
Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel
edoc.unibas.ch

Dieses Werk ist unter dem Vertrag “Creative Commons Namensnennung-Keine
kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz” (CC BY-NC-ND 3.0 CH)

lizenziert. Die vollständige Lizenz kann unter
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Summary

Current computer systems encode data in sequences of the binary unit,
the bit. The quest of designing faster processors is one of the most im-
portant in modern society. However, reducing the size of transistors and
thus CPUs is limited to the size of single atoms. Modern fabrication tech-
niques employed in industry achieve structures at scales down to 22nm.
Hence, new computation schemes are necessary to continue construc-
tion of better processors. Expanding the properties of the bit is a scheme
widely spread in the condensed matter community. The most promising
ansatz is to enable the bit to not only take states 0 and 1 but also any su-
perposition of the two and thus providing a new set of operations. Essen-
tially, this concept takes the bit into the world of quantum mechanics and
marks the genesis of the qubit. Numerous proposal for the implementa-
tion of the qubit exist. However, an electron spin confined to a quantum
dot (QD) turns out to be the most natural realization of the qubit. Hence,
knowledge of QD properties is essential to the fabrication of an efficient
and powerful quantum computer.

In the first part of this thesis we study a QD tunnel coupled to one di-
mensional conductors (1D), in particular edge states of fractional quan-
tum Hall (FQH) samples. Our proposed setup combines two regimes
that individually attract tremendous scientific effort. The QD is in the
Coulomb blockade regime. Hence sequential tunneling processes from
edge state via the QD to the other edge state are suppressed. Thus, we
focus on cotunneling, i.e. second order processes transferring a particle
directly from one edge to the other. 1D conductors are strongly corre-
lated systems that reveal interesting elementary excitations. Especially
FQH edge states at filling factor 5/2 have been identified to exhibit ex-
citations obeying non-Abelian statistics. Renormalization group calcula-
tions show that the relevant excitations are quasiparticles of both quarter
and half of the elementary charge. We determine the cotunneling con-
ductance via the QD for different kinds of charge carriers, in particular
electrons and quasiparticles of fractional charge e/2 and e/4. On the one
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hand, we find that the electron cotunneling conductance is strongly sup-
pressed while on the other hand both e/2 and e/4 quasiparticles exhibit
distinctive signatures in the cotunneling lineshapes. Our findings pro-
vide a test of the Moore-Read wavefunction based on a simple transport
measurement.

The second part is devoted to the response of a qubit to external fields.
In particular, we study the electron spins confined to self-assembled InAs
QDs of pyramidal shape. We present a trial wavefunction obeying hard-
wall boundary conditions for a pyramidal geometry. Starting from the
band structure of the bulk material we model the QD by adding strain
and hard-wall confinement potential according to the considered geom-
etry. Furthermore, we account for external electric and magnetic fields.
We decouple the conduction band from the valence band and find the
spectrum of the bound electron states in the QD. Finally, we extract the g
factor and analyze the dependence on the direction of the external fields.
Depending on the respective electronic states, we find a variety of g factor
anisotropies suitable for determination by a simple transport measure-
ment. We find both qualitatively good agreement with recent measure-
ments and shapes not yet observed in experiments. At last, we conclude
that our findings can be employed to control the splitting of qubit states
and therefore should prove useful for qubit manipulation.
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CHAPTER 1
Introduction

In this chapter we briefly set the foundation for the thesis. We elaborate
on the evolution of atom models and show basic properties of electrons
orbiting nuclei in Sec. 1.1. We then present the discovery of quantum
dots in condensed matter physics and discuss similarities to atoms, see
Sec. 1.2. In Sec. 1.3, we outline how the spectrum of a quantum dot
is obtained from the bulk band structure. We further elaborate on the
importance of quantum dot research and give a brief introduction to
edge states of the quantum Hall effect in Secs. 1.4 and 1.5, respectively.
Finally, we give the outline of this thesis, see Sec. 1.6.

1.1 Atom models
The curiosity of mankind has always been fueled by the quest for the
unknown and especially the smallest constituents of matter. As an ex-
ample for the drive to discover smaller and smaller particles, we give the
famous excerpt of Dr. Heinrich Faust’s monologue in Johann Wolfgang
von Goethe’s tragic play [Goe05]:

That I may detect the inmost force
Which binds the world, and guides its course.

Faust is pushed towards the verge of insanity by his insatiable curiosity.
Although we refrain from taking as extreme measures, we still continue
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2 CHAPTER 1. INTRODUCTION

to maximize our understanding of nature in all its greatness. For the
purpose of the thesis at hand the above statement shall be limited to the
concept that atoms consist of nuclei and electrons. Further subdivison
of the nuclei goes beyond the scope of this work, even beyond of this
field. To avoid a head start, we give a brief overview on atom models
ranging from the first concept of indivisible particles in ancient Greece to
implementation of quantum mechanics in the 20th century.

The Greek philosopher Democritus lived around 400 BC and was an
important character in the history of atomic models [D13]. Democritus
and his teacher Leucippus were probably the first to postulate that all
matter consists of small particles called atoms. In addition they stated
that these atoms are not divisible any further, i.e. smaller constituents or
subatomic particles are non-existent. From this ground breaking concept
we take a rather large leap in time which brings us to the 20th century
[TN01]. The British Physicist Sir Joseph John Thomson discovered that
cathode rays consist of negatively charged particles which lead him to
the idea that there is more to atoms than known so far. In 1903 Thom-
son postulated an atom model with two kinds of constituents. Electrons
of negative charge are distributed in a positively charged, uniform sea
that fills the entire volume of the atom with diameter 1Å. For the dis-
tribution of the electrons he used the pictures “raisins in a muffin” or
“plums in a pudding” which suggest a static understanding of the atom.
However, the electrons are not localized as in the pictorial descriptions
but move freely within the atom. We note that the atom in the so-called
Thomson model contains no nucleus but a homogenic background. Only
ten years later, in 1913, Ernest Rutherford pointed a beam of alpha par-
ticles, i.e. helium nuclei, at a thin gold foil and observed a wide range
of deflection angles, in particular up to π. In the Thomson model the
alpha particles pass the gold foil built from a uniform sea of positive
charge with electrons embedded within accompanied by minor deflec-
tions. However, the experiment exhibits strong deflection not plausible
within the Thomson model. These findings suggested a model in which
the positive charge of the atom is confined to a small nucleus at the center
of the atom and in which electrons are orbiting the nucleus. The space
in between neighboring nuclei is empty such that an alpha particle is
able to pass the foil without interacting with the nuclei. However, when
an alpha particle approaches a nucleus, it can be deflected in any direc-
tion depending on the exact trajectory. In this new picture the electrons
are bound to the nuclei by the Coulomb interaction and orbit in vacuum
around the nuclei. A problem arose in this picture. An electron on a cir-
cular trajectory emits radiation, thus looses energy and hence collapses
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into the nucleus. In 1913 Niels Bohr postulated that radii of electrons or-
biting a nucleus take discrete rather than arbitrary values such that the
properties of the discrete radii supersede classical mechanics. Thus, the
electron states in an atom are energetically quantized and the quantiza-
tion is given by the angular momentum L which is an integer multiple of
a fixed unit, ~. Bohr laid the foundation for an atom model that changed
our understanding of nature. In 1924 Louis de Broglie postulated that
all particles have wave character with the wavelength given by their re-
spective momenta. The wavelength assigned to a macroscopic particle
is short compared to its size such that a double slit interference experi-
ments prove to be impossible due to the small separation of the two slits.
Electrons, however, are subject to the laws of quantum mechanics and
exhibit wave character. Thus, electrons moving on a closed orbit require
periodic boundary conditions according to the concept of standing prob-
ability waves. De Broglie found that the radii of the electron orbits in the
Bohr model agree with the concept of standing probability waves with
periodic boundary conditions. In 1926 Erwin Schrödinger postulated the
famous relation between the energy and the wavefunction of a particle
or state

H |ψ〉 = E |ψ〉 , (1.1)

with energy operator H and eigenenergy E of state |ψ〉. In fact H is a
differential operator and the Schrödinger equation is a partial differen-
tial equation whose solutions, wavefunctions |ψ〉, describe the properties
of the particle or state. The solutions to the Schrödinger equation of the
hydrogen atom yield the electron density distributions, the so-called or-
bitals. The energy of electrons confined in these orbitals increases for
decreasing extents of the wavefunction which is equivalent to increasing
the attractive potential. This is easily understood when regarding Werner
Heisenberg’s uncertainty principle of 1927

∆x ∆p ≥ ~
2
, (1.2)

where ∆x and ∆p are inverse proportional to each other and with the
spatial extent of the wavefunction ∆x and the extent in momentum space
∆p which is closely related to the kinetic energy. Further effects such
as the exact size, structure and charge distribution of the nucleus and
interaction among electrons affect the orbitals of the electrons as well.
However, the description of atoms explained so far is sufficient for the
purpose of this thesis.

In summary, electrons orbiting around a positive core are spatially
confined due to the Coulomb potential generated by the nucleus. The
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following section gives a brief overview on artificially constructed con-
densed matter systems that exhibit energetically quantized electron states
in analogy to atoms according to the discussion above.

1.2 Artificial atom-like structures - QDs

Point-like, i.e. zero dimensional (0D), objects in condensed matter physics
where single elementary charges can be trapped are called quantum dots
(QDs). In this section, we present the discovery of QDs as well as the
analogy between atoms and quantum dots, also referred to as artificial
atoms.

