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1 Summary 

Cell type identity is largely determined by regulatory networks consistent of various 

transcription factors. Transcription factor activity requires interaction with DNA and thus 

critically depends on the accessibility of binding motifs. Growing evidence suggests that 

interactions between transcription factors and DNA are modulated by distinct chromatin 

modifications which in turn are influenced by transcription factors. Thus, ultimately 

transcriptional output is a product of intimate interactions between DNA, transcription 

factors and chromatin modifications. While recent studies support a model in which DNA 

sequence in collaboration with transcription factors can autonomously determine 

chromatin states, exact relationship between all these components is not well 

understood. 

Full genome single basepair resolution mammalian methylomes (Hodges et al, 2011; 

Stadler et al, 2011) demonstrated a correlation between transcription factor occupancy 

and hypomethylation at distal regulatory regions. Importantly, these low methylated 

states critically depend on the presence of transcription factors. Here we analyzed how 

DNA binding factors impact DNA methylation. Using chromatin immunoprecipitation 

followed by bisulfite sequencing, we show that CTCF bound molecules can vary in their 

methylation levels at such low methylated regions (LMRs). This observation suggests 

that no tight link exists between DNA binding of transcription factors and unmethylated 

state. While cytosines which are highly occupied by CTCF indeed are fully devoid of 

methylation, cytosines within sites of low occupancy display heterogeneous methylation 

levels. Moreover, at these sites CTCF occupancy correlates with the likelihood of being 

demethylated. 5-hydroxymethylcytosine (5hmC) is a putative intermediate of active 

demethylation. In support of a dynamic model of interaction between transcription factors 

and DNA methylation, we found that 5hmC is highly enriched at cell type specific and 

constitutive LMRs in embryonic stem cells and upon their neuronal differentiation. 

Furthermore, regions with hydroxymethylation changes between these cell types are 

enriched for cell type specific LMRs. This suggests a participation of transcription factor 

mediated oxidative demethylation in reprogramming of distal regulatory elements. 

Knockout of CTCF is lethal for embryonic stem cells. Therefore, in order to test the 

relationship between transcription factor binding and hydroxymethylation we chose an 

embryonic stem (ES) cell line with genetic deletion of REST, another factor previously 

shown to be involved in formation of low methylated states. Indeed, deletion of REST 
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decreased 5-hydroxymethylcytosine levels while concomitantly increasing methylation 

levels at its binding sites within the analyzed LMRs. These results indicate that 

transcription factor mediated turnover of DNA methylation acts in maintenance and 

reprogramming of distal regulatory regions. 

To test whether the observed turnover is selective for active regulatory regions, we 

decided to delete the two de novo DNA methyltransferases DNMT3A and DNMT3B in 

embryonic stem cells. Surprisingly, using this approach we detected loss of methylation 

at both, low and fully methylated regions. In order to compare the turnover kinetics 

between different segment subtypes, we collected DNA from ES cells at various time 

points after DNMT3A/B deletion. This indeed revealed an accelerated turnover at low 

methylated regions. On average full demethylation was achieved after eight days, 

suggesting that binding of transcription factors can induce rapid changes in DNA 

methylation. 

In summary, this study supports a model in which methylation at distal regulatory regions 

is maintained and reprogrammed by a transcription factor mediated turnover. We 

furthermore provide evidence that this turnover depends on TET proteins for 

demethylation and on DNMT3A/B for remethylation. Quantification suggests that while 

DNA methylation turnover is present throughout the genome it is accelerated at active 

distal regulatory elements.  
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2 Introduction 

Mammalian development begins as a single fertilized oocyte followed by multiple cell 

divisions. During this period cells have to accomplish the complicated task of acquiring a 

new identity, ultimately differentiating into many distinct cell types that form an entire 

organism. While the genetic content in differentiated cells remains largely unchanged, 

this genetic information has to be correctly interpreted to execute cell type specific 

functions. As a result, precise regulation of gene expression in space and time is crucial 

for diversification and maintenance of cell fate (Davidson 2010). Considering that 

hundreds of cell types exist in the human body, this represents a challenging and highly 

complex task. To achieve precise orchestration of transcriptional programs, higher 

eukaryotes use several mechanistic layers (Struhl 1999). The first regulatory level is 

given by the patterns encoded in DNA which directly guide DNA binding factors to their 

site of action where these can initiate transcriptional programs. In a second layer, DNA is 

packaged into chromatin by being wrapped around proteins called histones whose 

presence impacts binding of transcription factors. Finally, chromatin can be chemically 

modified. These epigenetic marks can further influence chromatin structure and attract or 

repel additional proteins.  

It is becoming increasingly appreciated that an intricate interplay exists between these 

layers and we are just beginning to understand how they affect each other and 

transcription as a whole. I have extended this knowledge by showing how factor binding 

influences the stability of an epigenetic modification. 

In the following paragraphs I will give a more detailed introduction on gene regulation in 

the context of chromatin and epigenetic modifications. 
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2.1 Transcriptional regulation 

Evolution has been accompanied by a burst of genome size disproportional to the 

increase in gene number. The human haploid genome with its 3.4 gigabases (Gregory 

2014) exceeds the genome size of the bacteria Echerischia coli by a 1000 fold, but 

contains only about seven times as many protein-coding genes. On the other hand, the 

human genome is a 100 times smaller than that of the marbled lungfish Protopterus 

aethiopicus, the animal with the largest known genome. These examples nicely illustrate 

that the complexity of an organism is not dictated by the pure size of the genome.  

In animals expansion in genome size is believed to be caused by an accumulation of 

transposons which make up almost 50% of the human genome (Kidwell 2002). Indeed, 

particularly organisms with obligatory sexual reproduction display an increased likelihood 

of transposon fixation. It has been demonstrated that a transposon has to cause more 

than 50% reduction in the fitness of such an organism in order to be deleted (Bestor 

1999). As transposition represents a threat for genomic stability, parallel invention of 

mechanisms controlling their expression was critical for the survival of species with large 

genomes (Bird 1995; Bestor 1999). It is thus possible that genome expansion together 

with the necessity to repress transposons represent a major driving force for the 

evolution of complex gene regulation mechanisms. 

The basic principle of gene regulation is the interaction of transcription factors with DNA 

sequence. Forced expression of only a few transcription factors is sufficient for 

reprogramming of an adult differentiated cell into a pluripotent stem cell (Takahashi and 

Yamanaka 2006) demonstrating the power of this phenomenon. However, this process is 

rather inefficient and stochastic, suggesting that additional barriers need to be overcome 

in order to ensure robust changes of gene expression. Indeed, while prokaryotes can 

regulate their genes through a combination of transcription (co-)factors and regulatory 

sequences, mammalian gene regulation employs more mechanisms (Joseph et al, 2010; 

Kaplan et al, 2011). 

As a key difference to prokaryotes, eukaryotic DNA is compacted to chromatin by 

histone proteins. In addition to packaging DNA, chromatin creates a general physical 

barrier for transcription, as it renders the DNA less permissive for binding factors 

(Knezetic and Luse 1986; Struhl 1999; Levine and Tjian 2003). The level of compaction 

can further be modulated by chemical modifications of histone proteins which enable 

changes in chromatin accessibility. This can be achieved by altering the electric charge 

of DNA or creating binding sites for effector proteins (Bannister and Kouzarides 2011).  



Introduction 5 

In addition, mammalian genomes are decorated by DNA methylation, a covalent 

modification of cytosines present only in large eukaryotic genomes (Bestor 1990). Similar 

to chromatin, it has been proposed to create a genome-wide restrictive state (Bird 1995). 

Recent studies extended the list of covalent DNA modifications to oxidation products of 

DNA methylation, namely hydroxy-, formyl- and carboxymethylation (He et al, 2011; Ito 

et al, 2011). However, their role in gene regulation is less understood (see 2.4.5). DNA 

and histone modifications are currently referred to as “epigenetic modifications”.  

Given this restrictive environment, in order to gain access to their binding site, 

mammalian transcription factors need to overcome a number of physical barriers. As a 

result, mammalian gene regulation is a product of a close collaboration between DNA 

sequences, chromatin modifications and transcription factor binding. Importantly, while 

prokaryotic transcriptional regulation occurs in the absence of chromatin modifications, 

both transcription factors and epigenetic modifiers are essential for mammalian 

development (Nichols et al, 1998; Okano et al, 1999; Ringrose and Paro 2004). Thus, 

mammalian gene regulation cannot be considered separately from the chromatin context 

(Joseph et al, 2010; Kaplan et al, 2011). Exact crosstalk between all these components 

is not fully understood. Yet, several lines of evidence suggest an autonomous function of 

DNA sequence in determining its epigenetic and transcriptional state in a process which 

is largely transcription factor dependent (Lienert et al, 2011; Schubeler 2012; Arnold et 

al, 2013). For instance, promoters and distal regulatory elements can accurately 

reproduce spatial and temporal characteristics of their chromatin and DNA modification 

states when introduced at ectopic sites.  

As this thesis investigates chromatin modifications at distal regulatory elements, I will 

first introduce the major cis-regulatory modules of the genome, namely promoters, 

enhancers and insulators. 

2.1.1 Cis-regulatory elements 

Promoters 

Promoters of protein-coding genes function locally to initiate transcription from the 

transcriptional start site (TSS) by attracting the core transcriptional machinery consisting 

of general transcription factors (such as TFIID) and RNA polymerase II (Pribnow 1975; 

Schaller et al, 1975; Gannon et al, 1979; Corden et al, 1980; Grosschedl et al, 1981). 

Three major types have been described in metazoans: tissue-specific, constitutive and 

developmentally regulated promoters (reviewed in (Lenhard et al, 2012)). These 
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promoters differ in respect to their underlying sequence, their chromatin organization and 

modifications. For example, tissue-specific promoters are DNA methylated and contain a 

TATA-box for recruitment of the basal transcriptional machinery. In contrast, the other 

promoter subtypes display high level of CpG dinucleotides indicative of CpG islands and 

consequently remain mostly DNA unmethylated in any transcriptional state (see 2.4). 

Despite these differences, all active promoters possess similar histone modifications, as 

has been initially observed in yeast (Santos-Rosa et al, 2002; Pokholok et al, 2005) and 

later confirmed for the human genome (Heintzman et al, 2007). This suggests an 

intimate crosstalk between gene expression and their epigenetic state. 

Enhancers 

The activity of the core transcriptional machinery is further modulated by additional 

transcription factors (TFs). These bind to proximal and distal regulatory elements 

(enhancers or silencers) that can be located many megabases away (Banerji et al, 1981; 

Fromm and Berg 1983; Gillies et al, 1983; Scholer and Gruss 1984). Their interaction 

with the transcriptional machinery at promoters is therefore often regulated by chromatin 

looping (reviewed by (Chambeyron and Bickmore 2004; Fraser 2006)).  

Enhancers usually contain clusters of short 6-12 basepair motifs presenting binding sites 

for different TFs (Arnosti and Kulkarni 2005; Boyer et al, 2005; Carroll et al, 2006; Spitz 

and Furlong 2012). In many cases enhancer activity directly depends on combinatorial 

binding of several transcription factors which can be modulated spatially by cell type 

specific (Mullen et al, 2011; Trompouki et al, 2011) or temporally by developmentally 

regulated sequential expression (Cirillo et al, 2002; Serandour et al, 2011).  

Combinatorial binding is useful for many different reasons. In some cases, direct 

interactions can change TF affinity or specificity towards its binding site. For instance, 

cooperative binding can increase the motif affinity of binding partners (Johnson et al, 

1979). Furthermore, interaction with a cofactor which does not bind to DNA itself can 

alter the DNA binding specificity of a TF (Siggers et al, 2011). Binding of one TF may 

also be necessary to recruit other complex-forming factors. In addition to direct protein-

protein interactions, indirect cooperativity is possible by creation of an accessible binding 

site by nucleosome displacement during “assisted loading” (Voss et al, 2011) or 

“collaborative competition” of two transcription factors (Miller and Widom 2003). Another 

well-described phenomenon is chromatin remodeling by “pioneer factors” (Zaret and 

Carroll 2011). Indeed, chromatin accessibility of a motif increases the likelihood of 

binding even for a factor capable of occupying a closed side (John et al, 2011) 
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emphasizing the importance of chromatin remodeling for TF binding. Moreover, 

favorable changes in DNA conformation by a preceding factor can indirectly help 

recruitment of other factors (“bending”, (Falvo et al, 1995)). As an additional mechanism, 

interaction with common enhancer-activating factors, such as CBP/p300, can enhance 

transcriptional activity (Merika et al, 1998).  

Experimentally, location of transcription factors in the genome is determined by 

enrichment-based methods, such as chromatin immunoprecipitation followed by 

sequencing (Furey 2012). Such datasets of a quality sufficient to determine consensus 

motifs only exist for some transcription factors. Out of those, all TFs occupy only a small 

subset of their binding motifs present in the genome (Carr and Biggin 1999; Iyer et al, 

2001; Joseph et al, 2010; Kaplan et al, 2011). How exactly TFs select between multiple 

options is not well understood, however this is likely to involve the different modes of 

cooperation described above.  

Active and poised enhancers are furthermore characterized by specific chromatin 

modifications which enable identification of their genome-wide localization (Heintzman et 

al, 2009; Heintzman and Ren 2009). Although their function is not fully understood these 

modifications could regulate chromatin accessibility and thus enable transcription factor 

binding (Lupien et al, 2008). In addition, enhancers display local hypomethylation only 

when active in a manner that appears dependent on the binding of transcription factors 

(Stadler et al, 2011).  

Insulators 

Insulators exert their regulatory role over entire chromatin regions by separating two 

regulatory domains in the genome (Bell et al, 2001; Phillips-Cremins and Corces 2013). 

One classic insulator activity is enhancer blocking. The most prominent example is 

certainly the H19/Igf2 imprinted locus (Bell et al, 1999). In this locus CTCF binds at an 

insulator element exclusively in the maternal allele and regulates enhancer function to 

repress Igf2 in allele-specific manner. Importantly, allele-specific interaction with CTCF is 

guided by DNA methylation (Bell and Felsenfeld 2000; Hark et al, 2000; Kanduri et al, 

2000). 
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Figure 2-1 Model of transcriptional regulation. Adapted from (Bardet 2012). 
 

 

In summary, concerted gene regulation in animals can be seen as a complex interplay 

between cis- and trans-acting factors, epigenetic modifications and higher-order 

chromatin structures, such as looping or locus position within the nucleus. Despite 

growing data accumulation, limited knowledge exists about exact causality. Do chromatin 

modifications influence transcriptional activity or are they just a footprint of preceding TF 

binding events? Regulatory function implies high stability and accurate inheritance of 

epigenetic marks. Yet, both phenomena are not well understood.  

In the present work I examine the establishment and maintenance of DNA methylation 

patterns at the sites of transcription factor binding. Following paragraphs will introduce 

transcriptional regulatory principles relevant to my work with the main focus on DNA 

methylation. 
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2.2 Chromatin 

In eukaryotes DNA is packaged to chromatin, a unifying term for DNA and all accessory 

proteins. Chromatin can be classified in two groups as defined in 1928 by Emil Heitz 

based on their staining characteristics (reviewed in (Zacharias 1995; Elgin 1996)). 

Euchromatin, the “proper” chromatin, decondensates during the interphase and thus 

behaves according to the original definition of chromatin made by Boveri in 1904 as a 

substance which forms chromosomes during mitosis (cited in (Zacharias 1995)). In 

contrast, following the original definition heterochromatic regions remain highly 

condensed and stained in the interphase. Today this definition has been refined and we 

know that repetitive sequences and transposable elements belong to heterochromatin 

even though for example telomeres do not show the characteristic interphase staining 

and condensation (Elgin 1996).  

The two main chromatin states additionally differ in terms of their chromatin 

modifications, their gene density and their bound proteins. One such characteristic is 

heterochromatic protein HP1 which was originally identified as a protein abundantly 

present at pericentromeric heterochromatin (James et al, 1989). Furthermore, 

heterochromatin contains high levels of histone H3 lysine 9 and DNA methylation 

(Grewal and Rice 2004; Trojer and Reinberg 2007). As indicated by its condensed 

structure, this chromatin form must be rather inaccessible for transcription factors. 

Indeed, two key observations linked heterochromatin with gene silencing: the condensed 

structure of the inactivated X-chromosome (Barr body) and silencing of active genes in 

its vicinity, termed position effect variegation (reviewed in (Elgin 1996)). Based on the 

reversibility of the heterochromatic state heterochromatin is furthermore often subdivided 

into constitutive and facultative heterochromatin. Constitutive heterochromatin comprises 

repeat sequences and transposons which are obligatory silenced, whereas facultative 

heterochromatin contains genes (Trojer and Reinberg 2007). In contrast, euchromatic 

regions have higher accessibility and are enriched for active chromatin modifications 

(see 2.3). In the recent years, more detailed classifications have been proposed based 

on mapping of bound proteins and chromatin modifications (Filion et al, 2010; 

Kharchenko et al, 2011). 

In the following I will introduce the components and organization of chromatin together 

with their role in gene regulation. 
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2.2.1 Nucleosomes  

The nucleosome is the basic packaging unit of chromatin. This core subunit is formed 

when 146 basepairs of DNA are wrapped around an octamer of histone proteins in a 

1.65 turn (Luger et al, 1997). Contacts between negatively charged DNA and the basic 

histone proteins are stabilized through a number of electrostatic interactions, 

predominantly at the phosphodiester backbone. Importantly, due to the helix turn such 

interactions can only occur approximately every 10 base pairs. Histone octamers contain 

pairs of each of the histone proteins H2A, H2B, H3 and H4 which are placed by histone 

chaperones. These assemble a tetramer of (H3-H4)2 with two heterodimers of H2A-H2B 

(for review see (De Koning et al, 2007)). The canonical histone variants can alternatively 

also be replaced by relatively rare histone variants. For instance, histone H3.3 is 

deposited at active genes and was even proposed to transmit active epigenetic states 

(Ahmad and Henikoff 2002; Ng and Gurdon 2008b). Nucleosome core particles are 

connected by linker DNA (about 50-60bp in mammals) bound by a structural histone 

protein H1 that helps folding of nucleosome repeats to higher-order chromatin structures 

(Luger 2003).  

Beyond packaging of DNA, nucleosomes generally render the chromatin less 

permissive, so that their depletion can result in a 10-20 fold increased accessibility of 

DNA binding factors (Liu et al, 2006). Notably, recruitment of the transcriptional 

machinery by TATA-box binding protein as well as the binding of the general transcription 

factor TFIIIC requires a nucleosome-free environment (Workman and Kingston 1998; 

Bartke et al, 2010). This directly illustrates the inhibitory impact of nucleosomes on 

transcription initiation. It is clear, however, that binding ability of nucleosomal templates 

differs between TFs and not all are repulsed by the presence of nucleosomes (Taylor et 

al, 1991). Availability of a partner TF can increase the potential to access nucleosomal 

DNA, as in electrophoretic mobility shift assays some factors can only cooperatively 

achieve efficient binding to nucleosomal arrays (Adams and Workman 1995). On the 

other hand, even TFs which can bind to inaccessible chromatin on their own seem to 

prefer preexisting accessible sites (John et al, 2011). TFs without an inherent 

nucleosome binding capability can gain access to their cognate motifs with the help of 

“pioneer factors”, such as GATA-4 and FoxA1. These factors access nucleosome 

occupied DNA and can induce chromatin remodeling, thereby opening the chromatin for 

other proteins (Cirillo et al, 2002; Zaret and Carroll 2011). Finally, a group of transcription 

factors, including the pluripotency factors Oct4 or Nanog, seems to bind to nucleosome-

occupied regions without displacing the nucleosome (Teif et al, 2012).  
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Figure 2-2 Chromatin organization. Adapted from (Probst et al, 2009) 

2.2.2 Defining nucleosome positions 

In line with their role in gene regulation, nucleosomes are not randomly distributed 

throughout the genome, but instead well positioned at active regulatory regions (Yuan et 

al, 2005; Schones et al, 2008). Active promoters are characterized by a nucleosome-free 

region (NFR) in the vicinity of their TSS in all analyzed eukaryotes. Its size and the extent 

of nucleosome depletion both correlate with transcriptional output (Teif et al, 2012). CpG 

rich promoters are exceptional, as they possess an NFR even when inactive (Teif et al, 

2012). The first genome-wide nucleosome mapping was carried out in yeast (Yuan et al, 
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2005). In this model organism active promoter NFRs are typically flanked by strongly 

positioned nucleosomes at positions +1 and -1 and at least four additional well-

positioned nucleosomes downstream of the active TSS. The authors report a high 

conservation of nucleosome-free regions, suggesting that nucleosome depletion is a 

general feature of regulatory elements. Indeed, measurements of genome accessibility 

by DNAseI digestion suggest a high overlap of open chromatin regions with regulatory 

sites (Song L. et al, 2011). Recent accessibility and nucleosome positioning studies 

demonstrate that open chromatin at a given enhancer can occur independently of the 

presence of individual factors, even master regulators of cell fate (Teif et al, 2012; McKay 

and Lieb 2013). Such observations open up the possibility that distal regulatory elements 

can be “recycled” for usage by different TFs.  

Nucleosome positioning is nicely illustrated at insulator sequences bound by CTCF. A 

combinatorial profile shows that these are surrounded by 20 well-positioned 

nucleosomes (Fu et al, 2008). Importantly, in the absence of CTCF these sites tend to be 

occupied by a nucleosome, arguing that strong positioning is not encoded within the 

DNA sequence. Nucleosome phasing at these sites is furthermore recapitulated by a 

number of histone modifications (see 2.3.1) as well as by DNA methylation (Stadler et al, 

2011; Kelly et al, 2012) (see 2.4).  

Several lines of evidence suggest a role of DNA sequence in the positioning of 

nucleosomes (Struhl and Segal 2013). First, the repetitive nature of nucleosomes 

excludes contributions of highly specific sequences and thus a favoring sequence would 

simply be one that favors bending of DNA. From analysis of genomic DNA from chicken 

erythrocytes, it has been suggested that this is given in case of a ten-base periodic 

occurrence of AT, allowing helical bending around the histones (Satchwell et al, 1986). 

Indeed, the prevalence of such periodicity is increased at well-positioned nucleosomes in 

the yeast genome (Ioshikhes et al, 2006). Second, long stretches of dA:dT or dG:dC 

polymers, such as those present at many eukaryotic promoters, disfavor bending of 

DNA, thus providing a plausible explanation for nucleosome depletion at the TSS 

(Simpson and Shindo 1979). This does not seem a universal principle, as several yeast 

strains are capable of establishing promoter NFRs without having enrichments of 

monopolymer stretches (Tsankov et al, 2010). Third, in vitro reconstituted nucleosomes 

overall manage to recapitulate in vivo positioning of the yeast chromatin (Kaplan et al, 

2009; Zhang et al, 2009).  

While in vitro reconstitution experiments allow for a recapitulation of nucleosome-

depleted sites, positioning of the nucleosomes at positions +1 and -1 can only be 
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achieved upon addition of ATP and a crude cell extract (Zhang et al, 2011). Thus, precise 

positioning of the TSS flanking nucleosomes cannot be solely guided by the DNA 

sequence. At the same time, exact positions of all nucleosomes are not reproduced in 

any of the in vitro assays (Zhang et al, 2011). In summary, these experiments argue that 

DNA sequence in cooperation with ATP dependent and independent factors present in 

the cell extract determines the positioning of nucleosomes around NFRs.  

Nucleosomes are indeed reordered by specialized ATPases. (Clapier and Cairns 2009; 

Mueller-Planitz et al, 2013). Currently, four families of these nucleosome remodelers are 

known: SWI/SNF, ISWI, CHD and INO80 which are conserved between eukaryotes from 

yeast to humans. These families have different functions in assembly or disassembly of 

entire nucleosomes, whereas all of them seem to be capable of nucleosome dislocation. 

Mechanistically, this can be achieved by a localized destabilization of histone-DNA 

interactions as well as by destabilization of the DNA or of the histone octamer (reviewed 

in (Mueller-Planitz et al, 2013)). Furthermore, remodelers can display specialized 

functions in promoter activation and repression. This is exemplified in yeast, where the 

RSC remodeling complex is involved in nucleosome removal from promoter regions 

(Badis et al, 2008; Wippo et al, 2011). Conversely, the activity of Isw2 is needed to 

occlude nucleosome disfavoring promoter regions (Whitehouse and Tsukiyama 2006). 

Recent mapping of nucleosome remodelers in mouse cells suggests a highly 

overlapping synergistic as well as antagonistic function between different complexes 

(Morris et al, 2014). Targeting of remodelers is possible through specific recognition 

sequences (Badis et al, 2008), binding to nucleosomes and histone modifications or 

recruitment by specific TFs. As an example, at yeast HO promoter the SWI/SNF complex 

is recruited upon binding of the transcription factor Swi5p. This enables histone 

acetylation through the SAGA complex and ultimately binding of SBF (Cosma et al, 

1999).  

It is not entirely clear, how positioning is regulated within the gene bodies. It has been 

speculated that elongating RNA polymerase II has a function in the positioning of 

nucleosome arrays downstream of the TSS (Struhl and Segal 2013). In support of this 

hypothesis, nucleosome remodelers bind to coding regions (Morris et al, 2014). It is 

furthermore conceivable that a histone passback mechanism during active transcription 

affects nucleosome organization (Radman-Livaja et al, 2011).  

In the last years it became clear that nucleosomes themselves are not stable structures, 

but instead underlie a dynamic turnover (Ahmad and Henikoff 2002). Replication 

independent turnover was studied in G1 arrested yeast by competition between 
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constitutively expressed and inducible histones (Dion et al, 2007; Jamai et al, 2007; 

Rufiange et al, 2007). These experiments suggested a turnover of histone H3, H4 and 

H2B at promoters. High histone dynamics at sites containing epigenetic modifications 

was later indentified and quantified by a technique utilizing metabolic posttranslational 

histone labeling (Deal et al, 2010).  

 

 

Figure 2-3 Model of nucleosome positioning. Adapted from (Struhl and Segal 2013) 

Note that the here suggested model is based on yeast data. (A) Nucleosome depleted regions 
(NDR) are determined either by sequence polymer stretches and/or by transcription factors and 
recruited remodelers. Gray circles: nucleosomes (B) Preferred positions (black circles) of NDR-
flanking nucleosomes are regulated by remodelers and pre-initiation complex (PIC). (C) 
Positioning of nucleosomes downstream of the TSS depends on elongation by RNA polymerase II 
(PolII) and elongation-associated remodeler complexes.  

Nucleosome positioning and stability have been linked to chromatin modifications by 

several studies. It has been reported that histone acetylation (see 2.3) is a positive 

regulator of turnover (Rufiange et al, 2007; Verzijlbergen et al, 2011). Furthermore, DNA 

methylation has been implicated in stabilizing histone-DNA interactions (Collings et al, 

2013) However, a simultaneous genome-wide mapping of nucleosome positioning and 

DNA methylation showed an anticorrelation of DNA methylation and nucleosome 

occupancy around CTCF sites (Kelly et al, 2012).  
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2.3 Chromatin modifications  

Chromatin modifications are chemical groups covalently coupled to either DNA or 

histone proteins, the “epigenetic modifications”. In the original definition by Waddington 

1942, the term “epigenetics” was applied to mechanisms which generate a phenotype 

from a genotype (republished in (Waddington 2012)). Later, this definition was extended 

to heritable changes in gene expression not involving alterations of the genomic 

sequence (Allis 2007).  

Indeed, epigenetic modifications might fulfill these criteria as they possess gene-

regulatory potential either directly by controlling the accessibility of chromatin through 

electric charges or indirectly by recruiting additional “readers” of the respective 

modification (Bannister and Kouzarides 2011). Mechanisms of inheritance and self-

propagation have been proposed for DNA methylation, repressive and histone variant 

coupled active modifications (Okano et al, 1998; Ng and Gurdon 2008a; Probst et al, 

2009). However, a mechanism for replicative transmission has not been described for all 

chromatin modifications. Transgenerational inheritance is even more questionable, since 

epigenetic marks can be removed during gametogenesis and development (Reik 2007).  

These limitations are corrected in a third definition of epigenetics, made by Adrian Bird 

(Bird 2007). He proposed epigenetics to be “the structural adaptation of chromosomal 

regions so as to register, signal or perpetuate altered activity states”. Since this definition 

includes all chromatin-based processes it appears as the most unifying and 

contemporary compared to the definitions discussed above.  

In the last two parts of the introduction I will discuss epigenetic modifications in light of 

their regulatory potential and stability.  

2.3.1 Histone modifications 

Histones can bear various posttranslational modifications (PTMs) either within their 

globular domains or at their N-terminal tails (Izzo and Schneider 2010). Structurally, 

histone tails are protruding from the octamer, suggesting that their modifications may 

have an increased potential to contribute to the overall stability of a nucleosome (Luger 

et al, 1997). Such modifications can be acetylation, methylation, phosphorylation, 

ubiquitinylation and ADP-ribosylation, with activating or repressive functions (Bannister 

and Kouzarides 2011). Combinatorial spatial or temporal activity of distinct modifications 

has been proposed to form a “histone code” (Strahl and Allis 2000).  
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The oldest example of how histone modifications can influence gene expression comes 

from a pioneering study demonstrating the posttranslational nature of acetylation and 

methylation of histone residues (Allfrey et al, 1964). Based on in vitro transcription in the 

presence of acetylated histones, Allfrey et al. show that the inhibitory effect of histones 

on RNA synthesis is decreased upon their acetylation despite preserved DNA binding 

capacity. They suggested that positively charged acetylated lysines partially disrupt 

histone-DNA interactions. In agreement with this hypothesis, lysine acetylation overlaps 

with active gene regulatory elements (Heintzman et al, 2007; Heintzman et al, 2009). 

Furthermore, histone acetyltransferases, such as the yeast protein Gcn5, have been 

linked to gene activation (Brownell and Allis 1996; Brownell et al, 1996). Consequently, 

inhibition of histone deacetylases enhances somatic cell reprogramming by a factor of 

1000 (Huangfu et al, 2008). Histone acetylation can furthermore disrupt higher-order 

chromatin structure as has been demonstrated in vitro for nucleosomal arrays containing 

lysine 16 acetylation of histone H4 (Shogren-Knaak et al, 2006). 

Contrary to acetylation, methylation (usually occurring at lysines or arginines) does not 

affect the charge of the histone proteins and thus can be activating or repressive 

dependent on the context (Bannister and Kouzarides 2011). A canonical example for a 

methylated residue associated with active state is lysine 4 of histone H3 (H3K4). 

Trimethylation typically occurs at the promoters of all active genes in a well-conserved 

manner among eukaryotes (Heintzman et al, 2007; Heintzman et al, 2009). Several 

chromatin remodeling complexes and histone acetyltransferases can read H3K4 

methylation. Together with the evidence that the general transcription factor TFIID can 

bind H3K4me3 through its PHD domain this suggests a direct involvement of this mark in 

regulating transcriptional initiation at promoters (Santos-Rosa et al, 2003; Taverna et al, 

2006; Vermeulen et al, 2007). There is furthermore experimental evidence that 

transcriptional activity directly affects the level of H3K4me3 at promoters in yeast, where 

the H3K4 methyltransferase SET1 is recruited by elongating RNA polymerase II (Krogan 

et al, 2003; Ng et al, 2003). In addition to active promoters, H3K4me3 decorates all CpG 

island promoters (see 2.4) independently of their activity but only in the absence of DNA 

methylation. This suggests a general recruitment to CpG-rich regions which might be 

achieved through binding of the zinc finger CXXC domain containing protein CFP1. 

CFP1 coexists in a complex with SETD1 H3K4 methyltransferase and was demonstrated 

to recruit H3K4me3 to an exogenous CpG island independently of transcription 

(Thomson et al, 2010). 
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In contrast to H3K4me3, polycomb mediated lysine 27 trimethylation of histone H3 

(H3K27me3) has been widely associated with repression of developmental genes 

(Ringrose and Paro 2004; Mohn et al, 2008). Similarly to H3K4me3, H3K27me3 is 

enriched at CpG islands and its targeting to CpG-rich regions was proposed to depend 

on transcriptional inactivity (Mendenhall et al, 2010; Lynch et al, 2012). In Drosophila, 

polycomb targeting has been well described and is determined by sequences called 

polycomb response elements (PREs). In mammals several different mechanisms have 

been proposed, including recruitment by long noncoding RNAs or transcription factors 

(Ringrose and Paro 2004; Tsai et al, 2010; Arnold et al, 2013).  

Genome-wide mapping of histone modifications suggests their highly characteristic 

distribution at cis-regulatory elements (Heintzman et al, 2007; Heintzman et al, 2009). In 

human cell lines active promoters are invariantly marked by H3K4me3 and histone 

acetylation and these marks are conserved across cell types. Enhancer landscape is 

more dynamic with high ratio of H3K4me1:H3K4me3 and H3K27 acetylation as the most 

characteristic signatures of activity. Importantly, these landscapes are so specific that 

they can be used for de novo prediction of enhancers (Heintzman et al, 2007).  

Besides the previously mentioned direct influence on chromatin structure, histone 

modifications can affect binding of effector proteins (Bartke et al, 2010). These can be 

sequence-specific transcription factors or unspecific binders, such as chromatin 

remodeling complexes. 

Influence of histone modifications on gene regulation at enhancers can be exemplified by 

the pioneer transcription factor FoxA1 (Lupien et al, 2008). Genome-wide mapping of 

FoxA1 binding sites in two human cancer cell lines shows a correlation with H3K4me1 

and H3K4me2. Importantly, depletion of H3K4 dimethylation by overexpression of the 

histone methyltransferases LSD1 disrupts FoxA1 binding, suggesting a role of H3K4 

methylation in FoxA1 recruitment. At the same time, H3K4 methylation does not seem to 

be the sole determinant of FoxA1 binding, as FoxA1 also occupies sites lacking 

H3K4me1/2 when overexpressed in a cancer cell line (Serandour et al, 2011).  

Impact of TF binding on epigenetic landscapes can be illustrated in macrophage 

differentiation. In this system Egr-2 reduces H3K4me3 levels at the miR-17-92 promoter 

through recruitment of the demethylase Jarid1b (Pospisil et al, 2011).  

