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ABSTRACT 
 

Cancer is a major health problem. Epidermal growth factor receptor (EGFR) pathway plays an 

important role in cancer progression. EGFR-targeted anti-cancer drugs are being developed to 

improve anti-cancer therapy. These drugs can give good results especially when a disease is 

driven by a dominant oncogene. However, the malignant process is generally supported by 

multiple genetic alterations and a complex signaling network that can compensate for 

deactivation of signaling targets by increasing activity of other pathways. Deeper understanding 

of molecular mechanisms of growth factor signaling regulation in cancer will improve anti-cancer 

therapy and increase clinical benefits. 

Classical cadherins are well recognized to be involved in cancer progression and regulation of 

receptor tyrosine kinase (RTK) signaling. Implication of T-cadherin, an atypical member of 

cadherin superfamily, in cancer progression has been documented in many cancers but mostly 

on genetic and epigenetic levels. Few studies have examined functional effects of T-cadherin in 

cancer, the molecular mechanisms of its effects are poorly understood, and whether T-cadherin 

regulates RTK signaling in tumor cells is unknown.  

This thesis aimed at delineation of the functions of T-cadherin and molecular mechanisms of 

action in cutaneous squamous cell carcinoma (SCC). We found that T-cadherin loss promotes 

cell elongation, cell cluster disorganization, cell motility and invasive potential, while T-cadherin 

upregulation reduces malignant behavior of cells. T-cadherin loss increases, while T-cadherin 

upregulation blunts sensitivity to stimulation by EGF, manifest at the levels of ligand-induced 

EGFR phosphorylation/internalization, signal transduction, cell retraction and motility. Molecular 

mechanisms underlying functional effects of T-cadherin involve β1 integrin activation status and 

the Rho family of small GTPases. Effects of T-cadherin on EGFR activity are due to altered 

accumulation of EGFR within lipid raft domains; T-cadherin upregulation retains, while T-cadherin 

loss releases EGFR from these domains. Thus, T-cadherin acts as a negative auxiliary regulator 
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of EGFR. EGFR activation in SCC promotes T-cadherin redistribution to intercellular contacts, 

supporting a reciprocal nature of cross-talk between EGFR and T-cadherin. We postulated that 

modulation of EGFR activity by T-cadherin could be a regulatory mechanism common to other 

RTKs. Using prostate cancer cells DU145 (which express comparable levels of EGFR and IGF-

1R) we found that T-cadherin regulates activity of both EGFR and IGF-1R and their cross talk. 

Therefore modulation of growth factor receptor tyrosine kinase activity and cross-talk may be a 

common mechanistic principle underlying T-cad-dependent control of carcinoma cell behavior. In 

summary, the findings of this thesis have advanced knowledge on the functional role of T-

cadherin in cancer and the participating molecular mechanisms. 
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1  INTRODUCTION 

1.1  Cancer – the current view 

Cancer is a disease which kills each year more people than HIV/AIDS, tuberculosis, and malaria 

combined (8). Factors that cause cancer can be external (tobacco, infectious organisms, 

chemicals, and radiation, diet, environmental factors) or internal (inherited mutations, hormones, 

immune conditions, and mutations that occur from metabolism) and may act together or in 

sequence (9, 10).  

Cancer is a multistep process which usually starts when a single once-normal cell acquires a 

number of gene mutations (10). Proliferating cancerous cells accumulate mutations and undergo 

changes which allow them to invade surrounding tissues, penetrate blood or lymphatic vessels and 

spread to other organs within a body (11). To spread within the tissues, tumor cells use similar 

mechanisms to those that non-neoplastic cells use during physiological processes such as 

embryonic morphogenesis, wound healing, and immune-cell trafficking (12). The difference lies in 

cancer cells lacking physiological “stop signals” that immobilize and anchor normal cells (13). 

Starting from a single mutated cell cancer can become a systemic disease in a relatively short 

time. Cancer is an enemy, which can make surrounding normal tissues work for its needs (14) and 

can acquire resistance to anti-cancer drugs (15). A better understanding of the mechanism of 

cancer progression will help to improve anti-cancer therapy. 

1.2  Role of growth factors in cancer progression 

Malignant and normal cells communicate through cell-cell contacts and secretion of signaling 

molecules activating surface receptors. The communication network between tumor and host cell 

populations is extensive and determines the fate of the growing tumor (16).  

Included amongst the secreted signaling molecules are so-called growth factors which are a group 

of peptides, proteins and steroid hormones capable of stimulating cell proliferation (17). These 

molecules act through specific receptors on the cell surface which once activated trigger 

downstream pathways leading to the activation of transcription factors in the nucleus and increase 

in mRNA synthesis. Aberrations in the growth factor signaling pathways can lead to abnormal cell 

growth and contribute to malignant transformation in many types of cancer (18). Cancerous cells 

can regulate diverse processes such as proliferation, differentiation, survival and migration 

autonomously by autocrine secretion of growth factors (19) or by enhancing affinity and the 

number of growth factor receptors (20). 
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Many different families of growth factors and growth factor receptors have been shown to be 

implicated in carcinogenesis (21, 22). Among them are the epidermal growth factor receptor 

(EGFR) (23), the insulin-like growth factor receptor (IGF-1R) (24) and their cognate ligands. 

1.3  Epidermal growth factor receptor (EGFR) signaling pathway 

1.3.1 EGFR structure and its activation 

Epidermal growth factor (EGF) binds to a specific receptor on the surface of responsive cells. 

EGFR is a trans-membrane receptor belonging to the ErbB family of receptor tyrosine kinases 

(RTK), which comprises four distinct receptors: the EGFR itself (also known as ErbB-1/HER1), 

ErbB-2 (HER2), ErbB-3 (HER3) and ErbB-4 (HER4) (25). These four proteins possess an 

extracellular ligand-binding domain, a single trans-membrane domain and a cytoplasmic tyrosine-

containing domain (26) (Fig. 1). The extracellular ligand-binding domain is quite variable among 

the receptors, suggesting a difference in ligand binding specificity. In contrast, the intracellular 

tyrosine kinase domain of ErbB receptors is highly conserved. The extracellular domain of 

EGFR/ErbB monomers consists of two ligand-binding subdomains (L1 and L2) and two cysteine-

rich domains (S1 and S2). S1 plays a crucial role in EGFR/ErbB dimerization. Protein tyrosine 

kinase domain, SH1, is located in the cytoplasmic domain, followed by six tyrosine residues 

available for trans-phosphorylation (5) (Fig. 1). 

 

Figure 1. Schematic structure of 

EGFR monomer (5). 
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Binding of ligands to the extracellular domain of a single-chain EGFR, induces the formation of a 

homo- or heterodimers, which leads to phosphorylation of the kinase domain of the EGF receptor 

and subsequent receptor auto-phosphorylation within the cytoplasmic tail (27) (Fig. 2). This 

process triggers downstream activation by recruiting several other proteins that associate with the 

phosphorylated tyrosines through their Src homology 2 (SH2) and phosphotyrosine-binding (PTB) 

domains. Thus, the information from the extracellular environment transduces into the cell by 

recruiting a variety of cytoplasmic proteins involved in regulating cellular pathways. 

 

  

Figure 2. Structural basis for ERBB-receptor dimerization and activation. An example of hetero-

dimerization. Ligand binding stabilizes a dimer and by stabilizing a dimer and forcing a rotation in the 

vicinity of the membrane, ERBB ligands activate the kinase activity of the receptor (2). 
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1.3.2 EGFR downstream signaling and its implication in cancer 

Proteins which bind to the intracellular tail of the activated receptor include adapter proteins (e.g., 

p85, Shc, Grb2) which link the receptor to various downstream pathways, and enzymes such as: 

protein kinases (e.g., Src), protein phosphatases (e.g., SHP1), phospholipases (e.g., PLCγ1), and 

regulators of G proteins (e.g., p120-RasGAP, p85-RabGAP) (28). Thus, EGFR signaling activates 

two major pathways in normal and cancer cells: the RAS/RAF/MEK/MAPK and the 

PI3K/AKT/mTOR pathways that control cell proliferation, cell growth, migration, apoptosis, and 

angiogenesis. 

