 °C, saturated with Iodacetamid at RT in the 

dark and quenched with N-acetyl cysteine prior to tryptic digest. Peptides were then C18-purified 

and used for subsequent mass spectrometry. Peak intensities of AMPylated tubulin peptide were 

compared between samples of reactions and elution with respect to tubulin levels. 

 

AMPylation quantification 

Bep2-mediated AMPylation of tubulin was quantified by mass spectrometry. To this end, 

250 pmol of tubulin (cytoskeleton, T240-A) were incubated for 1h or 5h with 1uL of 100 mM 

N15C13-ATP (CIL) in the presence (sample) or absence (reference) of 250 pmol of purified 

Bep21-314. Protein samples were reduced with TCEP at 37 °C, saturated with Iodacetamid at RT 

in the dark and quenched with N-acetyl cysteine prior to tryptic digest. Peptides were C18-

purified and analyzed by mass spectrometry. Peak intensities were normalized between sample 

and reference and the percentage of AMPylated tubulin was deduced by label-free quantification 

using the Progenesis software (nonlinear Dynamics). 

 

Cell lines and cell culture 

HEK293T, J774 mouse macrophages, COS-7 and HeLa cells stably expressing GFP-α-tubulin 

(22) were cultured in DMEM (Sigma) supplemented with 10% FCS (Gibco).  
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In order to test protein expression and protein stability, 2x106 cells were seeded into a 10 cm cell 

culture dish (Falcon) and incubated over night at 37 °C, 5% CO2. The next day, cells were 

transfected using Fugene HD (Promega). Therefore, 5 µg DNA in 600 µL DMEM were gently 

mixed with 25 µL Fugene HD in 600 µL of DMEM, incubated for 15 min at RT and added 

dropwise to the cells in culture. After incubation for 8 h at 37 °C with 5% CO2, medium was 

exchanged and cells were incubated for 24-36 h at 37 °C with 5% CO2 until fluorescent marker 

was visible under microscope. Cells were washed 2x with 7 mL of PBS, scraped in 1 mL of ice 

cold PBS, pelleted and resuspended in 200 µL of lysis buffer (10 mM Tris pH=8.0, 150 mM 

NaCl, 10 mM MgCl2, 2.5 mM βME, 0.5% NP40, EDTA-free protease inhibior). Cells were lysed 

by sonication (3x 10 pulses) and cell debris were removed by centrifugation (21.000 x g, 4 C, 

30 min). 20 µL of the cleared lysates were separated in 12% SDS-PAGE and transferred onto a 

Hypond-C Extra nitrocellulose membrane (Amersham Biosciences). The membranes were 

examined for mCherry fusion proteins using primary mouse monoclonal anti-mCherry antibody 

(1:5000, Sigma). Proteins were visualized using the ECL System (GE Healthcare) with HRP-

conjugated ECLTM rabbit anti-mouse IgG (1:5000, GE Healthcare, NA934V). 

 

Co-localization and microtubule dynamics 

10 000 HeLa ATCC cells stably expressing GFP-α-tubulin or 2000 COS-7 cells were seeded into 

each well of 6 well slide (ibidi) and incubated over night at 37 °C with 5% CO2. On the next day, 

cells were transfected using Fugene HD (Promega). Therefore, 5 µg of DNA in 600 µL of 

DMEM were gently mixed with 25 µL of Fugene HD in 600 µL of DMEM, incubated for 15 min 

at RT and mixed with 10 mL of DMEM supplemented with 10% FCS. The medium in the wells 

was exchanged twice for transfection mix. After incubation for 8 h at 37 °C with 5% CO2, the 

transfection medium was exchanged for DMEM supplemented with 10% FCS and cells were 

incubated for 24-36 h at 37 °C with 5% CO2 until the fluorescence marker of the ectopically 

expressed construct was visible under microscope. 

Slides with HeLa cells stably expressing GFP-α-tubulin and transiently expressing Bep21-360 or 

Bep2H161A1-360 were analyzed with confocal microscopy. 

 



-Results: Bep2 AMPylates β-tubulin- 

Page | 92 

 

Immunofluorescent labeling 

Indirect immunoflurecent-labeling was performed as previously described (Dehio, 1997). In 

brief, cells were permeabilized with 0.1% TritonX for 10 min and microtubules were labeled 

using mouse monoclonal anti-β-tubulin antibody (1:100, Thermo Scientific) and Goat anti-mouse 

IgG (H+L) Alexa Fluor 488 (1:300, Molecular Probes). DNA was stained with DAPI (Roche, 

final concentration 1 µg/mL). 
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3.3.3 Results 

Bep2 harbors an AMPylation activity 

Bep2 is a 55 kDa effector protein of B. rochalimae that is secreted via a T4SS into the eukaryotic 

host cell upon infection. In silico analysis revealed that Bep2 harbors an N-terminal FIC-domain 

that was identified by its predicted secondary structure and its active site motif. Although it only 

shares a low sequence identity with other Fic-proteins like BepA of Bartonella henselae (47%) or 

the T3SS effector protein VopS of V. parahaemolyticus (12% sequence identity), homology 

modeling showed that the Fic-fold and the flap region for target docking are conserved (Swiss 

Model, Figure S2) (23-25). In addition to its FIC-domain, Bep2 harbors an OB 

(oligonucleotide/oligosaccharide)-fold with a yet unknown role in effector functionality and a C-

terminal BID-domain that serves as a secretion signal.  

In order to investigate if Bep2 shows AMPylation activity as described for other Fic proteins, we 

performed in vitro AMPylation assays. To this end, lysates of E. coli expressing Bep2 were 

incubated with radioactively labeled α32P-ATP in the presence and absence of eukaryotic cell 

lysates. AMPylation targets were visualized via autoradiography. In the absence of eukaryotic 

lysates, only one AMPylation spot at the height of 55 kDa was oberserved. This signal was not 

detected using the catalytically inactive histidine mutant (Bep2°) which does not allow substrate 

coordination and thereby abolishes AMPylation. This indicates that Bep2 indeed harbors an 

AMPylation activity and exhibits auto-AMPylation as described for other Fic proteins. In the 

presence of eukaryotic cell lysate, a second AMPylation target at approximately 50 kDa was 

detected. In contrast to all previously described Fic-proteins, Bep2 is not AMPylating small 

GTPases with an expected size of 20 kDa but a yet unknown target of significantly higher 

molecular weight (Figure1A). 

In order to identify the target protein of Bep2, in vitro AMPylation assays were performed in 

parallel using light and heavy isotope labeled ATP. Subsequent in gel digestion and LC-MS 

analysis were utilized as recently described (see Research Article 2). In short, 3-plexed 

AMPylated peptides were identified by their specific isotopic shift that could only be detected in 

samples of wild-type but not of mutated Bep2. We identified AMPylation on the peptide 

GHYTEGAELVDAVLDVVR which corresponds to the β-chain of tubulin (Figure 1B). Using 
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the inactive mutant Bep2H161A, the peptide was found not to be modified, indicating that 

AMPylation of tubulin is Bep2-mediated (Figure 2A).  

As a further line of evidence, we aimed at confirming the AMPylation of tubulin by Bep2 

utilizing an in-vitro AMPylation assay with purified protein. As full length Bep2 could not be 

purified actively, we expressed Bep2 in E. coli and used this bacterial lysate in AMPylation 

assays with α32P-ATP in the presence and absence of purified tubulin. As shown in Figure 2B, 

tubulin was AMPylated by Bep2 confirming tubulin as an AMPylation target of Bep2. 

To investigate if the target switch from small GTPases to tubulin is dependent on the FIC-domain 

alone or is mediated by the BID-domain, the C-terminus of Bep2 was deleted and Bep21-360 was 

purified from E. coli and tested for AMPylation of tubulin. Again, auto-AMPylation as well as 

target AMPylation of tubulin could be detected (Figure 2C). The FIC-core alone (Bep214-180) 

could not be stably expressed, indicating that the OB-fold is required for protein stability. 

Taken together, Bep2 is an AMPylating protein and its N-terminus consisting of the FIC-domain 

and an OB-fold is sufficient to catalyze the transfer of an AMP-moiety onto β-tubulin. Bep2 is 

therefore the first described Fic-protein that is not targeting small GTPases but tubulin as a 

component of the cytoskeleton. 

 

Bep2 is co-localizing with microtubules 

Based on our MS-results, our data suggest that upon translocation into the host Bep2 interacts 

with tubulin and covalently modifies it. In order to investigate the relative spatial distribution of 

Bep2 and tubulin, we transiently expressed Bep2 in HeLa cells stably expressing GFP-α-tubulin 

and investigated its subcellular localization by confocal microscopy. 

Therefore, constructs for eukaryotic expression of Bep21-360 C-terminally fused to mCherry were 

cloned for wild-type Bep21-360 as well as for the inactive mutant Bep2°1-360. Expression and 

stability of the fusion proteins were analyzed by Western blotting using an anti-mCherry 

antibody.  

As shown in Figure 3, the mCherry-signal is partially cytosolic but also found in distinct fibrous 

structures. Essentially, the mCherry signal from both wild type and inactive mutant of Bep21-360 

was similar to the signal of endogenous tubulin stained with anti-α-tubulin antibody indicating 
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that Bep2 is co-localizing with microtubules but was also found in strong fluorescent spots, 

indicating that Bep21-360-mCherry is aggregating.    

 

 

AMPylation of tubulin affects TOG-tubulin interaction 

The best understood example of a TOG protein is yeast Stu2 that contains two TOG domains, 

TOG1 and TOG2 (26). Both TOG-domains are binding αβ-tubulin (19). While TOG1 

preferentially binds to the curved GDP-bound form, TOG2 binds the straight GTP-bound form, 

which is predominantly found at the plus end of MTs. It is therefore hypothesized, that TOG2 

and the C-tail of Stu2 direct the protein to the plus end of MTs where unpolymerized αβ-tubulin 

heterodimer is captured by TOG1 and directed to MTs. Polymerization of the captured αβ-tubulin 

then induces straightening of the heterodimer decreasing the interaction between TOG1 and αβ-

tubulin which leads to the dissociation of TOG1 from the polymerized tubulin (19). 

