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1 ABSTRACT 

Familial adenomatous polyposis coli (FAP) is an autosomal dominant colorectal cancer 

predisposition syndrome caused by germline mutations in the APC gene. It is characterized 

by an increased risk for the development of both several internal cancers and benign skin 

tumors such as fibromas, lipomas, and epidermal cysts occurring with different frequencies 

early in life. The molecular mechanisms underlying these skin lesions are still poorly 

understood.  

In this study we aimed to clarify the underlying molecular mechanisms in the development 

of FAP-associated skin lesions. Such mechanisms were hypothesized to either follow the 

APC second hit model or to include other genes, possibly such independent of Wnt 

signaling. 

To this end we analyzed 9 fibromas, 3 lipomas, and 3 epidermal cysts from 14 FAP 

patients of 7 families with pathogenic APC germline mutations for somatic alterations by 

direct sequencing of the mutation cluster region (MCR), exon-overlapping cDNA analysis, 

and locus-specific marker analysis. Somatic changes were found in two skin lesions, one 

lipoma and one epidermal cyst. Both lesions displayed loss of heterozygosity (LOH) at APC 

marker locus D5S346. The epidermal cyst in addition carried a somatic mutation 

(c.4778delA) in the MCR of APC. These results suggest that somatic APC alterations may 

influence the development of FAP-associated lipomas and epidermal cysts.  

For the investigation of APC-independent processes we analyzed in total 5 fibromas, 6 

lipomas and 3 epidermal cysts compared to healthy skin of 13 FAP patients by whole 

genome expression analysis and confirmed targets of highest expression changes by 

qPCR. We show that genes mostly changed in fibromas and lipomas of FAP patients 

mainly function in cell proliferation processes. Therefore we suggest that FAP-associated 

cutaneous neoplasia might develop by the influence of activated proto-oncogenes and 

deactivated tumor suppressors similar to other tumors. We suppose that an invasive 

growth is prevented by increased expression of tumor suppressors in those benign 

neoplasms. In comparison to the general population expression results of FAP lipomas 

have also been compared to similar lesions of non-FAP individuals. Non-FAP lipomas tend 

to be mainly influenced by genes involved in lipid metabolism.  

In conclusion, we assume that FAP-associated skin lesions are mostly not caused by APC 

second hits. In contrast, we rather suppose Wnt independent mechanisms. In addition, we 

suggest that lipomas develop differentially in FAP patients and in the general population.  
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2 AIM OF THE THESIS 

The general aim of this study was to reveal new insights into the development of benign 

cutaneous neoplasms (fibromas, lipomas, and epidermal cysts) that are associated with 

FAP. Based on the second hit model we aimed to investigate FAP-associated skin lesions 

for APC second hit mutations as well as for major gene expression changes. Similar skin 

neoplasms could also occur in the general population. Therefore, we aimed to further 

investigate, whether such primary skin lesions are developed by similar mechanisms as 

FAP-associated ones. To this end we analyzed the FAP-associated skin lesions by two 

different approaches. 

The first approach based on the second hit model, which is known for colorectal cancer 

development in APC mutation carriers. Such somatic mutations are thought to indicate a 

role of Wnt signaling deregulation due to APC inactivation. This hypothesis was followed by 

several techniques. First, we examined the APC MCR of skin lesion samples for possible 

somatic mutations by direct sequencing. In a second step, skin lesion samples were 

investigated for aberrant transcripts that would indicate possible splice site mutations. And 

third, we analyzed skin lesion samples at a microsatellite locus 3’ of APC to reveal 

information of allelic loss of the wildtype APC allele. 

The second approach aimed to clarify possible effects of additional gene regulations on the 

development of benign skin lesions in FAP patients. For this purpose we aimed to 

investigate differential gene expression between skin lesion and healthy skin samples of 

FAP patients by microarray-based whole genome expression analysis. Furthermore, we 

examined those gene expression profiles for gene ontology and pathways. To reveal 

information about potential similar or different mechanisms of the same skin lesion in FAP 

patients compared to non-FAP individuals, we applied similar techniques on skin lesion 

samples derived from both groups.  
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3 INTRODUCTION  

3.1 Familial adenomatous polyposis (FAP)  

3.1.1 FAP disease and prevalence  

Familial adenomatous polyposis (FAP; OMIM #175100) is an autosomal dominantly 

inherited colorectal cancer syndrome caused by mutations in the APC gene (5q21-q22). 

The syndrome is characterized by the development of hundreds to thousands of 

adenomatous polyps in the colon that further could progress to colorectal cancer (CRC). 

Without surgical treatment CRC on average occurs by the age of 35-40 years1. To date, 

FAP is a well-known and well-documented disease. Written descriptions of “multiple 

colorectal polypoid lesions” reach back to 17212. The first comprehensive clinical 

characterization was done by Bussey in 1975, based on records of FAP families treated in 

the first polyposis registry at St. Marks Hospital in London UK3. Up to now, several 

polyposis registries have been established in Europe as well as worldwide, with the most 

important ones in Northern Europe, in the UK, US, and Japan1. Polyposis registries from 

Northern Europe estimated an annual incidence rate between 0.9 to 1.9 per million live 

births and a prevalence rate of 2 to 3 per 100 000 individuals. Relating to other CRC 

malignancies, FAP accounts for less than 1% of all hereditary and sporadic CRC 

diseases4. Approximately 5% of all CRC diseases cover inherited cancer syndromes of 

known genetic background and with well-described clinical features. FAP presents as the 

second-most common, well-characterized inherited CRC syndrome after Lynch syndrome, 

(prior denoted as hereditary non-polyposis colorectal cancer (HNPCC))5. Overall, inherited 

CRC diseases are categorized by their main expression of adenomatous (benign epithelial 

tissue tumors of glandular origin with the potential for dysplastic growth) or hamartomatous 

polyps (overgrowth of cells native to the area at which they normally occur6). Lynch 

syndrome, FAP and MUTHY-associated polyposis (MAP) are among the adenomatous 

polyposis diseases, whereas Peutz-Jeghers syndrome (PJS) and the juvenile polyposis 

syndrome mainly express hamartomatous polyps7. 

 

3.1.2 FAP, AFAP and MAP  

Regarding the severity of the colorectal polyposis, the disease is differentiated in a 

classical phenotype with more than 100 adenomas (classical FAP) and a lighter phenotype 

with less than 100 adenomas, latter referred to as attenuated familial adenomatous 

polyposis (AFAP; OMIM # 175100)8. Classical FAP may be also differentiated into the 

sparse or intermediate type with hundreds to thousands of adenomas and a profuse or 

severe type with more than 5000 adenomas9,10. AFAP presents with a delayed onset of 
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adenomatosis (20-25 years later) and CRC (15-20 years later) compared to classical FAP 

as well as an overall milder course of disease and less extracolonic features8. It is 

described to affect approximately 8% of investigated FAP families11. A third colorectal 

cancer syndrome that includes the development of APC-independent multiple 

adenomatous polyps is caused by biallelic mutations of the base excision repair gene 

MUTYH (1p34.1)12 and therefore named MUTYH-associated polyposis (MAP; OMIM 

#604933). MAP was found to account for up to 7.5% of APC-mutation negative 

adenomatous polyposis13. MAP patients generally present a milder phenotype with 10-100 

colorectal adenomas, starting at advanced age 14. 

 

3.1.3 Extracolonic manifestations of FAP  

In FAP patients, not only colorectal adenomas are observed but also various extracolonic 

manifestations, among others also such affecting the skin. More than 70% of FAP patients 

were found to present at least one extracolonic manifestation15. Most prominent 

extracolonic features are upper gastrointestinal tract polyps such as duodenal polyps16 and 

fundic gland polyps17, characteristic retinal fundus lesions (congenital hypertrophy of the 

retinal pigment epithelium (CHRPE)18 as well as desmoid tumors19). Other more rare 

features are thyroid carcinomas20 and hepatoblastoma21. 

Among the cutaneous manifestations are fibromas, lipomas, and epidermal cysts19,22. Such 

benign neoplasms of the skin are the hallmark of the present study and were previously 

investigated by our group22. In 1953 the triad of polyposis, osteomas, and skin lesions 

(fibromas, epidermal cysts, and desmoids) has initially been described as Gardner 

syndrome19. To date, upon having identified APC mutations as the underlying cause for 

both diseases, the term “Gardner syndrome” is still commonly used to define a clinical 

variant of FAP with prominent features at bones, teeth and skin1.  

In addition, two other FAP variants are known. Turcot syndrome23 relates tumors of the 

central nervous system, mostly medulloblastoma, to colorectal polyposis (FAP or Lynch 

syndrome). Hereditary desmoid disease24 associates APC germline mutations with the 

presence of multiple inherited desmoid tumors, whereas colorectal features only present 

scarcely or may lack completely. 
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3.2 Genetics of FAP  

3.2.1 The APC gene  

The adenomatous polyposis coli (APC; OMIM # 611731) gene is a tumor suppressor gene 

that was localized to the long arm of chromosome 5 (5q21-22) in 198725,26 and was further 

cloned and characterized in 199127-30. APC contains an 8538bp open reading frame and 

consists of 15 coding exons encoding a 312 kDa protein of 2843 amino acids31. The APC 

protein is expressed in a variety of normal human tissues in addition to the colorectal 

epithelium. In the skin, APC was described to mainly express in the stratum granulosum 

and stratum spinosum as well as diffusely in sebaceous glands, apocrine glands, and 

eccrine glands32. Apc knockout mice showed aberrant development of hair follicles, 

appendages, and cells requiring epidermal-mesenchymal interactions for their development 

therefore revealing the evidence for a major importance of APC for accurate development 

of normal skin and thymus33. Furthermore, APC was described to express in epithelia of 

normal oral mucosa and to a higher extend in oral squamous cell cancer. There it was 

suggested to be involved in oral carcinogenesis and malignant transformation34.  

In normal tissue several mRNA isoforms are known to occur due to alternative splicing35. 

The APC gene encodes a multifunctional protein involved in cell adhesion and migration, 

stabilization of the microtubule cytoskeleton, cell cycle regulation, and apoptosis36,37. The 

protein function in a scaffold complex of the canonical Wnt signaling pathway displaying an 

integral part in the degradation of β-catenin is one of its best examined functions. 

 

3.2.2 Wnt signaling and the APC gene  

Three different intracellular signaling pathways are known to exist, that are all activated by 

Wnt signaling molecules. The name Wnt resulted from a combination of the Drosophila 

gene Wingless (Wg), and the murine Int1, as both genes were discovered independently in 

those species. In humans, totally 19 Wnts have been described38. Such signaling 

molecules activate at least three types of intracellular signaling pathways that all branch off 

at the level of Dishevelled: the canonical or Wnt/β-catenin pathway, the planar polarity 

pathway, and the Wnt/Ca2+ pathway. The canonical or Wnt/β-catenin pathway is centered 

on β-catenin-mediated Wnt target transcription, as it also occurs in FAP. The planar polarity 

pathway regulates cell polarity by regulation of the cytoskeletal organization. And the 

Wnt/Ca2+ pathway is known to mediate intracellular Ca2+ increase, possibly resulting in 

antagonism of the Wnt/β-catenin pathway, as shown in Xenopus38,39. Those non-canonical 

Wnt pathways were described to function independently of β-catenin40. 
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Within the canonical Wnt signaling pathway APC functions as a scaffold protein in 

modulating the degradation of intracellular β-catenin36. Herein, APC constitutes the 

degradation complex together with axin/conductin, the serine/threonine kinases casein 

kinase 1 (CK1), and glycogen synthase kinase 3β (GSK3β). In unstimulated cells without 

bound Wnt on Frizzled receptor, CK1 phosphorylates β-catenin on a serine, priming it for 

further phosphorylation by GSK3β that also phosphorylates axin, activating it for efficient 

binding to APC and β-catenin in the destruction complex39,41,42. Bound β-catenin is 

phosphorylated and therefore marked for subsequent degradation by ubiquitylation in 

proteasomes. Upon binding of Wnt molecules to the Frizzled receptor and its co-receptor 

low-density lipoprotein-receptor-related protein LRP6 (or LRP5) Dishevelled (Dvl) is 

hyperphosphorylated and inactivates GSK3β activity. Furthermore, LRP6 directly interacts 

with axin and leads to its destabilization. Therefore, the formation of the destruction 

complex is impacted, and free β-catenin accumulates in the cytoplasm31,36. Β-catenin is 

then able to translocate into the nucleus where it acts as a co-activator in the transcription 

of various target genes. In the absence of β-catenin, transcription is inhibited by 

transcriptional co-repressors such as Groucho41. In the presence of nuclear β-catenin, this 

co-repressor is displaced by the association of β-catenin with several members of the T-cell 

factor (TCF) and lymphoid enhancing factor (LEF) family that finally stimulates the 

transcription of Wnt target genes (Figure 1)36. Main Wnt targets include the cell cycle 

protein cyclin-D1, the proto-oncogene c-myc, the gap junction protein connexin, and the 

metalloproteinase matrilysin36,43. 
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In the skin, Wnt signaling plays an important role in skin organogenesis and 

morphogenesis. There it is especially involved in the development of the dermis, epidermis, 

and the formation of hair follicles, but also in stem cell maintenance and wound healing40,44. 

Relating to skin tumors, melanomas have been reported to contain both, β-catenin as well 

as APC mutations39. In addition, expression of Wnt5a was described to possibly lead to 

increased melanoma progression45. Furthermore, desmoids and Gardner fibromas were 

associated with Wnt signaling due to mutations in β-catenin and APC. Furthermore, 

immunohistochemistry (IHC) studies revealed overexpression of Wnt target proteins (β-

catenin, cyclin-D1 and c-myc) indicating an aberrant Wnt activation46-48. For pilomatricomas 

(particular tumors of hair matrix cells) β-catenin activating mutations were described49,50. In 

experiments with transgenic mice activating β-catenin mutations were found to induce de 

novo hair morphogenesis and formation of hair follicle tumors. 

 

3.2.4 Functional domains of APC  

The multifunctional protein APC consists of different domains. Figure 2 illustrates the most 

important functional domains of APC. These domains facilitate the interaction of the APC 

protein with various protein partners, conducting several functions.  

Most important domains will be summarized starting from their localization at the amino 

terminus of APC. The oligomerization domain at the beginning of the protein (aa 6-57) 

consists of a heptad repeat structure and allows APC to form homo-dimers. The following 

armadillo region (aa 463-767) contains seven highly conserved repeats involved in the 

stabilization and motility of the actin cytoskeleton. Further downstream are three repeats of 

15-amino acids (aa 1020-1170) and seven repeats of 20-amino acids (aa 1265-2035) 

that both bind β-catenin (after phosphorylation by GSK3β). At least three 20-amino acid 

repeats are necessary for degradation of bound β-catenin. In the tumorigenic process, 

truncating mutations frequently delete all or most of the seven 20-amino acids repeats. 

Another motif located within the 20-amino acids repeats region are the three SAMP (Ser-

Ala-Met-Pro) repeats that bind axin and its homolog conductin. Axin itself contains binding 

sites for β-catenin and GSK3β to enable the establishment of the multi-protein destruction 

complex for β-catenin phosphorylation. The succeeding basic domain (aa 2200-2400; 

named after its large proportion of basic arginine and lysine residues) as well as the end-

binding protein domain (EB1 binding site; aa 2559-2771) bind microtubules whereas the 

latter also facilitates the interaction of APC with other cellular membrane structures. The C-

terminus of APC, the human disc large (HDLG) binding site (aa 2771-2843), forms 

complexes with the tumor suppressor HDLG and thus leads to a suppression of cell cycle 
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the APC gene, at the 5’52 and 3’ end of the gene as well as within the alternatively spliced 

region of exon 1253. 

Relating to the extracolonic manifestations, CHRPE as the most common extracolonic 

feature is very well localized by several investigators to cover codons 311-146551. 

However, our group recently suggested to extend the CHRPE-associated region to APC 

codons 148-204322. Desmoid tumors tend to cluster at the 3’ end of the gene (beyond 

1400) with a higher incidence and severe manifestation if the germline mutation is located 

between codons 1445 and 1580 (Figure 2)54-56. Genotype-phenotype correlations for other 

extracolonic manifestations are not well established. Multiple extracolonic manifestations 

tend to cluster beyond codon 140051. For particular cutaneous features such as fibromas, 

lipomas, and epidermal cysts, no consistent correlation with the APC genotype has been 

found. Such lesions rather evenly distribute throughout the APC gene15,22,57. 

 

3.3 First and second hits in APC  

3.3.1 APC germline mutations  

Germline APC mutations are seen in the majority of FAP patients. In classical FAP, APC 

germline mutations are usually identified in 90% of the cases by applying routine 

diagnostics as direct sequencing of the coding exons or deletion/duplication analysis with 

multiplex ligation-dependent probe amplification analysis (MLPA). In AFAP, germline 

mutations in APC or MUTYH could only be revealed in 20-50% of patients58. Totally up to 

about 25% of all APC mutations occur de novo59-61. In addition to routine diagnostics, cDNA 

analysis of the 15 coding exons was proposed to unravel otherwise undetected intronic 

mutations58. Furthermore, the today largely replaced protein-truncation test as a 

prescreening tool was proposed to readopt into the diagnostic repertoire. Its value could 

has especially been shown in the identification of mosaic mutations in apparently APC 

mutation negative FAP patients with de novo classical FAP62.  

To date, the Human Gene Mutation Database (HGMD®) describes totally 1158 different 

APC germline mutations (http://www.hgmd.cf.ac.uk/ac/gene.php?gene=APC). Most of 

these mutations are predicted to result in truncated proteins. The vast majority of these 

mutations present missense or nonsense mutations, frameshift mutations (small deletions 

and insertions) or large genomic deletions. Germline mutations are mainly scattered in the 

5’ half of the APC gene41 with mutational hot spots at codons 1061 and 130936 accounting 

for one third of all germline mutations63. 
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3.3.2 Somatic mutations and the mutation cluster region  

In accordance with Knudson’s two-hit model64,65 colorectal adenomas in FAP patients carry 

additional somatic mutations in APC. These APC mutations occur very early during 

colorectal tumorigenesis (see below). Most (around 60%) of these second hit mutations 

occur in the so-called mutations cluster region (MCR) covering codons 1286-1513 (Figure 

2) with two mutational hotspots at 1309 and 145063,66. 

 

3.3.3 First hit-second hit association in colorectal tumorigenesis  

It has further been refined, that the APC gene does not entirely follow the predicted 

Knudson’s two hit model, as Knudson’s hypothesis postulates two independent mutational 

events41. For APC the position and type of the somatic mutation was described to depend 

on the localization of the germline mutation67. Accordingly, mutations near codon 1300 are 

associated with allelic loss of the wildtype allele, whereas germline mutations at other 

regions of the APC gene mostly related to second hit mutations within the MCR leading to 

an APC truncation67,68. In most human colorectal adenomas, truncated APC proteins are 

identified, that retain only one or two 20-amino acids repeats, whereas three 20-amino 

acids repeats are needed for successful β-catenin degradation36. Therefore, somatic 

mutations are selected based on the growth advantage they provide to the tumor cell67,68. 

The dependence of first and second hits has reported to be more complex as indicated by 

recent work68-70. Results lead to the assumption that an ideal amount of residual APC 

signaling (β-catenin down-regulation/degradation) needs to exist for tumor formation and a 

“just-right” signaling model69 was established that was further refined to a less stringent 

“loose fit” model68. Excessive nuclear accumulation of β-catenin has in contrast been 

shown to induce apoptosis71. For desmoid tumors, second hit mutations were determined 

to be nonrandom but not just right neither72. Furthermore, the optimal level of β-catenin 

binding and degrading 20-amino acids repeats were found to differ between colorectal 

tumors of profuse, classical FAP and AFAP, as well as between colorectal and extracolonic 

tumors. This would suggest different mechanisms of tumorigenesis in various tissues of 

FAP patients10. 

 

3.3.4 The adenoma-carcinoma cascade  

Mutational inactivation or loss of APC were described to be the earliest event in the 

adenoma-carcinoma sequence. APC mutations are not only present in almost all FAP 

adenomas but also in about 85% of sporadic colorectal adenomas39. Inactivation of both 

alleles of APC in most intestinal tumors may be detected at an early stage of tumor 
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3.4.2.1 Gardner-associated fibromas  

Fibromas in general are benign tumors of fibrous tissue, deriving from mesenchymal origin 

that mainly consists of fibrous or connective tissue84. The most prominent fibroma in FAP 

patients is the accordingly-named Gardner fibroma (GAF). GAF is a benign soft tissue 

lesion of 1-10 cm size that has been included in the 2002 published WHO classification85. 

Histologically it is described to consist of thick haphazardly arranged collagen bundles with 

interspersed bland fibroblasts and a plaque-like growth pattern with infiltration and 

entrapment of surrounding structures85. GAFs mainly affect superficial and deep soft 

tissues of the paraspinal region and the back, but they have a wide anatomic distribution 

and therefore may also occur at the chest walI, flank, head, neck and the extremities46,85,86. 

More than 69% are known to be associated with an underlying FAP disease46.  

GAFs mostly occur early in life (more than 75% occur in the first decade of life) and they 

therefore often precede the development of colorectal adenomas. For this, GAFs were 

proposed as a sentinel event for the identification of FAP before intestinal symptoms 

arise86,87. Recently, a case of GAF in a 10-week old newborn was reported that was later 

identified as APC mutation carrier88.  

In approximately 50% GAFs are associated with the otherwise FAP-related desmoid 

tumors that present either after excision of GAFs or in a sequential pattern87. GAFs have 

therefore also been assigned as desmoid precursor lesions89. 

 

3.4.2.2 Other fibroma types occurring in FAP  

The occurrence of other fibroma types in FAP has extensively been discussed and a lot 

has been debated about their appropriate terminology. Several types of different fibromas 

were reported to occur in FAP patients besides the above described GAF46,85,88,90 or 

Gardner-associated fibroma86, such as nuchal fibroma (NF)91, non-nuchal type fibroma 

(NNTF)92, nuchal-type fibroma (NTF)93-95 or extra-nuchal type fibroma (ENTF)96. The term 

“nuchal-type” fibroma was initiated as nuchal fibromas were also described to occur at 

other sites of the body such as at the back, on the face and extremities93. One report of an 

extra-nuchal type fibroma described a nuchal type fibroma that occurred in a patient with 

attenuated FAP and MUTYH polymorphism due to repetitive trauma and collagen 

degeneration96. 

Relating to their appearance and histologic presentation, nuchal type fibromas (NTFs) are 

very similar, if not identical to GAFs. For this, GAF has also been proposed to be integrated 

as a subset of NTFs occurring at multiple sites85,86,97. But there also exist some major 

differences. GAFs rather present plaque-like with rubbery texture than as hard masses, 

and entrap nerves only rarely. GAFs are associated to a much higher extend with FAP 



   

INTRODUCTION
 

17 
 

(69% compared to 2% for NTFs). Furthermore, NTFs affect patients of considerable older 

age (between the third and firth decade of life) as well as predominantly women. GAFs in 

contrast occur very early in life and equally affect men and women. Besides the higher age, 

NTFs show in contrast to GAFs an association to diabetes mellitus type 2 (in up to 44% of 

patients with NTF). GAFs furthermore indicate a higher variety of different predilection sites 

as well as a higher size range, whereas they may be smaller than NTFs46,93. NTFs as well 

as GAFs are associated with the development of desmoids and are therefore referred to as 

desmoid precursor lesions85,86,96. 

