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Abstract

Vector control interventions have resulted in considerable reductions in malaria morbidity and mortality. When universal
coverage cannot be achieved for financial or logistical reasons, the spatial arrangement of vector control is potentially
important for optimizing benefits. This study investigated the effect of spatial clustering of vector control interventions on
reducing the population of biting mosquitoes. A discrete-space continuous-time mathematical model of mosquito
population dynamics and dispersal was extended to incorporate vector control interventions of insecticide treated bednets
(ITNs), Indoor residual Spraying (IRS), and larviciding. Simulations were run at varying levels of coverage and degree of
spatial clustering. At medium to high coverage levels of each of the interventions or in combination was more effective to
spatially spread these interventions than to cluster them. Suggesting that when financial resources are limited, unclustered
distribution of these interventions is more effective. Although it is often stated that locally high coverage is needed to
achieve a community effect of ITNs or IRS, our results suggest that if the coverage of ITNs or IRS are insufficient to achieve
universal coverage, and there is no targeting of high risk areas, the overall effects on mosquito densities are much greater if
they are distributed in an unclustered way, rather than clustered in specific localities. Also, given that interventions are often
delivered preferentially to accessible areas, and are therefore clustered, our model results show this may be inefficient. This
study provides evidence that the effectiveness of an intervention can be highly dependent on its spatial distribution. Vector
control plans should consider the spatial arrangement of any intervention package to ensure effectiveness is maximized.
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Introduction

Efforts to reduce malaria transmission have lead to the

development of efficient vector control interventions, particularly

insecticide treated nets (ITNs)(which includes conventional nets

treated with a WHO recommended insecticide and long-lasting

insecticidal nets). [1], indoor residual spraying (IRS), and

larviciding [2–6]. These interventions are currently widely used

in malaria endemic countries especially those in sub-Saharan

Africa [7] and have lead to a substantial reduction in malaria

morbidity and mortality. Nevertheless, malaria continues to claim

hundreds of thousands of lives every year [7], thus necessitating a

continued control effort to fight the disease. While over $2 billion

is invested each year in procuring and distributing vector control

interventions [8] for malaria control, this funding is insufficient to

achieve universal coverage [8] and it is not clear if this will be

sustained given current economic constraints.

Mosquito flight from one place to another [9–12] is affected by

several factors including wind, odour, blood and nectar sources,

availability of breeding sites, mating, and other ecological and

environmental factors [13,14]. The probability that a mosquito

will encounter areas that are in receipt of a particular vector

control intervention while flying is dependent on the spatial

arrangement of the intervention. This probability is also depen-

dent on the complexity of how this interacts with patterns of

mosquito movement. This means that it is not obvious how this

dependence affects the effectiveness of interventions in controlling

malaria. An understanding of how spatial clustering of interven-

tions modifies effectiveness is particularly relevant when financial

resources are insufficient, or when logistic constraints make it

difficult to achieve universal coverage. It has been unclear how to

prioritise the spatial allocation of interventions in such situations.

While the World Health Organization (WHO) strategy on

vector management provides information on improving the

efficacy, cost-effectiveness, ecological soundness and sustainability

of vector control [6], there is limited relevant information on the

influence of spatial distribution of these interventions on effective-

ness. Approaches coupling both theory and empirical evidence are

needed to evaluate and measure effectiveness of interventions at

different degrees of spatial distribution for each level of interven-

tion coverage. Despite the importance of these approaches, their

development and integration in vector control programmes has

been receiving inadequate attention.

Mathematical models play an important role in assessing

interventions [15]. Many studies evaluate intervention effective-
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ness [16–25], depending on intervention coverage [16,22–24] and

the significance of distribution of hosts and breeding sites for

malaria transmission [20,25]. Some studies consider spatial and

network models [19,20,25,26] while others consider spatial

distributions of mosquito populations [27,28]. These models allow

the evaluation of interventions by coverage or by any combination

of intervention packages [19].

In contrast to these studies, this paper focuses on the spatial

distribution of interventions rather than on heterogeneity in

distribution of hosts and breeding sites. Using insights from a

recent study on mosquito movements [29], a spatial model of

vector population dynamics and interventions is used to assess the

impact of spatial distribution of vector control interventions on

reducing the population of biting mosquitoes. The effects are

explored at different coverage levels to provide theoretical

evidence on the existence of variability in intervention effective-

ness, depending on their spatial distribution in small areas like

villages.

