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Abstract

This PhD thesis is about the integration of different methods to fit a statistical model of human
faces to a single image. I propose to take a probabilistic view on the problem and implement
and evaluate an integrative framework for face image explanation based on a class of methods
known as Data-Driven Markov Chain Monte Carlo.

The framework is based on the propose-and-verify architecture of the Metropolis-Hastings
algorithm. Probabilistic inference replaces traditional optimization methods and conceptually
shifts the goal of face explanation from obtaining the optimal parameter set to extracting mea-
sures of the posterior distribution. The probabilistic view opened the process for deeper insights
like the need of a background model and richer likelihood models.

Within this framework, different methods are implemented and evaluated specifically for
face image explanation with the 3D Morphable Model and face and feature point detection.
The Markov Chain Monte Carlo integration method is able to algorithmically reproduce existing
fitting algorithms as well as capable of dealing with unreliable and differently shaped information
sources. The integration of Bottom-Up information into the adaption process leads to more
robust results than a simple feed-forward combination of the methods and culminates into a
fully automatic face image explanation method, independent of user-provided initialization. A
full-system application leads to a fully automatic and general face recognition application with
state of the art results.
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Chapter 1

Introduction

1.1 Motivation

The appearance of human faces is exceptionally important for the communication of human
beings. Therefore images of faces are omnipresent and machines which need to naturally com-
municate with humans must be able to analyze and probably synthesize face views. The suc-
cessful analysis of images of human faces has thus been a major goal of computer vision since its
beginning.

The interpretation of face images by a machine is a difficult problem. All the input provided
is an array of color values. The desired output is a description of the face displayed within
that image. Such information is not only useful to identify the person depicted (recognition)
or to extract properties of the face (attributes) but also to extract further information such as
where the person is looking or who he or she is talking to (scene analysis). There are two main
concepts for approaching this problem. The model-based methods explain an image by active
generative reconstruction whereas the image-based methods aim at specifically answering queries
using strong discriminating functions to extract answers directly from the image color values.

A specific case of a fully generative face model is the 3D Morphable Model (3DMM) which
serves as the model representative in this work [Blanz and Vetter, 1999]. The statistical model
is capable of fully generative face synthesis and proved to be useful for a variety of analysis and
also synthesis tasks. The 3DMM is a parametric model, defining a representation of faces as
well as the imaging conditions. A concrete image interpretation can be found in an Analysis-by-
Synthesis manner.

The problem of finding the best explanation of a given image within the face model space is
usually formulated as an optimization problem, with a cost function measuring the degree of fit
between the generative parametric image model and the target image. The implementation of
a model fitter by a standard optimization algorithm is not flexible enough to make use of more
information extracted from the image with modern machine learning methods, e.g. detection.
These methods are increasingly available and successful. They provide a fast way to directly
extract interesting information from an image without the need to fit the model first. The main
weakness of such methods is their limited scope, leading to unreliable information and noisy
results. A traditional optimizer can not easily deal with this kind of unreliability in its input
data. A combination of such Bottom-Up methods with the model fitter has thus proved difficult.
The integration could bring big benefits, for example a fully automatic performance, without
user input as well as a solution to the model incompleteness problem.

Many generative models need some user input to work properly, usually this is needed to
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1.1. MOTIVATION

initialize the optimization problem, e.g. with the 3DMM, or to give more guidance during the
fitting process. Obtaining this information from Bottom-Up methods tends to be unreliable and
the complete system prone to failure. But the kind of unreliability of Bottom-Up methods is
usually due to lack of context, a specific strength of generative models and could thus be resolved
in a successful integration.

Generative models always suffer from an inability to perfectly reproduce the target data. The
effort which can be invested to model each possible detail can become huge and uncontrollable.
Discriminative Bottom-Up methods could ease this problem. They do not reproduce data but
only classify it among alternatives. The discriminative approach does not suffer from the same
model incompleteness problem, modeling the discrimination among different classes needs less
resources than reproducing the data perfectly, if performed within the proper context.

From a fitter’s perspective, the integration needs to solve two main problems. The information
arises from different sources and has thus varying degrees of noise and reliability as well as a
different form or modality, which have to be made accessible by the model. Probabilistic models
are currently the main solution to deal with varying degrees of uncertainty in different methods.
The general probabilistic formulation allows for the integration of information from different
sources, respecting their individual reliability and it also provides a natural formulation for noise
and uncertainty. Integrating different modalities is a specific strength of big generative models.
The internal, more abstract representation can usually be mapped to different modalities and
can thus be used to explain different types of input data. For example, the 3DMM can easily be
applied to explain the appearance of a complete image or only a few landmark coordinates.

The presented integration method is based on probabilistic sampling, specifically a Markov
Chain Monte Carlo (MCMC) method. The representation of the target distribution by samples
is very flexible and general. Further, it does not need analytic analysis which is intractable in
this application case. The sample-based representation, in combination with the propose-and-
verify architecture, comes with the possibility to directly incorporate iterative optimization and
Bottom-Up methods.

The combination of a Bayesian probabilistic formulation with sample-based propose-and-
verify methods is a very appealing concept, among others pushed by Alan Yuille also from a
more human-centered view on perception [Yuille and Kersten, 2006; Knill and Richards, 1996].
A fast method proposes an explanation of the perceived stimulus which is instantly accessible
but not entirely reliable as it is based on a heuristic, which does not take all context into account.
A more complete model is then used in a slower process to verify the proposed solution, checking
whether the fast method led to an explanation which is consistent with expectations and context.
Though certainly an over-simplification, the concept is very promising to test for its usefulness
to automatically interpret images of faces using a generative model and fast Bottom-Up methods
in conjunction. A possible formalization of the concept is termed Data-Driven Markov Chain
Monte Carlo (DDMCMC), a method based on the Metropolis-Hastings algorithm which lends
the mathematical framework to implement a propose-and-verify algorithm.

Robustness can be understood with two different concepts in mind. There is robustness with
respect to solutions worse than the current explanation in terms of the model likelihood and
there is robustness with respect to solutions which are worse in terms of the face to explain
but might be better in terms of model likelihood (Figure 1.1). The first kind of robustness is
expected from a robust fitting method in the presence of noise or otherwise unreliable input
data. The second kind is a problem of a model likelihood function which is inconsistent with
the expectations induced by the problem. The optimum in Figure 1.1 is not an explanation of
the face. In this work, both problems are considered, but the main focus lies on the first kind,
where the model likelihood can identify worse solutions. Problems with consistency with respect
to human expectations can only be dealt with by better modeling.

2



CHAPTER 1. INTRODUCTION

Face

Figure 1.1: Two types of robustness. Sketch of the model likelihood function with the current
explanation (red circle) and the optimal face explanation (blue dot). The arrows represent
failed moves, with respect to the model likelihood (solid arrow) and inconsistent with respect to
external expectations (dotted arrow).

A further vision of a sample-based representation is the hope of it being more general than
an analytic description. Generally, there is no need for the samples to stem from an analytically
known distribution, a set of samples can also represent functions which are not accessible in
explicit terms. Such an extension of the concept could possibly offer a solution to the problem of
finding the “right” likelihood function of the actual problem. Choosing this function to accurately
represent human expectations about the proper face explanation is a very difficult problem. The
hope of a sample-based system comes with the idea of having a set of samples that represent an
emergent distribution, which is not accessible in any other way than by collecting samples using
different methods. Though conceptually very appealing, I will not further discuss this direction
of reasoning within the thesis but only use the sampling method in a classical setting with a
known but intractable target distribution. I consider this a first and necessary step to take,
before any work into this interesting direction can be made.

The strict use of a generative model as a verifying instance in the Metropolis-Hastings al-
gorithm makes the integration benefit concerning the model incompleteness difficult, especially
when used in the DDMCMC sense. The final sample is always checked with the generative model,
thus removing the possibility to model certain appearance details by discriminative methods.
Nevertheless, there is a possibility of attaining this feature, by using strongly biased samples
or by including it into the final likelihood function. But these methods are not conceptually
pleasing and are not discussed further.

A third stage of integration is also postponed for future work. The knowledge present in
the model at the current state of fitting could conceptually be used to modify the Bottom-Up
methods directly, making them context-sensitive. Currently the knowledge in the model is only
used to interpret the Bottom-Up results differently, the methods themselves are unchanged.

1.2 Contribution

In this work, I propose and evaluate the usefulness of an integration concept called Data-Driven
Markov Chain Monte Carlo [Zhu et al., 2000] in the specific context of explaining face images
using the 3D Morphable Model [Blanz and Vetter, 1999]. The concept is based on a probabilistic

3



1.3. A WORD OF CAUTION

formulation of the model and thus can deal with uncertainty. Additionally, it provides a propose-
and-verify algorithmic architecture which is especially open to integrate different methods.

The 3DMM has thus to be formulated probabilistically, involving a Probabilistic Principal
Components Analysis model and reasoning about likelihood functions for image explanation.
Besides the preparation to use the model with the MCMC fitter, I can give more insight into
the concept of a face image explanation from the probabilistic perspective. Specifically, I present
a reasoning about the necessity of a background model and a collective likelihood approach.
The collective likelihood is a specific outcome of the probabilistic view on the problem and the
background solves a long-standing problem with “shrinking” faces during adaption in a principled
manner.

To obtain a successful MCMC fitting method, I have to choose and adapt proposal distri-
butions to work with the 3DMM fitting. Further, I add more traditional optimization methods
using finite difference gradients to the mix of proposals which allows me to reproduce former al-
gorithms within this probabilistic concept. The result is a conceptual probabilistic fitting method
which can either be used to obtain optimized parameter sets or a sample representation of the
posterior distribution.

I integrate the detection outcomes of a face detector and multiple facial feature points detec-
tors directly into the model fitting using general concepts of DDMCMC. This integration leads
to the fully automatic model fitting algorithm which is shown to perform well as a general face
recognition method on the Multi-PIE [Gross et al., 2010] database.

In a comparative experiment, I evaluate different setups with respect to their face explanation
performance on an internal database. I can show the advantage of using the integration concepts
rather than a simple feed-forward stacking of methods and thus promote the usefulness of the
DDMCMC integration concept.

I present three different possible extensions of the model or the inference algorithm for fu-
ture work, including outlier masking and multi-scale models for analysis. The extensions are
not thoroughly evaluated but enriched with preliminary motivational results and also serve to
demonstrate the ease with which extensions are possible in the modular probabilistic sampling
framework.

1.3 A Word of Caution

In the general context of MCMC, the availability of theorems providing asymptotic guarantees
is conceptually nice and motivating and leads to a clearly understandable framework. But the
resulting practical algorithms will in general not behave “asymptotically”. The performance
of the final algorithm depends to a big amount on proper design choices and good parameter
values and not so much on the asymptotic theorems. This aspect applies to most MCMC-based
sampling methods. But as they are used to solve practical problems, the mathematical strictness
and rigor is not the most important point. Where the mathematical strictness is missing, I try
to reason on an empirical level or give empirical evaluation results to underpin the claims. This
especially applies to integration methods of Bottom-Up information.

1.4 Overview

The rest of this thesis is organized in the order necessary to achieve the implementation of the
integrative framework. It starts with a short literature overview, including model-based face
analysis and integration approaches, specifically including (DD)MCMC methods in computer
vision. The implementation needs first of all a probabilistic formulation of the 3D Morphable

4



CHAPTER 1. INTRODUCTION

Model. The chapter includes rationales about estimation of necessary parameters. Finding a
good face image explanation, known as “fitting”, has to be formulated as an inference problem.
The problem formulation and the introduction of the Metropolis-Hastings algorithm at the base
of DDMCMC methods are presented in Chapter 4. This chapter also includes the setup of
the basic inference algorithm used throughout this thesis and an implementation of traditional
optimizers within this framework. The next Chapter 5 finally introduces the Bottom-Up methods
used here and presents the necessary steps to include the information they provide directly into
the fitting process. Chapter 6 deals with evaluations of different methods within this framework.
It consists of two parts, a more detailed comparative analysis on an own dataset and a full-
system face recognition application on the Multi-PIE database. Before the conclusion, I present
three exemplary directions of future extensions within the framework, including first preliminary
results.

5
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Chapter 2

Related Work

2.1 Model-Based Image Analysis

The model-based concept uses a generative model which is able to produce synthetic data resem-
bling the original input data. The optimal model could perfectly synthesize possible observed
data. The actual explanation is then gained by finding the parameters leading to the best
reconstruction of input data. These parameters together with the model serve as the image
explanation. All questions about the image content can be answered by querying the model
instead. This is called an Analysis-by-Synthesis approach [Grenander, 1976] and has long been
the standard approach of the sciences to explain observations by human scientists.

A generative model can encode complex physical relationships, such as the interaction of light
with matter, or include statistically extracted relations among observable or hidden variables.
The differences only appear within the context of interpretation of the model parameters. Hu-
mans tend to prefer models which encode some world-knowledge they can relate to and thus
usually favor physical simulation-type models.

There are very many different generative image models, depending on the images to model.
A common pattern is the modeling of individual depicted, possibly varying, objects in changing
situations. Conceptually, there is a spectrum between directly modeling the possible classes of
images as they appear, up to modeling the actual world object itself and generating the image
by a computer graphics application. In the context of face image explanation and object models,
this line of thought nicely correlates with the actual technical development.

It started with an almost pure compression-type algorithm tailored to face images [Kirby
and Sirovich, 1990], making use of the adaptive compression by a Karhunen-Loève Transform
or Principal Components Analysis (PCA). The extension to Eigenfaces, a full face recognition
system, followed promptly, with first constraints on the face to be more or less rigidly aligned
(by hand) [Turk and Pentland, 1991].

The first leap to object-based modeling occurred with Active Shape Models (ASM), where
the actual object’s outline in the image is statistically modeled, not the image itself [Cootes et al.,
1995]. This method needs a concept of object correspondence to model the set of object outlines
rather than the observed images. The registration between the object instances of the method is
based on a human-provided landmarks correspondence of easily identifiable characteristic points.
The set of characteristic point observations is then statistically captured by a PCA model, a Point
Distribution Model (PDM). This forms a Statistical Shape Model (SSM), the apparent shape of
the object is at the root of modeling, not the image. The model comes with a very crude image
formation model, at each registration support point there is a gray intensity profile perpendicular

7



2.1. MODEL-BASED IMAGE ANALYSIS

to the current section of the outline. The step to the observed image is only adequate for restricted
images which occur e.g. in medical applications or industrial visual process control.

To extend the model to the more complex appearance of real objects, the Active Appearance
Model (AAM) uses the same concept of object correspondence and the same statistical shape
model as the ASM, but it additionally introduces a notion of appearance of an object [Cootes
et al., 1998]. The appearance is a normalized image of the object. It is normalized with respect
to the shape information, warped to a common reference frame and thus pixel-wisely comparable
between different object instances. This jump in development suddenly opened the shape model
to be applicable to real world images of object classes, such as human faces, with great success.
The AAM is still one of the most used techniques today to model image appearances of object
classes, especially faces.

A further development step towards an object model has been presented by Blanz and Vetter
with the 3D Morphable Model (3DMM) [Blanz and Vetter, 1999]. They made the conceptual step
completely away from the image and modeled a face to be a dense surface in three-dimensional
space, characterized by a shape and a spatially varying albedo. The surface is still modeled by a
PCA model. The model is completely based on this image-free representation of the face. The
image is formed by a rendering process which imitates the actual image formation process while
capturing a photograph. The decoupling of object modeling and geometrical image formation
moved the method away from modeling apparent shape in the image to modeling actual object
shape which is then transformed to an apparent image shape by geometric projection onto the
image plane. The model can be applied where the flat assumption of the PDM in the image plane
are not accurate anymore, i.e. the heavy pose changes faces can undergo, and is applicable also to
explain face images with heavy side views [Blanz and Vetter, 2003]. Additionally, the separation
of the image formation from the object instance, e.g. separate illumination and pose, led to the
possibility of automatically manipulating face images, e.g. in [Walker and Vetter, 2009]).

Moving further away from the image and modeling objects rather than image appearances
comes with higher technical demands. The interpretation of an image with a 3DMM is compu-
tationally and conceptually harder than with the simple image-based PCA of Turk and Pentland
[Turk and Pentland, 1991]. Building the model needs a concept of dense object correspondence
and thus a suitable registration algorithm. The example data has to be available as three-
dimensional data to be useful, and the albedo needs to be accurately estimated. Besides model
building, the actual interpretation of an image becomes harder. The fitting process is a complex
non-linear optimization problem with the 3DMM, whereas it is a simple matrix multiplication
with the Eigenfaces model [Romdhani and Vetter, 2003; Romdhani et al., 2005a; Knothe, 2009].
The great success of the AAM is also due to the availability of very efficient fitting methods
[Matthews and Baker, 2004; Amberg et al., 2009] which are not applicable to the full 3DMM.

Since the 3DMM’s original introduction in 1999, the model has changed in quality of the
underlying data and registration and fitting algorithms but the basic concept of the parametric
model is still the same today [Paysan et al., 2009].

In the generative framework, an image description is given by the model parameters θ repro-
ducing the image most closely, with respect to a suitable metric. The suitable metric is usually
the sum of squared differences of the color values between the model-generated image I (θ) and
the input image I. The optimal parameters are found by solving the numerical optimization
problem

θ = arg min
θ′
‖I (θ′)− I‖2. (2.1)

The optimization is not trivial and has been a major part of previous work published about
the 3DMM. The optimization algorithms applied so far ranged from stochastic gradient descent
to L-BFGS and even included direct local linear approximations to efficiently solve the problem
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[Blanz and Vetter, 1999; Romdhani and Vetter, 2003; Romdhani et al., 2005b; Knothe, 2009;
Aldrian and Smith, 2010].

Common to all the methods is the restriction to using only the single best parameter set as
face description and a rather strong dependency on a proper initialization. Besides the stochastic
gradient descent method, the proposed optimization algorithms are prone to local minima of the
target function. There have also been more involved problems, such as the shrinking of the face
without further precautions and additional assumptions.

All the used optimization algorithms lack the ability to deal with noisy information as addi-
tional hints to solve the problem. In this work, the possibility to robustly open the fitting process
to noisy information is explored. The stochastic gradient descent is closest to the approach pre-
sented here, but it still lacks a clear conceptual background which is able to conceptually deal
with information from various sources of noisy information.

2.2 Image-Based Methods

Besides fitting a full-blown model, there is also the possibility to extract the wanted information
directly from the image by applying methods of Statistical Learning Theory (SLT). The methods
work by applying a discriminative function, previously selected using a large training set, directly
to the image color array. These Bottom-Up methods are image-based in the sense that they do
not actively model, they try to calculate answers to queries directly in a discriminative fashion.

The abstract aim of a discriminative classifier is to find a measure, calculable by a (preferably
simple) function, which is invariant to all possible sources of variance but the one with respect
to which it classifies. The methods of SLT give guidance on how to find functions correlating
with this requirement. Two notable examples of general statistical learning methods are Random
Forests [Breiman, 2001] and Support Vector Machines [Cortes and Vapnik, 1995]. Both can be
used to answer queries about image content as long as there is enough training data available
representing the query result. They even reached an out-of-the-box convenience and availability.
The accumulation of large amounts of collected data in all fields of the economy has further
pushed such automatic statistical methods which are used for data mining in this context.

The concept of features is very strongly coupled with the mentioned invariance with respect
to all but the interesting variables. A discriminative feature is designed to reliably provide
this separation into nuisance variables and such which are actually needed to discriminate. Very
famous and successful are features of the Scale-Invariant Feature Transform (SIFT) [Lowe, 1999],
or other ones which are based on histograms of gradients, such as Histogram of Oriented Gradients
(HOG) [Dalal and Triggs, 2005]. Or also the very simple Haar features, derived from the Haar
wavelet transform and made famous by Viola and Jones in their fast face detector [Viola and
Jones, 2004]. Compared to methods from SLT, the feature transforms are usually hand-designed
to provide the exact type of invariance needed. A good feature is designed to be as discriminative
as possible on its own, simplifying the task for the classifier.

In the context of face image analysis, a very common method from this class are face detectors.
A face detector is already an aggregate of methods from SLT, feature invariance and even some
parametric parts. There are parameters of location and scale which are exhaustively searched
over (“scanning window detector”) and a discriminative function which classifies an image of
being a view of a face, based on extracted features. But compared to generative face models,
such methods are very image-centered and lack synthetic capabilities. The methods are very fast
and become increasingly more reliable. Smaller problems, such as face detection can be solved
using only detectors [Yang et al., 2002]. The extraction of relevant discrimination functions from
a large function space has reached a high degree of sophistication and applicability. The quality
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reached made such methods even applicable as pedestrian detectors in driver-assistance systems,
where they can automatically trigger the brakes in an emergency situation [Geronimo et al.,
2010].

Applied to the problem of face image interpretation, these Bottom-Up methods can quickly
extract information regarding a specific variable, such as an attribute, directly from the image
[Kumar et al., 2009; Zhang and Zhang, 2010]. The need for a complicated fitting algorithm
disappears and seems a waste if only a few questions need to be answered. The model-based
approach results in a full registration of the face, explaining each pixel with respect to the model.
This is a valuable intermediary representation, but further processing is required to answer actual
queries and the process of finding this registration is expensive.

Advanced model knowledge is not available during classification with Bottom-Up methods.
But also at training time, the provided labels and the implicit distribution of the samples are the
only information available. Recent classification methods might make use of additional knowledge
available at training time. An advanced detector might have access to more than the label it
tries to learn. Additional labels might be used to properly cluster training data for more efficient
classification [Dantone et al., 2012]. But in general, detection and other Bottom-Up methods
lack a sense of context.

2.3 Probabilistic Formulation

The Bayesian probabilistic approach has gained a lot of momentum within the field of Machine
Learning in general and Computer Vision specifically [Bishop, 2008; Marroquin et al., 1987].
The general framework is a formalization of uncertainty and thus fits the problems occurring
in these fields very well. The Bayesian interpretation gives a clear guidance on how to combine
information and perform inference in the vicinity of multiple uncertain sources of information.
The probabilistic concept usually leads to a clear separation of models and inference methods
which is a large step forwards in transferability and general applicability compared to ad-hoc
methods which tend to mix models and inference methods into one specifically adapted method.
Probabilistic methods are developed to an advanced state for they have been known and applied
for many decades in fields of computer science, mathematics, physics and many more.

Probabilistic Modeling has become very popular under the name of Graphical Models. A
graphical representation of the dependency relations between variables is used to make working
with probabilistic models a lot more human-friendly [Koller and Friedman, 2009]. The strong
position of graphical models in the field is to a great degree due to Judea Pearl who made the
graphical notation popular and introduced the simple Belief Propagation algorithm for inference,
based on the graph structure only [Pearl, 1988]. With this algorithm, he demonstrated the power
of a separation between models and inference algorithms. His later work about causal reasoning
using graphical models [Pearl, 2000] further fired the popularity of these models.

It thus seems very natural that almost all the integration methods presented here are based
on probabilistic models, at least during the motivation of the algorithms used afterwards. A
probabilistic formulation always needs an algorithm to perform the inference of the posterior
distribution. Exact inference according to the rules of Bayesian inference is rarely feasible,
approximative methods are needed instead. The most common classes are variational methods,
which form tractable analytic simplifications of the posterior distribution and sampling methods
which approximate the distribution numerically by simulation [Jordan et al., 1999; Robert and
Casella, 2004].

The probabilistic formulation has also proved to be a viable working model from a more
general point of view of cognitive sciences [Chater et al., 2006].
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The field of photogrammetry, the science of using photographs to make quantitative mea-
surements, is a field for which an explicit reasoning in the presence of uncertainty is essential.
Images or extracted features are typically very noisy, to extract a quantitative measurement in
this situation is a big challenge and definitely needs a concept of dealing with the uncertainty
to make a statement about the quality of measurements. It is thus a field where the relation
between models and more image-focused data has been studied for a long time and it is also a
field that pushed the probabilistic formulation and the related information theory as important
concepts to deal with uncertainty in image analysis [Förstner, 1989; Meidow et al., 2009].

2.4 Integration Methods

2.4.1 Need for Integration

The possible benefit of integration of Bottom-Up information with model-based analysis becomes
evident when thinking about the complementary nature of both methods. The model-based
approach has a natural limit in terms of model incompleteness. Modeling every possible variation
which occurs in reality is not feasible and at a certain point, a discriminative view becomes
necessary. Additionally, the process of finding a good set of parameters explaining an image
can become very expensive, up to exponential complexity in the worst case of exhaustive search.
On the other hand, the discriminative methods have a limited scope and usually lack a broader
context by design. They become inefficient to train with too many sources of variability, the
efforts grow exponentially in the worst case since all possible combinations of variations have
to be considered. For this reason, Bottom-Up methods, especially detectors, are only applied
on small images or small parts of larger images. But both are complementary, the model misfit
can be captured by discriminative methods while the lacking context of local detection can be
provided by a model. The slow fitting process could be sped up by using previously extracted
knowledge stored in Bottom-Up methods.

2.4.2 Integration Concepts

Specific Integrations. On a general basis, there is only the consensus to integrate different
methods but no general concept on how to do it. But in specific applications, the integration
is daily work and nothing special. A very exemplary method are pictorial structures or general
parts-based object models used in object class recognition, starting already in 1973 [Fischler and
Elschlager, 1973; Leibe et al., 2004; Felzenszwalb and Huttenlocher, 2005; Crandall et al., 2005;
Bouchard and Triggs, 2005; Galleguillos and Belongie, 2010].

The many different flavors of these models only deviate in details, the concept is consistently
an object composed of parts which are spatially linked. Most of the methods used today use a
discriminative notion of parts appearances and a generative model of the spatial coupling between
them [Andriluka et al., 2012], where the original generative parts modeling is less successful
[Felzenszwalb and Huttenlocher, 2005]. The coupling can be either an explicit parametric model
[Felzenszwalb and Huttenlocher, 2005; Andres et al., 2010] or implicitly encoded in an example-
based manner [Leibe et al., 2004]. The parts can be human-modeled object parts or extracted
automatically or even be very basic image features such as lines and blobs [Kokkinos et al., 2006].

The method profits from both parts, discriminative part models and a generative model-based
spatial coupling. To enable the integration, the models are usually formulated on a probabilistic
basis which allows inference methods to be used to find the best combined explanations.

Image segmentation is another field with a very evident benefit of integrating Top-Down and
Bottom-Up knowledge. The possible adaption of inaccurate segmentation boundaries obtained
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by model-based methods to an actually present image boundary can improve the quality of the
segmentation. On the other hand, pure Bottom-Up segmentation has big problems of finding
segmentations of objects with differing appearance, e.g. a red sweater is still part of the same
person wearing blue jeans but imposes a very strong segmentation cue in the image. Two
big methods making use of this in a different manner are the OBJCUT method [Kumar et al.,
2010], formulating a Markov Random Field (MRF) segmentation problem augmented with global
shape information, and the method of Borenstein [Borenstein and Ullman, 2008], which is based
on a patch-based object model [Ullman, 2007] and able to learn object-specific segmentation
autonomously. Both models use probabilistic or statistical reasoning to achieve the integration.

Applied to images, a common type of modeling are grammars which are well-suited to capture
the hierarchical nesting of structures generally present in image analysis problems. But the strict
formal grammar approach has to be extended to a probabilistic domain to be useful in the vicinity
of uncertainty, leading to Stochastic Image Grammars [Zhu and Mumford, 2006].

Introducing semantics through modeling is a strong and successful concept to deal with am-
biguous and noisy data, also in photogrammetry [Förstner and Plümer, 1997; Förstner, 1999].
Especially image grammars are well-suited to interpret the many Bottom-Up informations avail-
able in photogrammetry when dealing with man-made structures which typically show a high
degree of hierarchical nesting [Schmittwilken et al., 2009].

The integration of knowledge can also be closer to the image level where detection steps are
enhanced with contextual knowledge. The resulting combinatorial explosion of context has to be
dealt with, e.g. by boosting [Fink and Perona, 2003], by using Random Forests which can deal
with millions of features [Shotton et al., 2009; Fröhlich et al., 2013] or by modeling in terms of
Conditional Random Fields (CRF) [Kumar and Hebert, 2003; Yang and Förstner, 2011].

Monte Carlo Inference. Markov Chain Monte Carlo (MCMC) is one specific class of very
general inference methods, applicable to most inference problems. The method is based on
sampling, representing the desired distribution by a finite set of samples, or examples [Robert
and Casella, 2004]. This concept of doing inference can lead to general algorithms of posterior
inference and is very well suited to be extended to integrate knowledge of different sources.
MCMC methods are especially popular in physics, where they have been developed [Metropolis
et al., 1953], but they spread to almost all science disciplines dealing with models and data to
fit [Gilks et al., 1996]. In computer vision and machine learning, they are not as popular as in
other fields, but are nevertheless used, more so in general machine learning [Besag et al., 1995;
Gilks et al., 1996; Andrieu et al., 2003], not counting the DDMCMC applications.

The basic Metropolis-Hastings algorithm is a formalization of the very general and appealing
concept of propose-and-verify methods. The basic working is to propose explanations and verify
them using a model deciding on whether to keep or reject them. This general concept not only
makes sense in the mathematical realm of the sampling algorithm but is also very appealing
form of a human-type of inference, e.g. Alan Yuille directly promotes the combination of the
propose-and-verify architecture with Bayesian inference to build perceptive systems [Knill and
Richards, 1996; Yuille and Kersten, 2006]. There are even approaches on using the method to
explain perceptual phenomena such as multistability [Gershman et al., 2009].

