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The aim of the present PhD thesis was the controlled formation of stable small gold 

nanoparticle and their tailored functionalization. These functional nanoparticles were 

designed for their further assembly to organic-inorganic hybrid superstructures.

Outline
The present cumulative PhD thesis consists of the following parts:

In the Introduction the research fi eld of gold nanoparticles is presented with a focus on 

their stabilization using multidentate thioether macromolecules, in particular dendrimers. 

The second focus will be on the controlled functionalization of gold nanoparticles with 

one or two binding sides, which will be submitted as review for publication in ..

Within Concept and Strategy the goals of the research project are introduced and the 

concepts and outputs of the resulting publications are presented.

The Publications are accumulated with their respective Supporting Information, in the 

order in which they were prepared:

From Ligand-stabilized Gold Nanoparticles to Hybrid Organic-Inorganic 
Superstructures. Jens Peter Hermes, Fabian Sander, Torsten Peterle and Marcel 
Mayor,* CHIMIA 2011, 65, 219–222.

Direct Control of the Spatial Arrangement of Gold Nanoparticles in Organic–Inorganic 
Hybrid Superstructures, Jens Peter Hermes, Fabian Sander, Torsten Peterle, Carla. 
Cioffi , Philipp Ringler, Thomas Pfohl and Marcel Mayor,* Small 2011, 7, 920-929.

Gold Nanoparticles Stabilized by Thioether Dendrimers, Jens Peter Hermes, Fabian 
Sander, Torsten Peterle, Raphael Urbani, Thomas Pfohl, Damien Thompson and 
Marcel Mayor,* Chem. Eur. J. 2011, 17, 13473–13481.

Scanning the Potential Energy Surface for Synthesis of Dendrimer-Wrapped Gold 
Clusters: Design Rules for True Single-Molecule Nanostructures, Damien 
Thompson,* Jens Peter Hermes, Aidan Quinn and Marcel Mayor, ACS Nano 2012, 
6, 3007–3017.

Monofunctionalized Gold Nanoparticles stabilized by a Single Dendrimer form 
Dumbbell Structures upon Homo-coupling, Jens Peter Hermes, Fabian Sander, 
Ulrike Fluch, Torsten Peterle, Damien Thompson, Raphael Urbani, Thomas Pfohl 
and Marcel Mayor,* J. Am. Chem. Soc. 2012, 134, 14674-14677.

Controlled Formation of Bi- and Monofunctionalized Gold Nanoparticles, Jens Peter 
Hermes and Marcel Mayor,* manuscript prepared for submission. 

Finally, within Conclusion and Outlook the main results are briefl y summarized 

and further potential research is proposed.
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1 Introduction 

1.1 Gold Nanoparticles 

Gold nanoparticles (Au NPs) are attracting renewed interest due to their usefulness 

in chemistry, electronics, catalysis and medicine.[1–3] However, the formation and 

utilization of Au NPs dates back far before their current vogue, with dying of glass by 

freshly precipitated colloidal gold solutions already known in late Greco-Roman 

times.[4] A famous example is the 4th Century Lycurgus cup, which appears red when 

lit from behind and green when lit from the front, as light is absorbed and scattered 

by nanoparticles of a gold–silver alloy. In 1857, Faraday was the first to connect the 

color with the size of Au NPs and was the first to investigate their deliberate 

synthesis.[5] The next milestone was the formation and analysis of citrate-stabilized 

NPs by Turkevich et al. in 1951.[6] More recent breakthroughs demonstrated ultrahigh 

precision in the formation of passivated Au NPs.[7–10] Schmid et al. presented the gold 

cluster Au55(PPh3)Cl6,[7] which has become known as the ‘Schmid-cluster’, having 

stimulated the areas of quantum electronics[8] and labeling.[11] Brust et al. introduced 

a two-phase protocol that allowed aqueous tetrachloroauric(III) acid (HAuCl4) to be 

transferred into the organic phase (toluene) using tetraoctylammonium bromide 

(TOAB). The gold salt was then reduced with aqueous sodium borohydride in the 

presence of an alkanethiol yielding stable Au NPs with diameters below 3 nm and 

narrow size distributions.[9] 
Since then the number of studies dedicated to Au NPs increased significantly over 

the past two decades, exploiting the unmatched stability of Au NPs among metal 

nanoparticles. They also show fascinating size and shape dependent properties[12] 

and have various applications. They are used as plasmonic devices, for example as 

a plasmonic ruler to measure the distance between two NPs attached to linkers of 

unknown length.[13,14] Extended research is conducted on Au NPs in 

nanoelectronics[2,15] such as information storages devices.[16] As Au NPs of different 

sizes are easily visualized by electron microscopy they are the label of choice for 

visualizing and investigating bio- and macromolecules.[17–20] Au NPs also have 

numerous current and future applications as sensors[21–23] and as catalysts.[24,25] 

More background information is available within extended review articles[1,2,26] and in 

a special issue of Chem. Soc. Rev. entitled “Gold - Chemistry, Materials and 

Catalysis”. 
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1.2 Towards Applications 

The size dependent physical and optical properties (quantum size effect) are maybe 

the most interesting properties and are in the focus of various investigations. The 

ability to obtain different colored solutions of Au NPs by altering the size of the NP is 

due to the surface plasmon resonance of the NP. The conduction electrons on the 

NP’s surface oscillate collectively by the interaction with the electromagnetic field of 

the incoming light. The light thereby creates polarized charges on the surface like a 

dipole and with this also a restoring force that tries to compensate it. This force has a 

unique resonance frequency to match the oscillation of electrons within the 

nanoparticle. 

 

 
Figure 1. Formation of a metallic band structure. On the way from a molecule a) via nanosized clusters 

b) the quasi delocalization of valence electrons increases until the bulk state c) is reached. EF=Fermi 

energy, D = Density of states. From Reference [27] 

 

Another size dependent property of Au NPs is their electronic behavior. Electronic 

properties depend on the distribution of states and their occupation with electrons. 

Figure 1a shows the well-known situation in a molecule with discrete energy levels, 

also called molecular orbitals. The other extremity is the bulk material (Figure 1c) 

where no molecular behavior is expected and energy bands are present instead of 

discrete levels. The research field of nanoparticles lies between these two extremes 

(Figure 1b). The transitions are continuous and no sharp boundary can be 

distinguished. However, the smaller the nanoparticle then more defined energy levels 

will be present. Our research will be conducted between molecular and large 
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clusters. The term ‘cluster’ is used within this thesis to describe nanoparticles with a 

defined and unique structure and ‘nanoparticle’ will be used for assemblies with 

certain dispersity. People also utilize the terms ‘nanocrystal’ or ‘colloid’ but they will 

not be used within this thesis. 

As mentioned above, Au NPs have a broad variety of current and future applications. 

One very important application is their use in home pregnancy tests where NPs are 

coated with a certain antibody and their coagulation occurs if the specific antigen is 

present in the urine, triggering a plasmonic response that can be detected by the 

naked eye as the clumps of coagulated NPs are trapped in a filter.[28] If the specific 

antigen is not present the NPs will remain separated and the coloring of the filter will 

not occur. In order for this pregnancy test to work certain conditions need to be 

fulfilled (see also Figure 5 in Chapter 1.4). 1) The NPs need to be formed in a certain 

size and they need to be stable. 2) The surface of the NP needs to be functionalized 

with the antibody and 3) the specific antigen must be present. These operations are 

vital for most applications of Au NPs and various possibilities for each step will be 

described in the following sections in more detail. 

 

1.3 Gold Nanoparticle Formation and Stabilization 

In order to use the size-dependent properties of Au NPs ideally monodisperse NPs 

are envisaged. However, the preparations of NPs often lead to certain size 

distributions and require purification techniques to reduce the dispersity obtained. 

The basic principle to form Au NPs is to reduce Au3+-Ions in the presence of a 

stabilizing ligand. In the case of the citrate-stabilized Au NPs introduced by 

Turkevich[6] citrate is used as both a reducing and stabilizing agent. Nowadays this 

approach is mostly used if a loose ligand shell is desired for example for further 

ligand exchange.[29] Other ligands are phosphines[7,30], amines[31] and thiolates. 

Thiolates are the most intensively investigated ligands since Brust et al.[9] introduced 

their NP preparation protocol. Since then sodium borohydride is mostly used as the 

reducing agent, especially if one aims at Au NPs with a size of 1 - 3 nm. Sardar and 

Shumaker-Barry recently introduced a mild protocol for the synthesis of Au NPs with 

a higher tolerance for functional groups.[32] They used borabicyclo-[3.3.1]nonane 

(9-BBN) as their reducing agent and performed the reaction just in organic media. 
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Terminal thiols are used because they form a strongly bound ligand shell on the NPs’ 

surface. In crystal structures of gold clusters the sulfur was even found to be 

embedded in the outer gold layer as so called staples.[33,34] The use of terminal thiols 

has one major drawback. As many thiols are needed to stabilize one NP there might 

be also many functionalities upon introduction of functional groups (see next section). 

Within this thesis a different approach will be presented by using macromolecular 

multidentate thioether ligands, as this should reduce the number of ligands and thus 

the number of functionalities. Thioethers are found to bind less strong than thiols[35] 

but they have the ability to bind in a cooperative manner and still stabilize Au NPs 

sufficiently.[36]  

 

 
Figure 2. Thioether ligands 1,2,[37] 3,[38] 4,[39] 5,[40] 6[41] and 7[42] of different structures and denticities 

used for the stabilization of Au NPs. Thioether moieties are highlighted in blue.  

 

In 2001 Reinhoudt and coworkers presented the utilization of thioethers as stabilizers 

for Au NPs.[37] Several thioether ligands were synthesized and used as stabilizing 
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ligands during the Brust synthesis. Besides the mono- and tetradentate ligands 1 and 

2 (Figure 2) other thioether molecules were investigated. Their work already showed 

the importance of the cooperative stabilization of thioethers as the NP stability 

increased with the thioether denticity. Huang et al. used thioether polymer 3 as 

polydentate ligand and obtained stable NPs of varying sizes, depending on the NP-

polymer ratio.[38] Other polymeric ligands were also presented to stabilize Au 

NPs.[43,44] However, these polymers were mono- and tridentate concerning thioether 

moieties indicating that their stabilizing ability probably depended on the polymer 

backbone and other functional groups present. The drawback of polymers is their 

large dispersity in molecular size. Variation in ligand size might lead to differences in 

stabilizing properties and thus difficulties in tailoring NP properties.  

In 2001 Kiedrowski and coworkers presented the successful stabilization of a the 

Au55 Schmid-cluster with four tridentate benzylic thioether ligands.[39] The ligands 

were based on the 1,3,5-trimethylbenzene structure 4 and substituted the twelve 

phosphine ligands around the cluster by a phase transfer reaction into a buffered 

aqueous solution. Follow-up research published in 2006 presented the fusion of four 

tridentate ligands to form the dodecadentate ligand 5 able to solely stabilized the Au 

cluster.[40] This approach of using pure macromolecular dendritic ligands introduced a 

more controlled approach to forming and functionalizing Au NPs.  

 
Figure 3. a) Large dendrimer stabilized NPs are formed with lower generations of dendrimers while b) 

higher generations produce dendrimer encapsulated NPs with smaller diameters, adapted from 

Reference [45]. 

 

Crooks and coworkers and Esumi and coworkers presented the first examples of 

macromolecules to encapsulate and stabilize metal NPs.[46,47] They used different 

dendrimer generations based on poly(amidoamine) (PAMAM) and poly(propylene 
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imine) (PPI) structures as macromolecular stabilizers. Besides that poly(ethylene 

glycol) (PEG) dendrimers containing triazole rings were also able to form stable Au 

NPs (Figure 3).[45] Within these studies it was found that lower dendrimer generations 

form NPs with larger diameters (Figure 3a). It was proposed that these NPs are 

dendrimer stabilized while higher generations form dendrimer encapsulated NPs with 

smaller diameters (Figure 3b).[45,47] 

 

Thioether based dendrimers as the stabilizing ligand were also presented and the 

molecular structures vary from stiff arylic sulfides[41] to highly flexible benzylic 

thioether dendrimers.[42] These dendrimers were present during the NPs synthesis 

following the Brust-Schiffrin protocol and the latter showed better stability and 

monodispersity. The results are difficult to compare as Hosokawa’s star shaped 

molecules 7 contained thioethers throughout the whole structure and additional ether 

moieties[42] while the stiff polyphenylene dendrimer 6 of Taubert et al. just had 

terminal thioethers and a huge aromatic core whose stabilizing abilities are 

unknown.[41] Besides the thioether flexibilities Vögtle and De Cola also compared 

dendrimers with a different extent of the branching of thioether moieties.[48] They 

were able to conclude that higher generations lead to increased stabilities and that 

the stabilizing capability of the branches is also vital. Interestingly most of their NPs 

still contained the phase transfer agent TOAB so probably the dendrimers did not 

stabilize the NP sufficiently.[48] Bergamini et al. used a dodecadentate persulfurated 

coronene to form stable and monodisperse NPs by disproportionation of Au+.[49] In 

2009 Peterle et al. of our research group used linear thioether oligomers to stabilize 

Au NPs.[50] Bi-, tetra-, hexa- and octadentate thioether ligands were synthesized 

(Figure 4) and the latter showed the highest NP stability and smallest dispersity. The 

benzylic thioethers gave the flexibility and tert-butyl functionalized benzenes as 

bridges gave a sufficiently large ligand shell to ensure long-term stability.[50] This 

study nicely supports the overall conclusions we draw for using thioether-based 

ligands: denticity, thioether flexibility and extent of the ligand shell increase the 

stability and monodispersity of Au NPs. 

 
Figure 4. Molecular structure of linear thioether ligands used to stabilized Au NPs.[50] 

SS

n

n = 1, 3, 5, 7
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1.4 Controlled Functionalization of Gold Nanoparticles 

There are various ways to functionalize and assemble Au NPs and different 

approaches can be chosen. One can either i) form unfunctionalized NPs (Figure 1a) 

or NPs bearing many functionalities (Figure 1c) and use linker molecules and 

experimental conditions that favor formation of discrete NP architectures (Figure 

5a,c) or ii) one can try to control the number of functional groups on the NP surface 

for the subsequent assembly (Figure 5b, green arrow in green box). Examples of the 

first approach may be found in the studies of Dadosh et al. and Brousseau III et at., 

who formed NP dimers of citrate-stabilized NP using a carefully chosen ratio of 

unfunctional NPs to dithiol linker molecules (Figure 5a).[51,52] Simon and coworkers 

used an excess of multifunctional NPs to click them to a DNA template and obtained 

ordered chain-like architectures.[53] There are many other examples that utilize similar 

approaches and some are presented in recent reviews that show the richness of NP 

assemblies.[54–58] Within the present thesis we focus on the controlled 

functionalization (green arrow in Figure 5b) of Au NPs with one or two functional 

group on the NP surface for their further assembly without an additional linker.  

 

 
Figure 5. Different concepts for the functionalization of Au NPs and their assembly into multimeric 

structures (taking dimers as an illustrative example). The individual NPs are formed by reducing 

HAuCl4 and then stabilized with a protective ligand shell. a) Dimers may be formed using a well-

chosen ratio of unfunctional NPs and difunctional linkers, although monomers remain the major 

product. b) NPs are monofunctionalized (FG = functional group) and then covalent fused to form 

mostly dimers. c) NPs are multifunctionalized and linked in an excess of NPs (as in route (a) above), 

yielding a mixture of dimers and monomeric structures. Experiments performed via route (a) or (c) 

using lower excesses of NP relative to linker produce multi-linker bearing NPs and so high-n multimer 

assemblies.[29,59] 
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There are various approaches to introduce functionalities onto a NP surface. One 

way is to form NPs stabilized by weak ligands like citrate or amines first. Afterwards 

the ligand is replaced by a stronger-binding alkanethiol molecule[60] followed by 

exchange with a functional thiol, e.g. OPE-dithiol.[29] This approach is very convenient 

if many functional groups are envisaged or if the concentration of linker molecules 

used for the subsequent NP assembly may be controlled. It is also possible to 

exchange the weak ligand with a mixture of functional and unfunctional thiols at the 

same time for an increased control over the number of functionalities on the NP 

surface. Stoddart and coworkers used a molar ratio of 3000:1 of alkanethiol and 

functional thiol to obtain mono-functionalized NPs in a large excess of 

nonfunctionalized NPs.[61] The subsequent assembly of dimers and trimers was 

achieved without removing the unfunctional NPs.  

Controlled assemblies are needed for applications in labeling and medical 

diagnostics, and are the key remaining bottleneck for the development of 

reproducible nanoelectronics components based on NP superstructures, such as 

dimers, chains and 3D architectures. A very promising route to controlled assembly 

(Figure 1b) requires simply pure samples of monofunctionalized NPs. To our 

knowledge only a few review articles focus on the controlled functionalization of Au 

NPs.[57,58,62–64] One way to obtain NPs with a controlled low number of functionalities 

is by separating NPs using chromatography. The first report of monovalent Au NPs 

was presented in the 1980s where a undecagold cluster (Au11) was stabilized by 

seven phosphine ligands, with just one of the phosphines carrying a functionality 

(Figure 6a).[65,66] The clusters were purified by repeated ion-exchange 

chromatography and their monofunctionality was inferred from photometry and their 

chemical behavior. Monovalent undecagold (0.8 nm diameter) was then further 

labeled with an antibody by Hainfeld.[30] The unlabeled NPs were removed by ion-

exchange chromatography and the presence of mono-labeled NPs was confirmed by 

electron microscopy. This approach was later extended to synthesize a monovalent 

1.4 nm gold cluster that is commercially available since 1992 as Nanogold by 

Nanoprobes (Figure 6b).[11] Therefore we will not present Au NP assemblies using 

these commercial NPs. 
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Figure 6. a) The proposed molecular structure of monofunctionalized undecagold (0.8 nm diameter), 

from Reference [30]; b) schematic drawing of commercially available monofunctionalized gold cluster 

called Nanogold, from Reference [11]. 

 

Au NPs functionalized with different amounts of DNA strands were successfully 

separated by gel electrophoresis (Figure 7a).[67] Mono- to penta-functionalized NPs 

were isolated by Alivisatos and coworkers with DNA strands consisting of at least 

100 base pairs. The pure mono-DNA-labeled NPs were later covalently dimerized by 

enzyme ligation supported by a reversible duplex formation with a template DNA[68] in 

a neat combination of covalent chemistry plus non-covalent self-assembly. In earlier 

studies the same group had already used gel electrophoresis to isolate NP dimers 

and trimers.[69] Monofunctional NPs purified by gel electrophoresis were also used to 

form cyclic hexameric structures[70] and highly ordered two-dimensional NP arrays on 

DNA tiles.[71–73] NPs with multiple functionalities were also used to form 2D arrays 

resulting in more defects and lesser control of the final assembly.[74]  

The long DNA strands used for the purification have a drawback: they require higher 

efforts and costs for their production and can also be an obstacle for the tailored NP 

assembly. Aldaye and Sleiman, and Ohya and coworkers, were able to reduce the 

size of the DNA marker by a reversible elongation with a second DNA strand and 

isolated the mono-DNA-labeled NPs by gel electrophoresis (Figure 7b).[75,76] After 

removal of the elongation strands the NPs were assembled into 1D- and 2D-

architectures, such as chains, triangles and squares. NPs with two DNA markers 

were also isolated by gel electrophoresis and used to build up trimers with two 

monofunctionalized NPs.[68,76] If these trimeric structures were connected by single 
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stranded DNA, two complementary trimers were synthesized and hybridized to form 

hexameric structures.[68] Most superstructures aligned in linear structures reflecting 

the steric benefit of binding the two functionalities on opposite sides of the NP. 

Suzuki and coworkers preassembled two single stranded DNA markers to a template 

in order to attach two functional units to the NP surface at the same time in close 

proximity.[77] They subsequently attached two smaller functional NPs to the 

bifunctional NPs and obtained triangular architectures clearly showing the close 

proximity of the two initial DNA labels.  

 
Figure 7. Successful separation of Au NPs bearing different numbers of DNA strands: a) at least 

100 base pairs are required in order to achieve sufficient separation, from Reference [67]; b) shorter 

DNA markers are used by reversibly extending to a double strand for the purification, from Reference 

[76]. 

 

Immobilized metal ion affinity chromatography (IMAC) was used to purify mono-

peptide labeled NPs.[78] Coordinating a peptide tag to an immobilized metal ion 

enabled the separation of functional and unfunctional NPs. In this case, a sequence 

of six histidines was used as a tag (His6-tag) and Nickel(II) as the immobilized metal 

ion. This Nickel-mediated NP-protein binding was introduced earlier by Hainfeld and 

coworkers.[62,79] After forming the Nickel-His-tag complexes in a chromatography 

column the unfunctional NPs were washed off and the mono-labeled NPs were 

eluted with imidazole (Figure 8a). However, in order to obtain only mono-

functionalized Au NPs the concentration of peptide marker had to be very low (10fold 

excess of NPs) so that the NPs bear either one or no functionality leading to a low 

yield of monofunctional NPs. The same approach was chosen to synthesize Au NPs 

with the Nickel(II) complex[80] on their surface in order to bind these labeled NP to 

His6-tag functionalized proteins[80] and nanofibres.[81] Leung and coworkers were able 
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to remove unfunctional NPs with a similar protocol (Figure 8b).[82] A mixture of 

monofunctionalized and unfunctionalized Au NPs was separated using crownether 

functionalized magnetic particles that noncovalently bound the NP functional group, a 

protonated secondary amine. The unfunctionalized NPs were washed away with 

dichloromethane, while the amines of the functional NPs were deprotonated, allowing 

the functional NPs to be separated from the magnetic particles by applying an 

external magnetic field.  

 
Figure 8. Concept used to separate a mixture of NPs having either one or no functional group 

attached to their surface. Functionalized NP were selectively trapped in a column (left) or on magnetic 

particles (right), while unfunctional NPs were removed. Finally pure samples of monofunctionalized 

NPs were released and collected, from References [78,82]. 

 

All attempts presented so far require expensive and time-consuming purification 

steps. Reactions on solid supports provide an alternative route to obtain 

monofunctional NPs without the need for chromatographic purification. A polymer 

resin was functionalized with an alkyl chain bearing a terminal thiol, which was 

allowed to undergo exchange with the surface of an alkanethiol stabilized Au NP 

(Figure 9a). Unreacted NPs were washed off before the cleavage from the resin was 

performed under acidic conditions and monofunctional NPs with a diameter of around 

2.8 nm were obtained.[83] This research published by Huo and coworkers was the first 

example of asymmetric functionalization, which means that just one part of the NP 

surface is functionalized while the rest of the surface is blocked. Shortly after that 

Sung et al. published a similar example[84] and within both studies the 

monofunctionalized NPs were assembled to dimeric structures with TEM 

investigations clearly confirming their identity.[83,84] The usefulness of solid supports 

was further improved by introducing noncovalent attachment to the polymer resins 

(Figure 9b) permitting the use of milder, less acidic conditions for the cleavage.[85]  
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Figure 9. Schematic of the stepwise formation of monofunctionalized Au NPs using molecular 

exchange with a polymer resin: a) the alkanethiol is covalently attached to the resin, from 

Reference[83]; b) the alkanethiol is immobilized on the polymer beads using noncovalent interaction, 

from Reference [85]. 

 

Shumaker-Parry and coworkers used a glass surface as solid support for the 

asymmetric functionalization of Au NPs with a diameter of 41 nm.[86] This allowed the 

introduction of different functionalities upon removal from the glass surface. A 

drawback of this technique was the presence of an unknown number of functional 

ligands. However, this unknown number seemed to be low and concentrated to just 

one area of the surface. These NPs, each bearing either a carboxylic acid or an 

amine, were coupled with each other to form mostly dimers and therefore could be 

described as quasi monofunctionalized.[86] This means that the NPs behave in 

monofunctional nature although multiple functionalities are present. The versatility of 

this protocol was later proven using smaller 18 nm diameter NPs and other binding 

motifs for the formation of dimeric structures, while the stabilization was improved by 

using trivalent thiols.[87] Mirkin and coworkers used SiO2 particles (much larger than 

the Au NPs) as a basis for this asymmetric functionalization.[88] Au NPs stabilized 

with multiple DNA strands were hybridized onto the SiO2 particle and the free DNA 

strands were blocked. After tailored melting of the first duplex quasi 

monofunctionalized Au NPs were obtained and successfully assembled around a 

larger multifunctionalized NP to obtain a satellite structure (Figure 10a).[88] This 

concept was further improved by Li et al. who obtained truly mono-DNA-

functionalized Au NPs.[89] They also used relatively large SiO2 particles and 

introduced a bulky DNA functionality after removal from the solid support to block the 

attachment of a second functionality (Figure 10b). In general, the utilization of solid 

supports is an elegant way for controlled functionalization of Au NPs. One drawback 
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is that an excess of NPs is required in order to favor monofunctionalization, which 

leads to lower yields. While there are several examples of the solid support approach 

for DNA or peptide labeled NPs, our impression is that commercial ‘Nanogold‘ and 

NPs purified by gel electrophoresis are the two most common approaches to obtain 

monofunctionalized NPs in aqueous media. As the controlled functionalization in 

aqueous solvents was studied to a greater extent, solid supports seem to be more 

convenient for nonpolar organic media. Therefore, the following examples will mostly 

focus on controlled functionalization in organic solvents.  

   
Figure 10. The concept of asymmetric functionalization to obtain a) quasi-monofunctionalized and b) 

truly monofunctionalized Au NPs. Initially Au NPs are bound to a larger SiO2 particle and their free 

surface is blocked against further functionalization. Upon cleavage from the larger particle either 

quasi-monofunctionalized NPs are obtained with just a small surface area available for 

functionalization. If the functional group of choice is relatively large monofunctionalized Au NPs are 

obtained; adapted from References [88,89].   

 

Ligand polymerization on the NP surface was another successful attempt to 

synthesize monofunctional NPs.[90] 4-Vinylthiophenol was used as a stabilizing ligand 

for Au NPs (diameter between 2 nm and 5 nm) and was polymerized on the NP 

surface. A controlled free radical polymerization was performed under high dilution 

conditions and with small amounts of starter molecules that contained a carboxylic 

acid group. This led to the introduction of just one carboxylic acid group on the NP 

surface. The NPs were dimerized and attached onto polypeptide chains, confirming 

the monofunctionalization. 
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The approaches described so far mostly produced NPs bearing one functionality 

while unfunctional ligands are still present on the NP surface. All approaches needed 

further purification steps or additional reactions of the initial NP in order to obtain 

monofunctional NPs. On the other hand, a macromolecular stabilizing ligand able to 

cover the entire or most of the NP surface could provide a more efficient route to 

monofunctional NPs. This concept was first reported in 2004 by Wilson and 

coworkers.[91] They prepared dextran polymers that contained many disulfide bonds 

and were big enough to enwrap an entire Au NP, 15 nm in diameter. On average, 

one NP was stabilized by one polymer molecule (Scheme 1). To our knowledge this 

was the first report of a one-to-one ratio of NP and stabilizing ligand. While in this 

case the polymer carried several functionalities, a new concept was introduced 

towards mono-functionalization. 

 
Scheme 1. The concept of enwrapping of a 15 nm gold nanoparticle with a single polymer molecule, 

adapted from Reference [91]. 

  

The dodecadentate ligand 5 introduced by Kiedrowski and coworkers (Figure 2), 

which was able to solely stabilize one Au55 Schmid-cluster also carried a functionality 

leading to the successful formation of a monofunctional Au clusters.[40] The gold 

clusters were attached to a single stranded DNA of interest for performing 

temperature dependent studies on the DNA duplex formation.[40] This DNA melting 

was performed in order to study the thermostability of the label. 

The concept of introducing the desired functionality into a macromolecular ligand was 

also used by Peterle et al. in our research group.[92] Benzylic thioethers were 

assembled as linear oligomers to form octadentate ligands. The thioether ligand was 

functionalized with an oligo phenylene ethynylene (OPE) rod already present before 

the Au NP formation (Scheme 2). Functional Au NPs were directly obtained and 

closer investigation showed that the Au NPs are on average bifunctional, carrying 
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two terminal protected acetylenes. These acetylenes were used to covalently 

assemble the NP monomers to NP superstructures by an oxidative homocoupling 

protocol.[92,93] Divalent NPs were also formed by Stellacci and coworkers.[94] They 

selectively functionalized Au NPs by ligand exchange. This place exchange was 

found to be favored at diametrically opposed positions due to polar defects occurring 

when a curved NP surface is coated with an ordered monolayer. The divalent NPs 

were used to form 1D-chains with different NP distances depending on the diamine 

linker used for the assembly.[94] 

 
Scheme 2. Concept of using pre-functionalized macromolecular ligands to introduce the desired 

functionality already within the NP formation, adapted from Reference [93]. 

 

1.5 Assembly of Nanoparticles to Form Hybrid Superstructures 

We will shortly present various approaches used for the formation of NP 

architectures. The possibilities to assemble Au NPs are as broad as the various 

chemical or physical interactions we can imagine. As mentioned earlier, well 

orientated NP assemblies can be obtained by using DNA,[53,70,74,88,95–98] acetylene 

homocoupling[92], amide formation,[83,84,90] click-chemistry[99], and dithiol 

linkers.[10,29,51,52,100–105] Other examples of the covalent assembly of Au NPs are 

Diels-Alder reactions,[106,107] oxidative homocouplings of thiophene and pyrrole,[108] 

and the light triggered reaction of o-nitrobenzylalcohol with benzylamine.[109] 

Assemblies can also be achieved with non-covalent linkages including host-guest 

interactions,[61,110] hydrogen bonding,[111–113] coordinate bonds,[114] - [115] and 

charge-transfer[116] interactions. Figure 11 depicts some of the concepts used for the 

assembly of Au NPs.  

In order to achieve controlled assemblies of NPs such as dumbbells, chains and 2D-

networks it is important to either control the number of functionalities on the NP 
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surface or control the NP linker ratio (see previous section). Within the present thesis 

we aim for Au NPs bearing a controlled low number of functionalities for their further 

assembly. 

  

  

    

 

 
 

Figure 11. Various concepts for the assembly of Au NPs. NP superstructures are formed by a) DNA 

tiles (adapted from [71]), b) reversible Diels-Alder reactions (adapted from [106]), c) DNA templates 

(from [75]), d) hydrogen-bonding (from [113]), e) light triggered indazolone formation (from [109]), 

f) -stacking of electron-rich and electron-poor aromatic moieties (from [116]), g) coordinate bonds 

(from [114]) and h) dithiol linkers (from [29]). 

  

a) b) 

d) 

f) 

c) 

e) 

g) 
h) 
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2 Concept and Strategy 

2.1 Previous Work 

In 2008 and 2009 our research group introduced a new concept for the stabilization 

and functionalization of Au NPs.[1,2] By using macromolecular octadentate thioether 

ligands (Figure 12a) stable NPs with 1 nm diameter were obtained. The thioether 

moieties in the benzylic position provided sufficient flexibility needed to enwrap the 

curved NP surface. The tert-butyl functionalized benzene bridges ensured the NP 

stability by forming a protective ligand shell. The ligands were further functionalized 

in their center with a protected acetylene on an oligo phenylene ethynylene (OPE) 

rod. In the presence of these functional ligands Au NPs were formed following the 

Brust-Schiffrin-method[3] where they were directly functionalized in their periphery. 

