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Verwendung, zum Beispiel für Werbung oder Privatsphärenschutz.
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Chapter 1
Introduction

In solids, the arrangement of the constituent atoms in the crystal structure fundamentally
determines almost all properties of a material. The possibility to resolve structures and
to create three-dimensional models of crystals became possible by the discovery of X-rays
by Wilhelm Conrad Röntgen in 1895. Shortly thereafter, major advances were achieved
in crystallography, especially based on the work of Max von Laue and William Lawrence
Bragg with the development of X-ray diffraction techniques in the early 20th century.

Knowing the crystal structure is absolutely mandatory for any further theoretical inves-
tigations of a material and is the foundation for ab initio modeling of a large number of
its properties. Predicting the crystal structure of an unknown material even before it is
synthesized is therefore the fundamental target in computational materials design. How-
ever, the complexity of this task is immense and its feasibility has been questioned until
a couple of decades ago [1]. Within the recent years, new structural search algorithms
have been proposed and, thanks to increasing computational resources at hand, have been
successfully applied to various materials.

The potential of computational crystal structure prediction and materials design is based
on its flexibility, speed and low financial cost. Where experimental design and synthesis of
a single novel material is a complex and time-consuming process with no guarantee of suc-
cess, a carefully designed computational prediction scheme can scan multiple compounds
at different compositions and conditions at the same time. For example experiments at
extreme conditions such as high pressure or temperature environments as they exist in
planetary cores quickly become economically unaffordable, or the conditions under study
simply cannot be created in the laboratory due to technical limitations. With computer
simulations however such conditions can be easily modeled in a virtual laboratory. The
economical benefits of employing such computational tools have not only been recognized
in materials design, but also in biology and pharmacy where the demand for efficient and
reliable structure prediction methods is rapidly increasing [2, 3].
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2 1. Introduction

A very common and simple way of predicting favorable crystal structures is extracting
structural information of similar known materials from databases. The energetically most
stable structure is identified and gives the putative ground state. However, this approach
has a limited success rate when the ground state is an unknown structure, which can
only be found by performing an extensive search. Similarly, data mining is capable of
predicting new crystalline structures based on a set of experimental data and/or ab initio
calculations [4, 5, 6, 7]. However, a completely unconstrained and flexible search method
would be preferable which can go beyond the predefined structures in a database.

Recently, more advanced methods for crystal structure prediction have been developed and
applied, which allow a systematic search for the ground state structure based solely on the
system’s composition and the external conditions. The most promising of these methods
and their applications on crystal structure prediction include random search, simulated
annealing, genetic algorithms and metadynamics. The minima hopping method (MHM)
was designed in 2004 as an alternative approach [8]. It allows an efficient exploration of
a high dimensional potential energy surface (PES) of complex systems, while progressing
toward the global minimum structure, and has been successfully applied to various isolated
systems such as Lennard-Jones and silicon clusters [8, 9, 10], fullerene materials [11, 12],
complex biological molecules [13] and large gold clusters [14]. The MHM has also been
used in other applications, such as providing realistic atomic force microscopy (AFM)
tips for AFM simulations [15, 16, 17]. In this thesis we present a generalization of the
MHM to periodic systems with pressure and volume constraints, and its application to
the following materials:

• Binary Lennard-Jones mixtures were investigated with cells up to 320 particles.
These benchmark system were initially designed to model glassy energy landscapes
and thus pose great challenges for any crystal structure prediction method. With
the MHM we were able to identify many structures which are much lower in energy
than any previous predictions, demonstrating its predictive power even for extremely
hard optimization problems.

• Motivated by above results, we then studied carbon systems under pressure directly
at the density functional theory level. Unexplained optical, electronic and struc-
tural changes in high pressure experiments of cold compressed graphite indicate the
existence of a novel carbon phase. Several theoretical structures of this phase have
been proposed in literature, such as M-carbon, W -carbon or bct-C4-carbon. With
MHM simulations we identified two novel carbon allotropes, M10-carbon and Z-
carbon. In a close collaboration with an experimental group in Lyon, France, we
found evidences in the Raman spectrum of compressed graphite that Z-carbon is
indeed the most promising structure among all previously proposed candidates.

• Hydrogen is a highly promising candidate in the ongoing search for high tempera-
ture superconductors. However, metalization of hydrogen requires extremely high
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pressures, inaccessible with todays technical capabilities. Chemical pre-compression
of hydrogen together with heavier elements in a compound was proposed as a possi-
ble pathway towards high Tc superconductivity. We investigated disilane, a readily
available and therefore promising candidate material, and identified a novel crys-
talline metallic phase which is stable against elemental decomposition above roughly
100 GPa. In contrast to earlier predictions, our investigations reveal that disilane
shows a moderate electron-phonon coupling and a Tc of about 20K at 100 GPa. This
result is in good agreement with other investigations in similar silane materials.

• Hydrogen has been touted as a promising alternative energy source due to its clean
reaction with oxygen without producing greenhouse gases. For mobile applications
in fuel cell vehicles a safe, reversible and energetically dense hydrogen storage ma-
terial is required. LiAlH4 is a promising candidate with more than 10wt% hydrogen
contents. However, its instability towards decomposition during long storage peri-
ods remains a problematic issue for practical applications. To address this problem
we performed a systematic structural search within the density functional theory
framework and identified a whole class of low-energy phases. Instead of the molec-
ular ionic configuration commonly encountered in such metal hydrides, these novel
phases contain polymeric AlH4-substructures. Their discovery and possible produc-
tion in low temperature synthesis might have a profound impact on the stability
and hydrogenation/rehydrogenation properties of LiAlH4.

This thesis is structured as follows. In chapter 2 we give an overview on how to character-
ize energy landscapes. The density functional theory is briefly described, as it is used in
subsequent sections and in chapter 4 to make accurate predictions of crystal structures.
A comparative study on different descriptions of the energy landscapes of silicon systems
are presented at the end of the chapter. In chapter 3, the efficiency of local geometry
relaxations schemes are described and compared in the framework of the MHM. Various
approaches and techniques in crystal structure prediction schemes are discussed in sec-
tion 3.2. We then present how the MHM is generalized for periodic systems in section 3.3.
Several schemes to improve the efficiency of the MHM are discussed in detail. Finally,
chapter 4 contains the applications of the MHM, based on ab initio calculations.

The major part of this thesis has been published in different peer reviewed journals.
Section 2.2 has been partially published in Physical Review B [18], whereas parts of
section 3.3 and 4.1 have been published in the Journal of Chemical Physics [19]. The
applications on cold compressed graphite (section 4.2), disilane (section 4.3) and the work
on LiAlH4 (section 4.4) have been separately published in Physical Review Letters [20,
21, 22] and in the European Physical Journal B [23].





Chapter 2
Energy Landscapes

One of the most fundamental properties in computational modeling of a compound is its
(free) energy as a function of internal degrees of freedom, the potential energy surface
(PES), also referred to as Born-Oppenheimer surface. In an isolated system these coor-
dinates are the atomic positions, whereas in crystals the lattice parameters contribute as
well. A majority of physical properties can be derived from the knowledge of how the
energy depends on these degrees of freedom. Stationary points on the PES are of utmost
importance, especially for studying structures and thermodynamics of a compound. Such
points correspond to a set of atomic and cell coordinates at which the gradient of the
energy vanishes. The second order partial derivatives of the energy, which are combined
in the Hessian matrix, can be used for further characterization. Local minima correspond
to stable structures at which all eigenvalues of the Hessian are positive, and the energetic
ordering of the minima indicates the thermodynamic stability of the different phases.
Second order derivatives of stable structures also determine the phonons, bulk moduli
and compressibility of a phase. Electronic properties such as band-structures and optical
properties can be computed using ab initio methods. On the other hand, the barrier
heights of transition states connecting two minima give rise to the kinetics of the system,
such as diffusion coefficients or defect formation. Such transition states are essentially
first order saddle points on the energy landscape, where the gradients vanish and the
Hessian matrix contains exactly one negative eigenvalue. Methods to find such transition
states are for example nudged elastic band [24, 25], the string method [26, 27], the splined
saddle method [28] or the enhanced splined saddle method [29], which have been widely
discussed in literature.

The PES can be subdivided into regions each uniquely related to a local minimum. Such a
region, called basin of attraction or catchment basin, is defined as the set of configurations
on the PES which end up at the identical final structure when used as a starting point
for a small step-size steepest descent relaxations. A set of neighboring basins is defined
as a super-basins. A super-basin is called a funnel if the lowest local minimum within
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6 2. Energy Landscapes

the super-basin can be reached from any other basin without crossing barriers that are
very high. The barrier heights should not be larger than the average difference in energy
between the local minima within the funnel. Systems containing multiple funnels are an
especially big challenge for global geometry optimization algorithms.

Energy landscapes can be characterized by analyzing the energetic distribution of local
minima and the transition states connecting them. In systems described by PES’ with
staircase-like forms, where only one funnel exists and very few local minima have competi-
tively similar energies separated by low barriers, the ground state can be easily found with
any crystal structure prediction scheme. Thus, such systems are referred to as structure
seekers. Ionic crystals such as simple salts fall within this category. On the other hand,
PES’ with a sawtooth topography, where a large amount of structures have very similar en-
ergies populating several funnels with no well defined global minimum, lead to amorphous,
glassy structures and are therefore referred to as glass formers. It is a challenging task to
perform global optimization on such systems [30, 31]. Disconnectivity graphs [30] are a
helpful tool to characterize energy landscapes. In the tree-like graphs, where the vertical
axis represents the energy, every branch corresponds to a local minimum in the system.
A collection of minima within the same super-basin is combined to a single branch, where
the connecting node corresponds to a threshold barrier height. These nodes can be further
combined to higher energy nodes, which then represent funnels. The overall shape of the
disconnectivity graphs is characteristic for a specific system, where “palm-tree” shaped
graphs correspond to structure seekers, and “banyan-tree” graphs represent glass formers.
An example for two model energy landscapes is shown in Figure 2.1

In principle, the exact PES can be obtained by solving the many-body Schrödinger equa-
tion to obtain the ground state wave-function within the Born-Oppenheimer approxima-
tion. However, this is not feasible for any realistic material and approximative methods
have to be employed. Up to several hundred atoms can be treated within the density func-
tional theory. Semi-empirical methods, such as Tight-Binding, are required for simulations
on even larger scales, which use further approximations and empirical parametrization at
the cost of accuracy. Force fields completely neglect quantum mechanical treatment of the
electrons. The energy landscape is represented in an analytical form which is parametrized
based on experimental data or highly accurate quantum mechanical calculations. Most
force fields contain two- and three-body interactions, which include bond-stretching, bond-
bending and torsional terms. Although systems with millions of atoms can be treated with
force fields, a good parametrization is mandatory for meaningful results, and they are very
often not transferable to configurations far beyond the fitting database.

2.1 Density Functional Theory

A system with N electrons can in principle be fully described by solving the stationary
many-body Schrödinger equation. Due to the complexity of the problem, even for systems
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(a)

(b)

Figure 2.1: Disconnectivity graphs can visualize the characteristics of an energy landscape. Two different
model systems are shown in this plot. Panel (a) describes a structure seeker and resembles a palm-tree.
The global minimum is well defined, and the barriers heights decrease simultaneously with the energies
of the local minima. Panel (b) represents a glassy energy landscape with a “banyan-tree” disconnectivity
graph. Several minima compete with the ground state, and the funnels are separated by large energy
barriers compared to the energy differences of the local minima.



8 2. Energy Landscapes

with a small number of electrons approximate methods have to be employed. Instead
of treating the 3N -dimensional many-body wave-function, the density functional theory
(DFT) operates in the electronic charge density with 3 spatial dimensions and the electrons
are treated as independent particles in a mean-field theory. Due to its good description
of structural properties of a large variety of materials at moderate computational cost it
has become one of the most widely used methods in condensed matter physics [32, 33].

2.1.1 The many-body Schrödinger equation

The time-independent non-relativistic Schrödinger equation is given by

ĤtotΨi(x1, . . . ,xN ,R1, . . . ,RM) = Etot,iΨi(x1, . . . ,xN ,R1, . . . ,RM) (2.1)

ri and Ri denote the spacial coordinates of the N electron and M nuclei in the system,
respectively, while xi contains both spacial and the spin coordinates si of the electrons,
xi ≡ ri, si. Ψi represents the wave-function of the i-th quantum state1. Since the 0-th
quantum state (the ground state) and the corresponding energy are generally of most
interest we will hereon omit the index i unless required. Ĥtot is the full Hamiltonian (in
atomic units: ~ = me = e = 4πǫ0 = 1)

Ĥtot = −1

2

N∑

i=1

∇2
i−

1

2

M∑

A=1

1

MA
∇2

A−
N∑

i=1

M∑

A=1

ZA

|ri −RA|
+

N∑

i=1

N∑

j<i

1

|ri − rj|
+

M∑

A=1

M∑

B<A

ZAZB

|RA −RB|
(2.2)

i and j run over the N electrons, whereas A and B run over the M nuclei. The first term
represents the kinetic energy of the electrons, and the second term the kinetic energy of the
nuclei. The third term describes the attractive electron-nucleus interaction, whereas the
terms four and five describe the electron-electron and nucleus-nucleus Coulomb repulsion.
Within the Born-Oppenheimer approximation the nuclei are treated as classical particles,
such that the kinetic nuclei energies are neglected. Because of the large difference in their
masses, the nuclei move much slower compared to the electrons. Therefore, the electrons
can be described to move in the fixed potential coming from the nuclei. The last term is
independent of the electronic coordinates and can be treated separately by only taking
into account the nuclear repulsion energy

Enn =

M∑

A=1

M∑

B<A

ZAZB

|RA −RB|
(2.3)

The electronic Hamiltonian is thus given by

Ĥ = −1

2

N∑

i=1

∇2
i −

N∑

i=1

M∑

A=1

ZA

|ri −RA|
+

N∑

i=1

N∑

j<i

1

|ri − rj|
= T̂ + V̂en + V̂ee (2.4)

1for convenience we assume that all wave-functions are normalized such that 〈Ψi | Ψi〉 = 1
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with the corresponding Schrödinger equation

ĤΨ = EΨ (2.5)

and the total energy is then
Etot = E + Enn (2.6)

The high dimensionality of a quantum state Ψ = Ψ(x1,x2, . . . ,xN) makes it an imprac-
ticable object to deal with. Within the density functional theory, one uses the charge
density as the basic quantity which is expressed in 3 spatial coordinates. This quantity is
physically measurable and describes how the electronic charge is distributed in space. It is
obtained by integrating over all spacial and spin coordinates in Ψ except for a one-electron
spacial coordinate r1:

ρ(r1) = N

∫
. . .

∫
|Ψ(x1,x1, . . . ,xN)|2 ds1, dx2, dx3, . . . , dxN (2.7)

with the normalization constraints

ρ(r → ∞) = 0 and

∫ ∞

−∞

ρ(r)dr = N (2.8)

where N is the total number of electrons in the system. Its interpretation is that an
electron can be expected to be found in a volume element dr at r with the probability of
ρ(r)dr.

The density functional theory is based on the fact that the many-body Schrödinger equa-
tion can in principle be solved exactly from a density functional. Hohnberg and Kohn
showed in 1964 that there is a direct mapping of the ground state charge density ρ(r) and
the external potential Ven (to within a constant) [34]. In particular, since the potential
itself determines the hamiltonian Ĥ , all properties of the system are uniquely defined by
the ground state charge density ρ(r). The proof is straight forward. Assume that two
external potentials V 1

en and V 2
en, which differ by more than a constant, give the identical

charge density ρ(r). They will lead to two different Hamiltonians Ĥ1 and Ĥ2, and thus
give rise to two different normalized ground state wave-functions Ψ1

0 and Ψ2
0, which how-

ever have the same charge density. The variational principle states that the expectation
value of the energy E[Ψ] = 〈Ψ | Ĥ | Ψ〉 of an arbitrary state Ψ is greater or equal to the
ground state energy E[Ψ0] given by the true ground state wave-function Ψ0. Since Ψ2

0

is not the ground state of Ĥ1, the energy expectation value will be higher if the ground
state is not degenerate:

E1 = 〈Ψ1
0 | Ĥ1 | Ψ1

0〉 < 〈Ψ2
0 | Ĥ1 | Ψ2

0〉 (2.9)

Using Ĥ1 = Ĥ2 + (Ĥ1 − Ĥ2) we obtain

E1 < 〈Ψ2
0 | Ĥ1 | Ψ2

0〉 = 〈Ψ2
0 | Ĥ2 | Ψ2

0〉+ 〈Ψ2
0 | Ĥ1 − Ĥ2 | Ψ2

0〉

= E2 + 〈Ψ2
0 | V 1

en(r)− V 2
en(r) | Ψ2

0〉 = E2 +

∫
ρ(r)

[
V 1
en(r)− V 2

en(r)
]
dr (2.10)
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On the other hand, using Ψ1
0 as a trial wave function on Ĥ2 yields

E2 < 〈Ψ1
0 | Ĥ2 | Ψ1

0〉 = 〈Ψ1
0 | Ĥ1 | Ψ1

0〉+ 〈Ψ1
0 | Ĥ2 − Ĥ1 | Ψ1

0〉

= E1 + 〈Ψ1
0 | V 2

en(r)− V 1
en(r) | Ψ1

0〉 = E1 +

∫
ρ(r)

[
V 2
en(r)− V 1

en(r)
]
dr (2.11)

Combining the above two relations gives the contradictory inequality E1+E2 < E2+E1.

Consequently, the total energy can be expressed as a functional of the density as

E(ρ) = T [ρ] + Eee[ρ] + Een[ρ] = FHK [ρ] +

∫
ρ(r)Vendr (2.12)

where FHK [ρ] is independent of the external potential and is thus a universal functional,
which means that, if the form of FHK [ρ] were known, it could be used for any many-
electron system.

The second Hohnberg-Kohn theorem states that for any many-electron systems a func-
tional E[ρ] exists and that only the true ground state density minimizes this functional.
For the proof we assume that Ĥ is the Hamiltonian generated by the true ground state
density ρ and its corresponding external potential Ven which gives rise to the ground state

Ψ. We already know that any trial density ρ̃ fixes the Hamiltonian
˜̂
H with its corre-

sponding ground state wave-function Ψ̃. So, together with the variational principle for
the wave-function, we can write

〈Ψ̃ | Ĥ | Ψ̃〉 = FHK [ρ̃] +

∫
ρ̃(r)Vendr = E[ρ̃] ≥ E[ρ] = 〈Ψ | Ĥ | Ψ〉 (2.13)

2.1.2 Kohn-Sham formalism

In 1965, Kohn and Sham proposed that the interacting many-electrons problem could
be transformed into a mean-field problem by a system of N non-interacting electrons
moving in an effective field VS(r), giving the same ground state density as the interacting
system [35]. For this reformulation the total energy needs to be written in terms of known
quantities. The electron-electron interaction Eee[ρ] can be split up into the classical part
EH [ρ], which is called the Hartree energy, and the unknown non-classical part Enoncl[ρ],
which contains the self-interaction correction, exchange and Coulomb correlation terms:

Eee(ρ) =
1

2

∫ ∫
ρ(r1)ρ(r2)

|r1 − r2|
dr1dr2 + Enoncl[ρ] = EH [ρ] + Enoncl[ρ] (2.14)

The non-interacting system of electrons can be expressed as a wave-function in the form
of a Slater determinant, which is an antisymmetrized product of orthonormal Kohn-Sham
spin orbitals ψi(r, s), which give rise to the single-particle kinetic energy TS[ρ]:

TS[ρ] = −1

2

∑

i,s

〈ψi | ∇2 | ψi〉, ρ(r) =
∑

i,s

ψi(r, s)
∗ψi(r, s) (2.15)
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For simplicity we will hereon restrict ourselves to closed shell systems. The Kohn-Sham
orbitals satisfy the so-called Kohn-Sham equations

(
−1

2
∇2 + VS(r)

)
ψi = ǫiψi (2.16)

where the electrons move in the effective field VS(r), called the Kohn-Sham potential. The
total energy can be written in terms of EH [ρ], TS[ρ], Ven[ρ], and an additional term EXC

which contains the correction of TS[ρ] to T [ρ] together with the non-classical exchange
and correlation contribution of the electron-electron interaction to give the exact energy
E[ρ]:

E[ρ] = TS[ρ] + EH [ρ] + Een[ρ] + EXC [ρ] (2.17)

It can be shown that the effective potential VS is found by variations of the total energy
with respect to the electron density

VS(r) = Ven(r) + VH(r) + VXC(r) (2.18)

where

VH(r) =
δEH

δρ(r)
=

∫
ρ(r′)

|r− r′|dr
′ (2.19)

is the Hartree potential and

VXC(r) =
δEXC

δρ(r)
(2.20)

is the exchange-correlation potential.

In practice, the Kohn-Sham equations are solved self-consistently to obtain the ground
state density. Starting from an initial wave-function (usually constructed from atomic
orbitals) one obtains a charge density which is then used to find the effective potential
VS[ρ]. Then, the Kohn-Sham equations are solved to update the Kohn-Sham orbitals,
which themselves give rise to a new charge density. This procedure is repeated until
self-consistency is achieved.

2.1.3 Functionals

With the above formulation the ground state of a system can in principle be found exactly
if one only knew the functional form of the exchange correlation functional EXC . In
practice, EXC is replaced by simple approximations. It can be split up into the exchange
and correlation part, EX and EC .

In the simplest approximation, the local density approximation (LDA) [35], EXC only
depends on the local charge density,

ELDA
XC [ρ] =

∫
ρ(r)ǫuniXC(ρ(r))dr (2.21)
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where ǫuniXC(ρ(r)) is the known exchange-correlation energy per particle of a uniform elec-
tron gas with the charge density as the one at point r.

More accurate generalized gradient approximations (GGA) on the other hand also take
into account the local gradients of the charge density [36, 37, 38, 39]:

EGGA
XC [ρ] =

∫
ρ(r)ǫXC(ρ(r),∇ρ(r))dr (2.22)

By definition LDA is exact for a homogeneous electron gas and gives overall reasonable
results for systems with slow variations in the charge density. This is often the case
in solids. However, LDA tends to underestimate interatomic bondlengths, especially on
surfaces and isolated molecules where the assumption of a homogeneous electron gas is
not valid. For such systems GGA give better results. The functional form of GGA are
usually chosen such that they coincide with LDA in the limit of a homogeneous electron
gas. Other functionals include meta-GGA, which additionally depends on the density of
the kinetic energy, and hybrid functionals, which contain a portion of the exact exchange
from Hartree-Fock calculations [40]. Hybrid functionals are commonly used in chemistry
for molecules and give a considerable improvement on many properties which LDA or
GGA fails to predict correctly.

2.1.4 Forces and stresses

Besides the total energy of a configuration, forces on the nuclei and stresses are important
properties essential for most applications. Feynman showed in 1939 that atomic forces
can be derived only from the electronic charge density. For any parametrization of the
Hamiltonian with respect to a variable λ, where Ĥ(λ)Ψ(λ) = E(λ)Ψ(λ), its conjugate
force can be written as

∂E

∂λ
=

∂

∂λ

〈
Ψ
∣∣∣ Ĥ
∣∣∣Ψ
〉

=

〈
Ψ

∣∣∣∣∣
∂Ĥ

∂λ

∣∣∣∣∣Ψ
〉

+

〈
∂Ψ

∂λ

∣∣∣∣ Ĥ
∣∣∣∣Ψ
〉
+

〈
Ψ

∣∣∣∣ Ĥ
∣∣∣∣
∂Ψ

∂λ

〉

=

〈
Ψ

∣∣∣∣∣
∂Ĥ

∂λ

∣∣∣∣∣Ψ
〉

+ E

〈
∂Ψ

∂λ

∣∣∣∣Ψ
〉
+ E

〈
Ψ

∣∣∣∣
∂Ψ

∂λ

〉

=

〈
Ψ

∣∣∣∣∣
∂Ĥ

∂λ

∣∣∣∣∣Ψ
〉

+ E
∂

∂λ
〈Ψ | Ψ〉

(2.23)

The last term vanishes since we obtain for the normalized ground state wave-function
〈Ψ | Ψ〉 = 1, leading to the so-called Hellman-Feynman theorem:

∂E

∂λ
=

〈
Ψ

∣∣∣∣∣
∂Ĥ

∂λ

∣∣∣∣∣Ψ
〉

(2.24)
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Applying the Hellman-Feynman theorem for the many-body Hamiltonian with respect to
the atomic coodinates we see that only the electron-nucleus and nucleus-nucleus interac-
tion contribute to the atomic forces. If we set λ = Rα

A, which is the cartesian component
α of the position of nucleus A, and by inserting equations (2.3) and (2.4) in (2.24), we
obtain an expression for the corresponding force component Fα

A:

Fα
A = − ∂E

∂Rα
A

= −
∫
ρ(r)

∂Ven
∂Rα

A

dr− ∂Enn

∂Rα
A

(2.25)

The force therefore only depends on the charge density, independent of the (approximate)
method from which it was obtained, particularly within DFT.

