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Abstract

The present paper is dedicated to the preconditioning of boundary element

matrices which are given in wavelet coordinates. We investigate the incomplete

Cholesky factorization for a pattern which includes also the coefficients of all

off-diagonal bands associated with the level-level-interactions. The pattern is

chosen in such a way that the incomplete Cholesky factorization is computable

in log-linear complexity. Numerical experiments are performed to quantify the

effects of the proposed preconditioning.

1 Introduction

Various problems in science and engineering lead to boundary integral equations.

In general such boundary integral equations are discretized by the boundary ele-

ment method (BEM). For example, BEM is a favorable approach for the treatment

of exterior boundary value problems, especially for problems in electrostatics and

electromagnetics, or in case of the Helmholtz equation. Nevertheless, traditional

discretizations will lead to linear systems with densely populated matrices. This fea-

ture makes the computation very costly in both respects, the computation time and

computer memory requirements.

Over recent decades, several ideas for the efficient approximation of the discrete

system have been developed. Most prominent examples of such methods are the

fast multipole method [7], the panel clustering [9], the wavelet BEM [1, 4], and the
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hierarchical matrix approach [8]. These discretization methods end up with linear

or almost linear complexity with respect to the number of boundary elements.

The present paper is concerned with wavelet BEM. A Galerkin discretization by

wavelet bases yields quasi-sparse matrices, i.e., most matrix entries are negligible

and can be treated as zero. Discarding the non-relevant matrix entries is called ma-

trix compression. In [19] a fully discrete wavelet Galerkin method has been devel-

oped which produces approximate solutions within discretization accuracy in linear

complexity.

If the boundary integral operator has an order different from zero, it acts on different

length scales in a different way. This is well known to entail the linear systems

to become more and more ill-conditioned when the level of resolution increases.

Due to the explicit multilevel structure, properly scaled wavelet bases satisfy norm

equivalences for a whole range of Sobolev spaces. This fact leads to a simple diagonal

preconditioner. Since matrix-vector multiplications can be performed extremely fast

due to the sparsity of the compressed system matrix, the linear system of equations

can be rapidly solved.

However, despite of the preconditioning, the iterative solver often needs still a lot

of iterations. There are many applications which require extremely good precondi-

tioners. This is for example the case when the system has to be solved for several

right hand sides as in shape optimization (e.g. [11]) or in inverse obstacle problems

(e.g. [13]) to compute the local shape derivates. In the latter application, due to the

so-called adjoint approach, the iterative solution has additionally to be very accu-

rate to ensure the symmetry in the iteratively regularized Gauss-Newton method

(IRGNM).

A further important application issues from the coupling of FEM and BEM. Here,

the system matrix involve, besides the boundary element matrices, also finite ele-

ment matrices. The whole system corresponds to a saddle point problem that in-

volves operators of positive and negative order. Hence, preconditioning becomes an

extremely important issue since a matrix-vector multiplication is quite expensive, see

[2, 17, 21]. Other examples concerning continuum solvation models and uncertainty

quantification are given in the numerical results in Section 6.

To improve the standard diagonal preconditioner we shall incorporate the block di-

agonals of the sub-matrices belonging to fixed level combinations of the ansatz and

test wavelets. That way, also the interactions between different levels are consid-

ered. More generally, we develop an incomplete Cholesky factorization (ICF) which

includes all block diagonal bands, where the width of the bands is controlled by a
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parameter. The larger the bandwidth parameter the more coefficients are included,

which improves the preconditioning. We prove log-linear complexity of the ICF pre-

conditioner and quantify it by numerical experiments. It turns out that the number

of iterations decreases impressively.

The paper is organized as follows. Section 2 introduces the problem class under

consideration. The wavelet bases and their properties are considered in Section 3.

Section 4 briefly repeats the main features of the fully discrete wavelet Galerkin

method from [19]. Then, in Section 5, the incomplete Cholesky factorization is de-

veloped. Section 6 is devoted to numerical experiments. Finally, Section 7 contains

concluding remarks.

In the following, in order to avoid the repeated use of generic but unspecified con-

stants, by C . D we mean that C can be bounded by a multiple of D, indepen-

dently of parameters which C and D may depend on. Obviously, C & D is defined

as D . C, and C ∼ D as C . D and C & D.

2 Problem Formulation and Preliminaries

We consider a boundary integral equation on the closed boundary surface Γ := ∂Ω

of a three-dimensional domain Ω ⊂ R3:

(Au)(x) =

∫
Γ

k(x,y)u(y) dσy = f(x), x ∈ Γ. (2.1)

Herein, the boundary integral operator A : Hq(Γ) → H−q(Γ) is assumed to be

a symmetric and bijective operator of order 2q 6= 0. The kernel functions under

consideration are supposed to be smooth as functions in the variables x and y,

apart from the diagonal {(x,y) ∈ Γ×Γ : x = y} and may have a singularity on the

diagonal. Such kernel functions arise, for instance, by applying a boundary integral

formulation to a second order elliptic problem [29, 33]. In general, they decay like a

negative power of the distance of the arguments which depends on the order 2q of

the operator. More precisely, there holds∣∣∂αx ∂βyk(x,y)
∣∣ ≤ cα,β‖x− y‖−2−2q−|α|−|β|. (2.2)

We will assume that the boundary Γ is represented by piecewise parametric map-

pings. Let � := [0, 1]2 denote the unit square. We subdivide the given manifold into

several patches

Γ =
M⋃
i=1

Γi, Γi = γi(�), i = 1, 2, . . . ,M,
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Figure 2.1: Parameterizations of a hammer and a gearwheel.

such that each γi : �→ Γi defines a diffeomorphism of � onto Γi. The intersection

Γi ∩Γi′ , i 6= i′, of the patches Γi and Γi′ is supposed to be either ∅, a common edge,

or a common vertex.