 

3.4.2.3 Development of Gardner-associated fibromas  

Relating to the development of GAFs and NTFs, no data are available about their 

cytogenetic or molecular genetic aspects87. Recent studies46 reported positivity for CD34, 

and Wnt pathway proteins as β-catenin as well as its proto-oncogenic targets c-myc and 

cyclin-D1 in immunohistochemistry. Positivity for such Wnt pathway genes may therefore 

be indicative for an associated FAP disease46,96. Fibromas in FAP were positive for CD34 

and vimentin but revealed negative reactivity in immunohistochemical examinations for 

muscle actin molecules, desmin, S100, EMA, GFAP, cytokeratins, and CAM5.2 (Table 1). 

As surgery may trigger remission of soft tissue tumors or the development of desmoids, 

local trauma may play also an important role in the initiation of fibromas86,96,98. 

 

3.4.2.4 Desmoids  

Besides Gardner-associated fibromas, desmoids or aggressive fibromatosis states another 

benign neoplasm of mesenchymal origin affecting patients with Gardner syndrome (Figure 

4). Desmoids are frequently aggressive tumors of mesenchymal origin, which arise in 

musculoaponeurotic structures72. They are benign fibromatoses consisting out of well-

differentiated fibroblasts and characterized by a variable amount of collagen99. Desmoid 

tumors may arise sporadically or due to an inherited APC mutation (in Gardner syndrome 

or hereditary desmoid disease). In FAP, desmoids mainly occur in the mesentery whereas 

sporadic desmoids develop at various intra and extra abdominal sites87. The incidence of 

desmoids in FAP is approximately 850-fold higher than in otherwise healthy individuals. 

FAP-associated desmoids occur in approximately 10-25% of all FAP patients, whereas 

sporadic desmoids are very rare (0.03% of all neoplasms)72,100. Risk factors reported for 

desmoid development are surgical trauma, pregnancy, radiation, mutations in APC or 

CNNB1 (β-catenin), and preceding GAF87,98,101. Immunohistochemical examinations 

revealed positivity for smooth muscle actin, nuclear β-actin but no reactivity for CD34 in 
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contrast to GAFs. Other genetic features include lack of BCL2, RB1 and TP5387,101,102. 

Although non-malignant, desmoids present a major cause of morbidity and mortality among 

FAP patients due to their aggressive invasion into local structures and recurrence after 

local excision99. Same as GAF, desmoids may indicate the initial manifestation of FAP86. 

 

Table 1. Summary of immunohistochemical findings reported for Gardner-associated 
fibromas. 
lesion  
(no. investigated) 

positive reactivity for negative reactivity for study

GAF  
(10) 

CD34 (8/10) 
vimentin (1/10) 

smooth muscle actin  
muscle specific actin 
desmin  

Wehrli 200186 

GAF 
(25) 

β-catenin (16/25) 
cyclin D1 and c-myc (both: 25/25) 

 Coffin 200746 

GAF  
(1; patient 2) 

CD34  
vimentin 
 

smooth muscle actin 
muscle specific actin  
desmin 
S100 

Lanckohr 
201090 

NTF  
(10) 

vimentin smooth muscle actin 
muscle specific actin  
S100, EMA (epithelial membrane 
antigen) 
GFAP (glial fibrillary acidic protein) 

Michal 199993 

NNTF  
(1) 

vimentin Smooth muscle actin 
muscle specific actin  
desmin 
S100 
cytokeratin 

Michal 200092 

NTF+other 
fibroma 

CD34 (NTF) 
vimentin (NTF+other fibroma) 

CD34 (other fibroma) 
muscle specific actin  
desmin 
S100 
cytokeratins 
CAM5.2 

Michal 200497 

ENTF nuclear β-catenin  
cyclin D1  
CD99+ vimentin (spindle cells) 
CD34  
 

desmin 
EMA 
Ki 67 
S100 
smooth muscle actin 
smooth muscle myosin 

Linos 201196 

 

3.4.2.5 Lipomas  

Lipomas are benign neoplasias composed of mature white adipocytes originating from 

mesenchymal origin. Lipomas are the most common soft tissue tumors in the general 

population. The majority present as small (<5cm), painless masses in superficial tissue of 

trunk neck and extremities. They usually present in individuals aged 40-60 years and may 

be multiple in 5%. Lipomas occur more often in adipose individuals, but etiology is 

otherwise widely unknown103. Lipomas are known to be possibly associated with diseases 
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as familial multiple lipomatosis or the autosomal dominantly (PTEN) inherited Bannayan-

Riley-Ruvalcaba syndrome. In FAP, lipomas describe one of the extracolonic 

manifestations of Gardner syndrome104. 

Relating to their development, among lipomas several chromosomal aberrations are known 

involving particular regions on 12q13-15, 6q21-23 and 13q103. Furthermore, at molecular 

level several changes have been reported such as an affection of the high motility group 

gene HMGIC (equal HMGA2), the fusion of this gene with LPP (LIM family protein), and the 

involvement of the phosphatidic acid phosphatase PPAP2B in translocations103,105. 

Mutations in the tumor suppressor menin (MEN1) were further reported to cause 

deregulation of PPARγ and lead therefore to lipoma development106. An influence of Wnt 

signaling is present due to anti-adipogenic effects and an inhibition of white and brown 

adipose tissue by Wnt 10b107,108. Although lipomas in FAP patients are often seen (in 25-

50% of all FAP patients) and reported in several case reports, little is known about their 

proper development in association with the FAP disease. 

 

3.4.2.6 Epidermal cysts  

Epidermal cysts were described as the most common skin manifestation in FAP with a 

reported prevalence of 12-53%15,22,51,109. Besides Gardner syndrome, epidermal cysts may 

also occur associated with Gorlin syndrome or pachonychia congenita type 2110. Epidermal 

cysts, same as trichilemmal cysts, display a subtype of cysts of hair follicle origin78. They 

are keratin-filled epithelial-lined cysts and present as dermal or subcutaneous mobile 

nodules with a central punctum, that contains eosinophilic and keratinaceous debris. In 

sporadic cases epidermal cysts may occur at any site on the body surface. Epidermal cysts 

in FAP were for the first time extensively examined in 1975 and described to occur solitary 

or multiple and seldom large and disfiguring and to present before the initiation of intestinal 

symptoms109. Later on, FAP-associated epidermal cysts were reported to present with a 

clearly distinct pattern compared to sporadic epidermal cysts. Especially if they occur 

multiple, familial, in young patients and at unusual sites (e.g. limbs), they may be 

considered as a hallmark for Gardner syndrome78. Furthermore, in FAP epidermal cysts 

often present as mixtures of epidermal and trichilemmal cysts as well as 

pilomatricomas78,79. For this, they were found to be similar to follicular stem cells of the 

bulge area due to these particular features111.  

The major cause for the development in sporadic epidermal cysts is the plugging of 

pilosebaceous units. Furthermore, they may occur due to traumatic implantation of 

epidermal material into deeper tissue or due to proliferation of epidermal remnants along 
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epidermal fusion areas110. A particular etiology and pathogenesis of FAP-associated 

epidermal cysts has not been reported up to now. 

 

3.5 Therapy and interest of FAP-associated skin lesions  

Generally, therapy for all above mentioned cutaneous neoplasia is indicated for 

symptomatic cases or for cosmetic reasons. Especially surgery of desmoids is very 

controversial, as recurrences are frequent and often more aggressive76,78,98. For this, 

neoplasms as fibromas, lipomas and epidermal cysts are usually of little concern for the 

patients.  

Due to their early occurrence in childhood and their obligate preceding of intestinal 

symptoms they were recently investigated by our group as potential presymptomatic 

markers for especially de novo FAP mutation carriers. This study prospectively investigated 

the prevalence of particular skin lesions (fibromas, lipomas, and epidermal cysts) in 56 

confirmed adult APC mutations carriers compared to 116 healthy controls. Almost half of all 

examined FAP patients were found to present with at least one skin lesion, compared to 

one third of controls. Overall, only single or multiple lipomas as well as combined skin 

lesions were revealed to occur significantly more prevalent in FAP patients than in controls. 

In addition, lipomas were revealed to occur three times more often at a younger age (20-49 

years age range). Nevertheless, due to their low diagnostic sensitivity (7-26%) such skin 

lesions were further dismissed as possible presymptomatic markers for FAP22. Based on 

such results, the question was raised if such skin lesions are actually FAP-specific. 

The present work, in a second step, was supposed to deal with the basic understanding of 

the underlying molecular mechanisms of such skin neoplasms. This question was followed 

mainly for skin lesions occurring in FAP patients. However, this study could also reveal 

insights into the development of FAP lipomas compared to lipomas occurring in the general 

population. 
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4 MATERIAL AND METHODS  

4.1 FAP patients and samples  

The study included in total 18 skin biopsies (nine fibromas, six lipomas, and three 

epidermal cysts) that were taken from 16 FAP patients (63% males (10/16) and 37% 

females (6/16), mean age 55 years ranging from 26-75 years) (Table 2). These patients 

were members of one big Swiss cohort of FAP patients that have been clinically described 

before22,54,112. This large cohort included in total 56 adult FAP patients from 18 unrelated 

families, wherefrom 28 patients were members of one big family (family 1981) with 

germline mutation in exon 18n. Another 28 patients belonged to totally 17 unrelated 

families with germline mutations ranging from exon 7 to exon 18u. All 56 patients 

underwent whole-body examination with special regard to FAP-associated skin lesions by 

the same dermatologist, as well as ophthalmologic inspection to reveal the status of FAP-

specific ophthalmic fundus lesions (CHRPE) by the same ophthalmologist. Diagnosis of 

cutaneous lesions was based upon clinical findings by a clinically experienced 

dermatologist. From 16 of the totally 56 FAP patients, skin biopsies have been taken and 

were chosen to be further examined in the present study. These 16 FAP patients were 

members of eight unrelated families with confirmed germline mutations ranging from APC 

exon 7 to exon 18u. Seven patients belong to the big 1981 family (Figure 5) and another 

four patients indicated direct relatives within two families (Figure 6). Another five patients 

were members of independent families. 

Skin lesions have been excised by a 4mm punch from different parts of the body by the 

same dermatologist. Fibromas were mostly localized at the neck (56%, 5/9) but also at the 

back (22%, 2/9) or the retroauricular region (22%, 2/9). Lipomas were biopsied mostly from 

the arm (50%, 3/6) but also from the back, lumbar region and thigh (17% each, 1/6). The 

three epidermal cysts were localized at the axilla (33%, 1/3) or at the back (66%, 2/3). 

Photographs of examined skin lesions are illustrated in Figure 7. From all FAP patients, 

biopsies have also been taken from healthy skin, directly adjacent to the skin lesion, as well 

as blood samples. 

Properties of FAP patient and control samples that were used for analyses are listed in 

Table 2 and Table 3. Control samples were taken from healthy individuals, that neither had 

anamnestic evidence for FAP nor had a personal history of colorectal cancer, that were 

commonly consulting the surgical facility of our dermatology department. Four control skin 

samples of epidermal and dermal tissue were included (ED25, ED22, D21, D25) that were 

biopsied in addition next to the underlying neoplasm. Five other control samples included 

lipoma samples of otherwise healthy patients (non-FAP patients that were 60% males (3/5) 



     

MATERIAL AND METHODS
 

22 
 

and 40% females (2/5), with mean age of 52 years, ranging from 35-68 years). These 

lipoma samples were localized at the arm (60%, 3/5) or at the shoulder (20%, 1/5); one 

sample was a pooled sample of different lipomas localized at the arm, thorax and thigh 

(20%, 1/5). All control skin samples were also diagnosed based upon clinical findings by a 

dermatologist. Finally, two blood samples have been included (RNA1 and RNA4) that were 

also taken from otherwise healthy (non-FAP) individuals. From all individuals, written 

informed consent was obtained according to the guidelines of the Ethical Committee of 

Basel (EKBB), Switzerland (EK258/05 and EK15/08). 
 

Table 2. Properties of FAP patients and biopsies included in analyses. 

patient ID 
biopsy 
analyzed 

localization  sex age 
germline mutation 
nucleotide change 

germline mutation
amino acid change 

28 - 2008 fibroma neck female 71 c.1682_1683insA p.Lys561fs*19 

33 - 2008 fibroma neck female 26 c.5942delA p.Asn1981fsX62 

36 - 2008 fibroma retroauricular male 64 c.4778delA p.Lys1593Serfs*57 

41 - 2008 fibroma back male 46 c.2925_2926delAA p.Lys975fs*9 

43 - 2008 fibroma retroauricular female 70 c.5942delA p.Asn1981fs*62 

47 - 2008a 
fibroma  
lipoma 

neck 
lumbal 

male 46 c.531+2_531+3insT p.Arg141Ser*7 

02 - 2009 fibroma  back male 55 del ex 13-18 [?]b 

26 - 2009 fibroma  neck female 53 c.5942delA p.Asn1981fs*62 

30 – 2008a 
fibroma  
epidermal cyst 

neck 
upper back   

male 34 c.5942delA p.Asn1981fs*62 

29 - 2008 lipoma thigh  female 42 c.1682_1683insA p.Lys561fs*19 

37 - 2008 lipoma arm female 38 c.1370C>G p.Ser457* 

22 - 2009 lipoma arm male 66 c.5942delA p.Asn1981fs*62 

35 - 2009 lipoma back male 73 c.5942delA p.Asn1981fs*62 

55 - 2010 lipoma arm  male 75 c.531+2_531+3insT p.Arg141Ser*7 

21 - 2009 epidermal cyst axilla  male 65 c.5942delA p.Asn1981fs*62 

38 - 2009 epidermal cyst back male 50 c.7932_7935delTTAT p.Ile2644fs*7 
apatients 47-2008 and 30-2008 had two different skin lesions removed (fibroma and lipoma, fibroma and 
epidermal cyst, respectively); blarge submicroscopic deletion 
 

Table 3. Properties of control biopsies included in analyses.  

sample 
ID 

biopsy 
underlying skin 
lesion   

localization sex age 

ED25 healthy epidermis BCCa forehead n.a. n.a. 

ED22 healthy epidermis BCC n.a. n.a. n.a. 

D21 healthy dermis SCCb n.a. n.a n.a. 

D25 healthy dermis BCC forehead n.a n.a. 

40-2012  lipoma lipoma (same) 
arm, thorax, thigh 
(pooled) 

male 60 

43-2012  lipoma lipoma (same) arm male 42 

44-2012  lipoma lipoma (same) arm male 35 

2013-003  lipoma lipoma (same) arm female 68 

2013-014  lipoma lipoma (same) shoulder female 53 

RNA 1 blood control non-FAP     -  - n.a. n.a. 

RNA 4 blood control non-FAP     -  - n.a. n.a. 
aBCC: basal-cell carcinoma; bSCC: squamous-cell carcinoma; n.a.:  not available 
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4.2 Sample preparation  

Skin biopsies were manually separated by scalpel in their dermal and epidermal parts 

before nucleic acids were isolated. Importantly to remark is, that by this method it was not 

possible to totally exclude the presence of small amounts of dermis within the epidermal 

part. Dermis samples were supposed to be pure dermal. This separation was done to 

enable a specific application for the particular skin neoplasm. Therefore, relating to the 

origin of the specific skin lesion, we applied dermis samples for fibromas and epidermis 

samples for epidermal cysts. For lipomas either dermal (FAP patients) or lipoma lipid tissue 

(non-FAP lipoma controls) was applied, according to the particular type of lipoma biopsy. 

Directly after biopsies have been taken, fresh skin samples were put into RNAlater® 

(Ambion®, Carlsbad, CA) a RNA stabilization solution for short storage at 4-8°C before 

nucleic acids were isolated. 

 

4.3 Nucleic acid isolations 

For FAP patients, RNA and DNA were isolated from lesional and healthy skin biopsies as 

well as from blood. Control samples revealed only lesional and healthy skin biopsies. RNA 

was isolated from all fresh human skin biopsies using mirVana™ miRNA isolation kit 

according to the manufacturer`s instructions (Ambion®, Carlsbad, CA). RNA samples were 

treated by the TURBO DNA-free™ Kit (Ambion®, Carlsbad, CA) to remove possible DNA 

contaminations. The DNA was sequentially isolated using the remaining lysate from the 

RNA isolation following specifications of the TRI Reagent® DNA/protein isolation protocol 

(Ambion®, Carlsbad, CA). For FAP patients, DNA was also isolated from fresh blood 

samples (EDTA) by the salting-out method113. RNA control samples (RNA1 and RNA4) of 

leukocytes from two independent, healthy probands have been provided by Karl Heinimann 

(Research Group Human Genetics, Department of Biomedicine and Division of Medical 

Genetics, University Hospital Basel, Switzerland). These samples have been isolated using 

Trizol and Chloroform, followed by purification according to specification of the RNeasy® 

Plus Mini Kit (Quiagen, Germany). 
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4.4.2 APC cDNA analysis  

RNA samples were reverse transcribed by the Verso™ cDNA kit (Thermo Fisher Scientific, 

Waltham, MA) or by the Ovation® Pico WTA System (NuGEN Technologies, Inc., San 

Carlos, CA) according to manufacturers’ protocol. Analysis of APC cDNA was performed 

with six exon-overlapping PCR fragments covering the full length gene (Figure 8). Primers 

were designed with Primer 3114,115 and were received from Microsynth (Microsynth AG, 

Switzerland). Primer sequences are listed in Supplementary Table 4. PCR reactions were 

performed following specifications of the Taq PCR Core Kit (Qiagen, Germany). Amplified 

PCR products were separated on 2% agarose gels, and additional bands were sequenced 

directly after purification.  

 

4.4.3 Microsatellite analysis  

Microsatellite analysis was done using the dinucleotide marker D5S346 (localized 31.7kb 3’ 

of APC at chromosome position 5q22.2, Figure 9), and mononucleotide markers BAT25 

(intron 16 of c-kit oncogene) and BAT26 (intron 5 of MSH2 mismatch repair gene). Initially, 

blood samples of all FAP patients were checked for a heterozygous allele pattern of 

D5S346 before skin lesions were investigated. PCR reactions were performed with FAM- 

(D5S346, BAT26) or HEX-labeled (BAT25) primers (Supplementary Table 5). Reactions 

were following specifications of the Taq PCR Core Kit (Qiagen, Germany) with 

microsatellite standard cyling protocol: initial denaturation 94°C 2min, 10 cycles 94°C 15s, 

55°C 15s, 72°C 30s, another 20 cycles 89°C 15s 55°C 15s, and 72°C 30s, and a final 

extension step 72°C 10min. Primers for D5S346 were designed by Primer 3 software and 

received by Microsynth (Microsynth AG, Switzerland), primers for BAT25 and BAT26 were 

kindly provided by Karl Heinimann (Research Group Human Genetics, Department of 

Biomedicine and Division of Medical Genetics, University Hospital Basel, Switzerland). For 

fragment separation, PCR products with standard dye GeneScan™-500 ROX™ (Applied 

Biosystems, Foster City, CA) were loaded on an ABI PRISM® 310 Genetic Analyzer 

(Applied Biosystems, Foster City, CA) following standard protocol. Fragment patterns were 

analyzed and illustrated using GeneMarker® software (Softgenetics®, State College, PA). 

Loss of heterozygosity (LOH) was determined by calculating the ratio between allele peak 

areas in lesional and healthy tissue. A reduction of >50% in relative intensity of one allele 

was regarded as LOH116. 
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Quantitative real time PCR (qPCR) was run for all five paired FAP patients (28-2008, 30-

2008, 41-2008, 47-2008, 02-2009). The healthy skin sample of 28-2008, not usable for 

calculation of microarray data was assumed to be suitable for qPCR analysis due to fine 

RNA quality (RIN: 7.3). The second group considered gene expression differences 

between six lipoma and five healthy dermis samples of totally six FAP patients. For 

microarray runs, paired lipoma and healthy samples were included for five FAP patients 

together with the lipoma sample of patient 29-2008. The healthy sample of 29-2008 was 

not included in neither of the two expression analyses as a pure dermis sample was not 

available. qPCR runs focused on the five paired lipoma and healthy samples . In the third 

group, gene expression of the same six FAP lipoma samples were compared to three 

lipoma samples revealed from non-FAP individuals (40-2012, 43-2012, 44-2012). qPCR 

runs on FAP vs. non-FAP lipoma samples were based upon highest changed targets 

revealed for group 2 (FAP lipoma vs. FAP healthy). These runs included two additional 

non-FAP lipoma samples (2013-003, 2013-014) that have not been received until later 

during the study. Lipoma sample 29-2008 could not be included for qPCR analyses due to 

lack of material. Important to mention is that the type of lipoma biopsy tissue derived from 

FAP patients compared to such gained from non-FAP patients differed from each other. 

Lipomas from FAP patients were mostly dermis isolates whereas lipoma samples from 

non-FAP individuals were isolated from pure lipid tissue (pure lipoma). This observation 

leads to the suggestion that different lipoma types exist in FAP and non-FAP individuals. 

The last group related to differential gene expression between three epidermal cyst and 

three healthy epidermis samples of totally four different FAP patients. For microarray runs, 

paired lesional and healthy samples could be included for two FAP patients (30-2008, 21-

2009) together with the epidermal cyst of 38-2009. The healthy sample of 38-2009 was 

excluded due to differing QA/QC histogram profile compared to the other samples. For this, 

another suitable healthy sample was additionally included revealed from an independent 

FAP patient (26-2009). For this group no qPCR runs were performed. 
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Table 4. Patient samples applied for gene expression analyses. Patient samples selected for 
calculations of differential gene expression between lesional and healthy skin of FAP patients are 
illustrated in the following table. Calculations on differential gene expression between benign skin 
tumors and healthy were done for 4 different groups: 1. fibroma vs. healthy dermis (all FAP), 2. 
lipoma vs. healthy dermis (all FAP) 3. lipoma from FAP patients vs. lipoma from non-FAP controls 
and 4. epidermal cyst vs. healthy epidermis (all FAP). Arrays were determined to be suitable for 
analyses considering QA/QC histograms. Samples excluded due to differing histograms are marked 
in red. Samples indicated in grey were only applied for either microarray or qPCR runs (see text). 
Runs relating to fibroma and lipoma samples, applied samples isolated from pure dermal tissue (or 
pure lipid tissue for lipoma controls), whereas runs relating to epidermal cyst samples applied 
samples isolated from epidermis. 

1. FAP fibroma samples FAP healthy dermis samples 

28-2008 fibroma dermis 28-2008 healthy dermis* 

30-2008 fibroma dermis 30-2008 healthy dermis 

41-2008 fibroma dermis 41-2008 healthy dermis 

47-2008 fibroma dermis 47-2008 healthy dermis 

02-2009 fibroma dermis 02-2009 healthy dermis 

 - 22-2009 healthy dermis 

 35-2009 healthy dermis 
 

2. FAP lipoma samples FAP healthy dermis samples 

29-2008 lipoma dermis  - 

37-2008 lipoma dermis 37-2008 healthy dermis 

47-2008 lipoma dermis 47-2008 healthy dermis 

22-2009 lipoma dermis 22-2009 healthy dermis 

35-2009 lipoma dermis 35-2009 healthy dermis 

55-2010 lipoma dermis 55-2010 healthy dermis 
 

3. FAP lipoma samples non-FAP lipoma samples 

29-2008 lipoma dermis   40-2012 lipoma  

37-2008 lipoma dermis   43-2012 lipoma 

47-2008 lipoma dermis   44-2012 lipoma  

22-2009 lipoma dermis 2013-003 lipoma 

35-2009 lipoma dermis 2013-014 lipoma 

55-2010 lipoma dermis  
 

4. FAP epidermal cyst samples FAP healthy epidermis samples 

30-2008 EC epidermis 30-2008 healthy epidermis 

21-2009 EC epidermis 21-2009 healthy epidermis 

38-2009 EC epidermis 38-2009 healthy epidermis 

- 26-2009 healthy epidermis 
*28-2008 healthy was included in qPCR runs (fine bioanalyzer profile with RIN: 7.3) 
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4.5.2 Whole genome expression analysis  

4.5.2.1 RNA sample preparation and hybridization to Affymetrix microarrays  

Isolated RNA samples were quantitatively measured by the Qubit™ RNA Assay with the 

Qubit® 2.0 Fluorometer (Life TechnologiesTM, Carlsbad, CA) according to manufacturer’s 

protocol. RNA quality was determined using Agilent RNA 6000 Pico Kit running on the 

Agilent 2100 Bioanalyzer (Agilent Technologies, Santa Clara, CA). Integrity of the RNA was 

visualized by the ratio of the ribosomal 18S and 28S subunits and determined by the RNA 

integrity number (RIN). Generally RIN numbers of 7 and higher and/or acceptable 

electrophoretic trace were determined to be adequate for array load. However, also some 

RNA samples of lower RIN numbers were included and were later specially considered in 

array integrated quality check (QA/QC histogram).  