The RAS/RAF/MEK/MAPK pathway. EGFR auto-phosphorylation facilitates recruitment of adapter 

proteins and results in cell proliferation through intermediate steps (Fig. 3).  

  

Figure 3. Schematic diagram showing the Ras/Raf/MEK/ERK pathway. Ligand-induced EGFR 

activation leads to receptor auto-phosphorylation and binding of Grb2-Sos complex directly or through 

association with Shc. A change in Sos conformation allows Ras-GDP recruitment, resulting in Ras 

activation (Ras-GTP). Raf binds to the plasma membrane and to Ras–GTP facilitating activation of its 

serine/threonine kinase activity, which leads to MEK and ERK phosphorylation. Activated ERK 

translocates into the nucleus where it phosphorylates specific factors involved in cell proliferation  (7). 
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The PI3K/AKT/mTOR pathway. Ligand-induced EGFR activation leads to receptor auto-

phosphorilation and recruitment of PI3K. It triggers downstream signaling, which modulates cell 

growth, cell proliferation and survival (Fig. 4).  

 

 

 

 

Figure 4. Schematic diagram showing the phosphatidylinositol 3-kinase (PI3K)/Akt pathway. 

Ligand-induced EGFR activation results in PI3K binding. PI3K is a dimeric enzyme composed of a 

regulatory p85 subunit, responsible for the anchorage to ErbB receptor-specific docking sites, and a 

catalytic p110 subunit. PI3K is a dimeric enzyme composed of a regulatory p85 subunit, responsible 

for the anchorage to ErbB receptor-specific docking sites, and a catalytic p110 subunit catalyzes the 

conversation of phosphatidylinositol 4,5-triphosphate (PIP2) to phosphatidylinositol 3,4,5-triphosphate 

(PIP3) in the membrane controlled by PTEN, that results in activation of a serine/threonine kinase Akt. 

Phosphorylated Akt regulates activity of several downstream targets involved in cellular growth 

(mTOR), proliferation (RAS-MAPK) and survival (4). 
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Aberrant EGFR expression and its subsequent enhanced activity in tumors can be caused by 

amplification of the EGFR gene, receptor-activating mutations, or the loss of negative regulatory 

mechanisms (29, 30). Over-expressed EGFR is frequently detected in brain tumors, head and 

neck tumors, non-small-cell lung cancer, colorectal, prostate and ovarian carcinomas, and its 

elevated levels are often associated with poor prognosis (23, 31). Somatic mutations of the 

receptor vary depending on tumor type. For instance, somatic mutations in the kinase domain are 

usually found in non-small cell lung cancer (NSCLC) while being quite rare in others, such as 

glioblastoma multiforme (GBM) (32). Depending on the mutation type of EGFR, tumor cells can 

activate specific downstream signaling pathways, such as Ras/MAPK or PI3K/AKT; for example in 

NSCLC EGFR mutations more often activate Ras signaling than PI3K/AKT (33), while the opposite 

is true in GBM (34). 

1.3.3 EGFR-targeted anti-cancer therapy 

Targeted inhibition of specific receptors which are situated at the apex of complex signaling 

networks has become a dominant strategy in cancer treatment last years (35). Such inhibition of 

the EGFR activity suppresses signal transduction pathways and can lead to tumor regression. 

Small molecule tyrosine kinase inhibitors and monoclonal antibodies are among the most common 

EGFR-targeting agents and have been shown to be effective in treatment of human cancer (32).  

Anti-EGFR monoclonal antibodies, such as cetuximab and panitumumab bind to the extracellular 

domain of EGFR when it is in inactive configuration and compete with other specific ligands for the 

ligand-binding region. As a result of this binding, monoclonal antibodies block ligand-induced 

EGFR tyrosine kinase activation by preventing receptor dimerization (36). 

Most small-molecule EGFR tyrosine kinase inhibitors, such as erlotinib and gefitinib, are reversible 

inhibitors, which compete with adenosine-5’-triphosphate (ATP) to bind to the intercellular catalytic 

domain of EGFR tyrosine kinase, thereby inhibiting EGFR auto-phosphorylation and downstream 

signaling (37). Tyrosine kinase inhibitors may inhibit only one or all EGFR family receptors and 

some of them can also inhibit other growth factors, e.g. a dual EGFR/ErbB2 inhibitor lapatinib that 

is used clinically to treat HER-2 positive breast cancer patients (38).  

Although the EGFR pathways have been extensively investigated, there are still many open 

questions concerning the function of different EGFR family oligomers and the impact of other 

molecules and signaling pathways which can modulate EGFR activity. To date, the results for 

EGFR directed therapeutics of cancer patients have been modest due to unresponsiveness or 
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compensation ability of targeted tumors and in some cases acquired resistance to EGFR-targeting 

drugs. 

1.3.4 Complexity of the EGFR network and its balance 

Activity of EGFR and other receptor tyrosine kinases pathways is regulated by a complex network 

of positive and negative feedback loops  which ensures robustness of the system (39). 

Positive feedback regulatory loops maintain appropriate strength and duration of the ErbB 

signaling by enhancing amplitude and prolonging the active state of pathways (40). One of the 

mechanisms regulating positive feedbacks is based on autocrine and paracrine secretion of EGF-

like ligands and/or angiogenic factors in response to receptor activation; for example G-protein-

coupled receptor-induced EGFR transactivation generates downstream signaling and leads to 

heparin binding (HB)-EGF secretion through the stimulation of surface proteinases (2). Other 

tyrosine kinase receptors can also play a positive regulatory role; for example ErbB2-containing 

heterodimers may avoid negative regulation (41).  

Negative or inhibitory feedbacks attenuate signaling by multiple molecular mechanisms including 

receptor dephosphorylation by tyrosine phosphatases (42), endocytosis followed by degradation 

(43), as well as by molecules controlling membrane compartmentalization (44). Negative regulators 

of a receptor can either be constantly present or be synthesized after receptor stimulation, defining 

the window of active signaling (2, 45).  

Several studies have shown that EGFR can be regulated by its lipid environment and activity of the 

receptor can depend on its localization in lipid rafts (46). Although, the data is contradictory and 

there is almost the same number of studies which show activating or inhibitory role of lipid rafts in 

EGFR activity, cumulatively the data suggest that lipid rafts play a role of signaling platforms which 

bring together different molecules to determine signaling preferences of a specific cell (47).  

1.4  Insulin-Like Growth Factor-1receptor (IGF-1R) signaling pathway 

1.4.1 IGF-1R structure and its activation 

IGF-1R, IGF-2R and insulin receptor (IR) belong to the Insulin-like growth factor family. Apart from 

these receptors, the family contains IGF-1 and IGF-2 ligands, six high-affinity binding proteins 

(IGFBPs), low-affinity IGFBP-related proteins and a big group of IGFBP proteases.  
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IGFs are single-chain polypeptides derived from pre-propeptides like insulin and are highly 

homologous. IGF-1 is mainly produced by liver in responses to growth hormone but also, like IGF-

2, can be synthesized by almost any tissue in the body. IGFs are involved in regulation of many 

processes such as cell proliferation, differentiation, apoptosis and transformation and can also be 

involved in autocrine, paracrine and endocrine signaling in normal and malignant tissues (48). 

 

IGF-1 binds to IGF-1R with 2-15 fold higher affinity than do IGF-2 and insulin. The IGF-1R is a 

glycoprotein found on the cell surface which belongs to the class of RTK and shares 60% 

homology at the amino acid sequence level with the IR. The IGF-1R consists of two extracellular α-

subunits and two transmembrane β-subunits (Fig 5).  

