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Novel childhood asthma genes interact with in
utero and early-life tobacco smoke exposure

To the Editor:
Complex diseases, including asthma, have genetic and envi-

ronmental origins. Genome-wide association studies have iden-
tified multiple genes for the development of asthma, yet they only
explain a limited proportion of asthma heritability. Interactions
between genetic predisposition and exposure to passive smoking
might explain in part the hidden heritability of childhood asthma.
However, to date, this approach has not been reported for the
discovery of interactions between genes and tobacco smoke
exposure.
We performed a genome-wide interaction study (GWIS) on

childhood asthma to identify genes that interact with 2 well-
known environmental risk factors for childhood-onset asthma: in
utero and childhood tobacco smoke exposure. We meta-analyzed
interaction results from 9 studies participating in the GABRIEL
consortium1 including more than 6,000 subjects of European
descent. We replicated our findings in 4 independent studies
including more than 13,000 subjects. Childhood-onset asthma
was defined as asthma diagnosed by a doctor before the age of
16 years, which is consistent with the definition in the GABRIEL
consortium.1 In utero tobacco smoke exposure was defined as
‘‘exposure to maternal tobacco smoking at any time during preg-
nancy.’’ Childhood tobacco smoke exposure was defined as
‘‘exposure to passive tobacco smoking at any time from birth until
16 years of age.’’ Details on the number of subjects, the design of
the individual studies, and outcome and exposure definitions are
provided in Tables E1 to E4 in this article’s Online Repository
at www.jacionline.org.
The effects of in utero tobacco smoke exposure and childhood

tobacco smoke exposure were analyzed separately. All individual
studies were analyzed by using a logistic regression model con-
taining the genetic effect, the effect of tobacco smoke exposure,
and an interaction term indicating the interaction between the
genetic effect and tobacco smoke exposure. Further methodolog-
ical considerations on GWISs and details on the statistical ana-
lyses are described in this article’s Online Repository at www.
jacionline.org.

For in utero tobacco smoke exposure, the discovery genome-
wide meta-analysis consisted of 2,654 cases and 3,073 control
subjects derived from 7 studies (see Table E1). Overall, in utero
tobacco smoke exposure increased the risk of childhood-onset
asthma (see Fig E1 in this article’s Online Repository at
www.jacionline.org). A total of 536,705 single nucleotide
polymorphisms (SNPs) were included in the interaction
meta-analysis. Fig E2 in this article’s Online Repository at
www.jacionline.org shows the Manhattan plot. We identified
27 SNPs in the discovery sample with a P value of less than
1024 based on the fixed effect model (Table I and see Table
E5 in this article’s Online Repository at www.jacionline.org).
Findings did not reach genome-wide significance but were
consistent over all studies included, and no significant heteroge-
neity across studies was present (P value Q-statistic < .05). Four
of these SNPs on chromosome 10 were in high linkage disequi-
librium with each other in the discovery meta-analysis (r2 5
0.82-0.96). The most prominent marker was located on chromo-
some 18 near EPB41L3 (Forest plot, see Fig E3 in this article’s
Online Repository at www.jacionline.org). Table E6 in this arti-
cle’s Online Repository at www.jacionline.org shows the associ-
ations in exposed and nonexposed subjects. EPB41L3 belongs
to the protein 4.1 family of membrane-associated proteins, is
involved in cell-cell junctions,2 and might play a role in
apoptosis.3 The literature shows that in utero tobacco smoke
exposure affects the expression of genes involved in biological
processes, such as cell proliferation and apoptosis, and influ-
ences lung development of the child in general.4 Our data sug-
gest that this effect of in utero smoke exposure might potentially
occur through mechanisms involving EPB41L3 (see the addi-
tional text in this article’s Online Repository).
For childhood tobacco smoke exposure, the discovery genome-