A mesh of level j on Γ is induced by dyadic subdivisions of depth j of the unit

square into 4j squares. This generates 4jM elements (or elementary domains). In

order to get a regular mesh of Γ, the parametric representation is supposed to be

globally continuous.

The surface representation is in contrast to the common approximation of surfaces

by panels. It has the advantage that the rate of convergence is not limited by ap-

proximation. Technical surfaces generated by tools from Computer Aided Design

(CAD) are often represented in the present form.

The most common geometry representation in CAD is defined by the IGES (Initial

Graphics Exchange Specification) standard. Here, the initial CAD object is a solid,

bounded by a closed surface that is given as a collection of parametric surfaces

which can be trimmed or untrimmed. An untrimmed surface is already a four-sided

patch, parameterized over a rectangle. Whereas, a trimmed surface is just a piece of

a supporting untrimmed surface, described by boundary curves. There are several

representations of the parameterizations including B-splines, NURBS (nonuniform

rational B-Splines), surfaces of revolution, and tabulated cylinders [22].

In [15], an algorithm has been developed to decompose a technical surface, described

in the IGES format, into a collection of parameterized four-sided patches, fulfilling

all the above requirements. In [14, 16], the algorithm has been extended to molec-

ular surfaces. Figure 2.1 visualizes two parameterizations which satisfy the present

requirements.
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3 Wavelets and Multiresolution Analysis

In general, a multiresolution analysis consists of a nested family of finite dimensional

subspaces

V0 ⊂ V1 ⊂ · · · ⊂ Vj ⊂ Vj+1 · · · ⊂ · · · ⊂ L2(Γ), (3.3)

such that dimVj ∼ 4j and
⋃
j≥0 Vj = L2(Γ). Each space Vj is defined by a single-

scale basis Φj = {φj,k : k ∈ ∆j}, i.e., Vj = span Φj, where ∆j denotes a suitable

index set with cardinality |∆j| ∼ 4j. It is convenient to identify bases with row

vectors, such that, for v = [vk]k∈∆j
∈ `2(∆j), the function vj = Φjv is defined as

vj =
∑

k∈∆j
vkϕj,k. A final requirement is that the bases Φj are uniformly stable,

i.e., ‖v‖`2(∆j) ∼ ‖Φjv‖L2(Γ) for all v ∈ `2(∆j) uniformly in j. Furthermore, the

single-scale bases satisfy the locality condition diam suppφj,k ∼ 2−j.

Additional properties of the spaces Vj are required for using them as trial spaces

in a Galerkin scheme. The trial spaces shall have approximation order d ∈ N and

regularity γ > 0, that is

γ = sup{s ∈ R : Vj ⊂ Hs(Γ)},

d = sup
{
s ∈ R : inf

vj∈Vj
‖v − vj‖L2(Γ) . 2−js‖v‖Hs(Γ)

}
.

Note that conformity of the Galerkin scheme induces γ > q.

Instead of using only a single-scale j, the idea of wavelet concepts is to keep track

to the increment of information between two adjacent scales j − 1 and j. Since

Vj−1 ⊂ Vj, one decomposes Vj = Vj−1 ⊕Wj with some complementary space Wj,

Wj ∩ Vj−1 = {0}, not necessarily orthogonal to Vj−1. Of practical interest are the

bases of the complementary spaces Wj in Vj

Ψj = {ψj,k : k ∈ ∇j := ∆j \∆j−1}.

It is supposed that the collections Φj−1 ∪Ψj are also uniformly stable bases of Vj. If

Ψ =
⋃
j≥0 Ψj, where Ψ0 := Φ0, is a Riesz-basis of L2(Γ), it is called a wavelet basis.

We assume the functions ψj,k to be local with respect to the corresponding scale j,

i.e., diam suppψj,k ∼ 2−j, and we normalize them such that ‖ψj,k‖L2(Γ) ∼ 1.

At first glance it would be very convenient to deal with a single orthonormal system

of wavelets. But it was shown in [4, 6, 32] that orthogonal wavelets are not completely

appropriate for the efficient solution of boundary integral equations. For that reason

we use biorthogonal wavelet bases. Then, we have also a biorthogonal, or dual, mul-

tiresolution analysis, i.e., dual single-scale bases Φ̃j = {φ̃j,k : k ∈ ∆j} and wavelets

5



Ψ̃j = {ψ̃j,k : k ∈ ∇j} which are coupled to the primal ones via (Φj, Φ̃j)L2(Γ) = I and

(Ψj, Ψ̃j)L2(Γ) = I. The associated spaces Ṽj := span Φ̃j and W̃j := span Ψ̃j satisfy

Vj−1 ⊥ W̃j, Ṽj−1 ⊥ Wj. (3.4)

Also the dual spaces shall have some approximation order d̃ ∈ N and regularity

γ̃ > 0.