In 1987 T.A. Fulton and G.J. Dolan [FD87] performed simple conduc-
tance measurements that brought a whole new research field to existence.
A thin electrode, of size 50 × 800 nm2 was tunnel coupled to three leads
and capacitatively coupled to a backgate controlling the chemical po-
tential of the central electrode. Two leads acted as source and drain of
electrons, while the third one was used to determine the capacitance of
the electrode during the transport measurement. From the measured ca-
pacitance they deduced the electron number on the electrode. The mea-
surements were performed on different samples with varying size of the
electrode. For smaller electrodes the I-V curve exhibited oscillations that
were absent for larger electrodes. The oscillation appeared for varying
backgate voltages when the charging energy, EC , overweighed the bias
voltage applied to source and drain, V . The charging energy is a kind
of energy penalty or entry fee an electron has to pay in order to tunnel
onto the electrode, i.e. the QD [Ihn10]. Furthermore, the charging energy,
EC = e2/C, is characterized by the capacitance of the island, C, which
is directly correlated to the size of the electrode, and with elementary
charge e. Hence, the spectrum of the electrode is given by equidistant
levels with splitting EC . Depending on the size of the island the QD
spectrum is dominated by different energy scales. In large structure the
charging energy is the dominant energy scale compared to quantum me-
chanical confinement effects and the level distance is equidistant. For
decreasing QD sizes the confinement increases until it ultimately domi-
nates the energy spectrum of the QD. In few electron QDs quantum ef-
fects dominate. Clearing the QD from all electrons, i.e. depletion, as well
as adding of single electrons is easily achievable by tuning the backgate
voltage accordingly. We note that the number of electrons on a QD is
well-defined. When investigating the energy required to add another
electron to the QD, an atomic, orbital-like structure is revealed, see Fig.
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18.19 in [KAT01]. The detailed spectrum can be probed by a simple trans-
port measurement. Transport through the QD is enabled when one or
more energy levels of the QD spectrum lie within the bias window given
by source and drain, in particular the bias voltage is larger than the level
splitting at the Fermi surface of the leads. Every QD level in the bias
window yields a channel for electron transport through the QD. When
no QD level lies within the bias window such that the level splitting at
the Fermi surface of the leads is larger than the bias voltage, sequential
tunneling processes are suppressed and the QD is in Coulomb blockade.

Tremendous scientific effort has been spent on a rich variety of QD
topics in condensed matter research such as decoherence, long-distance
spin-spin coupling, spin-orbit coupling, spin-dependent tunneling, spin
relaxation, spin dephasing, hyperfine interaction, as well as lateral gate
defined, self-assembled, vertical and nanowire QDs. For reviews see
Refs. [KL13, HKP+07, FMAE+07].

In the most basic sense both QDs and atoms are objects that confine
electrons spatially to a point-like volume, i.e. 0D, exhibiting quantum ef-
fects in the spectra and electron probability densities. However, a major
difference is the symmetry of the confining potential. While atoms ex-
hibit a highly symmetric potential, the potential of QDs strongly depends
on type and shape of the QDs. This is both advantage and challenge. On
one hand the QDs can be designed to match the required properties of
a device. On the other hand fabrication of a QD with perfect size and
symmetry is a great challenge, since the positioning of electrodes, edg-
ing of semiconductor heterostructure, etc. on the nm scale is subject to
mesoscopic effects, here mesoscopic side effects.

1.3 From bulk semiconductors to QDs

QDs are built from semiconductor heterostructures and some bulk prop-
erties that affect the QDs such as g factor, effective mass, coupling to
low-lying hole bands, spin-orbit coupling, and the band gaps strongly
depend on the specific semiconductor materials. Knowledge of the bulk
band structure is therefore essential for detailed investigation of QD prop-
erties. The most prominent semiconductor materials in condensed mat-
ter research are III-V semiconductor compounds such as gallium arsenide
(GaAs) and indium arsenide (InAs).

Theoretical description of electrons in bulk semiconductors is
achieved through k · p theory which is based on the Schrödinger equa-
tion, see Eq. (1.1), for a periodic lattice and the associated Bloch functions
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[Win03]. k · p theory delivers powerful tools for the analysis of semicon-
ductor band structures. The most important feature is that the discussion
can be limited to a specific band or set of bands. An established approach
is to focus on the bands close to the gap between conduction band (CB)
and valence band (VB), i.e. the lowest conduction band, heavy- and light-
hole bands, and the split-off band. Depending on the respective band
gaps, high-lying conduction bands and low-lying valence bands are not
taken explicitly into account. However, effects of these distant bands en-
ter through modified band structure parameters. A QD is modeled by ac-
counting for a strong confinement potential in the bulk Hamiltonian. The
confinement induces a splitting of the bands into subbands according to
the spectrum of the QD as discussed in Sec. 1.2. Furthermore, influences
from external fields, magnetic, paramagnetic, and strain-induced inter-
actions can be included into k · p theory by adding the corresponding
terms to the Hamiltonian. At the interfaces of different semiconductor
materials, e.g. at the boundary of an InAs QD embedded in a GaAs ma-
trix, the lattice is highly strained due to mismatch of the respective lattice
constants. The modified lattice constants relax to their bulk values for in-
creasing distances from the interface. However, a QD is surrounded by
such interfaces, thus depending on the QD size the lattice within the QD
may not relax. Strain which is strongly shape dependent causes a dis-
placement of the charge density that in turn reduces the symmetry of
the QD and affects anisotropic quantities such as the g factor. Finally, we
outline a proper approach to obtain the electronic spectrum of a QD from
the band structure of the bulk. The bulk Hamiltonian is expressed in an
expanded basis due to the subband splitting. The CB is decoupled from
the VB by means of a Schrieffer-Wolff transformation such that a projec-
tion on the CB yields an effective CB Hamiltonian. Diagonalization of
the effective CB Hamiltonian reveals the eigenenergies of the CB levels
in the QD and hence the spectrum of the electronic states in the QD.

1.4 Importance of QD research

One of the most ambitioned goals of the condensed matter research field
is the creation of a quantum computer, i.e. a computer exploiting quan-
tum effects such as superposition in calculation and data storage to speed
up the computation process [KL13]. In classical computers data is stored
encoded in the basic computational unit bit. Since the bit is a binary
quantity, it can be mapped onto a two level system such as a spin in a
magnetic field [LD98]. The two eigenstates of Sz up and down, |↑〉 and
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|↓〉, are assigned to 0 and 1, respectively. However, a spin is not lim-
ited to the two eigenstates but can assume any superposition, i.e. any
point on the Bloch sphere is possible. This quantum mechanical effect
can be exploited when manipulating the state of the spin such that some
operations or algorithms speed up exponentially. Thus a bit formed by a
quantum mechanic two level system is called a qubit. Spatial localization
of individual spins is favorable due to a simplified selection of the pro-
cessed spin. Since design and construction of QDs are mature technolo-
gies, localization of spins can be readily achieved in QDs, double QDs,
and arrays of QDs. Circuits integrating quantum processors operating on
qubits can be realized. However, the response of spins to perturbations
such as external fields is under ongoing investigation, see Ch. 3. QDs are
very versatile objects whose properties such as spectrum, g factor, spin
relaxation and decoherence times depend on material, shape, coupling
to leads or gates, interaction, external fields both strength and direction,
and so forth. Some effects differ from one state to the next excited state.
Providing the opportunity of controlling single particle tunneling as well
as tuning the QD levels enables exploitation of spin blockade, i.e. inhibi-
tion of transport of one spin direction. Thus, QDs can be employed as
spin filters generating a spin polarized current [RSL00].

Semiconductor devices provide favorable realizations of quantum
processors due to scalability of the heterostructures and maturity of the
research field. Furthermore, QDs reveal natural implementations of
qubits as well as a variety of phenomena exploitable for qubit operations.

1.5 Electrons in two dimensions

In general individual electrons subject to magnetic fields exhibit various
effects such as cyclotron movement, spin precession, Zeeman splitting
defining the g factor, and so forth. The list grows as one adds two dimen-
sional (2D) confinement, a strong out of plane magnetic field and low
temperatures to the list of ingredients.