Methods

A discrete-space continuous-time mathematical model of

mosquito population dynamics and dispersal [29] was extended

to incorporate ITN, IRS, and larviciding interventions. The model

includes six stages of the mosquito life and feeding cycle: three

juvenile stages (egg (E), larval (L), pupal (P)) and three adult stages

(host seeking (Ah), resting (Ar), and oviposition site searching (Ao)).

The population dynamics of mosquitoes in each stage are

described by ordinary differential equations. The discrete space

used in the model is a grid made up of hexagons called patches

that allows any representation of spatial distribution of hosts and

breeding sites and mosquito movement (dispersal) between

patches. Dispersal of adult mosquitoes searching for hosts or

breeding sites is restricted to the nearest six neighbouring patches.

Model Equations with Interventions
As described in more detail in [29], the population dynamics of

mosquitoes are governed by the recruitment of new mosquitoes

through the average number of eggs laid per oviposition, b, the

development/progression rate from one stage to the next, r, the

stage specific mortality, m, the movement rates of host seeking, bH ,

and oviposition site searching mosquitoes, bB. The dynamics of

each stage of the life cycle in patch (i,j) with interventions and

movement are described using ordinary differential equations:

dE(i,j)

dt
~b(i,j)rAo(i,j)Ao(i,j){ mE(i,j)zrE(i,j)

� �
E(i,j),

dL(i,j)

dt
~rE(i,j)E(i,j){ mL1(i,j)zrL(i,j)

� �
L(i,j)

{mL2(i,j)L
2
(i,j),

dP(i,j)

dt
~ 1{ LVð ÞrL(i,j)L(i,j){ mP(i,j)zrP(i,j)

� �
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dt
~rP(i,j)P(i,j)zrAo(i,j)Ao(i,j)
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~rAh(i,j)

Ah(i,j){ mAr(i,j)
zrAr(i,j)

� �
Ar(i,j)

{cIRS(i,j)mAr(i,j)
Ar(i,j),
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~rAr(i,j)

Ar(i,j){ mAo(i,j)
zrAo(i,j)

� �
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{YB
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inA
oj
0 :

The terms cITN(i,j)mAh(i,j)
Ah(i,j) and cIRS(i,j)mAr(i,j)

Ar(i,j) are addi-

tional mortality terms due to ITNs and IRS respectively. The term

(1{ )rL(i,j)L(i,j) represents the reduced number of larvae

developing to pupae from untreated breeding sites, where eLV

represents the proportion of breeding sites in a given patch

covered by larvaciding. Parameters YH
out~

X
j
0
[N(i,j)

bH

(i,j)=j
0 and

YH
in ~

X
j
0
[N(i,j)

bH

j
0
=(i,j)

represent dispersal out and into patch i,j for

host seeking adults respectively, and N(i,j) is a set of six nearest

neighbours to patch (i,j) and j
0
[N(i,j) [29]. Similarly,

YB
out~

X
j
0
[N(i,j)

bB

(i,j)=j
0 and YB

in~
X

j
0
[N(i,j)

bB

j
0
=(i,j)

represent dispersal

out and into patch i,j for oviposition site searching adults. Details

of calculation of b are provided in [29]. H and B represent hosts

and breeding sites respectively. The remaining parameter defini-

tions and their corresponding values are given in Table 1.

Modelling of the Killing Effects of ITNs and IRS
ITNs kill and prevent access to people for host seeking malaria

vectors, thus providing personal protection against malaria to the

individuals using them [1,30]. ITNs also provide community

protection to non-users [31] due to their killing effects which

reduce mosquito longevity. Here, ITNs deployed in a patch are

assumed to kill mosquitoes directly, hence affecting the density of

host seeking adults in that patch. The killing effect of ITNs in the

host seeking stage is modelled as additional mortality to normal

mortality associated with host seeking process in the absence of

ITNs.

IRS is the application of insecticides on the indoor walls and

roofs of houses primarily to kill resting adult mosquitoes. IRS

reduces malaria transmission by reducing the vector’s life span and

population density of vectors [32], but provides little direct

personal protection against bites. Although some ingredients used

in IRS may repel mosquitoes, this study considers only those
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without repellency. Therefore, only the direct killing effect to

resting adult mosquitoes is considered.