Recently, the group of L. Rice was able to co-crystallize the complex of TOG1 and αβ-tubulin 

revealing that TOG1 is interacting via its Loop5 region with α-tubulin and via its Loop1 region 

with β-tubulin. The interaction between TOG and tubulin was found to be mediated by salt 

bridges between the hydroxyl group of β-tubulin Y106 and arginine R116 of the TOG-domain. 

Furthermore, mutations in TOG1 (W23A) as well as in β-tubulin (T107E, Y106A) or α-tubulin 

(E415A) abolished the interaction (19).  

To test whether AMPylation of tubulin influences the interaction between the purified TOG1-

domain and tubulin, we performed in vitro AMPylation assays followed by co-precipitation 

assays of tubulin with TOG1 of yeast Stu2 and analyzed the amount of the AMPylated tubulin by 

mass spectrometry. 

In the first step, the percentage of modified tubulin upon AMPylation by Bep2 was quantified 

utilizing mass spectrometry and label free quantification. To this end, we followed the MS1 trace 

of the unmodified peptide of β-tubulin in the presence and absence of Bep2 and deduced the 

percentage of AMPylated tubulin. We thereby observed the Bep2-mediated AMPylation is not 

quantitative but that only 20% of β-tubulin was AMPylated. In these in vitro AMPylation assays 

we also the AMPylation of a peptide belonging to the α-chain of tubulin 

(AYHEQLSVAEITNACFEPANQMVK). Label free quantification of the unmodified peptide 
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revealed an equally strong AMPylation as seen for the β-tubulin peptide. Yet, the intensity of the 

AMPylated peptide was 100 times lower than intensities of the unmodified peptide. Within the 

quaternary structure, this peptide is located on a flexible exposed loop at the opposite side of the 

αβ-tubulin heterodimer compared to the Y106/T107 AMPylation site on β-tubulin. 

Next, we investigated if the interaction between the TOG-domain and tubulin differs between 

modified and unmodified tubulin. Therefore, we used TOG1-coated Sepharose beads and 

captured tubulin before and after Bep2-mediated AMPylation. Subsequent mass spectrometry 

was utilized to estimate if AMPylated tubulin was enriched on TOG1-coated beads. To this end, 

we used peak intensities of the AMPylated-peptide normalized to the total tubulin levels and 

compared between samples of the AMPylation reaction (R-samples) to samples of the elution 

after the pull down (E-samples). In all assays, the normalized peak intensity of the AMPylated 

peptide was higher in elution samples indicating that AMPylated tubulin was enriched by pull 

down assays with TOG1. 

To further gain insight into the consequences of AMPylation, we used the previously described 

structure of the TOG1-tubulin complex (Ayaz et al. (19), PDB code 4FFB) and modeled an AMP 

moiety onto the Y106 lying in the interface between β-tubulin and TOG. In order to model the 

AMP-moiety onto the hydroxyl group Y106, we used the conformation found in the crystal 

structure of the published co-complex of IbpA with its AMPylated target protein Cdc42 (PDB 

code 4ITR). 

As shown in Figure 4, the AMPylated tyrosine on the α-chain of tubulin is not located at the 

interface between TOG and tubulin, but lies on a disorganized loop that is exposed at the opposite 

side of the αβ-tubulin heterodimer. Therefore, it most likely does not contribute to the TOG-

tubulin interaction. In contrast, the AMPylated site on β-tubulin is exactly at the interface of 

TOG1 and tubulin and located near the salt bridges that stabilize complex formation. Both 

AMPylation sites are not located at GTP-binding pockets of tubulin. 

In this model, the AMP-moiety lies within a groove between both proteins. Although the initial 

hydrogen bond between the hydroxyl group of Y106 of β-tubulin and the amine group of R116 of 

TOG1 is disturbed, a salt bridge could be formed between the same amine group of R116 of 

TOG1 and the phosphate group of the AMP moiety. Moreover, the ribose group could be 

stabilized via an interaction with T118 of TOG1 and the adenine moiety could be oriented via 

E410 of β-tubulin. Both of these interactions would further stabilize complex formation between 
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AMPylated tubulin and the TOG-domain. In this model, the AMP-moiety would therefore not 

abolish the interaction between TOG1 and tubulin as previously described for the AMPylation of 

small GTPases. 

Overall, we could show that Bep2 is not modifying tubulin quantitatively. However, AMPylation 

of tubulin is affecting the interaction between tubulin and TOG1 of Stu2 domains that are 

involved in polymerization control of MTs. 
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3.3.4 Discussion and Outlook 

 

In this study, we addressed target AMPylation by a secreted Fic protein, Bep2, of the pathogen 

B. rochalimae. While we previously identified vimentin as a target protein of Bep2 using a mass 

spectrometry based approach utilizing a stable isotope-labeled substrate (see Research Article II), 

we now also present tubulin as an additional target protein. Bep2-mediated AMPylation of 

tubulin was verified by in vitro AMPylation assays with purified proteins. MS analysis of in vitro 

AMPylated heterodimeric tubulin further revealed that a tyrosine residue of α-tubulin and either 

tyrosine Y106 or threonine T107 of β-tubulin are modified by Bep2. Structural analysis of Fic 

proteins revealed that their active grove accommodates the substrate ATP and positions it in 

favor of an AMPylation activity towards an incoming target residue (27). Yet, target recognition 

is mediated by a β-hairpin loop via main chain-main chain interaction and is thus sequence 

independent (27, 28). Therefore, target recognition is restricted by accessibility of the region and 

the positioning of the targeted residue and its proximity to ATP after complex formation with the 

Fic protein. This is believed to increase specificity for threonine or tyrosine modification. Hence, 

the modification of a tyrosine residue in α-tubulin might indicate specificity of Bep2 towards 

tyrosine-modification which implies that actually Y106 instead of T107 is modified. In ongoing 

studies, tubulin mutants of Y106 and T107 are utilized to confirm this initial hypothesis.  

We next aimed to quantify Bep2-mediated tubulin AMPylation by performance of in vitro 

AMPylation assays with purified proteins and label free quantification via MS analysis. Using 

equimolar ratios of proteins, we found approximately 20% of β-tubulin and similar amounts of α-

tubulin to be AMPylated, although α-tubulin was not identified in the initial target screen. The 

modified tyrosine of α-tubulin is located on an unstructured loop on the opposing site of the 

TOG-tubulin interface. It is exposed in the heterodimeric form but is not accessible in the 

polymer (PDB code 4I4T). Comparing quantities of β-tubulin AMPylation with α-tubulin 

AMPylations therefore allows insights into a Bep2-preference towards polymerized or 

heterodimeric tubulin form.  

In order to gain insights into Bep2-association with MTs, we investigated if Bep2 localizes at MT 

sites using transient expression in HeLa cells stably expressing GFP-α-tubulin. Indeed, we found 

a partial co-localization of Bep2 with tubulin. As wild-type but also a catalytically inactive 
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mutant of Bep2 (Bep2°) are both co-localizing with MTs, Bep2-localization is independent of 

AMPylation.  

Decoration of MTs with Bep2 might have an additional impact on MT dynamics apart from 

AMPylation activity and could e.g. disturb movements of motor proteins (29). 

 

Tyrosin Y106 of β-tubulin lies on a small loop of four amino acids in-between two α-helices. In 

previous studies by Ayaz et al., this region was identified to be essential for the interaction of 

tubulin with the TOG1-domain of Stu2 of Saccharomyces cerevisiae. Furthermore, mutation of 

both residues, Y106 and T107, abolished complex formation (19). We therefore hypothesize that 

AMPylation of β-tubulin might influence its interaction with TOG-domains. 

To address this hypothesis, we performed pull down assays of AMPylated tubulin with 

immobilized TOG1-domain of Stu2 of S. cerevisiae. As an increased interaction leads to a lower 

dissociation rate from the TOG-domain resulting in an enrichment of the tubulin form with 

stronger interaction, MS-based quantification of the AMPylated peptide before and after pull 

down experiments allows an estimation of an increase or decrease in TOG-tubulin interaction 

upon AMPylation. In fact, the AMPylated peptide was enriched compared to the unmodified 

peptide indicating an increased affinity towards the TOG-domain. Using the crystal structure 

solved by Ayaz et al. of the TOG-tubulin complex, we next modeled the AMP-moiety onto the 

tyrosine Y106 of β-tubulin. As the complex is stabilized by a hydrogen bond between Y106 of 

unmodified β-tubulin and arginine R116 of the TOG-domain, the introduced, negative charge by 

the phosphate group of the AMP-moiety is not interrupting the interaction. Instead, it might be 

potent to form a hydrogen bond itself to the arginine R116 of the TOG-domain and stabilize the 

complex while the adenosine moiety lies within a grove between both proteins. 

An increase in complex stability would inhibit dissociation of the TOG-domain from tubulin 

which is an essential step in TOG protein-mediated MT polymerization (19). AMPylation of β-

tubulin would thus decrease levels of active TOG protein resulting in an inhibition of MT 

polymerization and/or stability. We are currently investigating the role AMPylation in MT 

dynamics by treatment of Bep2-expressing COS7 cells with Nocodazol and subsequent wash out 

experiments. However, reliable analysis the AMPylation impact on MTs remains challenging due 

to aggregation of constructs. 
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The influence of PTMs on MT dynamics has long been in the focus of research and although 

most PTMs are believed to regulate MT stability or assembly, their molecular function often 

remains unclear. The best understood PTMs of tubulin are acetylation, phosphorylation and 

tyrosination. While tyrosination is only seen on last amino acid of the α-tubulin C-terminal tail of 

free, heterodimeric tubulin and is required for the binding of +TIPs (30, 31), phosphorylation is 

performed on heterodimeric and polymerized forms and reduces MT stability (32). Additionally, 

phosphorylation of serine S173 of β-tubulin that is positioned close to the GTP-binding site, is 

believed to inhibit the exchange of GDP for GTP and thus to inhibit polymerization (33). In 

contrast, acetylation is only seen on stable MTs (34). Additionally, acetylation influences 

dynamics of kinesin motor KIF5 (35) and is, like phosphorylation and tyrosination, a reversible 

modification (34, 36). Interestingly, uropathogenic E. coli (UPEC) was recently shown to activate 

the de-acetylase HDAC6 which decreases MT-stability and thereby increases pathogen entry 

(37). 