Denoting likewise to the primal side Ψ̃ =
⋃
j≥0 Ψ̃j, where Ψ̃0 := Φ̃0, then every

v ∈ L2(Γ) has a unique representation v = Ψ̃(v,Ψ)L2(Γ) = Ψ(v, Ψ̃)L2(Γ). Moreover,

there hold the well known norm equivalences [3, 23]

‖v‖2
Ht(Γ) ∼

∑
j≥0

22jt
∑
k∈∇j

∥∥(v, ψ̃j,k)L2(Γ)

∥∥2

`2(∇j)
, t ∈ (−γ̃, γ),

‖v‖2
Ht(Γ) ∼

∑
j≥0

22jt
∑
k∈∇j

∥∥(v, ψj,k)L2(Γ)

∥∥2

`2(∇j)
, t ∈ (−γ, γ̃).

(3.5)

The relation (3.4) implies that the wavelets provide vanishing moments of order d̃∣∣(v, ψj,k)L2(Γ)

∣∣ . 2−j(1+d̃)|v|
W d̃,∞(suppψj,k)

. (3.6)

Here |v|
W d̃,∞(Ω)

:= sup|α|=d̃ ‖∂αv‖L∞(Ω) denotes the semi-norm in W d̃,∞(Ω). We refer

to [3] for further details.

Piecewise constant and bilinear wavelets which provide the above properties have

been constructed in [18, 20]. In the rest of the paper we will denote the wavelet basis

of VJ by ΨJ = {ψλ : λ ∈ ∇J}, where the multi-index λ = (j,k) incorporates the

scale j = |λ| and the spatial location k = k(λ).

4 Wavelet Galerkin BEM

We shall be concerned with the Galerkin method for the solution of the given bound-

ary integral equation (2.1): find uJ ∈ VJ which solves the variational problem

(AuJ , vJ)L2(Γ) = (f, vJ)L2(Γ) for all vJ ∈ VJ .

Traditionally this equation is discretized by the single-scale basis of VJ which yields

a densely populated system matrix. This means that, if NJ ∼ 4J denotes the number

of basis functions in the space VJ , the system matrix contains O(N2
J) nonzero matrix

coefficients. Contrastingly, if we use a Galerkin discretization in wavelet coordinates,
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the matrix becomes quasi-sparse. In fact, by combining (2.2) and (3.6), we arrive at

the decay estimate

(Aψλ′ , ψλ)L2(Γ) .
2−(|λ|+|λ′|)(1+d̃)

dist(Ωλ,Ωλ′)2(1+q+d̃)
(4.7)

which is the main foundation of compression estimates [4]. Herein, Ωλ := convΓ suppψλ

and Ωλ′ := convΓ suppψλ denote the convex hulls of the supports of the wavelets ψλ

and ψλ′ relative to the surface Γ, respectively.

Based on (4.7), we can set all matrix entries to zero, for which the distance of

the supports between the associated trial and test functions is larger than a level

dependent cut-off parameter Bj,j′ . Further compression, reflected by a cut-off pa-

rameter Bsj,j′ , is achieved by neglecting some of those matrix entries, for which the

corresponding trial and test functions have overlapping supports.

To formulate this result, we introduce the abbreviation Ωs
λ := sing suppψλ which

denotes the singular support of the wavelet ψλ, i.e., that subset of Γ where the

wavelet is not smooth.

Theorem 4.1 (A-priori compression [4]). Let Ωλ and Ωs
λ be given as above and

define the compressed system matrix AJ , corresponding to the boundary integral

operator A, by

[AJ ]λ,λ′ :=



0, dist(Ωλ,Ωλ′) > B|λ|,|λ′| and |λ|, |λ′| > 0,

0, dist(Ωλ,Ωλ′) ≤ 2−min{|λ|,|λ′|} and

dist(Ωs
λ,Ωλ′) > Bs|λ|,|λ′| if |λ′| > |λ| ≥ 0,

dist(Ωλ,Ω
s
λ′) > Bs|λ|,|λ′| if |λ| > |λ′| ≥ 0,

(Aψλ′ , ψλ)L2(Γ), otherwise.

(4.8)

Fixing

a > 1, d < δ < d̃+ 2q, (4.9)

the cut-off parameters Bj,j′ and Bsj,j′ are set as follows

Bj,j′ = a max

{
2−min{j,j′}, 2

2J(δ−q)−(j+j′)(δ+d̃)
2(d̃+q)

}
,

Bsj,j′ = amax

{
2−max{j,j′}, 2

2J(δ−q)−(j+j′)δ−max{j,j′}d̃
d̃+2q

}
.

(4.10)

Then, the system matrix AJ has only O(NJ) nonzero coefficients. Moreover, the

error estimate

‖u− uJ‖H2q−d(Γ) . 2−2J(d−q)‖u‖Hd(Γ) (4.11)
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Figure 4.2: Compression pattern in case of a circle (left) and a sphere (right).

holds for the solution uJ of the compressed Galerkin system provided that u and Γ

are sufficiently regular.