Today it is evident that histone modifications regulate gene expression as part of highly 

coordinated events, where multiple effectors and pathways act in close collaboration to 

provide functional output (Cosma et al, 1999; Li et al, 2010). 
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Figure 2-4 Posttranslational histone modifications. Adapted from (Bhaumik et al, 2007). 
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2.4 DNA methylation 

Together with its derivatives DNA methylation is the only known covalent modification of 

DNA. Participation of DNA methylation in inheritance of epigenetic states as well as its 

role in repression of genes has been proposed as early as in 1975 (Holliday and Pugh 

1975; Riggs 1975). Since then it became increasingly appreciated that DNA methylation 

correlates with gene repression, although a causal role appears to depend on the 

genomic context (Baubec and Schübeler, in press). More accepted is the function of 

DNA methylation in such fundamental processes like X-chromosome inactivation, 

imprinting and repeat silencing (Goll and Bestor 2005). It is furthermore essential for 

differentiation and development and consequently abnormal methylation patterns can be 

found in cancer and disease (Shirohzu et al, 2002; Plass et al, 2013).  

In the following paragraphs, I will summarize current knowledge about this epigenetic 

mark with an emphasis on stability and regulatory function. 

2.4.1 Evolution of DNA methylation 

DNA methylation has been proposed to originate from the primitive prokaryotic immune 

system (Bestor 1990). Indeed, bacteria use methylation of adenine or cytosine in host 

defense for selective destruction of exogenous bacteriophage DNA (Goll and Bestor 

2005). Such defense mechanism, however, has never been reported in eukaryotes.  

While the genome of some lower eukaryotes contains methylated adenines (Gorovsky et 

al, 1973), in higher eukaryotes DNA methylation occurs exclusively at the fifth carbon of 

cytosines (5-methylcytosine, 5mC) (Wyatt 1951; Bird and Wolffe 1999; Goll and Bestor 

2005). This modification is common to organisms with large genomes, suggesting that 

DNA methylation evolved as an additional regulatory layer to compensate for the 

increased genomic complexity (Bestor 1990). Thus, necessity to silence transposons 

combined with sexual reproduction has been proposed as the major driving force for the 

evolution of DNA methylation (Zemach and Zilberman 2010). 

In the fungus Neurospora crassa, DNA methylation almost exclusively affects relics of 

transposons which were subject to repeat-induced point mutations as part of a genome 

defense mechanism (Selker et al, 2003). While this pattern is conserved among other 

fungal species with DNA methylation, the sequence context of methylated cytosines can 

vary (Zemach et al, 2010). Importantly, the most widely studied model fungi 

Saccharomyces cerevisiae and Saccharomyces pombe both lack DNA methylation.  
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In contrast to fungi, methylation in the plant Arabidopsis thaliana localizes not only to 

transposons but also to gene bodies and repetitive elements (Zhang et al, 2006). In this 

species cytosine methylation occurs in the context of CHH, CHG and CG sequences 

with an overall relatively small fraction (up to 25%) of methylated cytosines (Furner and 

Matzke 2011). Importantly, transposon and repeat upregulation in DNA methylation 

mutants suggest that their silencing might indeed be the key role of DNA methylation in 

plants (Zilberman et al, 2007; Lister et al, 2008; Tsukahara et al, 2009).  

While DNA methylation is common to all vertebrate genomes, its prevalence is limited 

among non-vertebrate animals. The genomes of Drosophila melanogaster and 

Caenorhabditis elegans both are devoid of DNA methylation. Non-vertebrate animals 

with DNA methylation – such as the honeybee Apis mellifera – show incomplete mosaic 

or “fractional” methylation with moderate methylation levels, mostly within gene bodies 

(Zemach et al, 2010; Deaton and Bird 2011). The transition to vertebrate lineages was 

accompanied by the acquisition of genome-wide DNA methylation (Tweedie et al, 1997; 

Deaton and Bird 2011). Here, methyl groups predominantly occur in the context of CpG 

dinucleotides, although rare cases of cytosine methylation in a non-CpG context have 

been reported in stem cells and brain tissue (Ramsahoye et al, 2000; Lister et al, 2009; 

Lister et al, 2013). Genome-wide DNA methylation brought up the hypothesis that 

vertebrate genomes are methylated by default and targeted demethylation is the key 

regulatory mechanism (Bird and Wolffe 1999). In summary, methylation differs between 

eukaryotic lineages in terms of preferences for sequence contexts and spatial 

distribution.  

In their comparative study of methylomes from a variety of species Zemach et al. 

suggested that the last common ancestor of plants, fungi and vertebrates possessed all 

tools of the DNA methylation machinery (Zemach et al, 2010). If this hypothesis is true, 

then DNA methylation has been lost in several lineages, such as in D. melanogaster and 

C. elegans (Dean et al, 2001; Suzuki and Bird 2008). This could be enabled partially due 

to the lack of selective pressure and partially because other compensatory mechanisms 

have evolved (Brennecke et al, 2007). Loss of DNA methylation in some lineages argues 

that it might have opposing effects on the fitness of an organism (Hollister and Gaut 

2009; Zemach et al, 2010). Genome-wide DNA methylation in vertebrates might indeed 

have evolved as a silencing mechanism for transposons and repeats. Following this, 

their occasional insertion in introns could have spread the methylation over the coding 

gene regions (Jahner and Jaenisch 1985). In this case, the benefits of preserving the 
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genome’s stability by transposon inactivation must have outperformed the potential 

disadvantages of aberrant gene silencing.  

2.4.2 DNA methylation patterns in vertebrates 

Genome-wide methylation patterns in vertebrates are mainly established during 

gametogenesis and postimplantation development following global demethylation 

(Morgan et al, 2005; Borgel et al, 2010). During gametogenesis parental imprint 

methylation is reestablished which later resists global demethylation upon fertilization of 

the oocyte (Tucker et al, 1996; Dean et al, 2001). Further programmed methylation takes 

place during development and differentiation and affects somatic imprints and gene 

promoters (Mohn et al, 2008; Borgel et al, 2010). 

In general, the majority of cytosines in the context of CpG dinucleotides (about 80%) are 

methylated, thus allowing DNA methylation to extend its function beyond silencing of 

transposons (Lister et al, 2009; Zemach et al, 2010; Deaton and Bird 2011; Long et al, 

2013b). Since methylated cytosines are predisposed to deamination, germline mutations 

render mammalian genomes globally depleted in CpGs (Coulondre et al, 1978; Bird 

1980; Schorderet and Gartler 1992; Freitag et al, 2002; Zemach et al, 2010). A notable 

exception are CpG islands (CGI) with a locally high concentration of CpG dinucleotides 

(ration observed/expected >0.5 dependent on the algorithm) (Bird et al, 1985). About 

70% of genes contain a CGI in their promoter and only about 3% of those become 

methylated in adult tissues (Deaton and Bird 2011; Long et al, 2013b). Thus, while 

methylation of CpG island promoters usually coincides with gene silencing, most of them 

remain unmethylated but inactive (Stein et al, 1982; Schilling and Rehli 2007; Shen et al, 

2007; Weber et al, 2007; Mohn et al, 2008; Payer and Lee 2008). Promoters are 

furthermore frequently silenced by other epigenetic marks before acquiring DNA 

methylation (Feldman et al, 2006). Taken together these observations led to the 

speculation that DNA methylation has a role in “locking-in” the repressive state of genes 

and thus is required wherever stable silencing is needed. 

A variety of methods have been developed for the analysis of unmethylated or 

methylated DNA. These include endonuclease digestion by enzymes with different 

sensitivity towards DNA methylation (Bird and Southern 1978), affinity purification of 

methylated or unmethylated DNA (Cross et al, 1994; Weber et al, 2005; Blackledge et al, 

2012) and conversion of unmethylated cytosines to uracil by bisulfite treatment (Wang et 

al, 1980; Frommer et al, 1992). The latter method allows for a single base resolution 
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global methylation analysis when coupled with genome-wide sequencing technologies 

and was recently applied by several groups to mammalian genomes (Lister et al, 2009; 

Hodges et al, 2011; Stadler et al, 2011; Xie et al, 2013; Ziller et al, 2013). These studies 

revealed that the genome-wide methylation landscape is characterized by segment-

specific methylation signatures with more or less uniformly methylated blocks. In 

agreement with previous observations, the majority of cytosines indeed fall into fully 

methylated or unmethylated regions (FMRs and UMRs, respectively). In this 

classification UMRs largely correspond to unmethylated CpG islands (Lister et al, 2009; 

Stadler et al, 2011).  

 

 

Figure 2-5 Schematic representation of DNA methylation landscape in vertebrates.  

Three major segment types are shown as defined in Stadler et al. (Stadler et al, 2011): Fully 
methylated regions (FMR, blue) with mostly 80-100% methylated CpGs, unmethylated regions 
(UMR, green) with methylation ranging from 0 to 10% and low methylated regions (LMR, red) with 
about 10-50% methylation. Grey shadows represent the variability in methylation between 
individual cytosines. CpG density (black, dashed line) is elevated at UMRs which mostly 
correspond to CpG islands and to a lower extent at LMRs. DNAseI cuts in UMRs and LMRs, 
indicative of an open chromatin state and transcription factor presence within these regions. 
LMRs are marked by low H3K4me3 and high H3K4me1, characteristic for enhancers. 

However, in addition to these previously anticipated domains, a new class of low CpG-

density segments has been identified which is hypomethylated but not fully unmethylated 

like CpG islands and therefore termed low methylated regions or LMRs (Stadler et al, 

2011). Average methylation within these regions comprises 30%, although the 

methylation state of individual cytosines can vary throughout the domain. Importantly, 

LMRs possess all features of active distal regulatory elements with enrichments of cell 



Introduction 23 

type specific DNA-binding factors and enhancer-characteristic histone marks. 

Furthermore, insertion of unmethylated or in vitro methylated DNA fragments at an 

ectopic locus in mouse embryonic stem cells showed that binding of the factor CTCF is 

necessary and sufficient for creating a hypomethylated state. This observation argues 

against an instructive role of DNA methylation for transcription factor recruitment to these 

regions. Importantly, methylation at LMRs changes dynamically during neuronal 

differentiation correlating with changes in the expression of cell type specific TFs and 

with active enhancer signatures. The presence of low methylated regions has been 

described in many cell types, confirming these initial findings in embryonic stem cells 

(Hodges et al, 2011; Stadler et al, 2011; Burger et al, 2013; Hon et al, 2013; Xie et al, 

2013; Jeong et al, 2014).  

More recent global studies on DNA methylation in human ES cell differentiation and 

hematopoietic stem cells reported presence of methylation depleted regions exceeding 

the size of LMRs or UMRs (median in ES cells 324bp and 581bp, respectively) by 

several fold (median size: >5kb). These regions were termed methylation “valleys” or 

“canyons” (Xie et al, 2013; Jeong et al, 2014). Besides the difference in size they largely 

resemble CpG islands, cover conserved motif-rich sequences and are conserved 

between cell lineages. Interestingly, loss of the DNA methyltransferases DNMT3A 

mediated DNA methylation increases the size of canyons, suggesting a role of DNA 

methylation turnover in the maintenance of border methylation at these regions (Jeong et 

al, 2014). Regulatory potential of unmethylated and hypomethylated sequences is further 

demonstrated by a recent study showing evolutionary conservation of hypomethylated 

regions between vertebrate species (Long et al, 2013a).  

Beyond these segments with well-defined methylation states, large partially methylated 

domains (PMD) with apparently deregulated variable methylation are detectable in some 

mammalian cell types (Lister et al, 2009; Gaidatzis et al, 2014). 

2.4.3 DNA methylation machinery 

Methyl groups are added to cytosines in an S-Adenosyl-Methionine (SAM) dependent 

reaction by a conserved group of enzymes called DNA methyltransferases (DNMTs). In 

their speculative pioneer work Holliday and Pugh predicted the presence of two enzyme 

activities to maintain a cell’s methylation levels: a de novo methyltransferase and a 

maintenance methyltransferase (Holliday and Pugh 1975). The maintenance enzyme 

was predicted to share the capacity of bacterial methyltransferases to act only on 
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hemimethylated DNA and thereby copy methylation to the palindromic CpG sequence of 

the daughter cell. This traditional separation into maintenance and de novo methylating 

enzymes remains in use today. 

As originally postulated, the maintenance DNA methyltransferase DNMT1 prefers 

hemimethylated DNA as substrate (Stein et al, 1982; Bestor et al, 1988; Okano et al, 

1998). Initial in vitro methylation assays (Okano et al, 1998) found confirmation in the 

structural analysis showing autoinhibition of DNMT1 catalytic center upon binding of a 

fully unmethylated substrate DNA (Song J. et al, 2011; Song et al, 2012). DNMT1 is 

recruited to the replication forks by UHRF1, a protein which interacts with PCNA during 

DNA synthesis (Sharif et al, 2007). Such maintenance provides a potential mechanism 

for epigenetic memory and inheritance (Holliday and Pugh 1975; Riggs 1975). Indeed, 

methylation at CGIs is accurately transmitted, as has been demonstrated by integration 

of premethylated DNA fragments (Wigler et al, 1981; Schubeler et al, 2000). Certain 

sequences, however, can autonomously determine their methylation state independently 

of preceding manipulation (Lienert et al, 2011; Stadler et al, 2011).  

Lei et al. reported the first experimental evidence that mammals possess separate 

enzymes for the catalysis of de novo DNA methylation in 1996, when they noticed that 

proviral DNA can be de novo methylated in the absence of DNMT1 (Lei et al, 1996). The 

de novo DNA methyltransferases DNMT3A and DNMT3B were cloned and characterized 

a few years later, confirming that they indeed are able to methylate unmodified cytosines 

(Okano et al, 1998; Okano et al, 1999).  

 

 

Figure 2-6 Schematic representation of de novo and maintenance DNA methylation 

Methylated CpG: black lollipops, unmethylated CpG: white lollipops 
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Although common consent accepts this role distribution, it is probably not very accurate. 

For example, the in vitro de novo methylation activity of DNMT1 is five times higher than 

that of DNMT3A/B (Okano et al, 1998). Similarly, DNMT3A/B possess maintenance 

activity in vitro (Okano et al, 1998) and in vivo, as deletion of DNMT1 in embryonic stem 

cells does not result in complete loss of methylation (Lei et al, 1996; Jackson et al, 

2004). There is furthermore evidence that de novo DNA methyltransferases participate in 

local or global methylation maintenance in vivo (Chen et al, 2003; Jackson et al, 2004; 

Arand et al, 2012; Jeong et al, 2014). Initially, nearest-neighbor analysis suggested a 

progressive loss of methylation in DNMT3A/B double-knockout embryonic stem cells, 

resulting in a global methylation decrease by 50% at passage 20 upon knockout 

(Jackson et al, 2004). Arand et al. found varying dependency of genomic regions on 

DNMT3A/B for methylation maintenance when they analyzed methylation of DNMT 

mutant mouse ES cell lines by hairpin-bisulfite PCR (Arand et al, 2012). For instance, 

methylation at Tex13, Afp, IAPs and mSat can be maintained by either enzyme, while 

Igf2, Snrpn, B1 and L1 repeats require cooperativity from both enzymes. Surprisingly, 

these characteristics differ from one region to another and no common rule distinguishes 

between single genes and repetitive sequences.  

Analysis of DNMT3A and DNMT3B knockout mice and embryonic stem cell lines 

revealed target specificity of de novo DNA methyltransferases (Okano et al, 1999). For 

instance, centromeric minor, but not major satellite repeats are hypomethylated in both 

DNMT3B knockout and hypomorphic mutant mice (Okano et al, 1999; Velasco et al, 

2010). How exactly DNMT3A/B are targeted to specific loci remains to be determined. 

Contribution of flanking sequences to targeting specificity of DNMTs has been reported 

(Lin et al, 2002; Handa and Jeltsch 2005; Gowher et al, 2006) as well as recruitment by 

transcription factors, such as E2F6 (Velasco et al, 2010). DNMT3A/B have been shown 

to anchor to methylated nucleosomes in cancer cell lines (Jeong et al, 2009).  

DNMTs are differentially expressed throughout development and cell differentiation 

(Okano et al, 1998; Okano et al, 1999; La Salle et al, 2004; Watanabe et al, 2006). 

DNMT3B expression is widespread in the early embryo and is restricted mostly to the 

developing brain upon embryonic day E9.5, the time-point when DNMT3A expression 

becomes ubiquitous (Okano et al, 1999). DNMT3A functions predominantly in germ cells 

as the main methyltransferase in the establishment of parental imprints and is moreover 

upregulated later in development (Watanabe et al, 2006; Nguyen et al, 2007; Challen et 

al, 2012). Different temporal and spatial expression patterns are mirrored in the 

phenotypes of knockout mice (Okano et al, 1999). In general, knockout of any enzymatic 
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DNMT is lethal. However, while DNMT3B and DNMT1 knockout mice die during 

embryogenesis, DNMT3A knockout animals survive until 4 weeks after birth. A role of 

DNMT3A in postnatal cells has been described for hematopoietic stem cell differentiation 

upon conditional knockout (Challen et al, 2012). The authors used bone-marrow 

transplanted conditional knockout hematopoietic stem cells to track their in vivo 

differentiation potential. They found that the differentiation was compromised and the 

cells were biased towards the stem cell state. Unexpectedly, reduced-representation 

bisulfite sequencing revealed equal amounts of both demethylated and hypermethylated 

regions upon DNMT3A knockout and little correlation to gene expression changes. 

It seems that the presence of DNMTs is overall dispensable for embryonic stem cells. ES 

cells lacking all three DNMTs are viable and even retain the differentiation capability to 

embryonic lineages as long as DNMT1 is present (Jackson et al, 2004; Tsumura et al, 

2006). Survival of extraembryonic lineages, on the other hand, appears independent of 

DNA methylation (Sakaue et al, 2010).  

Even though in general DNMTs are downregulated upon development and 

differentiation, notable amounts can still be detected in adult postmitotic cells (Goto et al, 

1994). However, the molecular function of DNMTs in adult tissues is not well understood. 

For example, Nguyen et al. demonstrated neuromuscular defects in a conditional 

knockout of DNMT3A in mouse neurons (Nguyen et al, 2007). Only very limited 

demethylation was detected at one of the investigated gene promoters in the adult 

mouse brain. This subtle effect does not allow establishing a link between observed 

defects and the methyltransferase activity of DNMT3A. Other studies suggest a role of 

DNA methylation in neuronal activity, although the link between DNA methylation, gene 

expression and reported defects remains unexplained (Feng et al, 2010; LaPlant et al, 

2010; Guo et al, 2011b). 

Together with conditional knockout experiments, presence of the DNA methylation 

machinery in adult cells argues that maintaining plasticity of DNA methylation might be 

important beyond development and differentiation (Feng et al, 2010; Guo et al, 2011b). 

The task of the DNA methyltransferases in differentiated tissues could involve correction 

of DNA damage, maintenance of transcriptional silencing capacity or participation in 

turnover.  
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2.4.4 DNA demethylation 

2.4.4.1 Passive and active demethylation 

Because of its heritability, its covalent coupling to DNA and the stability of the C-C bond 

between the fifth carbon of the cytosine and the methyl group, DNA methylation has 

been considered a stable modification whose main function is to ensure long-term 

silencing (Wu and Zhang 2010). Insights from developmental studies, however, suggest 

that it is more dynamic than anticipated. In mammalian development DNA methylation is 

removed in two main waves: during gametogenesis and preimplantation (Mayer et al, 

2000; Oswald et al, 2000; Hajkova et al, 2002; Lee et al, 2002; Santos et al, 2002; 

Yamazaki et al, 2003; Wu and Zhang 2010; Seisenberger et al, 2013). Interestingly, 

during zygotic demethylation maternal and paternal pronuclei seem to rely on different 

demethylation mechanisms. Paternal pronucleus undergoes rapid demethylation, 

whereas the maternal pronucleus gradually loses its methyl mark. This difference in 

kinetics probably exemplifies active and passive demethylation.  

Passive demethylation occurs when replication dependent maintenance is compromised. 

This can be mediated by exclusion of DNMT1 from the nucleus, as reported for 

preimplantation development (Monk et al, 1987; Howlett and Reik 1991; Carlson et al, 

1992), or protection of DNA from the maintenance machinery (Hsieh 1999).  

On the other hand, active demethylation requires a mechanism that catalyzes removal of 

the methyl group (Wu and Zhang 2010). In case of zygotic development, demethylation 

of the paternal pronucleus coincides with oxidation of 5-methylcytosine to 5-

hydroxymethylcytosine (see 2.4.4.4). During these events the maternal pronucleus is 

most likely protected from active demethylation by Stella/DPPA3 (Gu et al, 2011; 

Wossidlo et al, 2011). The possibility of active demethylation causes a lot of excitement 

as it would allow for increased plasticity in gene regulation (Bird 2002). Nevertheless, 

while the presence of active demethylation has been widely accepted, the field suffers 

from unclarity in mechanisms. 

The main challenge in the field is distinguishing between passive and active 

demethylation. This can be achieved by excluding replication mediated effects as is the 

case for demethylation of paternal pronucleus. Furthermore, active demethylation implies 

selectivity, so that it should be site-specific. Multiple studies report occurrence of local 

demethylation during differentiation of dividing (Mohn et al, 2008; Stadler et al, 2011; 

Serandour et al, 2012) or post-mitotic (Klug et al, 2010) cells. Active demethylation has 

also been reported in postmitotic neurons upon induction of neuronal activity in vitro at 
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the Bdnf promoter (Martinowich et al, 2003) and in vivo using genome-wide mapping of 

methylation-sensitive restriction sites (Guo et al, 2011b). However, overall demethylation 

in these systems was low and limited to individual cytosines within a few regions.  

Other reports suggest a connection between demethylation and transcriptional activity at 

promoters (Kangaspeska et al, 2008; Metivier et al, 2008) or enhancers (Stadler et al, 

2011; Wiench et al, 2011; Shen et al, 2013; Song et al, 2013). This hypothesis points 

directly to the question of whether DNA methylation is instructive for gene activity at all.  

Mechanisms suggested to regulate active demethylation can generally be subdivided 

into three different categories: direct demethylation, targeted DNA repair and oxidation 

mediated demethylation (Franchini et al, 2012). In many cases a combination of different 

mechanisms is possible. 

2.4.4.2 Direct removal of the methyl group 

Direct removal of 5-methylcytosine is considered as chemically challenging, since it 

would require a direct cleavage of the C-C bond between the cytosine and the methyl 

group (Wu and Zhang 2010; Franchini et al, 2012). Direct demethylation has never been 

reported in vivo. However, in an in vitro assay all three mammalian DNMTs have been 

proposed to act as direct demethylases in the presence of Ca2+ and absence of the 

methyl group donor S-Adenosyl-Methionine (Chen et al, 2013a).  

2.4.4.3 Targeted DNA repair 

DNA repair mediated active demethylation pathways involve glycosylation and 

deamination of 5mC followed by base-excision repair (BER).  

Glycosylation mediated demethylation is indeed known from plants, where it is executed 

by the Demeter family of DNA glycosylases (Gehring et al, 2009). A mammalian 

glycosylase suggested to participate in active demethylation is the T DNA glycosylase 

TDG (Zhu et al, 2000). Its homologue has initially been purified from chicken embryo 

extracts as demethylating enzyme which prefers hemimethylated over bi-stranded 

methylated or unmethylated DNA as substrate (Jost 1993). Quantification of its catalytic 

activity revealed that it is considerably higher at mismatched G/T than at 5mC (Zhu et al, 

2000). TDG has been recently implicated in oxidation mediated demethylation pathways 

(He et al, 2011) (see 2.4.4.4).  

Deamination followed by BER appears to be a mechanism more suitable for the activity 

of TDG, as deamination of 5mC creates its preferred substrate, the T/G mismatch. The 
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main deaminases implicated in active demethylation are the activation-induced 

deaminase AID and the family of apolipoprotein B mRNA editing enzyme catalytic 

polypeptide proteins (APOBEC) (Morgan et al, 2004). Mice deficient for AID have mildly 

increased methylation in primordial germ cells (Popp et al, 2010). However, the 

difference to wild type animals is so small that AID is most likely not the major 

demethylase in the germline. 

Both mechanisms require targeted lesion of DNA in order to act at specific sites and it 

has been reported that AID catalyzes site-specific demethylation (Bhutani et al, 2010). It 

is unclear, however, how such targeting might be achieved in the absence of a DNA 

binding domain.  

2.4.4.4 Oxidation mediated demethylation 

TET proteins 

In the last years, most mechanisms postulated to play a role in active demethylation 

involve oxidation of 5-methylcytosine to 5-hydroxymethylcytosine (5hmC) by the TET 

family proteins (Wyatt and Cohen 1953; Kriaucionis and Heintz 2009; Tahiliani et al, 

2009). The discovery of TET proteins was inspired by a search for mammalian 

homologues of J-binding proteins JBP. JBP contribute to the generation of the “base J” 

by oxidation of the methyl group of a modified thymine in Trypanosoma brucei (Tahiliani 

et al, 2009). At the moment three proteins of this family of Fe2+- and 2-oxoglutarate 

dependent dioxygenases are known: TET1, TET2 and TET3 (Ito et al, 2010). All of them 

share a homologous C-terminal domain with a capacity to convert 5mC in 5hmC. In 

contrast to TET2, TET1 and TET3 both contain a CXXC domain which guides their 

binding to CpG islands (Xu et al, 2011; Xu et al, 2012). Thus, it is likely that different 

family members have distinct substrate specificities, as suggested in a recent profiling of 

hydroxymethylation in TET1 and TET2 knockdown embryonic stem cells (Huang et al, 

2014). 

Evidence that TET proteins are involved in active DNA demethylation first came from in 

vitro and over-expression studies (Guo et al, 2011a; He et al, 2011; Ito et al, 2011). 

Recent tethering of TET1 to a specific locus showed that its catalytic activity only leads 

to a minor and locally defined loss of methylation (Maeder et al, 2013). Simultaneous 

knockout of TET1 and TET2 proteins, however, increases global cytosine methylation 

from approximately 5.3% to 5.75% in a mass spectrometry-based quantification (Dawlaty 

et al, 2013). This finding extends to various tissues with a surprisingly low correlation 
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between the abundance of 5hmC and the extent of methylation gain in TET1/2 knockout. 

For TET3 a role in demethylation has only been reported in preimplantation and brain 

development, although quantitative data are still missing (Gu et al, 2011; Xu et al, 2012). 

In addition to their demethylating activity, TET proteins have also been implicated in 

gene silencing. The first hint came from an early genome-wide map of TET1 and 5hmC 

in murine ES cells (Williams et al, 2011). The authors observed oxidation-independent 

gene upregulation in the absence of TET1 and subsequently linked this effect to a 

physical interaction with the SIN3A co-repressor complex. Another study linked 

hydroxymethylation with gene silencing by reporting a localization of the methylated DNA 

binding protein MBD3 to hydroxymethylated regions (Yildirim et al, 2011). However, this 

is unlikely a consequence of 5hmC mediated recruitment, as MBD3 localization remains 

unaltered in ES cells lacking all three DNMTs (Baubec et al, 2013). 

5-Hydroxymethylcytosine 

5hmC is present in many mammalian cell types with particular abundance in the brain 

tissues (Kriaucionis and Heintz 2009; Tahiliani et al, 2009; Globisch et al, 2010; Dawlaty 

et al, 2013). Mass spectrometry based quantifications of 5hmC revealed that its overall 

amount is rather low and comprises about 1-20% of 5mC, dependent on the analyzed 

tissue or cell types (Globisch et al, 2010; Ito et al, 2011; Dawlaty et al, 2013). For 

instance, embryonic stem cells contain 3% methylated and 0.13% hydroxymethylated 

cytosines which make up approximately 4.25% of methylated cytosines (Ito et al, 2011). 

On the other hand, brain cortex contains 3.1% methylated and 0.67% hydroxymethylated 

cytosines which comprise more than 20% of 5mC. It is possible that increased 

persistence of 5hmC in the brain reflects its accumulation in the absence of replication. 

5hmC has been reported to be enriched in gene bodies and distal regulatory regions, 

however absent from CpG islands, the major sites of TET1 protein binding (Pastor et al, 

2011; Song C.X. et al, 2011; Williams et al, 2011). Its prevalence led to the hypothetic 

function as a signaling module on itself, particularly in neural tissues (Mellen et al, 2012). 

This seems unlikely, as only few 5hmC-specific readers could be identified in recent 

proteomic analysis of hydroxymethylated baits (Iurlaro et al, 2013; Spruijt et al, 2013).  

Further processing of 5hmC involves different mechanisms, often co-occurring with other 

demethylation pathways (Figures 2-7 and 2-8). Presence of 5hmC could facilitate 

passive demethylation by exclusion of DNMT1 from hemi-hydroxymethylated DNA 

(Valinluck and Sowers 2007). This mechanism has been reported to act in the 



Introduction 31 

demethylation of paternal pronucleus (Inoue and Zhang 2011). However, UHRF1 binding 

at hemihydroxymethylated DNA has been suggested to be reduced (Hashimoto et al, 

2012) but present (Frauer et al, 2011). Thus, DNMT1 recruitment to hemi-

hydroxymethylated DNA cannot formally be excluded, suggesting possible maintenance 

methylation to occur in the presence of 5hmC. Further supporting this hypothesis, 

hydroxymethylated episomal plasmids become fully methylated upon transfection into 

293T cells (Kubosaki et al, 2012). 

 

 

Figure 2-7 5hmC-induced passive demethylation. 

Hydroxymethylation can facilitate passive demethylation through exclusion of DNMT1-UHRF1 
binding from hemi-hydroxymethylated DNA. Adapted from (Pastor et al, 2013).  

In addition, active demethylation has been proposed to be involved in removal of 5hmC. 

An intriguing hypothesis has been raised by an in vitro study, suggesting that DNMT3A 

and DNMT3B function as dehydroxymethylases (Chen et al, 2012). However, the 

relevance and necessity of such reaction is unclear, considering that DNMT3A/B should 

also be capable of direct conversion of 5mC to C according to the same research group 

(Chen et al, 2013a). 

In an alternative scenario 5hmC is deaminated to 5-hydroxymethyluracil by the 

AID/APOBEC family of deaminases followed by DNA repair mediated excision as 

described above. Initial evidence for such reaction came from a study in which TET1 was 

overexpressed in HEK293 cells together with different enzymes of the AID/APOBEC 

family (Guo et al, 2011a). However, Nabel et al. detected only negligible amounts of 
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deamination products upon overexpression of AID/APOBEC along with TET2 in the 

same cell line (Nabel et al, 2012). Deamination of 5hmC by AID has furthermore been 

challenged by two publications where AID and APOBEC activities on differentially 

modified substrate DNA have been investigated in vitro (Nabel et al, 2012; Rangam et al, 

2012). Both studies report a failure to deaminate hydroxymethylcytosine. Furthermore 

they show that the deaminase activity is anticorrelated to the electron cloud size of the 

cytosine modification. This size selectivity might exclude 5hmC from the catalytic pocket. 

 

 

Figure 2-8 5hmC mediated active demethylation.  

5hmU: 5-hydroxymethyluracil; green: DNMT, pink: TET proteins, orange: DNA repair pathways, 
grey: unidentified enzymatic activity. Adapted from (Pastor et al, 2013). 

Following oxidation of 5mC, TET proteins can sequentially oxidize 5hmC to two 

additional products: 5-formylcytosine (5fC) and 5-carboxylcytosine (5caC) (Globisch et 

al, 2010; He et al, 2011; Ito et al, 2011). Enzymatic activity of TET proteins declines for 

later oxidation steps (Ito et al, 2011) which might explain the overall low abundance of 

5fC and 5caC (about 1.5% and 0.2% of 5hmC in ES cells, respectively). This observation 

makes it less likely that oxidation is the major demethylation pathway (Globisch et al, 

2010). Nevertheless, it has been proposed that these products are removed by DNA 

repair machinery with TDG as the main candidate (He et al, 2011; Ito et al, 2011). In 

support of this hypothesis, TDG knockout indeed displays an increase of both 

modifications in embryonic stem cells (Shen et al, 2013; Song et al, 2013). Alternatively, 

5fC and 5caC could be directly removed by a yet unidentified enzyme present in 

embryonic stem cell extracts (Schiesser et al, 2013). 
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2.4.5 Regulatory potential of DNA methylation 

The exact transcriptional role of DNA methylation has been discussed for many years 

(Holliday and Pugh 1975; Riggs 1975). A first experimental evidence for a role in gene 

repression came from methylation comparison within the chicken ß-globin locus between 

an expressing and a non-expressing cell line (McGhee and Ginder 1979). One year later 

Jones and Taylor showed the importance of DNA methylation for cellular differentiation 

by incorporation of the cytosine analogue 5-azacytidine into DNA (Jones and Taylor 

1980). The first direct link between DNA methylation and gene silencing was established 

when retroviral genomes introduced during mouse embryogenesis were de novo 

methylated and silenced (Jahner et al, 1982). However, it is not entirely clear, whether 

methylation always has a regulatory role or whether its presence is a consequence of a 

lack of activation of individual genes.  

The role of DNA methylation in silencing is well established for three phenomena: 

transposon silencing, imprinting and inactivation of genes at the X-chromosome in 

females. DNMT1 knockout mice display increased intracisternal A-type particle (IAP) 

expression and retrotransposition (Walsh et al, 1998; Gaudet et al, 2004). At the same 

time, monoallelic expression of the Igf-2, Igf-2r and H19 genes is misregulated in these 

embryos (Li et al, 1993). Stable silencing of one X-chromosome in female animals was 

demonstrated to rely on DNA methylation in embryonic, but not in extra-embryonic 

tissues using a DNMT1 knockout (Sado et al, 2000). While DNA methylation is recruited 

to most silenced genes on the inactivated X-chromosome this appears after initial 

silencing by histone modifications (Okamoto and Heard 2009). Thus, it seems likely that 

methylation is involved in the maintenance of X-inactivation. 

