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SUMMARY 

Medicinal plants have been an important source for the discovery of therapeutic agents for 

infectious diseases. In order to explore their potential an appropriate selection of plant 

species is important. In our attempt to find hits targeting antiprotozoal diseases, we utilized 

an extract library setting, and ethnomedicinal information. A library of 1800 plant and 

fungal extracts was screened for in vitro effects against Trypanosoma brucei rhodesiense STIB 

900 strain and Plasmodium falciparum K1 strain. The ethyl acetate extract of Saussurea costus 

roots, and the methanolic extract of Carica papaya leaves were selected for further studies. 

HPLC-based activity profiling enabled the localization and identification of the active 

constituents of these plants extracts. Sensitive hyphenated analytical methods such as 

HPLC-PDA-ESI-TOF-MS and microprobe NMR were used for structure elucidation of the 

isolated compounds. X-ray crystallography was used in combination with electronic circular 

dichroism to determine the absolute configuration of selected compounds. 

The ethyl acetate extract of S. costus roots potently inhibited the growth of T. b. rhodesiense in 

vitro. HPLC-based activity profiling led to the identification of four sesquiterpene lactones. 

Three structurally related sesquiterpene lactones that originated from different sources were 

also investigated. All compounds exhibited profound activity against T. b. rhodesiense with 

IC50 values between 0.8 – 21.9 µM. Cytotoxicity was tested on rat myoblast L-6 cells, where 

IC50 values of 1.6 to 19.4 µM were observed, and provided selectivity indices (SI) between 0.5 

and 6.5. The most active compounds in this study were the germacranolides costunolide, 

parthenolide, and eupatoriopicrin. 

The leaves of the Indonesian ethnomedicinal plant C. papaya are a known antimalarial 

remedy. So far, the active principles have not been investigated from a phytochemical and 

pharmacological point of view. HPLC-based activity profiling of the methanolic extract from 

C. papaya leaves against P. falciparum led to the discovery of five alkaloids and four flavonol 

glycosides. All compounds exhibited in vitro antimalarial activity against P. falciparum K1 

strain, albeit to varying degrees. Three dimeric alkaloids showed potent activity with IC50 

values ranging from 0.2 to 1.8 µM, and SI from 24.2 to 107.5. The isolated flavonol glycosides 

were less active, with IC50 values between 13.2 – 16.8 µM, and selectivity indices of more 
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than 9. Lower activity was observed for the two monomeric alkaloids (IC50 ≥ 77 µM). 

Carpaine (IC50 of 0.2 µM; SI of 107.5) was the most interesting compound in this study and 

was, hence, selected for further evaluation of its in vivo pharmacological properties using a 

4-day suppressive assay on mice. However, only a reduction of parasitemia by 11.9% was 

observed. With the aid of X-ray crystallography and ECD calculation, the absolute 

configuration for carpaine was established as 1S,11R,13S,14S,24R,26S. Carpaine represents a 

new scaffold for anti-plasmodial drugs. An analysis of carpaine content by means of UPLC-

MS/MS was pursued with 28 leaf samples from Indonesia and one from India. The carpaine 

content varied from  0.02 to 0.31%. 

 



     ZUSAMMENFASSUNG 

 

vii 

 

ZUSAMMENFASSUNG 

Medizinalpflanzen, die traditionell zur Behandlung von Infektionskrankheiten eingesetzt 

werden, spielen bei der Entdeckung neuer Wirkstoffe eine grosse Rolle. Für die 

Identifizierung neuer Leitstrukturen ist zudem die Auswahl geeigneter Pflanzen von 

entscheidender Bedeutung. Auf der Suche nach antiprotozoal wirkenden Verbindungen 

wurden sowohl ethnobotanische Informationen als auch die Ergebnisse eines 

vorausgegangenen Extraktscreenings verwendet. Insgesamt wurden 1800 Pflanzen- und 

Pilzextrakte auf ihre in vitro Aktivtät gegen den Trypanosoma brucei rhodesiense STIB 900 

Stamm und den Plasmodium falciparum K1 Stamm hin untersucht. Der Ethylacetat-Extrakt 

aus den Wurzeln von Saussurea costus und der methanolische Extrakt aus den Blättern von 

Carica papaya wurden für weitere Untersuchungen ausgewählt. Das HPLC-basierte 

Aktivtätsprofiling ermöglichte die Lokalisierung und Identifizierung der aktiven 

Extraktkomponenten. Für die Strukturaufklärung der isolierten Verbindungen wurden 

analytische Methoden wie HPLC-PDA-ESI-TOF-MS und 'Microprobe' NMR verwendet. Die 

absolute Konfiguration einzelner Verbindungen wurde mittels Röntgenstrukturanalyse und 

Zirculardichroismus bestimmt. 

Der Ethylacetat-Extrakt aus den Wurzeln von S. costus hemmte das Wachstum des T. b. 

rhodesiense Stamms nahezu vollständig. Mittels HPLC-basiertem Aktivitätsprofiling konnten 

vier Sesquiterpenlactone identifiziert werden. Zusätzlich zu den isolierten Reinsubstanzen 

wurden drei strukturell verwandete Sesquiterpenlactone im in vitro Assay getestet. Alle 

Sesquiterpenlactone zeigten signifikante in vitro Aktivität gegen T. b. rhodesiense mit IC50 

Werten zwischen 0.8 and 21.9 µM. Die zytotoxischen IC50 Werte wurde mit der Zellinie L6 

(Rattenmyoblasten) bestimmt und reichten von 1.6 bis 19.4 µM. Die Selektivitätsindizes der 

getesteten Substanzen lagen zwischen 0.5 und 6.5. Costunolid, Parthenolid und 

Eupatoriopicrin waren die aktivsten Sesquiterpenlactone. 

Die Blätter von C. papaya werden in der indonesischen Volksmedizin gegen Malaria 

eingesetzt. Die aktiven Inhalststoffe sind jedoch aus phytochemischer und 

pharmakologischer Sicht bisher wenig erforscht. Mit Hilfe des HPLC-basiertem 

Aktivitätsprofiling wurden aus dem methanolischen Blattextrakt insgesamt fünf Alkaloide 
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und vier Flavonolglykoside identifiziert. Die isolierten Substanzen hemmten alle das 

Wachstum des P. falciparum K1 Stammes, wenn auch unterschiedlich stark. Für die drei 

dimeren Alkaloide lagen die IC50 Werte zwischen 0.2 und 1.8 µM und die 

Selektivitätsindizes zwischen 24.2 und 107.5. Die Flavonolglykoside waren weniger aktiv, 

die IC50 Werte reichten von 13.2 bis 16.8 µM und die Selektivitätsindizes waren grösser als 9. 

Eine noch geringere in vitro Aktivität wurde für die beiden monomeren Alkaloide 

beobachtet (IC50 ≥ 77 µM). Carpain (IC50 von 0.2 µM; SI von 107.5 ) war die aktivste 

Verbindung und wurde für weitere in vivo Untersuchungen ausgewählt. Im Mausmodell 

reduzierte die Substanz die Parasitämie nach 4-tägiger Behandlung allerdings nur um 

11.9%. Mittels Röntgenstrukturanalyse und Zirculardichroismus wurde die absolute 

Konfiguration von Carpain als 1S,11R,13S,14S,24R,26S ermittelt. Carpain ist auf Grund 

seiner einzigartigen Molekülstruktur eine interessante Verbindung bei der Suche nach 

neuen Antimalaria-Wirkstoffen. Des Weiteren wurde mit Hilfe einer UPLC-MS/MS Methode 

der Carpain-Gehalt in 29 verschiedenen C. papaya Blattproben bestimmt. Der Carpain-Gehalt 

schwankte zwischen 0.02 und 0.31%.  
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The therapy for neglected tropical diseases caused by protozoan infections is in an urgent 

need for the discovery of new therapeutic agents. Current antitrypanosomal drugs for 

human African trypanosomiasis are mostly old and have been reported to have severe side 

effects. For treatment of malaria, potent antimalarial drugs are indeed available. However, 

resistance against these drugs is currently appearing. 

Natural sources such as plants continuously supply natural products and drugs derived 

from natural products for therapy of diseases. The fact that antimalarial drug discovery has 

successfully relied on natural products is a good reason for exploring medicinal plants for 

the discovery of new natural products targeting protozoan infections. 

The objective of the present work was a phytochemical investigation of medicinal plants, in 

order to discover bioactive compounds inhibiting Trypanosoma brucei rhodesiense and 

Plasmodium falciparum. Initially, a screen was conducted on 1800 plant and fungal extracts 

from an in-house extract library. In this preliminary screening, the extract of Saussurea costus 

was found to be active. A different approach was pursued by following the traditional 

knowledge on Indonesian medicinal plants. With this, Carica papaya was selected for its 

empirical use and previous reports on in vivo activity of the extract. 

Subsequently, an HPLC-based activity profiling was applied to track the constituents 

responsible for the activity within the extracts. Simultaneously, this approach was also used 

for early identification and dereplication as well as assessment for lead potential of the 

constituents. Isolation of the active compounds was performed with the aid of diverse 

chromatographic methods, and the structures were elucidated by means of spectrometric 

and spectroscopic methods. Additional compounds within the extract with structures 

related to the active constituents were also isolated to draw preliminary structure/activity 

relationships. The final aim of this research was to find active compound(s), preferably with 

new scaffolds, that fulfilled the requirements for progression to in vivo screening in a mouse 

model. Additionally, in the case of papaya leaves, the content of active principle in the 

sample materials was determined using a validated analytical chromatographic method. 
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1.1 Tropical diseases 

All infectious diseases that occur principally in the tropical countries are referred to as 

‘tropical diseases’ (TDs) (Zumla and Ustianowski, 2012). Amongst the WHO list of TDs, 17 

diseases are considered as neglected (WHO, 2010b). These diseases impact mostly 

impoverished populations in remote or isolated areas that are relatively clustered where the 

victims have low profiles and statuses in public health priorities, and are therefore called as 

‘neglected tropical diseases’ (NTDs). Six types of infectious organisms are the cause of 

NTDs: protozoan, helminth, viral, bacterial, fungal, and ectoparasites. Protozoan infections 

cause leishmaniasis, human African trypanosomiasis (sleeping sickness), and human 

American trypanosomiasis (Chagas disease) (Hotez et al., 2009). Malaria is another 

protozoan infection ailment that is no longer categorized as NTD because of improved 

awareness and efforts to combat this disease in the recent years. 

CDC estimated that worldwide, there are 149 countries and territories which are affected by 

at least one NTD. Furthermore, in 56 low-income countries, at least five NTDs were 

coendemic (Hotez et al., 2009). Approximately 534,000 people worldwide are killed per year 

because of NTDs with most victims being children (Hotez et al., 2007). 

Three parallel approaches have been programmed to eradicate NTDs including vector 

control, drug treatment, and vaccination. In regard to drug treatment, many of the current 

drugs are old and have been reported to possess drawbacks in therapy along with rising of 

resistance, so that there is an urgent need for new safer, effective, and affordable medicines. 

Since these diseases mostly impact some of the poorest populations in the world and are 

exclusively transmitted in tropical and sub-tropical countries, they are commercially 

unappealing to pharmaceutical companies due to low investment return. In the late 1990s, 

most of pharmaceutical companies stopped their drug research and development for 

tropical diseases mainly malaria. In concern to this situation, WHO facilitated the creation of 

the nonprofit public-private partnership organization, ‘Medicines for Malaria Venture’ 

(MMV) in 1999 (MMV, 2014). Today, MMV is engaged with 18 founding partners to finance 

its research programs; amongst them are WHO, Roll Back Malaria, World Bank, Gates 

Foundation, and government agencies from Switzerland, United Kingdom, Ireland, US and 

Netherlands. In 2003, another non-profit drug research organization targeting NTDs called 
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‘Drugs for Neglected Disease Initiative’ (DNDi) was also formed. The involvement of 

academic research centers in the recent years has also contributed into this progressing 

effort. One of them was a joint research of scientists from different countries focusing on 

drug findings from natural origins named ‘Research Network Natural Products against 

Neglected Diseases’ (ResNetNPND) that was established in 2011. 

1.1.1 Human African trypanosomiasis 

Vector and parasite 

Human African trypanosomiasis (HAT), also named as sleeping sickness, is an infectious 

disease caused by the protozoan parasite Trypanosoma brucei (T.b.) transmitted to humans 

by tsetse flies of the genus Glossina. The parasite infects human with two sub-species: T. b. 

gambiense and T. b. rhodesiense (Malvy and Chappuis, 2011). T. b. rhodesiense causes acute 

HAT while T. b. gambiense causes chronic HAT. T. b. gambiense can also infect wild animals 

in forest areas and domestic animals such as sheep, goats, and pigs (Njiokou et al., 2006, 

2010), which indicates the role of animals as reservoir host of the parasite. 

Epidemiology 

WHO reported a decrease of HAT incident in the past 10 years and left 6743 new cases from 

African region (Simarro et al., 2013). However, the number of infection cases was estimated 

to be three times higher (Simarro et al., 2011). In the area of sub-Sahara Africa, HAT is 

endemic in 36 countries. The most prevalent chronic gambiense HAT is transmitted in 24 

countries in Western and Central Africa, whilst the acute rhodesiense HAT is spread in 13 

countries in Eastern and Southern Africa. 

Disease symptoms and diagnosis 

The infection is initiated by transmission of the unicellular trypanosomes via the fly bite 

during the blood-feeding process. Then the parasites live and multiply extracellularly in the 

blood and tissue fluids of their human host (Malvy and Chappuis, 2011). HAT occurs in two 

stages. Stage 1, the haemolymphatic phase, includes non-specific symptoms like headaches 

and bouts of fever without CNS disorders. Stage 2, the later neurologic phase, occurs when 

the parasite crosses the blood-brain barrier. In this stage CNS is influenced and causes 
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serious apparent symptoms like sleep cycle disruptions, paralysis, and progressive mental 

deterioration. Typical sleep disturbances, where the normal night sleeping time is distorted 

to daylight and vice versa, are the characteristics of the so-called sleeping sickness (Brun et al., 

2010). While gambiense sleeping sickness lasts for months to years, the incubation time of 

acute rhodesiense sleeping sickness is within weeks or months. If untreated the second stage 

of the disease is lethal. 

Simple diagnosis of trypanosomiasis relies on microscopic detection of trypanosomes in the 

blood, lymph nodes aspirate, and cerebrospinal fluid (CSF). Disease stage determination can 

only be determined using CFS sample. 

Drug treatment and resistance 

Due to the absence of vaccines, chemotherapy remains the primary means for control of 

HAT (Brun et al., 2010). Five available drugs for this ailment are pentamidine, eflornithine, 

melarsoprol, suramin, and nifurtimox. The first four drugs are delivered intra-venously. All 

these drugs are employed for gambiense infection. While for rhodesiense infection only two 

drugs are used: suramin for the blood phase condition and melarsoprol for the neurologic 

phase condition. 

Pentamidine is the drug of choice for treatment of first stage condition. It is given 

intramuscularly for a week or through intravenous infusion in saline (Brun et al., 2010). This 

drug has been used for over 60 years without any sign of resistance occurring (Delespaux 

and de Koning, 2007). 

Eflornithine was introduced for the treatment of human gambiense sleeping sickness in 

1990s. It is a rather slow acting drug, given via intravenous infusion, and used for 

melarsoprol-refractory sleeping sickness. The frequent adverse reactions are similar to those 

produced by cytotoxic drugs (Brun et al., 2010). 

Melarsoprol, a prodrug of the active form of melarsen oxide, is administered for late stage 

conditions on both gambiense and rhodensiense sleeping sickness since 1947. Ineffectiveness 

has been noted in several highly endemic T. b. gambiense infectious foci such as Southern 

Sudan, Democratic Republic of Congo, Uganda and Angola (Brun et al., 2010; Legros et al., 

1999; Balasegaram et al., 2006). The most severe side effects with melarsoprol are 
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encephalopathies that occur in 5-10% of the treated patients (Blum et al., 2001; Pépin and 

Milord, 1994). 

Suramin has been used since 1920 for only first stage HAT because it does not cross the 

blood brain barrier (Hawking, 1940). After prolonged use over 80 years, no resistance to 

suramin has developed (Fairlamb, 2003). 

Nifurtimox is the only HAT drug administered orally. This drug was initially known for the 

treatment of American trypanosomiasis, Chagas disease in the 1960s (Wegner and 

Rohwedde, 1972). Nifurtimox is well tolerated by patients with melarsoprol-refractory 

gambiense sleeping sickness (van Nieuwenhove and Declercq, 1989; van Nieuwenhove, 

1992). 

Drug combination of current trypanocidals has been considered as one option for therapy in 

view of the absence of new medicines in clinical trials (Keiser et al., 2001). One of the results 

is the drug combination of nifurtimox-eflornithine for second stage gambiense HAT (Alirol 

et al., 2013). 

Despite the many decades of use of most of the current trypanocides, their mode of action is 

still limitedly understood. Possible mechanisms proposed include action on multiple targets 

inside the cell and selective accumulation by the pathogen (Delespaux and de Koning, 2007). 

For future elimination of HAT, new antitrypanosomal drugs that are safe, effective, 

affordable, and preferably with simple or oral administration to treat patients with both 

stages of the disease are the main goals in drug discovery and development. 

1.1.2 Malaria 

Vector and parasites 

Malaria is a mosquito-borne infectious disease. The vector, Anopheles mosquitoes, injects 

protozoan plasmodiums into human through their bites. In Nature, there are more than 100 

protozoan parasites Plasmodium sp. that infect different organisms from human to animals 

such as birds, reptiles, rodents, primates and other mammals with their individual vectors 

(Garnham, 1966). Malaria in human is caused by five Plasmodium species: P. falciparum, P. 

vivax, P. malariae, P. ovale, and P. knowlesi. P. knowlesi is found originally in primates 
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(macaque monkeys). This parasite spread out around South-East Asia and can be somehow 

transmitted to human. Among these parasites P. falciparum is the most severe and deadly. It 

is also predominant in the endemic areas along with P. vivax (Greenwood et al., 2005; Singh 

et al., 2004). 