  

Figure 5. Schematic representation 

of the full-length IGF-I receptor (1). 
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1.4.2 IGF-1R downstream signaling and its implication in cancer 

The binding of ligands to the α-subunit of IGF-1R results in a conformational change of the β-

subunits of the receptor that stimulates tyrosine kinase activity, leading to auto-phosphorylation of 

tyrosine residues of the receptor. Its phosphorylated tyrosine residues serve as a docking sites for 

insulin receptor substrates-1 (IRS-1) and adaptor proteins, such as Src- and Shc proteins, which 

induce two major signaling pathways involved in cellular processes such as cell proliferation, 

differentiation and survival: the metabolic and anti-apoptotic PI3K/Akt pathway and the mitogenic 

MAPK pathway (Fig 6).  

Figure 6. A schematic representation of the major signaling pathways that can be activated by 

the auto-phosphorylated IGF-IR. Ligand-induced IGF-1R recruits and activates PI3K through 

tyrosine-phosphorylated IRS-1, which in turn activates Akt. Activated Akt has different substrates and 

thus can transmit signal to different downstream pathways. Akt can increase cell survival by 

inactivation of pro-apoptotic protein Bcl-2-associated death promoter (Bad) and caspase-9 as well as 

by activation of nuclear factor-kB (NF-kB) that results in transcription of pro-survival genes. Protein 

synthesis can be enhanced through activation of mTOR. Ligand-induced IGF-1R can also activate 

Ras, Raf, MEK1/2, and ERK1/2 through IRS-1 or Shc and Grb2/SOS complex and result in increased 

cell proliferation (3). 
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These functions have made IGF-1R signaling a pivotal regulator of the normal tissue homeostasis 

and development as well as an important factor in cancer progression. Elevated levels of IGF-1, -2 

and IGF-1R have been documented in breast, pancreatic and colon carcinomas (49). Higher levels 

of circulating IGF-1 have been also linked to an increased incidence of pre-cancerous colonic 

adenoma, suggesting a role of IGF pathway in the early stages of tissue transformation towards 

malignancy (50). It has been shown that IGF-1R expression level is elevated during progression 

from colonic adenocarcinoma to primary colorectal adenocarcinomas and metastasis (51). Other 

studies conducted on synovial sarcomas, uveal melanoma, gastric cancer and gallbladder 

carcinomas also linked IGF-1R overexpression with metastatic phenotype (3). A majority of 

metastatic prostate cancer specimens also express higher levels of IGF-1R compared to non-

malignant tissues (52). There are also reports demonstrating an opposite role of IGF-1 in cancer 

progression. It has been shown that androgen-independent prostate tumor growth and metastasis 

was associated with decreased IGF-1R expression level (53). However, it is still unclear whether 

IGF-1R expression level is affected by changes in signaling pathway cross-talk or through other 

not yet identified functions of IGF-1R in tumor progression.  

1.4.3 IGF-1R-targeted anti-cancer therapy 

The findings that the IGF family is implicated in different cancers have led to the development of 

IGF-1R-targeting anti-cancer therapies, among them monoclonal antibodies and small molecule 

RTK inhibitors (54). Inhibition of the IGF-1 binding to IGF-1R or blocking the activation of IGF-1R at 

the ATP-binding domain leads to abrogation of downstream signaling that results in attenuation of 

signal transduction important for tumor cell growth and increases tumor cell responsiveness to 

other anti-cancer therapy (54). However, inactivation of the IGF-1R alone is often insufficient for 

complete inhibition of tumor cells expressing multiple receptors that interact with each other 

through a broad network of signaling molecules, downstream targets and positive/negative 

regulatory loops.  

1.4.4 EGFR and IGF-1R cross-talk 

One of the best known modalities of cross-talk between growth factor receptors implicated in 

cancer is that between EGFR and IGF-1R, which use several common adapter molecules to 

transmit signals within a cell. Transactivation of EGFR by activated IGF-1R via direct and indirect 

mechanisms has been shown in several studies. In normal human mammary epithelial cells IGF-

1R can physically interact with EGFR and enhance IGF-1 dependent ERK activation through an 

increase in EGFR phosphorylation (55). Studies on COS-7 cells showed that IGF-1R activation 

induces phosphorylation of EGFR and Shc and the assembly of EGFR/Shc complexes that result 
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in increased ERK1/2 phosphorylation (56). Transactivation of EGFR by IGF-1 via 

metalloproteinase-mediated shedding of HB EGF was observed on a prostate cancer cell line, 

DU145 (57).  

Several studies have observed that inhibition of EGFR signaling may lead to acquired drug 

resistance in some cancer cells by facilitating activation of other growth factor receptors, including 

IGF-1R. Signaling adaptation to abrogated EGFR activity by switching to IGF-1R signaling pathway 

and upregulation of its components has been observed in breast and prostate challenged by a 

prolonged treatment with gefitinib (58, 59).  

Dual targeted therapy aimed at simultaneous inhibition of EGFR and IGF-1R by specific antibodies 

resulted in significantly better outcome in vitro and in vivo (60, 61).  

1.5  The cadherin superfamily 

1.5.1 Classical cadherins 

The cadherin superfamily is a group of cell surface receptors that is comprised of more than 100 

members and can be classified into several subfamilies including the type I and type II “classical” 

cadherins, the protocadherins, and the atypical cadherins (62) (Fig. 7). The biological functions of 

the family members are quite diverse, encompassing adhesive activity as well as modulation of 

signaling pathways. The first identified subfamily was the “classical” cadherins that are involved in 

establishing and maintaining cell-to-cell cohesion, cell-cell recognition during sorting and tissue 

reorganization, cell-upon-cell locomotion and epithelial polarity (63). Their effects on tissue 

organization and differentiation processes suggested relationships between the cadherin 

superfamily members and cancer progression. Tumor cells frequently show deregulated cadherin 

expression and inappropriate switching among family members, indicating cadherin dysfunction as 

a major contributor to cancer progression (64, 65). 
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The “classical” cadherins are transmembrane glycoproteins consisting of extracellular domain, a 

transmembrane sequence, and a cytoplasmic domain (which is lacking in non-classical cadherins) 

and are the most investigated members of the cadherin superfamily (66) (Fig. 7). 

A common feature of all cadherins is the architecture of the extracellular domain which is 

structured into tandemly arrayed extracellular domains (ECs), called also cadherin repeats, that 

are highly variable in number and can contain from 1 to 34 ECs. The cadherin repeats contain 

conserved amino acid residues that are capable of binding calcium ions at the ends of each barrel 

to maintain the structural integrity of the cadherin ECs (67). It allows cell-cell adhesion through cis- 

or trans-interactions between the ectodomains of other cadherins presented on the same cell or on 

neighboring cells, respectively. 

The mature type I classical cadherins mediate strong cell-cell adhesion and have five ECs (Fig. 7). 

E-cadherin (epithelial), N-cadherin (neuronal) and P-cadherin (placental) belong to the classical 

type I subfamily. The type II classical cadherins, such as VE-cadherin (vascular endothelial), also 

mediate strong adhesion, though the interaction is somewhat weaker than that mediated by type I 

cadherins. 

Figure 7. The cadherin superfamily. All proteins are aligned at their transmembrane domain (TM). 

Their total sizes are indicated on the right (number of amino acid residues). The following protein 

domains are shown: CBD, (conserved cadherin-specific) catenin binding domain; CD, unique 

cytoplasmic domain; CE, Cysteine-rich EGF repeat-like domain; CM1 to CM3, conserved motifs in the 

CDs of δ-protocadherins; EC, extracellular cadherin repeat; GPI, glycosylphosphatidylinositol anchor; 

JMD, (conserved cadherin-specific) juxtamembrane domain; LAG, laminin A globular domain; Pro-d, 

prodomain; TK, tyrosine kinase domain (6). 
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Interactions of cadherins with each other or with other molecules at cell-cell surfaces generate 

different signals through their cytoplasmic tails. To date, the best understood proteins associated 

with classical cadherins are β-catenin and γ-catenin (plakoglobin), which bind to the same 

conserved region of the cytoplasmic tail of cadherins and are crucial for a proper function and 

stability of the mature protein. The α-catenin, which binds to β-catenin and γ-catenin, links the 

cadherin complex with the actin cytoskeleton.  