Besides the microscopic forces acting on atoms in a solid, macroscopic stress and strain
describe the state of a condensed matter. The strain is defined as a deformation of a
material and is closely related to the quantum mechanical virial theory. At an infinitesimal
deformation, any point r in space is displaced to r′, which can be described by the second-
order strain tensor ǫ:

r′ = (I+ ǫ)r (2.26)

The full many-body wave-function Ψ(x1, . . . ,xN ,R1, . . . ,RM) as a function of all particles
(electron and nuclei) coordinates is thereby transformed to

Ψǫ({qi}) = det(I+ ǫ)
1/2Ψ({[I+ ǫ]−1qi}) (2.27)

where qi = {rk,Rl} now represent all spatial coordinates of electrons and nuclei.

The pre-factor det(I + ǫ)1/2 ensures that the normalization of Ψ is preserved in Ψǫ. The
Cauchy stress tensor σ is defined as the negative strain derivatives of the energy per unit
volume Ω

σαβ = − 1

Ω

∂E

∂ǫαβ
(2.28)

One therefore needs to find the derivatives of the energy expectation value the with respect
to the strain tensor. In the most general case the energy expectation is given by some
Hamiltonian Etot[Ψ] = 〈Ψ | Ĥtot | Ψ〉 = 〈Ψ | T̂ + V̂ | Ψ〉, where T̂ is the kinetic energy
of all particles (electrons and nuclei) and V̂ is the total potential energy operator of the
system. One can express the stress tensor by inserting equation (2.27), (2.1) and the
above formulation of the total energy into (2.28). Nielsen et al. [41] showed that

σαβ = − 1

Ω

∑

i

〈
Ψ

∣∣∣∣∣
1

2µi
∇iα∇iβ −

1

2

∑

j 6=i

(qj − qi)α(qj − qi)β

qij

(
d

dqij

)
V̂

∣∣∣∣∣Ψ
〉

(2.29)

where i and j run over all electron and nuclei and qij = |qj − qi| is the distance of the
particle positions. The particle masses µi are given in units of electron masses. For an
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isotropic deformation ǫαβ = ǫ0δαβ one arrives at the virial theorem by taking the trace of
above equation (2.29)

3PΩ = −Tr(σαβ)Ω = 2Ekin + Epot (2.30)

which is valid for inter-particle potentials of Coulombic form [42], and where P is the
pressure.

In DFT the electron positions are not treated directly, such that in practice each term
in the energy expression (2.17) together with the nucleus-nucleus energy Enn must be
differentiated separately: the kinetic part of the non-interacting electrons σT , the Hartree
stress σH , electron-nucleus stress σen, the exchange-correlation stress σXC and the nucleus-
nucleus stress σnn. The explicit form within LDA was derived in Ref. [41].

2.2 Correlation of search space with PES accuracy:

a case study on silicon

Exploring DFT energy landscapes is computationally several orders of magnitude more
expensive compared to employing empirical force fields for the same material. A general
approach is therefore to use a force field to quickly pre-screen the PES with low accuracy,
and then refine the structures of particular interest at the DFT level. In this way the
computational cost can be drastically reduced and usually works well for systems for
which the atomic interactions can be accurately represented in a classical model. Ionic
crystals, in which long-rang electrostatic potentials dominate, are a good example where
available force fields provide an excellent representation of the DFT energy landscape.
However, other systems are harder to model and are less transferable.

Silicon is a well studied element, and several different, widely employed potentials have
been developed and used for large-scale calculations. They have been typically fitted
to describe the ground state structures (and/or other known allotropes) and are usually
tested to give reasonable values for some physical properties such as bulk moduli or
melting temperatures. Other features of the the energy landscape however, such as energy
barriers or metastable phases, are less well described. Four different silicon force fields were
investigated in a comparative study, namely the Tersoff force field [43] the Stillinger-Weber
(SW) force field [44], the environmental dependent interaction potential (EDIP) force
field [45, 46, 47], the Lenosky modified embedded-atom method (MEAM) potential [48, 49]
and an unpublished reparametrization thereof. They were compared to the more accurate
Lenosky tight-binding scheme (LTB) [50] and, whenever possible, to DFT calculations,
which were carried out with the BigDFT wavelet code [51].
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2.2.1 Characterizing the potential energy surface of the Si16
cluster by MHM efficiency

One approach to test the accuracy of a force field is to investigate its performance be-
yond its fitting environment, which in this case are well studied crystalline or amorphous
phases of silicon. To investigate the transferability of the different methods, the PES
of the Si16 cluster was explored systematically with all of the aforementioned classical
many-body potentials, the tight-binding scheme and DFT. The MHM with free boundary
conditions [8] (see section 3.3 for details) was used to map out the low-lying part of the
energy landscape. The speed with which a system finds its ground state is evidently a
physical property of the system and should carry over to most computational geometry-
optimization algorithms. The efficiency also depends on the form of the corresponding
potential as discussed in the introductory part of this chapter.

Considerable differences were found in the speed of finding the putative ground state
configuration with the MHM when using the various potentials to describe the Si16 clus-
ter. Table 2.1 gives the average number n̄ of minima visited before finding the putative
global minimum. The differences in n̄ can be ascribed to the overall shape of the energy
landscape. A large n̄ indicates a high configurational density of states and a rather glassy
energy landscape, whereas a small n̄ rather describes a single-funnel system. The Si16
cluster for instance looks more like a structure-seeker with the Lenosky force field and
more like a glass-former with the Tersoff force field.

Table 2.1: Average values in 100 MHM runs for each method. n̄ is the number of minima visited before
finding the putative ground state configuration.

Method n̄
EDIP 85
Lenosky 10
Reparametrized Lenosky 8
Tersoff 116
Stillinger-Weber 31
Lenosky tight-binding 42
DFT 32

2.2.2 Average curvatures of the PES at local minima

Another topological property of the silicon energy landscape was investigated by studying
curvatures of the potential around local minima.

First, we closely examined particular local geometry relaxation pathways. During DFT
geometry relaxations of the Si16 one can encounter cases where the cluster is distorted
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considerably even though the energy decreases only slightly. Within these flat regions of
the PES the norm of the force is small but may increase slightly while the monotonous
downhill progress in energy is preserved. Many steps are necessary in the steepest descent
DFT geometry relaxation to overcome these flat plateau regions. This behavior is dis-
cussed in the following for the DFT relaxation of a local minimum found with the Lenosky
potential. Figure 2.2 explicitly shows the variation of the energy with changes in geometry
during the relaxation in the various potentials. Only the Lenosky tight-binding scheme
provides an accurate energy trend when following the DFT relaxation pathway. All classi-
cal potentials fail to even describe the monotonical decrease of the configurational energy
along the pathway. With the exception of the Lenosky and the reparametrized Lenosky
force fields they give an oscillating energy surface instead of a flat one. This is a first
indication that the classical potentials give a too rough PES. Although the SW potential
is smoother compared to EDIP and Tersoff it has a very large unphysical excursion in
energy at both endpoints which is not the case for any of the other studied potentials.
Similar performance of the various force fields was observed by Lenosky and coworkers
(see Figure 6 of Ref. [48]). The MEAM ansatz of the Lenosky force field seems to give
a smoother PES than the other classical potentials. Furthermore, the average number of
interacting atoms were calculated for each potential along the relaxation path, but none
of the potentials show a significant fluctuation from the average values. As expected, the
number of interacting atoms is largest for the Lenosky tight-binding due to its large cutoff
range, followed by both Lenosky and reparametrized Lenosky potentials. EDIP, SW and
Tersoff show a similarly low number of interacting neighbors.
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is an unpublished reparametrized Lenosky MEAM in which a single FFCD is stable.



2.2. Correlation of search space with PES accuracy: a case study on silicon 17

Next, the eigenvalues of the Hessian matrix were used as further quantities to describe
the differences of the PES among the potentials. Since the smooth topography of the
DFT Born-Oppenheimer surface should be a property fairly independent of the cluster
size, similar results as above can also be expected for Si30 isomers. Therefore, 120 random
Si30 configurations were relaxed using the different potentials and the largest and smallest
eigenvalues of the Hessian matrix were calculated when the local minimum closest to the
initial structure was reached. The results are listed in Table 2.2. Two observations indicate
that the smoothness of the DFT energy landscape is not reproduced by force fields.
First, the classical potentials tend to overestimate the average of the largest eigenvalues
(first row in Table 2.2) compared to DFT, indicating a rougher PES with high frequency
eigenmodes. The EDIP potential for example has a two times higher average of the largest
eigenvalue compared to DFT. Secondly, the eigenvalues of the classical potentials show
a higher scatter (second row in Table 2.2), leading to eigenvalues much larger than the
average. This is another indication for a rough PES. The Tersoff potential for example
overestimates the range of the largest eigenvalues by a factor of 13 compared to DFT.
The SW potential provides the most accurate results among the force fields with respect
to DFT. This is in agreement with its accurate overall description of low-lying structures.
The Lenosky tight-binding scheme gives very accurate values for the second derivative of
the energy landscape, almost identical to DFT results.

Table 2.2: Statistical data related to the Hessian matrix around local minima of up to 120 random
configurations of a Si30 cluster. The corresponding average of the largest and smallest eigenvalues of the
Hessian matrices are listed (in eV/Å2). The range of the largest eigenvalues are listed in the second line.
The last line contains the average condition number κ of the corresponding Hessian matrices.

EDIP Lenosky SW Tersoff LTB DFT
〈Elarge〉 61.0 43.0 38.0 58.0 23.0 27.0
Emax

large-E
min
large 83.0 65.0 12.0 106.0 7.0 8.0

〈Esmall〉 0.23 0.44 0.31 0.72 0.18 0.2
〈κ〉 476.0 132.0 175.0 93.0 239.0 197.0

2.2.3 Configurational density of states in bulk silicon

Finally, the MHM was used to explore the low energy region on the PES of bulk silicon.
Starting with crystalline cubic diamond structure consisting of 216 Si atoms, 200000 local
minima were found successively for each classical potential during the simulation. For
the Lenosky tight-binding scheme only 25000 structures could be found due to limited
computer time. Periodic boundary conditions were used to provide the appropriate bulk
conditions. To speed up the calculation, the simulation cell was fixed to be a cube at the
equilibrium volume of the ground state structure. The ten energetically lowest configu-
rations of each potential were then used as input configurations for geometry relaxations
in DFT. Table 2.3 summarizes results for the DFT-relaxed geometries.
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The correct ground state geometry, the well-known diamond structure, is predicted with
all the potentials. However, the structures of the first excited state of different force fields
do not coincide. For all potentials, except the Lenosky force field, it is a single four fold
coordinate defect [52] (FFCD). The Lenosky potential on the other hand predicts a pair
of two four fold coordinated defects in different regions of the cell as the lowest energy
defect structure. The double FFCD is 3.99 eV higher in energy compared to the diamond
structure.

The majority of the eight other low energy geometries in the EDIP potential are structures
containing single displaced atoms which are either four or five fold coordinated. Similar
structures can be found with the Tersoff potential. All of these excited configurations are
unstable in DFT calculations. The Tersoff potential additionally has minima at a variety
of slightly distorted FFCDs which are unstable in DFT.

Table 2.3: The results of ten configurations of each potential relaxed with DFT. The second column
shows the number of stable structures. The following columns show the number of structures which relax
to the bulk crystal, to a single FFCD or two FFCD which are either neighboring (n-FFCD) or distant
(d-FFCD).

Method Stable Bulk FFCD n-FFCD d-FFCD
EDIP 2 6 4 0 0
Lenosky 10 1 0 2 7
SW 7 1 4 5 0
Tersoff 2 4 6 0 0
LTB 10 1 1 4 4

In contrast to the other three force fields, the Lenosky force field always predicts pairs
of FFCDs as low-lying energy configurations. They are either neighboring and share a
common atom or are distant, i.e., located in different regions of the cell. Even though
the single FFCD, which must be the first excited state, is not predicted by the Lenosky
force field (the reparametrized Lenosky MEAM does stabilize the single FFCD), all other
low-lying energy configurations from the second to ninth excited states are stable in DFT
geometry optimization. Nonetheless, the sequence with respect to the energy does not
coincide with the sequence in DFT energies. The Stillinger-Weber force field behaves very
similarly. Only three structures were found to be unstable, the other five excited states
all contain two interacting FFCDs.

The best accuracy can be found with the Lenosky tight-binding scheme. All structures ex-
ist on the DFT Born-Oppenheimer surface and the energy sequence is correctly described
with the exception of the 9th and 10th excited states. They are exchanged in sequence and
show an energy difference of 0.02 eV with the Lenosky tight-binding scheme and 0.04 eV
when calculated with DFT.

To describe the overall characteristics of the PES the configurational density of states
(C-DOS) can be used which gives the number of configurations per energy interval. The
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inherent structure approach [53, 54, 55] shows that the C-DOS influences the free energy
and hence all thermodynamic quantities. The C-DOS, together with other quantities,
was recently used to quantify energy landscapes of solids by Oganov and Valle [56]. The
correct C-DOS is reproduced by a force field if the energetic ordering is quantitatively
correct and if there is a one-to-one mapping between the local minima of the approximate
and exact energy landscape. If either condition is not satisfied it is very unlikely that the
C-DOS is correctly reproduced.
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Figure 2.3: The normalized MH-DOS as represented by a histogram consisting of 100 bins on a logarith-
mic scale. While 200000 values were used for the classical potentials only 25000 could be calculated with
the Lenosky tight-binding scheme. The energy is shifted such that the ground state has energy 0.

We approximate this C-DOS by the minima hopping density of states (MH-DOS) which
is obtained simply by sampling the low energy region with the MHM and counting the
number of distinct minima found in an energy interval. It has to be stressed that a more or
less complete sampling of all minima can only be achieved in a very small interval around
the putative global minimum. Only in this small interval of several eV we observe in the
MH-DOS the expected exponential growth of the number of local minima with respect
to the energy of the C-DOS. In our plots we show however a much larger energy interval
where the number of states is the true number of states multiplied by the probability that
a configuration in this energy range will be visited. Since this probability decreases with
increasing energy the MH-DOS tends to zero for large energies in all our plots whereas
the C-DOS would be orders of magnitude larger. Since the MHM maps out higher energy
configurations when the minima hopping run is allowed to continue longer, we can not
only expect a better mapping of the low energy region but also an extended mapping of
higher energies with increasing duration of the simulation. The MH-DOS and C-DOS
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agree only within the first few bins of the exponential growth region. The lowest energy
minima correspond to point defects. The onset of the exponential growth region is due
to a growing number of defects (mainly of the FFCD type) which lead continuously to
amorphous structures. Some of the potentials also show a second peak at higher energies.
This peak is due to amorphous configurations which are related to a sheared crystalline
structure. Since we do not relax the simulation cell, sheared structures cannot relax.

The reason why we show the MH-DOS over an energy interval which is much larger
than the interval within which we can obtain a reliable C-DOS is the following. If there
were good agreement between the C-DOS obtained from different force fields the MH-DOS
would also agree. As seen from Figure 2.3 the MH-DOS obtained from different force fields
are drastically different and one can therefore conclude that the C-DOS are also drastically
different. Stillinger-Weber and the Lenosky tight-binding show similar features in the low
energy region, e.g., the energy gap between the single FFCD and higher excited states and
the spike between 7 and 8 eV. While the EDIP and Tersoff potential show only a single
major peak around 10 eV, both Lenosky and Stillinger-Weber have a second peak located
at about 35 eV which corresponds, as discussed above, to sheared structures. This is due
to the fact that for these two potentials the C-DOS of unsheared amorphous structures is
much lower than for the other potentials and the MHM starts therefore sampling higher
energy regions corresponding to sheared structures. The differences in the C-DOS are
responsible for the different speeds with which the putative global minimum is found (see
Table 2.1).

2.2.4 Summary

In conclusion, the above results show clearly that force fields, which are widely used
for dynamical simulations in large silicon systems, not always accurately describe the
PES. In addition, they nearly fail in all cases to describe the energy landscape of silicon
clusters. With the exception of the MEAM based Lenosky force field, all force fields
give rise to PES’ that are too rough. In an extended crystalline environment most force
fields greatly overestimate the configurational density of states because they give rise
to many spurious defect structures which do not exist in more accurate schemes. Non-
periodic systems such as clusters present particular problems for classical models, due to
the miscoordinated atoms. For structure prediction methods these results imply that a
large amount of spurious minima will be found in classical potentials which do not exist
at the more accurate DFT level. Therefore, it can be advantageous to directly explore
the DFT energy surface instead of using a force field to pre-screen an approximate energy
potential landscape containing a large amount of unphysical structures, thus significantly
reducing the search space.



Chapter 3
Structure prediction

For a periodic system of N atoms, the number of degrees of freedom is given by 3N for
the atomic coordinates and additionally 9 degrees of freedom for translational vectors of
the crystal defining the periodic cell. Taking into account the translational invariance
of the crystal and the rotational invariance of the cell the remaining degrees of freedom
define a 3N + 3 dimensional PES. Possible arrangements of atoms in the cell increases
exponentially with system size, such that mapping out all of them is not feasible. Uncon-
strained structure prediction based solely on the chemical composition is thus considered
a NP-hard problem (non-deterministic polynomial-time hard) in computer science.

In crystal structure prediction one is primarily interested in the energetic ordering of
dynamically stable local minima on the PES. The stable configuration with lowest energy
then corresponds to the ground state structure and is the most likely state at equilibrium.
Most structure prediction schemes attack the problem on two levels: (a) relaxations to
find local minima on the PES and reduce its dimensionality and (b) global optimization
by driving the system towards the ground state. Algorithms for local relaxations are
discussed in section 3.1, whereas global optimization schemes are briefly presented in
section 3.2. Finally, section 3.3 introduces the MHM and its generalization for crystal
structure prediction.

3.1 Local geometry optimization

Essentially all crystal structure prediction methods need to perform local geometry re-
laxations at some stage of the algorithm, thus the employed relaxation scheme has a
significant influence on their efficiency and stability. This section covers such schemes
and comparatively evaluates their efficiencies in optimizing crystal lattices.

21



22 3. Structure prediction

Finding the local extrema of the energy landscape is equivalent to finding the sets of
coordinates for which the gradients with respect to all degrees of freedom vanish. For
crystals these are the 3N atomic cartesian coordinates ri, i = 1, . . . , N and the 3 cell
vectors a,b, c, which are combined in a matrix h = {a,b, c}:

∂E

∂rγi
= 0,

∂E

∂hαβ
= 0 (3.1)

where γ ∈ {x, y, z}.

The Hessian matrix A is given by the second order partial derivatives of the energy with
respect to the degrees of freedom:

Aα,β
i,j =

∂2E

∂xα
i ∂x

β
j

(3.2)

where Greek characters represent the cartesian components of x representing every atomic
or cell vector i and j. A is symmetric and positive definite at any local energy minimum.
Due to translational invariance of the energy within periodic boundary conditions and
the rotational invariance of the cell, 6 eigenvalues of the Hessian will vanish. For free
boundary conditions the same amount of eigenvalues will vanish, 3 for translational and
another 3 for rotational energy invariance of the molecule.

If an external pressure P is applied, the energy E is replaced by the enthalpy given by
H = E + PΩ, where Ω is the unit cell volume. Correspondingly, the minima on the
enthalpy surface are obtained by

∂H

∂rγi
=
∂E

∂rγi
= 0 (3.3)

∂H

∂hαβ
=

∂E

∂hαβ
+ P

∂Ω

∂hαβ
= 0 (3.4)

Since the energy is equivalent to the enthalpy in the limit of P → 0 all discussions below
will refer to both quantities simultaneously.

Several methods exist to perform such local relaxations. Starting from an initial state
x0, the system is iteratively updated according to an optimization algorithm and driven
towards lower energies. A separable function f(x) = f(x1, x2, . . . , xn) can be minimized
by optimizing each variable xi individually in f(x̃1, x̃2, . . . , x̃i−1, xi, x̃i+1 . . . , x̃n), where the
remaining variables x̃1, x̃2, . . . , x̃i−1, x̃i+1, . . . , x̃n can be chosen arbitrarily. Consequently
one could relax f by performing n individual optimizations in one dimension. The po-
tential energy however is (in general) a non-separable function and must be therefore
optimized in all dimensions simultaneously. Therefore, the efficiency of any relaxation
method decreases with increasing number of degrees of freedom. The condition number
κ = dmax

dmin
, where dmax and dmin are the largest and smallest eigenvalues of the Hessian,
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respectively, determines the speed of convergence: the larger the conditioning number κ,
the more iterations are needed to relax the structure, and κ typically increases strongly
with system size. The steepest descent algorithm for example converges proportionally
to κ, whereas more sophisticated schemes behave proportionally to

√
κ. Furthermore,

for crystal structures the degrees of freedom are additionally coupled, since the atomic
coordinates change whenever the cell variables are modified. This poses further challenges
in structure optimization. Employing reduced coordinates can somewhat circumvent this
problem, but will in general lead to worse condition numbers.

3.1.1 Steepest descent

The most simple optimization scheme is the steepest descent method. Although not very
efficient, it is the most stable method available. A function f(x) is minimized by taking
small steps along the negative gradient given at the current coordinate xt. An initial
approximate solution x0 is guessed, and the following scheme is then used to iteratively
converge towards a close-by minimum:

xt+1 = xt − αt∇f(xt) (3.5)

The scalar step size αt should be small enough to guarantee a monotonic decrease of
f(xt) in every step t. However, a too small value will result in a very slow convergence.
Therefore, a feedback on αt can be employed. Whenever a step t+ 1 leads to an increase
in f(xt+1) compared to the previous value f(xt), the step size αt+1 should be decreased
(for example by a factor of 1/2), and in all other cases αt+1 can be slightly increased (for
example by 5%). The big advantage of the steepest descent method is that convergence is
guaranteed to occur if the function under consideration is continuous and the step-size is
sufficiently small. In Figure 3.1 a simple model of a 2D energy function is plotted together
with the steepest descent directions of 3 initial guesses.

Two major problems arise when employing steepest descent minimization on crystal struc-
tures. First, the forces on the atomic coordinates are given in units of energy

length
, whereas

stresses are usually given in a pressure unit, which is equivalent to energy
volume

. Furthermore,
several choices are available for the steepest descent direction of the cell variables which
have been proposed in literature. The 3 × 3 Cauchy stress tensor σ is defined as the
negative volume-normalized strain derivatives of the energy σαβ = − 1

Ω
∂E
∂ǫαβ

. Most imple-

mentations use the quantity σSD1 = −(σ+P I) as the steepest descent direction. However,
a more appropriate choice would be to employ the “true” stress tensor, which is the en-
ergy derivative with respect to the cell parameters fh

αβ = ∂E
∂hαβ

, which can be used to

express the enthalpy gradient as ∂H
∂hαβ

= fh
αβ + P ∂Ω

∂hαβ
. With Ω = det(h) and the Ja-

cobi’s formula ∂det(h)
∂hαβ

= det(h)h−1
βα = Ωh−1

βα we obtain the “true” steepest descent direction

σSD2 = −
(
fh + P IΩ(h−1)T

)
= −Ω(σ + P I)(h−1)T . Yet another definition was recently
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Figure 3.1: Several steepest descent directions on a 2D energy landscape

proposed by Sheppard et al. [57]. To obtain a steepest-descent direction which is invari-
ant to the choice of the cell they use σSD3 = −h(σ + P I). Obviously, all three definitions
equivalently minimize the stress, however the efficiency is expected to vary.

Second, the atomic coordinates and cell variables depend on each other. Therefore, the
atomic and cell variables cannot be updated simultaneous. One can thus operate on
the reduced atomic coordinates si = h−1ri, which are independent of the cell vectors, or
employ the following procedure to simultaneously update the atomic and cell variables.
At every steepest descent iteration, first move the atomic coordinates ri along the negative
energy gradient to obtain r′i = ri−αat

∂H
∂ri

. Then, the cell h is modified to h′ = h−αlat
∂H
∂h

.

To preserve the fractional coordinates si, a transformation matrix b = h′h−1 is used to
finally rescale all atomic coordinates to r′′i = br′i, which are then used in the following
iteration.

3.1.2 BFGS

The Newton algorithm is an iterative scheme where the Hessian matrix A is used to
determine the step-size and descent direction instead of using a constant scalar α as in
the steepest descent method. This approach converges within one single step for any
initial configuration xt if the potential is harmonic.