Epidemiology 

According to the latest report (WHO, 2013a), 3.4 billion people are still at risk of malaria. 

From this total, 1.2 billion of people reside in the high risk malaria areas covering the 

African region (47%) and South-East Asia (37%). In 2012, there were about 207 million cases 

of malaria that caused 627 thousand of lethal cases. Victims were mostly African children, 

which accounted for 77% of the cases. Malaria is preventable and curable. Therefore, with 

the continuous prevention and control, the mortality rate has successfully slowed down to 

45% globally and 49% in the WHO African region since the year of 2000. 

Although malaria is almost exclusively found in tropical countries, with the current global 

climate change and high travelling traffic to and from infected areas, transmission risk to 

malaria-free areas may occur (Sebisubi and Tan, 2010). 

Disease symptoms and diagnosis 

Malaria is divided into uncomplicated and severe malaria. Uncomplicated malaria has a 

typical symptom of recurrent paroxysm that consists of a cold stage onset, followed by high 

fever stage, and then the sweating stage. Other nonspecific symptoms are flu-like syndrome, 

headache, myalgia, weakness, vomiting, and jaundice (Warrel, 1993). Uncomplicated 

malaria can lead to severe malaria where damage of the brain (cerebral malaria) and vital 

organs occur. If untreated, it can be fatal. 

Malaria is conventionally diagnosed by microscopic parasitemia (parasites count) on the 

patient’s peripheral blood smear after staining with Giemsa or other stain solutions 

(Warhurst and Williams, 1996). Other non-conventional diagnosis methods for parasitemia 

are also available such as Rapid Diagnostic Test (Murray and Bennet, 2009), PCR analysis 

(Kawamoto et al., 1996), and serology test (Spencer et al., 1981). 

Drug treatment and resistance 
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Endemism of malaria has been reduced over the last decade. In 2013, only 97 countries were 

still having on-going malaria transmission (WHO, 2013a). One of the important factors 

which contributed to this improvement is the availability of affordable, safe, and effective 

medicines. 

The choice of the drug is determined based on the disease severity and the type of the 

parasite. Current recommended chemotherapy agents are artemisinin-based combination 

therapies (ACTs) for uncomplicated falciparum malaria including arthemether-lumefantrine, 

artesunate-amodiaquine/mefloquine/sulfadoxine-pyrimethamine, and dihydroartemisinin-

piperaquine (WHO, 2013a). Combination therapy is important to slowdown drug resistance 

(White et al, 1999). For severe falciparum malaria, current first line therapy is parenteral 

artesunate. Parenteral quinine is the second-line agent. Artemisinin and its derivatives 

arthemether and artemotil are prescribed as well. When other drugs fail quinidine is the last-

line chemotherapy agent (Mondorb et al., 2010; WHO, 2010a). 

For the treatment of vivax malaria, WHO´s first recommendation remains chloroquine or 

chloroquine-primaquine combination, except in some countries where chloroquine 

resistance is prevalent. ACTs paired with primaquine is in use in the case of chloroquine 

resistance (WHO, 2010a). Amodiaquine is also an alternative choice (Maguire et al., 2006). 

Other malaria parasites, P. ovale and P. malariae in general are still sensitive to chloroquine. 

In the case of relapsing ovale malaria, chloroquine-primaquine combination is in use (WHO, 

2010a). Further drugs are also incorporated in malaria prophylaxis. Amongst them are the 

antibiotic doxycycline, mefloquine, atovaquone-proguanil and chloroquine-proguanil (PHE, 

2013). Several other sulfonamides, antifolates and antibiotics are also in use for the treatment 

of malaria (Schlitzer, 2007; WHO, 2010a). 

P. falciparum has developed resistance to almost all single use of antimalarial drugs. 

Resistance to quinine, chloroquine, sulfadoxine-pyrimethamine, and even amodiaquine has 

been reported from almost all endemic malaria countries between the periods of the late 

1950 to 1980s. Treatment failures with mefloquine, then later with artemisinin, have also 

been found in four South-East Asia countries: Cambodia, Myanmar, Thailand, and Vietnam 

(WHO, 2013a). Progressing resistance to ACT such as artesunate-mefloquine has also 

developed in the area of Cambodian-Thai border (Alker et al., 2007). This concern has led 
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the WHO to establish a strategic guidance, the ‘global plan for artemisinin resistance 

containment’ in 2011. 

Chloroquine resistant vivax malaria has also progressed in several countries: India, 

Indonesia, Vietnam, Myanmar, Madagascar, Ethiopia, and Guyana (Dua et al., 1996; Asih et 

al., 2011; Phan et al., 2002; Barnadas et al., 2008; Guthmann, 2008; Tulu et al., 1996; Philllips 

et al., 1996). In Indonesia, this drug was also found to be ineffective against P. malariae 

(Maguire et al., 2006). 
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1.2 Discovery of hits from natural sources 

Natural sources including plants, animals, and minerals have been used in human history to 

promote and maintain health. Historically, several today important medicines such as 

morphine, quinine, and atropine are originated from ethnomedicinal plants (Hesse, 2002; 

Smith, 2007). In the modern time, approximately 60% to 70% of the world population is still 

using traditional medicine (Fabricant and Farnsworth, 2001; WHO, 2000). 

Natural products show higher chemical diversity than synthetic compounds. Most of 

natural products are small molecules. They are commonly known as secondary metabolites 

and are enzymatically constructed and evolutionary optimized in organisms for defense 

against predators and environmental challenges (Feher and Schmidt, 2003). Therefore, these 

molecules are more drug-like in comparison to synthetic compounds (Tan, 2005; Singh and 

Culberson, 2010). 

Nature, predominantly by plants, has continued to be an important source of natural 

products. They served as the drug substances, leads, and templates for the creation of 

semisynthetic and synthetic drugs. Over the past 30 years, natural products and natural 

product derived drugs have contributed to the overall new small molecule drugs by 

approximately 5.6% and 30%, respectively. Moreover, a high portion of synthetic drugs is 

still related to natural products, via mimicking or bearing pharmacophores of natural 

products (Newman and Cragg, 2012). For the treatment of infectious diseases, natural 

products and their derivatives have played a significant role as antimalarial drugs and 

antibiotics. 

Only parts of the plants have been investigated chemically and for bioactivity. While there is 

no consensus on the number of world plants that have been studied, a case study for the 

Swiss flora revealed than from 2677 native species only 55% has been chemically studied 

and 28% has been tested for bioactivity (Adams et al., 2013). Therefore numerous novel 

scaffolds remain to be discovered. Moreover, a large number of the reported natural 

products have not yet been tested for bioactivity or have been assayed only against a limited 

number of targets.  
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The success of natural product research depends on several aspects including the plant 

selection, screening procedures, pharmacological models, and fractionation process (Bourdy 

et al., 2008). 

Plant selection for drug discovery 

In natural product research that aims at the finding of new scaffolds, biodiversity of plants is 

more important than their numbers. Plants from taxonomic groups which have been little 

investigated or from families known to produce a large diversity of secondary metabolites 

may be particularly attractive.  

Plant species chosen for studies can be selected randomly or systematically. Random plant 

selection is adapted for phytochemical screening that is not necessarily related to the 

bioactivity. Blind bioactivity testing, without prior knowledge of the plants, leads to a trial 

and error process with higher chance of failing and the risk of missing the actual activity of a 

plant species (Zhang, 2005). This approach was frequently applied in the past. Systematic 

selection of plant species is preferred in the current drug discovery from Nature. Two 

approaches pursued are chemotaxonomy- and ethnomedicine-based plant selection 

(Potterat and Hamburger, 2008). Species with close taxonomic relationship often contain 

rather similar phytochemicals.  

The natural materials employed as drugs following the custom of specific cultures are called 

as traditional medicines. The knowledge of traditional medical practice including the type of 

plants used is usually passed through generations from their ancestors. Prolonged use of 

ethnomedicinal plant knowledge for ages or even centuries, in a way, is a proof of efficacy, 

well tolerance, and safety. This gives a hint of the presence of bioactive molecule(s) in the 

plants. 

Screening procedures 

In the past, natural products derived drug discovery employed classical bioassay-guided 

fractionation techniques. This process is known to be laborious and time consuming 

(Potterat and Hamburger, 2008). The development of HPLC and UHPLC coupled to highly 

sensitive detection techniques (MS, PDA-MS, MS/MS, MS-NMR, ELSD, and FLD) has made 
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early compounds identification and dereplication possible (Potterat and Hamburger, 2013) 

that in turn greatly improved time efficiency and straightened the isolation process. 

Hyphenated techniques have 

become the standard method 

for compound early 

dereplication and isolation 

from extracts in modern drug 

discovery. In HPLC-based 

activity profiling (Potterat and 

Hamburger, 2013), these 

methods are combined with 

time-based microfractionation 

of extracts. The fractions are 

tested for bioactivity. In this way, the activity can directly be correlated to the compound(s) 

in the extracts. 

Bioassay of natural products 

Testing of bioactivity on natural product samples is done on extracts, fractions, or 

compounds. Three generally used types of bioassays are in vivo assays on animal models, 

cell based in vitro assays, and biomolecular target based in vitro assays. To avoid unspecific 

results, the type of assay needs to be adjusted according to the tested material. For example, 

extracts containing tanins are known to interfere with enzymatic assays. Saponins have a 

tendency to disrupt and produce misleading results in cellular assays (Potterat and 

Hamburger 2006). Moreover, discrepancies are often observed between in vitro and in vivo 

results. 

Bioactivity testing on the molecular level has become an attractive approach in the recent 

years. The completion of genomic sequence of Plasmodium falciparum (Gardner et al., 2002) 

and Trypanosoma brucei parasites (Berriman et al., 2005) provides a comprehensive 

understanding of the parasites biology. This fundamental knowledge can be transferred into 

applied research for discovery of effective drugs and vaccines (Duraisingh et al., 2006). In 

the area of antimalarial research, enzyme targets such as pfFabI, pfFabG, pfFabZ have been 

 

Figure 1: Miniaturized HPLC-based activity profiling approach. 

(Courtesy of M. Hamburger) 
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incorporated for lead finding from plants and marine organisms (Jensen et al., 2012; Karioti 

et al., 2008; Kaya et al., 2011; Tasdemir et al., 2010). 

In the recent years, computational methods have also been incorporated for prediction of 

natural product bioactivity at the molecular level. Two different approaches are used; the 

ligand-based pharmacophore model for structure-activity relationship (SAR) study of 

natural products, and the structure-based pharmacophore model that is useful for docking 

studies (Rollinger et al., 2006). This method has also been used for in silico screening of 

natural products for their antitrypanosomal and antileishmanial activities (Schmidt et al., 

2014). 

1.2.1 Antiprotozoal compounds discovery using extract libraries 

A large number of medicinal plants have been reported for antiprotozoal activity from many 

parts of the world. With this large number of potentially active plant species, there is need 

for efficient use of time and resources. Working with a library enables a considerable 

simplification of sample and data handling (Potterat and Hamburger, 2014). Moreover, 

using standardized procedures for extraction of all plant materials and redissolution of 

extracts for bioassays ensure the comparability of the activity results. Therefore, the most 

promising extracts among the extracts stored in the library can be identified. 

An extract is a complex mixture of compounds; thereby screening extracts in principle 

increases the number of tested compounds. Therefore, an increasing discovery rate of hits 

can be expected. There are, however, several issues which have been recognized when 

incorporating extract samples into high-throughput screening such as a low content of active 

compounds in the extract that are below the screening thresholds and the presence of major 

metabolites covering the active constituents (Bugni et al., 2008). In such cases, fractionation 

of the extracts prior screening can be an option. 

Initially, extract libraries have been established in pharmaceutical and biotech companies. In 

the recent years, this setting has been also adopted in several academic research groups 

(Bugni et al., 2008; Chichioco-Hernandez and Villasenor, 2009; McCloud, 2010; Potterat and 

Hamburger, 2013). The research group of Hamburger and coworkers from the University of 

Basel has successfully implemented this setting in its search for new antiprotozoal drugs. 
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Figure 2: The establishment of an extract library. Automatic pressurized liquid 

extraction is implemented for sample extraction. Extracts are dried and redissolved 

in DMSO. Extract solutions are transferred into racked microtubes in 96-well format 

using a liquid handler. Each tube is barcoded and linked to the extract information 

stored in a customized database. (Figure courtesy of M. Hamburger, with 

modification) 

 

 

 

 

 

 

 

 

 

Screening of the extract library has led to the identification of a number of hits. Further 

fractionation of these extracts have resulted in the discovery of bioactive natural products 

belonging to various compound classes such as lanostanes (Adams et al., 2010), protostane 

triterpenoids (Adams et al., 2011a), sesquiterpene lactones (Zimmermann et al., 2012; 

Mokoka et al., 2013), pyrethrin terpenoids (Hata et al., 2011), tanshinone diterpenoids 

(Ślusarczyk, 2011), abietane diterpenes (Mokoka et al., 2014), isoflavan quinones (Hata et al., 

2013; Hata et al., 2014a), and phenanthrenones (Hata et al., 2014b). 

Two amongst the isolated compounds have been tested in murine models. A new 

phenanthrenone scaffold from the stems of Drypetes gerrardii (Putranjivaceae) was tested for 

antiplasmodial activity (Hata-Uribe et al., 2014b), and a sesquiterpene lactone, cynaropicrin, 

from the aerial parts of Centaurea salmantica L. (Asteraceae) was tested for antitrypanosomal 

activity (Zimmermann et al., 2012). The latter was the first natural product with trypanocidal 

activity in vivo. 

1.2.2 Ethnopharmacology-based discovery of antiprotozoal compounds 

An analysis in 2001 reported that many of the plant-derived drugs in the market present 

indications identical to those of their respective ethnomedicinal plants (Fabricant and 

Farnsworth, 2001). This indirectly shows that ethnomedicinal plants are potential sources of 
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bioactive molecules for drug finding and development. More hits are likely to be found from 

traditional medicinal plants (Farnsworth and Kaas, 1981). For example, in the finding of 

GABA-A receptor modulators, incorporating ethnomedicinal samples into the extract library 

for screening led to higher discovery of hits (Zaugg, 2011). 

Traditional medicines have been reported from numerous countries with diverse 

therapeutic indications. However, the majority of these traditional medicines have not been 

explored (Cordell and Colvard, 2012). A study by Adams et al. (2011b) on European 

Renaissance’s antimalarial remedies shows that a large part of the cited plants has never 

been studied for the reported indication. 

In the area of antiprotozoal drugs, two most successful plant-derived antimalarial drugs are 

quinine and artemisinin. Quinine was firstly isolated from the bark of Cinchona spp. 

(Rubiaceae). The Incas in Peru traditionally used these plants to treat fever. Artemisinin was 

firstly isolated from the leaves of Artemisia annua (Asteraceae). This plant was a Chinese folk 

medicine for a chill and fever onset corresponding to symptoms of malaria (Wright, 2005). 

Quinine and artemisinin have become the prototypes for the development of other 

antimalarial drugs with better pharmacokinetic properties. 

Antimalarial drugs belonging to 4-aminoquinolines (e.g. chloroquine, amodiaquine, 

mefloquine) and 8-aminoquinolines (e.g. primaquine) are synthetic drugs structurally 

inspired by the alkaloid quinine. The sesquiterpene lactone artemisinin bearing a unique 

endoperoxide moiety has been the starting point for the development of the semi-synthetic 

derivatives dihydroartemisinin, artemether, arteether, artemotil and artesunate. 

Several bioactive leads derived from ethnomedicinal plants targeting protozoan neglected 

diseases have been reported in literature. Structurally, they belong to several different 

compound classes such alkaloids, terpenes, flavonoids, quinones, lignans, xanthones and 

others (Schmidt et al., 2012a, 2012b; Maas et al., 2011; Ramalhete et al., 2010; Batista et al., 

2009). Several compounds should be pointed out for their potent activities (IC50 below 1 µM) 

reported in the last five years. They include two abietane diterpenoids, ∆9-ferruginol and 

ferruginol from the Iranian medicinal plant Salvia sahendica (Lamiaceae) (Ebrahimi et al., 

2013); the triterpenoid perovskone B from the Iranian medicinal plant Salvia hydrangea 

(Lamiaceae) (Farimani et al., 2011); ellagic acid from the Nigerian medicinal plant 
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Chrozophora senegalensis (Euphorbiaceae) (Garcia-Alvarez et al., 2013); quassin and neo-

quassin from Quassia amara (Simaroubaceae) (Mishra et al., 2010); isocryptolepine from the 

West African plant Cryptolepis sanguinolenta (Apocynaceae) (Whittell et al., 2011); and one 

isothiocyanate glycoside from the ethnomedicinal plant Moringa peregrina (Moringaceae) 

(Ayyari et al., 2014). 

A less number of compounds have also exhibited in vivo activity in animal models in the 

same period of last five years: the isothiocyanate glycoside isolated from M. peregrina 

(Moringaceae) displayed potent antitrypanosomal activity in vitro. In a further test in HAT 

mice model, a temporary 95% reduction of parasitemia was observed before the occurring of 

relapse on day 10 (Ayyari et al., 2014). Gomphostenin and acetyl-gomphostenin from the 

Indian plant Gomphostemma niveum (Lamiaceae) showed reduction of parasitemia by 81% 

and 92%, respectively, with survival days of more than 20 (Sathe et al., 2010). 
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1.3 Indonesia: traditional medicines and malaria 

1.3.1 Traditional medicines 

Indonesia is a tropical archipelagic country with more than 17 thousand islands, and 

inhabited by 38 thousands species (Newman et al., 1999). It is estimated that 10% of world’s 

known plant species exist in Indonesia (Wells at al., 1999). The numbers of reported drug 

plants vary from less than 1900 to more than 2500 (Anonymous, 1995; Zuhud et al., 2001). 