Therefore, the two steps required for the formation and the subsequent 

functionalization of Au NPs (compare Figure 5) were combined in one (long green 

arrow in Figure 12b). As a result, Au NPs carrying two functional groups on their 

periphery were obtained. After deprotection, the free acetylenes were used to form 

NP oligomers by oxidative homocoupling. The investigation of the interparticle 

spacings of coupled NPs revealed distances shorter than expected. These studies 

were reviewed within the first paper of this thesis, published in CHIMIA.[4] 

 

 

 
Figure 12. a) Octadentate thioether ligands that were used for the formation and functionalization of 

Au NPs, A = anchor point of functionality. b) The concept introduced by Peterle et al. to directly form 

functional Au NPs by reduction of Au3+. The long green arrow represents NP formation and 

functionalization achieved in one step, FG = functional group. 
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2.2 Goals and Results 

The goal of the present thesis was to investigate two outputs of the work of Peterle et 

al. in more detail: 1) the interparticle distance should be investigated and extended in 

order to increase the control of NP architectures and 2) the monofunctionalization of 

Au NPs was envisaged (Figure 13). The monofunctionality is desired for applications 

as labels and for NP dumbbells, which might find use as architectures in molecular 

electronics. 

 

Figure 13. The two main goals of this thesis: a) to control the distance of NP oligomers and b) to form 

monofunctionalized Au NPs, FG = functional group. 

 

The first goal was approached by investigating the anchor point of the functional OPE 

rod on the NP surface (Figure 14a,b). Initially the OPE rod was attached on a central 

benzene ring (Figure 12a). We proposed that the steric repulsion of the benzene’s 

central hydrogen led to a tilted arrangement on the surface and thus a reduced 

interparticle distance (Figure 14a). A new series of octadentate thioether ligands was 

synthesized with an anchor group based on pyridine and Au NPs were formed in 

their presence. Pyridine was chosen as the anchor group because no hydrogen is 

present in the ligand structure and the nitrogen’s lonepair could coordinate to the 

gold surface. This coordination should lead to perpendicular arrangement on the NP 

surface (Figure 14b). NPs were formed in the presence of the old and new 

octadentate ligand series and functionalized NPs were obtained, which had similar 

size distributions around 1.1 nm diameter. The NPs were again coupled to form 

organic-inorganic hybrid superstructures. Measurements of the interparticle spacing 

of NP oligomers revealed that the single atom substitution in the ligand design was 

able to extend the NP distance by forming a perpendicular arrangement on the NP 

surface. This work was published in SMALL and the respective table of contents 

(TOC) graphic is depicted on Figure 14c.[5] 

l
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Figure 14. a),b) The proposed arrangement of the functional anchors on the NP surface. c) Table of 

contents (TOC) graphic of the studies published in SMALL. 

 

The second goal was approached by a new ligand design. Dendritic thioether ligands 

were desired target compounds, as their successful utilization as stabilizing ligands 

for Au NPs was already shown by other research groups (see Introduction 

Chapter 1.3). With the knowledge of the linear thioether ligands and the background 

of previous studies two different types of unfunctional dendrimers were synthesized. 

Both were multidentate structures with flexible thioether moieties and 1,3,5-

trisubstituted benzenes as branching units. Instead of ball-shaped dendrimers we 

chose to synthesize just one hemisphere for two reasons: i) the ligand should form 

dendrimer stabilized NPs rather than dendrimer encapsulated NPs (see Figure 3) 

and ii) the ligands center should be able to carry a functional group. The dendritic 

branching units were diluted in order to favor longer arms over a three-dimensional 

space filling. This should enable the dendrimers to enwrap the curved surface of Au 

NPs. We found that one class of dendritic ligands did not supply a sufficiently large 

protective shell leading to aggregation and precipitation of Au NPs. The second 

series was able to stabilize NPs with a narrow size distribution (Figure 15). The tert-

butyl functionalized benzene bridges between the branching units were vital for the 

formation of stable NPs due to the larger protective ligand shell they formed. The 

number of dendritic ligands required to stabilize one Au NP was investigated. In 

analogy to the linear octadentate ligands the first generation dendrimers (eight 

sulfides) also required two ligands for stabilizing Au NPs of 1.1 nm diameter. The 

second generation dendrimers consisting of 20 thioether moieties were able to 

stabilize an entire Au NP of 1.2 nm diameter. This already gave the desired one-to-

one ratio of NP and ligand, although the NPs still had no functionality as unfunctional 

dendrimers were used. This research was published in Chemistry – A European 

Journal and Figure 15 shows the respective TOC graphic.[6]  
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Figure 15. TOC graphic of the research published in Chemistry – A European Journal. 

 

We also performed theoretical calculations in order to support the assumption that 

the dendrimer ligands enwrap the NP (see cartoon of dendrimer-NP assembly in 

Figure 15). In collaboration with Damien Thompson (Tyndall Institute, Cork, Ireland) 

the energies of NPs stabilized with one or two dendrimers were calculated, showing 

clear preferences for just one dendrimer. Besides this the geometry of the functional 

anchor point on the NP surface was also modeled. We found that the coordination of 

the nitrogen’s lonepair leads to the perpendicular arrangement of the OPE rod on the 

NPs. The expected steric repulsion of the benzene’s additional hydrogen leading to a 

tilted angle was not supported. We further proposed that monofunctionalized Au NPs 

will be obtained upon functionalization of the dendrimer. The work was published in 

ACS Nano and Figure 16 depicts the respective TOC graphic.[7] 

 

 
Figure 16. The TOC graphic of the theoretical research published in ACS Nano. 

 

A central functionality based on pyridine was introduced in order to obtain functional 

dendrimers suited to form monofunctional Au NPs. These dendritic ligands were 

present during the Brust-Schiffrin method and stable NPs were formed. Investigation 
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showed that the first generation produced bifunctional NP while the second 

generation indeed carried just one functionality. These functional monomers were 

assembled to form dumbbell structures with yields close to 50% and interparticle 

distances expected for a perpendicular arrangement of the OPE rod on the NP 

surface. The research will be published in the Journal of the American Chemical 

Society (J. Am. Chem. Soc) and the respective TOC graphic is depicted in Figure 

17.[8] 

 

 
Figure 17. TOC graphic of the research published in J. Am. Chem. Soc. 
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Abstract: Gold nanoparticles (Au NPs) have many potential applications including nanoelectronics, catalysts and 

sensors. These future devices depend on stable and monodisperse NPs and their directed assembly. Herein we 

review our efforts to develop oligomeric thioether ligands able to direct the synthesis of Au NPs and their surface 

functionalization. A screening of different oligomeric thioethers indicates that the NPs become more stable and 

monodisperse with increasing length of the thioether oligomer. The heptameric benzylic thioether 4 stabilizes 

monodisperse NPs with a diameter of 1 nm and excellent long-term stability in solution. It is further monofunc-

tionalized with a central protected acetylene. After NP formation in the presence of the ligands we utilize the 

peripheral functionality to interlink the NPs. A mild oxidative diacetylene coupling protocol is used to covalently 

bind these ‘artificial molecules’. This wet-chemical procedure leads to the formation of hybrid organic–inorganic 

superstructures.

Keywords: Gold nanoparticles · Hybrid materials · Organic–inorganic superstructures

Introduction

Gold is the most frequently used material 
for metal nanoparticles (NPs). This is due 
to the efficient synthesis of Au NPs, the 
advanced state of surface chemistry and 
their potential as model system for col-
loids and surfaces.[1–3] Au NPs show size-
dependent features, providing interesting 
physical properties, such as room tempera-
ture Coulomb blockade for small NPs.[4–6] 
Stable and monodisperse NPs are essential 
for their use in many future technologies, 
including electronic devices,[7–11] sensor 
applications[12–17] and catalysis.[18,19] The 
stabilizing agents in organic solvents are 
mainly based on thiols[20] that show cova-
lent interactions with the gold surface. In 

general, thioethers form weak interactions 
to gold compared to thiols.[21] There are 
however some examples where thioethers 
have been proven to be suitable ligands for 
the stabilization of Au NPs.[22–26] Increased 
stability and monodispersity have been re-
ported for multidentate ligands comprising 
more than one thioether unit. 

Below we describe the screening of 
several multidentate thioether oligomers 
to find a suitable ligand that enables the 
formation of stable and monodisperse 
NPs. A large multidentate structure favors 
monodisperse NP sizes by enwrapping the 
whole NP by a well-defined small number 
of ligands. This concept enables control 
of the number and nature of functional 
groups on the NPs’ surface simply by at-
taching the desired functional group to the 
ligand. To our knowledge only a few ex-
amples describe the realization of mono- 
and bifunctionalized NPs in organic sol-
vents. The former was realized via ligand 
polymerization on the NPs’ surface[27] and 
reaction on solid supports[28,29] and the lat-
ter by profiting from the exposed pole po-
sitions of monodisperse NPs.[30,31] Another 
major challenge for the integration of NPs 
in hybrid materials and future devices is 
their tailored spatial arrangement. Numer-
ous studies geared towards the directed as-
sembly of Au NPs have been reported and 
several review articles highlight the impor-
tance of the field.[32–37] 

Herein we summarize three recent 
publications on our research towards in-

terlinked Au NPs. In a first screening of 
thioether oligomers, a benzylic thioether 
heptamer was found to be a very promising 
ligand to stabilize Au NPs.[38] It was further 
functionalized with a protected acetylene. 
This peripheral functionality was con-
nected via an oligophenylene ethynylene 
(OPE) spacer of different lengths. The 
acetylene enabled the covalent interlinking 
of NPs by a mild oxidative diacetylene cou-
pling. The NP size and the spatial arrange-
ment of these hybrid organic–inorganic 
superstructures were investigated by trans-
mission electron microscopy (TEM).[39] 
In addition we investigated self-assembled 
monolayers of model compounds to study 
the sulfur–gold interactions. High-reso-
lution X-ray photoelectron spectroscopy 
(HRXPS), near-edge X-ray absorption 
fine structure (NEXAFS) spectroscopy 
and scanning tunneling microscopy (STM) 
were used for this purpose.[21]

Ligand-stabilized Gold 
Nanoparticles

The linear oligothioether ligands 1–4 
(Fig. 1) were synthesized and their ability 
to stabilize and ensnare Au NPs was inves-
tigated.[38] The goal of this series was to 
find a ligand that directs the size of small 
NPs leading to stable and monodisperse 
NPs. The thioether structure was intended 
to enable an evenly dispersed surface cov-
erage with a low integer number of ligands. 
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Therefore we omited the use of free thiols 
in our future ligand design.

Hybrid Organic–Inorganic 
Superstructures

Based on the ligand investigations de-
scribed above we choose heptamer  4 for 
addition of a peripheral functional group. 
A rigid OPE of different lengths was intro-
duced with a terminal silyl-protected acet-
ylene to obtain ligands 9–11 (Fig. 3).[39] 

Fig. 3. Ligands 9–11 comprising a protected 

acetylene as an additional peripheral functional 

group for interlinking nanoparticles to organic–

inorganic superstructures.

NPs were formed in the presence of 
these monofunctionalized ligands follow-
ing the same protocol as for Au-(1–4). Af-
ter removal of excess ligand the samples 
only contained ligand-stabilized NPs Au-
9, Au-10 and Au-11. The obtained UV/vis 
spectra were very similar to the spectrum 
of heptamer-stabilized NPs Au-4 with dif-
ferences between 300 nm and 400 nm, due 
to the elongation of the functional OPE 
unit in the ligands center. As this feature 
was clearly visible we confirmed that we 
obtained functional NPs with the OPE 
structure at their periphery. The ligand-
stabilized NPs were further investigated 
by TEM. The analysis of micrographs in-
dicated the same narrow NP size distribu-
tions of 1 nm as the unfunctionalized hep-
tamer 4 (see below). This indicates that the 

The number of ligands should be transfer-
rable to the number of functionalities that 
could be introduced with the ligand. Au 
NPs were formed following a protocol de-
veloped by Brust et al.[20] In a two-phase 
system of water and dichloromethane with 
tetra-n-octylammoniumbromid (TOAB) as 
phase transfer agent, chloroauric acid was 
reduced by sodium borohydride in the pres-
ence of oligomers 1–4. Monomer 1 could 
not prevent the bulk precipitation of gold 
but also stabilized some NPs. UV/vis spec-
troscopy showed the presence of a plasmon 
resonance band in the UV spectrum of Au-1
indicating NPs larger than 3  nm.[40] After 
several hours these NPs further coagu-
late and precipitate. Oligomers 2, 3 and 4 
led to the formation of soluble NPs with-
out precipitation. As the ligand-stabilized 
NPs Au-2 precipitated within days upon 
storage in dispersion, we only determined 
the diameter of NPs Au-3 and Au-4 using 
transmission electron microscopy (TEM). 
While NPs Au-3 range from 1 nm to 5 nm, 
NPs Au-4 showed a narrow size distribution 
with a mean diameter of 1 nm (see below). 
UV/vis spectroscopy proved the excellent 
long-term stability, as the spectrum of NPs 
Au-4 did not change upon storage in di-
chloromethane over several months. TEM, 
elemental analysis and thermogravimetry 
revealed a particle-to ligand ratio of 1:2. 
Upon ligand functionalization NPs with two 
peripheral groups should become available. 
Interestingly, these NPs might be exposed 
subsequently to wet chemical procedures 
acting as ‘artificial molecules’. 

Self-assembled Monolayers of 
Thiol/Thioether Ligands

Self-assembled monolayers (SAMs) 
of model compounds 5–8 (Fig.  1) were 
formed on Au(111) to study the gold–li-

gand interactions.[21] These assemblies 
were investigated by high-resolution X-
ray photoelectron spectroscopy (HRXPS), 
near-edge X-ray absorption fine structure 
(NEXAFS) spectroscopy and, in the case 
of molecules 5 and 6, also by scanning tun-
neling microscopy (STM). 

The question addressed within these 
investigations is the contribution and qual-
ity of the different binding sites. Thus, we 
were wondering if such oligomers are bind-
ing with all binding sites (striped phase, 
Fig.  2a) or only with the two terminal 
thiols forming bridge phase arrangements 
(Fig. 2b). A standing phase (Fig. 2c) would 
result if only one terminal thiol group were 
bound to the surface. 

The relation of SAM thickness to 
oligomer size, found by HRXPS, favors 
the bridge phase assembly displayed in 
Fig.  2 for these ligands. The monolayer 
thickness increased with oligomer size 
showing heights which matched the calcu-
lated values for bridge phase arrangements. 
This hypothesis is further supported by the 
analysis of the sulfur signals of the HRXPS 
spectra. In particular the expected ratios of 
strongly bound and uncoordinated sulfurs 
were found for the model compounds.

While additional NEXAFS spectra also 
confirmed the bridge  phase model, STM 
investigations of shorter oligomers 5 and 
6 revealed a further insight. The monomer 
5 formed a dense packed SAM that was in 
excellent agreement with the bridge phase 
model. However the trimer 6 showed a few 
features with heights indicating unfolded 
upright standing molecules. This led to the 
estimation that about 10–20% of the mol-
ecules bind only with one thiol group to the 
substrate (Fig. 2b).

We propose that the observed bridged 
geometry is driven by the strong thiol–gold 
interaction. The strongly binding terminal 
thiols push the weakly coordinating thio-
ether binding sites away from the surface, 
reducing the ligands’ multidenticity. As the 
multidentate coordination is desired, a ho-
mogenously balanced sulfur–gold interac-
tion over all binding sites is fundamental. 

Fig. 1. Model compounds 1–8 used to 

investigate nanoparticle stabilizing features as 

well as binding behaviors on gold surfaces. 

Fig. 2. Schematic representation of possible binding modes of the thiol-thioether oligomer 6 to 

the gold substrate.
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anchors the central functionality. This hy-
pothesis was further corroborated by recent 
studies with model ligands comprising a 
central pyridine unit.[42] The coordination 
of the pyridine’s nitrogen to the Au NP re-
sulted in a perpendicular arrangement of 
the rod at the NP’s surface. Thus the cal-
culated length of the rod and the observed 
interparticle spacings perfectly matched.

Summary and Conclusion

Our efforts towards the realization of 
covalently bound NPs are presented. After 
two ‘casting’ series we choose a ligand de-
sign that is able to stabilize Au NPs with 
a narrow size distribution and controlled 
thioether gold interactions. It was found 
that two ligands stabilize one NP. The li-
gand structure was further functionalized 
with a peripheral protected acetylene pro-
viding bifunctional NPs (see Fig. 6). 

thioether oligomer stabilizes the NPs and 
is not affected by the new functionality. 
Thus, we assume that again two ligands are 
needed to stabilize one NP, which was cor-
roborated by combining TEM results with 
thermogravimetric analysis data. 

The protected acetylene of these ‘arti-
ficial molecules’ enabled the covalent cou-
pling of NPs with a mild oxidative diacety-
lene coupling protocol developed by Hay.[41] 
This copper-catalyzed wet-chemical pro-
cess was performed after deprotection of 
the acetylene and led to hybrid organic–in-
organic superstructures (Au-9)

n
,
 
(Au-10)

n 

and
 
(Au-11)

n
. Fig. 4 depicts a representa-

tive TEM micrograph showing a dimer 
(n  =  2), trimer (n  =  3) and monomeric 
NPs. Besides dimers and trimers tetramers 
(n  =  4) were also obtained. These three 
different oligomers were used for further 
analysis. Higher oligomers precipitated 
from solution due to their low solubility. 
The reaction time was thus reduced to 

15 minutes to favor short oligomers instead 
of long insoluble polymers. The success of 
the coupling was preliminary detected by 
UV/vis. The elongation of OPE due to di-
acetylene formation was clearly shown by 
a bathochromic shift. Investigations of the 
interparticle spacings of these superstruc-
tures via TEM revealed that the different 
lengths of rigid-rod linkers were reflected 
in the interparticle distances (Fig. 5). 

We obtained Gaussian-like distance 
distributions with increasing maxima for 
larger spacer lengths. The shape of the 
Gaussian-like fit broadens with each ex-
tension of the OPE linker and the maxima 
are at shorter values than the calculated 
distances for the outstretched rods. These 
two aspects lead to the assumption that 
the ligands arrange with various possible 
angles on the NP’s surface. A tangential 
alignment is favored over a perpendicular 
arrangement probably due to the steric re-
pulsion of the aromatic hydrogen, which 

Fig. 4. Representative TEM micrograph of gold 

nanoparticle oligomers (Au-10)
n
, a dimer (circle) 

and a trimer (rectangle) are present as well as 

monomeric nanoparticles.

Fig. 5. a) Size distribution of ligand-stabilized particles, b) distance distribution of superstructures 

reflecting the various spacer lengths.

Fig. 6. The concept of using ligand-functionalized nanoparticles as ‘artificial molecules’. The oligomeric ligand 10 stabilizes particles with diameters 

of about 1 nm by covering its surface. As two ligands are required to cover the particles surface, exactly two triisopropylsilyl (TIPS) protected 

acetylenes are available as functional group on the periphery of the particle allowing their interlinking to form hybrid organic–inorganic oligomers or 

polymers by wet chemistry. 
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These ‘artificial molecules’ enabled 
the formation of organic–inorganic archi-
tectures via diacetylene coupling. In a se-
ries of interlinked NPs the spacer length 
was reflected in the spatial arrangement of 
the NPs in these hybrid superstructures.

Currently we are working on a greater 
control over the arrangement of the spacer 
group at the NP’s surface, the realization 
of increased NP sizes, other metal NPs and 
hybrid materials consisting of periodically 
arranged subunits.
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 The directed assembly of gold nanoparticles is essential for their use in many kinds 
of applications, such as electronic devices, biological labels, and sensors. Herein an 
atomic alteration in the molecular structure of ligand-stabilized gold nanoparticles 
that can shift the interparticle distance up to 1 nm upon covalent coupling to organic–
inorganic superstructures is presented. Gold nanoparticles are stabilized by two 
octadentate thioether ligands and have a mean diameter of 1.1 nm. The ligands contain 
a central rigid rod varying in length and terminally functionalized with a protected 
acetylene. The two peripheral functional groups on each particle enable the directed 
assembly of nanoparticles to dimers, trimers, and tetramers by oxidative acetylene 
coupling. This is a wet chemical protocol resulting in covalently bound nanoparticles. 
These organic–inorganic hybrid superstructures are analyzed by transmission electron 
microscopy, small angle X-ray scattering, and UV/vis spectroscopy. The focus of the 
comparison here is the subunit, which is anchoring the bridgehead, either a pyridine 
or benzene moiety. The pyridine-based ligands refl ect the calculated length of the 
rigid-rod spacer in their interparticle distances in the obtained hybrid structures. 
This suggests a perpendicular arrangement that results from the coordination of the 
pyridine’s lone pair to the gold surface. An atomic variation in the ligand’s center 
leads to smaller interparticle distances in the case of hybrid structures obtained from 
benzene ligands. This large difference in the spatial arrangement suggests a tangential 
arrangement of the interparticle bridging structure in the latter case. Consequently a 
rather fl at arrangement parallel to the particle surface must be assumed for the central 
benzene unit of the benzene-based ligand. 
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  1. Introduction 

 Nanoparticles (NPs) have size-dependent physical prop-
erties. This provides optical labels with tunable colors in the 
case of semiconducting particles [  1  ,  2  ]  and interesting physical 
properties, such as a room-temperature Coulomb blockade 
for small metallic NPs. [  3–5  ]  Gold is the most used material for 
metal NPs due to their effi cient synthesis, highly advanced 
surface chemistry, and potential as model system for colloids 
and surfaces. [  6  ,  7  ]  The diversity of potential applications of Au 
NPs is huge, ranging from electronic [  8–11  ]  and photonic [  12  ,  13  ]  
devices to chemical sensors [  14–18  ]  and biological labeling. [  19–24  ]  
A major challenge for the integration of NPs in hybrid mate-
rials and future devices is the control of their size (diameter) 
and spatial arrangement. Numerous studies geared towards 
the directed assembly of Au NPs have been reported, and 
several review articles highlight the importance of the 
fi eld. [  4  ,  6  ,  8  ,  25–30  ]  Recently, the role of interparticle forces and 
the resulting assemblies have been reviewed. [  31–33  ]  

 NP assemblies, using DNA [  34–43  ]  or host–guest inter-
actions [  44–47  ]  for example, lead to beautiful arrangements, 
but we wish to focus on assemblies that are formed in non-
polar organic solvents. Arrangements of Au NPs can be real-
ized via    π   –   π    [  48  ]  and charge-transfer [  49  ]  interactions, hydrogen 
bonding, [  50–52  ]  or coordination bonds. [  53  ]  These approaches, 
like the use of dithiol [  9  ,  10  ,  54–59  ]  or thioether [  60–64  ]  linkers, usu-
ally lead to larger networks. Our goal is to obtain dumbbell 
structures [  65  ,  66  ]  and short 1D chains of NPs that are covalently 
coupled [  67  ]  and controlled by a distinct and known number of 
functionalities on the NPs’ surfaces. 

 First attempts to obtain monofunctionalized NPs 
were based on DNA or peptides [  24  ,  34  ,  68  ,  69  ]  and therefore 
were limited to aqueous media. NPs in organic solvents were 
monofunctionalized via ligand polymerization on the NPs’ 
surface [  70  ]  and reactions on solid supports [  71  ,  72  ]  or bifunction-
alized by profi ting from the exposed pole positions of mono-
dispersed NPs. [  73  ,  74  ]  

 We recently developed oligomeric multidendate ligands 
based on a benzyl thioether motif, which enabled the forma-
tion of Au NPs in good yields with a narrow size distribution 

of around 1 nm, as detected by transmission electron micro-
scopy (TEM), and excellent long-term stability in solution. [  75  ]  
As only two macromolecular ligands were required to stabi-
lize the NP by covering its surface, the system provided easy 
access to Au NPs as “artifi cial molecules” in a wet chemistry 
process. Exposure of NPs with peripheral ethynyl groups 
( Figure  1  ) to oxidative acetylene coupling conditions pro-
vided organic–inorganic hybrid superstructures [  76  ]  consisting 
of NPs interlinked by a single diacetylene spacer. The inter-
particle distances of these superstructures refl ected the length 
trend of the organic linkers. However, a closer inspection of 
these interparticle distances revealed a Gaussian-like distri-
bution with a maximum population at shorter distances than 
the full length of the linker.  

 We explain the systematically smaller interparticle dis-
tance by a tangential arrangement of the interlinking rigid-
rod structure at the NPs’ surface. Along these lines we present 
an alternative ligand design and its capability to form stable 
NPs with a narrow size distribution. The subsequent coupling 
of ligand-stabilized NPs provides hybrid oligomers with well-
defi ned interparticle distances matching the length of the 
formed spacer unit. The studies demonstrate how structural 
design provides control of the spatial arrangement of the 
inorganic NPs in organic–inorganic hybrid structures.   

 2. Results and Discussion  

 2.1. Concept and Strategy 

 The thioether ligands  B1 – B2  ( Figure  2  ) effi ciently stabilize 
Au NPs with diameters of about 1 nm and their triisopropyls-
ilyl (TIPS)-masked acetylene enables their directed assembly 
to dimeric dumbbell structures and chainlike oligomers. [  76  ]  
The variation of the length of the oligo(phenyleneethynyl) 
(OPE) rod was refl ected in the observed interparticle dis-
tances. However, the measured distances were shorter than 
expected. As displayed in  Figure  3  A, an interparticle distance 
( d ) that is shorter than the linker length ( l ) may indicate a 

      Figure  1 .     The concept of using ligand-functionalized nanoparticles as “artifi cial molecules.” The oligomeric ligand stabilizes particles with diameters 
of about 1 nm by covering its surface. Because two ligands are required to cover the particles surface, exactly two triisopropylsilyl (TIPS)-protected 
acetylenes are available as functional groups on the periphery of the particle allowing their interlinking to form organic–inorganic hybrid oligomers 
or polymers by wet chemistry.  



33Small 2011

J. P. Hermes et al.full papers

922 © 2011 Wiley-VCH Verlag GmbH & Co. KGaA, Weinheimwileyonlinelibrary.com small 2011, 7, No. 7, 920–929

tangential arrangement of the rigid-rod structure at the NP’ 
surface. Considering the chemical structure at the bridgehead 
of the linker displayed in Figure  3 B, a tangential arrangement 
is expected to emerge from the steric repulsion between 
the central aromatic hydrogen and the Au NP surface. By 
replacing the central benzene unit of the oligomer with a 
pyridine subunit, the disruptive hydrogen atom and thus the 
steric repulsion should be removed. Furthermore, pyridines 
are known to coordinate to Au surfaces with the nitrogen’s 
lone pair. [  77–80  ]  As this coordination is reported to depend on 
the electrochemical potential of the Au surface, it might even 
provide new molecular switching mechanisms. [  81  ,  82  ]  As dis-
played in Figure  3 D, the lone pair of the central pyridine unit 
may coordinate to the metal surface of the NP. This further 
stabilizes a perpendicular arrangement of the rigid-rod struc-
ture as sketched in Figure  3 C. Interestingly, this atomic alter-
ation should be refl ected in the resulting interparticle spacing 

of the obtained organic–inorganic hybrid 
superstructures. The electronic coupling 
between the inorganic NP and organic 
bridging structure is expected to depend 
on the interactions of the bridgehead with 
the Au NP, and the extra coordination of a 
nitrogen lone pair should aid this.   

 Inspired by these considerations we 
decided to synthesize the required ligands 
with a central pyridine subunit  P1  and 

 P2  (Figure  2 ), investigate their Au NP stabilizing properties, 
and interlink the obtained NPs by applying wet chemical 
procedures.   

 2.2. Ligand-Stabilized Nanoparticles 

 NPs were synthesized in the presence of ligands  B1 ,  B2 , 
 P1 , and  P2 , and the obtained NPs  Au-B1 ,  Au-B2 ,  Au-P1 , and 
 Au-P2  were analyzed. The absence of gold plasmon bands 
around 520 nm in the UV/vis spectra of all ligand-stabilized 
NPs pointed at NPs with diameters below 2 nm. [  83  ]  The pres-
ence of the stabilizing ligand at the NP surface was displayed 
by  1 H NMR spectroscopy. In addition the  1 H NMR spectra 
also proved the completeness of the tetraoctylammonium 
bromide (TOAB) removal procedure. The removal of excess 
ligand by size-exclusion chromatography (SEC) was moni-
tored by UV/vis spectroscopy. 

 The diameters of the NPs formed were measured with 
TEM, by applying an automatized diameter analyzing proce-
dure (see Supporting Information (SI) for detailed descrip-
tions). All samples of ligand-stabilized NPs showed narrow 
size distributions of around 1.0–1.1 nm with a standard devia-
tion of 0.3 nm. As displayed in  Figure  4  , the NPs stabilized 
by the pyridine-based ligands have an average diameter 
( ø  av ) of 1.1 nm slightly larger than the ones stabilized by the 

      Figure  2 .     Chemical structures of the octadentate thioether ligands  B1 ,  B2 ,  P1 , and  P2  
comprising a TIPS-protected acetylene mounted on rigid rods of various lengths.  

      Figure  4 .     Size distributions (mean values  ±  standard deviation) of gold 
nanoparticles  Au-B1 ,  Au-B2 ,  Au-P1 , and  Au-P2 , between 3000 and 
10 000 nanoparticles were automatically measured.  

      Figure  3 .     Dumbbell structure A) with a reduced interparticle distance 
due to a tangential arrangement of the rigid-rod linker that is expected 
to result from B) a steric repulsion between the central hydrogen and 
the NP surface for ligands with a benzene subunit at the bridgehead. 
C) Maximized interparticle distance due to a perpendicular arrangement 
of the rigid-rod linker at the NPs surface presumably caused by D) the 
coordination of the nitrogen’s lone pair.  
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benzene-based ligands ( ø  av   =  1.0 nm). As one pixel has a size 
of 0.26 nm, this small size difference is within the detection 
limits; note that identical recording conditions were used in 
all cases. Minor differences already present in the brightness 
of the TEM image may increase or decrease the apparent 
diameter of the NPs.  

 Comparing the surface area of 1.0–1.1 nm Au NPs and the 
dimensions of the octasulfi de ligands, there is only enough 
space to arrange two ligands at the NPs’ surface with all eight 
sulfur atoms pointing towards the Au surface. This hypoth-
esis was confi rmed by thermogravimetric analysis; however, 
minor amounts of mono-, tri-, or higher-functionalized NPs 
may also be present in the NP samples, each with a subop-
timal coordination.   

 2.3. Covalently Coupled Gold Nanoparticles 

 The purifi ed NPs  Au-B1 ,  Au-B2 ,  Au-P1 , and  Au-P2  
having peripheral TIPS-protected acetylenes were exposed 
to the deprotection and coupling conditions described in the 
Experimental Section. We obtained interlinked chains of  n  
NPs  (Au-B1)  n   ,  (Au-B2)  n   ,  (Au-P1)  n   , and  (Au-P2)  n   . As chains 
of interlinked NPs with too many NPs ( n   >  5) tend to pre-
cipitate, the duration of the coupling reaction was restricted 
to 15 min in order to favor the formation of shorter hybrid 
oligomers. Due to the short reaction time, only about 15% 
of the peripheral acetylene groups were involved in a cou-
pling reaction. Monitoring the reaction by UV/vis spectros-
copy revealed an increase and red-shift of the absorption 
between 300 and 400 nm, characteristic for the formation of 
longer delocalized   π  -systems due to the interlinking of the 
OPE rods by oxidative acetylene coupling (see Figure S1 in 
the SI). The average NP diameter does not change upon this 
process; they simply exhibit a small increase in the poly-
dispersity (see Figure S3 in the SI) due to the formation of 
some larger NPs (see Figure S11 in the SI). 