wide meta-analysis consisted of 3,048 cases and 3,509 control
subjects derived from 9 studies (see Table E1). Overall, childhood
tobacco smoke exposure increased the risk of childhood-onset
asthma (see Fig E1). A total of 538,233 SNPs were included in
the interaction meta-analysis. Fig E4 in this article’s Online Re-
pository at www.jacionline.org shows the Manhattan plot. We
identified 35 SNPs in the discovery sample with a P value of
less than 1024 based on the fixed effect model. Four of these
SNPs were excluded because they showed heterogeneity, and
the P value of the random effect was greater than 1024. Findings
did not reach genome-wide significance. Table II and Table E7
(see this article’s Online Repository at www.jacionline.org) the
results for the top SNPs. Seven SNPs on chromosome 5 (except
rs2312164) were in high linkage disequilibrium with each other
in the discovery studies (r2 5 0.83-1.00).
The most prominent marker was located on chromosome 6 in

PACRG (parkin coregulated gene; Forest plot, see Fig E5 in this
article’s Online Repository at www.jacionline.org). Table E8 in
this article’s Online Repository at www.jacionline.org shows
the associations in exposed and nonexposed subjects. PACRG is
located next to and has an overlapping promoter region with par-
kin 2 (PARK2).5 The gene has been associated with leprosy and
parkinsonian diseases and has an important role in motile cilia
function and cilia morphogenesis.2,6 PACRG is relatively highly
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TABLE I. Results of the GWIS of in utero tobacco smoke exposure and childhood-onset asthma

Ch SNP Closest gene* Type

Discovery Replication

Ny ORintz Pf Ny ORint z Pf

1 rs1674877 — Intergenic 2654 0.51 2.19 3 1025 201 1.06 .89

2 rs4670230 FAM82A1 Intronic 2654 1.94 2.10 3 1025 201 0.78 .51

2 rs12624082 GALNT13 Intronic 2654 1.78 3.22 3 1025 697 1.00 .98

2 rs11684139 GALNT13 Intronic 2654 1.77 7.57 3 1025 697 0.85 .35

2 rs729454 — Intergenic 2654 1.67 9.52 3 1025 697 1.13 .45

3 rs3856848 IL5RA Intronic 2654 1.96 5.32 3 1026 201 0.59 .19

4 rs7682603 — Intergenic 2247 0.54 1.19 3 1025 562 1.20 .29

5 rs1990977 RNU6ATAC2P Intergenic 2654 2.12 7.79 3 1025 697 0.88 .60

5 rs4700239 — Intergenic 2654 2.15 6.39 3 1025 562 0.78 .34

6 rs6456433 — Intergenic 2654 1.99 7.99 3 1025 562 0.71 .15

6 rs14398 WDR46 Nonsynonymous 2654 0.45 5.44 3 1025 562 1.77 .01

8 rs360968 — Intergenic 2654 0.54 5.05 3 1025 697 0.93 .72

9 rs943856 — Intergenic 2654 0.59 4.94 3 1025 697 0.70 .04

10 rs11006296 — Intergenic 2654 2.01 3.70 3 1025 562 0.84 .47

10 rs1407696 PDCD4 Intronic 2654 0.57 2.36 3 1025 66 0.58 .34

10 rs7079511 SHOC2 Intronic 2654 0.58 3.24 3 1025 697 0.98 .91

10 rs521674 ADRA2A Upstream 2654 0.57 5.35 3 1025 562 1.16 .45

10 rs602618 ADRA2A Downstream 2654 0.57 5.63 3 1025 562 1.15 .45

11 rs1123991 OR51E2 Synonymous 2654 0.50 6.51 3 1025 697 0.68 .11

11 rs3898589 CNTN5 Intronic 2654 1.83 6.11 3 1025 562 1.17 .40

11 rs10892848 CNTN5 Intronic 2654 1.82 5.72 3 1025 697 1.07 .71

12 rs706793 ACCN2 Intronic 2654 1.66 3.62 3 1025 697 0.75 .07

13 rs7321384 C13orf35 Intronic 2654 0.58 9.82 3 1025 697 0.92 .63

16 rs8051325 ANKS4B Intronic 2654 0.47 8.37 3 1025 562 0.80 .37

18 rs8094633 EPB41L3 Intergenic 2654 2.13 4.29 3 1025 201 2.87 .03

21 rs858003 KCNJ6 Intronic 2654 1.81 8.50 3 1025 697 1.00 1.00

22 rs9613256 CTA-211A9.5 Within noncoding gene 2654 0.59 5.44 3 1025 562 1.11 .60

Ch, Chromosome; ORint, odds ratio interaction; Pf, P value, fixed effect.