For ITNs, we let cITN be the model parameter for additional

mortality of host seeking adults and for IRS, we let cIRS be the

model parameter for additional mortality of resting adults. To

compare interventions, cITN and cIRS are expressed as functions of

intervention efficacy where efficacy is defined as the ability of an

intervention to reduce mosquito survival proportionally. For ITNs

or IRS, efficacy, eI, (where I represents ITNs or IRS) is given by

eI~
S0{SI

S0
: ð1Þ

Here S0 represents the survival probability of mosquitoes in the

absence of an intervention in a given mosquito stage given by

S0~
rs

mszrs

, ð2Þ

and SI represents the survival probability of mosquitoes in the

presence of interventions in a given stage given by

SI~
rs

mTzrs

: ð3Þ

In equations (2) and (3), rs is the development rate of a mosquito

from stage s to the next stage, and ms (per unit time) is the natural

mortality rate of a mosquito in stage s in the absence of an

intervention. mT (per unit time) is the total mortality rates of

mosquitoes in stage s in the presence of interventions expressed by:

mT~mszmscI: ð4Þ

Here, cI (unitless) is a multiplicative factor associated with the

effect of intervention I (ITN or IRS). The term mscI represents

additional mortality of intervention, I. In order to obtain the

expression for cI, we substitute equations (2), (3), and (4) into (1) to

obtain

cI~
eI rszmsð Þ
ms(1{eI)

: ð5Þ

Using the stage specific parameter values for rs, and ms [29],

with eI[½0,1�, the relationship between cI and eI is shown in

Figure 1. As would be expected model intervention parameters cI

Table 1. Parameter definitions and values used in model simulations [29].

Parameter Description Units Baseline Source

b number of eggs laid per oviposition – 100 [53]

rE egg hatching rate day21 0:50 [53], [54],[55]

rL rate at which larvae develop into pupae day21 0:14 [56], [57], [58]

rP rate at which pupae develop into adults day21 0:50 [53],[54]

mE egg mortality rate day21 0:56 [59]

mL1
density-independent larval mortality rate day21 0:44 [59]

mL2
density-dependent larval mortality rate day21 mosq.21 0:05

mP pupal mortality rate day21 0:37 [59]

rAh
rate at which host seeking
mosquitoes enter the resting state

day21 0:46 [29,60]

rAr
rate at which resting mosquitoes
enter oviposition site searching state

day21 0:43 [60]

rAo
oviposition rate day21 3:0 [60]

mAh
mortality rate of mosquitoes
searching for hosts

day21 0:18 [29,60]

mAr
mortality rate of resting mosquitoes day21 0:0043 [60]

mAo
mortality rate of mosquitoes
searching for oviposition sites

day21 0:41 [60]

doi:10.1371/journal.pone.0097065.t001

Figure 1. Relationship between ITN and IRS intervention
parameters to efficacy (Equation 5 of main text).
doi:10.1371/journal.pone.0097065.g001
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increase with increasing efficacy of ITNs or IRS, with IRS

showing higher values of cI compared to ITNs.

Modelling the Effect of Larviciding
Larviciding is the application of insecticides to mosquito

breeding sites targeting the larval stages of the mosquitoes. Studies

show that larviciding kills all larvae in treated breeding sites [33–

35] and has proved to be important in suppressing the number of

malaria transmitting mosquitoes in certain areas [3,33–36].

However, where breeding sites are scattered, field studies show

that it is difficult to find and treat the majority of productive

breeding sites [37]. The effect of larviciding in the model is to

reduce the development of larvae into pupae and thus include a

parameter representing the proportion of breeding sites identified

and treated within patch (i,j), as ELV (i,j). The proportion

(1{ELV (i,j)) represents the untreated breeding sites, where larvae

develop into pupae.

Modelling ITN Repellency
In addition to the killing effect of ITNs that directly affects the

density of host seeking adults, the pyrethroid insecticide used to

treat nets has a repellent effect acting as a chemical barrier that

irritates host seeking mosquitoes as they come close to the nets.

Repellency of nets reduces the availability of blood to mosquitoes,

increases host searching time, and subsequently prolongs the

mosquito gonotrophic cycle duration which in turn impacts

mosquito population size. We model the repellent effect of ITNs as

follows:

Let Pc be the proportion of hosts within a patch who are

covered by ITNs (patch coverage), and Z be the repellent effect of

ITNs. If H(i,j) is the number of hosts in patch (i,j), and

I(i,j)~H(i,j)Pc(i,j)Z is the number of protected hosts in patch

(i,j), then the number of unprotected hosts (U(i,j)) in that particular

patch is given by

U(i,j)~H(i,j){I(i,j)~H(i,j) 1{Pc(i,j)Z
� �

: ð6Þ

If the patch does not have ITNs (Pc(i,j)~0), then U(i,j)~H(i,j).