 The organic–inorganic hybrid oligomers were analyzed 
by TEM, after the deposition of highly diluted solutions on 
carbon-coated copper grids that spanned a holey carbon 
support fi lm. Highly diluted solutions are essential to avoid 
the coincidental proximity of two lonesome particles, which 
cannot be distinguished from dumbbells in the TEM image. [  84  ]  
However, too low concentrations would not allow the obser-
vation of suffi cient amounts of NP oligomers per image, and 
thus, a reasonable concentration window was determined 
empirically. Typical TEM images of samples  (Au-B1)  n   ,  (Au-
B2)  n   ,  (Au-P1)  n  ,  and  (Au-P2)  n    are displayed in  Figure  5   (larger 
areas of TEM images are displayed in the SI, Figure S7–S11). 
Mainly individual NPs and clusters consisting of a very low 
number of NPs can be observed. Obviously the reduction 
of the exposure time to coupling conditions results in short, 
soluble hybrid oligomers  (Au-X)  n    with  n  ≤ 5. Interestingly, 
the NPs forming trimers ( n   =  3) and tetramers ( n   =  4) have 
the tendency to arrange in elongated, almost linear structures, 
supporting the hypothesized picture of having two acetylenes 
at opposed sides of the NPs as sketched in Figure  1 .  

 In order to investigate the NP interlinking reaction and to 
analyze the yields of the different hybrid oligomers formed, 

large-area TEM micrographs were analyzed. The relative 
yields of monomeric NPs and short hybrid oligomers are dis-
played in  Figure  6  . For all samples very comparable fractions 
of the different oligomers formed were observed. The obvious 
similarity of their behavior during the interlinking reaction 
points at very comparable structures at the NPs’ periphery. 
Their reactivity is neither controlled by the Au-NP-stabilizing 
octasulfi de ligand nor by the length of the rigid-rod structure, 
but exclusively by the similar number of exposed acetylene 
groups. Again, these experimental fi ndings are in agreement 
with the model sketched in Figure  1 , namely exactly two acet-
ylenes exposed at the NP surface for all ligand-stabilized NPs, 
 Au-B1 ,  Au-B2 ,  Au-P1 , and  Au-P2 . While precipitates are suc-
cessfully avoided by the short exposure to coupling condi-
tions, this comes at the price of a lower coupling effi ciency; 

      Figure  5 .     Representative TEM images of highly diluted samples of 
a)  (Au-B1)  n   , b)  (Au-B2)  n   , c)  (Au-P1)  n   , and d)  (Au-P2)  n   .  

      Figure  6 .     Distribution of monomers and oligomers  (Au-B1)  n   ,  (Au-B2)  n   , 
 (Au-P1)  n   , and  (Au-P2)  n    formed after the diacetylene coupling reaction; 
between 200 and 400 particles were counted.  
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thus, the majority (73–78%) of NPs remained as monomers 
for each ligand while about 16–20% formed dumbbell hybrids 
consisting of two interlinked NPs. Between 6–8% of the NPs 
are subunits of trimeric hybrid structures, and even minor 
traces (below 5%) of tetramers were observed. These short, 
almost linear oligomers are expected to lie fl at on the TEM 
grid and are thus ideally suited to investigate the interparticle 
spacing of these hybrid structures.  

 The TEM micrographs were prepared from diluted solu-
tions of superstructures and were used to manually measure 
the interparticle spacings. The images were transformed into 
black and white using the same threshold settings as before. 
This ensures the comparability of length and distance meas-
urements. The interparticle distances ( d ) were measured 
between the edges of adjacent NPs (see  Figure  7  ). For this 
purpose dimers, trimers, and tetramers were considered. 
 Figure  8   displays the distance distributions of all samples of 
interlinked NPs. Oligomers of NPs coated with ligands com-
prising a benzene-based central unit  (Au-B1) 2-4   show con-
siderably shorter interparticle distances than the calculated 
length of the rigid-rod linker. Simple MM2 calculations of 
the short rigid-rod 1,4-diphenylbuta-1,3-diyne gave a length 
of 1.4 nm between the terminal hydrogens (black dashed line 
in Figure  8 ). The histogram of distances observed for NP oli-
gomers  (Au-B1) 2-4   shows a Gaussian-like distribution with 
a maximum at 0.8 nm (black bars and black solid line). A 
similar distribution with a maximum at 1.4 nm is observed 
for hybrid oligomers  (Au-B2) 2-4   comprising a benzene-based 
central unit with the long linker (gray bars and gray solid 
line). A length of about 2.7 nm was calculated for the longer 
rigid-rod substructure (gray dashed line); thus, both samples 
of NP oligomers coated with ligands comprising a benzene-
based central unit display a considerably smaller interparticle 
distance than expected for the fully stretched rigid-rod linking 
unit (arrows c and d in Figure  8 ). However, the length trend 
of the spacer is nicely refl ected in the observed NP distances, 

corroborating the wet chemical interparticle coupling reac-
tion as the origin of the formed hybrid oligomers.   

 The comparison of interparticle distances of hybrid oli-
gomers  (Au-P1) 2-4   and  (Au-P2) 2-4   formed from NPs coated 
with ligands based on pyridine-type central units also refl ect 
the length of the rigid-rod linker. NP oligomers  (Au-P1) 2-4   
show a sharper distance distribution (red bars in Figure  8 ) 
with a maximum of 1.0 nm (red solid line). The nitrogen-to-
nitrogen distance of the interlinking 1,4-di(pyridin-4-yl)buta-
1,3-diyne structure is 1.2 nm according to MM2 calculations 
(red dashed line), matching the observed interparticle spacing. 
Hybrid oligomers  (Au-P2) 2-4   consisting of NPs coated with a 
pyridine-based ligand with the long spacer led to an interpar-
ticle spacing distribution with a maximum at 2.5 nm (orange 
bars and orange solid line in Figure  8 ). This matches the cal-
culated nitrogen–nitrogen distance of the rigid-rod-like struc-
ture of 2.4 nm (dashed orange line). The broadness of the 
distributions displayed in Figure  8  does not exclusively refl ect 
variations in the NP distances, but also the imperfection of 
the distance determination by manually measuring distances 
on the TEM micrographs. 

 While benzene-based ligands  (Au-B1) 2-4   and  (Au-B2) 2-4   
showed shorter distances than calculated, the ligands  (Au-
P1) 2-4   and  (Au-P2) 2-4   comprising the pyridine anchor matched 
the expected linker length. This supports the hypothesis dis-
cussed in the “Concept & Strategy” section (Section 2.1) and 
sketched in Figure  3  of a tangential arrangement in the case 

      Figure  7 .     Nanoparticle size: diameter (2 r , where  r  is the radius of the 
particle) and interparticle distance ( d );  d  is measured between the 
nanoparticle edges of dimers, trimers, and tetramers. The table shows 
a comparison of calculated and measured distances for each sample of 
interlinked NPs.    Figure  8 .     Interparticle distance distributions measured from TEM 

micrographs of organic–inorganic hybrid dimers  (Au-X) 2  , trimers  (Au-X) 3  , 
and tetramers  (Au-X) 4  ;  (Au-B1) 2-4   (black),  (Au-B2) 2-4   (gray),  (Au-P1) 2-4   
(red) and  (Au-P2) 2-4   (orange). Solid lines represent the mean distance 
found for each sample, and the dashed line the calculated length of the 
diacetylene linker. The blue arrows compare the interparticle distance 
obtained by the short (arrow a,  B1  and  P1 ) and long spacer (arrow b,  B2  
and  P2 ) with each other, indicating the large effect on the nanoparticles’ 
arrangement arising from a small atomic alteration at the ligands’ 
center. Arrows c–f (with respective colors) compare the deviation of the 
calculated and measured interparticle spacings. Between 50 and 100 
oligomers were counted.  
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of the benzene-type central unit and a per-
pendicular arrangement in the case of the 
pyridine-type central unit. The comparison 
of the mean interparticle distances of NP 
oligomers  (Au-B2) 2-4   and  (Au-P2) 2-4   (blue 
arrow b in Figure  8 ) nicely depicts this 
difference. The atomic alteration in the 
molecular structure of the respective lig-
ands led to a large difference in the inter-
particle spacing of 1.1 nm. 

 In order to verify the reproducibility 
and validity of these fi ndings, several con-
trol experiments were performed. First 
the deposition behavior of uncoupled 
protected NPs was analyzed in terms of 
NP spacing and compared with the small 
hybrid structures obtained after applying 
the coupling conditions. These experi-
ments were performed with simple carbon 
fi lm on copper TEM grids in order to 
exclude potential NP steering features of 
the additional holey carbon solid support 
of the grids used at the fi rst place. Furthermore the maximum 
spacing between two NPs to be considered was enlarged 
to 4 nm. Indeed the protected and uncoupled NPs also dis-
played a tendency to aggregate upon deposition on the TEM 
grid. For all four NPs broad distributions between 0.7 and 
3.5 nm were observed (see Figure S2B in the SI). Subse-
quently the entire series of NPs was exposed to the coupling 
conditions. In order to also detect uncoupled NPs, the cou-
pling reaction was quenched at an earlier stage. After deposi-
tion on a TEM grid, the interparticle distances were analyzed 
again, and indeed, the distances expected for the interlinked 
NPs can clearly be observed as increasing populations arising 
from the broad background (Figure S2A in the SI). The vis-
ibility was further increased by subtracting the broad back-
ground (Figure S2B) from the observed distribution after 
the coupling reaction (Figure S2C). This method provides 
the same distances as in the fi rst series for hybrid structures 
 (Au-B2) 2-4   and  (Au-P2) 2-4   interlinked by the longer rod. The 
distances observed for the hybrid structures  (Au-B1) 2-4   and 
 (Au-P1) 2-4   interlinked by a short rod are systematically larger 
than before. This variation might originate from counting 
aggregated but not interlinked NPs. Thus, the second series 
displays small differences in the exact values of the maxima, 
probably emerging from the differences in the data analysis, 
but it has the same tendency as the fi rst series of coupled NPs 
(see Figure S2A,C and Table S1 in the SI). 

 Additional NP diameter analyses were performed by small 
angle X-ray scattering (SAXS) experiments. Diluted samples 
were measured in toluene to investigate the diameter of the 
NPs. In  Figure  9   the SAXS data in a log–log representation of 
the protected uncoupled NPs (left) and of the solutions com-
prising oligomeric structures (right) are displayed. The X-ray 
data of the monomeric NPs stabilized with different ligands 
(Figure  9 , left) show almost the same scattering pattern. All 
samples show very similar plots with pronounced minima. This 
indicates that the NPs have a low degree of polydispersity 
as expected from the TEM investigations. The shape of the 

plots suggest form factors for homogeneous spheres with an 
average radius of about 0.78  ±  0.05 nm. In comparison, the 
data of the coupled NPs (Figure  9 , right) show the same posi-
tion of the minima, corroborating the identity of the NPs after 
the coupling reaction. The only difference in the SAXS data 
of the monomers and the solutions comprising oligomeric 
structures is a minor broadening of the minima, which might 
indicate the presence of dimers. Apart from that, major dif-
ferences in the SAXS data upon coupling were not observed. 
In analogy to DNA-interlinked Au NPs with a diameter of 
1.4 nm, a variation of the form factor could have been 
expected upon interlinking. [  85  ]  However, the absence of a 
detectable change can be explained by the low percentage of 
actually coupled NPs in the solution. The NP diameter, which 
was determined by SAXS, differs from the size that was meas-
ured by TEM investigations (radii around 0.5 nm). This dif-
ference probably occurs due to an agglomeration of the NPs 
upon heating. The increased temperatures can be induced 
by the X-ray beam, and a heat-induced growth of the NPs in 
solution was reported before. [  75  ]  The ligand shell might also 
add to the scattering signal and thus indicate larger NPs than 
actually present. Another study also found a difference in 
the NP sizes, depending on which method was used; [  86  ]  only 
in this case, TEM led to larger radii for the NPs than SAXS. 
Because the interparticle distances are also based on TEM 
investigations and taken with the same threshold settings, we 
refer to the NP size using the diameter that was determined 
by TEM.  

 The TEM micrographs indicate spherical Au NPs. If we 
assume a symmetric tangential arrangement of the rigid-rod 
type linker at the surface of two interlinked NPs, the available 
data even allow for an estimate of the geometric arrange-
ment of the rigid rod comprising terminal benzene units at 
the NPs’ surface. Because thioethers are expected to equally 
coordinate to gold, [  87  ]  we assume that the geometry of the 
linker at the surface is not affected. Thus, we only consider 
the arrangement of the benzene-anchored linker at the 

  Figure  9 .     SAXS intensity data of monomeric (left) and coupled particles (right), the plots are 
shifted by a constant factor for clarity.  
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surface. The average radius  r  of the NPs stabilized by the 
benzene-type ligands  (Au-B1) 2-4   and  (Au-B2) 2-4   was deter-
mined to be 0.5 nm in both cases. The distance between the 
termini of the interlinking rod and the NP surface is estimated 
to be 0.2 nm, the Van der Waals radius of carbon. The calcu-
lated length ( l ) between the terminal hydrogens of the rigid-
rod linker are 1.4 nm in the case of  (Au-B1) 2-4   and 2.7 nm for 
 (Au-B2) 2-4  . The average interparticle distance ( d ) was deter-
mined to be 0.8 nm for  (Au-B1) 2-4   and 1.4 nm for  (Au-B2) 2-4  . 
Thus, as displayed in  Figure  10  A, the lengths of two sides of 
the yellow right-angled triangle are known, and hence also 
the third, which corresponds to a length of ½  t  (blue in Figure  10 ) 
according to the Pythagoras rule. The tangential distance 
( t ) can be compared with the calculated length ( l ). This com-
parison shows that  t  is slightly shorter than  l  in both cases and 

that a short part at the end of the linker lays fl at on the NP 
surfaces, labeled  ol  for “overlap length” in Figure  10 A. To vis-
ualize the size of the “overlap length,” the obtained tangen-
tial length  t   B1   and  t   B2   of both linkers are compared with the 
length of the corresponding rigid-rod structure in Figure  10 B. 
In the case of the short linker, the difference between  t   B1   
and its length  l   B1   is only 0.2 nm, and thus, the value for  ol  
amounts to 0.1 nm (10%), which is in the range of the length 
of the terminal C–H bond. Only the terminal C–H bond is 
aligned to the NP surface, and the length of the linker almost 
matches the calculated tangential length  t   B1  . For the longer 
linker a slightly different scenario was observed. The value 
calculated for the “overlap length” is 0.4 nm (14%) and thus 
considerably longer than in the case of the short linker. The 
tangential length  t   B2   ends on the terminal benzene ring of 

  Figure  10 .     A) Calculation of distances between two interlinked particles assuming a tangential arrangement of the interlinking rigid rod in organic–
inorganic hybrid oligomers. Assuming that the rigid rod must be separated by the Van der Waals radius of carbon ( r  VdW(C) ) from the particle surface, 
the length of the tangential contact  t  can be calculated from the measured distance  d . Its comparison with the calculated length of the rigid-rod 
structure  l  is displayed in B and allows determination of the “overlap length” ( ol  ) of the rod’s subunit interacting with the surface.  

      Scheme  1 .     a) PBr 5 , 90  ° C, 90 min; CHCl 3 , rt (room temperature), EtOH, 0 °C; 79% yield; b) NaBH 4 , EtOH, 20 h refl ux, 93% yield; c) TIPS-C ≡ CH, TEA, 
Pd(PPh 3 ) 2 Cl 2 , CuI, 80 °C, 15 h, 81% yield; d)  3 , TEA, Pd(PPh 3 ) 2 Cl 2 , CuI, 80 °C, 1.5 h, 81% yield; e) THF, CBr 4 , PPh 3 , rt, 2 h; f ) THF, NaH, rt, 2 h.  
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the rigid-rod substructure indicating a planar arrangement 
of this aromatic subunit on the NP surface. Besides the coor-
dinative bonds of the benzylic thioethers, there seems to be 
an additional weak interaction involved in the arrangement 
of the terminal benzene subunit. We currently hypothesize 
that these interactions are either Van der Waals or   π  –metal 
(cation) interactions.     

 3. Conclusion 

 An atomic variation in the molecular structure of ligand-
stabilized Au NPs enabled the control of their interparticle 
spacing in organic–inorganic hybrid superstructures. This was 
achieved by covalently interlinking bifunctionalized NPs. 
The interparticle distance in the obtained hybrid oligomers 
matched the length of the rigid-rod linker that is anchored 
via a central pyridine unit. This points at a perpendicular 
arrangement of the rod at the NP surface and suggests the 
coordination of the pyridine’s lone pair to the NP. We thus 
expect an enhanced electronic coupling between the NP and 
the rigid-rod linker, which is of particular interest since hybrid 
oligomers are currently used as bottom-up assembled objects 
for the assembly of molecular junctions. For this purpose a 
separation of the different oligomers is envisaged. Based 
on these new fi ndings, we hypothesize that the use of other 
coupling protocols such as “click-chemistry” or Sonogashira 
cross-couplings would extend the use of our functional NPs.   

 4. Experimental Section  

 Ligand Synthesis : The synthesis of ligands  B1  and  B2  has 
already been reported. [  76  ]  The assembly of ligands  P1  and  P2  is 
displayed in  Scheme  1  , and synthetic protocols together with ana-
lytical data are provided in the SI. The central pyridine subunit was 
assembled starting from chelidamic acid. Bromination with phos-
phorus pentabromide followed by an in situ esterifi cation with eth-
anol provided diethyl 4-bromopyridine-2,6-dicarboxylate  1  as white 
solid in 79% yield. [  88  ]  Subsequent reduction with sodium borohy-
dride gave the diol  2  [  89  ]  as white solid in good yields. In the next 
step the rigid-rod structure comprising a terminal TIPS-protected 
acetylene was assembled. In a Sonogashira reaction sequence, [  90  ]  
the bromine was substituted either by a TIPS-protected acety-
lene or by the mono-TIPS-protected diacetylene  3 . [  91  ]  Thus the 
bromo-pyridine diol  2  was treated at 80  ° C with the corresponding 
acetylene in the presence of catalytic amounts of Pd(PPh 3 ) 2 Cl 2  
and CuI in triethylamine (TEA), which acts as solvent and base to 
provide the OPE-like diol intermediates  5  and  6 , both in isolated 
yields of 81% as white and slightly yellow solids, respectively. 
Finally the oligomeric benzyl thioether subunit was assembled 
as a multidentate ligand for the Au NPs. To enhance the quality 
of the benzylic leaving group, the diols  5  and  6  were converted to 
the corresponding benzylic dibromides by treatment with carbon 
tetrabromide (CBr 4 ) and triphenylphosphine (PPh 3 ). In a fi nal step, 
the multidentate ligand was assembled by substituting both ben-
zylic bromides by the trimeric benzylthiol  4  as nucleophile in an 
S N 2 reaction. [  76  ]  Thus the benzylic dibromide intermediates were 
treated with two equivalents of thiol  4  in tetrahydrofuran (THF) in 

the presence of sodium hydride as base to provide the target lig-
ands  P1  and  P2  as colorless and slightly yellow oils, respectively, 
in yields of 71% and 64%, respectively.  

 The new compounds were characterized by  1 H and  13 C NMR 
spectroscopy, mass spectrometry, elemental analysis. 

  Nanoparticle Preparation and Purifi cation:  The NPs were 
formed in the presence of the ligands  B1 ,  B2 ,  P1 , and  P2  using a 
two-phase method in CH 2 Cl 2 /H 2 O, developed by Brust et al. (see SI 
for the synthetic protocol). [  92  ]  TOAB was used as the phase transfer 
agent and sodium borohydride as the reducing agent. The NP for-
mation was followed by an aqueous work-up and the removal of 
TOAB by a precipitation/centrifugation sequence. To remove the 
excess ligand, the ligand-stabilized particles were further purifi ed 
by SEC. [  76  ]  While so far the applied synthesis and purifi cation pro-
cedures were (within the detection limits) quantitative as far as 
gold atoms were concerned, about 10–20% of particles were sac-
rifi ced during SEC in order to obtain exclusively ligand-stabilized 
particles as starting material for subsequent coupling reactions. 

 The obtained NPs were analyzed by UV/vis,  1 H NMR, SAXS, 
and TEM on carbon-coated copper grids. NP diameters from TEM 
micrographs were determined by using the software  ImageJ . [  93  ]  The 
grayscale TEM images (see original TEM micrographs Figure S4–S7 
in the SI) were converted to black and white, and the areas of the 
particles were measured automatically (see SI for detailed descrip-
tion). Thermogravimetric analysis (TGA) of the purifi ed and exten-
sively dried NPs displayed a weight loss of 21%, which is assumed 
to be a direct investigation of the weight contribution of the stabi-
lizing ligands. This knowledge allows the calculation of the amount 
of gold in the NPs after all purifi cation steps and therefore the fi nal 
yield. We also used the TGA results to calculate that two ligands 
stabilize one NP.  

 Coupling of Acetylene-Functionalized Particles:  The oxidative 
coupling of acetylene-functionalized Au NPs was reported pre-
viously. [  76  ]  After deprotection of the acetylene by fl uoride ions, 
an oxidative acetylene coupling protocol developed by Hay was 
applied (see SI for the synthetic protocol). [  94  ]  After the short coup-
ling reaction (15 min), an aqueous work-up of the mixture was 
performed. The yield of this homocoupling was determined with 
the relative yields of the NP oligomers formed. While none of the 
acetylene groups in a monomer reacted, a dimer has two reacted 
acetylenes out of four. Trimers have four out of six and tetramers 
six out of eight coupled moieties. With the mean fractions of oli-
gomers, the yield of the coupling reaction was determined to be 
15% of the initially present acetylenes. The hybrid structures were 
analyzed by UV/vis spectroscopy and spread on carbon-coated 
copper grids for subsequent TEM analysis. Highly diluted solutions 
were used for deposition on the grids to avoid accidental prox-
imity of noncovalently linked particles. Interparticle distances were 
measured manually on the TEM micrographs mainly from dimers 
and some tri- and tetramers (see SI for detailed description and 
Figure S8–S11 for original TEM micrographs).   

 Supporting Information 

 Supporting Information is available from the Wiley Online Library 
or from the author.  
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General Methods 

All commercially available starting materials were of reagent grade and used as received. 

Absolute tetrahydrofuran (THF) was purchased from Fluka, stored over 4 Å molecular sieves, 

and handled under Argon. tert-Butylmethylether (MTBE), hexane and dichloromethane were 

of technical grade and distilled prior to use. Column chromatography purifications were 

carried out on silica gel 60 (particle size 40-63 μm) from Fluka. Deuterated solvents were 

purchased from Cambridge Isotope Laboratories. 1H and 13C NMR spectra were recorded 

with a Bruker DMX 400 instrument (1H resonance 400 MHz) or a Bruker DRX 500 instrument 

(1H resonance 500 MHz) at 298 K. Matrix Assisted Laser Desorption Ionisation Time of 

Flight (MALDI-ToF) mass spectra were performed on an Applied Bio Systems Voyager-De™ 

Pro mass spectrometer. Electron Impact (EI) mass spectra were recorded on a Finnigan MAT 

95Q by H. Nadig. Elemental analyses were performed by W. Kirsch on a Perkin-Elmer 

Analysator 240. Thermogravimetric analysis was performed on a Mettler Toledo 

TGA/SDTA851e. UV/vis spectra were recorded on an Agilent 8453E spectrophotometer. Size 

exclusion chromatography (SEC) was performed using Bio-Rad Bio-Beads S-X1 Beads 

(operating range 600 – 14000 g mol-1) with toluene as eluent. Gel Permeations 

Chromatography (GPC) was performed on a Shimadzu Prominence System with PLGel 

preparative columns from Polymer Laboratories (2 columns in series, operating ranges: up to 

4000 g mol-1 and 500 – 30000 g mol-1) using toluene as eluent. 

 

 

Diethyl 4-bromopyridine-2,6-dicarboxylate[1] (1) 

 

 
 

To a solution of bromine (2.7 ml, 8.34 g, 52 mmol, 3.2 eq) in hexane under argon was added 

slowly phosphorus tribromide (5.9 ml, 17.96 g, 63 mmol, 3.9 eq) with a syringe. Phosphorus 

pentabromide precipitated as yellow solid, which was washed four times with hexane (10 ml) 

and then dried under high vacuum. To the powder was added chelidamic acid (3.4 g, 

16.9 mmol, 1 eq) and the mixture was heated to 90°C for 1.5 hours. After cooling to room 

temperature, dry chloroform (17 ml) was added to the black solid and the slurry was filtered 
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under argon. To the slight red filtrate was added absolute ethanol (50 ml) at 0°C, resulting in a 

blue solution. The solvent was evaporated and the residue was taken up in dichloromethane 

and extracted with a saturated aqueous solution of sodium hydrogen carbonate. The organic 

fraction was dried over magnesium sulfate, filtered and evaporated to dryness, leaving some 

colorless solid material in some highly boiling liquid (together 5.5 g). The crude was purified 

by recrystallization from ethanol, giving the title compound 1 (4.03 g, 13.3 mmol, 79 %) as 

white solid. 
1H NMR (400 MHz, CDCl3):  = 8.41 (s, 2H, Ar-H), 4.48 (q, J = 7.05 Hz, 4H, CH2) 1.44 (t, 

J = 7.08 Hz, 6H, CH3); 13C-NMR (100 MHz, CDCl3):  = 163.5, 149.4, 134.9, 131.0, 62.7, 

14.1; FABMS (m/z): 301.9 [M+H]+. 

 

 

4-Bromopyridine-2,6-dimethanol[2] (2) 

 

 
 

To a solution of diethyl 4-bromopyridine-2,6-dicarboxylate (1) (3.75 g, 12.4 mmol, 1 eq) in 

absolute ethanol (150 ml) was added sodium borohydride (3.29 g, 86.9 mmol, 7 eq). The 

mixture was heated to reflux for 20 hours, before the solvent was removed by evaporation. A 

saturated aqueous solution of sodium hydrogen carbonate (23 ml) was added to the residue 

and the mixture was heated to reflux until all solid material was dissolved. Water (28 ml) was 

then added and the mixture was left for 14 hours at 4°C. The formed oily solid was collected 

by decantation and the dried under vacuum. The white powder was extracted 5 times with 

acetone (100 ml) and the combined acetone fractions were evaporated to dryness, giving 

4-bromopyridine-2,6-dimethanol (2) (1.49 g, 6.8 mmol, 55 %) as colorless solid.  

TLC revealed the presence of the desired product 2 in the extracted solid. Therefore this 

residue was dissolved in water (800 ml) and this solution was extracted 4 times with ethyl 

acetate (200 ml). The combined organic fractions were dried over magnesium sulfate, filtered 

and evaporated to dryness, giving more of the desired product 2 (1.01 g, 4.6 mmol, 38%, 

total: 2.50 g, 11.5 mmol, 93%). 
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1H NMR (400 MHz, DMSO-d6):  = 7.51 (s, 2H, Ar-H), 5.54 (t, J = 5.91 Hz, 2H, OH) 4.52 (d, 

J = 5.87 Hz, 4H, CH2); 13C NMR (100 MHz, DMSO-d6):  = 163.2, 133.3, 121.1, 63.7; EIMS 

(m/z (%)): 216.0 (100) [M+]. 

 

 

(4-((Triisopropylsilyl)ethynyl)pyridine-2,6-diyl)dimethanol (5) 

 

 
 

 (4-Bromopyridine-2,6-diyl)dimethanol (80) (86.5 mg, 0.40 mmol, 1 eq) was dissolved in 

degassed triethylamine (10 ml) under an atmosphere of argon. (Triisopropylsilyl)acetylene 

(240 l, 217 mg, 1.19 mmol, 3 eq), bis(triphenylphosphine)palladium(II) chloride (28 mg, 

0.04 mmol, 10 mol%) and copper(I) iodide (7.6 mg, 0.04 mmol, 10 mol%) were added and 

the mixture was heated to 80°C for 15 hours. After cooling to room temperature, the solvent 

was evaporated under vacuum. Dichloromethane was added and the resulting mixture was 

extracted with water. The aqueous phase was then extracted two more times with 

dichloromethane. The combined organic fractions were dried over magnesium sulfate and 

evaporated to dryness after filtration. Purification of the crude product by column 

chromatography (ethyl acetate, then ethyl acetate/acetone 1:1) yielded the desired product 5 

(113.5 mg, 0.32 mmol, 81%) as colorless solid.  
1H NMR (400 MHz, CDCl3):  = 7.24 (s, 2H, Ar-H), 4.76 (s, 4H, CH2), 3.16 (br, 2H, OH), 

1.13 (m, 21H, iPr-H); 13C NMR (100 MHz, CDCl3):  = 158.6, 132.9, 121.4, 104.0, 97.1, 64.2, 

18.6, 11.1; EIMS (m/z (%)): 319.2 (2) [M+], 276.2 (100) [M+-C3H7]; Anal calcd. for 

C18H29NO2Si: C 67.66, H 9.15, N 4.38; found: C 67.97, H 8.66, N 3.95. 
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2,6-Bis(bromomethyl)-4-((triisopropylsilyl)ethynyl)pyridine  

 

 
 

(4-((Triisopropylsilyl)ethynyl)pyridine-2,6-diyl)dimethanol (5) (86.4 mg, 0.27 mmol, 1 eq) 

was dissolved in dry tetrahydrofuran (12 ml) under an atmosphere of argon. To this solution 

was added triphenylphosphine (213 mg, 0.81 mmol, 3 eq), followed by carbon tetrabromide 

(269 mg, 0.81 mmol, 3 eq). The solution was stirred at room temperature for 2 hours, during 

which a white precipitate formed. A saturated aqueous solution of sodium hydrogen carbonate 

was added and the mixture was extracted three times with MTBE. The combined organic 

fractions were washed with brine, dried over magnesium sulfate, filtered and then evaporated 

to dryness. Purification of the crude by column chromatography (hexane/dichloromethane 2:1, 

then 1:2) gave the title compound (83.0 mg, 0.19 mmol, 69%) as colorless solid.  
1H NMR (400 MHz, CDCl3):  = 7.38 (s, 2H, Ar-H), 4.50 (s, 4H, CH2), 1.13 (m, 21H, iPr-H); 
13C NMR (100 MHz, CDCl3):  = 156.9, 133.7, 125.0, 103.2, 98.0, 33.0, 18.6, 11.1. 

EIMS (m/z (%)): 545.1 (9) [M+], 502.0 (100) [M+-C3H7]; Anal. calcd. for C18H27Br2NSi: 

C48.55, H 6.11; N 3.15; found: C 48.76, H 6.15, N 3.06 

 

 

(4-((4-((Triisopropylsilyl)ethynyl)phenyl)ethynyl)pyridine-2,6-diyl)dimethanol (6) 

 

 
 

(4-Bromopyridine-2,6-diyl)dimethanol (2) (201.8 mg, 0.93 mmol, 1 eq) and ((4-ethynyl-

phenyl)ethynyl)triisopropylsilane[3] (3) (313.8 mg, 1.11 mmol, 1.2 eq) were dissolved in 

degassed triethylamine (7 ml) under an atmosphere of argon. Argon was then bubbled through 

the solution for 10 minutes, before bis(triphenylphosphine)palladium(II) chloride (65 mg, 
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0.09 mmol, 10 mol%) and copper(I) iodide (17.8 mg, 0.09 mmol, 10 mol%) were added. The 

dark brown mixture was heated under stirring to 80°C for 1.5 hours. Dichloromethane and a 

saturated aqueous solution of ammonium chloride were added and the two phases were 

separated. The aqueous phase was washed twice with dichloromethane and the combined 

organic fractions were dried over magnesium sulfate. After filtration, the solvent was 

removed by rotary evaporation. The crude mixture was purified by column chromatography 

(ethyl acetate, then ethyl acetate/acetone 2:1) to give the desired product 6 (315.3 mg, 0.75 

mmol, 81%) as colorless solid. 
1H NMR (400 MHz, CDCl3):  = 7.47 (br, 4H, Ar-H), 7.31 (br, 2H, Ar-H), 4.78 (s, 4H, CH2), 

3.20 (br, 2H, OH), 1.13 (m, 21H, iPr-H); 13C NMR (100 MHz, CDCl3):  = 158.8, 132.6, 

132.1, 131.7, 124.5, 121.6, 121.0, 106.3, 93.7, 91.1, 88.3, 64.3, 18.6, 11.3; EIMS (m/z (%)): 

419.2 (11) [M+], 376.3 (100) [M+-C3H7]; Anal. calcd. for C26H33NO2Si: C 74.42; H 7.93; N 

3.34; found: C72.20, H 8.01, N 3.56. 