*Closest gene within range of 500 kb of the position of the SNP.

�Number of studies and cases included in meta-analysis.

�Additive genetic model.
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expressed in the trachea and nasal mucosa. Ciliary dysfunction
might impair mucus clearance from the airways and has been
shown to affect asthma severity. Our data suggest that changes
in ciliary function particularly affect the development of asthma
in children exposed to passive tobacco smoke.
The genes that have been reported previously to interact with

tobacco smoke exposure with respect to asthma development (ie,
TNF,7 GSTP1,7 and ADAM338) were not among our most signif-
icant hits. This can be explained by the fact that the genetic var-
iants in these candidate gene studies have a strong main effect
on asthma development. Bouzigon et al9 showed a more pro-
nounced effect of the 17q21 region on the development of
early-onset asthma in children with early-life tobacco smoke
exposure than in those without. The genetic effect of these
markers in our GWIS showed a similar direction, but the interac-
tion was not significant.
This study on childhood asthma is the first hypothesis-free

GWIS specifically aiming to identify SNPs that interact with
tobacco smoke exposure in disease development. We found
suggestive evidence for an interaction between rs8094633 on
chromosome 18 near EPB41L3 and in utero tobacco smoke expo-
sure and an interaction between rs1575472 on chromosome 6 in
PACRG and childhood tobacco smoke exposure. The SNPs found
have not been identified previously in general genome-wide asso-
ciation studies on childhood asthma. Interestingly, the SNPs inter-
acting with in utero and childhood tobacco smoke exposure were
different and were not involved in the same pathway (see Fig E6
in this article’s Online Repository at www.jacionline.org). Inter-
actions between these SNPs and tobacco smoke exposure in utero
and in childhood might explain part of the missing heritability of
asthma. Future research needs to confirm these findings and
further unravel the biological pathways.

For acknowledgments, see this article’s Online Repository at www.

jacionline.org.
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TABLE II. Results of the GWIS on childhood tobacco smoke exposure and childhood-onset asthma

Ch SNP Closest gene* Type

Discovery Replication

Ny ORintz Pf Ny ORint z Pf

1 rs2026604 S100A7L2 Downstream 3048 1.44 7.49 3 1025 1003 0.83 .17

2 rs10184453 — Intergenic 3048 1.53 8.85 3 1025 1003 1.18 .30

2 rs895565 — Intergenic 3048 1.53 7.26 3 1025 1003 1.18 .30

2 rs11126185 — Intergenic 3048 0.67 6.81 3 1026 868 1.22 .16

3 rs4234677 CTD-2230D16.1 Within noncoding gene 3048 0.65 6.57 3 1025 261 1.58 .22