Since the repellent effect of ITNs affects host seeking

mosquitoes, their dispersal rate into patches containing ITNs is

affected. This effect is included by assuming that ITN repellency

reduces hosts availability to mosquitoes in a given patch so that

attractiveness of the patch to hosts seeking mosquitoes is reduced.

Hosts covered by ITNs are therefore protected as some

mosquitoes are repelled during the host seeking process. The

dispersal rate, bH

j
0
=(i,j)

, detailed in [29] was modified by replacing

the number of hosts present in a patch by those who are not

protected by ITNs in the particular patch as:

bH

j
0
=(i,j)

~De
{l �UU

ij

j
0{ �UU

ij
j

� �
ð7Þ

where �UUij

j
0 is the proportion of unprotected hosts available in patch

j
0

contained in ci,j given by �UUij

j
0~Uj

0
=Hij

u , and Hu is the total

number of unprotected hosts in ci,j . Here, ci,j is a set of seven

patches sharing boundaries (patch (i,j) and its 6 neighbours).

Simulations of the repellent effect are performed by considering

that only unprotected hosts are attracting mosquitoes in each of

the patches in the neighbourhood.

Spatial Clustering
Ecological models have been developed and used to study

effects of landscape spatial heterogeneity on population dynamics

[38–40] with increasing interest in the field of epidemiology [41].

Some models have been used to investigate spatial clustering

effects in ecology [41–46]. To our knowledge, such methods have

not been used by the malaria community to investigate clustering

of vector control interventions. The degree of clustering (in the

context of this study) is defined as a measure of the degree to which

patches/hexagons on the hexagonal grid tend to spatially cluster

together. In the context of vector control interventions, we define

spatial clustering as a measure of the extent to which areas under

interventions on a landscape are aggregated together. This degree

varies from 0 (if the spatial distribution of interventions is random)

to 1 (if the spatial distribution of interventions is highly

concentrated on a certain portion of the landscape, or highly

grouped together).

To evaluate the effect of spatial clustering of interventions using

the model, we distributed interventions on the spatial grid [29].

The spatial distribution of interventions was varied according to

the degree of spatial clustering chosen. These spatial clusters used

for distributing interventions were created using the pair

approximation method [38,39]. Two pair states were used:

intervention and non-intervention states. These two states were

assigned after defining a coverage area (that is proportion of

patches assumed to be under interventions). Following Hiebeler

[39], the degree of clustering, q00 was defined as the probability

that a randomly chosen neighbour to a patch with intervention

also contains the intervention. Spatial clusters of varying degrees

on the model grid were created in Matlab using the steps detailed

by Hiebeler [39]. Several configurations of spatial clusters were

created from different initial random distributions of the

intervention states to account for stochasticity of the method.

Figure 2 illustrates one such cluster configuration produced at

different degrees of clustering, q00, when intervention coverage is

50% over the entire grid.

For the vector control investigations, cluster configurations were

created at 10%, 30%, 50%, and 70% coverage levels, with the

degree of spatial clustering, q00 ranging from 0 to 1 at an interval

of 0:1. However, it is only possible to create spatial clusters when

q00§2{(1=p0) [39] (where p0 represent intervention coverage).

This was due to the fact that when an intervention coverage is

high, it is likely that neighbours of patches under intervention, are

also under intervention. This implies a lower bound on q00 for

high coverage. For example, at p0~70%, the lower bound for q00
is 0:57. This means that, it is not possible to create clusters at a

degree of spatial clustering less than 0:57.

Model Parameterizations and Assumptions
Parameter values on stage specific mortality, and development

rates used to simulate the model are given in Table 1. Various

experimental studies show that ITN killing efficacy is variable

[47,48] as it depends on local entomological and epidemiological

conditions [49]. For the parameter values of interventions, we

make the assumption that ITNs and IRS are 80% efficacious so

that eITN and eIRS were fixed at 0:8.