RNA samples were each amplified and reverse transcribed with starting amounts of 30ng 

by the Ovation Pico WTA System V1 or V2 (NuGEN Technologies, Inc., San Carlos, CA) 

reaching final concentrations of around 400ng/ul. Complementary DNA was biotinylated 

using amounts of 4.5ug cDNA each, by the Encore™ Biotin Module. Resulting biotin 

labeled cRNA fragments were hybridized to the GeneChip® Human Gene 1.0 ST or 2.0 ST 

Array (Affymetrix Ltd., UK) on the GeneChip® Hybridization Oven 645 (Affymetrix Ltd., UK). 

Unspecific fragments were removed by washing off the arrays. Arrays were stained by 

streptavidin-phycoerythrin (SAPE) and biotinylated anti-streptavidin antibody. Washing and 

staining operations were performed on the GeneChip® Fluidics Station 450 (Affymetrix Ltd., 

UK). Labeling was further done with a SAPE (StreptAvidin PhycoErythrine) complex that 

binds to the biotin molecules. Arrays were scanned on a GeneChip® Scanner 3000 7G 

(Affymetrix Ltd., UK). An overview of the expression assay process as well as an image of 

the particular Affymetrix GeneChips® which were applied in the present study may be seen 

in Figure 10. These arrays are synthetic oligonucleotide microarrays in which DNA probes 

(applying only perfect match (PM) probes) with lengths of 25bp (25-mer probes) are 

produced by photolithographic synthesis on a silica substrate. They cover the whole human 

transcript with totally over 36 000 and 40 000 RefSeq transcripts for the HG 1.0 ST, and 

HG 2.0 ST GeneChip®, respectively117.  

All experiments have been supported by Philippe Demougin from the Life Sciences 

Training Facility Division of Molecular Psychology at the Biozentrum of the University of 

Basel. 
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4.5.2.2 Microarray data analysis  

The Affymetrix GeneChip® CEL data files were processed applying Partek® Genomics 

Suite™ (Partek Inc., St. Louis, MO). For normalization of the raw data, the Robust Multi-

Array Averaging (RMA) method was applied. RMA performs background correction only on 

probe intensities of perfect match (PM) probes followed by quantile normalization and 

multichip summarization, a summarization at the probe set level. Background correction 

aims to adjust for optical background noise and for unspecific binding (intensity not related 

to hybridization). For this, it applies the median intensity of specific background probes to 

estimate the background signal for each probe set. Quantile normalization was used to 

correct for systematic array differences (non-biological variation) within and between 

arrays. This method adjusts the probe level intensities in a way that they are identically 

distributed for all arrays. For this, it forces the distribution of the PM values to be the same 

for every array in an experiment118,119. Quality assessment of the gene chips was done 

with Partek® Genomic Suite™ by means of three different graphical representations. First, 

the scanned pseudo array image was inspected to identify any low-quality arrays 

(artefacts) or outliers. In a second step, array normalization was checked by observing box 

plots that represent the array intensity distribution before and after normalization. And last, 

a histogram plot was inspected, that shows the distribution of gene intensities across all 

samples and the distribution of the array intensities across all genes. Latter was also used 

to identify any outliers. As a first complex visualization overview of the final chip data in 

relation to each other and in relation to the whole human genome, we applied Principal 

components analysis (PCA) scatter plot. This exploratory multivariate statistical technique 

for simplifying complex data reduces dimensionality by performing a covariance analysis 

between factors. PCA “summarizes” overall data and is used to uncover unknown trends in 

gene expression data (to identify predominant gene expression patterns) and to explore 

correlations between samples120. Calculations of DEGs between benign skin lesion and 

healthy skin were run in different groups, separating the particular neoplasms, namely 

fibromas, lipomas and epidermal cysts as can be seen in Table 4. Differential gene 

expression was assessed by analysis of variance (2-way ANOVA) applying methods of 

moments for balanced data sets of same size (epidermal cyst) and restricted maximum 

likelihood (REML) for unbalanced data sets with different sample sizes in the lesional and 

healthy group (fibroma, lipoma). ANOVA is a multivariate statistic tool, that calculates the 

overall variability of a multi-group experiment by employing multiple estimates of a 

population’s variance. For each group, two estimates of variance are taken, namely the 

standard deviation of each group and the variability between means of each group. 

Probability values are then calculated by deviding the population variance estimate of the 
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means by the population variance estimate of the standard deviations121,122. The False 

discovery rate (FDR) indicates an additional multiple comparison correction for multi-

hypotesis testing analyses such as microarray experiments. FDR is generally 

recommended to be of at least 0.1, indicating a false positive rate of 10%123,124. Fisher’s 

Least Significant Difference (LSD) was used as a linear contrast method, doing pairwise 

comparisons of the means, for calculation of the levels in gene expression difference (-fold 

changes) between lesional and healthy skin samples. Based on these data, gene lists are 

established for the different groups by setting a minimum (FDR)-unadjusted p-value <0.05 

and a minimum -fold change of at least 1.5. For further data processing, stringency of 

significance cut-offs and -fold changes were gradually increased. Established gene lists 

were analyzed in terms of hierarchical clustering by Partek® Genomic Suite™. Gene 

ontology (GO) and pathway analyses on significant DEGs were done with the Database 

for Annotation, Visualization and Integrated Discovery (DAVID) v6.7125 and Ingenuity 

pathway analysis software (IPA®; Ingenuity Systems, Inc.; Redwood City, CA). These 

analyses were used to validate the received data regarding their biological relevance. 
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4.5.3 Reverse transcription quantitative PCR (qPCR) analysis  

4.5.3.1 Sample preparation and qPCR run setup  

Selected RNA samples for fibroma, lipoma and corresponding healthy skin samples were 

reverse transcribed by the Verso™ cDNA kit (Thermo Fisher Scientific, Waltham, MA) 

using equal amounts of 180ng RNA per 20μl reaction. qPCR was run with SYBR® green 

chemistry following specifications of the Power SYBR® Green PCR Master Mix (Life 

TechnologiesTM, Carlsbad, CA). For each reaction, 10μl 2x Power SYBR® Green PCR 

Master Mix were mixed with 1ul 5uM primer dilutions (250nM final primer concentration), 

and 1ul of the respective cDNA sample solution added with deionized water ad 20μl total 

reaction. Three technical replicates and one negative control with water instead of template 

cDNA were applied for each target. Reactions were run on MicroAmp® Optical 96-Well 

Reaction Plates (Life TechnologiesTM, Carlsbad, CA). qPCR reactions were run on the ABI 

7500 Fast Real‐time PCR System (Life TechnologiesTM, Carlsbad, CA) applying convenient 

cycle conditions of the system: 95°C preheating for 10min to activate polymerase, followed 

by 40 cycles of sample denaturation at 95°C for 15s for annealing and elongation at 60°C 

for 1min. At the end of every run, a dissociation-curve was established to detect possible 

unspecifics products by recording the decrease in fluorescence of the SYBR® Green dye 

due to the dissociation of double stranded DNA during melting.  

 

4.5.3.2 Standard curve reactions for primer establishment  

Primers for targets and house keeping genes (HKGs) were designed by Primer 3 software 

and NCBI Primer-BLAST based on human mRNA sequences (Table 5, Table 6). To 

prevent amplification of genomic DNA, primers were designed to overlap exon-intron 

junctions whenever possible. Primers were received by Microsynth (Microsynth AG, 

Switzerland). To check for primer efficiency and presence of unspecific products, standard 

curves were initially established for each target. For this, five dilutions (1:2) of pooled 

control samples with cDNA amounts of 0.056ng, 1.125ng, 2.25ng, 4.5ng and 9ng were 

applied. Efficiency for each target was calculated by means of linear regression using ABI 

7500 software v.2.0.6 (Life TechnologiesTM, Carlsbad, CA). Primer concentrations were 

calibrated and set to an optimal concentration of 250nM per reaction. As control samples, 

pooled samples consisting of equal amounts of dermis controls D21 and D25, or out of the 

three non-FAP lipoma controls 43-2012, 44-2012, 2013-003 (Table 3) were applied to 

establish the fibroma runs or the lipoma runs, respectively. 
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Table 5. Properties of established qPCR primer sets for fibroma qPCR runs. Primers for 
validation of selected mRNA targets for FAP fibroma vs. healthy dermis, with target IDs colored in 
black (HKGs), red (expected up-regulated targets) or blue (expected down-regulated targets). 
Primers were designed to overlap exon-intron junctions whenever possible. CT values at threshold 
0.2 were applied for further calculation. Efficiency was calculated by means of linear regression 
based on standard curve results. R2 values refer to the target specific stability. Values of at least 
0.95 were determined as acceptable. CHL1 was accepted despite lower R2 value (stable qPCR 
runs, nice melting curves). 
gene ID type product 

size 
primer no 
(fwd/rev) 

exon overlap threshold primer 
conc 

R2 efficency 
(%) 

HPRT1 HKG 63 279/280 no (ex 3) 0.2 250nM 0.996 103 

TBP HKG 57 281/282 no (ex 1) 0.2 250nM 0.99 99.27 

GAPDH HKG 60 273/274 yes (ex 5-6) 0.2 250nM 0.995 87.52 

GUSB HKG 81 31/32 yes (ex 11-12) 0.2 250nM 0.971 108 

S100B target 86 463/464 no (ex 3) 0.2 250nM 0.988 113 

CDH19 target 90 479/480 yes 0.2 250nM 0.952 93.31 

HMCN1 target 78 495/496 yes (ex 19-20) 0.2 250nM 0.996 100.5 

CHL1 target 125 483/484 yes (ex 14-15) 0.2 250nM 0.898 106.08 

SERPINE2 target 130 485/486 yes (ex 8-9) 0.2 250nM 0.957 109 

SPRR2E target 126 563/564 no (ex 2) 0.2 250nM 0.995 100.345 

CST6 target 108 461/462 yes (ex 1-2) 0.2 250nM 0.996 110 

SPINK5 target 63 465/466 no (ex 1) 0.2 250nM 0.986 99.64 

CARD18 target 74 487/488 yes (ex 2-3) 0.2 250nM 0.996 91.3 

ABHD5 target 95 489/490 yes 0.2 250nM 0.998 92.86 

CLDN1 target 93 497/498 yes (ex 1-2) 0.2 250nM 0.99 101.6 

DSP target 120 493/494 yes (ex 13-14) 0.2 250nM 0.981 127 
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Table 6. Properties of established qPCR primer sets for lipoma qPCR runs. Primer IDs are 
colored in black (HKG) or red (expected up-regulated targets). Primers were designed to overlap 
exon-intron junctions whenever possible. CT values at threshold 1 were applied for further 
calculation. SLPI was separately calculated for threshold 0.2 (with HKGs set accordingly to threshold 
0.2). Efficiency was calculated by means of linear regression based on standard curve results. R2 

values refer to the target specific stability. Values of at least 0.95 were determined as acceptable. 
gene ID type product 

size 
primer no 
(fwd/rev) 

exon overlap threshold primer 
conc 

R2 efficency 
(%) 

HPRT1 HKG 63 279/280 no (ex 3) 1 250nM 0.995 99.536 

GAPDH HKG 60 273/274 ex 5-6 1 250nM 0.998 94.171 

GUSB HKG 81 31/32 ex 11-12 1 250nM 1 97.109 

LRP10 HKG 81 539/540 ex 6-7 1 250nM 0.999 98.565 

CLN3 HKG 148 557/558 ex 14-15 1 250nM 0.996 101.47 

NELFB HKG 114 543/544 ex 9-10 1 250nM 0.996 93.059 

TMEM47  target 122 505/506 ex 2-3 1 250nM 0.988 100.504 

RBP7 target 118 507/508 ex 1-2 1 250nM 0.988 100.983 

DDX5 target 77 509/510 ex 12-13 1 250nM 0.995 100.957 

MXRA5 target 125 511/512 ex 2-3 1 250nM 0.996 98.181 

FABP4 target 95 513/514 ex 3-4 1 250nM 0.991 104.142 

SFRP2 target 85 515/516 ex 1-2 1 250nM 0.998 107.184 

SHOC2 target 129 547/548 ex 7-8 1 250nM 0.996 120.2 

HIST1H1C target 109 523/524 ex 1 1 250nM 0.993 84.405 

UBE2R2 target 116 525/526 ex 1-2 1 250nM 0.994 113.146 

SMARCA1 target 126 529/530 ex 17-18 1 250nM 0.985 112.681 

SLPI target 577/578 577/578 ex 1-2 0.2* 250nM 0.969 93.31 

*SLPI was separately calculated for threshold 0.2 (calculation and normalization with HKGs set accordingly to 
threshold 0.2). 
 

  



     

MATERIAL AND METHODS
 

39 
 

4.5.3.3 Calculation of relative gene expression applying qbasePLUS software  

For accurate normalization of the qPCR runs qbasePLUS software (Biogazelle, Belgium) 

was applied. This software uses a generalized model of the delta-delta-CT approach that 

enables normalization of relative quantities with multiple reference genes and gene specific 

amplification efficiencies. Ideal housekeeping genes (HKGs) were selected based on their 

stability M-values, the average pairwise variation of a particular reference gene with all 

other reference genes. As the lower the M-values, the more stable the reference gene 

stability; housekeepig genes with higher stability M-values were subsequently excluded. 

Another stability measure, the coefficient of variation of the normalized reference gene 

expression levels (CV) was used to identifiy the ideal number of reference genes for 

normalization. For calculation of normalized gene expression values, qbasePLUS first 

calculated average quantity values of a sample for a given target across all samples for 

that given target (relative quantities, RQ) followed by normalization to the selected HKGs 

(calibrated normalized relative quantities, CNRQ)126. Those CNRQ values were illustrated 

as lesional relative to healthy samples and were further statistically evaluated using 

GraphPad Prism® software (GraphPad Software Inc., La Jolla, CA). Statistical analysis of 

differential regulation of target genes was done on the one hand between paired lesional 

and healthy samples of FAP patients by applying a 2-way ANOVA (fibroma group). On the 

other hand by applying Wilcoxon rank sum test, for unpaired samples to assess statistical 

significance for differentially regulated targets in FAP lipoma vs. FAP healthy skin and in 

FAP lipoma vs. control lipoma. ANOVA and Wilcoxon rank sum test were calculated based 

on sample means or medians, respectively. Wilcoxon rank sum test assumes non-

parametric distribution of the expression data. Data are expressed as means (ANOVA) or 

medians (Wilcoxon rank sum test) and standard deviation. 
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5 RESULTS  

5.1 APC second hit mutation analysis on skin biopsies of FAP patients  

The survey of 15 FAP-associated skin lesions from confirmed APC mutation carriers for 

somatic alterations in APC revealed changes in two (13.3%) samples (Table 7). Bi-

directional Sanger sequencing identified a heterozygous frameshift mutation in the 

epidermal cyst sample of patient 30-2008. This epidermal cyst sample as well as the 

lipoma of 29-2008, revealed both LOH at microsatellite marker D5S346 located close to 

APC as well as novel alleles for D5S346 indicating microsatellite instability (MSI).  

Table 7. Overview of examined FAP patients, skin lesions, and observed somatic second hits. 
Somatic changes (including mutations in the MCR and microsatellite instability for D5S346) as well 
as the SNP rs41115 (c.4479G>A) are shown in the last column on the right with same results for 
skin and leukocytes, if not assigned differently. The tissue samples with the identified second hits 
are accentuated in bold. 
patient 
ID 

skin biopsy 
analyzed 

sex age APC germline mutation 
 

SNP rs41115
somatic second hit 

28-2008 fibroma female 71 c.1682_1683insA p.Lys561fs*19 SNP heterozygous 

33-2008 fibroma female 26 c.5942delA p.Asn1981fsX62 SNP heterozygous 

36-2008 fibroma male 64 c.4778delA p.Lys1593Serfs*57 SNP homozygous A 

41-2008 fibroma male 46 c.2925_2926delAA p.Lys975fs*9 SNP n/a 

43-2008 fibroma female 70 c.5942delA p.Asn1981fs*62 SNP n/a 

47-2008 fibroma male 46 c.531+2_531+3insT p.Arg141Ser*7 SNP heterozygous 

02-2009 fibroma male 55 del ex 13-18 [?]a SNP n/a 

26-2009 fibroma female 53 c.5942delA p.Asn1981fs*62 SNP heterozygous 

30-2008 fibroma male 34 c.5942delA p.Asn1981fs*62 
SNP heterozygous/ 
homozygous Gb 

30-2008 epidermal cyst male 34 c.5942delA p.Asn1981fs*62 

SNP heterozygous/ 
homozygous Gb  
second hit c.4778delA 
MSI + LOH for D5S346 

21-2009 epidermal cyst male 65 c.5942delA p.Asn1981fs*62 SNP heterozygous 

38-2009 epidermal cyst male 50 c.7932_7935delTTAT p.Ile2644fs*7 SNP homozygous G 

29-2008 lipoma female 42 c.1682_1683insA p.Lys561fs*19 
SNP heterozygous 
MSI + LOH for D5S346 

22-2009 lipoma male 66 c.5942delA p.Asn1981fs*62 SNP homozygous G 

35-2009 lipoma male 73 c.5942delA p.Asn1981fs*62 SNP heterozygous 
alarge submicroscopic deletion; bpolymorphism difference in patient 30-2008 for SNP rs41115: SNP 
heterozygous in cutaneous tissue (fibroma, epidermal cyst, healthy skin), and SNP homozygous G in 
leukocytes. 

 

5.1.1 Bi-directional sequencing of the mutation cluster region of APC  

For each skin biopsy (benign neoplasms and healthy skin) from FAP patients, particular 

frameshift germline mutation was confirmed by sequencing of the mutated region of the 

APC gene. Sanger sequencing of the MCR on 13 FAP skin lesions revealed no mutation in 

sections f-h (codons 1139-1499) of exon 18. In section i (codons 1471-1640), we identified 
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5.1.2 Exon-overlapping analysis revealed several APC isoforms in skin  

Transcript analysis of APC should result in six fragments spanning the total cDNA. For all 

15 included skin lesion samples (nine fibromas, three lipomas, and three epidermal cysts) 

in total five fragments with expected full-length could be identified (Table 8, Figure 13 to 

Figure 18). In place of the first expected fragment, covering exons 1-4 (626bp), we 

identified two smaller products generated by deletion of exons 2 and 3, and additionally of 

the 3’ part of exon 1 (Figure 13). In addition, eight further alternative products were 

detected with six of them for all samples analyzed and two of them for a particular patient 

due to his germline mutation (Figure 14 and Figure 15), resulting from alternative splicing. 

Most of these alternatively spliced products (6/10) originated from deletions of parts of or 

entire exons whereas a minority (3/10) resulted from an insertion. Another product arose 

from the combination of the insertion and deletion also identified independently in two other 

products for fragment 4 (Figure 16D).  

 

Table 8. Transcripts resulting from APC cDNA analysis. 

frag 
ment 

APC 
region 
exons 

expected 
transcript 

splice 
products 

caused by reference 

1 1-4 626bpa 451bp 
218bp 
 

deletion exons 2 and 3  
deletion ex1 (233bp 3’), ex 2 and 3 

Thliveris et al, 1994128 
Thliveris et al, 1994128 

2 4-8 609bp 686bp 
500bpb 

insertion exon 4A  
deletion exon 7  
 

De Rosa et al, 2007129 
Neklason et al, 2004130 

3 6-11 629bp 520bpb deletion exon 7 
 

Neklason et al, 2004130 

4 10-14 666bp 720bp 
 
420bp 
 
363bp 

insertion exon 13A 
 
insertion exon 13A  
+ deleted 303bp of 5’ exon 12  
deletion 303bp of 5’ ex 12  

Sulekova and Ballhausen, 
1995131; Xia et al, 1995132 
Sulekova et al, 1995133 
 
Groden et al, 199127 

5 13-17 506bp 560bp insertion exon 13A  Sulekova and Ballhausen, 
1995131; Xia et al, 1995132 
 

6 16-18 565bp 350bp deletion exon 17  Sulekova et al, 1995133 
 

athe full length 626bp transcript could not be detected in any sample because of skipping of exons 2 and 3; 
bonly for patient 47-2008 
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5.2 Gene expression analysis 

5.2.1 FAP fibroma vs. FAP healthy dermis 

5.2.1.1 Whole genome expression analysis  

Gene lists of differentially expressed genes (DEGs) in FAP fibroma vs. FAP healthy dermis 

were established based on expression intensities of five fibroma and six healthy 

samples of seven FAP patients that reached quality criteria as already described (Table 

4). In total, 816 up- and 554 down-regulated genes were found to reveal differential gene 

expression concerning an FDR-unadjusted p-value <0.05. Since we could only analyze a 

small sample size, our datasets calculated from adjusted p-values will reach very high FDR 

values of 0.9 (for comparison of FAP fibroma vs. healthy skin), 0.35 (for FAP lipoma vs. 

healthy skin) or 0.8 (for FAP lipoma vs. control lipoma) if we would include a sufficient 

amount of genes. Therefore, the use of uncorrected p-values was decided to be practical 

for all analyses. Attention was also laid on a sufficient expression difference of at least 50% 

(relating to -fold changes of 1.5) and further approaches, such as GO- and pathway 

analysis, that were used to validate the received data regarding their biological relevance. 

Table 9 indicates the number of DEGs for -fold changes and significance levels.  
 

Table 9. Numbers of DEGs in FAP fibroma vs. FAP healthy dermis. The table shows the number 
of DEGs for -fold changes and significance levels. Differences of expression intensities were 
indicated by -fold changes (fch). Detailed analyses were focused on gene expression differences of 
at least 2-fold (red frame). 

 p-value 
<0.05 

fch 1.5 fch 2 fch 3 p-value 
<0.01 

fch 1.5 fch 2 fch 3 

No. genes 
detected 

(816↑, 
554↓) 

(77↑, 168↓) (26↑, 70↓) (8↑, 12↓) 164↑, 
81↓) 

(7↑, 36↓) (3↑, 13↓) - 

 

As a first illustration of the total expression data of each chip, we used Principal 

Components Analysis (PCA) scatter plot. This plot shows the entire final chip data in 

relation to each other and in relation to the whole human genome. In PCA, by covariance 

analysis of the different factors, the high-dimensionality of the array data is reduced to a 

three dimensional grid illustrating the human genome. Within this grid each point 

represents a single chip. Points localized nearer to each other are supposed to have a 

similar overall gene distribution covering the whole human genom. Fibroma (red points) as 

well as healthy dermis samples (blue points) seemed to be scattered across the grid and 

do not show any clustering (Figure 22A). This means that samples of same tissue type 

(fibroma or healthy dermis) were likely not to show similar overall intensities, except of 

three healthy samples located at the center of the grid. In Figure 22B the same sample 

distribution is seen but labeled by patient ID. As can be seen, none of the corresponding 
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5.2.1.1.3 Ingenuity Pathway Analysis (IPA®)  

Analysis of the same gene list with IPA® resulted in several functional networks mainly 

involving functions related to dermatological disease and development (Table 10). 