Interaction of RTK with cadherins alters both cell-cell adhesion and RTK signaling. RTKs can 

phosphorylate E-cadherin, N-cadherin, β-catenin, γ-catenin and p120-catenin resulting in the 

disassembly of the cadherin-catenin complex and disruption of cell-cell adhesion. It has been 

observed that E-cadherin can activate EGFR in keratinocytes and in mammary epithelium even in 

the absence of a ligand, leading to a reduction in focal adhesion due to requirement of the 

extracellular domain of E-cadherin-receptor interaction. Other studies have shown that E-cadherin 

can inhibit cell responsiveness to EGF stimulation (68) and that E-cadherin ligation inhibits EGF-

induced proliferation (69). N-cadherin. on the other hand, is incapable of interaction with EGFR 

(70) but was shown to interact with members of fibroblast growth factor receptors, inducing 

downstream signaling and promoting cell invasion, migration, and survival, thereby participating in 

cancer progression (71).  

1.5.2 T-cadherin 

T-cadherin (truncated cadherin) was first identified in chicken embryo brain in 1991 and was 

named for its atypical structure (72). It is the only known cadherin linked to the membrane via 

glycosylphosphatidylinositol (GPI) anchor and lacks the transmembrane and cytoplasmic domains 

typical for the classical cadherins. Human homologue of chicken T-cadherin was identified 

independently by two groups; in 1994 cadherin13 (CDH13) was reported by Tanihara et al. (73) 

following cloning analysis, and in 1996 Lee reported on his discovery of a candidate gene that 

appeared to be identical to CDH13 and expression of which was altered in breast cancer (74). Due 

to its strong expression in heart Lee named the protein H-cadherin.  

T-cadherin gene is highly conserved and is localized on chromosome 16q24 along with other 

cadherins (E-cadherin, P-cadherin, VE-cadherin and CDH11) that makes possible the existence of 

common control elements of these closely localized genes (74).  

T-cadherin shares sequence similarity of the extracellular domains with the classical cadherins. 

However, many amino acids important for the homophilic adhesive functions of E-,P- and N-

cadherins such as HAV motif, are missing or replaced in T-cadherin EC1 structure, which results in 



18 
 

a significant weaker adhesion capacity of T-cadherin (75). T-cadherin is highly glycosylated 

protein, like all cadherins, and possesses eight potential N-glycosylation sites (76).  

T-cadherin can be expressed on the cell membrane as either a mature protein or a partially 

processed T-cadherin precursor that retains the uncleaved propeptide (77). Many studies have 

detected more than one immunoreactive band on Western blots, with size ranging between 45 kDa 

and 130 kDa. This might be also explained by existents of isoforms or splice variants as well as 

differences in post-translational modifications such as degrees of glycosylation. 

Localization of T-cadherin on the plasma membrane differs among cell types and depends on 

experimental conditions. In monolayer cultures of endothelial cells, smooth muscle cells and 

bladder carcinoma cell line T-cadherin was globally distributed over cell surface with low 

concentration at cell-cell contacts. Wounding of these monolayers resulted in T-cadherin 

redistribution to the leading edge of migrating cells (78). In vivo studies on chicken intestinal 

epithelium described the presence of T-cadherin on the apical, but not basolateral, cell surface 

(79). The same pattern was observed for T-cadherin transfected MDCK cell line (80).  

In sucrose density gradient analysis performed on cardiac myocytes, T-cadherin was detected in 

the caveolin-enriched fraction insoluble in Triton. However, immunopurified caveolin-containing 

membranes did not contain T-cad. The authors suggested that T-cad can be localized in other 

membrane domains, lipid rafts, which can be isolated in complex with caveolae membrane 

fragments (81). T-cad was also isolated in a detergent insoluble low-density membrane domain co-

distributing with caveolae markers in vascular smooth muscle cells (82).  

1.6  T-cadherin in cancer 

1.6.1 T-cadherin genetic, epigenetic status and protein expression levels in cancer 

The recognized role played by classical cadherins in tumor progression and together with 

localization of T-cadherin gene at the chromosome region exhibiting loss of heterozygosity (LOH) 

in many solid tumors attracted initial interest to T-cadherin as a molecule potentially involved in 

carcinogenesis. 
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Aberrant methylation of T-cadherin gene, LOH and decreased expression of T-cadherin gene or 

protein has been documented in many cancers (Table 1). 

Table 1. CDH13 methylation1/ LOH2/ lost or decreased3 expression in cancer 

Breast cancer:  

Tissues (83)3, (84)1,3, (85)2, (86)1, (87)1, (88)1, (89) 

(90)3, (91)1,3, (92)1, (93) (94)1, (95)1, (96)1, 

(97)1, (98)1 

MDAMB435 and other cell lines (74)3, (99)3 

MDA-MB-435, MDA-MB-46B, BT-20, MDA-MB-

231, MCF-7 

(88)1 

HCC1954 (86)3 

Lung cancer:  

Tissues (100)1,2,3, (84)1,3, (101)3, (102)1, (103)1, (104)1, 

(105)1, (106)1, (107)1, (108)1, (109)1, (110)1, 

(111)1, (112)1, (113)1, (114)1, (115)1, (116)1, 

(117)1, (118)1, (119)1, (120)1, (121)1, (122)1, 

(123)1, (124)1, (125)1, (126)1, (127)1, (128)1, 

(129)1 

S-23, I-871,2,3, Sq-11,2,3, and EBC-11,2,3 cell lines (100) 

A549, H322, H520, H596, H661 cancer cell 

lines 

(101)3 

silica-induced multistep lung carcinogenesis 

model driven by chronic inflammation 

(130)1 

Esophageal and Gastric cancers:  

esophageal cancer tissues (131)1, (132)1, (133)1 

gastric cancer tissues (131)1, (134)1 

gastric cancer cell lines AZ521, KatoIII, MKN7 (135)3 

Sporadic Duodenal carcinoma:  

Tissues (136)1 

Colorectal cancer:  

Tissues (137)1,3, (138)1, (139)1, (140)1, (141)1, (141, 

142)1, (143)1, (144)1, (145)1, (146)1, 

Colorectal cell lines LoVo, HCT116, SCC10, 

SW1417, RKOAU, COLO201 

(137)1,3 

Hct116 cells (147)1,3 
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Ovarian cancer:  

Tissues (148)1,2,3, (149)1, (150)1, (151)1, (152)1, (153)1, 

(154)1, (155)1, (156)1, (157)1, (158)1 

Bladder cancer:  

Tissues (159)1, (160)1, (161)3 

Prostate cancer:  

Tissues (162)1, (163)1, (164)1, (165)1, (166)1, (167)1, 

(168)1 

LNCaP, DU145, CWR22Rv cancer cell lines: 

PC3M2, PC3M-LN4 sublines; LuCaP23, 

LuCaP35 xenograft prostate tumor models 

(164)3 

Cervical cancer  

Serum (169)1, (170)1 

Tissues (171)1, (172)1 

Cancer cell lines CAC-1, OMC-4, HeLa, TMCC-

1, Caski, ME-180  

(173)3 

Tissues and cancer cell lines SiHa, HeLa, 

CaSki, 778, 808, 866, 879, 915  

(174)1 

Endometrial cancer:  

Vaginal secretion (175)1 

Tissues (176)1, (177)1, (143)1, (178)1, (179)1 

Hepatocellular carcinoma:  

Tissues (180)1 

Cancer cell lines HepG21,3, PLC/PRF/C3, 

TONG3, HA22TNGH1,3, Hep3B3, and 

PLC/PRF/53  

(181), (182) 

Tissues and cancer cell line HepG2 (183)1,3 

Tissues3 and cancer cell lines PLC/PRF/53, 

HepG21, HUH711, SNU4491,3, HLE1,3, SNU1823, 

SNU3683 

(184)1,3 

Gallbladder carcinoma:  

Tissues (185)1, (186)1,3, (187)1,3 

Cancer cell line NOZ (186)3 

Neuroblastoma:  

Tissues and neuroblastoma cell lines (188)1 
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Neuroblastoma cell lines TGW and NH-12 (189)3 

Pancreatic cancer:  

Tissues1 and cancer cell lines1,3 AsPC-1, BxPC-

3, Capan-1, Capan-2, MIA PaCa-2, SW1990  

(190)1,3 

Tissues (191)1 

Nasopharyngeal carcinoma:  

Tissues1, cell line C666-11,3 and C15, C17 

xenografts1,3. 