2.4.5.1 Gene-specific regulation 

Genome-wide DNA methylation in vertebrate genomes theoretically allows for gene-

specific regulation. Consequently, it has been suggested that methylation negatively 

affects transcription by impeding initiation (Klose and Bird 2006). However, microarray 

analysis of an embryonic stem cell line in which all three DNMTs have been deleted 

argues for a relatively small impact of methylation on gene expression, as only about 50 

genes are significantly affected (Sakaue et al, 2010). Furthermore, relatively few 

promoters significantly change their methylation status during development and 

differentiation (Mohn et al, 2008; Borgel et al, 2010; Challen et al, 2012). At least for 

some of them it has been reported that de novo methylation occurs after initial silencing 

by histone modifications (Feldman et al, 2006). Nevertheless, several studies 
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demonstrated that germline-specific genes rely on DNA methylation for silencing in 

thymus, MEFs, primordial germ cells or embryos (Borgel et al, 2010; Velasco et al, 2010; 

Hackett et al, 2012).  

Regions with a high correlation between silencing and DNA methylation have an 

elevated CpG density, suggesting that the density of DNA methylation is more decisive 

for gene repression than the pure presence of the mark (Boyes and Bird 1992; Weber et 

al, 2007). This association has been proposed by an early study in which the effect of 

different fractions of in vitro methylated CpGs within an episomal plasmid on gene 

expression has been analyzed (Hsieh 1994). In this report a methylation of only 7% of 

the CpG dinucleotides decreases transcription of a luciferase reporter gene to 10%. 

Recently, DNA methylation density has been reported to correlate with the enrichment of 

methyl-CpG binding proteins which affect transcription by changing the chromatin 

environment (Nan et al, 1998; Baubec et al, 2013). Nevertheless, a negative correlation 

between activity and DNA methylation can also occur at CpG poor regions, as has been 

demonstrated for distal regulatory regions (Stadler et al, 2011).  

2.4.5.2 Mechanisms of methylation mediated gene repression 

An interesting hypothesis suggests that global DNA methylation generally decreases the 

genome accessibility and thus increases the barrier for active transcription and reduces 

transcriptional noise (Bird 1995). Possible silencing mechanisms involve exclusion of 

activators and attraction of repressors (Klose and Bird 2006). A direct inhibition can 

occur when a transcription factor is sensitive to CpG methylation within its binding site. 

However, only a few TFs have been reported to be directly repelled by DNA methylation 

in their motif including E2F, CREB and YY1 (Iguchi-Ariga and Schaffner 1989; 

Campanero et al, 2000; Kim et al, 2003; Elliott et al, 2010). Other factors, for example 

Sp1, appear insensitive (Harrington et al, 1988; Tate and Bird 1993). CTCF, the 

canonical protein for selective binding of unmethylated DNA regions, can occupy 

methylated CpG poor regions (Bell and Felsenfeld 2000; Stadler et al, 2011).  

Indirect inhibition can be mediated by proteins recognizing methylated CpG 

dinucleotides. Two families have been described. Methyl-CpG-binding domain (MBD) 

proteins directly recognize methylated CpGs and occupy DNA in a methyl-CpG density 

dependent fashion (Tate and Bird 1993; Baubec et al, 2013). The second group contains 

proteins which recognize methylated CpGs in a sequence-specific context by their zinc-

fingers (including KAISO, ZBTB4, ZBTB38 and ZFP57, (Filion et al, 2006)). Both could 

sterically counteract activator binding or recruit repressive histone modifiers. In their 
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pioneering work the research groups of Bird and Wolffe reported physical interaction 

between MeCP2 and Sin3A which in turn forms a complex with HDAC1/2. Upon binding 

to methylated regions MeCP2 thus triggers their deacetylation and ultimately silencing. 

Importantly, silencing depends on the deacetylase activity, as its inhibition by 

Trichostatin A derepresses reporter genes (Jones et al, 1998; Nan et al, 1998). In this 

case, while facilitated by DNA methylation, silencing is mediated through other factors. 

2.4.5.3 Protection from DNA methylation 

It is possible that gene activity and active chromatin counteract DNA methylation. For 

example, in vitro assays demonstrated that trimethylation of lysine 4 at histone 3 

sterically excludes DNMT3L from CpG islands and thus protects them from recruitment 

of DNMT3A/B (Ooi et al, 2007). CpG islands can furthermore attract CXXC domain 

proteins which might contribute to their active chromatin state (Long et al, 2013b). Such 

a protein, TET1, which is strongly enriched at CpG islands (2.4.4.4) could actively keep 

them unmethylated and accessible for other factors (Pastor et al, 2013). 

In addition, binding of certain transcription factors might protect from DNA methylation 

(Brandeis et al, 1994; Macleod et al, 1994; Lienert et al, 2011). Importantly, TF 

occupancy is not solely of a protective nature, but can induce demethylation in vivo via a 

yet unidentified mechanism (Thomassin et al, 2001; Xu et al, 2009; Stadler et al, 2011). 

Recruitment of the E. coli Lac repressor LacI to in vitro premethylated Lac operator 

sequence induces demethylation in a human cell line. Interestingly, titration of LacI by 

supplementation with IPTG suggests that the extent of demethylation directly correlates 

with occupancy of the target site but not with transcriptional activity (Lin et al, 2000). 

Similar conclusions were obtained from a study in fertilized Xenopus eggs for different 

transactivator domains (Matsuo et al, 1998). This study carries the functional analysis 

further and shows that demethylation by binding of TFs requires ongoing replication, 

suggesting a passive demethylation mechanism.  

2.4.5.4 Role of 5mC derivatives 

In theory, oxidation products of 5mC could also participate in gene regulation, although 

here the described relationship is even more complicated (Kriaucionis and Heintz 2009; 

Tahiliani et al, 2009; He et al, 2011; Ito et al, 2011). As intermediates of active 

demethylation and if DNA methylation is repressive, one would expect them to have an 

activating role. However, high 5-hydroxymethylcytosine enrichments at the TSS 

negatively correlate with gene expression (Pastor et al, 2011). Considering that most 
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promoters are CpG islands and bisulfite sequencing does not distinguish between 5mC 

and 5hmC (Huang et al, 2010), this anticorrelation is hardly surprising. Conversely, high 

gene-body enrichments have been associated with increased gene expression in brain 

tissue and in embryonic stem cells (Song C.X. et al, 2011; Wu et al, 2011; Mellen et al, 

2012; Colquitt et al, 2013). This pattern resembles the distribution of 5mC so much that 

the presence of 5hmC within these sites is likely to be a consequence of substrate 

enrichment. Gel shift assays furthermore suggest that MeCP2 is a reader of 5hmC 

(Mellen et al, 2012), a finding confirmed by a mass spectrometry approach (Spruijt et al, 

2013). However, these results are challenged by an older study in which the binding 

affinity of MeCP2 was measured in vitro for oxidative damaged 5mC DNA (Valinluck et 

al, 2004).  

On the other hand, further oxidation of 5hmC appears to be detrimental for transcription, 

as in vitro elongation efficiency of the RNA polymerase II decreases at 5fC and 5caC 

containing targets (Kellinger et al, 2012).  

Despite these correlative findings, changes in 5hmC levels could not be linked to 

concomitant changes in gene expression in a knockdown of TET1 (Williams et al, 2011). 

In summary, these findings do not allow to clearly discriminate the transcriptional effects 

of 5mC and its derivatives.  
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2.5 Scope of this thesis 

Cell type specific gene expression programs require regulatory mechanisms which are 

capable to correctly interpret genetic information for each cell. Gene regulation ultimately 

relies on the interaction of transcription factors with their cognate sequences. Positive or 

negative modulation of such interactions is thus the function of any gene regulatory 

mechanism. In eukaryotes, this is achieved through the concerted action of nucleosomes 

and chromatin modifications.  

When I started my PhD thesis, growing evidence suggested a role of DNA sequences in 

determination of epigenetic states, such as DNA methylation and trimethylation of lysine 

27 of histone H3 (Lienert et al, 2011; Stadler et al, 2011; Arnold et al, 2013). In these 

studies establishment of chromatin state critically depended on the presence of 

transcription factors.  

While DNA methylation has long been considered a stably repressive modification which 

is reprogrammed in germ cells and early embryogenesis (Wu and Zhang 2010), it 

became increasingly clear that this mark is reversible upon cellular differentiation (Mohn 

et al, 2008; Klug et al, 2010). Importantly, this process appears to depend on binding of 

transcription factors (Stadler et al, 2011). Advances in sequencing technologies allowed 

for a direct genome-wide measurement of DNA methylation. This revealed that its 

dynamic changes are especially pronounced at low methylated regions which are on 

average 30% methylated and often coincide with distal regulatory elements (Stadler et 

al, 2011). How exactly transcription factors induce hypomethylation and how stable is the 

achieved hypomethylated state remained undetermined. 

We used two approaches to further investigate the relationship between transcription 

factors and DNA methylation at low methylated regions. First, we performed genome-

wide chromatin immunoprecipitation of CTCF followed by bisulfite conversion and 

sequencing of the enriched DNA (Brinkman et al, 2012; Statham et al, 2012) to assess 

whether methylation is directly coupled to TF occupancy at the level of single molecules. 

By the time of performed experiments it has been suggested that DNA demethylation is 

achieved through oxidation of 5-methylcytosines to 5-hydroxymethylcytosine by the TET 

family of proteins (Kriaucionis and Heintz 2009; Tahiliani et al, 2009). Therefore, in a 

second approach we tested this hypothesis by using hydroxymethylated DNA 

immunoprecipitation followed by sequencing (Weber et al, 2005; Wu et al, 2011) during 

neuronal differentiation of embryonic stem cells. To further characterize the relationship 
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between transcription factor binding and DNA hydroxymethylation, we used a cell line 

bearing a genetic deletion of the factor REST. We then assessed the stability of DNA 

methylation in embryonic stem cells with a stable knockout or conditional inactivation of 

the two de novo DNA methyltransferases DNMT3A and DNMT3B. In order to quantify a 

potential turnover we measured methylation throughout a time-course of DNMT3A/B 

deletion by sequencing bisulfite PCR amplicons derived from different genomic regions.  
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3 Results 

3.1 Transcription factor occupancy can mediate active 
turnover of DNA methylation at distal regulatory regions 

Feldmann A*, Ivanek R*, Murr R*, Gaidatzis D, Burger L and Schübeler D 

3.1.1 Summary 

Cellular differentiation and development are largely regulated by distal regulatory 

elements, including enhancers and insulators. Binding of transcription factors to these 

elements is critical for their activity and coincides with locally reduced methylation 

(Stadler et al, 2011). Importantly, transcription factor binding is necessary and sufficient 

for formation of such low methylated regions (LMRs), even if they were previously 

methylated. How exactly these hypomethylated states are created and how transcription 

factor occupancy translates into DNA methylation is poorly understood. 

Here we chose the DNA binding factor CTCF which has been previously shown to create 

LMRs as test case to investigate the relationship between DNA methylation and 

transcription factor binding. Using chromatin immunoprecipitation followed by bisulfite 

sequencing we show that in contrast to imprinted loci where only the unmethylated allele 

is occupied, CTCF can bind any methylation state at LMRs. We find an inverse 

relationship between occupancy and DNA methylation. Cytosines within sites of high 

CTCF enrichments have a high probability to be unmethylated as opposed to low 

occupancy sites, for which DNA methylation is heterogeneous. Our data suggest that 

CTCF binding is not statically linked to an unmethylated state but instead argue for a 

dynamic model of interaction in which methylated or unmethylated cytosines can be 

bound. In line with this model, we observe high enrichments of 5-hydroxymethylcytosine 

at cell type specific LMRs in embryonic stem cells and upon their neuronal differentiation, 

providing a mechanism for transcription factor dependent local demethylation. Moreover, 

cell type specific LMRs are enriched among sites of dynamic hydroxymethylation. As 

deletion of CTCF is lethal for embryonic stem cells, the link between transcription factor 

occupancy and hydroxymethylation was tested by profiling hydroxymethylation in a cell 
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line in which REST - another transcription factor implicated in LMR formation - was 

genetically deleted. This revealed an increase in DNA methylation and concomitant 

decrease of hydroxymethylation at REST bound LMRs. 

Our results argue that transcription factors have the potential to induce TET protein 

dependent turnover of DNA methylation for maintenance and reprogramming of distal 

regulatory regions. 
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3.1.2 Published Manuscript 
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Abstract

Distal regulatory elements, including enhancers, play a critical role in regulating gene activity. Transcription factor binding
to these elements correlates with Low Methylated Regions (LMRs) in a process that is poorly understood. Here we ask
whether and how actual occupancy of DNA-binding factors is linked to DNA methylation at the level of individual
molecules. Using CTCF as an example, we observe that frequency of binding correlates with the likelihood of a
demethylated state and sites of low occupancy display heterogeneous DNA methylation within the CTCF motif. In line with
a dynamic model of binding and DNA methylation turnover, we find that 5-hydroxymethylcytosine (5hmC), formed as an
intermediate state of active demethylation, is enriched at LMRs in stem and somatic cells. Moreover, a significant fraction of
changes in 5hmC during differentiation occurs at these regions, suggesting that transcription factor activity could be a key
driver for active demethylation. Since deletion of CTCF is lethal for embryonic stem cells, we used genetic deletion of REST
as another DNA-binding factor implicated in LMR formation to test this hypothesis. The absence of REST leads to a decrease
of hydroxymethylation and a concomitant increase of DNA methylation at its binding sites. These data support a model
where DNA-binding factors can mediate turnover of DNA methylation as an integral part of maintenance and
reprogramming of regulatory regions.
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Introduction

Correct spatial and temporal regulation of genes depends on

distal regulatory elements. Reprogramming the activity of these

elements is thus central for successful cellular specialization [1,2].

Active distal regulatory elements are characterized by an open

chromatin structure, corresponding to DNaseI hypersensitive sites,

specific histone variants and histone modifications [3,4]. These

modifications are thought to regulate the accessibility of the

regulatory sequence and thus facilitate transcription factor (TF)

binding [5].

Distal regulatory regions that reside outside of CpG islands are

further unique, as they show reduced levels of DNA methylation

when active [6–8]. Importantly, this feature is consistent between

cell types so that it can be implemented to identify cell-type specific

active regulatory elements as Low Methylated Regions (LMR)

[6,7,9–11]. Although reduced, DNA methylation at LMRs is

maintained at a residual level. This reflects heterogeneity within

the population of sequenced DNA molecules, given that DNA

methylation is binary for any particular cytosine. Functional

experiments suggested that reduced methylation at LMRs

critically depends on binding of transcription factors [7], but their

role in creating methylation heterogeneity and whether this occurs

via a passive and/or an active demethylation remains to be

identified.

Several lines of evidence further link DNA demethylation to

enhancer activity. Demethylation occurs at glucocorticoid receptor

binding sites [8] and 5-hydroxymethylcytosine (5hmC), an

intermediate of active demethylation via oxidation of 5-methyl-

cytosines (5mC) by TET proteins [12–16], is present at active

enhancers in embryonic stem (ES) cells as well as during neuronal

and adipocyte differentiation [7,17–21]. Importantly, 5hmC can

readily be detected in various cell types and thus utilized to locate

regions of active DNA demethylation [22,23].

Here we addressed, whether heterogeneous methylation at

LMRs reflects differential occupancy by transcription factors at

individual molecules, using the DNA binding factor CTCF as an

example. We show that CTCF-bound molecules display similar

methylation levels as those observed in the entire cell population at

CTCF binding sites. Moreover, for cytosines located within the

CTCF motif, we find that binding affinity correlates with the

likelihood of being unmethylated, so that CTCF is able to bind

PLOS Genetics | www.plosgenetics.org 1 December 2013 | Volume 9 | Issue 12 | e1003994



any methylation state within low occupancy sites. On the other

hand, we find that high levels of hydroxymethylation coincide with

the observed low methylation at LMRs, in a process that accounts

for up to 20% of the genome-wide dynamics of 5hmC during

neuronal differentiation of ES cells. Moreover, the presence of

hydroxymethylation depends, at least partially, on TF binding,

since genetic deletion of RE1-silencing transcription factor (REST)

results in reduced hydroxymethylation at bound LMRs. Our

results support a model where TF binding can occur at methylated

regions and induce methylation turnover within active regulatory

elements.

Results

Relation between CTCF occupancy and methylation
states at CpG poor regions

Apart from CpG islands, mammalian genomes are mostly

methylated. Notable exceptions are LMRs, CpG poor regions that

display an average methylation level of 30% as measured by

bisulfite sequencing (BisSeq). This reduced methylation marks

active distal regulatory regions as it coincides with DNaseI

hypersensitivity and enhancer-characteristic histone modifications

[7]. We previously showed that, in the case of REST and CTCF,

binding of trans-acting factors to DNA is required for LMR

formation, yet it remains unclear whether and how this binding is

related to the observed variation of DNA methylation between

sequenced molecules [7]. Assuming a static model, unmethylated

DNA would be limited to those molecules that are occupied by a

TF, which in turn predicts that methylated molecules are not

occupied, as has been established for imprinted CpG islands

(Figure 1A, left) [24,25]. Alternatively, TFs could occupy all

variations of methylation levels within LMRs (Figure 1A, right).

To test the first scenario, we performed Chromatin-IP (ChIP) in

ES cells against the DNA binding factor CTCF and conducted

bisulfite sequencing of the immunoprecipitated CTCF-bound

DNA (ChIP-BisSeq) (Figure 1B) [26,27]. Importantly, the CTCF-

ChIP enrichments recovered in our ChIP-BisSeq samples highly

correlate with published ChIP enrichments [7] (r = 0.91 and 0.90

for replicate1 and replicate2, respectively) as well as between the

replicate experiments (r = 0.91) (Figure S1A). Equally important,

methylation for single cytosines correlates between the two

replicates (r = 0.8, Figure S1B).

Only those CpGs, which show intermediate levels of methyl-

ation in BisSeq, can be informative to address our hypothesis.

Therefore we first focused on CTCF sites located within LMRs. In

this context it should be mentioned that the mean methylation of

30% observed at an LMR represents an average of individual

cytosines within this LMR that can vary widely in their

methylation percentage ([7] and data not shown). To ask if this

heterogeneity is reduced at the occupied molecules, we compared

methylation levels between the CTCF-bound fraction and the

total population of cells. We first analyzed CpGs residing in sites of

known allelic variation in CTCF binding, corresponding to

DMRs, where we indeed only recover the unmethylated alleles

in the ChIP-BisSeq assay (Figure 1B–C). This agrees with a recent

report and confirms that our ChIP-BisSeq provides correct

methylation status of bound molecules [25,26].

Next we asked if methylation patterns at CTCF-bound LMRs

differ between exclusively bound molecules and the total

population of DNA molecules. We analyzed average methylation

levels for 200 bp regions centered at a CTCF motif only for those

motifs which (1) overlap with LMRs, (2) are bound by CTCF as

determined by ChIP enrichments and (3) for which all considered

cytosines are covered at least 10 times in both ChIP-BisSeq and

whole-genome (WG-) BisSeq. It is important to mention here, that

while our ChIP does not allow for calling high resolution peaks

such as those determined by other methods like ChIP-exo [28],

our analysis pipeline is able to correctly identify high confidence

bound sites as it requires CTCF motif in the center of the analyzed

region in addition to high ChIP enrichment. This revealed a

positive correlation with an equal spread of the data over the

entire range (r = 0.67), arguing that LMRs do not display global

differences in methylation levels at CTCF binding sites between

the fraction of molecules bound by CTCF and those representing

the total population of molecules in cells (Figure 1B). This finding

is illustrated at individual loci (Figure 1C) and extends to CTCF

binding sites outside of LMRs (Figure S1C).

We notice however that while entire LMRs do not display

reduced methylation in the actually bound fraction of molecules,

some individual cytosines in the vicinity of the CTCF motif do so

(for example LMR1 in Figure 1C). To determine whether reduced

methylation in CpGs close to the CTCF motif is a global

phenomenon, we correlated changes in methylation between

ChIP-BisSeq and WG-BisSeq with the distance to the nearest

CTCF motif for individual cytosines with a minimal coverage of

10 fold in WG-BisSeq and ChIP-BisSeq in CTCF-bound Low

Methylated Regions. This analysis revealed no correlation,

suggesting that CTCF binding does not affect the methylation of

proximal cytosines more than it does for the distal ones (Figure

S1D). Therefore, the heterogeneity of occupancy by CTCF cannot

explain the observed heterogeneity of methylation within LMRs,

even though these can form upon CTCF binding and thus, at least

in part, are CTCF dependent [7].

To further test the relationship between occupancy and

methylation state, we next focused our analysis exclusively on

CpGs that reside within a CTCF motif. We and others have

Author Summary

Cell identity is determined by differential gene expression,
which in turn is controlled by the combined activity of
proximal and distal regulatory elements such as enhancers.
DNA within active enhancer elements is marked by a
hypomethylated state as a result of transcription factor
(TF) binding. Here, using CTCF as an example for a DNA-
binding factor, we explore the relationship between
binding and DNA methylation at the level of single
molecules by enriching for CTCF occupied DNA. To our
surprise, methylation at molecules which are bound by
CTCF does not differ from the average methylation levels
at the binding sites defined by whole-genome bisulfite
sequencing. We find that binding strength inversely
correlates with DNA methylation within the CTCF motif
with heterogenic methylation levels at low occupancy
sites, suggesting that CTCF can bind to molecules with
different methylation states. Moreover, we observed
enrichment of 5-hydroxymethylcytosines at constitutive
and cell-type specific TF binding sites indicative of an
active demethylation process. To test the requirement of
TF binding for the observed hydroxymethylation, and as
CTCF deletion is incompatible with the survival of
embryonic stem cells, we made use of cells in which REST
– a factor which was previously shown to be involved in
LMR formation - was genetically deleted. This deletion
leads to loss of hydroxymethylation at its binding sites,
suggesting that binding is necessary for turnover. Our data
support a model in which TF occupancy mediates a
continuous turnover of DNA methylation during mainte-
nance and formation of active regulatory regions.

TF Mediated Turnover of DNA Methylation
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previously shown that methylation around occupied CTCF sites is

the lowest at the actual binding motif and increases outwards

[7,21]. Notably, 57% of all occupied sites by CTCF do not contain

a CpG within the binding motif, yet display the same methylation

pattern around the site (Figure 1B, Figure S1 and data not shown).

Out of all predicted CTCF binding sites, 24.5% contain at least

one CpG (Figure 2A–B). For all these sites, we related the strength

of binding by CTCF as measured by ChIP enrichment to the

methylation state of single CpGs within the motif. This reveals that

strongly and weakly bound sites indeed differ in their methylation
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Figure 1. Relation between CTCF occupancy and methylation states in CpG poor regions. (A) LMRs are bound by transcription factors (TF)
and have intermediate average methylation levels. There are two possible scenarios how TF binding and DNA methylation at CpG poor regions could
be linked. In a static situation (left), TF binding would be linked to the unmethylated state of the bound molecule, whereas unbound molecules are
fully methylated as previously shown for imprinted CpG islands. In an unlinked model (right), TF binding is independent of the DNA methylation
state, therefore bound molecules display the same variation of methylation levels as the entire population. (B) To distinguish these scenarios we
enrich for bound molecules by ChIP and determine their methylation by bisulfite sequencing (ChIP-BisSeq). This results in a high correlation of
methylation levels between ChIP-BisSeq (y-axis) and whole genome bisulfite sequencing (WG-BisSeq, x-axis). Each point represents average
methylation over a 200 bp region. Shown are only regions centered at a bound CTCF motif which overlaps with an LMR and for which all considered
cytosines have a minimal coverage of 106 in both, WG-BisSeq and ChIP-BisSeq. Red points represent average for 200 bp windows centered on CTCF
motifs located within DMRs. Boxplots show mean deviation of methylation levels in ChIP-BisSeq from those in WG-BisSeq at LMRs and DMRs in
percent methylation. (C) Examples of single cytosine methylation levels in WG-BisSeq (top bars) and ChIP-BisSeq (bottom bars). For LMRs a whole
segment is shown. Each bar represents a cytosine. Methylation is shown in a color code (red: high, yellow: low). Position of CTCF motifs is indicated by
black triangles. Only cytosines with at least 106 coverage in both, WG-BisSeq and ChIP-BisSeq, are shown.
doi:10.1371/journal.pgen.1003994.g001
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(Figure 2C). CpGs within highly occupied sites tend to be

completely unmethylated, while methylation shifts towards inter-

mediate levels with decreasing binding affinity. This links

frequency of occupancy to methylation levels within the CTCF

motif.

Again we can ask if heterogeneous methylation at weakly bound

sites reflects actual occupancy at the level of individual molecules

by analyzing their methylation in the bound fraction that was

enriched by CTCF-ChIP. Also at these selected CpGs the

methylation of exclusively occupied molecules is similar to the

methylation of the total population (Figure 2D–E). Importantly,

this relationship between the methylation state and CTCF binding

is not dependent on the position of the analyzed CpG, as

illustrated by the analysis of CpGs positioned exclusively at

position 5–6 of the consensus motif (Figure S2).

Together, our data suggest that actual factor occupancy at the

level of single molecules does not explain the observed DNA

methylation heterogeneity adjacent to CTCF sites within LMRs or

at the motif itself throughout the genome. This argues against a

scenario of static methylation at CpG poor regions (Figure 1A,

left), where DNA in a fraction of cells is bound by a TF and

unmethylated, while other molecules are never occupied and

remain methylated. Alternative scenarios could involve binding of

a TF independently of methylation states, which in turn could

trigger active demethylation (Figure 1A, right).

Hydroxymethylation marks LMRs in a cell-type specific
and transcription factor binding dependent fashion

To ask if LMRs are indeed sites of active DNA methylation

turnover, we determined the presence of 5hmC, the intermediate

of TET mediated oxidation. Notably, bisulfite does not convert

5hmC and thus a fraction of the residual unconverted cytosines at

LMRs could represent hydroxymethylcytosines [29,30]. We

enriched for this modification by performing hydroxymethylcyto-

sine DNA-immunoprecipitation (hMeDIP) followed by high

throughput sequencing (hMeDIP-seq) in stem cells [31,32].

Analysis of the 5hmC profiles revealed its enrichment at LMRs

of ES cells in line with other reports that suggested its presence at

stem cell enhancers (Figure 3A) [19,21]. Analysis of an existing

map of genomic binding sites further reveals that also TET1, an

enzyme that mediates oxidation to 5hmC, is strongly enriched at

LMRs in ES cells (Figure 3A) [33].

To address, whether the presence of 5hmC at LMRs is limited

to stem cells or conserved in committed cells, we performed

hMeDIP-Seq in neuronal progenitors (NP), derived through

controlled differentiation of ES cells [34]. We previously showed

C D E

A B

Figure 2. Relationship between binding strength and DNA methylation within the CTCF motif. (A) CTCF consensus motif used in this
study [7]. (B) Percent of predicted CTCF sites containing a CpG within the motif. Exclusively these CpGs are shown in the plots (C–E). (C–E) Each point
represents one individual CpG within a CTCF motif. (C) Correlation of methylation and CTCF enrichment identifies three classes of CTCF sites:
unbound (light-blue), strongly bound and unmethylated (dark-blue), weakly bound with intermediate levels of methylation (blue). The red line
represents a running mean measurement of methylation. (D) Same as C, but only showing cytosines covered in both WG-BisSeq and CTCF ChIP-
BisSeq. (E) Same as D but only showing methylation levels derived from CTCF ChIP-BisSeq. In each case bound molecules show the same pattern as
the entire population. Only cytosines residing within the CTCF binding motif and with a minimal coverage of 106 are shown. In order to prevent
over-plotting the points were jittered with a standard deviation of 2%.
doi:10.1371/journal.pgen.1003994.g002
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in the same differentiation system that a large set of LMRs is cell-

type specific, reflecting the extensive reprogramming of distal

regulatory regions during somatic differentiation [7]. The resulting

genomic 5hmC profiles reveal its enrichment at LMRs also in NP

(Figure 3B–C). LMRs that are constitutive in both cell types show

constitutive hydroxymethylation, suggesting that oxidation of 5-

methylcytosine at LMRs also occurs in somatic cells (Figure 3B–

C). ES-specific LMRs gain methylation and concomitantly lose

hydroxymethylation in NP, suggesting that the state of reduced

methylation and the presence of 5hmC coincide at active

regulatory elements (Figure 3B–C, Figure S2). Similarly, NP-

specific LMRs show a decrease in methylation and gain of

hydroxymethylation along differentiation (Figure 3B–C, Figure

S3). Notably, these NP-specific LMRs are enriched for neuron-

specific TF binding sites, further confirming the link between TF

binding at CpG poor regions and the presence of 5hmC [7]. The

observed reciprocal behavior between loss of 5mC and gain of

5hmC is a general feature, as a genome-wide anti-correlation

A

B

C

Figure 3. 5hmC marks LMRs in a cell-type specific fashion. (A) Average profiles for methylation (WG-BisSeq), 5hmC (hMeDIP-seq) and TET1
occupancy at Fully Methylated, Unmethylated and Low Methylated Regions (FMRs, UMRs and LMRs, respectively) in ES cells. (B) DNA methylation
(upper tracks) and enrichment of 5hmC (lower tracks) in ES cells and NP of representative ES-specific, constitutive and NP-specific LMRs. (C) Average
profiles representing methylation (WG-BisSeq), hMeDIP-seq and H3K4me1 ChIP-Seq in ES cells and NP 63 kb around the segment middle.
doi:10.1371/journal.pgen.1003994.g003

TF Mediated Turnover of DNA Methylation

PLOS Genetics | www.plosgenetics.org 5 December 2013 | Volume 9 | Issue 12 | e1003994



between changes in hMeDIP-Seq and WG-BisSeq (r = 20.58) as

well as between changes in hMeDIP-Seq and MeDIP-Seq

(r = 20.30, Figure S3) exists at LMRs.

To determine, if the observed turnover is selective for LMRs, we

quantified 5hmC enrichments by hMeDIP-Seq throughout the

genome and calculated the differences between ES cells and NP in

order to identify genomic regions that show changes in the level of

5hmC. This revealed that cell-type specific enrichments for 5hmC

show a large overlap with cell-type specific LMRs. This selectivity

is further evident when calculating the occurrence in relation to

genomic coverage (Figure 4). In this analysis, ES-specific LMRs

are eightfold overrepresented in genomic regions that show

enrichment for 5hmC in ES cells and the selectivity is even

higher in NP, where NP-specific LMRs are more than 40-fold

overrepresented.

This strong correlation suggests that transcription factors are

required to induce hydroxymethylation. Indeed, 5hmC is more

enriched at bound than at unbound CTCF motifs (Figure S4). To

directly test whether increased 5hmC enrichment is a consequence

of TF binding, we wanted to use a loss of function approach.

Absence of CTCF, notably in ES cells, is cellular lethal [35–38],

which precludes monitoring changes in methylation in cells that

lack CTCF but otherwise are phenotypically normal. Effective

depletion of CTCF would however be required in order to directly

test its requirement in trans, since conserved binding sites remain

occupied upon knockdown of CTCF [39]. As CTCF deletion is

incompatible with survival of ES cells, we made use of a

phenotypically normal ES cell line in which the Rest gene, coding

for a different TF that is enriched within LMRs, had been

genetically deleted. More specifically, we determined the level of

hydroxymethylation at REST-bound LMRs. These regions

become fully methylated in the absence of REST as measured

by bisulfite sequencing, which is not discriminating between 5mC

and 5hmC (Figure 5A–B). When measuring hydroxymethylation

specifically by hMeDIP (see Table S1 for primers) we find that

5hmC levels are significantly reduced at these binding sites in

REST knockout ES cells (Figure 5C). This indicates that factor

activity in trans is required for increased hydroxymethylation at

LMRs within a given cell type.

These observations are compatible with a scenario in which

reduced DNA methylation at regulatory regions entails the

presence of active DNA methylation turnover in both stem and

differentiated cells.

Discussion

Using CTCF as example, this study provides further evidence

that maintenance and reprogramming of correct DNA methyla-

tion levels at distal regulatory regions can entail active turnover as

a function of transcription factor binding. We show that the loss of

methylation at these regions during cellular differentiation involves

a reciprocal gain of 5hmC and vice versa. This process occurs

preferentially at LMRs and we demonstrate that it accounts for up

to 20% of all observed changes in 5hmC during differentiation.

These findings are compatible with previous reports of dynamic

hydroxymethylation [18,40]. Importantly, this association is not

limited to stem cells, even though these have been suggested to

display higher global levels of 5hmC than differentiated cells [16].

We also show that this phenomenon can go beyond correlation,

since genetic deletion of the TF REST results in reduced

hydroxymethylation at its binding sites already in stem cells.

Our results obtained from CTCF and REST mechanistically link

binding of TF at regulatory regions with active demethylation.

However, in light of the estimated 1400 different TFs encoded in

mammalian genomes, it would be premature to generalize these

findings.

The fact that CTCF can occupy different methylation states in

CpG poor regions together with the presence of both 5hmC and

TET1 at these sites is compatible with a scenario, where TF

binding triggers an active demethylation process. In case of CTCF

it is evident that the binding strength determined by ChIP relates

directly to the level of demethylation within the binding motif. The

frequency of binding correlates with the likelihood of a demeth-

ylated state for a cytosine within the binding site. Assuming that

this relation extends to factors other than CTCF adds yet another

dimension to whole-genome basepair methylomes by providing

not only information about the activity of regulatory regions, but

also about the strength of binding of trans-acting factors. It is

important to note however that both CTCF and REST are rather
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Figure 4. 5hmC dynamics during differentiation occurs preferentially at LMRs. (A–B) Shown is the relative frequency of changes in 5hmC at
LMRs and UMRs normalized for genome coverage at the ES (A) and NP state (B). The y-axis shows observed linear fold enrichment relative to
expected enrichments (see Materials and Methods). Note that 5hmC is changing preferentially at cell-type specific LMRs.
doi:10.1371/journal.pgen.1003994.g004
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special in regards to the large size of their sequence motifs (20 and

21 bp, respectively), which further limits the ability to generalize

our observations. Clearly, a more comprehensive approach is

needed to address the effect of additional DNA-binding factors on

DNA methylation.

While the actual mode of demethylation remains to be

determined, it seems possible that DNA binding factors recruit

TET proteins, which in turn mediate oxidation to 5hmC [41].