When a larvicide is applied to a breeding site, all larvae

experience an increased mortality. Field studies show that

larviciding is likely to kill all larvae when applied to a breeding

site [33–35]. However, not all breeding sites can be identified for

larvicidal treatment. Here, 80%(ELV ~0:8) of the breeding sites

inside a patch are assumed to be identified and treated with

larvicide. Thus, leaving 20% of breeding sites within a patch

without larvicide, allowing larvae develop into pupae. We also

Clustering of Vector Control Interventions
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make the assumption that larvae are distributed uniformly across

breeding sites.

Field studies on mark release recapture experiments of Anopheles

gambiae also show that daily flight range from 200 to 400 m [50] or

800 m a day [9]. Others show that about 90% of mosquitoes reach

a distance of 1:5 km. These experimental results indicate that

mosquito flight distance is variable. Due to these variations,the

total area modelled in this study was limited to one square

kilometre. The patch size, with patch centroids 50 m apart and

used in this work, was based on flight distances of mosquitoes

chosen and numerical ease.

A 25 by 21 hexagonal grid was used as a hypothetical

representation of a landscape. At the edges of the grid, periodic

boundary conditions were used. This assumes the area being

modelled is comparable to its neighbourhood. For simplicity,

simulations were performed with all hexagons (patches) on the grid

containing breeding sites and hosts. The dispersal related

parameters for host seeking (bH ) and oviposition site searching

(bB) mosquitoes depend on the availability of hosts and breeding

sites respectively and the diffusion rate, D~0:2 per time was used

in all simulations. The diffusion coefficient of dispersal (D�~D=A,

where A is the area of each patch contained in the hexagonal grid)

scales with patch size and as a result, the equilibrium results

presented in this study scale with increasing patch size or

increasing number of patches (and total area modelled).

Measuring Intervention Effectiveness
We define intervention effectiveness as the reduction in the total

equilibrium population of host seeking mosquitoes, over all

patches on the grid. In malaria transmission control, the number

of potentially infective mosquitoes should be reduced. Thus, only

host seeking adults, which transmit malaria, are considered. From

the model, the equilibrium total number of host seeking

mosquitoes is calculated over the entire grid as

A�h~
X
j[J

A�hj, ð8Þ

where Ahj is the equilibrium number of adult host seeking

mosquitoes in patch j and J is the set of all patches on the entire

grid. In this context, we calculate intervention effectiveness, Eint, as

the proportionate reduction of an equilibrium population of host

Figure 2. An example of spatial clusters generated at different degrees of clustering (q00). An example of spatial clusters generated at
different degrees of clustering (q00) with a coverage of p0~0:5 for the covered states (white) for intervention deployment and uncovered states
(black). Clustering increases with increasing q00.
doi:10.1371/journal.pone.0097065.g002
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seeking mosquitoes, namely

Eint~1{
A
�(int)
h

A�h
, ð9Þ

where A�h is the equilibrium population of host seeking mosquitoes

in the absence of interventions, and A
�(int)
h is the equilibrium

population of host seeking mosquitoes in the presence of an

intervention.

Simulations
Simulations were carried out in Matlab 7.10.0 (R2010a). The

adaptive step size Runge-Kutta method of fourth and fifth order

(ode45) was used to solve the system of ordinary differential

equations (Eqn. (1)). Simulations were performed at intervention

coverage levels of 0% coverage (no intervention), 10%, 30%, 50%,

and 70%. The 0% level scenario was included to compute

intervention effectiveness (Equation 9).

Several simulations were performed in this study. The first set of

simulations involved creations of cluster configurations at each

value of q00 as described in the spatial clustering subsection. A

total of four cluster configurations were generated for each q00.

After clusters were generated, each cluster (a matrix of zeros and

ones) for each q00 at each coverage level was used as an input

matrix for placing interventions. Interventions were placed in

entries with ones and entries with zeros represented non-

intervention areas. One simulation was performed for each cluster

configuration for each intervention package. Simulations were run

until the system (1) was at equilibrium. The resulting equilibrium

values were recorded and used to evaluate intervention effective-

ness. For each cluster configuration at each coverage, one

simulation was performed to obtain the equilibrium value which

was used as a baseline for computing effectiveness as described

above.

For each scenario a representative total population of 2700 eggs,

1900 larvae, 2000 pupae, 2400 host seeking mosquitoes, 1800
resting, and 1200 oviposition site searching mosquitoes were

initially distributed across the grid. Parameter values used to

simulate the model are given in Table 1. We numerically tested

that there exists only one equilibrium point given different initial

conditions for both the non-intervention and intervention scenar-

ios.