Electrons moving in a magnetic field are subject to the Lorentz force
deflecting the electrons perpendicular to both momentum and magnetic
field [Jai07]. The circular trajectory is characterized by the cyclotron ra-
dius r = p⊥/eB with momentum p⊥ perpendicular to the magnetic field,
positive elementary charge e, and magnetic field B. A two dimensional
conducting sample reveals a voltage perpendicular to the direction of the
current when exposed to an out of plane magnetic field. The so called
Hall voltage stems from the deflection of the electrons by the Lorentz
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force. For increasing magnetic fields the radii describing the motion de-
crease until at low temperatures and high magnetic fields the radii even-
tually reach values much smaller than the extents of the sample. A phase
transition from classical to quantum mechanics occurs such that the cir-
cular motion is subject to periodic boundary conditions. The constraints
cause quantization of the electron energy as well as formation of Landau
levels. The quantization emerges in analogy to the Bohr atom model,
see Sec. 1.1. In finite samples the circular movement of electrons close to
the edge, i.e. closer than the cyclotron radius, is interrupted. These edge
electrons start moving along the edge of the sample such that chiral edge
channels emerge. The movement of an electron in a one dimensional (1D)
channel is restricted by its neighboring electrons such that motion is only
possible in a collective manner since evasion is impossible. In the result-
ing collective state electrons are not well-defined. However, the problem
of interacting fermions can be mapped onto non-interacting bosons such
that the fermion field operator is described by an exponential of the bo-
son field operator. Furthermore, the resulting Hamiltonian is quadratic
in the bosonic fields independent of the interaction. Hence, the technique
to describe 1D conductors in Luttinger liquid theory is called bosoniza-
tion [Gia04, Jai07]. The Hall conductivity through the 1D edge channels
of a quantum Hall sample is given by

σH = ν
e2

h
, (1.3)

with elementary charge e, and Planck constant h. The filling factor ν
takes integer or fractional values characterizing the integer (IQHE) and
fractional quantum hall effect (FQHE), respectively. We note that the Hall
conductivity and resistivity reveal plateaus at integer and fractional fill-
ing factors when tuning the magnetic field. The FQHE is observed at
certain strong magnetic fields that induce interactions between the elec-
trons in addition to 2D confinement and low temperatures. The elec-
trons then condense into the lowest Landau levels and enter a collective
state. Hence, the elementary excitations of the system are of collective
nature and considered quasiparticles of fractional charge which is cor-
related to the filling factor ν. These quasiparticles consist of magnetic
flux quanta attached to a charge, hence called composite fermions. The
FQHE can be understood as an IQHE of composite fermions. Such quasi-
particles usually obey neither bosonic nor fermionic exchange statistics.
On the exchange of two quasiparticles with Abelian statistics a phase is
acquired. Furthermore, quasiparticles exist that obey non-Abelian statis-
tics that cannot be described by a simple phase. Non-Abelian particles



1.6. OUTLINE 9

exhibit potential to prove useful for applications in topological quantum
computations.

1.6 Outline
The thesis at hand is structured as follows. In the first part we com-
bine two very different phenomena of low dimensional structures in con-
densed matter physics in a simple transport measurement. A QD in the
Coulomb blockade regime is tunnel coupled to 1D edge states of FQH
samples. We investigate signatures of the Moore-Read state in quasipar-
ticle transport in the ν = 5/2 FQH regime where we focus on cotunneling
processes. The discovered lineshapes of the cotunneling conductance can
be easily verified by a simple transport measurement. Furthermore, our
findings are also applicable to Laughlin edge states.

In the second part we investigate g factor anisotropy in self-assembled
InAs QDs. Furthermore, we propose a trial wavefunction for a pyramidal
QD with hard-wall confinement. We model an InAs self-assembled QD
using 8-band k · p theory. We start from the bulk band structure and
account for strain and confinement according to the pyramidal geometry.
We find the spectrum of the CB states in the QD in dependence of the
applied magnetic field. Finally, we extract the g factors of the lowest CB
levels and find anisotropies with respect to the magnetic field direction.
Our findings support the idea of qubit manipulation by means of g tensor
modulation.





Part I

Quasiparticle transport
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CHAPTER 2
Quasiparticle cotunneling

Adapted from:
R. Zielke, B. Braunecker, and D. Loss,

“Cotunneling in the ν = 5/2 fractional quantum Hall regime”,
Phys. Rev. B 86, 235307 (2012).

We show that cotunneling in the 5/2 fractional quantum Hall regime al-
lows us to test the Moore-Read wave function, proposed for this regime,
and to probe the nature of the fractional charge carriers. We calculate
the cotunneling current for electrons that tunnel between two quantum
Hall edge states via a quantum dot and for quasiparticles with frac-
tional charges e/4 and e/2 that tunnel via an antidot. While electron
cotunneling is strongly suppressed, the quasiparticle tunneling shows
signatures characteristic of the Moore-Read state. For comparison, we
also consider cotunneling between Laughlin states, and find that elec-
tron transport between Moore-Read states and between Laughlin states
at filling factor 1/3 have identical voltage dependences.

2.1 Introduction
Fractional quantum Hall (FQH) states are intriguing states of matter be-
cause elementary collective excitations behave as quasiparticles with frac-
tional charge and statistics. The FQH state at filling factor 5/2 (5/2-
FQHS) has become of special interest because it has been identified in
several proposals as a state in which the elementary excitations obey

13
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non-Abelian fractional statistics [MR91, FNTW98, RR99, RG00, LRNF07,
LHR07, NSS+08]. Numerical simulations testing these proposals have re-
mained inconclusive [Mor98, RH00, FRNDS08, FRY+09, MS08, ZHR09],
mainly due to finite size limitations. A proof of the nature of the 5/2-
FQHS should therefore come from experiments [RMM+08]. As a first
indicator, evidence for a chiral Luttinger liquid at the edges of the FQH
sample was obtained in Ref. [MRZ+07], demonstrating the fractional
nature of the quantum state, yet not its Abelian/non-Abelian statistics.
It has also been shown that quantum point contacts and interferome-
ters can be constructed in the samples [JCS+03, SBS+99], allowing for
the implementation of the interferometer-based tests proposed in Refs.
[LFG06, FK06, FGK+07, WF10]. A thermoelectric probing of different
FQH states on quantum dots has been proposed in Ref. [VDGS12]. Yet
further proposals for tests are desirable to obtain conclusive evidence.
Theoretical FQH studies have shown that quantum dot (QD) and quan-
tum antidot (AD) structures with corresponding excitations, electrons,
and quasiparticles (QPs), exhibit similar physics [dCCFK+97, GL97]. In
the cotunneling regime the number of particles on the dot is conserved
and second order tunneling processes dominate transport [AN92, GL04].
Elastic (inelastic) processes conserve (change) the state of the dot. The
inelastic process leads to an excitation of the dot for bias voltages larger
than the level spacing on the dot. Since the implementation of dot struc-
tures has become a mature experimental technique, we propose in the
present paper a QD based setup for an alternative test of the nature of the
5/2-FQHS. In particular, we show that the cotunneling current strongly
depends on the nature of the elementary QP excitations that can con-
tribute to the current that is allowed to tunnel through the dots.

Possible charge carriers are electrons and fractionally charged QPs
with non-Abelian statistics. The most prominent candidate QPs are ex-
citations of charge e/4 and e/2 with e being the electron charge [FFN07,
BN08, DHU+08, VYPW11, CFB+11, CFB+12]. We investigate the exis-
tence of signatures of the 5/2-FQHS according to the theoretical descrip-
tion proposed by Moore and Read (MR) [MR91] in simple transport mea-
surements, e.g., conductance through a QD.

Figure 1 shows the two situations of interest: (a) two different FQH
samples at filling factor ν = 5/2 which are weakly tunnel coupled to a
QD, and (b) one single FQH sample whose edge states are weakly tunnel
coupled to an AD in the bulk. The tunneling particles in the latter are
non-Abelian QPs instead of electrons. The edge states are modeled by
a chiral Luttinger liquid theory [Wen90, Wen92, Wen95, Gia04, GNT04]
corresponding to the MR state whose eigenmodes are fractional excita-
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Figure 2.1: Sketch of the two setups considered in this work: Moore-Read
edge states L and R, at chemical potentials µL,R, tunnel coupled to (a) a
quantum dot (QD) and (b) a quantum antidot (AD). The shaded (blue)
region represents the bulk of the FQH samples. In setup (a) tunneling is
limited to electrons, while in (b) the quasiparticles (QP) that can tunnel
are determined by the filling factor of the AD, and, for the MR state both,
charge-e/2 and -e/4, QPs are possible.

tions. In this work we focus on cotunneling in the Coulomb blockade
regime close above a sequential tunneling peak such that it is energet-
ically favorable to first remove a particle from the dot rather than first
adding another particle. An interesting outcome of our calculation is
that electron cotunneling via a QD between both Laughlin edge states at
filling factor ν = 1/3 and MR edge states shows the same bias voltage
dependence.

2.2 Result
The cotunneling current from lead l to lead l′ in lowest order in the bias
V is given by I = Iel + Iinel, with Iel being the elastic cotunneling current
given by

Iel =
2π

~

(
V
Λ

)2κ−2

Γ(2κ)

γlγl′V

(µl − εnq)2
θ(V ), (2.1)

and Iinel the inelastic cotunneling current given by

Iinel =
2π

~

(
V−∆

Λ

)2κ−2

Γ(2κ)

γlγl′(V −∆)

(µl − εnq)2
(1 + ρ∗) θ(V −∆), (2.2)

with bias V = µl−µl′ , chemical potential µl of edge state l, single-particle
level spacing on the dot ∆ = εn′q − εnq, dot level εnq, effective bandwidth
of the leads Λ = ~u/α (bounded by the gap of the 5/2-FQHS) defining
the length α, velocity of the bosonic (fermionic) edge excitations u (vn),
Heaviside step function θ, and tunneling rate γl = |Aln′n|2/(2πvn~) with
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Aln′n =
∑

p tlp〈n′|dpq|n〉 (see below). The renormalized dot occupation
ρ∗ ∝ (V + ∆)2κ−1 − (V − ∆)2κ−1 accounts for the overshooting of the
conductance close to the transition from the elastic to the inelastic regime
and will be given in detail below. The parameter κ is determined by the
type of tunneling particles (see below). For cotunneling of e/2 and e/4
QPs in setup (b), we replace the step function θ by the Fermi function
f(V ) =

(
1 + eV/kBT

)−1 (for a temperature T < ∆/kB and the Boltzmann
constant kB) which smooths out the discontinuities at V = 0,∆ for T = 0,
and we use the V →

√
V 2 + (kBT )2 regularization for cotunneling of e/4

QPs.