However, in light of the generality of the link between LMR

formation and 5hmC, this would require a large number of

TFs to share such recruitment ability. Alternatively, recruit-

ment might be mediated by general cofactors that are

frequently observed at distal regulatory regions such as p300

or by pioneer factors [3,42]. A further scenario could be that

a specific nucleosome or DNA organization results from

binding of a TF, which in turn triggers TET recruitment

[43].

At this point we can only speculate if 5hmC presence at

regulatory regions solely reflects active turnover [21,44–48] and

how much an active process contributes to the low levels of

methylation observed. Moreover, it remains to be shown if

presence of hydroxymethylation is actually involved in enhancer

regulation. This would require specific readers of this DNA

modification. Indeed, several proteins have been suggested to bind

5hmC, including the MBD domain proteins MeCP2 [49] and

MBD3 [50]. Our recent functional mapping, however, suggested

that genomic binding sites of MBD3 are independent of the

presence of hydroxymethylation [51] in agreement with in vitro

binding [52], making this scenario less likely. In addition, other

putative readers of 5hmC were suggested in a proteomics screen,

yet only few appear to be selective for 5hmC in vitro [52].

Conversely, two recent studies report the accumulation of TET-

mediated 5hmC oxidation products 5-formylcytosine and 5-

carboxylcytosine at proximal and distal regulatory elements in

the absence of TDG [46,47], arguing for the appearance of an

active turnover at LMRs. It remains to be determined, whether

DNA binding factors, such as CTCF and REST used here, are

able to bind to hydroxymethylated regions. While strong CTCF

binding sites are devoid of methylation and hydroxymethylation, it

is possible that CTCF is able to bind to 5mC as well as to 5hmC at

low occupancy sites.

Our findings argue that LMRs do not result solely from a

passive loss of methylation during replication, which is in line with

the observation that LMRs can be detected in methylomes from

non-dividing cells [9] and with recently reported presence of 5-

formylcytosine and 5-carboxylcytosine at these elements [46,47].

At this point we lack experimental evidence for the relevance of

reduced methylation for the function of distal regulatory regions. It

is conceivable, but remains to be shown, that reduced methylation

induced by pioneering TFs would enhance binding of other TFs,

which are sensitive to DNA methylation even in CpG poor regions

[53,54]. Alternatively, but not mutually exclusive, reduced

methylation could mediate a chromatin state that functions as a

general attractor for DNA binding factors and thus would stabilize

the on-state [55].

Materials and Methods

ES cell culture and differentiation
159-2 ES cells were cultured and differentiated as previously

described [7,34].

CTCF ChIP-bisulfite sequencing
Chromatin immunoprecipitation (ChIP) assay for CTCF was

performed according to the Upstate protocol using the antibody

anti-CTCF (SantaCruz #15914). 100 ng of immunoprecipitated

DNA were used for subsequent library preparation. DNA

fragments were end repaired by incubation at 20uC for 30 minutes

with 400 mM dNTP, 3 units of T4 DNA polymerase (NEB

#M0203S), 5 units of DNA Polymerase I Lg. Frag. (Klenow)

(NEB #M0210S), 10 units of T4 PNK (NEB #M0201S), 16T4

DNA ligase buffer containing 10 mM ATP (NEB), followed by

column purification using QIAquick PCR Purification Kit

(QIAGEN #28106). 39 ends of DNA fragments were adenylated

A

B

C

Figure 5. 5hmC enrichment at REST-bound LMRs is partially
dependent on the presence of REST. (A) Relative methylation
changes between REST wildtype and REST knockout ES cells are
correlated to REST ChIP enrichment. Methylation was determined
200 bp around the REST motif at all REST sites overlapping with LMRs.
The point density is colour-coded (red: high, blue: low point density).
Methylation determined by BisSeq (B) and hMeDIP qPCR enrichments
(C) at REST motif containing LMRs bound and not bound by REST in
wildtype (wt, dark blue) and REST knockout (ko, blue) ES cells. Error bars
in (C) represent standard deviation in three replicate experiments
normalized to a positive control.
doi:10.1371/journal.pgen.1003994.g005
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by incubation at 37uC for 30 minutes with 200 mM dATP,

16NEB Buffer 2, 5 units Klenow Fragment (39R59 exo–) (NEB #
M0212L), followed by column purification using MinElute PCR

Purification Kit (QIAGEN # 28006). Adapter for single end

sequencing were reproduced based on Illumina adapter sequenc-

es. Annealed adapters were ligated to the DNA fragments by

incubation at room temperature for 15 min in the following mix:

400 nM of annealed adapters, 16NEB Quick ligase buffer, 2.000

units of T4 Quick ligase (NEB #M2200S), followed by column

purification using MinElute PCR Purification Kit. 200 ng of

Drosophila DNA (Kc cells) were then added as a carrier.

Adapter-ligated DNA of 150–400 bp was selected from 2%

agarose gel electrophoresis and purified using MinElute Gel

Extraction Kit (QIAGEN #28606). BSA (final concentration

0.5 mg/ml) was added to gel-purified DNA and the mix was then

treated with sodium bisulfite using the Imprint DNA Modifica-

tion Kit (Sigma-Aldrich) as per manufacturer’s instructions. DNA

was enriched using 18 cycles of PCR with the following reaction

composition: 2.5 U of uracil-insensitive PfuTurboCx Hotstart DNA

polymerase (Stratagene), 5 ml 106 PfuTurbo reaction buffer,

25 mM dNTPs, 0.5 mM of Single End Illumina PCR primers

(1.1 and 2.1). The thermocycling parameters were: 95uC 2 min,

98uC 30 sec, then 18 cycles of 98uC 15 sec, 65uC 30 sec and

72uC 3 min, ending with one 72uC 5 min step, followed by

column purification using the MinElute PCR Purification Kit.

DNA was then run on 2% agarose gel to separate the library

from adapter dimers and purified using the MinElute Gel

Extraction Kit. Quality of the libraries and template size

distribution were checked on an Agilent 2100 Bioanalyzer

(Agilent Technologies).

RESTko bisulfite sequencing
Library for the shotgun whole-genome BisSeq for RESTko cells

was prepared as previously described [7] and sequenced using one

lane of Illumina HiSeq 2000.

hMeDIP and MeDIP sequencing library preparation
Genomic DNA was fragmented to 200–1000 bp fragments

with a Bioruptor (Diagenode, Sparta, NJ). The protocol for the

library preparation was adapted from Illumina Genomic DNA

Sample Preparation Guide. Briefly, 7 to 10 mg of fragmented

DNA were end repaired and their 39 ends adenylated. Genomic

single end or paired end adapters were annealed. (h)MeDIP was

performed as previously described [56] using 4 ug of adapter-

ligated DNA and 4 ml of a 1:10 dilution of rabbit polyclonal anti-

hmC antibody (Active Motif #39770) for hMeDIP or 10 ml of

mouse monoclonal 5mC antibody (Eurogentec #BI-MECY-

1000) for 2 hrs, followed by addition of 40 ml of Protein A

Dynabeads (Invitrogen, #100.02D, hMeDIP) or Dynabeads M-

280 Sheep anti-mouse IgG (Dynal Biotech #112.01) added for

another 2 hrs. Immunoprecipitated DNA was amplified by 18

cycles of PCR following the Illumina Genomic DNA Sample

Preparation Guide and purified using the MinElute PCR

purification kit. Fragments of 250–300 bp (for single end

sequencing) or 400–450 bp (for paired end sequencing) were

size-selected from 2% agarose gel and purified using the

MinElute Gel Extraction Kit. Quality of the libraries and

template size distribution were checked on an Agilent 2100

Bioanalyzer (Agilent Technologies).

High-throughput sequencing
(h)MeDIP-seq and ChIP-BisSeq were sequenced using the

Illumina HiSeq 2000 as per manufacturer’s instructions.

Analysis of sequencing data
The hMeDIP-seq data were analyzed similarly to ChIP-Seq

data in Stadler et al. Briefly, the July 2007 M. musculus genome

assembly (NCBI37/mm9) provided by NCBI (http://www.ncbi.

nlm.nih.gov/genome/guide/mouse/) and the Mouse Genome

Sequencing Consortium (http://www.sanger.ac.uk/Projects/

M_musculus/) was used as a basis for all analyses. For reads from

hMeDIP-seq experiments, alignments to the mouse genome were

performed by the software bowtie (version 0.9.9.1) [57] with

parameters -v 2 -a -m 100, tracking up to 100 best alignment

positions per query and allowing at most two mismatches. Each

alignment was weighted by the inverse of the number of hits. All

quantifications were based on weighted alignments. Alignments

were shifted by 60 bases (estimated fragment length was 120 bp).

In order to identify regions with different signal in hMeDIP-seq

between ES and NP, the mouse genome was partitioned into 1 kb

sized windows with an overlap of 500 bp. For each window we

calculated log2 fold change between NP and ES using in the

following way: log2(FC) = log2((n_NP/N_NP *min(-

N_ES,N_NP)+p)/(n_ES/N_ES *min(N_ES,N_NP)+p)), where

n_ES and n_NP are the summed weights of overlapping ES and

NP read alignments, respectively. N_ES and N_NP are the total

number of aligned reads in ES and NP samples and p is a

pseudocount constant (p = 8) used to regularize enrichments based

on low counts that would otherwise be dominated by sampling

noise. Windows with log2(FC) bigger than 3 or smaller than 23 in

both biological replicates were merged into regions showing the

gain and loss of signal in NP, respectively. These regions were used

to calculate the enrichment in segment types (constitutive, ES- or

NP-specific LMRs, UMRs). Enrichments were calculated as the

ratio of observed over expected number of bases of each region

class (gain of signal in NP, loss of signal in NP) in a segment type

(e.g. ES-specific LMR etc.), where the observed number is the

number of bases in regions of a given class that overlap a segment

and the expected number is the fraction of genomic bases in that

segment type, multiplied with the total number of bases in all

regions of that class.

Analysis of ChIP-Seq and bisulfite (ChIP-BisSeq) data, ChIP

enrichment calculation and identification of CTCF binding sites

were performed as previously described (Stadler et al. 2011). The

data from the two CTCF ChIP-BisSeq replicates were pooled for

the analysis. Analysis of REST ChIP-Seq data and genome-wide

prediction of REST motifs was performed analogously to CTCF.

In the case of REST, the inferred weight matrix was extended to

allow for a variable linker (0–11 nts in length) after position 9.

Datasets used in this study
Datasets generated for this study, ChIP-BisSeq, hMeDIP-seq,

MeDIP-seq and RESTko methylome have been submitted to

GEO and are available under the accession number GSE39739.

Data for CTCF ChIP-Seq and WG-BisSeq was downloaded from

GEO: GSE30206 [7], data for REST ChIP-Seq were downloaded

from GSE27148 [58]. Tet1 ChIP-Seq data was downloaded from

GEO: GSE26833 [33].

Supporting Information

Figure S1 Genome-wide relation between transcription factor

occupancy and methylation states. (A) Correlation of ChIP

enrichments between CTCF ChIP-Seq (Stadler et al., Nature

2011) and the two CTCF ChIP-BisSeq replicates used in this

study. (B) Correlation of methylation levels at individual CpGs

between two CTCF ChIP-BisSeq replicates. Selected cytosines

have a minimal coverage of 10 in both replicates. (C) Correlation
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of average methylation levels at regions 200 bp around all

predicted CTCF sites between WG-BisSeq and a pool of both

CTCF ChIP-BisSeq replicates. Selected regions have a minimal

coverage of 10 in all cytosines used for the calculation of

methylation levels in both WG-BisSeq and ChIP-BisSeq. (D) For

individual cytosines within LMRs the methylation difference

between ChIP-BisSeq and WG-BisSeq is correlated with the

distance to the nearest CTCF motif center.

(PDF)

Figure S2 Relationship between binding strength and DNA

methylation within the CTCF motif. (A) CTCF consensus motif

used in this study. Here only cytosines are analyzed which are at

position 5–6 of the motif. Out of all predicted sites containing a

CpG within the motif (24.5% of all predicted sites) 42.2% have a

CpG at this position. (B–D) Each point represents one individual

CpG at position 5–6 of the PWM. (B) Correlation of methylation

and CTCF enrichment identifies three classes of CTCF sites:

unbound (light-blue), strongly bound and unmethylated (dark-

blue), weakly bound with intermediate levels of methylation (blue).

The red line represents a running mean measurement of

methylation. (C) Same as B, but only showing cytosines covered

in both WG-BisSeq and CTCF ChIP-BisSeq. (D) Same as C but

only showing methylation levels derived from CTCF ChIP-BisSeq.

In each case bound molecules show the same variation as the

entire population. Only cytosines residing within the CTCF

binding motif and with a minimal coverage of 106are shown. In

order to prevent over-plotting the points were jittered with a

standard deviation of 2%.

(PDF)

Figure S3 5hmC marks LMRs in a cell-type specific fashion. (A)

Replicate correlation for hMeDIP-seq. Shown is the log2 fold

change of 5hmC between ES and NP in two biological replicates.

(B) Correlation of hMeDIPseq and WG-BisSeq at LMRs during

neuronal differentiation. Shown are the log2 fold change in 5hmC

between ES and NP (y-axis) and change in DNA methylation

percentage (x-axis). (C) Correlation of hMeDIP-seq and MeDIP-

seq at LMRs during neuronal differentiation. Shown are the log2

fold change in 5hmC between ES and NP (y-axis) and change in

DNA methylation percentage (x-axis).

(EPS)

Figure S4 5hmC enrichment at CTCF sites 5hmC enrichment

at CTCF sites depends on CTCF binding. Shown are hMeDIP-

seq enrichments in ES cells over bound and unbound CTCF

motifs.

(EPS)

Table S1 Primer sequences used for qPCR.

(DOCX)
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Table S1. Primer Sequences used for qPCR 

Genomic 
region Forward  Reverse 

Camta GCTTCAGGGCTACAGAGTGC AGTCAGAGGCTACCCCTGGT 

Ciita GCAAGCTGGAGAAAAAGCAC TAGGATGAAGCCTGGGTGTC 

Crhr2 CGTGGCATTTATCGAAGTCA GTGGTCAGGAGCTCTCCAAG 

Zfp423 CATTTGCTTCTCCGCAGATT CATGTTTATGTCCGCTGCTG 

Muc3 CGGGTAGGAGACATCTCTGG CCAGAGAGATGATGCTGGAAG 

St6ga CTCTTCTCGGTCACCCATTC AATCACCCGCTGTGAATCAT 

A6300Rik CCCACGTCTCCATGGTTAAT TTCTGTGCGTGGCTAAACAG 

Zmynd8 GGCGTTTCCTTGATTGACAT AAGACAGGACCTGGAGGAGA 

Interg LMR CTTTGGCACACTGCCATCTA CCTTTTCATGAGACCCGAAA 

Interg3 ATGCCCCTCAGCTATCACAC GGACAGACATCTGCCAAGGT 

Hprt CCAAGACGACCGCATGAGAG CAACGGAGTGATTGCGCATT 

Gapdh CTCTGCTCCTCCCTGTTCC TCCCTAGACCCGTACAGTGC 
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3.2 Quantitative analysis of DNA methylation turnover 

3.2.1 Abstract 

Transcription factor (TF) binding to specific distal regulatory elements, including 

enhancers and insulators, is crucial for the activation of the correct gene expression 

program that determines cell type identity (Takahashi and Yamanaka 2006). Upon 

occupying their target sites, TFs mediate changes in chromatin structure, which in some 

cases can facilitate the recruitment of additional factors (Zaret and Carroll 2011). Recent 

evidence from our and others’ work suggests that TF binding can mediate local 

hypomethylation events through triggering a turnover of DNA methylation at their binding 

sites (Stadler et al, 2011; Feldmann et al, 2013; Shen et al, 2013; Song et al, 2013). The 

specificity and consequence of this turnover for gene regulation as well as its 

mechanisms and kinetics are not well understood. 

Here we inactivate the de novo DNA methyltransferases DNMT3A and DNMT3B in 

embryonic stem cells. This setup prevents the addition of new methylation marks, thus 

allowing us to study the maintenance and turnover of DNA methylation exclusively. By 

using a technique allowing for high coverage single-base resolution methylation analysis 

of specific genomic loci, we show that simultaneous deletion of DNMT3A/B results in a 

loss of methylation at both low and fully methylated regions. Following methylation 

changes upon conditional inactivation of DNMT3A/B we are able to determine the 

precise methylation turnover kinetics for each individual CpG. This analysis reveals 

accelerated turnover at low methylated cytosines in comparison to fully methylated 

cytosines. 

In summary, we established a controlled system to study DNA methylation turnover. We 

show that DNMT3A/B-dependent turnover is present in embryonic stem cells. De novo 

DNMTs appear to be required for long-term maintenance of DNA methylation at both low 

and fully methylated regions. However, our data demonstrate that the turnover 

predominantly affects cytosines with low DNA methylation thus confirming the link 

between TF binding and DNA methylation turnover. 
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3.2.2 Global loss of methylation in DNMT3A/B double knockout 
embryonic stem cells 

We and others previously identified low methylated regions (LMRs) as sites of DNA 

methylation turnover (Feldmann et al, 2013; Shen et al, 2013; Song et al, 2013). Here we 

aimed to confirm its presence and further characterize it. 5-hydroxymethylcytosine is an 

intermediate of active DNA demethylation. Its further processing was reported to occur 

via facilitated passive demethylation (Valinluck and Sowers 2007; Inoue and Zhang 

2011) or direct removal with or without oxidation (He et al, 2011; Ito et al, 2011; Chen et 

al, 2012). A complete turnover cycle further includes remethylation. Such remethylation 

would take place independently of maintenance methylation. Maintenance by DNMT1 

requires a hemimethylated substrate DNA (Song J. et al, 2011; Song et al, 2012). Thus, 

we assumed that if the observed turnover is active it must depend on de novo DNA 

methyltransferase activity (Figure 3-1A). If this hypothesis is true and LMRs are indeed 

the main targets of DNA methylation turnover, embryonic stem cells lacking DNMT3A 

and DNMT3B (Dnmt3ab-/- ES cells) should retain wildtype methylation levels at fully 

(FMRs) and unmethylated regions (UMRs) but lose methylation predominantly at the 

LMRs.  

To test this model we compared DNA methylation levels between Dnmt3ab-/- ES cells 

(Okano et al, 1999) and the corresponding wildtype cell line J1 by a targeted bisulfite 

PCR approach (Figure 3-1B). We performed PCR on 90 different regions including 24 

FMRs, 52 LMRs and 11 UMRs, of which 65 amplicons were covered to at least 50% in 

both samples (for summary of all datasets see Table 3-1). For all covered amplicons we 

calculated average methylation levels and compared them between the two cell lines. To 

our surprise, we found demethylation at all of the analyzed regions in Dnmt3ab-/- ESC, 

regardless of their initial methylation status. Differences between segments were 

observed mainly in the extent of this demethylation. While UMRs and LMRs indeed are 

almost entirely devoid of methylation in Dnmt3ab-/- ESC, FMRs have heterogeneous 

methylation which spreads over the entire range from 0 to 80% (Figure 3-1C-D). Thus, 

we conclude that DNMT3A and DNMT3B are required for methylation maintenance at 

both LMRs and FMRs.  
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Figure 3-1 Site-specific demethylation in Dnmt3ab-/- ES cells. 

(A) In this experiment we tested the dependency of DNA methylation turnover on de novo DNA 
methyltransferases DNMT3A and DNMT3B (DNMT3). (B) Methylation was analyzed using a 
targeted bisulfite PCR approach, in which regions of interest, residing within LMRs, UMRs or 
FMRs were amplified from bisulfite converted DNA and subjected to sequencing on the MiSeq 
platform. (C and D) Fragment methylation was calculated over all cytosines within a fragment 
covered at least five times in the sequencing sample (C) Comparison of average methylation 
levels of targeted amplicons between Dnmt3ab-/- ES cells and the corresponding wildtype ES 
cells J1. All wildtype unmethylated (green) and almost all low methylated fragments (red) are 
entirely devoid of methylation in DNMT3ab-/- ES cells. Fully methylated fragments also lose their 
methylation in Dnmt3ab-/- ES cells to a varying degree. (D) Boxplots summarizing changes in 
DNA methylation between Dnmt3ab-/- and J1. Shown are only fragments overlapping with FMRs 
and LMRs according to segmentation from Stadler et al. (Stadler et al, 2011). Note that all 
fragments display a loss of methylation in Dnmt3ab-/- ES cells. Loss of methylation was 
calculated as fraction of methylation loss relative to the wildtype methylation levels (left) and as 
absolute loss in percentage methylation (right). Note, that while Dnmt3ab-/- ES cells on average 
lose more than 80% of their starting methylation at the LMRs, their absolute loss only comprises 
20% methylation and is smaller than the absolute loss of methylation at FMRs. Boxes show the 
interquartile range and the median.  

To determine whether the turnover is faster within LMRs, we calculated the loss of 

methylation at LMRs and FMRs using two different methods (Figure 3-1D). As expected, 

comparison of demethylation normalized to original methylation levels revealed a higher 

degree of demethylation at LMRs which lost almost 100% of their initial methylation 



60 Results 

(Figure 3-1D, left). On the other hand, absolute loss of methylation (i.e. the difference 

between Dnmt3ab-/- and J1 methylation) is higher at tested FMRs (Figure 3-1D, right). 

This precludes a direct comparison between the two types of segments.  

It is important to note that ES cells used for this experiment have been cultured for 22 

passages following deletion of DNMT3A and DNMT3B. Assuming that ES cells divide 

every 12-18 hours and are transferred on a new plate every second day (Bibel et al, 

2007), they underwent up to a hundred cell divisions by the time the experiment was 

performed. This prevents us from drawing conclusions on the timing or kinetics of 

demethylation at different types of segments. 

In summary, our results indicate involvement of DNMT3A and DNMT3B in long-term 

methylation maintenance at both low and fully methylated regions. However, methylation 

profiling in stable knockout ES cells does not allow us to ask at which sites the observed 

demethylation is initiated. 

3.2.3 DNMT3A/B dependent DNA demethylation at active 
regulatory regions 

We reasoned that conditional deletion of DNMT3A/B in an ES cell line would allow us to 

determine the kinetics of demethylation. Therefore, we took advantage of conditional 

embryonic stem cells. This cell line was derived from mouse embryos containing loxP 

sites which flank the exons of catalytic domains in both alleles of Dnmt3a and Dnmt3b 

(Dodge et al, 2005). Conditional inactivation of DNMT3A/B was achieved by direct 

transduction of the HTN-Cre (His-TAT-NLS-Cre) protein (Figure 3-2A). HTN-Cre is 

tagged with a peptide derived from the human immunodeficiency virus (HIV) 

transactivator of transcription (TAT) protein and can directly permeabilize the cell 

membrane (Peitz et al, 2002). The advantage of this method is a fast response and a 

complete lack of leakiness.  

Recombination efficiency was measured four days after the transduction by quantitative 

genotyping and was on average 89.5% and 83.9% for Dnmt3a and Dnmt3b, respectively 

(Figure 3-2B). When we compared methylation at individual cytosines between ES cells 

transduced with Cre and control cells, we found that indeed inactivation of DNMT3A/B 

led to a mild decrease of methylation after four days. Importantly, the loss of methylation 

was limited to cytosines with low to intermediate methylation levels (Figure 3-2B, day4).  

Encouraged by these results, we decided to perform a time course over 15 days. 

Approximately 10-15% of ES cells in the analyzed population still contained intact  
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Figure 3-2 Conditional inactivation of DNMT3A/B in ES cells. 

(legend continues on the next page) 
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Figure 3-2 Conditional inactivation of DNMT3A/B in ES cells. 

(A) Upper panel: schematic representation of the conditional deletion alleles for Dnmt3a (yellow) 
and Dnmt3b (green). LoxP sites (black triangles) flank one catalytic exon of the Dnmt3a allele and 
four of the Dnmt3b allele. The ES cells are homozygous for loxP sites in Dnmt3a and Dnmt3b 
genes. Please, note that the distances are not true to scale and by far not all exons are presented 
here. Upon transduction of the HTN-Cre protein the regions flanked by loxP sites are deleted. 
Bottom panel: the amount of intact alleles in total population of cells was quantified by TaqMan 
PCR 4, 8, 10, 13 and 15 days after transduction of Cre. Average of two biological replicates is 
shown. The error bars represent standard deviation. Mock: negative control transduced with Cre 
buffer alone. (B-D) Only CpGs with coverage of at least ten fold in all presented samples are 
shown. (B) Correlation of methylation between Cre (+Cre) and corresponding mock transduced (-
Cre) conditional knockout ES cells at indicated time points after transduction. Each point 
represents a single CpG. (C) Absolute loss of methylation relative to the reference sample (mock 
at day 4) for each time point. For this plot the CpGs were subdivided into fully methylated (60-
100% methylation in the reference sample, blue) and low methylated (10-60% methylation in the 
reference sample, red). The boundaries of the boxes represent the interquartile range and the 
middle line shows the median. (D) Correlation of methylation between Cre (+Cre) and mock 
transduced (-Cre) J1 cells. Each point represents a cytosine within a CpG dinucleotide. Note that 
the level of demethylation achieved after 15 days is much smaller than for the conditional 
knockout ES cell line. 

 

Dnmt3a/b alleles four days after the Cre transduction. However, these cells do not have 

a growth advantage in our time course, since the proportion of Dnmt3ab-/- ES cells 

remained stable and even increased mildly during culturing (Figure 3-2A).  

Methylation analysis of the 474 cytosines covered at least ten times in all samples 

showed that low methylated cytosines started to progressively demethylate before day 

four after the transduction of Cre. A plateau was reached at day ten, when presumably all 

methylation was lost from these regions (Figure 3-2B-C). Cytosines with 60-100% 

methylation, characteristic of fully methylated regions, started to progressively 

demethylate between day four and day eight post-transduction. This suggests a better 

capability to maintain their methylation in the absence of DNMT3A/B activity. After 13 

days, absolute loss of methylation at fully methylated cytosines almost reached the level 

observed at low methylated cytosines (Figure 3-2C). Importantly, the effect on DNA 

methylation was specific to Cre-induced deletion, as Cre transduction in the wildtype cell 

line J1 did not cause strong demethylation even after 15 days (Figure 3-2D).  

We considered the possibility that an increase in the fraction of cells with a deletion in 

Dnmt3a/b throughout the time course might explain the observed demethylation (Figure 

3-2A). Assuming that each Dnmt3ab-/- cell is fully unmethylated and replaces a fully 

methylated cell in the total population, this would account for a maximum of 5% change 

in methylation over the time course. This is below the observed changes in methylation 

and thus does not affect the here measured methylation. Our results from individual 

CpGs suggest that the turnover is faster at cytosines with low methylation levels. 
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Analysis of methylation changes within single amplicons across the time course 

extended our observations from single cytosines to entire regions. While UMRs had 

stable methylation in ES cells transduced with HTN-Cre, LMRs and FMRs both displayed 

demethylation. We furthermore note that in the absence of Cre ES cells tend to 

upregulate their methylation probably as a consequence of prolonged feeder-free 

culturing (mock in Figure 3-3, and data not shown).  

 

 

Figure  3-3 Time course of Cre transduction and Mock transduction in representative 
amplicons. 

Note that LMRs and FMRs display high demethylation only upon Cre transduction (Cre +). Some 
cytosines upregulate their methylation during culturing in the absence of Cre (Cre-). Reference 
sample for both representations is mock transduction at day four (mock4). The nature (cre/mock) 
and duration in days (4-15) of the treatment are indicated below the panels. Vertical lack lines 
mark the position of single CpGs. Red shade: Position of the LMR, green shade: position of a 
bound CTCF motif. Only cytosines with at least ten fold coverage in all samples are shown. 
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We asked whether demethylation of a region occurs homogenously or whether it is 

initiated by certain cytosines. Our targeted PCR approach allowed for analysis of up to 

300 basepair long reads thereby enabling us to determine the similarity between 

cytosines at each time point and detect co-regulatory patterns. This analysis revealed 

that the heterogeneity in methylation is generally low throughout the time course. Thus, 

even if demethylation is pioneered by a single cytosine this is not detectable by the here 

applied resolution (Figure 3-4). 

Together, we confirmed the presence of a DNMT3–dependent turnover at low 

methylated regions. However, in contrast to our expectations, this turnover also affects 

regions with full methylation. 

 

 

Figure  3-4 Heterogeneity analysis for CpGs within a representative LMR. 

Shown are average methylation for each single cytosine (blue bars in the upper panel) and 
similarity between cytosine pairs (heatmaps). For each pair of CpGs the similarity in methylation 
was calculated as fraction of reads in which the two cytosines have the same methylation state. 
Note that the similarity between CpGs never drops below 0.5 and correlates with the degree of 
demethylation. There is furthermore no focal demethylation detectable.  

 

3.2.4 Unbiased turnover quantification reveals its predominant 
targeting to cytosines with low methylation 

For a better comparison between different types of regions, we next aimed to directly 

quantify the turnover kinetics and relate it to the level of starting methylation. Therefore, 

we first determined the methylation decay rate for each individual cytosine in the sample 

(for details see 3.2.5). To ensure that our methylation measurement is robust, only 

cytosines covered at least a 100 fold in all samples were considered for this analysis. We 

performed a non-linear regression for each CpG, assuming an exponential decrease in 
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methylation (Figure 3-5A). To test whether inferred parameters approximate our 

measurements, we first correlated the measured methylation with the inferred 

methylation met(t0) for each cytosine at each time point in the time course (Figure 3-5B). 

This revealed a very high correlation (r=1 and r=0.98 for replicate 1 and replicate 2, 

respectively), suggesting a high accuracy of the estimated parameters.  

 

 

Figure 3-5 Determination of methylation turnover rate 

(A) Shown are methylation levels for one representative CpG across the time course. For each 
cytosine a non-linear regression was performed assuming exponential methylation decay. 
Methylation at time point t=0 (met(t0)) and the turnover coefficient ß were estimated. Only CpGs 
covered at least a 100 times were used in this analysis. (B) Methylation for each cytosine and 
each time point was calculated using met(t0) and ß estimated in A. This inferred methylation rate 
was correlated with measured methylation for two biological replicates. Each point represents one 
CpG at one time point during the time course. (C) Correlation of turnover rates (for calculation see 
3.2.5) between the two biological replicates. Cytosines with a starting methylation below 10% and 
a methylation below 5% at four days after Cre transduction were omitted. Each point represents 
one cytosine. 

 

Next, we asked whether the observed turnover is reproducible across biological 

replicates. For cytosines below 10% methylation accurate determination of decay rate 
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cannot be achieved, as a small methylation change would introduce noise in turnover 

estimation (Figure 3-3 and data not shown). This noise is illustrated in the high spread of 

turnover rates observed between these cytosines (Figure 3-7). Furthermore, the mean 

variance of cytosine turnover within UMR amplicons is more than six times higher than 

the average turnover variance between UMR fragments (8 x 10-3 and 1.3 x 10-3, 

respectively). Similar to UMRs, our approach is not suitable for cytosines with a very fast 

turnover like those entirely losing their methylation four days after Cre transduction. For 

these cytosines the exact time point of full demethylation cannot be determined and thus 

their turnover rates would be underestimated. Therefore, we excluded all cytosines with 

a methylation below 10% at the starting time point and below 5% four days after Cre 

transduction from further data analysis. For the remaining 168 cytosines covered at least 

100 fold in all time points in both experiments we correlated turnover rates from two 

biological replicates. This revealed a correlation of 0.92, suggesting that the turnover is 

reproducible (Figure 3-5C, 3-6B). We note, however, that despite this generally high 

correlation some spread persists for cytosines with a fast turnover. 

 

 

Figure 3-6 Relationship between turnover rate and methylation. 

(A) Correlation of turnover rate with methylation reveals higher turnover rates at low methylated 
cytosines. Shown is the mean turnover rate between two biological replicates. Each point 
represents one CpG. Only CpGs with coverage of at least 100 in both replicates are shown. 
Cytosines with a starting methylation of below 10% and methylation of below 5% four days after 
Cre transduction were omitted. (B) Turnover rate (upper image) and starting methylation (bottom 
image) in a representative LMR. Blue and red lines show replicate1 and 2, respectively. Black line 
represents the mean turnover rate of two replicates. Vertical black lines mark CpG positions within 
the amplicon. Red shade marks the position of the LMR according to previous segmentation 
(Stadler et al, 2011). Green shade: position of a bound CTCF site. For each replicate only CpGs 
with coverage of at least 100 are shown.  
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Having this quantitative readout, we decided to reevaluate the relationship between the 

turnover rates and the starting methylation level of analyzed cytosines. Indeed, within our 

data-set high turnover rates occur at cytosines with low starting methylation levels, while 

turnover rates at fully methylated CpGs linearly increase with decreasing methylation 

(Figure 3-6A). Importantly, this observation is not limited to cytosines residing in different 

regions, as CpGs within the same genomic region can readily differ in their turnover 

rates (Figure 3-6B). Overall, little difference was observed in the variance of turnover 

within and between regions (2.33 x 10-3 and 2.00 x 10-3, respectively). 

 

 

Figure 3-7 Turnover rates within different segments 

Turnover rates at all analyzed CpGs (white), CpGs within FMRs (blue), UMRs (green) and LMRs 
(red) for all individual cytosines covered at least 100 times. Note that constitutive FMRs (light 
blue, left) do not display lower turnover than NP-specific LMRs which are FMRs in ES cells (light 
blue, right). The strong almost uniform variation in turnover at UMRs probably reflects 
measurement limitations at very low methylated cytosines. Note that cytosines within FMRs 
flanking LMR regions (purple) generally have a higher turnover rate than average FMRs (blue). 
Boxes show the median and the interquartile range. 

 

Comparison of methylation turnover rates at all analyzed cytosines which reside within 

LMRs, FMRs or UMRs furthermore shows that turnover is fastest within LMRs (Figure 3-

7). Interestingly, FMRs directly adjacent to LMRs in our dataset display enhanced 

turnover kinetics, suggesting that their methylation could be influenced by TF binding 

within the LMR regions. No increased methylation turnover could be detected at cell type 
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specific FMRs which have high hydroxymethylation in neuronal progenitors (NP- LMRs 

in Figure 3-7) as compared to constitutive FMRs (Constitutive FMRs in Figure 3-7). 

