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I. Abbreviations: 

∆G difference in Gibbs free energy 

3D  three dimensional 

ALS  amyotrophic lateral sclerosis 

ARE  antioxidant responsive element 

ATF6 activating transcription factor 6 

BAK  Bcl-2 homologous antagonist killer 

BAX Bcl-2-associated X protein 

Bcl-2 B-cell lymphoma 2 

BCNU glutathione reductase inhibitor 

carmustine 

BH3 Bcl-2 homology 3 

BID  BH3-interacting domain death agonist  

BiFC bi-molecular fluorescence 

complementation 

BiP  immunoglobulin binding protein 

BPTI bovine pancreatic trypsin inhibitor 

BSO buthionine-sulfoximine 

CHOP  C/EBP-homologous protein 

CHX cycloheximide 

CICR  calcium-induced calcium release 

CJD Creutzfeld-Jakob disease  

CNX calnexin 

COP1 coat protein 1 

CP  peroxidatic cysteine 

CR  resolving cysteine  

CRT  calreticulin 

Cys  cysteine 

Dia Diamide 

Dox  doxycycline 

DRMs  detergent-resistant membranes 

 

DTT  dithiothreitol 

EDEM1 ER degradation-enhancing a-

mannosidase- like protein 1 

EGFR  epidermal growth factor receptor 

EGSH  half cell reduction potential of GSH 

eIF2a eukaryotic translation initiation factor 2a 

ER endoplasmic reticulum 

ERAD ER associated degradation 

ERGIC ER-golgi intermediate compartment 

Ero1 ER oxidoreductin-1 

ERp endoplasmic reticulum resident protein 

ERQC ER quality control 

ESP  early secretory pathway 

FAD flavin adenine dinucleotide 

FCS fetal calf serum 

GADD34 growth arrest and DNA damage-

inducible 34 

GlcNAc  N-acetylgucosamine  

GPx  glutathione peroxidase 

Grp75 glucose-regulated protein 75 

Grxs   glutaredoxins 

GSH reduced glutathione 

GSSG oxidized glutathione 

GST  p glutathione S-transferase 

H2O2 hydrogen peroxide 

Hb  hemoglobin 

Hsp  heat shock protein  

IAM iodoacetamide 

IgM  immunoglobulin M 

IP3R inositol 1,4,5-trisphosphate receptor 
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IRE1 inositol-requiring protein 1 

Keap1 Kelch-like ECH-associated protein 1 

LPS lipopolysaccharide 

MAC  mitochondrial apoptosis-induced channel 

Maf  musculoaponeurotic fibrosarcoma 

MAM mitochondria-associated membrane 

MAP  mitogen-activated protein 

MEM minimum essential medium eagle 

MHC  major histocompatibility complex 

MOMP mitochondrial outermembrane  

Permeabilization 

MPTP mitochondrial permeability transition 

pore 

NEM  N-ethylmaleimide 

NOX  nicotinamide adenine dinucleotide 

oxidase 

Nrf2 nuclear factor erythroid 2-related factor 2 

O2 molecular oxygen 

OAC  oesophageal adenocarcinoma 

OST oligosaccharyltransferase 

PDI protein disulfide isomerase 

PERK protein kinase PKR-like ER kinase 

PLC  peptide loading complex 

PMSF  phenylmethylsulphonylfluoride 

PP1 protein phosphatase 1 

PPARg peroxisome proliferator-activated 

receptor gamma 

Prxs  peroxiredoxin 

PTPC  permeability transition pore complex 

PTPs  protein tyrosine phosphatases 

QSOX  quiescin sulphydryl oxidase 

Redox reduction-oxidation 

RIDD  regulated IRE1-dependent decay 

roGFP  redox-sensitive GFP 

ROS  reactive oxygen species 

RTK  receptor tyrosine kinase 

RyR  ryanodine receptor 

S2P site-2 protease 

Sec selenocysteine 

SERCA sarcoplasmic/endoplasmic reticulum 

Ca
2+

-ATPase 

SOD  superoxide dismutase 

SRP signal recognition particle 

SUMF1 sulfatase modifying factor 1 

T1/2DM type 1 and type 2 diabetes mellitus 

T4 thyroxine 

T3 triiodothyronine 

Tapasin  TAP-associated glycoprotein 

TAP  transporter associated with antigen 

processing 

TCA  trichloroacetic acid 

TFA trifluoro acetic acid 

TG thapsigargin 

TM tunicamycin 

Trx  thioredoxin 

UGGT UDP-glucose:glycoprotein 

glucosyltransferase  

UPR unfolded protein response 

UPS  ubiquitin-proteasome system 

VDAC1 voltage-dependent anion channel 1 

VEGF vascular endothelial growth factor 

VKOR  vitamin K epoxide reductase 

XBP1s  spliced isoform of X-box binding protein 

1 
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II. Summary 

Endoplasmic reticulum (ER) oxidoreductin 1a (Ero1a) is an ER-resident oxidase, which utilizes 

molecular oxygen (O2) as terminal electron acceptor to produce disulfide bonds and hydrogen 

peroxide (H2O2). The major target for Ero1a-derived disulfides is protein disulfide isomerase 

(PDI), which transfers them onto substrate proteins and plays an additional role as homeostatic 

regulator of Ero1a.  

In this thesis, I demonstrated that PDI-mediated activation of Ero1a extends beyond the 

reduction of the known inhibitory disulfides Cys
94

-Cys
131

 and Cys
99

-Cys
104

 and involves an 

additional disulfide, Cys
208

-Cys
241

. Opening of this disulfide by PDI apparently enables diffusion 

of O2 towards and of H2O2 away from the catalytic flavin cofactor in Ero1a. Expression of a 

constitutively active Ero1a mutant, which is devoid of all three regulatory disulfides, 

compromises cell viability. Hence, redox regulation of the O2/H2O2 diffusion pathway in Ero1a 

emerges as critical determinant of ER homeostasis, in which PDI takes center stage by directly 

regulating O2 consumption. 

I also elucidated the molecular basis for the specificity of glutathione peroxidase 8 (GPx8) to 

detoxify Ero1a-derived H2O2, as this enzyme binds to the site of H2O2 release in Ero1a. Only 

depletion of GPx8 but not of the abundant ER peroxidase peroxiredoxin IV (PrxIV) exhibited an 

additive effect with deregulated Ero1a on ER hyperoxidation and induction of unfolded protein 

response and antioxidant response target genes. Furthermore, only upon GPx8 knockdown I was 

able to detect leakage of Ero1a-derived H2O2 from ER to cytosol. Therefore, GPx8 acts as a 

specific molecular gatekeeper to protect the cytosol from Ero1a-derived H2O2. The exclusion of 

PrxIV from this process revealed a previously unappreciated compartmentalization of electron 

transport pathways in the ER.  

Moreover, I successfully isolated mixed-disulfide interaction partners of the ER-resident 

peroxidase GPx7 and of PDI. The interactome of the latter was analyzed and found to be mainly 

comprised of other members of the PDI family, which, in conjunction with its function as Ero1a 

activator, places PDI as central regulator of ER disulfide homeostasis. With regard to GPx7 

interaction partners I am confident that their identification will serve as basis for future 

elucidation of novel cellular functions of this peroxidase. 
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1. General Introduction 

 

1.1. Protein folding 

Proteins within and outside of cells fulfill a plethora of different tasks, which in their entirety are 

essential for life. They catalyze chemical reactions by operating as enzymes; they provide 

structural support by serving as building units in the cytoskeleton of single cells or by 

crosslinking numerous cells to develop specialized tissues; in the form of hormones they transmit 

signals between cells; and, when acting as pathogen-scavenging antibodies, proteins are also able 

to protect from diseases. The underlying principle, which enables proteins to cope with this 

functional diversity and ensures specificity of action, is the multitude of different three 

dimensional (3D) structures proteins can form.  

Proteins are assembled at the ribosome as polypeptide chains from amino acids, the basic 

building blocks of protein synthesis. Thus, by linking together amino acids in different 

combinations, proteins with diverse biochemical properties and functions are generated. The 

primary structure of a protein is defined by the linear amino acid sequence and does formally not 

include information on spatial orientation. However, the polypeptide backbone is rich in C=O 

and N-H groups, which favor the formation of hydrogen bonds. Within this first level of higher 

order structure, neighboring amino acids interact via hydrogen bonds to produce 3D patterns. 

These secondary protein structures include curled a-helices and extended b-strands, which can 

combine to form planar b-sheets. Subsequently, secondary structures can interact with each other 

to produce a complex tertiary protein structure [1]. This process of rearranging the relative 

orientation of residues from the protein´s primary structure into a stable tertiary structure is called 

protein folding and is associated with a gradual decrease in the global free energy of the 

macromolecule. In addition to backbone-driven interactions, the chemical properties of amino 

acid side chains impinge on protein folding, too. For instance, hydrophobic residues tend to 

concentrate within the solvent-free core of globular proteins, thereby stabilizing the native 3D 

structures whilst granting hydrophilic residues access to the water-based environment on the 

protein surface. Taken together, the 3D structure of a protein is entirely encoded in the genetic 

information of its primary amino acid sequence [1].  
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In vivo, the folding process of nascent polypeptide chains is assisted by molecular chaperones, 

which themselves are proteins that bind to initially exposed hydrophobic patches in order to 

prevent undesired aggregation [2]. When the protein reaches its native conformation, chaperone 

binding is dismissed.  

Proteins fold along the gradient of free energy in order to gradually optimizing the environment 

of their functional groups until they reach the energetically favored native state [1]. The stability 

of a protein structure is then proportional to the difference in free energy (∆G) between the 

unfolded and fully folded state and correlates with the capability to sustain physico-chemical 

stress. Due to their trafficking to the extracellular space, secreted and transmembrane proteins 

have to maintain conformational integrity throughout various conditions, like changes in pH, 

temperature or the surrounding ionic strength, and therefore often rely on additional stabilizing 

factors like disulfide bonds [3]. These covalent linkages between two sulphydryl groups can 

either link two cysteines residues within one protein (intramolecular disulfide) or contribute to 

the stability of protein complexes by connecting separate polypeptide chains (intermolecular 

disulfide) [4]. In the case of the former, two initially distant parts of an emerging polypeptide can 

be brought into proximity, thereby affecting the overall fold of the protein. In contrast to 

hydrogen bonds or hydrophobic interactions, disulfide bonds are covalent, which considerably 

increases their bond-dissociation energy and results in enhanced stability of the protein structure. 

In this sense, disulfide bonds actively contribute to the folding process of nascent peptides and in 

addition stabilize the native 3D shapes of mature proteins [3]. Indicative of their importance for 

protein function, missing or incorrect disulfide linkages often render the affected protein 

inoperative. Furthermore, this can cause protein misfolding and/or accumulation of unfolded 

proteins, which triggers a cellular stress cascade called unfolded protein response (UPR; see 

section 1.6).Therefore, elaborate enzymatic machinery has evolved to catalyze the specific 

introduction of disulfide bonds into newly synthesized polypeptides - a process called oxidative 

protein folding [3].  

The significance of proper protein folding for cellular homeostasis and the deleterious effect of 

aggregate formation by mis- or unfolded proteins is exemplified in various medical conditions. 

Prominent examples are the neurodegenerative proteinopathies Alzheimer’s, Huntington’s, 

Parkinson’s and the Creutzfeld-Jakob disease (CJD) [5].  



General Introduction 
 

   12 

 

1.2. The endoplasmic reticulum  

Newly synthesized soluble proteins, which are destined to the secretory pathway in order to 

function as either resident or secreted proteins, possess a cleavable N-terminal signal peptide. 

Upon translation at cytosolic ribosomes this signal peptide emerges from the translation complex 

and induces binding of the signal recognition particle (SRP) [6]. Association of signal peptide 

and SRP result in stalling of the translation process and recruitment of the ribosome-peptide 

complex to the cytosolic leaflet of the endoplasmic reticulum (ER) membrane, where SRP is 

bound by its cognate receptor [7,8]. Subsequently, the physical association of the translation 

complex with the pore-forming Sec61abg complex leads to the insertion of the signal peptide 

into the pore. After ribosomal translation is resumed, elongation of the nascent polypeptide chain 

then results in co-translational translocation of the protein into the lumen of the ER [9]. This 

highly specialized sub compartment is the starting point of the cellular secretory pathway. 

Furthermore, it harbors the previously mentioned enzymatic machinery for oxidative folding and 

a wide variety of different chaperones (see below), both of which assure proper protein folding 

before further passage along the secretory pathway is granted [2].  

 

1.2.1. Glutathione and its role in oxidative protein folding 

A prerequisite for oxidative folding is the establishment of a suitable reduction-oxidation (redox) 

environment, since disulfide bonds can only form in oxidative conditions and the stability of the 

bond is redox-dependent. In eukaryotic cells the ER provides this platform for oxidative protein 

folding, mimicking the oxidizing redox conditions prevailing in the extracellular space [10] and 

priming newly formed secretory and membrane-anchored proteins for their future destination. In 

this context, the ER stands in sharp contrast to the cytosol, where the cell invests a substantial 

amount of energy to maintain a reducing environment and to counteract oxidative stress (see 

section 1.7). These sub cellular differences in the redox conditions are mainly due to the action of 

the tripeptide-like compound glutathione [11], which reaches intracellular concentrations within 

the millimolar range [12,13] and acts as a potent redox buffer. Glutathione is synthesized in the 

cytosol from the amino acids glutamate, cysteine and glycine, and distributed throughout the 

different subcellular compartments. Since the amide bond between glutamate and cysteine 
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involves the g- instead of the a-carboxyl-group of glutamate, this form of linkage differs from 

the classical peptide bond and is thought to correlate with an increased resistance towards 

proteolytic degradation [14]. Glutathione can exist in two different redox states, either in the 

reduced monomeric form (GSH) or in the oxidized dimeric form as glutathione disulfide (GSSG). 

In the cytosol, GSSG produced by the action of glutathione peroxidases or glutaredoxin (see 

section 1.7) will be enzymatically regenerated to GSH with the help of glutathione reductase 

[15]. In this reaction, NADPH acts as electron donor to reduce GSSG to two molecules of GSH. 

This, however, only applies to GSSG in the cytosol, since an ER-resident protein with a 

comparable function to glutathione reductase has not been identified [16].  

The driving force for every redox reaction is the difference in the reduction potential of the two 

involved redox couples, for instance GSH/GSSG and NADPH+H
+
/NADP

+
. The reduction 

potential describes the affinity of a given redox couple to accept electrons. The more positive the 

potential is, the higher the species’ affinity for electrons and the probability of being reduced. The 

reduction potential of glutathione depends on the term [GSH]² / [GSSG] and, therefore, on both 

the molar ratio between GSH and GSSG and on the absolute glutathione concentration 

([GSH]+2[GSSG]) [17]. Since glutathione reductase constantly reduces GSSG in the cytosol, 

[GSH]² / [GSSG] is kept high in this compartment. This results in a cytosolic chemical half cell 

reduction potential of GSH (EGSH(cytosol)) which ranges between -280 and -320 mV in 

mammalian cells [18] and resembles the findings in yeast [19]. This low EGSH(cytosol) reflects 

the reductive environment within this compartment, which prevents the formation of disulfide 

bonds and keeps cysteines in a reduced state. In contrast to this, the ER reduction potential of 

GSH (EGSH(ER)) was recently determined using a glutathione-specific redox sensor to be -208±4 

mV in HeLa cells [20]. The notion that the ER constitutes a more oxidizing environment relative 

to the cytosol has been established earlier, when the GSH:GSSG ratio within the compartments of 

the secretory pathway was determined to be substantially lower compared to other compartments 

in the cell [12]. Initially, these findings led to the proposal of a role for GSSG in the supply of 

oxidative equivalents, which are needed for disulfide bond formation, and of an ER-specific 

import of GSSG [12]. Later, this hypothesis had to be abandoned when Banhegyi and colleagues 

conclusively demonstrated that only GSH can diffuse through the membranes of rat liver 

microsomes in an energy independent fashion, whereas GSSG diffusion was virtually absent 

[21]. Since the ER membrane, probably due to its high protein content and different lipid 
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composition compared to other endomembranes [22], shows an elevated permeability for small 

molecules, facilitated diffusion rather than active transport of GSH is likely to be the underlying 

mechanism [17]. In addition, several subsequent reports argued against a role of GSSG as source 

of oxidizing equivalents, most prominently the discovery of the ER oxidases ER oxidoreductin-1 

(Ero1) [23,24,25] and the fact that GSH competes with other protein thiols for Ero1-driven 

oxidation [26]. This prompted a reevaluation of the contribution of glutathione to ER redox 

homeostasis and led to the idea that, like in the cytosol, glutathione rather mediates reductive 

processes by providing a continuously imported source of electrons [27]. Along this line, GSH-

depleted cells were found to exhibit increased native and non-native disulfide bond formation 

[28,29]. Furthermore, direct reduction of the ER-resident ERp57 protein by GSH [30] and the 

previously mentioned ER half cell reduction potential of GSH, which was found to rather 

promote reduction of the active site cysteines within the protein disulfide isomerase (PDI) family 

[20], argued for opposing functions of glutathione and Ero1 activity in regulating ER redox 

homeostasis. 