The Newton method is derived from a local Taylor expansion of f(x) around xt to the
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second order

f(x) ≈ f(xt) + (x− xt)∇f(xt) +
1

2
(x− xt)

TA(x− xt) (3.6)

One requires that
∇f(x) = ∇f(xt) + A(x− xt) (3.7)

vanishes, which leads to the Newton iteration

x = xt −A−1∇f(xt) (3.8)

However, determining A is computationally extremely expensive (especially if its analyti-
cal form is not known) and requires many energy and/or force evaluations when obtained
numerically. Furthermore, if the initial guess is not close to the minimum, a full Newton
step can be too large and overshoot the minimum. Therefore, a line search is usually
performed along the Newton direction.

The Broyden-Fletcher-Goldfarb-Shanno (BFGS) method [58, 59] is a quasi-Newton algo-
rithm which employs an approximate Hessian, which is gradually improved as the min-
imization progresses. The sequence of approximated inverse Hessian matrices Ct should
therefore converge towards the true inverse Hessian A−1 at the minimum. Importantly,
since the true Hessian at the minimum must be symmetric and positive definite, the
update mechanism should ensure that the approximate Hessian also preserve these prop-
erties. If we substitute x in (3.7) with xt+1 we obtain the following relation

xt+1 − xt = A−1 (∇f(xt+1)−∇f(xt)) (3.9)

which must be satisfied by the approximate inverse Hessian Ct+1 = A−1. Furthermore,
the update mechanism of the approximate Hessian should satisfy Ct+1 = Ct +∆t, where
∆t corresponds to a small correction. It can be shown that the following scheme fulfills
above constraints and gives rise to the BFGS formalism:

Ct+1 = Ct +

(
I+

δgT
t Ctδgt

δgT
t δxt

)
δxtδx

T
t

δxT
t δgt

− Ctδgtδx
T
t + (Ctδgtδx

T
t )

T

δgT
t δxt

(3.10)

where δxt = xt+1 − xt and δgt = ∇f(xt+1)−∇f(xt).

The BFGS algorithm reads:

• compute the search direction dt = −Ct∇f(xt)

• perform a line search to obtain α which minimizes f(xt + αdt)

• set xt+1 = xt + αdt

• check for convergence of ∇f(xt+1)
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• compute δxt = αdt and δgt = ∇f(xt+1)−∇f(xt)

• update Ct → Ct+1 according to equation (3.10) and cycle

In the first iteration C0 can be initialized as the unit matrix I.

For optimizing the energy with respect to the the crystal structure, the 3N reduced atomic
coordinates si, i = 1, . . . , N of the N atoms and the cell vectors h are combined to a vector
X = {s1, s1, . . . , sN , h}. The line search can be carried out by the following approximative
method: from the current coordinates Xt, at which the gradient is kt = ∇H(Xt), a
reasonable α′

t (for example α′
t = 1) is used to perform a trial step along dt = −Ct∇H(Xt),

where the gradient k′
t = ∇H(Xt + αtdt) is evaluated. Projections of kt and k′

t onto the
subspace of dt are then used to obtain a linear interpolation, which has to vanish at the
correct step-size αt.

Although the BFGS method is very efficient, it was found to be somewhat unstable
under certain conditions. Especially the line search was found to be very sensitive to
discontinuities in the energies or forces, as they might arise in DFT calculations.

3.1.3 FIRE

FIRE is the abbreviation for the fast inertia relaxation engine [60] which belongs to the
class of optimization schemes based on damped dynamics [61]. In such schemes the
Newtonian equation of motion is iteratively integrated, however including a damping
factor to reduce the velocity along the trajectory as the potential energy decreases. In
this way the system will eventually relax to a close-by local minimum. A careful tuning
of parameters such as the time steps and damping factor is required to obtain a good
efficiency: over-damping will result in slow convergence, and under-damping will lead
to oscillations in the coordinates, and in the worst case also in the energies. However,
damped molecular dynamics are generally faster than steepest descent while similarly
stable and are therefore widely used for structural optimization.

The FIRE algorithm to optimize the energy E of N atoms in a molecule is described by
the following equation of motion for a particle i:

v̇i(t) =
Fi

mi
− γ(t)|vi(t)|(v̂i(t)− F̂i(t)) (3.11)

where vi(t) = ẋi(t) are the velocities, Fi = −(∇E)i are the forces and mi are the atomic
masses. Unit vectors are denoted with a hat. The second term in equation (3.11) in-
troduces an acceleration towards the gradient direction, which is controlled by the scalar
factor γ(t). Uphill motions are prohibited by a simple feedback mechanism on the power
P = F · v, such that the velocities are reset to 0 as soon as P becomes negative.
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To apply the FIRE method for optimizing crystal structures one can start from any vari-
able cell shape molecular dynamics method, such as the Parrinello-Rahman method [62]
(see section 3.3.3 for details). However, the velocities for updating the N reduced atomic
coordinates si, i ∈ 1, . . . , N and cell variables h are modified in every molecular dynamics
step. Again, let X be the combined vector of reduced atomic and cell variables, and V

its velocity. Then:

• if the first step: initialize parameters and variables: ∆t = ∆t0, α = αstart, and the
velocities V = 0

• use molecular dynamics to obtain the reduced atomic coordinates and cell vectors
X, and the corresponding generalized forces F. Stop if the atomic forces and stresses
are converged

• compute the power P = F ·V, which tells us if the trajectory at the current point
is along a downhill (P > 0) or uphill (P < 0) direction

• modify the velocities according to V → (1− α)V+ αF̂|V|

• if P > 0 in at least Nmin consecutive steps, then the time-step ∆t is increased
∆t → min(∆tfinc,∆tmax), where finc > 1, and the mixing factor α is decreased
α → αfα, where fα < 1. It is important not to accelerate the dynamics initially
(for the first Nmin steps) to get a stable relaxation

• if P ≤ 0, then ∆t → ∆tfdec, where fdec < 1, and V → 0 and α → αstart, leading to
a restart with zero velocities

• return to MD and cycle

The original parameters suggested by Bitzek et al. turned out to result in a fast conver-
gence, and are given by Nmin = 5, finc = 1.1, fdec = 0.5, αstart = 0.3, fα = 0.99, and ∆tmax

should be roughly one order of magnitude larger than the usual molecular dynamics time-
step. Still, a careful tuning of the atomic masses and the fictitious cell mass is required.
FIRE represents a good compromise between efficiency and stability. Since the velocities
contain information on previous iteration and carry a momentum, small discontinuities in
the energies or forces as they might arise from DFT calculations don’t affect the stability.
However, in most cases FIRE is inferior to BFGS in terms of efficiency.

3.1.4 Comparison of geometry optimization methods

A comparative test was carried out on the efficiency of the various geometry optimization
methods discussed above. A binary Lennard-Jones mixture was used as a model system,
where energies and forces were evaluated in a truncated functional form (provided in
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equation (4.1)) with the following parameters: σAA = 1.50, σAB = 2.25, σBB = 3.00 and
ǫAA = 1.00, ǫAB = 1.25, ǫBB = 1.00, and a cutoff radius of rcutαβ = 2.5σαβ . A mixture with
16 type A and 8 type B components was used to relax 300 random structures at 0 GPa.
The BFGS and FIRE method were implemented as discussed above, and three different
flavors of steepest descent were used:

SD1 Two independent step-sizes for the atomic coordinates αat and the lattice param-
eters αlat were used and initially optimized to give a good efficiency. An energy
feedback was employed on the atomic degrees of freedom, since its dimensional-
ity is much higher compared to the cell degrees of freedom. The Cauchy stress
σSD1 = −(σ + P I) was used for the steepest descent directions of the cell.

SD2 Same as SD1, however using the stress σSD2 = −Ω(σ + P I)(h−1)T as the steepest
descent direction for the cell.

SD3 Same as SD1, however using the stress σSD3 = −h(σ + P I) as the steepest descent
direction for the cell.

SD4 Same as SD3, together with the following Jacobian J according to Ref. [57] to
fix the coupling between atomic and cell forces: J = Ω1/3N 1/6. This leads to the

collective steepest descent direction F =
(

∂H
∂r1
, . . . , ∂H

∂rN
, σSD3

J

)
. An energy feedback

was employed for the combined step-size αat,lat

The results are presented in table 3.1. Clearly, all steepest descent approaches are sig-
nificantly less efficient compared to FIRE or BFGS. The best results among the steepest
descent methods were obtained by following the direction given by σSD3 with a variable
step-size for the atomic degrees of freedom. The same approach, but using the Jacobian
suggested by Sheppard et al., resulted in a decrease in efficiency. The most efficient algo-
rithm is the BFGS method, roughly 30% faster than FIRE. However, it becomes unstable

Table 3.1: Different local relaxation algorithms are compared with respect to their efficiencies. 300
structure relaxations were performed with each approach, and the mean number of force evaluations N̄
to reach a specific (very tight) convergence criterion are listed, together with their standard deviations
σN (not to be confused with the stress tensor).

Algorithm N̄ σN
SD1 1058 648
SD2 1016 712
SD3 614 594
SD4 1005 680
FIRE 204 63
BFGS 158 32
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when used together with ab initio methods, where the energies and forces as a function of
the atomic and cell parameters may be discontinuous and is therefore not practicable. In
conclusion, the FIRE method turned out to give a good compromise between efficiency
and reliability.

3.2 Global structural optimization methods

In the previous section we discussed various methods to find local minima on the potential
energy landscape. The task of global optimization methods is then to find the lowest
among all local minima. Unfortunately, the number of such local minima on the high
dimensional PES increases exponentially with system size, which makes it impossible to
identify the global minimum even for moderately sized systems with simple exhaustive
search methods. Limited computational time restricts all global optimization algorithms
to perform a search on a (small) fraction of the total number of local minima based on
assumptions on the characteristics of the PES. The lowest energy structure throughout
the search is then determined as the putative ground state, however there is no way to
prove that it truly represents the global minimum.

Overall, global optimization methods can be divided into two main groups and are either
based on thermodynamics or rely on non-thermodynamic approaches. Simulated anneal-
ing, metadynamics and basin hopping are based on thermodynamical principles, whereas
genetic algorithm and particle swarm optimization belong to the class of evolutionary
methods. Random search, database searching and data mining schemes rely primarily on
chemical intuition and structure-chemistry correlation models.

Algorithms based on thermodynamics are guaranteed to arrive at the ground state struc-
ture in thermodynamic equilibrium. However, since crossing high barriers connecting two
funnels is a rare event due to the presence of the Boltzmann factor and the given compu-
tational time is limited, thermodynamic equilibrium will essentially never be reached and
such methods are therefore not always successful. Although there exist several approaches
to circumvent this problem, the choice of the initial configuration highly influences the
success rate and efficiency of such simulations. The success of non-thermodynamic meth-
ods is based on educated assumptions on the energy landscape. The validity of such
assumptions may vary strongly depending on the material under investigation. Neverthe-
less, non-thermodynamic methods have been found to be very efficient in a wide range
of structure prediction applications. The most common global optimization methods are
briefly described in the following sections.
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3.2.1 Database searching and data mining

The most simple, but frequently applied approach in crystal structure prediction is based
on exploiting informations available on known materials. Educated guesses of the struc-
ture in a novel compound are made from knowledge of structures from previous experi-
ments of similar materials. Chemically similar compounds tend to exhibit similar crystal
structures. Simply examining neighboring elements in the periodic tables can hint towards
the ground state structure. Other physical properties like similar electronegativity, atomic
radii, number of valence electrons, valence electron energy or electron configuration have
been used to characterize structural similarities. Goldschmidt’s rules of subsitution [63]
describes for example simple recipes to exchange atomic species in ionic crystals, and
the phenomenological Pettifor chemical scale χ can be used to generate two dimensional
structure maps of binary compounds [64, 65], which show clear structural separations
within the whole periodic table.

Data mining [66] has been used to analyze large datasets and, based on the information
retrieved, to extrapolate and predict properties of elements not contained in the database.
Since usually a large database is analyzed, an automatic and machine-based extraction of
the essential properties is essential. In data mining crystal structure prediction methods
(online-) databases of known compounds can be used to extract such informations. Hof-
mann et al. [67] used the crystallographic Cambridge Structure Database [68] to derive an
energy function with predictive power, avoiding the use of any expensive ab initio calcula-
tions. The following data mining approach was employed: in an initial screening process
the database is analyzed to remove poor quality data, which is done by identifying struc-
tures containing atypical intermolecular distances, incomplete symmetry descriptions and
insufficient accuracy of the structural resolution from XRD measurements. Next, descrip-
tors are defined to represent a crystal structure. Intermolecular contact descriptors are
used to generate a structure vector, which is based on inter-atomic distances, bond types
and atom types present in the structure. Then, decoy structures are generated for every
structure in the database by slightly and randomly distorting the experimental structures
to generate the fitting database for the final energy potential. Finally, a model potential
as a function of the descriptors is trained such that it can correctly order the real and the
decoy structures. The resulting inter-atomic pair potential can then be used to predict
crystal structures of unknown alloys.

Ceder et al. have developed several approaches based on data mining combined with
ab initio calculations to predict the ground state structures of novel alloys [4, 5, 6, 7].
One such approach is the data mining of quantum calculations (DMQC), where a set
of library structures from experimental observations are used as a basis for quantum
mechanical predictions of crystal structures in binary compounds. It was shown that the
energy differences in different structures strongly correlate between alloys with different
chemistry. For this purpose, the energy vectors Ei for each alloy i in the database were
obtained from first principles calculations, where the components correspond to one of
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the n = dim(Ei) possible crystal structures. A principal component analysis was carried
out to demonstrate that the dimensionality d of the structural energies can be reduced to
a value much smaller than n. Therefore, a prediction of the ground state structure of an
unknown alloy can be made without scanning the whole structural variety. Starting from
only a few explicitly evaluated structural ab initio energies of the constituent elements, the
convex hull of the composition for a new alloy is predicted. Then, the ab initio energy of
the most promising candidate is evaluated and included in the database. By iterating the
above process and thus gradually feeding new information into the database the ground
state structures can be found efficiently.

Similarly, the Data Mining Structure Predictor (DMSP) scheme [7] uses structural data-
bases to map out the most probable ground state structures for a new alloy at different
compositions. The idea is that there exist a strong structure-structure correlation among
different compositions in alloys due to underlying physical properties. Therefore, it is pos-
sible to obtain a probability distribution of crystal structures of an unknown composition
given already known crystal structures at other compositions of the alloy.

The methods discussed above are powerful in the sense that the search space of the
available crystal structures does not have to be explored exhaustively, thus significantly
reducing the computational cost. Data mining is particularly powerful and is thus often
employed in materials design [69, 70, 71]. However, they are limited for crystal structure
prediction by the fact that only structures in the underlying database are available. Ap-
plicability to high-pressure or high-temperature phases for example are difficult due to
limited available data from theory and experiments. Furthermore, some compounds may
unexpectedly adopt a ground state structure related to a completely different material,
which poses a formidable challenge for such methods. In fact, predictions of completely
new and unknown crystal structures is simply impossible.

3.2.2 Simulated annealing

The approach in simulated annealing [72, 73, 74, 75, 76, 77, 78] is based on the procedure
applied in experimental physics to reduce defects and obtain larger single crystals. A
sample is heated to high temperatures and then slowly cooled down. Through the heating,
the average kinetic energy of the atoms is increased, thus allowing them to diffuse easily.
The system can cross over high energy barriers towards preferably lower energy structures.
The controlled cooling process allows the atoms to rearrange and recrystallize in its ground
state structure.

Simulated annealing is a thermodynamic approach to global optimization and mimics this
process. Starting from an initial configuration, the atoms are usually equilibrated at a
high constant temperature through molecular dynamics or with a Monte Carlo method
where periodic local quenching is performed. Then, by gradually reducing the temper-
ature, the system moves towards lower energy structures. According to the Boltzmann
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distribution, the system finally crystallizes at the ground state if thermodynamic equi-
librium is preserved throughout the cooling process. However, in practice this method
is only applicable for simple energy landscapes, since the system gets easily trapped in
a local minimum or a wrong funnel, especially if they are surrounded by high energy
barriers.

As with all methods employing walkers to explore the PES, the efficiency of the simulated
annealing method strongly depends on the moves performed to propagate the system.
In basic simulated annealing, molecular dynamics or random displacements are used for
atoms or atom groups and the cell variables. However, many other move classes have
been proposed and can be used depending on the system under investigation, such as
atom mutations or exchanges of complete atom groups. Furthermore, the efficiency can
be improved by employing different temperature schedules. Most commonly, the tem-
perature is reduced linearly or exponentially with increasing number of time steps [79].
Other temperature schedules include temperature cycling [80, 81], where the temperature
periodically oscillates in a given range, or adaptive schedules [82, 83], for example by us-
ing a feedback mechanism on the acceptance/rejectance ratio to adjust the temperature.
Furthermore, different variations have also been introduced for the acceptance criterion.
Besides the most common Metropolis distribution, the Tsallis distribution [84, 85] and
simple thresholding have been proposed [86].

3.2.3 Metadynamics

Variable cell shape molecular dynamics was proposed by Parrinello and Rahman in
1980 [62] and has been widely applied to investigate solids. However, structural tran-
sitions in crystals are rare events in variable cell constant pressure molecular dynamics
simulations since they are generally associated with crossing (possibly very high) energy
barriers. To overcome this timescale gap issue, metadynamics [87, 88, 89, 90, 91] was
designed to model phase transition processes in an accelerated manner. The main idea of
this approach is to split the set of variables into two groups: a fast and and a slow group.
The fast variables are those which can be equilibrated in a reasonable simulation time,
whereas the slow ones can require exceeding computational costs. While the fast vari-
ables are sampled by classical molecular dynamics, a small number of collective variable
are defined for the slow ones and treated with metadynamics.

Since lattice vibrations often correspond to low frequency modes, the cell parameters are
usually used as collective variables in crystalline systems. In the configurational space
of these collective variables, Gaussian functions are added to the portion of the energy
landscape being currently explored to generate a bias potential. In this way, the current
energy well is gradually filled which facilitates the crossing of the surrounding barriers.
Between every metadynamics step, the averaged stress tensor is evaluated employing
a NVT molecular dynamics simulation during which the fast variables are allowed to
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equilibrate. Finally, the system will be driven out of the well towards unexplored regions
of the PES by preferably crossing over the lowest barrier. Thus, the complete potential
energy landscape of the collective variables will be eventually explored and filled with
Gaussians.

The choice of the width and amplitude of the Gaussians is essential to tune the accuracy
and computational cost of metadynamics simulations. Filling energy wells too quickly
with large Gaussians may lead to wrong phase transitions, or completely undermine spe-
cific structures. However, choosing too small Gaussians will require a large amount of ex-
pensive metadynamics steps. Furthermore, metadynamics simulations require relatively
large simulation cells in order to correctly describe nucleation processes during phase
transitions.

3.2.4 Basin hopping

The basin hopping method [92, 93, 94, 30] is a thermodynamical method. However, a
modified PES is sampled which is transformed into a stepwise constant staircase function
representing the energies of the local minima of the corresponding basins of attraction,
E(X) → Ẽ(X) = min{E(X)}, where X is the combined set of atomic coordinates and
cell vectors. A Monte Carlo sampling at constant temperature of this modified PES is
then performed, on which the transition barriers between the minima have now been
eliminated such that the system can move between the minima much easier compared to
the standard Monte Carlo methods.

Usually, the system is moved starting from a local minimum with energy Einit by perform-
ing random displacements of the coordinates from a uniform distribution in the range of
maxd[−1, 1], where maxd represents the maximal stepsize. A local geometry relaxation
is then performed to a local minimum with energy Etrial. In the Metropolis step the
trial structure is always accepted if Etrial < Einit , and only if a random number drawn

from a uniform distribution in [0, 1] is less than the Boltzmann factor exp
(

Einit−Etrial

kBT

)
.

If accepted, the current configuration and energy is updated, else a new trial step is per-
formed from the previous configuration. To ensure that the system will not get stuck in
a local minimum the step-size maxd is dynamically adjusted such that half of the new
configurations are accepted in the Metropolis step.

The basin hopping method is closely related to the “Monte Carlo plus energy minimiza-
tion” procedure of Li et al. [95]. Within this method, the configuration is always reset
after an unsuccessful trial step, which is not necessarily the case for basin hopping. Fur-
thermore, other moves on the PES have been proposed in literature. Basin hopping can
also be used within a simulated annealing scheme if the simulation is performed with
gradually decreasing temperature.
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3.2.5 Genetic algorithm

Genetic algorithms [96, 97, 98, 99, 100, 101, 102, 103, 104, 105, 106, 107, 108, 109] are
a class of evolutionary algorithms and are inspired by Darwin’s natural evolutionary
theory, where in a population the “fittest” individuals are most likely to survive. Genetic
algorithms have been successfully used for a wide range of global optimization problems.
Solutions to an optimization problem are usually encoded in binary form, representing the
genome of an individual. Initially, a set of individuals is randomly spawned to populate
a first generation of solutions, and each individual is evaluated according to its fitness.
By variation operations such as random mutation or elimination of an individual, or by
recombination of two individuals based in their fitness, a new generation of solutions is
created. By iterating this algorithm the overall fitness of each generation is improved,
thus leading towards the optimal solution of the problem.

When employing genetic algorithms within structure prediction, the fitness of the individ-
ual solutions is usually given by the (free) energy or enthalpy of the structures. However,
structures can be also optimized with respect to other quantities, such as hardness of a
material [110]. It is more problematic to find an appropriate genetic representation for the
structures and useful variation schemes. Binary representations are not well suited, since
physically meaningless structures can be obtained during a mating or mutation process.
First approaches in adopting genetic algorithms for structure predictions were reported
in 1995 [100, 98] with rather limited success rates. Further progress on genetic algorithms
in crystal structure prediction have been made there-since by adopting improved repre-
sentation schemes. Implementations of such methods are available in software packages
like GASP [111] or USPEX [107]. The evolutionary algorithm USPEX (Universal Struc-
ture Predictor: Evolutionary Xtallography), developed by A.Oganov in 2006, is one of
the most successful methods within crystal structure prediction and will be discussed in
detail below.

In USPEX, structures are represented by real numbers to describe the lattice and atomic
coordinates. Local geometry optimizations are employed on all structures within all gener-
ations to reduce the dimensionality of the search space. Initially, a population of candidate
structures is generated randomly, taking into account physical properties such as atomic
radii and cell volumes to give reasonable input guesses. For larger systems, initial struc-
tures are generated from sub-units containing predefined molecules or based on chemical
intuition and bonding properties to improve the overall fitness of the initial population.
After performing local geometry optimizations on all structures, identical structures are
eliminated. Then, parent structures are selected based on the energy ranking within the
current generation, which are then used to obtain the individuals (children) in the next
generation. The following variation operations are used:

Heredity Planar slabs from two (or more) parent structures are used to spawn a child.
For large systems, a fingerprint function [112, 56] can be used to select similar
parents in order to produce offsprings with improved fitness.
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Lattice mutation A single parent structure is deformed by shearing the lattice vectors.

Permutation Atoms of different species are exchanged within a single parent structure.

Special coordinate mutations Displacements of atoms of a single parent structure
based on chemical intuition (preserving molecular subunits and their orientations)
and on local order. The concept of local order [113] states that structures with
high order (and thus higher symmetry) are overall energetically favorable. The
local order evaluates the quasi-stability of a specific atomic position by evaluating
the symmetry of its near environment. Atoms with a high local order (i.e. within
a highly symmetric environment) are less probably mutated to retain favorable
structural motifs, while atoms with low local order are generally close to crystal
defects and thus more violently displaced.

Above variation operations are constrained by avoiding unphysical structures, such as
extremely small bond-lengths or unit cell volumes. The so obtained structures in the
new generation are then locally relaxed. It can be expected that the new generation
contains structures with an overall improved fitness compared to the previous generation.
Child structures with low fitness are eliminated from a generation to further increase the
average fitness of following generations. However, instead of monotonically converging
towards the fitter generations by preserving previously generated good solutions, a diverse
gene pool must be preserved by directly transferring some of the candidate structure of
previous generations, or by generating new random structures. Keeping a high diversity
is important for a thorough search, since it is equivalent to scanning a wide range of the
energy landscape spanning over multiple funnels.

In contrast to methods based on thermodynamics, which in principle guarantee that
the ground state can be found (eventually), no prediction regarding the success rate of
genetic algorithms can be made. Usually, genetic algorithms are iterated until the fit-
ness of the consecutive generations is saturated or achieves a predefined target value.
Schönborn et al. [114] have shown that genetic algorithms can even fail for very com-
plex energy landscapes of molecules. Furthermore, the variation operations need to be
carefully tuned to avoid highly unphysical child structures. Nevertheless, USPEX has
been successfully used to predict the crystal structures in a large amount of different
compounds [115, 116, 117, 118, 119, 120, 121, 122, 123]. In fact, in the first blind test of
inorganic crystal structure prediction, USPEX outperformed both random sampling and
simulated annealing.