In summary, unbiased quantification of turnover reveals its accelerated kinetics at low 

methylated regions and individual low methylated cytosines. 

 

dataset total reads conversion 
efficiency [%] 

protection 
efficiency [%] 

CpGs Fragments
cov>9 cov>9 

3ab -/- ESC rep1 5415260 98.1 97.6 509 82 

3ab -/- ESC rep2 6165442 99.5 99.9 431 69 

J1 ESC rep1 5687936 98.2 97.7 525 82 

J1 ESC rep2 6368876 99.7 100.0 419 70 

CreTD1-d4 15440206 97.8 99.4 502 79 

CreTD1-d8 3733392 99.8 99.9 479 75 

CreTD1-d10 3728962 98.1 99.7 478 76 

CreTD1-d13 4174414 99.3 99.8 476 75 

CreTD1-d15 3787318 99.1 99.8 500 80 

CreTD2-d4 3358126 99.3 100 447 72 

CreTD2-d8 3234086 98.6 99.9 520 81 

CreTD2-d10 3245980 98.4 99.9 480 77 

CreTD2-d13 2838246 92.3 99.9 480 77 

CreTD2-d15 2837296 97.9 99.6 495 78 

MockTD1-d4 10003876 99.4 98.2 503 79 

MockTD1-d8 4049724 73.5 95.8 504 80 

MockTD1-d13 4005596 97.0 99.8 496 79 

MockTD1-d15 3194158 99.8 99.6 521 82 

MockTD2-d4 3246084 98.8 99.8 495 79 

MockTD2-d8 4248638 99.1 99.9 532 82 

MockTD2-d10 2723552 95.1 99.9 490 78 

MockTD2-d13 2931254 98.5 97.4 509 80 

MockTD2-d15 2923594 98.3 98.9 486 76 

CreTD-J1-d4 3309530 99.3 99.9 508 79 

CreTD-J1-d15 3778564 94.8 99.6 515 79 

MockTD-J1-d4 3383836 97.5 99.9 503 79 

MockTD-J1-d15 2923594 97.5 99.9 501 78 
 

Table 3-1 Summary of all datasets used in 3.2 

TD1: transduction replicate 1; TD2: transduction replicate 2; ESC: embryonic stem cells; d: day; 
3ab-/-: Dnmt3ab-/-; rep1/2: replicate1/2; Cre: cre transduction; Mock: control transduction with Cre 
buffer; cov: coverage  
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3.2.5 Materials and Methods 

Targeted amplicon sequencing 

Genomic DNA was isolated from ES cell pellets. For elimination of feeders, the 

trypsinized ES cell-feeder mix was allowed to settle on a plate for 20-30 minutes before 

collecting the supernatant. Genomic DNA was isolated as previously described (Mohn et 

al, 2009). Briefly, cell pellets were resuspent in TE and equal volume of lysis buffer 

containing 20µl of proteinase K (10mg/ml) prior to incubation for at least 5hrs at 55°C. 

DNA was phenol-chloroform extracted, precipitated with ethanol containing 75mM 

sodium acetate pH5.2, washed in 70% ethanol and the pellets allowed to dry at RT for 5-

10 minutes. Extracted genomic DNA was resuspent in TE buffer containing 20µg/ml 

RNAse A and incubated for 30min at 37°C while slowly shaking. DNA concentration was 

determined using Nanodrop (ND-1000 Spectrophotometer, Witec AG), a mean of two 

measurements was taken. 2-14µg of genomic DNA were spiked with unmethylated 

lambda DNA and in vitro premethylated T7 DNA (1.6pg/µg DNA) and bisulfite converted 

according to the manufacturer’s protocol of the EpiTect Bisulfite kit (QIAgen, #59104), 

using 1-2µg per conversion reaction. The conversion reactions from one genomic DNA 

were pooled and used for targeted bisulfite PCR. Targeted bisulfite PCR was prepared in 

a 96-well plate format with primers described in Table 3-5. For one 25µl reaction mix 

1/105 of the converted genomic DNA were mixed with 5µl of a 2µM mix of forward and 

reverse primers, 2.5µl 10x PCR buffer, 1.25µl DMSO, 1.5µl of 25mM MgCl2, 1.5µl of 

2.5mM dNTPs and 0.25µl of 5U/µl AmpliTaq Gold polymerase (Applied Biosystems, # N-

8080249) and subjected to PCR according to Table 3-1. Equal volumes of each 

amplicon were pooled and 100µl of the total mix extracted from a 1.5% agarose gel.  

Libraries from extracted amplicon PCR mix were prepared according to the 

manufacturer’s protocol for NEBNext ChIP-Seq Library Prep Master Mix Set for Illumina 

(New England BioLabs, #E6240) for multiplexed libraries. Briefly, the concentration of 

each sample was measured using NanoDrop 3300 Fluorospectrometer (Witec AG). The 

samples were end-repaired, dA-tailed and adapter ligated using NEBNext Multiplex 

Oligos for Illumina (New England BioLabs, #E7335). Following this they were size 

selected using Agencourt AMPure XP beads (Beckman Coulter, # A63880) and PCR 

amplified for 12 cycles using appropriate indexed primer for each adapter and cycling 

conditions according to Illumina recommendations. Adapter-ligated and amplified DNA 

was eluted using AMPure XP beads, the size distribution was analyzed on Agilent 
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Bioanalyzer 2100 using Agilent High Sensitivity DNA kit (Agilent technologies, #5067-

4626). For multiplex sequencing, libraries were pooled in an equimolar ratio. 

Sequencing was performed on Illumina MiSeq, using MiSeq v2 reagent kits 300bp PE 

(Illumina, #MS-102-2002) according to Illumina recommendations.  

 

Step T [°C] t [min:s] 

1 95 09:00 

2 95 00:30 

3 55 to 51 00:30 

4 
decrease by 0.2°C each 

cycle 

5 72 00:30 

6 repeat steps 2-4 19x 

7 95 00:30 

8 51 00:30 

9 72 00:30 

10 repeat steps 7-9 35x 

11 4 hold 

Table 3-2 Bisulfite PCR conditions 

 

Cre protein transduction 

ES cells were cultured as previously described (Bibel et al, 2007), passaged at least 

once on feeders prior to trypsinization for Cre protein transduction. Transduction was 

performed as described (Haupt et al, 2007). Briefly, ES cells were trypsinized, resuspent 

in PBS and quantified. 2.5 x 105 cells were transferred into fresh falcon tubes, spinned 

down and resuspent in 500µl of filtered serum-free medium (Table 3-2) containing either 

2µM Cre protein or an equivalent volume of Cre dialysis buffer (2M NaCl, 50mM HEPES 

pH7.4, 1mM DTT, 1mM EDTA and 5% Glycerol). The cells were plated in 24-well plates 

pre-coated with feeders and washed twice with PBS. After 16hrs cells were washed 

twice with PBS and coated with FCS-based ES medium (Bibel et al, 2007). ES cells 

were transferred to gelatin-coated 6-well plates 24hrs and to 10cm plates 72hrs after 

transduction. Pellets were collected from trypsinized cells at indicated time points and 

culturing was continued until 15 days post-transduction in feeder-free environment. All 
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ES cells used for Cre transduction experiments have been cultured in total for five to 

seven passages prior to Cre transduction. 

 

Reagent Company Cat.-No Stock conc. End conc. 

DMEM/F-12 with 
HEPES 

Life Technologies 31330-038 1x 0.5x 

Neurobasal Life Technologies 21103-049 1x 0.5x 

N2 supplement Life Technologies 17502-048 100x 1x 

B27 supplement Life Technologies 17504-044 50x 1x 

MEM Non-Essential 
amino acids 

Life Technologies 11140-050 10mM 100µM 

L-glutamin 
in house 
preparation 

  200mM 2mM 

ß-mercaptoethanol Sigma M6250 100% 0.01% 

LIF 
in house 
preparation 

  - - 

Table 3-3 Serum-free medium composition 

 

Quantitative genotyping 

TaqMan primers and probes were designed using the Primer Express software (Applied 

Biosystems, v3.0.1) to detect genomic DNA between the two loxP sites and are listed in 

Table 3-6.  

Genomic DNA was diluted to 30ng/µl and subjected to singleplex quantitative PCR using 

the StepOne Plus cycler (Applied Biosystems) according to conditions described in 

Tables 3-3 and 3-4. Each PCR was performed in triplicates. For the analysis the amount 

of template DNA for each PCR was quantified using the absolute standard curve and 

normalized to Gapdh as reference template. Amount of molecules with intact catalytic 

exons of Dnmt3a and Dnmt3b was quantified relative to genomic DNA from untreated 

cells collected at the same time points. Standards with 100%, 20% and 0% of floxed 

Dnmt3a and Dnmt3b genomic DNA mixed with genomic DNA from an ES cell clone with 

fully deleted alleles were quantified as controls in each experiment.  
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reagents 
starting 

concentration 
(nM) 

final 
concentration 

(nM) 

Volume (µl) 
per well 

TaqMan Universal PCR 
Master Mix (Applied 
Biosystems, # 4304437) 

2x  1x 12.5 

Fwd and Rev primer mix 50000 900 0.45 

TaqMan probe 10000 250 0.625 

DNA sample 30 ng/ul 75 ng 2.5 

ddH2O   - 8.925 

total   - 25 

Table 3-4 TaqMan PCR reaction mix 
 

Step T [°C] t [min:s]

1  50 02:00 

2  95 10:00 

3  95 00:15 

4  60 01:00 

5 
repeat 3-4 
40x 

  

Table 3-5 TaqMan PCR conditions 

 

Data analysis 

The M. musculus genome assembly from July 2007 (NCBI37/mm9) provided by NCBI 

(http://www.ncbi.nlm.nih.gov/genome/guide/mouse/) and the Mouse Genome 

Sequencing Consortium (http://www.sanger.ac.uk/Projects/M_musculus/) was used as 

reference genome for all alignments. Alignment of bisulfite sequencing reads was 

performed using the software package Bismark v0.6.beta2 (Krueger and Andrews 2011) 

together with Bowtie-0.12.7 (Langmead et al, 2009) with the following parameters: -n 3 --

non_directional. Sequencing data generated for read 1 and read 2 were aligned 

separately. Methylation was extracted by Bismark v0.6.beta2 methylation extractor with 

the parameters --comprehensive –s. Conversion efficiency of unmethylated and the 

protection efficiency of methylated CpGs were determined by quantification of 

methylation obtained from spiked-in unmethylated lambda and methylated T7 DNA, 

respectively (see Table 6-1). To ensure that only fully converted reads are taken into 
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account for the analysis, the conversion efficiency of non-CpGs within each read was 

required to be at least 80% to pass the filter. Absolute loss of methylation was calculated 

as a difference between Dnmt3ab-/- and corresponding wildtype methylation 

(met(Dnmt3ab-/-) - met(wt)). Relative loss of methylation was calculated as 

(met(Dnmt3ab-/-) - met(wt)) / met(wt). For similarity analysis for each pair of cytosines 

the similarity score was quantified as fraction of reads with equal methylation for these 

two cytosines: reads(equal methylation) / reads(total).  

Quantification of turnover kinetics 

The turnover was quantified in R version 3.0.2 (R Core Team (2013). R: A language and 

environment for statistical computing. R Foundation for Statistical Computing, Vienna, 

Austria. URL http://www.R-project.org/) using non-linear regression and assuming an 

exponential decay after observation of all data points. For each cytosine covered at least 

a 100 times in the datasets a curve was fitted for the equation met(t) = met(t0) x etß, 

where t is the time after Cre transduction in days, met is the methylation and ß the 

turnover coefficient. As reference methylation, the methylation of mock transduced ES 

cells at t=4 was taken to ensure reproducibility between replicates. The turnover 

coefficients were estimated for each time course for Cre (ßCre) and the Cre dialysis buffer 

(ßmock) transduced samples. Final turnover rates were calculated by normalizing the 

turnover coefficients to respective Mock samples and multiplication by -1 to obtain 

positive turnover rates: (-1) x (ßCre - ßmock). 

Additional Materials  

 Multiplate PCR plates 96-well clear (BioRad, #MLP9601) 

 PCR salers Microseal ‘B’ Film (BioRad, # MSB1001) 

 PCR machines: C1000 Touch Thermal cycler/iCycler (BioRad) 

 MicroAmp Fast Optical 96-well reaction plate (Applied Biosystems, # 4346906) 

 MicroAmp Fast Optical Adhesive Film (Applied Biosystems # 4311971) 
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Oligonucleotide sequences: 

Region Forward Primer Reverse Primer 

FMR1 AGTTGTTAGGATTTGAATTTTGGT CCTCTACTCCTTCTTTCCTAATACA 

FMR2 AGGATGGATGTGTTATGTTTTAGT AAATCTACCTTTCCTTCCAACA 

FMR3 TTTTATTGATTGTTATGTGGTGTTTT ACAACTCCTCTTCTCCAACA 

FMR4 AGATGTTTGTTTAGTTTTGGGTT CCAAAACCCTAACAATCCCC 

FMR5 GGGAGGTAGGGGTAGTAAGA ACACACACACACACACAATA 

FMR6 AGAGATTGGTGGGTTGGATT ACCACCACAAAACAAATACCT 

FMR7 GGGAAGTTGAGGTAGGTAGG CAACCAACCAACCAAAACCT 

FMR8 GGGTTTTGTAGGGTGTGAGA CCACTACCACATCACAATTCC 

FMR9 AGTGGAGTGGTGTAGAGGAT ACCTTAAACCTCTCTCAAAACA 

UMR1 GGTTTTGATGGTTGAGGTGT TTCCCAATCCCCATTTCTCC 

UMR2 AGGATTGTTTGGGATGGAAAA CAAACTCAACCCAACCAACC 

UMR3 AGTTAAAGAATGAAATTGAAGTTTGAA TCCTCTTCATTTTCCCCATCT 

UMR4 AGGGATTAGTAGGAAAGGAGTT CACCTTCCACCCCTCTATTA 

UMR5 AGGTATGAGAGTTAGAAATTAAGAGG AACAACTATACCCACAAATCTCT 

UMR6 GTTTTGGTATTTAAGAAAGGTTAGGG AATTCCCCAACCATTCACCT 

UMR7 GGGATTGTTGGGAGGGATAG CCAAAACAACCAAAACTACACA 

UMR8 AGGAGTTAATGAGGGAGAATAAGA AAACCCCTCCTCCAAAACTC 

UMR9 AGTTTTGGTTAATGAAGTAGGAGA CCCTCATTCCTAACCCCAAT 

UMR10 TGGAGGGGAAAAGGGAAAAT ACACAACAACTACATCAACTAAACT 

UMR11 AAGGTTTTGAGGTAATTGAGTGA TCCCATCTATCTCCTCCACC 

metIsland1 GTTGTTAGGGTTAGGTTTTGATT TCCTATTACTCCCAACAATACCA 

Methylated_UMR1 TGGGGTAGAAAAGTTGTTTAGT ACCACCAAACATAACACACA 

Methylated_UMR2 TGTGGGAAAGGTAGTAATAAAATAGA AACCAACAAACTATCTCATACCA 

DMR1 GATTTGGTGGTTGGGAGTTG AAACTAAACAAACCACCTCAAAA 

DMR2 GGTTTTAGAAAGTTGTTTTATTTTGGG TTCACATCAAAACAACACCTCA 

DMR3 AGATGGTGATAGGGGAGAAAA TCACCCAAATTCAATACCTCAA 

ES-specific_LMR1 GGTGGAGGTGGTTTAAAGGT TACCCAAAACCACCCTAACC 

ES-specific_LMR2 TTTAAGATAAGTTGTTGTTGGGTT TCCTAACCAAAATCCTAAATACCT 

ES-specific_LMR3 TGGGATTTGAGATTGTATTAGTTAGG CAAAACAAATCCCTATCCTCTAAC 

ES-specific_LMR4 GGGGTTGGGTAATAGATGGT ACAATCACACATCAAACCCT 

ES-specific_LMR5 TTGTTATTAAGTTGGAGTGGGT CCATCCACTTATCTCCCACA 

ES-specific_LMR6 GGTAGAGTGTTTTAGTTAAATTAAGGG AACTACCATCCATCCACTCC 

ES-specific_LMR7 AGTGTTTAGGTGTATATTAGGAGGT ACAAAACCCTACCTACTCCT 

ES-specific_LMR8 AGGGAGATGATAGATTAGGTGAT ACCTTCCACTATCCCTACTCA 

ES-specific_LMR9 ATTATGTGAGTTAAGATGGGTGT ACATAAACTTACTTAACCTTATACCCA 

NP-specific_LMR1 GGGAGGTAGAGTTGGATTAGTAAA ACTCCCTATTACCAACTACAATTT 

NP-specific_LMR2 TGAGTGGTTTTGTTTGTGAGG ACTCCCAAACTTTCTTCTATCAC 
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NP-specific_LMR3 TGTTGGAAGTTGATATATTGTAGTTGA ACCTCAAACTCAACTCACACT 

NP-specific_LMR4 TGGTTTTAGTTTAAGAAAAGGAAAGT TTCACTTCATTTACTCCTCTCTT 

NP-specific_LMR5 TTGGAGGGAGTAGGGGAG ACCCAATCAACAATATTACATATCCA 

NP-specific_LMR6 GGTTGAGTTTAAATAGAGGTTAGGG ACTTCTATTTCCACTAAACCTACA 

NP-specific_LMR7 AGAGTAAGGTTTTGAGGTGAGT CCCAACCTCTTAACTTCCCA 

NP-specific_LMR8 TGATGGGAGAGAAAGAGTGAG ACTCTCCAATTCATTTAATAAAACTCT 

NP-specific_LMR9 AGGTTATTTTAGAGGTTTGTTAGGT ACATCACAAACCCTTTTCAAAA 

NP-specific_LMR10 TGTGAGAAGGTAAGAGGTGTG CCTATCAAACTAACCAACTACCT 

NP-specific_LMR11 AGGTAGTTGGTTAGTTTGATAGG ACAAAACAAAACAATACCAACCA 

NP-specific_LMR12 TGGTTGAGTAATGAGATAGGTTT ACCCCATAATTATCTCAAATCTCA 

Constitutive_LMR-CTCF1 TGTTTTGGTATGAAAGTTTTGGT CCTCAACCTAACCTAAACCCA 

Constitutive_LMR-CTCF2 AGTTTTGTTTTGTATTTGGTTGTTAA ACTCAATCATTTCCATTCCAAAA 

Constitutive_LMR-CTCF3 TGGGGAGGGATGTGGTATAA ACTTCACTTCCACCTAAAACTT 

Constitutive_LMR-CTCF4 TGGGAGAGGAAGTGTGTTTT ATCAACAACCACCTCCAAAA 

Constitutive_LMR-CTCF5 AAGGTAAGTTTGATTTAGAGAATTGA ACCACTATCCAAACCCAAACT 

Constitutive_LMR-CTCF6 AATAGTAGAGGTGGATTTGATTATAGA CAAACCACACTAAACCTCACA 

Constitutive_LMR-CTCF7 GGTTATGTTATTGTAGTGAGTGGT ACTCTCAACAACCAATACTCCA 

Constitutive_LMR-CTCF8 GGTTATGTTATTGTAGTGAGTGGT ACTCTCAACAACCAATACTCCA 

Constitutive_LMR-REST1 TGTAGTTTGGAATTAGAAGTGTTATT CTCTAAATCTAAACTCTCTATTCAACA 

Constitutive_LMR-REST2 AGAGAGTTGAGATTAGAGGGGA ACTCAACTCCACAACCAAAC 

Constitutive_LMR-REST3 TGTTAGGAGTGTAATAGTTAAGTGG ACCAAAATTCAAACCCCAACA 

Constitutive_LMR-REST4 GGGGTAGTAAGATAAATAGTAGGGA TCTAACTACATAACCTCAAACCAA 

Constitutive_LMR-REST5 AGTGTTGGTAGTAGGTATTGGT ACCTCTAATAACAAAATTACTCAACA 

Constitutive_LMR-REST6 TTTAGGATTAGGGATAGTAGTAAAGTT ACCTTCCAACTCCCAAACAT 

Constitutive_LMR-REST7 GAATTGTAGGGAAAAGGTGAGT ACACCTCAAATTTCAACACCA 

Constitutive_LMR-REST8 AAGTTTGTTAAAATGAGATTAGGATTG ACCTATTATAAACTCCAACCTACAA 

Constitutive_LMR-REST9 AGGATGGTGTTGAAAATTGTTATT CCCTACTTATAATACTCCTTAAACAAA 

Constitutive_LMR-REST10 TTGGGGAAGGTTTGTTGGTT CTCTCTCAACCTTACTTCCAAAA 

Constitutive_LMR-REST11 GTGGAGATAATTGTTTTAGTGTTTGA ACCACAACTAACATTCCCCA 

Constitutive_LMR-REST12 TTGGGGAAGGTTTGTTGGTT CTCTCTCAACCTTACTTCCAAAA 

Constitutive_LMR-REST13 TGTTGTATTTTGGTTTAGTGGTTTG ACACCTAAACTTTCAATCAACCA 

Constitutive_LMR-REST14 TGGTTAGGGGTAAGGTTGTG AACCACAAACCCAACAATCC 

Constitutive_LMR-REST15 AGAATTGTAGGGAAAATGTGAGT CCACACCTCAAATTCCAACA 

Constitutive_LMR-REST16 GTGGAGATAATTGTTTTAGTGTTTGA ACCACAACTAACATTCCCCA 

Constitutive_LMR-REST17 GGAATGGTTTTGGTTGAGGT CCAATACCTACCAAACAACCA 

Constitutive_LMR-REST18 TGTGTGAGGTTTGGTATGTAGT AATAACACCACACATCAACCT 

Constitutive_LMR-REST19 TGAGATAAGGTTAGTATTATGGATAGT ACTAATTTCTTAACTACATCACCAACT 

Constitutive_LMR-REST20 TGTATTTTGGGGATTTTAGGTAGG TCCTCATAACAACCCAAAACT 

Constitutive_LMR-REST21 GGGATGGTGGTTGTTTGTTA ATCTACCCAAACCTCCTCCT 

Constitutive_LMR-REST22 TGGATAGTAGGATTTGGGTTTGT ACAACCTAACAAACATCAATTCCA 
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Constitutive_LMR-REST23 TTGTTTAGGGAGGGGATTGG CCCCAACCCTATAAACAAACA 

Constitutive_LMR-REST24 GATAGTGTGGGGAGTGGATT AACCATACCTCCAAACTTTACA 

Constitutive_LMR-REST25 AGGTTTATGGGTTGGAAGTTT AACACCACAACATCTCAACC 

Constitutive_LMR-REST26 TGTAGTGATTTTAGGATTTTGAGTGT TCAATAAACTCTCCTACAAAATAAACT 

Constitutive_LMR-REST27 TGTGTGAGGTGTAATGTGTG ACTACACAAACAAAACCCAACA 

Constitutive_LMR-REST28 AATGGGAAAGTAAGGTGAAGG TCACTTCAACAAACTTTCCCC 

Constitutive_LMR-REST29 AGGGTAGAATGATTGTTTTAGTGT TCTAAACTCTTAATACCTACCCAAAC 

Constitutive_LMR-REST30 AGGAGTATTTGGTTTGGAGTGA ACTTTCATACACTTCCCACATTT 

Constitutive_LMR-REST31 TTTTAAGGTTGGAAGAGTGAAAGT ACTTCAATCCAACCATCCTCC 

Constitutive_LMR-REST32 GTTGATAGTGGATGTAGTTAAAGGT ACCCAAACAAATAAATCAAACCT 

Constitutive_LMR-REST33 AGATAAATTAGGGAGTGAAGGGA AAAACTCTAACCACCACACCT 

Constitutive_LMR-REST34 TGTTTTATGGAATATTTGGGTTATGT CAACCAACCATCCAACTAACA 

Constitutive_LMR-REST35 GTTTGGTTGGGGTAAAGTTAGT AACCAAAATCATATCACAAATCCA 

Lamda Control1 TGTGTTGGTTGGAAGAGGTT ACTATCACTCTTCTCCTCCTCT 

Lamda Control2 TGTTGTTGGTTGATTTTGATGAG TCCTCTTTCAACTCTACCACA 

Lamda Control3 TTGGATGTATTGGAGAAGTATGAT CCACCATACTAATAATCAAATCTAACA 

T7 Control1 AGTGAGGGTATTGATTTTGAGT ACCTTAAATCTATCACTCAACAAATTC 

T7 Control2 GGGATGGTGAGTTTGTTGAA CCTAATACATCTACAACTACCTCAT 

T7 Control3 TGATTAGTTGAAGGATTGGAAGT TCCCCATCAAACATAAAACCA 

Table 3-6 Bisulfite primer sequences 

 

 

Table 3-7 Probes and primers used for quantitative genotyping (TaqMan).  

Fwd: forward primer, Rev: reverse primer, MGBNFQ=minor-groove binder non-fluorescent 
quencher. All reagents were ordered from Life Technologies. 

  

PCR Fwd Rev probe 5' dye 3' quencher
Dnmt3a GCAGAAGGTACCAGTTTAGAAAGCA TGCCCGCAAGGGACTTTAT AGGAGGGCACCTTAC 6FAM MGBNFQ 
Dnmt3b GCTGTGCAGGCAACATATGG CCTTACGTGACCGAGCTGTCT CAACTAACCGGAGGTTC NED MGBNFQ 
Gapdh GAGCCCCAGGCTATCTCATG GTTCTCCACACCTATGGTGCAA TCTTCAGAGTGGAATACT VIC MGBNFQ 
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3.2.6 Discussion 

Active distal regulatory regions have reduced levels of DNA methylation which critically 

depend on the binding of transcription factors. Recent evidence suggests that 

maintenance and reprogramming of hypomethylated states is achieved through a 

turnover of DNA methylation (see 3.1). However, mechanisms underlying this turnover 

are not well understood. By comparing DNA methylation in embryonic stem cells with 

and without de novo methyltransferases activity we show that the maintenance of 

methylation states at regulatory regions requires de novo methylation. This suggests that 

the observed DNA methylation turnover depends on DNMT3A/B for remethylation and 

thus deletion of de novo methyltransferases can be used for turnover studies. 

Surprisingly, maintenance of methylation states requires de novo methylation also at 

regions which are fully methylated. By profiling DNA methylation at various time points 

following conditional deletion of DNMT3A/B we demonstrate that increased turnover is 

characteristic of low methylated active regulatory regions. Moreover, this accelerated 

turnover at regulatory regions and single cytosines with reduced methylation is 

conserved between biological replicates. Our results provide evidence that DNMT3A/B 

dependent DNA methylation turnover is involved in maintaining a low methylation level at 

active distal regulatory elements.  

Active or passive demethylation? 

The accelerated turnover observed at regulatory regions does not seem to be a random 

event, as it was reproduced across biological replicates at the level of single CpGs 

(Figure 3-5 and 3-6). This observation argues for an active demethylation-remethylation 

process. However, using a replicating cellular system we cannot exclude the involvement 

of a replication-dependent passive demethylation mechanism. The observed 

demethylation is likely to be active if measured turnover rates are higher than those 

inferred from passive demethylation. The following simple calculations are used to 

estimate the mode of demethylation during the observed turnover. 

In case of an exclusively passive demethylation DNA methylation would be diluted at 

each cell cycle by half in the absence of de novo methyltransferases. Assuming one cell 

division in 18 hours - which is rather slow for ES cells (Welham et al, 2011) - a fully 

methylated cytosine would appear almost completely unmethylated after four days 

(Figure 3-8). The inferred turnover coefficient in this case (ß = -0.92) exceeds the highest 

turnover coefficient determined in our time courses (ß = -0.31) by three fold. Thus, the 
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observed turnover is slower than in case of a solely passive demethylation and cannot 

be unambiguously called active. While it is feasible that the turnover does not affect all 

cytosines in a given region simultaneously, it is likely that it involves both active and 

passive demethylation (Hsieh 1999). Turnover studies in postmitotic cells will be required 

to clarify the contribution of active demethylation.  

 

Figure 3-8 Estimation of the turnover coefficient for passive demethylation. 

It was assumed that the ES cells divide once in 18 hours and the starting methylation is 90%. 
Note that the parameter estimated here is the turnover coefficient (not the normalized turnover 
rate). 

DNMT3A/B targeting to sites of increased turnover 

Our data indicate that that the remethylation events contributing to the observed turnover 

depend on DNMT3A/B (see Figure 3-1 and 3-2). Such DNMT3 dependent turnover could 

be mediated by different non-mutually exclusive mechanisms.  

It has been suggested that DNMT3A/B could fill in the gaps left by DNMT1 during 

replication (Chen et al, 2003). One could hypothesize that if the activity of DNMT1 is 

reduced at some regions, this could result in increased dependency of these regions on 

DNMT3A/B for maintaining their methylation. DNMT1 could be prevented from 

maintaining DNA methylation at newly replicated DNA by hydroxymethylation (Inoue and 

Zhang 2011) or TF occupancy (Matsuo et al, 1998). It is thus conceivable that active 

regulatory regions that display both high 5hmC and TF enrichments have lower DNMT1 

activity and are therefore predominantly targeted by DNMT3-dependent turnover.  

Targeting of DNMT3A/B could furthermore depend on the sequence (Luu et al, 2013) or 

simply on the amount of demethylation within a given region. We analyzed two types of 
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inactive fully methylated regions (FMRs) in ES cells - neuronal progenitor specific low 

methylated regions (LMRs) and constitutive FMRs (Figure 3-7). Assuming that only cell 

type specific active regulatory regions are subject to increased turnover, neuronal 

progenitor specific LMRs must have accelerated kinetics in NPs, but not in ES cells. On 

the other hand, if the sequence composition is critical for turnover determination, these 

LMRs must have similarly high turnover rates in any cell type. We could not detect an 

accelerated turnover in progenitor-specific LMRs, when analyzed in ES cells, suggesting 

that DNMT3A/B targeting is not sequence specific. A kinetic analysis in NPs will be 

required for a definite proof of this hypothesis.  

Together, our data clearly demonstrate the dependency of DNA methylation turnover on 

de novo DNA methyltransferases but do not allow drawing conclusions about the actual 

mode of DNMT3A/B targeting. 

Turnover kinetics 

Using an unbiased approach we calculated the turnover rates for cytosines residing 

within different regions. Upon deletion of DNMT3A/B complete demethylation is achieved 

on average after eight days at low methylated regulatory regions and after varying time 

spans at fully methylated non-regulatory sites (see Figure 3-2). While our analysis 

establishes hypomethylated active regulatory regions as sites of enhanced turnover, 

further experiments will be required in order to fully quantify its kinetics. 

It is important to note that the determined turnover rates likely underestimate the speed 

of turnover in ES cells for two reasons. First, bisulfite sequencing does not distinguish 

between methylated and hydroxymethylated cytosines (Huang et al, 2010), so that a 

fraction of “methylated” cytosines could have already undergone a turnover through 

oxidation. In this case we expect the turnover to be even faster at low methylated regions 

as sites of increased hydroxymethylation (see 3.1.2). Further basepair resolution 

analysis of hydroxymethylation will be required to quantify this phenomenon (Booth et al, 

2012; Yu et al, 2012). Second, our conditional deletion approach does not allow for 

analysis of a homogenous population of cells. Throughout the time course, 5-15% of the 

analyzed cells still display activity of DNMT3A/B and could account for the plateau 

observed in Figure 3-2. An experimental system which allows for a complete, 

homogenous and rapid disruption of DNMT3A/B function will be required for a better 

estimation of turnover. Due to rapidly occurring demethylation, this system must enable a 

tight control of DNMT activity. Such experimental approach could utilize a tightly 

regulated Cre-inducible or a protein degradation based system (Feil et al, 1997; Chu et 
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al, 2008). It is furthermore likely that the turnover is slower in postmitotic cells in the 

absence of passive demethylation. 

We note that the turnover kinetics shows some variation among highly methylated 

cytosines with a linear dependency on the methylation level (see Figure 3-6). It is 

possible that cytosines with slightly lower methylation levels (below 80%) are generally 

less accurately maintained by DNMT1 and thus always rely on DNMT3A/B for 

maintenance. This could be affected by the surrounding sequence (Luu et al, 2013) or 

histone modifications. For example, UHRF1 binding to H3K9me3 could reinforce DNA 

methylation maintenance by DNMT1 (Rothbart et al, 2012; Liu et al, 2013). DNMT3A/B 

could furthermore be directed to hypermethylated regions, as both enzymes have been 

shown to tether to methylated nucleosomes in a cancer cell line (Jeong et al, 2009; 

Sharma et al, 2011). It is conceivable that a combination of both mechanisms results in 

increased methylation maintenance of certain regions.  

While the turnover is generally faster at cytosines with low methylation levels, the 

considerable spread in turnover rates present among these CpGs precludes predicting 

the actual turnover kinetics solely from the starting methylation level (Figure 3-5). This 

suggests that additional parameters account for the accelerated turnover. Such 

parameters could include transcription factor binding or nucleosome positioning and are 

discussed in more details below (see paragraph 4).  
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4 General Discussion and Conclusions 

Active CpG poor regulatory regions display reduced DNA methylation levels which are 

largely dependent on the occupancy by DNA binding factors (Stadler et al, 2011). 

However, the mechanisms underlying the reduction of DNA methylation at these regions 

are poorly understood. During my PhD studies I investigated maintenance and 

reprogramming of DNA methylation at sites of transcription factor binding.  

Genome-wide profiling of the intermediate of active demethylation 5-

hydroxymethylcytosine in stem and neuronal progenitor cells revealed its enrichment at 

active regulatory regions. Together with the observation that CTCF can bind both 

methylated and unmethylated cytosines, our data suggest that reduced methylation can 

be achieved through a transcription factor mediated turnover of DNA methylation. By 

deleting de novo DNA methyltransferases we show that this turnover likely depends on 

DNMT3A/B and predominantly affects active regulatory regions and cytosines with low 

methylation levels.  