Only a small proportion of the total therapeutic plants have been incorporated into the 

databases created by some institutions such as IptekNet with 262 plants and the faculty of 

pharmacy-University of Airlangga with 196 plants. 

Until present, the tradition of utilizing herbal drugs by Indonesians is well implemented on 

a daily basis. More than 59% of the population is known to use jamu, the general term for 

traditional herbal drugs (Kemenkes RI, 2010). The market share of traditional medicines in 

national drug consumption has grown to 15% in 2014 from only 1-1.5% back in the 1970s 

(Sutianto, 2014), and the market growth was reported between 20-30% annually. 

History 

The traditional medical system in Indonesia has been semi-

documented since early ages in the form of relief on 

temples, steles, and palm-leaf manuscripts. Only a small 

part of these ancient manuscripts has been translated and 

studied. These manuscripts revealed the type of diseases, 

medicinal plants, modes of preparation, and ways of 

administration of these medicines (Nawaningrum et al., 

2004). During the Dutch colonization, books containing 

Indonesian medical knowledge were published. The medical information based on Javanese 

traditions was collected by Horsfield (1813, 1816), Kloppenburg-Versteegh (1907), and 

Heyne (1917), Moluccan traditions by Bontius (1658) and Rumphius (1747), and Balinese 

traditions by Weck (1937). 

 

 

Figure 3: Relief on Borobudur 

temple about the tradition of 

drinking jamu. 
(http://bhumihusadacilacap.blogspot.ch) 
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Classification 

The National Agency of Drug and Food Control (NA-DFC) of Indonesia defines a traditional 

medicine as a specimen or remedy either from plant, animal, mineral origin, galenic 

preparation, or a mixture of these that have been used traditionally for treatment. Therefore, 

it can be used by the society according to its empirical practice. According to the degree of 

scientific evidence on efficacy and safety, the NA-DFC divides traditional medicines into 

three categories: jamu, obat herbal terstandar (standardized herbal medicine), and fitofarmaka 

(phytomedicine). A basic requirement for all forms of traditional medicines is the existence 

of good traditional medicine manufacturing practices for their production. 

 The use of jamu is simply based on the traditional 

knowledge, and its efficacy is confirmed based on 

empirical evidence. Jamu exists in two forms, namely 

the traditional preparations, and modern dosage 

forms. Traditional jamu is usually a simple decoction 

of fresh material(s). It is typically sold by street vendors. Modern jamu is marketed in dosage 

forms similar to pharmaceutical products in general, such as powders, pills, capsules, tablets 

and solutions. Traditional jamu is used not only for internal but also for external 

applications. In modern jamu, the ingredients are either powders of simplicia or extracts, in 

which some are chemically standardized. Safety is guaranteed to the level of no microbial 

contamination detected. There are over 19 thousand of jamu products registered in NA-FDC 

(Permanasari, 2012). 

For obat herbal terstandar (OHT), the efficacy and safety are preclinically proven. The active 

ingredients of OHT are standardized extracts. There are 38 OHT products registered in NA-

DFC. 

The efficacy and safety of fitofarmaka has to be supported by clinical evidence. The active 

ingredients of fitofarmaka are standardized extracts. There are six fitofarmaka products 

registered in NA-FDC up to 2011 (Candra, 2012). Fitofarmaka products are considered 

equivalent to chemical drugs. They can be prescribed by health professionals and are 

reimbursed by health insurance. 

 

 

  Figure 4: Logo of herbal medicines. 
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Challenges in the development of herbal drugs 

In view of the country’s richness in natural resources and traditional drug knowledge, as 

well as the market potential, it is clear that the field of current modern herbal medicines is 

severely underdeveloped. 

There are several issues that contribute to this unsatisfactory situation. A first reason was the 

lack of scientific research facilities and funding. Secondly, for earlier studies, the results were 

frequently kept within the research organizations or academic institutions. Only a small 

number of results was published in national printed journals as well as international 

journals, which are often inaccessible online, and therefore not available to the public. Third, 

a national priority in research on medicinal plants for drug discovery and development was 

lacking and, finally, research networks of scientists from different institutions were 

underdeveloped. 

In the meantime the government has initiated some adjustments in the academic sector and 

in national health programs. In the early 1990s, an inventory project on traditional medicinal 

knowledge in Indonesia was launched. One of the results was the creation of inventory 

books containing ethnomedicinal information arranged according to provinces. The 

information came from provinces in Kalimantan (Aziddin et al., 1990; Mudiyono, 1991), 

Sumatera (Sirat et al., 1990; Ja´far et al., 1990), Bali and Java (Reksodihardjo et al., 1991; 

Swarsi et al., 1990), and from eastern Indonesian provinces like North Sulawesi (Sarajar et 

al., 1994) and Maluku (Manuputty, 1990). 

A more practical approach was set through a short-term national program released by the 

government in 2011, for the prioritization of 15 medicinal plants to be exhaustively studied 

in order to deliver new OHT and fitofarmaka products. Also, several programs were initiated 

to increase the extend and quality of medicinal plant cultivation. Among the prioritized 

medicinal plants were Andrographis paniculata, Psidium guajava, Guazuma ulmifolia, Piper 

retrofractum, Curcuma domestica, Curcuma xanthorrhiza, Zingiber officinale, Morinda citrifolia, 

Eugenia polyantha, and Kaempferia galanga.  

In the academic sector, an indirect program was established to improve the accessibility of 

research results. Since 2012, scientific publication in journals was set as a requirement for 

university graduates starting from the Bachelor level. 
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1.3.2 Malaria and ethnomedicines for malaria 

Malaria prevalence 

The most prevalent tropical disease in Indonesia, from the first identification in the period of 

Dutch colonization until the present time, was and still is malaria (Elyazar et al., 2011). 

However, the continuous eradication efforts have successfully controlled the incidence of 

this life-threatening disease (Feachem, 2010). According to the WHO last report, in 2012 

there were approximately 480 thousand cases of malaria in Indonesia with around 400 cases 

of death (WHO, 2013a). From a total population of around 240 million people, around 18% 

are still living in areas of high transmission, 45% in areas of low transmission, and the rest in 

malaria-free areas. The four human malaria parasites exist in Indonesia, of which P. 

falciparum is the most prevalent. In addition, Knowlesi malaria has been reported in 

Kalimantan (Berens-Riha et al., 2009). 

Malaria drugs 

Current first line antimalarial agents are artemisinin combination therapies: artesunate-

amodiaquine, artemether-lumefanrtine, and dihydroartemisinin-piperaquine. The 

combination of dihydroartemisinin-piperaquine is used in the areas where resistance to 

choloroquine and amodiaquine is prevalent (Harijanto, 2010; Sutanto et al., 2012). Due to the 

resistance to artemisinin and its combination therapies reported from neighbouring 

countries, a similar situation is suspected for Indonesia. 

Herbal and natural products research from Indonesian medicinal plants 

A relatively large number of ethnomedicinal plants with antimalarial properties have been 

reported in various surveys. Pieces of information were also retrieved from old records. The 

compiled information usually covered specific survey areas, such as in Kalimantan (Leaman 

et al., 1995), South-East Sulawesi (Rahayu et al., 2006), and North Sulawesi (Moningka, 

1995). A majority of the reports present qualitative data without indicating the number of 

plant species studied on a scientific level. An analysis on antimalarial plants from 

Indonesian Papua reported that only three species have been tested for bioactivity from 32 

plants in the list (Julianti et al., 2010). Therefore, there is a great opportunity to find new 

bioactive compounds and scaffolds from the unstudied species. 
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Most Indonesian studies focused on in vitro and in vivo testing of extracts and fractions. In 

vitro antiplasmodial activity of isolated compounds was not always tested, and in vivo 

experimental results were rare. Most studies were terminated when the suspected active 

constituents (usually the major compounds) were chemically characterized from the most 

active extracts or fractions. Moreover, the bioactive constituents from these Indonesian 

plants were frequently found to have been reported in previous studies from countries that 

share similar traditional applications. 

Several popular Indonesian medicinal plants with interesting bioactivity against malaria are 

discussed herein. For plant extracts, only those with a maximum IC50 of 10 µg/mL in vitro 

against P. falciparum were included. Compounds with in vitro activity below 1 µM or 5 

µg/mL were considered. Some of the active plants cited from rather old publications had a 

reported activity as percentage of more than 60% (in vivo) or 80% (in vitro) instead of 

concentration. 

Carica papaya. The polar alkaloid containing extract of Carica papaya leaves displayed in vivo 

activity (Murdiani, 2000; Subeki, 2008). An ethanolic extract was also found to be active in 

vitro (Rehena, 2009). 

Cassia siamea. The chloroform-soluble fraction of Cassia siamea leaves displayed excellent in 

vitro activity (Ekasari et al., 2004). Further analysis of this extract resulted in the isolation of 

five aromatic alkaloids with cassiarin A being the most active constituent (Morita et al., 2007; 

Oshimi et al., 2009). The ethanolic extract of the leaves also demonstrated in vivo activity 

(Ekasari and Widyawaruyanti, 2003). 

Alstonia scholaris. The methanolic extract and chloroform-soluble fraction (containing 

alkaloids) of Alstonia scholaris bark showed potent in vitro activity (Iwo, 2009; Keawpradub et 

al., 1999). However, the alkaloid echitamine which was isolated from this plant showed no 

activity in vitro (Wright et al., 1993). An in vivo study with P. berghei indicated that the 

petroleum ether and methanolic extracts of the bark possessed activity in a dose dependent 

manner (Gandhi and Vinayak, 1990). 

Andrographis paniculata. An ethanolic extract of the stems of Andrographis paniculata (Zein et 

al., 2013) and a methanolic extract of the whole plant (Rahman et al., 1999) were shown to 



     CHAPTER II 

 

21 
 

have potent in vitro activity. From the roots, four xanthones were isolated, whereby 1,2-

dihydroxy-6-8-dimethoxy-xanthone was the most active constituent in vitro. The compound 

led also to a 62% reduction of parasitaemia in the mouse model when tested at 30 µg/g BW 

(Dua et al., 2004). 

Brucea javanica. Water extracts of the bark, fruits and leaves of Brucea javanica displayed high 

in vitro activity (Murningsih et al., 2005). The chloroform extracts of fruits, leaves, roots, and 

stems also showed pronounced activity in an animal model (Phillipson and O’Neill, 1986). 

Eurycoma longifolia. The quassinoid eurycomanone isolated from a methanolic extract of the 

roots of Eurycoma longifolia displayed excellent activity (Kardono et al., 1991). A further 

study on this plant revealed another two bioactive constituents namely, 14,15B-

dihydroxyklaineanone and eurycomanol, against the P. falciparum strain D10 (Chan et al., 

2004). 

Lansium domesticum. A polar extract of Lansium domesticum bark significantly reduced 

parasitemia to less than 5% (Subeki, 2008). The triterpenoid lansiolide showed antimalarial 

activity both in vitro and in vivo (Omar et al., 2003). The seeds were also shown to contain in 

vitro active antiplasmodial compounds, such as domesticulides B and C, methyl 6-

acetoxyangolensate, and azadiradione (Saewan et al., 2006). 

Acanthostrongylophora sp. In a study on Indonesian marine species, the sponge 

Acanthostrongylophora sp. revealed potent activity against P. falciparum, and three active 

manzamine-type alkaloids were identified (Rao et al., 2004). 

Other plants. Several extracts worth mentioning for their pronounced activity in the P. 

berghei mouse model include extracts of Tinospora tuberculata stems, Melastoma malabathricum 

leaves, Arcangelisia flava stems, Michelia campaka bark, and Imprata cylindrica rhizomes 

(Subeki, 2008). Ethyl acetate and butanol-soluble fractions from Erythrina variegata showed 

activity against P. berghei (Muhtadi and Haryoto, 2005). Water extracts, with high in vitro 

activity against P. falciparum were obtained from Achillea millefolium, Baeckea frutenscens 

leaves, Curcuma xanthorrhiza rhizomes, Strychnos lucida wood, and Swietenia macrophylla 

seeds (Murningsih et al., 2005). 
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A rather different approach to explore herbal drugs activity was followed in studies with a 

combination of standard drugs and herbal extracts. A combination of the polar extract of 

Lumbricus rubellus and the commercially available drug  chloroquine was administered to 

mice infected with P. berghei and showed increased activity (Wulandari, 2010). Combinations 

of Andrographis paniculata extract with either chloroquine or artemisinin were tested in vitro.  

Higher activity of the combinations was observed in comparison to the extract. However, it 

was still below the activity of the individual drugs (Zein et al., 2013). Interesting results were 

obtained with the combination of Eurycoma longifolia roots extract with artemisinin. When 

tested on Plasmodium yoelli-infected mice the combination showed higher activity in 

comparison to artemisinin alone (Mohd Ridzuan et al., 2007). 
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Antitrypanosomal sesquiterpene lactones from Saussurea costus 

Tasqiah Julianti, Yoshie Hata, Stefanie Zimmermann, Marcel Kaiser, Matthias Hamburger, 

Michael Adams. Fitoterapia 2011, 82, 955-959. 

Four sesquiterpene lactones were isolated from the ethyl acetate extract of Saussurea costus 

roots. Their activity was detected with the aid of HPLC-based activity profiling and the 

structures were established on the basis of high resolution mass spectrometry and NMR 

spectroscopy. Two sesquiterpene lactones, costunolide and dehydrocostuslactone were the 

active constituents in Saussurea costus along with two other compounds from different 

sources, parthenolide and eupatoriopicrin against Trypanosome brucei Rhodesiense in vitro. In 

general, higher activity was displayed by three germacranolides: costunolide, parthenolide, 

and eupatoriopicrin, in comparison to two other compound classes, guaianolides and 

eudesmanolides. 

Extract preparation, HPLC microfractionation, recording and data interpretation for HPLC-based 

activity profiling, isolation of compounds (except for compounds 5-7), recording and data 

interpretation for compound´s structure elucidation with spectroscopy methods (HPLC-PDA-ESI-

TOF-MS and NMR) (except for compounds 5-7), as well as draft writing and figure preparation for 

the manuscript are my contributions for this publication. 

 

Tasqiah Julianti 
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In the course of a larger screen of 1800 plant and fungal extracts, the ethyl acetate extract of
Saussurea costus roots potently inhibited the growth of Trypanosoma brucei rhodesiense.
Subsequent HPLC based activity profiling led to the identification of the sesquiterpene lactones
arbusculin B (1), α-cyclocostunolide (2), costunolide (3), and dehydrocostuslactone (4). They
were tested for in vitro antitrypanosomal activities and cytotoxicity alongside the structurally
related sesquiterpene lactones parthenolide (5), zaluzanin D (6), and eupatoriopicrin (7), and
had IC50s between 0.8 and 22 μM. Cytotoxic IC50s were from 1.6 to 19 μM, and selectivity
indices from 0.5 to 6.5.

© 2011 Elsevier B.V. All rights reserved.
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1. Introduction

The fragrant roots of Saussurea costus (Falc.) Lipschitz
(Asteraceae), synonym: Saussurea lappa C.B. Clarke, have
been used for thousands of years as medicines, incenses and
ointments by many cultures. In India they are called Kur or
Kushtha, and in China Yúnmù xiāng (云木香). In the Ayurveda,
Siddha, and Unani medicinal systems S. costus roots are used
alone or in combination with other drugs to treat asthma,
cholera, chronic skin diseases, rheumatism, cough and cold,
quartan malaria, leprosy, persistent hiccups, rheumatism,
stomach-ache, toothache, and typhoid fever [1,2].

A broad spectrum of biological activities such as anti-
inflammatory, anticancer, immunomodulatory, CNS depres-
sant, and antimicrobial properties have been reported for
S. costus extracts [3–5]. Activities have commonly been related
ical Sciences, Division
56 Basel, Switzerland.

ms).

All rights reserved.
to the presence of sesquiterpene lactones. Furthermore,
tannins, steroids, alkaloids, glycosides, terpenoids, flavonoids,
peptides, and organic acids have been reported from this plant
[3,4].

Our interest in this plant was raised when we performed
an antiprotozoal screen of 1800 plant and fungal extracts for
effects against the parasites Trypanosoma brucei rhodesiense,
Trypanosoma cruzi, Plasmodium falciparum and Leishmania
donovani, the causal agents of human African trypanosomi-
asis, Chagas disease, malaria, and leishmaniasis, respectively
[6–8]. Amongst the most potent extracts in this screen was
an ethyl acetate extract of S. costus roots which inhibited
T. b. rhodesiense by 96% at a test concentration of 4.8 μg/ml.

HPLC based activity profiling was used to identify the
active constituents in the extract. In this approach sub-
milligramme amounts of extract are separated by analytical
scale HPLC and automatically fractionated into 96 well plates.
The microfractions obtained are submitted to the bioassay,
and the resulting activity profile can be overlaid with the
HPLC trace to correlate peaks of activity with peaks in the
HPLC chromatogram. On-line spectroscopic data (UV–Vis and
MS) collected during separation, combined with database
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searches provide structural information on the active princi-
ples [6–8].

We here report on the identification and isolation of
antitrypanosomal compounds from S. costus, and also on the
comparative testing of some related sesquiterpene lactones
for antiprotozoal and cytotoxic activities. This study was part
of a larger screen for new antiprotozoal leads using HPLC
based activity profiling which has led to the identification of
numerous active compounds [8–11].
2. Materials and methods

2.1. General experimental procedures

Analytical grade solvents for extraction and HPLC-grade
eluents for chromatography were purchased from Scharlau
(Barcelona, Spain), if not stated otherwise. HPLC-grade water
was obtained with an EASY-pure II water purification system
(Barnstead; Dubuque, IA, USA). Formic acid was from Sigma-
Aldrich (Buchs, Switzerland).