3.2.6 Particle swarm optimization

Particle swarm optimization [124, 125] was initially designed to study social behavior.
It was recently adopted for structure prediction schemes in an evolutionary approach.
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The search algorithm is inspired by bird swarms in their collective motions, which can be
interpreted as an approach of performing a multidimensional search. Similar to genetic
algorithms, a population (called swarm) of configurations (called particles) evolves during
the simulation while gradually improving the quality of the structures. An implementation
of this approach in crystal structure prediction method is available in the CALYPSO
(Crystal structure AnaLYsis by Particle Swarm Optimization) software package [126].

Within CALYPSO, the initial swarm is populated by randomly generating input structure
based on space group symmetry. One of the 230 crystallographic space groups is first
selected with equal probability and a cell is assigned in accordance to the corresponding
Bravais lattice. The cell is then randomly filled with atoms taking into account the space
group symmetry operations (further discussion on symmetrized input structures can be
found in section 3.3.5). Local structure relaxations are then performed for all members
of the initial swarm, and identical or high energy structures are eliminated.

The algorithm to produce the next generation of the swarm is based on fictitious velocities
of the swarm and their particles and is characterized by vectors in the high dimensional
search space. However, since there is no physical correspondence to such velocities, its
definition is somewhat arbitrary. In CALYPSO, the positions Xi of a particle i is updated
according to:

Xt+1
i = Xt

i +Vt+1
i dt (3.12)

where dt is a fictitious constant time-step. The particle velocities are updated based on
the following equation:

Vt+1
i = wVt

i + c1r1(P
t
best,i −Xt

i) + c2r2(G
t
best,i −Xt

i) (3.13)

where w ∈ [0.4, 0.9] is the inertia weight to control the momentum of the particle which
can be dynamically adjusted, Vt

i is the current velocity, c1 = c2 are adjustable parameters
and fixed to 2 based on experience, Pt

best,i is the coordinate with the lowest enthalpy which
particle i has already visited (personal best coordinate), Xt

i is the current coordinate, and
Gt

best,i is the coordinate of the particle with the overall lowest enthalpy. r1 and r2 are
random variables uniformly distributed between 0 and 1, to ensure a non-deterministic
exploration of the search space without being trapped in an energy funnel. The velocities
are initialized randomly and are scaled in every generation such that their magnitudes do
not exceed a certain threshold to avoid violent moves of the particles. To preserve a struc-
tural diversity within the swarm, high energy structures are replaced by new randomly
generated structure in every generation.

In contrast to genetic algorithms, no variation operations need to be defined, such that the
efficiency can be tuned easily by changing a small set of parameters defining the direction
and velocity of the swarm. Through the use of symmetry operations, the search space
is drastically reduced and accelerates the prediction scheme. However, parameters such
as dt and w need to be carefully tuned, and since the velocities are fictitious, unphysical
structures can be generated during the update procedure. CALYPSO has been used to
predict high pressure phases of several materials: [127, 128, 129, 128, 130, 131, 132]
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3.2.7 Random search

Random search methods [133, 134, 135, 136, 137, 138, 139, 140, 141] have now been
around for over fifty years and found applications in various optimization problems. It
has recently been successfully applied in crystal structure prediction and for molecular
systems. The recipe of random search is straight forward: randomly generate a trial
structure, locally relax this structure, and repeat the first two steps until the search is
converged. The main advantage of this method is its simplicity which makes it easy to
implement. However, random searches are not very efficient and do not guarantee that the
ground state will ever be found. Nevertheless, random search has been found to correctly
and reliably predict structures with low energies for small systems with a rather moderate
number of degrees of freedom, whereas larger systems tend to have more complex energy
landscapes which are difficult to be dealt with using random search algorithms. Its success
is based on the assumption that the energies of local minima correlate strongly with the
size of their catchment basins, i.e. low-lying minima are surrounded by a large basin of
attraction. The probability of finding such a low-lying structure when starting a local
geometry optimization from a random configuration is therefore higher. This can be seen
from Figure 3.2. A one-dimensional energy landscape with equally spaced minima are
approximated by parabola with fixed curvatures. For minima which are considerably
lower in energy than neighboring minima the area of its catchment basin is larger as one
can see for the global minimum in this example. Although this principle holds for energy
landscapes with well defined global minima it does not hold for glassy systems where a
large amount of local minima are very close in energy.

It is very important to provide a sophisticated guess for the trial structure to reduce the
search space. Nonphysical trial structures should be identified and eliminated since they
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Figure 3.2: A simple one-dimensional energy landscape approximated by parabola. The vertical lines
indicate the spacing between the catchment basins of each local minimum.
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will, on average, lead to high energy structures even after relaxation. Constraints on the
cell volume and inter-atomic distances are used to eliminate bad trial structures. Input
guesses are therefore usually created by first generating a simulation cell with random cell
lengths and angles to give a volume close to some target value. Then, atoms are randomly
placed in the cell, taking into account bond preferences, molecular subunits and atomic
radii. This process requires a-priori knowledge of the chemical bond properties and atomic
arrangements.

Pickard et al. [141] have implemented several other techniques to enhance the quality of
trial structures. Even for non-molecular crystals chemical properties of the constituent
atoms can be exploited to form sub-units. For example, if in a binary compound the
formula unit is given by AnBm, it is often desirable to use exactly these units as building
blocks of the crystal. In this way, one can obtain more uniformly distributed trial struc-
tures. Furthermore, coordination numbers depend highly on atomic species and chemical
bonds and can be therefore used to bias the search. Symmetries can also be exploited to
generate good trial structures. Since, statistically, high symmetry structures are observed
more frequently in nature as the ground state than such with low or no symmetry at all,
constraints can be applied to bias the structure towards higher symmetry. If the target
number of formula units per cell is given by Nf.u., a space group is randomly chosen such
that Nf.u. is a multiple of its number of symmetry operations Ns. Then, the random
cell is partially occupied by Nf.u./Ns formula units, and the remaining atomic positions
are obtained by applying the Ns symmetry operations (for detailed discussion see also
section 3.3.5).

Other techniques include post processing of the locally relaxed structures. “Shaking”
is based on the assumption that low energy structures are close to even lower energy
structures nearby in the configurational space. Random atomic and cell displacements
are used to escape from the current catchment basin and to find new structures through
a subsequent local relaxation. Furthermore, phonon spectrum analysis can be carried
out to identify low frequency modes or modes associated to imaginary phonons of a
minimized structure. Following such eigenmodes in super-cells will lead to even lower
energy structures. However, phonon calculations are computationally expensive and can
only be carried out for a small selection of good candidate structures.

3.3 Minima hopping method

The minima hopping method [8] is an efficient algorithm to find the global minimum
configuration by minimizing the potential energy of a complex system. This method is
not based on thermodynamic principles like some standard algorithms but on the fact
that by exploring the low energy part of the PES as fast as possible the global minimum
will be revealed at some point. In order to strive trough the low energy configurations
many local minima separated by potential barriers have to be visited.
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The minima hopping simulation will start with an arbitrary configuration in a certain
funnel on the PES. Due to high barriers surrounding the funnel the system will be trapped
in it although the lowest minima within the funnel can be found quickly. The idea of the
MHM is to avoid revisiting already explored minima and to overcome the high barriers
surrounding the funnel in such a way that new, energetically lower funnels can be visited
and explored efficiently.

3.3.1 The algorithm

The MHM uses a walker to explore the PES by consecutively visiting local minima. This
is done by “hopping” from one minimum to the next using molecular dynamics based
escape moves and local geometry relaxations. The algorithm of the MHM is divided
into two parts: while the inner part is responsible for the jumps into a neighboring local
minimum the outer part is used to accept or reject this minimum.

After the inner part has performed a move into a new local minimum M it is accepted
by the outer part if its energy E(M) is less than the sum of the energy E(Mcur) of the
previous minimum Mcur and a positive energy parameter Ediff. During the simulation,
Ediff is adjusted such that half of the new minima are accepted and half are rejected by
the outer part. This outer mechanism ensures that the accepted minima have a preference
for decreasing energies. Ediff will increase by a factor of α2 > 1 if a move into a minimum
with higher energy than E(Mcur) + Ediff is proposed by the inner part, and it will be
decreased by a factor α1 < 1 if the energy is lower. In this way the parameter Ediff is
adjusted throughout the simulation such that in average half of the proposed minima are
rejected and half are accepted. It can be shown that this condition is obtained if α2 =

1
α1

(see appendix C). Hence, if the inner loop exclusively proposes high energy structures
these moves will eventually be accepted as well.

The escape moves performed by the inner part is implemented by a molecular dynamics
(MD) simulation, during which the system has a random Boltzmann velocity distribution
with a kinetic energy Ekin. In order to escape from the current minimum Mcur into a new
basin of attraction, Ekin has to be larger than the height of the potential barrier between
neighboring minima. The MD simulation is stopped as soon as mdmin potential energy
maxima have been crossed and the mdmin-th minimum has been reached along the MD
trajectory. Then, a local geometry relaxation is performed to the new minimum M . The
relaxed structure is either the same as the initial configuration before the MD simulation
or a configuration that was already visited before, or it is a new one that has not been
discovered in previous steps.

Although a high kinetic energy will result in a higher possibility of finding new minima in
each escape move it is not desirable to cross high barriers. In chemistry, the Bell-Evans-
Polanyi [77] principle states that strongly exothermic reactions have a low activation
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Figure 3.3: Illustration of the Bell-Evans-Polanyi principle.

energy. Reactant and product are in fact neighboring local minima on the PES and
the chemical reaction is a transition of an energy barrier connecting the two minima.
Hence, the Bell-Evans-Polanyi principle can be generalized to any transitions between
local minima on the PES during MD simulations. Recently, Roy et al. have shown that,
on average, crossing low energy barriers along MD trajectories will lead into the basin
of attraction of lower energy local minima than crossing high energy barriers [142]. The
BEP is illustrated for a simple model in Figure 3.3. A one dimensional energy landscape
is approximately represented by two red parabola. The energy barrier connecting the two
minima is lowered as the energy of the product is reduced (shown in green). Therefore, a
high kinetic energy will result in visiting a lot of undesirable local minima. On the other
hand choosing Ekin too small will demand many MD simulations until an escape path
is found. Therefore, Ekin is continously adjusted: it is decreased by a factor β3 if the
escape trial is successful, and increased by a factor of β1 and β2 if the escape trial was
unsuccessful or if the structure has been visited before, respectively. The latter feedback
mechanism requires that local minima are reliably distinguished, which can be achieved
for example by their energies. Therefore, the energies of all visited configurations are kept
in a history list. A flowchart of the algorithm is shown in Figure 3.4.

3.3.2 Minima hopping method vs. other methods

The MHM is not based on thermodynamic principles, thus allowing to overcome high
energy barriers more quickly. There are some similarities to basin hopping in the sense that
also a walker is used to explore the PES. However, molecular dynamics is applied when
performing moves on the PES, which has several advantages over random displacements
as applied in basin hopping. First of all, highly unphysical high energy structures are
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avoided when performing moves on the PES: during escape trials the kinetic energy at
the start of the molecular dynamics trajectory is finite, hence the Newton’s equations
can be integrated with sufficient accuracy. Secondly, molecular dynamics can overcome
several barriers within a few number of time-step. This is favorable over single barrier
transitions, as demonstrated by Sicher et al. [143]. At last, using molecular dynamics as
escape trials statistically leads to low energy structures, as illustrated by the Arrhenius
equation (which states that low energy barriers can be more easily overcome) together
with the Bell-Evans-Polanyi principle [77] (which states that low activation barriers will
lead to strongly exothermic reactions).

Comparative studies have been carried out recently to determine the difference in effi-
ciency between genetic algorithms and the MHM [114, 144]. Lennard-Jones, silicon and
gold clusters were investigated by Schönborn et al. [114] who concluded that genetic al-
gorithms are well suited if the ground state structures are highly symmetric, but they
are less efficient for very complex energy landscapes. Ji et al. [144] investigated AlxSc1−x

Figure 3.4: The minima hopping algorithm flowchart.
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and boron crystals of various system sizes, and the genetic algorithm was found to be
more efficient in terms of the number of scanned minima for larger cells. However, since
unphysical configurations can be obtained during the mating operations within the ge-
netic algorithm, local relaxations were found to be more expensive computationally than
within the MHM.

3.3.3 Generalization to periodic systems

The initial implementation of the MHM method was capable of performing a search for
low-lying minima on the 3N -dimensional PES E = E({ri}), i = 1, . . . , N , of an isolated
molecule or a periodic system in a rigid box with N atoms. However, it is essential for the
purpose of structure prediction in periodic systems that not only the atomic positions are
allowed to be optimized, but also the cell shape, especially when external constraints are
imposed. Furthermore, using a variable cell shape reduces the enthalpy barriers for phase
transitions. Hence, to generalize the MHM method for periodic systems with variable cell
shape, the degrees of freedom are augmented by the three variable cell vectors a, b and c in
h = {a,b, c}, as discussed in section 3.1. Again, the atomic positions can be expressed by
vectors in lattice coordinates si according to ri = hsi, and the potential energy is replaced
by the configurational enthalpy H = E({si}, h) + PΩ(h) when an external pressure P is
imposed. Periodic boundary conditions are applied for the evaluation of H .

Fully unconstrained local geometry relaxations must be carried out by optimizing the
atomic and cell vectors to identify stable structures (see section 3.1 for details). Similarly,
for the escape step, the MD needs to be performed taking into account the additional cell
parameters. Hence, both the atomic positions in lattice coordinates si(t) and the lattice
vectors h(t) are time-dependent. A Lagrangian to perform variable cell shape MD at
constant pressure P was proposed by Parrinello and Rahman in 1980 [62] and has been
widely applied:

L =

N∑

i=1

mi

2
ṡTi gṡi − E +

W

2
Tr(ḣT ḣ)− PΩ (3.14)

where g = hTh is the metric tensor, W is the fictitious mass of the simulation cell and mi

is the mass of atom i. The first two terms in equation (3.14) correspond to the kinetic and
potential energy of the atoms, respectively. The third and the fourth term correspond to
the kinetic and potential energy of the simulation cell, respectively. The sum of the terms
two and four is simply the negative enthalpy of the system. In fact, E = E({si}, h) can be
readily computed for any many-body potential which are expressed by atomic positions,
such as DFT calculations.

The symmetrized dynamical stress tensor Π can be written as

Π =
1

Ω

(
N∑

i=1

miviv
T
i − fhhT

)
(3.15)
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where we use the cell gradients of the potential energy fh
αβ = ∂E({si},h)

∂hα,β
and define vi = hṡi.

The second term in equation (3.15) is related to the Couchy stress tensor σαβ = − 1
Ω

∂E
∂ǫαβ

(the stress tensor for the static case) by fhhT = −Ωσ, where ǫ is the strain tensor (see
appendix A or Ref. [145])

Using the Lagrange’s equation, the equations of motion for the atomic positions in lattice
coordinates and the cell vectors are then given by

s̈i = −g
−1

mi

∂E

∂si
− g−1ġṡi (3.16)

ḧ =
1

W
(Π− P )η (3.17)

where
η = {b× c, c× a, a× b} (3.18)

A detailed derivation of above equations is given in appendix B. The cartesian Hellman-
Feynman forces from DFT calculations can be directly employed if we use the identity
∂E({hsi})

∂si
= hT ∂E({ri})

∂ri
in equation (3.16):

s̈i = −h
−1

mi

∂E

∂ri
− g−1ġṡi (3.19)

The tensor in the second term of equation (3.16) and (3.19) can be expanded to

g−1ġ = (hTh)−1(ḣTh + hT ḣ) (3.20)

Since the forces are velocity-dependent, the time integration should be performed by an
advanced integration scheme to correctly find the numerical solution of the equations of
motion (3.16) and (3.17) (for example the symplectic Runge-Kutta method or a predictor-
corrector scheme). However, we are only interested in escaping the local minimum and
we only perform short MD runs with few oscillations in the potential energy. Therefore,
the long-time conservation of the total energy is not an issue and we can simply use finite
differences to discretize the equations of motion, equivalent to the Verlet algorithm.

If we define the following generalized forces

fi := −g−1∂E

∂si
(3.21)

F := (Π− P )η (3.22)

and use finite difference formulae for s̈i, ṡi and ḧ, the time evolution of the atomic positions
and the cell vectors can be computed iteratively according to

si(t +∆t) = si(t) + ∆tṡi(t) + ∆t2
(

1

mi
fi(t)− g−1(t)ġ(t)ṡi(t)

)
(3.23)

h(t +∆t) = h(t) + ∆tḣ(t) + ∆t2
1

W
F (t) (3.24)
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where we use ṡi(t) =
si(t)−si(t−∆t)

∆t
and ḣ(t) = h(t)−h(t−∆t)

∆t
, which can be considered as ve-

locities of the corresponding variables.

3.3.4 Softening and optimizing cell parameters

Softening, a method of biasing the initial velocities for the MD simulation of the escape
step, is used to increase the efficiency of the MHM [114]. For the crystal structure pre-
diction MHM the velocity vector consists not only of atomic velocities, but also of the
cell velocities. First, a random velocity direction with Gaussian distributed magnitudes
is chosen. The initial velocity amplitude is chosen that the kinetic energy is small, al-
lowing only low barriers to be crossed during the MD escape, based on the assumption
that the BEP is applicable on average. Furthermore, low energy barriers are generally
connected to low frequency eigenmodes of local minima [143]. These two properties can
be readily extended to the enthalpy. Therefore, the probability of finding low enthalpy
configurations can be expected to increase when the direction of the initial velocity vec-
tor of a MD run points toward a direction with low curvature. Hence, in a second step,
the velocity vector from the first step is rotated such that it is oriented along soft mode
directions of the current minimum. The rotation procedure is performed by iteratively
minimizing the energy along the escape direction at a constant distance from the local
minimum [114]. However, over-biasing the velocities is not favorable since the random
and therefore ergodic character of the escape step should be retained in order not to arrive
at a deterministic process. In fact, softening is mainly applied to eliminate components
of the velocity on hard modes.

For molecular crystals the softening procedure is especially useful to preserve molecular
subunits during MD escape trials. Intermolecular interaction are usually soft and medi-
ated by ionic or weak Van der Waals forces, whereas atoms within the molecules have
stronger covalent bonds which cannot be easily broken. By eliminating velocities along
high curvature directions the global motion of the molecules can be enhanced and in-
tramolecular vibrations can be avoided, which could lead to undesired breaking of atomic
bonds.

If a quasi-Newton method (like the BFGS method) is used to perform local geometry
optimization within the MHM an alternative softening procedure is possible. In a quasi-
Newton method an approximate Hessian matrix is continuously updated during a geom-
etry relaxation. Before performing the MD escape step the approximate Hessian matrix
from the previous relaxation step is diagonalized and a small number of low frequency
eigenvectors are extracted. A randomized superposition of these eigenvectors are then
used to provide the initial, soft velocity vector for the following MD trajectory. If fea-
sible, the Hessian matrix can also be computed analytically to evaluate the soft mode
directions.
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Softening has been successfully used in previous applications of the MHM [114, 13, 14].
In Table 3.2 the performance of the MHM with and without softening is compared for
a benchmark system, a BLJ mixture with type A and B atoms in a small cell, A8B4.
It can be clearly seen that the curvature of the enthalpy along the velocity direction
is reduced by roughly one order of magnitude when softening is used. The significant
increase in the efficiency when softening is applied can also be ascribed to improving the
cell velocities, since the impact of cell parameters on the structure can be larger than the
atomic coordinates. For cells with a small number of atoms this can be illustrated by
a simple example. Consider a simulation cell containing one single atom at the origin.
The lattice vectors are given by a = a

2
(ŷ + ẑ − x̂), b = a

2
(ẑ + x̂− ŷ) and c = a

2
(x̂+ ŷ − ẑ)

(where the hats denote the unit vectors and a is the lattice constant), which define a body-
centered lattice. Assume the atomic coordinates s were fixed. Transforming the cell to
a∗ = a

2
(ŷ + ẑ), b∗ = a

2
(ẑ + x̂) and c∗ = a

2
(x̂+ ŷ) will result in a face-centered cubic lattice,

a totally different structure. However, when the cell parameters a, b and c are fixed, there
is no possibility to transform the atomic coordinates s to a system where a face-centered
cubic lattice is obtained. Obviously, the impact of the cell parameters decreases with
increasing number of atoms, which is equivalent to the limit where an infinitely large cell
is used. Similarly, this principle is also used in metadynamics simulations where the cell
parameters are chosen as the collective variables (see section 3.2.3 for details). The effect
of softening on the efficiency of the MHM is in general larger for small periodic cells with
a low number of atoms than for isolated molecules of similar size.

The fictitious cell mass W is another adjustable parameter. Choosing a too large ratio
for cell and atomic mass will result in a very stiff cell which will not adjust itself smoothly

Table 3.2: The impact of softening on various quantities of the MHM is shown. Starting from 100 different
random input configurations all runs were continued until the ground state structure was found, resulting
in a success rate of 100%. The first column shows the different degrees of freedom (DOF) that are taken
into account during softening. The second and third column show the median value of the curvature of
the enthalpy κ̃ along the initial MD velocity direction before (κ̃b) and after (κ̃a) softening, respectively.
The fourth column contains the median value of the number of visited minima ñmin before reaching the
global minimum. A BLJ mixture with A8B4 atoms was used described by the modified Lennard-Jones
potential as discussed in section 4.1. The parameters were set to σAA = 1.50, σAB = 2.25, σBB = 3.00
and ǫAA = 1.00, ǫAB = 1.25, ǫBB = 1.00, and a cutoff radius of rcutαβ = 2.5σαβ was used.
§The number of softening iterations was doubled.
†Initial atomic velocities were set to zero before softening.

Softening DOF κ̃b (ǫAA/σ
2
AA) κ̃a (ǫAA/σ

2
AA) ñmin

None 806.22 806.22 21.0
Atoms 809.55 105.35 16.0
Atoms & Cell 813.62 74.18 11.5
Atoms & Cell§ 829.77 52.33 11.0
Atoms & Cell† 111.32 64.47 10.5
Atoms & Cell†§ 112.62 50.73 8.0
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during the simulation. However, when this ratio is too small the cell can fluctuate violently
resulting in a strong deformation of the cell within one step of the simulation. We have
found that choosing the cell mass similar to the atomic masses is a reasonable choice.

During a MHM simulation it can happen that the cell shape gets heavily distorted leading
to small angles between the three lattice vectors, and thus resulting in a very flat cell.
This behaviour is not desired since it makes it difficult to identify equivalent structures
in different cells. Therefore, whenever necessary, a transformation of the cell vectors is
performed to obtain shorter cell vectors (for details see Ref. [146]).

3.3.5 Seeding initial structures

The initial structure determines the funnel of the PES which is first explored in a MHM
simulation. Optimally, this initial funnel contains the global minimum in which case it
can be found rapidly within a few minima hopping steps. The efficiency in finding the
global minimum structure in simple single-funnel systems is therefore independent of the
initial structure. However, in a general multi-funnel system there is no a priori knowledge
about the energy landscape, in particular one cannot predict which funnel contains the
global minimum and which initial structure belongs to which funnel. Therefore, the
efficiency of a MHM simulation can depend significantly on the initial structure. Similar
to the task of preserving a diverse genetic pool in evolutionary algorithms, the most
promising approach is to start several MHM runs simultaneously with a set of different
initial structures. Random structures constrained through simulation cell volume and
minimal inter-atomic distances are commonly used and give a reasonable initial sampling
of the energy landscape. More sophisticated algorithms can contain chemical information
such as bond-angles and molecular subunits.

Symmetries play an important role for classifying structures in crystallography. They are
defined by combinations of 32 point group elements, which include reflection, rotation,
rotinversion, glide planes and screw axis, together with the 14 Bravais lattices in 3 di-
mensions. In total there exist 230 crystallographic space groups, which are documented
and assigned a space group index (SGI) in the “International Tables of Crystallogra-
phy A” [147]. Although the indexing is arbitrary the overall symmetry increases with
the SGI (for example SGI = 1 is described by a triclinic cell and the identity operator I,
SGI = 2 additionally contains an inversion center, etc.). Symmetry operations can be
represented by a 3× 3 matrix M and a translational vector d, which are used to operate
on an arbitrary point in space r according to r′ = Mr + d. For convenience, M and d

can be combined in a 4× 4 matrix M to operate on an extended vector R = (r, 1) in R
4:

M =

(
M d

0 1

)
=




M1,1 M1,2 M1,3 d1
M2,1 M2,2 M2,3 d2
M3,1 M3,2 M3,3 d3
0 0 0 1


 , R =




r1
r2
r3
1


 (3.25)
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Figure 3.5: Random input structures were used to seed 10 MHM runs of binary Lennard-Jones mixtures
with A8B4 atoms described by the modified Lennard-Jones potential as discussed in section 4.1. The
parameters were set to σAA = 1.50, σAB = 2.25, σBB = 3.00 and ǫAA = 1.00, ǫAB = 1.25, ǫBB = 1.00,
and a cutoff radius of rcutαβ = 2.5σαβ was used. The simulations were terminated after finding 50 distinct
local minima for each run. These structures were then sorted according to their energies and analyzed
with respect to their symmetries, giving totally more than 300 distinct minima. The space group indexes
of the minima are shown with respect to their energy ordering.