(192)1,3,  

Tissues (193)1 

Pituitary adenoma:  

Tissues (194)1,3 

Blood cancers:  

Chronic myeloid leukemia (CML) (195)1,3, (196)1,3, (197)1 

diffuse large B cell lymphomas and some cell 

lines 

(198)1,2,3 

Acute lymphoblastic leukemia (ALL) (199)1, (200)1 

Acute myeloid leukemia (AML) and in leukemia 

cell lines: 

Myeloid: BV173R, HL60, HEL, KG-1, KG-1a, 

ML-1, MV4:11, KBM5R, OCI-AML3, TF-1; 

Lymphoid: T-cells: CEM, JTAg, Jurkat, MOLT-4, 

T-ALL, Peer, B-cells: ALL1, BJAB, Raji, RS4;11 

(201)1, (197)1 

Chronic lymphocytic leukemia (CLL) (202)1 

Glioblastoma:  

Tissues (203)1, (204)3 

Head and neck squamous cell carcinoma:  

Squamous cell carcinoma line UMSCC-17A (205)1  

Tissues (206)1 

Thyroid carcinomas:  

Tissues (207)3 

Melanoma:  

Melanoma cell lines B16; B16F10 (208)3; (209)3 

Tissues3 and melanoma cell lines1,3 (210) 

Melanoma cell lines WM115F, A375P, DM4, (211)1 
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PAI4, MEWO, MEL 888, C8161  

Tissues3 and melanoma cell lines1,3: 501mel, 

HMB2 and SKMel28 

(212) 

Cutaneous squamous cell cancer (SCC):  

Tissues and cancer cell line A431 (213)1,2,3 

Cancer cell line HSC-1 and immortalized 

keratinocyte cell lines derived from SCC 

(214)3, (215)3 

The majority of studies mentioned above have described association between T-cadherin 

hypermethylation and/or down-regulation with invasive type of cancer, bigger tumor size, advanced 

stage of the disease and poor overall prognosis.  
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Table 2 presents studies reporting that T-cadherin status was comparable between cancer and 

normal tissues. 

Table 2. CDH13 without1 or low2 frequency methylation/ unchanged3 or 

increased4 mRNA/protein expression levels in cancer 

Testicular germ cell tumors:  

Tissues (216)2, (217)2 

Primary pediatric tumors:  

Tissues (218)2 

Wilms' tumor1 and adult renal2 cell 

carcinoma: 

 

Tissues (219) 

Astrocytoma:  

Tissues (220)2, (221)1, (203)1 

Osteosarcoma:  

HOS and SAOS2 cell lines (74)3, (222)4 

In yet other cancers, specifically retinoblastoma, basal cell carcinoma (BCC) and hepatocellular 

carcinoma (HCC), the results have been controversial. It was shown that T-cadherin expression 

levels did not differ between retinoblastoma cell lines and normal retina (223). Also, no somatic 

mutations were detected in retinoblastoma samples (224). However, a recent study revealed 

decreased T-cadherin mRNA levels in five retinoblastoma cell lines (225). An initial study on T-

cadherin expression in cutaneous BCC tissues specimens described loss of the protein expression 

(226). However, later T-cadherin was shown abundantly expressed in BCC tissues and especially 

concentrated at intercellular borders and invasive fronts of the tumors (227). Aberrant methylation, 

LOH and decreased T-cadherin expression were shown in hepatocellular carcinoma (181, 184). 

However, in some HCC areas T-cadherin was found upregulated, as well as highly expressed in 

aggressive HCC cell line Mahlavu (182). In addition, T-cadherin was not detected on hepatocytes 

in normal liver (182). The controversial data indicate that the relationship between T-cadherin and 

cancer progression is not as straightforward as in the case of other tumor suppressors or 

oncogenes such as: p53 or HER-2/neu. 

1.6.2 Functional role of T-cadherin in cancer 

From the large number of genetic and epigenetic studies mentioned above one might assume a 

relevant role for T-cadherin in cancer development. However, disproportionately few studies have 

addressed what the cellular functions and mechanisms of action of T-cadherin might be.  
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One of the first functional studies was conducted on breast cancer cell lines MDAMB231 and 

MDAMB435 which lack T-cadherin expression. Ectopic T-cadherin over-expression resulted in 

tumor cell growth inhibition and decreased tumor growth in nude mice, as well as transformation of 

invasive phenotype to the normal epithelial morphology in Matrigel assay (74, 99). Another study 

showed decreased MDAMB231 cell proliferation and invasion caused by cervastatin-induced T-

cadherin expression (228).  

In prostate cancer cell line DU145 re-expression of T-cadherin reduced cell growth, colony 

formation in soft-agar and ability to form subcutaneous tumors in nude mice (164). 

In gallbladder carcinoma cell lines NOZ and OCUG T-cadherin over-expression promoted epithelial 

cell-like morphology, reduced collagen gel invasive activity, reduced soft-agar colony formation 

activity, suppressed Akt3 expression and overall phosphorylation of Akt, and upregulated SET7/9 

expression without changing cell growth; silencing increased invasiveness without altering cell 

growth and down-regulated SET7/9 (186, 187).  

In bladder transitional cell carcinoma cells 5637 T-cadherin silencing promoted migration, invasion 

and adhesion of the cells, as well as  matrix metalloproteinase-2 (MMP2) expression (161).  

In the aggressive HCC cell line Mahlavu T-cadherin silencing led to decreased invasive potential 

and motility but did not have any effect on cell proliferation (182). In HepG2 HCC cell line 

restoration of T-cadherin expression by promoter demethylation reduced cell proliferation (183). In 

a variety of human HCC cells and HCC cell lines enforced T-cadherin expression induced G (2)/M 

cell cycle arrest, reduced cell proliferation, anchorage-independent growth in soft agar, increased 

sensitivity to TNFα-mediated apoptosis and suppressed activity of a crucial oncoprotein c-Jun 

(184). 

In melanoma cells T-cadherin over-expression decreased anchorage-independent growth, 

migration and invasion and resulted in reduced tumorigenicity in vivo, without changing cell 

proliferation; T-cadherin silencing increased invasive capacity of the cells (210). Expression of T-

cadherin in B16F10 melanoma cells which were originally deficient in T-cadherin expression 

markedly reduced cell proliferation and invasiveness through Matrigel. The percentage of early 

apoptotic cells and cells in the G2/M phase of the cell cycle was markedly increased compared with 

control cells, suggesting G2/M arrest. (209) 

In immortalized keratinocyte cell lines derived from SCC, T-cadherin over-expression reduced cell 

proliferation and induced a delay in the G (2)/M phase; no effect on cell-cell adhesiveness and cell 
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motility was detected (214). T-cadherin over-expression also resulted in enhanced cell–matrix 

adhesiveness, increased expression of functional β1 integrin, suppressed caveolae-mediated 

endocytosis, and reduced tyrosine-phosphorylation of EGFR in SCC cell line HSC-1 (215). 

Table 3 summarizes the above-described attributed functional roles of T-cadherin in cancer. The 

effects of T-cadherin silencing or overexpression on any given function are sometimes discrepant, 

probably reflecting multi-functionality of T-cadherin and cell type specific properties of T-cadherin.  