The compressed system matrix can be assembled in linear complexity if one employs

the exponentially convergent hp–quadrature method proposed in [19]. Moreover, for

performing faster matrix-vector multiplications, an additional a-posteriori compres-

sion might be applied which reduces again the number of nonzero coefficients by

a factor 2–5 [4]. The pattern of the compressed system matrix exhibit the typical

finger structure, see (4.2).

If the boundary integral operator A has an order q different from 0, the compressed

system matrix AJ becomes more and more ill-conditioned when the level J increases.

More precisely, the condition number of the system matrix will asymptotically grow

like 22J |q| as the level J increases. However, as an immediate consequence of the

norm equivalences (3.5) of wavelet bases, normalizing the wavelets relative to the

energy norm leads to uniformly bounded condition numbers.

Theorem 4.2 (Preconditioning [5, 32]). Let the diagonal matrix Dr
J defined by[

Dr
J

]
λ,λ′

= 2r|λ|δλ,λ′ , λ, λ′ ∈ ∇J .

Then, if the regularity γ̃ of the dual wavelets satisfies γ̃ > −q, the diagonal matrix

D2q
J defines an asymptotically optimal preconditioner to AJ , i.e.,

cond`2(D
−q
J AJD

−q
J ) ∼ 1.
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Remark 4.3. The entries on the main diagonal of AJ satisfy

(Aψλ, ψλ)L2(Γ) ∼ 22|q||λ|.

Therefore, the above preconditioning can be replaced by a diagonal scaling. In fact, the

diagonal scaling improves and even simplifies the standard wavelet preconditioning.

5 Incomplete Cholesky Factorization

Often the above diagonal preconditioner does not lead to satisfactory results. The

idea to improve the wavelet preconditioning is to use not only the main diagonal

of the system matrix as a preconditioner, but also all block diagonals of the sub-

matrices Aj,j′ :=
[
(Aψλ′ , ψλ)L2(Γ)

]
|λ|=j,|λ′|=j′ . More generally, we shall compute the

incomplete Cholesky factorization AJ ≈ LJL
T
J with respect to a matrix pattern

which is finger structured like the compressed system matrix. For a suitable matrix

pattern I ⊂ ∇J×∇J , the incomplete Cholesky factorization is given by the following

algorithm:

Algorithm 1: Incomplete Cholesky factorization

Data: matrix AJ = [aµ,λ] ∈ Rn×n and pattern I
Result: incomplete Cholesky factor LJ = [`µ,λ] ∈ Rn×n such that LJL

T
J ≈ AJ

begin

for λ = 1 to NJ do

set `λ,λ :=

√√√√aλ,λ −
∑
ν<λ

(λ,ν)∈I

`2
λ,ν ;

foreach µ > λ with (µ, λ) ∈ I do

set `µ,λ :=
1

`λ,λ

(
aµ,λ −

∑
ν<λ

(λ,ν),(µ,ν)∈I

`µ,ν`λ,ν

)
;

end

We shall demonstrate at first that we cannot simply compute the incomplete Cholesky

factorization with respect to the pattern of the compressed system matrix AJ since

it is too expensive. To this end, let for sake of simplicity the pattern I be just

the main diagonal band of the compressed system matrix AJ . In the main diago-

nal blocks of AJ , only the first compression is active, where the associated cut-off

parameter (cf. (4.9) and (4.10)) satisfies

Bj,j = a2−J2(J−j)M where 1 < M :=
δ + d̃

d̃+ q
< 2.
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Figure 5.3: The pattern of the incomplete Cholesky factorization in case of a circle

(left) and a sphere (right).

Thus, the main diagonal band of the compressed system matrix owns O
(
[2jBj,j]2

)
=

O
(
4(J−j)(M−1)

)
coefficients per row on the level j. Consequently, since there areO(4j)

wavelets on level j, the computational effort of the associated incomplete Cholesky

factorization would be

J∑
j=0

4j
(
[2jBj,j]2

)2 ∼
J∑
j=0

4j4(J−j)(2M−2) ∼ 4J
J∑
j=0

4(J−j)(2M−3).

Since it holds 2M > 3 for realistic choices of (d, d̃), we arrive at the complexity

O(4J(2M−2)) which is always less than a quadratic complexity, but significantly higher

than a linear complexity.

This reasoning shows that we need another strategy to define the pattern of in-

complete Cholesky factorization. In fact, the problem is that the bandwidth of the

fingers increases when the level decreases (cf. Figure 4.2). We shall thus choose a

fixed bandwidth of the fingers. The resulting pattern is shown in Figure 5.3.

Theorem 5.1. Define the pattern of the incomplete Cholesky factorization as that

subset I of ∇J ×∇J which satisfies

dist(Ωλ,Ωλ′) ≤ C|λ|,|λ′| := 2−min{|λ|,|λ′|}b, b ≥ 0. (5.12)

Then, the cost of computing of the incomplete Cholesky factorization is O(J2NJ).
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Proof. We shall first estimate the work to compute the λ-th column of the incomplete

Cholesky factorization. According to Algorithm 1, for a single coefficient `µ,λ, the

work is bounded by the sum of the numbers of all nonzero coefficients `µ,ν of the µ-th

and `λ,ν of the λ-th row vector with ν ≤ λ. This number has then to be multiplied

with the number of nonzero coefficients found in the λ-th column.