Depending on the symmetry elements of a given space group, all points in a crystal are
characterized as so-called general or special Wyckoff positions. Special Wyckoff positions
are invariant under at least one symmetry operation of a given space group, whereas
general Wyckoff positions are points without high symmetry.

An analysis of structural databases shows that frequencies with which structures are
observed in nature are not uniformly distributed among the space groups [148]. Several
statistical evaluations are available in the world wide web which list analysis of space
group frequencies 1. We analyzed all structures in the Crystallography Open Database 2

with respect to the reported SGI. Only 0.76% of the structure have no symmetry at all
(except identity, SGI = 1). Therefore, we conclude that symmetric structures are more
likely to be found in ground state crystal structures predicted with the MHM. The most
frequent SGI of the statistical evaluation are shown in table 3.3.

Furthermore, a symmetry analysis of structures found in MHM simulations of all systems

1http://pd.chem.ucl.ac.uk/pdnn/symm3/sgpfreq.htm and
http://www.bmsc.washington.edu/CrystaLinks/space_group_freq.html

2http://www.crystallography.net
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we have investigated so far clearly shows that high symmetry structures appear more often
at lower energies. This behavior is illustrated for a model system in Figure 3.5. Structures
found in ten different MHM simulations on a Lennard-Jones mixture are ordered according
to their energies and the corresponding space group indexes are plotted along the y-axis.
The corrected Spearman’s rank correlation coefficient is ρS = −0.52, which indicates that
the space group index ordering is fairly anti-correlated with the energy ordering (a perfect
anti-correlation would result in ρS = −1.0 and no correlation in ρS = 0.0, see Ref. [58] and
references therein for details). Therefore, seeding MHM simulations with high symmetry
structures should statistically increase the probability of starting from structures close to
the global minimum.

Another important benefit from using symmetrized input structures to improve the ef-
ficiency of the MHM is related to the unconstrained search algorithm underlying in the
MHM. In general, MHM simulations are performed without any constraints on atomic or
cell degrees of freedom which is perfectly desirable when an extensive exploration of the
PES is performed. Symmetric structures are however more easily broken than created
within a single MHM step. This can be demonstrated if we look at the ground state
structure of silicon for example. Consider a perfect diamond silicon supercell with N
atoms, where N is an even number. The energetically most accessible and stable single
point defect is the fourfold coordinated site defect [52], which can be created by a single
Wooten-Winer-Weaire displacement of two close-by atoms [149]. The number of possibil-
ities for creating a single FFCD and thus destroying the symmetry is proportional to the
number of atomic sites N . On the other hand, there is only one way to regain the perfect
diamond crystal containing a single FFCD by displacing the two affected atoms. In the
MHM this imbalance is counteracted to some extent by using the softening procedure and

Table 3.3: Space group analysis of 191902 structures from the Crystallography Open Database. The first
two columns contain the data obtained from the whole database, whereas the comumns 3 and 4 contain
the SGI and their frequencies published in “American Mineralogist”

All structures (191902) American Mineralogist (4955)

SGI % SGI %
14 32.6 227 13.6
2 22.0 12 9.7
15 8.6 15 9.4
19 5.2 62 8.4
4 4.2 14 7.7
61 2.9 225 6.7
62 1.8 2 6.0
33 1.3 230 3.3
12 1.2 148 2.3
227 1.0 11 2.0
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Table 3.4: The impact of seeding the MHM simulations with symmetrized input structure is shown for
a A16B8 Lennard-Jones mixture with the same parametrization as above. 100 MHM runs from different
input structures were carried out with each method. The first column describes the method used to
generate the input structures, whereas column 2 contains the average number of visited minima n̄min

before reaching the global minimum. Since some of the input structures relaxed within the first MHM
step to the global minimum, we eliminated such runs for a corrected statistical evaluation in the next
three columns. The corrected average n̄corr.

min is shown in column 3, and columns 4, 5, and 6 contain the
first, second and third quartile (Q1, Q2, Q3).

Input seed n̄min n̄corr.
min Q1 Q2 Q3

Random 1291.34 1304.38 249.0 851.0 2193.0
Symmetric, 1 cell 614.42 787.47 20.0 221.5 1142.0
Symmetric, 2 cells 300.99 411.94 14.0 37.0 373.0
Symmetric, 4 cells 422.75 570.94 16.0 89.0 774.0
Symmetric, 8 cells 107.52 305.34 2.0 3.0 220.0

MD as the escape step, exploiting the fact that the barrier height of creating a defect is
larger than to obtain the perfect crystal. However, starting (or periodically re-seeding) a
MHM simulation with a highly ordered structure can significantly improve its efficiency.

We implemented a structure generator to investigate the influence of symmetrized input
structures on the MHM efficiency. First, a SGI is chosen at random and the corresponding
symmetry operations are identified. Then, trial particles are placed into the appropriate
cell and all symmetry operations are applied. Wyckoff positions with high symmetry are
treated with special care and are specifically included into the trial structures. Structures
and space groups where the correct stoichiometry cannot be obtained or where the atomic
distances are too short given a target cell volume are rejected. Sub-cells can be defined
to create a crystal made from smaller primitive building blocks.

A statistical analysis on a A16B8 Lennard-Jones mixture was carried out with different
seeding techniques. Besides generating structures with the full number of atoms per
cell, smaller cells containing 1/2, 1/4 and 1/8 of the total number of atoms were gener-
ated and used to span a super-cell with the correct composition. Table 3.4 contains the
average number of local geometry optimizations before reaching the global minimum,
which belongs to the P6/mmm space group with three atoms A2B1 per cell. Employing
symmetrized input structures clearly enhances the efficiency of the MHM, and utilizing
sub-cell constructions introduces a further improvement of the method.

3.3.6 Parallelization and lattice vector prediction

Another benchmark system was investigated with the MHM, a silicon supercell with
64 atoms at zero pressure. Since the number of local minima increases exponentially
with respect to the number of atoms in a system, finding the global minimum of a cell
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(a) (b)

Figure 3.6: The LVPS is illustrated for a Si64 supercell in a perspective (a) and a orthographic (b) view.
The yellow (light) and red (dark) spheres denote the positions of the atoms before and after applying
LVPS, respectively. The resulting supercell consists of 66 atoms. The primitive cell found by the LVPS
is shown in the right bottom corner by a blue parallelepipede.

with this many atoms is a challenging task. Furthermore, the silicon supercell with 64
atoms is a system with both crystalline and a large amount of amorphous structures and
therefore presents an additional challenge for global optimization. For a silicon supercell
with 64 atoms in a rigid box [8] the difficulty of finding the ground state has already
been demonstrated. Several million minima had to be visited before finding the ground
state, the well-known cubic diamond structure. To demonstrate the advantage of the
variable cell shape MHM, we revisit the same problem set. Using the EDIP potential
for silicon [45, 46, 47] statistical data were collected for a set of 100 serial MHM runs at
zero pressure. Each run started with a highly random configuration (no symmetry) in a
distorted cell and was stopped as soon as a structure with ground state energy was found or
8000 distinct minima were accepted, a small number for such a large system. Since some of
the local minima are visited several times and only half of the new structures are accepted
the search length corresponds to visiting at most some 50 000 minima. The success
rate was found to be 45%. Each successful run visited an average of some 13 000 local
minima till finding a structure with ground state energy, an improvement in performance
by two orders of magnitude compared to the earlier results in [8]. However, since the
EDIP potential has only first neighbor interaction, the cubic diamond structure and its
polytypes (for example the hexagonal diamond Lonsdaleite structure) all give the same
ground state energy. Therefore, only 12 out of the 45 successful runs arrived at the cubic
diamond structure. It needs to be emphasized that this is not a shortcoming of the MHM,
but an effect of the short range character of the EDIP potential. Increasing the number
of distinct and accepted minima to be found will lead to an increase in the success rate.
So, when increasing the search length by a factor of 6 the success rate is almost doubled
to 80%.

Another approach to increase the success rate of the MHM is by parallelizing the MHM
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runs. As discussed above, the success rate of a serial MHM simulation can depend heavily
on the initial guess of the structure. Therefore, it is advantageous to start multiple parallel
simulations starting from different initial structures. We performed a simple statistical
analysis to estimate the computational cost necessary if, instead of performing multiple
serial runs with index i, a parallel run is started with m processes of which each requires
li MHM steps to find the ground state. In the parallel version all processes would be
stopped as soon as one of the processes finds the ground state structure. The necessary
number of minima to be visited is given by nm

min = m · min{li} where i = 1, . . . , m. An
average value nm

min should be computed from runs with different initial structures. Then,
the optimal number of processes for the particular problem is m = m0 resulting in the
minimal value of nm

min. Applied to the Si64 system the computational cost can be reduced
to half for m0 = 6, n6

min ≈ 6200

For non-periodic systems the identification of structures based on their energies is suf-
ficiently accurate in most cases, but the enthalpy degeneracy of the polytypes within
short-ranged potentials requires some additional method to distinguish different struc-
tures. Since the most natural characteristic of a structure is its geometry we use a fin-
gerprint function F related to experimental diffraction patterns proposed by Valle et
al. [112, 56]. A continuous one-dimensional function is defined by summing up weighted
Gaussian functions centered at all relative atomic distances. The fingerprint function for
a single component system is given in equation (3.26), where rij are the interatomic dis-
tances, δ(r− rij) are Gaussian-smeared delta functions, N is the number of atoms in the
unit cell and V is the unit cell volume. To reduce numerical errors the fingerprint function
is discretized into m bins of width ∆, leading to a vector of size m uniquely related to the
structure. A cutoff distance larger than the maximal diagonal of the unit cell is applied.
Index i runs over all atoms in the simulation cell, and j runs over all atoms within the
cutoff range with respect to atom i. By using the angle between two fingerprint vectors
a cosine distance is defined which then can be used to determine the similarities between
structures.

F (r) =
∑

i∈cell

∑

j

δ(r − rij)

4πr2ij
N2

V
∆

− 1 (3.26)

Frequently, when a global optimization run does not reach the global minimum for a long
time, the simulation is stuck in an energy funnel with barriers hard to overcome. In most
cases of our simulation of Si64 these funnels are determined by lattice vectors which can
fit a cubic diamond structure with 62 or 66 silicon atoms, but not exactly the given 64
atoms. In these cases, a diamond structure (or one of its polytypes) fits into the cell
perfectly with exception of some defective subregions where 2 Si atoms are either missing
or are redundant. For these cases we developed a lattice vector prediciton scheme (LVPS)
to modify the simulation cell by adding or removing atoms such that a perfect crystalline
structure is recreated. We define a scalar field f(r) by summing up Gaussian functions
with a width σ on each atomic position ri



52 3. Structure prediction

f(r) =
N∑

i=1

1

(2πσ2)(3/2)
exp

(
−(ri − r)⊺(ri − r)

2σ2

)
(3.27)

The Gaussian width should be small enough that the overlap between neighboring atoms
is vanishingly small. The autocorrelation function is defined as

h(r) =

∫ ∞

−∞

f ∗(τ )f(r+ τ )dτ (3.28)

In Fourier space this convolution is simply a multiplication of the individual fourier trans-
formed functions of f ∗ and f , and according to the Wiener-Chinchin theorem

H = F(h) = (F(f))∗ · F(f) = |F(f)|2 (3.29)

where F denotes the Fourier transform and ∗ denotes the complex conjugate. A transfor-
mation back to real space results in the desired autocorrelation function. The autocorre-
lation function is then scaled such that the peak at the origin is 1, and periodic boundary
conditions are applied. The three peaks closest to the origin with an amplitude of more
than 0.5 spanning a parallelepipede with a non-vanishing volume give the vectors of a
primitive unit cell. Using this cell to span the whole simulation cell, the most common
basis is identified and the crystalline structure is reproduced (see Figure 3.6). Using LVPS
to identify ground state structures the success rate was further increased to almost 95%.
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Figure 3.7: The enthalpies of the local minima visited during a MHM simulation of a Si64 supercell at
zero pressure, starting from a random input configuration. The enthalpies were shifted such that the
ground state enthalpy is zero. The inset shows clearly the crossing of the potential barrier before arriving
at the ground state structure.
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The LVPS can be further used to predict the correct system size when the number of
atoms in the crystal basis is not known in advance.

Figure 3.7 shows a typical progress of a MHM run for a Si64 supercell at zero pressure.
First, starting from a random structure, the enthalpy decreases as new parts of the en-
thalpy surface are explored. After visiting some 4000 local minima, the system is caught
for some time in a deep funnel. This funnel corresponds exactly to the case discussed
above and the perfect crystal could be completed applying the LVPS. However, after vis-
iting slightly more than 10 200 minima a barrier is crossed and the system finally reaches
the ground state structure.

The EDIP potential proved to be somewhat inaccurate when predicting the enthalpies of
structures at a pressure of 16 GPa. Both the well-known β-tin structure [150, 151, 152]
(Si-II) and the Imma structure [153] (Si-XI) were found to be metastable in EDIP. The
simple hexagonal phase [152] (Si-VII) is not even a local minimum on the enthalpy sur-
face and relaxes to the simple cubic structure. Instead, a structure with shifted layers of
cubic elements where each atom is fourfold coordinated with a bond length ≈ 2.4 Å was
predicted as the ground state with an enthalpy of −2.923 eV and a volume of 14.378 Å3

per atom, a structure not in the fitting database used for EDIP. Finding this unexpected
crystalline ground state shows the predictive power of the MHM method for unknown
structures. However, the novel structure was found to be unstable within DFT calcula-
tions. The second lowest crystalline structure was found to be the bct-5 structure [154]
with an enthalpy of −2.865 eV and a volume of 15.264 Å3 per atom.

3.3.7 Volume constraints

Up to now external constraints were imposed in the form of isotropic pressure which is also
the quantity that can be in general controlled under experimental conditions. However,
in some cases one is interested in structures which exist at a specific cell volume. This is
for example the case for porous phases in compounds with a dense ground state structure.

We employed the MHM on a Si46 supercell at zero pressure with volume constraints which
was realized by introducing a harmonic energy term Evol (second term in equation (3.30))
in addition to the standard EDIP potential energy:

Etot = EEDIP + k · (det(h)− Ω0)
2 (3.30)

where k is a small scalar value and Ω0 is the target volume. The additional gradient on
the cell vectors is given by

∂Evol

∂hαβ
= 2k · (det(h)− Ω0) det(h)h

−1
βα (3.31)

The Si46 was chosen since it can form the unit cell of a type-I Si46 clathrate structure [156]
(see Figure 3.8). Although clathrates have fourfold coordinated structures their overall
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geometry differs significantly from the cubic diamond structure. Composed from poly-
hedral building blocks, a major part of the unit cells remains void, resulting in porous
crystals. Therefore, the type-I Si46 clathrate within the EDIP potential has a large volume
per atom ratio of 22.852 Å3.

Starting from random input positions 20 MHM runs were started using the equilibrium
volume of the type-I Si46 clathrate as the target Ω0 and k = 2.0 eV/Å6, each process
visiting some 1.5 Mio. minima. Only one run was able to find the clathrate ground state
unit cell after visiting roughly 150 000 minima. Nevertheless, finding the clathrate unit
cell at all is an encouraging result since this particular system is a big challenge in global
optimization for the following reasons. First, there is only one unit cell corresponding to
the ground state and it consists of a huge basis of 46 atoms with a complex structure.
Second, there are two main funnels that compete during the search for the ground state.
On one hand, the system prefers to crystallize to the cubic diamond structure, but the
void areas with the dangling bonds are energetically not favorable. On the other hand
there is a tendency of forming spherical cage-structures in a porous crystal, but it is
seldom possible to obtain tetrahedral bond angles. These are two fundamentally different
structures and are separated by a very high potential barrier hard to overcome, hence
starting from many different random input guesses is crucial for a successful run.

Figure 3.8: The type-I silicon clathrate is shown with the unit cell represented by the green box. Two
types of cages are used to compose the structure, a small pentagonal dodecahedron (blue) and a larger
hexagonal truncated trapezohedron (red)[155].



Chapter 4
Applications

We now present the results obtained on four different materials studied with the MHM
for crystal structure prediction. This chapter is structured as follows.

First we apply the MHM to a well studied benchmark system, a Lennard-Jones potential
which has been parametrized to model glassy materials. Global geometry optimization
on such systems is especially challenging due to its many-funnel characteristic. The
successful discovery of novel putative ground state structures presented in section 4.1
of this benchmark system clearly demonstrates the predictive power of the generalized
MHM.

Next, we attack a longstanding debate on the crystal structure of high pressure carbon
phases. Experimental evidences have been around for several decades which suggest the
existence of a novel super-hard carbon phase. Graphite compressed at ambient condi-
tions reveals unexpected changes in the optical transmittance, optical reflectivity, X-ray
diffraction pattern and in the raman spectra in the range of 10 to 25GPa. By performing
extensive ab initio minima hopping simulations at high pressures we discovered two pre-
viously unreported carbon allotropes, Z- and M10-carbon. In a close collaboration with
José A. Flores-Livas, who performed high pressure Raman experiments on graphite under
the supervision of Alfonso San Miguel in Lyon, France, we present strong evidences for
the presence of Z-carbon phase in samples of cold compressed graphite.

The third system under study is dedicated to hydrogen rich silicon compounds. Su-
perconducting phases of metallic hydrogen with a high transition temperatures Tc have
been predicted already in the late 1960’s. Chemical pre-compression of hydrogen by in-
corporating heavier atoms into the crystal structure was recently proposed by Ashroft
to give similarly high Tc. We employed a recently developed silicon-hydrogen Lenosky
tight-binding scheme together with the MHM to sample the enthalpy surface of disilane
SiH6 at high pressures. Thereby we identified two novel low-enthalpy phases of this com-
pound, one of which was found to be the most stable in a wide pressure range. In a close
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collaboration with José A. Flores-Livas we evaluated the electron-phonon interaction to
estimate its superconductiong transition temperature. Comparison with previous studies
shows that the Tc of this phase is significantly lower than previous predictions, calling for
a thorough unconstrained structural search in materials design.

Finally, we examine low temperature phases of LiAlH4. With its high hydrogen contents,
it has been touted as a hydrogen storage material for applications in hydrogen fuel cells.
Especially mobile vehicles call for novel materials to store hydrogen as an energy source
for proton exchange membrane fuel cells, which have the advantage of clean combustion
without exploiting fossil resources or producing green house gases. By performing minima
hopping simulations we identified a novel class of LiAlH4 phases which are significantly
lower in energy than the previously predicted ground state structure of this compound.
Synthesis of such phases would have profound implications on the stability and applica-
bility of LiAlH4 as a hydrogen storage material.

All structural searches were carried out by performing extensive minima hopping simula-
tions on the energy or enthalpy surface modeled by the given approximations (Lennard-
Jones potential, tigh-binding and DFT). Multiple parallel minima hopping simulations
(at least three) were carried out at a given stoichiometry, pressure and cell size. Their
convergence were ensured by the discovery of the putative ground state by at least 66%
of the simulations.

4.1 Structure of Binary Lennard-Jones Mixtures

In this section we present our results on a reinvestigation of much-studied BLJ mixtures
at zero pressure which are widely accepted benchmark systems. Lately, these mixtures
have been studied by Middelton et al. [157]. They found that ordered crystalline phases
are energetically favored, contrary to earlier results indicating a preference for glassy,
amorphous structures. The putative ground state structures found in this previous work
are available on the Cambridge Cluster Database (CCD) [158].

4.1.1 Parametrization of the Lennard-Jones potential

We studied all supercells available on the CCD, with 60, 256 and 320 atoms consisting of
80% type A and 20% type B components. In our calculations we used a small modification
of the well-known Lennard-Jones potential [159] (also used in Ref. [157]), truncated and
shifted using a quadratic function such that both the energy and the first derivative are
continuous at the cutoff distance [160]. The functional form of the pair potential is given
in equation (4.1) where the indexes α and β denote the atom types A and B, rαβ is the
interatomic distance, ǫαβ is the potential well depth and σαβ corresponds to the distance
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where the potential vanishes (not to be confused with the strain and stress tensors). The
potential is zero when the radial distance is larger than the cutoff rcutα,β. All parameters
are identical to the ones used in Ref. [157], namely: σAA = 1.00, σAB = 0.80, σBB = 0.88,
ǫAA = 1.00, ǫAB = 1.50, ǫBB = 0.50, and a cutoff radius of rcutα,β = 2.5σαβ . All energies and
enthalpies are given in units of ǫAA.

φαβ = 4ǫαβ

{[(
σαβ
rαβ

)12
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Finding low enthalpy structures is a challenging task for these specific mixtures due to the
following reasons. First, the parametrization of these Lennard-Jones mixtures have been
explicitly used to model glassy materials and are therefore known not to crystallize easily
(see references in Ref. [157]). Furthermore, the simulation cells are very large (especially
the cells containing 256 and 320 atoms). Therefore, starting from random configurations
as initial guess has proven to be a bad approach, since random structures are very likely
to form amorphous structures which take a long time to form crystalline structures even
if they are lower in enthalpy.

Inspired by the methods to handle large crystal structures proposed by Lyakhov et al. [113]
we used a modified approach of unit cell splitting to handle the 256 and 320 atoms cells.
The MHM is a powerful tool not only to predict ground state structures, but also to find
low lying excited configurations. To handle large cells containing many atoms we simply
split the simulation cell into smaller sub-cells. Then, starting from random configurations,
we run short MHM simulations on these sub-cells to sample the low enthalpy regions and
obtain a set of low enthalpy structures. By spanning the large simulation cells with these
sub-cells we get structures which now serve as initial guesses for several parallel MHM
runs on the large cell. However, it is essential to choose sub-cells which are not too similar
in structure since they might be members of the same funnel. In our investigation we
used up to 20 parallel MHM runs with a search length of visiting some 100 000 minima
per run.
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4.1.2 Putative ground state structures

For the 60 atom cell we found several thousand structures with enthalpies lower than
-7.08 ǫAA per atom, which is the lowest energy for this system in Ref. [157]. The putative
ground state was found to have an enthalpy of -7.49 ǫAA per atom. In fact, this value is
already lower than any other enthalpy of the larger super-cells which were investigated by
Middelton et al.. The super-cell of the ground state structure is shown in Figure 4.1 (a). It
consists of two different regions similar to a phase separation. The lower section consists
purely of type A atoms in a 4H close packed structure (ABCB stacking). The upper
half of the cell consists of a mixed phase where type B atoms are embedded in cages
consisting of 7 type A atoms with a C2ν symmetry, a monocapped trigonal prism. A
detailed illustration of this behavior is shown in Figure 4.2 (a).

The 256 atom cell turned out to be the most difficult system to optimize since 80% of 256
does not yield an integer number. Hence we used a system containing 205 atoms of type A
and 51 of type B, identical to the system used by Middleton et al. The reference enthalpy
on the CCD is -7.20 ǫAA per atom. We managed to find structures as low as -7.43 ǫAA per
atom, which is not as good as our results for both other cells. This can be ascribed to the
fact that it is difficult to find a super-cell that can hold a crystalline structure composed
of the odd numbers of atoms, 205 and 51, respectively. Similar to the 60 atom cell the
type A atoms are 4H close packed and the type B atoms are concentrated in a region.
However, three of the type B atoms are mixed seemingly randomly among the type A
atoms (see Figure 4.1 (b)). Furthermore, one third of the type B atoms are centered in
monocapped trigonal prisms consisting of 7 type A atoms, the rest in bicapped trigonal

(a) (b) (c)

Figure 4.1: Predicted structures for the Lennard-Jones mixtures with 60 (a), 256 (b) and 320 (c) atoms.
Type A atoms are denoted by red (large) spheres, type B atoms are blue (small).
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(a) (b)

Figure 4.2: The detailed structure of the embedded type B atoms. Subfigure (a) shows 7 type A atoms
which form a monocapped trigonal prism [161]. The symmetry group of this isolated molecule is C2ν .
Subfigure (b) shows the type B atom centered in a bicapped trigonal prism made of 8 type A atoms.

prisms consisting of 8 type A atoms as illustrated in detail in Figure 4.2 (b).