 

In summary, we presented with tubulin the cytoskeletal components as a new target class of Fic 

protein-mediated AMPylation. In contrast to all other studied AMPylators that inhibit the 

interaction of their targets to other proteins, Bep2-mediated AMPylation of tubulin seems to 

increase its affinity towards TOG-domain containing proteins and is therefore the first example of 

a gain of function by AMPylation. 
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Figure 1: Target identification of Bartonella rochalimae effector protein Bep2. A) Initial target screen by 

autoradiography. A representative autoradiogram of an in vitro AMPylation assay with active and inactive Bep2 is 

depicted.  In vitro AMPyation assays were performed on wild-type and the inactive mutant of Bep2 and mouse 

macrophage (J774) lysates in the presence of α32P-ATP. After SDS-gel electrophoresis, AMPylated proteins were 

visualized by autoradiography. B) Target identification by AMPylation-specific reporter ions. Samples derived from 

in vitro AMPylation assays with Bep2 using 3-plexed ATP were analyzed by in-gel digest and LC-MS/MS. The 

mass spectrum shows the m/z of the 3-plexed AMPylated peptide GHYTEGAELVDSVLDVVR originating from β-

tubulin. The reporter ions specifically encoding an AMPylation modification with characteristic mass shifts are 

highlighted by different colors.  
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Figure 2: Validation of β-tubulin as an AMPylation target of Bep2. A) Extracted-ion chromatogram (XIC) of 

samples derived from in vitro AMPylation assays. Assays were performed on wild type Bep2 incubated with 15N5-

ATP  and Bep2° incubated with 15N5
13C10-ATP. Samples were pooled and analyzed by LC-MS/MS. The XIC of 

AMPylated GHYTEGAELVDSVLDVVR is shown for 15N5-AMP reporter channel for Bep2 (top) and 15N5
13C10-

AMP for Bep2° (bottom). B) Validation experiments on tubulin αβ-heterodimer as an AMPylation target of Bep2. In 

vitro AMPylation assays were performed with an E. coli lysates Bep2, catalytically inactive mutant of Bep2 (Bep2°) 

and GST-VopS30-387 and purified, heterodimeric tubulin in the presence of α32P-ATP.  AMPylated proteins were 

visualized by autoradiography. C) Validation experiments on Bep2 target recognition. In vitro AMPylation assays on 

tubulin were performed with purified Bep21-360 and α32P-ATP in addition to either buffer or purified GST-VopS30-387.  

AMPylated proteins were visualized by autoradiography (top). The SDS-gel used for autoradiography was then 

stained with Coomassie to visualize all proteins (bottom).   
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Peptide Peptide Intensity after 

AMPylation assay 

Peptide Intensity in 

Elution-Sample 

Sum of all unmodified peptides 

 

1.46·109 8.76·109 

AMP- GHYTEGAELVDAVLDVVR 

(AMPylated peptide) 

2.31·107 2.76·109 

AMPylated peptide/  

Sum of all unmodified peptides 

5.02·10-2 0.31 

 

Tabel 1: Label-free quantification of AMPylated β-tubulin peptide enriched via TOG-domain. For the 

AMPylation assay in the presence and absence of purified Bep21-360, tubulin was enriched using TOG-domain coated 

Sepharose beads. Samples from the initial AMPylation assays and from the bead eluate via DOC were trypsin 

digested and analyzed by mass spectrometry. Shown are the peak intensities of AMPylated peptides and the sum of 

all unmodified tubulin-peptides representing protein levels of one experiment. 
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Figure 3: Colocalization of Bep21-360-mCherry with microtubules. Shown are selected example images of HeLa 

cells stably expressing GFP-α-tubulin and transiently expressing Bep21-360-mCherry (top) or Bep2°1-360-mCherry 

(bottom). MCherry-fusion proteins are depicted in red, endogenous microtubules were immunofluorescently labeled 

and are shown in green. Arrows indicate distinct structures that are found in both labels.  
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Figure 4: Structural model of AMPylated β-tubulin in complex with the TOG-domain of Stu2. The AMP-

moiety was modeled onto Y106 of β-tubulin using the crystal structure of the TOG/tubulin complex (PDB code 

4FFB). The conformation of the AMP-moiety was modeled based on the co-crystal of AMPylated Cdc42 and IbpA 

(PDB code 4ITR). Protein chains are shown in ribbon style. TOG-domain is colored in blue, β-tubulin in green and 

α-tubulin in orange. A) Overview of the complex with the AMP-moiety within the interface of TOG-domain and β-

tubulin. GTP-binding pocket and AMPylated residues are positioned on opposing protein sides. Position of the 

unstructured loop on α-tubulin that was found to be AMPylated on tyrosine Y282 by MS analysis is indicated. B) 

Zoom in on the AMPylated residue lying in the interface of TOG-domain and β-tubulin. Modified tyrosine as well as 

potentially coordinating residues are labeled and shown in full. C) Depicted is the same extract as in B) but with all 

side chains shown in full to exhibit the absence of sterical hindrance in complex formation. 
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Figure S1: Structure prediction of Bep21-360 of B. rochalimae. The secondary structure of the N-terminal part of 

Bep2 was predicted using SWISS MODEL. Crystal structure of BepA10-303 of B. henselae was used as temple. Bep2 

shows a conserved α-helical Fic-fold followed by an OB-fold as described for BepA (38). 
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Figure S2: Sequence alignment of Bep21-360 with BepA and VopS. The primary amino acid sequence of Bep2 was 

aligned against BepA of B. henselae and VopS of Vibrio parahaemolyticus using ClustalW. The alignment reveals 

low sequence identity comparing all three Fic proteins. 
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Figure S3: Validation of β-tubulin as an AMPylation target of Bep2. Depicted is the mass spectrum of AMP-

reporter ions in the presence and absence of active Bep2. Samples derived from AMPylation assays with either Bep2 

and an ATP/15N5-ATP mix or with the inactive mutant of Bep2 (Bep2°) and 15N5 
13C10-ATP were pooled and 

analyzed by LC-MS/MS. Depicted is a mass spectrum zoomed in on the m/z range of the reporter ions. 
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3.4 Role of antitoxin in pathogenicity 

3.4.1 Introduction 

Fic proteins belong to the Fic/Doc family that comprises thousands of members (39, 40). They 

are found in all kingdoms of life and share a conserved fold and motif from humans to bacteria 

(5). Fic proteins were recently shown to transfer an AMP-moiety onto target proteins thereby 

modify the activity of their targets (2, 7, 39). The best understood Fic proteins are the type III 

secretion effector VopS of Vibrio parahaemolyticus and the surface antigen IbpA of Histophilus 

somni.  Both proteins were shown to modify small GTPases of the host cell in the switch I region 

leading to the inhibition of GTPase signaling and ultimately to cytoskeleton collapse and cell 

death (2, 28). Yet, the majority of Fic proteins is not secreted but associated with endogenous 

signaling as the eukaryotic Fic protein, HYPE. Although the human homolog of HYPE was 

found to AMPylate the same GTPases as VopS and IbpA in vitro, overexpression in eukaryotes is 

not toxic indicating a high regulation of AMPylation activity (7).  

The Fic-fold is defined by a Fic-core that comprises four helices that are typically surrounded by 

another four helices. Target recognition is mediated by a β-hairpin flap that interacts with the 

target by formation of an antiparallel β-sheet between the main chains of the flap region and the 

targeted loop (27, 28). The conserved histidine within the signature motif 

(HxFx[D/E]GNGRxxR) acts as a general base and deprotonates the targeted residue thereby 

increasing nucleophilicity (28). In order to achieve AMPylation, the substrate needs to be 

coordinated allowing an in-line attack on the α-phosphate (27). 

First insights to the mechanism of Fic protein regulation were gained by structure-function 

analysis of several bacterial Fic proteins that inhibit growth when expressed in E. coli thus 

indicating a bacterial target instead of eukaryotic Rho GTPases as described for the secreted 

effectors VopS and IbpA (5). In fact, the AMPylation activity of these Fic proteins could be 

inhibited by the expression of an additional helix, called αinh. This helix is provided by a separate 

protein called antitoxin for class I Fic proteins, or N- or C-terminally of the Fic-protein itself in 

class II or class III, respectively (5). A conserved glutamate residue within the αinh competes with 

the γ-phosphate of ATP to interact with the second arginine within the signature motif and is thus 

disrupting substrate coordination (27). Thereby, the antitoxin allows activity regulation of Fic 
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proteins with endogenous targets to avoid constant intoxication as shown for VbhA/VbhT of 

Bartonella schoenbuchensis (5). Yet, several pathogens that secrete Fic proteins with host 

cellular targets also encode antitoxins but their role in pathogenicity remains elusive.  

Bartonella spp. are gram negative, intracellular facultative pathogens that can cause chronic 

infections by colonization of endothelial cells (8). Upon infection, Bartonella secretes a set of 

effector proteins (Beps) via a VirB/VirD4 type IV secretion system that manipulate host cell 

functions to the benefit of bacterial uptake and survival (9). To this end, the Beps of B. henselae, 

the causative agent of the cat scratch disease, were found to inhibit host cell apoptosis, activate 

the pro-inflammatory response and the bacterial uptake into the cell. BepG or the combined 

action of BepC and BepF were shown to orchestrate the invasion of huge bacterial aggregates 

into endothelial or epithelial cells, a process called invasome formation (11). 

Bh harbors three FIC-domain containing effector proteins (BepA, BepB nd BepC) and one 

antitoxin (biaA) that is encoded upstream of BepA (41). While the physiological role of the FIC-

domain of BepA and BepB are unclear, BepC is required for invasome formation. Here, we aim 

to gain first insights into the role of BiaA in the context of Bartonella infections. 
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3.4.2 Material & Methods 

DNA Manipulations 

E. coli Expression Constructs – BiaA of B. rochalimae (Br) was amplified using prAG0013 

(GCCCATGGTGAAAAAAACAACTGATCATTCTAC) and prAG0014 (GCGGATCCTTA 

TAGTGTTGCATTGTCCATAAGAG) from genomic DNA of Br and cloned via NcoI and 

BamHI restriction into pRSFDUET-1 to achieve pAG0056. The N-terminus of Bep2 of Br 

(Bep21-360) was amplified using prAG029 (GGGAATTCCATATGGATATTAAC 

ATCCCTTCTCC) and prAG035 (CGACCTCGAGTTAGTGATGGTGATGGTGATGTTC 

ACTCAAAGCAGCTAA TTTTTC) and introduced via NdeI and XhoI into pAG0056 to achieve 

pAG0061. 

