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Summary In the past 100 years, ygical activity and food
) ) ) _intake patterns hee danged drastically in ‘@stern
1. In higher eukaryotes, metabolism and immunityqntries.  Concomitant  with this shift in eggr
are tightly coupled. Hoever, whereas in olutionary metapnolism, the incidence rates for obeditge 2 diabetes,
terms, a compromised immune response due {Qrdiojascular disease,ypertension and other life style-
undernourishment has been the predominant problem, the . .iated pathologies Ve reached epidemic
inflammatory response to obesity and other life stylesionortions6 Thus, in contrast to the previous 250,000
ass_oc!ate_d diseases has increased iwvarade in Wéstern years wherHomo sapiensnainly struggled with a lack of
societies in the last hundred years. _ food, we nev pay the price for an abundance of eyerich
2. Traditionally, fat tissue has been considered as thgoq and the decreased importance ofsital activity in
major source of pro-inflammatory secretedtors in these yajly Jife. Like malnutrition, aernutrition is linked to

pathologies. In recent yearsviwver, the contrilution of pathological changes in immune functionyeser in the
other tissues to a disease-causing chronic inflammation Qﬁémetrically opposite @y In oontrast to the
been increasingly appreciated. _ immunosuppression in undernourished vidlials, the

3. The peroxisome proliferat@ctivated receptoly  gyshalance between energy irgakd dissipation triggered
coactvator 1o (PGC-Tn) is one of the ky regulatory py  gernutriton leads to a  persistent, wegrade
factors in the acte «eletal muscle. Aberrant expression Ofinfiammatory state and an increased susceptibility to
PGC-Tn in inactve muscle fibres could link a sedentary liféchronic disease’? Importantly this chronic inflammation
style, persistent systemic inflammation and the higher rigk yifferent from the classic immune response to an
for mary chronic diseases. Modulation of PG@-activity  ihfectious agent and thus has been referred to as meta- or
in sleletal muscle might accordingly Y& a boad a5 inflammatioR# However, the same @ans at the
therapeutic  effect. Here, recent adees in the i ersection of metabolism and immune function are
understanding of the role of muscle PG&if health and jqyolved in precipitating all of these different inflammatory

disease are reviewed. responsed.
Introduction Adipose tissue is a major drier of i nflammation in
Multicellular ogenisms depend on the ability to store®PESItY

enegy for times of_ &dmine and to fight_ infections The Excess eney is mostly stored in adipose tissue
immune response is very eggrdemanding and therefore, yhere adipocytes become enlarged, ultimately resulting in
inflammatory processes strongly inhibit anabolic Processgfesity In addition to energy storageatfis an important
such as those controlled by insu_lin signaling. Baneple, ondocrine agan and accordingly secretes a number of
fever boosts energy consumption by 7-13% per 1°Gormones that gulate systemic energy homeostasis and
increase in body temperature, sepsieneby 30-60%2 On appetité®1% In an obese individual, adipocytes are also a
the other hand, an undernourished state  |fajor source of pro-inflammatoryytokines and other
immunosuppresse, as dsened in malnourished or getrimental #ctorst®l! Gokhan Hotamisligil, Bruce M.
starving indviduals with an increased susceptibility forSpiegeIman and colleagues described the production and
infectiqus disease_s. Accordinglyhe _molecular Systems gacretion of the tumor necrosiacfor o (TNFa) by fat
regulating metabolic processes and immune responge hgssue in 1993 and thereby provided the first link between
co-evolved and mutually ulate each othérin lower gpesity inflammation and insulin resistantée.In the
organisms like the ~common fruit fly Drosophila meantime, numerous other adiposesdEri pro-
melanogaster metabolic and immune processes avene inflammatory proteins, members of the “adipokinafhly,
associated with one gan, the fat bodywhereas in higher pae meen identified® Once released, mgnof these
organisms, a deeper specialization of tissues occurregymones promote insulin resistance in other peripheral
Nevertheless, een in humans, metabolic gens are often (isgyes. Thus, an inflammatory response from adipose tissue

closely linled with immune cells or ke intrinsic gnq (g a lesser extent from theeti triggers earlydisease-
immunomodulatory functions. Forxample, in the lier, causing eents in obesity.