3 rs264096 MAGI1 Intronic 3048 0.62 6.93 3 1026 396 0.89 .63

3 rs17239426 KCNAB1 Intronic 3048 0.58 7.28 3 1025 1003 1.18 .39

4 rs1425551 IRF2 Intronic 3048 1.40 6.92 3 1025 1003 0.98 .86

5 rs162036 MTRR Nonsynonymous 3048 0.60 8.26 3 1025 1003 1.14 .45

5 rs7719963 — Intergenic 3048 0.56 3.06 3 1025 868 0.89 .59

5 rs7447231 — Intergenic 3048 1.55 8.36 3 1026 868 0.85 .31

5 rs10155635 — Intergenic 3048 1.56 7.55 3 1026 261 0.62 .11

5 rs10038850 — Intergenic 3048 1.53 1.51 3 1025 261 0.41 .04

5 rs10479335 — Intergenic 3048 1.52 5.98 3 1025 868 0.85 .29

5 rs2312164 — Intergenic 3048 1.42 7.18 3 1025 1003 0.82 .14

5 rs13357477 — Intergenic 3048 1.58 3.59 3 1026 868 0.83 .24

5 rs12719549 — Intergenic 3048 1.57 4.61 3 1026 868 0.82 .21

5 rs4607330 — Intergenic 3048 1.59 2.70 3 1026 868 0.85 .31

6 rs441463 LYRM4 Intronic 3048 1.41 4.91 3 1025 1003 0.90 .42

6 rs1575472 PACRG Intronic 3048 1.78 1.37 3 1025 1003 1.51 .06

7 rs17544971 GRB10 Intronic 3048 1.70 8.12 3 1025 868 1.26 .28

9 rs4977750 MTAP Nonsense-mediated decay transcript 3048 0.61 1.91 3 1025 1003 0.93 .66

13 rs4769148 — Intergenic 2445 0.67 4.45 3 1025 261 0.72 .21

13 rs12874184 — Intergenic 3048 1.98 8.75 3 1025 868 1.18 .50

13 rs16972472 — Intergenic 3048 1.79 9.59 3 1025 868 0.79 .32

14 rs10141836 OR11G2 Upstream 3048 0.70 8.89 3 1025 1003 0.90 .41

15 rs2602923 C15orf41 Intronic 3048 1.61 4.52 3 1025 1003 1.19 .33

16 rs13331814 ZP2 Intronic 3048 0.62 8.38 3 1025 868 0.85 .34

19 rs11085080 PLIN5 Intronic 3048 0.51 6.30 3 1025 1003 1.12 .63

20 rs6077755 PSMF1 Upstream 3048 1.52 6.65 3 1026 1003 1.11 .47

X rs6641609 PRKX Intronic 1939 0.49 3.43 3 1025 261 1.90 .15

Ch, Chromosome; ORint, odds ratio interaction; Pf, P value, fixed effect.

*Closest gene within range of 500 kb of the position of the SNP.

�Number of cases and control subjects included in the meta-analysis.

�Additive genetic model.
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Genetic variation in TH17 pathway genes,
childhood asthma, and total serum IgE levels

To the Editor:
The role of TH17 cells and TH17-associated cytokines in auto-

immune diseases and chronic inflammation is widely recog-
nized.1 In children with atopic asthma, TH17 cells in peripheral
blood were found to be increased and inversely correlated with
asthma control.2 The cytokine milieu has a decisive effect on
the balance between developing immunosuppressive regulatory
T cells or proinflammatory TH17 cells. Dysregulation of the cyto-
kine balance can therefore contribute to autoimmunity and
chronic inflammation.3 IL-17A and IL-17F are signature cyto-
kines secreted by TH17 cells and potent inducers of inflammation.
Increased levels of these cytokines were observed in airways of
patients with asthma,4 and first candidate gene studies suggested
single nucleotide polymorphisms (SNPs) in IL17A and IL17F to
be associated with asthma.5,6

This study investigated whether genetic variants in the TH17
pathway influence asthma and total serum IgE levels during child-
hood. We analyzed genes involved in the differentiation and
maintenance of TH17 cells and genes coding for TH17-related
effector cytokines (Fig 1; see the Methods section in this article’s
Online Repository at www.jacionline.org). The relevance of asso-
ciations in TH17 pathway genes was ranked with an algorithm
considering P values, effect sizes, and multiple testing.
Subjects (651 with asthma and 652 without asthma as controls)

for association analyses with asthma and total serum IgE levels
were derived from theMulticentre AsthmaGenetics In Childhood
Study (MAGICS, cases) and the International Study of Asthma
and Allergy in Childhood, phase II (ISAAC II, reference popu-
lation). Both populations were of German origin and genetically
homogeneous, and the studies were performed with very similar
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