BiaA of B. henselae was amplified using prAG007 () and prAG008 () from genomic DNA and 

cloned via NcoI and BamHI restriction into pRSFDUET-1 to achieve pAG0055. BepA10-303 was 

digested from pAG0001 (38) using NdeI and XhoI and cloned into pAG0055 to achieve 

pAG0052. 

Clean deletion mutants of Bh depleted of biaA (Bh ΔbiaA) or biaA and bepG (Bh ΔbiaA ΔbepG) 

were kindly provided by P. Engel. 

 

Protein Purification 

Expression and purification of Bep2 from B. rochalimae. Bep2 was co-expressed with BiaA of 

B. rochalimae and purified as previously described (Research article II); In brief, Bep2 was 

expressed in E. coli (DE3) BL21 for 24h at 25°C upon induction with 100uM IPTG (Promega). 

After lysis in AMPylation buffer (10 mM Tris pH=8.0, 150 mM NaCl, 10 mM MgCl2, 2.5 mM 

βME) supplemented with 2 mg DNaseI from bovine pancrease (Roche) and Complete EDTA-

free Protease Inhibitor Cocktail (Roche) [40 l/ml of stock solution (1 tablet / 2 ml H2O], Bep2 

was purified using metal affinity and size exclusion chromatography. Purified protein was stored 

at 4°C. 

BepA was co-expressed with BiaA of Bh and purified via affinity chromatography and size 

exclusion as described for Bep2 of Br. 
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Immunoblot Analysis 

Immunoblot analysis was performed as previously described (42). To detect the BepA 

expression, total bacterial lysates of Bh cultured in M199/10% FCS were separated by SDS-

PAGE and transferred onto nitrocellulose membranes (Hybond, Amersham Biosciences). The 

membranes were thereafter probed with anti-BepA (1:10 000, Laboratory d'Hormonologie, 

Belgium), primary antibodies and secondary anti-rabbit IgG-HRP antibodies (1:5000). 

  

Infection Assay and Indirect Immunofluorescent Labeling 

HeLa ccl2 cells were seeded into 96 well plate with 2000 cells/well and HUVECs cells were 

seeded in 6 well plate with 200.000 cells/well. Next day, cells were washed once with 100 µL 

M199 with Earls Salts (M199, Gibco) supplemented with 10% FCS and infected with indicated 

strains using a multiplicity of infection (MOI) of 100, 300 and 500 bacteria/cell in M199, 10 % 

FCS. HeLa ccl2 cells were fixated for 8min with 3.7% paraformaldehyde (PFA) after 24 or 48h 

post induction. Extracellular bacteria, DNA and F-actin were stained and cells were automatically 

imaged in three different wavelengths (Truttmann, 2010). Indirect immunofluorescent-labeling 

was performed as previously described (Dehio, 1997). In brief, cells were permeabilized with 

0.1% TritonX and microtubules were labeled using mouse monoclonal anti-β-tubulin antibody 

(Thermo Scientific, 1:100) and Goat anti-mouse IgG (H+L) Alexa Fluor 488 (Molecular Probes, 

1:300). DNA was stained with DAPI (Roche, final concentration 1ug mL). 

HUVECs were trypsinized 48 h post infections and used for qPCR to quantify crem relative 

expression as previously described (15). 
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3.4.3 Results 

BepA stably interacts with BiaA of B. henselae 

In previous studies by A. Harms (43), BiaA of B. rochalimae (Br) was shown to bind to a 

downstream encoded effector protein Bep1. As Br cannot be modified genetically and is not 

established in in vitro infections assays, we chose B. henselae (Bh) as a model organism to 

address the function of BiaA. In order to investigate if a complex between BiaA and the 

downstream encoded Fic protein, BepA, in Bh is formed, both proteins were co-expressed and 

BepA was purified from E. coli. BepA consists of an N-terminal FIC-domain followed by an OB-

fold (oligo nucleotide/saccharide binding) and a C-terminal BID domain (Bartonella intracellular 

delivery) that serves as translocation signal. Previously, the N-terminal FIC-domain together with 

the OB-fold was shown to be sufficient for target AMPylation though potential targets remain 

unidentified (38). To increase solubility of the protein, the C-terminal BID was deleted and a 

truncated construct of BepA (BepA10-303) was co-expressed with BiaA. Next, BepA was purified 

via a C-terminal His-tag using affinity chromatography and size exclusion. SDS-

gelelectrophoresis and Coomassie-staining revealed the enrichment of another protein with the 

approximate size of the antitoxin (Figure 1). 

In order to investigate the specificity of antitoxins of Bartonella spp. towards its interacting Fic 

protein, we tested if a given antitoxin is also forming a complex with a Fic protein that is not 

encoded within the same gene locus. To this end, we chose the antitoxin of Br that was shown to 

form a stable complex with Bep1 and tested its competence to interact with Bep2 of the same 

Bartonella species. Therefore, a truncated construct of Bep2 that is depleted in its BID-domain 

was co-expressed with BiaA and purified via affinity chromatography and size exclusion. Again, 

SDS-gelelectrophoresis and Coomassie staining revealed the specific enrichment of a small 

protein in the approximate size of the antitoxin. 

 

BiaA does not influence BepA expression of B. henselae 

While the antitoxin of B. schoenbuchensis (VbhA) was previously described to prevent toxicity 

of the expressed Fic protein when expressed in bacteria (5), we next tested if BiaA is also 

required for bacterial growth of Bh. To this end, biaA was deleted and the viability of a clean 
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deletion mutant was tested. As no growth defect was apparent, we investigated if protein levels of 

BepA as an example for an antitoxin binding Fic protein were altered in the deletion mutant.   

Hence, Bh was cultured in M199-medium containing FCS to induce the expression of 

pathogenicity associated factors like BepA. Western blot analysis indicated no major difference 

of BepA protein levels in the presence or absence of the antitoxin. 

In order to test if the antitoxin is required for expression of other Beps, we aimed to test Bep1 and 

Bep2 expression of Br. As Br is not genetically modifiable, we intended to complement a Bh 

effector free mutant (Bh ∆bepA-bepG) with Bep2 of Br. Yet, conjugation with a plasmid 

encoding bep2 did not result in Bh ∆bepA-bepG expressing Bep2 indicating a toxic effect of 

Bep2 in Bh. 

 

BiaA is not essential for Fic protein translocation 

As BiaA of B. henselae had no influence on BepA expression, we aimed to assess if it is required 

for effector functionality during infection. We therefore tested if BepA-dependent cAMP-

elevation is affected by the absence of BiaA. To this end, we infected HUVECs cells with wild-

type, Bh ∆bepA-bepG or Bh ∆biaA and indirectly assessed cAMP-elevation by quantification of 

crem expression levels (15). As relative crem levels after infection were independent of the 

presence of BiaA, it seems not essential for effector translocation (Figure 3). 

Apart from BepA, Bh translocates another two Fic proteins into the eukaryotic host cell, BepB 

and BepC. While the role of the FIC-domains of BepA and BepB remain unknown, BepC in 

combination with BepF was shown to induce the uptake of large bacterial aggregates, a process 

known as invasome formation. 

To investigate a potential role of BiaA in effector functionality and translocation, we performed 

infection assays with biaA deleted strain (Bh ∆biaA ΔbepG). This strain also carried a deletion of 

bepG, which pevents invasome formation by an alternative pathway. Hence, invasome formation 

of this mutant is fully dependent on BepC and BepF (11) and can thus be used as a direct read-out 

for BepC functionality. 

While infection with the effector free mutant (Bh ∆bepA-bepG) did not lead to invasome 

formation, infections with both strains, Bh ∆bepG and Bh ∆biaA ∆bepG, induced bacterial 

aggregation and actin rearrangements (Figure 4).   
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3.4.4 Discussion and Outlook 

 

In this study, we addressed the role of the antitoxin in the context of Bartonella infection. To this 

end, we investigated if the antitoxin, BiaA, is essential for Bep expression and translocation in in 

vitro infection assays. 

We started by validating BiaA binding to Bartonella henselae virulence factors by co-expression 

of BepA of B. henselae with the upstream encoded BiaA and subsequent purification. In fact, 

purification of BepA yielded in co-enrichment of a protein of the approximate size of the 

antitoxin indicating that BepA forms a stable complex with BiaA.  

As Bartonella spp. encode for less antitoxins than Fic proteins, we next investigated the 

specificity of BiaA. Thus, we chose the example of B. rochalimae and its biaA homolog that was 

previously shown to bind to Bep1 and tested its affinity towards the FIC-domain containing 

protein, Bep2. In fact, we could show for the first time that BiaA is not specific for one Fic 

protein but can bind to several Fic proteins. This indicates that the antitoxin is playing a more 

global role instead of being confined to the regulation of the activity of one effector. In ongoing 

studies, we will further test if this lack of specificity is a generic feature of all antitoxins or 

unique to the one of B. rochalimae. 

For type III secretion (T3S) effectors, chaperones were identified that keep the effectors partially 

unfolded to allow secretion but also are involved in regulation of effector levels and temporal 

control of secretion. An example for this regulation is SopE of S. typhimurium and its chaperon 

SicA that is also involved in the transcriptional regulation of SopE (44, 45).  

In order to investigate if the antitoxin is acting similarly as T3S chaperones, we next tested BiaAs 

influence on effector expression and translocation using deletion mutant of Bh. Compared to 

wild-type, expression of BepA, BepA-mediated elevation of cAMP-levels and invasome 

formation were not significantly inhibited in the biaA mutant. This indicats that the role of BiaA 

is confined the control of activity. Yet, it should be noted that in vitro infections with Bartonella 

were performed in nutrient rich media and therefore under unselective conditions which might 

mask subtle growth defects of the antitoxin mutant. 