Let Lj,j′ denote that matrix block incomplete Cholesky factorization which consists

of the coefficients `λ,λ′ with |λ| = j and |λ′| = j′. The block is empty if j < j′ since

LJ is lower triangular. If j ≥ j′, then the block contains only O
(
[2j−j

′
]2
)

coefficients

per column with dist(Ωλ,Ωλ′) = 0 and O
(
[2jCj,j′ ]2

)
coefficients per column with

0 6= dist(Ωλ,Ωλ′) ≤ Cj,j′ . Thus, the number of nonzero coefficients of the λ-th

column vector of LJ is

nnz(`:,λ) .
J∑

j=|λ|

(
4j−|λ| + 4jC2

j,|λ|

)
∼

J∑
j=|λ|

4j−|λ| ∼ 4J−|λ|.

Next, we count the number of nonzero coefficients which enter the computation of

`µ,λ. In each block Lj,j′ with j ≥ j′ ≥ |λ|, we find only O(1) coefficients per row with

dist(Ωλ,Ωλ′) = 0 and O
(
[2j
′Cj,j′ ]2

)
coefficients per row with 0 6= dist(Ωλ,Ωλ′) ≤ Cj,j′ .

This leads to

nnz(`µ,1:λ) .
|λ|∑
j′=0

(
1 + 4j

′C2
|µ|,j′

)
∼
|λ|∑
j′=0

1 ∼ |λ|,

nnz(`λ,1:λ) .
|λ|∑
j′=0

(
1 + 4j

′C2
|λ|,j′

)
∼
|λ|∑
j′=0

1 ∼ |λ|.

Hence, the work to compute the complete λ-th column vector of the incomplete

Cholesky factorization is bounded by

nnz(`:,λ) ·
{

nnz(`µ,1:λ) + nnz(`λ,1:λ)
}
. 4J−|λ||λ|.

Finally, the over-all work of computing the incomplete Cholesky factorization is

estimated by summing over all column vectors which yields

cost(ICF) .
J∑
j=0

4j4J−jj = 4JJ2,

i.e., the desired log-linear complexity.

Checking the distance criterion (5.12) for each matrix coefficient, in order to de-

termine the pattern of the incomplete Cholesky factorization, would require O(N2
J)
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function calls. To realize log-linear complexity, we exploit the underlying tree struc-

ture with respect to the supports of the wavelets, to predict the nonzero matrix

coefficients. We will call the wavelet ψson(λ) a son of ψλ if Ωson(λ) ⊆ Ωλ. The fol-

lowing observation, already mentioned in [4], is an immediate consequence of the

relation Cj,j′ ≥ Cj+1,j′ ≥ Cj+1,j+1′ .

Lemma 5.2. We consider Ωson(λ) ⊆ Ωλ and Ωson(µ) ⊆ Ωµ. If

dist
(
Ωλ,Ωµ

)
> C|λ|,|µ|,

then there holds

dist
(
Ωson(λ),Ωµ

)
> C|λ|+1,|µ|,

dist
(
Ωson(λ),Ωson(µ)

)
> C|λ|+1,|µ|+1.

With the aid of this lemma we have to check the distance criterion only for those

coefficients which stem from subdivisions of required coefficients on a coarser level.

Therefore, the resulting procedure of checking the distance criterion is still of log-

linear complexity:

Algorithm 2: Pattern determination

Data: bounding boxes {Ωλ} of the wavelets

Result: computes the pattern I = [Ij,j′ ] ∈ Rn×n of the incomplete Cholesky

factorization

begin
initialize I0,0 := 40 ×40 and Ij,j′ := ∅ for all (j, j′) 6= (0, 0)

for j = 1 to J − 1 do

for j′ = 1 to j − 1 do

// compute Ij,j′ from Ij−1,j′

foreach (µ, λ) ∈ Ij−1,j′ do

if dist
(
Ωson(µ),Ωλ

)
≤ Cj,j′ then Ij,j′ := Ij,j′ ∪

(
son(µ), λ

)
;

// compute Ij,j from Ij−1,j−1

foreach (µ, λ) ∈ Ij−1,j−1 do

if dist
(
Ωson(µ),Ωson(λ)

)
≤ Cj,j then Ij,j := Ij,j ∪

(
son(µ), son(λ)

)
;

end
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6 Numerical Results

6.1 Integral Equations Arising from the Laplace Equation

To study the quantitative behavior of the incomplete Cholesky factorization, we will

consider Symm’s integral equation

(Vu)(x) =

∫
Γ

u(y)

4π‖x− y‖
dσy = f(x), x ∈ Γ (6.13)

and the hypersingular integral equation

(Wu)(x) = − ∂

∂n(x)

∫
Γ

∂

∂n(y)

1

4π‖x− y‖
u(y) dσy = g(x), x ∈ Γ. (6.14)

The occurring integral operators satisfy

V : H−1/2(Γ)→ H1/2(Γ), W : H1/2(Γ)/R→ H−1/2(Γ)/R.

Piecewise constant and bilinear wavelets with respectively three and four vanish-

ing moments are used to discretize Symm’s integral equation (6.13). The bilinear

wavelets are chosen to have double nodes at the edges of the patches. Whereas, the

hypersingular integral equation (6.14) is discretized by globally continuous bilinear

wavelets with two vanishing moments. Note that the system matrix of the hyper-

singular operator is positive definite if the underlying bilinear form is modified in

accordance with

a(u, v) := (Wu, v)L2(Γ) + (u, 1)L2(Γ)(1, v)L2(Γ),

see e.g. [33].