For the 320 atom cell we found the ground state structure to have an enthalpy of -7.50 ǫAA

per atom compared to -7.33 ǫAA per atom on the CCD. Again, the cell mainly consists
of regions with type A atoms in a 4H close packed structure and regions containing type
B atoms (Figure 4.1 (c)). The type B atoms are centered in bicapped trigonal prisms
consisting of 8 type B atoms. As expected, the cell containing 320 atoms was found to
have the lowest enthalpy structures among all three studied systems.

4.1.3 Summary

In summary, we were able to find new putative ground state structures for all BLJ systems
available on the CCD using the MHM. We have found that for large cells containing many
atoms the search for ground state structures becomes very difficult and that random input
structures are not ideal to seed MHM runs. This problem has already been reported
by Lyakhov et al. [113] when using genetic algorithms for crystal structure prediction.
Using the modified cell splitting method and the predictive power of the MHM to sample
structures close to the ground state the efficiency of the crystal structure prediction can
be significantly increased.
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4.2 Crystal Structure of Cold Compressed Graphite

Thanks to the flexibility to form sp, sp2 and sp3 bonds, carbon is one of the most versatile
chemical elements. At ambient pressure, it is usually found as graphite (the most stable
structure) or as diamond, but the richness of its phase diagram does not end there. In
fact, many other structures have been proposed during the past years, especially since
experimental data suggested the existence of a super hard phase of carbon. Evidences for
a structural phase transition in compressed graphite to this unknown phase of carbon have
been reported in numerous experiments [162, 163, 164, 165, 166, 167, 168]. In fact, in the
range of 10 to 25GPa one observes an increase of the resistivity [162] and of the optical
transmittance [163, 164], a marked decrease of the optical reflectivity [165], changes in
near k-edge spectra [168] and in X-ray diffraction (XRD) patterns [166, 167, 168]. Several
hypothetical structures have been proposed to explain these features, such as hybrid
sp2–sp3 diamond-graphite structures [169], M-carbon [118], bct-C4-carbon [170] and W -
carbon [171]. However, none of these structures is able to match all experimental data in
an unambiguous and fully satisfactory manner.

4.2.1 Structural identification and formation mechanism

A common way to search for new crystal structures is to perform a systematic survey of
the enthalpy surface using some sophisticated structure prediction method (for discussion
on such methods see section 3.2 or Ref. [172]). Here we use the MHM for crystal struc-
ture prediction. It was coupled to the all-electron projector-augmented wave method
as implemented in the abinit code [173, 174], and the relaxations were performed by
FIRE [60]. The local density approximation was employed based on its good description
of graphite. However, the enthalpy ordering was reconfirmed within the generalized gra-
dient approximation using two different functionals (Perdew-Burke-Erzernhof (PBE) [39]
and PBEsol [175]). The most promising candidate structures were then re-relaxed using
norm conserving Hartwigsen-Goedecker-Hutter (HGH) pseudopotentials [176]. Carefully
converged Mankhorst-Pack k-point meshes [177] were used together with a plane wave
cut-off energy of 2100 eV. All calculations were performed at zero Kelvin, and we neglected
the contribution of the zero-point motion of the nuclei to the enthalpy.

The MHM was employed using simulation cells with 4 and 8 carbon atoms at a constant
pressure of 15GPa. A plethora of different carbon structures were identified, a small
selection of which is presented in Figure 4.3. We found, in addition to previously proposed
structures of cold compressed graphite, two other low-enthalpy carbon phases that we call
Z-carbon and M10-carbon, respectively.

Z-carbon has Cmmm symmetry (see Figure 4.4(a)) and, like diamond, is composed of
sp3 bonds. The conventional unit cell has 16 atoms with cell parameters at 0GPa of
a = 8.668 Å, b = 4.207 Å, and c = 2.486 Å, yielding a cell volume of V0 = 90.7 Å3. The two
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Figure 4.3: Structural variety in high pressure phases of carbon
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(a)

(b)

Figure 4.4: (a) Structure of Z-carbon viewed from two different angles revealing planar four-membered
and non-planar eight-membered rings forming chains along the b-direction and channels in the c-direction.
The graphene sheets are in the a-c plane. (b) Proposed transition pathway from graphite to Z-carbon.

inequivalent carbon atoms occupy the 8p and 8q crystallographic sites with coordinates
(1/3, y, 0) and (0.089, y, 1/2), where y = 0.315. The structure contains four-, six- and eight-
membered rings, where planar four-membered rings and non-planar eight-membered rings
join together buckled graphene sheets. This structure can be interpreted as a combination
of hexagonal diamond and bct-C4-carbon [178].

In contrast to other structure prediction methods like evolutionary algorithms or ran-
dom search, the efficient escape moves in the MHM are based on fundamental physical
processes. Therefore, minima found consecutively during a MHM simulation are usually
connected through low enthalpy barriers. Since we have observed escape moves to and
from Z-carbon to occur exclusively from and to graphite, we expect this transition to be
the most probable. In Figure 4.4(b) we show a possible transition pathway from graphite
to Z-carbon. This process is a combination of sliding and buckling of the graphene sheets.
The naturally staggered, i.e. AB stacked, graphene sheets slide along the [210] direction to
an aligned AA stacking while the inter-layer distance decreases, and the aligned graphene
sheets deform to create an alternating armchair-zigzag buckling.

The second structure is a monoclinic phase with P2/m symmetry that we call M10-



4.2. Crystal Structure of Cold Compressed Graphite 63

Figure 4.5: The structure of M10-carbon from two different angles. The left panel shows the 5- and
7-membered rings, while the right panel reveals the 6-membered rings.

carbon. It also consists solely of sp3 bonds and contains 8 atoms per cell. At ambient
pressure, the unit cell parameters are given by a = 4.080 Å, b = 2.498 Å, a = 4.728 Å,
α = γ = 90◦ and β = 73.96◦. Two carbon atoms each occupy the crystallographic 2n sites
at (−0.1, y1,−0.113) and (−0.132, y1, 0.421), and the 2m sites at (−1/3, y2,−0.466) and
(−0.325, y2,−0.117), where y1 = 1/2 and y2 = 0. The overall structure is closely related to
M-carbon, also consisting of 5- and 7-membered rings along the b-axis, while 6-membered
rings are formed along the c-axis. In contrast to M-carbon, the 5-rings share the long
edge, whereas in M10-carbon they share the short edge. The structure is illustrated in
Figure 4.5.

4.2.2 Energetic, dynamical and electronic properties

In order to investigate the relative stability of Z- and M10-carbon, the calculated en-
thalpy difference with respect to graphite of several allotropes are compared in Figure 4.6
as a function of pressure. Z-carbon has the lowest enthalpy among all proposed cold-
compressed graphite phases, becoming more stable than graphite at 9.9GPa (around
2.5GPa below W -carbon). M10-carbon becomes enthalpically favorable over graphite
above a pressure of 14.4 GPa. As expected from the structural similarities withM-carbon,
bothM10- andM-carbon are very close in enthalpy throughout the whole pressure range.

We further investigated the dynamical lattice stability of these phases by computing the
phonon dispersion in the whole Brillouin zone. We used linear-response theory in the
framework of density functional perturbation theory [179, 180] with the abinit code. A
proper convergence was ensured with a 12x12x12 k-point sampling, a 4x4x4 q-point mesh,
and a cut-off energy of 800 eV. All phonon modes were real confirming the dynamical
stability of the structures. Furthermore, from a fit of the Murnaghan equation we obtained
a bulk modulus of B0 = 441.5GPa, and using the method proposed by Gao et al. [181] we
calculated a Vicker’s hardness of Hv = 95.4GPa for Z-carbon. M10-carbon has a slightly
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Figure 4.6: Calculated enthalpy difference per atom with respect to graphite of several carbon allotropes
as a function of pressure. Graphite is the horizontal line at zero. Z-carbon becomes more stable than
graphite at around 10GPa, while M10-carbon crosses the graphite line at 14.4 GPa.

lower bulk modulus of B0 = 423.7GPa, and the Vicker’s hardness is Hv = 93.5GPa.
Both bulk modulus and hardness of Z- and M10-carbon are extremely high and very
close to the values for diamond (Bdiamond

0 = 463.0GPa and Hdiamond
v = 97.8GPa), which

is compatible with the observed ring cracks in diamond anvil cells [168]. In Table 4.1 we
compare the structural properties of Z- and M10-carbon with other carbon allotropes.

To investigate the energy gap of Z-carbon we used the perturbative many-body GW
technique starting from the local density approximation [182]. These calculations reveal
that Z-carbon is an indirect band-gap material with a gap of around 4.7 eV. Therefore, this
material is expected to be optically transparent in agreement with experiments [163, 164].
Similarly, M10-carbon was found to be a wide band-gap semiconductor with an indirect
PBE gap of 4.4 eV at 0 GPa.

4.2.3 Experimental evidences

We have gathered several experimental observations supporting our interpretation that
Z-carbon is present in cold compressed graphite samples. The first comes from the XRD
experiment of Ref. [168]. In Figure 4.7 we can see that the broadening of the XRD-spectra
at high pressure can be explained by the coexistence of graphite and Z-carbon. However,
the experimental curve can also be explained to some extent by the other proposed carbon
allotropes [118, 170, 171] including M10-carbon so that this experiment alone is not
conclusive.

Other signatures for Z-carbon can be gathered from our measurements of Raman spec-
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Table 4.1: Calculated and experimental data (where available) of the
bulk moduli B0 (in GPa), Vickers Hardness Hv (in GPa) and volumes
per atom V0 (in Å/atom) at 0 GPa for bct-C4, M -,W -, Z-,M10-carbon
and diamond.

Structure Method B0(GPa) Hv(GPa) V0(Å)
bct-C4 this work 428.2 93.5 5.82

LDA [171] 433.7 5.83
M-carbon this work 428.4 93.9 5.77

LDA [118] 431.2 83.1 5.78
W -carbon this work 427.5 94.2 5.75

LDA [171] 444.5 5.76
Cub-Diamond this work 463.0 97.8 5.51

LDA [171] 466.3 5.52
Expt. 446a 60-120b 5.67a

Z-carbon LDA [20] 441.5 95.4 5.66
M10-carbon this work 423.7 93.5 5.79
a Reference [183]
b Reference [184]

troscopy under pressure. These experiments were carried out at 300K using the 514.5 nm
line excitation of an Ar+ laser, and a Jobin-Yvon HR-800 Labram spectrometer with
double-notch filtering with resolution better than 2 cm−1. In the high pressure Raman
measurements, we used a diamond anvil cell to apply pressure on two different samples
(single crystals of graphite and highly oriented pyrolitic graphite), inside a 120 micron
hole drilled in an iconel gasket. Argon and paraffin were used as pressure media. The
pressure was determined by the ruby luminescence of a small chip (< 30 microns). The
laser was focused down to 3 microns with a power of about 20mW on the sample.

The principal Raman active mode of graphite is the G-band at 1579 cm−1 (at 0GPa)
which originates from the sp2 carbon atoms vibrating in-plane with E2g symmetry. The
effect of hydrostatic pressure on the linewidth of the G-band is shown in Figure 4.9(a).
The linewidth remains nearly constant until around 9–10GPa. Above this value, the
linewidth begins to broaden rapidly, in agreement with previous results of Hanfland et
al. [164]. (A similar broadening has also been reported for turbostratic graphite-like
BC4 under pressure [185].) This behavior is a sign of a structural transformation at this
pressure, and can be explained by important changes in the Raman cross section caused
by interlayer coupling and the formation of sp3 bonds. As seen in Figure 4.6, Z-carbon
becomes enthalpically favored with respect to graphite at around 10GPa, whereas all
other proposed structures cross the graphite line at significantly higher pressures.

There is a further indications of the existence of Z-carbon, that can be found in the
Raman spectrum of graphite under hydrostatic pressure, shown in Figure 4.9(b) for the
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Figure 4.7: Experimental XRD for cold compressed graphite at two different pressures from Ref. [168] and
simulated XRD pattern for Z-carbon (at 23.9GPa) and graphite (at 13.7GPa). The main characteristics
of the proposed carbon are perfectly in agreement with the experimentally observed changes.

energy range below the 1st order Raman peak of diamond (1332 cm1 at 0GPa) [183].
Neither graphite nor cubic-diamond have Raman active peaks in the selected energy re-
gion [186], however we can observe that a clear peak appears at 1082 cm−1 for pressures
higher than 9.8GPa. This peak can be explained by neither bct-C4 carbon, M-carbon,
nor by the pressure medium (argon). Experiments at ambient pressure have shown that
a raman peak at 1090 cm−1 can be observed in samples of nanocrystalline diamond [187].
Furthermore, the presence of nanodiamond in our sample might be enthalpically possi-
ble. However, since nanodiamond synthesis has been shown to be stable in high pressure
experiments [188] and the observed G-band broadening is fully reversible under pressure
unload this possibility can be ruled out. Therefore, the only structures that have Raman
active modes compatible with this experimental results are Z-carbon and W -carbon. For
Z-carbon the frequencies are 1096.5 cm−1 at 10GPa and 1110 cm−1 at 15GPa. Inciden-
tally, Z-carbon also has a Raman active Ag mode at 1348.5 cm−1 at 0GPa (theoretical
value). This appears as a signature of planar four-membered rings that overlaps with the
so-called defect D-band of graphite at around 1345.5 cm−1 at 0GPa (experimental value).
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Figure 4.9: (a) Experimental linewidth of the G-band of graphite under pressure. The linewidth stays
nearly constant until pressures of the order of 9− 10GPa, above which the linewidth begins to broaden
rapidly. This is a strong evidence for a structural transition in graphite. Experiments were conducted
using highly oriented pyrophillitic graphite (HOPG) and argon (squares) or paraffin oil (triangles) as
pressure transmitting media. Note that the G-band broadening is fully reversible under pressure unload.
The unload points are however not included for clarity. The black dots are taken from Ref. [164].
(b) Experimental Raman spectra of graphite under pressure. The peak around 1082 cm−1 appearing
at around 10GPa and its evolution can be explained by either Z-carbon, W -carbon or nanocrystalline
diamond.

4.2.4 Summary

In conclusion, we identified two novel allotropic structure of carbon, Z-carbon, that be-
comes more stable than graphite above 10GPa, and M10-carbon which has a transition
pressure of 14.4 GPa. From all known carbon allotropes, only cubic and hexagonal di-
amond have lower enthalpy at high pressures than Z-carbon, which makes it the most
promising candidate among previously proposed structures of cold compressed graphite.
Both Z-carbon and M10-carbon phases are as hard as diamond, and transparent in the
optical region. Moreover, several experimental data are consistent with the presence of Z-
carbon in samples of cold compressed graphite: first, the features of the X-ray diffraction
spectra of graphite under pressure exhibit a broadening that matches the main peaks of
Z-carbon. Second, the principal Raman signal of graphite, the G-band mode, suffers an
abrupt increase of the linewidth above 9-10GPa — the pressure range where Z-carbon
becomes more stable than graphite. Third, a new peak at 1082 cm−1 appears in the Ra-
man spectrum of graphite at around 10GPa, at the frequency of a Raman active mode of
Z-carbon. However, further comparative studies on the formation barriers of all proposed
candidate structures might be needed for a conclusive determination of the structure of
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cold compressed graphite.
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4.3 High pressure structures of disilane and their su-

perconducting properties

Superconductivity in elemental hydrogen was predicted by Ashcroft [189] already in 1968.
More recently, and with the use of novel theoretical techniques [190, 191], the calculated
Tc was estimated to be as high as 240K at pressures of around 450GPa in molecular
hydrogen [192]. Furthermore, very recent studies of atomic hydrogen found a transition
temperature of 356 K at 500 GPa [193], and Tcs of above 600 K at pressures beyond
1TPa [193, 194]. However, the synthesis of metallic hydrogen has been found to be exper-
imentally challenging, and even at extremely high pressures (below 320GPa) metallization
has not yet been observed [195]. This is in agreement with theoretical calculations, that
predict the metallic transition above 400GPa [196] — a pressure beyond the reach of
current experimental capabilities.

To circumvent this problem, it was recently suggested that metallization pressures could
be achieved in hydrogen rich materials where the hydrogen is chemically
“pre-compressed” [197]. Several investigations of such compounds have appeared in the
literature, primarily focusing on group IV-hydrides. Calculations on phases of highly
compressed silane [139, 198, 199, 200, 201, 119], germane [115] and stannane [202, 121]
have shown the possibility of metallic phases with high Tc at moderate pressures. From
the experimental point of view, silane SiH4 has been reported to crystallize and attain
metallicity above 50–60GPa [203, 204] with a superconducting behavior. However, more
recent studies ascribe the observed metallicity to the formation of metal hydrides [205],
and metallization of silane was found not to occur at least below 130 GPa [206].

Another hydrogen rich compound of the same family is disilane Si2H6. This compound
has attracted attention as a hydrogen rich material due to its experimental availability.
Moreover, in a recent theoretical study, Jin et al. [207] performed random searches in order
to find stable structures of disilane. They reported three different structures covering a
pressure range from 50 to 400GPa. Crystallization of disilane into a metallic phase with
a P–1 lattice was predicted to occur at 135GPa. The Tc of this phase was predicted to be
64.6K at 175GPa, and 80.1K at 200GPa. Beyond 275GPa, the lowest enthalpy phase
was found to be a cubic Pm–3m structure that reaches the remarkable superconducting
transition temperature of Tc = 139K at 275GPa, a Tc much higher than any other
predicted transition temperature of group IV-hydrides. Unfortunately, these results have
not been experimentally confirmed.

4.3.1 Screening high-pressure phases with Lenosky tight-binding

The disilane system under pressure was investigated by using the MHM for the prediction
of low enthalpy structures. We performed simulations for cells containing 1, 2, and 3
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(a) (b)

(c)

Figure 4.10: The crystal structures of (a) the Cmcm phase at 200GPa, and (b) the P–1 phase at
300 GPa. The eigendisplacements which lead from the Cmcm structure to the Cmc21 structure are
visualized by arrows in panel (c).

formula units of disilane Si2H6 under several different pressures between 40–400GPa. The
initial sampling of the enthalpy surface was carried out employing the MHM together with
Lenosky’s tight-binding scheme [50], extended to include hydrogen. The most promising
candidate structures found during the initial sampling were further studied [173, 208] at
the DFT level using the PBE exchange-correlation functional [39] and norm-conserving
HGH-pseudopotentials [176]. The plane-wave cut-off energy was set to 1400 eV, and
Monkhorst-Pack k-point meshes [177] with grid spacing denser than 2π × 0.025 Å were
used, resulting in total energies convergence to better than 1 meV/atom. Finally, in order
to confirm that the tight-binding scheme was able to sufficiently sample the enthalpy
surfaces, we performed MHM simulations for selected pressures of 100GPa, 200GPa,
280GPa, and 320GPa at the DFT level.

In Figure 4.11 the enthalpy of the different phases found in our MHM simulations are
shown with respect to decomposition towards elemental silicon and hydrogen. At pres-
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Figure 4.11: Enthalpy per formula unit of disilane as a function of pressure with respect to elements
in their solid form 2Si(s) + 3H2(s). The decomposition enthalpies were computed from the predicted
structures of hydrogen (P63/m, C2/c) [209], high pressure phases of silicon (P6/mmm, P63/mmc,
Fm−3m) [152, 210] and silane (Fdd2, I41/a, Pbcn) [139, 119]. The disilane structures with superscripts
a and b are from this work and from Ref. [207], respectively. The dynamical instability towards the
Cmc21 phase is indicated by the arrow.

sures above 280GPa, the Pm–3m phase is favored, competing with several other struc-
tures reported by Jin et al. [207]. In addition to the structures reported in Ref. [207] our
simulations revealed another low-lying phase with P–1 symmetry (Figure 4.10(b)). How-
ever, all these structures lie in a very small enthalpy range which is within our numerical
precision. In fact, taking into account the zero-point vibrational energies might easily
change the energy ordering, and in general one can expect that at a finite temperature
the competing low-enthalpy phases will be present as an admixture.

As seen also in Figure 4.11, crystalline disilane is enthalpically unstable towards decom-
position to elemental silicon and hydrogen below 95GPa. A decomposition to silane SiH4

together with elemental silicon and hydrogen is enthalpically possible up to pressures
of 190GPa. This compositional instability could pose challenges en route to syntheti-
zation of crystalline disilane, depending on barrier heights and on the dynamics of the
decomposition.

Yet another low-enthalpy metallic phase of disilane was found during our MHM simu-
lations (see Figure 4.10(a)). It belongs to the Cmcm space group, and is the lowest
enthalpy structure up to 280GPa. We would like to stress that the enthalpy difference
between the Cmcm phase and the previously proposed P–1 phase close to 200GPa are rel-
atively large, so that a change in the enthalpy ordering due to the zero point vibrational
energy is very unlikely. At 200GPa, its conventional cell parameters are a = 7.965 Å,
b = 2.705 Å, and c = 4.728 Å, with one silicon atom occupying the 8e crystallographic site
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Figure 4.12: Left panel: Phonon band dispersion of the Cmcm structure at 200 GPa. Right panel:
Calculated Eliashberg spectral function α2F (ω) (solid line) and phonon partial density of states (Yellow:
silicon, Blue: hydrogen).

at (0.141, 0, 0) and three hydrogen atoms occupying 8g, 8g and 8f sites at coordinates
(0.293, 0.173, 0.250), (0.086, 0.302, 0.250) and (0, 0.311, 0.895), respectively. The hydrogen
atoms are embedded into a framework of five-fold coordinated silicon atoms. The average
silicon-silicon bond length is 2.28 Å, and each silicon atom is surrounded by six hydrogen
atoms at a mean distance of 1.52 Å.

4.3.2 Superconductivity and dynamical stability of the Cmcm

phase

We further characterized the Cmcm structure by performing calculations of the phonon-
spectrum, the electron-phonon coupling and the superconducting transition temperature
Tc. The phonon spectrum and the electron-phonon matrix elements were obtained from
density-functional perturbation theory [179, 180]. The spectral function α2F (ω) was
integrated over the Fermi surface by applying the tetrahedron technique. Convergence of
the above quantities was ensured by a 16×16×16 Monkhorst-Pack k-point sampling, and
a 4×4×4 q-point sampling for the phonon wave-vectors. The above settings result in Tcs
converged to less than 1 K. The phonon dispersion was obtained by Fourier interpolating
the computed dynamical matrices.

The phonon band dispersion of the Cmcm phase at 200GPa can be seen in the left panel
of Figure 4.12, while the partial phonon density of states is shown in the right panel. As
expected, the low frequencies (<700 cm−1) are dominated by the vibrations of the silicon
framework whereas the high end of the spectrum extending up to 2300 cm−1 is solely
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Table 4.2: Superconducting properties of the Cmcm phase at different pressures. The transition tem-
peratures were calculated using Allen-Dynes modified McMillan’s formula. (see appendix D.2 for details)

Pressure λ Ωlog Tc Tc
µ∗ = 0.1 µ∗ = 0.13

100 0.84 478 24.6 20.2
140 0.68 553 17.9 13.5
160 0.66 556 16.7 12.4
200 0.68 501 16.2 12.2
220 0.76 384 16.1 12.7

due to the light hydrogen atoms. We found the structure to be dynamically stable up to
220GPa. However, if the pressure is increased beyond 225GPa a dynamical instability
arises. The phonon band dispersion at 230GPa can be found in the appendix D.1. It
shows an imaginary (plotted as negative) frequency at the Γ-point, indicating an unsta-
ble phonon mode. Following the eigendisplacements of this mode, which are shown in
Figure 4.10(c), and then performing a full relaxation of the structure leads to another un-
reported stable structure with Cmc21 symmetry. Compared to the Cmcm phase, the sili-
con framework remains essentially intact while the hydrogen atoms are slightly displaced,
partially breaking the symmetry. Due to the strong similarities between the Cmcm and
the Cmc21 structures we do not expect large differences in their phonons or supercon-
ducting properties. A similar analysis as above has been carried out following a further
imaginary frequency arising at the S-point when the pressure is increased above 260GPa.
The resulting structure found by following the corresponding eigendisplacements resulted
in a structure with P1c1-symmetry (see appendix D.1 for details on this structure). The
zone center Raman and infrared active phonons for the Cmcm phase are summerized in
appendix D.3

In order to investigate the superconducting properties of the Cmcm phase, we use McMil-
lan’s approximate formula for the superconducting transition temperature

Tc =
Ωlog

1.2
exp

[
− 1.04(1+λ)

λ−µ∗(1+0.62λ)

]
(see appendix D.2 and Ref. [211, 212] for details). McMil-

lan’s formula requires the superconducting properties as the weighted average of the
phonon frequencies Ωlog, λ which is an average of the electron-phonon interaction, and
the dimensionless Coulomb pseudopotential µ∗. These quantities were calculated from
the Eliashberg spectral function α2F (ω), which was obtained from ab initio calculations
performed with the abinit code [173, 208]. In the right panel of Figure 4.12, the solid
lines represent the Eliashberg spectral function of the Cmcm phase at 200GPa. It has
three main features: (i) low optical modes of the silicon framework, (ii) two intense hydro-
gen peaks around 1500 cm−1 and 1600 cm−1, and (iii) high frequency modes of hydrogen
around 2000 cm−1.