Interestingly, expression of Bep2 of Br that was shown to AMPylated tubulin and vimentin was 

toxic when expressed in an effector free mutant of Bh. As tubulin and vimentin are not 

structurally related, Bep2 activity seems to have low target specificity. It is thus tempting to 
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speculate, that Bep2 also AMPylates tubulin-homologs within bacteria like FtsZ which leads to 

its toxic effect. We therefore hypothesize that the antitoxins role might be the inhibition of 

effector activity within the pathogen thus the reduction of toxicity due to unspecific target 

AMPylation which is further investigated in ongoing studies. 

 



-Results: Role of antitoxin in pathogenicity- 

Page | 118 

 

 

 

 

Figure 1.: BiaA of Bh binds BepA and BiaA of Br binds Bep2. Coomassie-stained SDS-PAGE gel of peak 

fractions after affinity chromatography using Ni-NTA and after gel filtration. A) Purification of BepA after co-

expression together with BiaA of Bh in E. coli. B) Purification of Bep2 of Br upon co-expression with the antitoxin 

in E. coli. For both, BepA of Bh and Bep2 of Br, co-purification of a small protein with the approximate size of the 

antitoxin was detected. 
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Figure 2.: Endogenous levels of BepA of B. henselae in the presence and absence of the antitoxin. Immunoblot 

analysis of total bacterial lysates of the indicated B. henselae strains was performed with an antibodies directed 

against BepA. Depletion of the antitoxin had no detectable influence on BepA expression. 

 
Figure 3.: BepA-mediated elevation of cAMP-levels is independent of BiaA. HUVECs were infected with 

indicated strains for 48 h and crem expression levels were quantified using qPCR (15). Crem expression levels were 

normalized to level of uninfected conditions. 
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Figure 4.: Invasome formation is independent of BiaA. HeLa ccl2 cells infected with the indicated B. henselae 

strains at MOI of 100 for 48h were fixed, stained with TRITC-labelled phalloidin, DAPI and an antibody directed 

against Bartonella followed by fluorescent microscopy. In contrast to Bh ΔbepA-bepG, both strains, Bh ΔbepG and 

Bh ΔbiaA ΔbepG, lead to invasome formation. 
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3.5 BepC induces actin polymerization and bacterial aggregation 

3.5.1 Introduction 

The Gram-negative bacterium Bartonella henselae (Bh) is a worldwide distributed zoonotic 

pathogen that causes intraerythrocytic bacteremia in its feline reservoir host (cats). Upon 

transmission into humans, Bh can cause cat-scratch disease in immune competent patients but 

also pathologies like bacillary angiomatosis and peliosis that are characterized by tumor-like 

lesions of the vasculature in immune-compromised patients. 

Once transmitted to a new host, Bh translocates seven effector proteins (BepA-G) into the 

eukaryotic host cell via a VirB/VirD4 type IV secretion system. Beps are then hijacking the host 

cell system thereby promoting a variety of distinct phenotypes like inhibition of host cell 

apoptosis (10), activation of the pro-inflammatory response (46), sprout formation of endothelial 

cells (47) and invasion of huge bacterial aggregates into endothelial or epithelial cells, a process 

called invasome formation (11). Furthermore, Bh was shown to engage integrin-mediated 

outside-in and inside-out signaling in a Bep-dependent manner which on the one hand induces 

engulfment of the pathogen by actin rearrangements but also mediates pathogen attachment to the 

cell and clusters at the site of entry. 

 In previous studies, BepG alone as well as the combination of BepC and BepF were shown to be 

sufficient for invasome formation by interference of the Rac1/Scr/WAVE/Arp2/3 and 

Cdc42/WASP/Arp2/3 pathways which induced F-actin polymerization (11). Although BepG 

suffices for bacterial engulfment, BepC was shown to drastically increase invasome formation. 

While BepF was identified to induce nucleotide exchange of Cdc42 (GEF activity) thereby 

directly regulating the activity of small GTPases, the molecular function of BepC remains 

unknown (48). In addition to a C-terminal BID-domain, BepC harbors an N-terminal FIC-

domain. Recently, secreted FIC-domain containing proteins of Vibrio parahaemolyticus, VopS, 

and Histophilus somni, IbpA, were shown to perform AMPylation on Rho family GTPases 

thereby impairing the binding of downstream effectors and thus inhibiting GTPase signaling. Yet, 

BepC did not show target AMPylation and only weak auto-AMPylation in in vitro studies (43). 

The molecular detail of BepC-mediated bacterial entry thus remained elusive.   
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Here, we present that BepC is sufficient to induce F-actin polymerization locally as a first step of 

invasome formation. 
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3.5.2 Materials and Methods 

Cell culture and bacterial strains 

HeLa ccl2 and HUVECs were cultured in DMEM (Gibco) supplemented with 10% fetal calf 

serum (FCS, invitrogen). 

Wild type Bartonella henselae (Bh) and the mutant of Bh that is depleted in its effector proteins 

(Bh ΔbepA-bepG) were grown on Colombia agar plates containing 5% defibrinated sheep blood 

(CBA-plates) for 2d at 35°C, 5% CO2. Bh ΔbepA-bepG complemented with BepC (Bh ΔbepA-

bepG/pbepC) or complemented with BepF (Bh ΔbepA-bepG/pbepF) was grown on Colombia 

agar plates containing 10ug/mL Gentamycin sulfate and 5% defibrinated sheep blood (Gm CBA-

plates) for 2d at 35°C, 5% CO2.  

In vitro infections assays 

HeLa ccl2 cells were seeded into 96 well plate with 2000 cells/well. Next day, cells were washed 

once with 100 µL M199 with Earls Salts (M199, Gibco) supplemented with 10% FCS and 

infected with Bh wt, Bh ΔbepA-bepG, Bh ΔbepA-bepG pbepC or double infected with Bh ΔbepA-

bepG/pbepC and Bh ΔbepA-bepG/pbepF using a multiplicity of infection (MOI) of 100, 200 and 

300 bacteria/cell in M199, 10 % FCS supplemented with 500 µM IPTG. Cells were fixated for 

8 min at RT with 3.7% paraformaldehyde (PFA) after 24 h or 48 h post induction.  

DNA and F-actin were immunofluorescently labeled and cells were automatically imaged in 

three different wavelengths (12). 

 

Immunofluorescent labeling 

Indirect immunoflurecent-labeling was performed as previously described (49). In brief, 

extracellular bacteria were labeled using serum 2037 (rabbit polyclonal anti-Bartonella total 

bacteria, 1:100) and Goat anti-rabbit IgG (H+L) Alexa Fluor 488 (Molecular Probes, 1:100) prior 

to permeabilization with 0.1% TritonX. F-actin was labeled with TRITC-phalloidine (Sigma, 

100 µg/mL Stock solution, final concentration 1:400) and DNA was stained with DAPI (Roche, 

final concentration 1 µg/mL). 
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3.5.3 Results 

BepC is increasing F-actin polymerization 

In previous studies, the combination of BepC and BepF was found to induce invasome formation 

whereas BepC alone was not sufficient. In order to gain insights into the molecular function of 

BepC, we performed infection assay with Bh that is depleted of its endogenous effector proteins 

(Bh ΔbepA-bepG) but expresses BepC ectopically (Bh ΔbepA-bepG/pbepC). As invasome 

formation requires massive cytoskeleton rearrangements, infected cells were analyzed for 

changes in F-actin polymerization. To this end, F-actin of Bh ΔbepA-bepG/pbepC infected cells 

was immunofluorescently labeled and compared to cells that were infected with Bh ΔbepA-bepG 

or Bh ΔbepA-bepG/pbepF. 

While bacteria of Bh ΔbepA-bepG and Bh ΔbepA-bepG/pbepF were spread on top of the cells, Bh 

ΔbepA-bepG/pbepC were partially forming round aggregates. As shown in Figure 1, infection 

with Bh ΔbepA-bepG and complementation with BepF resulted in the formation of small granola 

of F-actin but no loci of strong actin polymerization. However, HUVECs infected with Bh 

ΔbepA-G complemented with BepC contained strong F-actin signals that were found in the same 

area as bacterial aggregates. Double infections of Bh ΔbepA-G/pbepC and Bh ΔbepA-G/pbepF 

lead to invasome formation that is identified by circular structures of actin at bacteria-rich sites as 

previously described (11).  
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3.5.4 Conclusion and Outlook 

Here, we were able to show a BepC-mediated actin polymerization within the host cell at the site 

of bacterial entry. As a local cytoskeleton rearrangement and an actin accumulation is also 

observed during invasome formation, BepC-mediated actin polymerization is potentially a critical 

step in bacterial uptake. Additionally, cells infected with Bh ΔbepA-G pbepF formed actin 

granola, a characteristic phenotype of Cdcd42 activation. Consistently, BepF was shown in 

previous studies to function as a GEF of Cdc42. 

BepC is one of three FIC-domain containing Beps of the pathogen Bh. While the FIC-domain 

containing effector proteins IbpA and VopS were shown to AMPylate small GTPases of the Rho 

family, preliminary studies of BepC did not indicate a similar function (43). Yet, as actin 

nucleation and polymerization is controlled by GTPase-signaling, BepC-mediated actin 

polymerization might be a first indication of an influence of BepC on GTPase signaling.  

Although the target of BepC as well as its biochemical activity remains elusive at this point, the 

observed phenotype offers a direct read-out of BepC functionality and will be valuable in 

ongoing studies to identify its target protein, e.g. by siRNA screens. 

Apart from the cellular effect of F-actin formation, BepC also induced the formation of bacterial 

aggregates which are characteristic for invasome formation. The aggregate formation could either 

be induced by increased inter-bacterial adhesion implying a bacterial target of BepC or by an 

increase of attachment to the host cell. As integrin signaling, especially by integrinβ1, was shown 

to mediate both of the BepC-dependent phenotypes described here (cytoskeleton rearrangements 

and pathogen attachment), it is tempting to speculate that BepC targets proteins that directly or 

indirectly influence integrin signaling.  
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Figure 1.: BepC induces local actin polymerization in in vitro infection assays with HUVECS. Depicted are 

representative images of HUVECs that were infected with indicated B. henselae strains for 48 h with a MOI of 100. 

Cells were fixed, stained with TRITC-labelled phalloidin, DAPI and an antibody directed against Bartonella 

followed by fluorescent microscopy. Infection with B. henselae ΔbepA-bepG/pbepC resulted in local actin 

polymerization at the site bacterial aggregation on cell periphery. 
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4.1 Cell type dependence of BepA homologs 

 

Already a decade ago, Bartonella henselae was found to induce host cell proliferation by the 

inhibition of apoptosis (50). Subsequently, this phenomenon was linked to a reduction in caspase-

3 activation and an increase in transcription of caspase IAPs (inhibitors of activation) (51). 