Initial screening of the extract library was done as
previously described [6]. HPLC based activity profiling:
Separations for microfractionation and for on line data
collection were carried out on an Agilent series 1100 system
equipped with degasser, binary high pressure mixing pump,
column oven and PDA detector (all from Agilent; Waldbronn,
Germany). MS spectra were recorded in the range ofm/z 200–
1500 positive and negative mode on an Esquire 3000 Plus ion
trap mass spectrometer equipped with an electrospray
interface (Bruker Daltonics; Bremen, Germany). Microfrac-
tionation was performed with 350 μg of extract in DMSO
(10 mg/ml) which were separated on a RP-HPLC SunFire C18
column (3.5 μm, 3×150 mm) (Waters; Wexford, Ireland)
with gradient A (water+0.1% formic acid) and B (acetoni-
trile+0.1% formic acid), 10–100% B in 30 min and hold at
100% B for 2 min, at a flow rate of 0.5 ml/min. Hystar 3.2
software (Bruker Daltonics; Bremen, Germany) was used to
monitor the HPLC system. An FC 204 fraction collector
(Gilson; Middleton, WI, USA) was attached to the HPLC to
collect a total of 32 microfractions of 60 s each into 96-deep
well plates (Whatman; Florham Park, NJ, USA). The plates
were dried in a Genevac EZ-2 Plus™ vacuum centrifuge
(Avantec; Ipswich, UK), andmicrofractions redissolved in 5 μl
of DMSO prior to testing for antitrypanosomal activity as
described [6].

Semipreparative HPLC for compound isolation was done
on an Agilent 1100 series HPLC system consisting of a 1100
series quaternary low-pressure mixing pump with degasser
module, column oven, and a 1100 series PDA detector with a
1000 μl loop. A SunFire C18 column (5 μm, 10×150 mm)
(Waters) was used. The mobile phase was: A (water) and B
(MeOH) with a gradient of 60–100% B in 20 min, followed by
flushing 5 min with 100% B, the flow rate was 5 ml/min, and
monitored at 220 nm. In each run 15 mg of fraction in 50 μl
DMSO was injected.

High resolution HPLC–MS was recorded with an Agilent
1100 series HPLC linked to a micrOTOF-ESI-MS system
(Bruker). MS calibration was performed using a reference
solution of sodium formate 0.1% in isopropanol–water (1:1)
containing 5 mM sodium hydroxide. The typical mass
accuracy was ±3 ppm. HyStar 3.0 software (Bruker Dal-
tonics) was used for data acquisition and processing.

NMR experiments were recorded in d6-DMSO and CDCl3
on a Bruker Avance III spectrometer (Bruker; Fallanden,
Switzerland) operating at 500.13 MHz at a target tempera-
ture of 18 °C. 1H NMR, COSY, HSQC, and HMBC spectra were
measured with a 1 mm TXI probe. The 2D pulse programs
were hsqcedetpg, hmbcgplpndqf, and cosygpqf. Spectra
processing and analysing was done with Bruker TopSpin 2.1
software.
2.2. Plant material

The dried roots of S. costus (MTS 577) were purchased
from Peter Weinfurth in 2008 (Bochum, Germany). The
leaves of Laurus nobilis L. (MTS 693) were purchased from
Dixa AG (St. Gallen, Switzerland). The aerial parts of
Eupatorium cannabinum L. (MTS 771) were harvested near
Liestal, Canton Basel Land, Switzerland. The authentication of
collected E. cannabinum was carried out by Dr. M. Adams.
Voucher specimens of all samples are deposited at the
Institute of Pharmaceutical Biology, University of Basel,
organised under the MTS numbers shown above.
2.3. Extraction and preparative isolation

Dried roots of S. costus were finely ground using a ZM1
ultra centrifugal mill (Retsch; Haan, Germany). Maceration of
900 g of the powdered material four times with 4 l of ethyl
acetate overnight at room temperature in a glass column
15×26 cm (Pyrex, Ostermundigen, Switzerland) yielded 40 g
of a thick brown extract. An aliquot of 30 g of extract was
fractionated by open column chromatography (9×59 cm)
filled with silica gel (Kieselgel 60™, particle size 40–63 μm)
(Merck; Darmstadt, Germany) and isocratic elution with n-
hexane-ethyl acetate (9:1) at a flow rate of 20 ml/min.
Fractions of 500 ml each were collected and monitored with
TLC on pre-coated Kieselgel 60 F254, 0.25 mm plates from
Merck with a mobile phase of: toluene:ethyl acetate (9:1);
detection with vaniline-H2SO4. Similar fractions were pooled
resulting in 7 fractions. Fraction 5 was obtained as a brown
oil (160 mg) and was separated by semi-preparative HPLC
as described above to obtain compounds arbusculin B (1)
(2.5 mg) and α-cyclocostunolide (2) (26 mg). Fraction 6
totalling 2.2 g afforded pure costunolide (3) (670 mg) and
fraction 7 (9.7 g) gave dehydrocostuslactone (4) (6.5 g).

Zaluzanin D (6) from the ethyl acetate extract of the dried
leaves of Laurus nobilis L. (Myrtaceae) and eupatoriopicrin (7)
from the aerial parts of Eupatorium cannabinum L. (Aster-
aceae) were isolated by semipreparative HPLC as described
above. Isolated substances 1–4, 6, and 7 were more than 95%
pure according to their 1H NMR spectra. Parthenolide (5) was
purchased from Alexis Biochemicals (Lausen, Switzerland)
with more than 95% pure as stated by the supplier. The
compounds 7were identified by comparison of 1D and 2D 1H
NMR, HPLC-HRTOF–MS data with published studies: 1 [12], 2
[13], 3 and 4 [14,15], 6 [16], and 7 [17]. Proton and carbon
NMR data of all the isolated compounds are given in the
supporting information (Table S1).
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2.4. Antitrypanosomal assay

Preparation of T. b. rhodesiense STIB 900 stocks and culture
media for the bloodstream forms was done according to Baltz
et al. [18] with the following modifications: 2-mercaptoetha-
nol 0.2 mM, sodium pyruvate 1 mM, hypoxanthine 0.5 mM,
and 15% heat-inactivated horse serum. In vitro screening for
antitrypanosomal activity was done with of Alamar Blue®
assay [19]. Stock solutions of test compounds and their serial
dilutions (5 μl) were transferred into 96 well plates (Costar;
Corning Inc., Lowell, MA, USA) containing 50 μl of culture
medium per well. Bloodstream forms of STIB 900 in 45 μl of
mediumwere added to eachwell and the plate was incubated
at 37 °C under 5% CO2 atmosphere for 72 h. Ten microliters of
resazurin solution (12.5 mg dissolved in 100 ml distilled
water) (Sigma-Aldrich; Zürich, Switzerland) was then added
and incubated for further 2–4 h. The fluorescence develop-
ment was measured in a Spectramax Gemini XS microplate
fluorometer (Molecular Devices Corp.; Sunnyvale, CA, USA),
operating with an excitation wavelength of 536 nm and an
emission wavelength of 588 nm and expressed as percentage
of the control. The IC50 values were calculated in the graphic
programme Softmax Pro (Molecular Devices Corp.). Tests
were done at least in three independent experiments in
duplicate.
2.5. Cytotoxicity assay

Cytotoxicity was determined using rat skeletal myoblast
(L6 cells). The culture medium was RPMI 1640 medium
supplemented with L-glutamine 2 mM, HEPES 5.95 g/l,
NaHCO3 2 g/l and 10% foetal bovine serum. Podophyllotoxin
(Sigma-Aldrich) was used as the reference drug. The assay
was performed following the antitrypanosomal assay proto-
col [19]. The IC50s were calculated from the sigmoidal growth
inhibition curves using Softmax Pro software (Molecular
Devices Corp.). Tests were done in three independent ex-
periments in duplicate.
Fig. 1. The antitrypanosomal activity of the 32 one-minute microfractions plotted a
positive scan m/z 200–1500).
3. Results and discussion

The preliminary screen of our in house extract library
showed the ethyl acetate extract of S. costus to be highly
active against T. b. rhodesiense with 96% inhibition at
4.8 μg/ml. This extract was subjected to HPLC based acti-
vity profiling to track the activity and identify the active
principles. The activity was almost entirely focused in
minutes 22 and 23 with 99% to 100% of inhibition. Fig. 1
shows the overlay of the chromatogram (ESI positive MS
trace at scan m/z 200–1500) with the percent inhibition of
these microfractions. Subsequently, compounds 3 and 4
from these two active windows were isolated.

The major compound 3 (tR 22.4 min) had a molecular
formula of C15H20O2 withm/z 465.3182 [2M+H]+ (calcd. for
C30H41O4 465.3006) and was identified as costunolide.
Compound 4 (tR 23.0 min) with a molecular formula of
C15H18O2 derived from m/z 461.2869 [2M+H]+ (calcd. for
C30H37O4 461.2693) was dehydrocostuslactone. In addition,
compounds 1 (tR 24.2 min) and 2 (tR 25.3 min) were isolated
and both had the sum formula C15H20O2 as suggested by the
m/z 465.3185 [2M+H]+ (calcd. for C30H41O4 465.3006) and
m/z 465.3190 [2M+H]+ (calcd. for C30H41O4 465.3006). They
were identified as the known compounds arbusculin B (1)
and α-cyclocostunolide (2) (Fig. 2).

Compounds 2, 3, and 4 have been isolated from S. costus
previously [20]. Whilst compound 1 is reported here for the
first time from this plant.

Further possibly active compounds present in the extract
in minor concentrations, like the peaks seen in minute 11 and
20, were not isolated. This may be done in further studies.

From L. nobilis we isolated the sesquiterpene lactone 6
and from Eupatorium cannabium substance 7. Compound 6
with sum formula of C17H20O4, m/z 311.1289 [M+Na]+

(calcd. for C17H20O4Na 311.1254) was determined as
zaluzanin D and compound 7 with molecular formula of
C20H26O6, m/z 385.1614 [M+Na]+ (calcd. for C20H26O6Na
385.1622) was characterised as eupatoriopicrin. Substance
5 was from a commercial source. The 1H and 13C NMR data
gainst the mass trace of the ethyl acetate extract of Saussurea costus (ESI-MS
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Fig. 2. Chemical structures of seven sesquiterpene lactones isolated from Saussurea costus(1–4), Laurus nobilis (6) and Eupatorium cannabinum (7). Compound 5
was from a commercial source.
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for compounds 1–4, 6, and 7 are attached as supporting
information (Table S1).

Sesquiterpene lactones are classified into several classes
based on their carbocyclic skeleton [21]. The compounds in
this study are eudesmanolides (6/6 bicyclic), germacrano-
lides (10 member-ring monocyclic), and guaianolides (5/7
bicyclic).

The antitrypanosomal and cytotoxic IC50 of the 7 com-
pounds were established (Table 1). The three germacrano-
lides parthenolide (5), eupatoriopicrin (7), and costunolide
(3) were the most antitrypanosomally active compounds in
this study, followed by the guaianolides dehydrocostuslac-
tone (4) and zaluzanin D (6), and the eudesmanolides
arbusculin B (1), andα-cyclocostunolide (2). The cytotoxicity
Table 1
In vitro antitrypanosomal activity and cytotoxicity of sesquiterpene lactones
against T. b. rhodesiense and cytotoxic effects against L6 cells. Results are
expressed as IC50 values with the standard deviation (SD) and shown
alongside the positive controls.

Compound T. b. rhodesiense L6 cells SI

IC50 (μM±SD) IC50 (μM±SD)

1 Arbusculin B 12.0±3.3 6.2±2.3 0.5
2 α-Cyclocostunolide 21.9±1.1 19.4±7.9 0.9
3 Costunolide 1.3±0.4 7.7±1.3 5.9
4 Dehydrocostuslactone 4.4±1.4 8.3±1.9 1.9
5 Parthenolide 0.8±0.5 5.2±0.9 6.5
6 Zaluzanin D 10.8 a 15.6 a 1.4
7 Eupatoriopicrin 1.2±0.2 1.6±0.08 1.3
Melarsoprol 0.006±0.003
Podophyllotoxin 0.01±0.002

a IC50 value is obtained from a single experiment done in duplicate.
of all compounds was within range of IC50s from 1.6 to
19.4 μM and selectivity indices between 0.5 and 6.5.

The three active germacranolides 3, 5, and 7 had similar
IC50 values, suggesting that the presence of the epoxide in 3 or
the esterified hydroxyl side chain in 7 did not greatly affect
the antitrypanosomal activity. Compounds 3 and 5weremore
selective towards T. b. rhodesiense than towards mammalian
cells (SI: 5.9 and 6.5) whereas 7 was more toxic (SI: 1.3).
Amongst the guaianolides, dehydrocostuslactone (4) had the
threefold activity and twofold toxicity of zaluzanin D (6).
They both had similar selectivity indices (1.9 and 1.4). The
lowest antitrypanosomal activities and selectivitieswere seen
for the two eudesmanolides arbusculin B (1) and α-
cyclocostunolide (2) which were both more active against
mammalian cells than against the parasites with selectivity
indices of 0.5 and 0.9.

Lirussi et al. [22] report the potent inhibition (IC50=
2.4 μg/ml) of T. cruzi epimastigotes by a methanol extract of
S. costus roots. Schmidt et al. [23] report parthenolide (5) to
be highly active against T. b. rhodesiense and T. cruzi. The
study also shows that the tested eudesmanolides tended to
have lower antitrypanosomal activities and selectivities
than some other types of sesquiterpene lactones. Izumi et
al. [24] also previously publish the potent effect of partheno-
lide (5) against T. cruzi. The other compounds in this study
have so far not been tested for antitrypanosomal effects.
We recently reported the potent in vitro and in vivo activity
of cynaropicrin, a guaianolide sesquiterpene lactone with a
2-hydroxymethyl-2-propenoyl moiety at C-8, against T. b.
rhodesiense [9].

Sesquiterpene lactones may exert their various biologi-
cal activities by the interaction of their α-methylene-γ-
butyrolactone moiety with the thiol groups of biomacromo-
lecules through Michael-addition [25].
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A comprehensive study on 40 sesquiterpene lactones from
five sesquiterpene lactone classes confirms the influence of this
α-methylene-γ-butyrolactone moiety to their antitrypanoso-
mal and cytotoxic activity. The most potent and selective
sesquiterpene lactones reported so far were the pseudoguaia-
nolide helenalin and the xanthanolide 8-epixanthatin-1,5-
epoxide. However, a high degree of correlation is also found
between such compounds' antiprotozoal activity and mamma-
lian cytotoxicity so that it may be difficult to find a structural
explanation for the selectivity observedwith some compounds
[23]. Cytotoxicity studies of sesquiterpene lactones related to
the lactone moiety were shown by Kupchan et al. [26,27].

This study suggests that sesquiterpene lactones may have
potential for the development of new leads to treat infection
caused by trypanosomes. Further comprehensive structure
activity studies to clarify the contribution of sesquiterpene ring
systemsand/or substitutionpatternsof sesquiterpene lactones to
the overall activity against both T. b. rhodesiense andmammalian
cell like those reported by Schmidt et al. [23] and especially
further in vivo data like Zimmermann et al. [9] are needed.
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S Table 1. 13C (125 Mhz) and 1H (500 MHz) data for compounds 1-4 in DMSO-d6 and compounds 6 and 7 in CDCl3 (δ in ppm and J in Hz). 

Assignment of 13C shifts was done via HSQC and HMBC correlations. 

Position 
1 2 3 4 6 7 

δC, mult. δH (J in Hz) δC, mult. δH (J in Hz) δC, mult. δH (J in Hz) δC, mult. δH (J in Hz) δC, mult. δH (J in Hz) δC, mult. δH (J in Hz) 

1 
41.3, CH2* 1.58, m; 1.41, 

m 

21.5, CH2 1.62, m; 1.99, 

m 

126.7, CH 4.82, dd (11.3, 

4.3) 

47.0, CH 2.95, m 50.3, CH 2.93, m 130.7, CH 4.87, dd  

(2.8, 11.0) 

2 
18.8, CH2* 1.57, m 23.0, CH2 2.04, m 26.1, CH2 2.27, m; 2.10, 

m 

30.2, CH2 1.89, m; 1.82, 

m 

36.0, CH2 2.43, m; 1.82, 

m 

26.1, CH 2.31, m; 2.20, 

m 

3 
31.0, CH2* 2.00, m; 1.89, 

m 

122.5, CH 5.37, brs 39.3, CH2 2.25, m; 1.98, 

m 

32.6, CH2 2.48, m 74.9, CH 5.57, m 39.4, CH2 2.35, m; 2.07, 

m 

4 139.7, qC   133.2, qC  141.0, qC  152.3, qC  148.9, qC  142.5, qC  

5 
130.0, qC  50.7, CH 2.35, brd 127.8, CH 4.77, t (9.7) 52.0, CH 2.86, dd (10.0, 

8.8) 

44.2, CH 3.01, m 127.2, CH 4.76, d (10.1) 

6 
83.2, CH 4.61, brd 

(11.5) 

82.0, CH 3.94, t (11.2) 81.7, CH 4.71, t (9.8) 85.0, CH 3.98 t (9.2) 84.5, CH 4.10, dd (9.4, 

9.4) 

75.4, CH 5.16, dd  

(9.0, 9.7) 

7 50.0, CH 2.55, m 51.0, CH 2.59, m 50.0, CH 2.63, m 44.6, CH 2.97, m 45.1, CH 2.97, m 52.9, CH 2.93, m 

8 
23.0, CH2 2.06, m; 

1.63, m 

39.0, CH2 1.52, m; 1.39, 

m 

27.7, CH2 2.12, m; 1.69, 

m 

30.8, CH2 2.25, m; 1.33, 

m 

30.4, CH2 2.01, m; 1.44 

m 

72.3, CH 5.80, d (3.2) 

9 
40.6, CH2* 1.50, m; 1.36, 

m 

37.5, CH2 1.45, m; 1.36, 

m 

40.9, CH2 2.33, m; 2.08, 

m 

36.2, CH2 2.43, m; 2.14, 

m 

34.4, CH2 2.51, m; 2.21, 

m 

44.2, CH2 2.84, m; 2.32, 

m 

10 37.7, qC  23.3, qC  137.3, qC  150.2, qC  149.0, qC  134.0, qC  

11 127.0, qC  139.8, qC  141.2, qC  140.2, qC  139.8, qC  136.8, qC  

12 170.3, qC  170.7, qC  170.4, qC  169.8, qC  171.0, qC  170.6, qC  

13 
118.4, CH2 6.00, d (3.1); 

5.56, d (3.0) 

116.5, CH 5.91, d (3.1); 

5.48, d (3.1) 

119.6, CH2 6.07, d (3.6) 

5.67, d (3.3) 

120.1, CH2 6.09, d (3.6); 

5.66, d (3.2) 

119.0, CH2 6.13, d (3.5); 

5.59, d (3.2) 

120.9, CH2 6.29, d (3.5); 

5.57, d (3.0) 

14 
27.2, CH3 1.09, s 17.5, CH3 0.86, s 16.1, CH3 1.39, s 112.3, CH2 4.89, brs; 4.79, 

brs 

112.8, CH2 4.96, s 17.5, CH3 1.46, s 

15 
20.6, CH3 1.80, s 23.8, CH3 1.76, s 17.3, CH3 1.66 s 108.6, CH2 5.13, brs; 5.03, 

brs 

111.5, CH2 5.38, m; 

5.23,m 

19.0, CH3 1.75, s 

1’         170.5, qC  165.9, qC  

2’         19.6, CH3 2.10, s 131.8, qC  

3’ 
          144.7, CH 6.84, dd  

(5.7, 5.7) 

4’           58.9, CH2 4.40, d (5.9) 

5’           57.3, CH2 4.33, s 

* These signals may be interchangeable.  
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HPLC-based activity profiling for antiplasmodial compounds in the traditional 

Indonesian medicinal plant Carica papaya L. 