 

 

2,6-Bis(bromomethyl)-4-((4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)pyridine  

 

 
 

The OPE dihydroxide 6 (278.1 mg, 0.66 mmol, 1 eq) was dissolved in dry tetrahydrofuran 

(20 ml) under an atmosphere of argon. To this solution was added triphenylphosphine 

(521.9 mg, 1.99 mmol, 3 eq), followed by carbon tetrabromide (660.0 mg, 1.99 mmol, 3 eq). 

The solution was stirred at room temperature for 1 hour, during which a white precipitate 

formed. A saturated aqueous solution of sodium hydrogen carbonate was added and the 

mixture was extracted three times with MTBE. The combined organic fractions were washed 

with brine, dried over magnesium sulfate, filtered and then evaporated to dryness. Purification 

of the crude by column chromatography (hexane/dichloromethane 2:1, then 1:1) gave the title 

compound (228.9 mg, 0.42 mmol, 63%) as slightly yellow oil, which slowly solidified.  
1H NMR (400 MHz, CDCl3):  = 7.48 (br, 4H, Ar-H), 7.47 (br, 2H, Ar-H), 4.53 (s, 4H, CH2), 

1.13 (m, 21H, iPr-H); 13C NMR (100 MHz, CDCl3):  = 157.0, 133.4, 132.1, 131.7, 124.6, 
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124.5, 121.4, 106.2, 94.4, 93.8, 87.7, 33.0, 18.6, 11.3; EIMS (m/z (%)): 545.1 (9) [M+], 502.0 

(100) [M+-C3H7]; Anal. calcd. for C26H31Br2NSi: C 57.25; H 5.73; N 2.57; found: C 56.43, H 

5.78, N 2.78. 

 

 

2,6-bis(((3-(((3-(((3-((benzylthio)methyl)-5-(tert-butyl)benzyl)thio)methyl)-5-(tert-

butyl)benzyl)thio)methyl)-5-(tert-butyl)benzyl)thio)methyl)-4-

((triisopropylsilyl)ethynyl)pyridine (P1) 

 
2,6-Bis(bromomethyl)-4-((4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)pyridine (23 mg, 

52 μmol, 1 eg) and the BnS-SH-Trimer 4 (80 mg, 0.11 mmol, 2.2 eg.) were dissolved in dry 

THF under an atmosphere of Argon. The mixture was degassed by bubbling Argon through 

the solution for 10 minutes. Afterwards  sodium hydride (60% in mineral oil, 9 mg, 0.23 

mmol, 4.5 eg.) was added and the mixture was left stirring at room temperature for 1.5 h. The 

reaction was quenched with water and extracted with t-butyl methyl ether three times. The 

combined organic fractions were washed with brine, dried over magnesium sulfate, and 

evaporated to dryness. Purification of the crude product was achieved by CC (hexane/CH2Cl2 

1:1, then 1:1 with 1% triethylamine) to yield the ligand P1 (62 mg, 37 μmol, 71%) as 

colorless oil. The ligand was further purified by recycling GPC (4 cycles) to obtain a higher 

purity. As the elemental analysis of P2 perfectly matched the calculated values after this 

procedure a new EA for P1 was not performed. 
1H NMR (500 MHz, CDCl3):  = 7.30-7.07 (m, 30H, Ar-H), 3.71 (s, 8H, CH2), 3.60 (s, 24H, 

CH2), 1.31 (m, 54H, tBu-H), 1.13 (m, 21H, iPr-H); 13C NMR (125 MHz, CDCl3):  = 158.5, 

151.5 (2×), 138.2, 138.1, 138.0, 137.8, 129.0, 128.4, 126.9, 126.8, 125.0, 124.9, 124.7, 123.4, 

104.6, 37.3, 36.1, 35.9, 35.8, 35.7, 34.6, 31.4 (2×), 18.6, 11.2; MALDI-ToFMS (m/z): broad 

peak at 1707 [M+Na]+; Anal. calcd. for C104H137NS8Si: C 74.10; H 8.19; N 0.83; found C 

73.34; H8.35; N 1.00. 
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2,6-bis(((3-(((3-(((3-((benzylthio)methyl)-5-(tert-butyl)benzyl)thio)methyl)-5-(tert-

butyl)benzyl)thio)methyl)-5-(tert-butyl)benzyl)thio)methyl)-4-((4-

((triisopropylsilyl)ethynyl)phenyl)ethynyl)pyridine (P2) 

 
 

2,6-Bis(bromomethyl)-4-((4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)pyridine (94 mg, 

0.17 mmol, 1 eg) and the BnS-SH-Trimer 4 (265 mg, 0.38 mmol, 2.2 eg.) were dissolved in 

dry THF under an atmosphere of Argon. The mixture was degassed by bubbling Argon 

through the solution for 10 minutes. Afterwards  sodium hydride (60% in mineral oil, 31 mg, 

0.77 mmol, 4.5 eg.) was added and the mixture was left stirring at room temperature for 1.5 h. 

The reaction was quenched with water and extracted with t-butyl methyl ether three times. 

The combined organic fractions were washed with brine, dried over magnesium sulfate, and 

evaporated to dryness. Purification of the crude product was achieved by CC (hexane/CH2Cl2 

1:1, then 1:1 with 1% triethylamine) to yield the ligand P2 (196 mg, 0.11 mmol, 64%) as 

slight yellow oil. The ligand was further purified by recycling GPC (11 cycles) to obtain a 

purity of 99.9%. 
1H NMR (500 MHz, CDCl3):  = 7.50-7.46 (m, 4H, Ar-H), 7.31-7.07 (m, 30H, Ar-H), 3.74 (s, 

4H, CH2), 3.71 (s, 4H, CH2), 3.61-3.58 (m, 24H, CH2), 1.32 (m, 54H, tBu-H), 1.15 (m, 21H, 

iPr-H); 13C NMR (125 MHz, CDCl3):  = 158.6, 151.5 (3×), 138.2, 138.1, 138.0, 137.8, 137.6, 

132.1, 131.6, 129.0, 128.4, 126.9, 126.8, 125.0, 124.8 (2x), 124.7, 123.0, 106.3, 93.5, 93.3, 

88.6, 37.3, 36.2, 35.9, 35.8, 35.7, 34.6, 31.4, 31.3, 18.6, 11.3; MALDI-ToFMS (m/z): broad 

peak at 1807 [M+Na]+; Anal. calcd. for C112H141NS8Si: C 75.32; H 7.96; N 0.78; found C 

75.34; H 8.02; N 0.85. 
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Gold nanoparticle formation and purification, general procedure:  

Gold nanoparticle (Au NP) syntheses were carried out on a 2.5–3.5mmol scale with respect to 

the thioether ligands B1, B2, P1 or P2. Tetrachloroauric acid (8 eq) was dissolved in 

deionized water (2.5 mL). A solution of TOAB (16 eq) in CH2Cl2 (2.5 mL) was added, and 

the two-phase mixture stirred until the aqueous phase became colorless. The respective ligand 

B1, B2, P1 or P2 (1 equivalent) was dissolved in dichloromethane (2.5 mL) and then added to 

the reaction mixture, followed by a freshly prepared solution of sodium borohydride (64 eq) 

in water (2.5 mL). After 10 min stirring, the resulting strongly colored CH2Cl2 phase was 

separated, and the aqueous phase was washed twice with CH2Cl2. The combined organic 

fractions were dried over magnesium sulfate, filtered, and concentrated to a volume of ca. 2 

mL. Ethanol (20 mL) was added to precipitate the NPs, which were then centrifuged. The 

supernatant was discarded, and the procedure was repeated one more time. After this 

procedure, the NPs were subjected to size exclusion chromatography (SEC). The colored, NP-

containing fractions were collected, the removal of excess ligand checked by UV/vis and the 

solvent was removed using a rotary evaporator without heating.  

 

Formation of gold nanoparticle hybrid oligomers, general procedure: 

The formation of Au NP aggregates and superstructures (Au-Ax)n was done on a 0.9 – 1.1 mg 

scale regarding Au-Ax. The acetylene functionalized Au NPs were dispersed in 

dichloromethane (200 l) and tetra-n-butylammonium fluoride (1M in tetrahydrofuran, 5 l) 

was added. The mixture was left stirring for 1 hour, after which N,N,N’,N’-

tetramethylethylenediamine (5 l) and copper(I) chloride (0.5 mg) were added. After 15 

minutes, a small amount of the reaction mixture was removed, diluted with dichloromethane 

and investigated by UV/vis spectroscopy to analyze the progress of the reaction. An increase 

and redshift of the absorption bellow 400 nm, due to the elongation of the -system, points at 

the successful dimerization of the interparticle OPE rods (Figure S1). The mixture was diluted 

with dichloromethane, extracted with a saturated aqueous solution of ammonium chloride, 

dried, evaporated and analyzed by UV/vis spectroscopy and TEM on carbon coated copper 

grids. Highly diluted solutions were used for deposition on the grids to avoid accidental 

proximity of not covalently linked NPs. Interparticle distances were measured manually on 

the TEM micrographs mainly from dimers and some tri- and tetramers. 
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Figure S1. Representative UV/vis spectra of gold nanoparticles Au-P2 and (Au-P2)n to 
monitor the oxidative diacetylene coupling. 

 

(Small) Angle X-Ray Scattering, SAXS 

A Bruker AXS Nanostar setup, including an Incoatec Cu-I S microfocused X-ray source (  = 

0.154 nm) with Montel multilayer optics at a generator power of 40W (45kV, 630μA) and a 

virtually noise-free, real-time Våntec 2D-detector with photon counting ability, was used to 

perform X-ray measurements in the range of scattering vectors from 0.5 - 7.5 nm-1. All 2D 

detector images of the samples in quartz capillaries (diameter 1.5 mm) were taken at ambient 

temperatures with exposure times of 4 h per sample and azimuthally-averaged using Fit2D 

software to produce 1D intensity profiles.  

Transmission Electron Microscopy (TEM) 

TEM was performed on a Philips CM100 transmission electron microscope at 80 kV. 

Electron micrographs where recorded on a 2000 by 2000 pixel charge-coupled device camera 

Veleta from Olympus. The micrographs were recorded with a magnitude of 180kx leading to 

micrographs with 520 nm by 520 nm and a size of 0.26 nm per pixel.  Therefore the column 

width of the histograms was chosen to be 0.3 nm. One NP has a diameter of four pixels and an 

area of ten to twelve pixels.  

The NPs were deposited by carefully putting a drop of the NP dispersion on top of a thin 

carbon film that spanned a perforated holey carbon support film covering a gold-plated copper 

microscopy grid. The remaining solvent was directly blotted with filter paper and the grid air 

dried.  
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Nanoparticle Analysis 

The NP diameters were measured automatically using the program imageJ. The rather dense 

images (see micrographs: Figure S4-S7) were first transferred into a 8-bit greyscale and then 

into black and white using the function “Threshold” and the setting “intermodes”. The area of 

the NPs was measured with “Analyze particles”. The particles on edges were excluded and 

holes included. Au NPs were measured with areas from 0.3 nm2 till infinity and with 

circularities from 0.95-1. As the final diameters were calculated from the measured areas we 

needed to focus on perfectly spherical NPs to avoid mistakes upon calculation. More than 

80 % percent of NPs were within this range. NP sizes were measured from two to four dense 

micrographs (3k to 10k counts of NPs). 

The oligomer fractions were measured from one representative diluted image (see Figure S8-

S11) by first counting all NPs automatically (similar to above described procedure) and 

further subtraction of the amount of dimers, trimers and tetramers that were counted manually. 

For this study one ore two micrographs were investigated (200 to 400 counts of NP 

oligomers) 

The interparticle distances were measured manually from similar diluted samples, after 

transferring the images to black and white using the same threshold settings as before. This 

ensures the comparability of length and distance measurements. All NP aggregates with a 

distance up to 10 % above the calculated length were measured. Four to twelve micrographs 

were analyzed to finally have between 50 and 100 counts of NP oligomers. However for (Au-

P2)2-4 all counts were taken from one image. By fitting the data of each histogram with a 

Gaussian fit we could determine the maximum of the distance distribution to obtain the final 

values of NP distances. 

 

Control Experiments 

To support the presented results we performed distance measurements of uncoupled 

monomers (more than 200 counts of NP oligomers) to prove that the presented tendencies 

result from the coupling, not from deposition artifacts.  Uncoupled protected NPs were 

deposited on carbon coated copper grids (without holey carbon support film) from much 

diluted solutions. The distances of NPs were measured up to 4 nm. This range is at least 50% 

longer than the calculated distances. The control series shows that monomeric NPs tend to lie 

next to each other but their distance distribution shows a very broad distribution between 

0.7 nm to 3.5 nm for each sample (Figure S1B). This shows that NPs have the tendency to lie 
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close to each other with a certain distance range but this range is the same for all samples and 

is much broader than the distance distribution for coupled NPs. 

To ensure the comparability of the control series with the distance distribution of coupled NPs 

we prepared a second series of covalently coupled NPs. Those were also analyzed from much 

diluted solutions deposited on carbon coated copper grids without holey carbon support film 

and with distances up to 4 nm. 12 to 14 micrographs were analyzed to finally have more than 

200 counts of NP oligomers. The distance distribution obtained (Figure S1A) and the 

measured interparticle spacings (Table S1) show the same trend as the first series of 

interlinked hybrid structures. 

By subtracting the control measurements from the distances of coupled NPs we obtain a 

histogram that presents the results more clearly without changing the outcome (Figure S1C). 
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Figure S2. A) Nanoparticle distance distribution of coupled partilces; B) nanoparticle 
distance distribution of monomeric partilces; C) difference of other histograms (C = A-B), 
solid lines represent the mean distance found for each sample 
 

0

5

10

15

20

25

A

fre
qu

en
cy

 [%
]

nanoparticle distance [nm]

 (Au-B1)2-4

 (Au-B2)2-4

 (Au-P1)2-4

 (Au-P2)2-4

3.
7 

- 4
.0

3.
4 

- 3
.7

3.
1 

- 3
.4

2.
8 

- 3
.1

2.
5 

- 2
.8

2.
2 

- 2
.5

1.
9 

- 2
.2

1.
6 

- 1
.9

1.
3 

- 1
.6

1.
0 

- 1
.3

0.
7 

- 1
.0

0.
4 

- 0
.7

0

5

10

15

20B

fre
qu

en
cy

 [%
]

nanoparticle distance [nm]

 Au-B1
 Au-B2
 Au-P1
 Au-P2

3.
7 

- 4
.0

3.
4 

- 3
.7

3.
1 

- 3
.4

2.
8 

- 3
.1

2.
5 

- 2
.8

2.
2 

- 2
.5

1.
9 

- 2
.2

1.
6 

- 1
.9

1.
3 

- 1
.6

1.
0 

- 1
.3

0.
7 

- 1
.0

0.
4 

- 0
.7

0

5

10

15

20

3.
7 

- 4
.0

3.
4 

- 3
.7

3.
1 

- 3
.4

2.
8 

- 3
.1

2.
5 

- 2
.8

2.
2 

- 2
.5

1.
9 

- 2
.2

1.
6 

- 1
.9

1.
3 

- 1
.6

1.
0 

- 1
.3

0.
7 

- 1
.0

C

de
lta

 fr
eq

ue
nc

y 
(c

ou
pl

ed
-c

on
tro

l) 
[%

]

nanoparticle distance [nm]

 (Au-B1)2-4

 (Au-B2)2-4

 (Au-P1)2-4

 (Au-P2)2-4

0.
4 

- 0
.7



55Supporting Information of Small 2011

 
 

 - S14 - 

Sample - distance / 
nm 

Second series MM2 Calculated 
length 

First series 

B1 1.2 1.4 0.8 

B2 1.5 2.7 1.4 

P1 1.4 1.2 1.0 

P2 2.5 (1.6) 2.4 2.5 

Table S1. Maxima of nanoparticle distance distributions of first and second series in 
comparison with the calculated values, ligand P2 shows two maxima in the second series. 
 
The distances off samples (Au-B1)2-4 and (Au-P1)2-4 increase 0.4 nm in the second series 

while the maxima of (Au-B2)2-4 and (Au-P2)2-4 stay the same. The main difference is that 

(Au-P2)2-4 shows a bimodal distribution with a second maximum at 1.6 nm. This second 

maximum could have several reasons. It could derive from NPs that have are interlinked in a 

tangential manner (similar to (Au-B2)2-4) or interlinked by half of a rod. This could happen, if 

the acetylene coordinates to the surface of the NP. The second peak could also arise from 

monomeric structures. Therefore this second series supports the first one to prove the concept 

(Figure 2). 

We also performed diameter measurements of the coupled NPs (Figure S3) using the same 

protocol as for the size determination of monomeric NPs. The mean diameter did not change 

but the standard deviation increased slightly. This is due to a few larger NPs that are obtained 

after the coupling. 

 
Figure S3. Size distribution of coupled gold nanoparticles (Au-B1)n, (Au-B2)n, (Au-P1)n 

and (Au-P2)n. 
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TEM Micrographs 

 
Figure S4. Original TEM micrograph of Au-B1. 
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Figure S5. Original TEM micrograph of Au-B2. 
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Figure S6. Original TEM micrograph of Au-P1. 
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Figure S7. Original TEM micrograph of Au-P2. 
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Figure S8. Original TEM micrograph of (Au-B1)2-4. 
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Figure S9. Original TEM micrograph of (Au-B2)2-4. 
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Figure S10. Original TEM micrograph of (Au-P1)2-4. 
 



63Supporting Information of Small 2011

 
 

 - S22 - 

 
Figure S11. Original TEM micrograph of (Au-P2)2-4. 
 

 

References 

[1] H. Takalo, J. Kankare, Acta Chem. Scand., Ser. B 1987, 291. 
[2] H. Takalo, P. Pasanen, J. Kankare, Acta Chem. Scand., Ser. B 1988, 373. 
[3] Y. Nakano, K. Ishizuka, K. Muraoka, H. Ohtani, Y. Takayama, F. Sato, Org. Lett. 2004, 6, 

2373-2376. 
 

 





65Chem. Eur. J. 2011

DOI: 10.1002/chem.201101837

Gold Nanoparticles Stabilized by Thioether Dendrimers
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Introduction

The research field of gold nanoparticles (Au NPs) has been
steadily advancing in the past decade. The chemical stability
and size-dependent properties of Au NPs make them attrac-
tive materials for use in nanotechnology.[1–4] The scope of
future applications is broad,[1] ranging from advanced elec-
tronic[5–9] and photonic[10,11] devices to ultrasensitive chemi-
cal[12–16] and biological sensors.[17] In addition, Au NPs have
current and potential applications in biological labeling,[18–22]

medical diagnostics,[23] and catalysis.[24, 25] Aqueous Au NPs
are often formed as citrate-stabilized NPs and then function-
alized by using peptides[26,27] or DNA.[20,21] However, within
this study we focused on nonpolar organic solvents in which
mainly alkanethiols have been used to stabilize Au NPs, an

approach widely used since the pioneering work of Brust
et al.[28] In addition to free thiols, the less reactive thioethers
have also been used to ligate NP surfaces.[29–34] The thioeth-
er–gold coordination is much weaker than the covalent thio-
late–gold interaction.[35] Therefore multidentate thioether li-
gands may be used to form self-assembled, multivalent—
bound, stable and monodisperse ligand-wrapped NPs with a
distinct low-integer number of ligands wrapping and effec-
tively ensnaring each NP.[31–33] The first application of multi-
dentate macromolecular ligands for the stabilization of Au
NPs was the use of thioether polymers.[36–39] The use of thio-
ether dendrimers as stabilizing ligands has also been report-
ed.[40–43] The advantage of dendrimers over polymers is the
control over their monodispersity. The molecular structures
of reported dendritic ligands vary from stiff arylic sul-
fides[40,41] to partially flexible benzylic/arylic sulfides[42] and
highly flexible benzylic thioether dendrimers.[43] Superior
stability and monodispersity has been reported for the
latter. Unfortunately, one cannot unambiguously relate
these findings to thioether properties as the presence of ad-
ditional ether moieties may have played a role, with recent
work showing that ether moieties present in poly(ethylene
glycol) (PEG) dendrimers are also able to stabilize Au
NPs.[44] Other known stabilizing units for the formation of
dendrimer-encapsulated metal NPs are poly(amidoamine)
(PAMAM)[45–47] and poly(propyleneimine) (PPI) struc-
tures.[48,49] Thioether dendrimers used for applications other
than the stabilization of NPs have also been reported.[50–53]

The goal of this work was to develop dendritic thioether
structures that are able to stabilize Au NPs with monodis-
perse size through the formation of NP–ligand complexes
that allow a low-integer number of ligands to cover each NP
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Abstract: Ligand-stabilized gold nano-
particles (Au NPs) are promising mate-
rials for nanotechnology with applica-
tions in electronics, catalysis, and sen-
sors. These applications depend on the
ability to synthesize stable and mono-
disperse NPs. Herein, the design and
synthesis of two series of dendritic
thio ACHTUNGTRENNUNGether ligands and their ability to
stabilize Au NPs is presented. The
dendri ACHTUNGTRENNUNGmers have 1,3,5-trisubstituted
benzene branching units bridged by
either meta-xylene or ethylene moiet-

ies. A comparison between the two li-
gands shows how both size control and
the stability of the NPs are influenced
by the nature of the ligand–NP wrap-
ping interaction. The meta-xylene-
bridged ligands provided NPs with a
narrow size distribution centered
around a diameter of 1.2 nm, whereas

the NPs formed with ethylene-bridged
dendrimers lack long-term stability
with NP aggregation detected by UV/
Vis spectroscopy and transmission elec-
tron microscopy. The bulkier tert-butyl-
functionalized meta-xylene bridges
form larger ligand shells that inhibit
further growth of the NPs and thus
provide a simple route to stable and
monodisperse Au NPs that may find
use as functional components in nano-
electronic devices.

Keywords: dendrimers · gold · li-
gand design · nanoparticles ·
thioethers
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while also providing the long-term stability that is a prereq-
uisite for technological applications. Dendrimers are ideal
candidate ligands with their branched, flexible architecture
potentially allowing for extensive NP surface coverage and
therefore providing monodisperse NPs that do not aggregate
over time. The two dendritic ligands synthesized in this
work are both based on benzylic thioethers, the combination
of flexibility and weak individual thioether anchoring
groups providing a multivalent ligand for the assembly of
NPs complexed by a low number of ligands. Different gener-
ations and structural motifs of the dendritic ligands were
synthesized to determine their NP-stabilizing abilities and
their influence on the size distributions of the NPs obtained.
The NPs were investigated by UV/Vis and 1H NMR spec-
troscopy, thermogravimetric analysis (TGA), small-angle X-
ray scattering (SAXS), and both standard transmission elec-
tron microscopy (TEM) and high-resolution scanning trans-
mission electron microscopy (HRSTEM).

Results and Discussion

Concept and strategy : We have recently shown that linear,
unbranched thioether ligands with a certain threshold length
are able to stabilize Au NPs and provide a narrow size dis-
tribution of NPs with a diameter of around 1.1 nm that do
not aggregate over time.[31–33] These linear thioethers are oli-
gomeric structures constructed from a meta-xylene-bridged
thioether motif. In this work we designed and synthesized
two series of dendritic thioether ligands (Scheme 1 and
Scheme 2) and investigated their potential for stabilizing Au
NPs. The dendrimers were synthesized by a convergent ap-

proach. The dendrons were synthesized by starting from the
terminal groups and working back towards the central unit.
The dendritic ligands are branched with a 1,3,5-trisubstitut-
ed benzene. The use of benzylic thioethers should give flexi-
ble molecular structures that allow all three sulfide groups
to be orientated towards the NP surface. Note that a similar
building block has already been reported to stabilize Au55.

[54]

The dendrimers differ by the bridging unit that separates
the branching units from each other. The nomenclature of
the ligands emphasizes the different bridging units, which
are a focus of this work. The bridges were introduced into
the ligand design to 1) provide more separated thioether an-
choring points and 2) to increase the amount of free space
in the center of the dendrimers. This reduced branching den-
sity should improve the ability of the dendrimers to adapt to
the convex NP surface by forming a concave pocket. We
thus hypothesized considerably improved wrapping features
for such dendrimers with “diluted” branching units. The first
series (mX ligands, Scheme 1) use a tert-butyl-functionalized
meta-xylene to interconnect two sulfur atoms, the same moi-
eties used for the previously studied linear ligands.[31–33] The
second series (Et ligands, Scheme 2) uses ethylene bridges
for the interconnection of two neighboring sulfur atoms.
Two generations of dendrimers were synthesized for each
dendrimer series to investigate the correlation between den-
drimer generation and stabilizing or size-steering features.

Ligand synthesis : The synthesis of the mX dendrimers is
shown in Scheme 1. The basic building blocks 1 and 4 were
synthesized by using literature protocols.[55,56] The branching
unit 2 was obtained after substitution of the bromides of
starting material 1 with lithium chloride in dimethylforma-

Scheme 1. Synthesis of a,a’-meta-xylene-bridged dendrons and dendrimers of various generations. Reagents and conditions: a) LiCl, DMF, 0 8C, 30 min,
RT, 2 h, 90%; b) BnSH, NaH, THF, RT, 1 h, 44%; c) 6, NaH, THF, RT, 1 h, 99%; d) TrtSH, NaH, THF, RT, 2 h, 49%; e) 1. KSAc, THF, RT, 1 h;
2. MeOH, K2CO3, RT, 1 h, 80%; f) 2, NaH, THF, RT, 2 h, 49%; g) TFA, Et3SiH, CH2Cl2, RT, 15 min; h) 7, NaH, THF, RT, 1 h, 90%; i) 4, NaH, THF,
RT, 1 h.
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mide (DMF). The bromides were substituted because chlor-
ides are more stable in the presence of protected thiols. The
dendron terminal unit 3 was synthesized by statistical nucle-
ophilic substitution with benzyl mercaptan (BnSH) and
sodium hydride (NaH) as base in tetrahydrofuran (THF).
The G0 dendron [mX-G0.STrt] was formed from the termi-
nal unit 3 with the monothiol 6. Compound 6 was prepared
from the monofunctionalized bromide 5 by a mild one-pot
procedure for the conversion of benzylic bromides into
thiols.[57] After deprotection of the trityl group with tri-
fluoroacetic acid (TFA), the ACHTUNGTRENNUNG[mX-G0.SH] dendron can be
extended by branching unit 7 to the next generation den-
dron. Precursor 7 was assembled from the bridging unit 6
with an excess of the dendritic branching unit 2. The respec-
tive ACHTUNGTRENNUNG[mX-Gn.SH] dendrons were used to form the final den-
drimers mX-G1 and mX-G2 with central unit 4. In view of
the statistical nature of some monofunctionalizations, all the
reactions gave good-to-excellent yields.

Scheme 2 depicts the synthesis of the Et dendrons. The
first dendron [Et-G0.STrt] was synthesized starting from
thiirane (ethylene sulfide). The bridging unit 8 was synthe-
sized by ring-opening of thiirane with an excess of trityl
thiol (TrtSH) in the presence of triethylamine (TEA) as
base. As for the mX ligands, subsequent nucleophilic substi-
tution and deprotection reactions of the trityl groups led to
the terminal thiols as powerful nucleophiles. All the reac-
tions gave good-to-excellent yields considering the statistical
nature of the monofunctionalization reactions.

Ligand-stabilized nanoparticles : Au NPs were prepared in
the presence of the dendritic thioether ligands mX-Gn and
Et-Gn to investigate the ability of these ligands to stabilize
NPs by preventing aggregation. The NPs were prepared in a
two-phase water/dichloromethane system closely following
the procedure developed by Brust et al.[28] (see the Experi-
mental Section for the synthetic protocol). The goldACHTUNGTRENNUNG(III)
precursor, tetrachloroauric acid, dissolved in water was
transferred to the organic phase by tetra-n-octylammonium
bromide (TOAB). To keep the ratio between the goldACHTUNGTRENNUNG(III)
precursor and thioether moieties comparable to earlier stud-
ies,[31–33] the amount of added ligand was normalized to the
number of thioether groups. The starting point for investi-
gating the ability of a ligand to stabilize Au NPs was in all
cases equal numbers of ligand sulfur atoms and gold atoms
in the precursor. Thus, an eight-fold excess of the gold ACHTUNGTRENNUNG(III)
precursor was used for mX-G1 and a twenty-fold excess was
used for mX-G2. Although for these mX ligands the ratios
were maintained, the concentration of the ligand was raised
in the case of the Et ligands. The reduction of gold ACHTUNGTRENNUNG(III) in
the presence of the thioether ligands was carried out by
quickly adding an aqueous solution of sodium borohydride
to the two-phase system. After aqueous workup, the organic
phases were dried over MgSO4 and filtered.

In the case of the mX ligands, the change in color to dark
brown indicated the formation of the NPs Au-mX-G1 and
Au-mX-G2. Precipitation of gold was not observed, which
indicates an efficient stabilization of the Au NPs formed. In

analogy to linear oligomers,[31–33]

coating by mX ligands provided
the NPs with enough stability
to allow removal of TOAB by
applying a precipitation and
centrifugation protocol[32] and
of the excess ligand by size ex-
clusion chromatography (SEC).
Analysis by 1H NMR spectros-
copy (see Figure S1 in the Sup-
porting Information, SI) corro-
borated the total removal of
TOAB. The spectra also
showed the presence of surface-
bound dendrimer ligands, cor-
roborating their stabilizing
nature as a coating of NPs. As
far as the gold atoms were con-
cerned, the synthetic procedure
and removal of TOAB led to
the formation of NPs in a yield
of around 95%. However, ap-
proximately 10–20% of the
NPs were lost during SEC be-
cause some late SEC vials still
showed the presence of excess
ligand and were therefore dis-
carded to obtain only ligand-
stabilized NPs. This loss is due

Scheme 2. Synthesis of ethylene-bridged dendrons and dendrimers of various generations. Reagents and condi-
tions: a) TrtSH, TEA, DMF, RT, 92%; b) 2, K2CO3, THF, reflux, 46%; c) NaSMe, DMF, RT, 88%;
d) 1. Et3SiH, TFA, CH2Cl2, RT; 2. 9, NaH, THF, RT; e) 1. Et3SiH, TFA, CH2Cl2, RT; 2. 4, NaH, THF, RT, 1 h.
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to the overlap in the retention times of ligand-stabilized
NPs and the free ligand.

The formation of NPs in the presence of Et-G2 led to im-
mediate and complete precipitation of aggregated NPs after
addition of the reducing agent. The 1:1 ratio of gold equiva-
lents to sulfur atoms in the ligand design used initially was
then adjusted to a ratio of 1:2. A quick and complete precip-
itation of aggregated NPs was still observed. The same 1:2
ratio was used during the formation of NPs in the presence
of the fourth generation ligand Et-G4. In this case, upon ad-
dition of the reducing agent, the organic phase turned a red-
dish brown color pointing to the formation of stable NPs;
the precipitation of NPs was not observed for Et-G4.