Identified high DEGs were not involved in one or more prevailing pathways. 
 

Table 10. Functional IPA® networks detected for genes with expression changes of 2-fold. In 
total 96 genes were divided into network groups considering their particular gene function. Networks 
with interesting functions (skin and development processes) are marked in yellow. Strongly 
changed genes with -fold changes of at least 3 are indicated in bold and marked by arrows 
indicating their higher or lower regulation in fibroma vs. healthy dermis. They will be illustrated in 
more detail (5.2.1.1.4). 

Top Functions Molecules in Network 

Dermatological Diseases and 
Conditions,  
Developmental Disorder,  
Organismal Injury and Abnormalities 

ACSL1, ADTRP, Alpha catenin, CASP14, caspase, Cg, CYB5A, 
Cytokeratin, DSC2, DSG1, DSG3, DSP↓, EFNB2, ERK1/2, ETV1, 
Focal adhesion kinase, HBA1/HBA2, HBB, hemoglobin, KRT5, 
KRT14, KRT17, KRT6A, KRT6B, KRT6C, P38 MAPK, PTPRJ, 
RBP1, S100B↑, SBSN, SDCBP, Sos, SPINK5↓, TP63, TSPAN8 

Drug Metabolism,  
Molecular Transport,  
Embryonic Development 

ACTG2, Actin, Ap1, CD3, CDH19↑, DEFB1 (includes EG:1672), 
EHF, EMP2, estrogen receptor, GAS2L3, Histone h3, Histone h4, 
HMCN1↑, HMGCS1, Insulin, Jnk, LGALS7/LGALS7B, Mapk, 
ME1, MUC15, MYH11, NFkB (complex), PDGF BB, PI3K 
(complex), Ras, SERPINE2↑, SLC15A1,SLPI, SNCA, SOAT1, 
SOX5 ,SRC (family), trypsin, Vegf, VSNL1 

Reproductive System Development 
and Function,  
Gene Expression,  
Organismal Injury and Abnormalities 

ADAM8, ADAM10, ADAM23, AEN, AP1S2, ATP6AP1, ATP6V0A4, 
CLDN1↑, CXCR6, DHRS7, DPH1, DSC3, EI24, ETV5, Gpcr, 
GPR87, GRM6, HSPA4L, KRT6B, LPHN3, NPRL3, ODF2L, PCP4, 
PDDC1, PEG10, PHF23 ,PRSS23, RBM38, RNA polymerase II, 
SEZ6L2, TMEM222, TNF, TP53, TRAPPC4, UBC 

Lymphoid Tissue Structure and 
Development,  
Cellular Development,  
Reproductive System Development 
and Function 

AHNAK, ANO1, ASPM, ATP13A2, CDC42EP3, CDC42SE1, 
CDK1, CDK17, CDK18, CLCA2, DSC3, DSG2, ECM1, EPAS1, 
ESRP1, GSC, KRT72 ,LDHB, PKP4, plasminogen activator, 
S100A2, S100A11, SERPINE1, SGCB, SGCE, SLC16A4, 
SLC6A15, SPRR2E↓, TGFB1, THEM6, TMEM45A, TMPRSS11E, 
TOR1A, TTC39B, UBC 

Embryonic Development,  
Hair and Skin Development and 
Function, Organ Development 

ABCA12, ADAM8, AIM1, AKAP12, Akt, ANXA6, C1S, CA6, 
CARD8, CARD18↓, CD6, ceramidase, ceramide, CHL1↑, CHML, 
CLDN4, CORIN, CTSL1, DSG1, DSG3, EGFR, EMP1, FOSL1, 
FSH, GPM6B, GSK3B, GZMK, IgG, IL17a dimer, JUN, KLK7, 
KRT17, KRT6B, KRT34, LGI1, LGMN, MAL2, MAPK1, MSMB, 
MSMO1, MYC, NCAM1, NLGN1, OLIG2, OSM, PIGR, PPARG, 
PPP1CA, PPP1R13L, RAB5A, S100B↑, SCEL, SDCBP, SGMS, 
SLA, SPRR1B, ST3GAL6, TLR7, TNF, TMEM154, TPD52, 
TPD52L1, UGCG, ULBP2, ZFP36L1 

Lipid Metabolism,  
Small Molecule Biochemistry,  
Molecular Transport 

AADAC, ABHD5↓, CEL, Ces1d, cholesterol, HDL, LIPA, LIPC, 
LIPE, LIPF, LIPG, LPL, PNLIP, PNLIPRP1, PNLIPRP2, 
PNLIPRP3, PNPLA2, PNPLA3, PNPLA4, PPARA, triacylglycerol 
lipase 

Dermatological Diseases and 
Conditions, Hereditary Disorder,  
Inflammatory Disease 

KLF4, ZNF750 
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5.2.1.1.4 Most interesting genes selected for qPCR validation  

Among the DEGs, 12 most interesting genes (five up- and seven down-regulated in FAP 

fibroma) were selected for further analyses (qPCR) showing a differential regulation of at 

least 3-fold (Table 11). Those genes were selected after in silico investigation for 

interesting annotations (Pubmed and gene database NCBI). Criteria for selection based on 

the respective cutaneous affection and the underlying FAP disease with association to Wnt 

signaling. For this purpose, particular focus was set to: 

 the general gene function 

 the gene function in skin 

 a possible involvement in cell proliferation and apoptosis 

 a possible association to Wnt signaling. 

Genes up-regulated in FAP fibroma are involved in general processes affecting the entire 

organism (metal ion binding (S100B), cell adhesion (CDH19, CHL1), signal transduction 

(CHL1), extra cellular matrix junction formation (HMCN1), and modulation of cell growth 

(SERPINE2)). Some of them specifically relate to the epidermal part of the skin (junction 

formation (HMCN1) or hair follicle growth (SERPINE2)). Almost all up-regulated genes 

were associated with particular skin diseases as well as with cell proliferation 

dysfunction (S100B, CDH19, CHL1, SERPINE2). One of them (CHL1) was found to relate 

to Wnt signaling. Genes down-regulated in fibroma were found to be mainly involved in 

processes concerning the epidermal part of the skin such as epidermis development and 

skin barrier formation (SPRR2E, CST6, DSP), formation of intercellular junctions (CLDN1, 

DSP), and hair morphogenesis (SPINK5, DSP). Almost all of them were found to relate to 

skin diseases mainly affecting the epidermal part of the skin (SPRR2E, CST6, SPINK5, 

ABHD5, CLDN1, DSP). Cell proliferation or tumor suppressive functions were noted 

for CARD18, CLDN1, DSP, and CST6. Two of them (DSP, CLDN1) were noticed to be 

associated with Wnt signaling. Selected genes were localized on different chromosomal 

positions. 

The same selected genes were also illustrated in Figure 25. Regarding their influence on 

cell proliferation, their oncongenic or tumorsuppressive potential was assigned. Two 

proto-oncogenes (S100B, SERPINE2) as well as one tumorsuppressor gene (CDH19) 

were up-regulated, whereas the role of CHL1, which was likewise up-regulated, was 

contrarily described. Within the group of down-regulated genes one proto-oncogene 

(CLDN1) and two tumorsuppressor genes (DSP, CST6) could be identified as well as a 

gene (CARD18) which may play a role in apoptosis and in cancer growth. Overall, among 



   

  RESULTS
 

60 
 

the DEGs in fibroma vs. healthy dermis, proto-oncogenes as well as tumor suppressor 

genes were differentially regulated.  

 

Table 11. High significantly changed mRNA expression in fibroma vs. healthy dermis. In total, 
12 possibly relevant genes (five up- and seven down-regulated) were selected that have reached a 
significant change in mRNA expression of 3-fold in fibroma vs. healthy dermis. Known gene 
functions and known influences on cellular processes (selected annotations) are summarized. Latter 
mainly focused on gene functions in skin, proliferation, apoptosis and possible association with Wnt 
signaling pathway. Statistical analysis has been done by a 2-way ANOVA after microarray 
technology based whole genome expression analysis. Chromosomal positions are indicated. Up-
regulated genes are sorted top down by decreasing -fold change. In contrast, down-regulated genes 
are sorted top down by decreasing negative -fold change. 
 
Up-regulated in fibroma vs. healthy dermis 

gene ID gene description and selected annotations localization fch p-value 

S100B S100 calcium binding protein B 
- calcium ion binding, axonogenesis 
- marker for malignant melanoma134  
- expressed in chondromyxoid fibromaa, 135  
- contributes to cancer progression by down-regulation of 

tumorsuppressor p53136
 

21q22.3 5.26 0.03 

CDH19 cadherin 19, type 2 
- calcium dependent cell-cell adhesion 
- down-regulated in cholesteatomab (associated with 

S100A7A, SERPINB, SPRR1B)137  
- loss of cadherins associated with cancer formation  
-CDH1 (E-cadherin) involved in Wnt signaling pathway138 

18q22.1 4.78 0.05 

HMCN1 hemicentin 1 
- fibulin family of extracellular matrix (ECM) proteins 
- extracellular member of immunoglobulin superfamily 
- cell-cell and cell-matrix junctions  
- epidermal-dermal junction formation 
- epidermal organization of hemidesmosomes139,140  

1q25.3-
q31.1 

3.98 0.03

CHL1 cell adhesion molecule with homology to L1CAM
- cell adhesion, neural recognition, signal transduction 
- altered expression in several human cancers including 

melanoma and SCC141  
- involved in cancer growth and metastasis 
- β-catenin target gene142  

3p26.1 
 
 

3.73 0.04 

SERPINE2 serpine peptidase inhibitor, clade E, member 2
- inhibitor of growth-modulating serine proteases 

(thrombin, urokinase and tissue plasminogen activator) 
- overexpressed in sclerodermal fibroblastsc,143 
- involved in the development of several cancers144-148 
- target of ERK signaling in colorectal cancer148  

2q36.1 3.39 0.04 

achondromyxoid fibroma: rare benign bone neoplasm (< 1% of all bone tumors) with abundant myxoid or 
chondroid intercellular material149

; 
bcholesteatoma: epidermal inclusion cysts of the middle ear or the 

mastoid137; cscleroderma: accumulation of extracellular matrix material in skin and internal organs143. 
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Down-regulated in fibroma vs. healthy dermis 

gene ID gene description and selected annotations localization fch p-value 

SPRR2E small proline-rich protein 2E 
- protein binding, structural molecular activity 
- involved in epidermal development, keratinization and 

keratinocyte differentiation 
- primary constituent of the cornified cell envelope150 
- functional candidate gene (SPRR family) for 

psoriasis151 

1q21-q22 -4.43 0.01 

CST6 cystatin E/M 
- cysteine proteinase inhibitor with tumor suppressor 

activity 
- involved in skin barrier formation and epidermal 

terminal differentiation152,153  
- overexpression suppresses melanoma invasiveness154  

11q13 -4.09 0.04 

SPINK5 serine peptidase inhibitor, Kazal type 5
- role in skin and hair morphogenesis 
- mutations cause Netherton syndromed,155

 and atopic 
dermatitis156 

5q32 -3.81 0.02 

CARD18 caspase recruitment domain member 18
- cysteine-type endopeptidase activity 
- apoptotic function157

 
- inhibition of inflammatory cytokine IL-1 beta158

 
- not reported in skin 
- up-regulated in gastric cancer159  

11q22.3 -3.55 0.01 

ABHD5 abhydrolase domain containing 5
- lipid metabolic process 
- mutations associated with secondary ichthyosis due to 

triglyceride storage disease160 

3p21 -3.14 0.02 

CLDN1 claudin 1
- cell adhesion, integral membrane protein 
- component of tight junctions 
- mutated in ichthyotic skin disease161

 
- highly expressed in colorectal cancer162

 
- β-catenin target gene163 

3q28-q29 -3.13 0.01 

DSP desmoplakin 
- intercellular junctions, cytoskeletal linker of 

desmosomes 
- mutations cause woolly hair and palmoplantar 

keratodermae, 164
 

- tumor suppressive function by Wnt modulation165  

6p24 -3.08 0.02 

dNetherton Syndrome: severe autosomal recessive disorder with congenital ichthyosis, defective cornification, 
specific hair shaft defect and severe atopic manifestations155; ekeratoderma: hyperproliferation of stratum 
corneum 
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targets was significantly supported. Highest significant results (***p<0.001) were reached 

for the up-regulated genes S100B and CHL1, followed by CDH19, SERPINE2 and the 

down-regulated CARD18 (**p<0.01), as well as the down-regulated CST6 (*p<0.05). 

 

 

 

Figure 26. Relative mRNA expression levels between FAP fibroma and healthy dermis after 
qPCR. Ratio of target genes, selected after microarray expression analysis of FAP fibroma and FAP 
healthy skin samples. Genes are sorted according to their corresponding expression in microarray 
analysis. Bars indicate ratios of relative mRNA expression between averaged normalized intensities 
of FAP fibroma and healthy dermis samples, whereas healthy dermis samples were set to one 
(indicated by red dashed line). Y-axis is illustrated log2 transformed. Values are presented as mean 
of the qbasePLUS calibrated normalized relative quantities (CNRQ) + SD. CNRQ values were 
reached after normalization to HPRT1 and GUSB. Statistical analysis was done using a 2-way 
ANOVA. Calculation was performed on four fibroma and corresponding healthy samples, except 
SPRR2E (n=3 lacking 41-2008) *p< 0.05; **p<0.01; ***p<0.001. 
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Figure 27. Illustration of normalized mRNA expression levels of single patient samples. 
Targets are indicated as expected up- or down-regulated in fibroma vs. healthy skin based on 
microarray results. Bars indicate calibrated mRNA expression values (CNRQ; y-axis) after 
normalization with ideal reference genes HPRT1 and GUSB for each patient sample (x-axis) (dark 
bars are fibroma; bright bars indicate healthy skin samples). For SPRR2E, no reliable results 
(sigmoid curve) could be achieved for sample 41-2008 healthy skin. CNRQ values for SERPINE2, 
CST6, and CARD18 were very low for 41-2008 healthy skin or fibroma, respectively, compared to 
other samples.  
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5.2.2.1.3 Ingenuity pathway analysis  

Analysis of the same gene list with IPA® resulted in several functional networks with 

functions in development, cancer and hereditary disorders. Such networks included 

severals of the highest changed genes with 3-fold expression difference (Table 13). 

Identified high DEGs were not involved in one or more prevailing pathways. 
 

Table 13. Functional IPA® networks detected for genes with expression changes of 2.5. In 
total, 49 genes were divided into network groups considering their particular gene function. Networks 
with interesting functions (development, hereditary disorder, cancer) are marked in yellow. 
Strongly changed genes with -fold changes of at least 3 are indicated in bold and marked by arrows 
indicating their higher or lower regulation in FAP lipoma vs. FAP healthy dermis. They will be 
illustrated in more detail (5.2.2.1.4). Networks are sorted referring to IPA® established scores 
(considering numbers of genes included in particular network and relevance). 

Top Functions Molecules in Network 

Cardiovascular System 
Development and Function, 
Organismal Development, 
Tissue Morphology 

AGPS, Alp, BMPR2, BRK1, CD3, COL3A1, Collagen type I, COX7A1, 
DEFB4A/DEFB4B, DUSP1, ERK1/2, FABP4↑, FGF7, FMOD, 
Histoneh4, HNRNPR, IL1, Immunoglobulin, KDELR1, LTBP1, MAP3K2, 
Mapk, MGP, NKTR, OGN, P38, MAPK, PDGFBB, Ras,SHOC2↑, SLPI↑,
SOS2, Sos, Tgf beta, TNKS ,YEATS4 

Cell Morphology, 
Inflammatory Response,  
Cell Death and Survival 

ALOX15B, ANXA7, ARHGEF6, CHIC2, FAT1, FLAD1, GFPT1, HMGXB3, 
IMPDH1, INF2, KIAA0196, KIAA1033, KIRREL, KLHL23/PHOSPHO2-
KLHL23, MBNL2, MFAP4, NBEA, NFIC, NPRL2, PTBP2, RAPH1, SESN3, 
SPIN1, TGFB1, TMEM108, TOP3B, UBC, UBE2R2, VPS39, WDR73, 
YTHDC2, ZNF135, ZNF167, ZNF431, ZNF433 

Inflammatory Disease, 
Inflammatory Response,  
Renal Inflammation 

ABCA1, ABCA8, ACAT1, APRT, ARFGAP1 ,ARHGAP12, ARPP19, 
C10orf118, C20orf24, CAMSAP2, CHCHD2, CPNE2, FAR1, FNBP1, 
GOLGA5, HPCAL1, IKBKG, ITSN1, LIMA1, MEX3C, MXRA5, NOS3, 
OCRL, PACSIN3, PAK3, PLD3, PLEKHA5, PRAMEF1, RAB23, RBP1, 
SMYD3, SOD3, SUFU, UBC, ZDHHC21 

Embryonic Development, 
Organ Development, 
Organismal Development 

Akt, AQP5, BAZ1A, BCL2L2, BMF, Cg, CHCHD2, CHD8, DDX5↑, ERK, 
FAM46A, FGF7, FSH, GPER, GSTT1, GTPBP4, HIST1H1C↑, Histone 
h3, HTRA1, Jnk, LIMA1, mir-101, miR-19b-3p ,NFkB (complex) ,NuRD, 
POLE3, PPARA, RBP7↑, RNA polymerase II, RNU7-1, SFRP2↑, 
SMARCA1↑, UBA3, ZBED1, ZNF622 

Hematological Disease, 
Hereditary Disorder, 
Infectious Disease 

F9, GXYLT2 

Hereditary Disorder, 
Neurological Disease, 
Cancer 

HIC1, TMEM47↑ 
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5.2.2.1.4 Most interesting genes selected for qPCR validation  

Among the DEGs, 10 most interesting genes (all up-regulated in FAP lipoma) with 

differential regulation of at least 3 were selected for further analyses by qPCR (Table 14). 

Those genes were selected after in silico investigation for interesting annotations (Pubmed 

and gene database NCBI). Selection criteria were based on the particular cutaneous 

affection and the underlying FAP disease with association to Wnt signaling. For this 

purpose, particular focus was set to: 

 the general gene function in skin 

 the specific function relating to lipoma or lipid metabolism 

 a possible involvement in cell proliferation and apoptosis 

 a possible association to Wnt signaling. 

Several targets were found to realize distinct functions in skin, with most of them 

concerning the epidermal part (TMEM47, DDX5, SFRP2, SHOC2, SMARCA1) or adipose 

tissue (FABP4). Two targets were found with functions in lipid metabolism and adipocyte 

differentiation (RBP7, FABP4). Several genes revealed functions in cell proliferation 

(TMEM47, DDX5, MXRA5, SFRP2, SMARCA1), whereas two of them (SFRP2, SMARCA1) 

were involved in Wnt signaling. Two other targets were found with specific functions in 

chromatin compaction (HIST1H1C) and ubiquitin-mediated proteasomal degradation 

(UBE2R2). Selected genes are localized on different chromosomal positions with three of 

them localized on the X chromosome (TMEM47, MXRA5, SMARCA1).  

The same genes were also illustrated in Figure 32. Regarding their influence on cell 

proliferation, their oncongenic or tumorsuppressive potential was assigned. Two proto-

oncogenes (DDX5, MXRA5) and three tumorsuppressor genes (TMEM47, SFRP2, 

SMARCA1) were up-regulated in FAP lipoma. Two tumor suppressors (SFRP2, 

SMARCA1) were found to be known modulators of Wnt signaling. Furthermore two other 

genes were found with anti-proliferative effects that are achieved by transcriptional 

repression (HIST1H1C) and ubiquitine mediated degradation at the proteasome (UBE2R2). 

Overall, among the DEGs in FAP lipoma vs. healthy dermis, proto-oncogenes as well as 

tumor suppressor genes were differentially regulated, whereas tumor suppressive and anti-

proliferative functions tend to prevail among the highest DEGs. 
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Table 14. High significantly changed mRNA expression: up in FAP lipoma vs. FAP healthy 
dermis. In total, 10 possibly relevant genes (all up-regulated) were selected that reached a 
significant 3-fold mRNA expression change in FAP lipoma vs. FAP healthy dermis. Known gene 
functions and known influences on cellular processes (selected annotations) are summarized. Latter 
mainly focused on gene functions in skin, lipoma, lipid metabolism, cell proliferation, and Wnt 
signaling pathway. Chromosomal positions are indicated. All genes were up-regulated in FAP 
lipomas and are sorted top down by decreasing -fold change. 

gene ID gene description and selected annotations localization fch p-value 

TMEM47 transmembrane protein 47
- member of claudins (tight junctions) 
- possible tumor suppressor in malignant melanoma169  

Xp11.4 4.20 0.03 

RBP7 retinol binding protein 7, cellular
- stabilization, transport, and metabolism of vitamin A 
- lipid metabolism (PPARgamma target gene)  

1p36.22 3.82 0.03 

DDX5 DEAD (Asp-Glu-Ala-Asp) box polypeptide 5
- RNA helicase; alteration of RNA secondary structure 
- controls keratinoctye proliferation in wound healing170  
- overexpressed in colorectal carcinoma171

17q21 3.79 0.03 

MXRA5 matrix-remodelling associated 5
- ECM remodeling and cell-cell adhesion172 
- involved in lung and colorectal cancer as 

oncogene172,173  

Xp22.33 3.60  0.02 

FABP4 fatty acid binding protein 4, adipocyte
- uptake, transport, and metabolism of fatty acids 
- marker of adipocyte differentiation174  
- expressed in lipomas and hibernomas175 

8q21 3.53 0.02 

SFRP2 secreted frizzled-related protein 2
- involved in the formation of hypertrophic scars176

 
- methylation associated with colorectal cancer177  
- soluble modulator of Wnt signaling 

4q31.3 3.32 0.04 

SHOC2 soc-2 suppressor of clear homolog (C. elegans) 
- protein-protein interactions 
- mutations associated with Noonan-like syndrome with 

loose anagen hair178  
- RAS scaffold protein in ERK1/2 signaling pathway179 

10q25 3.14 0.04 

HIST1H1C histone cluster 1, H1c 
- chromatin compaction into higher order structures 
- involvement in p53-dependent DNA damage response 

pathways180  

6p21.3 3.12 <0.05 

UBE2R2 ubiquitin-conjugating enzyme E2R2
- component of ubiquitin dependent proteolytic pathway 
- involved in β-catenin degradation181 

9p13.3 3.12 0.04 

SMARCA1 SWI/SNF related, matrix associated, actin dependent 
chromatin regulator 
- ATPase, nucleosome remodeler, transcription regulator 
- down-regulated in melanoma  
- modulator of Wnt signaling182  

Xq25 3.05 0.04 

 



 

 

 

Figure
up-reg
are so
genes 
(PO) o
on the 

 

5.2.2.2

After 

(5.2.2

valida

(5.2.1

tissue

criteria

be co

values

patien

exclud

Furthe

resulte

becau

health

37-20

exclud

e 32. Overvi
gulated in FA
rted relating 
overexpres

or tumor sup
x-axis. Gene

2 Results

whole gen

.1.4) were 

ated, three 

.2) as well

e183. Selecti

a correlated

nsistently e

s at thresho

nts (37-200

ded, becaus

ermore, sev

ed in sigmo

use they be

hy skin sam

08 healthy 

ded. Figure

ew of selec
AP lipoma vs

to their spec
sed in FAP 

ppressor gen
es are depic

s of qPCR F

ome expre

validated b

of them (

 as three (

on of pres

d over all sa

expressed i

old 1 were 

08, 22-200

se the lipom

veral health

oid curves, n

ehaved ver

mple of 35-2

skin (TMEM

e 33 illustra

ted genes r
s. healthy de
cific annotati
lipoma com

nes (TS) are 
ted on the y-

FAP lipoma

ssion analy

by qPCR. F

(HPRT1, G

(CLN3, LRP

sumably no

amples (4.5

n all sampl

applied. qP

9, 35-2009

ma sample

hy dermis 

no results a

ry unstably

2009 must h

M47, RBP7,

ates the rati

72 

relating to c
ermis) finally
ion. Red bar

mpared to FA
 indicated. G
-axis.  

a vs. FAP h

ysis of the 

For normaliz

GUSB, GAP

P10, NELF

ot regulated

5.3.3). Two g

les (lipoma 

PCR valida

9, 55-2010

revealed s

samples m

at all, curves

y and varia

has been ex

, MXRA5), a

io of mRNA

ell prolifera
y selected fo
rs indicate up
AP healthy 
Gene expres

healthy ski

lipoma sa

zation, in to

PDH) alrea

FB) based o

d reference

genes (HPR

and health

ation was ov

0). One pa

igmoid curv

must have b

s that did no

ably during 

xcluded for 

and 22-200

A expressio

tion functio
or qPCR vali
p-regulated e
dermis. Kno

ssion -fold di

n 

mples ten 

otal six refe

ady include

on previous

e genes fol

RT1, LRP10

hy skin). Fo

verall succe

atient (47-2

ves (Supple

been exclud

ot reach ex

repeated 

all targets.