Below I will discuss the main findings and elaborate on the implications of these results 

for our understanding of the role of DNA methylation in gene regulation. 

4.1 Transcription factor mediated demethylation 

We used CTCF as example to demonstrate that binding of factors to DNA can mediate 

active turnover of DNA methylation during maintenance and reprogramming of correct 

methylation at distal regulatory regions. Genome-wide mapping of hydroxymethylation 

revealed that its upregulation during cellular differentiation coincides with loss of 

methylation and vice versa. Up to 20% of differentiation-associated changes in 

hydroxymethylation occur at low methylated regions (LMRs), suggesting that this effect 

is characteristic of active regulatory regions. These results are in line with previously 

reported hydroxymethylation dynamics (Serandour et al, 2012; Tan et al, 2013). 

Furthermore, we provide evidence for a direct dependency of 5hmC at a given site on 

the presence of DNA binding factors, as deletion of the TF REST leads to upregulation of 

methylation and decrease of hydroxymethylation at analyzed sites in ES cells. Our data 

mechanistically link transcription factor occupancy to active demethylation. However, 
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since only two factors out of the estimated 1400 in the mammalian genomes were 

studied, it is premature to generalize these findings. 

CTCF can occupy any methylation state in CpG poor sites which are furthermore 

enriched for TET1 and 5hmC. Together with the observed TF binding dependent 

hypomethylated state of these regions, our results are compatible with a scenario where 

TF binding mediates TET-dependent active demethylation. We furthermore show for 

CTCF that its enrichments as determined by ChIP-Seq directly relate to the level of 

demethylation at bound CpGs. The likelihood of being demethylated correlates with the 

frequency of binding for a cytosine within the CTCF binding motif. This relationship could 

be a consequence of accelerated turnover and will be discussed in detail below (4.3). At 

this point it is important to note that the factors CTCF and REST analyzed in this study 

are particular in terms of the length and strength of their binding motifs. In order to 

extend our findings to other factors, a more comprehensive approach will be required. 

Currently, any proposed demethylation mechanism would be speculative and based on 

correlative findings. It seems realistic that such demethylation occurs via TF mediated 

recruitment of TET proteins and subsequent hydroxymethylation (Ding et al, 2012). 

However, since hypomethylation and hydroxymethylation are general characteristics of 

active regulatory regions, this would require physical interactions of many different TFs 

with TET proteins. Alternative scenarios involve TET recruitment by factors frequently 

present at regulatory elements, such as p300 or pioneer transcription factors (Heintzman 

et al, 2009; Serandour et al, 2011). Furthermore, TF binding at regulatory regions could 

cause a change in chromatin conformation which attracts TET proteins (Fu et al, 2008). 

Two explanations for the increased hydroxymethylation at regulatory regions are 

possible. First, hydroxymethylation could solely be an intermediate of active turnover 

(Valinluck and Sowers 2007; Frauer et al, 2011; Kubosaki et al, 2012; Yu et al, 2012; 

Shen et al, 2013; Song et al, 2013). However, it remains to be determined how much 

active turnover contributes to the hypomethylated states at these sites. Second, 

hydroxymethylation might be involved in enhancer function. In this case specific readers 

of 5hmC would be required, as has been suggested for MBD3 and MeCP2 (Yildirim et al, 

2011; Mellen et al, 2012). However, other studies could not detect interaction between 

5hmC and these proteins (Valinluck et al, 2004; Baubec et al, 2013). Furthermore 

counteracting the hypothesis of an autonomous function as a signaling module, 5hmC is 

accumulated in neurons suggesting that it is diluted during replication in dividing cell 

types (Lister et al, 2013). In comparison to 5hmC a larger amount of specific readers has 

been determined for further oxidation products 5fC and 5caC (Spruijt et al, 2013). 
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Indeed, active regulatory regions are enriched for these modifications in the absence of 

TDG (Shen et al, 2013; Song et al, 2013). Again, this argues for a complete processing 

of 5hmC at regulatory sites and thus for active turnover. Based on observations from our 

group and others we favor the hypothesis that 5hmC represents an intermediate in DNA 

methylation turnover at active regulatory regions. 

Together, our findings argue that reduced methylation at regulatory regions is not solely 

a product of passive demethylation. Whether reduced methylation is relevant for the 

activity of regulatory elements remains to be determined. For CTCF it is evident that it 

can bind to methylated CpGs in CpG poor regions (Stadler et al, 2011). It is possible, but 

requires experimental validation, that hypomethylation established by pioneering factors 

is necessary to facilitate access for methylation-sensitive factors (Schubeler 2012).  

4.2 DNMT3-dependent remethylation 

Using embryonic stem cells with deletion of both de novo DNA methyltransferases we 

provide evidence for the presence of a turnover of DNA methylation preferentially at 

active regulatory sites. We show that DNMT3A/B are required for methylation 

maintenance at both hypomethylated regulatory regions and fully methylated regions. 

This finding allowed us to use conditional inactivation of DNMT3A/B to quantify turnover 

kinetics in ES cells. Profiling of DNA methylation throughout a time course upon deletion 

of DNMT3A/B revealed increased demethylation at active regulatory regions. This is 

reproducible between biological replicates at the level of single cytosines, arguing for an 

active targeting. Our results confirm the presence of a DNA methylation turnover 

predominantly at active regulatory regions and furthermore establish its dependency on 

DNMT3A/B. These findings are compatible with the observations made in ES cells 

cultured in 2i medium, in which DNMT3A and DNMT3B are downregulated (Habibi et al, 

2013). 

We show that in the absence of DNMT3A/B methylation is preferentially lost from active 

regulatory regions. In contrast to DNMT1, DNMT3A/B mainly function outside of 

replication (Chen et al, 2003), opening up the possibility that the observed turnover is 

active. However, the kinetics of demethylation is not fast enough to unambiguously 

argue for active turnover (for details see 3.2.6). More conclusive analysis in postmitotic 

cells will be required in order to clarify the contribution of active and passive 

demethylation events in the turnover process. Importantly, it is possible that both modes 
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coexist during demethylation of a given region as has been suggested for EBNA1 

mediated demethylation (Hsieh 1999). 

Increased turnover at regulatory regions is reproducible between biological replicates 

arguing for a regulated targeting of de novo DNA methyltransferases to specific sites. 

How exactly DNMTs are targeted to the sites of turnover and whether this is an active or 

a passive process remains to be determined. A sequence-specific targeting has been 

proposed by several studies (Lin et al, 2002; Handa and Jeltsch 2005). We observed 

that neuronal progenitor specific low methylated regions showing turnover in NPs (see 

3.1) do not represent preferential turnover targets in embryonic stem cells (Figure 3-7). 

Together with the evidence that these sites are enriched for hydroxymethylation in NPs 

(see 3.1), these suggests that the targeting mechanism for DNMT3A/B is not sequence 

dependent. Alternatively, DNMT3A/B might be required to fill in the gaps left out by 

incomplete DNMT1 activity during replication (Chen et al, 2003). In this scenario, 

maintenance methylation would be compromised at sites of increased turnover in a 

process involving for instance TF binding (Matsuo et al, 1998), hydroxymethylation 

(Inoue and Zhang 2011) or both. A third possibility implies replication-independent 

demethylation followed by DNMT3 dependent remethylation. At the moment we cannot 

exclude a function of DNMT1 in turnover. However, this would require preceding strand-

specific demethylation (Song J. et al, 2011; Song et al, 2012). Further analysis in a 

postmitotic system will shed light on the role of DNMT1 in the observed turnover events. 

In conclusion, we confirmed the presence of a DNA methylation turnover in embryonic 

stem cells with a preference for active regulatory regions. This turnover depends at least 

in part on de novo DNA methyltransferases.  

4.3 Transcription factor binding and turnover kinetics 

We established a relationship between transcription factor binding and induction of a 

methylation turnover at regulatory sites. Moreover, by quantifying the kinetics of 

demethylation upon conditional deletion of DNMT3A/B we demonstrate that active 

hypomethylated regions are indeed the preferred turnover targets. While exact numbers 

will have to be corrected upon basepair resolution 5hmC profiling (Yu et al, 2012) and 

turnover analysis in postmitotic cells (see 3.2.6 for details), our quantification allows for a 

comparison between regions.  
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We observed differences in turnover kinetics which, only partly, could be attributed to 

differences in methylation levels of individual cytosines (Figures 3-6 and 3-7). These 

differences could result from distinct histone modifications (Rothbart et al, 2012) or 

nucleosome organization (Fu et al, 2008) at turnover sites. Alternatively, but not mutually 

exclusive, the turnover kinetics at a given site changes with differences in the type and 

strength of TF binding at this site. Several scenarios are possible. For instance, 

methylation turnover could correlate with the frequency of transcription factor binding 

(Lickwar et al, 2012). Furthermore, TFs which remain bound to DNA during replication 

(Zaidi et al, 2003; Kadauke et al, 2012; Caravaca et al, 2013) would add a passive 

demethylation component and thus potentially increase the turnover rates at their sites. 

Turnover kinetics of an individual cytosine could also be influenced by its relative position 

to transcription factor sequence motifs. Indeed, in line with a recent study (Jeong et al, 

2014) we observe an accelerated turnover at cytosines located at the borders of 

regulatory regions.  

In summary, turnover kinetics differs between distinct cytosines and regions. Systematic 

analyses of a collection of different transcription factors and / or sequence motifs will be 

required in order to gain conclusive insight into the relationship between occupancy and 

turnover kinetics. 

4.4 Regulatory role of DNA methylation turnover 

Our data argue for a regulated turnover of DNA methylation at transcription factor 

occupied sites. However, whether active turnover or even demethylation has a role in 

enhancer function is not well understood.  

Instructive function of reduced methylation requires methylation-sensitive transcription 

factors. Attempts to categorize transcription factors by their sensitivity to DNA 

methylation have been mostly performed in vitro (Bartke et al, 2010; Hu et al, 2013; 

Iurlaro et al, 2013; Spruijt et al, 2013). Both methylation sensitive and insensitive factors 

have been reported in these studies. Thus, while a subset of TFs can occupy their 

cognate sequences independently of their methylation state, demethylation might be 

necessary for recruitment of other factors. It is possible that a small subset of DNA 

binding factors has a pioneering function in induction of demethylation at a certain locus 

(Zaret and Carroll 2011), thus rendering it accessible for methylation-sensitive factors. 

Repeated remethylation would then preclude promiscuous binding of the latter TFs and 
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thereby reduce transcriptional noise (Chen et al, 2013b). However, in the absence of 

experimental validation this scenario remains speculative. 

High enrichments of TET1 and hydroxymethylation at TF-bound sites suggest a role of 

TET proteins in active demethylation of these regions. We furthermore demonstrate that 

DNMT3A/B are required for maintenance of their methylation states. However, ES cells 

lacking DNMTs (Sakaue et al, 2010) or TET proteins (Dawlaty et al, 2013) largely retain 

their transcriptional signatures, suggesting that turnover is dispensable for the 

maintenance of pluripotent states. Moreover, TET1 and TET2 double knockout mice are 

both viable and fertile (Dawlaty et al, 2013), while gene expression remains stable 

throughout neuronal differentiation of ES cells deficient for DNMT3A/B (data not shown). 

Taken together, data obtained from DNMT and TET knockout animals and cells argue 

against an essential role of DNA methylation turnover in gene regulation.  

4.5 Implications of turnover  

We show that DNA methylation is continuously removed and reestablished at sites of 

transcriptional regulation. This observation contrasts the widely accepted view of high 

heritability of DNA methylation states. At least for CpG poor sites, methylation appears 

largely instable and thus is unlikely to be involved in the propagation of repressive states. 

Furthermore, increased instability of this mark might limit a direct involvement in gene 

regulation at these sites. Importantly, we cannot generalize these findings to other 

genomic regions. Stably silenced genomic regions might utilize additional mechanisms to 

propagate DNA methylation, as has been reported for H3K9me3 (Rothbart et al, 2012; 

Liu et al, 2013).  

In conclusion, we demonstrate the presence of enhanced turnover at transcription factor 

bound distal regulatory regions with reduced methylation. Our studies suggest that 

transcription factor occupancy can trigger demethylation and thus mediate turnover of 

DNA methylation. Mechanistically this turnover appears to be executed by opposed 

activities of TET proteins and de novo DNA methyltransferases in response to 

transcription factor binding. Involvement of the active mode of demethylation during this 

turnover is supported by several lines of evidence. However, whether this is a necessary 

and sufficient mode to create a demethylated region at TF-bound sites requires further 

proof in a postmitotic system.  

  



References 87 

5 References 

 

Adams C.C. and Workman J.L. (1995) Binding of disparate transcriptional activators to 
nucleosomal DNA is inherently cooperative. Mol Cell Biol 15: 1405-1421. 

Ahmad K. and Henikoff S. (2002) The histone variant H3.3 marks active chromatin by 
replication-independent nucleosome assembly. Mol Cell 9: 1191-1200. 

Allfrey V.G., Faulkner R. and Mirsky A.E. (1964) Acetylation and Methylation of Histones 
and Their Possible Role in the Regulation of Rna Synthesis. Proc Natl Acad Sci U 
S A 51: 786-794. 

Allis C.D.J., T.; Reinberg, D.; Caparros, M.-L. (2007) Epigenetics. Cold Spring Harbor 
Laboratory Press. 

Arand J., Spieler D., Karius T., Branco M.R., Meilinger D., Meissner A., Jenuwein T., Xu 
G., Leonhardt H., Wolf V. and Walter J. (2012) In vivo control of CpG and non-
CpG DNA methylation by DNA methyltransferases. PLoS Genet 8: e1002750. 

Arnold P., Scholer A., Pachkov M., Balwierz P.J., Jorgensen H., Stadler M.B., van 
Nimwegen E. and Schubeler D. (2013) Modeling of epigenome dynamics 
identifies transcription factors that mediate Polycomb targeting. Genome Res 23: 
60-73. 

Arnosti D.N. and Kulkarni M.M. (2005) Transcriptional enhancers: Intelligent 
enhanceosomes or flexible billboards? J Cell Biochem 94: 890-898. 

Badis G., Chan E.T., van Bakel H., Pena-Castillo L., Tillo D., Tsui K., Carlson C.D., 
Gossett A.J., Hasinoff M.J., Warren C.L., Gebbia M., Talukder S., Yang A., 
Mnaimneh S., Terterov D., Coburn D., Li Yeo A., Yeo Z.X., Clarke N.D., Lieb J.D., 
Ansari A.Z., Nislow C. and Hughes T.R. (2008) A library of yeast transcription 
factor motifs reveals a widespread function for Rsc3 in targeting nucleosome 
exclusion at promoters. Mol Cell 32: 878-887. 

Banerji J., Rusconi S. and Schaffner W. (1981) Expression of a beta-globin gene is 
enhanced by remote SV40 DNA sequences. Cell 27: 299-308. 

Bannister A.J. and Kouzarides T. (2011) Regulation of chromatin by histone 
modifications. Cell Res 21: 381-395. 

Bardet A.F. (2012) Computational analyses of transcription factor binding across species 
and tissues. 

Bartke T., Vermeulen M., Xhemalce B., Robson S.C., Mann M. and Kouzarides T. (2010) 
Nucleosome-interacting proteins regulated by DNA and histone methylation. Cell 
143: 470-484. 

Baubec T., Ivanek R., Lienert F. and Schubeler D. (2013) Methylation-dependent and -
independent genomic targeting principles of the MBD protein family. Cell 153: 
480-492. 

Bell A.C., West A.G. and Felsenfeld G. (1999) The protein CTCF is required for the 
enhancer blocking activity of vertebrate insulators. Cell 98: 387-396. 

Bell A.C. and Felsenfeld G. (2000) Methylation of a CTCF-dependent boundary controls 
imprinted expression of the Igf2 gene. Nature 405: 482-485. 

Bell A.C., West A.G. and Felsenfeld G. (2001) Insulators and boundaries: versatile 
regulatory elements in the eukaryotic genome. Science 291: 447-450. 

Bestor T., Laudano A., Mattaliano R. and Ingram V. (1988) Cloning and sequencing of a 
cDNA encoding DNA methyltransferase of mouse cells. The carboxyl-terminal 



88 References 

domain of the mammalian enzymes is related to bacterial restriction 
methyltransferases. J Mol Biol 203: 971-983. 

Bestor T.H. (1990) DNA methylation: evolution of a bacterial immune function into a 
regulator of gene expression and genome structure in higher eukaryotes. Philos 
Trans R Soc Lond B Biol Sci 326: 179-187. 

Bestor T.H. (1999) Sex brings transposons and genomes into conflict. Genetica 107: 
289-295. 

Bhaumik S.R., Smith E. and Shilatifard A. (2007) Covalent modifications of histones 
during development and disease pathogenesis. Nat Struct Mol Biol 14: 1008-
1016. 

Bhutani N., Brady J.J., Damian M., Sacco A., Corbel S.Y. and Blau H.M. (2010) 
Reprogramming towards pluripotency requires AID-dependent DNA 
demethylation. Nature 463: 1042-1047. 

Bibel M., Richter J., Lacroix E. and Barde Y.A. (2007) Generation of a defined and 
uniform population of CNS progenitors and neurons from mouse embryonic stem 
cells. Nat Protoc 2: 1034-1043. 

Bird A., Taggart M., Frommer M., Miller O.J. and Macleod D. (1985) A fraction of the 
mouse genome that is derived from islands of nonmethylated, CpG-rich DNA. 
Cell 40: 91-99. 

Bird A. (2002) DNA methylation patterns and epigenetic memory. Genes Dev 16: 6-21. 
Bird A. (2007) Perceptions of epigenetics. Nature 447: 396-398. 
Bird A.P. and Southern E.M. (1978) Use of restriction enzymes to study eukaryotic DNA 

methylation: I. The methylation pattern in ribosomal DNA from Xenopus laevis. J 
Mol Biol 118: 27-47. 

Bird A.P. (1980) DNA methylation and the frequency of CpG in animal DNA. Nucleic 
Acids Res 8: 1499-1504. 

Bird A.P. (1995) Gene number, noise reduction and biological complexity. Trends Genet 
11: 94-100. 

Bird A.P. and Wolffe A.P. (1999) Methylation-induced repression--belts, braces, and 
chromatin. Cell 99: 451-454. 

Blackledge N.P., Long H.K., Zhou J.C., Kriaucionis S., Patient R. and Klose R.J. (2012) 
Bio-CAP: a versatile and highly sensitive technique to purify and characterise 
regions of non-methylated DNA. Nucleic Acids Res 40: e32. 

Booth M.J., Branco M.R., Ficz G., Oxley D., Krueger F., Reik W. and Balasubramanian S. 
(2012) Quantitative sequencing of 5-methylcytosine and 5-hydroxymethylcytosine 
at single-base resolution. Science 336: 934-937. 

Borgel J., Guibert S., Li Y., Chiba H., Schubeler D., Sasaki H., Forne T. and Weber M. 
(2010) Targets and dynamics of promoter DNA methylation during early mouse 
development. Nat Genet 42: 1093-1100. 

Boyer L.A., Lee T.I., Cole M.F., Johnstone S.E., Levine S.S., Zucker J.P., Guenther M.G., 
Kumar R.M., Murray H.L., Jenner R.G., Gifford D.K., Melton D.A., Jaenisch R. 
and Young R.A. (2005) Core transcriptional regulatory circuitry in human 
embryonic stem cells. Cell 122: 947-956. 

Boyes J. and Bird A. (1992) Repression of genes by DNA methylation depends on CpG 
density and promoter strength: evidence for involvement of a methyl-CpG binding 
protein. EMBO J 11: 327-333. 

Brandeis M., Frank D., Keshet I., Siegfried Z., Mendelsohn M., Nemes A., Temper V., 
Razin A. and Cedar H. (1994) Sp1 elements protect a CpG island from de novo 
methylation. Nature 371: 435-438. 

Brennecke J., Aravin A.A., Stark A., Dus M., Kellis M., Sachidanandam R. and Hannon 
G.J. (2007) Discrete small RNA-generating loci as master regulators of 
transposon activity in Drosophila. Cell 128: 1089-1103. 

Brinkman A.B., Gu H., Bartels S.J., Zhang Y., Matarese F., Simmer F., Marks H., Bock C., 
Gnirke A., Meissner A. and Stunnenberg H.G. (2012) Sequential ChIP-bisulfite 



References 89 

sequencing enables direct genome-scale investigation of chromatin and DNA 
methylation cross-talk. Genome Res 22: 1128-1138. 

Brownell J.E. and Allis C.D. (1996) Special HATs for special occasions: linking histone 
acetylation to chromatin assembly and gene activation. Curr Opin Genet Dev 6: 
176-184. 

Brownell J.E., Zhou J., Ranalli T., Kobayashi R., Edmondson D.G., Roth S.Y. and Allis 
C.D. (1996) Tetrahymena histone acetyltransferase A: a homolog to yeast Gcn5p 
linking histone acetylation to gene activation. Cell 84: 843-851. 

Burger L., Gaidatzis D., Schubeler D. and Stadler M.B. (2013) Identification of active 
regulatory regions from DNA methylation data. Nucleic Acids Res 41: e155. 

Campanero M.R., Armstrong M.I. and Flemington E.K. (2000) CpG methylation as a 
mechanism for the regulation of E2F activity. Proc Natl Acad Sci U S A 97: 6481-
6486. 

Caravaca J.M., Donahue G., Becker J.S., He X., Vinson C. and Zaret K.S. (2013) 
Bookmarking by specific and nonspecific binding of FoxA1 pioneer factor to 
mitotic chromosomes. Genes Dev 27: 251-260. 

Carlson L.L., Page A.W. and Bestor T.H. (1992) Properties and localization of DNA 
methyltransferase in preimplantation mouse embryos: implications for genomic 
imprinting. Genes Dev 6: 2536-2541. 

Carr A. and Biggin M.D. (1999) A comparison of in vivo and in vitro DNA-binding 
specificities suggests a new model for homeoprotein DNA binding in Drosophila 
embryos. EMBO J 18: 1598-1608. 

Carroll J.S., Meyer C.A., Song J., Li W., Geistlinger T.R., Eeckhoute J., Brodsky A.S., 
Keeton E.K., Fertuck K.C., Hall G.F., Wang Q., Bekiranov S., Sementchenko V., 
Fox E.A., Silver P.A., Gingeras T.R., Liu X.S. and Brown M. (2006) Genome-wide 
analysis of estrogen receptor binding sites. Nat Genet 38: 1289-1297. 

Challen G.A., Sun D., Jeong M., Luo M., Jelinek J., Berg J.S., Bock C., Vasanthakumar 
A., Gu H., Xi Y., Liang S., Lu Y., Darlington G.J., Meissner A., Issa J.P., Godley 
L.A., Li W. and Goodell M.A. (2012) Dnmt3a is essential for hematopoietic stem 
cell differentiation. Nat Genet 44: 23-31. 

Chambeyron S. and Bickmore W.A. (2004) Does looping and clustering in the nucleus 
regulate gene expression? Curr Opin Cell Biol 16: 256-262. 

Chen C.C., Wang K.Y. and Shen C.K. (2012) The mammalian de novo DNA 
methyltransferases DNMT3A and DNMT3B are also DNA 5-
hydroxymethylcytosine dehydroxymethylases. J Biol Chem 287: 33116-33121. 

Chen C.C., Wang K.Y. and Shen C.K. (2013a) DNA 5-methylcytosine demethylation 
activities of the mammalian DNA methyltransferases. J Biol Chem 288: 9084-
9091. 

Chen C.C., Xiao S., Xie D., Cao X., Song C.X., Wang T., He C. and Zhong S. (2013b) 
Understanding variation in transcription factor binding by modeling transcription 
factor genome-epigenome interactions. PLoS Comput Biol 9: e1003367. 

Chen T., Ueda Y., Dodge J.E., Wang Z. and Li E. (2003) Establishment and maintenance 
of genomic methylation patterns in mouse embryonic stem cells by Dnmt3a and 
Dnmt3b. Mol Cell Biol 23: 5594-5605. 

Chu B.W., Banaszynski L.A., Chen L.C. and Wandless T.J. (2008) Recent progress with 
FKBP-derived destabilizing domains. Bioorg Med Chem Lett 18: 5941-5944. 

Cirillo L.A., Lin F.R., Cuesta I., Friedman D., Jarnik M. and Zaret K.S. (2002) Opening of 
compacted chromatin by early developmental transcription factors HNF3 (FoxA) 
and GATA-4. Mol Cell 9: 279-289. 

Clapier C.R. and Cairns B.R. (2009) The biology of chromatin remodeling complexes. 
Annu Rev Biochem 78: 273-304. 

Collings C.K., Waddell P.J. and Anderson J.N. (2013) Effects of DNA methylation on 
nucleosome stability. Nucleic Acids Res 41: 2918-2931. 



90 References 

Colquitt B.M., Allen W.E., Barnea G. and Lomvardas S. (2013) Alteration of genic 5-
hydroxymethylcytosine patterning in olfactory neurons correlates with changes in 
gene expression and cell identity. Proc Natl Acad Sci U S A 110: 14682-14687. 

Corden J., Wasylyk B., Buchwalder A., Sassone-Corsi P., Kedinger C. and Chambon P. 
(1980) Promoter sequences of eukaryotic protein-coding genes. Science 209: 
1406-1414. 

Cosma M.P., Tanaka T. and Nasmyth K. (1999) Ordered recruitment of transcription and 
chromatin remodeling factors to a cell cycle- and developmentally regulated 
promoter. Cell 97: 299-311. 

Coulondre C., Miller J.H., Farabaugh P.J. and Gilbert W. (1978) Molecular basis of base 
substitution hotspots in Escherichia coli. Nature 274: 775-780. 

Cross S.H., Charlton J.A., Nan X. and Bird A.P. (1994) Purification of CpG islands using 
a methylated DNA binding column. Nat Genet 6: 236-244. 

Davidson E.H. (2010) Emerging properties of animal gene regulatory networks. Nature 
468: 911-920. 

Dawlaty M.M., Breiling A., Le T., Raddatz G., Barrasa M.I., Cheng A.W., Gao Q., Powell 
B.E., Li Z., Xu M., Faull K.F., Lyko F. and Jaenisch R. (2013) Combined 
deficiency of Tet1 and Tet2 causes epigenetic abnormalities but is compatible 
with postnatal development. Dev Cell 24: 310-323. 

De Koning L., Corpet A., Haber J.E. and Almouzni G. (2007) Histone chaperones: an 
escort network regulating histone traffic. Nat Struct Mol Biol 14: 997-1007. 

Deal R.B., Henikoff J.G. and Henikoff S. (2010) Genome-wide kinetics of nucleosome 
turnover determined by metabolic labeling of histones. Science 328: 1161-1164. 

Dean W., Santos F., Stojkovic M., Zakhartchenko V., Walter J., Wolf E. and Reik W. 
(2001) Conservation of methylation reprogramming in mammalian development: 
aberrant reprogramming in cloned embryos. Proc Natl Acad Sci U S A 98: 13734-
13738. 

Deaton A.M. and Bird A. (2011) CpG islands and the regulation of transcription. Genes 
Dev 25: 1010-1022. 

Ding J., Xu H., Faiola F., Ma'ayan A. and Wang J. (2012) Oct4 links multiple epigenetic 
pathways to the pluripotency network. Cell Res 22: 155-167. 

Dion M.F., Kaplan T., Kim M., Buratowski S., Friedman N. and Rando O.J. (2007) 
Dynamics of replication-independent histone turnover in budding yeast. Science 
315: 1405-1408. 

Dodge J.E., Okano M., Dick F., Tsujimoto N., Chen T., Wang S., Ueda Y., Dyson N. and 
Li E. (2005) Inactivation of Dnmt3b in mouse embryonic fibroblasts results in DNA 
hypomethylation, chromosomal instability, and spontaneous immortalization. J 
Biol Chem 280: 17986-17991. 

Elgin S.C. (1996) Heterochromatin and gene regulation in Drosophila. Curr Opin Genet 
Dev 6: 193-202. 

Elliott E., Ezra-Nevo G., Regev L., Neufeld-Cohen A. and Chen A. (2010) Resilience to 
social stress coincides with functional DNA methylation of the Crf gene in adult 
mice. Nat Neurosci 13: 1351-1353. 

Falvo J.V., Thanos D. and Maniatis T. (1995) Reversal of intrinsic DNA bends in the IFN 
beta gene enhancer by transcription factors and the architectural protein HMG 
I(Y). Cell 83: 1101-1111. 

Feil R., Wagner J., Metzger D. and Chambon P. (1997) Regulation of Cre recombinase 
activity by mutated estrogen receptor ligand-binding domains. Biochem Biophys 
Res Commun 237: 752-757. 

Feldman N., Gerson A., Fang J., Li E., Zhang Y., Shinkai Y., Cedar H. and Bergman Y. 
(2006) G9a-mediated irreversible epigenetic inactivation of Oct-3/4 during early 
embryogenesis. Nat Cell Biol 8: 188-194. 



References 91 

Feldmann A., Ivanek R., Murr R., Gaidatzis D., Burger L. and Schubeler D. (2013) 
Transcription factor occupancy can mediate active turnover of DNA methylation at 
regulatory regions. PLoS Genet 9: e1003994. 

Feng J., Zhou Y., Campbell S.L., Le T., Li E., Sweatt J.D., Silva A.J. and Fan G. (2010) 
Dnmt1 and Dnmt3a maintain DNA methylation and regulate synaptic function in 
adult forebrain neurons. Nat Neurosci 13: 423-430. 

Filion G.J., Zhenilo S., Salozhin S., Yamada D., Prokhortchouk E. and Defossez P.A. 
(2006) A family of human zinc finger proteins that bind methylated DNA and 
repress transcription. Mol Cell Biol 26: 169-181. 

Filion G.J., van Bemmel J.G., Braunschweig U., Talhout W., Kind J., Ward L.D., Brugman 
W., de Castro I.J., Kerkhoven R.M., Bussemaker H.J. and van Steensel B. (2010) 
Systematic protein location mapping reveals five principal chromatin types in 
Drosophila cells. Cell 143: 212-224. 

Franchini D.M., Schmitz K.M. and Petersen-Mahrt S.K. (2012) 5-Methylcytosine DNA 
demethylation: more than losing a methyl group. Annu Rev Genet 46: 419-441. 

Fraser P. (2006) Transcriptional control thrown for a loop. Curr Opin Genet Dev 16: 490-
495. 

Frauer C., Hoffmann T., Bultmann S., Casa V., Cardoso M.C., Antes I. and Leonhardt H. 
(2011) Recognition of 5-hydroxymethylcytosine by the Uhrf1 SRA domain. PLoS 
One 6: e21306. 

Freitag M., Williams R.L., Kothe G.O. and Selker E.U. (2002) A cytosine 
methyltransferase homologue is essential for repeat-induced point mutation in 
Neurospora crassa. Proc Natl Acad Sci U S A 99: 8802-8807. 

Fromm M. and Berg P. (1983) Simian virus 40 early- and late-region promoter functions 
are enhanced by the 72-base-pair repeat inserted at distant locations and 
inverted orientations. Mol Cell Biol 3: 991-999. 

Frommer M., McDonald L.E., Millar D.S., Collis C.M., Watt F., Grigg G.W., Molloy P.L. 
and Paul C.L. (1992) A genomic sequencing protocol that yields a positive display 
of 5-methylcytosine residues in individual DNA strands. Proc Natl Acad Sci U S A 
89: 1827-1831. 

Fu Y., Sinha M., Peterson C.L. and Weng Z. (2008) The insulator binding protein CTCF 
positions 20 nucleosomes around its binding sites across the human genome. 
PLoS Genet 4: e1000138. 

Furey T.S. (2012) ChIP-seq and beyond: new and improved methodologies to detect and 
characterize protein-DNA interactions. Nat Rev Genet 13: 840-852. 

Furner I.J. and Matzke M. (2011) Methylation and demethylation of the Arabidopsis 
genome. Curr Opin Plant Biol 14: 137-141. 

Gaidatzis D., Burger L., Murr R., Lerch A., Dessus-Babus S., Schubeler D. and Stadler 
M.B. (2014) DNA sequence explains seemingly disordered methylation levels in 
partially methylated domains of Mammalian genomes. PLoS Genet 10: 
e1004143. 

Gannon F., O'Hare K., Perrin F., LePennec J.P., Benoist C., Cochet M., Breathnach R., 
Royal A., Garapin A., Cami B. and Chambon P. (1979) Organisation and 
sequences at the 5' end of a cloned complete ovalbumin gene. Nature 278: 428-
434. 

Gaudet F., Rideout W.M., 3rd, Meissner A., Dausman J., Leonhardt H. and Jaenisch R. 
(2004) Dnmt1 expression in pre- and postimplantation embryogenesis and the 
maintenance of IAP silencing. Mol Cell Biol 24: 1640-1648. 

Gehring M., Reik W. and Henikoff S. (2009) DNA demethylation by DNA repair. Trends 
Genet 25: 82-90. 

Gillies S.D., Morrison S.L., Oi V.T. and Tonegawa S. (1983) A tissue-specific transcription 
enhancer element is located in the major intron of a rearranged immunoglobulin 
heavy chain gene. Cell 33: 717-728. 



92 References 

Globisch D., Munzel M., Muller M., Michalakis S., Wagner M., Koch S., Bruckl T., Biel M. 
and Carell T. (2010) Tissue distribution of 5-hydroxymethylcytosine and search for 
active demethylation intermediates. PLoS One 5: e15367. 

Goll M.G. and Bestor T.H. (2005) Eukaryotic cytosine methyltransferases. Annu Rev 
Biochem 74: 481-514. 

Gorovsky M.A., Hattman S. and Pleger G.L. (1973) ( 6 N)methyl adenine in the nuclear 
DNA of a eucaryote, Tetrahymena pyriformis. J Cell Biol 56: 697-701. 

Goto K., Numata M., Komura J.I., Ono T., Bestor T.H. and Kondo H. (1994) Expression of 
DNA methyltransferase gene in mature and immature neurons as well as 
proliferating cells in mice. Differentiation 56: 39-44. 