Tasqiah Julianti, Maria de Mieri, Stefanie Zimmermann, Samad Ebrahimi, Marcel Kaiser, 

Markus Neuburger, Melanie Raith, Reto Brun, Matthias Hamburger. Journal of 

Ethnopharmacology, submitted. 

Methanolic extract of papaya leaves inhibited the growth of Plasmodium falciparum in vitro. 

Active compounds within the extract were localized by HPLC-based activity profiling. 

Following HPLC and MPLC semipreparatively isolation and then structures elucidation by 

microprobe NMR spectroscopy and high resolution mass spectrometry, nine compounds 

were obtained. Absolute configuration of two compounds was performed by X-ray 

crystallography along with calculated and experimental ECD. When tested in vitro, four 

flavonols were moderately active, two monomeric piperidine alkaloids were inactive, and 

three dimeric piperidine alkaloids were highly active. In this study, carpaine was the most 

active compound with remarkable selectivity to rat myoblast L-6 cells. Further in vivo tested 

of carpaine using mouse model applying the malaria 4-day suppressive test, however, 

displayed inactivity. 

Extraction of plant material, development of alkaloidal fractionation method, HPLC-

microfractionation, recording and data interpretation for HPLC-based activity profiling, recording 

and data interpretation for structure elucidation by HPLC-ESI-TOF-MS; microprobe NMR; optical 

rotation; experimental ECD, draft writing and partly figure preparation for the manuscript are my 

contributions to this publication. 
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a b s t r a c t

Ethnopharmacological relevance: Leaf decoctions of Carica papaya have been traditionally used in some
parts of Indonesia to treat and prevent malaria. Leaf extracts and fraction have been previously shown to
possess antiplasmodial activity in vitro and in vivo.
Materials and methods: Antiplasmodial activity of extracts was confirmed and the active fractions in the
extract were identified by HPLC-based activity profiling, a gradient HPLC fractionation of a single
injection of the extract, followed by offline bioassay of the obtained microfractions. For preparative
isolation of compounds, an alkaloidal fraction was obtained via adsorption on cationic ion exchange
resin. Active compounds were purified by HPLC–MS and MPLC–ELSD. Structures were established by HR-
ESI-MS and NMR spectroscopy. For compounds 5 and 7 absolute configuration was confirmed by
comparison of experimental and calculated electronic circular dichroism (ECD) spectroscopy data, and by
X-ray crystallography. Compounds were tested for bioactivity in vitro against four parasites (Trypanosoma
brucei rhodesiense, Trypanosoma cruzi, Leishmania donovani, and Plasmodium falciparum), and in the
Plasmodium berghei mouse model.
Results: Profiling indicated flavonoids and alkaloids in the active time windows. A total of nine
compounds were isolated. Four were known flavonols – manghaslin, clitorin, rutin, and nicotiflorin.
Five compounds isolated from the alkaloidal fraction were piperidine alkaloids. Compounds 5 and 6were
inactive carpamic acid and methyl carpamate, while three alkaloids 7–9 showed high antiplasmodial
activity and low cytotoxicity. When tested in the Plasmodium berghei mouse model, carpaine (7) did not
increase the survival time of animals.
Conclusions: The antiplasmodial activity of papaya leaves could be linked to alkaloids. Among these,
carpaine was highly active and selective in vitro. The high in vitro activity could not be substantiated with
the in vivo murine model. Further investigations are needed to clarify the divergence between our
negative in vivo results for carpaine, and previous reports of in vivo activity with papaya leaf extracts.

& 2014 Published by Elsevier Ireland Ltd.

1. Introduction

Based on the number of cases reported, malaria is considered as a
controlled disease in IndonesiaQ2 (Feachem et al., 2010). However,
malaria is still a major health concern in the densely forested parts
of eastern Indonesia. Current primary treatment for malaria is
Artemisinin Combination Therapies (ATCs), but artemisinin-resistant

Plasmodium falciparum strains have been reported (Miller et al.,
2013). Thus, a continued effort for discovery of novel antimalarial
compounds is needed.

Traditional remedies to prevent and treat malaria remain in use
in Indonesia. Among these, papaya leaf decoctions are widely used
in Papua and Maluku islands. Other than malaria therapy, papaya
leaves are empirically used in Indonesia to enhance breast milk
production, for deworming and boosting appetite, and for redu-
cing fever (Rehena, 2009; Sastroamidjojo, 2001; Tjahjadi, 1990).
Use of papaya leaves as an antimalarial remedy has also been
reported from India, and from some Latin American and African
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countries (Asasea et al., 2010; Kovendan et al., 2012; Stangelanda
et al., 2011; Valadeau et al., 2009). The traditional use as an
antimalarial remedy was substantiated by in vitro studies (Lina,
1996; Rehena, 2009), and by testing of an alkaloid containing polar
leaf extract in a mouse model (Sulistyowati, 2000).

Papaya (Carica papaya L., Caricaceae) grows widely in tropical
and subtropical regions around the world (Garrett, 1995). The trees
are mainly cultivated for their fruits, but the leaves, seeds, and
latex are traditionally known to benefit health. Papaya leaves
contain flavonoids and other phenolic compounds, saponins,
cardiac glycosides, anthraquinones, and alkaloids (Afzan et al.,
2012; Canini et al., 2007; Sherwani et al., 2013). AlkaloidsQ3 reported
include carpaine (Greshoff, 1890), pseudocarpaine (Govindachari
et al., 1954), and dehydrocarpaine I and II (Tang, 1979).

Considering the easy accessibility of plant material, the tradi-
tional use as an antiplasmodial, and the reported in vivo activity,
we embarked on an activity-driven characterization of active
principles in papaya leaves. For an efficient localization of active
constituents in the extract we employed HPLC-based activity
profiling (Potterat and Hamburger, 2013), using a protocol estab-
lished for the discovery of antiprotozoal compounds in complex
matrices (Adams et al., 2009). Analytical HPLC connected to PDA
and MS detectors, and parallel micro-fractionation of the column
effluent for off-line bioassay link biological and structural informa-
tion with chromatographic peaks in the chromatogram.

We here report on the identification of in vitro antiplasmodial
compounds in papaya leaves, and on the outcomes from a testing of
the main alkaloid, carpaine, in the murine Plasmodium bergheimodel.

2. Materials and methods

2.1. Materials

Analytical grade solvents for extraction and HPLC grade sol-
vents were from Scharlau (Barcelona, Spain). Ammonium hydro-
xide (26%) was from Riedel-de Häen (Seelze, Germany). Formic
acid (98–100%) was from Sigma-Aldrich (Buchs, Switzerland).
DMSO was from Reuss Chemie (Tägerig, Switzerland). HPLC grade
water was obtained by an EASYpure II (Barnstead, Dubuque, USA)
water purification system. Cationic exchange resin Lewatits

MonoPlus SP 112 was from Lanxess (Cologne, Germany). Reference
drugs for bioactivity tests were melarsoprol (Arsobals, Sanofi-
Aventis, Switzerland), benznidazole (Sigma-Aldrich), miltefosine
(VWR), chloroquine (Sigma-Aldrich), artesunate (Mepha, Switzer-
land), and podophyllotoxin (Sigma-Aldrich).

Parasites for in vitro activity tests were Trypanosoma brucei
rhodesiense, STIB 900 strain, trypomastigotestage; Trypanosoma
cruzi, Tulahuen C4 strain, amastigote stage; Leishmania donovani,
MHOM-ET-67/L82 strain, amastigote stage; Plasmodium falci-
parum, K1 strain (chloroquine- and pyrimethamine-resistant),
erythrocytic stage. Cytotoxicity was determined with rat skeletal
myoblast cells (L6). The in vivo efficacy study was carried out in the
Plasmodium berghei mouse model. Adult female NMRI mice were
purchased from RCC Janvier.

2.2. General experimental procedures

Extract screening and HPLC-based activity profiling including
mass spectral data analysis were carried out as previously
described by Adams et al. (2009). A HPLC SunFire RP-18 column
(3.5 mm, 3�150 mm2 i.d., Waters; Wexvord, Ireland) was used.
Minute-based microfractination and offline data collection for
HPLC based activity profiling were carried out with a series 1100
HPLC system consisting of a degasser, a binary high pressure
mixing pump, a column oven and a PDA detector with 250 mL

loop (all from Agilent; Waldbronn, Germany) connected to an
Esquire 3000 Plus ion trap mass spectrometer with an electrospray
interface (Bruker Daltonics; Bremen, Germany). MS spectra were
recorded in positive and negative mode in the range of m/z 200–
1500. Hystar 3.0 software (Bruker Daltonics; Bremen, Germany)
was used for controlling the LC–MS system.

Semipreparative HPLC separations of flavonoids and alkaloid 9
were carried out on an 1100 series HPLC system consisting of a
quaternary low-pressure mixing pump with a degasser module,
a column oven, and a PDA detector with a 1000 μL loop (all
Agilent; Waldbronn, Germany). A SunFire C18 column (5 μm,
10�150 mm2; Waters) was used. The separation of flavonoids
was monitored following UV-detection. For the alkaloid, the
separation was monitored using an Esquire 3000 Plus ion trap
mass spectrometer with an electrospray interface (Bruker Dal-
tonics; Bremen, Germany) connected via a T-splitter (split ratio 3:
997). Data analysis and controlling of the MS were with Hystar
3.2 software (Bruker Daltonics; Bremen, Germany). Spectra were
recorded in positive mode in the range of m/z 200–1000.

Semipreparative separations of alkaloids 5–8 were carried out
with a PuriFlash 4100 system consisting of a mixing HPLC pump, a
UV detector dual length DAD, a fraction collector, and a sample
loading module (Interchim; Montluçon, French). For system con-
trolling and process monitoring, Interchim Software 5.0 was used.
Detection was done with a 2000ES ELSD (Alltech; Woodridge,
Illinois, USA). The following ELSD settings were used: temperature
60 1C, gas flow 2.4 L/min, and gain of 4 or 8, with impactor on.

High resolution MS were recorded with an Agilent 1100 series
HPLC linked to a microTOF-ESI-MS system (Bruker Daltonics).
HyStar 3.0 software (Bruker Daltonics) was used for data acquisi-
tion and processing.

NMR spectra were recorded in CD3OD and CDCl3 on a Bruker
Avance III spectrometer (Bruker; Fällanden, Switzerland) operating
at 500.13 MHz for 1H, and 125.77 MHz for 13C. 1H NMR and 2D
(COSY, HSQC, and HMBC) spectra were measured with a 1 mm TXI
probe at 18 1C. 13C NMR spectra were recorded with a 5 mm BBO
probe at 23 1C. Spectra were processed and analyzed by Bruker
TopSpin 3.0 software.

ECD spectra of compounds were recorded, at 500 mg/mL in
MeOH or MeCN, on an AVIV Model 62ADS CD spectrometer, and
analyzed with the AVIV 60DS V4.1 software.

X-ray crystallography was performed with a Bruker Kappa
Apex2 diffractometer at 123 K using graphite-monochromated Cu
Kα-radiation. Structure solution used program SIR92 (Altomare et
al., 1994) and SHELX 86 (Sheldrick, 1985). Structure Q4refinement
employed CRYSTALS (Betteridge et al., 2003). Data analysis and
visualization utilized Mercury v.3.0 software.

2.3. Plant material and extraction

Extract screening and HPLC-based activity profiling were car-
ried out with a leaf sample purchased from a Thai food store in
Basel. Isolation of compounds was carried out with papaya leaves
purchased from Dixa AG (St. Gallen, Switzerland), a supplier of
pharmaceutical herbs. Vouchers have been deposited under iden-
tification nos. 910 and 647 at the Division of Pharmaceutical
Biology, University of Basel, Switzerland. Authentication of the
material was carried out by M. Hamburger.

In the initial screening, the extracts of methanol, ethyl acetate,
and petroleum ether were prepared by pressurized liquid extrac-
tion using an ASE 200 extractor with solvent module (Dionex;
Sunnyvale, CA, USA). Extraction was performed with 1 g of ground
leaves in a 22-mL cartridge. Instrument setting for three cycles
extraction were of temperature 100 1C, preheating time 1 min,
heating time 5 min, static extraction 5 min, flush 100% solvent of
cell volume, purge 120 s with nitrogen, and pressure 120 bar. The
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same methanolic extract was used for minute-based microfracti-
nation with HPLC for activity and chemical profiling.

For isolation of flavonoids, an aliquot of coarsely minced leaves
(300 g) were macerated with MeOH (4 L). Evaporation of solvent
afforded 31 g of dark green extract A.

For preparative isolation of alkaloids, coarsely powdered papaya
leaves (1 kg) were moistened with 680mL of MeOH–NH4OH conc.
(1:1). The leaf material was then packed into a percolator (5�80 cm2

i.d.) and extracted with n-hexane (approx. 12 L). Evaporation under
reduced pressure yielded 56 g of a dark green extract B.

2.4. Isolation of compounds 1–4

Extract A (20 g) was separated on a Sephadex LH-20 column
(9.5�27 cm2 i.d.) with MeOH as eluent. The eluate was analyzed
by HPLC–PDA–MS (at 254 nm and ESI positive ion mode) using the
standard LC method described by Adams et al. (2009), and 10
fractions were obtained. Fractions 5 (1.2 g) and 8 (0.4 g) were
separated by semipreparative HPLC with UV-detection at 254 nm.
The mobile phase was 0.1% aqueous formic acid (A) and 0.1%
formic acid in MeCN (B), running on gradient of 10–40 B in 35 min,
stay at 40% B for 3 min, 40–10% in 2 min for washing, and flow rate
of 5 mL/min. For each run, an aliquot of 100 mL of solution (15% in
MeOH) was injected. We obtained compounds 1 (2.1 mg), 2
(4.4 mg), 3 (22.2 mg), and 4 (12.6 mg), respectively.

2.5. Isolation of compounds 5–8

An aliquot (45 g) of extract B was sonicated with 1000 mL
methanol and centrifugated for 10 min at 3000 rpm, (Megafuge
2.0 R, Heraeus; Schwerte, Germany) to obtain a clear solution. The
solution was acidified with 50 mL HCl 1 N and filtered. The filtrate
was applied onto a column (5�80 cm2 i.d.) packed with 500 g
Lewatits MonoPlus SP 112 resin (Lanxess; Leverkusen, Germany).
Prior to that, the resin was conditioned with 4�500 mL MeOH,
and 4�500 mL of MeOH–HCl 1 N (20:1). The column was washed
with MeOH–HCl 1 N (20:1) to remove the non-alkaloidal
constituents, and with MeOH–NH4OH conc. (20:1) to collect the
alkaloidal fraction. The effluents were collected and monitored by
LC–MS. The amount of alkaloidal fraction was 1.9 g.

The alkaloidal fraction was separated on a C18 cartridge (86 g,
RediSepsRf; Teledyne Isco, Nebraska, USA), using a PuriFlash 4100
system (Interchim) connected to a ELSD. The alkaloidal fraction
was dissolved as 5% solution in MeCN–H2O (3:7), and aliquots of
2 mL were injected. The mobile phase for separation was H2O
(A) and acetonitrile (B), both containing 0.1% formic acid. The
following gradient was used: 10–30% B in 30 min, followed by
30–100% for 30–60 min. The flow rate was 60 mL/min. Four
fractions were collected based on retention time and ELSD trace
– 1 (137 mg, tR min 9–14), 2 (160 mg, tR min 14–18), 3 (336 mg, tR
min 18–25), and 4 (170 mg, tR min 25–29).