Members of the PDI family (see section 1.3) are central components of the enzymatic machinery 

for oxidative folding and exert their function via conserved active site CxxC-motives (where C 

stands for cysteine and x depicts any other amino acid). When present in an oxidized state, these 

motives can mediate the transfer of their disulfide bond via thiol-disulfide-exchange reaction, 

which results in the oxidation of two cysteine residues in the folding client and concomitant 

reduction of the PDI family member [31]. In order to regenerate their function and to assist 

subsequently imported proteins, the active site CxxC-motives of PDIs are reoxidized by donating 

their electrons predominantly to the oxidase Ero1 [31,32]. However, since it has been 

demonstrated that the formation of non-native disulfide bonds naturally occurs under 

physiological conditions [33], PDIs serve additional important functions besides disulfide-bond 

introduction. Thus, erroneously introduced disulfide linkages in folding clients can be detected 

and either reduced or isomerized by PDIs [20,30]. A prerequisite for this is a reduced CxxC-motif 

in PDIs, which, as mentioned previously, is likely mediated by a GSH to GSSG-converting 

reaction [20,30]. Therefore, a tightly checked redox balance between the supply of oxidative 

equivalents (by Ero1 and others; see section 1.4) and the delivery of electrons by the glutathione 

buffer has to be maintained in the ER. This redox homeostasis, if not perturbed (see section 1.6 
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and 1.7), allows the dual function of PDIs as oxidant and reductant, which assists the generation 

of a high yield of properly folded proteins [27].  

The fate of GSSG produced in the ER is currently not clear. In contrast to GSH, it cannot freely 

equilibrate over the ER membrane [21] and is trapped in the ER as a result of Ero1 activity [13]. 

Even though this explains the increased concentration of total glutathione in the ER compared to 

the cytosol [13], it would, if not counteracted, ultimately lead to an increasing accumulation of 

GSSG and twist the redox balance to more oxidative conditions. Clearance from the lumen of the 

ER might be achieved either by the action of a so far unidentified ER to cytosol transporter, 

which would feed into the NADPH-driven glutathione reductase pathway, or by secretion from 

the cell via anterograde trafficking in secretory vesicles from the ER to the plasma membrane. 

Besides these possibilities, GSSG levels within the ER might also be directly buffered by the 

sustained import of reduced substrates for oxidative folding in the form of nascent polypeptides 

or by the activity of a so far unidentified ER glutathione reductase. 

 

1.2.2. ER retrieval of resident and misfolded proteins 

As stated previously, the ER marks the beginning of the cellular secretory pathway. In this sense, 

soluble proteins destined for the extracellular space or membrane proteins to be anchored in the 

plasma membrane follow this secretion route from the ER via the ER-Golgi intermediate 

compartment (ERGIC) to the Golgi apparatus and further on to the plasma membrane. Even 

though this anterograde trafficking is essential for secretory cargo to reach its final destination, 

ER-resident enzymatic machinery of folding factors, chaperones and oxidoreductases must be 

kept in place in order to assure proper function [2]. An elegant retrieval mechanism has been 

identified, which works at the interface between ER and Golgi apparatus and prevents undesired 

secretion of ER-resident proteins. These proteins are often equipped with a KDEL or KDEL-like 

motif within their C-terminal sequence [34,35]. The name of this motif is derived from the most 

common amino acid composition: lysine (K), aspartic acid (D), glutamic acid (E) and leucine (L). 

Due to its charged nature, these motives are sensitive to pH changes, which form the underlying 

mechanism for its function in ER retrieval. Three mammalian KDEL-receptors were identified to 

date which bind to a defined subset of the KDEL-like motives of ER-resident proteins within the 

ERGIC and the Golgi [35] in a pH dependent manner [36]. The pH changes throughout the route 
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of the secretory pathway from almost neutral conditions within the ER [37] to a more acidic 

environment in the Golgi apparatus [38]. Consistent with this, binding of the KDEL-receptor to 

KDEL motives is favored at low pH [39]. After binding in ERGIC/Golgi, the receptor-protein 

complex induces the formation of retrograde transport vesicles in a coat protein I (COPI) -

dependent manner [40,41], which retrieves the receptor and its bound substrate back to the ER 

[42]. There, due to the neutral pH of the ER, dissociation of the receptor and the ER-resident 

protein occurs and the unbound receptor can take part in an additional round of ER retrieval by 

following the anterograde export route back to the ERGIC/Golgi.  

Additional motives for COPI-mediated retrograde transport for ER retrieval are found in type I 

and type II ER-resident transmembrane proteins. Di-lysine [43] and di-arginine [44] motives 

within the respective cytosolic domains of these membrane spanning proteins mediate their 

proper localization. A prominent example of this retrieval mechanism is the ER-chaperone 

Calnexin (CNX), a type I transmembrane protein equipped with a C-terminal di-arginine motif 

[45].  

It is important to note that ER-retrieval of components involved in the folding machinery of the 

ER fulfill two major tasks. Besides maintaining the molecular identity and composition of the ER 

by preventing the excretion of important folding factors it also plays a crucial role in ER quality 

control (ERQC) [46]. Since chaperones like CNX, PDI or the heat shock protein (Hsp) 70 family 

member immunoglobulin binding protein (BiP) specifically bind to only partially folded or 

misfolded proteins, secretion of these premature folding intermediates is efficiently prohibited by 

ER-retrieval [47,48]. Accordingly, they are subjected to another round of folding attempts in the 

lumen of the ER, which will either result in successful secretion or in targeting for ER-associated 

degradation (ERAD). 

 

1.2.3. ERAD pathway in ER quality control  

The most important factor, which determines the secretion efficiency of a given protein, was 

shown to be the stability of the folded protein structure. This was hinted from experiments in 

which the in vitro thermostability of folded mutant proteins of bovine pancreatic trypsin inhibitor 

(BPTI) positively correlated with the secretion efficiency of these mutants from yeast [49,50]. 
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This phenomenon, also observed in other studies [51,52], was generalized in the following sense: 

the higher ∆G between misfolded and natively folded state of a secretory protein, the faster it is 

excreted from the cell and the lower its propensity to be degraded via the ERAD pathway [46]. 

Vice versa, this implies that proteins, which experience problems with folding into their native 

state, are specifically identified and retained within or retrieved to the ER. As stated above, this 

specific recognition involves the binding of ER chaperones like the abundant BiP, which 

predominantly recognizes exposed hydrophobic patches within non-native protein folds [2,53]. 

However, the cell needs to discriminate between nascent proteins in their initial folding attempts 

and terminally misfolded proteins, which need to be targeted to ERAD [54].  

An elegant mechanism to address the period a protein has spent within the ER has been 

elucidated in oligosaccharide-modified glycoproteins [55] (see Figure 1). Upon translocation of 

these polypeptides into the ER covalent attachment of an N-linked glycan to asparagine residues 

within a specific consensus motif (asparagine-x/no prolin-serine/threonine) of the primary protein 

structure is conducted by the ER-resident enzyme oligosaccharyltransferase (OST). The glycan, a 

three-branched oligosaccharide originally composed of two N-acetylgucosamine (GlcNAc), nine 

mannose (Man) and three glucose (Glc) residues, is then further processed by the action of 

glucosidase I and II, which each remove one of the glucose residues. This modified 

oligosaccharide (Glc1Man9GlcNAc2) is recognized and bound by ER-resident lectin chaperones, 

Calreticulin (CRT) and Calnexin (CNX) [56,57,58], which, together with the recruited 

oxidoreductase of the PDI family ERp57 [59,60,61], drive the oxidative folding of the 

glycoprotein. Eventually glucosidase II will remove the third and last glucose residue from the tip 

of the glycan (resulting in Man9GlcNAc2), which abolishes lectin binding and allows natively 

folded proteins to be released from the ER [62]. Non-natively folded proteins, however, are 

identified by the UDP-glucose:glycoprotein glucosyltransferase (UGGT), which re-glucosylates 

the folding intermediate on a specific mannose residue (generating Glc1Man9GlcNAc2) in order 

to promote re-association with the lectins CRT/CNX for further folding attempts [63,64]. 

Importantly, cycling between re-glucosylation (by UGGT) and de-glucosylation (by glucosidase 

II) is eventually complemented by mannose trimming within the glycan when dissociated from 

CRT/CNX. The first mannose residue is removed by a1,2-mannosidase (Man8GlcNAc2), 

whereas a further demannosylation step can either be catalyzed by Golgi mannosidase I, ER 

degradation-enhancing a-mannosidase-like protein 1 (EDEM1) or again by a1,2-mannosidase 
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[65]. Upon removal of the specific mannose residue targeted by UGGT for reglucosylation, 

probably by a1,2-mannosidase, the folding intermediate is permanently released from the 

CRT/CNX cycle [66]. Further trimming exposes a a1,6-linked mannose residue, which acts as 

glycan-coded ERAD signal and is recognized by the lectins OS-9 or XTP3-B [65].  

Even though it is known that ERAD pathway involves unfolding, retro-translocation into the 

cytosol, ubiquitination and subsequent proteasomal degradation of its substrates [53,54], the 

precise underlying mechanisms are still not well characterized. It has been suggested that the ER-

resident PDI and Hsp40 family member ERdj5 plays a role in reducing disulfides in both 

glycosylated and non-glycosylated ERAD substrates [67,68] and that BiP association is important 

for targeting to the retro-translocon [68,69]. The detailed composition of this export channel from 

the ER back to the cytosol itself remains elusive, even though some work suggests that actually 

the Sec61 complex, the pore forming unit for co-translational translocation into the ER, might be 

involved [70,71]. Various ERAD substrates were found to be subjected to polyubiquitination 

catalyzed by different E3 ubiquitin ligases, which, in some cases, was shown to depend on OS-

9/XTP3-B-mediated substrate delivery [65,72,73]. Interaction of these polyubiquitin tags with the 

cytosolic ubiquitin-binding protein p97, together with the intrinsic ATPase activity of the later 

are thought to provide the energy for efficient ER to cytosol extraction [74]. In the final step of 

ERAD, the polyubiquitinated proteins are recognized by the proteasome and, after cleavage of 

ubiquitin chains, proteolytically degraded.  

In conclusion, the described ERQC/ERAD pathway clears terminally misfolded proteins and 

thereby prevents the accumulation of these non-native folding intermediates, which otherwise 

would trigger the unfolded protein response (UPR). ERAD involves many different proteins from 

different subcellular compartments, whose interconnections are still only poorly defined. ER-

resident chaperones, both soluble and membrane-bound, identify the misfolded substrates and 

work in concert with integral membrane machinery, which, with the help of cytosolic factors, 

mediates retro-translocation. Subsequent degradation via the ubiquitin-proteasome system (UPS) 

was shown to not only target terminally misfolded but many natively folded proteins and nascent 

polypeptides, too [75]. Even though the objective of this, at first glance, waste of cellular 

resources is currently unclear, a role in immunology by mirroring the current protein biosynthesis 

on MHC class I molecules on the cell surface has been postulated [75].  
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1.3. The protein disulfide isomerase (PDI) family 

To prevent misfolding of nascent polypeptides and their subsequent targeting to ERAD, the ER 

employs elaborate enzymatic machinery composed of a variety of different folding factors to 

assure proper protein folding and introduction of native disulfide bonds. Within this group, 

Figure 1: Endoplasmic reticulum quality control (ERQC) of glycoproteins. Following asparagine (Asn)-

linked glycosylation of the nascent polypeptide upon co-translational transfer into the rough ER (RER) (1), 

enzymatic action of glucosidase I and II each remove one glucose residues from the glycan, which leads to 

association with calnexin (2) and initiates a folding cycle: glucosidase II removes the remaining glucose residue 

(3), which results in dissociation of calnexin; non-natively folded proteins are recognized and reglucosylated by 

UDPGlc:glycoprotein glucosyltransferase (UGGT) (7), which restores calnexin-mediated folding; 

deglucosylation and reglucosylation is complemented by mannose trimming by a1,2-mannosidases like ER 

mannosidase I (ERMan I) (4-6). Natively folded proteins are no longer recognized by UGGT, which results in 

release from the folding cycle as either mature ER resident (8) or via ER exit sites (9) and Golgi apparatus (10), 

as mature secreted proteins. In contrast, upon removal of the crucial UGGT-acceptor mannose (6) the immature 

folding intermediate is permanently released from the folding cycle. ER degradation-enhancing a-mannosidase-

like protein (EDEM)-mediated exposure of a1,6-linked core mannose residues targets the folding intermediate 

to ER-associated degradation (ERAD)(11). This figure was reproduced from [62]. 
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members of the protein disulfide isomerase (PDI) family play a central role, since most of them 

can act as chaperones and oxidoreductases. More than 20 different PDIs have been identified in 

the ER of mammalian cells so far, all of which exhibit at least one domain with a distinctive fold 

– the thioredoxin (Trx)-like fold [76]. The structure of this domain is characterized by the 

presence of a central four-stranded antiparallel b-sheet, which is sandwiched between three outer 

a-helices [77]. In order to exert their function in dithiol-disulfide transfer reactions many PDIs 

possess an active site CxxC motif within their Trx-like domains [78]. When the two motif 

cysteines form a disulfide, PDIs can transfer this disulfide bond to a substrate cysteine pair via 

formation of a transient mixed-disulfide complex. Upon completion of the disulfide transfer, the 

substrate is oxidized and the CxxC motif in PDI is in the reduced dithiol state. Since this reaction 

is reversible, PDIs can act both as oxidants and reductants, hence the name oxidoreductases. 

Furthermore, in their reduced state, they can also operate as disulfide isomerases. 

However, not all PDIs possess redox active CxxC motives. For example endoplasmic reticulum 

resident protein 44 (ERp44) has a CxxS motif (where S is serine). Since this distinct active site 

enables ERp44 to form mixed-disulfide complexes with oxidized clients but prevents disulfide 

transfer, it plays a role in disulfide-mediated ER-retrieval via its KDEL-like motif [31]. In this 

context, ERp44 binds secretory folding intermediates [79] as well as peroxiredoxin IV (PrxIV) 

[80] and the oxidases of the Ero1 family (see section 1.4.3) [80,81] and thereby promotes ER 

localization by ER-retrieval from ERGIC [82,83]. Due to the fact that there are also other PDIs, 

like ERp27 and ERp29, which were found not to display any redox activity, it is important to 

stress that inclusion in the PDI family does not refer to a common protein function but is rather 

based on a Trx-like protein fold and on ER residency [83].  