The related linear systems of equations are solved by the preconditioned CG method

up to the absolute accuracy ε = 10−10. We compare the standard diagonal scaling

(indicated by “diagonal scaling”) with the ICF (indicated by “ICF(b)”), where the

bandwidth parameter b is chosen as 0, 1, 2. In the case b = 0, the pattern of the

ICF contains only coefficients for which the associated wavelets have overlapping

supports.

Firstly, we consider Γ as the unit sphere, which we represent via six patches. The

harmonic function

f(x) = (x− a)Tb/‖x‖3, a = [1.5, 0, 0]T , b = [4, 2, 1] (6.15)
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Figure 6.4: Computing time (left) and number of nonzero coefficients (right) of the

incomplete Cholesky factorization.

is used as right hand side in (6.13) and g(x) = (∂f/∂n)(x) is used as right hand

side in (6.14). In Table 6.1, we tabulated the number of iterations, accompanied

by the number of nonzero coefficients of the ICF (measured in percent). Secondly,

let the boundary Γ be the gearwheel shown in Figure 2.1. It is represented via 331

four-sided patches. The right hand side is chosen as in (6.15) but with a = 0. The

computational results are tabulated in Table 6.2.

As one figures out of the Tables 6.1 and 6.2, the results are qualitatively the same

for both geometries. We observe a drastic decrease of the number of CG-iterations

even for the bandwidth parameter b = 0. The gain of the ICF-preconditioner is at

least a factor 10 in the number of iterations compared to the standard diagonal

preconditioner. Moreover, an increase of the bandwidth parameter b decreases the

number of iterations, which, however, has to be paid by an increase of the number

of nonzero coefficients in the ICF.

The computing times of the ICF with respect to the sphere and b = 0 are found in

the left plot of Figure 6.4. For all three cases under consideration, we observe the

asymptotic rate NJ log(NJ) (indicated by the dashed line). This is better than the

rate NJ log2(NJ) which has been proven in Theorem 5.1. The number of nonzero

coefficient scales also like NJ log(NJ) which however is expected.
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(6.13) solved by piecewise constant wavelets (d, d̃) = (1, 3)

J NJ
diagonal

scaling
ICF(0.0) ICF(1.0) ICF(2.0)

3 384 45 11 (20) 9 (32) 7 (46)

4 1536 60 11 (7.7) 9 (13) 6 (17)

5 6144 74 12 (2.4) 10 (3.9) 6 (5.7)

6 24576 86 12 (0.68) 10 (1.2) 6 (1.7)

7 98304 97 12 (0.19) 11 (0.33) 6 (0.50)

8 393216 108 13 (0.052) 11 (0.093) 7 (0.14)

9 1.6 Mio. 117 13 (0.014) 11 (0.026) 7 (0.039)

(6.13) solved by piecewise bilinear wavelets (d, d̃) = (2, 4)

3 486 93 11 (41) 6 (62) 5 (72)

4 1734 104 11 (16) 7 (27) 5 (35)

5 6534 108 12 (5.3) 7 (9.1) 6 (14)

6 25350 111 12 (1.5) 8 (2.8) 6 (4.0)

7 99846 118 13 (0.44) 8 (0.80) 6 (1.2)

8 396294 125 14 (0.12) 9 (0.22) 6 (0.34)

9 1.6 Mio. 132 14 (0.033) 9 (0.062) 7 (0.094)

(6.14) solved by piecewise bilinear wavelets (d, d̃) = (2, 2)

3 386 47 5 (63) 4 (70) 3 (78)

4 1538 56 5 (20) 4 (26) 4 (33)

5 6146 59 6 (5.8) 5 (8.2) 4 (11)

6 24578 63 6 (1.6) 5 (2.4) 4 (3.3)

7 98306 63 6 (0.43) 5 (0.68) 4 (0.95)

8 393218 63 6 (0.11) 5 (0.19) 4 (0.27)

9 1.6 Mio. 64 6 (0.030) 5 (0.051) 4 (0.075)

Table 6.1: Numerical results with respect to the sphere.
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(6.13) solved by piecewise constant wavelets (d, d̃) = (1, 3)

J NJ
diagonal

scaling
ICF(0.0) ICF(1.0) ICF(2.0)

3 18560 163 16 (1.8) 13 (2.9) 11 (4.3)

4 74240 185 17 (0.57) 13 (0.90) 11 (1.3)

5 296960 198 18 (0.16) 14 (0.25) 12 (0.36)

6 1.2 Mio. 213 20 (0.043) 14 (0.068) 12 (0.10)

(6.13) solved by piecewise bilinear wavelets (d, d̃) = (2, 4)

3 27216 205 11 (2.4) 8 (4.7) 8 (8.1)

4 97104 199 11 (0.51) 9 (1.3) 8 (2.5)

5 365904 212 12 (0.13) 10 (0.36) 8 (0.72)

6 1.4 Mio. 236 12 (0.035) 11 (0.10) 9 (0.20)

(6.14) solved by piecewise bilinear wavelets (d, d̃) = (2, 2)

3 21504 209 16 (8.1) 15 (11) 14 (13)

4 86016 218 16 (1.2) 15 (2.0) 13 (3.0)

5 344064 228 17 (0.25) 16 (0.49) 13 (0.79)

6 1.4 Mio. 235 18 (0.065) 16 (0.13) 13 (0.22)

Table 6.2: Numerical results with respect to the gearwheel.
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Figure 6.5: Parameterization of the molecular surface of benzene.