To analyze the ligand-stabilized NPs UV/Vis spectra were
recorded (Figure 1). In the case of the stable and redissolva-
ble mX-ligand-stabilized NPs new solutions were prepared
from dried NPs in CH2Cl2, whereas in the case of Et-G4-sta-
bilized NPs, the organic layer was investigated directly by
UV/Vis spectroscopy. The organic layer of Au-Et-G4
showed a weak plasmon resonance band, which indicates a
NP distribution comprising a few NPs with diameters of

around 2 nm from the very beginning (Figure 1A, black
line). A color change from reddish brown to dark red was
observed upon storing the isolated and dried organic phase
under ambient conditions in CH2Cl2 in the presence of
excess ligand for several weeks. As shown in Figure 1A
(gray line), a prominent plasmon resonance band was ob-
served after 4 weeks, which indicates an increase in NP size
upon storage. Interestingly, in spite of this aggregation of in-
itially formed NPs to give larger NPs, the precipitation of
aggregated NPs was not observed.

The weak plasmon resonance band in the UV/Vis spectra
of both the mX-G1- and mX-G2-stabilized NPs (Figure 1B)
point to NP sizes of around and below 1.6 nm.[58,59] The two
samples show similar absorption spectra. The minor differ-
ences between 300 and 400 nm may be ascribed to the pres-
ence of different amounts of excess ligand. Interestingly,
these UV/Vis spectra remained unchanged when the solu-
tions were retested after 6 months, which indicates the ex-
cellent long-term stability of mX-ligand-stabilized NPs even
on exposure to air and light. However, higher temperatures
than room temperature were avoided as a slight growth of
NPs has previously been reported at temperatures of around
40 8C.[31]

HRSTEM analysis of the Et-ligand-stabilized NPs and
TEM analysis of the mX-ligand-stabilized NPs were per-
formed to determine the diameters (sizes) of the NPs
formed. Micrographs were taken of CH2Cl2 solutions of NPs
deposited on carbon-coated copper grids (Figure 2). Large
differences between the Et-G4- (Figure 2A) and mX-ligand-
stabilized NPs (Figure 2B and C) are readily visible to the
naked eye. A solution of CH2Cl2, aged for 4 weeks, was de-
posited on the carbon grid (Figure 2A) and the diameters of
about 500 Au-Et-G4 NPs were measured. As expected on
the basis of the UV/Vis investigation, rather large NPs with
diameters of up to 15 nm were observed. Analysis of the ob-
served size distribution (Figure 3A) revealed a large disper-
sity of 1–15 nm. The broad distribution of Au-Et-G4 NPs
has a mean value of 6.2 nm with a standard deviation of
�2.4 nm. Although the NP growth of Au-Et-G4 is interest-
ing, we did not investigate it further because nanoelectronic
device components require NPs with a distinct number of li-
gands for further coupling to organic–inorganic superstruc-
tures.[32,33] In contrast to these large NPs stabilized by the
Et-G4 dendrimer, very different NP diameters were ob-
served for the mX-Gn-stabilized NPs. In this case the re-
corded TEM micrographs were analyzed by an automated
procedure using imageJ[60] (see the SI for a detailed descrip-
tion). The size distributions for both NPs are displayed in
Figure 3B and C. Interestingly, within the precision of the
measurement, similar NP sizes of 1.1�0.3 nm and 1.2�
0.4 nm were determined for Au-mX-G1 and Au-mX-G2, re-
spectively.

The diameters of the NPs were also analyzed by SAXS,
performed by dissolving the Au NPs in benzene. The 2D
scattering signal was integrated to obtain intensity profiles,
which are shown as log–log representations in Figure 4. The
plots of Au-mX-G1 and Au-mX-G2 are similar, indicating

Figure 1. UV/Vis absorption spectra in CH2Cl2 of ligand-stabilized Au
NPs. A) Spectra of Au-Et-G4 NPs directly after NP formation (black)
and after 4 weeks (gray) in CH2Cl2. The arising plasmon resonance band
indicates the aggregation of NPs. B) Spectra of Au-mX-G1 (black) and
Au-mX-G2 (gray). The spectra are normalized to match at 520 nm. The
weak plasmon resonance peaks indicate NPs with diameters of around
and below 1.6 nm.[59]
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similar NP sizes, as expected on the basis of TEM investiga-
tions. The shapes of the plots suggest form factors for

spheres. The intensity plots were fitted with Nanofit soft-
ware version 1.2 from Bruker, using a least-squares method
for polydisperse, spherical particles. The analysis revealed
both samples to have diameters of around 1.6 nm by assum-
ing a Gaussian distribution of the NP diameters of s=

0.4 nm.
The diameters of the NPs measured by small-angle X-ray

scattering (SAXS) differ from the values found in TEM in-

Figure 2. A) Representative HRSTEM image of Au-Et-G4 after being
dissolved in CH2Cl2 for 4 weeks. Representative TEM images of B) Au-
mX-G1 and C)Au-mX-G2 NPs, respectively.

Figure 3. Size distributions of ligand-stabilized Au NPs: A) Au-Et-G4
after storage in solution (500 NPs were measured manually), B)Au-mX-
G1, and C) Au-mX-G2 (5000 NPs were measured automatically for B
and C).
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vestigations (diameters 1.1 and 1.2 nm). This deviation has
only recently been reported[33] and may be due to a slight
growth of the Au NPs triggered by the X-ray irradiation;
similar thermal expansion has previously been reported.[31]

In addition, the organic ligand shell might add to the scatter-
ing signal leading to larger radii. Although the SAXS meas-
urements corroborate the similarity of the sizes of both NPs,
the deviation from the diameters measured by TEM is not
yet understood and is the topic of further investigations.
Our previous studies relied on diameters measured by TEM
assuming ligand coating, which were corroborated by the
chemical behavior of these NPs.[32,33] We thus currently
prefer to refer to the diameters obtained by TEM over
those measured by SAXS to allow comparison between the
results obtained.

Despite the considerable increase in the number of sulfide
groups from eight for the dendritic ligand mX-G1 to twenty
for mX-G2, similar NP sizes were stabilized, as found by
TEM and SAXS analyses. This indicates that increasing the
dendrimer generation from G1 to G2 has no significant in-
fluence on the size of the NP obtained. It rather seems that
NPs grow until they reach a size that allows their enwrap-
ping by the dendritic ligand. However, with more than twice
the number of sulfide groups, the dendritic ligand mX-G2

should be able to coat a considerably larger surface area
than mX-G1.The ratio of organic ligand to gold should give
a closer insight into the assembly of the NP and ligand shell.
The excess ligand was first removed by SEC. Small amounts
of dried NPs were then studied by thermogravimetric analy-
sis (TGA). The sample was heated up to 900 8C to remove
all organic components. The results for Au-mX-G1 and Au-
mX-G2 are shown in Figure 5. The weight loss for both sam-

ples follows the same trend. Decomposition starts at around
200 8C and reaches a plateau between 600 and 700 8C. The
weight loss is attributed to the decomposition and removal
of the organic shell from the NP surface and the plateau is
interpreted as the end of this process, when all the organic
coating has been removed. Comparable weight losses of 26
and 23% were measured for Au-mX-G1 and Au-mX-G2,
respectively.

Knowing the size of the NPs from the TEM investigations
allows calculation of their mass and thus the average mass
of ligand coating per NP can be estimated from the weight
percentage obtained by TGA. First, the mass of gold per
ligand is derived from the rule of proportion from the mass
of the ligand and the mass percentage of both the gold and
ligand [Eq. (1) in the SI]. This value is divided by the molec-
ular mass of gold to obtain the number of gold atoms per
ligand [Eq. (2) in the SI]. For the Au-mX-G1 NPs a ratio of
19 gold atoms per mX-G1 ligand was obtained. By using the
density of bulk gold (1Au) the number of gold atoms per NP
was estimated to be 41 for NPs with an average diameter of
1.1 nm (from TEM). The calculated 19 gold atoms per octa-
dentate mX-G1 ligand indicate a ratio of two mX-G1 li-
gands per gold NP. A similar pairwise coating of the NP sur-
face has been observed for linear octadentate ligands.[32,33]

For the Au-mX-G2 NPs, the ratio of gold atoms per mX-
G2 ligand was determined to be 54. The number of gold
atoms per 1.2 nm NP was calculated to be 53 atoms on aver-
age, which indicates that a single mX-G2 ligand can stabilize
the entire 1.2 nm NP. Note that Au55 clusters are known to
have a diameter of 1.4 nm.[8] The calculation with 1Au seems

Figure 4. SAXS intensity plots as log–log representations and best fits for
A) Au-mX-G1 and B) Au-mX-G2.

Figure 5. Thermogravimetric analyses of Au-mX-G1 (black) and Au-mX-
G2 (gray).
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to overestimate the number of gold atoms in the NP. As the
sizes of the NPs determined by TEM are smaller than those
determined by SAXS studies, this overestimation to some
extent compensates the deviation in size. In view of the ex-
tended structure of the mX-G2 ligand with more than twice
the number of phenyl subunits and sulfide groups compared
with the first generation analogue mX-G1, this ability to
enwrap the entire surface of a NP of comparable size is not
surprising. This specific ratio of one ligand stabilizing one
NP is very rare. To our knowledge this has only been ach-
ieved by the use of a single polymer chain[61] or by radical-
chain polymerization on the NP surface.[62]

A molecular dynamics model of a Au55 cluster coated
with mX-G2 is depicted in Figure 6. The greed of the sulfide
groups for noble metal surfaces guarantees the adhesion of

the branched ligand structure to the NP surface and the con-
siderable dimension of the ligand only allows for a single
ligand per NP in the case of Au-mX-G2. As the thioether–
gold bond is weak we can expect that the NP–ligand assem-
bly does not contain any “staples”, which have been found
in the crystal structures of several thiol-stabilized Au
NPs.[63,64] The discrete and integer number of ligands per NP
may even allow use of the supramolecular notations Au41�-ACHTUNGTRENNUNG(mX-G1)2 and Au53�mX-G2 for the NPs Au-mX-G1 and
Au-mX-G2, respectively. However, this notation is mislead-
ing as it suggests that the number of gold atoms forming the
NPs is not controlled. In view of the NP size distributions
displayed in Figure 3B and C, a more appropriate descrip-
tion would be Au41�8�ACHTUNGTRENNUNG(mX-G1)2 and Au53�10�mX-G2, re-
spectively. To avoid confusion we prefer the old notations
Au-mX-G1 and Au-mX-G2, respectively.

The two dendrimer structures Et-G4 and mX-G2 display
large differences in the long-term stability of the coated Au
NPs. Although NPs stabilized by Et-G4 quickly aggregate to
form larger NPs, mX-G2-stabilized NPs display excellent
long-term stability, which makes them very interesting
ligand structures for obtaining monofunctionalized NPs, for
example, for use as TEM labels. As a working hypothesis
we attribute this unequal long-term stability of ligand-stabi-
lized NPs to the different bridging units. The bulky tert-
butyl-functionalized meta-xylene bridges create a large
ligand shell around the Au NP surface preventing further
aggregation. This steric protection of the NP surface pro-
vides not only a certain size control during the growth of
the NPs, but also long-term stability for the NPs Au-mX-G1
and Au-mX-G2. The loss of long-term stability in the case
of Au-Et-G4 is attributed to the reduced bulkiness of the
ethylene bridges in this dendritic structure. It seems that this
motif is not able to provide a strong protective shell and
thus NPs get close enough to aggregate. In addition, both
series of dendritic ligands differ in their terminal groups:
The mX-Gn series has terminal benzyl sulfides whereas the
terminal groups of the Et-Gn series are methyl sulfides.
However, the considerable differences in long-term stability
probably arise from the dendritic skeleton and not from the
terminal groups. This assumption is supported by a model in
which the terminal benzene rings (orange) do not coordi-
nate to the gold surface.

Conclusion

Two dendrimer motifs have been synthesized, both based on
thioethers mounted on a 1,3,5-trimethylbenzene scaffold as
branching units but with different spacers to “expand” the
dendrimer structure. The spacer units reduce the density of
the branching units and should therefore allow the dendritic
ligand to adapt to the convex curvature of NPs. As spacer
units, a,b-ethynyl bridges and a,a’-meta-xylene structures
comprising a bulky tert-butyl group have been considered.
Although from the ethynyl-bridged dendrimer the second
and fourth generation ligands Et-G2 and Et-G4 were syn-

Figure 6. Quantum mechanical calculations of thioether–gold bond
strengths were combined with a classical molecular dynamics model to
calculate one-dendrimer (shown) and alternative two-dendrimer com-
plexes with the Au NP, modeled to a first approximation by a 55-atom
cluster (diameter 1.4 nm)[8] in dichloromethane. The details of the calcu-
lations will be presented elsewhere.[65] The calculations indicate that the
alternative two-dendrimer state is less stable for these sized NPs. The low
likelihood of replacement of the fully bound single dendrimer by two
partially bound dendrimers was determined by using an energy function
summed over beneficial wrapping interactions (individual thioether–gold
bond strengths plus van der Waals dendrimer–gold contacts) and wrap-
ping penalties (loss in dendrimer conformational freedom plus dendrimer
and gold desolvation).
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thesized, the first and second generation ligands mX-G1 and
mX-G2 were prepared in the case of the meta-xylene
spacers. The ability of these dendrimers to control the
growth and to stabilize particular sizes of Au NPs was inves-
tigated by using them as reagents during the biphasic reduc-
tion of chloroauric acid. With the two ethynyl-bridged den-
drimers only the larger Et-G4 displayed some limited NP
stabilizing features. Et-G4 was neither able to control the
size of NPs during their formation nor to stabilize the
formed NPs in solution over time. In contrast, both meta-
xylene-bridged dendrimers were able to stabilize small Au
NPs with average diameters of between 1.1 and 1.2 nm
(from TEM) in very good yields and with excellent long-
term stability. The limited surface area of these small NPs
allows all the thioethers of only two dendritic ligands mX-
G1 to coordinate to a NP. In the case of the further expand-
ed dendrimer mX-G2, the spatial limitation only allows a
single ligand to coordinate its 20 thioethers to the NP sur-
face. Thermogravimetric analysis corroborated the expected
1:2 and 1:1 ratios between the NP and dendritic ligands mX-
G1 and mX-G2, respectively. The considerable increase in
both the control over NP size and NP stability has been at-
tributed to the bulkiness of the dendritic coating with a tert-
butyl-functionalized meta-xylene linker, which prevents ag-
gregation by sterically separating the metal cores of the
NPs.

These NPs coated with a controlled low number of den-
dritic ligands may pave the way towards mono- and bifunc-
tionalized Au NPs. We are currently investigating the poten-
tial of these organic/inorganic hybrid structures as “artificial
molecules” by exploring their tolerance to wet chemical
conditions.

Experimental Section

General methods and experimental procedures for all compounds are de-
scribed in the Supporting Information.

Gold nanoparticle formation and purification : The Au NPs were formed
on a 4–7 mmol (9–15 mg) scale with respect to dendritic ligands mX-Gn
(the same synthetic protocol was applied to Au-Et-Gn NPs). Chloroauric
acid (mX-G1: 8 equiv; mX-G2 : 20 equiv) was dissolved in DI water
(2 mL) and transferred to the organic phase by adding tetra-n-octylam-
monium bromide (TOAB; mX-G1: 16 equiv; mX-G2 : 40 equiv) in
CH2Cl2 (2 mL). After the addition of dendritic ligand mX-Gn (1 equiv)
in CH2Cl2 (2 mL) this mixture was stirred for 5 min before sodium boro-
hydride (mX-G1: 64 equiv, mX-G2 : 160 equiv) was added quickly in DI
water (2 mL). The color of the solution turned dark brown, which indi-
cated the formation of Au NPs. This mixture was stirred for 15 min
before the organic phase was separated; the aqueous phase was washed
twice with CH2Cl2. The combined organic phases were dried with MgSO4

and filtered. The solvent was evaporated with a stream of nitrogen or by
using a rotary evaporator without heating. The dried NPs Au-mX-Gn
were redissolved in CH2Cl2 (<1.5 mL) and ethanol was added (20 mL).
The NPs were then precipitated by centrifugation (5 rpm, 45 min, 5 8C) to
remove the TOAB. Subsequently the NPs were subjected to size exclu-
sion chromatography (SEC) to remove excess of the ligand. Before this
step, the yield of the NPs was around 95% (based on the number of gold
atoms). However, about 10–20% of the NPs were lost during SEC be-
cause some late SEC vials still showed excess ligand and were therefore

discarded. Some loss also occurred during the filtration in advance of
SEC, performed to protect the column.
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N
anostructured organic�inorganic
hybrid materials may be formed
via self-assembly of organic and

inorganic components.1,2 Surfactant-
coated gold nanoparticles (colloidal gold) in
particular3�5 have attracted significant atten-
tion in the past decades, and their unique
optical and electronic properties have led to
technology applications. For example, gold
nanoparticles can be used to transfer optical
signals in plasmonic devices6 and to congre-
gate receptor molecules in the liquid-phase
sensing7 used in home pregnancy tests.8 Cur-
rent research focuses on emerging applica-
tions in nanoelectronics9,10 andmedicine.11�15

Gold nanoparticles may find use as func-
tional components in printed electronics16

via the integration of synthesized gold na-
nostructures into lithographically produced
structures.17 In medical diagnostics, the
molecular recognition properties of low-
diameter gold nanoparticle surfaces make
gold particles useful platforms for analyte�
receptor interactions,18,19 while gold parti-
cles may also be used for drug delivery
applications with (surfactant-controllable)
size, surface charge, and shape being the
chief parameters for controlling the biologi-
cal response to medicinal gold complexes.20

Gold nanoparticles also have numerous cur-
rent and future applications in, for example,
trace analyte detection for security,21 as well
as advanced elements for optoelectronics22

and information storage devices.23 A key ele-
ment in the rational design of gold nanopar-
ticles is the role of ligand conformation and
adsorptiononto the inorganic surface in order
to influence particle growth and assembly.
More generally, a molecular-level control of
the organic�inorganic interface is required

for any application that couples organic ma-
terial with metal or semiconductor substrates
for integrated bionanoelectronics.24�26

Linear thioether ligands have recently
been shown to direct the synthesis and
interlinking of gold nanoparticles in dichlor-
omethane solvents.27�30 Gold particles
have also been very recently synthesized
in the presence of dendritic thioether
ligands.31 The nanoparticles were formed in
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ABSTRACT The formation of true single-
molecule complexes between organic ligands
and nanoparticles is challenging and requires
careful design of molecules with size, shape,
and chemical properties tailored for the specific
nanoparticle. Here we use computer simulations
to describe the atomic-scale structure, dynamics, and energetics of ligand-mediated synthesis and
interlinking of 1 nm gold clusters. The models help explain recent experimental results and provide
insight into how multidentate thioether dendrimers can be employed for synthesis of true single-
ligand�nanoparticle complexes and also nanoparticle�molecule�nanoparticle “dumbbell” nano-
structures. Electronic structure calculations reveal the individually weak thioether�gold bonds
(325( 36meV), which act collectively through themultivalent (multisite) anchoring to stabilize the
ligand�nanoparticle complex (∼7 eV total binding energy) and offset the conformational and
solvation penalties involved in this “wrapping” process. Molecular dynamics simulations show that
the dendrimer is sufficiently flexible to tolerate the strained conformations and desolvation penalties
involved in fully wrapping the particle, quantifying the subtle balance between covalent anchoring
and noncovalent wrapping in the assembly of ligand�nanoparticle complexes. The computed
preference for binding of a single dendrimer to the cluster reveals the prohibitively high dendrimer
desolvation barrier (1.5( 0.5 eV) to form the alternative double-dendrimer structure. Finally, the
models show formation of an additional electron transfer channel between nitrogen and gold for
ligands with a central pyridine unit, which gives a stiff binding orientation and explains the recently
measured larger interparticle distances for particles synthesized and interlinked using linear ligands
with a central pyridine rather than a benzene moiety. The findings stress the importance of
organic�inorganic interactions, the control of which is central to the rational engineering and
eventual large-scale production of functional building blocks for nano(bio)electronics.

KEYWORDS: nanoelectronics . organic�inorganic interfaces . multivalent
interactions . molecular dynamics simulations . electronic structure calculations
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the presence of the dendrimer following a protocol
developed by Brust as described in ref 31 with 1H NMR
showing that the particles are solely stabilized by the
dendrimer. The phase transfer agent used during the
synthesis of the particles was successfully removed by a
repeated precipitation and centrifugation protocol, and
even the excess of the dendritic ligand was removed by
size exclusion chromatography.31 Understanding and ulti-
mately harnessing the driving forces underlying this
ligand-mediated gold nanoparticle synthesis require de-
tailed nanoscale experiments and simulations, and so the
focus of the presentwork is on complementing the exper-
imental synthesis and microscopy characterization,27�31

using atomic-resolution computer simulations. We focus
on the more promising dendritic thioether ligands, which
potentially allow very precise control of both covalent and
noncovalent ligand stabilization effects in nanoparticle
synthesis. The simulations in the present work allow
quantification of the forces underlying the assembly of
dendrimer�nanoparticle complexes, namely, themultiple
(individuallyweak, reversible) binding interactions that act
collectively to give tightly woven self-correcting and
self-healing assemblies. By clarifying the atom-scale struc-
ture, dynamics, and energetics of complexation, the
model may be useful as a computer-aided design tool
for the (eventual) generation of libraries of molecular
“wrappers” for efficient synthesis of a wide range of
building blocks tailored for specific nanoelectronic device
applications.
The role of the adsorbed organic molecule in direct-

ing the formation of the observed narrow size distribu-
tion of ∼1 nm diameter gold nanoparticles27�31 is
explored via a combination of first-principles electronic
structure calculations and atomic-resolution molecular
dynamics simulations. We use the simulations to
address three important questions concerning the
synthesis (Figure 1): (1) How stable is a fully bound
dendrimer configuration on the nanoparticle surface?
Recent experiments show unchanging particle size
distributions for the first- and second-generation
dendrimers31 and so suggest that the dendrimers
can fully “wrap” the particle. (2) We use the model to
measure the binding and dynamics of dendrimers with
different central units on the nanoparticle surface.
Experiments show a significant difference in interpar-
ticle distances for linear ligands with benzene and
pyridine central units.29,30 (3) We measure the relative
stabilities of single-dendrimer and double-dendrimer
complexes on the nanoparticle. Very recent experi-
ments show predominantly 1:1 dendrimer to particle
ratios for the second-generation dendrimer.31 This
suggests the formation of only a very low population
of interlinked superstructures containing three or more
nanoparticles, once these dendrimers31 are monofunc-
tionalized and the particles formed in their presence are
interlinked using acetylene chemistry.29,30 Such discrete,
regularly sized “dumbbells” may provide a means of

cleanly bridging lithographically defined nanogaps and
controlling the electron transport properties of the
junction.32 The computer model confirms and extends
the major features observed in the experimental synth-
esis and characterization of gold nanoparticles stabilized
by multidentate thioether ligands, by showing how the
organic template structure directs three crucial factors:
the individual nanoparticle size distributions, the inter-
particle distances, and, we predict, the extent of particle
interlinking. This new atom-scale detail may inform the
synthesis of hybrid organic�inorganic materials with
nanostructures and physicochemical properties tailored
for specific device applications.33,34

RESULTS AND DISCUSSION

We first describe the electronic structure calculations
of thioether�gold bond formation and then present
the larger scale molecular dynamics simulations of the
room-temperaturedichloromethane-solvateddendrimer�
nanoparticle complexes. The simulation results are used

Figure 1. Sketch of the ligand-mediated nanoparticle
synthesis, showing the key components and structural
features. (a) Double-ligand�particle complex formed using
linear ligands.29,30 The ligand�particle binding angle is
defined by three atoms as shown: the gold atom between
the two gold atoms that bind the central unit sulfurs, and
two ligand ring atoms, the carbon of site “A” in benzene
(nitrogen in pyridine) and the carbon para to A. The multi-
particle chain formed via acetylene fusing is also shown,
with the interparticle distance marked, which depends on
both the length of the linker and the binding angle. (b)
Single-ligand�particle complex formed using the second-
generation dendrimer.31
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to rationalize the experimental observations,28�31 and
the combined simulation/experimental data are dis-
cussed in relation to the state of the art in hybrid
organic�inorganic materials design and synthesis for
nanoelectronics, with reference also to more general
multivalent ligand�surface interactions35,36 relevant
for nanofabrication,37 molecular diagnostics,38 and
molecular assembly.39

Computed Thioether�Gold Bond Strengths. Panels a and
b of Figure 2 show the chemical structure and molec-
ular model of the multidentate thioether dendrimer
used in the present study. Thismodel was derived from
the chemical structure used in recent work31 including
(1) the alternative pyridine central unit as yet only
synthesized for the linear ligands29,30 and (2) the acet-
ylene headgroup required for chemical interlinking29,30

of the formed dendrimer�particle complexes.31 Both of
these variants are targets of current experiments and
allow us to make predictions using the model, while
providing insight into some of the recent experimental
data.27�31 Figure 2c shows thenanoparticle shapesused
to model the synthesized 1.2 ( 0.4 nm diameter gold
nanoparticles,31 which are represented in the present
study by the near-isoenergetic cuboctahedral and ico-
sahedral 55-atom gold (Au55) clusters,

40,41 which have
calculated diameters of 1.2 ( 0.1 nm. The surface of
cuboctahedral Au55 is composedof eight corner-sharing
triangles (111) and six squares (110), while icosahedral
Au55 has 20 equivalent triangular fcc(111)-like faces.
Figure 3 summarizes the electronic structure models
used to describe bond formation between the thioether

groups and the gold nanoparticle surface. Given the
local nature of the thioether�gold bonding and the
computational effort required to compute full ligand�
Au55 complexes,40�42 we use smaller Au20 and Au13
clusters to perform a series of adsorption calculations
with different representative dendrimer building blocks
and particle (111) and (110) faces to estimate the
dendrimer�particle bonding energy per thioether
group. As shown by the computed electronic binding
energies given in Figure 3, the thioether groups make
weak bonds to gold, with an average bond strength of
just 325( 36 meV averaged over the three representa-
tive structures. The similarity in the computed bond
strengths indicates only aminor dependenceon the fine
details of the dendrimer model (size of the representa-
tive fragment used for the electronic structure calcula-
tion, choice of benzene or pyridine central unit) and the
nanoparticle surface geometry ((111) or (110) faces,
geometry of the Au�S bonds). The adsorption energy
is subchemisorption at approximately 0.3 eV. By com-
parison, methylthiomethane has a binding energy to
gold of approximately 0.5 eV.43

The computed thioether bond strength is substan-
tially weaker than a 1.7 eV alkanethiol�gold bond,44

which has two important consequences for the
dendrimer-mediated gold nanoparticle synthesis. First,
there is scope for self-correction in the dendrimer�
gold complexation with the thioether sulfurs able to
distribute themselves on the surface via quasi-
reversible S�Au bonds so as to obtain favorable

Figure 2. (a) Chemical structure of the multidentate
thioether dendrimer,31 with positions of the two core, six
branch, and 12 terminal sulfurs marked. Simulations were
also performed using dendrimers with the benzene central
unit replaced by a pyridine unit,30 where “A”marks the site
of the C�HfN substitution. (b) Dendrimer molecular mod-
el, where carbons are colored gray, hydrogen atoms are
white, sulfurs are brown, and silicon of the TIPS headgroup
is colored blue. This (not yet synthesized) monofunctiona-
lized dendrimer is derived by merging the branch and
terminal part of the second-generation dendrimer31

(panel a) with the core (central unit) of an acetylene-mono-
functionalized linear ligand.29,30 (c) Cuboctahedral and the
icosahedral Au55 clusters (1.2 ( 0.1 nm diameter) used to
model the synthesized gold nanoparticles (1.2 ( 0.4 nm
diameter31).

Figure 3. Complexes used to calculate the thioether�gold
bond strength. (a) Td tetrahedral Au20 cluster, with four 10-
atom triangular faces exhibiting face-centered cubic (fcc)
packing. (b and c) Ih icosahedral Au13 cluster, which contains
20 three-atom triangles. The same atom representation is
used as in Figure 2b. Representative fragments of the
dendrimer thioether anchor groups were used as shown:
benzyl thioether (panel a) and extended benzene-core
(panel b) and pyridine-core (panel c) dithioether moieties.
Calculated S�Au bond lengths and molecule binding en-
ergies are given.
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dendrimer conformations. These dendrimer rearrange-
ments on the surface may be accompanied by Au
surface diffusion or place-exchange “hopping”,45

which has a very low barrier (<1 eV),46 that may be
further lowered by thioether adsorption. Identification
of any consequent dendrimer-directed nanoparticle
distortions, defects, or gold adlayer formation47 would
require very high-resolution imaging and/or signifi-
cantly larger electronic structure calculations, beyond
the scope of the present study.

The second important consequence of the computed
weak individual thioether�gold bond strengths is that
formation of multiple bonds between the nanoparticle
and the multivalent dendrimer, in this case a multiden-
tate thioether dendrimer with 20 sulfur anchor groups,
will drive the adsorption energy of the complex as a
whole toward a more strongly bound, effectively chemi-
sorbed state. Taking the estimate of 325 meV per
thioether�gold bond, one fully bound dendrimer or
multiple partially bound dendrimers, e.g., two half-bound
dendrimers, will provide an effective bond strength of
7 eV, the equivalent of four Au�alkanethiol chemical
bonds. The payoff between favorablemultivalent attach-
ment and unfavorable dendrimer wrapping penalties
(conformational strain plus desolvation costs) may then
be used to identify thermodynamically favorable binding
modes48 for the dendrimer�nanoparticle complexes, as
described below. The high effective concentration49,50 of
unbound thioether anchor groups close to the nanopar-
ticle surface will drive the complex toward also a kineti-

cally stable multivalently bound assembly of the
(individually weak) thioether�gold bonds.

Finally, it is important to note that the electronic
ligand�particle binding calculations were performed
for small benzene/pyridine thioether molecules ad-
sorbed on gold clusters under vacuum at 0 K, which
serves as a first approximation to the experimental
dichloromethane-solvated dendrimer�nanoparticle
structures synthesized in the room-temperature ex-
periments (and modeled explicitly in the present work
using classical molecular dynamics). As discussed be-
low, a complex balance of ligand-surface chemical
bonding and van der Waals's interactions directs the
assembly of the dendrimer-wrapped nanoparticle, and
both types of interaction depend on the topography of
the nanoparticle surface. Therefore, we extract the
estimated bond strength of 325 ( 36 meV over three
representative structures; experimentally, we may
expect also some complexation geometries with
thioether�gold bond strengths outside this range
due to, for example, gold surface defects/adatoms
and solvent-mediated dendrimer�gold interactions.
More details on Au�S bonding calculations, including
long-range effects, thermal effects, and a survey of
bond strengths as a function of Au coordination in the
cluster and sulfur coordination in the molecule, are
given in Supporting Information section S1.

Computed Dendrimer�Nanoparticle Net Complexation En-
ergies. Figure 4 shows one representative complex
used to describe the structure, dynamics, and energetics
of the dendrimer�nanoparticle assembly in dichloro-
methane. Thirty-six dendrimer-coatedgoldnanoparticle
models (listed in Table 1) were used to determine the
stabilities of 1:1 and 2:1 dendrimer�nanoparticle com-
plexes. Their relative stabilities indicate a very low
probability for binding of a second dendrimer to ex-
posed areas of someof the 1:1 dendrimer�nanoparticle
complexes to form 2:1 dendrimer�nanoparticle com-
plexes, providing an explanation for the measured low
molecular weight of organic coats on the synthesized
nanoparticles.31 Overall, the atom-scale simulations
complement the experiments via identification of the
principal dendrimer binding modes and thus the ideal
dendrimer size required for the dendrimer-mediated
gold nanoparticle synthesis.