The most extensively studied and name-giving member of this family is PDI itself (also referred 

to as PDIA1 or prolyl 4-hydroxylase subunit beta (P4HB)). PDI possesses four Trx-like domains, 

two of which have redox active CxxC motives: a-b-b’-x-a’-c, with «a» and «a’» being the redox 

active and «b» and «b’» the redox inactive Trx-like domains, «x» being the x-linker and «c» a C-

terminal acidic domain. Crystallographic analysis showed that these domains are aligned in a 

horseshoe-like shape [84]. Whereas the presence of the c domain is negligible for PDI function as 

oxidoreductase/isomerase and chaperone [85], the x-linker was proposed to confer a certain 

degree of flexibility of the a’ domain relative to the remaining PDI structure [86,87]. This is 

highlighted by the fact that PDI undergoes redox-regulated conformational changes, which are 



General Introduction 
 

21 

 

proposed to mirror consecutive steps in PDI oxidoreductase activity [87]. In this notion, reduced 

PDI (PDI
red

) is present in a rather closed horseshoe-like state with the two active sites being in 

proximity to each other. However, upon disulfide formation within the two active sites in a and 

a’, oxidized PDI (PDI
ox

) adopts a more open conformation with a greater distance between both 

active sites. Moreover, the a’ domain rotates by approximately 45° in clockwise direction relative 

to the b’ domain [87]. These redox-regulated conformational changes are thought to facilitate 

substrate binding by PDI
ox

, which is mainly based on hydrophobic interactions between the 

unfolded polypeptide and the b’ domain of PDI [88,89]. Whereas substrate access to the 

hydrophobic cleft in the b’ domain is largely blocked in the closed conformation of PDI
red

, in part 

due to interactions between b’ and a’ domain, dislocation of the latter upon oxidation abolishes 

this constraint and enables accommodation of an unfolded client protein for subsequent oxidation 

[87]. Following dithiol-disulfide exchange, PDI in its reduced state regains the closed 

conformation and needs to be re-oxidized in order to complete the catalytic cycle (for PDI 

oxidation see section 1.4). 

First hints for catalyzed disulfide-bond formation were found in in vitro experiments in which the 

refolding of reduced and denatured ribonuclease A was accelerated upon incubation with 

microsomes [90]. It was 25 years later that Bulleid and Freedman showed that this microsomal 

effect was mainly due to PDI, since reconstitution of protein depleted microsomes with purified 

PDI reestablished this catalytic activity [91]. Since then lots of progress has been made regarding 

the in vitro an in vivo characterization of various PDI family members. Distinct roles or 

substrates for specific PDIs, however, were only scarcely found. Nevertheless, cross-linking/co-

immunoprecipitation studies have implicated that PDI might influence the oxidative folding of 

fibrillins [92] and immunoglobulins [93]. Furthermore, PDI was shown to be a critical 

determinant in the maturation of fibrillar procollagens by acting as both, disulfide introducing 

oxidase [94] and stabilizer of the active form of prolyl 4-hydroxylase via representing its non-

catalytic b subunit [95]. An additional client for PDI-mediated oxidative folding is thyroglobulin, 

the precursor protein of the thyroid hormones thyroxine (T4) and triiodothyronine (T3) [96]. 

Besides PDI itself, three other PDI family members have been associated with thyroglobulin 

folding and secretion, namely ERp29 [97], ERp72 [98] and ERp57 [96]. The latter is of special 

interest, since it shows more than 20% sequence identity with PDI and shares the same domain 

architecture (a-b-b’-x-a’-c) [99]. However, in contrast to PDI, ERp57 is specifically involved in 
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oxidative folding of glycoproteins due to its association with the lectins CNX and CRT 

[59,60,61]. Accordingly, the substrate spectrum of ERp57 is most probably vast due to the 

abundance of glycoproteins relying on oxidative folding mechanisms. Accordingly, the 26 

glycoproteins co-immunoprecipitated using a trapping mutant of ERp57, which only captures 

substrates for reduction/isomerization, likely only represents the tip of the iceberg [100]. 

Besides these involvements in oxidative folding of various substrates, PDIs are also implicated in 

other cellular processes. Thus, PDI and ERp57 might play a role in the so-called peptide loading 

complex (PLC), since they were both found in mixed-disulfide complexes with Major 

Histocompatibility Complex (MHC) class I heavy chain [101,102]. PLC is a multimeric complex 

consisting of transporter associated with antigen processing (TAP), TAP-associated glycoprotein 

(tapasin), CRT, ERp57, PDI and a heterodimer comprised of MHC I and b2 microglobulin 

[102,103]. The main function of PLC is to select high-affinity peptides to be presented via MHC 

I molecules on the cell surface. Furthermore, ERdj5 and PDI are both thought to be involved in 

the reduction and retro-translocation of terminally misfolded proteins in ERAD (see above) 

[67,68,104]. Last but not least, ERp57 and ERp44 play opposing roles in the regulation of ER 

Ca
2+

 homeostasis (see section 1.6), in which the former is thought to decrease [105] and the latter 

to increase intraluminal Ca
2+

 concentration [106]. 

In conclusion, members of the PDI family, a subclass of the thioredoxin-like superfamily, are 

central elements in the process of oxidative folding of nascent polypeptides in the secretory 

pathway. Due to their mode of substrate recognition, which is primarily based on hydrophobic 

interactions, they operate not merely as oxidoreductases, but also as ER-resident chaperones. 

Their versatile involvement in an increasing number of cellular functions is notably based on a 

single protein fold.  

 

1.4. De novo disulfide generation  

Maintenance of protein synthesis is indispensable for every cell. In this context, de novo disulfide 

bond production is important to sustain oxidative folding and subsequent protein secretion. 

Whereas in lower eukaryotes like Saccharomyces cerevisiae, disulfide bond production by 

endoplasmic oxidoreductin 1 (Ero1p) [23,24], even though complemented by the sulfhydryl 
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oxidase ERV2 [25], is essential, mammalian cells utilize several distinct reaction mechanisms 

that can compensate for the loss of Ero1 function. Accordingly, enzymatic action of quiescin 

sulphydryl oxidase (QSOX) [107], vitamin K epoxide reductase (VKOR) [108], endoplasmic 

oxidoreductin 1 like (Ero1) [31], peroxiredoxin IV [109,110] and glutathione peroxidases 7 and 8 

(GPx7 and GPx8) [111] can all contribute to the general pool of newly synthesized disulfides in 

human ER. With the exception of QSOX, all of these pathways were demonstrated to oxidize 

PDI family members rather than oxidative folding substrates directly [112].  

 

1.4.1. Quiescin sulphydryl oxidase (QSOX) 

In yeast, rescue of a non-viable Dero1 deletion strain was accomplished by overexpression of 

ERV2 [25]. Even though a human homolog of ERV2 has not been identified, QSOX possesses a 

catalytically active ERV2-like domain and two intrinsic Trx-like domains [107]. ERV2 [25] and 

QSOX [113] both harbor a flavin adenine dinucleotide (FAD) co-factor, which enables them to 

couple disulfide bond production to reduction of molecular oxygen. QSOX is characterized by 

the presence of a disulfide generating domain (ERV2-like) and a disulfide transferring domain 

(Trx-like), the cooperation of which is thought to enable QSOX to interact with its substrates 

directly [107]. Accordingly a broad substrate specificity including GSH, DTT and various 

reduced proteins was determined by in vitro experiments [113,114]. Furthermore, since QSOX is 

devoid of any isomerase activity, in vitro collaboration with PDI was found to be essential in 

order to catalyze native substrate folding [115]. However, these in vitro observations might not 

mirror the in vivo function of QSOX, since endogenous protein primarily localized to the Golgi 

apparatus in various cell lines, making a contribution to ER-centered oxidative folding rather 

unlikely [116,117]. Accordingly, cell density-dependent secretion of endogenous QSOX1 in WI-

38 fibroblasts is important for proper laminin assembly, which argues for a physiological 

function of secreted QSOX in extracellular matrix formation in response to cell quiescence [117]. 

Along this line, QSOX apparently plays a minor role in ER disulfide homeostasis of human 

hepatoma HepG2 cells when compared to other disulfide relays [118]. 
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1.4.2. Vitamin K epoxide reductase (VKOR) 

Vitamin K plays an important role in g-carboxylation of glutamate residues, a posttranslation 

modification implicated in blood coagulation factor maturation [119]. In this process, reduced 

vitamin K hydroquinone is oxidized by g-glutamyl carboxylase to vitamin K epoxide. The latter 

is subsequently regenerated to the reduced form with the help of the ER integral membrane 

protein VKOR [120]. Recently it has been demonstrated that crucial cysteine residues of VKOR 

are facing the ER lumen and can shuttle electrons predominantly derived from membrane-bound 

PDIs like TMX and TMX4 onto vitamin K epoxide, thereby recycling vitamin K hydroquinone 

[108]. Since the liver is the main site for coagulation factor synthesis and hence for generation of 

vitamin K epoxide, it does not come as surprise that disulfide bonds fed in by VKOR 

significantly contribute to disulfide homeostasis in the HepG2 hepatoma cell line [118]. 

However, to what extent this is also true for other tissues, in which these vitamin K dependent 

pathways are of less relevance, is so far not clear.  

 

1.4.3. Endoplasmic oxidoreductin 1 (Ero1) 

The most conserved pathway for de novo disulfide bond formation is represented by Ero1, which 

is highlighted by its essential role in yeast. Two human orthologs of yeast Ero1p have been 

identified: the widely expressed housekeeping isoform ERO1-like protein a (Ero1a) and the 

selectively expressed ERO1-like protein b (Ero1b) [31,121,122]. Like QSOX, Ero1 oxidases also 

rely on FAD for their catalytic activity [123]. Therefore, Ero1 generates stoichiometric amounts 

of hydrogen peroxide (H2O2) for every disulfide bond produced [124]. Furthermore, Ero1 

oxidases share a common reaction mechanism, which depends on the presence of two redox 

active cysteine motives [125,126]. In the crystal structures of human Ero1a, the “inner” CxxC 

active site (comprised of Cys
394

 and Cys
397

) is in proximity to the bound FAD moiety in the 

protein core [127]. Cys
397

 in its thiolate form is believed to initially form a charge transfer 

complex with FAD, which is subsequently replaced by formation of a covalent adduct involving 

C(4a) of the cofactor [127]. This C-S bond is then nucleophilically attacked by the second 

“inner” active site cysteine Cys
394

, which leads to the formation of a Cys
394

 - Cys
397

 active-site 

disulfide bond and reduced FAD (FADH2) [127]. The latter can be re-oxidized by forwarding two 
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electrons onto molecular oxygen [128]. The resulting “inner” active site disulfide bond is then 

transferred by intramolecular dithiol disulfide exchange reaction to the “outer” di-cysteine active 

site (in Ero1a comprised of Cys
94

 and Cys
99

) – also called shuttle disulfide – which is located in a 

flexible loop on the surface of the protein [129]. This “outer” active site in the disulfide state is 

then preferentially attacked by PDI
red

, which results in the formation of a mixed-disulfide 

intermediate [125,130,131]. Upon completion of this intermolecular dithiol disulfide exchange 

reaction, regenerated PDI
ox

 can again oxidize client proteins. Recently, molecular-level insights 

regarding this disulfide relay have been gained. These insights explained the previous findings 

that Ero1 recognizes PDI independently of its catalytic CxxC motives [127,132] and proposed a 

key-and-lock principle [133]. Accordingly, specificity of PDI as reducing substrate of human 

Ero1 is based on hydrophobic interactions between a protruding b-hairpin (including a critical 

tryptophan Trp
272

) in Ero1 and hydrophobic residues in the b’ domain (including phenylalanines 

Phe
240

 and Phe
304

) of PDI [127,133]. In strong support of this, exchange of the respective b’ 

domains between PDI and ERp57, which has a similar domain architecture, shifted their substrate 

preferences [127]. In addition, mutation of either Trp
272

 in Ero1 or Phe
240

 and Phe
304

 in PDI 

substantially reduced their catalytic efficiency as monitored by oxygen consumption [133]. 

Previous findings that human Ero1a preferentially oxidizes the C-terminal a’ domain of PDI 

[32,134,135,136] can also be attributed to this hairpin-mediated interaction, since in silico 

modelling showed that outer active site and a’ domain would be in proximity to each other [133]. 

In contrast to human Ero1a/b, yeast Ero1p lacks this tryptophan-containing b-hairpin and 

preferentially oxidizes the a domain in Pdi1p [137], thus arguing for a non-conserved recognition 

mechanism in this disulfide relay.  

 

1.4.4. Hydrogen peroxide-mediated disulfide production 

Since the discovery of ER-resident sulfydryl oxidases of the Ero1, QSOX or ERV2 family the 

need for tight enzymatic control of these flavoenzymes in order to limit concomitant H2O2 

production has been emphasized. Indeed, elaborate intrinsic mechanisms for redox-regulated, 

disulfide-mediated shutdown of Ero1 oxidases have been unraveled, both in yeast and human 

cells (see section 1.5). However, most recent findings have also elucidated that mammalian cells 

harbor at least three ER-resident, H2O2-scavenging peroxidases, namely peroxiredoxin IV 
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peroxidases, namely peroxiredoxin IV (PrxIV), glutathione peroxidase 7 (GPx7) and glutathione 

peroxidase 8 (GPx8). These peroxidases were proposed to utilize the remaining oxidative 

capacity of H2O2 for de novo disulfide bond formation. This would not only constitute a potent 

mechanism for detoxification of this potentially deleterious side product of Ero1 activity, but also 

elegantly increase the efficiency of oxygen-driven disulfide production, ultimately generating two 

disulfide bonds from the reduction of one molecule of oxygen to water (see Figure 2).  

 

 

 

1.4.4.1. Peroxiredoxin IV (PrxIV) 

PrxIV is a classical 2-Cys peroxiredoxin (for details see section 1.7.3), which is equipped with an 

N-terminal signal sequence to promote ER translocation [138]. Instead of a classical ER-retention 

motif PrxIV utilizes intermolecular interactions with ERp44 and PDI in order to prevent its 

secretion [80]. In the ER, human PrxIV forms characteristic toroid shaped pentamers of 

antiparallel dimers [139]. Upon the encounter of H2O2, the active site peroxidatic cysteine 

(Cys
124

) is oxidized exceptionally fast [140], which leads to the formation of intermolecular 

disulfide bonds within antiparallel dimers (Cys
124

-Cys
245

). This interchain disulfide bond can then 

be attacked by various reduced PDI family members [109,141], which results in dithiol disulfide 

Figure 2: The two-disulfides-out-of-one-O2 concept. O2 (red)-mediated oxidation of endoplasmic oxidoreductin-1-

like protein (Ero1a) results in the generation of one disulfide bond (red), which is transferred to reduced protein 

disulfide isomerase (PDI), and of one molecule of H2O2. ER-resident peroxidases (P) – probably exclusively of the 

glutathione peroxidase (GPx) family (see main text for details) – can couple the reduction of Ero1a-derived H2O2 to 

H2O with the introduction of a second disulfide bond (red) into PDI. 
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exchange. Various publications have argued for a role of Ero1 as candidate producer of H2O2 for 

PrxIV-mediated oxidative folding [110,142,143,144]. Even though the contribution of PrxIV to 

disulfide homeostasis is undisputed, several lines of evidence argue against this direct link: (1.) 

ectopically expressed PrxIV was identified to rescue a thermo-sensitive ero1-1 yeast strain [110], 

(2.) PrxIV was shown to protect Ero1-knockout mice from H2O2-mediated, non-canonical scurvy 

[145] and (3.) combined depletion of Ero1a/b and PrxIV in HepG2 cells resulted in a more 

severe phenotype [118]. These three observations argue for an Ero1-independent (or at least 

alternative) H2O2 source, which fuels PrxIV-mediated disulfide production (for other H2O2 

sources see section 1.7). Along this line, evidence from our lab clearly demonstrated that no 

additive effect between elevated Ero1-derived H2O2 levels and concomitant PrxIV depletion 

could be measured in living cells, except when Ero1 activity was artificially maximized by the 

reductant DTT (see section 2).  