hepatogtes are located adjacent toupffer cells, and
macrophages are in close contact to adipocytes #¢-fat.
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Metabolism and inflammation in muscle
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Figure 1. Myokine production and the inflammatory state in skeletal mustgokines secreted by an active muscle
might contribute to the systemic beneficial effectxefcése Reduced muscle activity is associated with impaired PGC-1
expression. A number of pro-inflammatory cytokineseavated in individuals with inadequate physical activilyis per
sistent, low-grade inflammation could subsequentlemse the risk for a number dironic diseases. In contrasixteeme
performances and the accompanyingditiimage result in a state of temporary immunosuppression.

Skeletal muscle as an endocrine organ from fat2°2! Interestingly mary myokines hae a omplex
expression pattern andx@t beneficial and detrimental

Although an increased production of TiFin effects, respeotdly, depending on the cellular
skeletal muscle of obese patients was reported in 1‘99600mext_20,22,23 For example, shortdied pulses of

skeletal muscle as a significant contiir to chronic interleykin-6 (IL-6), IL-8 and IL-15 are elicited by
inflammation in metabolic diseases has beeglested for |,ogerate xercise bouts and could mediate some of the
years. This is surprising since skeletal muscle makes YPstemic effects of physical activity (Figure 2485 In
around 40% of body weight and is theglest storage site onirast, persistent efaion of IL-6 is strongly associated
for glucose in the form of glycogemoreover, in a fealthy it obesity and type 2 diabetéThus, depending on the
organism, muscle tissue is very sensitio insulin and the gecretion pattern and the cellular context, IL-6 might
developing insulin resistance of this tissue conités odiate pro- or anti-inflammatory fe€ts?® Very high-
significantly to the etiology of type 2 diabetés®Finally, &  jytensity eercise paradigms are accompanied with the
sedentary life-style is a strong and independent Bstof  g|a/ation of a specific set ofytokines that includes IL-6
for mary chronic diseases, including those that argnq the unequically pro-inflammatory TNE&2°26 In that
associated with persistent, systemic inflammatiofor  gntet. these myokines most likely conuile to the

example, lack of adequate ysical activity is linked t0 type jmmunocompromised and inflammatory state that is
2 dabetes, obesitycardiovascular diseases, certain cancersypserved after extreme physical activfy.

neurodgeneration, musculoskeletal disorders and other
pathologies, thereby increasing morbidity and mortality andGC-1a regulates muscle fibe plasticity

reducing the quality of life as well asvewall life ) ] . ] ) ]
expectang.l’ In contrast, gercise, @en in the absence of Exercise triggers major phenotypic adaptations in

significant weight loss, is an excellent yeetatve and skeletal muscle. This b'iological program is predominantly
therapeutic intervention for mprchronic disorderd® For ~ regulated by changes in gene transcrlpﬁBMportantly,
example, changes in life-style that consist of diet angrolecular changes in myofibres feif between the acute
exacise, rval or even exceed currently prescribed drugs in2daptations to individual bouts ofxeecise and those
terms of therapeutic efficpaganst type 2 diabete. obsered in a chronically trained muscle. In both cases
In recent yearsatctors produced and secreted by th_@q\{ve(er, smilar signa!ing pathays are respon:sible for
contracting muscle fibres & been found and termed initiating the adaptations. Motor neuron aation of
“myokines”, analogous to the adipokines that are releasByscle fibres results in an edtion of intracellular calcium
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2-adrenergic signaling
AMP = AMPK
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Figure 2. Regulation and function of PGCadlin skeletal muscle fibresAll major signaling pathways that arectivated
in an active muscle fieraonvege o the PGC-Ir promotey the potein or both. In turn, PGCd.initiates the adaptations
of muscle to physical activity bggulating metabolic, myofibrillar and neuromuscular junction-specific genes.

levels.28-30 Increased energy metabolism and hend@® A fibre atroply in an inactive muscle is reduced Finally, the
consumption shifts the " to AMP ratio and thereby transcriptional rate of genes encoding postsynaptic NMJ
activates the AMP-dependent protein kinase (AMPKJ proteins is altered in synaptic nuctéidccordingly, ectopic