9 healthy s

on levels be

 

RE

on. The ten g
idation. Thes
expression c
own proto-on
ifference is i

significantl

erence gen

ed in fibrom

s work on 

llowed the 

0) were ide

or normaliza

essful for fo

2008) was 

ementary F

ded as the

xponential p

runs. For t

. For single

skin (UBE2R

etween lipo

ESULTS

 

genes (all 
se genes 
change of 
ncogenes 
llustrated 

y DEGs 

es were 

ma runs 

adipose 

stability 

ntified to 

ation, CT 

our FAP 

initially 

igure 3). 

ey either 

phase, or 

this, the 

 targets, 

R2) were 

oma and 



   

  RESULTS
 

73 
 

healthy dermis samples. This illustration was achieved by initial calculation of the averages 

of all suitable lipoma and healthy dermis samples. The wide SD resulted from large 

variance between different patient samples (Figure 34). The majority (6/10) of targets 

analyzed in FAP lipoma vs. healthy skin, confirmed the expression regulation relating to 

microarray data. Statistical analysis (Wilcoxon rank sum test for unpaired samples) could 

not support significant expression changes for any target. 

 

 

 

Figure 33. Relative mRNA expression levels between FAP lipoma and FAP healthy dermis 
after qPCR. Ratio of target genes, selected after microarray expression analysis of FAP lipoma and 
FAP healthy dermis samples. Genes are sorted according to their corresponding expression in the 
microarray. Bars indicate unpaired ratios of relative mRNA expression between averaged 
normalized intensities of FAP lipomas and healthy dermis samples, whereas healthy dermis 
samples were set to one (indicated by red dashed line). Values are presented as mean of the 
qbasePLUS calibrated normalized relative quantities (CNRQ) + SD. CNRQ values were reached 
after normalization to HPRT1 and LRP10. Statistical analysis was done using Wilcoxon rank sum 
test (for unpaired samples, assuming non-parametric distribution of the expression data). Calculation 
was performed on four lipoma (37-2008, 22-2009, 35-2009, 55-2010) and three healthy dermis 
samples (37-2008, 22-2009, 55-2010) samples, except TMEM47, RBP7, MXRA5 (healthy dermis 
n=2, lacking 37-2008), and UBE2R2 (healthy dermis n=2, lacking 22-2009).  
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Figure 34. Illustration of normalized mRNA expression levels of single patient samples for 
each target. Targets are indicated as expected up-regulated in FAP lipoma vs. FAP healthy dermis 
based on microarray results. Bars indicate calibrated mRNA expression values (CNRQ; y-axis) after 
normalization with ideal reference genes HPRT1 and LRP10 for each patient sample (x-axis) (dark 
bars are lipoma; bright bars indicate healthy dermis samples). For all targets, no reliable results 
could be achieved for sample 35-2009 healthy dermis (no results at all, very late amplification). For 
TMEM47, RBP7, MXRA5, 37-2008 healthy dermis (sigmoid curve or very late amplification), as well 
as for UBE2R2, 22-2009 healthy dermis (very unstable and variable in run repeats) did not reveal 
reliable results. 
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5.2.2.3 Results of qPCR FAP lipoma vs. non-FAP lipoma  

By qPCR analysis, the same mRNA targets selected for the FAP lipoma samples 

(5.2.2.1.4) were in a second step validated for differential expression in FAP lipoma 

compared to control (non-FAP) lipoma samples. In addition, SLPI with differential gene 

expression of 2.6-fold between FAP lipoma vs. healthy dermis (Supplementary Table 7) 

was included because it was also found to be highly changed in array results for FAP 

lipoma vs. control lipoma (5.2.3.1.4) and due to its regulation by common upstream 

regulators (Figure 31). For normalization, CT values at threshold 1 were applied and 

normalized to previously selected reference genes (HPRT1, LRP10). qPCR runs for target 

SLPI with reference genes (HPRT1, LRP10) were separately run and calculated based on 

CT values of threshold 0.2. qPCR analyses were successfully performed for all four FAP 

lipoma samples (37-2008, 02-2009, 35-2009, 55-2010) as well as for all five control lipoma 

samples (40-2012, 43-2012, 44-2012, 2013-003, 2013-014). Averaged normalized mRNA 

expression levels for FAP lipoma and control lipoma samples for significantly confirmed 

targets are illustrated in Figure 35A,B. Results for all targets and detailed expression 

results for single samples are illustrated in Supplementary Figure 4. Statistical analysis 

(Wilcoxon rank sum test) revealed significant (*p<0.05) results for totally eight of all 12 

applied mRNA targets with six of them down-regulated (RBP7, FABP4, SHOC2, 

SMARCA1, UBE2R2, TMEM47) and two up-regulated (SFRP2, SLPI) in FAP lipoma vs. 

control lipoma. Such mRNA targets are annotated relating to lipid metabolism and cell 

proliferation. Genes associated with lipid metabolism (RBP7, FABP4) and tumor 

suppressive activity (SMARCA1, UBE2R2, TMEM47) were mainly down-regulated in FAP 

lipoma vs. control lipoma, whereas down-regulated genes indicated functions in modulation 

(SFRP2) as well as in promotion of cell proliferation (SLPI). mRNA targets differentially 

expressed in microarray analyses comparing FAP lipoma vs. FAP healthy dermis as well 

as in FAP lipoma vs. control lipoma are summarized in Figure 35C. 

 



 

 

 

Figure
sampl
levels 
microa
of the 
reache
rank s
contro
A. dow
cell pro
are an
microa
dermis
indicat
change

e 35. Averag
les after qPC
for FAP lipo

array express
qbasePLUS

ed after norm
um test bas
l lipoma sam

wn-regulated 
oliferation (m
notated with

array express
s (red filled 
ting down- o
e are indicat

ged normal
CR for signi
ma (dark ba
sion analysis
S calibrated 
malization to
ed on samp

mples, except
mRNA targe

mainly tumor
 functions in
sion results f
bars) as we

or up-regula
ed in bracke

ized mRNA 
ificant targe

ars) and cont
s of FAP lipo

normalized 
o HPRT1 an
ple medians. 
t SLPI (FAP 
ets in FAP lip
r suppressive
 cell prolifera
for targets hi
ell as in FA

ation, respec
ts for each ta

76 

expression
ets. Bars ind
trol lipoma sa
oma vs. FAP

relative qu
nd LRP10. S

Calculation 
lipoma n=3,

poma are an
e activity). B
ation (repres
gh differentia

AP lipoma v
ctively). Sign
arget on the 

n levels of F
icate averag
amples (brig

P healthy skin
antities (CN

Statistical an
was perform
 lacking 22-2
notated with

B. up-regulat
ssion and pro
ally expresse

vs. control lip
nificance lev
left.  

FAP lipoma 
ged normalize
ght bars) for s
n. Values are
RQ) + SD. 
alysis was d

med on four 
2009).*p< 0.0
 functions in

ted mRNA ta
omotion). C. s
ed in FAP lip
poma (blue 

vels of qPCR

 

RE

and contro
ed mRNA ex
selected targ
e presented 
CNRQ valu

done using 
FAP lipoma
05; ns not si

n lipid metabo
argets in FA
scheme sum

poma vs. FAP
or red stria

R mRNA ex

ESULTS

ol lipoma 
xpression 
gets after 
as mean 

ues were 
Wilcoxon 

a and five 
ignificant. 
olism and 

AP lipoma 
mmarizing 
P healthy 
ated bars 
xpression 



   

  RESULTS
 

77 
 

5.2.3 FAP lipoma vs. control lipoma (non-FAP)  

5.2.3.1 Whole genome expression analysis  

The third analysis compared whole genome gene expression of FAP-associated lipomas 

with lipoma samples of the general population (control lipoma). Gene lists of DEGs were 

established based on expression intensities of totally six FAP lipoma and three control 

lipoma (non-FAP), that reached defined quality criteria (Table 4). In total, 741 up- and 

1066 down-regulated genes were found to reveal differential gene expression concerning 

an FDR-unadjusted p-value <0.05. Table 15 indicates the numbers of DEGs for -fold 

changes and significance levels. By that approach, genes reached overall higher 

significance values than compared to the prior analyses of the FAP fibroma and FAP 

lipoma groups. Therefore, initial focus was set upon genes with minimum FDR-unadjusted 

p-values of <0.01 that included totally 120 up- and 273 down-regulated genes.  
 

Table 15. Numbers of DEGs in FAP lipoma vs. control lipoma. The table shows the number of 
DEGs for -fold changes (fch) and significance levels. Detailed analyses were focused on gene 
expression differences of 4-fold and higher (red frame). 

 p-value 
<0.05 

p-value 
<0.01 

fch 1.5 fch 2 fch 3 fch 4 fch 5 fch 10 

No. genes 
detected 

(741↑, 
1066↓) 

(120↑, 
273↓) 

(96↑, 184↓) (69↑, 97↓) (32↑, 54↓) (14↑, 27↓) (9↑, 19↓) (4↑, 4↓) 

 

The PCA scatter plot of the two lipoma types (Figure 36A) tend to separate at the middle 

of the grid to the lower left for FAP lipomas (red points) and the upper right for control 

lipomas (blue points). The blue ellipsoid encloses the three control lipoma samples that are 

less spread across the grid than the FAP lipomas samples. Among the FAP lipoma 

samples, a single sample (55-2010; Figure 36B) was localized on the most upper right side 

above the control lipoma samples. Two other FAP lipomas were spread to the two outer 

parts of the grid (22-2009, 29-2008). Therefore, FAP lipoma samples resulted in a higher 

inter-sample variation than control lipomas. 
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5.2.3.1.4 Most interesting DEGs in FAP lipoma compared to control lipoma 

Genes with highest supposed importance for the development in FAP lipoma compared to 

lipoma of the general population were selected based on their expression difference and 

their particular annotations (Table 17). Among the DEGs, totally eight genes (four up- and 

down-regulated, each) reached minimal expression difference of at least ten-fold. Such 

genes were investigated in silico for interesting annotations (Pubmed and gene database 

NCBI) with particular attention to: 

 a possible function in skin diseases, especially in lipoma, 

 a particular function in adipose tissues and lipid metabolism  

 a possible involvement in cell proliferation and apoptosis, and  

 a possible association to Wnt signaling (relating to the FAP disease) 

Table 17 also includes MYH11 (association with colorectal cancer) and SFRP2 (Wnt 

modulator also selected in FAP lipoma vs. FAP healthy dermis) with lower -fold changes, 

but with interesting functions. Genes up-regulated in FAP lipoma were found to be involved 

in several skin manifestations (SLPI, CD24, SPINK5, SFRP2). Almost all of them were 

found to be associated with proliferative processes (SLPI, CD24, MYH11, SFRP2) with 

two of them (CD24, SFRP2) relating to Wnt signaling. Down-regulated genes were 

especially found to be associated with lipid tissues (LEP, EGFL6, CIDEC) or to function 

in lipid metabolism (LEP, GPAM, CIDEC). Two of them (LEP, EGFL6) were found to be 

involved in cell proliferation with LEP relating to Wnt signaling. Selected genes were 

found to localize different chromosomal positions. The same genes were also illustrated in 

Figure 40 relating to their influence on cell proliferation, their oncongenic or 

tumorsuppressive potential was assigned. Among the up-regulated genes two proto-

oncogenes (SLPI, CD24) and one tumor suppressor (SFRP2) were found. Another gene 

with potential tumor suppressor functions (CAPNS2) was found to induce apoptosis if 

sustained activated184. Within the group of down-regulated genes, two proto-oncogenes 

were identified (LEP, EGFL6). Another gene (CIDEC) might function as a tumor suppressor 

as overexpression was reported to trigger apoptosis185. Overall, among the DEGs in FAP 

lipoma vs. control lipoma, proto-oncogenes as well as tumor suppressor genes were 

differentially regulated. However, genes mainly involved in cell proliferation predominated 

among the up-regulated genes, whereas genes associated with lipid tissue, adiposity, and 

lipid metabolism were mainly among the down-regulated genes. 
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Table 17. High significantly changed mRNA expression in FAP lipoma compared to control 
lipoma. In total eight possibly relevant genes (4 up- and 4-down-regulated) that have reached a 
significant change in mRNA expression of at least 10-fold and FDR-unadjusted p-value <0.01. In 
addition, two other genes (MYH11 and SFRP2) with lower -fold changes were also listed due to their 
potentially interesting annotations in cell proliferation. Known gene functions and known influences 
on cellular processes (selected annotations) are summarized. Latter mainly focused on gene 
functions in skin, lipoma, lipid metabolism, cell proliferation, and association to Wnt signaling 
pathway. Statistical analysis has been done by a 2-way ANOVA after microarray technology based 
whole genome expression analysis. Chromosomal positions are indicated. Up-regulated genes are 
sorted top down by decreasing -fold change. In contrast, down-regulated genes are sorted top down 
by decreasing negative -fold changes. 
 
Up-regulated in FAP lipoma vs. control lipoma 

gene ID gene description and selected annotations localization fch p-value 

SLPI secretory leukocyte peptidase inhibitor 
- serine protease inhibitor 
- antiinflammatory, antimicrobial, imunomodulatory activity 
- contributes to psoriasis pathogenesis186  
- promotes cell proliferation and wound healing187,188 
- overexpressed in several cancers189 

20q12 22.98 < 0.001 

CD24 cluster of differentiation 24
- cell adhesion molecule, granulocytes and B-cells  
- overexpressed in BCC and SCC190 
- overexpressed in cancer development and 

progression191 
- β-catenin target gene (Wnt signaling)192

6q21 17.22 <0.001 

CAPNS2 calpain, small subunit 2 
- cysteine protease 
- key regulator in cellular functions 
- cellular signaling, remodeling, degradation and  

cell death (if sustained activated)184 

16q12.2 11.51  0.01

SPINK5 serine peptidase inhibitor, Kazal type 5
- multidomain serine protease inhibitor 
- skin and hair morphogenesis 
- mutations associated with Netherton syndromea and 

atopic dermatitis155,156  

5q32 11.49 0.01 

MYH11 myosin, heavy chain 11, smooth muscle
- smooth muscle myosin 
- major contractile protein 
- mutations  associated with human colorectal cancer 

and intestinal neoplasia193,194 

16p13.11 8.27 0.004 

SFRP2 secreted frizzled-related protein 2
- involved in wound healing and development of 

hypertrophic scars176  
- methylation associated with colorectal cancer177 
- soluble modulator of Wnt signaling 

4q31.3 7.39 0.005 

aNetherton Syndrome: severe autosomal recessive disorder with congenital ichthyosis, defective cornification, 
specific hair shaft defect and severe atopic manifestations155 . 
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5.2.3.2 Calculation of differential gene expression in lipoma investigations without 

outlier 55-2010 included all selected DEGs 

As expression patterns for both samples of patient 55-2010 were found to differ from other 

healthy skin or lipoma samples (Figure 29, Figure 37), differential gene expression has also 

been calculated for both groups by excluding patient 55-2010. Interestingly, an overall 

higher number of DEGs was reached for equal significance levels (-fch 2.5 (p-value <0.05) 

for FAP lipoma vs. healthy dermis and -fch 3 (p-value <0.01) for FAP lipoma vs. control 

lipoma). This was supposed to be achieved due to a higher accuracy reached after 

exclusion of patient 55-2010. But most importantly, the high DEGs discussed in detail, were 

also revealed by such calculations with same significance levels and -fold changes. 

However, why both samples of 55-2010 revealed a different pattern compared to other 

corresponding samples is not clear. A possible exchange or double loading of the same 

samples during calculations could be excluded, as calculations were based on sample IDs 

that were set right after array load and were not changed anymore afterwards. Moreover, 

the lipoma and the healthy sample of 55-2010 indicated a slight but distinct difference in 

the heat map (Figure 29). In quality control and PCA analysis both samples were rather 

inconspicuous. Finally, samples of patient 55-2010 differed only little in their whole genome 

expression compared to other patient samples. Therefore this patient contributed less to 

the differential expression patterns. Due to the low sample number and the source of 

human material this difference might also be explained and tolerated by the inter-individual 

differences. 

 

5.2.4 FAP epidermal cyst vs. FAP healthy epidermis 

The last analysis compared whole genome expression of FAP-associated epidermal cysts 

with healthy epidermal skin of FAP patients. Gene lists of DEGs were established based on 

expression intensities of totally three epidermal cysts and three healthy skin samples 

of four FAP patients that reached defined quality criteria (Table 4). Very few DEGs were 

detected with a minimum expression change of at least 1.5 and FDR-unadjusted p-value 

<0.05, with only six genes (three up- and three down-regulated in FAP epidermal cysts, 

Supplementary Table 10). Table 18 indicates the number of DEGs for -fold changes and 

significance levels.  
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6 DISCUSSION  

6.1 APC second hit mutation analysis 

In this study, we systematically investigated three different types of benign skin lesions of 

FAP patients with known APC germline mutation for somatic mutations, i.e. second hits, 

therein. For this purpose we used a variety of methods to analyze the DNA and RNA 

isolated from the lesional biopsies and identified three different alterations in one out of 3 

lipoma and one out of 3 epidermal cysts. 

By direct sequencing of the MCR we identified a second hit mutation (c.4778delA; 

p.K1593Sfs*57) in the epidermal cyst sample of patient 30-2008. Such second hit 

mutations affecting 1-2bp have been reported to account for approximately 33% of all 

second hit mutations in colorectal cancer. These lead to protein truncation by either 

nonsense or frameshift mutations in most of the cases67,204. A similar observation was 

made in the sole study of FAP-associated skin lesions, where a frameshift mutation in an 

epidermal cyst is reported205. Other somatic mutations in APC have not yet been described 

in human FAP-associated fibromas and lipomas. Furthermore, the presence of second hits 

in epidermal cysts associated with FAP in an 1638NApc mouse model was shown to 

amount to about 50%99. Comparable to the common occurrence of somatic APC mutations 

in colorectal cancer or other gastrointestinal tumors as well as desmoids (Table 19), the 

frequency of 33% (1 out of 3) appears to be relatively low. Clearly, our study, as well as the 

one from Blaker et al. 2004, is limited by the small number of samples analyzed, as well as 

the fact, that somatic mutations outside the MCR or the presence of large genomic 

rearrangements could, due to the paucity of material, not be excluded. 

In accordance with previously published data the analysis of APC cDNA resulted in 

different APC isoforms. These alternative transcripts of APC have already been described 

for different tissues but not for skin27,128-133. Here, we have identified 8 alternative splice 

products, which were present in addition to the expected APC product. Other groups could 

also confirm the transcripts and showed that the resulting proteins are co-expressed with 

the full-length APC protein131,133. Since we could not extract proteins from the small lesions 

we do not know which transcripts and exons are finally translated into protein. 

Additionally, the epidermal cyst of 30-2008 as well as the lipoma of 29-2008 revealed an 

altered microsatellite pattern for APC marker locus D5S346 at 5q22.2 with loss of 

heterozygosity (LOH) as well as microsatellite instability (MSI) indicated by novel alleles. 

LOH has been shown to represent an important mechanism in the development of different 

skin pathologies, e.g. in BCC, SCC, and malignant melanomas. Furthermore, it is involved 

in the development of several benign cutaneous tumors and non-neoplastic skin disorders, 
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such as neurofibromas in neurofibromatosis type 1206-208. For these benign cutaneous 

neurofibromas in neurofibromatosis type 1, somatic deletions of the NF1 (17q11.2) gene, 

but also for TP53 and RB1 were described. Furthermore, in patients with multiple 

endocrine neoplasia type 1 loss of function of the MEN1 gene (11q13) was shown for 

angiofibromas, collagenomas, and one lipoma209. To the best of our knowledge, LOH at 

D5S346 in primary or FAP-associated human cutaneous epidermal cysts or lipomas has 

thus far not been reported. As the marker D5S346 is located near to APC on chromosome 

5, we suppose that changes (especially LOH) encountered in D5S346 might also reveal 

any indication for changes in APC.  

Novel alleles at the D5S346 locus are indicative for microsatellite instability. To diagnose 

MSI, the Bethesda panel (including D5S346, BAT25, and BAT26) is used in colorectal 

cancer, especially in Lynch syndrome210. In contrast to this autosomal dominantly inherited 

disease, that is caused by mutations in DNA mismatch repair genes5, MSI does not 

typically occur in FAP-associated colorectal cancer but individuals suffering from the Lynch 

syndrome variant Muir Torre syndrome may also develop benign skin tumors211. MSI has 

been described in several of their skin lesions such as sebaceous adenomas, -warts, -

tumors, and -epithelioma, as well as stucco keratosis212 and cystic sebaceous tumors213. 

Furthermore, MSI was found in primary melanomas and dysplastic nevi214, Spitz nevi215, 

neurofibromas208, actinic keratoses, and SCC216. Instability at D5S346 in primary or FAP-

associated epidermal cysts or lipomas, however, has thus far not been reported. General 

MMR deficiency leading to the development of lipomas and epidermal cysts in our patients 

could be largely excluded by the additional analysis of the mononucleotide markers BAT25 

and BAT26217, which are known to be highly sensitive to detect MSI-high cancers. Since a 

general impairment of the MMR system has been excluded for the two skin lesion samples, 

we hypothesize an unequal chromosomal rearrangement as possible mechanism for the 

aberrant microsatellite pattern206,218. 