The net adsorption energy of each solvated den-
drimer�gold complex is expressed as the sum of the
favorable binding interaction and unfavorable wrap-
ping penalty. The favorable binding interactions for
each assembly mode are quantified from the sum of
the electronic thioether�gold bonding energies cal-
culated above, which are assumed to be additive,48

plus the dendrimer�nanoparticle van der Waals inter-
actions. The unfavorable wrapping penalty inherent in
dendrimer complexation is estimated as the sum of
dendrimer conformational penalties and both dendri-
mer and gold desolvation penalties, in each case
relative to reference solvated but noncomplexed den-
drimer and nanoparticle models.

The data in Table 1 show that the net complexation
energy fluctuates around zero for all binding modes,
indicating a rather flat potential energy surface for
dendrimer�particle complexation withmany different

Figure 4. Representative dendrimer�gold complex model.
In this case the dendrimer is bound using two core
thioether�gold bonds with the gold nanoparticle atoms
shown as van derWaals's spheres. The complex is immersed
in a large box of dichloromethane molecules (11 nm wide),
to model the solvated dendrimer�gold complex.
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competing bindingmodes. Each binding configuration
will have a population distribution scaled according to
its range of net complexation energies. Examination of
the mean net complexation energies for single- and
double-dendrimer complexes, E1 and E2, respectively,
averaged over all structures and plotted in Figure 5, is
instructive. The plot indicates a sharp destabilization
for double- vs single-dendrimer complexation to the
nanoparticle, with an estimated mean barrier to
double-dendrimer binding, E2 � E1 ≈ 1.5 ( 0.5 eV,

obtained by averaging over all the single- and double-
dendrimer data points in Figure 5. Examination of the
energy components in Table 1 shows that this barrier
arises principally from increased wrapping penalties in
the double-dendrimer complexes, which are roughly
double the value for single-dendrimer complexes.
Conversely, the dendrimer�gold van der Waals bind-
ing energies show little dependence on the number of
bound dendrimers, comparing single- and double-
dendrimer complexes with similar overall numbers of

TABLE 1. ComputedDendrimer�Nanoparticle Net Complexation Energies (eV) for a Range of Single-Dendrimer (1:1) and

Double-Dendrimer (2:1) Cluster Complexes in Dichloromethanea

a For each binding mode, the computed energies for the dendrimer with benzene central unit is given in the top
row, with the corresponding pyridine-core dendrimer values given underneath. Structure-averaged uncertainty
(standard deviation) for each energy is given in parentheses. Electronic binding energies were calculated as
described in Figure 3 and supporting text, with further details in Supporting Information section S1.3. The other
termswere computed from the final 5 ns (2000 structures) of 10 ns room-temperaturemolecular dynamics for each
complex. A minus sign indicates net stabilization of the complex relative to reference noncomplexed states.
Rounding all energy values to one decimal place gives in some cases apparent discrepancies of 0.1 eV between
totals and their components. Sketched in the insets are binding configurations A�D on the gold cluster surface,
with core binding sites colored white and branch binding sites colored blue. The bindingmodes refer to the extent
of thioether�gold bonding and are described using the dendrimer unit nomenclature given in Figure 2a.
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S�Au bonds. Similarly, the spread in the data points in
terms of particle shape, central unit, and binding
configurations (where configurations A, B, C, and D
denote the alternative surface grafting schemes
sketched in the inset figures in Table 1) is generally
<1 eV for each binding extent.

The major driver toward single-dendrimer com-
plexes then is the enlarged desolvation contribution
that mitigates against binding of the second dendri-
mer. As shown in Table 1, the net desolvation cost is

partially offset by dendrimer “penalties” that become
negative for the double-dendrimer�particle com-
plexes and, hence, provide an additional stabilizing

Figure 5. (a) Computed time-averaged net complexation
energies for single- and double-dendrimer�nanoparticle
complexes with increasing numbers of gold�thioether
bonds. Data in red are for the cuboctohedral particle, and
data in blue are for the icosahedral particle. Solid and
hollow data points are used for the dendrimers with ben-
zene and pyridine central units, respectively. The gray
boxes show the clustering of data points for single- and
double-dendrimer complexes, with the arrow showing the
1.5 ( 0.5 eV barrier for binding of a second dendrimer.
(b) One representative computed single-dendrimer�gold
complex. In this picture the dendrimer carbon backbone is
shownas gray sticks and thioether sulfurs are black spheres.
Hydrogen atoms and the dichloromethane solvent mol-
ecules are omitted for clarity. Phenyls are colored according
to the visible spectrum, starting from the central unit (red)
and radiating outward through to the terminal groups
(violet).

Figure 6. Computed ligand�nanoparticle complexation
geometries. (a and b) Representative structures formed
using the dendrimer with the benzene central unit, with
timelines (c) showing the angle formed between the nano-
particle surface and the dendrimer central unit (as sketched
in Figure 1). Data in blue are for the icosahedral particle, and
data in red are for the cuboctohedral particle, with timelines
showing values sampled over the final 5 ns of 10 ns
molecular dynamics trajectories. (d and e) Structures
formedwith the pyridine central unit and (f) angle timelines.
Only the two core sulfurs are bound to the nanoparticle
surface in order to allow direct comparison of linear and
dendritic ligands; the complexation geometries do not
change significantly upon connection of more or all sulfurs.
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dendrimer energy due to favorable van der Waals
interactions between the twodendrimers. The net total
penalty however remains large and positive, shifting
the double-dendrimer complexes to net positive time-
averaged complexation energies, meaning that they will
constitute a minor state in the synthesis, in agreement
with the experimental microscopy and thermogravi-
metric data.31 The synthesis thus “self-terminates” in
the majority of cases at the 1:1 dendrimer�gold com-
plexes. Future experiments will fuse the complexes via
diacetylene bond formation to form 2:2 dimer com-
plexes, or “dumbbells”.29,30 The computed barrier to
binding two dendrimers on one gold cluster (2:1) and
hence the small number of states with interlinked 2n:n
superstructures predict a very low population of multi-
particle networks of trimeric and higher order structures.

In summary, the energetic data in Table 1 show that
the dendrimer desolvation energy dictates the number
of ligands comprising the moderately polar nanoenvir-
onment of thioether groups in which the gold nanopar-
ticle is stabilized in bulk dichloromethane. Hence it may
prove possible to tune the extent of ligand coverage by
using solvents of different dielectric constant and/or
different ligand anchor groups. It may prove possible to
direct the nanoparticle size by tuning alsowith respect to
the desolvation energy of the nanoparticle itself. The
information provided by chemical bonding/fusing in this
directed assembly is reminiscent of the chemical scission
step used between successive rounds of spontaneous
assembly/wrapping that provides control of collagen
synthesis incomplex,multiphasebiologicalenvironments.51

Routes to manipulate and ultimately control directed
assembly in dendrimer-mediated nanoparticle synth-
esis could allow for simultaneous production of a wide
variety of nanoparticle complexes of different type,
size, and shape stabilized by different types and num-
bers of ligands. In the nearer term the attainment of
such control could aid development of ultrasensitive
and specific sensing of target molecules for medical
diagnostics and therapeutics. Further details on calcu-
lated dendrimer�gold wrapping dynamics are given
in the Supporting Information. Section S2 describes
the more open dendrimer conformations but more
solvent-shielded gold complex structures formed in
methanol, a more polar solvent than the dichloro-
methane used in the experiments. Section S3 shows
that wrapping via binding through core and then per-
ipheral sulfurs is energetically favored over an alternative
“feet first” orientation. Section S4 shows that wrapping of
a larger 1.4 nm cluster, Au69, shows a similar balance
betweenwrapping and desolvation forces, with a slightly
better,∼1 eV stabilization of the complex due to reduced
desolvation penalties for the more splayed dendrimer
conformation on the larger particle.

Structural Features of Dendrimer-Coated Gold Nanoparticles.
In contrast to the dendrimers, the linear ligands
were already monofunctionalized and used to couple

nanoparticles to superstructures.29,30 The models of
functional dendrimers are now used to explain the
differences in interparticle spacing found for linear
ligands, as we assume the geometry of the central
unit, either a pyridine or benzene moiety, does not
depend on the ligand structure. For this simulation
only the central two thioethers were bound to the
nanoparticle. Even if more thioethers are bound to the
surface, the computed angle does not change. This
nicely enables the comparison of linear and dendritic
ligands. Ligand�particle complexation geometries
were computed and are shown in Figure 6 with
representative structures and timelines showing the
angle formed between the plane of the central
unit benzene (or pyridine) and the gold surface. The
ligand�particle binding angle (sketched in Figure 1) is
the angle formed between the plane of the ligand
central ring and the gold surface. The computed angles
are used to calculate the interparticle distances by
simply multiplying the length of the calculated OPE-
type linker, 2.8 nm, and the cosine of the measured
time-averaged tilt of the core-to-particle angle away
from an ideal, perpendicularly oriented central unit
(which would be 180�, as sketched in Figure 1). Inter-
particle distances of 1.8 ( 0.5 and 2.0 ( 0.4 nm were
obtained for icosahedral particles with benzene and
pyridine central units, respectively. For the cuboctohe-
dral particle the distances are 1.2( 0.7 and 1.0( 0.8 nm.
The complete range of experimentally measured inter-
particle distances for linear acetylene-functionalized oc-
todentate thioether ligands is 0.7�3.1 nm,30 peaking at
1.5( 0.5 nm for the benzene central unit (ligand B2 in ref
30) and2.5( 0.3 nm for thepyridinemoiety (P2 in ref 30).
The computed angles are thus consistent with the
observed interparticle distances30 and span the full range
of observed distances (for a freely rotating core group;
the quantummechanical origin of thepyridine constraint
that gives theobservedpeak shift to 2.5 nm30 is discussed
below), indicating that amixtureof nanoparticle shapes is
fabricated. Cuboctohedral gold particles are ∼1 eV less
stable than icosahedral particles,41 and so taken together,
the calculations and experiments suggest that the gold
clusters produced in dendrimer-mediated synthesis may
show deviations from perfect crystallinity. Furthermore,
gold atom migration to “fill” the dendrimer wrapper via
gold adlayer formation may be enabled by the weak
individual thioether�gold chemical bonds (Figure 3)
and, from the energetic data in Table 1, may be expected
to give mutually compensating van der Waals and
desolvation interactions. This would provide a significant
population of nanoparticles that are slightly larger than
the 1.2 ( 0.1 nm Au55 clusters, in agreement with the
broader shoulders at higher diameters in the measured
nanoparticle size distributions.29�31

The computed ligand�particle angles show a neg-
ligible dependence on central unit type, benzene or
pyridine (Figure 6), indicating that the experimentally

A
RTIC

LE



102 Publications

THOMPSON ET AL . VOL. 6 ’ NO. 4 ’ 3007–3017 ’ 2012

www.acsnano.org

3014

observed core-dependent interparticle separations30 do
not originate primarily from differences in noncovalent
interactions with the particle surface, as modeled in the
molecular dynamics simulations. Rather, as shown in
Figure 7, the origin of the different interparticle separa-
tions is largely electronic. Figure 7 shows the three
charge transfer channels for pyridine thioether surface
adsorption, with charge donation of 2 � 0.11 electron
charges from the sulfur sites (S2pfAu7d) and a small
back-donation from the surface of 0.04 electron charges
to the nitrogen site (Au7dfN2p). Thesedegrees and sites
of charge transfer were estimated from natural popu-
lation analysis52 of the computed electronic struc-
tures in Figure 7, which are the two dithioether
structures from Figure 3 and also an additional control
simulation that replaced the central pyridine moiety
of pyridine dithioether with benzene and reoptimized
the complex. Conversely, only two charge transfer
channels exist for benzene thioether adsorption,
which features charge donation of 2 � 0.16 e� from
the two sulfur sites but no bonding through the
benzene central unit.

This striking difference in reactivity and hence
binding geometry for ligands with benzene and pyr-
idine central units is further explained by analysis of the
local softness,53 which measures the nucleophilicity
and electrophilicity of atoms in the adsorbate molec-
ules. The computed local softness indices s(r) indi-
cate as expected highly reactive thioether sites with
sulfur electron-donor powers s�(r) of 0.09 and 0.10 au
each in benzene and pyridine dithioether, respectively.
All other sites exhibit negligible s�(r) values, e0.01 au.
On the other hand computed local electrophilicity
indices show very delocalized electron-acceptor sites
in benzene dithioether with sulfurs exhibiting sþ(r) =
0.02 au and all other atoms e0.01 au, while pyridine
dithioether on the other hand shows sþ(r) = 0.04 au on
nitrogen, 0.02 au on the ortho and para ring carbons,
and 0.02 au on sulfurs, with all other atoms e0.01 au.
Hence the flexible central unit for benzene-based
ligands compared with the stiff, more immobilized
central unit for pyridine-based ligands manifests itself
in the larger interparticle distances measured for linear
ligands with pyridine central units.30 As this difference

Figure 7. (a) The three charge transfer channels for pyridine thioether surface adsorption. (b and c) The two charge transfer
channels for benzene thioether adsorption, which features no binding through the benzene central unit. Panel (b) shows the
structure formed by replacing the pyridine moiety in the gold-bound pyridine thioether structure with benzene and
reoptimizing the complex, while panel (c) shows an alternative benzene dithioether binding mode. Electron density maps
(isodensity 0.001 e/au3) were calculated from the electronic structures described in the text.
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was explained just by using the two core sulfurs of the
ligand, we are optimistic that we can transfer the
experimental finding to future interlinking reactions
of functional nanoparticles stabilized by dendrimers.

CONCLUSIONS

The present study provides the atom-scale mechan-
ism underlying ligand-mediated gold nanoparticle
synthesis. The computational analysis based on den-
drimer�nanoparticle binding vs wrapping penalties
explains some key results from the experimental
synthesis and characterization. Namely, the observed
particle size distribution ranges,29�31 the 1:1 dendrimer
to particle ratio found for the second-generation
dendrimer,31 the lack of dependence of nanoparticle size
on dendrimer generation,31 and the control of interparti-
cle distance distributions found for nanoparticles stabi-
lized and interlinked by linear thioether ligands.30We also
use the calculated structures to predict the formation of
discrete gold nanoparticle dumbbells upon future diace-
tylene coupling of monofunctional nanoparticles. More
generally, the calculated properties may be useful for
rational design of novel dendrimer structures with che-
mical structures and stereochemistry optimized for the

production of nanoparticle size and shape distributions
as required for specific nanoelectronic device compo-
nents. In the longer term, we hope that the data will
contribute toward the atom-scale engineering of organ-
ic molecule-based “wrappers” for the development of
building blocks with highly controllable electronic
properties.
Further simulation and experimental studies will

provide more details on the role of nanoparticle sur-
face effects in ligand-directed nanoparticle synthesis,
including gold atom defects, gold diffusion, and
formation of gold adlayers. Rational control of the
organic�inorganic interaction is key, and so deeper
understanding of the atom-scale features of the inter-
faces in hybrid superstructures will aid efforts to design
libraries of organic wrappers. Further scientific and
technological advances in the application of low-di-
mensional nanostructures as device components de-
pend on the ability to organize them in complex one-
or multidimensional functional architectures, and so
atomic-scale descriptions will continue to guide synth-
eses and speed up development of new materials for
next-generation applications in electronics, health, and
energy.

MATERIALS AND METHODS
This section contains further technical details on the simula-

tion protocols used; the main features of the models were
summarized at the beginning of the Results section.

Electronic Structure Calculations. The cuboctahedral Au55 nano-
particle was generated from the bulk Au crystal structure, and its
electronic structure calculated using the Gaussian03 code54

with the B3LYP55 hybrid Hartree�Fock�density functional
theory (DFT) wave function and the relativistic LANL2DZ basis
set. The geometry of the icosahedral particle, generated using
the same protocol as described above, was kindly provided by
Francoise Remacle from an earlier study.41 To quantify the
strength of ligand anchoring on the gold nanoparticle surface,
smaller representative models were used to describe the local
thioether�gold interaction, as shown in Figure 3. The tetrahe-
dral Au20 cluster has four 10-atom fcc (111) faces, and the
icosahedral Au13 cluster has a rougher local arrangement of
gold atoms, containing 20 three-atom triangles with a dihedral
angle of 138.19� between planes, while benzyl thioether to-
gether with extended benzene-core and pyridine-core dibenzyl
thioether moieties represents the local dendrimer molecular
structure around the thioether sulfur binding sites. The adsor-
bate molecules and molecule-surface complexes were de-
scribed with the B3LYP wave function and a large valence
double-ζ polarized basis set named 6-31G(d,p) for all atoms
other than gold, which required the relativistic LANL2DZ basis
set. The three models shown in Figure 3 gave stable binding
configurations via nuclear relaxation to root-mean-square (rms)
atomic forces and displacements below 0.0003 and 0.0012 au,
respectively. The electronic binding energy was calculated in
the usual way, by subtracting the electronic energies of the
optimized isolated molecule and cluster from that of the
molecule�cluster complex. Further details on the Au�S bond
strength estimate are given in Supporting Information section
S1.3. Local softness indices s(r)53 were calculated from the
product of the molecular softness S (the inverse of half the
HOMO�LUMO gap; S values of 0.37 and 0.39 au respectively

were computed for benzene and pyridine thioether) and atom-
sited Fukui functions obtained by subtracting natural popula-
tion analysis (NPA)52 charges in neutral and cationic/anionic
benzene and pyridine dithioether molecules to identify strong
electron donor/acceptor sites. The electron density surfaces
shown in Figure 7 were produced using MOLEKEL Unix
version 4.3.56

Molecular Dynamics Simulations. The electronic structure of the
dichloromethane (DCM) solvent and thioether-based dendri-
mers was described using existing force field data.57,58,48 A total
of 12 912 DCM molecules formed a stable cubic box of edge
length 11.16 ( 0.01 nm, following 10 ns of constant pressure
temperature dynamics with periodic boundary conditions. The
corresponding volume permolecule of 0.11 nm3 gives a density
of 1.30 g 3 cm

�3, in good agreement with the experimental value
of 1.33 g 3 cm

�3, and gives computed DCM radial distribution
functions (not shown) in excellent agreement with literature
diffraction data.59 Solvated dendrimer�nanoparticle com-
plexes were generated by immersing each complex in a DCM
box and deleting overlapping DCMmolecules. Each model was
relaxed using 2000 steps of steepest descent minimization with
respect to the CHARMM22 force field58 and then brought to
room temperature by gradually raising the temperature from 0
to 295 K over 2 ns of dynamics while simultaneously loosening
positional constraints on the dendrimer heavy atoms. Gold
nanoparticle atoms were constrained to their starting positions
throughout the simulations, corresponding to the quantum
mechanical optimized nanoparticle geometry described above,
with classical gold�sulfur bond potentials for the nanoparti-
cle�thioether linkages fitted to the average bond length
obtained in the gold�thioether electronic structure calcula-
tions, 0.251( 0.005 nm. Each of the 36 models listed in Table 1
was then subjected to 10 ns dynamics runs to allow formation of
well-equilibrated solvated, room-temperature dendrimer�gold
complexes. This corresponds to over 0.4 μs of dynamics in all,
432 ns, composed of 72 ns for equilibration plus 360 ns of
equilibrated dynamics. Additional control simulations featuring
solvated but noncomplexed dendrimer and nanoparticle
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models provided reference values for the computation of the
wrapping penalties in Table 1. Further details on the model
geometry and force field parameters are given in Supporting
Information section S1.

Molecular Langevin dynamics were performed using the
NAMD program60 with Ewald summation used to calculate the
electrostatic interactions and a 2 fs time step used for dynamics
by constraining covalent bonds to hydrogen via the ShakeH
algorithm.61 Image generation and Tcl script-based trajectory
analysis was performed using the VMD program.62
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This Supporting Information provides further details on the computational model, together with control 

simulations describing long-range effects in Au-S bonding, solvent effects, dendrimer wrapping 

dynamics and complexation to a 1.4-nm Au69 particle. 

 

S1. Detailed description of the model 

S1.1 More details on the model geometry 

The full dichloromethane-solvated dendrimer:gold model is shown in panel (a) of Figure S1 below. 

Shown in panel (b) are the alternating wide and narrow faces of cuboctahedral Au55; icosahedral Au55 by 

contrast has a more isotropic shape (as shown in panel (a) and also main text Figure 2). 

Supporting Informati-
on of ACS Nano 2012
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(a)

(b)

i ii             iii               iv                   v   

11.16 nm

 

Figure S1. (a) The periodic cell used to model the dichloromethane-solvated dendrimer:gold complexes, 

with one dichloromethane molecule (chlorine atoms are coloured blue) shown in the inset panel and the 

equilibrated 11.16 nm width of the cubic cell labelled. A representative dendrimer:gold complex is 

shown immersed in the center of the box; in this case the dendrimer is bound using two core thioether-

gold bonds to icosahedral Au55, with the dendrimer shown in ball-and-stick representation and the Au55 

gold atoms shown as van der Waals’s spheres. (b) The alternating wide and narrow faces of 

cuboctahedral Au55. Subpanels i-v show rotations of the particle by 45° in the plane normal to the page, 

with one gold atom highlighted in light yellow to guide the eye. 
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S1.2 More details on the potential energy function for non-bonded interactions 

The force field parameters used for the molecular dynamics simulations are summarised in Figure S2. 

The dichloromethane parameters were generated using existing CHARMM22 atom types1 and atomic 

charges taken from reference2. Dendrimer parameters were generated using existing CHARMM data1, 

with core, tail and terminal groups defined and “patched together” using a similar approach to that 

described in reference3. The Gaussian, CHARMM and NAMD input scripts used for the simulations, 

together with the computed structures, are available on request from the corresponding author. 

zC = -0.528 e0, rmin = 2.06 Å, = -0.080 kcal/mol 
zH = 0.280 e0, rmin = 1.32 Å, = -0.022 kcal/mol 

zCl = -0.016 e0, rmin = 1.91 Å, = -0.3430 kcal/mol 
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1. Phenyl groups:
zH = 0.115 e0, rmin = 1.31 Å, = -0.030 kcal/mol
zC = -0.115 e0, rmin = 1.95 Å, = -0.070 kcal/mol
2. -CH2-S-CH2- thioether linkages:
zH = 0.090 e0, rmin = 1.32 Å, = -0.022 kcal/mol
zC = -0.110 e0, rmin = 2.01 Å, = -0.060 kcal/mol
zS = -0.140 e0, rmin = 2.10 Å, = -0.470 kcal/mol
3. -(CH3)3 groups:
zH = 0.090 e0, rmin = 1.32 Å, = -0.022 kcal/mol
zC = -0.270 e0, rmin = 2.06 Å, = -0.080 kcal/mol

5. Headgroup C-C≡C-C:
Phenyl C - zC = 0.080 e0, rmin = 1.95 Å, = -0.070 kcal/mol
Alkyne C - zC = -0.080 e0, rmin = 1.87 Å, = -0.170 kcal/mol
6. Headgroup Si in -C≡C-Si-(CH3)3:
zSi = 0.080 e0, rmin = 1.176 Å, = -0.100 kcal/mol

4. Central C-N-C pyridine (where present):
zC = 0.320 e0, rmin = 1.95 Å, = -0.070 kcal/mol
zN = -0.640 e0, rmin = 1.85 Å, = -0.200 kcal/mol

zAu = 0.0 e0, rmin = 1.037 Å, = -0.078 kcal/mol

6 1

53

4

2

 

Figure S2. CHARMM equations1 and force field parameters1,2 used to model non-bonded 

interactions between atoms (indexed by i and j) in the formation of dendrimer:gold nanoparticle 

complexes in dichloromethane.  
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S1.3. More details on the quantum mechanical calculation of thioether-gold bond strength 

Cluster-molecule Au-S bond parameters were generated from new electronic structure calculations and 

fit to the force field (main text Methods). Where present, Au-S bonds are described using a standard 

CHARMM harmonic function, Vbond = kr(r-r0)
2, with target bond length r0 of 2.51 Å  and force constant 

kr of 198 kcal/mol Å2, with r0 taken from the data in main text Figure 3 and kr taken from reference4. 

We checked for long-range interactions in the Au-S bonding calculations using the CAM-

B3LYP functional5. Figure S3 shows the calculated geometries, starting from the B3LYP-optimised 

structures (main text Figure 3). Overall, Au-S bond lengths are shortened by between 0.02 and 0.13 Å 

upon inclusion of long-range effects and the Au-S bond energies are strengthened by between -0.02 and 

-0.22 eV. For adsorption of a thioether group at an “apex” site of Td Au20 (Figure S3a and main text 

Figure 3a), the inclusion of long-range forces gives a very small, ~5% increase in bond strength (-0.34 

eV vs. -0.32 eV). For adsorption of the di-thioether fragments on “triangular” gold faces (Au13), shown 

in panels (b) and (c) of Figure S3a and main text Figure 3a, the long-range effects are sizeable, giving   

~-0.2 eV (37%) stronger bonds (-0.52, -0.51 eV vs. -0.36, -0.21 eV). Figure S3d replots main text Figure 

5a using the CAM-B3LYP average Au-S bond strength of -457 ± 100 meV. This reduces the time-

averaged single vs. double dendrimer preference from -1.5 eV to -1.2 eV, though this may be due to the 

distribution of bond numbers on the vertical axis; e.g., the complex involving 16 Au-S bonds may well 

have a more stable single-dendrimer binding mode that was not tested in the simulations.  

Re-examination of the MD dendrimer:gold non-bonded wrapping terms in dichloromethane gave 

a time-averaged interaction energy of 28 ± 3 meV/thioether for the interaction between the gold particle 

and the thioether -CH2-S-CH2- moieties. Control simulations of dendrimer-wrapped gold in vacuum 

gave 90 ± 2 meV/thioether. Thus most of the CAM-B3LYP 132 ± 103 meV long-range correction to the 

Au-S bond strength is accounted for by direct (non solvent mediated) thioether-gold non-bonded 

interactions in the empirical wrapping calculations.  
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Figure S3. Panels (a), (b) and (c) show Au-S bonds formed between dendrimer benzyl thioether 

groups and gold clusters, recomputed (main text Figure 3) using the long-range corrected CAM-

B3LYP functional5. Panel (d) shows main text Figure 5a replotted using the CAM-B3LYP Au-S bond 

strength of -457 meV. Squares and triangles mark values for single and double dendrimer complexes. 
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We performed also thermochemistry calculations, using the computed frequencies to estimate a 

thermal correction to Gibbs free energy6 of +283 ± 32 meV, averaged over the three structures in Figure 

S3a-c. The magnitude of this correction does not change significantly on increasing the number of Au-S 

bonds from one to two in the complexes or on switching from a benzyl to pyridine central unit (Figure 

S3a-c). For the weakest, singly bound complex this entropic effect cancels the enthalpic bonding, while 

for the divalent complex it reduces the overall bond strength by ~⅓. For the weak thioether-gold 

bonding then the electronic energy of the complex is shifted downwards by long-range stabilisation and 

upwards by entropy (Figure S4), showing the importance of multivalent, collective bonding effects in 

dendrimer-gold wrapping. In future work we will attempt to calculate the electronic structure of the full 

dendrimer:cluster complex (including long-range, solvent and thermal corrections); these calculations 

are made feasible by recent improvements in linear-scaling DFT methods together with access to High-

Performance Computing facilities.   

 

 

 

 

 

 

 

 

 

Figure S4. Figure S3d replotted using the CAM-B3LYP Au-S bond strength (-457 meV) offset by the 

entropic destabilisation of +324 meV per dithioether unit. The calculated single (square) vs. double 

(triangle) dendrimer difference is -1.53 ± 0.57 eV, very similar to the value of -1.46 ± 0.47 eV computed 

using the uncorrected B3LYP bond strength in main text Figure 5a. 
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As a final test of Au-S thioether binding strengths, we scanned a variety of different gold binding 

sites for the thioether moiety and also calculated reference values for mono-benzyl and thiol molecules, 

using the B3LYP functional and the same basis sets / pseudopotentials as described in main text 

Methods. Figure S5 below summarises the calculated bond strengths, and shows how the sulphur bond 

to gold gets weaker as one progresses from CH3CH2S to (CH3CH2)2S to C6H5CH2S and finally to the 

dendrimer (C6H6CH2)2S anchoring site. The strongest bond is as expected for CH3CH2S on gold, with a 

computed value of -0.75 eV on terrace (111) sites, in line with literature values7,8, with the extra 1 eV 

measured experimentally9 coming from Au-H bonding (from the H atom formed from S-H scission, 

present for thiol but not thioether groups). The complexation energies show that the two pendant –CH2-

Ph groups soak up most of the sulphur reactivity in the dendrimer di-benzyl thioether sites; hence, the 

thioether-gold attachment is weak. As discussed in the main text, this weak bonding is a useful feature of 

the dendrimer:gold complex formation, because it allows for self-healing in dendrimer wrapping around 

the particle to form a uniform “cloak”.  

In terms of further probing the range of thioether Au-S bond strengths present for the di-benzyl 

dendrimer binding to the gold clusters, Figure S5 shows how coordinatively-unsaturated “apex” gold 

atoms are as expected more reactive than sites with higher coordination number in the particle, with the 

effect most pronounced for the weaker phenyl ligands. The Au-S bond strength for each molecule was 

measured on three representative gold sites, 9-coordinated terrace sites (equivalent to fcc Au(111)), 6-

coordinated ridge sites and 3-coordinated apex sites. Representative computed molecule-gold structures 

are shown for each molecule in Figure S5: CH3CH2S adsorption on a terrace site; (CH3CH2)2S, binding 

to an apex site; C6H6CH2S and (C6H6CH2)2S binding to ridge sites. Note that the number of bonds drawn 

just reflects the proximity of S to one or more gold sites, and should not be taken to indicate an overall 

stronger interaction, or "stapling", with increasing S coordination number. Given that the uncertainty of 

~140 meV in the dendrimer (C6H6CH2)2S anchor site bonding to the gold particle (Figure S5) is similar 
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in magnitude to the long-range and thermal corrections described above, we use the B3LYP bond 

strength (for the strongest-binding apex site) for the electronic energy estimate (main text Table 1).  
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Figure S5. Molecule:gold S-Au bond strengths computed for four sulphur-containing molecules 

binding to three structurally-inequivalent Au20 particle sites. Ligand (C6H6CH2)2S is the thioether 

anchor group used to immobilise the dendrimer on the Au55 gold clusters in the main text. 

 

S2. Influence of environmental effects on structure and shape of dendrimer-gold complexes: 

Solvent-mediated changes in functionalised nanoparticle structure and shape can influence their use as 

drug carriers in vivo10. As a first step towards assessing the stability and conformational dynamics of the 

dendrimer-gold complexes when transferred out of the dichloromethane (DCM) solvent, Figure S6 

compares solvation shell densities for dendrimer-gold complexes immersed in the DCM solvent used in 

the experiments, and complexes in an alternative, more polar solvent, methanol. CHARMM force field 

parameters were used for MeOH1. DCM has dielectric constant =9, while MeOH has =33.  