Statistical Analysis of the Relationship between
Intervention Spatial Clustering and Effectiveness

Simulation results for each coverage level were further analysed

using statistical methods. The aim was to quantify the relationships

between effectiveness and the degree of spatial clustering of an

intervention. Since the effectiveness is measured as the propor-

tionate reduction in host seeking mosquitoes, its range lies within 0
and 1. Thus, robust generalized linear models with a logit link [51]

were used. The outcome variable in each model was the

simulation results of effectiveness of an intervention package with

the explanatory variable being the degree of spatial clustering at a

given coverage level of that particular intervention package.

Results

The effectiveness of ITNs, IRS, and larviciding is related to the

degree of spatial clustering of interventions and coverage levels

(Figure 3). When the coverage of larviciding and IRS is 10%
(Figure 3A), simulation results indicate that these interventions

tend to be more effective when highly clustered compared to low

clustering. However, the benefits of highly clustering IRS are not

statistically significant (Table 2). At 30% coverage, high clustering

of IRS appears to be no longer more effective than low clustering.

For larviciding, at 30% spatial coverage level, larviciding is more

effective when highly clustered compared to when lowly clustered.

For ITNs distributed at low coverages of 10% to 30% (Figure 3A–

B), the intervention is more effective with a low degree of spatial

clustering compared to with a high degree of spatial clustering

(ITN effectiveness is negatively correlated to the degree of spatial

clustering).

At a moderate intervention coverage level of 50% (Figure 3C),

effectiveness of IRS and larviciding decreases with increasing

clustering and distributing ITNs randomly in a non-clustered way

is more beneficial than in a clustered way. At an intervention

coverage level of 70% (Figure 3D), distributing interventions

widely and randomly in a non-clustered manner is more effective

than clustering for any of the interventions.

When interventions are combined (Figure 4), effectiveness

decreases with increasing degree of spatial clustering, implying

more benefits when widely distributed in space. However, the

combination of IRS and larviciding was not associated with the

degree of spatial clustering when coverage was less then 30%.

Effectiveness of an intervention at zero clustering is highest for

ITNs and lowest for larviciding (given our parameter values) when

interventions are singly deployed (Table 2). Effectiveness at zero

clustering is highest when all interventions are combined together,

but the additional effect over ITNs alone is small. The

combination of IRS and larviciding had the lowest effectiveness

at zero clustering, irrespective of the coverage level.

At lower spatial coverage levels of single interventions, the

difference in effectiveness between one intervention and another

decreases with increasing value of the degree of spatial clustering.

This gap (difference) remains almost constant at high coverage

levels (Figure 3). For combined interventions and at all coverage

levels, there is almost no difference in effectiveness for all

combinations of interventions that included ITNs (Figure 4).

The effectiveness of a combination of IRS and larviciding is

consistently lower across all coverage levels. In addition, the

difference in effectiveness between a combination of IRS and

larviciding and other combinations is always high. However, at

lower coverage levels, this difference decreased with increasing

degree of spatial clustering (Figure 4A and B).

The scatter plots also show that there is variability in

effectiveness. These variations increase with increasing clustering

(Figures 3 and 4), especially at low to moderate coverage levels.

Discussion

In this study, an existing mathematical model of mosquito

dispersal [29] was extended to include vector control interventions.

In order to distribute interventions heterogeneously across the

landscape, according to the degree of clustering chosen, this model

was combined with an approach for modelling spatially hetero-

geneous landscapes [39] to assess the effects of spatial clustering of

vector control interventions on their effectiveness, at various levels

of spatial coverage and intervention combinations. As in another

study [22], the reduction in the overall vector population density

was used as an indicator of the population-wide effect of

interventions. The results have important implications for

deployment strategies in situations where universal coverage is

not achievable.

Our model indicates that, with a single intervention of either

IRS or larviciding in an environment where breeding sites and

hosts are homogeneously distributed and spatial coverage of the
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intervention is low (i.e. few patches are covered), there is a small

increase in effectiveness when deployment is highly spatially

clustered compared to widely distributed in space. However, with

high spatial coverage, it is more effective to distribute these

interventions randomly in an unclustered manner. ITNs were less

effective at a higher degree of clustering than at a lower degree of

clustering for any spatial coverage level.

At a spatial coverage of less than 50%, if larviciding is highly

clustered, then treated areas become almost mosquito free.