2.4.3 Data-Driven Markov Chain Monte Carlo

The propose-and-verify concept also seems very much suited to accommodate different sources
of information, putting each in place of a proposal generator and using a global model to verify
them for consistency with the expectations. This can even work with unreliable proposals as
there is always a verification step afterwards. The adoption of this concept with noisy Bottom-Up
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information sources in image analysis led to the concept of Data-Driven Markov Chain Monte
Carlo (DDMCMC) formalizing this method [Zhu et al., 2000]. The method has been further
developed to parse complete images. It splits them into distinct segments and explains each with
an appropriate model, e.g. a face model or a text model [Tu et al., 2005]. The individual models
are in competition to explain parts of the image. The local model instances are proposed by
proposal generators which suggest the algorithm to put a face node where a face is detected by
a face detector or to put text where text is detected (“model activation”). The proposals are
generated by detectors or other fast Bottom-Up methods which make a lot of mistakes, leading to
inconsistent interpretations. The verification with the generative model then tests with respect
to the contextual consistency and thus always keeps a consistent interpretation.

The application in image parsing is built on an image grammar. Stochastic grammars lend
themselves especially well to an implementation in terms of a DDMCMC method. Their hierar-
chical structure allows a fast local detection of instances of nodes in the grammar tree and the
global model provides the means to verify the instances with respect to each other and the global
situation [Zhu and Mumford, 2006]. Specifically for hierarchical compositional models, the con-
cept of integration of Bottom-Up and Top-Down information is further developed, for example
by the study of α, β, γ-processes in these tree structures. The three process types correspond to
a direct, a top-down-induced and a bottom-up-induced detection of a node [Wu and Zhu, 2011].

DDMCMC methods are used in different contexts. In scene analysis, a complex three-
dimensional scene representation is built as a model of traffic scenes and data-driven proposals
of object placements are used during inference [Wojek et al., 2010]. Different objects, like cars
or pedestrians, are detected and proposed to be placed in the scene. The complete scene de-
scription is used to verify the proposals using three-dimensional reasoning with occlusion and
complex relations. In human body pose detection, the data-driven part finds possible parts of
the human body in different articulations [Rauschert and Collins, 2012]. The final human pose
is again inferred using the generative human body model with articulation. In face localization,
a DDMCMC is built to adapt a hierarchical, multi-resolution, feature-point-based face model
[Liu et al., 2002]. The method uses lower resolution stages as proposal generators for higher
resolutions.

2.5 Integration with the 3DMM

The fitting process needs to be initialized properly for the optimization algorithm to converge.
The initialization is traditionally done by the user, roughly aligning the model with the face or
providing key point positions. The parameter space is too large for an exhaustive search and the
optimization algorithms are too sensitive to initialization conditions.

The automatic initialization, without user input, is a nice example of a possible benefit from
integrating the additional information of Bottom-Up methods but also of the difficulties this
combination brings. The user-provided face location and feature point positions could also be
detected using a traditional detector. But to do so successfully, the optimization technique has
to make use of the information of the detection method, which, although good in general, is
rather unreliable.

An optimizer makes use of information either by initialization or inclusion as additional part of
the cost function. The initialization-only approach comes with the downside of only considering
the information once, which might be at the wrong moment. The inclusion as part of the cost
function is well-studied and can work very well if the information is reliable. But most difficult is
fine tuning of the relative weighting between the original cost and the newly added information,
as this weighting determines the trade-off between the two. The trade-off is massively determined
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by the reliability of the Bottom-Up information. The tuning has to be found adhoc in practice,
as there are explicit methods only for very simple cases.

Though looking simple in (2.1), the fitting problem hides many difficulties in practice. A
gradient-based method needs reliable gradients to work well and stable. Precise gradients are
problematic as the three dimensional surface projected onto a two dimensional image generates
occlusion boundaries which depend on parameter values, e.g. rotation. Further problems arise
from the very rugged nature of the cost “landscape” induced by a real-world input image. The
input image renders the cost function non-convex and introduces local minima which can lead
to premature convergence of the optimization algorithm.

For all of these intricacies solutions have been proposed and successfully used to build face
image explanation systems based on the 3DMM. The most effective ones used stochastic opti-
mization algorithms [Blanz and Vetter, 1999, 2003]. The stochastic nature of the gradient adds
a small random walk element to the strict optimization behavior. The jitter movement allows
the algorithm to escape local minima and lessens the need for exact gradient computations.

The inclusion of multiple information sources into the cost function has been proposed by
Romdhani [Romdhani, 2005]. He demonstrated the benefit of extending the cost function by
additional, but well-crafted, terms which capture different aspects than the direct image color
values. A multi-scale approach has been taken by Knothe [Knothe, 2009]. He staged the fitting
process into many parts involving only a subset of the parameters thus isolating the problematic
parameters involving the occlusion boundaries to only a small sub-problem. Multiple information,
such as user-provided landmarks and face contour cues are integrated as individual fitting stages,
using specific cost functions which are only used during the corresponding stage. All these
methods work well as presented but are not reliably extensible to deal with uncertain input data
or lack a unifying concept telling how to deal with different information sources.

An often applied approach is to use parts of the model to ensure consistency of the detection
result. Sometimes, this is directly possible using an analytic formulation. If not, there are
algorithms such as RANSAC [Fischler and Bolles, 1981] or (clever) exhaustive enumeration if the
available values are discrete “candidates”. The model is then used to select the best subset among
the possible candidates. Such a selection method has the potential to explode in exponential
combinatorial complexity rendering an optimal solution impractical. There are solutions dealing
with discrete selection problems efficiently and well enough for practical purposes, e.g. [Amberg
and Vetter, 2011].

If the detection output is available in a continuous manner, the integration is smoother. The
output can often be integrated into the goal function of an optimization problem and optimized
together with respect to the model parameters. Such an approach is realized, e.g. in the pictorial
structures models. These integrations performed in the optimization interpretation of the model
fitting problem come as a Maximum-A-Posteriori (MAP) estimate in the probabilistic framework.
Also, partial integrations are possible where not the complete available output is necessary, but
only local information, such as e.g. the local mode. And combined methods which iterate between
optimization with respect to the detection information and enforcing constraints given by the
model [Saragih et al., 2009].

Specifically for 3DMM fitting, there is the proposed method of self-adapting features [Breuer
and Blanz, 2010]. Key points are rendered according to the current state of the fitter and
searched in the image using the rendered appearance as a template. The finding is taken as
the position of the key point and again used for the next fitting iteration. The method is an
appealing integration concept but lacks a systematic treatment of uncertainty and is restricted
to this single application. Further, the unadapted appearance of the key points at the beginning
of the fitting process makes it difficult to reliably find them at this stage.
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2.6 Literature Conclusion

The possible benefit of integrating Top-Down with Bottom-Up methods is generally recognized.
But there are few methods of dealing with the problem in general. On a more individual level,
the integration is fairly well established and very successful. A common pattern seems to be the
probabilistic formulation, it is present in successful integration methods, at least in a conceptual
motivation part or in a statistical form. The presence of uncertain information makes this choice
almost a must. There are only few other concepts of dealing with uncertainty as established as
probability theory.

The DDMCMC approach to integration appears to be very generally applicable, as general as
MCMC itself in this context. Forming proposals based on the input image should be possible with
most problems, there are heuristics available for almost every problem. The propose-and-verify
architecture is additionally well-suited to understand the integration concepts from a human
perspective, since it is just a formalization of a very common inference theme.

In the context of fitting a 3DMM, a method is needed which can adapt a complex parametric
model, which is not of a grammar-like hierarchical form and is not of a composite form. Model
selection is not at the core of the problem, but a focus on continuous parameter adaption is
needed. The model is also of a complete generative form, rendering a colored and illuminated
face surface into an image, not only describing a few key points. None of the existing DDMCMC
methods is directly applicable to the problem, but the general framework is very appealing
and thus adapted and evaluated to work for the problem of explaining faces with the 3DMM.
The complete integration of detection information should lead to a completely automatic face
interpretation system with the result being an instance of the 3DMM, which can be used to solve
many following tasks.

The integration will be difficult as the model-based and the image-based concept are rather
different in nature. While the model-based explanation seeks to explain and determine every
variable before it can answer any query about the image, the image-based methods focus on
invariants with respect to one variable of interest and try to be robust with respect to variations
of all other variables.
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Chapter 3

Probabilistic Face Model

In this chapter, the probabilistic formulation of the face model is discussed. This includes a
general discussion about concepts necessary to achieve such a formulation as well as a more
specific part on the concrete choices made in the case of this work.

3.1 The 3D Morphable Model

The 3D Morphable Model (3DMM) [Blanz and Vetter, 1999] captures statistical prior knowledge
about the shape and texture of human faces. The parametric model describes faces as triangu-
lated, colored surfaces in 3d space with a very high resolution. The statistical variation of faces
is captured within only few hidden variables and modeled as linear modifications of a mean face.
The individual example faces are in dense correspondence while extracting statistics. The model
additionally describes a rendering process to generate a synthetic image of a model face and is
thus a fully generative model of face images.

The complete model then consists of the statistical parameters describing the face itself, the
camera model (“pose”), the illumination parameters and a color transform. Together, all these
values form the complete parameter vector θ of the parametric face model.

The model is capable of fully synthesizing images of faces given a parameter value. For a
complete list of all model parameters, refer to Table 3.2 at the end of this section. The individual
parts are explained in more detail in the following. Most parameters are very similar as introduced
in [Blanz and Vetter, 1999] and [Paysan et al., 2009]. Extensions and reinterpretations have been
made concerning the illumination model and the statistical parts.

3.1.1 Face Surface Description

The 3DMM consists of a statistical model obtained from 200 exemplar faces which are gathered
with a structured light scanner. The scanner captures a triangulated noisy surface. To collect
statistics on these surfaces, a registration is performed to bring all the faces into dense corre-
spondence with a face template surface. The template thus defines a topology and a common
reference frame on each of the exemplar faces. It is a model of a full head which consists of
roughly 105 vertices with approximately one quarter of them lying within the face area. The
registration is performed on the triangular mesh representation of the surface using a variant of
an Iterative Closest Point (ICP) algorithm [Amberg et al., 2007; Amberg, 2010].

For each vertex i = 1, 2, . . . , NV, its position xi ∈ R3 and RGB albedo values ai are recorded,
leading to two sets describing each face in three dimensional shape and appearance. For each
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sample, the two sets of coordinates {xi}NV

i=1 and colors {ai}NV

i=1 are vectorized to form two large
vectors s and c of length 3NV which together represent the face as shape and color (s, c).

The 3DMM is a linear subspace model. All faces are assumed to lie in a low-dimensional
linear subspace within the space of all possible surfaces representable by the vertex set. Thus,
each face can be represented by a low-dimensional parameter vector q using a basis U of the
subspace for both shape and color:

s = USqS + µS, s ∈ R3NV , qS ∈ RdS , US ∈ R3NV×dS (3.1)

c = UCqC + µC, c ∈ R3NV , qC ∈ RdC , UC ∈ R3NV×dC , (3.2)

where d� 3NV, µ is the mean value and U captures linear variations.

3.1.2 Camera Model

The camera model parametrizes the rendering of the spatial coordinates of face vertices. The
used pinhole camera is very similar to the one proposed in [Knothe, 2009]. A general and very
detailed overview on camera models, including the pinhole camera is presented in [Hartley and
Zisserman, 2003].

The origin of the coordinate system of the head lies at the position of the atlas at the neck.
The face is looking towards the camera in positive z-direction, the y-axis is the yaw axis and
the x-axis is oriented to obtain a right-handed coordinate system. The camera itself is always
located at the origin of the world coordinate system, facing towards the negative z direction. To
orient the face in the world, consecutive rotations Rψ,Rϕ,Rγ around the three coordinate axes
and a translation T are applied to all coordinates of the head.

The world coordinates of each point r are then perspectively mapped to a unit size image
plane at a distance f (focal length) of the geometric camera center by r̃ = PC (r) and scaled to
the desired target image size afterwards. For an upright image, the coordinate axes are inverted.

PC (r) = PC

xy
z

 =

[
fx/z + ox
fy/z + oy

]
(3.3)

The total transform of a point in three dimensional space r to the image plane r̃ is given by
(3.4) and displayed in Figure 3.1.

r̃ = PC (RγRϕRψr + T) (3.4)

The vertex locations, resulting from the camera transform and the shape model will be
referenced as geometry of the face, whereas the final color of a vertex as it appears in the image
will be called appearance.

3.1.3 Global Illumination

The illumination model changed from a Phong model used in [Blanz and Vetter, 1999; Paysan
et al., 2009] to a global illumination model describing the incident light from each direction in
place of a single individual light source. To ensure parametric efficiency, the environment map is
only a low-dimensional Spherical Harmonics expansion of the full map. This approach is possible
and efficient for Lambertian reflectance as the cosine term in the illumination model acts as a low-
pass filter removing high frequency components of the light field [Ramamoorthi and Hanrahan,
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Figure 3.1: The scene setup, viewed along the negative x-direction. With the image plane I, the
focal length f , the translation T and the origin of the coordinates of the head at the red dot and
the origin of the world at the blue dot.

Table 3.1: The vertex related symbols used

Symbol Description
xi Spatial coordinates of vertex i in R3

x̃i Coordinates of vertex i in the image plane
s Complete set of NV vertex locations
ai Albedo of vertex i in RGB
ãi Illuminated surface color of vertex i
c̃i Image color of vertex i
c Complete set of NV vertex albedi
r Point in the world
r̃ Point in the image
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Table 3.2: The complete parameter set θ of the 3DMM

Parameter Description
qS,qC Coefficients of the face in PPCA space
(ϕ,ψ, γ) Rotation angles: yaw, nick, roll
T Translation in R3

f Focal length, scaling in the image plane
O = (ox, oy) Translation of the principal point in the image
L = (l1, l2, . . . , l9) Illumination parameters, components for RGB
g = (gr, gg, gb) Color gain
b = (br, bg, bb) Color offset, black point
Γ Constrast transform, gamma

2001]. Besides the global illumination description, this model allows the optimal parameters to
be extracted by solving a linear system for a fixed geometry [Zivanov et al., 2013]. Compared to
the original Phong model of reflectance, the current illumination model only incorporates diffuse
reflectance where shiny specular highlights are not explicitly represented.

The illuminated color ã is calculated by

ã =
9∑
j=1

ljkjYj (n) ◦ a, (3.5)

where a is the color of the surface (albedo), lj the jth expansion coefficient of the light field,
kj is the expansion coefficient of the Lambertian cosine kernel [Basri and Jacobs, 2003] and
Yj (n) is the jth real Spherical Harmonics function applied to the normal vector of the surface
n. The vectors are multiplied component-wise (◦) for each color channel. The first Spherical
Harmonics function is a constant and the corresponding light coefficient l1 thus corresponds
to ambient illumination whereas the coefficients l2, l3, l4 can represent directional light. The
remaining coefficients l5, . . . , l9 can express quadrupol properties of the light distribution which
were not accessible using the prior illumination model.

The final color, as it appears in the image, is then gained by an additional color and contrast
transform (“gamma transform”) and a cropping step

c̃ =
[
(g ◦ ã + b)

Γ
]1

0
, (3.6)

with a color gain g and a color offset b (black point), which are both applied per RGB channel.
The global contrast transform Γ is applied uniformly for all channels with a component-wise
interpretation of the power operation of a vector.

The full generative model can be seen as a function I = M (θ) rendering an image I, given a
parameter value θ.

3.2 Probabilistic Formulation

As a generative model, the 3DMM is suitable to be formulated in a probabilistic manner. The
Bayesian framework of handling probabilities needs a prior and a likelihood term.

The prior expresses all the model assumptions, including statistical relations, thereby formal-
izing all assumptions about the possible model instances. For generative models, the prior can
generate plausible model instances which look similar to real data.
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The likelihood rates model instances with respect to their capability of explaining observed
data, the target image in this case. The likelihood function replaces the cost function in the
optimization framework but still behaves in many ways as a cost function, see Section 4.1.1.
Though it is probabilistically motivated, it still is not a proper probability density or probability,
it does not have to be normalized. The Bayesian framework provides the rules of transforming
likelihood functions into real distributions over parameter values [Bishop, 2008]. More details
about the inference process can be found in Chapter 4.

A probabilistic interpretation of the 3DMM has been formulated before [Blanz and Vetter,
2002; Lüthi et al., 2009] to solve specific reconstruction problems with only partially observed
data. However, the fitting of the Morphable Model and therefore the face image interpretation
has so far not been based on the probabilistic formulation.

3.2.1 Statistical Face Model

The basis of the linear subspaces (3.1) are extracted using a Principal Component Analysis (PCA)
which can capture the maximum variance of faces in a parameter vector with fixed dimensionality.
The Morphable Model used throughout this work is loosely based on the Basel Face Model (BFM)
[Paysan et al., 2009]. To obtain a probabilistic face representation, a change from a PCA, as
used for the BFM, to a Probabilistic Principal Components Analysis (PPCA) was necessary.
The probabilistic model adds an observation noise model and a statistical assumption about the
distribution of the latent variables, the parameters qS and qC. More specifically, a Spherical
PCA [Roweis, 1998; Tipping and Bishop, 1999] assumes isotropic Gaussian noise in the observed
space and an independent standard normal distribution of the latent variables. Shapes have
been modeled probabilistically by Lüthi and Albrecht in [Lüthi et al., 2009; Albrecht et al., 2013]
which proved useful to analyze the posterior variation of shapes, e.g. after partial observations.
They additionally show the equivalence of the PPCA model and a Gaussian Process regression
[Rasmussen, 2003], another very popular probabilistic method in machine learning.

The PPCA model then looks as follows:

P (s | qS) = N
(
s
∣∣µS + USDSqS, σ

2
SI3NV

)
,

P (qS) = N (qS|0, IdS) (3.7)

P (c | qC) = N
(
c
∣∣µC + UCDCqC, σ

2
CI3NV

)
,

P (qC) = N (qC|0, IdC) , (3.8)

where Id is the identity matrix in d dimensions, D are the diagonal scaling matrices and σ2 are
variances of the isotropic noise model.

The probabilistic extension is necessary as the subspace estimation can not be perfect. The
representation of a face in the low-dimensional space will lead to a mismatch of the model
representation and the original instance. While the PCA minimizes the mismatch in the squared
error sense, and can be interpreted as a Gaussian distribution within the subspace, it does not
make a statement about instances lying outside the subspace. The PPCA adds an observation
noise model, allowing each observed instance to deviate from the exact model representation,
thus assigning a probability to each possible instance. The noise model is used to model the
intrinsic scanner noise and the representation mismatch at the same time.

The PPCA model is used very similarly to the PCA model before. The estimators of the
components are slightly modified and an additional scaling of the coefficients is needed to ensure
a standard normal distribution in parameter space. The statistics are separately extracted for
both shape and color as before.
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Figure 3.2: The mean head with the face mask superimposed.

To ensure proper statistics of faces only, the example scans are masked with a face mask,
excluding the back of the head, the ears and the throat (Figure 3.2).

The variables in the PPCA latent space (3.7, 3.8) are used as the face description, both shape
qS and color qC and are henceforth called coefficients.

All the calculations and abstractions of the PPCA models are handled with the Statismo
software framework [Lüthi et al., 2012].

Model Estimation

For the standard PPCA model used here, there is a Maximum-Likelihood estimator for the
necessary parameters. The resulting Eigendecomposition of the covariance matrix is very similar
to the PCA case, details can be found in [Tipping and Bishop, 1999; Roweis, 1998; Albrecht
et al., 2013]. A notable difference is the scaling matrix D (3.8) which ensures a standard normal
distribution with unit variance of the coefficients q besides the usual decorrelation.

The references above also present a Maximum-Likelihood estimator for the variance σ2 of the
noise model. But the estimator is meaningful only for the case where there are more dimensions
than samples, which is not true for the face model. To obtain a useful noise estimate, which
captures the real deviation of instances from their model representations, a direct empirical
estimation method is used instead. The resulting estimator is also of the Maximum-Likelihood
type.

To obtain the estimate, a pure PCA model is built first, with an assumption of zero noise.
For N out-of-training samples, the mean squared reconstruction error between the samples si
and the corresponding best model reconstruction s̃i is calculated. The mean reconstruction error
estimates the average deviation of a real instance from the optimal model reconstruction and
thus captures the expected variance of the noise,
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Table 3.3: Average RMS reconstruction differences for 152 best PCA reconstructions using
different numbers of principal components (PC). Note, the presented average RMS reconstruction
error is per vertex, not per dimension as in the text.

Model 198 PC 100 PC 50 PC 10 PC Mean
Shape [mm] 0.39 0.50 0.74 1.58 4.1
Color 0.052 0.055 0.059 0.071 0.13

σ̂2
S =

1

N

N∑
i=1

‖si − s̃i‖2

3NV
(3.9)

σ̂2
C =

1

N

N∑
i=1

‖ci − c̃i‖2

3NV
. (3.10)

The estimator (3.9) maximizes the likelihood of the model with fixed observed and recon-
structed shapes for independent samples.

Proof. The likelihood from (3.7) for N independent fixed observations and reconstructions is

L
(
σ2; {si, s̃i}Ni=1

)
=

N∏
i=1

1(√
2πσ2

)3NV
exp

(
− 1

2σ2
‖si − s̃i‖2

)
. (3.11)

The poof is easiest by maximizing the log likelihood

log L
(
σ2; {si, s̃i}Ni=1

)
=− 3NVN

2

(
log 2π + log σ2

)
(3.12)

− 1

2σ2

N∑
i=1

‖si − s̃i‖2 (3.13)

The derivative with respect to σ2

d logL

dσ2
= −3NVN

2σ2
+

1

2σ4

N∑
i=1

‖si − s̃i‖2 (3.14)

becomes stationary for the proposed estimator (3.9)

d logL

dσ2

!
= 0⇒ σ2 =

1

3NVN

N∑
i=1

‖si − s̃i‖2. (3.15)

The resulting estimated values are listed in Table 3.3.
The use of a Probabilistic PCA model enables the 3DMM to be used for faces and heads in

conjunction. Additional to the face scans obtained from the structured light scanner, there are a
few Magnetic Resonance Imaging (MRI) scans available to capture the full head shape. The full
head model is used to reconstruct a best-fitting head for each face instance. The reconstruction
assumes the face to be a partial observation of the full head model and uses the standard PPCA
posterior mean estimate as the best reconstruction [Lüthi et al., 2009]. The procedure is only
used to visualize faces in a more appealing form but the concept of this reconstruction is also
applicable in a multi-scale setup, see Section 7.3.
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3.2.2 Prior Model

The prior P0 (θ) of the model expresses the expected statistics of the modeled faces. Its most
important parts are thus the two PPCA models with a standard normal prior on shape and color
(3.16), where the face model, the camera and the illumination are modeled independently:

P0 (θ) = N (qS|0, I) N (qC|0, I) P (θCAM) P (θLIGHT) . (3.16)

The other model parameters, the camera and the illumination settings do not directly suggest
a natural choice of their prior. To keep the model simple, a multivariate Gaussian distribution is
chosen as the prior distribution of the illumination coefficients and a uniform distribution for the
camera parameters. The uniform prior has become necessary to allow the model to reach out to
a full profile view at a yaw angle of 90◦ which has been prohibited by an empirically estimated
multivariate Gaussian. The uniform prior only ensures valid values of the camera parameters
and does not really make assumptions about the distribution of values. Valid values include the
assumption about the rendered face lying inside the image or the face not looking backwards.

The camera model possesses parameters which are strictly positive and have a multiplicative
action rather than an additive effect. These are the focal length f , the distance between the
camera and the face −tZ and the color gain values g. These parameters are modeled using their
natural logarithm, leading to a more appropriate log-Uniform distribution on the parameters.
The parameters of the Spherical Harmonics illumination model are not restricted, they corre-
spond to an expansion of the light field and not directly to light intensities, but there is also no
restriction on the resulting light field.

The parameters of the prior distributions are estimated based on data with the exception
of the camera model which is setup by hand. The parameters of the PPCA face model are
estimated as described above. The parameters of the illumination model are obtained from a set
of fitted images of an internal database. The fits have been made by a stochastic optimizer with
a dominant data likelihood and a comparatively weak uniform prior. Not all of the fits can be
considered good fits, the estimation thus contains noise.

The generative model together with the prior distribution (3.16) can synthesize statistically
expected faces and can thus be directly used to check the model assumptions by comparing the
rendered images with expected target images. A few samples from the prior distribution are
rendered and displayed in Figure 3.3.

3.3 Likelihood Functions

To be able to fit the model to data, a likelihood function is needed to rate different parameter
values with respect to one another. This section discusses a few general points to consider
when choosing likelihood functions as well as concrete likelihood choices. Among them are the
collective likelihood and the foreground/background model.

The likelihood model P (I | θ) assigns a probability-like value to each possible model param-
eter θ based on its capability of generating the observed image. It is thus a function of the
parameters θ and usually written as L (θ; I). The likelihood in the generative setting above is
formulated as an image comparison, measuring compatibility between the model-rendered image
M (θ) and the observed image I.

Choosing a likelihood function for the face model is not straight-forward. There is no real
and broadly accepted concept of measuring the mismatch between a rendered and an observed
face. The only consensus is that a perfect fit might be a useful explanation. In practice, a perfect
match will never occur as the model always simplifies the real situation. It is thus crucial to
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Figure 3.3: Samples from the prior distribution (3.16). The first row is with the same neu-
tral camera and light settings for all samples. The heads are reconstructed for a better visual
appearance.

choose a likelihood model which captures an interpretation of “close” appropriate to the problem
to solve.

The 3DMM is the main part of the likelihood function, the model describes a deterministic
generation of images determined by the model parameters. From this perspective, a parameter
does only represent the image if its corresponding rendered image matches the target image
exactly, everything else can not be explained by the model, strictly. But in reality, at least three
effects make such a hard comparison obsolete. First, there is measurement noise as for every
physical sensor. A second source of image and model mismatch are outliers, facets of real data
which are not modeled and thus can not be explained by the incomplete generative model. A
third source of imperfection is the alignment mismatch which is probably the most difficult to
grasp.

The sources of possible deviations of model outcomes and real data are collectively referred to
as “noise” which directly leads to the interpretation of the likelihood function as a noise model.
The probabilistic formulation makes it easy to include the statistical properties of noise as most
noise quantifications are formulated using probabilistic terms.

But the likelihood formulation is analytically available only for simple noise models, e.g.
Gaussian noise. There is no generally accepted concept of how to build a likelihood integrating
an alignment mismatch. Already dealing with outliers is problematic, as the only property
common to all outliers is the model’s inability to reproduce them. Only the physical sensor noise
can be modeled using a readily available and simple noise model, usually Poisson, e.g. [El Gamal
and Eltoukhy, 2005].

As there is no gold standard to measure an alignment mismatch, a concrete choice of a
likelihood is usually evaluated with respect to a few simple properties. The consistency measures
whether the maximal likelihood value is assigned to the expected parameter values consistent
with the problem and the model’s intention of explaining faces. But this point has to be judged
by the human observer for now. A quantitative assessment were only possible for synthetic
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data obtained from the model, again neglecting the real world mismatch. A second criterion is
monotonicity and smoothness, the likelihood is expected to rate parameters higher which have a
lesser degree of mismatch. Smoothness is not strictly necessary but useful, because most fitting
algorithms are of an iterative nature and rely on a smooth relation between the likelihood value
and the parameter values.

A common strategy to deal with the alignment mismatch is to use a simple noise model
and to allow more noise than necessary to explain the physical observation part. This strategy
is pixel-based and thus compares non-corresponding points. This implicitly assumes only a
small alignment mismatch where the “real” correspondence is still close and the difference in
appearance is smooth. These idealized assumptions are certainly only fulfilled close to the perfect
explanation and even there, the non-smooth appearance of faces, e.g. the transition from skin to
lips, can lead to mismatch problems.

The likelihood function L (θ; I) for a fixed target image finally works on the level of an image
comparison. The comparison can be made in two different ways, either by comparing in the image
domain, on the pixel values, or by comparing in the model reference domain (“backwarping”),
on vertex values. The comparison on the model domain can lead to more efficient optimization
algorithms and is often preferred [Matthews and Baker, 2004; Amberg et al., 2009; Romdhani
and Vetter, 2003].

Regardless of the concrete variant chosen, the comparison takes place on an image which is
a structured grid of color values. The remaining of the section thus uses the term pixel except
where a vertex comparison is explicitly addressed.

Working with likelihood functions of complete images is prohibitive, as an image with a
resolution of only 100 × 100 pixels leads to the huge dimensionality of 10 000. The comparison
thus needs further assumptions to stay tractable. The likelihood model consists of a probabilistic
measure to break an image comparison into a tractable set of problems of pixel comparisons and
a method to compare pixel values.