Table 3. Effects of T-cadherin in vitro and in vivo 

Assays T-cadherin over-expression T-cadherin silencing 

Cell proliferation ↓↓↓0↓↓0↓↓ 00 

Cell invasion ↓↓↓↓↓ ↑↓↑↑ 

Cell migration ↓ ↑ 

Cell-cell adhesion 0  

Cell-matrix adhesion ↑ ↑ 

Cell motility 0 ↓ 

Colony formation in soft-agar ↓↓  

Anchorage-independent 

growth in soft agar 

↓↓  

Apoptosis ↑↑  

Delay in the G2/M phase ↑↑↑  

Tumorigenicity in vivo ↓↓↓  

↓ decrease; ↑ increase; 0 no effect 

1.6.3  T-cadherin and hormone receptors/ receptor tyrosine kinases 

Several studies have suggested a possible regulation of T-cadherin expression by hormones and 

growth factors. It was shown that T-cadherin expression can be regulated by treatment with 

hormones: in smooth muscle cells, expression of T-cadherin was reduced under treatment with 

growth factors PDGF-BB, IGF, EGF, and bFGF (229); in cultured liver sinusoidal endothelial cells, 

expression of T-cadherin was induced by FGF-2 (230); in human osteosarcoma cells, 

progesterone and EGF increased T-cadherin transcription, and dexamethasone increased total T-

cadherin expression (231). In glioblastoma multiforme cells, hepatocyte growth factor stimulation 

upregulated transcription factor Snail and N-cadherin and suppressed T-cadherin, suggesting a T-

cadherin to N-cadherin switch and epithelial-to-mesenchymal transition (204). Hypermethylation of 

CDH13 was negatively associated with estrogen receptor, progesterone receptor, and HER2/neu 
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expression in breast cancer (88). Other studies in breast cancer revealed positive association 

between T-cadherin and HER2/neu expression levels (87, 98). A functional interaction between T-

cadherin and EGFR was documented in SCC lines, where EGFR phosphorylation was shown to 

be reduced by T-cadherin over-expression (215). The data remain controversial, but nevertheless 

suggests a possible link between T-cadherin expression level and hormone receptors/RTKs. 

1.6.4. Concluding statement 

There have been a multitude of studies which have examined associations between cancer 

development and T-cadherin expression at the genetic level. Functional studies have yielded some 

controversial data. Molecular mechanisms whereby T-cadherin mediates its effects on tumor cell 

signaling and behavior are poorly understood.  
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2. THESIS THEMATIC  

My thesis addresses cellular and molecular consequences of alterations in T-cadherin expression 

in squamous cell carcinoma (SCC) and the molecular mechanisms through which T-cadherin 

regulates EGFR activity in SCC. Ongoing studies address the role of T-cadherin in EGFR/IGF-1R 

signaling and their cross-talk in prostate cancer. 

3. SPECIFIC OBJECTIVES, RESULTS AND CONTRIBUTION 

3.1. Focus on examining functional responses to changes in T-cadherin expression in cutaneous 

SCC cell line A431.  

The results have been published.  

T-cadherin loss induces an invasive phenotype in human keratinocytes and squamous cell 

carcinoma (SCC) cells in vitro and is associated with malignant transformation of 

cutaneous SCC in vivo.  

British Journal of Dermatology, 2010. 163. pp353-363. 

Pfaff D, Philippova M, Buechner SA, Maslova K, Mathys T, Erne P, Resink TJ. 

The paper is appended (thesis pp29-39). 

I conducted the following experiments: 

1. Expression of T-cadherin (WB, ICC) and E-, P- and N-cadherins (WB); 

2. Influence of T-cadherin expression on random migration of A431 cells (time-lapse 

videomicroscopy); 

3. Influence of T-cadherin expression on the invasive phenotype of A431 cells in 2D 

(fluorescence microscopy).  

3.2. Focus on examining T-cadherin involvement in regulation of EGFR accessibility to cognate 

ligand EGF and its downstream signaling in cutaneous SCC cell line A431.  

 

The results have been published. 

T-cadherin is an auxiliary negative regulator of EGFR pathway activity in cutaneous 

squamous cell carcinoma: impact on cell motility. 
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Journal of Investigative Dermatology, 2012. 132, pp2275–2285 

Kyriakakis E1, Maslova K1, Philippova M, Pfaff D, Joshi MB, Buechner SA, Erne P, Resink TJ. 

1These authors contributed equally to this work. 

The paper is appended (thesis pp40-69) 

I conducted the following experiments: 

1 Co-localization of T-cadherin and EGFR in lipid raft domains isolated using detergent and 

non-detergent based methods; 

2 Influence of T-cadherin expression on EGF-induced changes in cell retraction and cell 

motility (time-lapse microscopy); 

3 Influence of T-cadherin expression on constitutive integrin β1 activity and EGF-induced 

integrin β1 activation; 

4 Influence of T-cadherin expression on EGF-dependent activation of small Rho GTPases: 

Rac1 and Cdc42 was measured using pull-down assay, RhoA was determined using the G-

Lisa RhoA activation assay kit. 

3.3. Focus on examining reciprocity of interaction between EGFR and T-cadherin in cutaneous 

SCC cell line A431. 

The results have been published. 

Cross-talk between EGFR and T-cadherin: EGFR activation promotes T-cadherin 

localization to intercellular contacts. 

Cellular Signalling, 2013. 25, pp1044-1053 

Kyriakakis E, Maslova K, Frachet A, Ferri N, Contini A, Pfaff D, Erne P, Resink TJ, Philippova M. 

I conducted the experiment presented in Supplemental Figure S3 (lipid rafts isolation from serum-

deprived and EGF-stimulated cells) (thesis pp70-71). 
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3.4  Ongoing study. Focus on examining auxiliary regulation of EGFR and IGF-1R activation and 

cross-talk by T-cadherin in prostate cancer cell line DU145. 

 

A possible title of the future manuscript: Impact of altered T-cadherin expression on cell 

behavior and EGFR/IGF-1R pathway activity and functions in prostate carcinoma.  

The main results which will be a part of the future manuscript are described (thesis pp72-79). 

4. ADDITIONAL RESEARCH PROJECT PARTICIPATION 

In the following papers my contribution was restricted to performance of single 

experiments/protocols. These papers are not included with this dissertation. 

4.1. Focus on effects of different levels of expressed T-cadherin on xenograft growth in vivo. 

Paradoxical effects of T-cadherin on squamous cell carcinoma: up- and down-regulation 

increase xenograft growth by distinct mechanisms 

The Journal of Pathology, 2011, 225 (4), pp512-524. 

Pfaff D, Philippova M, Kyriakakis E, Maslova K, Rupp K, Buechner SA, Iezzi G, Spagnoli GC, Erne 

P, Resink TJ. 

4.2. Focus on T-cadherin functional role in vascular endothelial cells.  

T-cadherin attenuates insulin-dependent signalling, eNOS activation, and angiogenesis in 

vascular endothelial cells. 

Cardiovascular Research, 2012. 93, pp498-507. 

Philippova M, Joshi MB, Pfaff D, Kyriakakis E, Maslova K, Erne P, Resink TJ. 
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3.3. Cross-talk between EGFR and T-cadherin: EGFR activation promotes T-cadherin 

localization to intercellular contacts. 

As a consequence of our findings that T-cadherin can regulate EGFR activity we investigated 

whether EGFR might exert reciprocal effects on T-cadherin. We found that EGFR phosphorylation 

leads to T-cadherin re-distribution to cell-cell contacts that requires lipid rafts integrity, actin 

filament polymerization and intracellular mediators such as Rac1 and p38MAPK.  

My contribution to this study was to demonstrate that the proportion of T-cadherin and EGFR in 

lipid rafts remains the same before and after EGFR activation, suggesting that T-cadherin re-

localization does not change lipid rafts contents.  
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3.4 Ongoing study: Impact of altered T-cadherin expression on cell behavior and EGFR/IGF-

1R pathway activity in prostate carcinoma. 

Having found that EGFR activity can be modulated by T-cadherin in SCC, we considered whether 

T-cadherin might commonly regulate EGFR activity in other cancer types. Moreover, since our 

recent study shows that in endothelial cells T-cadherin physically interacts with insulin receptor and 

modulates its activity, we hypothesized that regulation of growth factor receptor activity in the 

general principle underlying T-cadherin effects in different cell types. Many cancers acquire 

resistance to EGFR-targeted anti-tumor drug gefitinib and it has been shown on breast and 

prostate cancer cell lines that IGF-1R, a close "relative" of insulin receptor,  plays an important role 

in this process (232). There is evidence for bidirectional cross-talk between EGFR and IGF-1R 

pathways. For example, IGF-1 stimulation may indirectly induce EGFR phosphorylation via the 

autocrine release of HB-EGF (57), or may enhance ERK-dependent tumor cell proliferation through 

EGFR activation by means of a direct physical association between EGFR and IGF-1R (55). On 

the other hand, EGFR may influence IGF-1R activity by modulating ubiquitination and degradation 

rates of IGF-1R protein (54). We hypothesized that T-cadherin might be involved not only in 

regulation of EGFR activity but also other RTKs, in particular IGF-1R, and might modulate 

EGFR/IGF-1R cross-talk. 