Furthermore, the type IV secretion effector BepA was found to be a key factor in the inhibition of 

host cell apoptosis (15). In 2006, domain analysis revealed that the C-terminal BID-domain is 

sufficient to elevate cAMP-levels and subsequently inhibit caspase-3 activity (15). While the 

BID-domains were shown to be required for effector translocation, the BID-domain of BepA is 

hence the first identified BID-domain with a second distinct cellular function.  

In this study, we could show that BepA elevates AC-activity synergistically with Gαs and 

demonstrate a direct interaction between AC and BepA (see Reasearch Article I) (10). 

Furthermore, our data on biomolecular fluorescence cytometry indicate that BepA and Gαs are in 

close proximity during cellular elevation of cAMP-levels. Yet, in vitro assays with the plant 

diterpene Forskolin revealed that BepA-function is independent of Gαs, but requires an initial 

coordination of the cytosolic AC-domains. Forskolin and Gαs synergistically increase AC-

activity (52) by coordination of the cytosolic AC-domains into an active conformation with the 

active pocket at their interface (53). It is thus envisioned that BepA interacts with one or even 

both cytosolic AC-domains and captures them in an optimal coordination thereby increasing the 

efficiency of cAMP-production. Hence, studying the mechanism of BepA-mediated increase of 

AC-activity would also further the understanding of AC-dynamics which is highly interesting for 

the design of innovative therapeutics (54). 

In addition to the BID-domain of BepA of B. henselae (BIDA-Bh), also the BID-domain of the 

closely related BepA ortholog of B. quintana (BIDA-Bq) was identified to inhibit apoptosis of 

human endothelial cells. Yet, neither the BID-domain of BepA of B. tribocorum (BIDA-Bt) -nor 

the paralogs BepB-Bh and BepC-Bh showed a similar activity (15). The BID-domain of BepA-Bh 

shares a sequence identity of about 40%, 50% and 57% with the BID-domain of its paralogs 

BepB-Bh (BIDB-Bh), BepC-Bh (BIDC-Bh) and with the orthologous BIDA-Bt, respectively. 

However, the BepA ortholog in Bartonella quintana (BepA-Bq) shows a higher sequence identity 

with BepA-Bh of approximately 64%. While the residues that are conserved only in BepA-Bh 
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and BepA-Bq could be essential for functionality, they are scattered over the entire sequence of 

the BID-domain (see appendix, Figure A1). This indicates that either only few residues at distinct 

protein sites mediate functionality or that, rather than the single residue identity, the overall 

surface properties of the BID-domain is required for the BepA-AC interaction that leads to 

increased AC-activity. One of these properties could be hydrophobicity and, in fact, comparison 

of hydrophobicity distribution reveals a high similarity between BIDA-Bh and BIDA-Bq and 

even BIDA-Bt but a low similarity for BIDB-Bh and BIDC-Bh, which are thus excluded by this 

criterion. Such exclusion does not apply for BidA-Bt, which shows a similar hydrophobicity 

pattern to BepA-Bh and BepA-Bq (see appendix, Figure A2-A5).  

However, BepA-AC interaction is also dependent on the AC surface. While the sequence in 

orthologs of distinct AC isoform can be highly conserved within mammals (AC isoform 2 

proteins in rat and human share a sequence identity of 98% in their cytosolic domains), 

conservation between different isoforms is much lower (55, 56). Accordingly, BepA-mediated 

activation of ACs could be isoform-dependent and preliminary assays indicated that BepABh 

cannot increase the activity of AC isoform 5 (data not shown). AC isoforms are tissue-specific 

and, in fact, endothelial cells express only a subset of them. The differential expression of AC 

isoforms might explain a potential cell type specificity of BepA. In fact, endothelial cells only 

express a subset of AC isoforms which is also tissue dependent (57).  In consequence, it is not 

contradictory that BIDA-Bt does not  lead to cAMP-elevation in HUVECs but at the same time 

potentially increases intracellular cAMP-production in other cell types. 

The conservation of BepA within lineage 4 Bartonellae indicates that BepA orthologs still harbor 

an activity that contributes to pathogenicity. Potentially, this involves cAMP elevation in other 

cell types like macrophages or dendritic cells. 

 

4.2 cAMP in pathogenicity 

 

In creased intracellular cAMP production leads to caspase-3 inhibition and thus to prevention of 

apoptosis. Enhanced survival of vascular endothelial cells as the replicative niche of B. henselae 

sustains and promotes the persistence and replication of the intracellular pathogen. It may also 

explain the vasoproliferative effect observed with B. henseale infections. Howerver, cellular 
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responses to cAMP-signaling are cell-type dependent (15, 47). In fact, BepA-Bh-mediated cAMP 

elevation and influence on apoptosis is cell type dependent; While BepA inhibits apoptosis in 

HUVECs, it triggers apoptosis in Ea.hy926 cells (A. Pulliainen, data unpublished). Moreover, 

cAMP-signaling is not confined to apoptosis regulation but influences a plethora of cellular 

functions. It remains unclear if BepA-mediated cAMP elevation also benefits Bartonella 

pathogenicity at earlier stages of infection, e.g. by controlling inflammatory response. Bartonella 

spp. are mostly transmitted by either arthropods or by direct contacts with wounds (e.g. cat 

scratch in the case of B. henselae) and both ways of transmission induce a local inflammation of 

the host organism (58, 59). At this stage of infection, the pathogen is confronted with different 

immune cells and a potential control of apoptosis of professional phagocytes might ensure 

pathogen survival as described for Shigella and Salmonella (60, 61).  

In addition, Bartonella spp. is proposed to travel to the lymph node via migratory cells, e.g. 

dendritic cells (59, 62). While antigen recognition by dendritic cells is known to increase their 

lifetime, it also leads to production of inflammatory markers and cytokines to activate T-cells and 

to induce inflammation. Two of these cytokines are MIP-1α and MIP-1β (also referred to as 

CCL3 and CCL4) that play key roles in inflammation signaling (63). Interestingly, cAMP-

elevation inhibits the release of both markers from dendritic cells via an Epac1-dependent 

pathways (64). Therefore, the BepA-mediated increase in cAMP-levels could also directly 

interfere with inflammatory responses and simplify pathogen transport to the still elusive primary 

niche. 

As cAMP regulates a vast number of signaling events, controlling its cellular levels allows a 

multifaceted manipulation of the host by a single bacterial effector although to be beneficial for 

pathogen persistence, this manipulation requires a high level of regulation. Apart from instability 

of the protein, BepA-function could possibly be controlled by additional domains or by other 

effectors of Bartonella as recently shown for BepE that decreases cytotoxic side effects of BepC 

(62). Interestingly, most BepA orthologs harbor an additional N-terminal FIC-domain that 

AMPylates unidentified targets that may further contribute to cellular effects of BepA as 

discussed in the following sections.  
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4.3 Fic proteins subvert host cell function by introducing post translational 

modification 

 

A FIC-domain which was previously shown on the example of BepA-Bh to AMPylate 

unidentified host cell targets is present in most BepA-orthologs (38). As the BID-domain is 

sufficient to locate the whole protein at the plasma membrane and, in extension, interacts with the 

AC (10), the FIC-domain is possibly targeting a protein that is also located at the membrane and 

potentially plays a role in AC activation. Consistently with this hypothesis, the  size of FICBepA 

targets is approximately 45 kDA as estimated by radioactive AMPylation assays which is in the 

range of Gα-subunits. In ongoing studies, we aim to identify the target of the FIC-domain of 

BepABh and its role in infection.  

To this end, we established a strategy for target identification in complex samples like crude cell 

lysates that does not rely on stable interactions or chemically modified substrates which might 

impair enzyme activity (see Reasearch Article II) (65, 66). We used stable isotope-labeled ATP 

leading to distinct reporter ion-clusters in LC-MS analysis by which modified peptides can be 

identified. In addition to target identification, the established strategy also allows activity 

comparisons between mutants. In order to establish the procedure, we used the effector protein 

Bep2 of B. rochalimae (Bep2Br) as its in vitro AMPylation activity was stronger than BepA-Bh 

under the used conditions and indicated a target of approximately 50 kDa (38, 43). Using the here 

established mass spectrometry-based strategy, we identified tubulin and vimentin as targets of 

Bep2 AMPylation-activity. While these proteins are highly abundant in any cell type, the level of 

modified peptides might be lower for different targets of other Fic proteins (e.g. BepA-Bh.). This 

would impair identification of modified peptides due to undersampling effects. Hence, we are 

currently integrating additional fractionating steps and automated spectral analysis that is based 

on peak patterns to reduce sample complexity and make the consequentially challenging analysis 

easier. 

While the Fic-domain containing effector proteins IbpA, VopS and AnkX were reported to only 

target small GTPases, we identified tubulin and vimentin as AMPylation targets of Bep2. Both 

target proteins are structurally unrelated to small GTPases and are thus representing new classes 

of Fic targets. 
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AMPylation targets are not only found on the mammalian host side, but also in bacteria. VbhT, a 

FIC-domain containing effector protein of B. schoenbuchensis, was described to AMPylate a 

bacterial target protein of higher molecular weight (5). Recent advances allowed the 

identification of topo-IV-isomerase as targets of VbhT-mediated AMPylation that causes severe 

growth defects in bacteria (A. Harms, unpublished data). 

Interestingly, BepABh, Bep2Br and VbhT target proteins outside of the class of small GTPases and 

all three show structural differences to other Fic proteins (5, 38). VopS and IbpA share 

similarities in their arm-domain that mediates contact to a highly conserved α-helix of Rho 

GTPase. The high sequence identity of 94% between Rac1, Cdc42 and RhoA in this α-helix (see 

appendix Figure A…) most likely causes the promiscuous AMPylation of all Rho GTPases by 

IbpA and VopS (28). In contrast, AnkX does not harbor a similar arm-domain but an additional 

β-hairpin loop that is positioned in an insert domain on top of the active groove (67). 