3.3.1 Color Likelihood

The color likelihood model compares two colors for similarity. Given a target color cT, a likeli-
hood value is assigned to each possible color c by L (c; cT). Comparing colors is a long-known
problem lacking simple concepts as soon as color similarity is taken to a perceptual level. Color,
as appearing in an image, is the result of the complex image formation process involving a mul-
tiplicative combination of illumination and object properties (3.5) and a recording by a sensing
device. Further complexities arise in color comparison on a perceptual level, including many non-
local effects, such as white balance and prior object knowledge and maybe even transient moods
of the observer. It is thus not possible to give a general, very strict conceptual motivation for
a specific color comparison model. The color likelihood model used is more inspired by general
mathematical reasons, simplicity and empirical validation. For a discussion of color constancy
refer to [Forsyth, 1990].

The color likelihood model is derived from the distribution P (cT | c) as usual. Its require-
ments now include both, model incompleteness and being well-behaved with respect to misalign-
ments during the fitting process. The sensor noise process is considered very small compared to
these two noise effects, so it is automatically absorbed in the other, larger noise types.

Common models of color likelihood are e.g. the three distributions, Gaussian, Exponential
and Cauchy, modeling only the color differences
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P
(
cT | c, σ2

)
=

1

Z
exp−‖cT − c‖2

2σ2
, (3.17)

P (cT | c, λ) =
1

Z
exp−‖cT − c‖1

λ
, (3.18)

P
(
cT | c,Γ2

)
=

1

Z

Γ2

Γ2 + ‖cT − c‖2
. (3.19)

The most obvious and convenient choice is probably the isotropic Gaussian noise model (3.17).
In a Bayesian MAP estimation context, such a likelihood corresponds to a squared difference cost
function. A Gaussian model provides a known and tractable distribution. As a justification, the
Gaussian is the limit of many independent additive noise contributions with finite variance1.

The Gaussian noise model has known problems when dealing with outliers. Outliers are not
uncommon in face model fitting if the correspondence is wrong or the model can not explain
pixels from a beard or hair.

The exponential distribution (3.18) is another simple example which can be employed to
measure color deviation. Outliers are more probable in this model compared to the Gaussian
likelihood. But still, the function can not be considered “robust” with respect to real outliers.

The Cauchy distribution (3.19) is a common heavy-tailed distribution, dealing well with
outliers. But the Cauchy is often too robust, the difference in likelihood in matching a color
close to not matching it at all can be too small, the model too loose.

There are many more simple color distribution models leading to a likelihood function than
presented here. Those three are selected due to their use with the corresponding cost function
in traditional optimization. The Gaussian corresponds to a squared difference, the exponential
to an absolute difference and the Cauchy to a logarithmic cost function.

Such direct correspondences are useful to extend a previously existing optimization algorithm
to the probabilistic framework. But as the cost function is for optimization only, it does not
always reflect meaningful assumptions about the distribution of errors.

The parameters of the models can be estimated from data, which is a big advantage of the
probabilistic view. Having actual likelihood functions instead of cost functions, it is very natural
to use methods from the vast field of statistical estimation to find optimal parameter values, for
example a maximum-likelihood estimator.

In this work, the Gaussian likelihood is preferred over the other models. A very strict isolated
evaluation of different color models is not possible as there are no ground truth model instances
for real world images. On synthetic images, the noise is missing, the exact part modeled here.
Only complete comparisons between the models in the context of the whole fitting process and
distributions resulting from selected good fits can be used to some degree.

3.3.2 Product Likelihood

The color likelihood model only compares individual color values. The image consists of very
many pixels with different color values. The comparison at the image level involves the color
likelihood as well as the combination of individual pixels. The standard assumption is conditional
independence among all the color values given a generating parameter value. This conditional
independence assumption makes the image comparison easy, as the total likelihood of the image
separates into a large product of color value likelihoods

1Care has to be taken, not taking this too seriously as for color intensities there is a strict positivity constraint
and many effects are better modeled by multiplicative attenuation than addition. From this very strict point of
view a log-Normal might be easier to justify. Also the range of possible target colors is restricted.
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P (ITarget | IModel(θ)) ∝
∏
i

P (cT,i | ci) , (3.20)

where the product is over all pixels cT,i. This assumption is most common in cost function
optimization, leading to the sum of the individual costs at each pixel value [Blanz and Vetter,
2003; Romdhani et al., 2005b; Cootes et al., 2001; Matthews and Baker, 2004].

The face model does not cover the whole input image but only the face. Everything outside
the projected face mask is considered background and ignored in this standard product likelihood.
There is no color to compare to for pixels lying outside the face. Thus, the product in (3.20) is
only over all visible pixels of the model.

The simple product likelihood has two main shortcomings which need to be dealt with; it
ignores the background, and it depends on the amount of pixels in an image.

The dependence of the image likelihood on the image size is often undesired but a side-effect
of using the pixel-based likelihood model. This comes with the independent modeling of pixel
likelihood, where each pixel constitutes equally to the evidence. A large image provides thus
more evidence than a smaller image with fewer pixels. This leads to a more certain likelihood
and posterior in large images compared to small images. If the pixel error was really independent,
every additional pixel would constitute additional knowledge and thus make the posterior more
certain. But as the image grows larger, usually just the resolution increases, allowing more pixels
to lie between two vertices. These pixels carry information which can not be explained by the
model, they are in general very similar to those already there and are certainly dependent. They
should not make the model too certain. The effect of dependency might seem weak, but with a
few thousand pixels, the certainty accumulates drastically, removing posterior variance almost
completely for product likelihoods, see Section 4.6.

The evaluation of the image likelihood in the model domain, the “vertex” likelihood, circum-
vents this problem to some degree, if the model size is kept constant.

P (ITarget | IModel(θ)) ∝
∏
v∈V

P (ITarget (r̃v) | c̃v) (3.21)

But besides the scaling advantage, the vertex-based model has also a few downsides. A vertex-
based evaluation does not take pixels into account which lie between vertices in the rendered
image. This fact can be ignored if the spacing of the rendered vertices roughly matches the pixel
distance. Also, the result depends on the non-equal vertex spacing throughout the face. There
are only few vertices on the nose while very many accumulate at the temple and on the cheeck,
leading to a unfavorable relative weighting of the cheeck region over the nose.

The mapped position of a vertex in the image is not constrained to the pixel grid and thus
needs to be interpolated. Comparing only color values at the vertex locations is just a point
measure which might be inaccurate or rugged in large images, where there are multiple pixels
between two mapped vertex positions. In these cases, a vertex evaluator model should use an
area average for evaluation. The area estimate might also catch problems arising from unevenly
spaced vertex locations on the reference face.

The model domain comparison is used excessively with Active Appearance Models where this
approach leads to superior and fast algorithms [Matthews and Baker, 2004; Amberg et al., 2009].
A main difference between most 2D applications and the 3DMM is the usage of the complete
backwarped target image. The image comparison on the model’s reference is carried out at a
higher resolution than the model uses to sample the shape. Most modern AAMs use a real texture
model with a pixel-wise representation on the model reference while having only a few vertices
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Figure 3.4: Rendering of a fitting result using the pixel-based likelihood (center) and the vertex
likelihood (right).

representing the shape. The full image comparison in the model domain appears to provide the
benefits of both, the image-based and the vertex-based models, for it is independent of the image
size and the sampling of the image comparison is independent of the shape resolution and vertex
placing. The properties of the comparison can be adjusted by changing the texture mapping of
the model without modifying the shape representation.

In experiments, the standard vertex-based model of the 3DMM did not perform as well as
expected and ended up being clearly inferior to the image-based model. It can not explain details,
see Figure 3.4.

3.3.3 Foreground & Background Model

The 3DMM models projections of the three-dimensional face onto the flat image plane, leading
to occlusion boundaries. These self-occlusions have the effect of a varying number of visible
vertices in the image and a variable number of pixels explained by the model. The number of
pixels explained by the model is further dependent on the apparent size of the current face as
it appears in the image. I refer to this as partial explanation since not all input data is actively
explained. The image likelihood needs a mechanism to deal with partial explanation.

Dealing with background, or more generally outliers, is a long known problem in the presence
of noisy data. An information theoretic viewpoint of a Minimum Description Length (MDL)
approach can motivate a conceptual treatment of outliers [Georgeff and Wallace, 1984]. But
also probabilistic methods can deal with background, mostly using robust statistics formulations
[Huber, 1981; Förstner, 1989].

The simplest mechanism is ignorance, the likelihood is evaluated on the visible vertices or
pixels only. This approach is very common with the 3DMM but often comes with the “shrinking”
drawback, especially if applied within the cost function optimization framework. Shrinking is
the effect of a vanishing apparent size of the face in the image, the face shrinks during the fitting
process.

By evaluating only the pixels covered by the face model, the likelihood values of the invisible
pixels are removed from the product in (3.20) which is equivalent to replacing them with the
value ‘1’. This opens the opportunity for a fitter to choose not to explain a pixel if its likelihood
value drops below ‘1’ since it can replace its likelihood by the better choice of ‘1’. If the color
likelihood model does not take this into account and its value is well below ‘1’, it might be best
to shrink the face to a very small image area, explaining as few pixels as possible.

Such a likelihood is not consistent with the problem. The maximum value is achieved by
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Figure 3.5: The effects of changing the units of color measurement while ignoring background,
the target image (left), shrinking (middle) and blowing-up (right).

choosing not to explain pixels and gets assigned to a parameter value which leads to a face as
small as possible or completely outside the image.

Likelihoods below ‘1’ are very common since a lot of likelihood values are directly derived from
the corresponding (normalized) probability distribution. Many practically applied continuous
densities have likelihoods below 1. The problem is due to the dependency of this effect on the
absolute likelihood value whereas likelihoods are usually only used up to a multiplicative constant,
only their ratios are important. This problem is especially acute in traditional optimization, as
the cost function is measuring a positive cost where the best possible value is zero. This value is
also the implicit value when removing the corresponding part from the sum2. The invisible parts
are thus perfectly explained, contrary to the actual color values which are almost never perfectly
reproduced.

Demonstration. The effect can be nicely demonstrated by exaggerating it. The Gaussian
color likelihood (3.17) can be used to provoke the shrinking as well as the opposite effect of
“blowing up” through an effect of scale-dependence if used unreflected.

Throughout this work, color is measured in real values c ∈ [0, 1], but the use of unsigned
8bit integers c ∈ {1, 2, . . . , 256} is another very common coding of color. A third color measure
might be based on physical units of incident power, typically leading to very small units, e.g.
c ≈ 10−6. Whenever changing the unit system, the variance has to be reestimated and changes
with the measurement units, a variance of σ2 = 0.052 in the first case changes to σ2 = 12.82 and

σ2 =
(
5× 10−8

)2
. The part in the exponential exp

(
− d2

2σ2

)
is unaffected by the change since it

is independent of the measuring units. The normalization constant changes and becomes very
large for the small variance and significantly below 1 for large units.

Figure 3.5 shows the result of fitting the model a few iterations with different color units and
the likelihood model (3.20). The shrinking occurs for the large units, where no likelihood value
can compete with the implicit removal value. Whereas the small units lead to an explosion of
the face by assigning likelihood values far above 1, thus providing the best option to include as
many pixels as possible into the explanation. By coincidence, the likelihood model with color
values in the standard range c ∈ [0, 1] assigns likelihood values in a range of the implicit value
of 1 and can be used almost without compensation.3

2The cost function analogy is coupled by the − logL which is 0 if L = 1
3It would have been easier to demonstrate the effect just by scaling the likelihood up and down. This is possible

as only likelihood ratios are important. But an effect due to the choice of measurement units seemed grave to me.
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CHAPTER 3. PROBABILISTIC FACE MODEL

To prevent such a scenario, the implicit value has to be taken into account and replaced by an
explicit treatment of invisibility. A most satisfying treatment would be an explicit background
model on its own. But one of the main goals of a generative object model like the 3DMM is
to model the object only, in front of any background. Being agnostic about the background
is important to keep the model general enough and to prevent a complexity explosion if every
possible background has to be modeled. A specific background model might be an option where
the background is naturally constrained such as in medical models of organs inside the body.

The next more complex treatment of background, beyond ignoring it, is assuming a constant
likelihood of having background everywhere. The value of the constant is often derived from
the foreground model itself, making the background model implicit, defined by the limits of the
foreground model. As an example, the main background model used in this work is an implicit
background model with a background likelihood equivalent to the foreground likelihood at 2
standard deviations away from the optimum. Being background then becomes more likely than
being foreground only if the color is further away than 2 standard deviations from the target
color value.

This model explicitly controls the trade-off points between foreground and background. The
likelihood increases if the likelihood of the foreground model is larger than the one of the back-
ground model.

A more specific background model assigns each color considered background a likelihood
depending on the observed color. These models can still be image-specific and thus be general
enough to ensure working with different backgrounds. A simple example is a Gaussian model
trained with all pixel colors in a target image. This model then uses its estimate of a mean
background color and a covariance estimation to assign a simple likelihood value. This is of
course a further assumption made about the image to be explained. In practice, this can already
be enough to deal with varying backgrounds. A more elaborate background model, but still
image-dependent, is used by [Rauschert and Collins, 2012], where an explicit image segmentation
is used as background assignment. A background model can now be extended up to the point
where as much modeling power is invested to model the general appearances of backgrounds as
is used for the 3DMM itself.

Replacing each removed likelihood factor by the background likelihood value introduces a
dependence on the amount of background surrounding a face. A simpler background integration
method works by rescaling the foreground likelihood to directly include a background measure

L (c (θ) ; cT) =
LFG (c (θ) ; cT)

LBG (cT)
(3.22)

L (IModel (θ) ; ITarget) =
∏
i∈M

L (ci (θ) ; cT,i) . (3.23)

The use of a background model is always relative with respect to the used foreground like-
lihood model. Likelihoods need no normalization and are thus only defined up to an arbitrary
multiplicative constant. This flexibility makes it necessary to choose and fix the factors of the
foreground and the background models relative to each other in order to give the desired com-
parison results. Note that the posterior distribution of a pixel belonging to the foreground given
its color and the target color is not arbitrary anymore, it is always properly normalized, as a
result of the application of Bayes’ rule

P (FG | c, cT) =
LFG

LFG + LBG
=

LFG/LBG

LFG/LBG + 1
. (3.24)
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The use of a probabilistic formulation makes it easier to work with background models, as
direct likelihoods are involved, not arbitrary parameters. The parameters do not disappear
in probabilistic models but they change to parameters describing distributions with a cleaner
interpretation and usually a vast estimator theory at hand. In summary, ignoring the background
problems leads to an implicit background model with unit likelihood, which is rarely appropriate.

3.3.4 Collective Likelihood

The dependence of the image likelihood on the image size is often an undesired side-effect of
using the pixel-based likelihood model. The dependence can be eliminated by using an average
mismatch estimate for the image likelihood instead of all the values. Such an average is e.g.
the geometric mean of all the likelihoods of the individual pixels. This procedure standardizes
the length of the likelihood product to a reference amount of pixels (just one in this case) and
thus scales with image size. The simplest average measure is the mean of the log likelihoods
corresponding to the mean negative cost per pixel. In the likelihood this corresponds to the
geometric mean,

L (θ; I) =

(
N∏
i

L (θ; Ii)

) 1
N

(3.25)

L (θ; Ii) =
LFG (θ; Ii)

LBG (Ii)
. (3.26)

This simple way of averaging comes at the price of loosing the clear interpretation of the
single pixel noise model. Treating the average likelihood of all pixels with the same noise level
as the single pixel model is much too loose. The average value will be much more constrained.

A conceptually clearer averaging likelihood can be constructed by extracting an averaged
measure of the image first and then modeling its distribution. A straight-forward example of
such a method extracts the mean squared difference of all the color values of the pixels (3.27)
and assigns a likelihood directly to this total average value〈

d2
〉

=
1

N

∑
i∈FG

‖cT,i − ci (θ)‖2 (3.27)

Though not Gaussian distributed, such a large average value has the desirable property of be-
coming more Gaussian than its individual components with an increasing number of summands.
This average value mathematically strictly converges towards a Gaussian form if the individual
values are all iid and have finite variance, as described by the Central Limit Theorem (CLT), e.g.
in [Gonick and Smith, 1993]. The full requirements are not met by the image likelihood model
since the individual values are not perfectly independent and the real variances are not known.
But we have a very large collection (> 10 000) of values of which many are still independent and
a very large set of samples to estimate a standard deviation.

With di = ‖cT,i − ci (θ)‖2, the distribution of the average value P
(〈
d2
〉)

converges in the
CLT case to

P
(〈
d2
〉)
≈ N

(〈
d2
〉∣∣∣∣∣E [d2

]
,
V
[
d2
]

N

)
. (3.28)

In practice, the distribution of the average is Gaussian enough, at least more Gaussian than
the individual values. The use of a Gaussian distribution to model the average squared deviation
value is less restrictive than modeling of each individual mismatch as normal distributed.
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Table 3.4: Model distributions of normalized difference values and the resulting relative variances.

d/σ d2/σ2 V
[
d2
]
/E
[
d2
]2

N (0, 1) χ2
1 2

Exp (1) Weibull (1, 1/2) 5
Weibull (1, 2) Exp (1) 1

The most commonly applied likelihood models the individual errors as independent normal
distributions, which leads directly to a χ2-distributed sum of squared differences. A Gaussian
can approximate a χ2 distribution arising from more than 50 samples to a useful degree [Hunter
and Hunter, 1978].

The expected value of the squared differences E
[
d2
]

is the variance σ2 of the difference
values di. It is estimated as in other likelihood models. The CLT includes a statement about the
variance of the average value based on the variance of an individual pixel noise model, therefore
giving rise to a useful interpretation of the complete image likelihood in terms of individual pixel
variances.

The CLT likelihood (3.28) needs a variance estimate of the individual squared differences
V
[
d2
]
. There are two main possibilities of finding values for the variance term. The distribution

of the d2 can be modeled explicitly and the variance deduced from the model or the value is
estimated empirically using a set of good model fits. If the value of d2 is normalized by d2/σ2,

the variance can be expressed in relative units V
[
d2
]
/E
[
d2
]2

.

〈
d2
〉

σ2
∼ N

(〈
d2
〉

σ2

∣∣∣∣∣1, 1

N

V
[
d2
]

(σ2)
2

)
. (3.29)

The relative variance values for different distributions of d can be found in Table 3.4.

For details about the empirical estimation refer to Section 3.3.6.

Theoretically, the CLT would also be applicable to the average difference value itself (with
sign). But in this situation, a real compensation of mismatches becomes possible, a bright spot
might be compensated by a darker one at another location. This is not desired and the violation
of the independence assumption is probably too strong in this case. Without mathematical
proofs, this possibility is discarded, as it is not suitable for the model fitting problem in images.

In the CLT likelihood model, the interpretation of the model fitting process becomes a bit
different. Instead of finding the best possible explanation in terms of minimal squared difference,
a possible parameter value θ is evaluated with respect to it fitting the distribution of expected
averaged squared difference values. This corresponds to finding good parameters with respect
to the complete model, including the noise part. This interpretation includes a penalty for
parameters explaining the image too good, the noise model assumptions are violated — a perfect
image explanation is very unlikely as it corresponds to a situation with a very specific noise
realization. For this reason, there is no need to include a background model into the CLT
likelihood.

The noise model inspired by the ideas of the CLT, modeling the distribution of the average
mismatch value rather than each individual value, provides an argument for using a Gaussian
distribution as a model. It might be more appropriate to model the average measure as being
Gaussian than the individual members.
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3.3.5 Landmarks Likelihood

Besides the image modality, the model can also be directly evaluated with respect to image
locations of points known in the model. Such points are usually landmarks of the face, such as
e.g. the eye corners, which can be reliably identified by human observers.

The landmarks likelihood is very analogous to the image color likelihood model, only the
modality changes from a color comparison to an image coordinate comparison. The individual
likelihood is again modeled after a Gaussian distribution and the combined likelihood assumes
independence as for the image likelihood. The invisible landmarks are replaced by an explicit
invisibility value.

The total landmarks likelihood model is then

LLM

(
θ; {r̃i}NLM

i

)
=

NLM∏
i=1

L (θ; r̃i) (3.30)

L (θ; r̃i) = N
(
x̃i (θ)

∣∣r̃i, σ2
LM

)
, (3.31)

with r̃i the ith landmark position in the image and x̃i the corresponding rendered vertex of the
model, the variance of the landmarks model is σ2

LM.

The number of landmarks in use is mostly only in the range of 10, thus a CLT-likelihood does
not make much sense.

3.3.6 Parameter Estimation

Color Models

The likelihood models for foreground pixel values in Section 3.3.1 posses a free parameter to be
estimated. The value includes multiple mismatch effects. The most basic is already captured
in the PPCA model’s noise parameter, the inability to perfectly model the distribution of color
values of the example faces. This value is used as a first guess to model the deviation of color
values between the target image and the one generated by the model.

The purely model-based value is not really accurate since the comparison within the image
domain includes illumination which can scale down the color values and thus also their expected
differences. The value does not include real-world model mismatches as it only contains the clean
example scans and does not contain any measure of a misalignment error which also arises during
the fitting process. Thus, the simplest way of determining a good value for σ2 is to empirically
estimate it.

To estimate the value, a few good fits were gathered and fitted with an independent prod-
uct likelihood (3.23) using a suitable background model (see below). The color variance of the
Gaussian color model to fit was set to σ2 = 0.052. This value is slightly below the RMS recon-
struction error on the color model itself (see Table 3.3) and the usage of the product likelihood
has a very strong optimization effect (see Section 4.6). Such a run is thus expected to behave
like a traditional optimization, heading towards the best possible explanation in terms of a MAP
estimate.

The rendered MAP estimate of the fit and the target image were then compared pixel-wise
and the average squared deviation 1

N

∑N
i=1‖cT,i − ci (θ)‖2 taken as the estimator of the Gaussian

noise variance per pixel, resulting in σ2 = 0.0722. The estimated value is larger than the PPCA
model noise.

The parameters of the exponential and the Cauchy likelihood models have been estimated
very similarly but using the appropriate estimator suitable to the model used. For the Cauchy
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Table 3.5: Small displacements can be used to crudely estimate misalignment errors per pixel.
The experiment has been conducted for the test image ws 13. The landmarks displacement of 5.7
pixels is the standard parameter of the landmarks likelihood and corresponds to values attained
in very good fits. √

〈d2
LM〉 [pixels] 0 3 4.2 5.7 11.3√
〈d2〉 0.072 0.086 0.087 0.09 0.10

distribution, this is half of the inter-quartile range in place of the standard estimator above. In
the standard application, only Gaussian color likelihoods or the CLT likelihood are employed.

The color likelihood models (3.17), (3.18), (3.19) are evaluated with respect to their noise
assumptions. To do so, a clean target image was superimposed with artificial color noise of the
three different types. The noises have been applied in minimal strength with a variance of the
PPCA color model and an estimated noise strength as described above. The three noise models
are used to fit each of the target images.

As a result, the Gaussian and exponential noise assumptions are interchangeable. The heavy-
tail Cauchy noise can only be fitted with the Cauchy likelihood, the other two likelihoods fail.
This is also true for the CLT likelihood which builds on the fact that individual pixel differences
are of finite variance, which is violated with Cauchy noise.

A conceptual estimation of the order of magnitude of misalignment errors can be done using
small pose and shape perturbations of the good fitting result used above. The perturbations
were chosen to lead to a fixed average landmarks displacement error

√
〈d2

LM〉. For a few different
displacement errors, the estimation results of the average squared image difference is listed in
Table 3.5.

Background Model

The effects of not integrating a background model have been demonstrated in Section 3.3.3. But
the question of how to choose the background model remains.

The most simple background model is to use a static constant likelihood value of being
background LBG (cT) = CBG (uniform distribution). The value has to be chosen to respect
typical deviations between the image and the model which are still acceptable for foreground.
This implicit background model is completely defined by the foreground model itself and only
rescales it to be compatible with ignoring background pixels.

A proper estimation of a suitable background value is very difficult given the lack of ground
truth data. Drawing a few masks by hand would be possible, but an additional complication
arises due to the use of a face mask in the model. The front and throat of the head are excluded
from the model but mostly show a very similar appearance than the inner face. Drawing the
exact mask the face model uses is very difficult.

The value used in practice has been estimated using a very crude initial estimate and vali-
dating and modifying the value with respect to the face model behavior in terms of shrinking. In
practice, this is a parameter to adapt to the problem. A practical choice of a background value
resulted in CBG = LFG (c (θ)− cT = 0.13). Beyond the color difference of 0.13, the likelihood
value of the foreground model is not truncated in any way, but the background model becomes
more likely for this pixel. Not all pixels can easily change to being background. Pixels within
the face have almost no possibility of changing the class since only pixels outside the current face
rendering are considered background. An extension of this rule is proposed as a possible model
extension in section Section 7.1 to implement an outlier mask.
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Figure 3.6: Histogram of difference values in the foreground and background regimes, for the
single image ws 13 using a good fit.

The exact background value is not critical for the model to work. The evaluations in Chapter 6
include three different background models, based on break-even differences of 0.1, 0.13 and 0.15,
they all perform similarly.

A crude estimation, based on a hand-drawn foreground mask on the standard image ws 13 as
ground truth, shows a break-even point between foreground and background somewhere around
a difference of 0.14, see Figure 3.6. This is consistent with the choice in the standard setup
above.

Collective Likelihood

The collective likelihood model (3.27) has two parameters to estimate, the average squared
difference per pixel σ2 and the variance of it within the image. The average squared difference
per pixel is straight-forward to estimate and results to σ2 = 0.0722 per pixel. The variance of
the squared differences is estimated from all the pixel differences of an image, averaged over all
images. The variance becomes 2.46×10−4 or 9.2 in relative units. These two values are sufficient,
there is no background model needed.

The empirical estimation of the variance tends to be a bit unstable as it contains few large
deviation values and includes any systematic differences between images. But the exact value
of the variance is not extremely important, a value of 2, derived from a χ2 assumption leads to
similar results as the empirical estimation in the range 6–9.
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Chapter 4

Sampling for Inference

4.1 Inference for Fitting

The probabilistic model above can now be used in a Bayesian sense, which turns the fitting
problem of finding good face explanations for a given image into an inference problem. The
simple Bayes rule states how to obtain the posterior from the prior P0 and the likelihood model
P (I | θ):

P (θ | I) =
P (I | θ) P0 (θ)

P (I)
(4.1)

P (I) =

∫
dθP (I | θ) P0 (θ) . (4.2)

This approach is different from the traditional optimization of a cost function. There is now
a concept rating individual explanations probabilistically, assigning a comparable probability
value to each possible explanation of the observed image. Ideally, this gives a complete answer
as to what explanations are suited to explain the image and can thus also provide a measure
of certainty of an individual specific parameter set. To achieve such a sophisticated answer to
the image explanation problem, an analytic form of the posterior is necessary which can then be
analyzed in detail.

An inference process not only is the proper way to deal with probabilistic models, it also opens
the fitting process for integration of various different sources of information. Methods which have
a probabilistic representation can be systematically combined respecting uncertainties.

Proper posterior models can be very useful in many applications, also for a 3DMM where
they have been studied for statistical shape models only [Albrecht et al., 2013]. But to be useful
as a PPCA posterior model, a registration between observed data and the model is necessary.
If this process is included into the analysis, then called fitting, the closed analytical form is lost
and already with three dimensional shapes exact inference becomes impossible [Albrecht and
Vetter, 2012]. The problems which arise are exemplaric also for the face image explanation. The
missing alignment is even worse, as the rendering function with perspective projection and self-
occlusion is more complicated. The appearance model necessary to reproduce images, including
illumination, makes the inference even more problematic.

In the case of face image explanation with a 3DMM, tractable exact and analytic inference
is not feasible. The arbitrary image presented and the high and involved dimensionality of the
problem render it highly complex and non-analytic. The inference can thus only be approximate.

37



4.1. INFERENCE FOR FITTING

Approximate inference mainly follows two lines of thought. Variational methods try to analyt-
ically approximate the model with tractable simplifications, whereas sampling methods simulate
the model and form a discrete approximate representation in the form of samples from the
posterior distribution.

There are further constraints on the inference process. The inference method has to be
able to handle unnormalized posterior distributions since the normalization constant (4.2) is not
analytically tractable. The missing normalization makes the integration goal a bit more difficult
to achieve. The direct combination of multiple methods in a probabilistic context requires each
distribution to be properly normalized as they need to be compared regarding their uncertainty.

This work deals with the adaption and evaluation of Markov Chain Monte Carlo Methods
which belong to sampling methods. The method is suitable to perform inference and is flexible
enough to integrate Bottom-Up knowledge in a variant of DDMCMC. The inference method is
presented in detail in Section 4.2.

4.1.1 Relation to Cost Function Optimization

The traditional cost function optimization methods for fitting the model to the image can also
be formulated within the probabilistic framework. There is a well-known correspondence be-
tween Maximum Likelihood estimation and cost function optimization or between Maximum-A-
Posteriori estimation and regularized optimization.