1. The first objective of this study is to see whether the modulatory effect of T-cadherin on 

EGFR, shown by us previously, is a phenomenon shared by different cancer types. 

2. The second objective of the study is to examine whether T-cadherin modulates IGF-1R 

activity and is involved in the cross-talk between EGFR and IGF-1R. 

We have chosen prostate cancer cells DU145 as a model for this study, based on comparable 

expression levels of EGFR and IGF-1R in these cells.  
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RESULTS 

The generation of stably transduced DU145 with respect to T-cadherin-overexpression (Tcad+) or 

T-cadherin-deficiency using T-cadherin-targeted shRNA (shTcad), and empty vector (E) or non-

target shRNA (sC) as respective controls, was performed using lentivector methods described in 

our previous papers. Expression of T-cadherin was controlled by immunoblotting (Fig. 1) 
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Figure 1. T-cadherin expression. T-cadherin (T-cad) expression in subconfluent 

monolayers of E-, Tcad+-, sC- and shTcad-transduced DU145 cells was evaluated by 

immunoblotting of whole cell lysates. 
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T-cadherin expression levels influence phenotype of DU145 cells. 

Figure 2 illustrates the morphology of the different DU145 transductants as examined by phase 

contrast microscopy (Fig. 2A) as well as by fluorescence microscopy after staining for actin 

(TRITC-phalloidin, Fig. 2B) or golgi complex (anti-giantin, Fig. 2C). Compared with control E or sC 

cells T-cadherin overexpressing cells (Tcad+) exhibited a more disseminated and poorly polarized 

morphology whereas T-cadherin silencing (shTcad) promoted the formation of more compact and 

polarized colonies. 

  

E 

Tcad+ 

sC 

shTcad 

A C B 

Figure 2. T-cadherin expression levels in DU145 alters cell morphology. Control (E, sC), T-

cadherin overexpressing (Tcad+) and T-cadherin silenced (shTcad) DU145 transductants suspended 

in normal growth medium were seeded (1.5x10
3
 cells/well) onto gelatin (0.5%) precoated coverslips in 

24-well plates. After 24h cells were examined for morphological differences by phase contrast 

microscopy (A, 10x magnification), or by epifluorescence microscopy after staining for actin (B, 60x 

magnification) or golgi complex (C, 60x magnification) with use of Hoechst for nuclear counterstaining. 
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T-cadherin-dependent changes in cell morphology are linked to EGFR/IGF-1R activities.  

To examine whether effects of T-cadherin on cell morphology might involve EGFR and/or IGF-1R 

the transductants were incubated for 2 days under control serum-containing conditions without or 

with inclusion of IGF-1R inhibitor (NVP-AEW541) or EGFR inhibitor (gefitinib). Cells were fixed and 

examined for golgi positioning by staining with anti-giantin and Hoechst. As illustrated in Figure 3, 

the disseminated, poorly polarized morphology characteristic of T-cadherin over-expressing cells 

was induced in all transductants by IGF-1R inhibition, whereas the tight, compact morphology 

typical for T-cadherin silenced cells was induced in all transductants by EGFR inhibition. These 

data suggest that 1) EGFR and IGF-1R have opposite effects on DU145 phenotype, EGFR 

causing cell dissemination and IGF-1 on the contrary reverting cells to a more epithelial-like 

morphology; 2) T-cadherin effects on DU145 cell morphology indeed closely resemble changes 

caused by modulation of EGFR and IGF-1R pathway activity; and 3) the T-cadherin-upregulated 

phenotype is characteristic for cells with low IGF-1R or high EGFR activity, while the T-cadherin-

deficient phenotype corresponds to the morphology of cells displaying high IGF-1R or low EGFR 

activity. 

E Tcad+ sC shTcad 

control 

NVP-
AEW541 

gefitinib 

Figure 3. Inhibition of EGFR or IFGR-1R induces morphological interconversion on DU145 cells in 2D 

culture. 2x10
4 

DU145 transduced cells were seeded on coverslips coated with gelatin. Next day cells were 

subjected to IGF-IR or EGFR pharmacological inhibition for 2 days with the use of NVP-AEW541 (5 µM) or 

genitinib (1 µM) respectively, fixed with 4% PAF and stained with anti-giantin antibody (red) and Hoechst 

(blue). Images were captured with the use of an epifluorescence microscope. 
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SF 

EGF 

E Tcad+ sC shTcad 

Figure 4. EGF and IGF-1 exert differential effects on morphology of DU145 cells in 2D culture. 

DU145 transductants were seeded (2x10
4
 cells/well in 12-well plates) and allowed overnight attachment. 

Cells were then serum-deprived for 24h before further culture for 48h under serum-free conditions (SF) 

without or with inclusion of EGF (10ng/ml) or IGF-1 (10ng/ml). Morphology was examined at 48h by 

phase contrast microscopy. 

IGF-1 

T-cadherin expression levels modulate effects of EGF/IGF-1 on cell morphology.  

Next we examined the effects of EGF and IGF-1 stimulation on the morphology of the DU145 

transductants. For these experiments cells were subjected to a one day period of serum-

deprivation and then further cultured for 2 days either without or with inclusion of EGF or IGF. 

Morphology was examined by phase contrast microscopy (Fig. 4). In the presence of EGF cell 

clusters appeared more disorganized with many cells exhibiting a disseminated, poorly polarized 

morphology; this effect of EGF was evident for all transductants, albeit most prominent in shTcad 

cells. IGF-1, in contrast, enforced cell clustering and polarization at the borders of colonies, also an 

effect evident in all transductants. The effects of EGF and IGF-1 (Fig. 4) are in accordance with the 

respective effects of IGF-1R and EGFR inhibition (Fig. 3). Also, in accordance with inhibition 

studies these data support that in DU145 cells T-cadherin dually modulates growth factor receptor 

pathways: T-cadherin gain favors "asocial" disorganized cell phenotype typical for high EGFR and 

low IGF-1R activity, while T-cadherin silencing promotes "prosocial" epithelial-like morphology 

characterized by low EGFR and high IGF-1R activity.  

T-cadherin expression levels influence EGFR and IGF-1R phosphorylation status  
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Next we examined the effects of T-cadherin expression on EGFR and IGF-1R phosphorylation 

status. Experiments were performed both under serum-containing conditions without or with 

inclusion of EGFR or IGF-1R inhibitors and under serum-free conditions without or with inclusion of 

EGF or IGF-1 (Fig 5.). 

Immunoblot analysis of whole cell lysates revealed increased levels of pEGFR and pIGF-1R in 

shTcad cells under normal serum-containing culture conditions (Fig. 5A). Inhibition of EGFR 

(gefitnib) significantly decreased pEGFR and slightly increased pIGF-1R levels in all transductants. 

Inhibition of IGF-1R (NVP-AEW541) decreased pIGF-1R to an equivalent level in all transductants. 

Interestingly, IGF-1R inhibition also markedly decreased pEGFR levels. 

ShTcad cells also exhibited increased levels of pEGFR and pIGF-1R under serum free culture 

conditions (Fig. 5B). EGF and IGF stimulated phosphorylation of their cognate receptors in all 

transductants, with shTcad cells achieving the highest levels of pEGFR and pIGF-1R. Stimulation 

with IGF-1 also increased the levels of pEGFR, which is in accordance with the inhibitory effects of 

NVP-AEW541 on pEGFR under serum-containing culture conditions. 
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Figure 5. T-cadherin expression alters phosphorylation status of EGFR and IGF-1R. (A) DU145 

transductants were seeded (2 x10
5
 cells/well in 6-well plates) and allowed overnight attachment. 