Each of these fractions was further separated with the LC–ELSD
system above. Fractions 1–3 were chromatographed on a C18
cartridge (43 g; RediSepsRf) under isocratic conditions (10% B for
purification of 5), 12% B for 6, and 15% B for 7. The flow rate
was 30 mL/min. Fraction 4 was separated on a HP C18 cartridge
(30 g; RediSep Rf Golds) with a gradient of 10–30% B over 30 min,
at a flow rate of 30 mL/min, to afford 8. Overall, 65 mg of
compound 5, 93 mg of 6, 44 mg of 7, and 21 mg of 8 were
obtained. Purity of compounds was Z96% as determined by
LC–ESIMS in positive ion mode.

2.6. Isolation of compound 9

An aliquot of 6 g of n-hexane extract was filtered through a
MonoPlus SP 112 resin column using EtOAc–MeOH–HCl 0.1 M

(7:2:1) and EtOAc–MeOH–conc. NH4OH (7:2:1) as eluents. After
evaporation of the basic eluent under reduced pressure, 16 g of
voluminous white granules were obtained. The solid residue was
suspended in 1.8 L 1 M NH4OH solution (pH 11) and partitioned
with 3�2 L ether. Removal of ether under reduced pressure
yielded 179 mg of a residue, which was dissolved in 5 mL of
aqueous MeCN (30%, v/v, 0.1% formic acid) and separated by semi-
preparative HPLC using MS detection. Aliquots of 400 μL solution
(3% in MeOH) were injected for each run. The mobile phase was
0.1% aqueous formic acid (A) and 0.1% formic acid in MeCN
(B) running in gradient of 14–18% B in min 0–4, 18% B min 4–6,
18-20% B min 6–7, 20–100% B in 3 min for wash, and flow rate
of 5 mL/min. Compound 9 (5 mg) was obtained, along with
additional 7 (110 mg) and 8 (9 mg).

2.7. Characterization of compounds

Structures of 1–9 were established with the aid of ESIMS, 1D
and 2D NMR data and by comparison with literature data. For
selected compounds, X-ray crystallographic analysis and ECD
measurements were performed.

8-[(20R-50S-60S)-50-Hydroxy-60-methylpiperidin-20-yl]-octanoic
acid ((þ)-carpamic acid (5)): white solid; ½α�24D þ6.12 (c 0.13
MeOH) Ref. þ6.0 (c 0.4 MeOH) (Masuda et al., 2006); HR-ESI-
MS: m/z 258.2047 [MþH]þ (calcd. for C14H28NO3: 258.2064); 1H
NMR (500 MHz, CD3OD) δ 1.25–1.44 (8H, m, CH2-4, 5, 6, 7), 1.31
(3H, d, J¼6.6 Hz, CH3-60), 1.44–1.78 (7H, m, CH2-3, -8, -30, Hax-40),
1.96 (1H, dt, J¼9.5 and 3.3 Hz, Heq-40), 2.13 (2H, t, J¼7.2 Hz, CH2-
2), 2.96 (1H, m, W1/2¼14.0 Hz, H-20), 3.16 (1H, qd, J¼6.7 and
1.3 Hz, H-60), 3.77 (1H, ddd, J¼3.5, 1.8 and 1.7 Hz, H-50); 13C NMR
(125 MHz, CD3OD) δ 16.0 (CH3, C-60), 23.7 (CH2, C-30), 26.2 (CH2,
C-7), 27.5 (CH2, C-3), 30.1–30.2–30.5–31.1 (CH2, C-4, C-5, C-6, C-40),
34.6 (CH2, C-8), 38.9 (CH2, C-2), 57.4 (CH, C-60), 58.5 (CH, C-20), 66.0
(CH, C-50), 183.7(C, C-1).

Methyl-[8-(20R-50S-60S)-(50-hydroxy-60-methylpiperidin-20-yl)]-
octanoate ((þ)-methyl carpamate (6)): white solid; ½α�24D þ4.01 (c
0.08 MeOH); HR-ESI-MS: m/z 272.2207 [MþH]þ (calcd. for
C15H30NO3: 272.2220); 1H NMR (500 MHz, D2O) δ 1.43–1.63 (8H,
m, CH2-4, -5, -6, -7), 1.47 (3H, d, J¼6.6 Hz, CH3-60), 1.68–1.88 (5H,
m, CH2-3, -8, Hax-30), 1.92 (1H, tt, J¼14.0 and 3.3 Hz, Hax-40), 2.02
(1H, dddd, J¼14.0, 3.8, 3.5 and 3.0 Hz, Heq-30), 2.16 (1H, dddd,
J¼14.4, 3.5, 3.5 and 3.0 Hz, Heq-40), 2.55 (2H, t, J¼7.3 Hz, CH2-2),
3.28 (1H, m, W1/2¼14.5 Hz, H-20), 3.47 (1H, br q, J¼6.7 Hz, H-60)
3.86 (3H, s, CO2CH3), 4.14 (1H, br s, H-50); 13C NMR (125 MHz,
CD3OD) δ 16.0 (CH3, C-60), 23.7 (CH2, C-30), 26.0–26.3 (CH2, C-3 and
C-7), 30.0–30.1–30.3–31.1 (CH2, C-4, C-5, C-6, C-40), 34.7 (CH2, C-8),
34.8 (CH2, C-2), 52.1 (CH3, CO2CH3), 57.4 (CH, C-60), 58.6 (CH, C-20),
66.0 (CH, C-50), 175.9 (C, C-1).

(1S-11R-13S-14S-24R-26S)-13,26-Dimethyl-2,15-dioxa-12,25-
diazatricyclo[22.2.2.211,14]triacontane-3,16-dione ((þ)-carpaine
(7)): white solid/colorless crystal; ½α�24D þ25 (c 0.11 EtOH) Ref.
þ20.9 (Sato et al., 2003); HR-ESI-MS: m/z 479.3831 [MþH]þ

(calcd. for C28H51N2O4: 479.3849); 1H NMR (500 MHz, CDCl3) δ
1.09 (6H, d, J¼6.4 Hz, CH3-11, -110), 1.16–1.42 (20H, m, CH2-4, -5,
-6, -7, -14, -40, -50, -60, 70, 140), 1.40–1.72 (10H, m, CH2-3, CH2-8, Hax-
13, CH2-30, CH2-80, Hax-130), 1.92 (2H, dddd, J¼14.0, 3.8, 3.5 and
3.0 Hz, Heq-13, Heq-130), 2.34 (4H, t, J¼7.3 Hz, CH2-2, -20), 2.75 (2H,
m, W1/2¼14.5 Hz, H-9,-90), 3.06 (2H, br q, J¼6.7 Hz, H-11, -110),
4.84 (2H, br s, H-12, -120).13C NMR (125 MHz, CDCl3) δ 15.8 (CH3,
C-11, C-110), 23.1(CH2, C-7, C-70), 23.3 (CH2, C-3, C-30), 25.2 (CH2,
C-14, C-140), 26.6 (CH2, C-13, C-130), 27.7–27.8–28.2 (CH2, C-4, C-5,
C-6, C-40, C-50, C-60), 31.9 (CH2, C-2, C-20), 34.1 (CH2, C-8, C-80), 53.8
(CH, C-11, C-110), 56.6 (CH, C-9, C-90), 68.1 (CH, C-12, C-120), 172.8
(C, C-1, C-10).

6-(8-Methoxy-8-oxooctyl)-2-methylpiperidin-3-yl 8-(5-hydroxy-
6-methylpiperidin-2-yl)octanoate (8): white amorphous solid; ½α�24D
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þ3.09 (c 0.08 CHCl3); HR-ESI-MS: m/z 511.4085 [MþH]þ (calcd.
for C29H55N2O5: 511.4111); 1H NMR (500 MHz, CDCl3) δ 1.06 (3H, d,
J¼6.3 Hz, CH3-110), 1.13–1.78 (33H, overlapped), 1.92 (1H, t,
J¼15.0 Hz, Hax-130), 1.93 (1H, t, J¼15.0 Hz, Hax-13), 2.23 (2H, t,
J¼7.3 Hz, CH2-20), 2.31 (2H, m, CH2-2), 2.61 (1H, br m, W1/

2¼13.0 Hz, H-90), 2.78 (1H, br m, W1/2¼15.0 Hz, H-9), 2.95 (1H, br
q, J¼6.5 Hz, H-110), 3.01 (1H, br m, H-11), 3.60 (3H, s, –OCH3), 3.70
(1H, br s, H-12), 4.84 (1H, br s, H-120). 13C NMR (125 MHz, CDCl3) δ
15.6 (CH3, C-11), 16.5 (CH3, C-110 0), 22.1–24.6–24.7–24.9–25.6–25.8
(CH2, C-3, C-30, C-7, C-70, C-14, C-140), 27.9–28.3–28.4–28.8–28.9–
29.0–29.1–30.7 (CH2, C-4, C-40, C-5, C-50, C-6, C-60, C-13, C-130), 33.6–
33.9 (CH2, C-2, C-20,C-8), 34.2 (CH2, C-80 0), 51.5 (CH3, –OCH3), 54.3
(CH, C-110), 56.1 (CH, C-11), 57.0 (CH, C-90), 57.1 (CH, C-9), 66.2 (CH,
C-12), 68.3 (CH, C-120), 173.1 (C, C-1), 174.2 (C, C-10).

13,26-Dimethyl-2,15-dioxa-12,25-diazatricyclo[22.2.2.211,14]
triacontane-3,16-dione (9): white solid; ½α�24D þ7.07 (c 0.23 EtOH)
Ref. þ4.95 (Topuriya et al., 1978); HR-ESI-MS: m/z 479.3812
[MþH]þ (calcd. for C28H51N2O4: 479.3849); 1H NMR (500 MHz,
CDCl3) δ 1.03 (3H, d, J¼6.3 Hz, CH3-11), 1.07 (3H, d, J¼6.5 Hz, CH3-
110), 1.12–2.00 (32H, overlapped), 2.24–2.41 (4H, m, CH2-2, CH2-20),
2.53 (1H, m, H-9), 2.81–2.92 (2H, m, H-11, H-90), 3.20 (1H, m,
H-110), 4.76–4.90 (2H, br m, H-12, H-120). 13C NMR (500 MHz,
HSQC/HMBC, CDCl3) δ 15.7 (CH3, C-110), 18.4 (CH3, C-11), 24.5 (CH2,
C-140), 25.0–25.5 (CH2, overlapped), 26.6 (CH2, C-14), 27.1 (CH2,
C-130), 28.2–29.4 (CH2, overlapped), 29.3 (CH2, C-13), 32.6 (CH2,
C-8), 34.8–35.2 (CH2, C-2, C-20), 37.2 (CH2, C-80), 48.1 (CH, C-110),
48.3 (CH, C-90), 53.8 (CH, C-11), 56.5 (CH, C-9), 69.9 (CH, C-12), 71.3
(CH, C-120), 173.5–173.1 (C, C-1, C-10)

2.8. Conformational analysis, geometrical optimization, and ECD
calculation

Conformational analysis of 7 was performed with Schrod̈inger
MacroModel 9.1 software using the OPLS 2005 (Optimized Poten-
tial for Liquid Simulations) force field in H2O. Conformers occur-
ring within a 2 kcal/mol energy window from the global minimum
were chosen for geometrical optimization and energy calculation
using the density function theory (DFT) with the B3LYP functional
and the 6-31G** basis-set in the gas-phase with the Gaussian 09
program (Frisch et al., 2009). Vibrational analysis was done at the
same level to confirm minima. TD-DFT/B3LYP/6-31G* in the gas
phase and in MeCN using the SCRF method, with the CPCM model.
ECD curves were obtained on the basis of rotator strengths with a
half-band of 0.2 eV using SpecDis v1.63 (Bruhn et al., 2013). The
spectra were combined after Boltzmann weighting according to
their population contribution.

2.9. X-ray crystallography

Needles of 5 were obtained from a mixture of MeOH–H2O kept
in the refrigerator for 3 weeks. Needles of 7 were formed upon
slow evaporation, at room temperature, of a solution in MeOH–
H2O (50:50).

A suitable crystal of 5 was measured on a Bruker Kappa Apex2
diffractometer. The structure was solved by direct methods using
the program SIR92 (Altomare et al., 1994). Least-squares refine-
ment against F was carried out on all non-hydrogen atoms using
the program CRYSTALS (Betteridge et al., 2003). Chebychev
polynomial weights (Prince, 1982; Watkin, 1994) were used to
complete the refinement. Plots were produced using CAMERON
(Watkin et al., 1996).

The crystal of compound 7 was measured on a Bruker Kappa
Apex2 diffractometer. The Apex2 suite (Bruker Manual, 2006) was
used for data collection and integration. The structure was solved
by direct methods using the program SHELXS 86 (Sheldrick, 1985).
Least-squares refinement against F was carried out on all non-

hydrogen atoms using the program CRYSTALS (Betteridge et al.,
2003). Chebychev polynomial weights (Prince, 1982; Watkin,
1994) were used to complete the refinement. Plots were produced
using CAMERON (Watkin et al., 1996). Detailed experimental data
are provided in Supplementary material (Tables S2 and S3).

2.10. Bioassays

Assays for in vitro activity against Plasmodium falciparum,
Trypanosoma brucei rhodesiense, and in vivo activity against Plas-
modium berghei were carried out according to the procedure
described by Witschel et al. (2012). The cytotoxicity in vitro was
conducted following the Alamar Blue assay (Page et al., 1993). All
protocols and procedures used in this study were reviewed and
approved by the local veterinary authorities of the Canton Basel-
Stadt, Switzerland (authorization no. 739; 11.12.2009). The IC50
values are calculated by linear regression (Huber and Koella, 1993).

The in vivo test was performed on four NMRI female mice
infected with Plasmodium berghei ANKA (2�107 parasites/mice).
The compound was administered intraperitoneally for four con-
secutive days, at a daily dose of 5 mg/kg. The volume of injection
was 10 mL/kg of a clear solution in 10% aqueous DMSO. If no
activity was observed (reduction of parasitemia o40%) then the
animal was euthanized after determination of parasitemia. Control
mice usually would die in day 6–7 after infection. Lethal dose of
compound 7 on uninfected mice was determined at 50 mg/kg,
administered as injection of 20 mg/kg, and followed by 30 mg/kg
after 2 h. The volume of injection was 10 mL/kg.

3. Results and discussion

When tested at 4.81 mg/mL, the EtOAc and MeOH extracts
inhibited growth of Plasmodium falciparum by 61.03% and 51.85%,
respectively (Julianti et al., 2013). Active constituents in the
extracts were tracked with the aid of HPLC-based activity profiling
(Potterat and Hamburger, 2013). An activity profile of 32 one-
minute fractions, and the corresponding LC–PDA–MS traces are
shown in Fig. 1. Major inhibition was observed in the time window
of minutes 6–12. In the chromatogram recorded with the PDA
detector, four well-separated major and three minor peaks were
detected within the activity window. In contrast, MS detection
(positive polarity) revealed a complex pattern of peaks, whereby
molecular ions of 475.3, 477.4, and 479.4 suggested the possible
presence of previously reported alkaloids dehydrocarpaine II,
dehydrocarpaine I, and carpaine respectively.

We first isolated the four major UV-absorbing compounds 1–4
(Fig. 1(A)) and characterized their structures as manghaslin (1),
clitorin (2), rutin (3), and nicotiflorin (4) (Afzan et al., 2012; Lin
and Harnly, 2007). These compounds were inactive when tested
against Plasmodium falciparum and Trypanosoma brucei rhode-
siense (Table 1).

Anticipating that alkaloids detected in the active time window
spectrum could possibly be the active constituents, and knowing
that the alkaloid content in papaya leaves was low (Barger et al.,
1937; Burdick, 1971; Bukhori et al., 2005; Greshoff, 1890), we
prepared an alkaloidal fraction with the aid of an ion-exchange
column. Piperidine alkaloids 5–9 (Fig. 2) were then separated by
RP MPLC, and their structures were established by HR MS and
NMR data.

Compound 5 was carpamic acid, a compound that had been
previously reported as the degradation product formed upon
hydrolysis of carpaine and pseudocarpaine (Barger et al., 1933;
Govindachari et al., 1965; Vo et al., 1998). We confirmed its natural
occurrence by LC–MS analysis of freshly prepared methanolic leaf
extracts. Carpamic acid has also been synthetized from alanine
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Fig. 1. HPLC-based activity profiling of a methanolic extract. UV chromatogram (A), LC–MS chromatogram (B), and activity profile (C).

Table 1
in vitro activity of compounds 1–9.

Extract/compound IC50 (mM)

Trypanosoma brucei rhodesiense SI Trypanosoma cruzi SI Leishmania donovani SI Plasmodium falciparum SI Cytotoxicity L6

1 73 41.6 n.d. n.d. n.d. n.d. 413.2 49 4119
2 63.5 41.9 n.d. n.d. n.d. n.d. 413.5 49 4121.6
3 73.2 42 n.d. n.d. n.d. n.d. 416.4 49 4147.4
4 51.8 42.9 n.d. n.d. n.d. n.d. 416.8 49 4151.5
5 119.4 3.2 n.d. n.d. n.d. n.d. 4194.4 o1.9 379.9
6 138.6 42.7 n.d. n.d. n.d. n.d. 477.1 4.8 4368.7
7 12.7 1.7 16.3 1.3 4209 o0.1 0.2 107.5 21.5
8 35.8 1.2 27.8 1.6 4195.9 o0.2 1.8 24.2 43.5
9 41.1 0.7 30.1 0.9 4209 o0.1 1.0 28.2 28.2
Reference drugs 0.01 1.8 0.3 0.2 0.007

The IC50 values are expressed as mean value of two independent assay (n¼2); Reference drugs: Trypanosoma brucei rhodesiense (melarsoprol), Trypanosoma cruzi
(benznidasole), Leishmania donovani (miltefosine), Plasmodium falciparum (chloroquine), cytoxicity (podohyllotoxin); Selectivity Index (SI): quotient of IC50 in L-6 cells and
IC50 against parasites; n.d.: not determined.
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(Randl and Blechert, 2004; Masuda et al., 2006). GivenQ5 that 5
lacked a chromophore, the absolute configuration could not be
established via ECD. However, suitable crystals were obtained, and
the absolute configuration of the piperidine ring was confirmed by
X-ray diffraction as 20R-50S-60S (Fig. 3).