 

1.4.4.2. Glutathione peroxidases 7 and 8 (GPx7 and GPx8) 

GPx7 and GPx8 are two closely related ER-resident members of the glutathione peroxidase 

family (for details see section 1.7.4), whose 3D structures are largely superimposable [139]. ER 

translocation of soluble GPx7 is mediated by a cleavable N-terminal signal sequence, whereas 

GPx8 relies on a transmembrane domain in its N-terminal region [111]. They both possess 

KDEL-like motives for ER-retention [111], which is a peculiarity for GPx8, since transmembrane 

proteins rather rely on cytosolic di-arginine/-lysine motives to assure ER residency (see section 

1.2.2). In vitro characterization of both proteins showed that they readily react with H2O2 

[111,146,147]. Additionally, it was demonstrated in vitro that both peroxidases preferentially use 

PDIs instead of glutathione as electron donors [111,147], which might be attributed to the 

absence of a peptide loop shown to confer glutathione specificity in other GPxs [111,148]. 

However, controversy still exists regarding the reaction mechanism, since neither GPx7 nor 

GPx8 possesses a canonical resolving cysteine normally present in cysteine GPxs (see section 

1.7.4). Following peroxide-mediated oxidation of the peroxidatic cysteine (CP; Cys
57

 in GPx7 or 

Cys
79

 in GPx8), sulfenylated CP is either directly subjected to nucleophilic attack by a thiolate 

anion in the reducing substrate [146] or attacked by a deprotonated non-canonical resolving 

cysteine (CR; Cys
86

 in GPx7 or Cys
108

 in GPx8), which results in formation of an intramolecular 
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disulfide bond [147,149]. Subsequently, this intrachain disulfide bond is subjected to nucleophilic 

attack by a reducing substrate. Irrespective of the actual involvement of a non-canonical CR, 

generation of an intermediate mixed-disulfide complex comprised of GPx7/8 and PDIs is 

common to both reaction mechanisms [146,147]. Upon completion of the reaction cycle, reduced 

GPx7/8 is regenerated and oxidized PDIs can take part in oxidative folding of client proteins. 

Recent findings regarding the potential source of intraluminal H2O2 used for GPx-mediated 

oxidation of PDIs have pointed into a clear direction. First, Nguyen et al. could demonstrate that 

GPx7 addition increased Ero1 activity in vitro and, with the help of a bi-molecular fluorescence 

complementation approach, that GPx7 and GPx8 are closely associated with Ero1a in the ER of 

living cells [111]. This association likely place the GPxs in a privileged position to reduce Ero1-

derived H2O2 compared to PrxIV. Second, Wang et al. confirmed the accelerating effect of GPx7 

in an in vitro folding system comprised of Ero1, PDI and a model folding client. Furthermore, 

they could demonstrate a beneficial effect of overexpressed GPx7 in an in situ folding assay, 

which was clearly dependent on the presence of Ero1 [147]. Third, data from our lab 

demonstrated a role of GPx8 as molecular gatekeeper that confers protection against Ero1-

mediated ER hyperoxidation (see section 2).  

 

1.5. Ero1 regulation  

PDI is oxidized in response to Ero1 catalysis, either by direct dithiol disulfide transfer reaction or 

by a H2O2/GPx-mediated mechanism. However, an important function of many PDIs is to resolve 

non-native disulfide bonds, which they can only fulfill in the reduced dithiol state. Therefore, 

unchecked Ero1 activity would ultimately prevent this reductase/isomerase function, twist the ER 

redox balance to hyperoxidizing conditions and thereby interfere with native protein maturation. 

Therefore, Ero1 activity has to be tightly regulated to keep a balance between disulfide-bond 

formation and concomitant disulfide rearrangements. In this notion, elegant mechanisms 

conferring feedback regulation in both Ero1p and Ero1a/b have been elucidated (see Figure 3). 

Even though many features of Ero1 are conserved between yeast and mammals, e.g. the protein 

fold, two characteristic cysteine triads and substrate specificity for PDI, the underlying principles 

of redox regulated inhibition are different.  
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Both enzymes have two active sites, the “inner” active site (Ero1p: Cys
352

-Cys
355

; Ero1a: Cys
394

-

Cys
397

) and the shuttle disulfide (Ero1p: Cys
100

-Cys
105

; Ero1a: Cys
94

-Cys
99

), and a long ranging, 

non-catalytic disulfide bridge (Ero1p: Cys
90

-Cys
349

; Ero1a: Cys
85

-Cys
391

) (see Figure 3). 

However, Ero1p possesses two additional disulfides connecting Cys
143

-Cys
166

 and Cys
150

-Cys
295

, 

which are not conserved in the human ortholog. Whereas the former was initially proposed to be 

of structural importance, since mutation lowered Ero1p activity in vitro, the latter has been 

implicated in activity regulation [150]. Mutation of the Cys
150

-Cys
295

 disulfide bond substantially 

increased Ero1p activity both in vitro and in vivo [150]. In the same study, it was also 

demonstrated that mutation of the long ranging Cys
90

-Cys
349

 disulfide lowered the previously 

observed lag phase in the activation of wild type Ero1p [124], arguing for a regulatory function. 

Therefore, a model was proposed in which reduction of Cys
150

-Cys
295

 exerts a
 
destabilizing effect 

on the long ranging disulfide, which ultimately renders this mutant constitutively active [150]. 

However, Heldman et al. could later show that the Cys
143

-Cys
166

 disulfide bond is reduced at an 

early stage of Ero1p activation and that its stability, as observed with the long ranging disulfide, 

might be affected by Cys
150

-Cys
295

 mutation [151]. In conclusion, the exact mechanism of Ero1p 

activation by reduction of non-catalytic, regulatory disulfide bonds is still not fully understood. 

Nevertheless, it is believed that inactivation of Ero1p is largely based on an increased constraint 

of the shuttle disulfide-harboring flexible loop, which is alleviated by reduction of the Cys
150

-

Cys
295

 disulfide [129].  

In contrast, mammalian Ero1a!and Ero1b! rely on a different mechanism of feedback regulation, 

which directly involves cysteine residues of the shuttle disulfide [152] (see Figure 3). In cells, 

Ero1a expression is characterized by the formation of two distinct redox forms on non-reducing 

SDS PAGE, termed OX1 and OX2. While the OX2 redox form represents a fully oxidized, 

catalytically inactive form, OX1 is believed to be the active form, competent to shuttle disulfides 

onto PDI. Site specific mutagenesis [135] and mass spectrometry analysis [153] revealed that the 

OX2 form of Ero1a is characterized by a Cys
94

-Cys
131

 disulfide bond. Since Cys
94

 is one 

constituent of the outer active site, Cys
131

 and reduced PDI compete for binding to the shuttle 

disulfide [153]. This has been elegantly proven by modulating the OX1/OX2 ratio by varying the 

expression levels of PDI. In this sense, overexpression of PDI lowered, whereas small interfering 

RNA (siRNA)-mediated depletion of PDI increased the OX1/OX2 ratio [153,154]. Interestingly, 

also Cys
99

, the other constituent of the shuttle disulfide, is engaged in a disulfide bond with a 
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second non-active site cysteine, Cys
104

 [135,155]. Thus, de novo produced disulfide bonds 

generated by the inner active site can be stored as Cys
94

-Cys
131

 and Cys
99

-Cys
104

 disulfides in an 

oxidizing ER environment, thereby leading to the shutdown of Ero1 activity. Vice versa, when 

PDI
red

 is abundant, PDI-mediated nucleophilic attack of the Cys
94

-Cys
99

 shuttle disulfide prevails 

and delivery of oxidizing equivalents onto client proteins is assured. The importance of these 

feedback-regulated non-catalytic disulfide bonds for general ER homeostasis has recently been 

demonstrated. Expression of a deregulated Ero1a mutant, which lacks the regulatory Cys
104

 and 

Cys
131

 residues hyperoxidized the PDI family member ERp57 and induced ER stress [155].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

1.6. ER homeostasis, UPR and ER stress-induced apoptosis  

The ER has to continuously guarantee a tight balance between the cellular demands in protein 

synthesis and excretion on the one side and its intrinsic standards for ERQC and protein folding 

capacity on the other side. Any disturbance of this balance, referred to as “ER stress”, will result 

in a decrease in the secretory output and a concomitant accumulation of mis-/unfolded proteins 

within the ER. In order to restore ER function and thereby the flow of secretion, the cell triggers 

Figure 3: Cysteine connectivity of oxidatively silenced Ero1 enzymes. Ero1a, Ero1b and 

Ero1p polypeptides are depicted by gray bars and the additional C-terminal domain or Ero1p, 

which is responsible for membrane tethering, by a dark grey box. Numbered dots represent the 

position of cysteine residues within the respective Ero1 sequence and brackets connecting two 

dots show intramolecular disulfide bonds. Active site cysteines are marked in red, whereas 

(potential) regulatory disulfide bonds are shown in yellow. Cysteines of structural or unknow 

function (light grey) are connected with dotted brackets in case of disulfide-bond connection. 

Question marks denote that no conclusive redox state has been demonstrated. Note that the 

cysteine connectivity of Ero1b is speculative at the moment. For more detailed information please 

refer to main text and regarding the Ero1a Cys208-Cys241 disulfide bond to section 3. 
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an adaptive ER-centered stress response - the UPR [156]. Thus, in an acute phase of UPR 

signaling, the cell decreases its overall protein load within the ER by inhibiting further protein 

translation and increases its folding capacity by upregulation of chaperones/oxidoreductases 

[156]. This adaptive UPR is an essential physiological program especially important for cells 

with a high secretory output like antibody-secreting plasma cells [157,158,159]. However, if 

these mechanisms of adaption do not alleviate the stress, but in contrast the cell experiences 

chronic ER dysfunction, a pro-apoptotic mode of the UPR is initiated, which results in 

programmed cell death/apoptosis [156,160,161]. Various triggers of the UPR have been 

identified so far, all having in common to disrupt ER homeostasis [162]. Among these are 

perturbations in redox homeostasis [155,160], interference with the physiological Ca
2+

-

distribution [163], nutrient deprivation like glucose starvation or chemical ER stressors like the 

N-linked glycosylation inhibitor tunicamycin [160] or the sarcoplasmic/endoplasmic reticulum 

Ca
2+

-ATPase (SERCA) inhibitor thapsigargin [164].  

To counteract folding dysfunctions in the ER the cell has to first transmit a distress signal from 

the affected ER lumen into the cytosol. This sensing of accumulated mis-/unfolded proteins has 

been shown to involve three ER-resident transmembrane proteins in mammalian cells, namely the 

inositol-requiring protein 1 (IRE1), the protein kinase PKR-like ER kinase (PERK), and the 

activating transcription factor 6 (ATF6) [165] (see Figure 4). Activation of these UPR-sensors is 

thought to involve both, common and sensor-specific principles, presumably enabling the cell to 

differentiate between different subroutines of ER stress and modulate the cellular response 

accordingly [160,166].  

Since the N-terminal, ER-luminal domains of the two type 1 transmembrane proteins IRE1 and 

PERK show a high degree of homology [167], it is not unexpected that ER-sensing and 

subsequent activation of both proteins involves a common principle. In unstressed cells, both 

sensors are kept in a monomeric, inactive state by binding to the abundant ER chaperone BiP 

[168]. Upon sequestering of BiP by accumulated unfolded proteins during ER stress, this 

chaperone-mediated inhibition is released and IRE1 and PERK are able to homodimerize and -

oligomerize [156,169]. Subsequently, this leads to sensor activation by trans-autophosphorylation 

of their cytosolic kinase domains, which then exert their respective downstream effects 

[156,169]. The contribution of direct association of their ER-luminal domains with unfolded 

proteins during activation, as proposed in yeast IRE1 [170], is a matter of current controversy.  
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In contrast to this, activation of ATF6, displays unique features when compared to the other two 

sensors. In unstressed cells, glycosylated ATF6 forms disulfide-linked, inactive homodimers, 

whose C-terminal ER-luminal domains are associated with BiP [171] and the lectin chaperones 

Calnexin (CNX) [172] or Calreticulin (CRT) [173]. Dismissal of chaperone binding under ER 

stress unmasks a Golgi-localization signal and allows passage of the reduced, monomeric form of 

ATF6 within the secretory pathway for further processing [171]. Upon cleavage of ATF6 within 

the Golgi compartment via the site-2 protease (S2P), the cytosolic fragment of ATF6 is freed 

(ATF6f) and can exert its downstream effector role as transcriptional regulator of predominantly 

pro-survival genes [174].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 4: The three mammalian UPR sensors. The unfolded protein response 

(UPR) is initiated by three transmembrane proteins, namely protein kinase RNA -

like ER kinase (PERK), inositol-requiring protein 1 (IRE1) and activating 

transcription factor 6 (ATF6), which sense the folding status of the ER via 

dissociation of binding immunoglobulin protein (BiP) and possibly by interacting 

with unfolded proteins directly (not depicted). Whereas PERK and IRE1 are 

activated by homodi- or oligomerization followed by trans-autophosphorylation, 

ATF6 is proteolytically processed in the Golgi apparatus into its active form 

(ATF6-p50). Once activated the senors initially aim to restore ER homeostasis by 

an adaptive response. This includes transient inhibition of protein synthesis by 

PERK-mediated eukaryotic translation initiation factor 2a (eIF2a) 

phosphorylation, increase in the ER folding capacity by transcriptional 

upregulation of ER chaperones and folding factors and increase in ER-associated 

degradation (ERAD). For more detailed information please refer to main text. 

This figure was reproduced from [175]. 
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In conclusion, all three ER stress receptors, IRE1, PERK and ATF6, have in common to be held 

in an inactive state by BiP-binding [175] (see Figure 4). However, while IRE1 and PERK 

activation crucially depends on the formation of dimers and higher order oligomers, a 

requirement for trans-autophosphorylation, ATF6 needs to be present in its monomeric form prior 

to Golgi transport. Recent findings have highlighted a role for specific oxidoreductases of the 

PDI family in regulating these conversions between mono-/di- and oligomeric state of ATF6 and 

IRE1, respectively. In this sense, PDIA5 has been implicated in the reduction of the 

intermolecular disulfide bonds within the ATF6 dimer [176], a prerequisite for ER-exit and Golgi 

targeting [177]. Furthermore, IRE1 dimerization/oligomerization upon ER stress has been 

proposed to involve intermolecular disulfide bonds [166]. Resolution of these linkages and 

concomitant attenuation of the UPR signal critically depends on the presence of PDIA6 [166]. 

Since both PDI family members (in resemblance to the UPR sensors) have been shown to 

physically associate with BiP in unstressed conditions [166,178,179], regulatory loops between 

UPR signaling and PDIA5/6 activities are likely to modulate cell fate under unbalanced ER 

homeostasis [180].  

The molecular distinctions between adaptive and fatal UPR signaling are by far not fully 

understood, but can be partially explained by the known signaling cascades downstream of the 

three UPR sensors. Adaptive UPR decreases protein influx into the ER, which is accompanied by 

increased expression of ERQC and ERAD components to process existent protein 

conglomerations. The former process is achieved by PERK-mediated phosphorylation and 

inactivation of the eukaryotic translation initiation factor 2a (eIF2a) [181] and by regulated 

IRE1-dependent mRNA decay (RIDD), an mRNA degradation pathway catalyzed by the 

endoribonuclease domain of activated IRE1 [182]. The transcriptional upregulation of pro-

survival factors during adaptive UPR is carried out by combined action of three UPR-specific 

transcription factors [156], the IRE1-dependent isoform of X-box binding protein 1 (XBP1s), 

resulting from unconventional splicing of its mRNA [183], the cytosolic fragment of ATF6 after 

S2P cleavage (ATF6f) [184] and the activating transcription factor 4 (ATF4), the translation of 

which is paradoxically stimulated following PERK-mediated eIF2a phosphorylation [185]. 