The superconducting properties of the Cmcm phase at several pressures are summarized
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in Table 4.2, using two typical values for the Coulomb pseudopotential µ∗ = 0.1 and
µ∗ = 0.13. For a better comparison, we note that Jin et al. [207] set µ∗ = 0.13. Assuming
the larger of those values, the superconducting transition temperature Tc is 20.1K at
100GPa and decreases to 13.0K at 220GPa. A decreasing Tc with respect to increasing
pressure has been observed in other hydrogen rich materials [203, 213, 120]. We should
emphasize that the Tc of the Cmcm phase is smaller by approximately a factor of 6.5
than of the previously reported P–1 structure at 200 GPa, and that the Cmcm phase
is the lowest enthalpy phase. This raises serious doubts if high-Tc superconductivity will
ever be achieved in silane materials under reasonable pressure.

Furthermore, the superconducting properties of the Cmcm phase are strongly linked to
its electronic structure. In Figure 4.13, the evolution of the Fermi surface is shown as a
function of pressure. Three states cross the Fermi surface. The first (magenta) and the

(a) (b)

(c) (d)

Figure 4.13: Fermi surface of the Cmcm phase at several pressures: a) 100GPa, b) 140GPa, c) 160GPa,
and d) 220GPa. [214]
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second (yellow) states cover an important portion of the Brillouin zone that overlaps in
the edged of the Brillouin zone and remain nearly unaltered as the pressure increases,
whereas the third (cyan) changes substantially. The contribution of this third state to
the Fermi surface consists of spherical regions near the Γ-point. This band connects two
main portions of the Fermi surface. Therefore, we can expect high superconducting values
for low pressures; λ = 0.84 and Ωlog = 480 with a Tc of 20K at 100 GPa. However, as
the volume of the structure decreases with increasing pressure, this sphere-like feature of
the Fermi surface is abruptly reduced. Consequently, at 160 GPa the superconducting
parameter λ and Tc clearly decrease, while Ωlog only slightly increases; λ = 0.66, Ωlog = 556
and Tc=12.4K.

4.3.3 Summary

In conclusion, we performed a thorough investigation of the high pressure phases of disi-
lane using first principles calculations. Applying our MHM to explore the PES of disilane,
we found a metallic structure which is enthalpically favorable compared to the previously
proposed structures of disilane. Additionally, the systematic study of the superconducting
properties as a function of pressure shows that the Cmcm phase possesses a moderate
electron-phonon coupling, leading to a superconducting transition temperature in the 10–
20K range. This result stands in sharp contrast with the structures previously proposed
of disilane under pressure. Moreover, we observed that the transition temperature of
the Cmcm structure has the tendency to decrease monotonically with applied pressure,
which can be understood by the shrinking of a part of the Fermi surface. This decrease
of the Tc is in agreement with most theoretical and experimental results of hydrogen rich
materials, including silane [203, 213, 120]. Certainly, this does not imply that supercon-
ductivity in hydrogen rich materials is limited to relatively low values of Tc for reasonably
high pressure, but our results do impose strong constraints on the possibility of high-Tc
superconductors in silicon-hydrogen systems.

Furthermore, our work shows the necessity of performing thorough global geometry opti-
mizations in order to predict accurately the physical properties of the ground-state of any
new material. In fact, as we have shown, different meta-stable structures of disilane yield
superconducting transition temperatures that can differ by nearly an order of magnitude.
This conclusion is clearly general, i.e., for a given stoichiometry the actual arrangement of
the atoms can affect strongly the physical properties of a material. Therefore, to obtain
meaningful predictions for the ground-state of a new material, fully automated and un-
constrained structure prediction schemes should be systematically employed to investigate
new material properties.
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4.4 Novel structural motifs in low energy phases of

LiAlH4

Limited fossil resources and the increasing amount of CO2 emission have recently mo-
tivated intense research in hydrogen-based energy systems. Hydrogen has been touted
as a promising alternative energy source due to its clean reaction with oxygen: the final
product is water and heat, and no greenhouse gases are produced. Moreover, hydrogen
can provide a high energy density (about three times higher than petrol), and is readily
available. The key to widespread applications of hydrogen in industry and in vehicles is
the development of suitable solid-state hydrogen storage materials. The goal of 6 weight
percentage (wt. %) and 45 g/l of hydrogen in hydride compounds on board fuel cell vehi-
cles has been posed by the US Department of Energy (DOE) in 2010. Further properties
required when designing such materials are the need for an efficient hydrogen release
mechanism, ideally close to 0.025 gs−1kW−1

fuel cell at temperatures preferably below 100 ◦C
and moderate pressures, as well as on-board refueling times less than 10 min at reasonable
H2 pressures. Besides experimental synthesis of candidate materials, ab initio methods
have been widely applied to assist in searching for novel hydrogen storage materials to
satisfy the above requirements (e.g. Ref [215]).

Complex hydrides such as alanates, which are compounds that contain aluminum, hydro-
gen, and a metal like sodium or lithium, have been widely discussed as promising candi-
dates [216, 217]. In this letter, we investigate the structural diversity of LiAlH4, a material
that has drawn attention as a hydrogen storage material, since it contains 10.6wt. % hy-
drogen [218, 219, 220]. The decomposition occurs in three steps with a theoretical release
of 7.9 wt. % hydrogen at moderate temperatures in the first two steps [221, 220]:

LiAlH4 → 1/3Li3AlH6 + 2/3Al + H2 (4.2)
1/3Li3AlH6 → LiH + 1/3Al + 1/2H2 (4.3)

Note also that complex reactions of LiAlH4 with LiNH2 [222, 223], NaNH2 [224] and
Mg(NH2)2 [225] have been investigated and were reported to desorb 5 wt. %, 5.2 wt. % and
8.5 wt. % of hydrogen, respectively. Nevertheless, challenges in reversible dehydrogenation
still remain [226].

Recently, the crystal structure of LiAlH4 was accurately resolved by powder XRD and
neutron diffraction experiments [227], which was followed by a detailed theoretical study of
the structural, electronic, and thermodynamic properties of this phase [228]. This ternary
hydride was found to crystallize in the α-LiAlH4 phase which has a P21/c symmetry. It is
an ionic crystal that consists of complex AlH−

4 -anions together with Li+-cations [227, 228].
Unfortunately, the phase-diagram of this compound remains relatively unexplored, and
several problems still exist in determining its possible polymorphs at various tempera-
tures and pressures. In fact, although LiAlH4 has been known since 1947 [218] there is
still controversy regarding its thermodynamic stability. Spontaneous decomposition of
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LiAlH4 towards Li3AlH6 was observed with a half-life of approximately 20 years at room
temperature [229], and the first dehydrogenation step was reported to be exothermic [221].
The stability however seems to correlate strongly with impurities in the sample [230], and
indeed several theoretical studies predict pure LiAlH4 to be stable against such decompo-
sition [231, 228], although opposite claims have also been made [232, 233]. Clearly, this
is a particularly important problem in view of the use of this compound as a hydrogen
storage material, and it could be resolved by enhancing the stability of LiAlH4.

4.4.1 Structural search

To address this issue we investigated possible low-energy structures of LiAlH4 using the
MHM. Several MHM simulations were performed with cells containing 2 and 4 f.u. of
LiAlH4 starting from different input configurations. During the search process the ener-
gies and Hellman-Feynman forces were evaluated within the projector augmented wave
formalism as implemented in abinit [173, 208]. The PBE [39] exchange-correlation
functional was used, which has been found to give reasonable results in earlier studies
on lithium analantes [232, 233]. The results were refined using norm-conserving HGH
pseudopotentials [176] with a plane-wave cut-off energy of 2700 eV and well converged
Monkhorst-Pack [177] k-point meshes, resulting in an accuracy of the total energy better
than 1 meV per atom. The atomic and cell degrees of freedom were fully relaxed, such
that the maximum force components were less than 0.05 eV/Å and stress components
less than 0.003 GPa.

During our structural search we discovered a whole class of novel structures with low

Table 4.3: Several low-lying structures are listed with the corresponding space groups (SPG). The energy
differences per formula unit of LiAlH4 with respect to the previously reported α-LiAlH4 structure are
given in the third column, and the contributions of the vibrational zero-point energy (ZPE) are added in
the fourth column. All these structures can be found in appendix E.1.

Symmetry SPG ∆E (meV) ∆E +∆ZPE (meV)
P21/c (deuterium) 14 −111.1 −74.9
P21/c 14 −111.1 −63.7
P21 4 −82.6 −34.2
Pnc2 30 −81.9 −30.9
P21/m 11 −81.2 −32.4
Cmmm 65 −66.3 −15.4
P–1 2 −65.2 −12.2
P21/c 14 −64.4 −15.8
P1 1 −56.8 −4.2
P2/c 13 −54.1 −0.7
P–421m 113 −49.5 −1.9
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energies. These structures consist of negatively charged polymeric networks of H and Al
atoms surrounded by Li+ ions. These AlH4 polymers have structures similar to polymeric
alane [225] and form both wires and 2D planes within the material. Surprisingly, a large
number of such structures was found to be energetically more stable than the experi-
mentally observed α-LiAlH4 phase. In Table 4.3 we show a selection of these structures,
together with the corresponding space group and total energy, taking also into account the
zero-point energy (ZPE) correction within the harmonic approximation [234]. The most
stable structure found in our simulations belongs to the P21/c space group. We will hereon
refer to this novel, polymeric structure as p-P21/c and continue to refer to the experimen-
tally observed structure as α-LiAlH4. The p-P21/c phase is energically favored over the
α-LiAlH4 phase by ∆E = −111.1 meV/f.u. and ∆E+∆ZPE = −63.7 meV/f.u.. To recon-
firm the energetic ordering, calculations with the local density approximation (LDA) [182]
and the HSE06 hybrid functional [235, 236, 237] (as implemented in the VASP code [238])
were carried out, resulting in the following relative energies: ∆ELDA = −257.7 meV/f.u.,
∆ELDA +∆ZPELDA = −208.5 meV/f.u., and ∆EHSE06 = −506.7 meV/f.u.

4.4.2 Characterization of the p-P21/c phase

The unit cell of the p-P21/c phase is shown in Figure 4.14. At ambient pressure, the
cell parameters are given by a = 5.162 Å, b = 4.279 Å, c = 5.084 Å, α = γ = 90◦ and
β = 66.831◦. One Li atom occupies the crystallographic 2b site at (1/2, 0, 0), the Al atom
occupies the 2c site at (0, 0, 1/2), and the H atoms are at the 4e sites with coordinates
(0.131, 0.723, 0.680) and (0.316, 0.175, 0.374). The Li atoms as well as the Al atoms are
arranged in alternating parallel planes, where the Al atoms are interlinked with half the
H atoms in the cell with an Al–H distance of 1.77 Å. The rest of the H atoms are single-
bonded to the Al atoms, oriented out of plane at a bond-length of 1.68 Å.

We simulated the XRD and neutron diffraction patterns of the p-P21/c structure and
compared them with the experimentally observed structure (α-LiAlH4) of Ref. [227]. A
comparison of the XRD spectrum is shown in Figure 4.14(c) (the neutron diffraction
pattern can be found in appendix E.2). As expected, the XRD (and neutron) spectra of
p-P21/c and α-LiAlH4 are quite different, proving that these are two distinct phases.

To investigate the electronic structure of the p-P21/c phase we used the perturbative
many-body GW technique [182]. To converge the band-structure to better than 0.1 eV
we used a 6×6×6 k-point grid (112 points in the irreducible wedge of the Brillouin zone)
and 35 empty bands. These calculations (see Figure 4.15(b)) reveal that the p-P21/c
structure is an indirect band-gap semiconductor with a photoemission gap of 5.0 eV and
a direct gap at Z of 5.3 eV. The top valance bands are essentially composed of states of d-
character provided by the Al atoms and a small portion of p-states of Li, while the bottom
of the conduction band is formed by s-states of Al and p-states of Li. The charge transfer
among the constituent atoms was analyzed using the Bader charge analysis method as
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Figure 4.14: (a) The crystal structure of the p-P21/c phase shown from the side and (b) from the top.
The hydrogen atoms (small white spheres) form the corners of AlH4 polyhedra containing aluminum
atoms (in blue). The large (green) spheres represent the Li+ ions. The arrangement of the polyhedra
shows the polymeric structure of Al atoms interlinked by H atoms. In panel (c) the simulated XRD
pattern of the p-P21/c phase is compared with the experimental spectrum taken from Ref. [227]

implemented in the abinit package [239]. A charge of approximately −0.87qe/atom is
stripped off the Li atoms and transferred to the AlH−

4 substructure, leading to a layered
ionic crystal. The electronic charge density within the p-P21/c structure is illustrated in
panel (a) of Figure 4.15, clearly showing the layered ionic character of the phase.

We further investigated the dynamical stability of the p-P21/c structure by performing
calculations of the phonon dispersion. The phonon spectrum was obtained from density-
functional perturbation theory [180] as implemented in abinit. Convergence was ensured
by a 6 × 6 × 6 Monkhorst-Pack k-point sampling, and a 3 × 3 × 3 q-point sampling
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Figure 4.15: Panel (a) shows the layered character of the ionic planes in the p-P21/c phase and the
isosurface of the charge density at the value of 0.06qe. The GW electronic band-structure calculated for
the p-P21/c phase is illustrated in panel (b). The energy was shifted such that the top of the valence
band has energy 0.
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Figure 4.16: (a) The LiAD4 phonon band dispersion is shown, revealing the dynamical stability of the
p-P21/c structure. (b) The partial phonon density of states of LiAD4 illustrating the contribution of the
three atomic species.

for the phonon wave-vectors. The longitudinal optical/transverse optical (LO-TO) zone
splittings were taken into account. However, the effect of the LO-TO zone splittings was
found to be small, as previously reported for other hydride materials [240, 241].

Panel (a) of Figure 4.16 shows the phonon dispersion calculated for LiAlD4. No imagi-
nary phonon frequencies appear within the whole Brillouin zone, ensuring the dynamical
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stability of the structure. Replacing deuterium by hydrogen shifts up the characteristic
frequencies due to the difference in the atomic masses. Panel (b) of Figure 4.16 repre-
sents the partial phonon density of states. As expected, low frequency modes are mostly
dominated by vibrations of the Al atoms, together with a smaller contributions from the
Li atoms. The high energy range is predominated by the vibrations of deuterium (with
frequencies around 1260 cm−1) or hydrogen (around 1750 cm−1).

4.4.3 Low temperature synthesis of polymeric LiAlH4

Finally, we discuss why the experimentally observed phase is the α-LiAlH4 and not the
energetically lower p-P21/c structure. An important hint comes from the observation
that these structures contain very light atoms with high vibrational frequencies. One can
therefore expect that the phonon contribution to the (free-) energy is large. We computed
the ZPE correction within the harmonic approximation [234] for all low-lying structures
listed in Table 4.3. The correction is significant, being larger for phases containing AlH4

polymers, since stronger covalent bonds are present compared to the softer ionic bonds
of the α-LiAlH4 phase. From Table 4.3 we see that the ordering of the phases changes,
but that the p-P21/c is still the lowest by 30 meV (and lower than the α-LiAlH4 phase
by 64 meV). Moreover, replacing hydrogen by deuterium further stabilizes the structure
by around 10 meV.

The situation changes however at finite temperature. The temperature dependence of the
free-energy for the four phases with lowest energy are shown in Figure 4.17 relatively to
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Figure 4.17: The free-energy differences per formula unit of the four lowest phases are plotted with
respect to α-LiAlH4. The lowest curve represents the p-P21/c structure where hydrogen was replaced by
deuterium (with respect to α-LiAlD4).
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the α-LiAlH4 structure. Within our approximation, the thermal expansion effects as well
as the volume dependence of the ZPE are neglected since thermodynamic quantities have
been reported to be fairly insensitive to these corrections [233]. Anharmonic contributions
from possible molecular librations are also ignored. We can see that the p-P21/c phase has
the lowest free-energy up to roughly 380 K, after which it crosses the α-LiAlH4 phase. This
shows that LiAlH4, like many other similar layered (binary and ternary) amide-hydride
systems [242], can have different polymorphs at different temperatures and pressures.
These polymorphs are usually linked with the existence of cation vacancies, crystal defects
and the mechanism of the dehydrogenation/rehydrogenation process [243]. Furthermore,
a direct comparison with the free energy calculations in Ref. [232] and Ref. [233] shows
that the p-P21/c phase would lead to an endothermic behaviour of reaction (4.2) at
least for low temperatures. Note that one can expect a systematic error in the transition
temperature due to the approximations employed in the DFT and free energy calculations.

Possible reasons for the fact that the p-P21/c phase has not been observed yet might
lie within the conventional methods to synthesize crystalline LiAlH4. Originally it was
prepared from LiH and AlCl3 in boiling diethyl ether [218], leading to temperatures of
at least 307.8 K. In fact, temperatures might have been considerably higher and in a
range where p-P21/c becomes unstable or has a too high formation barrier. Industrial
synthesis is performed through a metathesis reaction of NaAlH4 with LiCl [244]. Since
NaAlH4 already contains complex AlH−

4 anions, its reformation and polymerization is
unlikely, especially when considering the strong Coulomb repulsive forces. Using AlH3 as
a reactant and a low temperature synthesis might be a possible pathway en route to the
synthesis of the novel p-P21/c phase. We propose the following reaction:

LiH + AlH3 → LiAlH4 (4.4)

The reaction was studied with respect to its thermodynamic properties, using the α-AlH3

phase [245] with R3̄c symmetry, the Fm3m LiH phase [246] and the novel p-P21/c phase of
LiAlH4. Our calculations reveal that reaction (4.4) is exothermic by ∆E = 138.4 meV/f.u.
Taking into account the vibrational free energy the reaction heat increases to ∆F0K =
203.1 meV/f.u. at a temperature of 0 K and ∆F298K = 140.8meV/f.u. at a temperature
of 298 K. Although these results do not guarantee the success of the above pathway, they
show that it is thermodynamically accessible.

4.4.4 Summary

In conclusion, we performed a systematic structural search for LiAlH4 and identified a
class of novel structures. In contrast to other alanates and previous predictions, AlH4

does not form complex anions but appears rather as a polymeric network. The most
stable structure, p-P21/c, exhibits a layered ionic configuration and is favored at ambient
pressure for temperatures up to roughly 380 K. This phase is a polar semiconductor with



4.4. Novel structural motifs in low energy phases of LiAlH4 83

an indirect band-gap of 5.0 eV, and by replacing hydrogen with deuterium the material can
be further stabilized with respect to α-LiAlD4. Moreover, it can probably be produced by
using a low-temperature synthesis, and by using precursors not containing complex AlH−

4

anions. As this phase is energetically more stable than α-LiAlH4 there are good chances
that it solves the stability problems of the latter. Furthermore, the existence of these new
phases can have profound implications for the dehydrogenation/rehydrogenation process
and for understanding and developing novel materials for hydrogen storage.





Chapter 5
Conclusions and Outlook

In this thesis we present our results for ab initio predictions of crystal structures by
employing a global geometry optimization scheme. We first developed a crystal structure
prediction method by generalizing the MHM to periodic systems. Then, it was used to
predict the structures of novel phases in several materials. Below we briefly summarize
the method development and the results of our work.

In chapter 2 we characterized the PES of silicon systems by comparing fast, but less
accurate force fields to more accurate but computationally expensive ab initio methods.
We found clear evidences that all force fields are considerably less accurate than the
Lenosky tight-binding scheme, which however is almost as accurate as DFT calculations.
The configurational density of states was evaluated by sampling low energy structures with
the MHM. Both for isolated and crystalline systems we found that force fields overestimate
the number of local minima on the PES, giving an overall very rough energy landscape.
We conclude that directly exploring the energy landscape at the tight-binding or DFT level
is preferable over pre-screening the low energy phases with empirical force fields which
might slow down a meaningful structural search through the vast amount of spurious
minima.

We then developed a new crystal structure prediction scheme by generalizing the MHM to
periodic systems in chapter 3. A thorough structural search is ensured by employing the
variable cell shape Parrinello-Rahman molecular dynamics for the escape trials. A simple
discretization scheme is derived to integrate the corresponding equations of motion. Dif-
ferent unconstrained local geometry optimization schemes of cell and atomic coordinates
were implemented and compared to each other, of which the FIRE method was identified
to be a good compromise of stability and efficiency in DFT calculations.
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Several approaches to optimize the performance of the structural search were evaluated
as well:

• Softening is used to align the initial MD velocities preferably along soft-mode di-
rections to exploit the Bell-Evans-Polanyi principle and efficiently cross over low-
energy barriers. For a model Lennard-Jones system we demonstrated that softening
increases the efficiency by almost a factor of 3.

• An analysis of structural databases showed a non-uniform distribution of the 230
space groups in nature, with a preference for high-symmetry structures for most
inorganic compounds. Based on this empirical observation, we discussed the impact
of symmetrized input structures on the minima hopping efficiency and showed that,
with an appropriate choice of the space group symmetry and unit cell size, the
performance can be improved by more than one order of magnitude for a Lennard-
Jones mixture.

• The MHM was parallelized for investigating silicon crystals within the EDIP force
field. With the appropriate number of parallel MHM runs the efficiency could be
improved by a factor of 2.

• For silicon systems, MHM runs might get trapped in funnels of the PES which are
described by simulation cells unsuited to represent the ground state crystal with
the given number of atoms. The Lattice Vector Prediction Scheme was designed
to circumvent this problem by adding or subtracting 2 atoms at the appropriate
location. By employing the LVPS the success rate could be increased from 80% to
95%.

In chapter 4 we present several application of the MHM for ab initio crystal structure
prediction:

Two novel carbon allotropes were identified as candidates for cold compressed graphite, Z-
and M10-carbon. They becomes more stable than graphite at a pressure slightly below
10 GPa and 14.4 GPa, respectively. Our simulations revealed that both phases could
explain the changes in the XRD pattern measured in cold compressed graphite [166, 167,
168]. Furthermore, evidences for the existence of Z-carbon were gathered from Raman
spectroscopy experiments conducted by José A. Flores-Livas in Lyon, France. We observed
that the G-band mode of graphite suffers an abrupt broadening above 9-10GPa, and a
new peak at 1082 cm−1 appears in the Raman spectrum in the same pressure range.
These observations can be well explained by the existence of Z-carbon in samples of cold
compressed graphite.

Superconducting phases of disilane at high pressure were investigated in section 4.3. A
novel metallic structure with Cmcm symmetry was identified to be the most stable in
a wide pressure range up to 280 GPa. Due to its moderate electron-phonon coupling
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we predict a superconducting transition temperature of 12 K at 200 GPa, which is in
sharp contrast to earlier predictions reported by Jin et al. [207] of Tc = 80.1 K in a
P–1 structure at the same pressure. This striking difference in the transition temperature
shows the essential need for a thorough structural search to obtain meaningful predictions
of a physical property in a compound

Finally, we report on novel structural motifs in the hydrogen storage material LiAlH4. Our
simulations predict a large number of low energy structures in which AlH4 form polymeric
substructures instead of complex molecular anions. We predict a novel
p-P21/c phase, a layered ionic crystal, to be the ground state structure of LiAlH4 at
low temperatures. However, it becomes unstable with respect to the experimentally ob-
served α-LiAlH4 structure at higher temperatures due to vibrational entropy effects. A
successful synthesis of the p-P21/c phase, which should be possible at low temperatures,
would probably enhance the stability of this compound and thus improve its applicability
for hydrogen storage on board fuel cell vehicles.

Overall, the MHM has been shown to be well suited for crystal structure prediction. In
contrast to other methods the efficiency of the MHM is based on physical principles. It
is applicable to any periodic system for which the total energy, the atomic forces and the
stresses can be evaluated (such as in density functional theory) thus rendering it a highly
versatile method. Since the moves on the PES are based on the Newtonian equation
of motion it allows to some extent an insight into dynamical effects as well, such as
approximative barrier heights and kinetics of phase transitions. The MHM can be readily
restricted to surface-periodic and wire-periodic boundary conditions allowing the study of
nano-structures, surface reconstructions, grain boundaries or diffusion effects. The main
limitations are imposed solely by available computational resources which currently allow
the study of realistic systems of at most few dozen atoms per simulation cell at the DFT
level.