The computed radial distribution functions (RDF) show that methanol more tightly surrounds the 

complex, as illustrated also in the solvent surfaces shown in the inset, computed from the central carbon 

atom of solvent molecules within 3 Å of the dendrimer-gold complex. The data in Figure S6 was 



115Supporting Information of ACS Nano 2012

 S9 

generated from 100 structures generated over 2 ns of equilibrated molecular dynamics, with the control 

MeOH simulations performed using the same protocol as for the DCM simulations described in the main 

text. Given that the driving force for formation of the dendrimer-stabilised gold nanoparticles involves a 

complex balance of forces at the particle-dendrimer-solvent interface (main text Table 1) it is difficult to 

speculate on the net effect of MeOH in selecting for single- vs. double-dendrimer complexes. 

Nevertheless, dendrimer-gold complexes, once formed between any exposed dendrimer and gold faces 

(involving perhaps kinetic windows in MeOH, as opposed to the net thermodynamic driving forces for 

complexation present in the less polar DCM (main text Table 1)), will be tightly shielded in solvent. 

Such shielding is interesting and may be useful for formation of gold particles coated with active 

compounds for targeted in vivo delivery10, though practical applications will require clever means (e.g., 

PEGylation) of controlling phase transfer between low and high polarity solvent “clouds”. 
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Figure S6. Radial distribution function (RDF) plots and computed near-complex solvation shell 

structures for dendrimer-gold complexes in DCM and MeOH. Shells are computed from solvent carbon 

atoms within 3 Å of the complex. 
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A final comment on environmental effects is the “opening” effect of solvents on the dendrimer 

structure. Figure S7 shows inter-sulphur contacts for the dendrimer molecule in vacuum, and in DCM 

and MeOH solvents. The dendrimer opens out from a crumpled ball in vacuum to a progressively more 

open shape in the DCM and MeOH solvents, as evidenced by the increasing population of longer S---S 

distances in Figure S7. The key to forming tightly-coupled dendrimer-particle complexes is to 

simultaneously promote dendrimer opening (which requires a more polar solvent) and solvent 

displacement from the gold surface (which requires a less polar solvent), to drive dendrimer-gold 

complexation, a balance that the experimentally-used, polar aprotic DCM solvent gets correct.  
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Figure S7. RDF plots for sulphur-sulphur contacts in a free, non-complexed dendrimer molecule in 

vacuum, and a molecule immersed in DCM and MeOH. 

 

S3. Dynamics of dendrimer-gold complexation in dichloromethane 

S3.1. Energetics of dendrimer binding in an alternative “feet first” orientation  

Table S1 quantifies the energy balance involved in dendrimer complexation to the gold cluster via 

an alternative approach geometry whereby it binds first through its terminal groups, as opposed to 

the “core first” orientations modelled in the main text (main text  Table 1). While van der Waals 
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wrapping of the particle will drive the complex towards progressively more bound states overall  

(involving multiple bonds through core and terminal, as well as branch groups), this alternative “feet 

first” binding sequence could potentially promote the formation of double -dendrimer complexes 

whereby the two terminal-bound dendrimers become trapped in partially-bound states. As shown in 

Table S1 however such a situtation is not thermodynamically favoured, given the ~2 eV average 

penalty (Table S1 E1 = 1.6 ± 1.3 eV vs. main text Table 1 E1 = -0.2 ± 0.2 eV) associated with such a 

“feet first” approach geometry. The energy terms in Table S1 indicate that enlarged dendrimer 

penalties block this alternative binding mode in which the most flexible terminal regions would be 

clamped. To further probe the flexibility of the different thioether groups in the demdrimer, we 

computed root mean square fluctuations (RMSF) for the dendrimer core, branch and terminal 

sulphurs from reference simulations of the dendrimer immersed alone (not complexed to gold) in 

dichloromethane. We found values of 1.9 ± 0.6 Å, 2.4 ± 0.8 Å and 4.3 ± 1.1 Å for core, branch and 

terminal sulphurs. The terminal groups are more than two times more flexible than the core, which 

may explain the computed preference for binding “core first” , further supporting the experimental 

evidence for formation of the gold clusters in the dendrimer interior and the computed preference for 

single-dendrimer complexes (main text Table 1). 

This natural tendency of the dendrimer to wrap core-first (see Section S3.1 below) means that 

stronger binders such as thiols (or, e.g, carboxylates) may retain the preference for single-molecule 

complexes. The computed dendrimer dynamics (S3.1) indicates that the van der Waals wrapping process 

avoids loosely-packed “feet first” conformations that would, for the stronger thiol bond (section S1.3), 

promote formation of loosely-wrapped single-dendrimer complexes and so promote formation of 

double-dendrimer complexes. For the thioether dendrimer used in the experiments, the combination of 

core-first wrapping (pre-chemisorption coat dynamics) together with the weak (mobile) thioether bond is 

a key design feature. This feature promotes efficient, self-healing single molecule wrapping, with the 

high effective concentration of unbound thioethers on the 20-thioether dendrimer (vs. thioethers on a 
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second, floating dendrimer) during the wrapping process, also aiding formation of single-molecule 

complexes.  

 

Table S1. Computed dendrimer:nanoparticle net complexation energies (eV) for a range of single- 
dendrimer (1:1) terminal-bound cluster complexes in dichloromethane.  

 

S3.2 Dynamics of dendrimer unwrapping from gold 

Movie unwrapping1.avi shows the dynamics of dendrimer dissociation from icosahedral Au55, created 

by cleaving the gold-sulphur bonds and allowing solvent dynamics to uncloak the gold cluster. In this 

case the dendrimer was initially bound through core and branch groups. Movie unwrapping2.avi shows 

dynamics of dissociation for a dendrimer initially bound through terminal groups to cuboctahedral Au55. 

As shown above in section S3.1, this terminal-bound mode is a minor state for the bound dendrimer-

gold complex, though we may expect that such partially-bound “feet first” binding modes will be 

present on the kinetic association/dissocation pathways. Each movie is 13 seconds long, composed of 3 

seconds for slow initial dynamics (equilibration and thioether-gold bond cleaving, over 4 ns of 

simulation time) followed by 10 seconds of free room temperature dynamics (corresponding to 25 ns 

simulation time). Gold cluster atoms are shown as van der Waals’s spheres and dendrimer heavy atoms 

are shown in ball-and-stick representation. Hydrogen atoms and DCM molecules are removed for 

clarity. Time histories (Figure S8) for the dendrimer center of mass position (coloured red to white to 
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Dendrimer 
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Desolv-
ation 

penalty 

Total 
penalty 

Net 
complex-

ation 

Single-dendrimer:nanoparticle complexes 

Icosa-
hedral 

Three terminal -1.0 (0.1) 0.0 (0.1) -1.0 (0.1) +1.2 (0.1) +1.1 (0.7) +2.3 (0.6) +1.3 (0.6) 

Six terminal  -2.0 (0.2) 0.0 (0.1) -2.0 (0.2) +1.2 (0.1) +2.6 (0.9) +3.7 (1.3) +1.8 (1.4) 

 Nine terminal -2.9 (0.3) -0.2 (0.1) -3.1 (0.3) +0.7 (0.1) +3.9 (1.0)  +4.6 (1.1) +1.5 (1.4) 

 Twelve terminal -3.9 (0.4) -0.3 (0.1) -4.2 (0.5) +0.8 (0.1) +5.0 (1.5) +5.8 (1.4) +1.6 (1.5) 

Electronic Au-S binding energies were calculated as described in the main text. The other terms were computed from the 
final 5 ns (2000 structures) of 10 ns room temperature molecular dynamics for each complex. A minus sign indicates net 
stabilization of the complex relative to reference non-complexed states. Structure-averaged uncertainties (standard 
deviations) are given in parentheses. Rounding all energy values to one decimal place gives in some cases apparent 
discrepancies of 0.1 eV between totals (in parentheses) and their components.  
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blue) map the dissociation pathways, with a marginally faster unwrapping for the terminal-bound 

dendrimer, as expected from the lower extent of initial dendrimer “wrapping” of the particle. Both 

complexes are completely dissociated (minimal van der Waals dendrimer-gold contacts) by 12 ns (so, 8 

ns of free room temperature dynamics) and, while the initially core+branch-bound structure persistently 

“rewraps” the cluster (movie unwrapping1.avi) the initially terminal-bound dendrimer remains 

dissociated from the cluster (movie unwrapping2.avi), supporting the hypothesis that “core first” is the 

dominant wrapping mechanism. 

(a)                                              (b)

   

Figure S8. Time histories for dendrimer unwrapping from (a) a core+branch-bound complex and (b) 

a terminal-bound complex, with dendrimer centre of mass positions marked by the line coloured 

from red (0 ns) to white (4 ns, transition from slow equilibration to room temperature dynamics) to 

blue (out to 10 ns of free dynamics). 

 

S4. Structure, dynamics and energetics of dendrimer wrapping around a Au69 particle  

Figure S9 shows the dendrimer:gold complex formed for a larger, less ordered gold nanoparticle, Au69. 

The 1.4 nm particle diameter provides a model for the type of gold particle found towards the upper 

limit of the experimental size distributions. It also serves as a first approximation to a gold cluster that 
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has adsorbed extra gold ad-atoms11 on a Au55 core. The Au69 particle geometry was taken from a very 

recent electronic structure determination12 and we modelled the formation of a fully-bound one-

dendrimer complex. Movie dendrimer_Au69.avi shows dynamics over the final 1 ns (200 structures) of 

10 ns room temperature molecular dynamics. 

 

Figure S9. A representative computed dendrimer:Au69 complex; the dendrimer is bound using all 

twenty thioether-gold bonds, with the gold nanoparticle atoms shown as van der Waals’s spheres. The 

complex is immersed in a large, 11-nm wide box of dichloromethane (DCM) molecules, to model the 

solvated dendrimer:gold complex. For clarity, explicit DCM molecules are not shown in the picture; 

rather an implicit DCM solvent surface (probe radius 0.23 nm) is overlaid on the complex. Movie 

dendrimer_Au69.avi shows structures formed over the final 1 ns (200 structures) of 10 ns room 

temperature molecular dynamics. 

 

Table S2 shows the computed energetics of dendrimer wrapping of Au69, which gives a net 

complexation energy of -0.9 ± 0.6 eV, similar to the energies calculated for Au55 (main text Table 1).  
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Comparing the energy terms for full wrapping of Au69 (Table S2) and Au55 (row 7 of main text Table 1), 

we find that the ~1 eV time-averaged better wrapping of Au69 arises from a small decrease in 

desolvation penalties. As shown in Figure S10 below the larger Au69 particle gives closer dendrimer-

gold contacts, measured between the dendrimer non-headgroup carbons and cluster gold atoms, and 

hence slightly better solvation for the more splayed dendrimer configuration on Au69; the computed 

time-averaged dendrimer radius of gyration decreases from 17 Å to 11 Å to 10 Å on going from the free 

dendrimer to the Au69 and then Au55 complex.   

     

Table S2. Computed dendrimer:nanoparticle net complexation energies (eV) for a fully-bound 
single-dendrimer (1:1) Au69 cluster complex in dichloromethane.  

 

 

 

 

 

 

 

 

 

 

Figure S10. Radial distribution function (RDF) plots for dendrimer-gold and dendrimer-solvent 

contacts, complexed to gold clusters Au69 and Au55 in DCM, and free (uncomplexed) in DCM. 
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ABSTRACT: The assembly of dumbbell structures as
organic−inorganic hybrid materials is presented. Gold
nanoparticles (NPs) with a mean diameter of 1.3 nm were
synthesized in very good yields using a stabilizing
dendrimer based on benzylic thioether subunits. The
extended dendritic ligand covers the NP surface and
contains a peripheral protected acetylene, providing coated
and monofunctionalized NPs. These NPs themselves can
be considered as large molecules, and thus, applying a wet-
chemical deprotection/oxidative acetylene coupling pro-
tocol exclusively provides dimers of NPs interlinked by a
diethynyl bridge. The concept not only enables access to
novel organic/inorganic hybrid architectures but also
promises new approaches in labeling technology.

Gold nanoparticles (Au NPs) are promising model
compounds for nanoelectronic devices,1,2 sensor applica-

tions3 and catalysis.4,5 Au NPs are also intensively used for
labeling, as represented in numerous review articles addressing
this topic.6−9 In many cases, Au NPs are functionalized with
DNA or peptides as recognition sites for labeling purposes.
These protocols are limited to aqueous or polar organic
conditions and are usually statistical reactions with low yields
of monofunctionalized Au NPs. To date, monofunctionalization
of Au NPs in apolar organic media has been achieved only by the
use of a solid support as a protecting group10,11 or by ligand
polymerization on the NP surface.12 In addition, single polymer
strands were reported to stabilize one NP on average.13 The
strategy presented here involves the design of an organic ligand
that (i) controls the particle formation by coating and passivating
the NP surface and (ii) allows the introduction of a controlled
number of functional groups at the NP periphery. Such NPs
exposing a restricted number of functional groups can be
considered as molecules with nanoscale dimensions and can be
addressed by wet-chemical protocols. While di- and mono-
functionalized NPs are promising building blocks of well-defined
organic−inorganic hybrid architectures, the latter ones are in
addition particularly appealing as potential labels.
It was recently shown that benzylic thioether oligomers have

promising stabilizing features as multidentate ligands during the
synthesis of Au NPs.14 In the presence of larger thioether

oligomers, NPs with narrow dispersity are obtained in excellent
yields. Furthermore, these NPs are decorated with only two
ligands, allowing the introduction of a controlled number of
peripheral functional groups dictating their chemical behavior.
Thus, these functionalized NPs can be considered as large
artificial molecules; as a first example, Au NPs containing two
peripheral ethynyl groups were interlinked to form oligomers by
a wet-chemical oxidative acetylene coupling protocol.15 By
expanding the benzylic thioether motif to dendritic structures, we
recently synthesized unfunctionalized dendrimers, and one
second-generation representative was able to stabilize exactly
one Au NP.16 The observed 1/1 ligand/Au NP ratio might make
available monofunctionalized NPs, which are much better suited
both for labeling and as building blocks for discrete organic−
inorganic hybrid architectures. The acetylene homocoupling of
functionalized NPs is a new approach for covalent assembly of
NP architectures in nonpolar organic media (the concept is
illustrated in Figure 1). Other approaches for the direct assembly
of NP dumbbells have been reported,10−12,17−20 and recent
review articles have presented the formation of various NP
architectures and their interparticle forces.21−24

The thioether dendrimer design presented here is based on a
structural motif that recently demonstrated its potential as a
coating and surface-passivating ligand during the synthesis of Au
NPs. Important design aspects are the dilution of the branching
points and the steric surface protection using bulky tert-butyl
groups in the “diluting” subunits. The reduced branching was
chosen to favor enwrapping by the dendritic ligand rather than a
scenario where the NPs grow inside a ball-shaped dendrimer.25,26

Our dendritic ligands were further functionalized by introducing
a central oligo(phenylene ethynylene) (OPE) rod comprising a
central pyridine unit and a triisopropylsilyl (TIPS)-protected
acetylene (Figure 1). The pyridine nitrogen not only provides an
additional coordination site for the Au NP but was recently also
shown to result in a perpendicular arrangement of the rod on the
NP surface.27,28 The masked acetylene is introduced as a
peripheral functionality, providing an integer number of wet-
chemically addressable functional groups in each obtained Au
NP. The thioether dendrimers G1 and G2 were synthesized by
SN2 reactions of already reported compounds (Scheme 1). The
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thiol dendrons16 [G0.SH] and [G1.SH] have substituted the
benzylic bromines of the OPE rod 1.27 The monofunctionalized
ligands were obtained in good to excellent yields.

The Au NP-stabilizing features of thioether dendrimers G1
and G2 were investigated using techniques that have been
successfully applied in earlier studies.15,16,27 The formation of
functionalized Au NPs was performed in a H2O/CH2Cl2 solvent
mixture following a protocol developed by Brust et al.29 The
dendritic ligands G1 and G2 dissolved in CH2Cl2 were added to
an aqueous solution of tetrachloroauric acid and the phase-
transfer agent tetraoctylammonium bromide (TOAB) in
CH2Cl2. Au NPs Au-G1 and Au-G2 were obtained after the
addition of sodium borohydride in water. After aqueous workup
and removal of TOAB with a precipitation/centrifugation
protocol, the excess ligand was removed by gel-permeation
chromatography (GPC). See the Supporting Information (SI)
for a more detailed protocol. The purified NPs were obtained in
yields exceeding 80% and were initially analyzed by UV/vis
spectroscopy. The UV/vis spectra obtained (Figure S1 in the SI)
showed the presence of Au NPs without a strong plasmon band
of gold at 520 nm, indicating that the NPs had diameters below 2
nm.30,31 The presence of the delocalized OPE structure in the

periphery of the NPs was manifested by a broad peak at ∼300
nm. Single drops of the solutions used for UV/vis spectroscopy
were transferred to carbon-coated copper grids (CCCGs) for
transmission electron microscopy (TEM) investigations. The
micrographs (Figure 2 and Figures S5 and S6) showed small Au

NPs with a narrow size distribution. An automatic investigation
method using ImageJ32 was applied to measure the size
(diameter) of the NPs formed (see the SI for the analysis
protocol). More than 5000 NPs from more than 10 dense TEM
images were analyzed. Similar size distributions were obtained
for Au-G1 and Au-G2, with mean diameters of 1.3 ± 0.4 nm
(Figure 2 inset). These diameters are similar to those recently
measured for Au NPs stabilized by the parent unfunctionalized
dendrimers.16 For Au-G2, small-angle X-ray scattering (SAXS)
was employed as a second tool to determine the NP size. The
measured 2D scattering signal was integrated to obtain an
intensity plot (Figure S2) that suggested form factors of spheres.
The plot was fitted with a model for polydisperse, spherical NPs,
and a mean NP diameter of 1.3 nm with a standard deviation of
0.5 nm was obtained, corroborating the values obtained by TEM.
To analyze the coating ligand/Au NP ratio, thermogravimetric
analysis (TGA) ofAu-G1 andAu-G2was performed. To remove
the organic shell in the TGA experiments, the dry NPs were
heated to 950 °C. The weight loss curves were similar for the two
samples (Figure S3). The amounts of weight loss were 21% in the
case of Au-G1 and 26% for Au-G2. These values were used to
calculate the average number of gold atoms stabilized per
dendrimer (see the SI for details). We found that on average one
G1 dendrimer stabilizes 30 Au atoms, while G2 coats 50 atoms.
The dimensions of the Au-G1 and Au-G2 NPs determined by
TEM and SAXS suggest an average number of ∼55 gold atoms
per NP. In analogy to the parent ligand structure,16,28 a singleG2
dendrimer or a pair of G1 dendrimers are required to stabilize
one Au NP.
The discrete number of coating ligands also results in an

equally well-defined number of peripheral masked acetylene

Figure 1. General concept of forming ligand-stabilized Au NPs and NP
dimers. (a) NP synthesis: HAuCl4, TOAB, NaBH4, H2O/CH2Cl2. (b)
Deprotection: TBAF, CH2Cl2. (c) Oxidative coupling: CuCl, TMEDA,
O2 (ambient air). For a space-filling representation, see Figure S4.

Scheme 1. Synthesis of Monofunctionalized Thioether
Dendrimers G1 and G2 as Stabilizing Ligands for Au NPsa

a(a) NaH, THF, rt; 85−95%.

Figure 2. Representative dense TEM image of Au-G1 NPs. Inset: size
distributions for Au-G1 (black) and Au-G2 (red) NPs.
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functions per Au NP, and thus, the extent of surface
functionalization per NP must be reflected in the connectivity
of the NP subunits in the hybrid architectures obtained upon
exposing them to acetylene coupling chemistry. While chains of
NPs would be expected for the bifunctional Au-G1, similar to
another example of bifunctional NPs,33 the monofunctionalized
analogueAu-G2 should form dimers exclusively. Samples of both
Au NPs (Au-G1 and Au-G2) were exposed to a Glaser−Hay34
wet-chemical oxidative acetylene coupling protocol. In brief,
tetrabutylammoniumfluoride (TBAF) was first added to liberate
the masked acetylene, and then tetramethylethylenediamine
(TMEDA) and CuCl were added under ambient atmosphere to
provide molecular oxygen. After 20 min, precipitation was
observed only for the reaction mixture containing Au-G1, while
the one containing Au-G2 remained as a dark solution. The
precipitation of bifunctional Au NPs due to the formation of too-
long oligomeric chains was previously found for comparable
systems.15,27 To keep the oligomers short and dissolved, a small
sample of the reaction mixture containing Au-G1 was worked up
after 10min. After further dilution to avoid accidental proximities
of NPs that were not covalently bound, samples were deposited
on CCCGs and investigated by TEM. The micrographs showed
the presence of single NPs, dimers, and higher oligomeric
assemblies of NPs. These oligomers were predominantly found
as chains of NPs, and typical representatives of these Au-G1
superstructures are displayed in Figure 3. A more comprehensive

overview of the micrographs is displayed in Figures S7 and S8.
The chainlike arrangement of the NPs in these micrographs not
only corroborates the wet-chemical coupling chemistry as the
origin of the interlinked NPs but also supports the picture of
having two functional groups per Au-G1 NP on opposite sides.
Strong similarities between G1 and linear thioether ligands that
were investigated in earlier studies14,15,27,35 are obvious.
Dendrimer G1 and the linear ligands have similar sizes and
consist of eight thioether moieties. NPs stabilized by these two
ligands have comparable sizes with two coating ligands per NP.

When the ligands bear an acetylene, chains are formed upon
oxidative acetylene coupling and precipitate if their lengths
exceed a certain threshold value.15,27

In contrast to these bifunctional NPs, the monofunctionalized
Au-G2NPs were expected to form dimers only, and indeed, even
after prolonged reaction times or with excessive amounts of
coupling chemicals, precipitation was not observed. The
protected Au-G2 NP monomers were first deprotected with a
large excess of TBAF in CH2Cl2. After aqueous workup, the
solution was concentrated to dryness using a stream of nitrogen.
The homocoupling was then conducted in small amounts of
CH2Cl2 in an open reaction vessel for 3 h using excesses of CuCl
and TMEDA (see the SI for a detailed protocol). Samples of the
reaction mixture containing the NP hybrid architectures were
deposited as highly diluted solutions on CCCGs for TEM
investigations. Thus, only a few NPs were present in each TEM
image and showed sizes similar to the protected Au-G2
monomers (Figure 4 and Figures S9 and S10). In these

micrographs of diluted samples, the yield of NP dimers was
analyzed. On 20 TEM images, ∼400 NPs were counted, and
almost half of them were dimers (47% yield); 46% of the NPs
found were still present as monomers, and only 7% NPs existed
in trimeric structures. The yield of dimers represents a 2−3-fold
increase compared with the yield of superstructures formed with
bifunctional NPs stabilized with linear thioether ligands (16−
20%).27 At first glance, the formation of trimeric structures from
monofunctionalized NPs was surprising, and only a more
detailed analysis of the interparticle spacing shed light on this
unexpected observation.
From the TEM images of the diluted samples, the distance

between the NPs in the dimers was analyzed, and the
interparticle distance distribution displayed in Figure 5 was
obtained. A bimodal distribution was found, with one maximum
matching the expected distance of the straight spacer at 2.5 nm.
This distance results from a perpendicular arrangement of the
rod on the gold surface27 triggered by the coordination of the

Figure 3. Representative TEM images of diluted solutions of Au-G1
superstructures. The scale bars represent 10 nm.

Figure 4. Representative TEM images of diluted solutions of Au-G2
dimers. The scale bars represent 10 nm.
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nitrogen lone pair of the central pyridine subunit.28 An
unexpected second maximum of the interparticle distance
distribution at 1.3 nm was observed, probably indicating
coordination of the free acetylene to the gold surface of a
neighboring NP. A careful inspection of the interparticle
distances in the trimeric structures supported this hypothesis,
since in all of the trimeric structures at least one short distance
was found. This result also provides a rationale for their
formation, namely, the coordination of an acetylene-function-
alized NP to the surface of an NP that was already engaged in a
dimer structure.
In summary, the concept of controlling the size and surface

functionalization of NPs with dentritic multidentate ligands has
been demonstrated. The obtained mono- and difunctionalized
NPs can be considered as nanoscale molecules that can be
interlinked to form organic−inorganic hybrid architectures by
wet-chemical reactions. Our current interest is geared toward
increasing the size and stability of the functionalized NPs and
exploring the potential of the approach for NP materials other
than gold.
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General methods 

All commercially available starting materials were of reagent grade and used as received. 

Absolute tetrahydrofuran (THF) was purchased from Fluka, stored over 4 Å molecular sieves, 

and handled under Argon. Methyl tert-butyl ether (MTBE), hexane and dichloromethane were 

of technical grade and distilled prior to use. Column chromatography purifications were 

carried out on silica gel 60 (particle size 40-63 µm) from Fluka. Deuterated solvents were 

purchased from Cambridge Isotope Laboratories. 1H and 13C NMR spectra were recorded 

with a Bruker DMX 400 instrument (1H resonance 400 MHz) or a Bruker DRX 500 instrument 

(1H resonance 500 MHz) at 298 K. Matrix Assisted Laser Desorption Ionisation Time of 

Flight (MALDI-ToF) mass spectra were performed on a Bruker microflex LRF mass 

spectrometer in linear positive mode with 1.8.9-anthracenetriol as matrix. Elemental analyses 

were performed by W. Kirsch on a Perkin-Elmer Analysator 240. Gel Permeations 

Chromatography (GPC) was performed on a Shimadzu Prominence System with SDV 

preparative columns from Polymer Standards Service (two columns in series, 60 cm each, 

operating range: 100 – 30,000 g mol-1) using chloroform as eluent. Size exclusion 

chromatography (SEC) was performed using Bio-Rad Bio-Beads S-X1 Beads (operating range 

600 – 14000 g mol-1) with toluene as eluent.  
 

 

Experimental procedures for the synthesis of functional dendrimers 
 

G1 dendrimer 

N
S S

SBnSBn

SS

SBn SBn

TIPS

 
The free thiol dendron [G0.SH]1 (94.0 mg, 0.16 mmol, 2.1 eq) and 2,6-bis(bromomethyl)-4-

((4-((triisopropylsilyl)ethynyl)phenyl)ethynyl)pyridine2 (41.5 mg, 0.076 mmol, 1 eq) were 

dissolved in dry tetrahydrofuran (5 ml) under an atmosphere of argon. The mixture was 

degassed by bubbling argon through the solution to avoid disulfide formation during the 

reaction. After this procedure, sodium hydride (60 % in mineral oil, 9 mg, 0.23 mmol, 3 eq) 

was added and the mixture was left stirring at room temperature for 1 h. The reaction was 
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quenched with water and extracted with MTBE three times. The combined organic fractions 

were washed with brine, dried over magnesium sulfate and evaporated to dryness. Purification 

of the crude product was achieved by column chromatography (hexane/dichloromethane 2:3, 

then 1:2, then 1:2 with 2% triethylamine) to yield G1 (100.2 mg, 0.065 mmol, 85%) as 

slightly yellow oil. 
1H-NMR (400 MHz, CDCl3): δ = 7.46 (m, 4H, ar-H), 7.31 – 7.21 (m, 24H, ar-H), 7.17 (br, 

2H, ar-H), 7.12 (br, 2H, ar-H), 7.08 (br, 4H, ar-H), 7.05 (br, 2H, ar-H), 3.72 (s, 4H, CH2), 

3.69 (s, 4H, CH2), 3.60 – 3.55 (m, 24H, CH2), 1.29 (m, 18H, butylH), 1.14 (s, 21H, iPr-H); 

MS (MALDI-TOF, m/z): broad peak around 1559 [M+]; Anal. calcd. for C96H109NS8Si: 

C 73.84, H 7.04, N 0.90; found: C 73.88, H 7.20, N 0.97. 

 
G2 dendrimer 

N
S

S

S

S

SBn SB
n

S

S

SBnSBn

S

S

S

S

SBnSBn

S

S

SBn SBn

TIPS

 
 
[G1.SH]1 (1036 mg, 0.709 mmol, 2.25 eq) and 2,6-bis(bromomethyl)-4-((4-((triisopropyl-

silyl)ethynyl)phenyl)ethynyl)pyridine2 (172 mg, 0.315 mmol, 1 eq) were dissolved in dry 

tetrahydrofuran (15 ml) under an atmosphere of argon. The mixture was degassed by bubbling 

argon through the solution to avoid disulfide formation during the reaction. After this 

procedure, sodium hydride (60 % in mineral oil, 51 mg, 1.26 mmol, 4 eq) was added and the 

mixture was left stirring at room temperature for 3 h. The reaction was quenched with water 

and extracted with MTBE three times. The combined organic fractions were washed with 

brine, dried over magnesium sulfate and evaporated to dryness. Purification of the crude 

product was achieved by column chromatography (cyclohexane:dichloromethane 1:4 with 1% 

triethylamine) followed by recycling GPC (8 cycles) to yield G2 (987 mg, 0.298 mmol, 95%) 

as light orange very viscous oil. 
1H-NMR (400 MHz, CDCl3): δ = 7.45 (m, 4H, aryl-H), 7.32 – 7.03 (m, 78H, aryl-H), 3.71 (s, 

4H, CH2), 3.67 (s, 4H, CH2), 3.59 – 3.54 (m, 72H, CH2), 1.28 (s, 54H, C(CH3)3), 1.14 (s, 21H, 

iPr-H); 13C-NMR (125 MHz, CDCl3): δ = 158.6, 151.6, 151.5, 138.7, 138.4, 138.0, 137.9, 
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137.8, 137.7, 132.1 (2×), 131.7, 131.6, 129.0, 128.5, 128.3, 127.0, 126.9, 126.8, 125.1, 124.9, 

124.8, 124.3, 123.0, 121.9, 93.6, 93.3, 88.6, 37.3, 36.1, 35.9, 35.7, 35.6, 35.4, 34.6, 31.4, 16.7, 

11.3; MS (MALDI-TOF, m/z): broad peak around 3416 [M+]; Anal calcd. for 

C208H237NS20Si: C 73.04, H 6.98, N 0.41; found: C 72.49, H 7.00, N 0.68.  

 

Gold nanoparticle formation and purification, general procedure:  
Gold nanoparticle (Au NP) syntheses were carried out on a 2.5–3.5mmol scale with respect to 

the thioether dendrimers G1 or G2. Tetrachloroauric acid (8 eq for G1 and 20 eq for G2) was 

dissolved in deionized water (2.5 mL). One equivalent of gold precursor was used per 

thioether moiety of the respective dendrimer. A solution of TOAB (16 eq for G1 and 32 eq 

for G2) in CH2Cl2 (2.5 mL) was added, and the two-phase mixture stirred until the aqueous 

phase became colorless. The respective ligand G1 or G2 (1 equivalent) was dissolved in 

dichloromethane (2.5 mL) and then added to the reaction mixture, followed by a freshly 

prepared solution of sodium borohydride (64 eq for G1 and 132 eq for G2) in water (2.5 mL). 

After 15-20 min stirring, the resulting strongly colored CH2Cl2 phase was separated, and the 

aqueous phase was washed twice with CH2Cl2. The combined organic fractions were dried 

over magnesium sulfate, filtered, and concentrated to a volume of ca. 2 mL. Ethanol (20 mL) 

was added to precipitate the NPs, which were then centrifuged. The supernatant was 

discarded, and the procedure was repeated twice. After this procedure, the NPs were subjected 

to SEC or GPC. The colored, NP-containing fractions were collected, the removal of excess 

ligand checked by UV/vis and the solvent was removed using a rotary evaporator without 

heating or by a N2-stream.  

 

Formation of gold nanoparticle dimers, general procedure: 
The formation of Au NP aggregates and dimers was done on a 1 mg scale regarding Au-Gx. 