Methyl carpamate 6, in contrast, was a likely artifact formed by
methylation of carpamic acid, or by hydrolysis of carpaine during
elution of the ion exchange column. The compound was detected
by LC–MS in the alkaloidal fraction, but not in the methanolic
extract. It has also been previously reported as a product of
esterification of carpamic acid (Barger et al., 1933).

Chemical structure and absolute configuration of the major
alkaloid, carpaine (7), have been previously reported (Govindachari
et al., 1965; Sato et al., 2003). Since the 1H and 13C spectra showed
severely overlapping signals in the high field region, and given that
the chemical shift values slightly differed from reported data, we
confirmed the structure with the aid of X-ray diffraction analysis and
ECD spectroscopy. The X-ray structure of compound 7 (Fig. 3) was
comparable to the one reported by Kabaleeswaran et al. (1999). The
ECD spectrum of carpaine showed sequential positive and negative
CEs at 240 and 215 nm, respectively. A calculated ECD spectrum was
obtained by the time-dependent density functional theory (TDDFT)
(Bringmann et al., 2008). The conformational search based on the X-
ray data revealed 15 conformers within a 2 kcal/mol energy window
from the particular global minimum. Conformational analysis using
relative free energy showed high flexibility of the macrocyclic
bislactone ring (Fig. 4). Calculation of the ECD spectra was performed
by using TDDFT/B3LYP/6-31**, with MeCN as solvent (Supplementary
material, Fig. S4). Experimental and calculated weighted ECD spectra
were in good agreement. In particular, a diagnostic negative Cotton
Effect (CE) at 210 nm (Fig. 5) was due to the n-π* transition of the
ester moiety. On the basis of these data the absolute configuration of
7 was confirmed.

Compound 8 was closely related to carpaine (7). The NMR data
revealed that the opening of one lactone ring of carpaine formed a
methyl-ester derivative (Fig. 2). Like other N-alkyl heterocycles
(Lambert and Featherman, 1975) the NMR data of compound 8
showed broadened resonances which suggested slow conforma-
tional changes of the piperidine moiety. This precluded the

assignment of the relative configuration with the aid of J coupling
pattern analysis and NOESY experiments. The experimental ECD
spectrum showed a positive CE around 200–220 nm contradictory
to compounds 7 and 9 (Supplementary material Fig. S5). Taking
into account all these considerations, we could not unambiguously
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Fig. 2. Chemical structures of alkaloids 5–9.

Fig. 3. X-ray structures of compounds 5 (A) and 7 (B).
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assign the stereochemistry of compound 8, but we assumed that it
was an artifact formed through methanolysis of compound 7.

An alkaloid named pseudocarpaine, possessing the same planar
structure as carpaine (7) and compound 9, had been previously
found in trace amounts in papaya leaves by Govindachari et al.
(1954), and later by Khuzhaev and Aripova (2000). However, the
stereostructure of pseudocarpaine had not been established. We
confirmed that alkaloid 9 was composed of two halves having the
same gross structure as 7, but differing in the stereochemistry of
one piperidine ring. One of the two piperidine rings presented
spectroscopic data similar to that of carpaine 7, while the NMR
resonances of the second ring differed significantly. Repeated
attempts of crystallization failed, and we were not able to establish
the 3D structure of compound 9. We here report its 1H and 13C
NMR shifts and ECD spectrum (see Supplementary material
Fig. S5), since they may be helpful for future unambiguous
identification of related dimeric alkaloids.

In the HPLC chromatogram of the MeOH extract (Fig. 1), we
observed the presence of two additional compounds in the activity
window, with masses of 475.3 and 477.4 that fitted with previously

reported dehydrocarpaine II and I, respectively (Tang, 1979). Careful
analysis showed that these two compounds were only present in the
methanolic extract and not in the alkaloidal fraction. This suggested a
possible degradation of these compounds during the alkaloidal
enrichment procedure, and they could not be obtained in amounts
sufficient for structure elucidation.

Alkaloids 5–9were tested for in vitro antiprotozoal activity, and for
cytotoxicity in L6 cells (Table 1). None of the compounds was active
against Leishmania donovani, Trypanosoma brucei rhodesiense and
Trypanosoma cruzi. In contrast, alkaloids 7–9 showed good activity
against Plasmodium falciparum. The best compound in this series was
carpaine (7), with an IC50 of 0.2 mM and a selectivity index of 107. The
compound met the criteria for progression to in vivo testing. However,
the in vivo test with mice using the 4-days suppress assay resulted
only in a 11.9% reduction of parasitemia in mice, and the animals had
to be euthanized.

Our findings of potent in vitro but lacking in vivo activity of
carpaine are seemingly in contrast to the previously reported in vivo
activity of an alkaloid containing papaya extract (Sulistyowati, 2000).
In that study, a hydroalcoholic extract of papaya leaves was tested in
the murine Plasmodium berghei model. Oral administration of the
extract in doses of 13.3, 20, and 30 mg/10 g body weight per day led
to a reduction of parasitemia by 54%, 64%, and 72%, respectively.

At this point, these contradictory results cannot be resolved.
A possible explanation is that in a papaya extract accompanying
constituents contribute to the activity, either via a pharmacoki-
netic interaction and/or pharmacodynamic synergy. Such cases
have been reported for other antimalarial plants and compounds,
such as Artemisia annua and quinoline alkaloids in Cinchona bark
(Druilhe et al., 1988; Liu et al., 1989; Rasoanaivo et al., 2011).

4. Conclusions

Decoction from papaya leaves has been traditionally used in
eastern Indonesia to prevent and treat malaria, and an ethanolic
extract from papaya leaves had reportedly shown in vivo activity
(Sulistyowati, 2000). HPLC-based activity profiling allowed an
efficient tracking of the in vitro activity, and the active compounds
were identified as piperidine alkaloids. However, when tested in
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Fig. 4. Conformational analysis of compound 7. Minimized conformers in the gas phase using DFT at the B3LYP/6-31G* level, within a 2 kcal/mol range from the global
minimum.

Fig. 5. Overlay of experimentalQ11 (blue) and calculated (black) ECD spectra of 7. (For
interpretation of the references to color in this figure legend, the reader is referred
to the web version of this article.)
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the murine Plasmodium berghei model, the major active compound
7 was not able to control parasitaemia.

Given the longstanding and wide use of papaya leaves as an
anti-malarial remedy and its wide availability in malaria-afflicted
regions, further investigations are warranted. Most importantly,
the reasons for lacking in vivo activity of carpaine need to be
investigated, and the role of other leaf constituents in the
previously reported in vivo activity of extracts. Carpaine possesses
good in vitro activity and selectivity, and therefore is a new scaffold
for anti-plasmodial compound worth to be pursued.
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Table 1. Bioactivity of extracts against P. falciparum (in vitro) 

Extract 

Inhibition (%) 

4.81 µg/mL 0.81 µg/mL 

Petroleum ether 12.7 4.1 

EtOAc 61 8.7 

MeOH 
51.8 n.d 

Inhibition was determined in triplicate; n.d.: not determined. 

 

Table 2. Crystal data for carpamic acid 5 

Formula                            C14H27N1O3 

Formula weight                     257.37 

Z, calculated density              2, 1.190 Mg · m-3 

F(000)                             284 

Description and size of crystal   colorless plate, 0.030 · 0.140 · 0.230 mm3 

Absorption coefficient            0.657 mm-1 

Min/max transmission              0.91 / 0.98 

Temperature                        123K 

Radiation(wavelength)             Cu Kα (λ = 1.54178 Å) 

Crystal system, space group       triclinic, P 1 

a                                  5.7032(3) Å 

b                                  7.2035(5) Å 

c                                  18.0105(11) Å 

α                                  99.280(3)° 

β                                  95.373(3)° 

γ                                  97.835(3)° 

V                                  718.35(8) Å3 

min/max Θ                          2.503° / 67.976° 

Number of collected reflections   12137 
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Number of independent reflections  4539 (merging r = 0.027) 

Number of observed reflections    4400 (I>2.0σ(I)) 

Number of refined parameters      326 

r                                  0.0386 

rW                                 0.0423 

Goodness of fit                    1.0351 

 

Table 3. Crystal data for carpaine 7 

Formula                            C28H50N2O4 

Formula weight                     478.72 

Z, calculated density              2, 1.105 Mg · m-3 

F(000)                             528 

Description and size of crystal   colorless block, 0.060 · 0.110 · 0.210 mm3 

Absorption coefficient            0.572 mm-1 

Min/max transmission              0.94 / 0.97 

Temperature                        100K 

Radiation(wavelength)             Cu Kα (λ = 1.54178 Å) 

Crystal system, space group       orthorhombic, P 21 21 2 

a                                  14.3945(5) Å 

b                                  18.3514(7) Å 

c                                  5.4456(2) Å 

α                                  90° 

β                                  90° 

γ                                  90° 

V                                  1438.51(9) Å3 

min/max Θ                          3.903° / 68.155° 

Number of collected reflections   30121 

Number of independent refections  2623 (merging r = 0.031) 

Number of observed reflections    2608 (I>2.0σ(I)) 

Number of refined parameters      155 

r                                  0.0230 
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rW                                 0.0254 

Goodness of fit                    1.1265 
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Fig. 1. 1H-NMR spectrum of compound 7 (CDCl3, 500.13 MHz). 
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Fig. 2. 1H-NMR spectrum of compound 8 (CDCl3, 500.13 MHz). 
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Fig. 3. 1H-NMR spectrum of compound 9 (CDCl3, 500.13 MHz). 
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Fig. 4. Calculated ECD spectra of carpaine (7) conformers. 

 

 

 

Fig. 5. Overlay of ECD spectra of compounds 7-9 in MeCN. 
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Quantification of the antiplasmodial alkaloid carpaine in papaya leaves (Carica 

papaya) 

Tasqiah Julianti, Mouhssin Oufir, Matthias Hamburger. Planta Medica, submitted. 

Leaf samples from 28 places from Indonesia together with one sample from India were 

collected for the quantification of carpaine. Optimized pressurized liquid extraction was 

used to exhaustively extract carpaine in papaya leaves. UHPLC-MS/MS method was 

developed and partially validated to determine the amount of carpaine in the extract. The 

method was found to be valid and reliable for the intended application covering from nano 

to microgram amounts of compound. A wide carpaine concentration was observed from 

these 29 samples. No correlation of the carpaine content to the origin and leaf maturity was 

observed. 

Optimization of the extraction method, recording and data analysis for the extraction method 

development, plant samples extraction, preparation of extract for quantification, UHPLC-MS/MS 

data interpretation and calculation of carpaine content, as well as draft writing and figure 

preparation are my contribution for this publication. 

 

Tasqiah Julianti 
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Abstract 

 

Daily consumption of papaya leaves (Carica papaya L.) as greens and herbal infusion is 

common in some parts of Indonesia as a means for preventing malaria. Antiplasmodial 

activity of leaf extracts and of the main alkaloid carpaine were recently confirmed. A 

quantitative assay for determination of carpaine in papaya leaves was developed and 

validated. The assay involved extraction by PLE, and quantification with the aid of UHPLC-

MS/MS. Extraction conditions were optimized with respect to solvent, temperature, and 

number of extraction cycles. The UHPLC-MS/MS assay was validated over a range of 20 – 

5000 ng/mL (R2 of 0.9908). A total of 29 papaya leaf samples were analyzed, and carpaine 

concentration in dry leaves was found to range from 0.02 to 0.31%. No obvious dependence 

on geographic origin and leaf maturity was observed. 

 

 

Key words 

carpaine, Carica papaya, Caricaceae, quantification, pressurized liquid extraction, UHPLC-

MS/MS. 

 

 

Abbreviations 

UHPLC-MS/MS: ultra high performance liquid chromatography-tandem mass spectroscopy, 

PLE: pressurized liquid extraction, ASE: accelerated solvent extraction, DMSO: dimethyl 

sulfoxide, ULC: ultra liquid chromatography, ESI: electrospray ionization, EIC: extracted ion 

chromatogram, IPA: isopropyl alcohol, EtOAc: ethyl acetate, I.S.: internal standard, EMV: 

electron multiplier voltage, MRM: multiple reaction monitoring, SD: standard deviation, CV: 

coefficient of variation, RE: relative error, QC: quality control, LOD: limit of detection, LOQ: 

limit of quantification, ULOQ: upper limit of quantification, LLOQ: lower limit of 

quantification, S/N: ratio of signal to noise. 
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Introduction 

 

Leaves from papaya trees (Carica papaya L., Caricaceae) are consumed as vegetable and tea in 

certain parts of Indonesia. The leaves are believed to benefit health by increasing appetite 

and breast milk production. Also, they are used as an anthelminthic, and as remedies for 

reducing fever, and for preventing and curing malaria [1–3]. In Eastern Indonesia (eg. Papua 

and Maluku islands) where malaria is still endemic, people consume papaya leaves as 

greens and/or tea on a daily basis to prevent the disease. The leaves are cooked in water 

before being eaten, and the remaining water may be served as tea. Tea can also be prepared 

from freshly ground leaves. 

 

Papaya leaves contain various nutrients and minerals. Surprisingly little is known about the 

secondary metabolites in papaya leaves. The presence of flavonoids, saponins, tannins, 

anthraquinones, and cardiac glycosides has been reported, but these findings based on 

simple wet chemical assays are of very limited value [4–6]. Knowledge about alkaloids in 

papaya leaves is much more substantial. The piperidine alkaloid carpaine has been reported 

as the major alkaloid in leaves, and has also been found in the roots, barks, and seeds of 

papaya trees [7,8]. Other alkaloids in papaya leaves include dehydrocarpaine I and II, 

pseudocarpaine,and nicotine [8–10]. 

 

The antimalarial property of papaya leaf extract was confirmed in animal model [11]. We 

were able to corroborate this finding by in vitro testing of papaya extracts and, with the aid 

of HPLC-based activity profiling [12] we identified the alkaloid carpaine as the major 

antiplasmodial compound [13]. Carpaine possessed significant antiplasmodial activity in 

vitro (IC50 of 0.2 μM) and high selectivity towards the parasite. 

 

In an attempt to further validate the traditional use of papaya leafs as an antimalarial, we 

wanted to determine the carpaine content in leaf samples from different locations in West 

Java. Also, we wanted to explore a possible influence of leaf age on carpaine concentration. 
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Given that so far no validated assay for carpaine had been published, we here report first on 

the development and validation of a protocol involving pressurized liquid extraction (PLE) 

and UHPLC-MS/MS. PLE has been shown to be highly suitable for quantitative extraction of 

plant material, and superior to conventional extraction techniques such as maceration or 

Soxhlet extraction [14–16]. Also, ASE was found easier to validate than other extraction 

methods [17,18]. Given that carpaine (Fig. 1) lacked a chromophore suitable for UV 

detection, an UHPLC-MS/MS assay was developed, whereby tandem mass spectroscopy 

was chosen for its superior sensitivity and specificity. 

 

Results and Discussion 

 

We first optimized conditions for a quantitative extraction of carpaine from papaya leave 

samples. Solvents of different polarities, extraction temperature, and number of extraction 

cycles were compared with respect to extraction yield and carpaine content. 

 

When comparing solvents with increasing polarity (petroleum ether, CH2Cl2, EtOAc, and 

MeOH; five extraction cycles each), the highest yields of extract and carpaine were obtained 

with MeOH (Fig. 3A and B). The other three solvents resulted in lower extract yields, and 

incomplete extraction of carpaine. Given that carpaine is an alkaloid, we repeated extraction 

under alkaline conditions. It has been previously shown that moistening of powdered drug 

with dilute ammonia solution significantly increased extraction yield of alkaloids in PLE 

[15]. Under alkaline conditions the highest yield in carpaine was obtained with petroleum 

ether (Fig. 3B), while the yield of total extract (Fig. 3A) was lowest. This also resulted in 

cleaner MS chromatograms, and extraction with petroleum ether under mild alkaline 

conditions was therefore selected. 

 

In PLE, higher extraction temperatures generally lead to higher extraction yields. However, 

thermal stability of analytes may be a limiting factor. We analyzed the carpaine yields 

obtained with extraction temperatures varying between 60 and 120˚C (Fig. 4). The highest 

yield was found with a temperature of 90˚C, while the slight decrease at higher 
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temperatures was likely due to thermal degradation. The above experiments were all carried 

out with five extraction cycles to ensure exhaustive extraction. 

 

To optimize efficiency of the assay, we determined the minimum number of extraction 

cycles needed to achieve exhaustive (> 98%) extraction of carpaine. In an experiment with 

five consecutive extraction cycles, the relative yields were 79.6%, 14.6%, 4.63%, 1.03% and 

0.12%, respectively (Fig. 5). Hence, three extraction cycles were sufficient for the purpose. 

 

Up to now, no quantitative assay for determination of carpaine has been developed. Earlier 

estimations of carpaine content were based on gravimetric assessment of crystallized 

alkaloid. More recently, qualitative methods using TLC, and UPLC-ESIMS methods for 

detection of carpaine were reported [10,19]. Therefore, we, developed and validated a 

quantitative UHPLC-MS/MS of carpaine. 

 

As suitable internal standard (I.S.) we selected the alkaloid emetine. For calibration curves, 

two mass transitions were used for carpaine (qualifier and quantifier), and one transition for 

the I.S. (Table 1). Relative response was calculated by dividing analyte peak area to I.S. peak 

area. The parameters of the calibration curve (relative response = A.x2 + B.x + c) were 

obtained by quadratic least square regression with a weighting factor of 1/x2. A typical 

calibration curve is given in supporting information. Limit of detection (LOD) and lower 

limit of quantification (LLOQ) were determined based on MS/MS response of a serial 

dilution of standard solution. LOD and LOQ were 1 ng/mL (S/N  3) and 10 ng/mL (S/N  

10), respectively. However, because of the occurrence of some carry over, LLOQ was set at a 

concentration of 20 ng/mL. Since we observed some carry over, a more detailed carry-over 

assessment was needed. The assessment was carried out by injection of one blank solution 

(DMSO) directly after the measurement of a high analyte concentration sample or standard 

solution at the upper limit of quantification (ULOQ). 