If the cost function is regarded as the negative logarithm of the likelihood then minimizing cost
is equivalent to maximizing likelihood. Very similarly, if the posterior distribution is maximized,
this corresponds to a regularized minimization of cost with the negative logarithm of the prior
distribution being the regularizing term. The normalizing evidence does not play any role in
optimization as it is constant with respect to the model parameters.

arg max
θ

P (θ | I) = arg min
θ

(− log P (θ | I)) (4.3)

− log P (θ | I) = − log L (θ; I)− log P (θ) + const (4.4)

The simple model of independent Gaussian noise on each pixel is thus equivalent to the sum
of squared differences cost function. The prior of the PPCA model becomes the standard squared
norm regularizer for the model coefficients:

− log P (θ | I) =− log
∏
i

N
(
IT,i
∣∣IM,i, σ

2
)

− logN (qS|0, I)N (qC|0, I) + const. (4.5)

=
1

2σ2

∑
i

‖IT,i − IM,i(θ)‖2 +
1

2
‖qS‖2 +

1

2
‖qC‖2 + const. (4.6)

The relation between a Bayesian MAP estimate and a classical cost function optimization can
motivate the choice of the likelihood. All the introduced color likelihood models in Section 3.3.1
have well-known corresponding cost functions. Changing from a cost function to a probabilistic
likelihood can bring further insights, such as a clearer interpretation of involved parameters (e.g.
σ2 in (4.6)) with estimators at hand. A bit of care is necessary, especially around the constants
which arise from the normalization in the probabilistic formulation, they play an important role
in foreground and background modeling, see Section 3.3.3.
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4.2 Markov Chain Monte Carlo Methods

Sampling methods form a class of approximate inference methods which aim at simulating the
desired distribution through a discrete representation as a set of samples. The samples are values
drawn from the posterior distribution of interest. Sampling methods are well suited for general
inference if the required computational resources are available and a bit of adaption effort can
be expended. Sampling methods and also MCMC are standard since many years, details can be
found in any text book about the subject, e.g. [Robert and Casella, 2004; Bishop, 2006].

Sampling methods are often employed in cases where a tunable approximation quality is
necessary. A good sampling method converges to the exact result in the infinite sample limit
whereas analytic approximations provide a bounded approximation only. Thus, computational
resources can directly map to approximation quality.

A very strong point in favor of Monte Carlo methods in general is the variance of estimators
on a set of samples. A general case is to estimate the expectation of a function f(x) when
x is distributed with probability density p(x). The simple estimator of the sample average

f̂ = 1
N

∑N
i=1 f (xi) , xi ∼ p(x) converges to the real expectation in the large sample limit

and its variance depends only on the variance of f and the number of samples used in the

estimate, V
[
f̂
]
≈ 1

N V [f ]. Notably, it is independent of the dimensionality of x. As most other

systematic and deterministic methods of evaluating integrals have an exponential dependence
on the dimensionality (“curse of dimensionality”), this property is quite appealing and led to
a spreading of the methods beyond probabilistic applications into domains where integrals in
many dimensions need to be evaluated [Robert and Casella, 2004].

Though sampling methods are very general and can in principle be applied to any inference
problem, they need to be adapted to the specific situation at hand to achieve at least a decent
efficiency and to keep up with the expectations in terms of independence on dimensionality.

Markov Chain Monte Carlo algorithms are a special class of sampling methods which con-
struct a Markov Chain with the target distribution as equilibrium distribution and then draw
samples from the chain. By making the current sample depend on the last one, the MCMC
methods can adapt to the target distribution.

Many estimators based on samples assume independent samples from a distribution. One
of the weaknesses of MCMC methods is the generation of dependent samples which leads to a
higher amount of required samples to achieve the same quality of the estimation as with state-free
samplers. But as for complicated distributions even an approximative sampling is only possible
with adaption of the sampler, MCMC methods are very popular among sampling methods.

A detailed overview on MCMC methods for Machine Learning applications is provided in
[Andrieu et al., 2003] as well as in text books [Robert and Casella, 2004], specifically on practical
MCMC methods there is the classic title [Gilks et al., 1996].

The difficulty in constructing good MCMC methods lies in the production of useful samples
with a low serial correlation and to actually sample from the target distribution. This is to
construct the Markov chain such that it can reach its equilibrium distribution as fast as possible.
The property of the Markov Chain to attain its equilibrium distribution from an arbitrary state
is called mixing. It determines how fast the chain “forgets” about the current state and can
produce a next sample which is (almost) independent of the current state. There is a lot of
theoretical work about mixing times but there are no directly applicable results, as the Markov
Chain adapts to the target distribution, the mixing needs to be analyzed for each application
which is prohibitive.
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4.2.1 The Metropolis-Hastings Algorithm

The Metropolis-Hastings algorithm [Metropolis et al., 1953; Hastings, 1970; Chib and Greenberg,
1995] is a MCMC method. It provides samples form an almost arbitrary probability distribution.
It does so by constructing a Markov Chain with a user-defined, steerable stationary distribution.
Drawing samples from this chain, once it equilibrated, then draws samples from the stationary
distribution, which is the desired probability distribution.

The algorithm works by turning samples from a proposal distribution, which can be sampled
easily, into samples from the target distribution. The transformation is the result of a simple
filtering criterion accepting or rejecting proposed samples. The filtering step needs only a point-
wise evaluation of the target distribution P (θ ). Contrary to importance sampling, the proposal
distribution might depend on the current sample and propose a relative move. The proposal
distribution is usually denoted Q (θ ′ | θ ), describing a probability of proposing θ ′ depending on
the current sample θ . The algorithm accepts a new sample θ ′ with probability

p = min

{
1,

P (θ′) Q (θ | θ′)
P (θ ) Q (θ′ | θ )

}
. (4.7)

On rejection, the previous sample θ is kept as the new sample. The filter leads to the Markov
transition kernel

k (θ′ ← θ ) = Q (θ′ | θ )

(
1 ∧ P (θ′) Q (θ | θ′)

P (θ ) Q (θ′ | θ )

)
+ (1− r (θ )) δ (θ′ − θ ) (4.8)

with

r (θ ) =

∫
Q (θ′ | θ )

(
1 ∧ P (θ′) Q (θ | θ′)

P (θ ) Q (θ′ | θ )

)
dθ′,

where 1 ∧ f = min {1, f}.
The target distribution P (θ ) fulfills the detailed balance condition

k (θ′ ← θ ) P (θ ) = k (θ ← θ′) P (θ′) (4.9)

and therefore is a stationary distribution of the Markov Chain.
The requirements for Q are not strong. The possible sample space of θ needs to be visitable,

the proposal distribution must have a non-zero probability to reach every possible θ′ after a
finite number of steps (“ergodicity”). Further, it must hold that Q (θ′ | θ ) = 0 if and only if
Q (θ | θ′) = 0.

The algorithm has only loose requirements for proposal distributions, but it still works best
if the proposal distribution is already as close as possible to the target distribution. The further
off Q is from P , the stronger is the serial correlation among the samples. The algorithm provides
unbiased but correlated samples.

As a MCMC method, it needs time to equilibrate. This phase is called a “burn-in” period
where the samples do not reflect the target distribution but only a transient approximation to
it, if the starting point has not been sampled from the target distribution already. In this phase,
the distribution of the samples depends on the starting location and the “burn-in” ends when the
chain is said to have forgotten its starting condition. The detection of this transition is a very
hard problem and can only be reliably solved for few target distributions, see Exact Sampling
[Propp and Wilson, 1996].

For easier notation, the Metropolis-Hastings algorithm with proposal distribution Q and
target distribution P is symbolized as MH (Q, P).
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4.2.2 The Metropolis-Hastings Fitter

The Metropolis-Hastings algorithm is a formalization of a propose-and-verify procedure. The
propose-and-verify architecture is well-suited to accommodate different methods in one frame-
work and use a complex model as a validator and interpreter instance. The complex model is
of the generative type and thus validates by active reconstruction. The architecture is also close
to standard fitting methods which use iterative optimization and thus simplifies the practical
integration task.

The posterior distribution (4.1) is a valid target for the Metropolis-Hastings algorithm which
is setup as the inference method to solve the face fitting problem. The filtering step of the
algorithm is used to shape different proposal distributions into the targeted posterior distribution.
Everything which needs to be integrated into the fitting process has to be stated as a proposal
distribution, proposing parameter values as an image explanation. The model verification step,
implemented by the Metropolis filter, selects those proposals which are consistent with the prior
model assumptions and the image while rejecting the unwanted noisy ones. Every change of the
current parameter vector will only be assigned the status of a proposal which has to be verified
by the model to become a sample. As a sampling algorithm, the algorithm collects possible
explanations with respect to their probability at the end.

The proposal distribution has to be easy to sample from. The posterior distribution, as the
target, has to provide point-wise evaluation. The image likelihood is evaluated by rendering the
model instance and calculating the desired likelihood value as described in detail in Section 3.3.
The evaluation takes some time, depending on the size of the rendering problem. It is very fast
for locations only and takes more time to raster a complete image1.

The adaption of the Metropolis-Hastings algorithm to a specific problem lies within the choice
of the proposal distribution, all other parts of the algorithm are fixed after the selection of the
target distribution. As in most applications of the Metropolis-Hastings algorithm, random walk
proposals form the basic proposal distribution. Due to the high-dimensional and complex nature
of the 3DMM fitting problem, these proposals need a careful design to be useful. The choices
made in this respect are detailed in Section 4.3. The relation and integration of optimization
methods into this framework are explored in Section 4.4. The possibilities and hooks of in-
tegration of different sources of information, especially Bottom-Up methods, are studied and
implemented in Chapter 5.

However, as the problem deals with a very high dimensional and complex parameter space,
the algorithm can not be expected to draw perfect samples from the posterior after a reasonable
amount of time. This will only be true in the fairly theoretical limiting case for very many sam-
ples. Especially, the exploration of different modes, which are separated by large low probability
regions, takes a long time in MCMC samplers. In this work, the main goal of the sampling
framework is to serve as a unifying and formalized propose-and-verify back-end. In this view,
the basic accept/reject strategy of the Metropolis-Hastings algorithm is well-suited to deal with
many different sources of noisy information, stated in the form of individual proposal distribu-
tions. The sampling algorithm is able to transform almost any proposal distribution, ranging
from simple random walks over image-based heuristics to full gradient-based fitting steps, into
the posterior distribution and thus offers a complete integrative framework for many different ap-
proaches to face image interpretation. A new method can be integrated simply by implementing
it as a proposal distribution, directly generating samples in the parameter space.

This application of the Metropolis-Hastings algorithm in the context of DDMCMC removes
the necessity to integrate new methods in an individual ad-hoc fashion of usually only local
applicability. The clean interpretation might only be mathematically solid in the impractical

1The Morphable Model can produce roughly 5 images per second on current consumer hardware.
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long-run limit, but it still provides a useful integrative concept already with practically realistic
runtime.

In my opinion, it is preferable to use a conceptually clear method, guided by an ideal, but
with necessary practical compromises, than ad-hoc methods of only practical relevance. The
ideal might not be reached in mathematical strictness but still serves as a nice conceptual anchor
and orientation for any real implementation.

A thorough mathematical analysis of the method including theorems about convergence speed
and sample quality is thus omitted and replaced by an empirical evaluation. Many of the pub-
lished methods can not be used anyway, since they are only applicable to much simpler problems
or to comparatively large problems only if they have a very regular structure such as Markov
Random Fields.

In many applications, an optimal face explanation is still desired. In these cases, a MAP
inference is sufficient and the probabilistically strict interpretation of the posterior sampling is
not necessary. The Metropolis-Hastings algorithm then turns into a unifying stochastic global
optimizer with the advantage of being less prone to local optima than traditional optimizers.
The parameter space of the model is too large to do a full global optimization. The model would
have to be fitted to every location in the image, which is prohibitively complex. To get the MAP
estimate, the sample with the highest probability rating so far is selected as the single estimate.
But one should be careful since sampling algorithms provide samples from a distribution. If the
probability density has only a small probability mass around the maximum value, the probability
of actually retrieving the mode as a sample becomes small.

An advantage of the algorithm, especially in the MAP inference setting, is the adaptation to
available resources. Running the sampler for a longer time leads a higher probability of actually
visiting the optimal solution or leads to more samples which are distributed according to the
posterior distribution. Stopping the algorithm early might already provide results which are
good enough.

4.3 Random Walks

A random walk is the stochastic motion through space as the result of only taking steps with
stochastically selected directions. A random walk explores space without any directional prefer-
ences. Typically, distance traveled from the origin after N steps grows as

√
N . Random walks

led to one of the first polynomial-time algorithms to estimate the volume of a convex body in n
dimensions [Dyer et al., 1989].

Random walks are among the simplest and most used proposal densities for the Metropolis-
Hastings algorithm. Typical random walks result from using an isotropic Gaussian proposal
density, centered at the current sample. Such a density is locally very simple to evaluate and
to sample from. But it also adapts to the target density as it is always relative to the current
sample,

Q (θ′ | θ) = N
(
θ′
∣∣θ, σ2Id

)
. (4.10)

The simple Gaussian random walk is also symmetric Q (θ′ | θ) = Q (θ | θ′), which removes
the necessity of the proposal transition ratio correction in (4.7).

The undirected space exploration of the random walk is converted into a directed and biased
process by the acceptance/rejection filter of the Metropolis-Hastings algorithm.

The simple isotropic structure of (4.10) is only suited for very simple problems which also
show a rather isotropic structure. Problems with many variables of different scaling, and even
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correlations among the variables, can not be solved efficiently by (4.10). They need more elabo-
rate proposals. In each case, the step size or scale σ of the random walk needs to be adapted to
the problem.

The Metropolis-Hastings algorithm can display two typical failure cases due to unsuited
proposal distributions, both resulting in slow mixing and high correlation among the generated
samples. If the random walk takes steps which are very small compared to the typical scale
of change of the target distribution, the space exploration suffers, most samples lie in the same
region and are very similar. In this case, most proposals are accepted as the target density’s value
does not change much between different proposals. The second case of failure arises when too
many proposals are rejected, which is typically the consequence of using a proposal distribution
which steps away too far. Samples are thus the same for a long time as no new ones are accepted.

From a robust integration point of view, random walk proposals are very interesting. They
are a perfect prototype of a completely unreliable method, proposing totally uninformed. If
the algorithm can deal with them without being disrupted, it should also do with Bottom-Up
methods which give useful results most of the time and only fail sometimes.

4.3.1 Mixture Distributions

To fit the probabilistic 3DMM with its many different parameters, a simple isotropic random
walk is not enough. To accommodate the different roles and scales of individual parameters, a
large mixture of random walk proposals is used instead.

There are two strategies to achieve mixtures of proposals. The most common method is to use
a mixture of Metropolis-Hastings kernels (4.8) in the Markov Chain. The total kernel is composed
of multiple independent kernels, either selected randomly or in sequence. This combination is
valid if all the individual kernels have the same target distribution as their stationary equilibrium
distribution. It is even proper to have block kernels which can not reach all states individually
but only in conjunction [Tierney, 1994; Chib and Greenberg, 1995]. Block kernels only adapt a
part of all the variables. Working with a kernel mixture is easy since only one kernel and one
acceptance/rejection rule is valid at any time while the other kernels can be ignored.

A mixture distribution as proposal distribution is able to combine many proposals in one
distribution. The combination in a single proposal density tends to complicate the proposal
distribution which can be especially problematic when evaluating transition ratio corrections.
The advantage of the mixture distribution is the ability to combine methods which would not lead
to a valid kernel on their own but only in combination with other methods, e.g. an optimization
algorithm combined with random walks.

For a mixture distribution Q =
∑
i λiQi (

∑
i λi = 1), the transition ratio correction is more

difficult to compute since it involves all mixture components

Q (θ | θ′)
Q (θ′ | θ)

=

∑
i λiQi (θ | θ′)∑
j λjQj (θ′ | θ)

. (4.11)

The main mixture structure chosen here is similar to a Block-Metropolis algorithm but com-
bines different proposals in one big mixture distribution. The individual blocks also do not have
a strict separation between variable blocks, multiple blocks can modify the same variables.

The proposals separate along two axes. First, there are logical model blocks implementing
different parts of the 3DMM, such as the camera and illumination. Second, there are proposals
with different step sizes since a single Gaussian proposal density is a bit too restrictive. The
probability of larger moves is too small in a single Gaussian which is aimed at exploring locally.
Occasional large jumps are desired.
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The relative mixture weights and scales are still selected by hand to make sense with respect
to meaning of the parameters in the model and to achieve an acceptance ratio between 0.1 and
0.5.

4.3.2 Sub-Model Proposals

The 3DMM naturally splits into different “sub-models”, the camera, the illumination and shape
and color of the face. The proposals are structured to respect these different models. There are
proposals changing the camera part only as well as shape proposals and so on.

Inside a block, the standard proposal consists of a combined proposal of random perturbations
of the individual parameters, each with a suitable step size, e.g.

QCamera (θ′ | θ) = N
(
ϕ′
∣∣ϕ, σ2

ϕ

)
N
(
ψ′
∣∣ψ, σ2

ψ

)
N
(
ϕ′
∣∣ϕ, σ2

ϕ

)
· · · (4.12)

QShape (θ′ | θ) = N
(
q′S
∣∣qS, σ

2
SI
)
. (4.13)

The proposals for color QColor are identical to the shape proposals and the illumination is
introduced later. The total proposal distribution is a mixture of all these proposals

Q (θ′ | θ) = λMQCamera + λIQIllum + λSQShape + λCQColor, (4.14)

with λM + λI + λS + λC = 1.
The step size of the proposal is adapted to each parameter individually to give a meaningful

perturbation. A meaningful perturbation is mainly determined by hand and experience with the
goal of reaching an acceptance ratio of ≈ 0.5.

Algorithmically, an online adaptation of the step size would be easily feasible. But such a
dependency on the history of the run destroys the Markov properties, the proposal may depend
on the current state only. The standard theorems of MCMC about convergence needed to be
proved individually for each specific case of a history dependency, which is not desired and thus
dropped. If one aims for stochastic optimization only, the option of online adaption should be
kept in mind as strict results are not needed there and an adaption might make the algorithm
adapt to the current phase of fitting2.

Illumination. The illumination parameters are mostly determined by an explicit least-squares
solution of the linear system (3.5), as proposed in [Zivanov et al., 2013], to directly find the
optimal illumination conditions for any fixed geometry.

The illumination part is too dominant and can only be changed with very small variance or
the proposals get rejected. An illumination proposal which updates the illumination parameters
to their optimal values proved to be the best method to get rid of the illumination domination.
Through the regular adaption of the illumination parameters, those values change in accordance
with the other model parameters. The selection of a random subset of all vertices in the face,
maximally 1 000 of 25 000 are used, leads to a noisy estimation of the optimal illumination
parameters and thus introduces a small stochastic variance into the illumination proposal. The
resulting variance of the illumination parameters is always adapted to the problem.

This procedure is similar to the original stochastic gradient descent algorithm used to fit
the 3DMM but only applied to the Spherical Harmonics illumination parameters. And, it is
integrated into the sampling algorithm just as one part of many others. An additional standard
Gaussian random perturbation of the illumination parameters usually gets rejected and even for
the optimized parameters, the rejection rate is rather high, compared to other proposals.

2The needs in terms of step size are rather different far away from a good parameter value than close to the
mode of the distribution.
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Table 4.1: Evaluation of mixture proposals versus combined proposal distributions using the
Standard Experiment from Section 6.1. The letters correspond to the model blocks camera
(c), shape (s), color (t) and illumination (l). The operators build a combination in a common
block (·) or a mixture (+). rS is the success rate, rA is the acceptance ratio, dRMS the average
RMS distance per pixel between target and MAP estimate and TB is the minimal burn-in time
estimate.

Run rS rA dRMS TB

c · s · t · l 0.77 0.0064 0.082 9480
c · s + t · l 0.82 0.039 0.079 6500
c · s + t + l 0.83 0.18 0.077 4350
c + s + t + l 0.87 0.25 0.077 3500
c0 + c1 + . . . + c9 + s + t + l 0.92 0.31 0.077 3260

Evaluation. To evaluate the potential of mixed or combined proposals, an experiment with
combinations was performed. Combinations are expected to work less well than mixtures, espe-
cially between model blocks. The same run has been performed with different choices of mixtures
or combinations between blocks and variables.

The results are evaluated with respect to the average acceptance ratio, the final RMS dif-
ference to the target of the MAP estimate and the burn-in time, see Table 4.1. Estimating the
burn-in time in general is very hard. To have at least a comparable guess, the first drop below
0 in the 100 sample average probability change is used as a very crude lower bound estimate.
More details about the quantities used to evaluate and compare runs can be found in Chapter 6.

The number of samples is not directly comparable between the runs. Mixture distributions
need multiple samples to change each variable once while combinations change all variables at
once. The “sweep” over all mixture components must be completed to give one effective sample
with a mixture distribution proposal. But the evaluation effort of a single proposal is always
the same, no matter how many dimensions of θ have changed. An image rendering and the
calculation of the image likelihood is always necessary. Since there are many dimensions in θ
this can become very ineffective for mixtures. Especially at danger are the many shape and color
parameters. But the shape and the color models are both PPCA models which are decorrelated
by construction, at least with respect to the shapes and colors of faces in three dimensions. The
target image might reintroduce correlations but to use these variables in a block form is still
justified and far more efficient than splitting both into 100 individual proposals. It is therefore
not studied how a complete mixture including all of the almost 150 parameters behaves. In
practice, the last line in Table 4.1 is used as the standard proposal distribution.

4.3.3 Scale Variance

To explore both, a local neighborhood and a global parameter space, the random walks are
mixtures over scales as well. Each normal proposal in (4.12) is replaced by a mixture of proposals
on three different scales, ranging from broad to narrow exploration. The individual scales are
called “coarse” (C), “intermediate” (I) and “fine” (F). The proposals for ϕ change to

N
(
ϕ′
∣∣ϕ, σ2

ϕ

)
→ λC N

(
ϕ′
∣∣ϕ, σ2

ϕ,C

)
+ λI N

(
ϕ′
∣∣ϕ, σ2

ϕ,I

)
+ λF N

(
ϕ′
∣∣ϕ, σ2

ϕ,F

)
. (4.15)

The goal of the mixture over scales is to use the same proposals during burn-in as for the real
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Figure 4.1: The run with a single optimized step size performs better than the run with a mixture
of three step size on the simple test image ws 13.

sampling steps and also with different target distributions arising due to different likelihoods and
different target images. A mixture over ranges is expected to deal with the variability best. The
implementation should also be reusable, as such, a mixture of Gaussians is better suited than
individually setup single distributions. The mixtures can be built by simple composition.

The larger scales are expected to lead to a faster burn-in whereas the narrower proposals are
used later in the actual fitting process. The very narrow proposals are only useful for local detail
fitting. The broad components lead to larger jumps now and then, even in the detailed fitting
phase and can thus change between modes not too far away.

Evaluation. The combination in a scaling mixture rather than a single step size needs to be
evaluated. To do so, the step sizes of the camera, the shape and the color model are all changed
to a single step size. The single step size run performed comparatively well, even better in terms
of image residuals and in the landmarks-only run. The use of multiply sized proposals is thus
unnecessary in most runs. But it removes the necessity to fine-tune the proposals with respect
to specific images, see the long runs in Section 4.6. Adapted single step sizes are more efficient
than mixtures.

4.3.4 Correlation

Some parameters of the 3DMM are related by rather complex relations. MCMC algorithms are
known to be susceptible to correlated dimensions and react by poor performance. To rule out
the most prominent of these connections, special proposals are introduced which do not blindly
modify parameter values but do so with respect to relations among them. The parameters are
known to generate images in high correlation or anti-correlation but the exact degree of depen-
dence is a property of the target distribution and thus dependent on the target image through
the image likelihood. It can not be perfectly known in advance. Thus, a global decorrelation
of proposals can only be approximate. But, as empirical validation shows, this brings a strong
benefit.

The demonstrated correlation compensations below are all introduced by manual design.
Automatic decorrelation, making use of the generative nature of the model, is also proposed as
a possible extension of the sampling scheme in Section 7.2.
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Figure 4.2: The yaw rotation induces a translation (left) which is corrected with the explicit
compensation using the left outer eye corner in this case (right).

Rotation and Translation. In the image projection, the spatial rotations R also add a global
translation component since all the points on the face surface are at a considerable distance from
the origin at the atlas. Moving the face away lowers the acceptance probability of rotation
moves unacceptably. Thus a correction is needed, see Figure 4.2. The correction with respect to
selected key points is more promising than removing the mean translation since the key points
are visually salient and might already be aligned.

Geometrically, a rotation around an axis through the selected key point would be the cleanest
way of keeping the point fixed. But the simplest way of correction is to perform an actual rotation
around the origin, calculate the distance moved by the key point and shift back the model by this
amount, all in the image plane. Such an empirical compensation move comes with the advantage
of being applicable to compensate other proposals with an unwanted translation side-effect. For
example, the three dimensional translation T also leads to a shift in the image plane. The effect
is desired when the face should be displaced but a side-effect for a side-view situation, where the
face is shifted towards the periphery of the field of view of the camera but kept in the center
of the image3. The same translation compensation can be used to sample through side-view
situations.

Distance and Scaling. In a perspective projection camera model, the distance from the
camera center tz and the image plane scaling f have a similar effect on the apparent size of
the resulting image. The effects are not identical, especially not close to the camera where
perspective effects become strong. Nevertheless, scaling and distance are still strongly correlated.
The compensation can be done analytically, using the camera model of perspective projection.
The projection (3.3) contains the ratio f/z where z is the distance from the camera center. To
compensate for the scaling of a distance change δz, the ratio should be kept constant by adjusting
the image plane scaling to f ′ such that

f

z
=

f ′

z + δz
⇒ f ′

f
=
z + δz
z

. (4.16)

3This is not achievable by a simple lens but can occur in practice as the result of cropping faces from larger
photographs.
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Table 4.2: Evaluation of decorrelation proposals. The runs are performed with either all decor-
relations in place or without the respective correction (‘-’). The upper half is performed on the
landmarks likelihood only, with user-defined landmarks positions, the lower half uses the image
likelihood. All values are averages over the Standard Experiment in Section 6.1. rS is the success
rate, dRMS the average RMS distance of target and MAP estimate, TB the burn-in estimator and
rA is the average acceptance ratio.

Run rS rA dRMS TB

All (Landmarks) 0.99 0.41 5.9 1700
- Rotation & Translation 0.88 0.23 8.6 3300
- Distance & Scaling 0.95 0.37 5.9 1800
- both 0.88 0.23 8.6 3600
All (Image) 0.92 0.31 0.077 3260
- Rotation & Translation 0.63 0.19 0.089 7480
- Distance & Scaling 0.94 0.31 0.077 3080
- both 0.65 0.19 0.090 7760

A scaling-compensated perspective change leads to a disturbing effect called “dolly zoom”,
popularized by the film “Vertigo” by the great filmmaker Alfred Hitchcock.

Scaling and Shape. The first component of the shape model is mostly a scaling of the face.
The effect is very similar to a image plane scaling or a distance change. To compensate, an
explicit scaling correction can be applied. The distance in the image between two selected points
on the face is corrected with the camera scaling (focal length), similar to the rotation/translation
compensation.

This correction is only necessary in very long runs where the actual distribution of the shape
parameter is of interest. In short runs, there is hardly a difference to observe. All the correlation
corrections become important mainly for the long term runs aiming at a few independent samples.

To still allow a change of any compensated side-effect, corrected proposals are mixed with
uncorrected proposals.

Evaluation. The correlated proposals proved to be helpful. A comparison of runs with and
without the decorrelations shows some differences, Table 4.2. The biggest difference is not listed,
the poses of the profile views were consistently unreachable without the rotation/translation
compensation. The decoupling of scaling and distance seems to be unnecessary or even very
slightly harmful in the image likelihood case. The results presented are averaged over the Stan-
dard Experiment from Section 6.1. The effects of correcting size changes when changing shape
lead to a strong reduction of the sequential autocorrelation time of the samples, observable in
the analysis of a very long run at the end of this chapter in Figure 4.8.

4.4 Optimization

There are many efficient optimization methods available to fit models to images. If optimization
is the goal, it would be a waste to ignore them. The proposed method should be able to integrate
those as well.

The previous fitting algorithms can be reproduced in the MCMC framework. The strict
probabilistic interpretation becomes questionable if the integration is not carried out with great
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care. But the main application as optimizer is relatively unproblematic. The usage of optimiz-
ers within this stochastic framework comes with the advantage of changing the behavior from
sampling to more focused optimization while keeping the exploratory global behavior of the sam-
pling algorithm. It seems thus worthwhile to investigate the inclusion of deterministic proposals
despite the probabilistic difficulties introduced by them.

4.4.1 Deterministic Proposals

A deterministic proposal always proposes the same move, given the same starting point. An
ideal optimization algorithm or a perfect gradient step are examples of deterministic moves.
Deterministic proposals are somewhat incompatible with the idea of the Metropolis-Hastings
algorithm. They are not random and certainly can not produce random samples. To still
randomly explore the state space, they need to be combined with real stochastic moves.

If the algorithm is used only as an integrative framework for combining different moves to
find modes of the distribution, the inclusion of deterministic proposals is uncritical. The direct
use of the isolated deterministic proposal does not lead to a useful transition kernel with the
desired target distribution. At least, a combination with stochastic moves is necessary. A
mathematically clean and strict combination of determinism and noise is not easy to achieve,
the proper transition ratios become hard to calculate since a kernel mixture is not possible.