6.2 Polarization Continuum Model

Continuum solvation models are widely used to model quantum effects of molecules

in liquid solutions. In the polarizable continuum model, introduced in [25], the

molecule under study (the solute) is located inside a cavity Ω, surrounded by a

homogeneous dielectric (the solvent) with dielectric constant ε ≥ 1. The solute-

solvent interactions between the charge distributions which compose the solute and

the dielectric are reduced to those of electrostatic origin.

For a given charge ρ ∈ H−1(Ω) located inside the cavity, the solute-solvent inter-

action is expressed by the apparent surface charge σ ∈ H−1/2(Γ). It is given by the

integral equation

Vσ =

(
1 + ε

2
+ (1− ε)K

)−1

Nρ −Nρ on Γ := ∂Ω, (6.16)

where V is the single layer potential operator from (6.13), K is the double layer

potential operator

(Ku)(x) =

∫
Γ

u(y)
〈n(y),x− y〉

4π‖x− y‖
dσy, (6.17)

and Nρ denotes the Newton potential of the given charge

Nρ(x) :=

∫
Ω

ρ(y)

4π‖x− y‖
dy.

In the quantum chemical simulations, for example when solving the Hartree-Fock

equations in a self consistent field approximation, one has to compute the interac-

tion energies between the different particles. This amounts to the determination of
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different apparent surface charges. Therefore, the fast solution of (6.16) for different

right hand sides is indispensable for fast simulations in chemistry.

(6.16) solved by piecewise constant wavelets (d, d̃) = (1, 3)

J NJ
diagonal

scaling
ICF(0.0) ICF(1.0) ICF(2.0)

3 5824 48 12 (2.0) 9 (3.9) 8 (6.3)

4 23296 61 12 (0.74) 9 (1.4) 8 (2.1)

5 93184 70 13 (0.23) 9 (0.42) 8 (0.66)

6 372736 81 14 (0.065) 10 (0.12) 7 (0.19)

(6.16) solved by piecewise bilinear wavelets (d, d̃) = (2, 4)

3 7371 141 8 (5.2) 6 (7.7) 6 (11)

4 26299 140 10 (1.8) 7 (2.5) 6 (3.6)

5 99099 133 11 (0.49) 7 (0.78) 6 (1.1)

6 384475 134 14 (0.14) 7 (0.23) 6 (0.33)

Table 6.3: Numerical results for the polarization continuum model.

We consider benzene as solute and water as solvent (ε = 78.39). The associated

cavity is represented by 91 four-sided patches, as seen in Figure 6.5. The boundary

integral equation (6.16) is discretized by piecewise constant and linear wavelets with

3 and 4 vanishing moments. The solution of the second kind integral equation on the

right hand side is well posed and requires thus no preconditioning since K is compact.

In contrast to this, the single layer potential operator needs to be preconditioned.

The given charge ρ consists of point charges which are placed in the nuclei positions.

The solution accuracy of the conjugate gradient method is set to 10−6. In Table 6.3,

we tabulated the numerical results. As observed in the previous subsection, the

ICF reduces the number of iterations about a factor 10 compared to the standard

diagonal preconditioner.

6.3 Laplace Equation with Stochastic Dirichlet Datum

The expectation Eu ∈ H1(Ω) and the two-point correlation Coru ∈ H1(Ω)⊗H1(Ω)

of the solution u(ω) ∈ H1(Ω) to the Laplace equation with stochastic Dirichlet

datum

∆u(ω) = 0 in Ω, u(ω) = f(ω) on Γ
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is given by the equations

∆Eu = 0 in Ω, Eu = Ef on Γ

and
(∆⊗∆) Coru = 0 in Ω× Ω,

(∆⊗ id) Coru = 0 in Ω× Γ,

(id⊗∆) Coru = 0 in Γ× Ω,

Coru = Corf on Γ× Γ,

(6.18)

see [28, 33]. Note that the two-point correlation of u is a high-dimensional object

which lives in R6.

Having a low-rank approximation of the Dirichlet datum’s two point-correlation at

hand,

Corf ≈
m∑
k=1

θk ⊗ θk ∈ H1/2(Γ)⊗H1/2(Γ), (6.19)

then the solution’s two point correlation is given by

Coru ≈
m∑
k=1

ηk ⊗ ηk

with ηk ∈ H1(Ω) solving the Laplace equation

∆ηk = 0 in Ω, ηk = θk on Γ. (6.20)

Here, the Neumann datum ∂ηk/∂n ∈ H−1/2(Γ) is computed from the Dirichlet

datum θk ∈ H1/2(Γ) by the Dirichlet-to-Neumann map

V ∂ηk
∂n

=

(
1

2
−K

)
θk (6.21)

where V and K denotes the single and double layer potential operator (6.13) and

(6.17), respectively. Thus, having solved (6.21) for all k = 1, 2 . . . ,m, the two-point

correlation Coru of the solution u in a point (x,y) ∈ Ω × Ω is given by the repre-

sentation formula

Coru(x,y) =
m∑
k=1

νk(x) · νk(y)

with

νk(x) :=

∫
Γ

∂ηk
∂n

(z)
1

4π‖x− z‖
dσz −

∫
Γ

θk(z)
〈n(z),x− z〉
4π‖x− z‖

dσz.
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Figure 6.6: The parameterization of a pipe clamp.