2.3 Model
The system is modeled by the Hamiltonian H = H0 + HT , where H0 =
HL + HR + HD describes the uncoupled FQH edges and the dot, and
HT the tunneling between them. In the considered systems the leads
are fractional quantum Hall edge states modeled according to the MR
state and described by the Hamiltonian for lead l at chemical potential µl
[MR91, FFN07]

Hl =
u~
2π

∫
dx
(
∂xφl(x)

)2 − ivn~
∫
dx ηl(x)∂xηl(x), (2.3)

where φl is a chiral boson field, the Majorana field ηl is the zero mode, and
u (vn) is the velocity of the bosonic (neutral fermionic) excitations. For the
MR state the lower filled Landau level acts as a background potential and
causes a shift of the energy levels which is not important in our discus-
sion. The fermion operator in lead l is given by [FFN07, Wen95]

ψle(x, t) =
e−ik1x√

2πα
ηl(x, t) e

iφl(x,t)
√

2, (2.4)

with k1 proportional to the particle density in the leads. Analogously the
e/2 and e/4 QP operators are [FFN07, Wen95, FFN06]

ψl e
2
(x, t) =

e−ik1x√
2πα

eiφl(x,t)/
√

2, (2.5)

ψl e
4
(x, t) =

e−ik1x√
2πα

σl(x, t) e
iφl(x,t)/2

√
2, (2.6)

where σl is a chiral Ising spin field. The dot is modeled by
HD =

∑
n εnqd

†
nqdnq, where dnq is the electron or QP operator for the dis-

crete particle level n on the dot similar to Eqs. (2.4), (2.5), and (2.6) with
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particle charge q = e for electrons on the QD and q = e/2, e/4 for QPs on
the AD. The Coulomb repulsion of the particles lifts a possible degener-
acy of the energy levels including both charging and interaction energies.
Tunneling between the leads and the dot is described by the perturbation
HT =

∫
dx
∑

l,n tlnψ
†
lq(x)dnq + h.c., where ψlq(x) and dnq annihilate parti-

cles of charge q in lead l at x and in the dot level n, respectively, and with
tunneling amplitude tln. From Ref. [FFN07] we know that QP tunneling
processes are dominant in the MR state.

In setup (a) (Fig. 2.1) the leads are independent as they belong to dif-
ferent FQH systems. Independence between the edges is also assumed
in setup (b), which requires that the length of the edges be larger than
the coherence length of the excitations, estimated as 2.3l0 with l0 ∼ 4µm
being the magnetic length [BZBS09, WHRY08]. Tunneling in the leads
is assumed to be limited to the positions closest to the dot, denoted by
x = 0 with width ∆x � k1

−1, because tln depends exponentially on the
tunneling distance [RL02] and consequently no special effects arise from
the difference in velocities between bosons and Majorana states as op-
posed to Mach-Zehnder interferometers [LFG06, FK06, FGK+07, WF10].
We focus on the Coulomb blockade regime, where the particle number
on the dot is fixed, Nq =

∑
n d
†
nqdnq. The charging energy of the dot

is much larger than the single-particle level spacing ∆ and particularly
larger than µl − εnq. Tunneling processes through energetically distant
dot levels are suppressed. The dot forms an effective two-level system
that contains one particle. The persistence of the ground state in the elas-
tic regime is ensured by charge conserving cotunneling processes which
relax the state of the dot. The charge of the tunneling QPs is set by the
filling factor of the AD such that there is no mixing of e/4 and e/2 QPs.
We consider a regime in which the applied bias and the level spacing
on the dot are larger than the temperature, allowing us to essentially ne-
glect temperature effects. Since the MR state is spin-polarized, spin is
neglected in the model [Mor98, RH00, FRY+09, CL08, TGKM12, SPV+12]
and the fermion operator ψle is identified with the spin-polarized elec-
tron.

2.4 Transition rates

The transition rate Wl′l(n
′, n) of transferring a particle from lead l to lead

l′ and shifting the particle on the dot from level n to level n′ is determined
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by the golden rule

Wl′l(n
′, n) =

2π

~
∑
|F 〉6=|I〉

∣∣〈F |T̂ |I〉∣∣2δ(EI − EF ), (2.7)

with the T matrix T̂ = HT (EI − H0 + i0+)−1T̂ , final, |F 〉, and initial,
|I〉, states for the two leads and the dot, and energies EF , EI respec-
tively. Level broadening in the leads (reservoirs) is neglected in state
|F 〉. We focus on the second order in the tunneling Hamiltonian HT and
the cotunneling regime. The linear order of HT in the T matrix leading
to sequential tunneling is suppressed in the Coulomb blockade regime
[AN92] such that only the next order, cotunneling, matters. The final and
initial states are given by |F 〉 = |Fl〉⊗|Fl′〉⊗|FD〉 and |I〉 = |Il〉⊗|Il′〉⊗|ID〉,
with |Fl〉 = ψlq |Il〉, |Fl′〉 = ψ†l′q |Il′〉, |FD〉 = d†n′qdnq|ID〉, and initial lead l
and dot states |Il〉 and |ID〉, respectively.

From Eqs. (2.4), (2.5), and (2.6) we obtain the correlation functions for
electrons, q = e/2, and q = e/4 QPs, respectively, [Wen95]

〈ψ†le(t)ψle(0)〉 =
〈ηl(t)ηl(0)〉

2πα
e2J(t) ∝ t−(κ=3), (2.8)

〈ψ†l e
2
(t)ψl e

2
(0)〉 =

1

2πα
eJ(t)/2 ∝ t−(κ=1/2), (2.9)

〈ψ†l e
4
(t)ψl e

4
(0)〉 =

〈σl(t)σl(0)〉
2πα

eJ(t)/8 ∝ t−(κ=1/4), (2.10)

with J(t) = − ln
(
(−ut + iα)/iα

)
. The indicated power laws define the

coefficient κ. The noninteracting case, κ = 1, corresponds to the Fermi
liquid (FL) limit. We note that, since x = 0, the Majorana fermion field ηl
(Ising spin field σl) results in a simple correlator, increasing the lead cor-
relation exponent κ by 1 (1/8) such that κ = 3, 1/2, 1/4 for q = e, e/2, e/4,
which is in contrast to the Mach-Zehnder interference proposals [LFG06,
FK06, FGK+07, WF10] and leads to simpler propagators.

In the inelastic cotunneling regime, V > ∆, processes exist which
excite the dot and change the occupation probabilities of the dot lev-
els. The steady state occupation probabilities are then determined by
the master equation W ↑ρ(1) − W ↓ρ(2) = 0, with W ↑ =

∑
l,l′ Wl′l(2, 1),

W ↓ =
∑

l,l′ Wl′l(1, 2), and ρ(n) the occupation probability of level n = 1, 2.
The cotunneling current from lead l to lead l′ is then given by

Il′l =
∑
n,n′

Wl′l(n
′, n)ρ(n). (2.11)
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The renormalized dot occupation in Eq. (2.2) reads ρ∗ = (Wl′l(1, 2) −
Wl′l(2, 1))/(W ↑+W ↓). We evaluate Eq. (2.7) by means of Fourier integra-
tion over time to reexpress the T matrix in terms of the correlators given
in Eqs. (2.8)-(2.10). We then find for the cotunneling rates for charge
transfer between FQH edge states and a dot

Wl′l(n
′, n) =

2π

~
Γκl′ln′n

γlγl′(V −∆)

(µl − εnq)2
θ(V −∆), (2.12)

with the real coefficients

Γκl′ln′n =

(
V−∆

Λ

)2κ−2

Γ(2κ)

∣∣∣∣∣
l 6=l′

+ δl′,l Ξκ
ln′n, (2.13)

where Γ is the Gamma function and Ξκ
ln′n results from energy renor-

malization in the leads. In the limit of noninteracting leads, Γ1
l′ln′n = 1

and hence Ξ1
ln′n = 1, the FL result of Ref. [RSL00] close to a sequen-

tial tunneling resonance is recovered. For charge conserving processes
of e/2 (e/4) QPs, Ξ

1/2
ln′n (Ξ1/4

ln′n) can be approximated by their most singular
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Figure 2.1: Cotunneling conductance dI/dṼ with Ṽ = V/e, and I = Iel +
Iinel given by Eqs. (2.1) and (2.2) for e/4 and e/2 QP transport between
MR edge states of the same FQH sample through an AD, electron trans-
port between MR edge states of separate FQH samples through a QD,
and electron transport between FL leads through a QD. The e/2 and e/4
QP conductance is shown for the temperatures (a) T = ∆/100kB ≈ 1mK
and (b) T = ∆/20kB ≈ 5mK, respectively.

contributions, the branch points (branch cuts), such that Ξ
1/2
ln′n = −Λ/∆

(Ξ1/4
ln′n = |Λ/∆|3/2/

√
π), whereas for electron cotunneling processes Ξ3

ln′n

results in a lengthy expression with, however, negligible effect. From
Eqs. (2.11)-(2.13) we obtain the results of Eq. (2.1) (for ∆ = 0) and Eq.
(2.2).