Consistently, AnkX is not targeting Rho GTPases but specifically modifies Rab1 and Rab35 (68). 

Apart from the lack of an arm domain, the insert domain also blocks sterically the interaction of 

the β-hairpin loop with target proteins indicating a completely different molecular basis for target 

recognition (67). AnkX further harbors a CMP-binding domain that coordinates the substrate and 

several ankyrine repeats that interact with the FIC-domain and are proposed to function as a 

scaffolding domain (67).  

BepABh and VbhT structurally differ from the other described Fic proteins and neither harbor an 

arm-domain like IbpA nor an insert domain like AnkX (5, 38). Instead, all crystal structures of 

Beps revealed an N-terminal loop at the interface between FIC-domain and target (Figure 4.3.1, 

also see appendix Figure A6). Due to the position of this mainly unstructured loop, it could 

potentially be involved in target recognition or activity regulation. Accordingly, this loop might 

adopt a more structured conformation upon target recognition and thereby stabilize the complex. 

Alternatively, it could serve as a flexible shield that, when moved out, leaves the active site 

exposed and possibly move out leaving the active site exposed. A potential trigger for the 

required movement of the loop could be auto-AMPylation by the Fic protein. Interestingly, VbhT 

was found to self-modify a tyrosine within this N-terminal loop (Y6, unpublished data of 

P. Engel).  

Beps also differ from other Fic proteins, by the OB-fold and the C-terminal BID-domain that is 

required for effector translocation into the eukaryotic host cell via the type IV secretion system 
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(T4SS) (13). The BID-domains of some Beps have acquired additional functions and/or are 

directing the effector to cellular compartments upon translocation as shown for BID-Bh (10, 48). 

Yet, a role of the BID-domains in Fic protein regulation remains unknown. Interestingly, one 

effector of B. henselae, BepC, seems to require both domains for its functionality (69). In 

previous studies, BepC was described to act synergistically with BepF or BepG in the uptake of 

bacterial aggregates via invasome formation (11). While ectopically expressed BepC was active 

and allowed invasome formation in infection studies, truncated constructs that were depleted of 

the FIC- or the BID-domain were not sufficient to enable this type of bacterial uptake (69). To 

investigate if the BID-domain is required for FIC-activity, we aim to identify targets of BepC.  

 
Figure 4.3.1: Target recognition motifs of different Fic proteins. Crystal structures of AnkX of L. pneumophila, 

IbpA of H. somni, BepA of B. henselae and VbhT of B. schoenbuchensis are shown in ribbon style. Each FIC-

domain is colored in magenta with the FIC-core in red and the corresponding signature motif in yellow. The CMP-

binding domain of AnkX is colored in green, ankyrin repeats in purple and insert domain in cyan. The arm domain of 

IbpA is colored in limegreen, the N-terminal loops of BepA and VbhT are colored in orange. The β-hairpin loops 

that were associated with target recognition by main chain-main chain interactions are colored in dark blue for all 

four structures. 

 

4.4 Diversification of target recognition by Fic proteins 

 

Of note, in vitro infections with Vibrio parahaemolyticus are cytotoxic, an effect that could be 

linked to the AMPylation activity of VopS (2). In contrast, infections with Legionella 

pneumophila, that secrete the Fic protein AnkX, are less toxic to the cell presumably due to the 
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high level of effector regulation (70). Several activities of Legionella effector proteins were 

shown to be subjected to spatiotemporal regulation by other secreted effectors, e.g., the 

phosphocholinating enzyme AnkX that is counteracted by the de-phosphocholinating enzyme 

Lem3 (71).  

Although lineage 4 Bartonella secrete up to three Fic proteins, most in vitro infections of cell 

cultures with Bartonella are not toxic but rather inhibit host cell apoptosis. Yet, in silico analysis 

did not identify homologs of Lem3 that could reverse Bep-mediated covalent modifications. It is 

thus tempting to speculate that either a higher specificity of Bep-mediated AMPylation or a 

switch in target recognition reduces cytotoxic side effects to the benefit of the stealthy and 

persistent life style of intracellular Bartonella (8, 43). One example of an increase in target 

specificity is Bep1 of B. rochalimae that was found to AMPylate Rac1 but not Cdc42 or RhoA 

(41, 43). In contrast, Bep2 of B. rochalimae shows lower specificity and a switch of targets as it 

modifies both tubulin and vimentin that are not structurally related.  

While a decrease in target specificity allows one effector to manipulate multiple cellular 

processes, it might also lead to deleterious side effects if also bacterial proteins may be targeted 

prior to secretion. Yet, AMPylation can be inhibited by an additional helix that either either 

encoded within the Fic protein or within small proteins called antitoxins that bind Fic proteins 

and interfere with substrate coordination (5, 27). We reported here on the example of a homolog 

of B. rochalimae that antitoxins are not specific for one Fic protein but are potently binding and 

inhibiting several of them. Our studies on an antitoxin homolog from B. henselae further indicate 

that the antitoxin is not essential for effector expression and translocation. It is thus envisioned 

that the antitoxin prohibits bactericidal side effects of Fic proteins, but is supposedly released 

from the effector during the process of translocation and thereby allows injection of a competent 

effector into the host cell. 

 

4.5 AMPylation may regulate vimentin filaments 

 

In contrast to small GTPases, vimentin does not bind any nucleotide and is therefore refuting the 

common hypothesis that Fic protein-mediated AMPylation is confined to NTPases. Identification 

of vimentin as an AMPylation target of Bep2 thus opened a completely new class of targets. Yet, 



                                                                                                                 -Conclusions and Outlook-  

Page | 137  

 

it remains elusive if vimentin-AMPylation has the same implication as GTPase-AMPylation, i.e., 

interruption of protein-protein interactions. In fact, other PTMs and in particular serine-

phosphorylation were previously reported to interfere with vimentin polymerization, possibly by 

charge repulsions within the polymer leading to depolymerization of filaments (72, 73). 

Interestingly, the serine sites that are most prominent in polymerization control are located within 

the head domain in close proximity of the identified AMPylation residue (72, 74). AMPylation 

might thus potentially contribute to filament depolymerization. Apart from the contribution to 

cell shape as a component of the cytoskeleton, vimentin dynamics are associated with a variety of 

cellular responses ranging from inflammation control by NF-κB to autophagy or microbicidal 

activity of macrophages (75-77). In addition to vimentin, we also found Bep2 to modify tubulin 

which potentially indicates that Bep2 targets both proteins by interfering in cellular mechanism 

that involve both vimentin and tubulin. One process is the NF-κB induction by IbeA+ of E. coli 

K1 for which it was recently shown that the head domain of vimentin as well as  microtubules 

(MTs) are essential (75). Yet, the molecular details of this induction remain elusive.  

Vimentin is a global protein that regulates a variety of adaptor proteins but also protein 

degradation by ubiquitination (78). Best understood is its role in the recruitment of β-integrins to 

focal adhesion sites. It reaches focal adhesion sites via the microtubule (MT) network by 

hijacking plus end driven motor proteins like kinesis (79). Once extended to the focal adhesion 

sites, vimentin indirectly interacts with β-integrins, especially with β3-integrin, by complex 

formation with plectin and leads to an increase of cell attachment (79). Though no molecular 

studies have so far been conducted on the molecular mechanisms of B. rochalimae infection, 

integrin β-signaling was shown to play a role in the uptake of other Bartonella species such as B. 

henselae (12) or B. bacilliformis (80) that both lack orthologs of Bep2. Our ongoing studies thus 

aim to uncover the function of Bep2-mediated AMPylation during B.  rochalimae infections and 

how it may be related to shared strategies of host cell manipulation by pathogens of the genus 

Bartonella. 
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4.6 The impact of tubulin AMPylation   

 

In addition to vimentin, we also identified tubulin as an AMPylation target of Bep2 of 

B. rochalimae. TOG-domain containing proteins belong to the XMAP215/Dis1 and CLASP 

family and are involved in the control of MT dynamics by binding to and dissociating from 

tubulin in a highly controlled manner (26, 81). While dissociation is required for tubulin 

polymerization at the growing end of MTs to allow straightening of the αβ-tubulin subunit upon 

polymerization (19), a stabilized TOG-tubulin complex would increase CLASPs` potential to 

stabilize existing structures (20). In contrast to AMPylation on small GTPases that disrupts 

protein-protein interactions, we propose here that AMPylation on tubulin actually strengthens the 

interaction of MTs to TOG-domain containing proteins based on our pull down experiments and 

structural model of the complex (see Chapter 3.3). 

While the role of microtubules in Bartonella pathogenicity remains unclear, it is better 

understood in bacterial infections with uropathogenic E. coli (UPEC), Clostridium difficile and 

Chlamydia trachomatis. UPECs indirectly destabilize MTs by their deacetylation leading to a 

dysfunction of the motor protein kinesin and resulting in increased bacterial entry (37). Kinesin is 

implicated in the relaxation and disassembly of focal adhesion sites by delivering key signaling 

factors to the cell membrane. In fact, kinesin is interacting with the actin nucleator WAVE (82) 

that is also involved in Bartonella entry by invasomes (11). Interestingly, UPEC as well as 

B. henselae enter the cell by integrin signaling (12). It is thus tempting to speculate that certain 

Bartonella species, similarly to UPECs, engage MT dynamics to increase pathogen entry. 

In contrast, C. difficile toxin ADP-ribosylates actin which leads to actin rearrangements but also 

to microtubule protrusions that exert from the cell, bind the pathogen and increase bacterial entry 

(83). Further analysis revealed that formation of MT protrusions is independent of Rho GTPase 

signaling but is caused by a redistribution of capture proteins that direct the MTs to the cell 

cortex including EB1, CLIP-170 and ACF7 that functionally links MTs and actin (83). 

Apart from pathogen entry, MTs also play a key role in cellular trafficking, e.g., endosomal 

maturation and bacterial redistribution as shown for C. trachomatis and C. pneumonia. 

Extracellular Chlamydiae are contained in lementary bodies (EB) that enter host cells by parasite-

specific phagocytosis (84). Upon entry, EBs become localized with the host cell cytoplasm at 

membrane bound endosomes that mature to reticulate bodies (RBs) that are metabolically active. 
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After a growth period, RBs redistribute to the perinuclear region and mature to EBs that are 

released by bursting of the host cell. Clausen et al. could show that both Chlamydia species use 

the microtubule network and the minus end directed motor protein dynein (85) to reach the 

perinuclear region (86). 