Gowher H., Loutchanwoot P., Vorobjeva O., Handa V., Jurkowska R.Z., Jurkowski T.P. 
and Jeltsch A. (2006) Mutational analysis of the catalytic domain of the murine 
Dnmt3a DNA-(cytosine C5)-methyltransferase. J Mol Biol 357: 928-941. 

Gregory T.R. (2014) Animal Genome Size Database. http://www.genomesize.com. 
Grewal S.I. and Rice J.C. (2004) Regulation of heterochromatin by histone methylation 

and small RNAs. Curr Opin Cell Biol 16: 230-238. 
Grosschedl R., Wasylyk B., Chambon P. and Birnstiel M.L. (1981) Point mutation in the 

TATA box curtails expression of sea urchin H2A histone gene in vivo. Nature 294: 
178-180. 

Gu T.P., Guo F., Yang H., Wu H.P., Xu G.F., Liu W., Xie Z.G., Shi L., He X., Jin S.G., Iqbal 
K., Shi Y.G., Deng Z., Szabo P.E., Pfeifer G.P., Li J. and Xu G.L. (2011) The role 
of Tet3 DNA dioxygenase in epigenetic reprogramming by oocytes. Nature 477: 
606-610. 

Guo J.U., Su Y., Zhong C., Ming G.L. and Song H. (2011a) Hydroxylation of 5-
methylcytosine by TET1 promotes active DNA demethylation in the adult brain. 
Cell 145: 423-434. 

Guo J.U., Ma D.K., Mo H., Ball M.P., Jang M.H., Bonaguidi M.A., Balazer J.A., Eaves 
H.L., Xie B., Ford E., Zhang K., Ming G.L., Gao Y. and Song H. (2011b) Neuronal 
activity modifies the DNA methylation landscape in the adult brain. Nat Neurosci 
14: 1345-1351. 

Habibi E., Brinkman A.B., Arand J., Kroeze L.I., Kerstens H.H., Matarese F., Lepikhov K., 
Gut M., Brun-Heath I., Hubner N.C., Benedetti R., Altucci L., Jansen J.H., Walter 
J., Gut I.G., Marks H. and Stunnenberg H.G. (2013) Whole-genome bisulfite 
sequencing of two distinct interconvertible DNA methylomes of mouse embryonic 
stem cells. Cell Stem Cell 13: 360-369. 

Hackett J.A., Reddington J.P., Nestor C.E., Dunican D.S., Branco M.R., Reichmann J., 
Reik W., Surani M.A., Adams I.R. and Meehan R.R. (2012) Promoter DNA 
methylation couples genome-defence mechanisms to epigenetic reprogramming 
in the mouse germline. Development 139: 3623-3632. 

Hajkova P., Erhardt S., Lane N., Haaf T., El-Maarri O., Reik W., Walter J. and Surani M.A. 
(2002) Epigenetic reprogramming in mouse primordial germ cells. Mech Dev 117: 
15-23. 

Handa V. and Jeltsch A. (2005) Profound flanking sequence preference of Dnmt3a and 
Dnmt3b mammalian DNA methyltransferases shape the human epigenome. J 
Mol Biol 348: 1103-1112. 

Hark A.T., Schoenherr C.J., Katz D.J., Ingram R.S., Levorse J.M. and Tilghman S.M. 
(2000) CTCF mediates methylation-sensitive enhancer-blocking activity at the 
H19/Igf2 locus. Nature 405: 486-489. 

Harrington M.A., Jones P.A., Imagawa M. and Karin M. (1988) Cytosine methylation does 
not affect binding of transcription factor Sp1. Proc Natl Acad Sci U S A 85: 2066-
2070. 

Hashimoto H., Liu Y., Upadhyay A.K., Chang Y., Howerton S.B., Vertino P.M., Zhang X. 
and Cheng X. (2012) Recognition and potential mechanisms for replication and 
erasure of cytosine hydroxymethylation. Nucleic Acids Res 40: 4841-4849. 



References 93 

Haupt S., Edenhofer F., Peitz M., Leinhaas A. and Brustle O. (2007) Stage-specific 
conditional mutagenesis in mouse embryonic stem cell-derived neural cells and 
postmitotic neurons by direct delivery of biologically active Cre recombinase. 
Stem Cells 25: 181-188. 

He Y.F., Li B.Z., Li Z., Liu P., Wang Y., Tang Q., Ding J., Jia Y., Chen Z., Li L., Sun Y., Li 
X., Dai Q., Song C.X., Zhang K., He C. and Xu G.L. (2011) Tet-mediated 
formation of 5-carboxylcytosine and its excision by TDG in mammalian DNA. 
Science 333: 1303-1307. 

Heintzman N.D., Stuart R.K., Hon G., Fu Y., Ching C.W., Hawkins R.D., Barrera L.O., 
Van Calcar S., Qu C., Ching K.A., Wang W., Weng Z., Green R.D., Crawford G.E. 
and Ren B. (2007) Distinct and predictive chromatin signatures of transcriptional 
promoters and enhancers in the human genome. Nat Genet 39: 311-318. 

Heintzman N.D. and Ren B. (2009) Finding distal regulatory elements in the human 
genome. Curr Opin Genet Dev 19: 541-549. 

Heintzman N.D., Hon G.C., Hawkins R.D., Kheradpour P., Stark A., Harp L.F., Ye Z., Lee 
L.K., Stuart R.K., Ching C.W., Ching K.A., Antosiewicz-Bourget J.E., Liu H., 
Zhang X., Green R.D., Lobanenkov V.V., Stewart R., Thomson J.A., Crawford 
G.E., Kellis M. and Ren B. (2009) Histone modifications at human enhancers 
reflect global cell-type-specific gene expression. Nature 459: 108-112. 

Hodges E., Molaro A., Dos Santos C.O., Thekkat P., Song Q., Uren P.J., Park J., Butler 
J., Rafii S., McCombie W.R., Smith A.D. and Hannon G.J. (2011) Directional DNA 
methylation changes and complex intermediate states accompany lineage 
specificity in the adult hematopoietic compartment. Mol Cell 44: 17-28. 

Holliday R. and Pugh J.E. (1975) DNA modification mechanisms and gene activity during 
development. Science 187: 226-232. 

Hollister J.D. and Gaut B.S. (2009) Epigenetic silencing of transposable elements: a 
trade-off between reduced transposition and deleterious effects on neighboring 
gene expression. Genome Res 19: 1419-1428. 

Hon G.C., Rajagopal N., Shen Y., McCleary D.F., Yue F., Dang M.D. and Ren B. (2013) 
Epigenetic memory at embryonic enhancers identified in DNA methylation maps 
from adult mouse tissues. Nat Genet 45: 1198-1206. 

Howlett S.K. and Reik W. (1991) Methylation levels of maternal and paternal genomes 
during preimplantation development. Development 113: 119-127. 

Hsieh C.L. (1994) Dependence of transcriptional repression on CpG methylation density. 
Mol Cell Biol 14: 5487-5494. 

Hsieh C.L. (1999) Evidence that protein binding specifies sites of DNA demethylation. 
Mol Cell Biol 19: 46-56. 

Hu S., Wan J., Su Y., Song Q., Zeng Y., Nguyen H.N., Shin J., Cox E., Rho H.S., 
Woodard C., Xia S., Liu S., Lyu H., Ming G.L., Wade H., Song H., Qian J. and 
Zhu H. (2013) DNA methylation presents distinct binding sites for human 
transcription factors. Elife 2: e00726. 

Huang Y., Pastor W.A., Shen Y., Tahiliani M., Liu D.R. and Rao A. (2010) The behaviour 
of 5-hydroxymethylcytosine in bisulfite sequencing. PLoS One 5: e8888. 

Huang Y., Chavez L., Chang X., Wang X., Pastor W.A., Kang J., Zepeda-Martinez J.A., 
Pape U.J., Jacobsen S.E., Peters B. and Rao A. (2014) Distinct roles of the 
methylcytosine oxidases Tet1 and Tet2 in mouse embryonic stem cells. Proc Natl 
Acad Sci U S A 111: 1361-1366. 

Huangfu D., Maehr R., Guo W., Eijkelenboom A., Snitow M., Chen A.E. and Melton D.A. 
(2008) Induction of pluripotent stem cells by defined factors is greatly improved 
by small-molecule compounds. Nat Biotechnol 26: 795-797. 

Iguchi-Ariga S.M. and Schaffner W. (1989) CpG methylation of the cAMP-responsive 
enhancer/promoter sequence TGACGTCA abolishes specific factor binding as 
well as transcriptional activation. Genes Dev 3: 612-619. 



94 References 

Inoue A. and Zhang Y. (2011) Replication-dependent loss of 5-hydroxymethylcytosine in 
mouse preimplantation embryos. Science 334: 194. 

Ioshikhes I.P., Albert I., Zanton S.J. and Pugh B.F. (2006) Nucleosome positions 
predicted through comparative genomics. Nat Genet 38: 1210-1215. 

Ito S., D'Alessio A.C., Taranova O.V., Hong K., Sowers L.C. and Zhang Y. (2010) Role of 
Tet proteins in 5mC to 5hmC conversion, ES-cell self-renewal and inner cell mass 
specification. Nature 466: 1129-1133. 

Ito S., Shen L., Dai Q., Wu S.C., Collins L.B., Swenberg J.A., He C. and Zhang Y. (2011) 
Tet proteins can convert 5-methylcytosine to 5-formylcytosine and 5-
carboxylcytosine. Science 333: 1300-1303. 

Iurlaro M., Ficz G., Oxley D., Raiber E.A., Bachman M., Booth M.J., Andrews S., 
Balasubramanian S. and Reik W. (2013) A screen for hydroxymethylcytosine and 
formylcytosine binding proteins suggests functions in transcription and chromatin 
regulation. Genome Biol 14: R119. 

Iyer V.R., Horak C.E., Scafe C.S., Botstein D., Snyder M. and Brown P.O. (2001) 
Genomic binding sites of the yeast cell-cycle transcription factors SBF and MBF. 
Nature 409: 533-538. 

Izzo A. and Schneider R. (2010) Chatting histone modifications in mammals. Brief Funct 
Genomics 9: 429-443. 

Jackson M., Krassowska A., Gilbert N., Chevassut T., Forrester L., Ansell J. and 
Ramsahoye B. (2004) Severe global DNA hypomethylation blocks differentiation 
and induces histone hyperacetylation in embryonic stem cells. Mol Cell Biol 24: 
8862-8871. 

Jahner D., Stuhlmann H., Stewart C.L., Harbers K., Lohler J., Simon I. and Jaenisch R. 
(1982) De novo methylation and expression of retroviral genomes during mouse 
embryogenesis. Nature 298: 623-628. 

Jahner D. and Jaenisch R. (1985) Retrovirus-induced de novo methylation of flanking 
host sequences correlates with gene inactivity. Nature 315: 594-597. 

Jamai A., Imoberdorf R.M. and Strubin M. (2007) Continuous histone H2B and 
transcription-dependent histone H3 exchange in yeast cells outside of replication. 
Mol Cell 25: 345-355. 

James T.C., Eissenberg J.C., Craig C., Dietrich V., Hobson A. and Elgin S.C. (1989) 
Distribution patterns of HP1, a heterochromatin-associated nonhistone 
chromosomal protein of Drosophila. Eur J Cell Biol 50: 170-180. 

Jeong M., Sun D., Luo M., Huang Y., Challen G.A., Rodriguez B., Zhang X., Chavez L., 
Wang H., Hannah R., Kim S.B., Yang L., Ko M., Chen R., Gottgens B., Lee J.S., 
Gunaratne P., Godley L.A., Darlington G.J., Rao A., Li W. and Goodell M.A. 
(2014) Large conserved domains of low DNA methylation maintained by Dnmt3a. 
Nat Genet 46: 17-23. 

Jeong S., Liang G., Sharma S., Lin J.C., Choi S.H., Han H., Yoo C.B., Egger G., Yang 
A.S. and Jones P.A. (2009) Selective anchoring of DNA methyltransferases 3A 
and 3B to nucleosomes containing methylated DNA. Mol Cell Biol 29: 5366-5376. 

John S., Sabo P.J., Thurman R.E., Sung M.H., Biddie S.C., Johnson T.A., Hager G.L. 
and Stamatoyannopoulos J.A. (2011) Chromatin accessibility pre-determines 
glucocorticoid receptor binding patterns. Nat Genet 43: 264-268. 

Johnson A.D., Meyer B.J. and Ptashne M. (1979) Interactions between DNA-bound 
repressors govern regulation by the lambda phage repressor. Proc Natl Acad Sci 
U S A 76: 5061-5065. 

Jones P.A. and Taylor S.M. (1980) Cellular differentiation, cytidine analogs and DNA 
methylation. Cell 20: 85-93. 

Jones P.L., Veenstra G.J., Wade P.A., Vermaak D., Kass S.U., Landsberger N., 
Strouboulis J. and Wolffe A.P. (1998) Methylated DNA and MeCP2 recruit histone 
deacetylase to repress transcription. Nat Genet 19: 187-191. 



References 95 

Joseph R., Orlov Y.L., Huss M., Sun W., Kong S.L., Ukil L., Pan Y.F., Li G., Lim M., 
Thomsen J.S., Ruan Y., Clarke N.D., Prabhakar S., Cheung E. and Liu E.T. 
(2010) Integrative model of genomic factors for determining binding site selection 
by estrogen receptor-alpha. Mol Syst Biol 6: 456. 

Jost J.P. (1993) Nuclear extracts of chicken embryos promote an active demethylation of 
DNA by excision repair of 5-methyldeoxycytidine. Proc Natl Acad Sci U S A 90: 
4684-4688. 

Kadauke S., Udugama M.I., Pawlicki J.M., Achtman J.C., Jain D.P., Cheng Y., Hardison 
R.C. and Blobel G.A. (2012) Tissue-specific mitotic bookmarking by 
hematopoietic transcription factor GATA1. Cell 150: 725-737. 

Kanduri C., Pant V., Loukinov D., Pugacheva E., Qi C.F., Wolffe A., Ohlsson R. and 
Lobanenkov V.V. (2000) Functional association of CTCF with the insulator 
upstream of the H19 gene is parent of origin-specific and methylation-sensitive. 
Curr Biol 10: 853-856. 

Kangaspeska S., Stride B., Metivier R., Polycarpou-Schwarz M., Ibberson D., 
Carmouche R.P., Benes V., Gannon F. and Reid G. (2008) Transient cyclical 
methylation of promoter DNA. Nature 452: 112-115. 

Kaplan N., Moore I.K., Fondufe-Mittendorf Y., Gossett A.J., Tillo D., Field Y., LeProust 
E.M., Hughes T.R., Lieb J.D., Widom J. and Segal E. (2009) The DNA-encoded 
nucleosome organization of a eukaryotic genome. Nature 458: 362-366. 

Kaplan T., Li X.Y., Sabo P.J., Thomas S., Stamatoyannopoulos J.A., Biggin M.D. and 
Eisen M.B. (2011) Quantitative models of the mechanisms that control genome-
wide patterns of transcription factor binding during early Drosophila development. 
PLoS Genet 7: e1001290. 

Kellinger M.W., Song C.X., Chong J., Lu X.Y., He C. and Wang D. (2012) 5-
formylcytosine and 5-carboxylcytosine reduce the rate and substrate specificity of 
RNA polymerase II transcription. Nat Struct Mol Biol 19: 831-833. 

Kelly T.K., Liu Y., Lay F.D., Liang G., Berman B.P. and Jones P.A. (2012) Genome-wide 
mapping of nucleosome positioning and DNA methylation within individual DNA 
molecules. Genome Res 22: 2497-2506. 

Kharchenko P.V., Alekseyenko A.A., Schwartz Y.B., Minoda A., Riddle N.C., Ernst J., 
Sabo P.J., Larschan E., Gorchakov A.A., Gu T., Linder-Basso D., Plachetka A., 
Shanower G., Tolstorukov M.Y., Luquette L.J., Xi R., Jung Y.L., Park R.W., Bishop 
E.P., Canfield T.K., Sandstrom R., Thurman R.E., MacAlpine D.M., 
Stamatoyannopoulos J.A., Kellis M., Elgin S.C., Kuroda M.I., Pirrotta V., Karpen 
G.H. and Park P.J. (2011) Comprehensive analysis of the chromatin landscape in 
Drosophila melanogaster. Nature 471: 480-485. 

Kidwell M.G. (2002) Transposable elements and the evolution of genome size in 
eukaryotes. Genetica 115: 49-63. 

Kim J., Kollhoff A., Bergmann A. and Stubbs L. (2003) Methylation-sensitive binding of 
transcription factor YY1 to an insulator sequence within the paternally expressed 
imprinted gene, Peg3. Hum Mol Genet 12: 233-245. 

Klose R.J. and Bird A.P. (2006) Genomic DNA methylation: the mark and its mediators. 
Trends Biochem Sci 31: 89-97. 

Klug M., Heinz S., Gebhard C., Schwarzfischer L., Krause S.W., Andreesen R. and Rehli 
M. (2010) Active DNA demethylation in human postmitotic cells correlates with 
activating histone modifications, but not transcription levels. Genome Biol 11: 
R63. 

Knezetic J.A. and Luse D.S. (1986) The presence of nucleosomes on a DNA template 
prevents initiation by RNA polymerase II in vitro. Cell 45: 95-104. 

Kriaucionis S. and Heintz N. (2009) The nuclear DNA base 5-hydroxymethylcytosine is 
present in Purkinje neurons and the brain. Science 324: 929-930. 

Krogan N.J., Dover J., Wood A., Schneider J., Heidt J., Boateng M.A., Dean K., Ryan 
O.W., Golshani A., Johnston M., Greenblatt J.F. and Shilatifard A. (2003) The 



96 References 

Paf1 complex is required for histone H3 methylation by COMPASS and Dot1p: 
linking transcriptional elongation to histone methylation. Mol Cell 11: 721-729. 

Krueger F. and Andrews S.R. (2011) Bismark: a flexible aligner and methylation caller for 
Bisulfite-Seq applications. Bioinformatics 27: 1571-1572. 

Kubosaki A., Tomaru Y., Furuhata E., Suzuki T., Shin J.W., Simon C., Ando Y., Hasegawa 
R., Hayashizaki Y. and Suzuki H. (2012) CpG site-specific alteration of 
hydroxymethylcytosine to methylcytosine beyond DNA replication. Biochem 
Biophys Res Commun 426: 141-147. 

La Salle S., Mertineit C., Taketo T., Moens P.B., Bestor T.H. and Trasler J.M. (2004) 
Windows for sex-specific methylation marked by DNA methyltransferase 
expression profiles in mouse germ cells. Dev Biol 268: 403-415. 

Langmead B., Trapnell C., Pop M. and Salzberg S.L. (2009) Ultrafast and memory-
efficient alignment of short DNA sequences to the human genome. Genome Biol 
10: R25. 

LaPlant Q., Vialou V., Covington H.E., 3rd, Dumitriu D., Feng J., Warren B.L., Maze I., 
Dietz D.M., Watts E.L., Iniguez S.D., Koo J.W., Mouzon E., Renthal W., Hollis F., 
Wang H., Noonan M.A., Ren Y., Eisch A.J., Bolanos C.A., Kabbaj M., Xiao G., 
Neve R.L., Hurd Y.L., Oosting R.S., Fan G., Morrison J.H. and Nestler E.J. (2010) 
Dnmt3a regulates emotional behavior and spine plasticity in the nucleus 
accumbens. Nat Neurosci 13: 1137-1143. 

Lee J., Inoue K., Ono R., Ogonuki N., Kohda T., Kaneko-Ishino T., Ogura A. and Ishino F. 
(2002) Erasing genomic imprinting memory in mouse clone embryos produced 
from day 11.5 primordial germ cells. Development 129: 1807-1817. 

Lei H., Oh S.P., Okano M., Juttermann R., Goss K.A., Jaenisch R. and Li E. (1996) De 
novo DNA cytosine methyltransferase activities in mouse embryonic stem cells. 
Development 122: 3195-3205. 

Lenhard B., Sandelin A. and Carninci P. (2012) Metazoan promoters: emerging 
characteristics and insights into transcriptional regulation. Nat Rev Genet 13: 
233-245. 

Levine M. and Tjian R. (2003) Transcription regulation and animal diversity. Nature 424: 
147-151. 

Li E., Beard C. and Jaenisch R. (1993) Role for DNA methylation in genomic imprinting. 
Nature 366: 362-365. 

Li G., Margueron R., Hu G., Stokes D., Wang Y.H. and Reinberg D. (2010) Highly 
compacted chromatin formed in vitro reflects the dynamics of transcription 
activation in vivo. Mol Cell 38: 41-53. 

Lickwar C.R., Mueller F., Hanlon S.E., McNally J.G. and Lieb J.D. (2012) Genome-wide 
protein-DNA binding dynamics suggest a molecular clutch for transcription factor 
function. Nature 484: 251-255. 

Lienert F., Wirbelauer C., Som I., Dean A., Mohn F. and Schubeler D. (2011) 
Identification of genetic elements that autonomously determine DNA methylation 
states. Nat Genet 43: 1091-1097. 

Lin I.G., Tomzynski T.J., Ou Q. and Hsieh C.L. (2000) Modulation of DNA binding protein 
affinity directly affects target site demethylation. Mol Cell Biol 20: 2343-2349. 

Lin I.G., Han L., Taghva A., O'Brien L.E. and Hsieh C.L. (2002) Murine de novo 
methyltransferase Dnmt3a demonstrates strand asymmetry and site preference 
in the methylation of DNA in vitro. Mol Cell Biol 22: 704-723. 

Lister R., O'Malley R.C., Tonti-Filippini J., Gregory B.D., Berry C.C., Millar A.H. and Ecker 
J.R. (2008) Highly integrated single-base resolution maps of the epigenome in 
Arabidopsis. Cell 133: 523-536. 

Lister R., Pelizzola M., Dowen R.H., Hawkins R.D., Hon G., Tonti-Filippini J., Nery J.R., 
Lee L., Ye Z., Ngo Q.M., Edsall L., Antosiewicz-Bourget J., Stewart R., Ruotti V., 
Millar A.H., Thomson J.A., Ren B. and Ecker J.R. (2009) Human DNA 



References 97 

methylomes at base resolution show widespread epigenomic differences. Nature 
462: 315-322. 

Lister R., Mukamel E.A., Nery J.R., Urich M., Puddifoot C.A., Johnson N.D., Lucero J., 
Huang Y., Dwork A.J., Schultz M.D., Yu M., Tonti-Filippini J., Heyn H., Hu S., Wu 
J.C., Rao A., Esteller M., He C., Haghighi F.G., Sejnowski T.J., Behrens M.M. and 
Ecker J.R. (2013) Global epigenomic reconfiguration during mammalian brain 
development. Science 341: 1237905. 

Liu X., Lee C.K., Granek J.A., Clarke N.D. and Lieb J.D. (2006) Whole-genome 
comparison of Leu3 binding in vitro and in vivo reveals the importance of 
nucleosome occupancy in target site selection. Genome Res 16: 1517-1528. 

Liu X., Gao Q., Li P., Zhao Q., Zhang J., Li J., Koseki H. and Wong J. (2013) UHRF1 
targets DNMT1 for DNA methylation through cooperative binding of hemi-
methylated DNA and methylated H3K9. Nat Commun 4: 1563. 

Long H.K., Sims D., Heger A., Blackledge N.P., Kutter C., Wright M.L., Grutzner F., 
Odom D.T., Patient R., Ponting C.P. and Klose R.J. (2013a) Epigenetic 
conservation at gene regulatory elements revealed by non-methylated DNA 
profiling in seven vertebrates. Elife 2: e00348. 

Long H.K., Blackledge N.P. and Klose R.J. (2013b) ZF-CxxC domain-containing proteins, 
CpG islands and the chromatin connection. Biochem Soc Trans 41: 727-740. 

Luger K., Mader A.W., Richmond R.K., Sargent D.F. and Richmond T.J. (1997) Crystal 
structure of the nucleosome core particle at 2.8 A resolution. Nature 389: 251-
260. 

Luger K. (2003) Structure and dynamic behavior of nucleosomes. Curr Opin Genet Dev 
13: 127-135. 

Lupien M., Eeckhoute J., Meyer C.A., Wang Q., Zhang Y., Li W., Carroll J.S., Liu X.S. 
and Brown M. (2008) FoxA1 translates epigenetic signatures into enhancer-
driven lineage-specific transcription. Cell 132: 958-970. 

Luu P.L., Scholer H.R. and Arauzo-Bravo M.J. (2013) Disclosing the crosstalk among 
DNA methylation, transcription factors, and histone marks in human pluripotent 
cells through discovery of DNA methylation motifs. Genome Res 23: 2013-2029. 

Lynch M.D., Smith A.J., De Gobbi M., Flenley M., Hughes J.R., Vernimmen D., Ayyub H., 
Sharpe J.A., Sloane-Stanley J.A., Sutherland L., Meek S., Burdon T., Gibbons 
R.J., Garrick D. and Higgs D.R. (2012) An interspecies analysis reveals a key role 
for unmethylated CpG dinucleotides in vertebrate Polycomb complex recruitment. 
EMBO J 31: 317-329. 

Macleod D., Charlton J., Mullins J. and Bird A.P. (1994) Sp1 sites in the mouse aprt gene 
promoter are required to prevent methylation of the CpG island. Genes Dev 8: 
2282-2292. 

Maeder M.L., Angstman J.F., Richardson M.E., Linder S.J., Cascio V.M., Tsai S.Q., Ho 
Q.H., Sander J.D., Reyon D., Bernstein B.E., Costello J.F., Wilkinson M.F. and 
Joung J.K. (2013) Targeted DNA demethylation and activation of endogenous 
genes using programmable TALE-TET1 fusion proteins. Nat Biotechnol 31: 1137-
1142. 

Martinowich K., Hattori D., Wu H., Fouse S., He F., Hu Y., Fan G. and Sun Y.E. (2003) 
DNA methylation-related chromatin remodeling in activity-dependent BDNF gene 
regulation. Science 302: 890-893. 

Matsuo K., Silke J., Georgiev O., Marti P., Giovannini N. and Rungger D. (1998) An 
embryonic demethylation mechanism involving binding of transcription factors to 
replicating DNA. EMBO J 17: 1446-1453. 

Mayer W., Niveleau A., Walter J., Fundele R. and Haaf T. (2000) Demethylation of the 
zygotic paternal genome. Nature 403: 501-502. 

McGhee J.D. and Ginder G.D. (1979) Specific DNA methylation sites in the vicinity of the 
chicken beta-globin genes. Nature 280: 419-420. 



98 References 

McKay D.J. and Lieb J.D. (2013) A common set of DNA regulatory elements shapes 
Drosophila appendages. Dev Cell 27: 306-318. 

Mellen M., Ayata P., Dewell S., Kriaucionis S. and Heintz N. (2012) MeCP2 binds to 
5hmC enriched within active genes and accessible chromatin in the nervous 
system. Cell 151: 1417-1430. 

Mendenhall E.M., Koche R.P., Truong T., Zhou V.W., Issac B., Chi A.S., Ku M. and 
Bernstein B.E. (2010) GC-rich sequence elements recruit PRC2 in mammalian 
ES cells. PLoS Genet 6: e1001244. 

Merika M., Williams A.J., Chen G., Collins T. and Thanos D. (1998) Recruitment of 
CBP/p300 by the IFN beta enhanceosome is required for synergistic activation of 
transcription. Mol Cell 1: 277-287. 

Metivier R., Gallais R., Tiffoche C., Le Peron C., Jurkowska R.Z., Carmouche R.P., 
Ibberson D., Barath P., Demay F., Reid G., Benes V., Jeltsch A., Gannon F. and 
Salbert G. (2008) Cyclical DNA methylation of a transcriptionally active promoter. 
Nature 452: 45-50. 

Miller J.A. and Widom J. (2003) Collaborative competition mechanism for gene activation 
in vivo. Mol Cell Biol 23: 1623-1632. 

Mohn F., Weber M., Rebhan M., Roloff T.C., Richter J., Stadler M.B., Bibel M. and 
Schubeler D. (2008) Lineage-specific polycomb targets and de novo DNA 
methylation define restriction and potential of neuronal progenitors. Mol Cell 30: 
755-766. 

Mohn F., Weber M., Schubeler D. and Roloff T.C. (2009) Methylated DNA 
immunoprecipitation (MeDIP). Methods Mol Biol 507: 55-64. 

Monk M., Boubelik M. and Lehnert S. (1987) Temporal and regional changes in DNA 
methylation in the embryonic, extraembryonic and germ cell lineages during 
mouse embryo development. Development 99: 371-382. 

Morgan H.D., Dean W., Coker H.A., Reik W. and Petersen-Mahrt S.K. (2004) Activation-
induced cytidine deaminase deaminates 5-methylcytosine in DNA and is 
expressed in pluripotent tissues: implications for epigenetic reprogramming. J Biol 
Chem 279: 52353-52360. 

Morgan H.D., Santos F., Green K., Dean W. and Reik W. (2005) Epigenetic 
reprogramming in mammals. Hum Mol Genet 14 Spec No 1: R47-58. 

Morris S.A., Baek S., Sung M.H., John S., Wiench M., Johnson T.A., Schiltz R.L. and 
Hager G.L. (2014) Overlapping chromatin-remodeling systems collaborate 
genome wide at dynamic chromatin transitions. Nat Struct Mol Biol 21: 73-81. 

Mueller-Planitz F., Klinker H. and Becker P.B. (2013) Nucleosome sliding mechanisms: 
new twists in a looped history. Nat Struct Mol Biol 20: 1026-1032. 

Mullen A.C., Orlando D.A., Newman J.J., Loven J., Kumar R.M., Bilodeau S., Reddy J., 
Guenther M.G., DeKoter R.P. and Young R.A. (2011) Master transcription factors 
determine cell-type-specific responses to TGF-beta signaling. Cell 147: 565-576. 

Nabel C.S., Jia H., Ye Y., Shen L., Goldschmidt H.L., Stivers J.T., Zhang Y. and Kohli 
R.M. (2012) AID/APOBEC deaminases disfavor modified cytosines implicated in 
DNA demethylation. Nat Chem Biol 8: 751-758. 

Nan X., Ng H.H., Johnson C.A., Laherty C.D., Turner B.M., Eisenman R.N. and Bird A. 
(1998) Transcriptional repression by the methyl-CpG-binding protein MeCP2 
involves a histone deacetylase complex. Nature 393: 386-389. 

Ng H.H., Robert F., Young R.A. and Struhl K. (2003) Targeted recruitment of Set1 histone 
methylase by elongating Pol II provides a localized mark and memory of recent 
transcriptional activity. Mol Cell 11: 709-719. 

Ng R.K. and Gurdon J.B. (2008a) Epigenetic inheritance of cell differentiation status. Cell 
Cycle 7: 1173-1177. 

Ng R.K. and Gurdon J.B. (2008b) Epigenetic memory of an active gene state depends 
on histone H3.3 incorporation into chromatin in the absence of transcription. Nat 
Cell Biol 10: 102-109. 



References 99 

Nguyen S., Meletis K., Fu D., Jhaveri S. and Jaenisch R. (2007) Ablation of de novo DNA 
methyltransferase Dnmt3a in the nervous system leads to neuromuscular defects 
and shortened lifespan. Dev Dyn 236: 1663-1676. 

Nichols J., Zevnik B., Anastassiadis K., Niwa H., Klewe-Nebenius D., Chambers I., 
Scholer H. and Smith A. (1998) Formation of pluripotent stem cells in the 
mammalian embryo depends on the POU transcription factor Oct4. Cell 95: 379-
391. 

Okamoto I. and Heard E. (2009) Lessons from comparative analysis of X-chromosome 
inactivation in mammals. Chromosome Res 17: 659-669. 

Okano M., Xie S. and Li E. (1998) Cloning and characterization of a family of novel 
mammalian DNA (cytosine-5) methyltransferases. Nat Genet 19: 219-220. 

Okano M., Bell D.W., Haber D.A. and Li E. (1999) DNA methyltransferases Dnmt3a and 
Dnmt3b are essential for de novo methylation and mammalian development. Cell 
99: 247-257. 

Ooi S.K., Qiu C., Bernstein E., Li K., Jia D., Yang Z., Erdjument-Bromage H., Tempst P., 
Lin S.P., Allis C.D., Cheng X. and Bestor T.H. (2007) DNMT3L connects 
unmethylated lysine 4 of histone H3 to de novo methylation of DNA. Nature 448: 
714-717. 

Oswald J., Engemann S., Lane N., Mayer W., Olek A., Fundele R., Dean W., Reik W. 
and Walter J. (2000) Active demethylation of the paternal genome in the mouse 
zygote. Curr Biol 10: 475-478. 

Pastor W.A., Pape U.J., Huang Y., Henderson H.R., Lister R., Ko M., McLoughlin E.M., 
Brudno Y., Mahapatra S., Kapranov P., Tahiliani M., Daley G.Q., Liu X.S., Ecker 
J.R., Milos P.M., Agarwal S. and Rao A. (2011) Genome-wide mapping of 5-
hydroxymethylcytosine in embryonic stem cells. Nature 473: 394-397. 

Pastor W.A., Aravind L. and Rao A. (2013) TETonic shift: biological roles of TET proteins 
in DNA demethylation and transcription. Nat Rev Mol Cell Biol 14: 341-356. 

Payer B. and Lee J.T. (2008) X chromosome dosage compensation: how mammals keep 
the balance. Annu Rev Genet 42: 733-772. 

Peitz M., Pfannkuche K., Rajewsky K. and Edenhofer F. (2002) Ability of the hydrophobic 
FGF and basic TAT peptides to promote cellular uptake of recombinant Cre 
recombinase: a tool for efficient genetic engineering of mammalian genomes. 
Proc Natl Acad Sci U S A 99: 4489-4494. 

Phillips-Cremins J.E. and Corces V.G. (2013) Chromatin insulators: linking genome 
organization to cellular function. Mol Cell 50: 461-474. 

Plass C., Pfister S.M., Lindroth A.M., Bogatyrova O., Claus R. and Lichter P. (2013) 
Mutations in regulators of the epigenome and their connections to global 
chromatin patterns in cancer. Nat Rev Genet 14: 765-780. 