However, if larviciding is not clustered, mosquitoes that breed in

neighbouring patches can still feed in areas that have been

larvicided. If coverage is moderate to high (50% or larger),

larviciding is more effective when randomly distributed and

unclustered, because a greater proportion of the remaining adult

mosquitoes is likely to encounter the intervention when oviposit-

ing. When larviciding is clustered, most of the ovipositing occurs in

non-larvicided areas because adult mosquitoes are rare in

larvicided areas. When larviciding is widespread and unclustered,

a proportion of adult mosquitoes emerging in non-larvicided

patches will migrate to, feed and oviposit in larvicided breeding

sites.

With adulticidal interventions, especially ITNs, the benefits of

distributing the intervention widely and unclustered are greater,

because the mosquitoes need to avoid intervention patches each

gonotrophic cycle if they are to survive. Where adulticidal

interventions are clustered, mosquitoes emerging in locations

remote from the intervention area are unlikely to be killed,

whereas when interventions are non-clustered, a mosquito will

encounter them sooner or later. Consequently, at any spatial

coverage level, average biting densities are reduced more by

deploying ITNs in an unclustered manner than by clustering

them. It also follows that widespread distribution of adulticidal

interventions will reduce the number of old (potentially disease-

transmitting) mosquitoes even more than it will reduce average

densities. This finding, that the overall effect in the reduction of

mosquito numbers is much greater if the intervention is spatially

non-clustered and widely distributed, especially when coverage is

moderate and insufficient to achieve universal coverage, contra-

Figure 3. Intervention effectiveness by degree of spatial clustering of ITNs, IRS, and larviciding at different coverage levels. The
symbols (scatter plots) represent simulated intervention effectiveness data from different configurations of intervention distribution to account for
stochastic variations and the lines are the result of a linear fit on a logarithmic scale (p~1=(1z exp({b0{b1C) )). Effectiveness is measured as the
proportionate reduction of the equilibrium population of host seeking mosquitoes. Hosts and breeding sites were homogeneously distributed across
the grid. Coverage levels A: 10%, B: 30%, C: 50%, and D: 70%.
doi:10.1371/journal.pone.0097065.g003
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dicts the notion that a locally high coverage is needed to achieve a

mass effect of ITNs or IRS for reduction in disease.

Highly clustered scenarios had lower ITN effectiveness. This is

likely due to the fact that when intervention coverage is high, then

the likelihood that any patch and its six neighbours are under

intervention is high. In this aspect, patch attractiveness to biting

mosquitoes is reduced. When this occurs, then all neighbouring

patches produce the same repellency effect which results into fewer

mosquitoes leaving the centre patch (because they are also repelled

for each of their neighbours). In so doing, the repellency effect

decreases and the killing effect becomes the main factor, rather

than the combination of both repellency and killing.

While non-clustered deployment of most intervention packages

is generally most effective, this may be expensive to achieve since it

requires delivery even to remote locations. Interventions are often

delivered preferentially to more accessible areas, and such

clustered (and sometimes inequitable) distributions are likely to

be the cheapest. To investigate how delivery costs affect cost-

effectiveness, there is a need for modelling of different distribution

schemes (for example for ITNs or IRS) of interventions given a

fixed budget in various settings with different degrees of clustering,

coverage levels and accessibility.

Efficacy, defined as the effect on the target stage of the vector as

a proportion of the theoretical maximum effect, translates

differently into effectiveness defined on some common metric of

levels of transmission, disease control, or, in this paper, densities of

host seeking mosquitoes. We have assumed 80% efficacious

interventions throughout, and our results are consistent with other

modelling work suggesting that at constant efficacy, ITNs have the

highest impact on biting densities of mosquitoes [16,22] and in our

simulations any combination of interventions which includes ITNs

is also highly effective at all levels of coverage and across all spatial

clustering. This may be accounted by the repellency effect of ITNs

included in the model. The assumed 80% efficacy of ITNs in this

work is representative of both the killing and repellency action of

ITNs and of indoor biting coverage of individuals within a patch.

Even with small patch sizes assuming an 80% efficacy for ITNs is

likely too high. A further extension of the models would be to vary

the level of intervention within each patch, and thus efficacy.

Comparing of Figures 3 and 4 indicates that although ITNs

provide better protection alone compared to other interventions,

results show that there are additional benefits if ITNs are

combined with other interventions. Our study also shows that

although larviciding is less effective compared to ITNs and IRS,

treating a similar or higher level of coverage would result in a

higher reduction of biting mosquitoes.