A better possibility to get a mathematically strict sampling algorithm is to use a sampling
algorithm which is explicitly designed to make use of gradient information. There are two main
variants, the simple Langevin algorithm [Stramer and Tweedie, 1999a,b] which actually combines
the gradient moves with random walks, and the more sophisticated and more efficient Hamilton
Monte Carlo (HMC) method [Duane et al., 1987; MacKay, 2003]. The HMC employs gradient
information to make large moves with a high probability of acceptance, thus not using the
gradient to find the mode faster, but to explore the state space more efficiently. An application
of the HMC to include gradients is not considered here since this algorithm needs a lot of
gradient computations and in the context of the 3DMM, optimization is still the most used
fitting application.

If only the local mode is the desired outcome, the optimizers can be directly put into place
of proposals, with uncorrected transition ratios. This leads to a nice optimization algorithm
which then lacks the ability to accurately estimate properties other than the mode of the target
distribution. Depending on the used optimization proposal, the algorithm is as efficient as this
method. Additionally, it provides simple means to combine multiple optimizers in one algorithm
by using a mixture distribution as proposal generator. The combination is robust with respect to
noisy optimizers failing from time to time. The Metropolis filtering criterion is a stochastic type
of energy feedback. The ability to stochastically accept worse proposals and the combination
of different methods can make the resulting algorithm more robust with respect to local optima
than a single optimization algorithm.

From this point of view, the probabilistic algorithm transforms to a non-probabilistic but
still robust and useful one, within the same framework. The integration concept still holds in
this case, the deterministic methods can be combined in this framework with other sources of
information, such as the Bottom-Up methods presented in Chapter 5. So, different methods
can be understood within the same common concept. In this spirit, it is possible to reproduce
fitting results obtained before from within this framework and enrich them with components of
stochastic search.
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4.4.2 Gradients

Traditional gradient computation is difficult in the context of cost functions with a varying num-
ber of components, at least with respect to those parameters changing the number of foreground
pixels. To ease these difficulties, a numerical gradient computation is applied here. The gradients
are obtained from a finite difference (FD) calculation using the target function f , usually the
logarithm of the posterior. The FD calculation uses the symmetric central difference to estimate
the gradient along each dimension d

∇df (θd) =
f (θd + δd)− f (θd − δd)

2δd
. (4.17)

The total gradient vector ∇f (θ) consist of all the partial derivatives along each dimension.
The differences δd are adapted to each parameter individually. Choosing δd too small leads to
modifications with no change in the rendered image and therefore a zero gradient estimation. δd
is thus chosen to reflect small but still “finite” changes from a practical point of view.

A benefit of FD methods, compared to the analytical gradient, is a slight smoothing effect. In
place of a mathematically clean measure at a point, they calculate a slightly smoothed gradient
taking into account the surrounding of the current state. From a strict mathematical point
of view, this just corresponds to numerical inaccuracy or noise. But in a practical application
with an involved cost function, this can also be an advantage, yielding a somewhat less varying
gradient, especially if δd is still of a practical magnitude. The effect is important for the 3DMM
fitting, if the δd are made smaller, the optimization algorithms actually perform worse.

For a comparison, also part of the analytical gradients of [Knothe, 2009] are implemented.
But these could only be partially adopted since the originate from a slightly different setup.
The comparison of FD and analytical gradients clearly showed a better performance of the FD
gradient calculation in terms of the result but of course a worse performance in terms of speed4.

4.4.3 Optimization Algorithms

Together with a step size λ, the gradients can directly be used as deterministic proposals. This
leads to a gradient ascent algorithm with proposals Q (θ′ | θ) = δ (θ′ − λ∇f (θ)). These proposals
on their own do not lead to a probabilistic sampling behavior if fed to the Metropolis-Hastings
algorithm5. But they may well be used to find the local modes.

A line search algorithm is employed to find a good step size. It sets the step size to find a
local maximum along the gradient direction, within a limited range of possible step sizes. This
leads to the gradient ascent algorithm included in the comparison in the evaluation (Chapter 6).

The former fitting methods used with the 3DMM involved more sophisticated optimization
algorithms [Knothe, 2009; Romdhani et al., 2005b]. For comparison reasons, also the Limited
Broyden-Fletcher-Goldfarb-Shanno algorithm (L-BFGS) is included into the comparison of meth-
ods [Liu and Nocedal, 1989]. It is used with the exact same gradient computation as for the
gradient ascent algorithm. A full local optimization, using multiple iterations of the L-BFGS
algorithm, serves as a single proposal step

Q (θ′ | θ) = δ (θ′ − f∗ (θ)) , (4.18)

with f∗ the result of the application of L-BFGS from starting point θ.
The gradient ascent algorithm is formulated with its atomic steps as individual proposals,

therefore easily combinable with stochastic steps. The L-BFGS is used as a black box method,

4The actual results can be found together with other gradient evaluations in the evaluation Chapter 6
5They do not satisfy Q (θ′ | θ) = 0 iff Q (θ | θ′) = 0
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yielding a completely optimized proposal. It is not as easily combined with stochastic moves as
the gradient ascent part. There are concepts to integrate a boxed algorithm, as the L-BFGS,
with stochastic parts. But they are not applied and evaluated in the context of this work. The
most successful pattern stems from the field of global optimization and uses the box optimizer to
locally optimize a function while using the stochastic moves afterwards to “escape” the basin of
attraction of the current mode, Basin Hopping [Wales and Doye, 1997] or with more sophisticated
escape moves and feedback, Minima Hopping [Goedecker, 2004].

4.4.4 Optimization & Sampling

The use of the deterministic optimization proposals within the context of the Metropolis-Hastings
algorithm leads to a soft rejection algorithm. It lets worse proposals pass occasionally, similar to
Simulated Annealing but without the annealing [Kirkpatrick et al., 1983].

The algorithmic structure of propose-and-verify suits sampling and optimization algorithms
well. The two can be formulated and combined within this framework. But there are fundamental
differences between optimization and sampling.

A sampling algorithm strives to generate samples which are distributed according to a target
density, whereas a comparable optimization only tries to find the maximum value of this dis-
tribution. Thus, the sampler has to explore the complete distribution, at least where is has a
significant probability mass, and often produce samples from a similar region where the probabil-
ity mass is high. A good global optimizer has an exploratory component to find the globally best
solution but producing many iterations from a very similar region can be considered a waste.
These samples are not useful to the final result which only contains the best sample obtained.
The good optimization algorithm is mode-seeking and exploratory but not redundant. A sam-
pling algorithm has to be redundant and exploratory. A good global optimization method would
thus be a combination of the exploratory part of the sampler and the directed, non-redundant
parts of a local optimizer.

But despite these differences, sampling algorithms, especially MCMC methods, are often
used to perform global optimization for their exploratory component which is lacking in local
optimization methods. The use of MCMC methods can become especially handy if good gradients
are not available — or in this context, if information fusion is necessary.

If the goal is a practical application of a pure optimization setup, there is more work needed
than presented here to make the optimization efficient in the context of MCMC sampling. As an
example, consider the Minima Hopping algorithm [Goedecker, 2004] which is a good compromise
of local optimization, HMC for exploration and feedback mechanisms to suppress redundancy.

The inclusion of stochastic elements into the otherwise more or less deterministic gradient
ascent algorithm improved the performance of 3DMM model fitting, see Section 6.2.2. The
stochastic part seems to be of advantage in these highly involved parameter space. This is
consistent with the first algorithm used to fit a 3DMM, a stochastic gradient descent algorithm
in [Blanz and Vetter, 1999]. This algorithm arises naturally in the MCMC framework as a
combination of random walks and directed gradient moves.

4.5 Analytic Approximation

Variational Methods are a different class of approximative inference methods. They make use
of analytic rather than numerical approximations. Just to verify the sampling results, a very
simple analytic assumption is fit to the target distribution and its resulting variances compared
to the sampling results. Because of its very high computational load, this experiment has only
been conducted for the single image ws 13.
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The approximative model adapted to the target distribution is an independent Gaussian
distribution, a product of one-dimensional Normal distributions on each parameter

P (θ | I) ≈
∏
d

N
(
θd
∣∣µd, σ2

d

)
. (4.19)

This is an approximation, the real posterior is dependent among the individual parameters and
probably not Gaussian.

To fit such a model, an iterative estimation of the mean and variance of each of the parameters
is performed by a numerical integration, based on the distribution of the last iteration. For each
dimension d of the parameter vector θ, the new mean and new variance in iteration n + 1 are
estimated as

µn+1 =
1

W

2∑
i=−2

P (µn + iσn | I) (µn + iσn) (4.20)

σ2
n+1 =

1

W

2∑
i=−2

P (µn + iσn | I) (µn + iσn)
2 − µ2

n+1. (4.21)

The iterations are performed until convergence of the moments. The convergence of the
method is not proved here, but all practical applications did converge within a few 10 iterations,
with large basins of attraction (Figure 4.3).

The speed of the method is much lower due to the numerical integration per dimension. 10
iterations already need more than 10 000 image likelihood evaluations.

The variance estimates for the posterior distribution are comparable to those obtained from
the sampling runs, see Section 4.6.

4.6 Posterior Distribution

To obtain information about the posterior distribution, two very long sampling runs (106 samples)
have been performed on the image ws 13 (Figure 4.3) using both the CLT likelihood (sqclt) and
product likelihood (prod).

In terms of the target distribution value (“p-value”)6, the CLT run stabilizes much earlier
than the product likelihood, Figure 4.5. A visual analysis of the first shape parameter’s value
during the run shows a nice sampling behavior with the CLT likelihood but not for the product
likelihood which is too strict, Figure 4.6.

The posterior variances can be estimated using the second half of the run. Care has to be
taken with the prod run, it converged towards the end only, therefore the variance is probably
overestimated due to a systematic drift. The results of a few posterior variances clearly show
the difference in width of the two distributions. The sqclt leads to a width which seems more
appropriate to the problem than the very tiny variance of the peaked distribution resulting from
the prod run, Table 4.3.

For a comaprison, the results of the simple analytic approximation from Section 4.5 are
included, too. The analytic approximation yields comparable results with a few underestimations
where strong correlations can be expected, between the first shape model parameter and the
scaling, between the first color parameter and the illumination and the rotation angles of the
camera model. The analytic approximation cannot capture correlations by construction and can
thus not be expected to be fully useful when strong correlations are present.

6This is the logarithm of the unnormalized posterior value.
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Figure 4.3: The analytic approximation converged in a few steps from a large distance of the
optimum using image information only, no landmarks. The target image (top left), the initial
setup (top middle), after a few iterations (top right). The estimates of the mean on image ws 13

(bottom row) for the analytic approximation (bottom center) and the sampling run (bottom
right).
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Figure 4.4: Samples from the posterior distribution of ws 13, sqclt.

Table 4.3: Posterior standard deviations, extracted along a single parameter dimension. All
values are obtained from the same long run. The individual traces for some of the listed values
are plotted in Figure 4.6. “an” is the analytic approximation of Section 4.5 for comparison.

Shape Color Yaw Nick
[0] [24] [49] [0] [24] [49] [◦] [◦]

sqclt 0.18 0.40 0.46 0.33 0.45 0.59 0.30 0.69
prod <0.01 <0.01 <0.01 0.01 0.03 0.05 <0.01 <0.01
an 0.05 0.46 0.78 0.07 0.62 0.85 0.11 0.07

In a stability test, an increasing number of samples is used to estimate the averages or
variances, starting at half the run. The running estimates are included in the single dimension
plots in Figure 4.6, where they show a stable behavior towards the end of the run. The same
stability test for the RMS distances per pixel between model and target image are displayed in
Figure 4.7, where they show a very stable behavior.

Using the MCMC probabilistic fitter, the posterior distribution becomes accessible to extract
information. The likelihood has to be adapted, the CLT likelihood is clearly superior in this
respect. The standard independent product assumption is much too strict.

Changing the posterior width of the product likelihood could easily be done by changing the
variance of the color likelihood model. But doing so looses the justification of an empirically
estimated value and needs another rationale to come up with possible variance values7.

The accessibility of the posterior comes at the price of slow speed performance. To obtain
106 samples, more than two days of CPU time are necessary if only 5 images can be rendered
per second8.

The autocorrelation time of the samples in Figure 4.8 is about 20 000 for most dimensions, a
rather large number. With an autocorerlation of this size, roughly 200 000 samples are needed

7The estimation step should also not be taken too seriously, the problem is the independence assumption and
as such the model is not accurate anyway. A practically tuned variance value might do.

8A modern implementation using graphics hardware acceleration to render images should easily reach frame
rates of 100.
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Figure 4.5: The p-value stabilizes quickly for the CLT likelihood, the product likelihood optimizes
until the end.

to obtain only 10 independent samples. The compensation of shape changes and image scaling
is necessary. Without it, the first shape component, which is also a scaling to a high degree, is
too dependend for a practical use (Figure 4.8(b)). Also, the single step size setup, which is as
good as the step size mixture for shorter runs, becomes too coarse for at least the nick angle
and the first color parameter. The step sizes may be too large for the nick angle and too small
for the color parameter, leading to a acceptance rate which is too small or too high respectively,
see Figure 4.6. The mixture is thus slightly beneficial because it automatically adapts to the
current stage of fitting or sampling. The most efficient combination would be to separate the
two problems and use adapted step sizes.

A few samples of the posterior distribution using the CLT likelihood are displayed in Fig-
ure 4.4.

The quality of the posterior estimates remains an open point. Regarding the MCMC field of
research, there are a lot of methods published to diagnose MCMC runs and extract estimators
for the quality of estimators. But those methods are rather involved or need an analytically
more tractable problem (e.g. perfect sampling) [Robert and Casella, 2004]. The quality of the
posterior distribution obtained here is not the most important point in the face fitting context.
The quality has to be sufficient for the application at hand, which usually just needs an optimized
parameter value, not even a distribution. A few variance estimates and the additional insights
of the probabilistic method are very welcome, but the strict mathematical analysis of the exact
bounds for these estimators is not necessary.

The even bigger problem with the exact approach is the arbitrary posterior distribution.
There is no known real likelihood function measuring the quality of a face fit, therefore the
posterior is always somewhat arbitrary. Even with a fixed form of the likelihood there is the
point of estimating the parameters. Aiming at super exact posterior estimates is not a direction
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Figure 4.7: The distribution of the RMS image differences (see Section 6.1) of the samples
becomes very stable, sqclt.

compatible with the problem setting. There is too much inaccuracy besides the actual MCMC
sampling method.
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Figure 4.8: Autocorrelation of the sqclt runs. The scaling compensations are necessary to ac-
curately sample the first shape parameter. The single step size is as good as the mixture with
the exception of the nick angle and the first color component, these two have a non-optimal step
size.
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Chapter 5

Bottom-Up Integration

This chapter deals with one of the main advantages of using the probabilistic approach to fitting,
the integration of many sources of knowledge. As elaborated above, the probabilistic sampling
technique based on random walks is a full fitter for itself. The additional integration of optimiza-
tion methods in the last chapter provided the link to optimization algorithms and the possible
improvement of performance to a level previously available within the optimization framework,
if one is willing to sacrifice the strict probabilistic sampling interpretation. But one of the main
reasons for this work is not the reinterpretation of the fitting process and the reproduction of op-
timization methods but the inclusion of Bottom-Up methods. These are methods which provide
heuristic information about an image, often useful but also noisy in nature. The direct integra-
tion of such knowledge in the optimization framework has proved to be difficult in the past for
exactly this unreliability. Most approaches dealt with the uncertainty of these methods either by
ignoring it or restricting the application cases for the Bottom-Up methods to work reliably. A
third variant is to use robust methods, such as e.g. RANSAC when the determination of outliers
is sufficient to solve the problem. The presented probabilistic framework provides multiple ways
of dealing with uncertain information extracted from the image in a principled way, avoiding
ad-hoc solutions or globally robust cost functions which sacrifice specificity.

The opportunities of integration come from the probabilistic interpretation itself and also
from the specific structure of the Metropolis-Hastings algorithm. These two integration and
extension “hooks” are described in more detail in this chapter.

As concrete Bottom-Up methods, a face detector together with multiple feature point detec-
tors is integrated into the fitting process. Pose regression is also evaluated, but it is currently
not in a state to be beneficially integrated.

5.1 Integration Problem

Exemplary for the integration of Bottom-Up methods, face and feature point detection are tar-
geted to gain automatic initialization. The probabilistic view on the problem is promising in this
respect.

Besides the input image, there is usually a set of user-provided landmarks available. The
landmark set is generatively explained by the 3DMM. The integration of landmark locations can
either be a one-time action at initialization or be part of the likelihood function. As part of the
likelihood or cost function they ensure an inclusion during the complete adaptation process. The
specialty of this information is its reliability. Since the locations are provided by a skilled user,
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the integration is not difficult and can be done on a simple feed-forward basis without the risk
of jeopardizing the final result.

The straightforward integration method of a feature point or face detector, also compatible
with traditional optimization, is usage in initialization. The downside of this integration method
is its sensitivity to detection errors. Such a “forward stacking” assumes that a detector’s out-
put is as reliable as human-labeled landmarks. Though face and facial feature point detectors
yield good and almost reliable results for frontal face views, they break down when strong pose
and illumination variation is added to the problem. Both, pose and illumination variation are
strengths of the 3DMM and should not be sacrificed only to achieve automatic initialization.

5.2 Probabilistic Integration

The probabilistic view on the problem already comes with methods to combine multiple infor-
mation sources if they are expressed as distributions or likelihoods.

The generative image model P (I | θ) can be augmented by an additional helper method ‘H1’
which extracts information about θ from a processed image or different modality M1, stated in
the form of a likelihood L1 (θ;M1).

In the simplest and usual case, assuming conditional independence of I and M1 for a fixed θ,

P (I,M1 | θ) = P (I | θ) P1 (M1 | θ) , (5.1)

the total posterior distribution including both sources of information would then be

P (θ | I,M1) ∝ L (θ; I) L1 (θ;M1) P0 (θ) . (5.2)

This systematic and simple integration rule is applicable to all methods yielding results about
θ in a probabilistic formulation. The approach is also valid for multiple methods at the same
time.

The method H1 can be of generative type or directly discriminative. As stated above, the
likelihood is used to couple the model generatively to the observed M1. A probabilistic, discrim-
inative method reports a distribution of θ, a posterior-like quantity P1 (θ |M1) rather than a
likelihood function. The difference is mostly a normalization constant1. In the posterior product
(5.2), all likelihood functions can be individually scaled by a constant factor for it cancels with
the normalization. The replacement of L1 (θ;M1) by L′1 (θ |M1) = C1L1 (θ;M1) does not change
(5.2) as long as C1 does not depend on θ.

To switch to a more extensible setting, two different modalities M1 and M2 are considered
with their respective likelihoods L1 and L2. L2 corresponds to the image likelihood in the
examples above.

P (θ |M1,M2) =
L1 (θ;M1) L2 (θ;M2) P0 (θ)∫

dθ′L1 (θ′;M1) L2 (θ′;M2) P0 (θ′)
(5.3)

This type of integration corresponds to a summing of cost functions in the optimization view
but brings the same benefits of using likelihood functions as above.

The problems with this type of integration is its direct inclusion of all likelihoods. This makes
it possible for an auxiliary method to interfere with the others. A failed method might signal a
zero likelihood for certain values of θ, which directly leads to a zero probability, despite a possible
strong positive value of other likelihoods.

1One has to be careful not to include the prior too many times.
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The non-robust integration behavior can be relaxed by properly designing the helper’s re-
ported values to match its actual uncertainty level, e.g. by empirically estimating the failure rate
and including this knowledge into its distribution.

As a simple example, consider a detector with empirical false positive and false negative rates
rFP, rFN. Instead of the detector’s confidence p it would report p(1− rFP) + (1− p)rFN.

There are many more probabilistic integration schemes, using more difficult modeling of the
dependencies among the individual modalities. The assumption of conditional independence is
not always justified but nevertheless used very often. Modeling dependence usually costs a lot
of efficiency and needs to be specific to the application.

Pictorial Structures are a nice example where the trade-offs between simple coupling models
and more complex, but also more realistic, models are immediately visible. Dependence appears
in computational complexity of the models, a property evident directly from its representation
as a graphical model, showing nodes with higher degrees [Felzenszwalb and Huttenlocher, 2005].

5.3 Integration by Sampling

The sampling algorithm allows for different implementations of (5.3) and an additional integra-
tion method which is based on the hint-only nature of proposals.

The most straight-forward implementation directly uses (5.3) in the target distribution eval-
uation step. The proposal distribution does not need to be changed and everything is still com-
parable to other inference methods as well. This type of integration is referred to as “likelihood
integration” in the evaluation in Chapter 6.

The Metropolis-Hastings algorithm draws its samples from a proposal distribution and only
decides on their use as samples later, after the model verification. The inclusion as a proposal
is a further integration “hook” which can be used to achieve a loose coupling of the model with
uncertain information. The data-dependent proposals, which arise from using image-derived in-
formation to form proposals, lead to a DDMCMC method. The proposals arising from uncertain
information just tell the model what it should consider next, they do not force the current state
to obey the information. The proposal gives a hint, the algorithm decides whether to follow and
take the hint on basis of the model only. This comes with the advantage of working well with
uncertain hints since they are not binding. If the hints are good, they will very likely be accepted,
but if they are bad due to a failed information source, they will be rejected. The integrative form
as a proposal adds another way of integration not available in most other inference methods.

5.3.1 Bayesian Conditionals

The large likelihood product in (5.3) can be interpreted as an iterative Bayesian inference2.
Without data available, the prior encodes the state of belief about the distribution of θ. As

data becomes available, Bayes’ rule formulates how it should be integrated with the prior knowl-
edge to yield a posterior distribution expressing the belief about θ after seeing the first modality
with likelihood function L1 (θ |M1). More data in modality M2 can then be integrated using
Bayes’ rule again, this time with the posterior P (θ |M1) of the first step as a prior distribution
to obtain the combined posterior P (θ |M1,M2), and so on for more available data.

The belief update rule is well-suited to integrate many information parts step-by-step, leading
to an iterative Bayesian chain of conditionals,

P0 (θ)
L1−−→ P (θ |M1)

L2−−→ P (θ |M1,M2) . (5.4)

2Though only demonstrated for two likelihood functions, the concept and the calculations are valid for any
number of likelihood functions.
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The result of (5.4) is equivalent to (5.3), as can be easily verified by applying Bayes’ rule
twice:

P (θ |M1) =
L1 (θ;M1) P0 (θ)∫

dθ′L1 (θ′;M1) P0 (θ′)

=
L1 (θ;M1) P0 (θ)

C
,

P (θ |M1,M2) =
L2 (θ;M2) P (θ |M1)∫

dθ′′L2 (θ′′;M2) P (θ′′ |M1)

=
L2 (θ;M2) L1 (θ;M1) P0 (θ) /C∫

dθ′′L2 (θ′′;M2) L1 (θ′′;M1) P0 (θ′′) /C

=
L2 (θ;M2) L1 (θ;M1) P0 (θ)∫

dθ′′L2 (θ′′;M2) L1 (θ′′;M1) P0 (θ′′)
.

5.3.2 Independent Metropolis Chains

The Metropolis sampler is well-suited for a direct implementation of the chain of conditionals
(5.4). The distributions resulting at each step can be used as the proposal distribution of the
next step, where an own Markov Chain at each level produces samples for the next level. A
direct usage of the Markov Chains’ output distributions as proposal distributions leads to an
independent Metropolis algorithm, where the proposal density does not depend on the current
state.

As a modification, it is necessary to remove the transition ratio correction from the acceptance
probability, i.e.

p = min

{
1,

L2 (θ′;M2) P (θ |M1)

L2 (θ;M2) P (θ′ |M1)

}
↓

p = min

{
1,

L2 (θ′;M2)

L2 (θ;M2)

}
(5.5)

at the step from L1 to L2.
If the correction were in place then the resulting distribution of the samples would not depend

on the proposal distribution. This would remove knowledge gained at earlier stages, turning (5.4)
into

P0 (θ)
L1−−→ P (θ |M1)

L2−−→ P (θ |M2) . (5.6)

The combination of independent algorithms becomes a nesting of Markov Chains. With two
stages it is

MH2

(
MH1

(
P0 (θ) , L1 (θ;M1)

)
, L2 (θ;M2)

)
. (5.7)

The independent algorithm can only be efficient if the proposal density is close enough to
the target distribution. This directly implies that an application of the independent Metropolis
algorithm is only efficient and practically possible if the knowledge increase in each step is small.
It should not alter the distribution of θ too much. In high-dimensional spaces, it is especially
difficult to achieve close distributions between the steps.
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In the face fitting situation, the differences between the distributions can be very large, e.g.
between the landmarks posterior and the image posterior. Therefore, the independent approach
is not suitable. There is one exception to this rule, the face detection will be integrated using an
independent proposal in Section 5.4.1.

There is one further downside in the stacking of independent chains. Each chain has its
own state which needs to equilibrate before it actually produces samples approximately from its
target distribution. The time needed multiplies through the chains, leading to a long waiting
time in the final chain.

5.3.3 Filtering

A filtering property makes it possible to construct a stack of Metropolis chains in the form of
Metropolis filters. The individual states can be removed and the sub-chains turned into filters,
working with respect to a single “master” chain only. This has been mentioned as “cascading”
by [Mosegaard and Tarantola, 1995] in an application to find geological depth models explaining
gravity measurements.

Only the master chain (MH2 above) keeps an internal state θ. From the sub-chains, only the
acceptance rules are used. The proposal distribution stems from the lowest (innermost) chain.

The master chain requests a new proposal θ′ from the chain MH1 one level below. The
proposal is accepted or rejected according to the usual acceptance probability derived from the

local likelihood function L2 in the master chain, p = 1 ∧ L2(θ′)
L2(θ ) .

At MH1, the proposal θ′ is generated by accepting or rejecting a proposal according to p =

1∧ L1(θ′)
L1(θ ) , where its own proposal θ′ is obtained from a level further below. This can be recursively

extended as necessary to include all likelihood parts of the target distribution. The lowest level
produces samples from the prior distribution P0 (θ). On its way up, the proposal has to pass all
involved acceptance steps to be finally accepted at the master chain level. The individual steps
multiply all involved likelihoods, while always leading to proper transition kernels.

Theorem 5.3.1. The combination of n filters leads to a valid total transition kernel at the top
level, with

1

Z
P0 (θ) L1 (θ) L2 (θ) · · ·Ln (θ)

as target distribution. Z is the usual normalization constant.

Proof. Number the chains starting from 1 at the lowest level to n at the highest level, where the
lowest level draws samples from P0 (θ ) as proposals. The transition kernel at the lowest level is

k1 (θ′ ← θ ) = P0 (θ′)

(
1 ∧ L1(θ′)

L1(θ )

)
+ (1− r1 (θ )) δ (θ′ − θ ) ,

with the total probability of leaving θ

r1 (θ ) =

∫
dθ′P0 (θ′)

(
1 ∧ L1(θ′)

L1(θ )

)
.

The transition ratio between θ and θ′

k1 (θ′ ← θ )

k1 (θ ← θ′)
=

P0 (θ′)
(

1 ∧ L1(θ′)
L1(θ )

)
+ (1− r1 (θ )) δ (θ′ − θ )

P0 (θ )
(

1 ∧ L1(θ )
L1(θ′)

)
+ (1− r1 (θ′)) δ (θ − θ′)
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simplifies to
k1 (θ′ ← θ )

k1 (θ ← θ′)
=

P0 (θ′) L1 (θ′)

P0 (θ ) L1 (θ )
,

where 1∧a
1∧a−1 = a has been used.

At step i+ 1, the transition kernel depends on the previous step:

ki+1 (θ′ ← θ ) = ki (θ′ ← θ )

(
1 ∧ Li+1 (θ′)

Li+1 (θ )

)
+ (1− ri+1 (θ )) δ (θ′ − θ ) .

Therefore
ki+1 (θ′ ← θ )

ki+1 (θ ← θ′)
=
ki (θ′ ← θ )

ki (θ ← θ′)

Li+1 (θ′)

Li+1 (θ )
,

which leads to
kn (θ′ ← θ )

kn (θ ← θ′)
=

P0 (θ′)

P0 (θ )

L1 (θ′)

L1 (θ )

L2 (θ′)

L2 (θ )
· · · Ln (θ′)

Ln (θ )
,

revealing the desired target distribution as equilibrium distribution of kn (θ′ ← θ ) at the top
level.

The benefit of splitting a large likelihood product into multiple, stacked acceptance decision
steps lies within the partial evaluation of the target function. Depending on the problem, the
individual likelihood components might have different costs to evaluate. The recursive nesting
can lead to faster and more efficient rejection without evaluating every likelihood factor if a
sample is rejected early. This implements a kind of “short-circuit” evaluation. The insight also
gives a rationale on how to order the filters, putting the cheapest likelihoods first is expected to
show the largest benefit.

The stateless filtering does not need a waiting time for each stage to equilibrate, the samples
are directly valid and only the waiting time at the top level is required. But it still suffers from
the problem of high rejection rates if the stages are too different.

In an experiment, stacking the prior, the landmarks likelihood and finally the image likeli-
hood as proposed, the performance was poor. Almost no proposals have been accepted within
10 000 samples, the stages are too different. To overcome this problem, a dependent proposal is
necessary.