 

The average carry over was within the requirements of the FDA guidance, indicating that 

carry over has no impact on the measurements. 
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The assay imprecision was 2.85 – 4.17%, and inaccuracy was ±11.5%. The imprecision and 

inaccuracy of standard solutions (calibrators) were found as 0.87 – 12.9% and -4.08 – 1.92%, 

respectively, where LLOQ showed 0.874% CV and -0.141% RE. The average recovery rates 

obtained from two extracts from different sources spiked with standard solution spiked in 

amount of 47.5 ng and 237.5 ng were found as 97.3 and 102%, respectively. Considering the 

values of all validation parameters, the method was found to be precise and accurate for 

quantification of carpaine in papaya leaf extracts. 

 

Prior to the quantitative analysis of carpaine in papaya leaf samples, we determined the 

dilution factor of extract solution that was needed to reach a final concentration that would 

be around the median concentration of the calibration curves.  This was to ensure that a 

wide concentration range within the different samples was covered. A dilution factor of 40 

times was found to be appropriate. 

 

Indeed, analysis of 29 samples showed that the carpaine content in dry leaves varied 

between 0.02 – 0.31% (Fig. 7). Out of the 28 leaf samples from Indonesia, 15 were from older, 

and 13 were from younger leaves. However, when comparing the carpaine content in old 

and young leaves, we could not observe a clear relationship between age and alkaloid 

content. Overall, the highest carpaine content was observed in leaf samples from the Anyer 

area. 

 

Previous studies on carpaine content in papaya leaves reported highly varying data, ranging 

from 0.011% to 3.7% [20 – 26]. In previous publications, carpaine was in most cases reported 

as the major alkaloid in papaya leaves, and our findings corroborate these earlier data. In 

contrast, dehydrocarpaine I and II were found to be more prominent than carpaine in leaves 

of Hawaiian origin [10], while choline has been reported as the major basic constituent in 

leaves of Nigerian origin [25]. 

 

Earlier studies on leaf age and alkaloid content gave conflicting results. In his publication 

reporting on the discovery of carpaine, Grishoff estimated the carpaine concentration in 

older leaves at 0.07%, and indicated that young leaves were likely to contain three to four 
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times higher concentration of the alkaloid [20]. In contrast, Barger et al. later emphasized that 

carpaine concentrations were increasing with age in the following order: seedling, young, 

and older leaves [21,22]. However, the same authors later found that the carpaine 

concentration was lower in older leaves than in seedlings [23]. 

 

In summary, we developed the first validated extraction procedure and quantitative assay 

for carpaine in papaya leaves. Our survey covering young and older papaya leaves of from 

different locations in Eastern Java revealed highly varying carpaine contents which were 

independent from leaf age. 

 

Materials and Methods 

 

Chemicals and reference compounds 

Analytical grade solvents for extraction, and HPLC grade solvents were from Scharlau 

(Barcelona, Spain). Ammonium hydroxide (NH4OH) (26%) was from Riedel-de Häen 

(Seelze, Germany). Formic acid (98 – 100%) was purchased from Sigma-Aldrich (Buchs, 

Switzerland), and Dimetyl Sulfoxide (DMSO) from Reuss Chemie (Tägerig, Switzerland). 

HPLC grade water was obtained by an EASYpure II (Barnstead, Dubuque, USA) water 

purification system. UPLC/MS grade acetonitrile (ACN), methanol (MeOH), formic acid, 

trifluoroacetic acid (TFA), acetone, and isopropyl alcohol (IPA) were from BioSolve 

(Valkenswaard, The Netherlands). Carpaine was previously isolated in our lab from papaya 

leaves. Purity of > 96 % was determined by HPLC-MS and NMR. Emetine dihydrochloride 

hydrate (100%) was from Sigma-Aldrich (MO, USA). 

 

Plant Material 

A total of 28 different leaf samples were collected in Western Java, Indonesia. The leaves 

were collected from small gardens around residential areas and small plantations, at six 

different locations shown in Fig. 2. Two locations  were in the province of Banten: desa 

Cikoneng, kecamatan Anyer, Serang (S 64’40.026”, E 10553’3.224”), and kelurahan 

Pamulang Barat, kecamatan Pamulang, Tangerang Selatan (S 620’20.526”, E 10643’55.448”); 

two locations in the province of Jakarta: kelurahan Kedaung Kali Angke, kecamatan 
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Cengkareng, Jakarta Barat (S 69’1.058”, E 10644’58.365”), and kelurahan Srengseng Sawah, 

kecamatan Jagakarsa, Jakarta Selatan (S 6º20’17.1”, E 106º49’57.0”); and two locations in the 

province of West-Java: desa Cimanggu, kecamatan Cibungbulang, Bogor (S 634’35.029”, E 

10647’9.106”), and kampung Ciberem, kecamatan Cikarang Selatan, Bekasi (S 617’40.56”, E 

1079’35.222”). Samples were collected from November to December 2011. Collected leaves 

were dried in the shadow for one week. One commercial leaf sample of Indian origin was 

purchased from Dixa AG (St. Gallen, Switzerland). Vouchers are deposited at the Institute of 

Pharmaceutical Biology, University of Basel. 

 

The leaves were collected in a way representing different stages of leaf maturity: old leaves 

were collected from the lower part of the tree, and young leaves were collected from the top. 

Old and young leaves were either from the same tree, or from adjacent trees of the same 

location. 

 

Optimization of extraction method 

Leaf samples were extracted by pressurized liquid extraction (PLE) using an ASE 200 

extractor with solvent module (Dionex; Sunnyvale, CA, USA). For extraction, 1.0 g of 

ground leaves were filled into a 22-mL extraction cartridge. Five consecutive extraction 

cycles were performed, using the following standard settings: preheat time 1 min, heating 

time 5 min, static extraction 5 min, flush 100% solvent of cell volume, purge 120 sec with 

nitrogen. The pressure was set at 120 bar. The following parameters were optimized: 

extraction solvent, extraction temperature, and number of extraction cycles. In addition, the 

effect of moisturizing the leaf powder prior to extraction with diluted NH4OH solution (33%, 

w/v) was evaluated. 

 

Optimization of carpaine extraction was monitored by HPLC-MS, using an Agilent HPLC 

series 1100 system consisting of degasser, binary high pressure mixing pump, column oven, 

PDA detector (Waldbronn, Germany), coupled to an Esquire 3000 Plus ion trap MS (Bruker 

Daltonics, Bremen, Germany). MS spectra were recorded in ESI positive ion mode for the 

range of m/z 100 – 1000 Hystar 3.2 software (Bruker Daltonics) was used for controlling the 
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LC_MS system, and for data analysis. Separations were performed with an Atlantis® dC18 

HPLC column (4.6 x 150 mm, 5 µm particle size; Waters, Wexford, Ireland). 

 

Development and validation of UHPLC-MS/MS method 

For quantitative analysis a 1290 Infinity LC system coupled to a 6430 triple quadrupole mass 

spectrometer with ESI interface was used. Data were processed with MassHunter 

Workstation software version B.06.00 (all Agilent; Waldbronn, Germany). The 1290 Infinity 

LC system consisted of a binary capillary pump G4220A, an autosampler G4226A, a cooling 

system G1330B, a thermostatted column compartment G1316C, and a FlexCube G4227A. 

Separation was performed at 55˚C on a Kinetex XB-C18 (100 x 2.1 mm i.d., 1.7 µm particle 

size; Phenomenex; Torrance, CA). The mobile phase consisted of 0.1% formic acid in H2O 

(solvent A), and 0.1% formic acid in ACN (solvent B). The following gradient profile was 

used: 2% B for 1 min, linear gradient to 25% B in 6 min, and 100% B for 1, and back to 

equilibrium condition of 2% B for 2 min. The flow rate was 0.4 mL/min. Sample injection 

volume was 1 μL, and the autosampler was set at 25˚C. Needle wash solution consisted of 

MeOH/ACN/IPA/H2O (1:1:1:1, v/v) and the injector needle was washed for 20 sec. FlexCube 

was set at a flow rate of 1 mL/min for 10 sec in order to reduce the carry over. 

 

MS parameters were automatically set, and then optimized manually. The following final 

settings were used: N2 drying gas temperature 300˚C, at a flow rate of 6 L/min; nebulizer 

pressure of 30 psi; capillary voltage of 4 kV; delta EMV 0 V. Quantification was performed 

using multiple reaction monitoring (MRM) in the positive ionization mode. MRM transitions 

of carpaine and internal standard (I.S.) are given in Table 2, and representative MRM traces 

are shown in Fig. 6. 

 

An analytical run consisted of two sets of seven calibration samples (calibrators), six quality 

control samples (QCs), two calibrator zero (blank spiked only with internal standard), four 

blanks (DMSO), and analyte samples. 

 

Calibration curves. Standard solutions were prepared by a serial dilution of carpaine stock 

solution of 10 µg/mL in DMSO. Calibration curves were obtained with carpaine solutions of 
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20, 100, 250, 500, 1000, 2500, and 5000 ng/mL in DMSO containing 2000 ng of emetine (I.S.). 

Emetine working solution was prepared freshly for every analytical run. Two sets of series 

dilutions were prepared and measured at the beginning and end of the analytical run. 

 

Limit of detection, lower limit of quantification, and carry-over. A serial dilution of 

standard solution was used for determination of limit of detection LOD and lower limit of 

quantification LLOQ. Carry over was determined by injection of blank (DMSO), after 

injection of the upper limit of quantification ULOQ (calibrator 7). 

 

Quality controls. Quality control samples (QCs) were prepared in a similar procedure to 

standard solution in three defined concentrations:  QC low at 60 ng/mL (corresponding to 3 

x LLOQ), QC medium at 2500 ng/mL (corresponding to mid-range), and QC high at 4000 

ng/mL (corresponding to 80% of ULOQ). These QCs were injected randomly in duplicate 

between the real samples. 

 

Recovery. Accuracy was determined by recovery rates of carpaine spiked in two defined 

amounts (7.5 and 237.5 ng) to two different extracts. 

 

Carpaine assay in extracts 

Extracts were prepared by PLE. Solvent was removed with rotary evaporator, and the dry 

extracts were stored in glass vials at -20˚C until analysis. Sample preparation for analysis 

was carried out as follows: to the dry extracts 6 mL of MeOH was added, sonicated for 3 

min, and centrifuged. The supernatant was transferred into a 25 mL volumetric flask, and 

the residue was extracted for three additional times as above. The combined extracts were 

made up to 25.0 mL with MeOH in the volumetric flask. An aliquot of 1 mL of this solution 

was sampled, evaporated under N2 flow, redissolved with 1 mL of DMSO to obtain the 

sample stock solution. Three working solutions were prepared by dilution of stock solution 

by factor of 40 in DMSO containing emetine. The final sample solution for analysis 

contained I.S emetine at 2000 ng/mL. The concentration of carpaine in the extract was 

calculated statistically and reported as percentage to the dry weight of the leaves. 
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Supporting Information 

The calibration curves of standard solution of first calibration set, and quality control sample 

data and analysis are available as supporting information. 
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Figure Legends 

 

Fig. 1. Chemical structure of carpaine and emetine (I.S.). 

 

Fig. 2. Sites for sampling of papaya leaves in Western Java, Indonesia. 

 

Fig. 3. Extraction yields (A), and relative yields (B) of carpaine determined by LC-MS (n = 2). 

PE: petroleum ether; DCM: dichloromethane; EtOAc: ethyl acetate; MeOH: methanol. 

 

Fig. 4. Influence of extraction temperature on carpaine yield. 

 

Fig. 5. Optimization of number of extraction cycles. Relative amounts of carpaine extracted 

in cycles 1 to 5, and total yield. 

 

Fig. 6. MRM chromatograms of carpaine (tR 6.54 min; quantifier and qualifier), and emetine 

((tR 4.43 min). 

 

Fig. 7. Carpaine content in papaya leaves. Samples from different locations are given in 

different colours. Content was determined in triplicate, and error bars indicate SD. † younger 

leaves. ‡ unknown leaf maturity. Plain: old leaves. 
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Table 

 

Table 1. MRM Parameters for Quantitative Analysis (ESI Positive Ionization) 

Compound 

Retention 

time 

(min) 

Precursor ion 

(m/z) 

Fragmentor 

(V) 

Product 

ion 

(m/z) 

Collision 

energy 

(eV) 

Emetine 

(I.S.) 
4.43 

481.3   

[M+H]+ 
217 246.2 34 

Carpaine 6.43 
479.39 

[M+H]+ 
202 

240.2* 

222.2** 

34 

42 

*Quantifier (highest response); ** Qualifier 
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Figures 

 

Fig. 1 

 

 

Fig. 2 
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Fig. 3 

 

Fig. 4 

  



     CHAPTER V 

 

76 
 

Fig. 5 

 

Fig. 6 

 

Fig. 7 
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Calibration curves of standard solution of first calibration set. Calibrators are signed as 

dots and QCs are signed as triangles. 

 

 

Quality control sample data and analysis. 

 
QCL 

60 ng/mL 

QCM 

2500 ng/mL 

QCH 

4000 ng/mL 

1 
68.0 

63.7 

2570 

2519 

3501 

3541 

2 
68.0 

68.1 

2400 

2379 

3677 

3438 

Mean 66.9 2459 3539 

S.D. 2.17 102 101 

CV % 3.25 4.17 2.85 

RE % 11.5 -1.62 -11.5 
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With this study, the use of medicinal plants has proven to be valuable in the search for 

natural antiprotozoals active against Trypanosoma brucei rhodesiense and Plasmodium 

falciparum. Discovery of the active principles in the active extracts was achieved with HPLC-

based activity profiling (Potterat and Hamburger, 2013) using only microgram amount of 

extracts. This approach is evidently effective and fast in identifying the active principles for 

the extracts of the plants. Isolation of structurally related constituents was useful for 

preliminary structure activity relationship analysis. 

Saussurea costus roots are known for malaria in the Indian traditional medicine system. From 

the screening of the extracts of our in-house library, the ethyl acetate extract of this plant 

showed good antitrypanosomal activity in vitro. With HPLC-based activity profiling, the 

activity of the two active constituents, costunolide and dehydrocostuslactone, was distinctly 

shown amongst the other compounds in the extract. A simple structure activity relationship 

was proposed with additional two inactive compounds and three other compounds from 

different sources. Compounds bearing a germacranolide skeleton displayed higher activity 

than those with guaianolide and eudesmanolide scaffolds. 

In Indonesia, Carica papaya leaf is traditionally used for prevention and treatment of malaria. 

Previous studies on the extract reported antiplasmodial activity in vitro and in vivo. HPLC-

based activity profiling of a methanolic extract of papaya leaves showed an activity window 

that correlated with a complex pattern of peaks in the LC-MS chromatogram. Analysis of the 

UV and mass spectra indicated the presence of flavonoids and alkaloids. Chromatographic 

isolation delivered four flavonol glycosides, two monomeric piperidine alkaloids, and three 

dimeric alkaloids. Dimeric alkaloids showed the highest antiplasmodial activity, followed 

by flavonols and monomeric alkaloids. The major alkaloid, carpaine, showed high activity 

and remarkable selectivity. A further in vivo investigation in mice with carpaine, however, 

led only to a weak reduction of parasitemia. Additional investigations on carpaine content in 

leaf samples from various origins in Indonesia revealed a wide range of concentrations. For 

this particular case, the use of HPLC-based activity profiling together with early 

identification and dereplication of active compounds in the extract with sensitive MS 

detection were very helpful. The antimalarial activity of this plant had been reported in the 

literature, however, the active principles had not been identified. 2D NMR experiments 
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including COSY, HSQC, HMBC and NOESY led us to distinguish between two isobaric 

compounds, carpaine and a stereoisomer. The configuration of these two compounds could 

not be assessed with NOESY due to heavily overlapping signals.  However, the absolute 

configuration of carpaine was confirmed via X-ray crystallography.  

The discrepancies of in vivo activity between the extract and isolated compounds are 

common in natural products research. One general explanation for this is the overall 

synergistic effect of the numerous compounds present in the extract. The influence of the 

flavonoids for their activity on the parasite P. falciparum has been comprehensively proposed 

through different mechanisms (Ferreira et al., 2010). A direct effect of flavonol glycosides on 

P. falciparum K1 strain was also observed in this study. However, with the currently limited 

data, further studies are required. 

The compounds isolated from Saussurea costus (Asteraceae) and Carica papaya (Caricaceae) 

bear sesquiterpene lactone and piperidine alkaloid skeletons, respectively. Numerous 

sesquiterpene lactones have been reported as to possess antiplasmodial and 

antitrypanosomal activity. In contrast, dimeric piperidine alkaloids represent a new scaffold 

for antiplasmodial compounds.  

The tropical rainforests of Indonesia offer numerous plants that have been traditionally used 

as medicines. However, with the current state of natural product research in the country, the 

potential of this biodiversity is largely unexplored. The establishment of an extract library 

for high-throughput screening, together with the application of HPLC-based activity 

profiling could significantly accelerate the discovery of new bioactive molecules. These 

active molecules could serve many purposes, such as new medicines by themselves, new 

templates for derivatives and inspiration for synthetic drugs. Since the use of traditional 

medicines is widely accepted in the Indonesian medical system, the discovery of the active 

principles in traditionally used plants would be very useful for extract standardization, 

which in turn would help to increase the safety and efficacy of the traditional medicine 

dosage forms. 
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