Currently, we aim to further the understanding of MT dynamics in Bartonella pathogenicity by 

performance of induced MT catastrophe and rescue assays in dependence of the tubulin-

AMPylating Fic protein Bep2 of B. rochalimae. 

 

4.7 Fic protein activity is limited to AMPylation 

 

The recently described structural aspects of AnkX and IbpA allowed detailed insight into the 

mechanism of Fic-mediated post translational modifications (PTMs). While the orientation of the 

respective nucleotide is inverted between both structures, the mechanism of molecular transfer is 

conserved with an in-line attack on a phosphate. To this end, IbpA coordinates adenine by F3675, 

E3671 and Q3757 which results in an in-line attack on the α-phosphate that destabilizes the bond 

between α-phosphate and the bridging oxygen towards β-phosphate. AnkX coordinates cytidine 

by the CMP-coordinating domain via Y41 and R44. An in-line attack on the β-phosphate 

destabilizes the bond of β-phosphate to the bridging oxygen to α-phosphate and results in the 

transfer of phosphocholine. The switch from AMPylation to phosphocholination thus requires a 

change in substrate coordination and manifests in mutations of coordinating residues. 

Consistently, AnkX harbors mutations in the glycine and the second arginine that was shown to 

coordinate γ-phosphate in AMPylating Fic proteins. 

Interestingly, several Beps of lineage 4 Bartonellae harbor mutations within the signature motif. 

Hence, we hypothesize that these Beps might not be AMPylating anymore but perform another 

PTM on target proteins. In fact, we could already identify phosphorylation as an artificial activity 

of the AMPylating effector VbhT. Structural analysis of VbhT of B. schoenbuchensis further 

revealed an alternative coordination of ATP that favors phosphorylation instead of AMPylation 

(A. Goepfert, unpublished data). 

AMPylation is mostly associated with either prohibiting protein-protein interaction as shown for 

Rho GTPases upon AMPylation by VopS and IbpA or with the inhibition of nucleotide exchange 
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as shown for glutamine synthetase. In contrast, other PTMs like phosphorylation activate proteins 

or induce a switch of interaction partners and can therefore stimulate signaling cascades. Exerting 

different modifications depending on the substrate would allow a more differential influence on 

host cell signaling. 

In ongoing studies, we are therefore addressing the identification of PTMs performed by different 

Beps and of the residues that dictate substrate specificity. This would greatly help to understand 

the role of Fic proteins in pathogenesis and would also allow the design and development of new 

tools for cell biology and innovative therapeutics. 

 

4.8 Fic proteins are highly versatile modulators 

 

The only published targets of Fic-mediated AMPylation are small GTPases of the Ras 

superfamily (2, 6, 87). GTPases cycle between an active GTP-bound state and an inactive GDP-

bound form in their tightly controlled and complex regulatory networks (88, 89), where Fic 

proteins were described to interfere (6). IbpA and VopS are both targeting the inactive GDP-

bound as well as the active GTP-bound form of Rho GTPases on their switch I region and 

thereby block the interaction with downstream signaling partners and also with regulators like 

GAPs and GEFs (6, 90). In addition, Rho GTPases are extracted from the membrane by GDIs 

that bind the GTP-bound form and inhibit GTP hydrolysis or exchange for GDP (91). Indeed, 

IbpA was shown to AMPylate Rho GTPases that are complexed with GDIs and it locks Cdc42 by 

AMPylation in a conformation similar to the GDI-bound form (6). 

In contrast, preliminary assays with Bep1 of B. rochalimae indicate that this protein is not only 

specific for Rac1 but rather for its inactive GDP-bound form as Rac1Q61L, that is locked in its 

active state, was not modified (41, 43). Although further validation is required, the specificity 

towards one form of a target would allow an additional level of complexity in Fic protein-

mediated regulation which could further increase the specificity of the effector. 

Although Fic proteins were long thought of to only target small GTPases or at least NTPases, we 

were able to show here on the example of FIC-domain containing Beps, that Fic proteins are 

targeting a plethora of proteins like tubulin and vimentin. As vimentin is structurally unrelated to 

GTPases and is not even an NTPase, the impact of AMPylation is not restricted to nucleotide 
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exchange. Instead, tubulin and vimentin are cycling between a free, heterodimeric or monomeric 

form and a polymerized (92) form where AMPylation might influence the kinetics of these 

cycles.   

 

All in all, we could show that members of the genus Bartonellae, like many other pathogens, 

manipulate a plethora of host cell pathways to the benefit of pathogenicity and further the 

understanding of the underlying molecular mechanisms. 

We were able to identify new targets of Bartonella effector proteins ranging from adenylyl 

cyclases to components of the host cell cytoskeleton. The high diversity of effector targets 

indicates the global influence of the pathogen on host cellular functions and signaling events.  

On the mechanistic level, we could show that Bartonella effector proteins employ versatile 

strategies ranging from stable interactions with to post translational modifications of target host 

proteins. We presented BepA as the first bacterial effector protein that directly targets adenylyl 

cyclases. The subsequent inhibition of apoptosis is proposed to protect the replicative niche of the 

pathogen thus indicating that the effector proteins contribute to the pathogens persistence. 

Furthermore, we developed a strategy to identify targets of post translational modifications which 

is a breakthrough for an extensive study on the role of Fic proteins in health and disease. 

Applying this approach, we could identify vimentin and tubulin as AMPylation targets which 

opened completely novel classes of Fic protein targets. 

Unraveling the molecular details of BepA-activity and the comprehensive understanding of the 

FIC-domain will be useful in the development of cell biology tools or innovative therapeutics. 
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Figure A1: Sequence alignment. Alignment of BID-domain sequences of BepA from 

B. henselae with BepA of B. tribocorum (sequence identity of 57%), B. quintana (sequence 

identity of 64%), BepB of B. henselae (sequence identity of 50%) and BepC of B. henselae 

(sequence identity of 40%). 

 

 

 

 

 

 

 

 

 

Figure A2: Hydrophibicity profiles of paralogous BID domains. Kyte&Doolittle hydropathy 

plots were calculated based on the primary amino acid sequence utilizing ProtScale (Expasy) (1). 

BepA305-544 plot is colored in red, BepB303-542 plot in cyan and BepC292-532 plot in dark green. 
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Figure A3: Hydrophibicity profiles of homologous BID-domains. Kyte&Doolittle hydropathy 

plots were calculated based on the primary amino acid sequence utilizing ProtScale (Expasy) (1). 

A) Hydropathy of BepA305-544 of B. henselae is plotted in red, BepB303-542 of B. henselae is 

plotted in black and BepA40-252 of B. quintana is plotted in green. B) Hydropathy of BepA305-544  

of B. henselae is plotted in red, BepC292-532 of B. henselae is plotted in black and BepA40-252 of 

B. quintana is plotted in green. 
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Figure A4: Hydrophibicity profiles of the orthologous BID-domains. Kyte&Doolittle 

hydropathy plots were calculated based on the primary amino acid sequence utilizing ProtScale 

(Expasy) (1). Hydropathy of BepA305-54 of B. henselae is plotted in red, BepA40-252 of B. quintana 

is plotted in green and BepA305-533 of B. tribocorum is plotted in black.  

 

 

 

 

 

 

 



                                                                                                                                         -Appendix-  

Page | 161  

 

 

 

Figure A5: Structure of BepC1-219 from B. quintana. Crystal structure of the FIC-domain of 

BepC from B. quintana is depicted in ribbon style (left). The Fic core helices are colored in red 

with the signature motif in yellow and the surrounding helices in magenta. The β-hairpin loop is 

colored in dark blue and the N-terminal loop on top of the active site is shown in orange (data 

acquired and kindly provided by Isabelle Phan). View from top onto the active site is shown on 

the right. 
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Figure A6: Structure of AnkX from L. pneumophila. Crystal structure of the AnkX from 

L. pneumophila is depicted in ribbon style (left). The Fic core helices are colored in red with the 

signature motif shown in yellow and the surrounding helices are presented in magenta. The β-

hairpin loop is colored in dark blue, the insert domain is shown in cyan and the CMP-

coordinating domain is colored in limegreen. The ankyrin repeats are presented in purple. View 

from top onto the active site is shown on the right. PDB code: 4BER. 
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Figure A7: Structure of BepA from B. henselae. Crystal structure of the FIC-domain with the 

adjacent OB-fold of BepA from B. henselae is depicted in ribbon style (left). The Fic core helices 

are colored in red with the signature motif in yellow and the surrounding helices in magenta. The 

Bep-element with the β-hairpin loop is colored in dark blue, the N-terminal loop is colored in 

orange and the OB-fold in cyan. View from top onto the active site is shown on the right. PDB 

code: 2VZA. 
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Figure A8: Structure of IbpA from H. somni. Crystal structure of the FIC2IbpA3482-3797 

(H3717A) of H. somni is depicted in ribbon style (left). The Fic core helices are colored in red 

with the signature motif in yellow and the surrounding helices in magenta. The β-hairpin loop 

involved in target binding is colored in dark blue and arm domain that mediates target recognition 

is colored in green. View from top onto the active site is shown on the right. PDB code: 4ITR. 
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Figure A8: Structure of VbhT from B. schoenbuchensis. Crystal structure of the FIC-domain 

of VbhT from B. schoenbuchensis is depicted in ribbon style (left). The Fic core helices are 

colored in red with the signature motif colored in yellow and the surrounding helices in magenta. 

The β-hairpin loop is colored in dark blue and N-terminal unorganized loop in orange. View from 

top onto the active site is shown on the right. PDB code: 3SHG. 
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Figure A8: Structural model of Bep2 from B. rochalimae. The structure of the FIC-domain 

with the OB-fold of Bep2 (Bep215-305) from B. schoenbuchensis is presented in ribbon style (left). 

The Fic core helices are depicted in red with the signature motif in yellow and the surrounding 

helices in magenta. The β-hairpin loop is colored in dark blue, the N-terminal loop in orange and 

the OB-fold in cyan. View from top onto the active site is shown on the right. Model is based on 

the Structure of BepA (PDB code 2VZA) using SWISS Model (2, 3). 
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