The acetylene functionalized Au NPs were dispersed in dichloromethane (200 μl) and tetra-n-

butylammonium fluoride (1M in tetrahydrofuran, 50 μl) was added. The mixture was left 

stirring for 1 hour, and quenched with water, extracted with dichloromethane and dried with 

MgSO4. After filtration the solution was concentrated and N,N,N’,N’-tetramethyl-

ethylenediamine (50 μl) and copper(I) chloride (3 mg) were added. After 15 minutes all NPs 

Au-G1 were precipitated as oligomers (Au-G1)>4, while Au-G2-dimers were still reacting. 

The dimerization reaction was left stirring for 3 hours and then quenched with a saturated 

solution of ammonium chloride, extracted with dichloromethane and dried with MgSO4. After 

filtration the solution was concentrated and investigated by TEM on carbon coated copper 
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grids. Highly diluted solutions were used for deposition on the grids to avoid accidental 

proximity of not covalently linked NPs. Interparticle distances were measured manually on 

the TEM micrographs mainly from dimers and some trimers. 

 

Nanoparticle analysis 
UV/vis spectroscopy 

UV/vis spectra were recorded on a Shimadzu UV 1800 spectrophotometer in CH2Cl2. 

Figure S1a shows the UV/vis spectra of Au NPs Au-G1 and Au-G2, respectively. We 

identify the delocalized OPE system as peak around 300 nm and the small plasmon resonance 

band of Au NPs at 520 nm. The NP should be below 2 nm, as there is no distinct peak at 

520 nm.3,4 Both spectra are very similar indicating similar sizes of Au NPs. The difference in 

height of the OPE peak might be explained by an excess ligand that was present in the sample 

of Au-G2. 

Figure S1b shows the representative UV/vis spectra of the NPs Au-G2 before and after the 

coupling. The shoulder at 520 nm stayed the same while the OPE band shows a bathochromic 

shift due to the elongation of the delocalized OPE system. The plasmon resonance probably 

did not shift because the ratio of interparticle distance and NP diameter does not favor a 

plasmonic coupling. 

 
Figure S1. UV/vis spectra of Au NPs: a) Au-G1 (black) and Au-G2 (red); b) Au-G2 before 

(red) and after the acetylene coupling (blue). All spectra are normalized to fit at 520 nm. 

 

Transmission Electron Microscopy (TEM) 

TEM was performed on a Philips CM100 transmission electron microscope at 80 kV. 

Electron micrographs where recorded on a 2000 by 2000 pixel charge-coupled device camera 
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Veleta from Olympus. The micrographs were recorded with a magnitude of 180kx leading to 

micrographs with 520 nm by 520 nm and a size of 0.26 nm per pixel. Therefore the column 

width of the histograms was chosen to be 0.3 nm. One NP has a diameter of four pixels and 

an area of ten to twelve pixels.  

The NPs were deposited by carefully putting a drop of the NP dispersion on top of a thin 

carbon film that spanned a perforated holey carbon support film covering a gold-plated 

copper microscopy grid. The remaining solvent was directly blotted with filter paper and the 

grid air dried.  

 

Nanoparticle diameter 

The NP diameters were measured automatically using the program imageJ.5 The rather dense 

images (see micrographs: Figure S4-S5) were first transferred into 8-bit greyscale and then 

into black and white using the function “Threshold” and the setting “intermodes”. The area of 

the NPs was measured with “Analyze particles”. The particles on edges were excluded and 

holes included. Au NPs were measured with areas from 0.4 nm2 till infinity and with 

circularities from 0.9-1. We did not consider particles with an area less than 0.4 nm2 because 

otherwise the general noise would be counted as particles. As the final diameters were 

calculated from the measured areas we needed to focus on perfectly spherical NPs to avoid 

mistakes upon calculation. More than 80 % percent of NPs had circularities above 0.9. NP 

sizes were measured from more than ten dense micrographs (around 5,000 counts of NPs). 

 

(Small) Angle X-Ray Scattering, SAXS 

A Bruker AXS Nanostar setup, including an Incoatec Cu-IμS microfocused X-ray source (λ = 

0.154 nm) with Montel multilayer optics at a generator power of 40W (45kV, 650µA) and a 

virtually noise-free, real-time Våntec 2D-detector with photon counting ability, was used to 

perform X-ray measurements in the range of scattering vectors from 0.5 - 7.5 nm-1. The 2D 

detector image of the NPs dissolved in benzene and transferred in glas capillaries (diameter 

1.5 mm) were taken under vacuum at ambient temperatures with exposure times of 4 h per 

sample and azimuthally-averaged using SAXS v.4.1.36 software from Bruker to produce 1D 

intensity profiles (Figure S2a). The software GNOM6 was used to transform the 2D scattering 

signals by applying an inverse Fourier transformation. A distance distribution of the scattering 

electrons was obtained, which should have its maximum at the NP radius (Figure S2b). The 

maximum of the distribution matches with 6.57 Å perfectly the radius calculated by the initial 

fit. 
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Figure S2. a) SAXS intensity plot in a log-log representation and best fit for Au-G2; 

b) distance distribution of the scattering electrons (Å) of Au-G2 calculated by the software 

GNOM;6 as expected the maximum matches the NP radius.   

 

 

Thermogravimetric analysis (TGA) 

Thermogravimetric analyses were performed on a Mettler Toledo TGA/SDTA851e. The 

samples were heated from 35°C to 950°C with an increase of 10°C/min. Samples Au-G1 and 

Au-G2 show similar weight loss curves (Figure S3). Decomposition starts at around 200 °C 

and reaches a plateau between 600 and 700 °C. The weight loss is attributed to the 

decomposition and removal of the organic shell from the NP surface and the plateau is 

interpreted as the end of this process, when all the organic coating has been removed. 

Comparable weight losses of 21 % and 26 % were measured for Au-G1 and Au-G2, 

respectively. 
The mass of gold per organic ligand was calculated from the ratio  

mass(Au per ligand) =
mass%(Au)

mass%(ligand)
⋅mass(ligand)  (1) 

The number of gold atoms per ligand is calculated from  

Au atoms per ligand =
mass(Au per ligand)

molecular weight(Au)
  (2) 
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Figure S3. Thermogravimetric analyses of Au-G1 (black) and Au-G2 (red). 

 

 

Space filling model  

 

 
Figure S4. Space filling representation of the general concept; a) NP synthesis: HAuCl4, 

TOAB, NaBH4, H2O/CH2Cl2; b) deprotection: TBAF, CH2Cl2; c) oxidative coupling: CuCl, 

TMEDA, O2 (ambient air). 
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Representative TEM images of ligand-stabilized gold nanoparticles 
 

 
Figure S5. TEM image of a concentrated solution of Au NPs Au-G1. 
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Figure S6. TEM image of a concentrated solution of Au NPs Au-G2. 
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Figure S7. TEM image of a diluted solution of Au-G1-oligomers.  
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Figure S8. TEM image of a diluted solution of Au-G1-oligomers. 
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Figure S9. TEM image of a diluted solution of Au-G2-dimers. 
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Figure S10. TEM image of a diluted solution of Au-G2-dimers. 
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Gold nanoparticles (Au NPs) are attracting renewed interest due to their usefulness 

in chemistry, electronics, catalysis and medicine.[1–3] However, the formation and 

utilization of Au NPs dates back far before their current vogue, with dying of glass by 

freshly precipitated colloidal gold solutions already known in late Greco-Roman 

times.[4] A famous example is the 4th Century Lycurgus cup, which appears red 

when lit from behind and green when lit from the front, as light is absorbed and 

scattered by nanocrystals of a gold–silver alloy. In 1857, Faraday was the first to 

connect the color with the size of Au NPs and was the first to investigate their 

deliberate synthesis.[5] The next milestone was the formation and analysis of citrate-

stabilized NPs by Turkevich et al. in 1951.[6] More recent breakthroughs 

demonstrated ultrahigh precision in the formation of passivated Au NPs. [7–10] 

Schmid et al. presented the gold cluster Au55(PPh3)Cl6,[7] which has become known 

as the ‘Schmid-cluster’, having stimulated the areas of quantum electronics[8] and 

labeling.[11] Brust et al. introduced a two-phase protocol that allowed aqueous 

tetrachloroauric(III) acid (HAuCl4) to be transferred into the organic phase (toluene) 

using tetraoctylammonium bromide (TOAB). The gold salt was then reduced with 

aqueous sodium borohydride in the presence of an alkanethiol yielding stable Au 

NPs with diameters below 3 nm and narrow size distributions.[9] 
Since then the number of studies dedicated to Au NPs increased significantly over 

the past two decades, exploiting the unmatched stability of Au NPs among metal 

nanoparticles. They also show fascinating size and shape dependent properties[12] 

and have various applications. They are used as plasmonic devices, for example as 

a plasmonic ruler to measure the distance between two NPs attached to linkers of 

unknown length.[13,14] Extended research is conducted on Au NPs in 

nanoelectronics[2,15] such as information storages devices.[16] As Au NPs of 

different sizes are easily visualized by electron microscopy they are the label of 

choice for visualizing and investigating bio- and macromolecules.[17–20] Au NPs 
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also have numerous current and future applications as sensors[21–23] and as 

catalysts.[24,25]. More background information is available within extended review 

articles[1,2,26] and in a special issue of Chem. Soc. Rev. entitled “Gold - Chemistry, 

Materials and Catalysis”. 

 

 

 

As mentioned above, Au NPs have a broad variety of current and future applications. 

One very important application is their use in home pregnancy tests where NPs are 

coated with a certain antibody and their coagulation occurs if the specific antigen is 

present in the urine, triggering a plasmonic response that can be detected by the 

naked eye as the clumps of coagulated NPs are trapped in a filter.[27] If the specific 

antigen is not present the NPs will remain separated and the coloring of the filter will 

not occur. In order for this pregnancy test to work certain conditions need to be 

fulfilled (Figure 1). 1) The NPs need to be formed in a certain size and they need to 

be stable. 2) The surface of the NP needs to be functionalized with the antibody and 

3) the specific antigen must be present. These steps are vital for the controlled 

assembly of Au NPs, and one can choose between two alternative strategies. One 

can either i) form unfunctionalized NPs (Figure 1a) or NPs bearing many 

functionalities (Figure 1c) and use linker molecules and experimental conditions that 

favor formation of discrete NP architectures (Figure 1a,c) or ii) one can try to control 

the number of functional groups on the NP surface for the subsequent assembly 

(Figure 1b, green arrow in green box). Examples of the first approach may be found 

in the studies of Dadosh et al. and Brousseau III et at., who formed NP dimers of 

citrate-stabilized NP using a carefully chosen ratio of unfunctional NPs to dithiol linker 

molecules (Figure 1a).[28,29] Simon and coworkers used an excess of 

multifunctional NPs to click them to a DNA template and obtained ordered chain-like 

architectures.[30] There are many other examples that utilize similar approaches and 

some are presented in recent reviews that show the richness of NP assemblies.[31–

35] However, within this review we focus on the controlled functionalization (green 

arrow in Figure 1b) of Au NPs with one or two functional groups (FG) on the NP 

surface and present some examples for their further utilization.  
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Figure 1. Different concepts for the functionalization of Au NPs and their assembly into multimeric 

structures (taking dimers as an illustrative example). The individual NPs are formed by reducing 

HAuCl4 and then stabilized with a protective ligand shell. a) Dimers may be formed using a well-

chosen ratio of unfunctional NPs and difunctional linkers, although monomers remain the major 

product. b) NPs are monofunctionalized (FG = functional group) and then covalent fused to form 

mostly dimers. c) NPs are multifunctionalized and linked in an excess of NPs (as in route (a) above), 

yielding a mixture of dimers and monomeric structures. Experiments performed via route (a) or (c) 

using lower excesses of NP relative to linker produce multi-linker bearing NPs and so high-n multimer 

assemblies.[36,37] 

 

 

There are various approaches to introduce functionalities onto a NP surface. One 

way is to form NPs stabilized by weak ligands like citrate or amines first. Afterwards 

the ligand is replaced by a stronger-binding alkanethiol molecule[38] followed by 

exchange with a functional thiol, e.g. OPE-dithiol.[36] This approach is very 

convenient if many functional groups are envisaged or if the concentration of linker 

molecules used for the subsequent NP assembly may be controlled. It is also 

possible to exchange the weak ligand with a mixture of functional and unfunctional 

thiols at the same time for an increased control over the number of functionalities on 

the NP surface. Stoddart and coworkers used a molar ratio of 3000:1 of alkanethiol 

and functional thiol to obtain mono-functionalized NPs in a large excess of 

nonfunctionalized NPs.[39] The subsequent assembly of dimers and trimers was 

achieved without removing the unfunctional NPs.  

Controlled assemblies are needed for applications in labeling and medical 

diagnostics, and are the key remaining bottleneck for the development of 
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reproducible nanoelectronics components based on NP superstructures, such as 

dimers, chains and 3D architectures. A very promising route to controlled assembly 

(Figure 1b) requires simply pure samples of monofunctionalized NPs (suitable linkers 

and linking chemistries may be selected from textbook organic synthesis). To our 

knowledge only a few review articles focus on the controlled functionalization of Au 

NPs.[34,35,40–42] One way to obtain NPs with a controlled low number of 

functionalities is by separating NPs using chromatography. The first report of 

monovalent Au NPs was presented in the 1980s where a undecagold cluster (Au11) 

was stabilized by seven phosphine ligands, with just one of the phosphines carrying 

a functionality (Figure 2a).[43,44] The clusters were purified by repeated ion-

exchange chromatography and their monofunctionality was inferred from photometry 

and their chemical behavior. Monovalent undecagold (0.8 nm diameter) was then 

further labeled with an antibody by Hainfeld.[45] The unlabeled NPs were removed 

by ion-exchange chromatography and the presence of mono-labeled NPs was 

confirmed by electron microscopy. This approach was later extended to synthesize a 

monovalent 1.4 nm gold cluster that is commercially available since 1992 as 

Nanogold by Nanoprobes (Figure 2b).[11] Therefore we will not present Au NP 

assemblies using these commercial NPs. 

  
Figure 2. a) The proposed molecular structure of monofunctionalized undecagold (0.8 nm diameter), 

from Reference [45]; b) A schematic drawing of commercially available monofunctionalized gold 

cluster called Nanogold, from Reference [11]. 

 

Au NPs functionalized with different amounts of DNA strands were successfully 

separated by gel electrophoresis (Figure 3a).[46] Mono- to penta-functionalized NPs 
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were isolated by Alivisatos and coworkers with DNA strands consisting of at least 

100 base pairs. The pure mono-DNA-labeled NPs were later covalently dimerized by 

enzyme ligation supported by a reversible duplex formation with a template DNA[47] 

in a neat combination of covalent chemistry plus non-covalent self-assembly. In 

earlier studies the same group had already used gel electrophoresis to isolate NP 

dimers and trimers.[48] Monofunctional NPs purified by gel electrophoresis were also 

used to form cyclic hexameric structures[49] and highly ordered two-dimensional NP 

arrays on DNA tiles.[50–52] NPs with multiple functionalities were also used to form 

2D arrays resulting in more defects and lesser control of the final assembly.[53]  

 
Figure 3. Successful separation of Au NPs bearing different numbers of DNA strands: a) at least 

100 base pairs are required in order to achieve sufficient separation, from Reference [46]; b) shorter 

DNA markers are used by reversibly extending to a double strand for the purification, from Reference 

[54].  

 

The long DNA strands used for the purification have a drawback: they require higher 

efforts and costs for their production and can also be an obstacle for the tailored NP 

assembly. Aldaye and Sleiman, and Ohya and coworkers, were able to reduce the 

size of the DNA marker by a reversible elongation with a second DNA strand and 

isolated the mono-DNA-labeled NPs by gel electrophoresis (Figure 3b).[54,55] After 

removal of the elongation strands the NPs were assembled into 1D- and 2D-

architectures, such as chains, triangles and squares. NPs with two DNA markers 

were also isolated by gel electrophoresis and used to build up trimers with two 

monofunctionalized NPs.[47,54] If these trimeric structures were connected by single 

stranded DNA, two complementary trimers were synthesized and hybridized to form 

hexameric structures.[47] Most superstructures aligned in linear structures reflecting 
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the steric benefit of binding the two functionalities on opposite sides of the NP. 

Suzuki and coworkers preassembled two single stranded DNA markers to a template 

in order to attach two functional units to the NP surface at the same time in close 

proximity.[56] They subsequently attached two smaller functional NPs to the 

bifunctional NPs and obtained triangular architectures clearly showing the close 

proximity of the two initial DNA labels.  

 

Immobilized metal ion affinity chromatography (IMAC) was used to purify mono-

peptide labeled NPs.[57] Coordinating a peptide tag to an immobilized metal ion 

enabled the separation of functional and unfunctional NPs. In this case, a sequence 

of six histidines was used as a tag (His6-tag) and Nickel(II) as the immobilized metal 

ion. This Nickel-mediated NP-protein binding was introduced earlier by Hainfeld and 

coworkers.[40,58] After forming the Nickel-His-tag complexes in a chromatography 

column the unfunctional NPs were washed off and the mono-labeled NPs were 

eluted with imidazole (Figure 4a). However, in order to obtain only mono-

functionalized Au NPs the concentration of peptide marker had to be very low (10fold 

excess of NPs) so that the NPs bear either one or no functionality leading to a low 

yield of monofunctional NPs. The same approach was chosen to synthesize Au NPs 

with the Nickel(II) complex[59] on their surface in order to bind these labeled NP to 

His6-tag functionalized proteins[59] and nanofibres.[60]  

   
Figure 4. Concept used to separate a mixture of NPs having either one or no functional group 

attached to their surface. Functionalized NP were selectively trapped in a column (left) or on magnetic 

particles (right), while unfunctional NPs were removed. Finally pure samples of monofunctionalized 

NPs were released and collected, from References [57,61]. 

 

Leung and coworkers were able to remove unfunctional NPs with a similar protocol 

(Figure 4b).[61] A mixture of monofunctionalized and unfunctionalized Au NPs was 
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separated using crownether functionalized magnetic particles that noncovalently 

bound the NP functional group, a protonated secondary amine. The unfunctionalized 

NPs were washed away with dichloromethane, while the amines of the functional 

NPs were deprotonated, allowing the functional NPs to be separated from the 

magnetic particles by applying an external magnetic field.  

 

All attempts presented so far require expensive and time-consuming purification 

steps. Reactions on solid supports provide an alternative route to obtain 

monofunctional NPs without the need for chromatographic purification. A polymer 

resin was functionalized with an alkyl chain bearing a terminal thiol, which was 

allowed to undergo exchange with the surface of an alkanethiol stabilized Au NP 

(Figure 5a). Unreacted NPs were washed off before the cleavage from the resin was 

performed under acidic conditions and monofunctional NPs with a diameter of around 

2.8 nm were obtained.[62] This research published by Huo and coworkers was the 

first example of asymmetric functionalization, which means that just one part of the 

NP surface is functionalized while the rest of the surface is blocked. Shortly after that 

Sung et al. published a similar example[63] and within both studies the 

monofunctionalized NPs were assembled to dimeric structures with TEM 

investigations clearly confirming their identity.[62,63] The usefulness of solid supports 

was further improved by introducing noncovalent attachment to the polymer resins 

(Figure 5b) permitting the use of milder, less acidic conditions for the final 

cleavage.[64]  

 

  
Figure 5. Schematic of the stepwise formation of monofunctionalized Au NPs using molecular 

exchange with a polymer resin: a) the alkanethiol is covalently attached to the resin, from Reference 

[62]; b) the alkanethiol is immobilized on the polymer beads using noncovalent interaction, from 

Reference [64]. 
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Shumaker-Parry and coworkers used a glass surface as solid support for the 

asymmetric functionalization of Au NPs with a diameter of 41 nm.[65] This allowed 

the introduction of different functionalities upon removal from the glass surface. A 

drawback of this technique was the presence of an unknown number of functional 

ligands. However, this unknown number seemed to be low and concentrated to just 

one area of the surface. These NPs, each bearing either a carboxylic acid or an 

amine, were coupled with each other to form mostly dimers and therefore could be 

described as quasi monofunctionalized.[65] This means that the NPs behave in 

monofunctional nature although multiple functionalities are present. The versatility of 

this protocol was later proven using smaller 18 nm diameter NPs and other binding 

motifs for the formation of dimeric structures, while the stabilization was improved by 

using trivalent thiols.[66]  

   
Figure 6. The concept of asymmetric functionalization to obtain a) quasi-monofunctionalized and b) 

truly monofunctionalized Au NPs. Initially Au NPs are bound to a larger SiO2 particle and their free 

surface is blocked against further functionalization. Upon cleavage from the larger particle either 

quasi-monofunctionalized NPs are obtained with just a small surface area available for 

functionalization. If the functional group of choice is relatively large monofunctionalized Au NPs are 

obtained; adapted from References [67,68].   

 

Mirkin and coworkers used SiO2 particles (much larger than the Au NPs) as a basis 

for this asymmetric functionalization.[67] Au NPs stabilized with multiple DNA strands 

were hybridized onto the SiO2 particle and the free DNA strands were blocked. After 

tailored melting of the first duplex quasi monofunctionalized Au NPs were obtained 

and successfully assembled around a larger multifunctionalized NP to obtain a 
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satellite structure (Figure 6a).[67] This concept was further improved by Li et al. who 

obtained truly mono-DNA-functionalized Au NPs.[68] They also used relatively large 

SiO2 particles and introduced a bulky DNA functionality after removal from the solid 

support to block the attachment of a second functionality (Figure 6b). In general, the 

utilization of solid supports is an elegant way for controlled functionalization of Au 

NPs. One drawback is that an excess of NPs is required in order to favor 

monofunctionalization, which leads to lower yields. While there are several examples 

of the solid support approach for DNA or peptide labeled NPs, our impression is that 

commercial ‘Nanogold‘ and NPs purified by gel electrophoresis are the two most 

common approaches to obtain monofunctionalized NPs in aqueous media. As the 

controlled functionalization in aqueous solvents was studied to a greater extent, solid 

supports seem to be more convenient for nonpolar organic media. Therefore, the 

following examples will mostly focus on controlled functionalization in organic 

solvents. 

 

Ligand polymerization on the NP surface was another successful attempt to 

synthesize monofunctional NPs [69]. 4-Vinylthiophenol was used as a stabilizing 

ligand for Au NPs (diameter between 2 nm and 5 nm) and was polymerized on the 

NP surface. A controlled free radical polymerization was performed under high 

dilution conditions and with small amounts of starter molecules that contained a 

carboxylic acid group. This led to the introduction of just one carboxylic acid group on 

the NP surface. The NPs were dimerized and attached onto polypeptide chains, 

confirming the monofunctionalization. 

 

The approaches described so far mostly produced NPs bearing one functionality 

while unfunctional ligands are still present on the NP surface. All approaches needed 

further purification steps or additional reactions of the initial NP in order to obtain 

monofunctional NPs. On the other hand, a macromolecular stabilizing ligand able to 

cover the entire or most of the NP surface could provide a more efficient route to 

monofunctional NPs. Wilson and coworkers first reported this concept in 2004.[70] 

They prepared dextran polymers that contained many disulfide bonds and were big 

enough to enwrap an entire Au NP, 15 nm in diameter. On average, one NP was 

stabilized by one polymer molecule (Scheme 1). To our knowledge this was the first 

report of a one-to-one ratio of NP and stabilizing ligand. While in this case the 
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polymer carried several functionalities, a new concept was introduced towards mono-

functionalization.  

 
Scheme 1. The concept of enwrapping of a 15 nm gold nanoparticle with a single polymer molecule, 

adapted from Reference [70]. 

  

In 2006 Kiedrowski and coworkers presented the successful formation of a 

monofunctional Au cluster stabilized by a single ligand.[71] In 2001 they initially 

presented the stabilization of the Au55 Schmid-cluster with four tridentate benzylic 

thioether ligands.[72] The ligands were based on 1,3,5-trimethylbenzene structures 

and substituted the twelve phosphine ligands around the cluster by a phase transfer 

reaction into a buffered aqueous solution. The four tridentate ligands were fused to 

form a dodecadentate ligand which was then functionalized. The dodecadentate 

ligand provided monofunctionalized gold clusters that were stabilized by a single 

ligand. These NPs were attached to a single stranded DNA and used to perform 

temperature dependent studies on the DNA duplex formation.[71] This DNA melting 

was performed in order to study the thermostability of the label. 

 

We recently used the concept of introducing the desired functionality into a 

macromolecular ligand in our research group. Flexible benzylic thioether moieties 

were assembled in a dendritic structure to form multidentate ligands with 1,3,5-

trisubstituted benzenes as branching units.[73] These dendritic ligands were present 

during the Brust-Schiffrin method[9] and stable NPs were formed. We found that the 

second generation dendrimers consisting of 20 thioether moieties were able to 

stabilize an entire Au NP of 1.2 nm diameter. These ligands were further equipped 

with an oligo phenylene ethynylene (OPE) rod, which carried a protected terminal 

acetylene (Figure 7).[74] In the presence of the functional second generation 
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dendrimers monofunctional NPs were formed, which were subsequently assembled 

to give dumbbell structures with yields close to 50%.  

NPs stabilized with the octadentate first generation dendrimers were on average 

bifunctional, carrying two terminal protected acetylenes. This finding was consistent 

with earlier studies of our group where linear thioether oligomers (also eight thioether 

moieties) required two ligands for stabilizing Au NPs.[75–78]  

 
Figure 7. Concept of using pre-functionalized macromolecular ligands to introduce the desired 

functionality already within the NP formation, adapted from [74]. 

 

Stellacci and coworkers also formed divalent NPs.[79] They selectively functionalized 

Au NPs by ligand exchange. This place exchange was found to be favored at 

diametrically opposed positions due to polar defects occurring when a curved NP 

surface is coated with an ordered monolayer. The divalent NPs were used to form 

1D-chains with different NP distances depending on the diamine linker used for the 

assembly.[79] 

 

Conclusion and Perspective 

The approaches to obtain bi- and monofunctionalized Au NPs are versatile and can 

be divided into three main groups: chromatographic purification, asymmetric 

functionalization and use of macromolecular functional ligands. While the first two 

concepts require post-processing of the prepared NPs, the latter necessitates 

additional synthetic modification prior to NP formation. As organic chemists we prefer 

working with modified precursors as this allows diverse tailoring of functional groups 

and a subtle tuning of the desired NP properties. We can easily analyze and finely 

control our macromolecular ligands before using them as stabilizing agents, while the 

spectroscopy of the post-processing is more difficult to perform and analyze. As we 

recently obtained NPs stabilized by a single functional ligand we will now use this 
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single-molecule nanostructure as a building block to assemble 2D architectures and 

investigate their potential use as labels and components in nanoelectronics devices. 
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Gold nanoparticles (Au NPs) are attracting renewed interest due to their usefulness 

in chemistry, electronics, catalysis and medicine.[1–3] However, the formation and 

utilization of Au NPs dates back far before their current vogue, with dying of glass by 

freshly precipitated colloidal gold solutions already known in late Greco-Roman 

times.[4] A famous example is the 4th Century Lycurgus cup, which appears red 

when lit from behind and green when lit from the front, as light is absorbed and 

scattered by nanocrystals of a gold–silver alloy. In 1857, Faraday was the first to 

connect the color with the size of Au NPs and was the first to investigate their 

deliberate synthesis.[5] The next milestone was the formation and analysis of citrate-

stabilized NPs by Turkevich et al. in 1951.[6] More recent breakthroughs 

demonstrated ultrahigh precision in the formation of passivated Au NPs. [7–10] 

Schmid et al. presented the gold cluster Au55(PPh3)Cl6,[7] which has become known 

as the ‘Schmid-cluster’, having stimulated the areas of quantum electronics[8] and 

labeling.[11] Brust et al. introduced a two-phase protocol that allowed aqueous 

tetrachloroauric(III) acid (HAuCl4) to be transferred into the organic phase (toluene) 

using tetraoctylammonium bromide (TOAB). The gold salt was then reduced with 

aqueous sodium borohydride in the presence of an alkanethiol yielding stable Au 

NPs with diameters below 3 nm and narrow size distributions.[9] 
Since then the number of studies dedicated to Au NPs increased significantly over 

the past two decades, exploiting the unmatched stability of Au NPs among metal 

nanoparticles. They also show fascinating size and shape dependent properties[12] 

and have various applications. They are used as plasmonic devices, for example as 

a plasmonic ruler to measure the distance between two NPs attached to linkers of 

unknown length.[13,14] Extended research is conducted on Au NPs in 

nanoelectronics[2,15] such as information storages devices.[16] As Au NPs of 

different sizes are easily visualized by electron microscopy they are the label of 

choice for visualizing and investigating bio- and macromolecules.[17–20] Au NPs 
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4 Conclusion and Outlook 
Macromolecular multidentate thioether ligands were synthesized and used for the 

stabilization of Au NPs with diameters around 1.2 nm and narrow size distributions. 

Bifunctional NPs were formed in the presence of linear octadentate ligands and their 

functionality, an OPE rod with a protected terminal acetylene, was used to form NP 

superstructures upon homocoupling. Switching from benzene to pyridine as anchor 

of the functionality induced a perpendicular arrangement of the rod on the NP 

surface. Theoretical calculations suggested that this controlled orientation was 

directed by coordination of the nitrogen’s lonepair to the gold surface. Thioether 

dendrimers were used to enlarge the ligand structure and thus its denticity. Their 

stabilizing ability strongly depended on the size of the protective ligand shell showing 

the importance of the tert-butyl functionalized benzene units. By using icosadentate 

dendrimers (20 thioether moieties) we were able to form monofunctionalized NPs. 

These artificial molecules were used to form dumbbell structures with satisfying 

yields and controlled interparticle distances.  

 

 
Figure 18. Au NP dumbbells might be suitable model compounds for single molecule conduction 

measurements. 

 

We found that the free acetylenes used for the homocoupling also attack directly the 

NP surface leading to shorter NP distances. This could be avoided by using pre-

dimerized dendrimer ligands during the NP formation in order to obtain directly NP 

dumbbells. These organic-inorganic superstructures are interesting model 

compounds for investigations in the research field of molecular electronics. The 

dumbbells could be trapped between two top-down electrodes in order to perform 

single molecule conduction measurements of various molecular rods (Figure 18). 

The monofunctional NPs have a variety of potential utilizations. They could be used 

Conclusion and Out-
look
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as TEM labels for visualizing carbon nanotubes and assembled into 2D-networks by 

‘clicking’ them to multifunctional linkers or templates containing azide groups. 

 

The applied conditions of the NP formation could be further investigated in order to 

tailor the NP diameter and dispersity. The temperature and the speed of NaBH4 

addition could be altered systematically to gain further insights, as tuning the excess 

of gold compared to thioether moieties (up to threefold) had no influence on the NP 

diameter. The controlled formation of larger NPs would be interesting in fundamental 

aspects as well as for some potential applications as plasmonic devices.  

 

Further research can be conducted towards other metal nanoparticles. While gold NP 

are strongly stabilized by thiols or thioethers a new ligand series based on oxygen 

instead of sulfur might be suited to stabilize silver, platinum, palladium or other metal 

nanoparticles. While adjusting the ligand design the ligand-NP coordination might be 

increased by substituting most or all benzenes with pyridines providing an additional 

binding site. In addition the macromolecular ligand could be equipped with protected 

thiols. In a post-processing step these thiols might be liberated in close proximity to 

the NP surface in order to form covalent bonds and increase the overall NP stability. 

The monofunctionalized NPs enable several further utilizations and the research field 

still offers a broad scope for further system adjustment and development of a new 

variety of intriguing new concepts. 
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