2.5 Discussion

We have calculated the cotunneling current of the MR state in both se-
tups of electron and quasiparticle tunneling via a dot. The resulting line
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Figure 2.2: Temperature dependence of the e/4 and e/2 QP cotunneling
conductance dI/dṼ with I = Iel + Iinel given by Eqs. (2.1) and (2.2) and
Ṽ = V/e fixed at the transition from the elastic to the inelastic regime,
V = ∆. Values for electron transport between MR edge states of separate
FQH samples through a QD and electron transport between FL leads
through a QD are shown for zero temperature. On the upper scales T is
given in mK for ∆/kB = 100mK. The inset shows the conductance dip
depth, −dI/dṼ , for e/4 QP tunneling at the minimum in the nonfixed
bias V .

shapes differ significantly, especially from the line shape of the FL regime
[GL04]. The cotunneling current for electrons shows a power law de-
pendence on both the bias applied to the edge states and the effective
bandwith of the leads, V 2κ−1 and Λ2−2κ. The effective bandwidth Λ is
on the order of the effective Landau level gap size in the 5/2-FQHS, ∼
100-500 mK. We note that γ̄l = γl Λ1−κ can be considered an effective co-
tunneling amplitude from which it is obvious that electron cotunneling
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between MR edge states via a QD is highly suppressed by the fourth in-
verse power of the effective bandwidth, γ̄Lγ̄R = γLγR Λ−4, due to the fact
that four e/4 QPs are forced to tunnel simultaneously, in agreement with
earlier findings that electron tunneling is least relevant in the MR state
[FFN07]. Figure 2.1 shows the differential conductance, dI/dV , in the co-
tunneling regime, for electron tunneling in the FL regime and in the MR
state via a QD, and for e/4 and e/2 QP tunneling in the MR state via an
AD at experimentally achievable temperatures, (a) T = ∆/100kB ≈ 1 mK
and (b) T = ∆/20kB ≈ 5 mK, respectively. In the FL regime, which cor-
responds to noninteracting excitations of the FQH edge, previous results
[RSL00, GL04] are recovered. Fig. 2.2 shows the temperature dependence
of the e/4 and e/2 QP cotunneling conductance at the transition from the
elastic to the inelastic regime, V = ∆. The inset gives both the e/4 QP
conductance dip depth, −dI/dṼ at the minimum with respect to V , and
the temperature range for which the negative differential conductance of
e/4 QPs is observed. The MR state reveals its special signature in the line
shape of the cotunneling conductance. For e/4 QP tunneling regions of
negative differential conductance appear. On the other hand, both e/2
and e/4 QPs show pronounced conductance peaks at the opening of a
new transport channel. These special peaks corroborate the findings of
Ref. [FFN07] of e/2 and e/4 QP tunneling being relevant. In the cotun-
neling regime, however, the renormalization group flow is cut off by bias
V and temperature T such that the perturbative result is accurate. Our
calculations show that the different charge carriers can be clearly distin-
guished by standard transport measurements.

Our approach is also applicable to a setup of two separate FQH sam-
ples with common Laughlin FQH edge states at filling factor ν weakly
coupled through a QD, similar to the setup in Fig. 2.1 (a). The cotunnel-
ing current is then given by Eqs. (2.1) and (2.2) with κ = 1/ν [Wen95].
In this scenario, 1/ν QPs of fractional charge ν combine to a full electron
charge when tunneling through the QD, such that not one particle has to
tunnel but 1

ν
−1 additional particles. Due to the necessity of simultaneous

tunneling the electron cotunneling current is suppressed by Λ2−2/ν . It is
interesting to note that electron tunneling via a QD in both the MR state
and the Laughlin state at filling factor ν = 1/3 show the same voltage
dependence. However, the two states differ in the velocities of the exci-
tations due to the bosonic and fermionic nature of the lead eigenmodes.

In conclusion, we have shown that electron cotunneling via a quan-
tum dot is strongly suppressed in the Moore-Read state compared to e/4
and e/2 quasiparticle cotunneling via an antidot. The line shape of the
differential conductance reveals the special signature of the Moore-Read
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state. Both the Moore-Read wave function can be verified and the charge
carrying excitation can be determined by measuring the cotunneling cur-
rent in the setups depicted in Fig. 2.1.
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CHAPTER 3
Pyramidal InAs quantum dots

Adapted from:
R. Zielke, F. Maier, and D. Loss,

“Anisotropic g factor in InAs self-assembled quantum dots”,
Phys. Rev. B 89, 115438 (2014).

We investigate the wave functions, spectrum, and g-factor anisotropy of
low-energy electrons confined to self-assembled, pyramidal InAs quan-
tum dots (QDs) subject to external magnetic and electric fields. We
present the construction of trial wave functions for a pyramidal geome-
try with hard-wall confinement. We explicitly find the ground and first
excited states and show the associated probability distributions and en-
ergies. Subsequently, we use these wave functions and 8-band k · p
theory to derive a Hamiltonian describing the QD states close to the va-
lence band edge. Using a perturbative approach, we find an effective
conduction band Hamiltonian describing low-energy electronic states
in the QD. From this, we further extract the magnetic field dependent
eigenenergies and associated g factors. We examine the g factors regard-
ing anisotropy and behavior under small electric fields. In particular, we
find strong anisotropies, with the specific shape depending strongly on
the considered QD level. Our results are in good agreement with re-
cent measurements [Takahashi et al., Phys. Rev. B 87, 161302 (2013)]
and support the possibility to control a spin qubit by means of g-tensor
modulation.
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3.1 Introduction

Electron spins confined to semiconductor quantum dots (QDs) are excel-
lent candidates for the physical realization of qubits, the elementary units
of quantum computation [LD98]. The qubit state can be initialized and
manipulated by means of externally applied electric and magnetic fields.
Thus knowledge about the qubit’s response to these fields is crucial for
the successful operation of qubits. This response depends strongly on
the type of QD considered, e.g., lateral gate defined QDs, nanowire QDs,
and self-assembled QDs [KL13, HKP+07]. The most prominent type of
QDs for self-assembled QDs are InAs QDs grown on a GaAs surface or in
a GaAs matrix. These QDs can be grown in various shapes such as pyra-
mids [GSB95, GCL+95, RWS+95], truncated pyramids [LSG+96], and flat
disks [BHH+01] and hence are highly strained due to the lattice constant
mismatch of substrate and QD materials. In self-assembled InAs QDs,
spin states have been prepared with more than 99% fidelity [ADB+06]
and complete quantum control by optical means has been shown
[PDGM+10, PLZY08]. However, full qubit control by means of external
fields and small system sizes are the most important goals in solid state
based quantum computation, allowing for the construction of integrated
circuits [KL13, HKP+07]. Regarding these requirements, g-tensor modu-
lation is a powerful mechanism that allows control of the qubit [PPF11,
PPF08, BPC+13] but is sensitive to the shape of the QD hosting the qubit
[HKP+07]. Hence the qubit behavior under the influence of geometry,
external fields, etc., is still subject to ongoing scientific effort [TSL12,
PMS+12, JMSS12]. A crucial ingredient for modeling the qubit behav-
ior is the knowledge of the particle distribution within the QD, i.e., the
envelope wave function which is mainly determined by the shape of the
QD. For simple structures such as spheres, flat cylinders, and cubes, the
wave functions in QDs can be described analytically, e.g., by employing
hard-wall or harmonic confinement potentials [CTDL77]. For more com-
plicated shapes usually numerical models are employed [GSB95, PPS97,
Pry98, SGB99, DP07]. Recently, there have been efforts to find analytical
wave functions for pyramids with different types of boundary conditions
[HRV+12, VTH13]. However, the set of wave functions introduced so far
has been observed to be incomplete, lacking for example the ground state
wave function. Both analytical and numerical methods are employed to
further explore QD characteristics such as strain [GSB95, ND10], spectra
[GSB95], and g factors [PF06, PF07]. Explicit values depend on the mate-
rial properties. Building QDs in materials with very large, isotropic bulk
g factors, i.e., InAs (g = −14.9), is favorable due to an improved opportu-
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nity of g-factor modification. Measurements emphasize the decrease of
the g factor when considering electrons in InAs QDs. Numerical calcula-
tions [DP07, PF06, PF07] and measurements [BKF+99, MRPPM02] show
that the g factor can go down to very small values and depends strongly
on the dot size. Furthermore, recent measurements show a significant
anisotropy [dFB+13, TDO+13] of the g factor which turned out to be tun-
able by electrical means [TDO+13, DKT+11]. This behavior of g can be
attributed to material- and confinement-induced couplings between the
conduction band (CB) and the valence band (VB) which result in totally
mixed low-energy states.

The outline of this paper is as follows. In Sec. 3.2, we present an 8-
band k · p Hamiltonian describing the low-energy QD states which ac-
counts for strain and external electric and magnetic fields. Additionally,
we introduce a set of trial wave functions satisfying the hard-wall bound-
ary conditions of a pyramidal QD. Furthermore, we derive an effective
Hamiltonian describing CB states in the QD. In Sec. 3.3, we present the
results of our calculations, in particular the g-factor anisotropy of CB QD
levels. These results are discussed and compared to recent measurements
in Secs. 3.4 and 3.5, respectively. Finally, in Sec. 3.6, we conclude.

Figure 3.1: Sketch of the QD geometry and the coordinate system used
in this work with x, y, and z axes pointing along the growth directions
[100], [010], and [001], respectively. The externally applied fields under
consideration are B = (Bx, By, Bz) and E = (Ex, 0, 0).
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3.2 Model

In this section, we introduce the Hamiltonian and wave functions used in
this work. Furthermore we outline the performed calculations and give
the main results in a general manner.