Among the transcriptional targets of these effectors are proteins involved in (1.) ERAD (XBP1s, 

ATF6f, ATF4) [174,184,186,187,188,189] (2.) protein folding (XBP1s, ATF6f and ATF4) 
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[174,184,186,189,190] (3.) phospholipid synthesis and ER expansion (XBP1s) [191],and (4.) 

redox homeostasis and amino acid metabolism (ATF4) [186,188,192]. 

However, if these compensatory mechanisms fail to restore ER homeostasis, ER stress initiates 

apoptosis (see Figure 5). Transition to pro-apoptotic UPR signaling is thought to only happen 

upon exceeding a so far poorly defined ER stress threshold [156]. A central element in this 

conversion is the transcription factor C/EBP-homologous protein (CHOP), the upregulation of 

which is mainly attributed to PERK-ATF4 activation [180]. Main effects of CHOP induction 

include the downregulation of B-cell lymphoma 2 (Bcl-2) [193,194], the upregulation of Bcl-2 

homology 3 (BH3)-only proteins [193,194] and upregulation of growth arrest and DNA damage-

inducible 34 (GADD34) protein [195]. The two former proteins are involved in the direct 

regulation of mitochondria-induced apoptosis, in which decreased Bcl-2 levels and upregulated 

BH3-only proteins enable an oligomeric pore, the mitochondrial apoptosis-induced channel 

(MAC), to form in the outer mitochondrial membrane [196]. MAC assembly via hetero-

oligomerization of Bcl-2-associated X (BAX) protein and Bcl-2 homologous antagonist killer 

(BAK) subsequently leads to the release of cytochrome c from the intermembrane space of 

mitochondria to the cytosol, a prerequisite for the formation of the apoptosome complex [196]. 

Finally, the apoptosome induces activation of zymogenic cysteine-dependent aspartate-directed 

proteases (Caspases), which execute cellular apoptosis [196].  

Besides this involvement in the intrinsic apoptosis pathway, elevated CHOP levels also impact on 

ER homeostasis. CHOP-induced GADD34 expression leads to the protein phosphatase 1 (PP1)-

mediated dephosphorylation and thereby reactivation of eIF2a![197]. The consequent resuming 

of global protein synthesis in cells still under the influence of unresolved ER dysfunction has 

been implicated in reactive oxygen species (ROS) formation and ER stress-mediated apoptosis 

[193]. Many publications have indicated a role of Ero1, another transcriptional target of CHOP, 

in this process. Since Ero1 generates stoichiometric amounts of the ROS hydrogen peroxide 

(H2O2) as byproduct of PDI regeneration [112], it was argued that elevated levels of Ero1-derived 

H2O2 cause oxidative stress and cell death [192,198,199]. However, since we have demonstrated 

that Ero1-derived H2O2 is strictly confined to the ER lumen and efficiently detoxified by 

glutathione peroxidase 8 (GPx8) (see section 2), we favor an alternative model to explain this 

CHOP/Ero1-mediated, ER stress-induced apoptosis, in which ROS formation is a downstream 

effect of dysregulated calcium levels [161,180,193,200]. 
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The ER is the main intracellular storage compartment for Ca
2+

 ions, which are actively 

transferred into the ER lumen by the action of ATP-dependent SERCA pumps [201]. Release of 

these ions from the ER along their chemical gradient is mainly mediated by the opening of 

channel proteins of the inositol 1,4,5-trisphosphate (IP3) receptor or the ryanodine receptor 

(RyR) families within the endoplasmic/sarcoplasmic membrane [201]. The latter have been 

implicated in the process of calcium-induced calcium release (CICR) [202], whereas members of 

the former were demonstrated to be enriched in mitochondria-ER contact sites, the so-called 

mitochondria-associated membranes (MAMs) [203]. Accordingly, IP3Rs, besides other factors, 

contribute to the physical tethering of these two organelles by formation of a trimeric IP3R-

Grp75 (glucose-regulated protein 75)-VDAC1 (voltage-dependent anion selective channel 1) 

complex [204]. This juxtaposition has been documented to enable specific Ca
2+

 fluxes from the 

ER to mitochondria, which play an important role under physiological conditions [205]. In ER 

stress conditions, however, IP3R-activity is potentiated in part as a result of CHOP-mediated 

upregulation of Ero1 [200,206,207]. The resulting elevated Ca
2+

 fluxes, additionally increased by 

CICR of RyR [208], are a well appreciated trigger for mitochondrial outer membrane 

permeabilization (MOMP), which subsequently results in cytochrome c release and apoptosome 

formation [209]. Furthermore, elevated intramitochondrial Ca
2+

 levels lead to the generation of 

mitochondria-derived ROS via various pathways [161]. Since ROS can introduce deleterious 

redox modifications in both, the SERCA pump and the IP3R/RyR calcium channels [210,211], a 

positive feedback loop can ensue, which most likely contributes to ER stress-induced apoptosis 

after chronic UPR signaling.  

In conclusion, the UPR is a highly dynamic and complex cellular stress response, both under 

physiological and pathological conditions (see Figure 5). The ability to modulate its outcome not 

only on the UPR-receptor level but also by specific feedback loops within downstream effectors 

[156,180] significantly complicates the general conception of this signaling network. Its 

interrelation with other pathways like intrinsic apoptosis [193], mTOR signaling [212], mitogen-

activated protein (MAP) kinases or antioxidant mechanisms (see section 1.7) [167,180] is 

certainly of great relevance but so far only poorly defined. Further characterization of these 

interdependencies will most probably constitute a major challenge in future years.  
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Figure 5: Transition from adaptive to pro-apoptotic UPR signaling. The adaptive response of the unfolded protein response 

(UPR) is initially characterized by translation attenuation (via phosphorylation of eukaryotic translation initiation factor 2a 

(eIF2a)) and mRNA decay (via regulated inositol-requiring protein 1 (IRE1)-dependent decay (RIDD)). Subsequent efforts to 

restore ER homeostasis and maintain cell survival involve the downstream effects of the proteolytically cleaved activating 

transcription factor 6 (ATF6f), the IRE1a-spliced X box-binding protein 1 (XBP1s) and ATF4. If the combined action of these 

transcription factors fails to restore ER homeostasis, pro-apoptotic UPR signaling with C/EBP-homologous protein (CHOP) as 

the central element is initiated. Pro-apoptotic signaling by B cell lymphoma 2 (BCL-2) homology 3 (BH3)-only proteins and 

Caspase 2-mediated activation of BH3-interacting domain death agonist (BID) converge on BCL-2-associated X protein (BAX) 

and BCL-2 homologous antagonist/killer (BAK) activation and trigger apoptosis. CHOP-mediated induction of growth arrest and 

DNA damage-inducible 34 (GADD34) restores protein synthesis and thereby impacts on reactive oxygen species (ROS) 

formation, which directly or via inositol-1,4,5-trisphosphate receptor (IP3R)-associated calcium release contributes to the 

opening of the mitochondrial permeability transition pore (PTP) and trigger apoptosis. This figure was reproduced from [156].  

 

 

 

 

 

 

 

 

 

 

 

 

1.7. Oxidative Stress and cellular antioxidant mechanisms 

ROS generation imposes a potential threat to normal cell physiology. These molecules, due to 

their naturally high chemical reactivity, have a broad substrate spectrum, which can result in 

pleiotropic effects like lipid peroxidation, aberrant protein or co-factor modification and DNA 

damage [213]. They are formed by various intracellular enzymes, like the nicotinamide adenine 

dinucleotide oxidase (NOX) family, respiratory chain complexes of mitochondria, peroxisomal 

enzymes and sulfhydryl oxidases in the ER [214,215,216,217,218]. Whereas the detrimental 

potential of ROS has been studied for decades, recent lines of evidence have additionally 

suggested important physiological roles in redox signaling for both, ROS-mediated 

posttranslational modifications like S-glutathionylation, and H2O2 as second messengers 

[215,219,220]. Therefore, ROS formation has to be placed under strict temporal and spatial 

limitations in order to be utilized for signaling purposes. An intracellular imbalance between 
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generation and scavenging/detoxification of ROS, the most prevailing being superoxide anions, 

hydroxyl radicals and H2O2 [213], is referred to as oxidative stress [221].  

Numerous antioxidant pathways contribute to the alleviation of oxidative stress in mammalian 

cells and can be classified into enzymatic and non-enzymatic defense mechanisms. Constituents 

of the latter group are predominantly vitamins like a-tocopherol [222] or ascorbate [223], which, 

in a cooperative way, can terminate the self-propagating reaction of lipid peroxidation by 

scavenging lipid peroxyl radicals [224]. Enzymatic defense machinery includes superoxide 

dismutase (SOD), catalase, thioredoxin, glutaredoxin, peroxiredoxins (Prxs) and glutathione 

peroxidase (GPxs).  

 

1.7.1. Superoxide dismutase and catalase 

In humans, three different isoforms of SOD have been described, which differ in their respective 

subcellular localization. Whereas SOD1 is present in the cytosol and the mitochondrial 

intermembrane space, SOD2 can be found in the mitochondrial matrix and SOD3 is secreted 

from cells [225]. All of them utilize metal co-factors, with which they catalyze the 

disproportionation reaction of superoxide (O2
-
) to H2O2 and O2. While mutations within SOD1 

are linked to familial amyotrophic lateral sclerosis (ALS) [225], no clinical relevance was 

assigned so far to mutations in SOD2 or SOD3. However, knockout mice lacking either SOD1, 2 

or 3 show hepatocellular carcinoma, early neonatal death or increased susceptibility to paraquat 

treatment, respectively, thereby highlighting the mitochondrial compartment as most fatal 

producer of superoxide [225]. SODs, together with the previously mentioned a-

tocopherol/ascorbate pathway, catalyze the direct detoxification of free radicals, while the 

following components of the antioxidant defense rather target downstream products of radical 

reactions like lipid hydroperoxides and H2O2. Of note, even though H2O2 plays an important role 

in redox signaling, it can be decomposed to highly reactive hydroxyl radicals via fenton 

chemistry [226]. Since this reaction is catalyzed by transition metals like iron, which are 

abundant constituents of cellular co-factors, spatial limitation of H2O2 and subsequent 

detoxification are of critical importance.  
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Catalase is a tetrameric protein with four prosthetic heme groups and is exclusively expressed in 

peroxisomes (exceptions being erythrocytes and neutrophils). It catalyzes the disproportionation 

of excess H2O2 produced by peroxisomal oxidases to H2O and O2 [227,228]. In erythrocytes, 

cytosolic catalase, in cooperation with glutathione peroxidases [229] and peroxiredoxins [230], 

might contribute to the protection of hemoglobin (Hb), the main determinant of the blood O2–

binding capacity, by detoxification of H2O2 generated via autoxidation of Hb [231,232].  

 

1.7.2. Thioredoxin and glutaredoxin  

Hundreds of different proteins have been associated with the thioredoxin superfamily. Among 

them are thioredoxin (Trx) itself, glutaredoxins (Grxs), peroxiredoxins, glutathione peroxidases 

and ER-resident oxidoreductases/PDIs. In analogy to the PDIs, Trx/Grxs are also characterized 

by the conserved thioredoxin/-like fold [233] and exert their function either with a CxxC 

(thioredoxin and dithiol Grxs) or a CxxS (monothiol Grxs) active site motif [234]. Accordingly, 

cytosolic or mitochondrial Trx and dithiol Grxs, when present in a reduced dithiol state, can 

resolve aberrant disulfide bonds in client proteins. These non-native disulfide linkages can arise 

e.g. by unspecific protein oxidation via hydroperoxides during oxidative stress conditions [234]. 

Furthermore, Trx can utilize oxidized peroxiredoxins and glutathione peroxidases as oxidizing 

substrates and therefore plays an important role in recycling these antioxidant enzymes (see 

below) [235]. Following dithiol-disulfide exchange reaction, which results in reduced client and 

oxidized Trx/Grxs, the latter has to be regenerated to complete the catalytic cycle. Whereas Trx is 

enzymatically recovered by the action of thioredoxin reductase at the expense of NADPH [228], 

Grxs are mainly reduced by the consecutive reaction with two GSH molecules, which yields 

GSSG, and the action of glutathione reductase [234]. In contrast to this, aberrant S-

glutathionylations of proteins as a consequence of unspecific hydroperoxide oxidation [236] can 

be reverted by the monothiol mechanism of both types of Grxs [234].  

 

1.7.3. Peroxiredoxins  

The human peroxiredoxin (Prx) family is comprised of six different isoforms, all of which are 

characterized by formation of different types of homooligomers and a common amino acid triad 

within their active site namely the peroxidatic cysteine (Cys), a threonine/serine (Thr/Ser) and an 
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arginine (Arg) residue [235,237]. They contribute to redox signaling as well as hydroperoxide 

detoxification in various cellular compartments and can be separated into 3 different subgroups 

according to their reaction mechanism: typical 2-Cys Prxs (PrxI-IV), atypical 2-Cys Prxs (PrxV) 

and 1-Cys Prxs (PrxVI) [226,238]. Upon hydroperoxide/H2O2-mediated oxidation of their active 

site cysteine (CP) to sulfenic acid, all 2-Cys Prxs form a disulfide bond between CP and a 

resolving cysteine residue (CR) [238,239]. In typical 2-Cys Prxs this CR is localized in a 

neighboring Prx molecule within the homooligomeric complex, which generates an 

intermolecular disulfide linkage. In contrast, atypical 2-Cys Prxs form intramolecular disulfide 

bonds between CP and CR [238,239]. However, the regeneration mechanism of these oxidized Prx 

species is identical in both groups and involves Trx-mediated reduction of the disulfide bond 

[237]. PrxVI, which lacks a CR, has been shown to form mixed disulfides with p glutathione S-

transferase (GST) [240,241]. This heterodimer is subsequently resolved by glutathione-mediated 

regeneration of PrxVI.  

 

1.7.4. Glutathione peroxidases 

The human glutathione peroxidase (GPx) family is phylogenetically unrelated to Prxs but shares 

the ability to reduce and thereby to detoxify hydroperoxide substrates [235]. It is comprised of 

eight different isoforms, which differ with respect to their subcellular localization, oligomeric 

state and the architecture of their active sites [242]. While human GPx1-4 and GPx6 rely on 

selenocysteines (Sec) in order to complete the common active site tetrad of glutamine, tryptophan 

and asparagine, GPx5, 7 and 8 incorporate cysteines (Cys) instead [243]. The reaction 

mechanism of GPxs involves peroxidatic selenoate or thiolate active site oxidation via 

hydroperoxide substrates/H2O2 to selenenic or sulfenic acid, respectively, and concomitant 

reduction of the ROS. Regeneration of Sec-GPxs typically involves the consecutive reaction with 

two molecules of GSH, which, via formation of a glutathionylated GPx intermediate, ultimately 

results in the formation of GSSG [228,235]. The GSSG is then reduced to GSH via the 

NADPH/glutathione reductase pathway. In contrast, Cys-GPxs, upon hydroperoxide/H2O2 

oxidation of their thiolate active site, typically form an intramolecular disulfide bond with a 

resolving cysteine residue (CR) [235]. They thereby resemble the reaction mechanism of atypical 

peroxiredoxins, which is also reflected by their Trx-mediated regeneration [242].  
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1.7.5. Regulation of the cellular antioxidant response 

A key regulator of cellular redox homeostasis, which critically impacts on the above mentioned 

antioxidant mechanisms, is the ubiquitously expressed transcription factor nuclear factor 

erythroid 2-related factor 2 (Nrf2) [244,245,246]. Under homeostatic conditions, Nrf2 is bound in 

the cytosol by the E3 ubiquitin ligase substrate adaptor Kelch-like ECH-associated protein 1 

(Keap1), the association with which constantly subjects Nrf2 to proteasomal degradation [247]. 