 

  



    

89 
 

Table 19. Frequency of APC-associated somatic mutations in cutaneous and gastrointestinal tissues. Listed are results of the present study 
completed with results from the literature, by considering truncating mutations (especially in MCR) and allelic loss. Several samples could arise from the 
same patient. Numbers of patients are indicated in brackets if available. 

tissue 

number of 
samples 
[number of 
examined 
patients] 

overall 
frequency of 
second hits 
[number of 
patients]

frequency of 
somatic APC 
mutations [number 
of patients] 

frequency of LOH  
[number of patients] 

APC gene coverage/ 
LOH analysis 

references 

fibroma 9 [9]  -  -  - 
MCR (cd. 1139-1640) 
LOH: D5S346 

this study 

lipoma 3 [3] 1/3 (33%) [1]  
LOH + allelic instability 
1/3 (33%) [1] 

MCR (cd. 1139-1640) 
LOH: D5S346 

this study 

angiofibrolipoma 1  -  -  - MCR (cd. 1289-1680) Bläker et al, 2004205 

epidermal cyst 
3 [3] 2/3 (66%) [1] 1/3 (33%) [1] 

LOH + allelic instability: 
1/3 (33%) [1] 

MCR (cd. 1139-1640) 
LOH: D5S346 

this study 

2 [2] 1/2 (50%) [1] 1/2 (50%) [1]  - MCR (cd. 1289-1680) Bläker et al, 2004205 

seborrhoic wart 1  -  -  - MCR (cd. 1289-1680) Bläker et al, 2004205 

desmoid 
23  19/23 (83%) 

12/19 (63%) 
1/19 (5%) exonic del 

6/19 (32%) 
coding exons 1-15/ 
LOH: D5S346, D5S82, D5S1965, 
D5S421 

Latchford et al, 200772 

8 [7] 8/8 (100%) 7/8 (88%) [6] 1/8 (12%) [1] coding exons 1-15 Miyaki et al, 1993219 

gastric fundic gland 
polyps (GFP) 

41 [16] 21/41 (51%) [12] 15/21 (37%) [10] 6/21 (15%) [2] 
MCR (cd.1417-1596) 
LOH: D5S299, D5S346, and D5S82 

Abraham et al, 200017 

gastroduodenal tumors 75 [21] 47/75 (62%)  47/75 (62%)   - APC ex 5-9; 13-15i Toyooka et al, 1995220 

duodenal polyps 49 [39] 9/49 (18%) [7] 6/9 (12%) [6] 3/9 (6%) [1] 
MCR (1147-1693) 
LOH: D5S346 and D5S656 

Groves et al, 2002221 

colorectal adenomas 

233 [39] n/a 52/156 (33%)  52/233 (22%)  
APC ex ex 4-14 ; 15A-I 
LOH: D5S346, D5S656, D5S421 

Crabtree et al, 200368 

133 [6] 105/133 (79%) 85/105 (63%) [6] 23/105 (17%) [3] 
PTT ex 15 (cd. 654-2844) 
LOH: D5S346 and D5S404 

Albuquerque et al, 200269 

210 [35] n/a n/a 42/210 (20%) [11] LOH: D5S656, D5S489 and D5S82 Lamlum et al, 199967 

colorectal tumors 359 [70] n/a 180/359 (50%) 136/254 (54%) 
APC ex 1-15K 
LOH: APC locus 

Miyaki et al, 1994222 
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6.2 Gene expression analyses 

The gene expression profiles of benign neoplasia associated with the FAP disease are 

rarely investigated and whole genome expression of FAP-associated fibromas, lipomas, or 

epidermal cysts has not yet been analyzed, to the best of our knowledge. In the presented 

study, we revealed changed expression patterns for fibroma and lipoma skin neoplasia 

from FAP patients compared to healthy skin samples, as well as for FAP lipomas 

compared to lipomas of non-FAP individuals. Several potentially interesting targets were 

found for each skin lesion group that are in the following discussed in more detail.  

 

FAP fibroma vs. FAP healthy dermis 

Expression analyses on FAP fibroma compared to healthy dermis revealed a clearly 

different mRNA expression pattern. Results of additional analyses as gene ontology and 

IPA® included only few genes, wherefore we decided to mainly concentrate on highest 

changed DEGs. 

Unexpected result-high amount of epidermal components 

An unexpected observation noticed by results from gene ontology as well as by detailed 

annotation analyses, especially among genes down-regulated in FAP fibroma, was the 

predominance of epidermal components. By gene ontology analysis several changed 

processes were found to relate to the development and differentiation of epithelia, 

epidermis, and keratinocytes. Furthermore, total expression profile indicated epidermal 

components such as several cytokeratins, and components of epidermis-dermis junctions 

including desmogleins and desmoplakins. Comparable results also referred to the functions 

of the selected 12 mRNAs. Such major presence of epidermis-related genes would not be 

suspected as the fibroma lesion applies to the dermal rather than to the epidermal part of 

the skin and mainly consists of connective tissue and fibroblasts rather than of 

keratinocytes85. A possible explanation could be the inclusion of adnexal structures such as 

hairs during isolations especially of healthy dermis samples (as epidermis-related genes 

were down-regulated in fibroma compared to healthy skin). In addition, according 

Spemann223 organization fields which include all germ layers are important in 

embryogenesis. 

Highest changed DEGs in FAP fibroma vs. FAP healthy skin 

In total, 12 targets were selected based on a 3-fold expression change and gene 

annotations relating to functions in skin and proliferation. Almost all of them (11/12) were 

successfully confirmed by qPCR, whereas six of them significantly. Those six DEGs 

indicated functions in skin as well as relevance in cell proliferation or suppression of 
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metastasis. Among those genes several associated skin diseases were identified, such as 

melanoma134,154, squamous cell carcinoma (SCC)141,224, chondromyxoid fibroma135, and 

sclerodermal fibroblasts143. All those skin diseases affect different cell types in contrast to 

the benign mesenchymal neoplasm of a FAP fibroma which consists mainly of collagen 

bundles and interspersed fibroblasts85. However, our results indicate a relevance of such 

DEGs in skin. Functions in cell proliferation were hypothesized to be of major importance 

for the development of the fibroma neoplasm. Relating to annotations for high DEGs we 

revealed genes possibly operating as proto-oncogenes (responsible for proliferation and 

development of fibroma) or as tumor suppressor genes (that prevent a potential malignant 

progression). 

Up-regulated S100B, CHL1, and SERPINE2 might influence FAP fibroma development by 

their proto-oncogenic functions  

The highest up-fold regulated target S100B in FAP fibroma encodes a calcium binding 

protein that was found to be usually expressed in tissue of neuroectodermal and 

mesodermal origin134 such as in melanocytes and Langerhans’ cells (epidermis), Schwann 

cells and sensory corpuscles (dermis) and in sweat glands225. In melanoma cells, 

overexpressed S100B serum levels have been reported to correlate with melanoma 

progression. This effect has been explained by an increased protein-protein interaction of 

overexpressed S100B with the transactivation domain and the C-terminus of tumor 

suppressor p53, therefore inhibiting its apoptotic function on potential melanoma cells136. 

Relating to these results, a similar proto-oncogenic mechanism could probably also 

influence the development of FAP fibromas. 

Another high significantly confirmed target indicates CHL1, a transmembrane cell adhesion 

molecule that mediates cell-cell and cell-matrix interactions. As a member of the L1 gene 

family of neural cell adhesion molecules it is involved in neural recognition and signal 

transduction pathways but has also been described to play a role in cancer growth and 

metastasis141,226. They suggested a dual role for CHL1 as a putative tumor suppressor 

during primary tumor growth on the one hand (e.g. in colorectal cancer, tumors of the small 

intestine, breast cancer, melanoma and SCC) and as an oncogene to promote local 

invasive growth and metastatic spread on the other hand (e.g. metastatic growth of 

melanoma, colon, ovary, and breast cancer141,142,227). In these metastatic colorectal cancer 

cells, CHL1 has furthermore been identified as a β-catenin target gene that increases cell 

motility, invasion and tumorigenesis, if overexpressed142. This function might also explain 

its up-fold regulation in FAP fibroma revealed in the presented study. As APC germline 

mutations in FAP patients lead to an aberrant activation of β-catenin36 target genes such as 



   

 DISCUSSION
 

92 
 

also CHL1 are dys-regulated. This might in the present case trigger the formation of the 

fibroma neoplasm but without leading to metastasis such as reported for other tumor types. 

However, for healthy skin samples of FAP patients, β-catenin is supposed to be equally 

regulated. Therefore an additional regulation of CHL1 by other genes is supposed to lead 

to an overexpression in FAP fibroma compared to FAP healthy skin. 

SERPINE2, also known as protease nexin 1, is an inhibitor of several growth-modulating 

serine proteases (thrombin, urokinase, plasmin and trypsin)228. Due to their anti-proteolytic 

function, SERPINEs impair extracellular matrix degradation and therefore increase the 

invasion and metastasis of cancer cells146. Similar to our results in FAP fibroma, up-

regulated SERPINE2 has also been reported for a number of different cancers (pancreas 

carcinoma144, breast carcinoma145, and colorectal carcinoma147,148). Relating to oral and 

cutaneous tissues, up-regulated SERPINE2 expression was reported for oral SCC224 and in 

fibroblasts of scleroderma patients (a disease characterized by extracellular matrix 

accumulation143). In colorectal tumorigenesis, SERPINE2 was identified as a target of ERK 

signaling. Up-regulated SERPINE2 mRNA expression in colorectal and intestinal cancer 

was shown to be activated by mutations of MAPK pathway molecules, such as Ras, BRAF 

and MEK148. The oncogenic functions of SERPINE2 may possibly also influence cell growth 

in FAP fibromas, possibly also due to an impairment of extracellular matrix degradation or 

activation of ERK signaling.  

Up-regulated CDH19 and down-regulated CARD18 might inhibit continuing tumor growth 

and invasion in FAP fibroma by their tumor suppressive functions 

CDH19 represents a member of the huge cadherin family of cell adhesion molecules229. 

Loss of cadherins is frequently reported in cancer, especially E-cadherin (CDH1). Cancer 

formation is supported by cell adhesion defects due to altered cadherin-catenin complexes, 

β-catenin amongst others138. CDH19 mRNA down-regulation has previously been reported 

in cholesteatoma tissue, a gradually expanding destructive epithelial lesion within the 

middle ear137. In the presented study an up-regulation of CDH19 might indicate an increase 

of tumor suppressive function that possibly prevents invasive growth in benign FAP 

fibroma. 

CARD18 (caspase associated recruitment domain 18) is member of a protein family known 

to mediate protein-protein interactions between key apoptotic signaling molecules157. 

According to the presented study, no other study was found to report a down-regulation in 

any human neoplasm or other cutaneous disease, to the best of our knowledge. In 

contrast, over-expression of CARD18 mRNA and CARD18 protein has been reported in 

internal cancers (gastric adenoma and its lymph node metastasis159) and lung SCC230. 
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Relating to this function, in the presented study, CARD18 down-regulation in FAP fibroma 

might suppress invasive growth in FAP fibroma. 

Down-regulated CST6 might influence normal skin function in FAP fibroma 

CST6, an endogenous inhibitor of cysteine proteinases (cathepsins and asparaginyl 

endopeptidase legumain) was described to prevent invasion and metastasis of melanoma 

cells154. In accordance to the presented study, decreased expression was related to 

metastasis of mammary epithelial tumor cells and malignant melanomas231,232. In skin, 

CST6 was found to be expressed in differentiating and cornifying layers of the epidermis, 

and in appendages such as hair follicles, sebaceous glands, and sweat glands. 

Furthermore, CST6 has been found to be an important regulator of epidermal terminal 

differentiation152. Loss of expression has been correlated with phenotypes resulting in faulty 

cornification, desquamation and follicle morphogenesis153. Such results indicate a major 

importance of CST6 for the normal epidermal function and development. Here, this study 

discloses its function in dermis, revealed in a down-regulation in FAP fibroma.  

Comparison to prior gene expression analyses for FAP fibroma neoplasms 

Prior investigations on FAP-associated fibromas merely dealt with the selective expression 

analysis of Wnt pathway molecules applying immunohistochemistry (IHC). Such studies 

revealed positive reactivity for β-catenin, β-catenin target genes cyclin D1 and c-myc, as 

well as CD34, CD99, and vimentin46,86,90,92,93,96,97. Apart from Wnt pathway-associated 

molecules, the importance of TGFβ1 as a regulator of fibroblast proliferation was reported, 

and has also been described to be overexpressed in fibroma cell cultures of patients with 

Gardner syndrome233. In the presented study, such genes revealed unremarkable 

expression changes not included within the defined minimum 1.5-fold expression change 

and FDR-unadjusted p-value <0.05 (Table 20). As Wnt pathway genes revealed no 

significant expression difference, we would rather suggest other than Wnt-correlated 

mechanisms as a main cause for fibroma development in FAP patients. This suggestion is 

supported by a previously published study of our group22 that did not found a significantly 

higher prevalence of single skin lesions (fibromas, lipomas, and epidermal cysts) in FAP 

patients compared to such in the normal population. 

In concordance with our data, several molecules in Gardner-associated fibroma have been 

reported to reveal negative reactivity in IHC46,86,90,92,93,96,97. Only S100B revealed a 

remarkable and significant up-regulation in fibroma tissues (Table 20). 

In summary, according to presented expression results, the development of FAP fibroma 

tend to be influenced by target genes mainly involved in proliferation processes. FAP 
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fibroma might develop by the activation of proto-oncogenes such as S100B, SERPINE2, 

and CHL1. A further invasive growth might be prevented by an increased activation of 

tumor suppressors such as CDH19 and CHL1 (dual function) and deactivation of proto-

oncogenes such as CARD18. Another possible role might also play the deregulation of 

genes important for normal skin development such as CST6. Wnt pathway genes in 

contrast tend to have less impact on the development of FAP fibromas what differs from 

several prior studies on FAP-associated fibromas (Table 20). 
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Table 20. Comparison of prior studies on FAP fibromas to presented gene expression profile. 
Molecules already examined in prior gene expression analyses on FAP-associated fibromas are 
illustrated in comparison to our expression profile. Almost all molecules were reported to reveal 
positivity or negativity in IHC studies, and several of the positive molecules relate to Wnt signaling. 
Furthermore, transforming growth factor β1 (TGFβ1) mRNA and protein was reported to be 
overexpressed in FAP fibroma cells233. Indicated -fch and p-values relate to results of the present 
whole genome expression analysis on FAP fibroma vs. FAP healthy dermis samples. Molecules with 
reported IHC positivity as well as for TGFβ1 revealed unremarkable expression changes not 
reaching minimum expression difference of at least 1.5-fold with unadjusted p-value <0.05. In 
contrast, most of the molecules negative for FAP fibroma could have been confirmed with our 
expression data. In contrast to other IHC investigations, a high S100B up-fold regulation was 
revealed in the presented analysis. 
 
Molecules with reported IHC positivity or mRNA/protein overexpression in FAP fibroma 

gene ID gene name localization fch p-value reference 

CTNNB1 β-catenin 1  1.22 0.14 Coffin 200746 

CCND1 cyclin D1  11q13 1.04 0.05 Coffin 200746 

MYC v-myc myelocytomatosis viral 
oncogene homolog (avian);  

8q24.21 1.04 0.86 Coffin 200746 

CD34 CD34 molecule  1q32 -1.63 0.03 Wehrli 200186; Lanckohr 201190; 
Michal 200497 

CD99 CD99 molecule  Xp22.32; Yp11.3 -1.08 0.67 Linos 201196 

VIM vimentin  10p13 1.37 0.06 Wehrli 200186; Lanckohr 201190; 
Michal 200497 

TGFB1 transforming growth factor, β 1  19q13.2|19q13.1 1.06 0.47 Lilli 2002233 

 

Molecules with reported IHC negativity in FAP fibroma 

gene ID gene name localization fch p-value reference 

ACTC1 
 

muscle specific actin 
actin, α, cardiac muscle 1  

15q11-q14 -1.12 0.29 Wehrli 200186; Lanckohr 201190; 
Michal 199993, 200092, 200497; 
Linos 201196 

ACTA2 smooth muscle actin 
contractile apparatus; skeletal 
muscle 

10q23.3 -1.97 0.02 Wehrli 200186; Lanckohr 201190; 
Michal 199993, 200092, 200497; 
Linos 201196 

DES desmin  
muscle specific intermediate 
filament 

2q35 -1.26 0.1 Wehrli 200186; Lanckohr 201190; 
Michal 200092, 200497; Linos 
201196 

S100 S100 calcium binding protein   5.26 0.03 Lanckohr 201190; Michal 200092, 
200497; Linos 201196 

EMA  
 

epithelial membrane antigen 
mucin 1, cell surface 
associated  

1q21 -1.16 0.23 Linos 201196; Michal 199993 

GFAP  glial fibrillary acidic protein  17q21 -1.12 0.12 Michal 199993 

Cytokeratins   almost all 
down 

Michal 200092, 200497 

Ki-67 
(MKI67) 

marker of proliferation /antigen 
identified by monoclonal 
antibody Ki-67 

10q26.2 -1.23 0.06 Linos 201196 
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FAP lipoma vs. FAP healthy dermis 

Lipomas compared to healthy skin of FAP patients revealed a clearly differential expression 

profile. Same as in the fibroma analysis, we decided to mainly focus on highest changed 

DEGs. All such genes were found to reveal increased mRNA expression in FAP lipoma 

and to function in lipid metabolism or in modulation of cell proliferation. 

Influence of mRNA targets FABP4 and RBP7 involved in lipid binding and lipid metabolism 

on the development of FAP and non-FAP lipomas  

Two genes (FABP4, RBP7) were found to encode for members of intracellular lipid-binding 

proteins234. FABP4 was reported to be especially expressed in adipocytes and to function 

in fatty acid uptake, transport and metabolism235. In a recent study, several soft tissue 

tumors of mature and immature fat cells have been shown to positively stain for FABP4 in 

contrast to non-adipose mesenchymal and non-mesenchymal tumors175. RBP7, a retinol 

binding protein, is known to function in the stabilization, intracellular transfer and 

metabolism of otherwise rather unstable vitamin A234. The up-regulation of such genes in 

FAP lipoma compared to FAP healthy dermis may therefore be explained by their 

predominant expression in lipid tissue. Interestingly, both genes were also found to be 

overexpressed in non-FAP lipoma tissue compared to FAP lipoma. This might be explained 

by a possible difference in lipoma type derived from FAP patients or healthy individuals. 

Another explanation could be provided by an influence of Wnt signaling in FAP adipose 

tumors. Wnt molecules have been described to block the development of white and brown 

adipose tissue107 and to inhibit adipocyte differentiation236. Furthermore, FABP4 and other 

major genes of the adipogenesis pathway were reported to be down-regulated by Wnt 

signaling-induced β-catenin up-regulation108. Therefore, decreased mRNA expression of 

such lipid binding molecules in FAP lipoma might be influenced by the APC germline 

mutation. This mutation is suggested to lead to a deregulated β-catenin increase and 

therefore to a decrease of lipid binding proteins. The up-regulation of lipid binding proteins 

in FAP lipoma compared to FAP healthy dermal skin might in contrast be explained by the 

interaction of other regulatory proteins that favor the proliferation of adipocytes and 

therefore an increase in fatty acid binding proteins despite APC germline mutation. 

Up-regulated proto-oncogenes DDX5 and MXRA5 possibly induce FAP lipoma 

development 

DDX5 (DEAD box ATP-dependent RNA helicase) was described to be involved in several 

cellular processes of RNA secondary structure alteration, in cellular growth and division, 

and in cancer cell proliferation237. Similar to our results in FAP lipoma, overexpression of 

DDX5 mRNA or protein has been reported in several tumor tissues (prostate carcinoma238, 
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colorectal adenomas and colorectal carcinomas171, and breast cancer237,239) and has 

therefore been suggested as a potential tumor promoter240. In prostate and colorectal 

carcinoma, DDX5 was described to facilitate tumor progression by interaction with β-

catenin240. In breast cancer, DDX5 was found to regulate DNA replication (G1-S-phase 

progression), transcription and expression of DNA replication genes237. Relating to its 

function in skin, DDX5 was reported to positively contribute to wound repair. Increased 

DDX5 levels have been found in keratinocyte nuclei of wound margins that lead to serum 

induced keratinocyte proliferation and expression of vascular endothelial growth factor 

(VEGF)170. MXRA5 encodes for a matrix-remodeling associated protein that was described 

to function in extracellular matrix remodeling and cell-cell adhesion172. For this target, 

increased expression has also been reported in other tumors (colorectal adenoma and 

cancer173, esophageal squamous cell carcinoma241, and ovarian cancer242). The exact role 

in tumorigenesis of MXRA5 is not known but possible mechanisms in cell adhesion defects 

and modulation of signal transduction have been suggested172. Such mechanisms reported 

for DDX5 and MXRA5 for other tumors could also lead to the proliferation of adipose tissue 

and the development of lipoma in FAP patients. Possible invasive growth is, same as for 

FAP fibroma, supposed to be inhibited by other regulatory mechanisms and the 

counteraction of tumor suppressors. 

A possible proto-oncogenic role in FAP lipoma might also play SHOC2 (soc-2 suppressor 

of clear homolog). It encodes for a scaffold protein linking RAS to downstream signal 

transducers in the MAP kinase signaling cascade and therefore acts as a positive 

modulator of ERK1/2 signaling179. As dys-regulated MAPK signaling is known to cause a 

variety of human cancers243, SHOC2 dys-regulation could possibly also influence 

overgrowth of adipose tissue in FAP and non-FAP lipoma tumors. In contrast, SHOC2 has 

been reported to be down-regulated in colorectal cancer244. Relating to skin, mutations in 

SHOC2 are known to cause Noonan-like syndrome, an autosomal dominantly inherited 

RASopathy with loose anagen hair, dark pigmentation, eczema or ichthyosis besides other 

growth, mental or cardiac defects178. These results implement that an intact SHOC2 protein 

is important for normal development of skin and hairs. In the presented study, a highly 

increased SHOC2 expression level was also revealed in control lipomas compared to FAP 

lipomas. This could possibly be explained by additional regulatory mechanisms in FAP-

associated lipomas, possibly influenced by the pathogenic APC mutation. 
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Up-regulated tumor suppressors TMEM47, SMARCA1, and SFRP2 possibly inhibit 

invasive growth of FAP lipomas  

TMEM47 encodes for a transmembrane protein of the PMP22/EMP/claudin protein 

family169. Claudins in general are important constituents of tight junctions245. A tumor 

suppressive function of TMEM47 has been reported for malignant melanoma169. They 

revealed a decreased mRNA expression in such tumors caused by promoter methylation 

and allelic deletion. Another putative tumor suppressor indicated the matrix associated 

chromatin regulator SMARCA1. This target was found to regulate the transcription of 

certain genes by altering their chromatin structure. In melanoma tumors, down-regulated 

mRNA and protein levels were shown to increase melanoma cell proliferation and migration 

due to activation of otherwise modulated Wnt signaling182. For both genes, TMEM47 and 

SMARCA1, an up-regulation of tumor suppressive function is suggested to prevent 

metastatic growth in benign lipomas. This tumor suppressive function seemed to be even 

stronger in control lipoma, as mRNA expression of both targets was decreased in FAP 

lipoma compared to control lipoma. This could be caused by other regulatory mechanisms, 

possibly influenced by the underlying APC germline mutation in FAP lipomas. The Wnt 

modulator SFRP2 might indicate another putative tumor suppressor in FAP lipomas. Down-

regulation by epigenetic inactivation has been reported in several cancers (esophageal 

squamous cell carcinoma246, colorectal cancer177, gastric cancer247). Secreted frizzled 

related proteins contain a domain similar to the Wnt receptor frizzled proteins that enables 

the binding of such proteins to Wnt receptors, with resulting down-regulation of pathway 

signaling during development177,248. In contrast to TMEM47 and SMARCA1, SFRP2 

revealed up-fold mRNA regulation in FAP lipoma compared to control lipoma. This could 

possibly be explained by other regulatory mechanisms that support the tumor suppressive 

and Wnt modulatory effect of SFRP2 especially in FAP-associated lipoma tissue. Relating 

to cutaneous tissues, similar to our results, SFRP2 expression has been reported to be 

increased in hypertrophic scar fibroblasts. There an anti-apoptotic role of SFRP2 was 

suggested to explain the development of such fibroproliferative skin disorders176,249,250. A 

similar process could possibly also explain the development of lipomas in FAP and healthy 

individuals.  
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Increased UBE2R2 and HIST1H1C expression possibly influences FAP lipoma 

development by increasing β-catenin degradation or transcriptional repression 

The ubiquitin conjugating enzyme UBE2R2 is known to be involved in ubiquitin-mediated 

proteasomal degradation of β-catenin181,251. An increased regulation could therefore result 

in increased β-catenin degradation, possibly preventing metastatic progression in lipomas. 