3.2.1 Hamiltonian

Low-energy states in bulk III-V semiconductors are well described by an
8-band k · p model [Win03], which includes the CB and the VB consist-
ing of heavy- (HH) and light-hole (LH) bands, and split-off (SO) bands.
The associated Hamiltonian Hk·p is given in terms of two-fold degen-
erate basis states |j,±〉, j = CB,HH,LH, SO, which are linear combi-
nations of products of angular momentum eigenfunctions and real spin
states [Win03]. We model a pyramidal QD by taking into account a three-
dimensional hard-wall confinement potential Vc defining a square pyra-
mid of height a and base length 2a as sketched in Fig. 3.1. We introduce
strain by adding the strain HamiltonianHstrain [Win03]. An analytical de-
scription of the strain distribution within an InAs pyramid enclosed in
a GaAs matrix can be modeled by exploiting the analogy to electrostatic
theory [ND10]. We include the effect of an externally applied magnetic
field B =∇×A defined by the vector potential A (∇·A = 0) by adding
two terms. The first term is the magnetic interaction termHZ [Win03]. To
derive the second term, HB, we replace k→ k + eA/~ in Hk·p and Hstrain

in a semiclassical manner, where e is the positive elementary charge and
~ the Planck constant. We drop all contributions independent of B and
obtain a Hamiltonian which accounts for orbital effects of B. An external
electric field E is included by adding the electric potential HE = e E · r,
with r = (x, y, z). The full system is then described by the Hamiltonian

H = Hk·p +Hstrain +HZ +HB +HE + Vc. (3.1)

Note that literature values for k · p parameters are usually given for 4-
band models. In an 8-band model, the parameters have to be modified
accordingly [Win03].

3.2.2 Hard-wall wave function

As a first step, we consider Vc of a pyramidal QD analytically and require
a vanishing particle density at the boundaries. We construct a trial wave
function satisfying these boundary conditions as follows.
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The Schrödinger equation of a particle confined in a square with sides
of length a with vanishing boundary conditions on the borders, has the
well-known solution ψ�

mn(x, y) with eigenenergies E�
mn. The wave func-

tion of a particle confined in an isosceles triangle obtained by cutting the
square along the diagonal, ψ4(x, y), is then constructed by linear com-
binations of degenerate solutions ψ�

mn(x, y) while requiring a vanishing
wave function at the diagonal of the square [Li84]. We span the full three-
dimensional (3D) volume of the pyramid and the corresponding wave
functions with the product of two such triangles and the associated ψ4.
This consideration suggests then the following ansatz for the hard-wall
wave functions inside the pyramidal geometry of the form

ψm(r) = c
∏
ξ=x,y

[
sin
(
αξ ξ

+
)

sin
(
αz ξ

−)
− (−1)mξ+mz sin

(
αz ξ

+
)

sin
(
αξ ξ

−) ], (3.2)

with r = (x, y, z), c = csc(πz)/Nm, αi = miπ/a, mi = 1, 2, 3, . . . , mx 6= mz,
my 6= mz, m = (mx,my,mz), ξ± = ξ ± (z − a)/2, and Nm such that the
integral over the pyramid volume

∫
d3r |ψm(r)|2 ≡ 1. We define energies

of ψm(r) by taking

~2

2m0

〈ψm(r)| (−i∇)2 |ψm(r)〉 = Em, (3.3)

where m0 denotes the bare electron mass. For notational simplicity we
use ψm ≡ ψmxmymz and Em ≡ Emxmymz . Exact analytical solutions of
the Schrödinger equation have been derived using specular reflections of
plain waves at the boundaries of the geometry [HRV+12]. However, the
obtained set of solutions is incomplete, consisting solely of excited states
and especially lacking the ground state. We stress that our ansatz ψm

is not an eigenstate of the Schrödinger equation. However, the energies
Em we find are lower than the eigenenergies of the Schrödinger equation
derived in Ref. [HRV+12]; see Secs. 3.3.1 and 3.4.1. In addition, the wave
function for the lowest energy state, ψ221, exhibits the expected node-
less shape for the ground state. A more detailed justification of ψm(r) is
given in Appendix A. In the following calculations, we apply these trial
envelope wave functions for both CB and VB states. In general, electron
and hole envelope wave functions differ [GSB95, SGB99]; however, this
choice is justified since we find that even this overly simplified picture
yields already good results.
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3.2.3 Zeeman splitting of the CB states in the QD

A strong confinement of the electron and hole wave functions to the QD,
as assumed by taking Vc into account, corresponds to a splitting of the
basis states into localized states which can be described as products of
the former basis states and the confinement-induced envelope functions,

Ψj,±
m (r) = ψm(r) |j,±〉 . (3.4)

We note that a non-trivial set of basis states requires max{mj} ≥ 3. We
rewrite H in a basis formed by the Ψj,±

m by taking the according matrix
elements and find a new Hamiltonian Hd describing the QD states. We
split Hd into three parts,

Hd = Hd
d +Hbd

d +Hbod
d , (3.5)

where Hd
d denotes the diagonal elements of Hd, Hbd

d denotes the block-
diagonal parts of Hd between the CB and VB, and Hbod

d the associated
block-off-diagonal elements. The external electric and magnetic fields
are treated as a perturbation to the system. Hence diagonal terms of
Hd stemming from taking matrix elements of HZ , HB, and HE are in-
cluded in Hbd

d . Since we are interested in describing electrons confined
to CB states of the QD, we decouple the CB states from the VB states
by a unitary transformation, the Schrieffer-Wolff transformation (SWT)
H̃d = e−SHde

S , where S is an anti-unitary operator (S† = −S) [Win03].
We approximate the SWT to third order in a small parameter λ deter-
mined by the ratio of the CB-VB coupling and the CB-VB energy gap. To
this end, we express S as S = S1 + S2 + S3, where O(Si) = λi. Here,
the operators Si are defined by [Hd

d , S1] = −Hbod
d , [Hd

d , S2] = −[Hbd
d , S1],

[Hd
d , S3] = −[Hbd

d , S2]−1/3[[Hbod
d , S1], S1] [Win03]. Since λ is small, we can

expand eS up to third order in λ using the decomposition of S. Assuming
that O(Hd

d ) = λ0, O(Hbd
d ) = O(Hbod

d ) = λ1, we perform the SWT where
we keep terms up to third order in λ in the final Hamiltonian H̃d. In a
last step, we project H̃d on the CB and find an effective CB Hamiltonian,
H̃CB
d . In H̃CB

d , the single QD levels are strongly coupled, and thus cannot
be treated perturbatively anymore. Instead, we diagonalize H̃CB

d exactly
and evaluate the eigenenergies E±n , where the indices denote the nth QD
level from the VB edge with effective spin ±. We find the g factor of the
nth spin-split QD level by taking

gn =
E+
n − E−n
µB|B|

, (3.6)
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Figure 3.2: Probability distributions of the smallest nontrivial set of trial
wave functions ψm(r), i.e., max(mi) = 3, satisfying the hard-wall bound-
ary conditions for the geometry given in Fig. 3.1. We show contour plots
of |ψm(r)|2 = 0.1 inside the pyramidal geometry assumed for the QD;
see Fig. 3.1. Note the degenerate pairs: ψ321 and ψ231, ψ312 and ψ132, ψ213

and ψ123.

with Bohr magneton µB. Since the exact values of the energies E±n de-
pend on the magnitude and direction of the external fields E and B,
gn = gn(E,B). H̃CB

d contains higher order terms in B; thus we find

gn = gn,0 + gn,2|B|2, (3.7)

which is consistent with the general behavior expected of H̃d under time
reversal. However, with |gn,2| � |gn,0|, the quadratic dependence of gn
on |B| is barely measurable in experiments.

3.3 Results

In this section, we present the results of the calculations outlined in
Sec. 3.2. All calculations were performed for a pyramidal QD of height
a = 50 nm. We consider basis states that fulfill max{mi} ≤ 3, which re-
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sults in a splitting of each band |j,+〉 (|j,−〉) into nine QD levels. The sys-
tem parameters used for the Hamiltonians are listed in Table B.1 in Ap-
pendix B, where the notation directly corresponds to the notation used
in Ref. [Win03].

3.3.1 Probability distribution of the wave function

We show contour plots of the probability distribution |ψm(r)|2 of the
wave function found in Eq. (3.2), see Fig. 3.2. We present the lowest-
energy states forming the smallest nontrivial set of wave functions. The
ground state ψ221 with associated ground state energy E221 = 0.53 meV
exhibits s-wave character; i.e., we find a single density cloud roughly fit-
ting the pyramidal shape. For excited states, nodes appear in the center
of the pyramid and along the axes of the coordinate system. We observe
p-wave character for the states ψ321, ψ231, ψ312, and ψ132; see Fig. 3.2. The
wave functions ψmimjmk and ψmjmimk with mi 6= mj are degenerate and
we find that the associated particle densities are of the same form, only
with nodes oriented along different axes, i.e., x and y. Further restric-
tions arising from the pyramid geometry, such as correlations between
the coordinates, result in symmetries regarding the quantum numbers,
ψmimimj = ψmjmjmi .