Since human Keap1 possesses 27 cysteine residues, it acts as the redox sensing unit [248]. 

However, although oxidative insults are well documented triggers for Nrf2 release from Keap1, 

the exact mechanisms are still under debate [249,250,251]. After dissociation from Keap1, Nrf2 

heterodimerizes with the small musculoaponeurotic fibrosarcoma (Maf) protein and translocates 

to the nucleus where it specifically transactivates antioxidant responsive element (ARE)-

possessing target genes [246]. Among others, Nrf2 increases GSH levels by stimulating the 

expression of the cystine/glutamate transporter SLC7A11, as well as glutamate-cysteine ligase 

catalytic (GCLC) and modifier (GCLM) subunits, the heterodimer of which catalyzes the rate-

limiting step in GSH synthesis [252,253]. Furthermore, Nrf2 positively regulates the expression 

of a subset of peroxiredoxins and glutathione peroxidases, thioredoxin, thioredoxin reductase and 

glutathione reductase [252,254,255]. This increase in cellular antioxidants and GSH leads to 

reduction of aberrant disulfides and thereby to the regeneration of the native thiol state. 

Furthermore, Nrf2 also enhances biotransformation reactions with the goal to inactivate and 

excrete harmful xenobiotics by inducing phase I (oxidation, reduction and hydrolysis), phase II 

(conjugation), as well as phase III (transport) proteins [247].  

In conclusion, cellular antioxidant response mechanisms aim to restore redox homeostasis by 

reverting deleterious posttranslational modifications like S-glutathionylation, aberrant disulfides 

or sulfoxidation downstream of oxidative insults. Orchestration of this broad and versatile array 

of antioxidant strategies is achieved by Nrf2, which also impacts on a wide variety of other 

cellular pathways. However, it is important to note that under homeostatic conditions, many of 

these defense mechanisms also take part in the modulation of physiological redox signaling 

cascades like RTK/MAP kinase signaling and thereby impinge on basal programs like cell 

growth or proliferation [220].  

 



General Introduction 
 

41 

 

1.8. Aim of this thesis 

The fundamental role of the Ero1a-PDI disulfide relay in the process of oxidative folding in the 

ER of mammalian cells is well established. Great progress has been made regarding the physical 

interactions in this relay, which enables a preferential flow of electrons [127,133,154]. Along the 

same line, characterization of feedback-regulated mechanisms, which govern Ero1a activity and 

concomitant H2O2 generation, have contributed to our understanding of the tight balancing of ER 

redox homeostasis [135,153]. However, it is surprising how well cells tolerate the over-

expression of hyperactive Ero1 mutants, which lack these regulatory mechanisms [155]. The 

recent discovery of ER-resident peroxidases [111,138] provides a theoretical explanation of this 

mild phenotype, since they could buffer excessive H2O2 production by Ero1. However, cell 

biological evidence supporting the appealing idea of peroxidase-mediated detoxification of Ero1-

derived H2O2 is still missing. Furthermore, as this “quenching” effect would only control the side 

product of Ero1 activity, i.e. H2O2, what happens to the excess of disulfide bonds being generated 

by constitutively active Ero1? A possible explanation would be the existence of an additional, 

hitherto unknown, inhibitory mechanism, which is still intact in hyperactive Ero1 mutants lacking 

the known regulatory disulfide bonds. Indeed, a crucial step in Ero1 activation has not been 

unraveled yet. The crystal structure of hyperactive Ero1 did not reveal a pathway or channel, 

which would provide access of O2 to the bound FAD cofactor. Thus, since O2 penetration is 

essential for regeneration of FAD from FADH2, our mechanistic understanding of Ero1 activity 

might still be incomplete.  

This thesis aimed to shed more light on the fate of Ero1-derived H2O2 by dissecting the roles of 

ER-resident peroxidases of the peroxiredoxin and glutathione peroxidase family. This could 

potentially clarify the controversially discussed contribution of Ero1-derived H2O2 to ER stress-

induced apoptosis in human cells, which has been deduced from experiments in the model 

organisms Saccharomyces cerevisiae [256] and Caenorhabditis elegans [192] that both lack ER-

resident peroxidases. In addition, I wanted to increase our understanding of Ero1 catalysis by 

elucidating the pathway and regulation of O2 entry and subsequent H2O2 release from the protein-

buried FAD. Answers to these questions would provide a molecular-level understanding of ER 

redox homeostasis in human cells that reaches beyond the previously described regulatory 

disulfides in Ero1a.   
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2. Project I: GPx8 peroxidase prevents leakage of H2O2 from the 
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2.1. Abstract 

Imbalanced endoplasmic reticulum (ER) homeostasis (ER stress) leads to increased generation of 

reactive oxygen species (ROS). Disulfide-bond formation in the ER by Ero1 family oxidases 

produces hydrogen peroxide (H2O2) and thereby constitutes one potential source of ER-stress-

induced ROS. However, we demonstrate that Ero1a-derived H2O2 is rapidly cleared by 

glutathione peroxidase (GPx) 8. In 293 cells, GPx8 and reduced/activated forms of Ero1a co-

reside in the rough ER subdomain. Loss of GPx8 causes ER stress, leakage of Ero1a-derived 

H2O2 to the cytosol, and cell death. In contrast, peroxiredoxin (Prx) IV, another H2O2-detoxifying 

rough ER enzyme, does not protect from Ero1a-mediated toxicity, as is currently proposed. 

Solely when Ero1a-catalyzed H2O2 production is artificially maximized, PrxIV can participate in 

its reduction. We conclude that the peroxidase activity of the described Ero1a–GPx8 complex 

prevents diffusion of Ero1a-derived H2O2 within and out of the rough ER. Along with the 

induction of GPX8 in ER stressed cells, these findings question a ubiquitous role of Ero1a as a 

producer of cytoplasmic ROS under ER stress.  

 

2.2. Introduction 

Roughly one third of the human proteome resides in exocytic endomembrane compartments or 

travels via exocytic compartments to the cell surface. These proteins are synthesized at and 

translocated into the endoplasmic reticulum (ER), the largest and most extended compartment of 

the secretory pathway. The ER lumen provides a unique environment for protein folding that 

mimics the extracellular space [1]. For instance, reduction-oxidation (redox) conditions are more 

oxidizing in the ER (and in the extracellular space) than in the cytosol [2,3], thereby favoring the 

formation of disulfide bonds in proteins. This process known as oxidative protein folding is 

catalyzed by a number of distinct pathways [4,5], the most conserved of which is driven by 

endoplasmic oxidoreductin 1 (Ero1) oxidases [6]. In human cells, the housekeeping isoform 

Ero1a introduces disulfide bonds into the disulfide shuttling enzyme protein disulfide isomerase 

(PDI) [7,8]. This reaction involves the generation of one molecule of hydrogen peroxide (H2O2) 

for every disulfide formed [9]. Of note, Ero1 activity is essential only in lower eukaryotes, but 

not e.g. in flies or mice [6].  



Project I: GPx8 peroxidase prevents leakage of H2O2 from the ER 

55 
 

Protein misfolding in the ER triggers a cell program called the ER stress response or unfolded 

protein response (UPR) [10], which in the majority of cases is accompanied by an increase in 

intracellular reactive oxygen species (ROS) and oxidative damage [11,12,13,14,15,16]. 

Importantly, ROS also act upstream of ER stress [15,17,18,19]. ER stress and ROS therefore 

constitute a self-perpetuating vicious cycle, which contributes to cell degeneration in the context 

of ER-stress-centered disorders [20]. The fact that potentially massive amounts of the ROS H2O2 

are being produced during Ero1a-mediated oxidative protein folding has attracted ample 

attention [21,22,23]. Thus, one model for the generation of ER-stress-induced ROS holds that 

stress-mediated formation of aberrant disulfides results in repeated protein reduction and 

reoxidation cycles, leading to increased H2O2 generation by Ero1 [24,25,26]. Ero1-derived H2O2 

is then proposed to pass the ER membrane and spill into the cytoplasm.  

In addition to H2O2-generating machinery, the ER in mammalian cells harbors three H2O2-

reducing peroxidases, peroxiredoxin IV (PrxIV), glutathione peroxidase 7 (GPx7), and the 

transmembrane protein GPx8 [27,28,29]. PrxIV is a 2-cysteine peroxiredoxin that can couple the 

reduction of H2O2 to the oxidation of PDI family members [30,31,32], but is not induced in 

response to ER stress [29]. Accordingly, PrxIV can supplement the ER with disulfide bonds and 

contribute to oxidative protein folding [5,32]. In mice, loss of PrxIV causes a mild phenotype 

with defects in spermatogenesis [33]. Conversely, GPx7 knockout mice display signs of 

widespread oxidative injury, develop cancer, and die prematurely [34]. In the same vein, 

endogenous GPx7 protects oesophageal cells from acid-mediated oxidative stress [35] and 

fibroblasts from pharmacologically induced ER stress [34]. In vitro, GPx7 can react with 

phospholipid hydroperoxides or H2O2 [36] as well as with the reducing substrates PDI family 

members [27,37,38], glutathione [37], or Grp78 [34]. Little is known about the role of GPx8 in 

ER physiology, except that, as for GPx7, ectopically expressed GPx8 can bind to Ero1a in cells 

[27].  

In this study, we show that Ero1a-derived H2O2 cannot diffuse from ER to cytosol owing to the 

peroxidase activity of GPx8, which is induced on ER stress. This mechanism is independent of 

PrxIV and essential to protect cells from Ero1a-mediated hyperoxidation and death. GPx8-

centered control of Ero1a-derived H2O2 necessitates a reevaluation of the source of ER-stress-

induced ROS.  
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2.3. Results 

 

2.3.1. GPx8 but not PrxIV protects cells against Ero1a-mediated stress 

To address the fate specifically of Ero1a-derived H2O2 and a possible involvement of ER-

resident peroxidases, we used cells with inducible expression of hyperactive Ero1a-

C104A/C131A (Ero1a-ACTIVE) [18,47] and peroxidase-specific siRNA. A 120 h transfection 

protocol was developed, which in case of PrxIV [5] but not GPx8 was necessary for efficient 

depletion (Fig 6A and S1A+B), whereas endogenous GPx7 was undetectable (Fig. S1C+D). 

Silencing of PrxIV or GPx8 compromised cell proliferation (Fig. 6B and S1E), underscoring the 

importance of H2O2 turnover in the ER. However, only knockdown of GPx8 elicited ER stress as 

judged by moderate transcriptional activation of UPR target genes (Fig. 6C, bars 3 and 5), which 

was exacerbated by induction of Ero1a-ACTIVE (Fig. 6C, bars 6). Similarly, antioxidant 

response markers, which were marginally induced by Ero1a-ACTIVE alone (Fig. 6D, bars 2) 

[18], responded additively to GPx8 knockdown and Ero1a-ACTIVE (Fig. 6D, bars 5 and 6). 

Although PrxIV knockdown partially triggered the antioxidant response, this induction was not 

intensified by Ero1a-ACTIVE (Fig. 6D, bars 3 and 4). GPx8+PrxIV double knockdown did not 

enhance the effects of GPx8 single knockdown in the majority of readouts (Fig. 6B+C+D, bars 7 

and 8; and see below). Thus, GPx8, but not PrxIV is linked to Ero1 and ER homeostasis. 

Consistent with a detoxifying role during compromised ER homeostasis, GPx8 transcript was 

upregulated under ER stress, which again was not the case for PrxIV (Fig. 6E) [29].  

Silencing of GPx8 increased expression of PrxIV (Fig. 6A+F). As PrxIV levels were 

unresponsive to chemical ER stressors but did increase upon knockdown of the negative 

antioxidant response regulator Keap1 (Fig. S1F), we concluded that PrxIV responded to GPx8 

siRNA-induced antioxidant response (Fig. 6D) rather than the UPR.  

Of note, GPx8 knockdown and concomitant overexpression of hyperactive Ero1a elicited a weak 

UPR only, as activation of PERK/eIF2a signaling, which confers protection against oxidative 

stress [25], and of the proapoptotic JNK pathway was not detected (Fig. S1G). Consistently, the 

magnitude of UPR target gene induction by GPx8 knockdown (Fig. 6C) was low compared with 
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the induction by chemical inducers of ER stress (data not shown). Cleavage of caspase 3 (a 

hallmark of apoptosis) predominantly occurred in PrxIV-silenced cells (Fig. S1G).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 6: GPx8, but not PrxIV is functionally linked to Ero1a to prevent ER stress. (A) Ero1a-C104A/C131A 
cells were treated with control (C), PrxIV-targeting (IV), GPx8-targeting (8), or a mixture of IV and 8 (IV+8) siRNA 
for 120 h (see Materials and methods). Where indicated, expression of Ero1a-ACTIVE was induced by doxycycline 
(Dox) during the last 24 h of knockdown. Western blot analysis was carried out using the indicated primary antibodies. 
Note that PrxIV protein levels are increased in GPx8-silenced cells. (B) Cell mass of Ero1a-C104A/C131A cells was 
determined after treatment with siRNAs and/or Dox as in panel (A) by sulforhodamine B staining. Changes relative to 
control siRNA-treated cells are plotted along with 95% confidence intervals (n = 3; mean ± SEM). * p < 0.05; ** p < 
0.01 (C and D) Ero1a-C104A/C131A cells were treated with siRNAs and Dox as in panel (A) and subjected to 
quantitative real-time RT-PCR using primers specific for the ER stress (UPR) markers HERPUD1 (encoding Herp), 
DDIT3 (encoding CHOP), and ATF6 or the antioxidant response markers GCLC (encoding Glutamate–cysteine ligase), 
NFE2L1 (encoding Nrf1), and NFE2L2 (encoding Nrf2). Values are expressed as fold increase relative to control (Ctrl) 
siRNA-treated cells (n = 5; mean ± SEM). (E) Ero1a-C104A/C131A cells were exposed for 8 h to vehicle (0.33% 
DMSO), 5 mM thapsigargin (TG), or 2.5 mg/ml tunicamycin (TM) to induce ER stress and analyzed by quantitative 
real-time RT-PCR (qPCR) using primers specific for PRDX4 and GPX8 (n = 3; mean ± SEM). (F) mRNA levels 
relative to control of PRDX4 and GPX8 were determined upon knockdown of either gene for 120 h in Ero1a-
C104A/C131A cells treated with or without Dox during the last 24 h of knockdown (n = 5; mean ± SEM).  
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2.3.2. GPx8 reduces Ero1a-derived H2O2 in the ER 

To explore how GPx8 knockdown induced ER stress markers, we assayed ER redox homeostasis, 

which – when perturbed – triggers ER stress [10]. We surmised that increased ER oxidation in 

response to hyperactive Ero1a [18] could be amplified in the absence of GPx8 due to 

uncontrolled generation of Ero1a-derived H2O2. Indeed, hyperoxidation of the ER protein ERp57 

upon expression of Ero1a-ACTIVE was more prominent in GPx8-silenced compared with 

control cells (Fig. 7A). By contrast, knocking down PrxIV had no effect (Fig. 7B). As the redox 

state of ERp57 may not faithfully reflect ER H2O2 levels, we also used the fluorescent HyPer 

probe, which directly reacts with H2O2 [48]. Consistent with published data [43], ER-targeted 

HyPer (HyPerER; Fig. S2A) was more oxidized – as indicated by a higher fluorescence excitation 

ratio (Fig. S2B) – upon Ero1a-ACTIVE expression (Fig. 7C, bars 1 and 5). This increase in 

HyPerER oxidation was amplified by GPx8- but not by PrxIV-targeting siRNA (Fig. 7C, bars 6 

and 7). In fact, PrxIV knockdown lowered the fluorescence excitation ratio of HyPerER (Fig. 7C, 

bars 2 and 6). A HyPerER C199S control mutant, which is insensitive to oxidation but retains pH-

sensitivity [49], was not affected by GPx8 knockdown but similarly sensitive to PrxIV 

knockdown (Fig. S2C), raising the possibility that the sensitivity of HyPerER to PrxIV depletion 

may be partially redox-independent. Taken together, consistent with the observed induction of 

UPR and antioxidant response genes (Fig. 6C+D), GPx8 knockdown aggravates Ero1a-

ACTIVE-mediated ER hyperoxidation. Interestingly, in contrast to Ero1a-ACTIVE,  the 

oxidizing effect of hyperactive Ero1b-C100A/C130A [2] was not enhanced by GPx8 knockdown 

(Fig. 7D, bars 4 and 6), suggesting that functional coupling of Ero1 and GPx8 is restricted to the 

Ero1a paralog.  