Other regulatory mechanisms in FAP lipomas are thought to further repress UBE2R2 

(possibly similar as for TMEM47 and SMARCA1) in FAP lipomas relative to non-FAP 

lipomas.  

Linker histone HIST1H1C is in contrast known to compact nucleosomes into higher order 

structures and is therefore associated with transcriptional repression of several genes. 

Recently, it has been reported to suppress p53-mediated transcription and therefore to 

influence p53-dependent DNA damage response pathways180,252. Furthermore, it was 

reported to participate in epigenetic regulation of gene expression253. Of particular interest 

might possibly be also the localization of HIST1H1C at 6p21.3, as in lipomas several 

chromosomal rearrangements are known to affect chromosomal positions 6p21-23254.  

In summary FAP lipomas, same as FAP fibromas tend to be influenced by proto-

oncogenes (DDX5, MXRA5) as well as tumor suppressor genes (TMEM47, SMARCA1, 

SFRP2). Especially tumor suppressors TMEM47 and SMARCA1 were found to also play a 

role in control lipoma development. Other genes (UBE2R2, HIST1H1C) might also 

suppress malignant growth by other mechanisms. In addition two lipid binding proteins 

(FABP4, RBP7) could be involved in FAP and especially in control lipoma development. 

The higher expression in control lipoma is explained by the particular lipoma type and by 

an influence of Wnt signaling. Wnt signaling is known to suppress adipose tissue formation 

and to suppress targets of the lipid signaling pathway107,236. An interesting target especially 

for the development of FAP lipomas presented the Wnt modulator SFRP2. This target gene 

might suppress tumor promotion by its tumor suppressive activity. But it could also induce 

the development of FAP lipomas due to an anti-apoptotic mechanism. In addition the 

development of FAP lipomas compared to FAP healthy skin could be influenced by several 

upstream regulators that connect some of the DEGs 

 

  



   

 DISCUSSION
 

100 
 

FAP lipoma vs. control lipoma 

Among studies on differential gene expression, FAP lipomas compared to control lipomas 

revealed highest expression changes. Selected targets indicate a tendency by which up-

regulated genes could influence FAP lipoma development by functions in cell proliferation, 

whereas control lipoma rather related to lipid metabolism targets as well as to proto-

oncogenes. 

Up-regulated SLPI and CD24 with proto-oncogenic functions and possible association with 

the APC germline mutation 

The secretory leukocyte peptidase inhibitor (SLPI) is known to protect epithelial tissues 

from serine proteases. Furthermore, SLPI has been reported to promote cancer growth and 

survival and to induce metastasis. Similar to our results, an up-regulated SLPI mRNA and 

protein expression has been reported among others in gastric cancer189,255 and epithelial 

ovarian cancer256. In gastric cancer cells, SLPI was shown to promote invasive growth and 

cell migration by increasing the expression of matrix metalloproteinases MMP2 and MMP9 

through phosphorylation of transcription factor Elk1189. Related to skin, it was found to 

function as an important endogenous factor for normal cutaneous and intra-oral wound 

healing187,188. Similarly, an overexpression of the cell adhesion molecule CD24 has been 

reported in colorectal cancer, cervical cancer and several other tumors257,191,258. CD24 has 

furthermore been identified as a putative β-catenin target gene192. Relating to skin, CD24 

was observed to be overexpressed in blood leukocytes of patients with non-melanoma skin 

cancers such as SCC and BCC190. Such mechanisms of cancer growth already reported for 

cutaneous and other tumors could also influence the development of lipomas in FAP 

patients. Interestingly, mRNA expression of SLPI was also increased in FAP lipomas vs. 

FAP healthy skin, but to a much higher extent in FAP lipomas compared to non-FAP 

lipoma. This difference might possibly be explained by other regulatory mechanisms 

possibly induced by aberrant Wnt signaling.  

SFRP2 presents another target that possibly relates to the underlying FAP disease. Same 

as for SLPI, mRNA expression was increased in FAP lipoma vs. FAP healthy skin and to a 

higher extent in FAP lipoma compared to non-FAP lipoma. As already discussed, this gene 

might suppress cell proliferation by modulation of Wnt signaling248 but it might also promote 

the formation of hypertrophic scars by affecting apoptosis of hypertrophic scar 

fibroblasts176,249,250. This anti-apoptotic function has previously been shown by interation of 

SFRP2 with the transcription factor Slug in a caspase 3-dependent pathway176. 

Furthermore, similar to our results, an increased SFRP2 mRNA expression was revealed in 
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keloid skin249. Finally, both functions of SFRP2 are thought to be plausible to influence FAP 

lipoma development 

Increased expression of CAPNS2 might inhibit invasive growth in FAP lipoma by inducing 

apoptosis  

Calpain small subunit 2 (CAPNS2) is a calcium-activated widely expressed cysteine 

protease259. Such proteases act as key regulators of several cellular mechanisms (cellular 

signaling, remodeling, degradation, cell death) by cleaving a variety of important proteins 

after activation. In traumatic brain injury cells, it has been found to increase apoptosis due 

to sustained activation184. Relating to this mechanism, the increased expression of CAPN2 

in FAP lipoma could prevent invasive growth by inducing apoptosis of potentially malignant 

cells. 

LEP, EGFL6, and GPAM with decreased expression in FAP lipoma are related to lipid 

tissue and could indicate possible proto-oncogenes for non-FAP lipoma development  

Leptin (LEP) is an adipocyte-derived cytokine-like peptide that binds to leptin receptors in 

hypothalamus and many other tissues (also in skin). Leptin is known to modulate energy 

balance and maintenance of body weight195 and high LEP serum levels are positively 

associated with obesity260. Leptin and its receptors were found to be expressed in several 

neoplasms of adipose tissue195,261 and increased LEP mRNA was found in lipoma 

compared to normal adipose tissue262. Similarly, in the presented study, LEP mRNA was 

increased in non-FAP lipoma compared to FAP lipoma. This result is suggested to be 

caused by a difference in lipoma type or due to other regulatory mechanisms, as also 

discussed for genes encoding the lipid binding molecules FABP4 and RBP7. As LEP 

overexpression is known to correlate with obesity260 we cannot exclude obesity as a 

potential confounder among the non-FAP lipoma cohort. A proto-oncogenic potential has 

been described in breast cancer and obesity-induced colorectal cancer198,263. In breast 

cancer, LEP was shown to induce tumor progression and invasion by induction of 

epithelial-mesenchymal transition caused by β-catenin activation in the Wnt pathway. In 

Apc Min mice that carry Apc Min mutation, leptin was found to induce pre-neoplastic colon 

epithelial cells to orchestrate VEGF-driven angiogenesis and vascular development263. 

Such functions of LEP could indicate a growth promoting effect in non-FAP lipoma. Another 

target with proto-oncogenic and lipid tissue-specific properties indicated the cell adhesion 

molecule EGFL6. It is a member of the epidermal growth factor repeat superfamily and 

known to be involved in the regulation of cell cycle proliferation and developmental 

processes201. EGFL6 is secreted from adipose tissue and increased expression related to 

human obesity where it promotes the proliferation of adipose tissue-derived stromal 
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vascular cells199. Furthermore, it was reported to function as a signaling molecule in hair 

follicle development to promote angiogenesis and attraction of vascular endothelial cells200. 

Relating to cell proliferation, EGFL6 overexpression has been reported for fibroblastic 

meningioma  (a benign intracranial mesenchymal tumor arising from arachnoid cells) and 

ovarian cancer242,264. Based on these informations, EGFL6 might, same as LEP, also be 

involved in the development of non-FAP lipomas, possibly by enhancing vascularization 

and angiogenesis in adipocytes. The particular association of this gene to non-FAP lipoma 

is supposed to relate to the particular lipoma type. Obesity as a possible confounder in the 

present study can not be excluded certainly. An additional target involved in lipid 

metabolism and with possible proto-oncogenic function represented GPAM. The Glycerol-

3-phosphate acyltransferase is known to catalyze the first step in the biosynthesis of 

glycerolipids265. GPAM overexpression has further been reported for breast cancer266. 

These authors suggested a possible role of GPAM in tumor progression and a general 

relevance of metabolic changes in cancer. A similar mechanism could possibly also 

influence the development of control lipomas.  

CIDEC with decreased expression in FAP lipoma possibly represses invasive growth in 

FAP as well as in non-FAP lipoma  

CIDEC is predominantly expressed in white adipose tissue. For its protein, several 

important functions related to lipid tissue have been described. A depletion of this protein in 

mice resulted in lean mice with reduced lipid droplet size in white adipose tissue and 

increased metabolic rate202. Relating to the enhanced expression in non-FAP lipoma, 

overexpression of CIDEC in hepatocellular carcinoma was shown to induce apoptosis and 

to inhibit oncogenesis and tumor development by interaction with lipopolysaccharide-

induced tumor necrosis factor185. A similar function could be expected in non-FAP lipoma, 

preventing an invasive growth of the lipoma tissue.  

In summary, FAP lipomas compared to control lipomas tend to develop by the influence of 

up-regulated proto-oncogenes (SLPI, CD24). Invasive growth of the FAP lipoma could 

possibly be inhibited by up-regulation of tumor suppressor genes (SFRP2, CAPNS2). All 

such genes are thought to directly relate to the FAP disease and must be influenced by the 

underlying APC germline mutation. In contrast down-regulated genes are thought to mainly 

influence the development of investigated non-FAP lipomas. A major influence of lipid 

tissue specific genes is suggested for the development of non-FAP lipomas. Furthermore, 

proto-oncogenes (LEP, EGFL6, GPAM) could influence lipoma development in healthy 

individuals. Same as in FAP lipomas, other genes are supposed to suppress invasive 

growth in control lipoma (CIDEC). 
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FAP epidermal cyst vs. FAP healthy epidermis 

Microarray analyses on FAP epidermal cyst vs. FAP healthy skin did not reach major 

differences in gene expression. Based on the determined minimal significance level of 

unadjusted p-value <0.05 and -fold change 1.5, only three up-and three down-regulated 

genes were received. Furthermore, relating to their annotations (regulators of antivirus 

response, chromosome open reading frames, eyes shut homologs of drosophila, or 

hemoglobin-β) they were not found to be important for this study. For this, the development 

of such FAP-specific cysts is rather thought to be influenced by other mechanisms than by 

a dysregulation of certain genes. However, this investigation is supposed to be highly 

impacted by the very small sample number of merely three epidermal cyst and three 

healthy skin samples. 

 

6.2.1 Limitations of the gene expression studies on FAP neoplasms 

The small sample number included in presented analyses of gene expression as well as 

in second hit analyses indicated an important limitation of the study. Especially, qPCR 

confirmation analyses would ideally have needed a higher sample number to confirm 

results revealed from microarray calculations. The high inter-sample variation mostly seen 

in PCA, explained by the inter-individual patterns of human material, is most probably also 

amplified by some extend by the small number of included samples. The impossibility to 

calculate differential gene expression based on FDR-corrected false positive rates was also 

interpreted as a consequence of the small sample number. Based on prior investigations, 

around 45 arrays per group would ideally be needed to reach a sufficiently low FDR rate of 

10%124. In the presented analysis, only 6-11 arrays per group were applied, and DEGs 

would only be reached on a much higher FDR rate than 10%. Besides the sample number, 

a major limitation presented the small size of the skin lesion biopsies. In order to reduce 

scar formation to a minimum after skin lesion biopsy, small 4mm punch biopsies have been 

taken. Such small skin lesion biopsies did not enable histological examination. Instead, 

diagnosis was based on clinical diagnosis of one clinically experienced dermatologist. 

Furthermore, the small sample sizes disabled additional, potentially interesting 

investigations, as analyses on protein level, based on same FAP skin lesion samples . 

Another limitation presented the quality of the skin sample isolates, which appeared to 

be impacted. This was most obvious in qPCR runs for FAP lipoma vs. FAP healthy skin 

samples, where most of the samples did not perform well. The cause for the affected 

quality is unknown but affection during isolation could be a probable explanation. 
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However, as FAP represents a rare disease and skin lesions occur in approximately 50%22 

of all FAP patients, a higher number of biopsies is difficult to include and is thought to might 

only be reached my means of international collaboration. In addition, for each skin lesion 

biopsy, the individual risk for a possible development of desmoid tumors following skin 

lesion biopsy must be considered.  

 

6.2.2 Novelty and importance of expression results 

To the best of our knowledge, up to now, no extensive whole genome expression analyses 

have been published for FAP-associated skin lesions such as fibromas, lipomas or 

epidermal cysts. Therefore, this study aimed for the first time to find potentially important 

gene candidates that could influence the development of such skin lesions in FAP. 

Furthermore, this study achieved to reveal primary insights into possible influencing factors 

in the development of FAP lipomas in relation to similar lipomas of the general population. 

Final results could be taken as primary implementation for further studies probably 

including higher sample numbers and other techniques. 
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7 CONCLUSION 

In conclusion this is the first study to extensively analyze several FAP-associated skin 

lesions, especially fibromas and lipomas, for second hit mutations in APC as well as for 

changes in whole genome expression. 

By applying several techniques for APC second hit analysis, we identified for one out of 

three lipomas as well as one out of three epidermal cysts both an LOH and microsatellite 

instability in D5S346. The same epidermal cyst sample also revealed a second hit mutation 

in APC MCR. Although several alternative APC transcripts were detected in the skin 

lesions, none of them were indicative for a particular somatic splice site mutation. 

Therefore, we assume that somatic APC alterations such as mutations in MCR or LOH in 

FAP-associated benign cutaneous neoplasms, at least in fibromas, are not the major cause 

for the development of skin lesions in FAP patients. Clearly, as the somatic mutation 

frequencies of 33% for lipomas and epidermal cysts were based on only 3 samples, further 

comprehensive APC mutation analysis on larger numbers of such FAP-associated skin 

lesions is recommended. Based on our microsatellite analyses, we alternatively suggest 

that chromosomal rearrangements could influence the development of skin lesions in FAP 

patients rather than aberrant splicing.  

Gene expression results support the theory of a Wnt-independent mechanism responsible 

for skin lesion development in FAP. Genes involved in Wnt signaling were not among the 

highest DEGs in FAP fibroma or FAP lipoma studies. Highest DEGs for both groups 

revealed functions in cell proliferation (either as proto-oncogenes or as tumor suppressor 

genes). Therefore the development of such skin lesions was thought to be on the one hand 

induced by targets promoting cell proliferation. On the other hand, tumor suppressive 

mechanisms are thought to inhibit further tumor progression and invasion. In addition, a 

dysregulation of genes important for normal skin development might influence the skin 

lesion development. In contrast to those results, no differential gene expression was 

revealed for FAP epidermal cysts.  

Comparative expression analyses for FAP lipoma and control lipoma revealed also 

increased expression of lipid tissue specific genes. Such genes are therefore expected to 

specifically influence the development of control lipoma in addition to proto-oncogenes. 

Such differences could account for the particular lipoma type in FAP and non-FAP 

individuals. Worth mentioning is that expression change was more clear in FAP lipomas 

compared to control lipomas.  

In general, all such results could be confounded by the low number of examined samples 

and a larger number of samples is recommended for future studies. 
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8 OUTLOOK 

Overall, a larger number of FAP-associated skin lesions should confirm presented results. 

Larger skin biopsies would enable a separate isolation of DNA, RNA, and protein samples 

as well as histological investigation. The separate isolation of DNA and RNA samples could 

enable better quality of samples and therefore more reliable results in subsequent 

analyses. Since FAP-associated skin lesions are known to occur early in life a possible 

inclusion of children or adolescents might be considered in future studies. 

 

Relating to second hit analyses, especially a larger number of lipomas and epidermal cysts 

of FAP patients should be investigated to confirm or confute presented results in such 

lesions. Possibly, other techniques such as MLPA or the protein truncation test could 

complete the diagnostic repertoire of APC mutation analysis. Subsequent analysis of the 

resulting protein (by Western blot analysis) could reveal further information about the size 

of translated APC. Similarly, a larger number of samples should confirm highly changed 

targets that were received in whole genome expression analyses on mRNA as well as on 

protein level. 

Based on results for both lipoma groups (FAP lipomas vs. FAP healthy skin as well as FAP 

lipoma compared to control lipoma), a possible connection of molecules regulated by same 

upstream regulators as well as detected pathways should be investigated.  

Analysis of differential gene expression between FAP fibromas/epidermal cysts and control 

fibromas/epidermal cysts possibly reveal information about a potentially different 

development of such lesions in FAP and non-FAP individuals, as it has been done for 

lipomas. 

A possible interdependence of changed gene targets could be investigated by transfection 

studies to reveal information of parallel expression in cell cultures. 
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10 SUPPLEMENTS  

Supplementary Table 1.  Primer sequences for verification of the patient specific germline 
mutation in skin lesion samples (exons 1-14). 
primer ID sequence primer localization 

APC ex 1 fwd  5'-TTCTTTAAAAACAAGCAGCCACT 5' site of 5'UTR 

APC ex 1 rev  5'-AAATGCTAACTTTTGCAAGAAAGA in intron 1 

APC ex 2 fwd  5'-GTGCGTGCTTTGAGAGTGAT in intron 1 

APC ex 2 rev  5'-CCCAAATCGAGAGAAGCTGT in intron 2 

APC ex 3 fwd  5'-TAACTTAGATAGCAGTAATTTCCC in exon 3 

APC ex 3 rev  5'-ACAATAAACTGGAGTACACAAGG in intron 3 

APC ex 4 fwd* 5'-GCTCTTCTGCAGTCTTTATTAGCA  in intron 3 

APC ex 4 fwd* 5'-ATAGGTCATTGCTTCTTGCTGAT  in intron 3 

APC ex 4 rev  5'-GAATTTTAATGGATTACCTAGGT  in intron 4 

APC ex 5 fwd  5'-CATGCACCATGACTGACGTA in intron 4 

APC ex 5 rev 5'-GTTGCTCAGCAGCCATGATA in intron 5 

APC ex 6 fwd  5'-CCTGAGCTTTTAAGTGGTAGCC in intron 5 

APC ex 6 rev 5'-TGCCTAAAAGTTAGATAAAATCAAAA in intron 6 

APC ex 7 fwd  5'-CACAGTTCCATGCCTTTATCA in intron 6 

APC ex 7 rev  5'-TGGTACTGAATGCTTCTGGAAA in intron 7 

APC ex 8 fwd  5'-ACCTATAGTCTAAATTATACCATC in intron 7 

APC ex 8 rev 5'-GTCATGGCATTAGTGACCAG in intron 8 

APC ex 9 fwd 5'-ATTGGTTTTTGGCTTTTGGA in intron 8 

APC ex 9 rev 5'-CATTTGCTTTGAAACATGCAC in intron 9 

APC ex 10 fwd 5'-AAACATCATTGCTCTTCAAATAAC in intron 9 

APC ex 10 rev 5'-TACCATGATTTAAAAATCCACCAG in intron 10 

APC ex 11 fwd 5'-GATGATTGTCTTTTTCCTCTTGC intron 10-exon 11 

APC ex 11 rev 5'-CTGAGCTATCTTAAGAAATACATG in intron 11 

APC ex 12 fwd 5'-TTTTAATGATCCTCTATTCTGTAT in in 11/ex 12 

APC ex 12 rev 5'-ACAGAGTGAGACCCTGCCTCAAAG in intron 12 

APC ex 13 fwd 5'-TTTCTATTCTTACTGCT in intron 12 

APC ex 13 rev 5'-ATACACAGGTAAGAAATTAGG in intron 13 

APC ex 14 fwd 5'-TAGATGACCCATATTCT intron 13-exon 14 

APC ex 14 rev 5'-CAATTAGGTCTTTTTGAGAGT in intron 14 

primer ID and exon localization was following classical APC exon numbering with exons 1-15 = exons 4-18 ; 
*For exon 4 two different fwd primers were used for PCR reactions and sequencing. 
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Supplementary Table 2. Primer sequences for verification of the patient specific germline 

mutation in skin lesion samples (exon 15). 
primer ID sequence primer localization 

APC Ex 15 a fwd 5'-TTTGTTGTTACTGCAT in intron 14 

APC Ex 15 a rev 5'-GATGAGATGCCTTGGGACTT in exon 15 

APC Ex 15 b/c fwd 5'-CCCAAGGCATCTCATC in exon 15 

APC Ex 15 b/c rev 5'-TTCAGTGGTAGACCCAGAACTT in exon 15 

APC Ex 15 c fwd 5'-ATTTGAATACTACAGTGTTACCC in exon 15 

APC Ex 15 c rev 5'-CTTGTATTCTAATTTGGCATAAGG in exon 15 

APC Ex 15 d fwd 5'-CTGCCCATACACATTCAAACAC in exon 15 

APC Ex 15 d rev 5'-TGTTTGGGTCTTGCCCATCT in exon 15 

APC Ex 15 d/e fwd 5'-AGTGTCAGTAGTAGTG in exon 15 

APC Ex 15 d/e rev 5'-TTCCTTGATTGTCTTTGCTC in exon 15 

APC Ex 15 e fwd 5'-AGTCTTAAATATTCAGATGAGCAG in exon 15 

APC Ex 15 e rev 5'-GTTTCTCTTCATTATATTTTATGCTA in exon 15 

APC Ex 15 e/g fwd 5'-GCATGAAGAAGAAGAGAGACCAA in exon 15 

APC Ex 15 e/g rev 5'-TCTGCTTCCTGTGTCGTCTG in exon 15 

APC Ex 15 f fwd 5'-AAGCCTACCAATTATAGTGAACG in exon 15 

APC Ex 15 f rev 5'-AGCTGATGACAAAGATGATAATG in exon 15 

APC Ex 15 g fwd 5'-AAGAAACAATACAGACTTATTGTG in exon 15 

APC Ex 15 g rev 5'-GAGTGGGGTCTCCTGAAC in exon 15 

APC Ex 15 g/h fwd 5'-AGAATCAGCCAGGCACAAAG in exon 15 

APC Ex 15 g/h rev 5'-TGGAAGATCACTGGGGCTTA in exon 15 

APC Ex 15 h fwd 5'-ATCTCCCTCCAAAAGTGGTGC in exon 15 

APC Ex 15 h rev 5'-TCCATCTGGAGTACTTTCCGTG in exon 15 

APC Ex 15 i fwd 5'-AGTAAATGCTGCAGTTC in exon 15 

APC Ex 15 i rev 5'-CCGTGGCATATCATCCCCC in exon 15 

APC Ex 15 j fwd 5'-CCCAGACTGCTTCAAAATTACC in exon 15 

APC Ex 15 j rev 5'-GAGCCTCATCTGTACTTCTGC in exon 15 

APC Ex 15 k fwd 5'-CCCTCCAAATGAGTTAGCTGC in exon 15 

APC Ex 15 k rev 5'-TTGTGGTATAGGTTTTACTGGTG in exon 15 

APC Ex 15 l fwd 5'-ACCCAACAAAAATCAGTTAGATG in exon 15 

APC Ex 15 l rev 5'-GTGGCTGGTAACTTTAGCCTC in exon 15 

APC Ex 15 m fwd 5'-ATGATGTTGACCTTTCCAGGG in exon 15 

APC Ex 15 m rev 5'-ATTCTGTAACTTTTCATCAGTTGC in exon 15 

APC Ex 15 n fwd 5'-AAAGACATACCAGACAGAGGG in exon 15 

APC Ex 15 n rev 5'-CTTTTTTGGCATTGCGGAGCT in exon 15 

APC Ex 15 o fwd 5'-AAGATGACCTGTTGCAGGAATG in exon 15 

APC Ex 15 o rev 5'-AATCTGAATCAGACGAAGCTTGTCTAGAT in exon 15 

APC Ex 15 p fwd 5'-CCATAGTAAGTAGTTTACATCAAG in exon 15 

APC Ex 15 p rev 5'-AAACAGGACTTGTACTTGAGGA in exon 15 

APC Ex 15 q fwd 5'-AGCCCCTTCAAGCAAACAT in exon 15 

APC Ex 15 q rev 5'-GGTTCTGTTGGCTCATCTGTC in exon 15 

APC Ex 15 r fwd 5'-CTCCTGGCCGAAACTCAAT in exon 15 

APC Ex 15 r rev 5'-TTGACTGGCGTACTAATACAGGTC in exon 15 

APC Ex 15 s fwd 5'-GGTAATGGAGCCAATAAAAAGG in exon 15 

APC Ex 15 s rev 5'-TTCAGAATGAGACCGTGCAA in exon 15 

APC Ex 15 t fwd 5'-TCTCTATCCACACATTCGTCT in exon 15 
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APC Ex 15 t rev 5'-TTCCTTTTGCGGATACTTGG in exon 15 

APC Ex 15 u fwd 5'-GCACTTGGAGAAGAACTGGAA in exon 15 

APC Ex 15 u rev 5'-TTGTTTTGCCTGATTATCTTTTGA in exon 15 

APC Ex 15 v fwd 5'-TTGGGTGAGAATTGAGGACTG in exon 15 

APC Ex 15 v rev 5'-CTGTGTTTGCTTGAGCTGCTA in exon 15 

APC Ex 15 w fwd 5'-CAGGACAAAATAATCCTGTCCC in exon 15 

APC Ex 15 w rev 5'-ATTTTCTTAGTTTCATTCTTCCTC 3' site of 3'UTR 

primer ID and exon localization was following classical APC exon numbering with exons 1-15 = exons 4-18 

 

Supplementary Table 3. Primer sequences used for direct sequencing of the MCR. 

primer ID sequence exon Codon position (CDS) 

255_APC ex 15f fwd 5’-AAGCCTACCAATTATAGTGAACG 18f p.1139-1283 

256_APC ex 15f rev 5’-AGCTGATGACAAAGATGATAATG   

257_APC ex 15g fwd 5’-AAGAAACAATACAGACTTATTGTG 18g p.1256-1382 

258_APC ex 15g rev 5’-GAGTGGGGTCTCCTGAAC   

259_APC ex 15g/h fwd 5’-AGAATCAGCCAGGCACAAAG 18g/h p.1344-1424 

260_APC ex 15g/h rev 5’-TGGAAGATCACTGGGGCTTA   

261_APC ex 15h fwd 5’-ATCTCCCTCCAAAAGTGGTGC 18h p.1359-1499 

262_APC ex 15h rev 5’-TCCATCTGGAGTACTTTCCGTG   

263_APC ex 15i fwd 5’-AGTAAATGCTGCAGTTC 18i p.1471-1640 

264_APC ex 15i rev 5’-CCGTGGCATATCATCCCCC   

503_APC ex 15i fwd  5’-GTCCAGGTTCTTCCAGATGC 18i p.1478-1666 

504_APC ex 15i rev 5’-TGGAGGGGATTCGATTGTTA   

primer ID and exon localization was following classical APC exon numbering with exons 1-15 = exons 4-18. For 
exons 15i two different primer sets were alternatively applied. 