3.3.2 Spectra of the CB states in the QD

In Fig. 3.3, we plot the energy spectrum of the low-energy CB states
given by H̃CB

d and examine the behavior of the QD levels as functions
of B = (0, 0, Bz). For |B| = 0, we find six degenerate QD levels En which
split into pairs while increasing B from 0 to 1 T, where we assume that
E = 0. Confinement and strain push the QD levels far apart from each
other; hence the B-induced spin splitting cannot be observed in the full
plot, Fig. 3.3 on the left. To circumvent this, we produce magnified plots
showing the B dependence of the single QD levels n, Fig. 3.3 on the right.
We note that the splitting of the CB levels, En+1 − En, is on the order of
100 meV which contrasts the Zeeman splitting, E+

n −E−n , which is on the
order of 1 meV or below. For most QD levels E±n , we observe a clearly
nonlinear dependence on B, indicating a diamagnetic shift of the QD
levels [vBSK+12]. This dependence is not independent of the direction of
B, resulting in an anisotropy associated with the g factor; see Sec. 3.3.3.
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3.3.3 g factor of the CB states in the QD

We discover strong anisotropies for the g factors of electrons confined to
low-energy CB states of pyramidal shaped InAs QDs. The g factors of the
first six QD levels from the VB edge, gn with n = 1, . . . , 6, are shown as 3D
plots and cuts along specific planes in Figs. 3.4 to 3.8 in ascending order.
We calculate the gn for magnetic fields of strength |B| = 1 T. We further
apply electric fields of strengths |E| = 0 V/m and |E| = 106 V/m along
the x axis. In response to an electric field along the x axis the anisotropy
axis slightly tilts away from the z axis. To reduce calculation effort, we
interpolate between data points, however, we have checked consistency
in several cases with non-interpolated plots.

We find anisotropies of various shapes and directions depending on
the QD level under consideration. We observe the emerging of three
main axes of anisotropy, x + y, x − y, and z, pointing along crystallo-
graphic directions [110], [11̄0], and [001], respectively. QD levels n = 1, 4, 6
(n = 2, 3) reveal g-factor maxima along the x+y (z) axes, whereas small g-
factor values tend to appear along(in) the x−y axis (xy plane). Along the
x − y axis we observe that a special situation arises for n = 1; here g ap-
proaches a very small value close to but still larger than zero. However,
this drop depends strongly on the dot size; see Sec. 3.4.3. Interestingly,
g5 barely exhibits any anisotropy with maximum values at the x+ y axis
and minimum values at the x − y axis; see Fig. 3.7. This is in contrast to
g6, where we note a considerable increase of the g-factor values and again
a significant anisotropy. Note the change of the color scale in Fig. 3.8. In
general, we observe a dependence of the absolute values of the gn on the
QD size; see Sec. 3.4.3.

3.4 Discussion
In this section, we comment on the probability distributions of pyramidal
QDs calculated in Sec. 3.3.1. Furthermore, we discuss the B dependence
of both spectrum and g factor of the CB states in the QD presented in
Secs. 3.3.2 and 3.3.3, respectively.

3.4.1 Probability distribution of the wave function

The wave functions of the lowest states exhibit the structure of cuboidal
wave functions adapted to the pyramidal shape of the enclosing QD. We
definitely observe the ground state as well as excited states. This is con-
sistent with the method used for the construction of the wave functions.



36 CHAPTER 3. PYRAMIDAL INAS QUANTUM DOTS

Note that the wave functions ψm(r) are not exact eigenfunctions of the
Schrödinger equation. However, the boundary conditions are satisfied
and the corresponding energies, see Eq. (3.3), are smaller than the ener-
gies of known analytical solutions of the Schrödinger equation provided
that the correct boundary conditions are taken into account [HRV+12].
Due to the method of construction, we find that the wave functions do
not vanish at the diagonal planes (x + y)z and (x − y)z, respectively, as
was observed in Ref. [HRV+12]. Furthermore, the authors of the work
presented in Ref. [HRV+12] explicitly state that the obtained set of wave
functions is incomplete; solutions with a finite density at the center of
the pyramid are not contained. In particular, a distinct ground state is
missing. From this we conclude that our set of wave functions is more
suitable to describe low-energy states in pyramidal QDs. Numerical cal-
culations of QD wave functions usually include piezoelectric potentials
and specific material properties directly from the beginning, which com-
plicates a direct comparison [GSB95, SGB99]. However, compared to nu-
merical calculations without strain as performed in Ref. [GSB95], where
the wave functions extend into a wetting layer, and Ref. [SGB99], where
no intermixing with a wetting layer is observed, we report similar shapes
of the probability distributions with our analytical ansatz. Even though
we apply this simplistic model, we recover the effects recently observed
in experiments to a very good degree [TDO+13]; see Sec. 3.4.3.

3.4.2 Spectra of the CB states in the QD

After diagonalizing H̃CB
d , we find states in the CB of the QD which are

degenerate for |B| = 0 and split into pairs by an increasing magnetic
field. These energy levels exhibit a quadratic dependence on B. We note
that the direction of the magnetic field is important to the exact behavior
of the splitting of the QD levels. Due to the highly admixed nature of
the final eigenstates of H̃CB

d , which consist of CB and VB states of the
basis introduced forHd in Eq. (3.5), we find ourselves unable to comment
on the exact shape of the nth eigenfunction. For illustrative plots of the
electron wave function in considerably (one order of magnitude) smaller
QDs from numerical and experimental studies, we refer the interested
reader to Refs. [SGB99] and [VLP+00].

3.4.3 g factor of the CB states in the QD

The reported anisotropy in our system stems from several effects. The
first effect is the mixing of CB and VB states caused by the confinement
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potential and intrinsic material parameters of the QD. This mixing is fur-
ther influenced by the second effect, a change of gaps between the bands
|j,±〉 due to strain. The intrinsic strain fields in the QD impose addi-
tional constraints on the system yielding a reduction of the symmetry of
the level splitting with respect to the direction of B. Furthermore, the
strain fields reduce the symmetry class of the pyramid along the z axis
from C4 to C2 [GSB95]. This reduction of the symmetry class agrees well
with the observed anisotropy of the gn in our work. Additionally, effects
due to the orbital coupling of B may have an effect on g. For |B| = 1 T,
we find that the magnetic length lB =

√
~/e|B| ∼ 25 nm is much smaller

than the dot size characterized by a = 50 nm; hence Landau levels form.
However, we took this into account by including HB into our Hamil-
tonian; see Eq. (3.1). Compared to experimental results [TDO+13], we
observe very small g factors, mainly gn < 2. However, small g factor val-
ues, in particular a zero crossing of g due to the transition from the bulk
value gbulk ≈ −14.9 to the free electron value gfree = +2, have also been
reported for circular and elliptical InAs QDs [PF06, PF07]. This transi-
tion is characterized as a function of the band gap between the CB and
VB in the QD. In fact, we find a comparable magnitude of the g-factor
values considering the band gap present in our system. In general, de-
creasing the QD size leads to a decrease of the CB-VB admixture and the
g-factor values ultimately yield the free electron value, gfree = +2. On the
other hand, when increasing the QD size the g-factor values will finally
approach the bulk value, gbulk ≈ −14.9. Considering these two limits and
assuming that the g factor is a continuous quantity, zero values of g will
be observed eventually [PF06, PF07].

3.5 Comparison to experiment

In this section, we compare our results to recent experimental observa-
tions of the three-dimensional g-factor anisotropy in self-assembled InAs
QDs by Takahashi et al.; see Ref. [TDO+13]. The anisotropy of the QD g
factor is usually extracted by transport measurements for different mag-
netic field directions [TDO+13, dFB+13]. The basic setup of these ex-
periments consists of a QD which is tunnel coupled to two leads. An
additional back-gate creates an electric field parallel to the growth direc-
tion. The back-gate voltage is used to select the QD level participating
in the transport by changing the chemical potential of the QD. Further-
more, the tunneling rates depend on the different g factors of QD and
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leads [SJ10]. We first point out that the QD considered in Ref. [TDO+13]
is rather a half pyramid due to the applied gates. Thus, deviations of the
absolute value of g compared to our findings are not unexpected. Such
deviations increase even further due to different dot sizes. However, we
find good qualitative agreement when accounting for the different con-
finement geometries in the following way. One can perform a coordinate
transformation in order to align the axes of the upright pyramid consid-
ered above and the half-pyramid of Ref. [TDO+13]. Indeed, a rotation
of 135◦ around the y axis aligns the symmetry axes of both systems in
first approximation. We observe now that the g-factor anisotropies of the
QD levels n = 2, 3 (Fig. 3.5) agree well with regions I and II of the charge
stability diagram reported by Takahashi et al. in Ref. [TDO+13]. In re-
gion III they also find a state with a spherical distribution of the g factor
similar to our calculation for QD level n = 5. Furthermore, they report
measurements of a symmetrically covered upright pyramid as well. In
this case the axes and shapes of the anisotropy are directly comparable to
our results. The associated g-factor anisotropy agrees well with our find-
ings for QD levels n = 2, 3. In general, due to confinement and strain, the
QD size and shape have a strong influence on characteristic quantities
such as spectrum and g factor, both absolute value and anisotropy. How-
ever, we find good qualitative agreement between our model calculation
and the measurements. This is not surprising since both consider square-
based pyramids which conserve the main anisotropy axes independent
of the QD size. Finally, we point out that our model further predicts dif-
ferent shapes of the g-factor anisotropy depending on the QD levels –
in particular, shapes not yet observed in experiments, such as the ones
described for the QD levels n = 1, 4, 6.