We considered the possibility that HyPerER oxidation upon GPx8 knockdown could be partially 

explained by increased PrxIV levels (Fig. 6A+F), since knockdown of PrxIV causes ER 

hypooxidation [32]. However, overexpression of PrxIV-FLAG failed to hyperoxidize the probe 

(Fig. S2D+E). Moreover, overexpression of GPx8-HA showed inverse effects on HyPerER 

oxidation compared with GPx8 knockdown (Fig. S2D+E), but did not lower PrxIV expression 

(Fig. S2F).  
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Figure 7: GPx8, but not PrxIV clears Ero1a-derived H2O2 from the ER. (A) Ero1a-C104A/C131A cells were 
treated for 48 h with siRNAs (Fig. S1B) and, where indicated, doxycycline (Dox, 24 h), followed by differential 
alkylation and Western blot analysis of ERp57. This assay monitors the dithiol–disulfide state of the a´ domain 
active site in ERp57 (FIG. S6 in [40]). The mobilities of a´ domain reduced (red) and oxidized (ox) ERp57, as 
verified by control samples from DTT- or diamide-treated (Dia) cells, are indicated. The diagram shows the 
oxidized fraction (as determined by densitometry) expressed as change relative to control (C) siRNA-treated cells 
without Dox (or with Dox in inset) ± 95% confidence intervals (n = 3). (B) Experiment as in panel (A) but using 
PrxIV knockdown or control siRNA-treated cells (120 h; n = 3). (C) SiRNA(120 h)/Dox(24 h)-treated Ero1a-
C104A/C131A:HyPerER cells were subjected to fluorescence excitation spectrum analysis (for spectra see Fig. 
S2B). Plotted are the ratios of the 500 and 420 nm peak amplitudes (n ≥ 4; mean ± SEM). (D) Analogous 
experiment to panel (C) using Ero1b-C100A/C130A:HyPerER cells (n = 3; mean ± SEM). (E) Ero1a-
C104A/C131A:HyPerER cells were treated and analyzed as in panel (C) 5 minutes after the addition of 0.5 mM DTT 
(n ≥ 4; mean ± SEM). (F) Analogous experiment to panel (E) using Ero1b-C100A/C130A:HyPerER cells (n = 3; 
mean ± SEM). # p < 0.08; * p < 0.05; ** p < 0.01; *** p < 0.001 
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As under steady-state conditions, HyPerER can be oxidized in a H2O2-independent manner via 

PDIs [50,51], we also conducted HyPerER measurements in presence of the reductant 

dithiothreitol (DTT). This treatment strongly activates disulfide- and H2O2-generation by Ero1a 

while maintaining PDIs in a reduced state [41,52]. Accordingly, any increased oxidation of 

HyPerER in DTT-flooded cells is likely to predominantly reflect a rise in [H2O2] or of H2O2-

derived radicals formed by Fenton chemistry [53]. The effects of Ero1a-ACTIVE, Ero1b-

C100A/C130A, and GPx8 knockdown observed at steady state (Fig. 7C+D) were reproduced 

under these conditions (Fig. 7E, bars 5 and 7; Fig. 7F, bars 4 and 6). Furthermore, silencing of 

GPx8 increased HyPerER oxidation also in uninduced cells (Fig. 7E+F, bar 3), indicating a 

functional interaction between endogenous proteins. Again, this effect was not observed upon 

silencing of PrxIV (Fig. 7F, bar 2). Taken together, GPx8, but not PrxIV, protects the cell from 

ER stress by clearing Ero1a-derived H2O2 from the ER lumen.  

 

2.3.3. Non-physiologically elevated Ero1a activity and GPx8 knockdown allow 

leakage of H2O2 from ER to cytosol 

There is evidence that the ER membrane is permeable to H2O2 [24,54], and it has been suggested 

that Ero1-derived H2O2 can affect overall cellular redox homeostasis [23,25,26]. We therefore 

assayed cytosolic H2O2 using HyPercyto [48] (Fig. S3A). Upon DTT-mediated activation of 

Ero1a, both GPx8 silencing and Ero1a-ACTIVE expression induced cytosolic hyperoxidation 

(Fig. 8A, bars 3 and 5, and S3B). As for HyPerER (see above), the two treatments additively 

raised the oxidation of HyPercyto (Fig. 8A inset, bar 7). The sensitivity of HyPercyto to GPx8 

siRNA depended on the presence of Cys199 and therefore reflected a redox-dependent sensor 

response (Fig. S3C). Conversely, the fluorescence excitation ratio of HyPercyto was lowered upon 

PrxIV knockdown (Fig. 8A, bars 2 and 6), which was at least in part a redox-independent effect 

(Fig. S3C). In absence of DTT, Ero1a-ACTIVE expression caused no detectable oxidation of 

HyPercyto, whereas the sensor was more oxidized in GPx8-silenced than control cells by a 

mechanism that remains to be elucidated (Fig. 8B). Accordingly, Ero1a-derived H2O2 leaks 

through the ER membrane to oxidize the cytosol only in response to DTT-mediated Ero1a 

hyperactivity and GPx8 knockdown.  
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2.3.4. GPx8- and PrxIV-catalyzed H2O2 reduction alleviates Ero1a-dependent 

cellular hyperoxidation upon DTT treatment 

We next revisited the previously reported, transient peak of cellular glutathione disulfide (GSSG) 

upon overexpression of wild-type Ero1a (Ero1a-WT) and DTT washout (Fig. 4C in [41]). Based 

on our findings with HyPercyto (Fig. 8A), we reasoned that under such non-physiological 

conditions, runaway H2O2 might diffuse from ER to cytosol where the activities of glutathione 

peroxidases and glutathione reductase could catalyze GSSG increase and decrease, respectively. 

As such, this setup would be suitable to study the impact of ER peroxidases in presence of 

transiently high [H2O2]. In support of GSSG formation in the cytosol, a cytosolic glutathione 

sensor (Grx1-roGFP2 [55]) was oxidized in response to Ero1a overexpression and DTT washout 

(Fig. 9A), and cellular GSSG accumulation and hyperoxidation of Grx1-roGFP2 was amplified in 

cells treated with the glutathione reductase inhibitor carmustine (BCNU) (Fig. 9B+C). 

Mechanistically, although GSSG has been published not to pass the ER membrane in vitro [56], 

we presently cannot exclude that GSSG rather than H2O2 is transported from ER to cytosol in our 

cell-based assay. Despite this uncertainty, we concluded that DTT-mediated activation of 

overexpressed Ero1a causes a short-lived rise in cytosolic GSSG upon washout of DTT.  

 

 

Figure 8: Elevated Ero1a activity and GPx8 knockdown allow leakage of H2O2 from ER to cytosol. (A) 
SiRNA(120 h)/Dox(24 h)-treated Ero1a-C104A/C131A:HyPercyto cells were subjected to fluorescence excitation 
spectrum analysis 5 minutes after addition of 0.5 mM DTT (for spectra see Fig. S3B). Plotted are the changes in ratios 
of 500 and 420 nm peak amplitudes relative to C siRNA-transfected cells without Dox (or with Dox in inset) along 
with 95% confidence intervals (n ≥ 4). (B) Ero1a-C104A/C131A:HyPercyto cells were treated and analyzed as in panel 
(A) without addition of DTT (n ≥ 4). * p < 0.05; ** p < 0.01; *** p < 0.001 
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Consistent with an involvement of H2O2, Ero1a-overexpression-dependent accumulation of 

GSSG after DTT washout was more prominent when GPx8 levels were lowered by doxycycline-

inducible shRNA (Fig. 10A and S4A). Of note, GSSG formation was also increased in PrxIV-

silenced cells compared to control (Fig. 10B and S4B). This indicated that under conditions of 

artificially maximized production of H2O2 by Ero1a, also PrxIV participates in detoxification. In 

further support of this, stable overexpression of both GPx8-HA and PrxIV-FLAG inhibited 

Ero1a-dependent GSSG accumulation after DTT washout (Fig. 10C+D and S4C). In case of 

GPx8-HA, this inhibition depended on its active site cysteine (Fig. 10E). This was less obvious 

for PrxIV (Fig. 10F), which is likely explained by formation of PrxIV wild-type–mutant 

heterodecamers [29]. Finally, alleviation of glutathione oxidation after DTT washout was also 

observed upon ectopic overexpression of GPx7-HA (Fig. S4D). The PrxIV results contrasted 

with the lack of quenching impact of this peroxidase on Ero1a-derived H2O2 observed in HyPer 

experiments, even in presence of DTT (Fig. 7E and 8A). This may be due to more powerful 

cellular hyperoxidation following the washout of DTT and – likely – redox-independent effects 

of PrxIV siRNA on the HyPer sensor (Fig. S2C and S3C).  

Collectively, the experiments demonstrated that PrxIV contributes to the reduction of Ero1a-

derived H2O2 only upon non-physiological activation of Ero1a by DTT, which is consistent with 

Figure 9: Cytosolic GSSG peaks upon DTT washout in Ero1a-overexpressing cells. (A) Ero1a cells were transfected with 
Grx1-roGFP2 in presence or absence of doxycycline (Dox) and subjected to DTT washout. At indicated time points after DTT 
removal, recovery was stopped by NEM, and the samples analyzed by aGFP immunoprecipitation and Western blot under non-
reducing conditions. Diamide (Dia)-treated cells were used to mark the mobility of oxidized (ox) Grx1-roGFP2. Oxidized 
fractions were quantified by densitometry (n = 3; mean ± SEM). (B) Dox-induced Ero1a cells were pretreated or not with 1 mM 
BCNU for 45 min before DTT washout and quantification of intracellular GSSG and GStot levels. The fraction of GSSG is plotted 
as percentage of the value at steady state (mean ± SEM; two independent experiments each performed in triplet). (C) Grx1-
roGFP2-transfected and Dox-induced Ero1a cells were treated with or without BCNU as in panel (B) and processed as in panel 
(A). * p < 0.05; *** p < 0.001 
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the data, but not the conclusions of a previous study [52]. Our findings therefore suggest an Ero1-

independent H2O2 source for PrxIV under normal physiology and reveal compartmentalization of 

H2O2-reducing pathways in the ER.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 10: ER-resident peroxidases antagonize the accumulation of GSSG in the cytosol. (A) GSSG:GStot recovery after 
DTT was studied as in Fig. 9B in shGPx8:Ero1a cells, which had been induced or not for 72 h with doxycycline (Dox) (mean ± 
SEM; two independent experiments each performed in triplet). These cells are Dox-inducible for the expression of GPx8-
targeting shRNA and, in addition, constitutively overexpress Ero1a-WT. (B) GSSG:GStot recovery assay in HT1080 cells stably 
transfected with GFP- or PrxIV-targeting shRNA [29] (mean ± SEM; one of three independent experiments performed in triplet; 
other experiments are shown in Fig. S4B). (C-F) GSSG:GStot recovery upon DTT washout in Ero1a cells was compared to the 
recovery in Ero1a:GPx8-HA (C), Ero1a:PrxIV-FLAG (D), Ero1a:GPx8-HA-C79S (E), or Ero1a:PrxIV-FLAG-C124A (F) cells 
(mean ± SEM; at least two independent experiments each performed in triplet). It should be noted that due to the complexity of 
this assay absolute numbers can only be compared within the same experiment as verified by the consistency of technical 
replicates. * p < 0.05; ** p < 0.01; *** p < 0.001 



Project I: GPx8 peroxidase prevents leakage of H2O2 from the ER 

64 
 

2.3.5. GPx8, PrxIV and Ero1a reside in the rough ER 

The preference of GPx8 over PrxIV to react with Ero1a-derived H2O2 could be due to residence 

in different ER subcompartments [57]. We tested whether GPx8 was enriched in mitochondria-

associated ER membranes (MAM), as has been reported for Ero1a [58,59]. However, using a 

biochemical fractionation protocol optimized for the separation of rough ER membranes (rER) 

and MAM [44,58] we found that GPx8 as well as PrxIV co-fractionated with rER markers (Fig. 

11A). Remarkably, endogenous Ero1a was not enriched in MAM fractions either (Fig. 11B). It is 

possible that the latter finding is due to lower Ero1a levels in FlpIn TRex 293 cells compared to 

cell types where Ero1a is predominantly MAM-localized [58,59]. On non-reducing gels, at least 

three redox species of endogenous Ero1a are separable, whereas their relative abundance varies 

significantly between experiments (Fig. S2 in [40]). Similarly, the distribution of Ero1a redox 

species in non-MAM fractions showed variation (Fig. 11B and S5). When detected, reduced and 

semi-reduced forms of Ero1a, which likely constitute the activated fraction of the oxidase [8], 

were co-enriched with GPx8 in the rER or ran at the top of the gradient (Fig. 11B and S5). 

Finally, we examined whether GPx8 localizes to detergent-resistant membranes (DRMs), which 

is a common feature for MAM-resident transmembrane proteins [60]. As shown in Fig. 11C and 

in agreement with GPx8 residing in the rER, the peroxidase was not enriched in DRMs. 

Unfortunately, available antibodies did not permit accurate immunofluorescence analyses of 

GPx8. These data suggested that Ero1a-catalyzed oxidative protein folding and H2O2 formation 

does not predominantly take place in MAM and that the functional separation of ER peroxidases 

is mediated by a mechanism other than ER subcompartmentalization (see Discussion).  
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2.4. Discussion  

Excessive generation of cytotoxic H2O2 during Ero1-driven oxidative protein folding could 

promote apoptosis during ER stress [21,22,23,25,26]. This simple model for the generation of 

ER-stress-induced ROS is supported by the proapoptotic activity of Ero1a, which is upregulated 

by the UPR [12,61,62]. Inconsistently however, acute and homogeneous overexpression of 

Ero1a neither affects cell proliferation nor redox maintenance [40]. This was ascribed to the 

presence of inactivating, feedback-regulated disulfide bonds in Ero1a [31], but overexpression of 

a hyperactive Ero1a mutant lacking those disulfide bonds (Ero1a-ACTIVE) – while detectably 

hyperoxidizing the ER – also fails to promote cell death [18,47] (Fig. 6B).  

Using inducible expression of Ero1a-ACTIVE, which resulted in overproduction of Ero1a-

derived H2O2, we identified GPx8 as a molecular gatekeeper that confers protection against this 

challenge (Fig. 12): Knockdown of GPx8 enhanced the efficacy of Ero1a-ACTIVE to 

overoxidize the ER, to cause ER stress, and to decrease cell viability. Additionally, we 

Figure 11: GPx8 and active Ero1a are enriched in the rER. (A) Homogenates of Ero1a-C104A/C131A cells were 
fractionated on an Optiprep gradient, and equal amounts of total protein analyzed by Western blot using the indicated 
antibodies. ERp57, eIF2a, and PDI are rER markers, FACL4 a MAM marker, and VDAC a mitochondrial marker. Note that 
the concentration of Optiprep negatively affects the smoothness of the gel. (B) Fractions from an Optiprep gradient equivalent 
to the one shown panel (A) were treated with N-ethylmaleimide as described in Materials and Methods, and the glycoproteins 
precipitated with concanavalin A-sepharose. This concentration step was necessary, because endogenous Ero1a was 
consistently hard to detect in total lysates of FlpIn TRex 293 cells. Precipitates were subjected to non-reducing SDS-PAGE 
and aEro1a Western blot. As a positive control for the precipitation of glycoproteins, Grp94 was detected on the same blot. 
The identity of the subcellular compartment enriched in fraction 1, where a significant fraction of endogenous Ero1a resides, 
is currently unclear. The mobilities of known redox forms of Ero1a (Red*, OX1, OX2) [40] are indicated. #, unknown “semi-
reduced” redox forms of Ero1a. Note that in agreement with previous data [40], the detection of the Red* and the # forms 
was variable (see experimental replica in Fig. S5). (C) Post-nuclear supernatant of Ero1a-C104A/C131A cells was 
solubilized with Triton X-114, DRM-associated proteins (DRM) separated from detergent-soluble supernatants (Sup), and the 
fractions analyzed by Western blot using antibodies against GPx8, IP3R-I/II/III (a DRM marker), TMX3 and Sec61a (ER 
transmembrane proteins), and Grp94 (a soluble, ER-luminal protein). PNS, post-nuclear supernatant; asterisk, unspecific band 
detected by aGPx8. 