At the same time, an alteredAR+ to NADH ratio alters expression of PGCd in skeletal muscle is sufficient to
the activity of the silencing information gelator promote a fibre-type shift wards a higher proportion of
2-ortholog SIR1.333% The cellular stress associated withoxidative nuscle fibres and therebyvake a tained
fibre contraction leads to an increasedvagtiof the p38 phenotype in the mouse modeP? By inducing the
mitogen-actrated protein kinase (p38 MAPK) and thebiological program for xercise, elgation of PGC-Ii even
production of nitric oxide (NOJ®37 Hormonal changes prevents disuse-induced fibre atrggh blunts the
elicited by the fight-oflight reaction to physical asity detrimental side-effects of statin drugs in muséle,
include eleated levels of B-adrenegic agonists, some of ameliorates Duchenne muscular dystsophand a form of
which bind toB2-adrenoreceptors on the sagé€ of muscle a mitochondrial myopaty®* in the respecte aimal
fiores?7:38-40  Finally, the eercise-induced synaptic models.

remodeling of the neuromuscular junction (NMJ) are ) o
iniiated and maintained by motor neuron-releasgg@hological consequences of PGCeldysregulation in
paracrine factors that act on must@3 Importantly al of ~muscle

these signaling pathays comerge on he peroxisome
proliferator-actvated receptory coactvator la (PGC-In)
resulting in either a transcriptional induction, alteration
protein actity, or both (Figure 2f44%In turn, by binding
to a dverse set of transcriptioraftors, PGC-d regulates
mary, if not all of the adaptations of the muscle fibre t
endurance >ercise?**® First and foremost, PGCal
increases mitochondrial  biogenesis and functfon
Accordingly, ~ fatty acid [B-oxidation,  oxidatie
phosphorylation and PP production are augment&d*®

In humans, a tight correlation between the redati
levels of physical activity and PGCalhas been obsesd
O(Ea.g, Russell et al, 2003%. PGC-Ir expression is
transiently eleated after each bout of enduranceeise,
similar to the epression pattern described for IL-6.
YHowever, a @usal link between the expression patterns of
PGC-In and IL-6 is unclearIn a dirronically trained
‘'muscle, basal lels of PGC-ti are higher than those
obsered in an untrained indidual *® yet a superimposed

L . pulsatve regulation of PGC-tt expression following each
Then, the set of myofibrillar genes prototypical for thewslo_exErcise bout is maintained. In contrast, aberrantly Vo

twitch, high endurance type | and lla muscle fibres BGC-1 level found in th | f sedent
induced by PGC-d®® Furthermore, the expression of the eves are found in the muscle ol secentary

biquitine I that i tein d dati individuals and type 2 diabetic patients, at least in some
ubiquitine figases that promote protein: degradation an[g?opulations'5.7v58It is unknavn howv much this dysrgulation

Proceedings of the Australian Physiological Society (2@09) 13
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contritutes to the etiology and pathology of this diseas@flammatory cytokines might be the elssiink between a
However, a sgnificant contribution of PGC«l on glucose sedentary life-style and the increased risk for chronic
homeostasis is implied by the results from muscle-specifiiseases (Figure #$. Accordingly a pharmacological
knockout mouse models. Mirroring the data from PGC-1 modulation of PGC-d4 in muscle might hae terapeutic
muscle transgenic mic8, PGC-In muscle-specific benefits beyond that tissuélnfortunately despite warious
knockout animals ®hibit a higher number of glycolytic efforts, such compounds that robustly alter PGCegEne
type lIx and llb fibres concomitant with a reduction irexpression in skeletal muscle and not other tissues with
mitochondrial gene xpression and oxidat apacity?®®® potential detrimental side effects, and which can be safely
As a consequence, these mice areolactive and restricted and chronically used in patients remain ele$?5¢ Thus,

in their ability to eercise>*®° Moreover, whole body as long as the inherent limitations ofgfating a coactitor
glucose and insulin homeostases are abnormallyotein hae ot been wercome, a health life-style
regulatecf® These findings confirm the important role foremains the best remedy against chronic diseases.

PGC-1n in metabolic and myofibrillar plasticity of muscle
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