Pokholok D.K., Harbison C.T., Levine S., Cole M., Hannett N.M., Lee T.I., Bell G.W., 
Walker K., Rolfe P.A., Herbolsheimer E., Zeitlinger J., Lewitter F., Gifford D.K. and 
Young R.A. (2005) Genome-wide map of nucleosome acetylation and methylation 
in yeast. Cell 122: 517-527. 

Popp C., Dean W., Feng S., Cokus S.J., Andrews S., Pellegrini M., Jacobsen S.E. and 
Reik W. (2010) Genome-wide erasure of DNA methylation in mouse primordial 
germ cells is affected by AID deficiency. Nature 463: 1101-1105. 

Pospisil V., Vargova K., Kokavec J., Rybarova J., Savvulidi F., Jonasova A., Necas E., 
Zavadil J., Laslo P. and Stopka T. (2011) Epigenetic silencing of the oncogenic 
miR-17-92 cluster during PU.1-directed macrophage differentiation. EMBO J 30: 
4450-4464. 

Pribnow D. (1975) Nucleotide sequence of an RNA polymerase binding site at an early 
T7 promoter. Proc Natl Acad Sci U S A 72: 784-788. 

Probst A.V., Dunleavy E. and Almouzni G. (2009) Epigenetic inheritance during the cell 
cycle. Nat Rev Mol Cell Biol 10: 192-206. 



100 References 

Radman-Livaja M., Verzijlbergen K.F., Weiner A., van Welsem T., Friedman N., Rando 
O.J. and van Leeuwen F. (2011) Patterns and mechanisms of ancestral histone 
protein inheritance in budding yeast. PLoS Biol 9: e1001075. 

Ramsahoye B.H., Biniszkiewicz D., Lyko F., Clark V., Bird A.P. and Jaenisch R. (2000) 
Non-CpG methylation is prevalent in embryonic stem cells and may be mediated 
by DNA methyltransferase 3a. Proc Natl Acad Sci U S A 97: 5237-5242. 

Rangam G., Schmitz K.M., Cobb A.J. and Petersen-Mahrt S.K. (2012) AID enzymatic 
activity is inversely proportional to the size of cytosine C5 orbital cloud. PLoS One 
7: e43279. 

Reik W. (2007) Stability and flexibility of epigenetic gene regulation in mammalian 
development. Nature 447: 425-432. 

Riggs A.D. (1975) X inactivation, differentiation, and DNA methylation. Cytogenet Cell 
Genet 14: 9-25. 

Ringrose L. and Paro R. (2004) Epigenetic regulation of cellular memory by the 
Polycomb and Trithorax group proteins. Annu Rev Genet 38: 413-443. 

Rothbart S.B., Krajewski K., Nady N., Tempel W., Xue S., Badeaux A.I., Barsyte-Lovejoy 
D., Martinez J.Y., Bedford M.T., Fuchs S.M., Arrowsmith C.H. and Strahl B.D. 
(2012) Association of UHRF1 with methylated H3K9 directs the maintenance of 
DNA methylation. Nat Struct Mol Biol 19: 1155-1160. 

Rufiange A., Jacques P.E., Bhat W., Robert F. and Nourani A. (2007) Genome-wide 
replication-independent histone H3 exchange occurs predominantly at promoters 
and implicates H3 K56 acetylation and Asf1. Mol Cell 27: 393-405. 

Sado T., Fenner M.H., Tan S.S., Tam P., Shioda T. and Li E. (2000) X inactivation in the 
mouse embryo deficient for Dnmt1: distinct effect of hypomethylation on imprinted 
and random X inactivation. Dev Biol 225: 294-303. 

Sakaue M., Ohta H., Kumaki Y., Oda M., Sakaide Y., Matsuoka C., Yamagiwa A., Niwa 
H., Wakayama T. and Okano M. (2010) DNA methylation is dispensable for the 
growth and survival of the extraembryonic lineages. Curr Biol 20: 1452-1457. 

Santos-Rosa H., Schneider R., Bannister A.J., Sherriff J., Bernstein B.E., Emre N.C., 
Schreiber S.L., Mellor J. and Kouzarides T. (2002) Active genes are tri-methylated 
at K4 of histone H3. Nature 419: 407-411. 

Santos-Rosa H., Schneider R., Bernstein B.E., Karabetsou N., Morillon A., Weise C., 
Schreiber S.L., Mellor J. and Kouzarides T. (2003) Methylation of histone H3 K4 
mediates association of the Isw1p ATPase with chromatin. Mol Cell 12: 1325-
1332. 

Santos F., Hendrich B., Reik W. and Dean W. (2002) Dynamic reprogramming of DNA 
methylation in the early mouse embryo. Dev Biol 241: 172-182. 

Satchwell S.C., Drew H.R. and Travers A.A. (1986) Sequence periodicities in chicken 
nucleosome core DNA. J Mol Biol 191: 659-675. 

Schaller H., Gray C. and Herrmann K. (1975) Nucleotide sequence of an RNA 
polymerase binding site from the DNA of bacteriophage fd. Proc Natl Acad Sci U 
S A 72: 737-741. 

Schiesser S., Pfaffeneder T., Sadeghian K., Hackner B., Steigenberger B., Schroder 
A.S., Steinbacher J., Kashiwazaki G., Hofner G., Wanner K.T., Ochsenfeld C. and 
Carell T. (2013) Deamination, oxidation, and C-C bond cleavage reactivity of 5-
hydroxymethylcytosine, 5-formylcytosine, and 5-carboxycytosine. J Am Chem 
Soc 135: 14593-14599. 

Schilling E. and Rehli M. (2007) Global, comparative analysis of tissue-specific promoter 
CpG methylation. Genomics 90: 314-323. 

Scholer H.R. and Gruss P. (1984) Specific interaction between enhancer-containing 
molecules and cellular components. Cell 36: 403-411. 

Schones D.E., Cui K., Cuddapah S., Roh T.Y., Barski A., Wang Z., Wei G. and Zhao K. 
(2008) Dynamic regulation of nucleosome positioning in the human genome. Cell 
132: 887-898. 



References 101 

Schorderet D.F. and Gartler S.M. (1992) Analysis of CpG suppression in methylated and 
nonmethylated species. Proc Natl Acad Sci U S A 89: 957-961. 

Schubeler D., Lorincz M.C., Cimbora D.M., Telling A., Feng Y.Q., Bouhassira E.E. and 
Groudine M. (2000) Genomic targeting of methylated DNA: influence of 
methylation on transcription, replication, chromatin structure, and histone 
acetylation. Mol Cell Biol 20: 9103-9112. 

Schubeler D. (2012) Molecular biology. Epigenetic islands in a genetic ocean. Science 
338: 756-757. 

Seisenberger S., Peat J.R. and Reik W. (2013) Conceptual links between DNA 
methylation reprogramming in the early embryo and primordial germ cells. Curr 
Opin Cell Biol 25: 281-288. 

Selker E.U., Tountas N.A., Cross S.H., Margolin B.S., Murphy J.G., Bird A.P. and Freitag 
M. (2003) The methylated component of the Neurospora crassa genome. Nature 
422: 893-897. 

Serandour A.A., Avner S., Percevault F., Demay F., Bizot M., Lucchetti-Miganeh C., 
Barloy-Hubler F., Brown M., Lupien M., Metivier R., Salbert G. and Eeckhoute J. 
(2011) Epigenetic switch involved in activation of pioneer factor FOXA1-
dependent enhancers. Genome Res 21: 555-565. 

Serandour A.A., Avner S., Oger F., Bizot M., Percevault F., Lucchetti-Miganeh C., 
Palierne G., Gheeraert C., Barloy-Hubler F., Peron C.L., Madigou T., Durand E., 
Froguel P., Staels B., Lefebvre P., Metivier R., Eeckhoute J. and Salbert G. 
(2012) Dynamic hydroxymethylation of deoxyribonucleic acid marks 
differentiation-associated enhancers. Nucleic Acids Res 40: 8255-8265. 

Sharif J., Muto M., Takebayashi S., Suetake I., Iwamatsu A., Endo T.A., Shinga J., 
Mizutani-Koseki Y., Toyoda T., Okamura K., Tajima S., Mitsuya K., Okano M. and 
Koseki H. (2007) The SRA protein Np95 mediates epigenetic inheritance by 
recruiting Dnmt1 to methylated DNA. Nature 450: 908-912. 

Sharma S., De Carvalho D.D., Jeong S., Jones P.A. and Liang G. (2011) Nucleosomes 
containing methylated DNA stabilize DNA methyltransferases 3A/3B and ensure 
faithful epigenetic inheritance. PLoS Genet 7: e1001286. 

Shen L., Kondo Y., Guo Y., Zhang J., Zhang L., Ahmed S., Shu J., Chen X., Waterland 
R.A. and Issa J.P. (2007) Genome-wide profiling of DNA methylation reveals a 
class of normally methylated CpG island promoters. PLoS Genet 3: 2023-2036. 

Shen L., Wu H., Diep D., Yamaguchi S., D'Alessio A.C., Fung H.L., Zhang K. and Zhang 
Y. (2013) Genome-wide analysis reveals TET- and TDG-dependent 5-
methylcytosine oxidation dynamics. Cell 153: 692-706. 

Shirohzu H., Kubota T., Kumazawa A., Sado T., Chijiwa T., Inagaki K., Suetake I., Tajima 
S., Wakui K., Miki Y., Hayashi M., Fukushima Y. and Sasaki H. (2002) Three 
novel DNMT3B mutations in Japanese patients with ICF syndrome. Am J Med 
Genet 112: 31-37. 

Shogren-Knaak M., Ishii H., Sun J.M., Pazin M.J., Davie J.R. and Peterson C.L. (2006) 
Histone H4-K16 acetylation controls chromatin structure and protein interactions. 
Science 311: 844-847. 

Siggers T., Duyzend M.H., Reddy J., Khan S. and Bulyk M.L. (2011) Non-DNA-binding 
cofactors enhance DNA-binding specificity of a transcriptional regulatory 
complex. Mol Syst Biol 7: 555. 

Simpson R.T. and Shindo H. (1979) Conformation of DNA in chromatin core particles 
containing poly(dAdT)-poly(dAdT) studied by 31 P NMR spectroscopy. Nucleic 
Acids Res 7: 481-492. 

Song C.X., Szulwach K.E., Fu Y., Dai Q., Yi C., Li X., Li Y., Chen C.H., Zhang W., Jian X., 
Wang J., Zhang L., Looney T.J., Zhang B., Godley L.A., Hicks L.M., Lahn B.T., Jin 
P. and He C. (2011) Selective chemical labeling reveals the genome-wide 
distribution of 5-hydroxymethylcytosine. Nat Biotechnol 29: 68-72. 



102 References 

Song C.X., Szulwach K.E., Dai Q., Fu Y., Mao S.Q., Lin L., Street C., Li Y., Poidevin M., 
Wu H., Gao J., Liu P., Li L., Xu G.L., Jin P. and He C. (2013) Genome-wide 
profiling of 5-formylcytosine reveals its roles in epigenetic priming. Cell 153: 678-
691. 

Song J., Rechkoblit O., Bestor T.H. and Patel D.J. (2011) Structure of DNMT1-DNA 
complex reveals a role for autoinhibition in maintenance DNA methylation. 
Science 331: 1036-1040. 

Song J., Teplova M., Ishibe-Murakami S. and Patel D.J. (2012) Structure-based 
mechanistic insights into DNMT1-mediated maintenance DNA methylation. 
Science 335: 709-712. 

Song L., Zhang Z., Grasfeder L.L., Boyle A.P., Giresi P.G., Lee B.K., Sheffield N.C., Graf 
S., Huss M., Keefe D., Liu Z., London D., McDaniell R.M., Shibata Y., Showers 
K.A., Simon J.M., Vales T., Wang T., Winter D., Zhang Z., Clarke N.D., Birney E., 
Iyer V.R., Crawford G.E., Lieb J.D. and Furey T.S. (2011) Open chromatin defined 
by DNaseI and FAIRE identifies regulatory elements that shape cell-type identity. 
Genome Res 21: 1757-1767. 

Spitz F. and Furlong E.E. (2012) Transcription factors: from enhancer binding to 
developmental control. Nat Rev Genet 13: 613-626. 

Spruijt C.G., Gnerlich F., Smits A.H., Pfaffeneder T., Jansen P.W., Bauer C., Munzel M., 
Wagner M., Muller M., Khan F., Eberl H.C., Mensinga A., Brinkman A.B., 
Lephikov K., Muller U., Walter J., Boelens R., van Ingen H., Leonhardt H., Carell 
T. and Vermeulen M. (2013) Dynamic readers for 5-(hydroxy)methylcytosine and 
its oxidized derivatives. Cell 152: 1146-1159. 

Stadler M.B., Murr R., Burger L., Ivanek R., Lienert F., Scholer A., van Nimwegen E., 
Wirbelauer C., Oakeley E.J., Gaidatzis D., Tiwari V.K. and Schubeler D. (2011) 
DNA-binding factors shape the mouse methylome at distal regulatory regions. 
Nature 480: 490-495. 

Statham A.L., Robinson M.D., Song J.Z., Coolen M.W., Stirzaker C. and Clark S.J. 
(2012) Bisulfite sequencing of chromatin immunoprecipitated DNA (BisChIP-seq) 
directly informs methylation status of histone-modified DNA. Genome Res 22: 
1120-1127. 

Stein R., Gruenbaum Y., Pollack Y., Razin A. and Cedar H. (1982) Clonal inheritance of 
the pattern of DNA methylation in mouse cells. Proc Natl Acad Sci U S A 79: 61-
65. 

Strahl B.D. and Allis C.D. (2000) The language of covalent histone modifications. Nature 
403: 41-45. 

Struhl K. (1999) Fundamentally different logic of gene regulation in eukaryotes and 
prokaryotes. Cell 98: 1-4. 

Struhl K. and Segal E. (2013) Determinants of nucleosome positioning. Nat Struct Mol 
Biol 20: 267-273. 

Suzuki M.M. and Bird A. (2008) DNA methylation landscapes: provocative insights from 
epigenomics. Nat Rev Genet 9: 465-476. 

Tahiliani M., Koh K.P., Shen Y., Pastor W.A., Bandukwala H., Brudno Y., Agarwal S., Iyer 
L.M., Liu D.R., Aravind L. and Rao A. (2009) Conversion of 5-methylcytosine to 5-
hydroxymethylcytosine in mammalian DNA by MLL partner TET1. Science 324: 
930-935. 

Takahashi K. and Yamanaka S. (2006) Induction of pluripotent stem cells from mouse 
embryonic and adult fibroblast cultures by defined factors. Cell 126: 663-676. 

Tan L., Xiong L., Xu W., Wu F., Huang N., Xu Y., Kong L., Zheng L., Schwartz L., Shi Y. 
and Shi Y.G. (2013) Genome-wide comparison of DNA hydroxymethylation in 
mouse embryonic stem cells and neural progenitor cells by a new comparative 
hMeDIP-seq method. Nucleic Acids Res 41: e84. 

Tate P.H. and Bird A.P. (1993) Effects of DNA methylation on DNA-binding proteins and 
gene expression. Curr Opin Genet Dev 3: 226-231. 



References 103 

Taverna S.D., Ilin S., Rogers R.S., Tanny J.C., Lavender H., Li H., Baker L., Boyle J., 
Blair L.P., Chait B.T., Patel D.J., Aitchison J.D., Tackett A.J. and Allis C.D. (2006) 
Yng1 PHD finger binding to H3 trimethylated at K4 promotes NuA3 HAT activity 
at K14 of H3 and transcription at a subset of targeted ORFs. Mol Cell 24: 785-
796. 

Taylor I.C., Workman J.L., Schuetz T.J. and Kingston R.E. (1991) Facilitated binding of 
GAL4 and heat shock factor to nucleosomal templates: differential function of 
DNA-binding domains. Genes Dev 5: 1285-1298. 

Teif V.B., Vainshtein Y., Caudron-Herger M., Mallm J.P., Marth C., Hofer T. and Rippe K. 
(2012) Genome-wide nucleosome positioning during embryonic stem cell 
development. Nat Struct Mol Biol 19: 1185-1192. 

Thomassin H., Flavin M., Espinas M.L. and Grange T. (2001) Glucocorticoid-induced 
DNA demethylation and gene memory during development. EMBO J 20: 1974-
1983. 

Thomson J.P., Skene P.J., Selfridge J., Clouaire T., Guy J., Webb S., Kerr A.R., Deaton 
A., Andrews R., James K.D., Turner D.J., Illingworth R. and Bird A. (2010) CpG 
islands influence chromatin structure via the CpG-binding protein Cfp1. Nature 
464: 1082-1086. 

Trojer P. and Reinberg D. (2007) Facultative heterochromatin: is there a distinctive 
molecular signature? Mol Cell 28: 1-13. 

Trompouki E., Bowman T.V., Lawton L.N., Fan Z.P., Wu D.C., DiBiase A., Martin C.S., 
Cech J.N., Sessa A.K., Leblanc J.L., Li P., Durand E.M., Mosimann C., Heffner 
G.C., Daley G.Q., Paulson R.F., Young R.A. and Zon L.I. (2011) Lineage 
regulators direct BMP and Wnt pathways to cell-specific programs during 
differentiation and regeneration. Cell 147: 577-589. 

Tsai M.C., Manor O., Wan Y., Mosammaparast N., Wang J.K., Lan F., Shi Y., Segal E. 
and Chang H.Y. (2010) Long noncoding RNA as modular scaffold of histone 
modification complexes. Science 329: 689-693. 

Tsankov A.M., Thompson D.A., Socha A., Regev A. and Rando O.J. (2010) The role of 
nucleosome positioning in the evolution of gene regulation. PLoS Biol 8: 
e1000414. 

Tsukahara S., Kobayashi A., Kawabe A., Mathieu O., Miura A. and Kakutani T. (2009) 
Bursts of retrotransposition reproduced in Arabidopsis. Nature 461: 423-426. 

Tsumura A., Hayakawa T., Kumaki Y., Takebayashi S., Sakaue M., Matsuoka C., 
Shimotohno K., Ishikawa F., Li E., Ueda H.R., Nakayama J. and Okano M. (2006) 
Maintenance of self-renewal ability of mouse embryonic stem cells in the absence 
of DNA methyltransferases Dnmt1, Dnmt3a and Dnmt3b. Genes Cells 11: 805-
814. 

Tucker K.L., Beard C., Dausmann J., Jackson-Grusby L., Laird P.W., Lei H., Li E. and 
Jaenisch R. (1996) Germ-line passage is required for establishment of 
methylation and expression patterns of imprinted but not of nonimprinted genes. 
Genes Dev 10: 1008-1020. 

Tweedie S., Charlton J., Clark V. and Bird A. (1997) Methylation of genomes and genes 
at the invertebrate-vertebrate boundary. Mol Cell Biol 17: 1469-1475. 

Valinluck V., Tsai H.H., Rogstad D.K., Burdzy A., Bird A. and Sowers L.C. (2004) 
Oxidative damage to methyl-CpG sequences inhibits the binding of the methyl-
CpG binding domain (MBD) of methyl-CpG binding protein 2 (MeCP2). Nucleic 
Acids Res 32: 4100-4108. 

Valinluck V. and Sowers L.C. (2007) Endogenous cytosine damage products alter the 
site selectivity of human DNA maintenance methyltransferase DNMT1. Cancer 
Res 67: 946-950. 

Velasco G., Hube F., Rollin J., Neuillet D., Philippe C., Bouzinba-Segard H., Galvani A., 
Viegas-Pequignot E. and Francastel C. (2010) Dnmt3b recruitment through E2F6 



104 References 

transcriptional repressor mediates germ-line gene silencing in murine somatic 
tissues. Proc Natl Acad Sci U S A 107: 9281-9286. 

Vermeulen M., Mulder K.W., Denissov S., Pijnappel W.W., van Schaik F.M., Varier R.A., 
Baltissen M.P., Stunnenberg H.G., Mann M. and Timmers H.T. (2007) Selective 
anchoring of TFIID to nucleosomes by trimethylation of histone H3 lysine 4. Cell 
131: 58-69. 

Verzijlbergen K.F., van Welsem T., Sie D., Lenstra T.L., Turner D.J., Holstege F.C., 
Kerkhoven R.M. and van Leeuwen F. (2011) A barcode screen for epigenetic 
regulators reveals a role for the NuB4/HAT-B histone acetyltransferase complex 
in histone turnover. PLoS Genet 7: e1002284. 

Voss T.C., Schiltz R.L., Sung M.H., Yen P.M., Stamatoyannopoulos J.A., Biddie S.C., 
Johnson T.A., Miranda T.B., John S. and Hager G.L. (2011) Dynamic exchange at 
regulatory elements during chromatin remodeling underlies assisted loading 
mechanism. Cell 146: 544-554. 

Waddington C.H. (2012) The epigenotype. 1942. Int J Epidemiol 41: 10-13. 
Walsh C.P., Chaillet J.R. and Bestor T.H. (1998) Transcription of IAP endogenous 

retroviruses is constrained by cytosine methylation. Nat Genet 20: 116-117. 
Wang R.Y., Gehrke C.W. and Ehrlich M. (1980) Comparison of bisulfite modification of 5-

methyldeoxycytidine and deoxycytidine residues. Nucleic Acids Res 8: 4777-
4790. 

Watanabe D., Uchiyama K. and Hanaoka K. (2006) Transition of mouse de novo 
methyltransferases expression from Dnmt3b to Dnmt3a during neural progenitor 
cell development. Neuroscience 142: 727-737. 

Weber M., Davies J.J., Wittig D., Oakeley E.J., Haase M., Lam W.L. and Schubeler D. 
(2005) Chromosome-wide and promoter-specific analyses identify sites of 
differential DNA methylation in normal and transformed human cells. Nat Genet 
37: 853-862. 

Weber M., Hellmann I., Stadler M.B., Ramos L., Paabo S., Rebhan M. and Schubeler D. 
(2007) Distribution, silencing potential and evolutionary impact of promoter DNA 
methylation in the human genome. Nat Genet 39: 457-466. 

Welham M.J., Kingham E., Sanchez-Ripoll Y., Kumpfmueller B., Storm M. and Bone H. 
(2011) Controlling embryonic stem cell proliferation and pluripotency: the role of 
PI3K- and GSK-3-dependent signalling. Biochem Soc Trans 39: 674-678. 

Whitehouse I. and Tsukiyama T. (2006) Antagonistic forces that position nucleosomes in 
vivo. Nat Struct Mol Biol 13: 633-640. 

Wiench M., John S., Baek S., Johnson T.A., Sung M.H., Escobar T., Simmons C.A., 
Pearce K.H., Biddie S.C., Sabo P.J., Thurman R.E., Stamatoyannopoulos J.A. 
and Hager G.L. (2011) DNA methylation status predicts cell type-specific 
enhancer activity. EMBO J 30: 3028-3039. 

Wigler M., Levy D. and Perucho M. (1981) The somatic replication of DNA methylation. 
Cell 24: 33-40. 

Williams K., Christensen J., Pedersen M.T., Johansen J.V., Cloos P.A., Rappsilber J. and 
Helin K. (2011) TET1 and hydroxymethylcytosine in transcription and DNA 
methylation fidelity. Nature 473: 343-348. 

Wippo C.J., Israel L., Watanabe S., Hochheimer A., Peterson C.L. and Korber P. (2011) 
The RSC chromatin remodelling enzyme has a unique role in directing the 
accurate positioning of nucleosomes. EMBO J 30: 1277-1288. 

Workman J.L. and Kingston R.E. (1998) Alteration of nucleosome structure as a 
mechanism of transcriptional regulation. Annu Rev Biochem 67: 545-579. 

Wossidlo M., Nakamura T., Lepikhov K., Marques C.J., Zakhartchenko V., Boiani M., 
Arand J., Nakano T., Reik W. and Walter J. (2011) 5-Hydroxymethylcytosine in 
the mammalian zygote is linked with epigenetic reprogramming. Nat Commun 2: 
241. 



References 105 

Wu H., D'Alessio A.C., Ito S., Wang Z., Cui K., Zhao K., Sun Y.E. and Zhang Y. (2011) 
Genome-wide analysis of 5-hydroxymethylcytosine distribution reveals its dual 
function in transcriptional regulation in mouse embryonic stem cells. Genes Dev 
25: 679-684. 

Wu S.C. and Zhang Y. (2010) Active DNA demethylation: many roads lead to Rome. Nat 
Rev Mol Cell Biol 11: 607-620. 

Wyatt G.R. (1951) Recognition and estimation of 5-methylcytosine in nucleic acids. 
Biochem J 48: 581-584. 

Wyatt G.R. and Cohen S.S. (1953) The bases of the nucleic acids of some bacterial and 
animal viruses: the occurrence of 5-hydroxymethylcytosine. Biochem J 55: 774-
782. 

Xie W., Schultz M.D., Lister R., Hou Z., Rajagopal N., Ray P., Whitaker J.W., Tian S., 
Hawkins R.D., Leung D., Yang H., Wang T., Lee A.Y., Swanson S.A., Zhang J., 
Zhu Y., Kim A., Nery J.R., Urich M.A., Kuan S., Yen C.A., Klugman S., Yu P., 
Suknuntha K., Propson N.E., Chen H., Edsall L.E., Wagner U., Li Y., Ye Z., 
Kulkarni A., Xuan Z., Chung W.Y., Chi N.C., Antosiewicz-Bourget J.E., Slukvin I., 
Stewart R., Zhang M.Q., Wang W., Thomson J.A., Ecker J.R. and Ren B. (2013) 
Epigenomic analysis of multilineage differentiation of human embryonic stem 
cells. Cell 153: 1134-1148. 

Xu J., Watts J.A., Pope S.D., Gadue P., Kamps M., Plath K., Zaret K.S. and Smale S.T. 
(2009) Transcriptional competence and the active marking of tissue-specific 
enhancers by defined transcription factors in embryonic and induced pluripotent 
stem cells. Genes Dev 23: 2824-2838. 

Xu Y., Wu F., Tan L., Kong L., Xiong L., Deng J., Barbera A.J., Zheng L., Zhang H., 
Huang S., Min J., Nicholson T., Chen T., Xu G., Shi Y., Zhang K. and Shi Y.G. 
(2011) Genome-wide regulation of 5hmC, 5mC, and gene expression by Tet1 
hydroxylase in mouse embryonic stem cells. Mol Cell 42: 451-464. 

Xu Y., Xu C., Kato A., Tempel W., Abreu J.G., Bian C., Hu Y., Hu D., Zhao B., Cerovina 
T., Diao J., Wu F., He H.H., Cui Q., Clark E., Ma C., Barbara A., Veenstra G.J., Xu 
G., Kaiser U.B., Liu X.S., Sugrue S.P., He X., Min J., Kato Y. and Shi Y.G. (2012) 
Tet3 CXXC domain and dioxygenase activity cooperatively regulate key genes for 
Xenopus eye and neural development. Cell 151: 1200-1213. 

Yamazaki Y., Mann M.R., Lee S.S., Marh J., McCarrey J.R., Yanagimachi R. and 
Bartolomei M.S. (2003) Reprogramming of primordial germ cells begins before 
migration into the genital ridge, making these cells inadequate donors for 
reproductive cloning. Proc Natl Acad Sci U S A 100: 12207-12212. 

Yildirim O., Li R., Hung J.H., Chen P.B., Dong X., Ee L.S., Weng Z., Rando O.J. and 
Fazzio T.G. (2011) Mbd3/NURD complex regulates expression of 5-
hydroxymethylcytosine marked genes in embryonic stem cells. Cell 147: 1498-
1510. 

Yu M., Hon G.C., Szulwach K.E., Song C.X., Zhang L., Kim A., Li X., Dai Q., Shen Y., 
Park B., Min J.H., Jin P., Ren B. and He C. (2012) Base-resolution analysis of 5-
hydroxymethylcytosine in the mammalian genome. Cell 149: 1368-1380. 

Yuan G.C., Liu Y.J., Dion M.F., Slack M.D., Wu L.F., Altschuler S.J. and Rando O.J. 
(2005) Genome-scale identification of nucleosome positions in S. cerevisiae. 
Science 309: 626-630. 

Zacharias H. (1995) Emil Heitz (1892-1965): chloroplasts, heterochromatin, and polytene 
chromosomes. Genetics 141: 7-14. 

Zaidi S.K., Young D.W., Pockwinse S.M., Javed A., Lian J.B., Stein J.L., van Wijnen A.J. 
and Stein G.S. (2003) Mitotic partitioning and selective reorganization of tissue-
specific transcription factors in progeny cells. Proc Natl Acad Sci U S A 100: 
14852-14857. 

Zaret K.S. and Carroll J.S. (2011) Pioneer transcription factors: establishing competence 
for gene expression. Genes Dev 25: 2227-2241. 



106 References 

Zemach A. and Zilberman D. (2010) Evolution of eukaryotic DNA methylation and the 
pursuit of safer sex. Curr Biol 20: R780-785. 

Zemach A., McDaniel I.E., Silva P. and Zilberman D. (2010) Genome-wide evolutionary 
analysis of eukaryotic DNA methylation. Science 328: 916-919. 

Zhang X., Yazaki J., Sundaresan A., Cokus S., Chan S.W., Chen H., Henderson I.R., 
Shinn P., Pellegrini M., Jacobsen S.E. and Ecker J.R. (2006) Genome-wide high-
resolution mapping and functional analysis of DNA methylation in arabidopsis. 
Cell 126: 1189-1201. 

Zhang Y., Moqtaderi Z., Rattner B.P., Euskirchen G., Snyder M., Kadonaga J.T., Liu X.S. 
and Struhl K. (2009) Intrinsic histone-DNA interactions are not the major 
determinant of nucleosome positions in vivo. Nat Struct Mol Biol 16: 847-852. 

Zhang Z., Wippo C.J., Wal M., Ward E., Korber P. and Pugh B.F. (2011) A packing 
mechanism for nucleosome organization reconstituted across a eukaryotic 
genome. Science 332: 977-980. 

Zhu B., Zheng Y., Hess D., Angliker H., Schwarz S., Siegmann M., Thiry S. and Jost J.P. 
(2000) 5-methylcytosine-DNA glycosylase activity is present in a cloned G/T 
mismatch DNA glycosylase associated with the chicken embryo DNA 
demethylation complex. Proc Natl Acad Sci U S A 97: 5135-5139. 

Zilberman D., Gehring M., Tran R.K., Ballinger T. and Henikoff S. (2007) Genome-wide 
analysis of Arabidopsis thaliana DNA methylation uncovers an interdependence 
between methylation and transcription. Nat Genet 39: 61-69. 

Ziller M.J., Gu H., Muller F., Donaghey J., Tsai L.T., Kohlbacher O., De Jager P.L., Rosen 
E.D., Bennett D.A., Bernstein B.E., Gnirke A. and Meissner A. (2013) Charting a 
dynamic DNA methylation landscape of the human genome. Nature 500: 477-
481. 



Curriculum vitae 107 

6 Curriculum vitae 

Angelika Feldmann 

Education 
______________________________________________________________________ 

Nov 2009 to  PhD studies in Biology 
Apr 2014 Friedrich-Miescher Institute for Biomedical Research (FMI), Basel, 

Switzerland 
Supervisor: Prof. Dr. Dirk Schübeler 
Title: Turnover and function of DNA methylation at transcription factor 
binding sites 

Sep 2009 Diploma in Molecular Medicine 
Albert-Ludwigs-University Freiburg, Germany 

Oct 2008 to Diploma thesis in Genetics and Bioinformatics 
Sep 2009 Albert-Ludwigs-University/ZBSA Freiburg, Germany 

Supervisor: Prof. Dr. Ralf Baumeister  
Title: Establishment of a Tet-on System in C. elegans 

Oct 2004 to Studies in Molecular Medicine 
Sep 2009 Albert-Ludwigs-University Freiburg, Germany 

Research experience 
______________________________________________________________________ 

May to June 2008 Internship in Molecular Neurosurgery 
University Clinical Centre Freiburg, Germany 
Supervisor: Prof. Dr. Guido Nikkhah 
Project: Establishment of brain-tumour stem-cell system, analysis of  

neuronal stem-cell transplants in rat brain 

Nov 2007 Research Assistant in Genetics and Bioinformatics 
to Oct 2008 Albert-Ludwigs-University Freiburg, Germany 

Supervisor: Prof. Dr. Ralf Baumeister 
Project: Tet-inducible systems in C. elegans 

Oct to Nov 2007 Internship in Genetics and Bioinformatics 
Albert-Ludwigs-University Freiburg, Germany 
Supervisor: Prof. Dr. Ralf Baumeister 
Project: Establishment of a baculovirus expression system, C. elegans 
model of Parkinson’s Disease 

May 2006 to  Research Assistant in Immunology 
Nov 2007  Max-Planck-Institute of Immunology (MPI), Freiburg, Germany 

Supervisor: Prof. Dr. Michael Reth, Dr. Elias Hobeika 
Project: Characterization of a mouse model for B-cell development 



108 Curriculum vitae 

Publications 
______________________________________________________________________ 
 
Feldmann A., Ivanek R., Murr R., Gaidatzis D., Burger L. and Schubeler D. (2013) Transcription 
factor occupancy can mediate active turnover of DNA methylation at regulatory regions. PLoS 
Genet 9: e1003994. 
 
Di Cerbo V., Mohn F., Ryan D.P., Montellier E., Kacem S., Tropberger P., Kallis E., Holzner M., 
Hoerner L., Feldmann A., Richter F.M., Bannister A.J., Mittler G., Michaelis J., Khochbin S., Feil 
R., Schuebeler D., Owen-Hughes T., Daujat S. and Schneider R. (2014) Acetylation of histone H3 
at lysine 64 regulates nucleosome dynamics and facilitates transcription. Elife 3: e01632. 
 
 
Grants and prizes 
______________________________________________________________________ 
 
Oct 2013 Poster prize (second, FEBS workshop, Capri) 
March 2013 Poster prize (equal third, Epigenetics and Chromatin Conference, Boston) 
March 2011 Prize for best presentation and participation (7th Course of Epigenetics, 

Paris)  
Jan 2010 to  Fellow of the Marie-Curie Initial Training Network “Nucleosome 4D”  
  Dec 2012   
2004 “Carl-von-Fischer” student prize in biology 
 