Appendix A
Stress and strain

The strain is defined as a deformation of a material. Thereby, any point r in space is
displaced towards r′, which can be described by the second-order strain tensor ǫα,β:

r′α =
∑

β

(δαβ + ǫαβ) rβ (A.1)

The Cauchy stress tensor σ is defined as the negative strain derivatives of the energy per
unit volume

σαβ = − 1

Ω

∂E

∂ǫαβ
(A.2)

For any vector r the strain derivative is given by

∂rα
∂ǫκλ

= δακrλ (A.3)

Equation (A.3) readily applies for the 3 cell vectors a,b, c, which are combined in a 3× 3
matrix h = {a,b, c}. Therefore, the derivative of the cell vectors h with respect to strain
is given by

∂hαβ
∂ǫκλ

= δακhλβ (A.4)

The Cauchy stress tensor can thus be written as

σαβ = − 1

Ω

∂E

∂ǫαβ
= − 1

Ω

∑

κ

∑

λ

∂E

∂hκλ

∂hκλ
∂ǫαβ

= − 1

Ω

∑

λ

∂E

∂hαλ
hβλ (A.5)

If we define the cell gradients of the potential energy

fh
αβ =

∂E({si}, h)
∂hα,β

(A.6)
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we can express the Cauchy stress tensor as

σ = − 1

Ω
fhhT (A.7)



Appendix B
Derivation of the Parrinello-Rahman

equation’s of motion

Here we will derive the equations of motion for the Parrinello-Rahman dynamics.

The Lagrangian is given by

L =
N∑

i=1

mi

2
ṡTi gṡi − E({sj}, h) +

W

2
Tr(ḣT ḣ)− PΩ(h) (B.1)

and the equations of motion need to be found applying the Lagrange’s equation

d

dt

∂L
∂q̇i

=
∂L
∂qi

(B.2)

where qi are any of the atomic or cell coordinates.

We will first consider the reduced atomic coordinates si. We have

∂L
∂si

= −∂E({sj}, h)
si

(B.3)

∂L
∂ṡi

=
mi

2
2gṡi = migṡi (B.4)

d

dt

∂L
∂ṡi

= mi (ġṡi + gs̈i) (B.5)

Together with equation (B.2) we obtain

s̈i = −g
−1

mi

∂E

∂si
− g−1ġṡi (B.6)
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Now we consider the cell derivatives:

∂L
∂h

=
∂

∂h

(
N∑

i=1

mi

2
ṡTi gṡi

)
− ∂E({sj}, h)

h
− Pη (B.7)

∂L
∂ḣ

= Wḣ (B.8)

d

dt

∂L
∂ḣ

= Wḧ (B.9)

We simply rewrote Tr(ḣT ḣ) =
∑

α

∑
β ḣαβ and used the following identity:

∂Ω

∂h
= det(h)(h−1)T = Ω(h−1)T (B.10)

or equivalently

η := {b× c, c× a, a× b} =
∂Ω

∂h
(B.11)

The first term of equation (B.7) can be reformulated to:

∂

∂hkl

(
N∑

i=1

mi

2
ṡTi gṡi

)
=

∂

∂hkl

(
N∑

i=1

mi

2
(hṡi)

T (hṡi)

)
(B.12)

=
∂

∂hkl

(
N∑

i=1

mi

2

∑

α

(
∑

β

hαβ ṡ
β
i

∑

γ

hαγ ṡ
γ
i

))
(B.13)

=

N∑

i=1

mi

2

∑

α

(
δkαṡ

l
i
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γ

hαγ ṡ
γ
i + δkαṡ

l
i
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β

hαβ ṡ
β
i

)
(B.14)

=
N∑

i=1

miṡ
l
i

∑

γ

hkγ ṡ
γ
i (B.15)

which is equivalent to

∂

∂h

(
N∑

i=1

mi

2
ṡTi gṡi

)
=

N∑

i=1

mihṡiṡ
T
i (B.16)

The following identity is used to express ṡTi with respect to the cell derivative:

hṡiṡ
T
i = hṡi(h

−1hṡi)
T = hṡi(hṡi)

T (h−1)T = hṡi(hṡi)
T η

Ω
(B.17)

where the last equality is given by equations (B.10) and (B.11).
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The equation of motion for the cell is thus

ḧ =
1

W

(
η

Ω

N∑

i=1

mihṡi(hṡi)
T − ∂E({sj}, h)

h
− Pη

)
(B.18)

=
1

W

(
η

Ω

[
N∑

i=1

mihṡi(hṡi)
T − fhhT

]
− Pη

)
(B.19)

=
1

W
(Π− P )η (B.20)

where we again used equations (B.10), (B.11) and (A.6) in (B.19), and finally equa-
tion (3.15) in (B.20).



Appendix C
Ediff parameter

We will prove here that α2 =
1
α1

will ensure that, in average, half of the minima proposed
by the inner loop will be accepted and half of them will be rejected.

Assume that a MHM simulation is started with some initial value of Ei
diff, and the final

value is Ef
diff after N minima proposed by the inner loop. We see that

Ef
diff = αk

1α
l
2E

i
diff (C.1)

where k and l are the number of accepted and rejected minima, respectively, and k+l = N .
Without loss of generality we can set Ei

diff = Ef
diff for large N , thus arriving at

1 = αk
1α

l
2 (C.2)

and

α2 =

(
1

α1

)k
l

(C.3)

We require that half of the structures are accepted, thus k = l and therefore

α2 =
1

α1
(C.4)
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Appendix D
Additional material for Disilane

D.1 Dynamical stability and the structural evolution

with pressure

Figure D.1 presents the phonon dispersion of the Cmcm structure at 90 GPa (a), 230 GPa (b)
and 260 GPa (c). This is the enthalpically most favored structure in the range of 95 GPa
to 225 GPa. From 90 to 225 GPa all phonon frequencies are real, indicating that the
Cmcm phase is dynamically stable. However, at 230 GPa the phonon frequencies become
imaginary at the Γ-point, thus indicating the limit of stability of the Cmcm structure.
At 260 GPa, further imaginary frequencies appear at the S-point.

A systematic study was carried out following the eigendisplacements of the imaginary
acoustical modes at Γ and S, and then relaxing the perturbed structure. The displace-
ments at Γ lead to a structure with slightly broken symmetry belonging to the space group
Cmc21 (the structure is given in Table D.1), where the hydrogen atoms are displaced but
the silicon framework is left intact. This new structure is the most stable in the pressure
range from 230 up to 260 GPa. To analyze the eigendisplacements corresponding to the
imaginary frequencies at S a 1x4x4 supercell was constructed of the conventional Cmcm
cell containing 256 atoms. The resulting relaxed structure has low symmetry (P1c1 space
group) and does not show any imaginary phonon frequencies. The atomic coordinates are
given in Table D.2.

In the high pressure domain above 280 GPa (almost the experimental limit to date) sev-
eral structures compete within a very small enthalpy interval, where a new structure was
found with P–1 symmetry that has an enthalpy comparable to other previously proposed
structures. The cell parameters at 300 GPa are a = 4.141 Å, b = 2.984 Å, c = 4.020 Å,
α = 108.33◦, β = 81.85◦ and γ = 110.43◦. The 2i sites are occupied by silicon atoms at

95
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(0.337,0.426,0.239) and (0.915,0.700,0.240), and by hydrogen atoms at (0.380,0.106,0.681),
(0.301, 0.963, 0.352), (0.360,0.696,0.619), (0.411,0.784,0.993), (0.035,0.742,0.622) and
(0.832,0.047,0.027). The phonon dispersion of this structure is shown in Figure D.1(d).
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Figure D.1: The phonon band dispersion of the Cmcm phase is shown at 90 GPa (a), at 230 GPa (b)
and at 260 GPa (c). The phonon band dispersion of the P–1 phase is shown at 300 GPa (d). This high
pressure P–1 structure is dynamically stable at 300 GPa and enthalpically favorable above 400 GPa.

D.2 Superconductivity

The superconducting transition temperature was estimated through McMillan’s equa-
tion [211].

Tc =
Ωlog

1.2
exp

[
− 1.04 (1 + λ)

λ− µ∗ (1 + 0.62λ)

]
(D.1)
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and the superconducting parameters were calculated using the Allen-Dynes modification
of McMillan’s formulation [212]. The parameter λ, the dimensionless measure of the
electron-phonon interaction, reads

λ =

∫
α2F (ω)

ω
dω (D.2)

and Ωlog, the weighted average of the phonon frequencies, is

Ωlog = exp

(
λ

2

∫
α2F (ω)

ω
ln (ω) dω

)
(D.3)

and finally µ∗ is the Coulomb pseudopotential.

The Eliashberg spectral function α2F (ω) is shown in Figure D.2 for the Cmcm phase.
Three different zones of the spectra contribute significantly to the electron-phonon cou-
pling. First, the low-lying optical modes due to the vibration of the silicon framework
contribute to the curve below 700 cm−1. Second, two intense peaks appear at around 1100
and 1600 cm−1. Finally, we observe high frequency optical modes related to vibrations of
the hydrogen atoms above 2000 cm−1. Additionally, the superconductivity parameters λ
and ωlog are summarized in Figure D.3 as a function of pressure.

Furthermore, the influence of the structural differences between the previously reported
P–1 phase in Ref. [207] and the Cmcm phase on the superconducting temperatures was
investigated. As a general observation the two structures are completely different, in
particular the P–1 structure has considerably less symmetry than the Cmcm phase. Fur-
thermore, the five-fold coordinated silicon framework of the Cmcm arrangement is no
longer present in the P–1 structure. As a result of the reduced symmetry, the lattice
vibrations in the P–1 phase are substantially different, as well as the electronic Fermi
surfaces. In Figure D.4 we display the Fermi surfaces calculated at 200GPa for the P–1
and the Cmcm phase. The Fermi surface of the P–1 structure is much larger (and there-
fore has a higher density of states at the Fermi energy) than the Fermi surface of the
Cmcm phase. As a direct consequence, the electron-phonon coupling is also expected to
be stronger in the P–1 phase, explaining the very high Tc obtained for this material by
Jin et al. [207].

Table D.1: Structure of the Cmc21 phase of disilane at 280 GPa.
Lattice parameters: a = 7.731 Å, b = 2.589 Å, c = 4.581 Å, α = β = γ = 90.0◦

Element x y z

Si1 -0.14089 0.00043 -0.00541
H1 0.20665 0.33782 -0.25571
H2 -0.41538 0.19038 -0.25344
H3 0.00000 0.29796 -0.38066
H4 0.00000 0.33688 -0.09697
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Table D.2: Structure of the P1c1 phase of disilane at 280 GPa.
Lattice parameters: a = 4.567 Å, b = 15.470 Å, c = 5.193 Å, α = β = γ = 90.0◦

Element x y z Element x y z

Si1 -0.00144 -0.07271 -0.01515 H17 -0.27211 0.39645 -0.33093
Si2 0.49306 -0.42711 -0.01525 H18 -0.23570 -0.10352 0.16957
Si3 -0.00680 -0.43181 0.01440 H19 -0.26440 0.45723 -0.15663
Si4 0.49872 -0.06814 0.01562 H20 -0.24396 -0.04274 0.34296
Si5 -0.00537 -0.32254 -0.23469 H21 0.26619 0.39807 -0.16960
Si6 -0.00148 0.18184 0.23484 H22 0.22578 -0.10211 0.33002
Si7 0.49887 0.32287 -0.23474 H23 0.25361 0.45744 -0.34448
Si8 0.49377 -0.18216 0.23408 H24 0.23815 -0.04240 0.15571
Si9 -0.00129 0.31818 -0.26451 H25 -0.23508 -0.39637 -0.32914
Si10 -0.00580 -0.17743 0.26508 H26 -0.27307 0.10363 0.17029
Si11 0.49393 -0.31788 -0.26706 H27 -0.25191 -0.45773 -0.15565
Si12 0.49841 0.17720 0.26518 H28 -0.25672 0.04228 0.34464
Si13 -0.00602 -0.06797 -0.48413 H29 0.36226 0.49911 -0.14327
Si14 -0.00274 0.42744 -0.01517 H30 0.41742 0.00175 0.32617
Si15 0.49796 -0.43218 -0.48314 H31 -0.13906 -0.49499 -0.35675
Si16 0.49431 0.07263 -0.01538 H32 -0.08287 -0.00610 0.17443
H1 0.22674 -0.14638 0.07956 H33 0.07625 -0.49846 -0.17349
H2 0.24327 -0.20771 -0.09459 H34 0.13168 -0.00089 0.35758
H3 -0.27450 -0.35194 -0.08038 H35 -0.42348 0.49347 -0.32621
H4 -0.26164 -0.29247 0.09447 H36 -0.36716 0.00526 0.14238
H5 0.26406 -0.35346 0.08088 H37 0.26372 -0.14634 -0.41935
H6 0.25653 -0.29275 -0.09349 H38 0.22668 0.35373 0.07917
H7 -0.23418 -0.14801 -0.07923 H39 0.25573 -0.20725 0.40699
H8 -0.23877 -0.20842 0.09476 H40 0.24382 0.29224 -0.09427
H9 0.41614 -0.25638 0.07609 H41 -0.23403 -0.35207 0.42101
H10 -0.08369 -0.24839 -0.07639 H42 -0.27408 0.14785 -0.08029
H11 0.13174 -0.24491 0.10717 H43 -0.23821 -0.29153 -0.40508
H12 -0.36994 -0.25088 -0.10711 H44 -0.26209 0.20750 0.09446
H13 0.22610 -0.39795 -0.17112 H45 0.41597 -0.24361 -0.42417
H14 0.26610 0.10189 0.32945 H46 -0.08366 -0.25165 0.42365
H15 0.23023 -0.45850 -0.34499 H47 0.13164 -0.25506 -0.39292
H16 0.26163 0.04164 0.15519 H48 -0.36927 -0.24911 0.39292
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Figure D.2: Eliashberg spectral function α2F (ω) and its dependence on pressure for the Cmcm phase of
disilane.
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Figure D.3: Superconducting parameters of the Cmcm structure as a function of pressure.
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(a) (b)

Figure D.4: Comparison of the Fermi surfaces at 200GPa of the previously reported P–1 phase (a) and
the new Cmcm phase (b).

D.3 Raman and IR activity

Table D.3 and Table D.4 summarize the calculated zone center Raman and infrared active
phonons for the Cmcm phase at two selected pressures, 100 GPa and 200 GPa. The
mechanical representation of Raman and IR modes are:

IR active modes: ΓIR = 5B1u+6B2u+4B3u

Raman active modes: ΓRmn = 5Ag+5B1g+4B2g+4B3g
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Table D.3: Raman and IR modes of the Cmcm phase at 100 GPa.

Mode Character Frequency (cm−1)

Ag Raman 556.4
Ag Raman 958.7
Ag Raman 1244.5
Ag Raman 1323.2
Ag Raman 1564.9
Ag Raman 1662.0
Ag Raman 1947.8
B1g Raman 309.5
B1g Raman 374.6
B1g Raman 766.6
B1g Raman 1324.9
B1g Raman 1589.1
B1g Raman 1805.0
B1g Raman 1916.2
B2g Raman 467.8
B2g Raman 1114.1
B2g Raman 1181.3
B2g Raman 1864.7
B2g Raman 1900.3
B3g Raman 101.3
B3g Raman 244.8
B3g Raman 919.7
B3g Raman 1737.2
B3g Raman 1897.6
B1u IR 184.0
B1u IR 548.5
B1u IR 1345.5
B1u IR 1608.4
B1u IR 1867.4
B2u IR 577.8
B2u IR 1333.4
B2u IR 1500.1
B2u IR 1844.7
B2u IR 1923.8
B3u IR 670.9
B3u IR 965.1
B3u IR 1099.6
B3u IR 1278.1
B3u IR 1582.4
B3u IR 1642.5
B3u IR 1867.9
Au Silent 204.7
Au Silent 1300.5
Au Silent 1600.0
Au Silent 1953.2
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Table D.4: Raman and IR modes of the Cmcm phase at 200 GPa.

Mode Character Frequency (cm−1)

Ag Raman 681.3
Ag Raman 1107.5
Ag Raman 1494.7
Ag Raman 1555.2
Ag Raman 1714.7
Ag Raman 1902.5
Ag Raman 2268.8
B1g Raman 392.2
B1g Raman 442.9
B1g Raman 789.9
B1g Raman 1535.7
B1g Raman 1880.6
B1g Raman 2117.9
B1g Raman 2177.9
B2g Raman 612.9
B2g Raman 1311.1
B2g Raman 1440.8
B2g Raman 2134.5
B2g Raman 2218.5
B3g Raman 244.6
B3g Raman 321.6
B3g Raman 1320.5
B3g Raman 2130.6
B3g Raman 2185.8
B1u IR 178.3
B1u IR 278.2
B1u IR 1632.3
B1u IR 1874.6
B1u IR 2230.6
B2u IR 609.3
B2u IR 1542.0
B2u IR 1805.0
B2u IR 2135.7
B2u IR 2247.0
B3u IR 759.7
B3u IR 1064.2
B3u IR 1228.2
B3u IR 1508.9
B3u IR 1721.4
B3u IR 1893.3
B3u IR 2235.2
Au Silent 252.3
Au Silent 1519.7
Au Silent 1921.3
Au Silent 2293.6
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Additional material for LiAlH4

E.1 Structural data

In this section we list all atomic coordinates of the structures reported in section 4.4.
Table E.1 lists the energies and the space group index of 10 structures containing AlH4-
frameworks. The first column indicates the structure index according to the energy or-
dering, linked to the list of coordinates provided subsequently in this section.

Table E.1: The energies and space group (SPG) numbers of the low-lying LiAlH4 phases

Index Symmetry SPG index ∆E (meV) ∆E+∆ZPE (meV)
1 P21/c 14 -111.1 -63.7
2 P21 4 -82.6 -34.2
3 Pnc2 30 -81.9 -30.9
4 P21/m 11 -81.2 -32.4
5 Cmmm 65 -66.3 -15.4
6 P–1 2 -65.2 -12.2
7 P21/c 14 -64.4 -15.8
8 P1 1 -56.8 -4.2
9 P2/c 13 -54.1 -0.7
10 P–421m 113 -49.5 -1.9
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Table E.2: Structure index 1, P21/c phase of LiAlH4.
Lattice parameters: a = 5.1617 Å, b = 4.2796 Å, c = 5.0837 Å, α = γ = 90.0◦, β = 66.8382◦

Element x y z

Li1 0.50000 0.00000 0.00000
Al1 0.00000 0.00000 0.50000
H1 −0.13071 0.22290 −0.18004
H2 0.31588 0.17529 0.37445

Table E.3: Structure index 2, P21 phase of LiAlH4.
Lattice parameters: a = 8.9522 Å, b = 4.2573 Å, c = 5.6512 Å, α = γ = 90.0◦, β = 72.1798◦

Element x y z

Li1 0.37461 −0.28109 −0.06017
Li2 −0.12449 −0.28728 0.17229
Al1 0.12438 0.21974 0.31108
Al2 −0.37430 0.21173 −0.44003
H1 0.22047 0.41440 0.05001
H2 −0.27635 0.43413 −0.26440
H3 −0.02781 −0.47809 −0.14526
H4 −0.47209 −0.00541 0.38427
H5 −0.22185 −0.08229 −0.49594
H6 −0.46930 0.03899 −0.17030
H7 0.27817 −0.11330 −0.29156
H8 −0.02611 −0.48378 0.41001

Table E.4: Structure index 3, Pnc2 phase of LiAlH4.
Lattice parameters: a = 4.7435 Å, b = 4.2166 Å, c = 5.1015 Å, α = β = γ = 90.0◦

Element x y z

Li1 0.00000 0.00000 0.46670
Al1 0.50000 0.00000 0.15681
H1 −0.19723 0.29855 −0.31621
H2 −0.35599 −0.25401 −0.08131
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Table E.5: Structure index 4, P21/m phase of LiAlH4.
Lattice parameters: a = 6.6334 Å, b = 6.0095 Å, c = 5.6475 Å, α = γ = 90.0◦, β = 114.2789◦

Element x y z

Li1 0.24063 0.25000 −0.38651
Li2 −0.25260 0.25000 −0.38848
Al1 −0.24879 0.25000 0.13393
Al2 0.25209 0.25000 0.11282
H1 0.42832 0.25000 0.42620
H2 0.04258 0.25000 0.23618
H3 0.45710 0.25000 −0.00978
H4 0.06261 0.25000 −0.19183
H5 −0.25945 0.05289 −0.10712
H6 0.24023 −0.44500 −0.35125

Table E.6: Structure index 5, Cmmm phase of LiAlH4.
Lattice parameters: a = 6.4901 Å, b = 5.8844 Å, c = 2.7557 Å, α = β = γ = 90.0◦

Element x y z

Li1 0.00000 0.00000 0.00000
Al1 0.50000 0.00000 0.50000
H1 0.00000 −0.21522 0.50000
H2 −0.32249 0.00000 0.00000

Table E.7: Structure index 6, P–1 phase of LiAlH4.
Lattice parameters: a = 2.7569 Å, b = 4.3541 Å, c = 4.3787 Å, α = 95.0297, β = 84.5438◦, γ = 90.0033◦

Element x y z

Li1 0.00000 0.00000 0.00000
Al1 0.50000 0.50000 0.50000
H1 −0.00001 −0.32244 0.32242
H2 −0.49997 −0.21517 −0.21524
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Table E.8: Structure index 7, P21/c phase of LiAlH4.
Lattice parameters: a = 6.8369 Å, b = 4.6187 Å, c = 6.5976 Å, α = γ = 90.0◦, β = 100.8716◦

Element x y z

Li1 0.35392 −0.24393 −0.35675
Al1 −0.17790 −0.24612 0.19125
H1 −0.29783 0.43923 −0.39057
H2 −0.39237 −0.07112 −0.30750
H3 0.16886 0.11659 −0.44669
H4 −0.05444 0.42903 0.29655

Table E.9: Structure index 8, P1 phase of LiAlH4.
Lattice parameters: a = 4.2763 Å, b = 5.1905 Å, c = 9.4717 Å, α = 102.6938, β = 91.9368◦, γ = 90.2980◦

Element x y z

Li1 −0.29613 −0.18745 0.40694
Li2 0.19162 −0.11230 0.16033
Li3 0.20938 0.10289 −0.08504
Li4 0.21769 −0.26712 −0.34354
Al1 −0.28125 0.19784 −0.33837
Al2 −0.30497 0.41083 0.15726
Al3 0.20640 0.31589 0.41019
Al4 −0.30247 −0.39101 −0.09449
H1 −0.48570 −0.07398 −0.41639
H2 0.46523 −0.39050 0.05804
H3 0.44437 −0.21419 −0.16873
H4 −0.04326 0.23458 0.24865
H5 −0.09061 0.38046 −0.00357
H6 0.46312 0.48981 0.31524
H7 −0.10963 −0.30655 0.23017
H8 0.02576 −0.39915 0.47444
H9 −0.06258 0.14953 −0.49869
H10 −0.01361 0.03711 −0.25810
H11 0.45395 0.38823 −0.42862
H12 0.38507 0.03168 0.34270
H13 −0.04833 −0.15380 −0.01479
H14 0.46421 0.14947 0.08833
H15 0.49783 0.30261 −0.18179
H16 −0.09190 −0.49348 −0.25847
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Table E.10: Structure index 9, P2/c phase of LiAlH4.
Lattice parameters: a = 4.3574 Å, b = 5.1743 Å, c = 4.5446 Å, α = γ = 90.0◦, β = 93.2116◦

Element x y z

Li1 0.50000 0.34696 0.25000
Al1 0.00000 −0.15966 0.25000
H1 −0.21018 0.10659 0.07092
H2 −0.25348 −0.36711 0.09608

Table E.11: Structure index 10, P–421m phase of LiAlH4.
Lattice parameters: a = b = 4.2377 Å, c = 5.6650 Å, α = β = γ = 90.0◦

Element x y z

Li1 0.00000 0.50000 0.38938
Al1 0.00000 0.50000 −0.12818
H1 0.30049 0.80049 −0.10235
H2 0.30535 0.80535 0.34141
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E.2 Neutron diffraction

Figure E.1 shows the simulated and experimental neutron diffraction pattern of the p-
P21/c and α-LiAlH4 phase, respectively.
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Figure E.1: Simulated and experimental (from Ref. [227]) neutron diffraction pattern are compared.
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[190] M. Lüders, M. A. L. Marques, N. N. Lathiotakis, A. Floris, G. Profeta,
L. Fast, A. Continenza, S. Massidda, and E. K. U. Gross, Phys. Rev. B
72, 024545 (2005).
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