5.3.4 Dependent Filter Chains

The appeal of MCMC methods lies within the local adaptive behavior and the simplicity of the
proposal distributions necessary to achieve it. To get a random walk in this situation, the current
state of the final Markov Chain, aiming at the complete posterior, has to be updated and the
update propagated through all intermediate stages of the iterative Bayesian formulation.

The filtering cascade can be changed to dependent moves by switching the proposal distri-
bution of the lowest stage to become a dependent proposal, see Figure 5.1(a). The total chain
includes the prior distribution as a first filtering step. The driving proposal distribution Q (θ′ | θ )
is usually the random walk introduced above, or any other dependent and symmetric proposal.

The total algorithm works as above with the difference of having

k0 (θ′ ← θ ) = Q (θ′ | θ )

(
1 ∧ P0 (θ′)

P0 (θ )

)
+ (1− r0 (θ )) δ (θ′ − θ ) (5.8)
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as the first transition kernel. Thus

k0 (θ′ ← θ )

k0 (θ ← θ′)
=

Q (θ′ | θ )

Q (θ | θ′)
P0 (θ′)

P0 (θ )
=

P0 (θ′)

P0 (θ )
(5.9)

is the transition ratio for symmetric proposal distributions satisfying Q (θ′ | θ ) = Q (θ | θ′).
The first sub-chain combined with the unaltered filtering steps above, which involve the

likelihoods L1, . . . , Ln, leads to the same invariant distribution of the total transition kernel

kn (θ′ ← θ )

kn (θ ← θ′)
=
k0 (θ′ ← θ )

k0 (θ ← θ′)

k1 (θ′ ← θ )

k1 (θ ← θ′)
· · · kn−1 (θ′ ← θ )

kn−1 (θ ← θ′)

Ln (θ′)

Ln (θ )

=
P0 (θ′)

P0 (θ )

L1 (θ′)

L1 (θ )

L2 (θ′)

L2 (θ )
· · · Ln (θ′)

Ln (θ )
. (5.10)

Filtering with a dependent proposal comes with the advantage of being able to adapt the
proposal to the current state of the chain as in a standard Metropolis-Hastings sampler. Such
a method is therefore expected to achieve a much higher acceptance rate than the independent
version above which draws samples directly from the prior distribution.

In this formulation, the proposal distribution Q (θ′ | θ ) is symmetric which may be a restric-
tion. It is straight-forward to reintroduce the standard Hastings correction factor Q (θ | θ′) /Q (θ′ | θ )
into the acceptance probability of (5.8) to allow Q to be non-symmetric.

5.3.5 Transition Correction

The Hastings transition correction does not have to be restricted to the first filter stage. Cor-
recting a higher-level chain with the proper factor removes the contribution of the respective
likelihood from the end result. In this case, each filter only serves as a hint generator, indicating
whether the upper level should bother to test. The total ensemble of filters implements a target
distribution of the type of (5.6) where the posterior at each stage includes only the respective
likelihood.

The transition kernel at filtering step i becomes

ki (θ′ ← θ ) = ki−1 (θ′ ← θ )

(
1 ∧ Li (θ′)

Li (θ )

ki−1 (θ ← θ′)

ki−1 (θ′ ← θ )

)
+ (1− ri (θ )) δ (θ′ − θ ) , (5.11)

with the transition ratio

ki (θ′ ← θ )

ki (θ ← θ′)
=
ki−1 (θ′ ← θ )

ki−1 (θ ← θ′)

Li (θ′)

Li (θ )

ki−1 (θ ← θ′)

ki−1 (θ′ ← θ )
=

Li (θ′)

Li (θ )
. (5.12)

The final equilibrium distribution thus only depends on the last likelihood, all contributions
of the previous stage are formally removed

kn (θ′ ← θ )

kn (θ ← θ′)
=

Ln (θ′)

Ln (θ )
. (5.13)

In such a scenario, the successive approach as in Theorem 5.3.1 does not appear to be optimal
since all the information is added and immediately removed again formally.

But there is the possibility to use the filters in a flat combination by building minimal filter
pairs kn ◦ ki where the stage i draws its proposals directly from Q (θ′ | θ ) as in (5.9) and makes
the random walk consistent with its likelihood information Li (θ ). The random selection of one
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LP0
Q

LM

(a) Chain of dependent filters

P

Q

LM
Q

H

(b) Parallel combination (with transition correction “H”)

Figure 5.1: Examples of Metropolis filtering. Random walk proposal Q, landmarks likelihood
LM, prior P0, image likelihood L and posterior distribution P. Each small circle is a Metropolis(-
Hastings) acceptance step. The current state is propagated from right to left, where the proposal
Q modifies it, and then successively filtered until it reaches the right-most stage where it might
be accepted as the new state (round blue arrows).

of these kernels leads to the loose coupling of data-driven proposals in a typical DDMCMC appli-
cation. The individual kernels only respect one auxiliary information and pass only compatible
proposals, see Figure 5.1(b). But the final evaluation and decision of acceptance is left for the
last stage kn to verify, independent of the proposing likelihood. The loose coupling is immune
to bad proposals as desired in the introduction for it will just discard them if they do not fit the
last target distribution.

The algorithm with a mixture proposal of n filters F (as in Section 5.3.3) and a final target
distribution P is

MH

(
1

n

n∑
i=1

FLi

(
Q (θ′ | θ )

)
, P (θ )

)
.

One of the big differences to other DDMCMC approaches is the generative inclusion of aux-
iliary information. Most methods derive a discriminative proposal distribution using an image
measure, e.g. a segmentation proposal based on local image color.

The generative inclusion of helping information as likelihoods leads to a strong dependency
on the random walk. A proposal can only be the result of a random move starting from the
current state. The individual filters can only turn down something proposed by the random walk
before, not add something new, in the dependent setting. This seems wasteful, but the generation
of random walk proposals is extremely cheap compared to its full image evaluation. It is thus
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suitable to generate a lot more proposals than to fully evaluate with the image likelihood.

5.4 Bottom-Up Methods

The Bottom-Up methods used to evaluate the integration potential of the MCMC approach
consist of a pose regression, a face detector and facial feature point detection. An automatic
fitter using the provided Bottom-Up information is the main goal of this concrete integration
experiment. The detection is not reliable enough to directly use it to initialize the fitter and
perform a classical or probabilistic adaption of the model. The integration is expected to extract
the useful information from the detection results, if it is present.

All of the Bottom-Up methods used here are based on regression or decision random forests
from yet unpublished work of Forster [Forster, 2013], trained on the large face image database
Annotated Facial Landmarks in the Wild (AFLW) [Köstinger et al., 2011].

The Random Forest methods are based on the standard Random Forest algorithm [Breiman,
2001] with individual decision trees which base their atomic decisions on Haar features. Haar
features are very famous for their use in the successful and fast classical cascaded boosted face
detector [Viola and Jones, 2004]. They come with the advantage of quick calculation using an
integral image. The features are used in up-right orientation as well as rotated by 45◦. The
output is a majority vote of the individual decision trees and the relative frequency of positive
votes.

Though all methods are based on the same Random Forest technology, the different methods
show a high diversity of the modality of their predictions and classifications. This is desired to
test different integration possibilities.

5.4.1 Face Detection

The face detector is a scanning window detector, it assigns each image location a detection
certainty of having a face at the respective location. The patches to be fed to the Random Forest
classifier are cut from differently scaled images according to a fixed scheme.

The result of the classification step is further processed to remove non-optimal responses with
an overlap of more than 60% with a better patch. Of the remaining candidates, the ten strongest
detections are selected as face candidates. The strength of each of these detections is discarded
and the diversity information only captured in the multitude of candidates.

Despite ten candidates, the basic assumption of having only one face to explain within the
image is kept up. Typical face candidates are displayed in Figure 5.2.

5.4.2 Pose Regression

The pose regression predicts the rotation angle for each detected face. The Random Regression
Forest yields an ensemble of predictions for each patch, assuming that the patch shows an actual
view of a face.

The average prediction is the final result, but the ensemble of trees usually disagrees to some
degree. The total ensemble answer, including information about the mean prediction and the
ensemble variance can be obtained as a result of the pose regression giving it a probabilistic
outcome including a measure of diversity (δ).

The pose regression produces a prediction (ϕ± δϕ, ϑ± δϑ, ψ ± δψ) with direct representation
in the model parameters.

The pose regression is currently in a very early development stage and does not reliably work
on the images selected as evaluation set of this work. The point of integrating regression is thus
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Figure 5.2: Typical output of the face detector. Each red box is a candidate, brightness corre-
sponds to certainty. The first row shows successful findings, the second row shows problematic
cases, where the face is found but not as a strong detection (left) and two cases where the detector
failed to find the face.
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Figure 5.3: Facial feature points to be detected.

to show the robustness of the integration with respect to bad Bottom-Up information rather
than actually use the predicted pose value.

5.4.3 Feature Point Detection

For each of the face candidates, a set of facial feature points are searched in the vicinity of the
face candidate. The selected points are the four corners of the eyes, the corners of the mouth, the
nose tip and two points around the nose, Figure 5.3 displays the points labeled on the reference
face.

The feature point detector is technologically very similar to the face detector but trained
on different data and applied within a restricted area in location and scales around the face
detection candidate.

Response Maps

The complete response maps are used as output, in place of single candidates. A response map
contains the detection certainty output for each location and scale. Because the scale is rather
fixed by the face detection candidate, the response map is only created for all locations, scales
are averaged.

For a single face candidate, the detection map Dl(r̃) of landmark l contains the likelihood
of having found the landmark at location r̃. This needs to be combined with the observation
noise model for landmarks (3.31), expressing the actually observed distribution of the location
given its real position. Given a detection of the feature at location r̃, the likelihood of finding
the landmark at location x̃ in the image is thus the combined probability of having detected it
at r̃ and observing it at x̃: Dl (r̃) LLM (x̃l; r̃).

The landmarks are detected anywhere on the image, with different certainty expressed by Dl.
All of the possible locations need to be incorporated. A maximum convolution can accomplish
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Figure 5.4: The feature point response maps of two examples (left), response map of the left
inner eye corner (top, center) and the right corner of the mouth (bottom, center) and their
max-convolved versions (right) which are exaggerated for illustration, using a σLM = 64 pixels
landmarks likelihood.

this by

LLM (x̃l;Dl) = max
r̃

LLM (x̃l; r̃)Dl (r̃) . (5.14)

The max-convolution selects the best combination of distance and detection strength for each
possible location. [Felzenszwalb and Huttenlocher, 2004] describes how to perform this maximum
convolution efficiently in the log domain if a Gaussian distance likelihood term is used:

log LLM (x̃l;Dl) = max
r̃

{
−‖x̃l − r̃‖2

2σ2
LM

+
1

2
logDl (r̃)

}
. (5.15)

It can be precomputed after the detection step has finished and thus is as fast as a lookup
during the sampling phase. The concept of using the max-convolution is mostly used for the
parts detection of the pictorial structures model.

Figure 5.4 shows a typical response map and its post-processing with the max-convolution.
To account for wrong or missed detections, the detection map Dl is enhanced by small false

positive and false negative rates rFP and rFN: Dl (1− rFP) + (1−Dl) rFN.

5.4.4 Concrete Detector Integration

The integration presented here is just a possible way of integrating the information of the detec-
tors, based on the ideas presented above. There are certainly more different methods to use the
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face detector’s information. The proposed concrete integration serves more the need of a demon-
stration of the concept rather than a perfectly efficient final fitting algorithm. Nevertheless, the
proposed integration performs well enough to be used in a practical face recognition application,
see Section 6.3.

The outcome of the face detection step is not directly represented as a model parameter
but needs to be translated first. The integration follows the generative approach and does not
directly map each detection to suitable model parameters. Instead, a likelihood of compatibility
with the detection position and scale is defined by

LBi
(θ | Bi) = N

(
x̃N (θ)

∣∣B.xi, σ
2
B.x

)
LN

(
s (θ) | B.si, σ

2
B.s

)
(5.16)

where {Bi}10
i=1 is the set of ten face detection candidates, with location B.x and scale B.s. x̃N is

the position of the rendered nose tip and s is the scale of the rendered face. The scale likelihood is
derived from a log-Normal distribution LN to account for its positive and multiplicative nature.

Based on these likelihoods, ten chains FBi are built. They draw proposals from the geometry
(camera and shape) part QGeom of the random walk through two filters F, with respect to the
prior and the likelihood of the face box position and scale.

QBi
(θ′ | θ) := FLBi

(
FP0(θ) (QGeom)

)
= FLBi

◦ FP0
◦QGeom (5.17)

FBi := MH
(
QBi

, LFPi

)
(5.18)

The chains use the facial feature point detectors’ response maps likelihood LFPi
from (5.14) to

evaluate the samples (result of the max-convolution). The likelihood measures the consistency
among all the landmark detections Dl for this candidate, assuming independence among the
individual landmarks.

The samples produced by chain FBi then represent the respective detection candidate in-
cluding a consistency measure with respect to the detected facial feature points. Each of the
detection candidates has its own chain with an own state. It produces samples from the respective
posterior, including the face detection and the landmarks detection consistency.

To combine the information for model fitting, the ten chains FBi provide their samples as
proposal in a mixture distribution to a combination Markov Chain with the best individual
likelihood Lcomb (θ) = maxi {LBi (θ) LFPi (θ)} as target for

MH

(
1

10

10∑
i=1

FBi, Lcomb

)
. (5.19)

Choosing the best individual likelihood value allows the algorithm to compare two samples with
respect to their optimal consistency values.

The samples from this Markov Chain represent a summarizing distribution, including knowl-
edge about all the possible detections and their feature points consistency. Conceptually, this
might be understood as a series of conditioning steps, written informally as

P0 (θ)
LBi−−→ P (θ | Bi)

LFBi−−−→ P (θ | Bi,Di) (5.20)

1

10

10∑
i

P (θ | Bi,Di)
Lcomb−−−−→ P

(
θ | {Bi,Di}10

i=1

)
. (5.21)

The chain (5.19) samples from the model with respect to the detection outputs. Still missing
is the integration with the image likelihood. There are again many possibilities of joining the
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two. Only two of them are evaluated here. The first one is the straight-forward usage of the
combined likelihood Lcomb as a filter of random walk proposals

MH
(
FLcomb

(Qrnd) , L (θ; I)
)
.

The combination runs well, but with a very low probability of changing the face detection can-
didate after initialization. The candidates are far away in terms of image distance, a proposal
which jumps directly to another candidate is not very likely. It is rather simple to add these
proposals explicitly, but the problem is deeper. All other model parameters are adapted to the
local face explanation, a change of all the values at once to a different candidate is practically
impossible and without the adaptation of appearance to the underlying image, the image like-
lihood value will be extremely low and the proposal certainly rejected, even if the position and
pose match another candidate.

This problem with respect to multiple modes is fundamental to this sampling approach and
discussed in more detail later. If initialized by the best sample of the above chains (5.21), this
scheme can perform well.

A circumvention of the problem would require a local adaption of the proposal before eval-
uating it to accept or reject it. There are more complicated Metropolis-based algorithms which
use methods of delayed rejection to achieve such behavior [Tierney and Mira, 1999]. But the
amount of adaption necessary can be quite large here. To “properly” solve it, an own model
instance needs to be adapted to each candidate. To come closest to this ideal, there is a simple
but inefficient agnostic combination method available. The ten face candidates can each define
a full Markov Chain on their own, including the image likelihood term in each:

MHi

(
FLFPi

◦ FLBi
◦ FP0

◦Q, L (θ ; I)
)
, (5.22)

with ◦ as the usual function composition.
The chains then run independently from each other and a global chain just draws single

samples from the ten candidate chains and compares them with respect to the image likelihood.
This method is inefficient. In the long run, only very few sub-chains, probably just one, will

deliver useful samples since all the others do not really have a face to explain. The implementation
is actually fitting a model to each candidate while continuously comparing and selecting one of
them as the current explanation.

To make such a scheme efficient, an adaptive mechanism is needed to tune the frequency of
proposals from each candidate chain to prefer the good ones over the failed detections. Such
adaption is algorithmically possible, but the interpretation in the probabilistic sense usually gets
lost as the Markovian property of the chain is violated. Keeping the interpretation as proper
sampler requires a detailed and specific analysis of each individual scheme. There is a lot of
literature on the subject, e.g. [Atchadé and Rosenthal, 2005; Roberts and Rosenthal, 2007, 2009;
Liang et al., 2011] which document recent advances. A general rule of adaptive MCMC is, loosely
speaking, if the adaption steps are not too frequent and become diminishing in the long run, the
algorithm is valid. For a strict mathematical statement refer to the literature.

In the context of facial image explanation, the very strict probabilistic interpretation is hard
to keep up in practice. Thus, an adaptive scheme might be considered in the future.

5.5 Limits of Integration

Integration of different methods into one MCMC method comes along with two complementary
but fundamental difficulties. Integration with independent proposals, e.g. from own Markov
Chain samplers with an own state, are very inefficient if the targeted distributions do not match
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to a high degree. This concern is even stronger in high-dimensional spaces where functions
deviate very quickly.

The problem can be demonstrated using the landmarks posterior distribution P (θ | LM) to
propose samples to the image posterior chain, targeted at P (θ | I). The landmarks chain has
its own state and optimally produces samples directly from its target distribution, independent
of the current state of the image posterior chain. This run has a dramatically low acceptance
rate since the landmarks posterior is much broader than the image posterior. The landmarks
information does not constrain the appearance parameters at all and also the geometry is much
less constrained than with the image likelihood in place.

The other end of the problem spectrum is met by dependent proposals, where there is only
one state in the main Markov Chain, the other information is included by dependent filtering. To
work, this relies on the continuous nature of the target distribution with respect to the integrated
information. There is only a single state which needs to be developed in small steps, moving
towards all states of interest. Counting on an occasional large jump becomes less likely the more
dimensions need to be adapted to each local solution and is not realistic in this high-dimensional
application. The effect can be observed with the ten candidate face boxes. If the chain explores
one of the candidates, the filtering with another candidate tries to draw the state towards it.
But in between is nothing with a useful likelihood, the moves towards the other candidate will
get rejected.

There are two fundamental ways around the problem. First, the individual candidate chains
have an own but full state, each one fitting a model. And second, the problematic, differing
dimensions are removed, usually by optimizing them away. This can be achieved by using e.g. a
local light optimization before evaluating a sample. Though this reliefs the problem, the complete
local adaption is the limiting case. Optimizing away all the dimensions leads to an algorithm
which then only compares local optima with each other3.

At the end, both variants lead to an, at least partial, adaption to all the candidates. This can
not be expected differently, there is no way of knowing which ones fits without actually trying.

A further point to keep in mind is robustness with respect to model inconsistency. Model-
based methods are inherently prone to inconsistencies with problem expectations, i.e. if the model
rates solutions higher which are worse in the eye of the human observer (Figure 1.1). To achieve
this kind of robustness, modifications of the model are needed, e.g. the background model in
Section 3.3.3.

5.6 Summary

The integration of new information M1 can be achieved through inclusion of the likelihood
function L1 as part of the posterior distribution. Or it can be used as a hint to help finding the
posterior distribution with respect to different information, e.g. M2. The former approach is not
robust with respect to failing methods, they affect the total result. The latter approach can sort
out wrong hints if they do not fit the target distribution and are combined with occasional good
proposals.

The inclusion into the posterior distribution makes the system depend on the quality of the
method. For a robust integration into the posterior product, the likelihood needs to reflect its
own reliability, i.e. through empirical corrections.

The Metropolis-Hastings algorithm can achieve the likelihood integration in two ways. It can
evaluate with respect to the total posterior product P0L1L2 or it can perform stepwise filtering

3In a global optimization context, this is an efficient and successful concept.
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with individual acceptance steps for each part of the posterior product. The latter version can
be used to implement modular early rejection schemes.

The algorithm can also be used to implement the hint-only integration. To do so, the indi-
vidual methods form proposals which are used in parallel. The individual proposals can again
be gained by filtering, but this time with the Hastings transition ratio correction in place. The
parallel integration is robust with respect to individual failing proposals. This is the DDMCMC
concept, e.g. [Tu et al., 2005].

Stacking of full Markov Chains is not useful because the waiting times along the chain ac-
cumulate. Independent proposal distributions are problematic if the filter functions differ too
much, which is typically the case in the context of this work.
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Experimental Evaluation

The evaluations of the discussed fitting and integration methods are three-fold. There are single
“point-wise” evaluations where a local proof-of-principle is required. These experiments usu-
ally involve only a single or very few images, selected according to the current question and
have mostly been discussed above. The second evaluation block is a big standard experiment
conducted on a composed database. The standard experiment serves to provide a comparative
fitting environment on a database, including very different face fitting problems. The third type
of evaluation is a complete system-level application. The face model, complete with the inte-
grated parts, is used to perform a face recognition task on the Multi-PIE database [Gross et al.,
2010].

The evaluation section contains detailed information of many different runs, an overview of
the most important findings is listed at the end of the chapter in Section 6.4.

6.1 Standard Experiment

The standard experiment is defined on a test set composed of 206 very different images of
faces, including scanner photographs, synthetic prior renderings, face images for psychological
application and real world face images. The pictures are of different complexity to fit, from
easy frontal, evenly illuminated scanner photographs to profile views in harsh illumination with
strong facial hair or other occlusions. The complete set can be found in the appendix.

The pictures from the flicker database Annotated Faces in the Wild (AFLW) show high vari-
ability in pose and facial outliers such as beards. Further, there are harsh outdoor illuminations
present in this subset. The prior set is rendered directly from the 3DMM in front of a plain
white background. According to the priors, these images show very strong pose variation while
having no facial outliers. To generate a useful image, not only the face mask but the best fitting
head reconstruction are rendered, see example in Figure 6.1. For instances of the prior, the full
generation parameters are known and can be used to compare the result to. The subset from the
Radboud Faces Database (RAFD) [Langner et al., 2010] contains three pictures of each subject,
frontal, semi-profile and profile view. The faces and the background are clean and the images are
all evenly lit. There are 30 identities in this subset, including Caucasian males and females, kids
and Morrocan males. Multiple pictures of the same person can be used in a mini recognition
experiment. The scanner images stem from the 3D scanner used to capture the original example
faces of the 3DMM [Paysan et al., 2009]. The images all show plain frontal, evenly lit and clean
faces. The web service subset contains images obtained from fitting requests by users of the
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scanner AFLW AFLW prior

RAFD RAFD RAFD web service

web service web service web service web service

Figure 6.1: A few images of the standard experiment setup. The labels indicate the original
database of the image. More are listed in the appendix.

Basel Face Model web services [Pierrard and Vetter, 2010]. These images reflect real application
cases and contain varying pose and illumination as well as some facial occlusions.

All images have a resolution of 512× 512 pixels, with the face taking the prominent part of
the image area. A gross overview with few selected target images is displayed in Figure 6.1.

The experiment task is to fit the 3DMM to the image, starting either from user-provided
landmarks or using the detection information. An evaluation of a fitting task is not as simple
as comparing a single meaningful number. The ground-truth is not available for most images
and success can be determined by very different aspects depending on the task the result is
needed for. The evaluation, as proposed here, consists of multiple lines of reasoning including
a few quantitative measures but also a visual result comparison. To keep the amount of data
manageable, only the quantitative results are extracted from the whole dataset while the visual
comparison is restricted to a few images only.

The quantitative measures serve to determine whether a fit has converged to a suitable pose
(success rate) and how well the optimization has been working, measured with the image Root
Mean Square (RMS) difference. A mini recognition result on the RAFD subset gives a hint
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whether the fit could actually be useful for a recognition application. A ground-truth correlation
can be measured as a normalized cross-correlation between the generating and the resulting
coefficients, where available.

The most important quantitative measures are

• rS: success rate, percentage of fits with at most 16 pixels dLM

• dI: image RMS distance, root mean square distance of visible pixels i, between the target
and the rendered image

dI =

√
1

N

∑
i∈M
‖cT,i − ci (θ)‖2,

evaluated for successful fits only

• dLM: landmarks RMS distance, root mean square distance of visible facial feature point
positions x̃i

dLM =

√
1

N

∑
i∈Vis

‖x̃i − x̃i (θ)‖2,

evaluated for successful and all fits

• rRAFD: mini recognition rate, ratio of correct identification of RAFD persons among the
three different poses, each of the RAFD images serves as probe once, the gallery are all
other RAFD fits

• gtshp: ground truth shape recovery of prior renderings, normalized cross correlation between
reconstruction and original shape parameters

• p̂: best unnormalized posterior value reached (logarithm)

• rA: acceptance rate, average acceptance rate of proposals

• TB: iterations until first negative rate of change of the p-value (averaged over 100 samples)
occurs

The width of the distribution is not a measure meaningful to extract for such short runs,
for this kind of analysis refer to Section 4.6. The best posterior value is of the unnormalized
distribution and can thus only be compared in ratios between runs with an identical likelihood
setup.

If two runs are mentioned to show a significant difference, a t-test is performed using pairs of
results on the same images. A resulting p < 0.05 is considered significant. The t-test is calculated
using the scipy software library [Jones et al., 2001]. Its result should be considered with care since
the distribution of the differences between the residuals in the runs is not necessarily normal. It
tends to have heavier tails, especially if the failed fits are included.

The individual evaluations are starting with different likelihood comparisons, using user-
provided and certain information to initialize. The second part considers the integration or
reproduction of optimization behavior and the third section deals with the Bottom-Up informa-
tion integration. The large summarizing results table (Table 6.1) contains all the quantitative
information. The name of the runs and their setup, as well as the main results are explained in
the following text.

6.2 Evaluations
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Table 6.1: Results of the standard experiment runs. For details about the individual setups and the meaning of the measures refer to
the text in this section. The second value in dLM is the value extracted for all fits while the first one only contains fits classified as
successful. Runs can occur multiple times for easier comparability. Results are rounded to two significant figures. Standard run length
is 10 000 samples.