 
Supplementary Table 4. Primer sequences applied for APC transcript analysis. 

fragment primer ID sequence length exons 
nucleotide 
position  

F1 407 APC ex 1-4 fwd* 5’-CTTCCCACCTCCCACAAGAT 626 1 - 4 c.-568 – 58 

 408 APC ex 1-4 rev 5’-TCTCCATCTTCAGTGCCTCA     

F2 409 APC ex 4-8 fwd  5’-AGGATGGCTGCAGCTTCATA 610 4 - 8 c.-3 – 606 

 410 APC ex 4-8 rev  5’-TTCTTCCATCGCAACTCTGA     

F3 381 APC ex 6-11 fwd 5’-AAGCCGGGAAGGATCTGTAT 629 6 - 11 c.290 – 919 

 382A APC ex 6-11 rev 5’-GACTTGTCAGCCTTCGAGGT     

F4 367 APC ex 10-14 fwd 5’-GTGGGAGAAATCAACATGGCA 666 10 - 14 c.795 – 1461 

 368a APC ex 10-14 rev 5’-CCCATACATTTCACAGTCCAC     

F5 369 APC ex 13-17 fwd 5’-CAGATCTGTCCTGCTGTGTGT 506 13 - 17 c.1332 – 1838 

 370a APC ex 13-17 rev 5’-AGTGCACCATCTACAGCACAT      

F6 371 APC ex 16-18 fwd 5’-GACGTTGCGAGAAGTTGGAAG 563 16 - 18 c.1682 – 2247 

 372a APC ex 16-18 rev 5’-CAAGCTTGAGCCAGGAGACAT    

*located in non-coding exon 1 
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Up-regulated genes 

gene ID gene assignment localization fch p-value 

S100B S100 calcium binding protein B chr21 5.26 0.030 

CDH19 cadherin 19, type 2 chr18 4.78 0.048 

HMCN1 hemicentin 1 chr1 3.98 0.028 

GPM6B glycoprotein M6B chrX 3.81 0.026 

CHL1 
cell adhesion molecule with homology to L1CAM  
(close homolog of L1) 

chr3 3.73 0.036 

SERPINE2 
serpin peptidase inhibitor, clade E 
(nexin, plasminogen activator inhibitor type 1), member 2 

chr2 3.39 0.037 

SDCBP syndecan binding protein (syntenin) chr8 3.14 0.029 

ETV5 ets variant 5 chr3 2.97 0.049 

ST3GAL6 ST3 beta-galactoside alpha-2,3-sialyltransferase 6 chr3 2.88 0.049 

SGCE sarcoglycan, epsilon chr7 2.72 0.009 

ADAM23 ADAM metallopeptidase domain 23 chr2 2.70 0.020 

RFTN2 raftlin family member 2 chr2 2.69 0.015 

GAS2L3 growth arrest-specific 2 like 3 chr12 2.65 0.019 

ETV1 ets variant 1 chr7 2.58 0.018 

AP1S2 adaptor-related protein complex 1, sigma 2 subunit chr17 2.49 0.001 

LDHB lactate dehydrogenase B chr12 2.49 0.028 

SLC16A4 solute carrier family 16, member 4 chr1 2.49 0.013 

PTPRJ protein tyrosine phosphatase, receptor type, J  chr11 2.48 0.034 

SOX5 SRY (sex determining region Y)-box 5 chr12 2.40 0.011 

PRSS23 protease, serine, 23 chr11 2.34 0.004 

SNCA synuclein, alpha (non A4 component of amyloid precursor) chr4 2.29 0.030 

NLGN1 neuroligin 1 chr3 2.23 0.018 

SLC6A15 solute carrier family 6 (neutral amino acid transporter) chr12 2.14 0.046 

CHML choroideremia-like (Rab escort protein 2) chr1 2.09 0.029 

AP1S2 adaptor-related protein complex 1, sigma 2 subunit chrX 2.06 0.022 

PEG10 paternally expressed 10  chr7 2.03 0.024 
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Down-regulated genes 

gene ID gene assignment localization fch p-value 

SPRR2E small proline-rich protein 2E chr1 -4.43 0.014 

MSMB microseminoprotein, beta- chr10 -4.10 0.020 

CST6 cystatin E/M chr11 -4.09 0.044 

SPINK5 serine peptidase inhibitor, Kazal type 5  chr5 -3.81 0.023 

KRT6B keratin 6B chr12 -3.69 0.030 

CARD18 caspase recruitment domain family, member 18 chr11 -3.55 0.015 

TMEM45A transmembrane protein 45A chr3 -3.46 0.019 

SBSN suprabasin chr19 -3.16 0.028 

ABHD5 abhydrolase domain containing 5 chr3 -3.14 0.019 

CLDN1 claudin 1 chr3 -3.13 0.015 

HBB hemoglobin, beta chr11 -3.10 0.029 

DSP desmoplakin chr6 -3.08 0.018 

CLCA2 chloride channel accessory 2 chr1 -3.07 0.011 

DSG1 desmoglein 1 chr18 -2.99 0.026 

TSPAN8 tetraspanin 8 chr12 -2.95 0.036 

DSC3 desmocollin  chr18 -2.91 0.012 

PCP4 Purkinje cell protein 4 chr21 -2.91 0.018 

PNLIPRP3 pancreatic lipase-related protein 3 chr10 -2.90 0.003 

MYH11 myosin, heavy chain 11, smooth muscle chr16 -2.78 0.031 

HMGCS1 3-hydroxy-3-methylglutaryl-CoA synthase 1 (soluble) chr5 -2.72 0.018 

KRT6C keratin 6C chr12 -2.69 0.025 

SC4MOL sterol-C4-methyl oxidase-like chr4 -2.67 0.015 

GPR87 G protein-coupled receptor 87 chr3 -2.58 0.003 

LPHN3 latrophilin 3 chr4 -2.58 0.002 

DSC2 desmocollin 2  chr18 -2.56 0.044 

MUC15 mucin 15, cell surface associated chr11 -2.50 0.013 

CA6 carbonic anhydrase VI  chr1 -2.49 0.018 

TMPRSS11E transmembrane protease, serine 11E chr4 -2.49 0.035 

CORIN corin, serine peptidase chr4 -2.44 0.038 

ESRP1 epithelial splicing regulatory protein 1  chr8 -2.42 0.005 

SCEL sciellin  chr13 -2.42 0.020 

TMPRSS11E transmembrane protease, serine 11E chr4 -2.41 0.044 

KRT5 keratin 5 chr12 -2.41 0.047 

MAL2 mal, T-cell differentiation protein 2 chr8 -2.37 0.014 

CYB5A cytochrome b5 type A (microsomal) chr18 -2.35 0.023 

ACSL1 acyl-CoA synthetase long-chain family member 1 chr4 -2.35 0.003 

DEFB1 defensin, beta 1 chr8 -2.34 0.020 

KRT17 keratin 1 chr17 -2.33 0.018 

KRT6A keratin 6A chr12 -2.33 0.032 

ME1 malic enzyme 1, NADP(+)-dependent, cytosolic chr6 -2.29 0.020 

HBA1 hemoglobin, alpha 1  chr16 -2.28 0.031 

HBA2 hemoglobin, alpha 2  chr16 -2.28 0.031 

DAPL1 death associated protein-like  chr2 -2.28 0.039 

S100A2 S100 calcium binding protein A chr1 -2.27 0.023 

ABCA12 ATP-binding cassette, sub-family A (ABC1), member 12 chr2 -2.26 0.016 

CASP14 caspase 14, apoptosis-related cysteine peptidase chr19 -2.26 0.010 
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SLPI secretory leukocyte peptidase inhibitor chr20 -2.26 0.020 

VSNL1 visinin-like 1  chr2 -2.25 0.024 

ATP6V0A4 ATPase, H+ transporting, lysosomal V0 subunit a4  chr7 -2.24 0.030 

PM20D1 peptidase M20 domain containing 1 chr1 -2.24 0.007 

SOAT1 sterol O-acyltransferase 1 chr1 -2.19 0.004 

EHF ets homologous factor chr11 -2.15 0.007 

LGALS7 lectin, galactoside-binding, soluble, 7 chr19 -2.15 0.008 

SPRR1B small proline-rich protein 1B chr1 -2.14 0.025 

RBP1 retinol binding protein 1, cellular chr3 -2.14 0.015 

SLC15A1 solute carrier family 15 (oligopeptide transporter) chr13 -2.13 0.005 

ZNF750 zinc finger protein 750 chr17 -2.10 0.039 

TP63 tumor protein p63 chr3 -2.09 0.031 

AIM1 absent in melanoma 1 chr6 -2.09 0.013 

LGALS7 lectin, galactoside-binding, soluble, 7 chr19 -2.08 0.007 

EMP2 epithelial membrane protein 2 chr16 -2.07 0.036 

ACTG2 actin, gamma 2, smooth muscle, enteric  chr2 -2.07 0.011 

DSG3 desmoglein 3 chr18 -2.07 0.032 

HSPA4L heat shock 70kDa protein 4-like chr4 -2.05 0.006 

EFNB2 ephrin-B2 chr13 -2.05 0.006 

TMEM154 transmembrane protein 154 chr4 -2.04 0.036 

KRT14 keratin 14  chr17 -2.04 0.021 

TTC39B tetratricopeptide repeat domain 39B chr9 -2.02 0.020 

C6orf105 chromosome 6 open reading frame 105 chr6 -2.01 0.028 

AADACL3 arylacetamide deacetylase-like 3 chr1 -2.00 0.020 
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FMOD fibromodulin 1q32 2.96 0.03 

GXYLT2 glucoside xylosyltransferase 2 3p13  2.96 0.03 

GFPT1 glutamine--fructose-6-phosphate transaminase 1 2p13 2.94 0.04 

MBNL2 muscleblind-like 2 (Drosophila) 13q32.1 2.94 0.04 

SESN3 sestrin 3  11q21 2.91 0.03 

HTRA1 HtrA serine peptidase 1 10q26.3  2.90 0.04 

COL3A1 collagen, type III, alpha 1 2q31  2.86 0.05 

YTHDC2 YTH domain containing 2 5q22.2  2.86 0.05 

TNKS 
tankyrase, TRF1-interacting ankyrin-related ADP-
ribose polymerase  

8p23.1 2.85 0.03 

FGF7 fibroblast growth factor 7 15q21.2 2.82 0.05 

OGN osteoglycin 9q22 2.77 0.05 

BMPR2 
bone morphogenetic protein receptor, type II 
(serine/threonine kinase) 

2q33-q34 2.77 0.05 

FAR1 fatty acyl CoA reductase 1 11p15.2  2.76 0.04 

RAPH1 
Ras association (RalGDS/AF-6) and pleckstrin 
homology domains 1 

2q33 2.74 0.04 

ARPP19 cAMP-regulated phosphoprotein, 19kD 15q21.2 2.72 0.04 

C3orf10 chromosome 3 open reading frame 10  3p25.3 2.72 0.04 

ZDHHC21 zinc finger, DHHC-type containing 21 9p22.3 2.71 0.03 

ANXA7 annexin A7 10q22.2  2.71 0.05 

CAMSAP1L1 
calmodulin regulated spectrin-associated protein 1-
like 1 

1q32.1 2.71 0.04 

AGPS alkylglycerone phosphate synthase  2q31.2 2.71 0.05 

UBA3 ubiquitin-like modifier activating enzyme 3  3p24.3-p1 2.68 0.03 

LTBP1 
latent transforming growth factor beta binding protein 
1 

2p22-p21 2.67 0.04 

RAB23 RAB23, member RAS oncogene family 6p11  2.67 0.04 

GOLGA5 golgin A5  14q 2.65 0.05 

NFIC 
nuclear factor I/C (CCAAT-binding transcription 
factor)  

19p13.3 2.65 0.04 

SLPI secretory leukocyte peptidase inhibitor 20q12  2.64 0.05 

SOS2 son of sevenless homolog 2 (Drosophila)0 14q21 2.63 0.02 

ARHGEF6 
Rac/Cdc42 guanine nucleotide exchange factor 
(GEF) 6 

Xq26.3 2.63 0.03 

VPS39 vacuolar protein sorting 39 homolog (S. Cerevisiae 15q15.1 2.62 0.05 

ARHGAP12 Rho GTPase activating protein 12 10p11.22 2.61 0.04 

C10orf118 chromosome 10 open reading frame 118 10q25.3 2.60 0.05 

LOC550643 hypothetical LOC550643  Xp11.1 2.60 0.03 

SPIN1 spindlin 1  9q22.1 2.59 0.03 

HNRNPR heterogeneous nuclear ribonucleoprotein R 1p36.12  2.56 0.04 

YEATS4 YEATS domain containing 4 12q13-q15  2.55 0.05 

DUSP1 dual specificity phosphatase 1  5q34 2.54 0.03 

MGP matrix Gla protein 12p12.3 2.54 0.03 

KIAA0196 KIAA0196 8q24.13  2.53 0.04 

MAP3K2 mitogen-activated protein kinase kinase kinase 2 2q14.3 2.52 0.05 
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Supplementary Figure 4. Illustration of mRNA expression levels between FAP lipoma and 
control lipoma samples after qPCR. For each target, selected after microarray expression 
analysis of FAP lipoma vs. FAP healthy skin, averaged normalized mRNA expression for FAP 
lipoma (dark bars) and control lipoma (bright bars) as well as normalized mRNA expression for each 
patient sample are illustrated. Values are presented as mean of the qbasePLUS calibrated 
normalized relative quantities (CNRQ) + SD or as calibrated normalized relative quantities (CNRQ) 
for each patient sample. CNRQ values were reached after normalization to HPRT1 and LRP10. 
Targets are sorted referring to Figure 35 and according to significance values of the results. 
Statistical analysis was done using a Wilcoxon rank sum test based on sample medians. Calculation 
was performed on four FAP lipoma and five control lipoma samples, except SLPI (FAP lipoma n=3, 
lacking 22-2009).*p< 0.05; ns not significant. 
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Supplementary Table 8. DEGs in FAP lipoma vs. control lipoma. The table illustrates the 41 
genes (14 up- and 27 down-regulated) that reached 4-fold expression change and FDR-unadjusted 
p-values <0.01. Up-regulated genes are sorted from top to bottom by decreasing -fold change. 
Down-regulated genes are sorted from top to bottom by decreasing negative -fold change. DEGs 
investigated in detail are indicated in bold (gene ID).  

Up-regulated genes  

gene ID gene assignment localization fch p-value 

SLPI secretory leukocyte peptidase inhibitor 20q12  22.98 0.000 

CD24 CD24 molecule 6q21 17.22 0.005 

CAPNS2 calpain, small subunit 2 16q12.2 11.51 0.010 

SPINK5 serine peptidase inhibitor, Kazal type 5 5q32 11.49 0.010 

MYH11 myosin, heavy chain 11, smooth muscle 16p13.11 8.27 0.004 

ESRP1 epithelial splicing regulatory protein 1 8q22.1 7.82 0.004 

SFRP2 secreted frizzled-related protein 2 4q31.3 7.39 0.005 

DSC2 desmocollin 2 18q12.1 5.81 0.001 

CTSK cathepsin K 1q21  5.04 0.000 

CD55 
CD55 molecule, decay accelerating factor for 
complement 

1q32 4.96 0.000 

SLC38A1 solute carrier family 38, member 1 12q13.11 4.95 0.003 

CCL21 chemokine (C-C motif) ligand 21 9p13 4.62 0.003 

HSPA4L heat shock 70kDa protein 4-like 4q28 4.61 0.004 

ANGPTL1 angiopoietin-like 1 1q25.2 4.15 0.005 

 

Down-regulated genes 

gene ID gene assignment localization fch p-value 

LEP leptin  7q31.3 -19.17 0.001 

EGFL6 EGF-like-domain, multiple 6 Xp22 -16.27 0.000 

GPAM glycerol-3-phosphate acyltransferase, mitochondrial 10q25.2 -12.87 0.006 

CIDEC cell death-inducing DFFA-like effector c 3p25.3 -11.76 0.005 

PLIN1 perilipin 1 15q26  -9.63 0.004 

PDE3B phosphodiesterase 3B, cGMP-inhibited 11p15.1  -9.25 0.003 

LPL lipoprotein lipase 8p22  -9.15 0.007 

H19 
H19, imprinted maternally expressed transcript (non-
protein coding) 

11p15.5  -7.76 0.000 

LIPE lipase, hormone-sensitive 19q13.2  -7.68 0.004 

PRKAR2B 
protein kinase, cAMP-dependent, regulatory, type II, 
beta 

7q22  -7.15 0.001 

CD36 CD36 molecule (thrombospondin receptor) 7q11.2  -6.63 0.008 

AQP7P1 aquaporin 7 pseudogene 1 9q13  -6.13 0.000 

PPP1R1A 
 protein phosphatase 1, regulatory (inhibitor) subunit 
1A 

12q13.2  -5.68 0.006 

PLIN4 perilipin 4 19p13.3  -5.44 0.005 

TUSC5 tumor suppressor candidate 5 17p13.3  -5.39 0.002 

SERPINI1 
serpin peptidase inhibitor, clade I (neuroserpin), 
member 1 

3q26.1  -5.35 0.005 
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GLYAT glycine-N-acyltransferase 11q12.1   -5.31 0.003 

AQP7 aquaporin 7 9p13  -5.25 0.000 

PLA2G16 phospholipase A2, group XVI 11q12.3  -5.14 0.001 

GPD1 glycerol-3-phosphate dehydrogenase 1 (soluble) 12q12-q13  -4.94 0.002 

ESM1 endothelial cell-specific molecule 1 5q11.2  -4.82 0.001 

HEPN1 HEPACAM opposite strand 1  11q24  -4.80 0.005 

THBS4 thrombospondin 4  5q13  -4.67 0.000 

G0S2 G0/G1switch 2 1q32.2  -4.62 0.008 

NQO1 NAD(P)H dehydrogenase, quinone 1  16q22.1  -4.50 0.000 

HRASLS5 HRAS-like suppressor family, member 5  11q13.2  -4.41 0.006 

ACVR1C activin A receptor, type IC 2q24.1  -4.19 0.001 
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Supplementary Table 9.  Selected down-regulated mRNAs regulated by same upstream 
regulators. In total nine additional mRNAs are listed which were found to be regulated by same 
upstream regulators including PPAR, TNF and LEP. All of these genes (with fold differences of at 
least 4) hold functions in lipid binding and lipid storage, as well as transport and metabolism of fatty 
acids. Genes are sorted by increasing fold change. Results were revealed by IPA® analysis. 
gene ID gene name and known gene function regulator localization fold 

chang
e 

p-
value 

PLIN1 perilipin 1 
- coats lipid storage droplets in adipocytes 
- role in lipolysis inhibition 

PPAR, TNF, 
LEP 

15q26 -9.63 0.004  

PDE3B phosphodiesterase 3B, cGMP-inhibited
- regulates energy metabolism and energy intake 

PPAR, LEP 11p15.1 -9.25 0.003 

LPL lipoprotein lipase 
- LPL deficiency results in type I 
hyperlipoproteinemia 

PPAR, TNF, 
LEP 

8p22 -9.15 0.007 

LIPE lipase, hormone, sensitive 
- hydrolyzes stored triglycerides to free fatty acids 
- in adipose and steroidogenic tissues 

PPAR, LEP 19q13.2 -7.68 0.004 

CD36 CD36 molecule (thrombospondin receptor)
- cell adhesion molecule 
- binds long chain fatty acids 
- regulator of fatty acid transport 

PPAR, TNF, 
LEP 

7q11.2 -6.63 0.008 

PLIN4 perilipin 4 
- coating of intracellular lipid storage droplets 

PPAR, TNF 19p13.3 -5.44 0.005 

AQP7 aquaporin 7 
- glycerol channel in adipose tissue 
- controls the accumulation of triglycerides and 
development of obesity/diabetes 

PPAR, TNF, 
LEP 

9p13 -5.25 <0.001 

GPD1 glycerol-3-phosphate dehydrogenase 1 (soluble)
- critical role in carbohydrate and lipid metabolism, 

enhanced activity in adipose tissue267  
- mutations in transient infantile hypertriglyceridemia 

PPAR, TNF 12q12-q13 
 

-4.94
 

0.002 
 

G0S2 G0/G1switch 2 
- role in adipocyte differentiation and lipolysis268 

PPAR, TNF 1q32.2 
 

-4.62
 

0.008 
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