The current results are indicative of the effect of applying

interventions within a small village, with a small number of

dwellings or breeding sites per patch, but should also be broadly

applicable to smaller patches corresponding to single individuals or

breeding sites. We would not necessarily expect the same results to

hold with very large patches, e.g. corresponding to whole villages

where patch size might be comparable to the flight range of the

mosquitoes and where other factors such as spatial variation within

patches might be relevant.

Modelling and simulation provides a much easier approach to

investigate these issues than field studies do, but inevitably require

making simplifying assumptions. To assess the effect of clustering,

we simulated a homogeneous distributions of both human hosts

and breeding sites. The cues that these human hosts and breeding

sites provide that influence movement of mosquitoes cancel each

other out, therefore movement was not influenced by the

availability of these hosts or breeding sites [52]. Further

investigations need to incorporate scenarios in which breeding

sites and hosts are heterogeneously distributed. In such scenarios,

knowledge about hotspots will allow targeted (and therefore likely

Table 2. Association between intervention effectiveness and the degree of spatial clustering of interventions by coverage level.

Coverage 10% 30% 50% 70%

Effectiveness at zero clustering (b0) (logit transformed)a

ITNs 20.92 (0.02) 0.73 (0.04) 2.80 (0.06) 6.56 (0.41)

IRS 21.77(0.02) 20.31 (0.03) 1.38 (0.04) 3.49 (0.28)

Larvicide 22.37 (0.02) 20.95 (0.04) 0.65 (0.04) 2.29 (0.24)

All 20.82 (0.02) 0.88 (0.04) 3.14 (0.07) 7.78 (0.46)

ITNs and IRS 20.86 (0.02) 0.82 (0.04) 3.01 (0.07) 7.41 (0.45)

ITNs and larviciding 20.87 (0.02) 0.82 (0.04) 3.03 (0.07) 7.51 (0.45)

IRS and larviciding 21.55 (0.02) 0.00 (0.04) 1.93 (0.05) 6.21 (0.38)

Effect of clustering (b1) on the effectiveness (logit scale)

ITNs 20.54 (0.07) 21.04 (0.10) 22.20 (0.12) 24.75 (0.50)

IRS 0.06 (0.05)b,c 20.20 (0.07) 20.99 (0.07) 21.95 (0.36)

Larviciding 0.39 (0.04)b 0.19 (0.07)b 20.52 (0.06) 21.09 (0.32)

All 20.61 (0.07) 21.17 (0.10) 22.5(0.14) 26.02 (0.55)

ITNs and IRS 20.59 (0.07) 21.11 (0.10) 22.42 (0.13) 25.64 (0.54)

ITNs and larviciding 20.57 (0.07) 21.11 (0.10) 22.44(0.13) 25.75 (0.54)

IRS and larviciding 20.05 (0.05)c 20.43 (0.08)c 21.46 (0.09) 24.73 (0.49)

Association between intervention effectiveness and the degree of spatial clustering of interventions by coverage levels. b1 is an estimate (gradient) of the effect of the
degree of spatial clustering of an intervention and b0 is an intercept measuring the effectiveness of the intervention at zero clustering. The higher b0, the higher the
effectiveness at zero clustering. Figures in parenthesis are standard errors.
ab0 = ln ( p0

1{p0
), where p0 is the actual effectiveness.

bPositive relationship, implying a benefit of clustering the intervention.
cNot statistically significant (i.e. p-value .0.05).
doi:10.1371/journal.pone.0097065.t002
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spatially clustered) deployment of interventions and this may well

be more cost-effective than non-clustered deployment. In other

words, in scenarios with spatially heterogeneous hosts and/or

breeding sites, the cost of knowledge about where these are may

well compensate for potential gains in effectiveness. However, in

the absence of knowledge about spatial location of hosts and

breeding sites for mosquitoes (even for scenarios when they are

heterogeneously distributed) non-clustered distribution may be

most cost-effective.

Results from this study provide evidence that the effectiveness of

an intervention can be highly dependent on its spatial distribution.

Given logistical and financial constraints, vector control plans

should consider the spatial arrangement of any intervention

package to ensure effectiveness is maximized. In the case of high

achievable coverage, and in the absence of information that allows

targeting, it is of great help to ensure that the distribution is as

equitable and as evenly spatially spread as possible for maximizing

benefits.
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