Name rS dI dLM rRAFD gtshp p̂ rA TB

lm-2 0.97 0.300 7.2 7.4 0.01 0.07 -240 0.05 8 100
lm-4 0.98 0.300 6.2 6.5 0.00 0.06 -210 0.28 2 900
lm-8 0.97 0.310 7.1 7.3 0.02 0.02 -220 0.48 1 100
sqclt 0.92 0.077 6.9 11 0.14 0.22 -970 0.31 3 300
sqclt-lmlh 0.90 0.078 7.0 10 0.17 0.26 -1 400 0.29 3 500
sqclt-lmcond 0.95 0.080 7.0 8 0.09 0.24 -1 400 0.40 3 600
sqclt-lmcond-corr 0.93 0.081 7.0 8.5 0.10 0.22 -1 900 0.40 3 600
prod 0.96 0.067 6.2 10 0.14 0.37 110 000 0.11 10 000
prod-lmcond 0.96 0.073 6.2 24 0.27 0.36 98 000 0.45 9 700
prod-lmcond-corr 0.95 0.072 6.0 26 0.21 0.36 99 000 0.48 2 400
prod-0.042 0.96 0.067 5.8 11 0.40 0.35 210 000 0.11 10 000
prod 0.96 0.067 6.2 10 0.14 0.37 110 000 0.11 10 000
prod-0.1 0.95 0.067 6.4 10 0.13 0.36 37 000 0.13 10 000
prod-0.4 0.96 0.066 5.6 9.9 0.47 0.39 2 200 0.24 5 000
prod-exp 0.96 0.074 6.2 7.5 0.19 0.46 70 000 0.11 10 000
prod-cauchy 0.95 0.094 6.5 8 0.09 0.42 90 000 0.12 10 000
prod-bg0.1 0.90 0.065 6.7 14 0.19 0.37 50 000 0.11 10 000
prod 0.96 0.067 6.2 10 0.14 0.37 110 000 0.11 10 000
prod-bg0.15 0.95 0.069 5.9 10 0.08 0.35 160 000 0.11 10 000
prod-bg-gauss 0.74 0.086 6.8 55 0.03 0.03 360 000 0.14 10 000
sqclt-relvar2 0.91 0.077 6.9 11 0.11 0.22 -4 000 0.26 3 700
sqclt-relvar5 0.90 0.077 7.1 11 0.16 0.22 -1 700 0.29 3 500
sqclt 0.92 0.077 6.9 11 0.14 0.22 -970 0.31 3 300
sqclt-relvar15 0.92 0.077 7.1 11 0.21 0.25 -670 0.33 3 100
sqclt-relvar20 0.91 0.077 7.0 11 0.22 0.22 -500 0.34 3 000
sqclt-0.062-relvar10 0.90 0.069 6.7 10 0.22 0.30 -1 600 0.25 4 700

Continued on next page
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sqclt 0.92 0.077 6.9 11 0.14 0.22 -970 0.31 3 300
sqclt-seed1 0.92 0.077 7.1 12 0.24 0.21 -1 000 0.29 3 300
sqclt-seed2 0.92 0.077 6.9 11 0.19 0.21 -1 000 0.30 3 500
sqclt-seed3 0.92 0.076 6.8 11 0.19 0.22 -740 0.30 3 300
prod 0.96 0.067 6.2 10 0.14 0.37 110 000 0.11 10 000
opt-ga 0.92 0.081 6.5 16 0.21 0.30 84 000 0.67 300
opt-lbfgs 0.85 0.071 6.7 36 0.08 0.34 100 000 1.00 12
opt-ga-mix 0.97 0.069 5.9 21 0.40 0.33 100 000 0.14 5 000
opt-gradients 0.87 0.088 6.3 25 0.04 0.31 78,000 0.28 1,000
lm-maps 0.59 0.310 9.7 44 0.02 - -250 0.10 850
lm-best 0.63 0.320 9.8 35 0.02 - -200 0.45 670
prod-maps 0.67 0.070 6.8 61 0.36 0.08 92 000 0.14 9 900
prod-best 0.58 0.075 9.9 52 0.23 0.06 82 000 0.14 9 900
prod-maps 0.67 0.070 6.8 61 0.36 0.08 92 000 0.14 9 900
prod-maps-cond 0.68 0.071 6.3 58 0.33 0.11 94 000 0.43 9 700
prod-maps-cond-corr 0.68 0.073 6.3 52 0.12 0.12 93 000 0.45 2 200
prod-maps-cond-mix 0.66 0.073 6.6 49 0.20 0.10 92 000 0.26 9 900
prod-maps-lh 0.66 0.071 6.5 48 0.38 0.10 94 000 0.13 9 900
prod 0.96 0.067 6.2 10 0.14 0.37 110 000 0.11 10 000
prod-lmcond 0.96 0.073 6.2 24 0.27 0.36 98 000 0.45 9 700
prod-maps-lh-lminit 0.94 0.068 5.8 15 0.57 0.31 100 000 0.10 9 900
prod-lmcond-novis 0.99 0.069 5.8 5.9 0.58 0.40 110 000 0.21 10 000
sqclt 0.92 0.077 6.9 11 0.14 0.22 -970 0.31 3 300
sqclt-maps-cond 0.65 0.078 6.4 49 0.22 0.10 -550 0.53 5 200
sqclt-maps-cond-corr 0.64 0.078 6.8 52 0.17 0.11 -610 0.54 1 700
sqclt-maps-cond-mix 0.63 0.077 6.7 49 0.27 0.09 -720 0.40 5 100
sqclt-maps-lh 0.61 0.076 6.5 54 0.31 0.09 -660 0.27 5 100
lm-maps-yawrlh 0.53 0.310 9.8 56 0.02 - -250 0.08 790
lm-maps-yawrpr 0.59 0.310 9.8 44 0.02 - -250 0.10 360
prod-maps-yawrlh-cond 0.64 0.079 6.5 54 0.03 0.09 87 000 0.43 9 800
prod-maps-yawrpr-cond 0.68 0.074 6.2 48 0.14 0.15 90 000 0.41 9 800
prod-maps-cond 0.68 0.071 6.3 58 0.33 0.11 94 000 0.43 9 700

Continued on next page
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prod 0.96 0.067 6.2 10 0.14 0.37 110 000 0.11 10 000
prod-pyramid 0.97 0.072 5.9 8.3 0.42 0.38 100 000 0.94 6 800
prod-pyramid-lh 0.96 0.065 5.7 8.2 0.46 0.40 150 000 0.09 20 000
prod-l4l5l6l7 0.95 0.089 6.5 8.4 0.09 0.19 74,000 0.94 4,600
lm-8 0.97 0.310 7.1 7.3 0.02 0.02 -220 0.48 1 100
lm-autodec 0.99 0.320 7.4 7.4 0.01 -0.02 -240 0.63 580
sqclt 0.92 0.077 6.9 11 0.14 0.22 -970 0.31 3 300
sqclt-autodec 0.89 0.083 6.9 11 0.37 0.20 -3,200 0.28 5,600
prod 0.96 0.067 6.2 10 0.14 0.37 110 000 0.11 10 000
prod-vertex 0.90 0.110 8.1 11.8 0.14 0.05 69 000 0.11 10 000
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CHAPTER 6. EXPERIMENTAL EVALUATION

Table 6.2: Posterior standard deviations for different landmark posterior distributions.

Run σyaw [◦] σnick [◦] σdist [mm] σshp[0]

lm-4 4.0 2.9 2226 0.43
lm-6 4.0 4.6 3114 0.46
lm-8 5.2 5.7 3430 0.46

This section contains the explanation of the results listed in Table 6.1 with the exception of
the pyramid and the autodec runs which are discussed in Chapter 7. Italic names refer to lines
in the results table.

6.2.1 Likelihood Models

Basic Setup. The basic setup is used where not indicated differently. The landmarks are
provided by the user and used to initialize the fitter, during the fitting process, they are not
included into the likelihood. The initialization itself draws 1000 samples from the landmarks
posterior chain and uses the best sample to initialize. The sampling run uses the standard
random walk proposals, see Section 4.3. During the run, 104 samples are drawn using either the
product likelihood, referred to as prod or the CLT likelihood sqclt with the respective standard
parameters, see Section 3.3. For the product likelihood, this is a Gaussian color with variance
σ2 = 0.0592. The product likelihood makes use of an implicit background model with a break-
even point at a color difference of 0.13. The CLT likelihood uses the empirically estimated
σ2 = 0.0722 and relative variance of 9.2. Where not indicated differently, the product of Gaussian
likelihoods is employed.

Figure 6.2 displays an overview of the general fitting quality of the two reference setups prod
and sqclt.

Landmarks. The provided landmarks provide a posterior target distribution on their own.
They lead to a landmarks posterior P (θ | LM) which does not depend on the image colors.

Three runs are performed with the landmarks likelihood, described in Section 3.3.5, with
standard deviations of the Gaussian likelihood of 2 (lm-2 ), 4 (lm-4 ) and 8 (lm-8 ) pixels. These
standard deviations appear to be high, but good fits based on the image likelihood show a RMS
landmarks residual of 7 pixels per landmark.

The landmarks posterior distribution shows quite a high variance (Figure 6.3). The landmarks
set alone is not very restrictive.

The differences in terms of success are marginal, not even the posterior variances change
very much, see Table 6.2. A high standard deviation indicates a general inability to properly
determine the distance from the camera. The perspective effect is not strong enough to be
reliably determined by only a few landmarks positions.

The success rate is very high, the landmarks information is reliable and expected to be
properly interpreted by the fitting method. The occasional failure rates are due to few profile
views and a case of a facial expression. It led to a proper landmarks fit but with an RMS residual
value too high to pass as successful.

The landmarks information can also be integrated into the image likelihood fitting run. The
landmarks can either be included into the total likelihood, sqclt-lmlh, or they can by used in
the iterative conditioning setup, using the landmarks likelihood to filter proposals, sqclt-lmcond.
The conditional setup can also be corrected for the proper proposal probability, thus removing
the landmarks contribution formally from the final posterior, sqclt-lmcond-corr.
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Figure 6.2: Fitting results of the reference runs prod (center) and sqclt (right). The fits are
overlaid onto the target images.
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Figure 6.3: Samples from the landmarks posterior distribution show still a high variance (σLM = 6
pixels).
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Figure 6.4: P-values for different landmarks integration runs, see text for details.

The different methods do not differ much in their results. As expected, an integration of
the landmarks knowledge during the complete run leads to a slightly improved success rate
compared to an initialization only run. This is due to the prevention of wandering off and due
to the reliable nature of the landmarks information. But fixing the landmarks position costs the
fitter the freedom to find a better fitting image explanation in terms of the image residual. In
terms of landmarks accuracy, there is no significant difference between any two of the runs if only
successful fits are considered. The evolution of the p-values for a single run shows an equivalence
of sqclt and sqclt-cond-corr in the long run, as expected (Figure 6.4).

Product Likelihood. The product likelihood is studied with different variances of the Gaus-
sian color likelihood. Runs with different standard deviations of the likelihood model do not
show significant differences of the image residual. This is expected since the maximum location
in parameter space does not change (prod-0.042, prod, prod-0.1 and prod-0.4 with prod-σ). The
short runs of the standard experiment are not suited to study properties of the distribution other
than the maximum. The arbitrary width of the resulting posterior distribution does not matter
in this context as distribution properties are extracted from longer runs with the empirically
setup CLT likelihood, see Section 4.6.

But the width can still be of importance to the fitting algorithm. The misalignment errors
during fitting are considerably larger than those of final good fits. This should be reflected in the
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Figure 6.5: A common failure case is a too large yaw angle on side views (left). The case of
failure is not exclusive, half the cases are explained well (right).

target distribution to prevent rejecting too many proposals. The smallest employed σI = 0.042
corresponds to the RMS estimation of good fit reconstructions. But for the product likelihood,
such a value leads to a distribution which is too narrow and has a small acceptance rate. Larger
values are practically more usable, the optimum value does not change but the sampler properties
improve.

Semi-profiles are prone to fail in these runs since they are very well explained by a stronger
side view, ignoring the part “behind” the nose (Figure 6.5). This failure case is a common
pattern present in all image likelihood fits and does not only depend on a proper landmarks-
based initialization. Even with a correct semi-profile explanation of the landmarks, which is
usually available, the image likelihood prefers to ignore the back part of the face. The model
is not very detailed around the eyes which leads to suboptimal eye explanation performance.
Among the variant of explaining the image with only one visible eye and the correct explanation
where both eyes are visible, the model often prefers the one eye solution.

The success rate measure can not capture these wrong semi-profile explanations since their
landmarks are well aligned, the image residual is small, too.

The product likelihoods with the exponential (prod-exp) and the Cauchy (prod-cauchy) color
likelihood perform very similar to the Gaussian model. Both models show data slightly worse
than the Gaussian likelihood with the exception of providing very good prior reconstructions.

Background Models. Besides the standard background model, additional settings with a
break-even color difference of 0.1 (prod-bg0.1 ), 0.15 (prod-bg0.15 ) and a plain Gaussian color
model (prod-bg-gauss) are evaluated on the test set. The results reflect both background failure
cases, a shrinking of the face and a growing into regions outside the face. The numbers in the
results table do not directly indicate the reason of the failure but a visual examination reveals
both background mishaps, see Figure 6.6. The failures with both different background models
are still very rare. Thus, the actual choice of the constant background model seems not to be
very critical in its exact parameter value. This is a nice property since the estimation of the
background parameter is not as straight-forward as for other parameters and remains somewhat
arbitrary, see Section 3.3.3. The Gaussian background model performs poorly.
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Figure 6.6: Background failures for prod-bg0.1 (left) and prod-bg0.15 (right).

CLT Likelihood. Additionally to the standard settings above, the CLT likelihood is also
employed with a variety of different relative variance values, 2, 5, 15 and 20, to test for the
importance of this parameter (sqclt-relvar-* ).

The differences of the results are marginal and not significant. The posterior variances, which
would probably change, can only be extracted from longer runs and are not discussed here. The
different relative variance settings show one particular interesting fact, the recognition rate on
the RAFD database increases with larger variance values. There might be the possibility that
the CLT likelihood is still too restrictive, since the image residuals are not independent.

The CLT likelihood has a success rate somewhat lower than the product likelihood. But this
seems acceptable since this likelihood is mainly used to extract distribution information which
is not the aim of this experiment.

The two likelihood models have different optima. The product likelihood also displays more
pronounced image explanation with a even lower remaining image difference. The product likeli-
hood prefers explanations where there is as few difference to the target image as possible whereas
the CLT aims at finding explanations which fit the noise assumptions as well as the target im-
age. The CLT optimum does not seem to be optimal for a recognition task or with respect to
the ground truth reconstruction. But the CLT likelihood has very good automatic background
performance, it never displayed any background failure cases1.

The variability due to the stochastic nature of the algorithm within a single setup can be
observed by comparing sqclt-seed1 to sqclt-seed3 which are all exactly the same runs but with
a differently seeded random generator. The recognition performance on the RAFD part is the
most unstable part of all the measures. The recognition crucially depends on the performance
on the profile views, where little difference can have a large effect on the result.

6.2.2 Optimization

The optimization algorithms are setup as described in Section 4.4. Here, a simple gradient
ascent algorithm with line search and a L-BFGS [Liu and Nocedal, 1989] algorithm are tested.
All gradients are computed numerically using the FD scheme introduced in Section 4.4.2.

The use of a full and complete model gradient with respect to all model parameters at

1But it sometimes failed on profile views.
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once did never run well. The individual parts are likely too different in scale and meaning. The
experiments are thus run in a block mode, where each of the four model parts, pose, illumination,
shape and color are considered individually in random order. The gradient algorithm selects a
random model block before each gradient computation. A total of 300 iterations have been run,
this was sufficient for a coarse convergence.

The L-BFGS run employed 12 block iterations, leading to an average of 3 alternations between
the model blocks. Each block optimization was allowed to use up to 100 L-BFGS iterations.

Due to the numerical gradient computation, these runs did not perform very well in terms
of speed. 100 iterations of block-wise gradient-based optimization correspond to roughly 7000
image likelihood evaluations.

The gradient ascent algorithm (opt-ga) did perform well, the results are comparable to the
reference prod but could not reach a comparatively low image residual. The higher residual
points to a better optimization efficiency of the random walk fitter. It can find a better optimum
with a smaller amount of computational resources. This is also true with the advanced L-BFGS
optimizer, though this algorithm reached a lower image residual than the gradient ascent, it
could still not compete with the random walk run, even with considerably longer runtime. The
L-BFGS algorithm fails in more cases than the other two, opt-ga is almost as stable as the
reference run.

Interesting is the RAFD recognition rate, the opt-ga reaches a larger value even though it
can not explain an image as well as prod. But the recognition rate is not a very good measure of
fitting quality, a good recognition could also be due to consistent failure or distraction objects.
Both optimization algorithms show a good ground truth shape recovery.

The gradient algorithm is susceptible to local optima in certain cases. If the gradient run is
allowed to continue to draw 1000 samples, the reconstruction of the test image ws 13 becomes
actually better than with the shorter random walk reference run prod. But in another more
complex example (ws 29), the algorithm gets stuck and can not even reach the quality of the
shorter reference run. The shape reconstruction then also fails in a visual comparison (Figure 6.7).
The difference in quality is also reflected in the p-value, but the obscenely big difference only
reflects the much too high certainty of this target distribution.

The directed gradients can also be mixed with random walk proposals. The mixture employs
a gradient step every 70th sample, using roughly the same amount of computational resources for
both. This run opt-ga-mix reaches performance of prod and even keeps the high RAFD recogni-
tion rate of opt-ga and additionally reaches a lower landmarks residual. Its results significantly
differ from all others with the exception of the overall landmarks difference of opt-ga. The image
residual is slightly worse than that of the product fit but it comes closer with respect to the
landmarks positions.

The results can change when analytical gradients are used in place of numerical ones, opt-
gradients. But exact gradient computation is not straight-forward for the image likelihoods above.
The gradients employed are only partially analytic, concerning the camera and the location parts
of the shape, and approximations as they consider the amount of pixels in foreground to be
constant. Appearance gradients are missing, as well as gradients of the shape with respect to
the illumination. Those parts are directly solved using linear systems. The gradient run could
not compete with the numerical gradients or the random walks. The non-stochastic behavior
needs a lot of tuning to not get stuck in local optima. The finite difference gradients have a small
averaging effect and can thus already circumvent a few local optima which might explain their
better performance than that of the analytic gradients. Additionally, they are directly derived
from the actual target values and do not need assumptions about constant foreground area.
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Figure 6.7: Shape reconstruction after a long gradient ascent run (center) and a standard random
walk run (right). The difference in reconstruction quality is striking in the first case whereas the
second example does not differ much. Top: ws 29, Bottom: ws 90
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Figure 6.8: Samples from the maps posterior (5.19) contain multiple solutions (pose only).

6.2.3 Bottom-Up Integration

The following experiments demonstrate and study the integration of the detection information
into the fitting process. There are many possible choices of integration methods (see Chapter 5).
The results table contains runs with different integration schemes. The most important results
drawn from these runs is that integration in principle works and outperforms a feed-forward
scheme. A further result points at only minor differences between different integration schemes.

The most successful integration choice is also applied to solve the face recognition task on
the Multi-PIE database.

Face and Feature Point Detection. The face detection candidates and the feature point
maps are put together as described in Section 5.4.4. The first experiment employs the Markov
chain (5.19) to draw samples representing the detection posterior, including face and facial feature
point detection information (lm-maps). The samples from this chain do not fit the standard
evaluation very well. They represent the distribution with its width and are not well-suited to
be evaluated using only the best sample. The run shows inferior performance compared to the
greedy experiment where the strongest detections for each feature point within the strongest face
candidate are taken as a fixed landmarks set (lm-best).

The difference between the two is a variety of solutions present in the maps posterior which is
not available in the best-only posterior. Figure 6.8 displays a few distinct explanations contained
in the posterior samples, camera (pose) only. The lm-best run succeeds whenever the landmark
set obtained from the detectors is correct, whereas the lm-maps does not focus on a single
solution but present many. The best parameter set obtained from lm-maps is likely not as
precise as a good detection itself since the chain does not focus on it. On 45% of all images,
both methods agree on success and do not significantly differ in their landmarks residuals. But
the total landmarks difference, including the failed fits, differs significantly.

The cases marked as failed (by the success rate measure) in the standard evaluation are
either complete failures due to missing detections or often “imprecise” explanations, where the
automatic success determination decides on fail, though the correct explanation is available to
methods drawing samples from this chain.

At this stage, the usage of the strongest detections seems beneficial to recover the proper
landmarks setting. A simple random walk fit (prod-maps), initialized with the best sample from
the lm-maps is able to find the proper face in 67% and performs very well on the RAFD part.
This result indicates that the quality of the maps posterior’s best sample is much better than
apparent in the direct evaluation. The initialization with the strongest detections (prod-best)
leads to a fit which drops in success rate (63% to 58%) compared to lm-best, indicating bad
initializations in a few cases. The image residuals do not significantly differ, neither overall nor
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for successful fits. The landmarks difference is significantly smaller for prod-maps in the case of
successful fits.

Conditional Integration. The conditional integration run (prod-maps-cond) initializes with
a good sample from the map posterior and filters all random walk proposals through the final
detection maps likelihood. The image likelihood can be chosen to fit the application, either
optimized fitting with the Gaussian prod runs or aiming at the distribution with the CLT version
sqclt. The conditional integration significantly outperforms the initialization-only run prod-maps
in terms of landmarks residuals and comes closer to the user-provided landmarks positions. The
image residuals for successful fits do not significantly differ, the fitting quality of the result is
similar.

The conditional setup also allows the algorithm to correct for the proposal probability which
is done in run prod-maps-cond-corr. The transition correction has not much effect but to lower
the recognition performance on the RAFD mini experiment. This is probably due to the nature
of transition correction. Proposals that lead towards regions with a lower probability of being
proposed, such as less optimal explanations of the detections, are more likely to be accepted
through the correction. This leads to a broader exploration of the distribution and less focus
on the good explanations only. For an optimization application, this might be very suboptimal,
but if the result is needed to represent the distribution it is beneficial to have more information
inside the sample set. The effect is similar to the maps posterior being better suited for next
steps in the analysis due to its wider nature than the single strongest detections.

The individual proposals arising from the maps conditional can additionally be combined
with free random walk proposals (prod-maps-cond-mix ) in a mixture of proposals. Such a run
then fits the model with the standard random walk proposals but uses the map occasionally
to steer where to look. A very seamless integration is not possible, the image likelihood is very
different from the maps posterior which does not constrain the solution enough to be really useful
in the fitting steps. The maps posterior can only constrain the pose somewhat, the shape and
mainly the appearance are still very free.

To conserve the current state of the explanation with respect to the image likelihood part,
the maps likelihood can only be used as a filter of undirected random walk proposals (see above
in Section 5.5). The result then performs as a bad compromise between a fitter and a maps
conditional, leading to a competition rather than a synergy. The RAFD performance is con-
siderably worse than with the maps conditional but not as good as a simple fitter, too. The
splitting of available proposal capacity does not seem to work if there is not much potential for
real symbiosis.

The integration by mixing proposals is more successful on a fundamental level, where, e.g. the
different random walk proposals are mixed or the mixture can combine parts with differing but
complementary responsibility. The combination of two parts which do not have a lot in common
is not beneficial, the two compete with each other too much and can even destroy advances of
the other. In a distribution context, this might be an advantage, leading again to a broader
sample set. But to optimize and find a good explanation it is rather detrimental.

The run prod-maps-lh-lminit is a consistency test of the detection maps. This run uses the
likelihood integration of the detection information but initializes with the reliable user-provided
landmarks, thus starting at the correct location. The run then tests whether the maps can push
the optimizer away from the proper face explanation. They do not, and they even improve the
recognition performance on the RAFD subset. The use of the detection information within the
maps leads to better results than using the user-provided landmarks information in prod-lmcond.

The bad usage of user-provided reliable information in the landmarks can be fixed by ne-
glecting the visibility of landmarks which is very noisy close to occlusion boundaries. The run
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Figure 6.9: P-values for two different maps integrations. The run with transition ratio correction
can accept proposals considerably worse than the current state which is kind of an automatic
restart. This leads to a broader exploration but it occurs rarely.

prod-lmcond-novis does not consider the visibility and promptly achieves the best results in terms
of landmarks residuals on good fits (significant) and recognition rates and reconstruction quality
as well. In terms of the image residual of successful fits, the landmarks visibility does not play
a significant role.

Using sqclt to interpret the maps leads to very similar results, but with the noteworthy fact
that using the detections can improve the CLT likelihood’s performance in terms of accuracy
and recognition performance.

Parallel Integration. The parallel integration with an individual chain for each face detection
candidate did work well. But this is not surprising, it is just an integrated version of performing
ten model fits in parallel and a method to chose and switch between the ten. The speed is as
low as running ten instances in parallel but also the performance is as good. For the heavy
computational load of this approach, only single images have been tested with this method.

The top-level chain, selecting among the ten candidates is able to separate out the proper
explanation if the product likelihood is used. The CLT likelihood proved to be inconsistent
with this respect. It can explain a region which does not contain a face with similar quality as
the face itself. In Figure 6.10, the results of the individual chains are displayed together with
their total p-values for the product likelihood and the CLT likelihood. The analysis of the run’s
p-values offer insight into the distribution of the values among the candidate chains. The final
solution needs half of the run to develop to a stage better than the others. Such long suboptimal
performance of the target chain makes it difficult to design adaptive schemes which distribute
the computational resources according to the current explanation quality of the sub problems.

Pose Regression. From the pose regression forest, also from [Forster, 2013], a prediction of
the yaw angle is available for all face detection candidates. The prediction comes with a mean
and a variance estimate.

Two different integration methods have been tested, lm-maps-yawrlh samples from the pos-
terior of the detection maps and includes the yaw regression into the likelihood function using a
Gaussian distribution with the reported mean and variance. The run lm-maps-yawrpr uses the
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Figure 6.10: Parallel integration of 10 face candidates for ws 13. The prod likelihood is consistent
with the correct detection 0 whereas the sqclt is not. In prod, most other candidates do not even
reach better values than the background model with value 0.
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yaw regression information to form a Gaussian proposal in each of the ten candidate sub-chains,
the Gaussian uses again the predicted mean and variance. The inclusion into the likelihood leads
to slightly more failed cases. The residual of successful fits does not change.

The extension of the above landmark runs to full fitting runs, using the map in the conditional
fashion, shows lower image residuals in the case of the proposal integration prod-maps-yawrpr-
cond than for the likelihood integration in prod-maps-yawrlh-cond.

The total image residuals of prod-maps-yawrpr-cond are not significantly worse than those of
prod-maps-cond while those of the likelihood integration are.

This last result illustrates that a proposal integration can be more robust with respect to
noisy data. The regression information is not helpful, its quality is too noisy, but a proper
integration prevents the regression to lessen the quality of the overall method.

6.3 Face Recognition

The big face recognition task puts the whole system to a test. The Multi-PIE [Gross et al., 2010]
database contains many images of faces, taken under controlled variability of identity, expression,
illumination and pose. For this experiment, the first session, a set of 249 individuals was selected.
The pose ranged from frontal up to 60◦ of yaw angle. Expressions have been excluded as the
current 3DMM can not render expressions.

The method recognizes faces fully automatically using the integrative framework from above
(prod-maps-cond). The fit is performed by the conditional integration method, starting from the
detection candidates and maps, see also [Schönborn et al., 2013]. The final fitting result, the
best sample, is used as face representation for each image and compared to the gallery images.
The frontal views form the gallery, whereas the pose images are used as probes.

To measure the similarity between two faces f1 and f2, the cosine angle between the con-
catenation of the shape and color model coefficients is used, as suggested by Blanz and Vetter in
[Blanz and Vetter, 2003]: d = 〈f1, f2〉/(‖f1 ‖·‖ f2‖).

Face recognition results on the Multi-PIE database are available from a few groups using
different methods. Most of these are trained on, or at least strongly adapted to the database
at hand. A common theme is to train the method on the first half of the identities and to
perform the recognition with the remaining subjects. Usually, the pose and the illumination of
the training set are the same as during testing. This setup not only leads to a smaller gallery
but also adapts the methods to the database peculiarities. Initialization is mostly manual, either
by setting the pose or setting landmark locations. These methods can reach high recognition
performance [Fischer et al., 2012; Asthana et al., 2011; Sharma et al., 2012; Li et al., 2012; Ho
and Chellappa, 2013], higher than achieved with the 3DMM here.

Only few methods are as general as the 3DMM and not adapted to the Multi-PIE database.
In [Prabhu et al., 2011], a 3D Generic Elastic Model is used to normalize the faces to gallery
settings. The method is fully automatic and does not need database adaption.

The results in Table 6.3 are encouraging. The 3DMM with integration, and thus automatic
initialization, reaches or outperforms state of the art results on the Multi-PIE database up to
high pose angles (Figure 6.11).

The failure cases are not simply classifiable. Different ethnicity did not lead to lower recog-
nition rates as expected with the Caucasian-centered 3DMM. Also, the removal of people with
glasses and beards did not lead to a better performance. The failure cases do not show a clear
common pattern but mostly are simply due to failed fits.

An open question remaining is the quality of the illumination estimation. Recognition ex-
periments under varying illumination conditions have not proved very successful. Though the
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Table 6.3: Recognition results in ratios of successfully identified probe images. The number in
parentheses is the Multi-PIE image name. The gallery consists of frontal images from the set
051 16. 3DGEM [Prabhu et al., 2011] represents the best baseline of a fair comparison with a
general method.

Pose Results 3DGEM
60◦ (090 16) 0.49 0.45
45◦ (080 16) 0.82 0.65
30◦ (130 16) 0.94 0.87
15◦ (140 16) 0.96 0.98

Figure 6.11: Different views in the Multi-PIE database as used for this experiment, 090 16,
080 16, 130 16 and 051 16 (from left to right)

fit results look well in terms of the measures extracted in the above standard experiment, the
recognition rates are bad for varying illuminations.

6.4 Discussion

Both, the individual analysis and the bigger experiments lead to a few summarizing points after
the evaluation.

The face model can be setup in a probabilistic manner and inference can be performed by the
Metropolis-Hastings algorithm. The standard form with the adapted random walk proposals fits
the model to target images well, both in terms of an optimization goal and a posterior distribution
goal. The likelihood has to be adapted for each of the two applications, the large independent
product likelihood is very certain in its result and only suitable for optimization-type application,
whereas the CLT likelihood is more applicable to extract estimates related to the distribution.
The sampling needs a considerably longer runtime to reach a state where information about the
distribution becomes available. An optimization application can adapt the runtime to the quality
needed, starting at a few minutes on current hardware.

The employed likelihood functions measure the degree of misfit within the image space, not
on the model reference. Such a comparison makes it necessary to deal with partial explanation
effects arising due to a face not covering all of the image. Ignoring this fact and only evaluating
likelihoods on the explained part of the image leads to background artifacts like shrinking or
blowing-up of the face size. But the exact value of a fixed background compensation is not
crucial.

Compared to the product likelihood, the CLT likelihood does not reach similarly low image
residuals. The best explanations in this setup always include the assumptions of the power
of the noise and rate parameters which lead to the expected noise strength higher than perfect
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explanations without noise. The CLT is thus not the best option to optimize as much as possible.
But a benefit arising from this type of modeling is the good background performance without
any explicit treatment.

The stochastic behavior of the random walk algorithm outperforms more classical optimiza-
tion settings, even if numerical gradients are used. The classical optimization seems to have
problems with local convergence and fails to find global optima. The combination of stochastic
and directed proposals can lead to very good optimization results.

Numerical gradients are slow and are not comparable to random walks in terms of their speed
performance, even though they lead to directed moves and can be used with efficient optimization
algorithms. But they provide an empirical estimate of a gradient which is somewhat smoothed
compared to analytic gradient computations which usually implement almost a point measure.
The use of approximative analytical gradients could not compete with the results based on finite
difference gradients.

The integration of the detection information into the fitting process proved to be more suc-
cessful than a simple feed-forward architecture with hard decisions right after the detection steps.
The integration of this information could even beat the model-only runs which were initialized
with user-provided landmarks information in the standard setup. However, ignoring the visibility
of landmarks leads to an even higher quality with the user input only. The use of the unreliable
detection information lowered the overall success rate, due to a few completely failed cases. The
quality of the good explanations did not suffer, especially not in terms of the recognition and
reconstruction rates.

The system depends on the proper solution being present in the detection responses. There-
fore, applications on images where the detection never found the face completely fail. The total
system is capable of choosing the proper detection from the complete detection answers among
many distractors. The system has also been successful at finding the proper solutions where
those have not been the strongest responses.