3.6 Conclusion

In conclusion, we have found trial wave functions satisfying hard-wall
boundary conditions for a pyramidal QD geometry. We calculated the as-
sociated particle density distributions of the low-energy states and found
a ground-state-like, s symmetric state of lowest energy, as well as excited
states with nodes along the coordinate axes of the system and at the cen-
ter of the QD. We argued that these wave functions provide a good basis
for analytical calculations of QD states. Furthermore, we have presented
8-band calculations to derive the spectrum of low-energy CB states in the
QD. The magnetic field induced splitting of the QD levels shows a non-
linear dependence on the magnetic field and strong anisotropies depend-
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ing on the direction of the field. Starting from this, we have calculated
the g factor of low-energy electrons in self-assembled InAs QDs subject
to externally applied electric and magnetic fields. We calculated the g
factor for all possible spatial orientations of the magnetic field and found
distinct anisotropies. In particular, we showed that the anisotropies in-
clude configurations where the g factor drops down to values close to
zero. Furthermore, we observed that the shape of the anisotropies de-
pends on the QD level n and that the maximal values of gn increase with
n. Finally, we showed that our results are in good qualitative agreement
with recent measurements. From these findings we conclude that the
direction of magnetic fields applied to QDs can be used to control the
splitting of qubit states efficiently and hence should prove useful for the
manipulation of qubits in such QDs.
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Figure 3.3: Left: Spectrum of the lowest six QD levels En of H̃CB
d as a

function of the magnetic field B = (0, 0, Bz), where we increase |B| =
0 T to 1 T. We assume E = 0. Right: Enlarged plots of the B-dependent
splitting of the single QD levels. For most QD levels, except for n = 5,
we observe a nonlinear dependence of E±n on B.
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Figure 3.4: Ground state g factor |g1| as a function of the magnetic field
direction for |B| = 1 T shown in (a) 3D plot, and cuts along the planes
(b) xy, and (c) (x− y)z with electric field E = (Ex, 0, 0).
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Figure 3.5: |g2| and |g3| as functions of the magnetic field direction for
|B| = 1 T shown in 3D plots for (a) n = 2, (b) n = 3, and cuts along the
xz plane for (c) n = 2 and (d) n = 3 with electric field E = (Ex, 0, 0).
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Figure 3.6: |g4| as a function of the magnetic field direction for |B| = 1 T
shown in (a) 3D plot, and cuts along the planes (b) xy, and (c) (x − y)z
with electric field E = (Ex, 0, 0).
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Figure 3.7: |g5| as a function of the magnetic field direction shown for
|B| = 1 T in cuts along the planes (a) xy, and (b) xz with electric field E =
(Ex, 0, 0). Here we omit the 3D plot since the g factor shows a spherical
distribution, where such a plot does not yield further insight.
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Figure 3.8: |g6| as a function of the magnetic field direction for |B| = 1 T
shown in (a) 3D plot, and cuts along the planes (b) xy and (c) (x+y)z with
electric field E = (Ex, 0, 0). Note that the color scale changed because |g6|
reaches larger values than the |gn| of the QD levels with n < 6.
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APPENDIX A
Trial wave functions

Particle in an isosceles triangle
The Schrödinger equation of a particle confined to a square with sides of
length a,

− ~2

2m0

(
d2

dx2
+

d2

dy2

)
ψ�(x, y) = E� ψ�(x, y), (A.1)

with boundary conditions ψ�(x, y) = 0 for x = 0, y = 0, x = a or y = a,
has the well-known solution

ψ�
mn(x, y) =

2

a
sin
(mπ
a
x
)

sin
(nπ
a
y
)
, (A.2)

E�
mn =

~2π2

2m0a2

(
m2 + n2

)
. (A.3)

The wave function of a particle confined in an isosceles triangle obtained
by cutting the square along the diagonal, ψ4(x, y), is constructed by sym-
metric and asymmetric linear combination of degenerate solutions to the
square problem, ψ�

mn and ψ�
nm [Li84], and we find

ψ4smn = 1√
2

(
ψ�
mn + ψ�

nm

)
, (A.4)

ψ4amn = 1√
2

(
ψ�
mn − ψ�

nm

)
, (A.5)

where ψ4smn (ψ4amn) vanishes at x+ y = a for m+ n odd (even). The general
wave function takes the form

ψ4mn =
1√
2

(
ψ�
mn + (−1)m+n+1ψ�

nm

)
, (A.6)
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x̃

0
ã

ỹ
ã

z̃ã

Figure A.1: We span the pyramid volume by multiplying two upright
isosceles triangles (red and blue). Note that r̃ and ã correspond to r and
a in the main text, respectively.

with m,n = 1, 2, 3, . . . and m 6= n to prevent the construction of a van-
ishing wave function ψ4mm = 0. We apply a coordinate transformation
characterized by x = −[x̃+ (ỹ − ã)]/2

√
2 and y = [x̃− (ỹ − ã)]/2

√
2 in or-

der to bring the triangle into upright position, i.e., the apex of the triangle
is centered above the base, and find

ψ4mn(x̃, ỹ) = −ψ4mn
(
x̃+(ỹ−ã)

2
√

2
, x̃−(ỹ−ã)

2
√

2

)
(A.7)

with m,n = 1, 2, 3, . . . , m 6= n, and ã = a/
√

2.

Particle in a square pyramid

Starting from the solution to the two dimensional Schrödinger equation,
we construct an ansatz or trial wave function that is not an eigenfunction
of the three dimensional (3D) Schrödinger equation but nonetheless ful-
fills the boundary conditions of the pyramid and expected symmetries.
We span the 3D volume of the pyramid with the product of two upright
triangles, see Fig. A.1, and find the wave function
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ψm(r̃) = c ψ4mxmz(x̃, z̃) ψ4mymz(ỹ, z̃)

= c
∏
ξ=x̃,ỹ

[
sin
(
αξ ξ

+
)

sin
(
αz ξ

−)
− (−1)mξ+mz sin

(
αz ξ

+
)

sin
(
αξ ξ

−) ],
(A.8)

with r̃ = (x̃, ỹ, z̃), c = csc(πz̃)/Nm, αi = miπ/ã, mi = 1, 2, 3, . . . , mx 6= mz,
my 6= mz, m = (mx,my,mz), ξ± = ξ ± (z̃ − ã)/2, and Nm such that the
integral over the pyramid volume yields

∫
d3r̃ |ψm(r̃)|2 ≡ 1. Note that

we have added the term csc(πz̃) in order to restore the asymptotes at the
apex and the base to the correct power law behavior in z that were altered
by taking the product ψ4mxmzψ

4
mymz . This factor is essential for obtaining

s- and p-wave like states. The energies of state ψm are given by

Em =
~2

2m0

〈ψm(r̃)| (−i∇)2 |ψm(r̃)〉 . (A.9)

For notational simplicity we use ψm ≡ ψmxmymz . We note that the states
ψmxmxmz and ψmzmzmx coincide by construction and that ψmxmymz and
ψmymxmz are degenerate.

As mentioned above, ψm is not an eigenfunction of the 3D
Schrödinger equation. However, the boundary conditions are fulfilled.
In addition, the energiesEm are smaller than the eigenenergies of known
analytical solutions provided that the correct boundary conditions at the
base of the pyramid are taken into account [HRV+12]. Furthermore, the
set of eigenfunctions reported in Ref. [HRV+12] is incomplete and in par-
ticular lacks the ground state and states with a non-vanishing particle
density (of s-wave type) at the center of the pyramid. In contrast, our
trial wave functions form a complete set including states with s- and
p-wave character. Despite the fact that ψm is not an eigenfunction, we
conclude that our trial wave functions provide a good starting point for
analytical investigations of pyramidal quantum dots.





APPENDIX B
Material parameters

Notation and values
We choose the notation for the parameters exactly as given in Ref. [Win03].
See Table B.1. Due to lack of experimentally validated InAs parameters
D′, we use InSb values which are assumed to be close to InAs values.

Table B.1: Material parameters used in this work. If not stated otherwise,
the parameters were taken from Ref. [Win03].

Eg [eV] 0.418
∆0 [eV] 0.380
P [eVÅ] 9.197
Ck [eVÅ] −0.0112
m∗ [m0] 0.0229
g∗ −14.9
γ1 20.40
γ2 8.30
γ3 9.10
B+

8v [eVÅ2] −3.393
B−8v [eVÅ2] −0.09511
B7v [eVÅ2] −3.178
κ 7.60
q 0.39
C1 [eV] −5.08 [Win03, VMRM01]
Dd [eV] 1 [Win03, VMRM01]
Du [eV] 2.7

Continued on next page
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54 APPENDIX B. MATERIAL PARAMETERS

D′u [eV] 3.18
C2 [eV] 1.8 [BP62, VMRM01]
D′ −2 [TWPH88, WAL78]
C4 [eVÅ] 11.3 [RTRP79, SBGO92]
C5 [eVÅ] 103.3 [RTRP79, SBGO92]
C ′5 [eVÅ] 76.9 [TRR79]
aInAs [nm] 6.0583
aGaAs [nm] 5.65325
νInAs 0.35 [LRS96]
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denreich, U. Richter, N. N. Ledentsov, M. Grundmann,
D. Bimberg, V. M. Ustinov, A. Y. Egorov, P. S. Kopev, and
Z. I. Alferov, Phys. Rev. B 51, 14766 (1995).

[SBGO92] M. Silver, W. Batty, A. Ghiti, and E. P. O’Reilly, Phys. Rev.
B 46, 6781 (1992).

[SBS+99] C. Schönenberger, A. Bachtold, C. Strunk, J.-P. Salvetat, and
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