Medium was then refreshed in all wells with or without inclusion of Gefitinib (1 μM) and NVP-AEW541 

(10 μM). Cells were lysed after 48h. (B) DU145 transductants were seeded (3 x10
5
 cells/well in 6-well 

plates) and allowed overnight attachment. Cells were serum-deprived for 24h, stimulated for 10 min 

with EGF (10ng/ml) or IGF-1 (10ng/ml) and then lysed. Lysates were immunoblotted for total and 

phosphorylated EGFR and IGF-1R with GAPDH as internal protein loading control. 
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Taken together these data suggest several interesting and somewhat unexpected conclusions.  

First, we have identified a completely novel aspect of IGF-1R pathway activity in DU145 cells. Most 

studies show that IGF-1 acts as a mitogen for prostate cancer cells and therefore would be 

expected to have a pro-oncogenic effect in prostate tumors. Our data, however, show that IGF-1 

may also be needed for differentiation of prostate cancer cells, promoting an epithelial-like 

phenotype and formation of organized cell clusters, while reduction of IGF-1R activity results in cell 

dissemination and loss of epithelial polarity (which is directly opposite to EGFR effects). This 

means that high IGF-1R activity in tumors could be beneficial through maintenance of a higher 

differentiation status, while the use of IGF-1R inhibitors might potentially present some risk due to 

promotion of tumor cell dissemination. Our observations may explain some controversial and as 

yet unexplained literature data demonstrating higher metastatic rates of prostate tumors in patients 

with low IGF-1 and/IGF-1R levels and activity. 

Second, our signaling data show that the relationship between activities of the two growth factor 

receptor pathways, T-cadherin expression and prostate cancer cell phenotype is not 

straightforward. Although T-cadherin loss results in enhanced phosphorylation of both EGFR and 

IGF-1R receptors, T-cadherin silenced cells exhibit a morphology that is typical for high IGF-1R 

and not high EGFR activity. The situation is further complicated by existence of a cross-talk 

between EGFR and IGF-1R (transactivation of the first pathway by the second, as shown by ligand 

activation or inhibitory signaling experiments), with T-cadherin being able to affect not only activity 

of each given receptor but their cross-talk as well. Our preliminary conclusion is that T-cadherin 

loss in prostate cancer cells shifts this delicate balance in favor of IGF-1R dominance thus 

promoting maintenance of epithelial-like differentiation status. 
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5. CONCLUSIONS  

 

Aberrant signal transduction is a major driving force in cancer progression. My dissertation has 

focused on functional role and molecular mechanisms of action of T-cadherin in cancer 

progression. SCC served as the principal cancer model. Ongoing studies use prostate carcinoma 

as an alternative model. The key findings are as follows: 

 

1) T-cadherin expression levels in SCC modulate cancer cell phenotype and invasive behavior.  

Immunohistochemical analysis of human cutaneous biopsies showed that a decrease or loss of T-

cadherin expression occurs in human cutaneous SCC tumors locally at the sites of tumor invasion, 

and not ubiquitously as described earlier. In vitro studies on SCC cells revealed that loss of T-

cadherin promoted cell elongation, motility and invasiveness, these being characteristics of the 

malignant phenotype. Functional effects of T-cadherin suggest involvement of signaling pathways 

in regulation of cytoskeleton and focal adhesion.  

  

2) T-cadherin expression levels in squamous cell carcinoma regulate EGFR pathway activity.  

We demonstrated that inhibition of EGFR activity in T-cadherin-deficient SCC cells resulted in 

reduction of their invasive capacity to a level comparable with control cells. This suggests that 

EGFR signaling pathway contributes to the enhanced invasive potential of cells with depleted level 

of T-cadherin. T-cadherin-deficient SCC cells were more responsive to EGF stimulation, manifest 

as enhanced ligand-induced EGFR phosphorylation, receptor internalization, cell retraction and 

motility. Over-expression of T-cadherin exhibited a converse blunted responsiveness to EGF.  

 

3) Regulation of EGFR activity by T-cadherin involves receptor sequestration within plasma 

membrane lipid raft domains. 

The enhanced EGFR pathway activation in T-cadherin deficient SCC cells was associated with 

decreased levels of EGFR in membrane lipid raft domains. Upregulated expression of T-cadherin 

resulted in accumulation of EGFR in lipid raft domains. Thereby, we suggest that T-cadherin 

suppresses EGFR activity by sequestering the receptor into lipid raft domains. 

 

4) Signaling molecules contributing toward T-cadherin-dependent effects on squamous cell 

carcinoma cell invasive behavior.  

We found that underlying molecular mechanisms of T-cadherin effects on cell retraction and 

motility involve β1 integrin activation status and the Rho family of small GTPases. T-cadherin- 

deficient SCC cells exhibited lower levels of the active conformation of β1 integrin with further 
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reduced activity levels in response to EGF stimulation. T-cadherin over-expressing cells exhibited 

increased levels of active β1 integrin. Rac1 and Cdc42 activity were reduced and RhoA activity 

was enhanced in T-cadherin deficient cells.  

 

5) T-cadherin regulates EGFR and IGF-1R activity and cross-talk in prostate cancer cells. 

Alterations of T-cadherin expression in DU145 prostate cancer cells exert profound effects on cell 

morphology. Gain of T-cadherin is associated with a poorly polarized, disseminated morphology 

whereas loss of T-cadherin promotes highly polarized and compact colony characteristics. The 

effects of T-cadherin on morphology are related to effects of T-cadherin on IGF-1R and EGFR 

pathway activities.  
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6. PERSPECTIVES 

 

The following analyses could be undertaken to elucidate molecular mechanisms underlying T-

cadherin-dependent modulatory effects on cell behavior and RTK activity in prostate cancer: 

(1) In vitro analysis: Effects of T-cadherin over-expression and silencing on tumor cell behavior in 

vitro, such as cell proliferation, invasion, migration, apoptosis and differentiation. Experiments on 

cell transductants could be performed either under basal growth conditions to estimate the impact 

of T-cadherin over-expression per se, or after stimulation with IGF-1 or EGF to determine RTK 

ligand dependence. Function blocking antibodies against IGF-1R (mAb 24-60), EGFR (cetuximab), 

EGFR tyrosine kinase inhibitors gefitinib/lapatinib or IGF-1R tyrosine kinase inhibitor NVP-AEW541 

could be variously included in the assays to study the impact of the IGF-1R and EGFR pathway 

involvement in T-cadherin effects on tumor cell behavior. 

(2) Human tissue microarray analysis: Evaluation of T-cadherin expression and distribution in 

human prostate carcinoma tissues using tissue microarray technology would help to determine 

whether and how alterations in T-cadherin expression are associated with clinico-pathological 

features of the tumors. 

(3) In vivo analysis: In vivo application of T-cadherin-overexpressing and T-cadherin-silenced cell 

transductants to murine tumor models such as the xenograft (implantation) and/or experimental 

metastasis (tail vein injection) models to validate modulatory effects of T-cadherin in tumor cell 

signaling pathways and behavior as established in vitro. In order to estimate the impact of IGF-1R 

or/and EGFR pathway in T-cadherin-dependent regulation of tumor growth and metastasis animals 

could be treated with specific receptor blocking antibodies or specific receptor tyrosine kinase 

inhibitors. 
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7. NOMENCLATURE 

 

A431   epidermoid carcinoma of skin 

BCC    basal cell carcinoma 

DU145   human prostate carcinoma 

EGF, EGFR  epidermal growth factor and its receptor, respectively 

EC    extracellular domain 

HaCaT   immortal human keratinocytes 

HCC   hepatocellular carcinoma 

ICC    Immunocytochemistry 

IGF-1, IGF-1R insulin like growth factor and its receptor, respectively 

LOH    loss of heterozygosity 

RTK    receptor tyrosine kinase 

SCC    squamous cell carcinoma 

WB    Western blot 
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