The different types of detection integration did not differ very much in their outcomes. The
correction of the transition ratios led to broader distributions, also exploring space besides the
proposal maxima. But the broader exploration also removed resources from finding the maximum
and thus the results were not as precise as without the correction.

The integration into the likelihood did mostly perform like the conditional setup, which would
be as theoretically expected.

The integration of the very unreliable pose regression did not disrupt the system if integrated
as a proposal outside the likelihood function. Integration into the likelihood led to slightly
lowered performance since the reported certainties of the Random Forest regression are much
too high and do not reflect the actual reliability. Due to the unreliable nature of the regression
information, the inclusion of it did not improve the overall result.

The successful integration is demonstrated by the system-level application of face recognition
on the Multi-PIE database. The direct implementation of the integration concepts leads to a
fully automatic face recognition algorithm which is generally applicable and needs no database
adaption. It can compete out-of-the-box with the best other, general method applied to the
Multi-PIE database. The database-scale application also pointed out at a few weaknesses, most
of all, problems with different illuminations in a recognition setting. Face recognition on the
Multi-PIE with other methods can perform considerably better than presented here, but it
needs strong database adaption to do so.

Outliers are a common and general problem in applications involving the generative 3DMM.
Beards, glasses and other occlusions of the face are not modeled in the current development stage
of the 3DMM. But many real world images show at least minor occurrences of these problems,
there should be a concept of dealing with them. The probabilistic formulation makes it easier
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Figure 6.12: Outliers in the standard set, targets (top) and fits (bottom), mild outliers (teeth,
glasses and mustache) do not disturb the model too much, stronger ones (red beard) can destroy
the fit.

to extend the model with new parts, as long as they are formulated probabilistically. A possible
direction of outlier masking is given in Section 7.1.

Images with strong outliers, such as the those stemming from the AFLW database, conse-
quently failed in the experiments without outlier treatment. Weak disturbances like moderately
colored beards, glasses or mustaches could be dealt with even without explicit outlier treatment.
Besides the explicitly robust likelihoods (see Section 3.3.1), the individual runs did not show
much difference in terms of outlier performance, it seems to be a more fundamental property of
the applied model. Figure 6.12 displays a few examples.

A further problem arises from contour mismatches. The current likelihood does not contain
a contour term to encourage matching face boundaries. If the background model does not fit
the image to explain, the contour might be mismatched, especially if there are outliers like a
beard present. In practice, backgrounds are often distinct enough to let the fitter find a cleanly
separating boundary (Figure 6.13).

As a conclusion of the evaluation, table Table 6.4 lists the best settings to solve specific tasks.

Table 6.4: The optimal parameter settings for different problems as a conclusion of the evaluation.

Setting Problem
prod-0.4 best fit, reliable landmarks
prod-maps-cond best fit, automatic detections
prod-maps-cond-lminit best fit, detections and user landmarks
sqclt distribution, reliable information
sqclt-maps-cond distribution, automatic detections
opt-ga-mix best fit, long runtime
parallel integration best fit, detections, long runtime
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Figure 6.13: Contour match (top) and mismatch (bottom). There is no explicit contour likelihood
term in the model. The fit is overlaid onto the target image, the darker region is covered by the
adapted face model.
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Chapter 7

Future Extensions

The methods evaluated above are still very basic and need further developments to reach full
practical applicability. This chapter contains possible hooks of extension of the probabilistic
sampling fitter. The presented methods are an exemplary collection of future work and serve to
demonstrate the possible directions of extension with a few examples and preliminary results.
They form a more concrete outlook. It is therefore not meant to be complete, the methods are
only sketched.

7.1 Outlier Masking

Outliers are a common and general problem in applications involving the generative 3DMM.
Beards, glasses and other occlusions of the face are not modeled in the current development
stage of the 3DMM. But many real world images show at least minor occurrences of outliers.
There should be a concept of dealing with them. The probabilistic formulation makes it easier
to extend the model to include new probabilistically formulated parts.

Explicit treatment of outliers is almost impossible. This would require the building of a
model of every possible face occlusion. Masks are a simple method to circumvent the problem
by enhancing the model with a likelihood of having a face pixel or an occlusion pixel. But, if no
explicit generative model is used to find the mask, the determination of masks can be arbitrarily
complex and problem-specific.

A few approaches have been considered in the past, two specific examples can serve as motiva-
tion. In the context of the 3DMM, Pierrard used an explicit segmentation of the image into skin
and non-skin regions, seeded with the fitting state to find an outlier mask [Pierrard, 2008]. This
approach is applicable only if the current fitting stage is already rather well-aligned to ensure
the proper seeding of the segmentation. An additional illumination correction has to be applied
for the segmentation to reliably work. Also due to high runtime demands, it is more targeted
to be a post-processing step of a fitting result to find skin regions in the image. Apart from
matching a model to an image, there is the problem of matching two views of the same scene.
In [Hasler et al., 2003], the authors build a statistical model of an outlier match by considering
an outlier to be a random region match and show the superiority of this explicit modeling over
robust estimation.

A simple segmentation of the input image usually recovers only skin regions. But the model
needs to include eyes and eyebrows into the likelihood to adapt to these regions well. A post-
processing is thus not an option.
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Figure 7.1: The outlier mask at the final fit, using σFG = 0.1 and LBG = −3.3 to obtain the
mask. Brightness corresponds to posterior of being foreground P (FG | c, cT).

The outlier mask is used in the evaluation of the model, weighting foreground and background
likelihoods according to the likelihood of the pixel of being part of the foreground

L (c; cT) = mLFG (c; cT) + (1−m) LBG (c; cT) . (7.1)

The methods differ in finding values of the map m. In the context of this work, a simple
variant of a mask is the conditional probability of each pixel being part of the face, given the
current parameter value (3.24). The value can directly be used as masking value

mi = P (FG | c, cT) . (7.2)

The mask can be extended to include further information by being itself a mixture of masks.
A further simple model is e.g. a Gaussian color segmentation of the image. A decision between
a Gaussian model of the foreground and the background colors only, initialized with the current
foreground estimation.

The simple case, with the mask as the conditional likelihood of being foreground or back-
ground, can remove the thick black glasses from the likelihood function and thus enable fitting
where it would fail otherwise, see Figure 7.2 with images from [Weidenbacher et al., 2007]. The
Gaussian segmentation mask can not succeed using these example images.

A comparison with a robust likelihood function, evaluating only the best 80% of the pixel
differences, shows no advantage of masking if outliers are present. But on clean images, the
masking can perform better than the robust likelihood. The robust evaluation always discards a
certain amount of all the pixel likelihoods, even if they fit well. The mask adapts to the amount of
pixels which fit the model well. Surprisingly, the simple robust likelihood type arising from using
the heavy-tailed Cauchy color likelihood (3.19), without any further modification, can compete
with the explicit masking and the robust order statistics.

The advantage of using masks is the extendability and combinatorial freedom. There are al-
most no limits in complexity of modeling the mask. For example, a Markov Random Field might
be a useful prior of the map values, preferring contiguous regions rather than individual pixels.
On the conceptual level within the probabilistic context, this is not hard to integrate but imple-
mentations issues can arise here. There are more elaborate methods needed to work with Markov
Random Fields than a simple random walk Metropolis-Hastings algorithm. For an overview refer
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Figure 7.2: Dealing with outliers, no masking (second row), the FG/BG mask (third row) and a
robust evaluation (last row). The profile view is problematic with this simple mask.
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to [Blake et al., 2011]. Even Bottom-Up information from image region classification might make
a useful mask to use.

This simple example shows the ease of a possible extension which is not very straight-forward
to come up with in a classical optimization setting. The proper probabilistic treatment of the
above method remains an open point to prove and possibly adapt if a strict result is desired.
But the practical application on an algorithmic level is promising.

7.2 Automatic Decorrelation

The generative nature of the 3DMM provides the possibility to generate a lot of data which
resembles expected input data. This vast amount of possible targets can be used to extract
the expected correlations among the model parameters. With this information, the proposal
distribution can be corrected for the strongest correlations, fully automatically. This is a special
benefit of using a generative model which can synthesize data. Conceptually, this is somewhat
analogous to using the inverse of the Hessian matrix in optimization problems to account for
correlated dimensions.

The correlations in the final target distribution are problematic for the MCMC sampler if
they are not represented in the proposal distribution. The exact posterior correlation depends
on the actual target image and can not be predicted. But a general averaged measure can still
be estimated, based on synthetic expected target data.

The procedure is demonstrated for the landmarks part only. N = 10 000 faces are synthesized
by the 3DMM to test the simple idea. The synthetic samples are drawn from the distribution
arising from the mean face and a RMS landmarks distance of 12 pixels. Each sample i consists
of a parameter vector θi and the landmark locations xi. xi is the vectorized representation of all
10 landmark coordinates of the sample in the format

xi (θi) =
[
x1, y1, x2, y2, . . . , x10, y10

]T
.

A standard PCA on the parameters of the samples {θi}i would extract the correlations among
parameters with respect to the parameter values. But in this context, the decorrelation with
respect to the generated landmark coordinates is needed. The parameters show a correlation
in terms of their effect through the model, the goal is to decorrelate θ with respect to the
generated x (θ). In order to get that correlation, the principal directions of variation UX and the
corresponding standard deviations of the landmarks set {xi}i are calculated using a standard
PCA. These directions in the landmarks space are projected back into the parameter space using
a linear least squares regression,

Uθ =
(
ΘX+

)
UX,

with Θ =
[
θ1, θ2, . . . , θN

]
, X =

[
x1,x2, . . . ,xN

]
and the Moore-Penrose pseudo-inverse ma-

trix X+ =
(
X>X

)−1
X>. X+ is most easily found by the singular value decomposition

X = UΣV>, U>U = I, V>V = I, Σ diagonal,

leading to X+ = VΣ+U> and thus

Uθ = ΘVΣ+U>XUX = ΘVΣ+.

Mathematically, this is very similar to a Kernel PCA [Schölkopf et al., 1998] of the θi with
the kernel

k (θ, θ′) = 〈x (θ) ,x (θ′)〉 ,
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but with the feature map x (θ) explicitly known.

The proposals with respect to the extracted directions are built to propose a smove along one
of the principal directions Uθ. At each step, one of the directions is chosen at random and the
proposal along this direction scaled with the standard deviation of the respective component.

The decorrelation is only executed for the landmarks data, tested are landmarks and image
likelihoods. The results of the experiments are listed at the end of Table 6.1. For the landmarks
posterior distribution (lm-autodec) there is a gain in speed compared to the standard proposals,
it is even better than the manual decorrelations in the run lm-8. The full image likelihood run
sqclt-autodec can not profit from the automatic decorrelation.

The automatic procedure with respect to the landmarks positions does not accurately capture
the correlations of camera and shape at a resolution fine enough for real image fitting. The shape
parts of the automatically extracted components are considerably weaker than the dominant
camera parts.

The procedure shows encouraging results. The very simple automatic decorrelation method
might be extended to be applied with respect to the generated images. The automatic decor-
relation is a special benefit of the generative model, making use of its internal expectations of
possible target data.

A successful class of adaptive MCMC methods use a normal distribution as proposal which
is adapted during the run. This can lead to a very similar procedure as presented here, but
executed online during the model adaption [Haario et al., 1999, 2001].

7.3 Multi-Scale Models

A very common pattern in optimization, especially image alignment tasks, is the use of a multi-
scale approach. The problem is first solved at a heavily blurred and simplified stage, then the
amount of information is iteratively increased until the actual problem size is reached. Such
methods are known as “multi-scale”, if models are fit with different resolution or “annealing”, if
the target distribution is very loose and non-selective first and narrows with time. The methods
are useful to focus computational resources and to defuse the problem with premature local
convergence.

A very simple multi-scale extension can be built by defining an image likelihood on differently
scaled target images. The evaluation of the mismatch on the standard Gaussian image pyramid
[Adelson et al., 1984] is tested with the runs prod-pyramid and prod-pyramid-lh. For an overview
on the used sizes see Table 7.1. The former run implements the image pyramid as a chain of
filters. A random walk proposal is generated from the top level and filtered through all the lower
scales of the pyramid in succession.

The benefits are twofold, the cascaded structure can efficiently reject bad proposals at coarse
resolutions and the noise model gets a notion of contingency and dependence. Regions on low
levels are averages of many higher level pixels. The early rejection is beneficial since rendering
of images at lower resolutions is far less expensive.

The second run prod-pyramid-lh directly uses a likelihood function which is a product of the
likelihoods at all scales, thus not having any early rejection benefit but still a somewhat more
sophisticated noise model.

The results are encouraging, the performance can improve compared to the standard run
prod. More complex noise models on multiple scales should definitely be studied in the future.

A more complex multi-scale approach uses an own model suitable for each scale of the target
image. The PPCA model introduced in Chapter 3 can also be computed on down-sampled data.
The topology of the reference is constructed such that removing every other vertex does not
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Table 7.1: Corresponding scales of models and images as used in this section.

Level Vertices Image Size
7 28 929 512× 512
6 7 297 256× 256
5 1 857 128× 128
4 481 64× 64

Figure 7.3: The mean face of different levels, level 4 to level 7 from left to right.

remove important features of the face. The nose or the eyes remain represented. The reduction
step can in total be applied three times without loosing the facial appearance, see Figure 7.3.

The multi-scale approach uses a cube parametrization called “multicube” which is explained
in detail in [Knothe, 2009]. The procedure leads to four distinct models, at cube levels 7, 6, 5
and 4, where 7 is the standard level used everywhere else.

Instead of using level 7 to evaluate the likelihood at the lowest pyramid level, the adapted low-
resolution model is used. The individual stages are integrated as dependent filters (Section 5.3.4),
filtering from level 4 up to level 7, with the state θ at the top level 7

F7 ◦ F6 ◦ F5 ◦ F4 ◦Q (θ′ | θ) .

A new proposal is first checked with the acceptance rule at level 4 and then in succession on
level 5, 6 and 7, each rendering and evaluating with an appropriate image size, see Table 7.1.

To ensure the comparability of the parameters at different levels, each lower level instance is
considered a partial observation of a higher level model. The parameter of the best reconstruction
is used as the high level parameter.

The performance of this chained multi-scale approach (prod-l4l5l6l7 ) is a bit disappointing.
It does not reach a performance comparable to the standard run and is considerably worse than
the pyramid runs. But there might still be useful applications of this hierarchical approach, e.g.
to include Bottom-Up information at a suitable, coarser level.

There is a big potential in the hierarchical use of the 3DMM, the method presented here
is too simple. Each observation at a level induces a complete distribution at the higher level,
not only the best reconstruction. A future application could build on that fact and construct a
hierarchical sampler, similar to [Liu et al., 2002] but more sophisticated with a complete model
to image fitter.
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Conclusion

8.1 Critical Discussion

The MCMC approach for fitting and integration of Bottom-Up information is useful to explain
images of faces using the 3DMM. The overall evaluation led directly to a fully automatic and
general method to perform face recognition with a result better than state of the art methods.
Also, the more detailed, individual experiments mostly generated good and useful fitting results.
The probabilistic reinterpretation of the 3DMM together with the MCMC fitter provides a way
of obtaining information about the posterior distribution. The method successfully sampled a
few independent representative samples.

The probabilistic view led to the use of likelihood functions which are conceptually easier
to reason about in the vicinity of uncertainty than cost functions. The parameter values used
in this evaluation have all been estimated directly from real world results. The estimation step
removed the need to tune parameter values in cost functions. But depending on the application
context, a manual tuning of the parameter values can still be useful to get the best possible
performance, e.g. for the variance in the independent product Gaussian likelihood.

The likelihood functions assume conditional independence among the individual pixels in the
image, given a model parameter setting. The assumption is certainly not really valid but never-
theless a useful approximation to find tractable models. In an optimization setting, the missing
independence does not really interfere, the targeted optimal explanation with least residual error
does not depend on it. But the shape of the posterior distribution is considerably influenced
by the independence assumption. The direct implementation of the large product of Gaussian
likelihoods (3.20) with the empirical variance estimate leads to very narrow distributions which
do not show signs of a practically relevant posterior variance, see Section 4.6. The CLT, with
its different view on noise, has been necessary to obtain results with a useful posterior vari-
ance estimate. It might still be too restrictive, the independence assumption is still needed to
formulate the collective likelihood. On the downside, the broader posterior distribution from
the CLT likelihood is not as useful as the product likelihood to build recognition or reconstruc-
tion applications. Its reconstruction results are not as crisp as those obtained with the product
likelihood.

The issue of a somewhat arbitrary posterior distribution remains, as there is no perfect (and
known) likelihood function for fitting the 3DMM. It has to include an aspect which does not
have a ground-truth, the registration mismatch between the model face and the image. The
likelihood function massively influences the posterior distribution which thus shares the same
problem. Empirical estimation of the necessary parameters and evaluation of different likelihood
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models seems to be the best solution at the moment, though still not fully convincing.

The MCMC method is prone to strong multi-modal distributions. The main architecture,
built on random walks, prefers an exploration on smaller scales and does jump between strong
modes. Multi-modality on a small scale (“ruggedness”) of the posterior distribution is not an issue
for stochastic proposals. The results indicate a benefit of the stochastic proposals over the finite
difference gradients, showing better optimization performance using comparable computational
resources.

Optimization algorithms fit the algorithmic structure of the propose-and-verify architecture
well. But the strict probabilistic interpretation becomes difficult if deterministic proposals are
used in the algorithm. At least, they need to be combined with stochastic parts. A combination
also led to an increase in performance compared to the pure gradient ascent algorithm, due to
the more global optimization behavior. In most applications, the optimization is still the main
goal, therefore the loss of the strict probabilistic interpretation is not a big problem in practice.

The integration of Bottom-Up information proved to be beneficial, it led to a fully automatic
fitter. A greedy feed-forward integration performed clearly worse than the continuous integration
without explicit decisions. This highlights the need to carry-through uncertainty information and
delay hard decisions as long as possible. The practical Bottom-Up information inclusion was most
successful for the type of conditioned chains, implemented by Metropolis filters.

From a result only view, the parallel integration of using multiple chains in parallel to deal
with the different alternatives offered by Bottom-Up methods, looks most promising. It is also
conceptually the cleanest way of deciding between alternatives. But in practical applications it
might have a rather prohibitive complexity to fit the model to multiple candidates in parallel.
With the proper adaptive schemes and further optimization, this method might still reach a
practical applicability. For future work, the problem might be suited to try a population-based
algorithm, such as e.g. Population Monte Carlo [Cappé et al., 2004].

A general pattern of the integration is the inability to succeed in fitting if the input data from
the Bottom-Up part does not contain useful information. This is consistent with the observation
of an inability to fit the model with no initialization at all. The initialization does not have to
be detailed, a coarse positioning of the model with rough yaw angle and scale setup is sufficient.
Conceptually, a properly designed MCMC method is capable of finding good explanations from
any starting point. But in practice, this is not feasible for the 3DMM. The problem is the ability
of the model to locally explain many arbitrary patterns which are not faces. Compared to the real
face explanation, the distractors are usually worse explanations in terms of the model likelihood.
Thus, they are in principle distinguishable from the proper explanation. But the MCMC sampler
can not easily escape them since they form a strong multi-modality. So, rather than leading only
to a speedup, like in previous DDMCMC applications, the integration of additional information
into the MCMC fitter is crucial for the method to successfully fit the big parametric model
without user input. The issue becomes unsolvable for the sampler if the model is not consistent
with respect to the expectations, and the distractors actually have a higher likelihood value than
the real face. Any optimization or sampling method will then prefer the distractor over the face.
The way to deal with such problems is to build a better model likelihood, e.g. as demonstrated
with the background model.

There are two fundamental limits which need to be considered for a good integration using
the evaluated methodology. Information has to be integrated in small increments to allow an
integration by successive independent filters, or the likelihood function has to be smooth enough
to allow the traversal of the state space in small steps with dependent filters. The use of direct
data-driven proposals needs to take these limits into account. The proposal of a far jump on the
image is very unlikely to be accepted without a complete model adaption to the new location.
This also leads to a further important point to consider for a successful integration. To be really
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useful throughout the complete model fitting process, the Bottom-Up methods have to provide
complementary information laying restrictions on all dimensions. The proposal of changing
only the face location, in the above example, is not very promising, as the whole rest of the
model still needs to be adapted to the new location. This very rarely occurs at the same. To
achieve a decent probability of acceptance, the dislocation move needs to propose adapted model
parameters concurrently. These can either be found by using more complementary Bottom-Up
information or by an additional model fitting process at the new location. Adapting at the new
location conceptually leads back to the parallel integration scheme with parallel model fits.

The use of a face and facial feature points detector does not seem optimal with respect
to complementary information. The resulting posterior distribution of this information is too
unconstrained to be really restrictive for the full image fitter. Constrained by the detection maps,
there are still all the unaffected dimensions of appearance and a lot of shape variance left for the
fitter to adapt. These detectors constrain mainly the pose and allow the fitter to automatically
find the face but they have hardly an effect on the actual model adaption, once properly-placed.

8.2 Conclusion

In this work, I could implement and evaluate a Markov Chain Monte Carlo method to adapt a
3D Morphable Model to single images of faces. The adaption process in the probabilistic domain
is general enough to integrate different sources of information, even when they are uncertain
and of low reliability. This is made possible by implementing the method using the Metropolis-
Hastings algorithm as inference machinery. This algorithm provides a simple propose-and-verify
architecture, which could be shown to be useful to formalize model adaption methods, including
traditional optimization. The structure can especially be extended to include Bottom-Up infor-
mation. The DDMCMC-type integration works by forming proposal distributions adapted to
observed data.

Though MCMC and DDMCMC are well-known concepts in computer vision, it has not been
clear whether these methods are applicable to fit a large parametric model of faces to an image,
and whether they are able to integrate detection information directly into the fitting process
while still being robust to unreliable data.

As a conclusion of this work, the fitting process can be stated probabilistically and these
methods can be used to integrate information of different origin and reliability into face fitting.

My personal conclusion regarding the different Bottom-Up proposals is to integrate sophisti-
cated and well-performing detection methods, of which only few are available, directly into the
likelihood function. The likelihood function should then respect the empirical reliability, not only
the internal value reported by the method itself. The proposal-type of integration seems to be
more suited to integrate many different but complementary methods which may be unreliable.
Simple random perturbations are the ultimate example of unreliable and diverse proposals, their
integration works very well.

The probabilistic approach also provides a different view on the problem. The insight led to
the construction of a simple but effective background model. The model extension is necessary
to achieve results consistent with expectations of face image explanation. Also, the collective
likelihood model in place of simple averaging of pixel errors is a result of the probabilistic view
on the problem. Using likelihood functions in place of cost functions further led to conceptually
cleaner parameter estimation in place of tuning. Though most results can be transformed to the
optimization view and implemented there as well, the problems described here are easier to solve
and understand from a probabilistic viewpoint.

Both faces of robustness (Figure 1.1) could be addressed. To do so, both concepts, the proba-
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bilistic view and the sampling algorithm have been necessary. The first kind of robustness, worse
proposals with respect to both, the target likelihood value and the conceptual expectation, can
be implemented using the propose-and-verify architecture of the Metropolis-Hastings algorithm.
The model verification step ensures consistency with respect to the current state and the model
likelihood. The second kind of robustness, with respect to proposals which are worse in the eyes
of a human observer, but better with respect to the likelihood function, can only be achieved
by a proper modeling of the expectations and by making the likelihood function as consistent
with the problem as possible. The needed consistency could be considerably improved with the
necessary background model.

Both of these points have to be considered to gain a really robust method of model adap-
tation. The stochastic nature of a method based on random proposals will reveal inconsistent
likelihoods sooner or later due to the globally optimizing properties. An implementation of a
robust integration using only the sampling and filtering approach is thus prone to fail if the
model is not checked for consistency with the expectations.

The flexibility of the sampling architecture led to an implementation of traditional fitters
within this method. Thus, it opens a door to performance improvements and reproduction of
earlier results. The combination of traditional optimization steps with the stochastic nature of
the random walk algorithms naturally leads to the class of stochastic optimization algorithm.
These have been most successful for fitting 3DMM in the past. The propose-and-verify framework
puts them on a conceptual basis and also extends them to include uncertain information.

The flexibility of the method in terms of requirements, e.g. no gradients are needed, only a
point-wise evaluation is necessary, leads at a good extensibility towards a more complex model.
A process which has proven difficult using the traditional optimization approach. I demonstrated
such first steps with simple outlier masking and a promising multi-scale approach.

The pure mathematical probabilistic aspect might come a little bit short when dealing with
complex and high dimensional models. The convergence towards proper results is theoretically
justified but applies to the asymptotic limit. Thus, if a rigid probabilistic result is required, an
additional effort — at least in terms of computational resources — is necessary. Though the
propose-and-verify concept of the method is suited for fitting or sampling, a probabilistic answer
might also be gained using a variational approach to inference. Even a Laplace approximation
might be an alternative way to gain a simple estimate of uncertainty.

So far, only rather restricted Bottom-Up information has been included into the fitting pro-
cess. The nature of the Bottom-Up knowledge is also rather human-centered, yielding results
which can be used on their own. It might be interesting to study how Bottom-Up information
should be formed if only targeted to improve the model fitting process. At least, more sources
of image-based information should be implemented and integrated for this approach to really
shine. The detection of a face and facial feature points is not really restrictive with respect to
the complete parameter space of the 3DMM. The balance between Top-Down and Bottom-Up
information is still very much tilted towards the model part.

I thus encourage to use more complementary Bottom-Up methods in future work than the
already well-performing face and feature point detection. I imagine a type of random walk
Bottom-Up proposals which are just slightly biased with a statistically extracted heuristic only
somewhat better than random walking. But using a lot of different unreliable proposals will
probably lead to the need of an adaptive proposal selection mechanism. Such a mechanism adapts
the mixture of proposals to the current state of fitting or the current image to be explained. A
method which might be considered for implementing a massive Bottom-Up scheme are the patch-
based methods of the group of Shimon Ullman, e.g. [Borenstein and Ullman, 2008; Epshtein and
Ullman, 2005; Ullman, 2007]. These methods also come with an information theoretic concept
to find useful parts among very many alternatives.
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The propose-and-verify architecture used for sampling might be extensible towards a kind of
“emergent” posterior distribution which is only representable by a set of samples, approaching
the unknown “proper” likelihood function problem. But this remains highly speculative at the
moment and to be studied further. Great care has to be taken not to jeopardize the separation
of models and methods too much when developing towards this direction. A mixing of models
and inference methods leads to the loss of one of the strongest appeals of probabilistic modeling,
a clearly formalized model. The fitting algorithm can not be expected to solve the problems
with the likelihood function. But such an extension might open new directions of thinking about
model likelihoods and might eventually lead to new, even more useful formalizations.

107



8.2. CONCLUSION

108



Standard Proposals

The following table lists the proposal step sizes as used in the standard setup. Listed are the
standard deviations of the Gaussian proposals for the single step size and the mixture setups.
The mixture setup also includes the mixture contributions λ. The offset parameters are changed
implicitly through the correlation corrections from Section 4.3.4. For more information about
the combination of the individual proposals and the illumination refer to Section 4.3.2.

Parameter Single Mixture
σ σC σI σF λC λI λF

Yaw, ϕ [rad] 0.12 0.75 0.1 0.01 0.1 0.4 0.5
Nick, ψ [rad] 0.12 0.75 0.1 0.01 0.1 0.4 0.5
Roll, γ [rad] 0.12 0.75 0.1 0.01 0.1 0.4 0.5
Scaling, log f 0.062 0.15 0.05 0.01 0.2 0.6 0.2
Distance, tz [mm] 76 500 50 5 0.2 0.6 0.2
Translation, tx,y [mm] 131 300 50 10 0.2 0.2 0.6
Offset, Ox,y [pix] - - -
Shape, qS 0.094 0.2 0.1 0.025 0.1 0.5 0.2
Radial Shape, ‖qS‖ 0.2 0.2 0.2
Color, qC 0.094 0.2 0.1 0.025 0.1 0.5 0.2
Radial Color, ‖qC‖ 0.2 0.2 0.2
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Standard Experiment

These are the 206 images used in the standard experiment. Images are from the AFLW database
[Köstinger et al., 2011], prior renderings of the 3DMM, the Radboud Faces Database [Langner
et al., 2010], scanner photographs of the Gravis group of the University of Basel and from the web
service [Pierrard and Vetter, 2010]. For the externally available databases AFLW and Radboud
Faces, only the image names are listed.

The images of the internal databases are not available for reuse.

Annotated Facial Landmarks in the Wild [Köstinger et al., 2011]
Face Ids: 40644, 41036, 41040, 41228, 43757, 46050, 47232, 48871, 49239, 51408, 51494,

53626, 54447, 54524, 55297, 57716, 58701, 58730, 58780, 62168, 62293, 64110, 64111

Radboud Faces [Langner et al., 2010]
Poses Rafd090, Rafd135 and Rafd180, setting neutral frontal, with Ids: 01, 04, 07, 10,

11, 12, 14, 16, 21, 22, 26, 28, 31, 32, 36, 39, 41, 43, 46, 47, 51, 54, 56, 57, 59,

60, 63, 69, 71

Prior
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Scanner

112



APPENDIX . STANDARD EXPERIMENT

Web Service obtained through [Pierrard and Vetter, 2010]
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