We will consider two-point correlation kernels from the Matérn family [10, 24],

namely

k3/2(r) =

(
1 +

√
3r

`

)
exp

(
−
√

3r

`

)
,

k5/2(r) =

(
1 +

√
5r

`
+

5r2

3`2

)
exp

(
−
√

5r

`

)
where r = ‖x−y‖ denotes the spatial distance of the points x,y ∈ Ω and ` > 0 is the

correlation length. For the computations, we consider Ω as the pipe clamp seen in

Figure 6.6, whose surface Γ is represented by 66 four-sided patches. The Dirichlet-to-

Neumann map (6.21) is discretized by 67584 piecewise constant and 71874 piecewise

bilinear boundary elements, respectively. The low-rank approximation (6.19) is de-

termined by the use of a pivoted Cholesky factorization as proposed in [12]. The

absolute error of the low-rank approximation is set to ε = 0.001. The resulting rank

m is found in Table 6.4. It depends on the correlation kernel’s smoothness [31] and

correlation length `.

The computation of the ICF for b = 1.0 consumes 320 seconds in case of the piecewise

constant wavelets and 633 seconds in case of the piecewise bilinear wavelets. We

mostly need only 3 iterations per CG-solve with the ICF-preconditioning instead of

about 70 iterations (in case of piecewise constants) and 200 iterations (in case of

piecewise bilinears), respectively, per CG-solve with the diagonal preconditioning.

Thus, we save per CG-solve about 50 % of the computing time in case of piecewise

constants and about 80 % of the computing time in case of piecewise bilinears. As

can be seen from Table 6.4, we thus save up to 80 % of the over-all computing time
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(6.21) solved by piecewise constant wavelets (d, d̃) = (1, 3)

Matérn kernel k3/2(r) Matérn kernel k5/2(r)

` rank
diagonal

scaling
ICF(1.0) ` rank

diagonal

scaling
ICF(1.0)

1 167 781 sec 733 sec 0.5 162 1006 sec 760 sec

0.75 296 1376 sec 1047 sec 0.375 286 1400 sec 1039 sec

0.5 668 3072 sec 1945 sec 0.25 624 3038 sec 1879 sec

0.25 2631 14222 secs 6888 sec 0.125 2441 14308 sec 6478 sec

(6.21) solved by piecewise bilinear wavelets (d, d̃) = (2, 4)

Matérn kernel k3/2(r) Matérn kernel k5/2(r)

` rank
diagonal

scaling
ICF(1.0) ` rank

diagonal

scaling
ICF(1.0)

1 170 3123 sec 1758 sec 0.5 165 2722 sec 1728 sec

0.75 309 5544 sec 2230 sec 0.375 283 4704 sec 2114 sec

0.5 665 11758 sec 3408 sec 0.25 627 11391 sec 3217 sec

0.25 2651 39547 sec 8392 sec 0.125 2457 43340 sec 8264 sec

Table 6.4: Numerical results of the stochastic boundary value problem.

for the m solves of (6.21) although the ICF has to be determined first.

7 Conclusion

In the present paper, we proposed a new wavelet preconditioning by an ICF with

respect to a pattern which takes into account all wavelet-wavelet interactions. The

computational complexity of the preconditioner is log-linear. In all numerical tests,

the ICF reduces the number of iterations of the preconditioned CG method by at

least a factor of 10 in comparison with the standard wavelet preconditioner.
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[17] H. Harbrecht, F. Paiva, C. Pérez, and R. Schneider. Wavelet preconditioning

for the coupling of FEM-BEM. Num. Lin. Alg. Appl., 10:197–222, 2003.

[18] H. Harbrecht and R. Schneider. Biorthogonal wavelet bases for the boundary

element method. Math. Nachr., 269–270:167–188, 2004.

[19] H. Harbrecht and R. Schneider. Wavelet Galerkin schemes for boundary integral

equations. Implementation and quadrature. SIAM J. Sci. Comput., 27(4):1347–

1370, 2006.

[20] H. Harbrecht and R. Stevenson. Wavelets with patchwise cancellation proper-

ties. Math. Comput., 75(256):1871–1889, 2006.

[21] N. Heuer, M. Maischak, and E. Stephan. Preconditioned minimum residual iter-

ation for the h-p-version of the coupled FEM/BEM with quasi-uniform meshes.

Linear Algebra Appl., 6:435–456, 1999.

[22] J. Hoschek and D. Lasser. Grundlagen der geometrischen Datenverarbeitung.

Teubner, Stuttgart, 1989.

[23] S. Jaffard. Wavelet methods for fast resolution of elliptic equations. SIAM J.

Numer. Anal., 29:965–986, 1992.

[24] B. Matérn Spatial Variation. Second edition. Lecture Notes in Statistics,

vol. 36, Springer, Berlin, 1986.
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