Project I: GPx8 peroxidase prevents leakage of H2O2 from the ER 

66 
 

demonstrated for the first time in mammalian cells that Ero1a-derived H2O2 can, in principle, 

leak from ER to cytosol. It is important to emphasize that the rationale of applying non-

physiological induction of Ero1a-ACTIVE was not to represent normal cell physiology, but to 

specifically raise the concentration of Ero1a-derived H2O2 to detectable levels. Indeed, leakage 

into the cytosol of ER-derived H2O2 was evident only upon non-physiological short-term 

activation of Ero1a with DTT either in combination with GPx8 knockdown or Ero1a 

overexpression. Thus, a multilayer control system consisting of negative feedback regulation [40] 

and low expression [41] of Ero1a along with GPx8 activity (this study) and the endogenous 

antioxidant glutathione [18] ensures that cellular redox homeostasis in non-manipulated 293 cells 

is not destabilized by Ero1a activity. How far these conclusions are relevant for other 

mammalian cell types with different gene expression profiles (e.g. of GPX7) is yet unclear. Still, 

our findings suggest that earlier work on Ero1-dependent oxidative stress in S. cerevisiae [26] 

and C. elegans [25], which have no ER-resident peroxidases [6], may not reflect the physiology 

of human cells. Alternative sources for ER-stress-induced ROS and mechanisms for Ero1a-

facilitated apoptosis have been discussed elsewhere [8,24].  

Despite the tight shielding of the cytoplasm against Ero1a-derived H2O2, knockdown of GPx8 in 

otherwise non-manipulated cells also led to phenotypic changes. These changes included 

elevation of UPR and antioxidant response markers, slowed proliferation, and increased oxidation 

of the cytosol. While this presumably underscores the physiological importance of efficient 

clearing of Ero1a-derived H2O2, the mechanism underlying cell toxicity in absence of GPx8 

remains to be worked out.  

Our study reveals a previously unappreciated functional compartmentalization of electron 

transport pathways in the rER where two peroxide-scavenging enzymes – GPx8 and PrxIV – 

target distinct pools of H2O2 (Fig. 12). Whereas GPx8 reacts with Ero1a-derived H2O2 (see 

above), we could not confirm the proposed role of PrxIV in detoxifying these ROS [32,52]. 

Contrary to GPx8, depletion of PrxIV did not add up with Ero1a-ACTIVE to precipitate ER 

hyperoxidation and expression of UPR and antioxidant response target genes. The functional 

separation of PrxIV and GPx8 with respect to Ero1a-derived H2O2 was only overcome using an 

artificial setup combining overexpression of Ero1a and application of DTT, which entails 

massive generation of H2O2 in the ER (Fig. 12). These data explain the misleading identification 
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of a functional interplay between Ero1a and PrxIV, which was based on experiments with DTT-

activated Ero1a [52]. It is important to note though that peroxidase activity of PrxIV towards 

H2O2 of unknown origin is important, since its depletion triggered the antioxidant response (Fig. 

6D) and affected cell proliferation at least in part through activation of caspase 3 (Fig. 6B and 

S1G). The existence of an Ero1-independent H2O2 source for PrxIV has also been concluded 

from experiments in mice [63].  

We excluded that the functional compartmentalization of GPx8 and PrxIV in 293 cells is 

achieved through recruitment of GPx8 to MAM where – in certain cell types – Ero1a 

predominantly resides [58,59]. Our cell fractionation experiments rather indicated that Ero1a and 

GPx8 operate in the rER where disulfide bonds need to be introduced into incoming substrate 

proteins. Since PrxIV is also concentrated in the rER, the observed preference of GPx8 over 

PrxIV to handle Ero1a-derived H2O2 is likely explained by formation of specific protein 

complexes such as the Ero1a–GPx8 complex previously observed by a split YFP-

complementation approach [27]. Indeed, the fact that PrxIV, which can react with H2O2 at a high 

turnover rate [64], does normally not gain access to Ero1a-derived H2O2 strongly suggests that 

H2O2 cannot diffuse away from the Ero1a–GPx8 complex and is reduced on the spot.  

In addition to its function as a H2O2 scavenger, PrxIV constitutes an important Ero1-independent 

generator of new disulfide bonds [5,28,63,65]. Recently published in vitro reconstitution 

experiments indicated that both PrxIV-driven substrate oxidation and the Ero1–PDI disulfide 

relay are required for reliable and efficient oxidative protein folding [30]. Our data, which 

dissociate the function of PrxIV from Ero1a-derived H2O2 in the ER of live cells, are in 

agreement with this view.  

Whereas oxidized PrxIV contributes to oxidative protein folding by transferring its disulfide onto 

PDI family members [5,30,32,65], the reducing substrate(s) of GPx8 is/are currently unclear [28]. 

Although GPx7 and GPx8 can act as PDI-oxidizing peroxidases in vitro [27,37,38], reducing 

substrates other than PDI including glutathione have been suggested [28,34,37]. Here, we 

observed that knockdown of GPx8 increased ER hyperoxidation by Ero1a-ACTIVE (Fig. 7), 

demonstrating that unchecked Ero1a-derived H2O2 twists the ER redox balance more potently 

than the final product of the GPx8 pathway. We propose that this product is mainly oxidized PDI, 
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Figure 12: Processing of H2O2 in the ER of human cells. Upper left panel: Under control conditions, Ero1a operates at low 
turnover rate in the lumen of the rough ER (rER) to sustain steady-state disulfide-bond formation. H2O2, produced as a side 
product of this activity, is converted to H2O by GPx8, which directly binds to Ero1a [27]. In parallel, PrxIV reacts with H2O2 
from a source other than Ero1a, as evidenced by the induction of antioxidant response target genes upon knockdown of PrxIV 
(Fig. 6D). The identity of this alternative source of H2O2 is currently not known [32,63]. Upper right panel: Knockdown of GPx8 
(siGPx8) leads to a moderate increase in [H2O2] in the ER lumen, which is below the detection limit of HyPerER but causes 
discernible ER stress. Whether – upon siGPx8 treatment alone – H2O2 leaks into the cytosol or quantitatively reacts with local 
thiol groups e.g. in PDI or glutathione (not shown) is not known (as indicated by the question mark). GPx8 knockdown cells 
exhibit increased levels of PrxIV. Lower left panel: Doxycycline-mediated overexpression of Ero1a-ACTIVE on top of GPx8 
knockdown elicits a more pronounced increase in [H2O2] and ER stress. However, H2O2 may still be confined to the ER lumen (as 
indicated by the question mark). Lower right panel: Short-term activation of Ero1a by DTT in combination with GPx8 
knockdown and/or overexpression of Ero1a-ACTIVE leads to substantial accumulation of H2O2 in the ER and to detectable 
leakage of H2O2 through the ER membrane. Only under these conditions, also PrxIV can react with Ero1a-derived H2O2.  

which is the central element in the negative feedback regulation of Ero1a [40]. Accordingly, 

disulfide bonds fed into PDI-mediated oxidative protein folding via GPx8 will directly prevent 

the generation of new disulfides (and of new H2O2) by Ero1a thereby maintaining redox 

homeostasis. Conversely, in absence of GPx8, H2O2 can indiscriminately oxidize protein thiols to 

sulfenic acid (a precursor of disulfide-bond formation) so that the specific funneling of disulfides 

into PDI-mediated negative feedback regulation is hampered.  

In conclusion, while we demonstrated that Ero1a-derived H2O2 can in principle leak into the 

cytosol, the ER harbors dedicated machinery to prevent such leakage. Since GPx8, the core 

component of this machinery, is induced on ER stress, Ero1a activity cannot be the source of 

ER-stress-induced cytoplasmic ROS.  
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2.5. Materials and Methods  

 

2.5.1. RNA Isolation and qPCR analysis 

Total RNA was isolated using TRI Reagent (Sigma) and reverse transcribed with Superscript III 

(Invitrogen) using poly-dT primers. The resulting cDNA was subjected to qPCR analysis on a 

Corbett Research Rotor-Gene 6000 (V 1.7) using SYBR FAST qPCR Master Mix (KAPA 

Biosystems) and the following primer pairs (all 5’-3’): Prdx4 Fw 

CGAAGATTTCCAAGCCAGCGCCC, Prdx4 Rev 

CGAGGGGTATTAATCCAGGCCAAATGGG, GPx8 Fw 

CTACGGAGTAACTTTCCCCATCTTCCACAAG, GPx8 Rev 

CTGCTATGTCAGGCCTGATGACTTCAATGG, GPx7 Fw 

GCAAACTGGTGTCGCTGGAGAAGTACC, GPx7 Rev 

GAAGTCTGGGCCAGGTACTTGAAGG, KEAP1 Fw GGACAAACCGCCTTAATTCA, 

KEAP1 Rev CATAGCCTCCAAGGACGTAG, NQO1 Fw ATTTGAATTCGGGCGTCTGCTG , 

NQO1 Rev GGGATCCACGGGGACATGAATG, GCLC Fw 

TCTCTAATAAAGAGATGAGCAACATGC, GCLC Rev 

TTGACGATAGATAAAGAGATCTACGAA, NFE2L1 Fw GTGCGAGAAAGCGAAACG, 

NFE2L1 Rev CCCCAGATCAATATCCTGTCG, NFE2L2 Fw 

GCAGTCATCAAAGTACAAAGCAT, NFE2L2 Rev CATCCAGTCAGAAACCAGTGG, 

DDIT3 Fw AAGGCACTGAGCGTATCATGT, DDIT3 Rev 

TGAAGATACACTTCCTTCTTGAACA, ATF6 Fw GTCCCAGATATTAATCACGGA, ATF6 

Rev TATCATACGTTGCTGTCTCCTT, HERPUD1 Fw GAGCAGATTCCTCATGGTCAT, 

HERPUD1 Rev GGCCTCGGTCTAAATGGAAA, GAPDH Fw 

TCCTTGGAGGCCATGTGGGCCAT, GAPDH Rev TGATGACATCAAGAAGGTGGTGAA, 

PPIA Fw CATCTGCACTGCCAAGACTGA, PPIA Rev TGCAATCCAGCTAGGCATG,  

HPRT1 Fw GGCTCCGTTATGGCGACCCG, HPRT1 Rev 

CGAGCAAGACGTTCAGTCCTGTCC; Genes used as internal standards were GAPDH and 

HPRT1 (geometric mean calculated using the Bestkeeper Software [39]) or (for experiments in 

Fig. S1A+F and S2F) PPIA.  
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2.5.2. RNA interference 

SiRNA transfections were conducted with Lipofectamine RNAiMAX (Invitrogen) using the 

following siRNAs: negative control siRNA 1022076 (10-60nM; Qiagen), siPRDX4 HSS173720 

(40nM; Invitrogen), siGPX8 HSS166723 (10nM; Invitrogen) and siKEAP1 D-012456-04 (10nM; 

Thermo Scientific). For combined depletion of GPx8 and PrdxIV HSS166723 (20nM) and 

HSS173720 (40nM) were mixed.  

Ero1a-C104A/C131A cells were seeded in 6-well plates and transfected with siRNAs the 

following day (day 0). 48 h post-transfection the cells were trypsinized and reseeded onto 6-well 

plates (day 2), followed by a second round of transfection (day 3) and subsequent analysis (day 

5). In the case of siRNA-mediated depletion of Keap1, a single transfection was performed and 

the cells analyzed 72 h post-transfection. 

 

2.5.3. Alkylation assay of ERp57 

The protocol for alkylation of originally oxidized cysteines with 4-acetamido-4′-

maleimidylstilbene-2,2′-disulfonic acid (Life Technologies) has previously been published [40].  

 

2.5.4. DTT washout assays 

The cellular GSSG:total glutathione (GStot) ratio after DTT washout was measured using a 

DTNB/glutathione reductase recycling assay as previously described [41]. Where indicated, 

BCNU (Sigma) was used at a concentration of 1 mM. 

In order to visualize the redox state of Grx1-roGFP2 after DTT washout, transiently transfected 

cells were grown on UV-sterilized coverslips and treated as previously published [41]. 

Subsequently the cells were analyzed by aGFP immunoprecipitation/Western blot as described 

previously [2]. To generate a mobility marker for the oxidized from of Grx1-roGFP2, transfected 

cells were treated for 5 min with 5 mM diamide (Sigma).  

 

2.5.5. Sulphorhodamin B assay 

Ero1a-C104A/C131A cells were seeded in 6-well plates and transfected with siRNA the 

following day. 48 h post-transfection the cells were trypsinized and reseeded onto 96-well plates 

(three wells per condition). On the following day, cells were either harvested or subjected to a 

second round of transfection with the respective siRNA(s) for either 24 h or 48 h. Ero1a-
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C104A/C131A expression was induced for the last 24 h of knockdown. The medium was 

removed and the proteins precipitated by addition of 10% trichloroacetic acid (TCA). Staining 

with 0.4% Sulphorhodamin B (Sigma) was performed as described elsewhere [42] and OD565 

measured in a UV max microplate reader (Molecular Devices).  

 

2.5.6. Fluorescence excitation spectrum analysis 

Cells stably transfected with HyPerER or HyPercyto were subjected to fluorescence excitation 

spectrum analysis as described elsewhere [43]. If present, 0.5 mM DTT was added 5 min before 

analysis. To validate the sensor response, cells treated with either 100 mM H2O2 or 10 mM DTT 

for 5 min were routinely co-analyzed in separate wells.  

 

2.5.7. Indirect immunofluorescence staining 

Ero1a-C104A/C131A:HyPerER or Ero1a-C104A/C131A:HyPercyto cells were grown for 48 h on 

glass coverslips, fixed with 4% paraformaldehyde for 20 min at room temperature, quenched with 

50 mM NH4Cl and either directly mounted in Mowiol 4-88 (Hoechst) (Ero1a-

C104A/C131A:HyPercyto) or permeabilized with 0.1% Triton X-100 (Ero1a-

C104A/C131A:HyPerER). In the case of the latter, cells were blocked with 1% bovine serum 

albumin in PBS and incubated in the same buffer with aPDI for 1 h followed by Hilyte 555-

conjugated goat-anti-mouse (AnaSpec). Stained cells were analyzed on an Olympus Fluoview 

1000 laser scanning confocal microscope. 

 

2.5.8. Subcellular fractionation 

Ero1a-C104A/C131A cells were homogenized by 15 passages through a ball-bearing 

homogenizer (clearance 18mm) in 0.25 M sucrose, 10 mM HEPES pH 7.4, 1 mM EDTA, 1 mM 

EGTA, 0.2 mM phenylmethylsulphonylfluoride (PMSF). The homogenate was centrifuged twice 

for 10 min at 1000g to remove unbroken cells and nuclei. Postnuclear supernatant (PNS) was 

layered on top of a discontinuous OPTIPREP gradient using 20%, 16.25%, 12.5%, 8.75% and 

5% OPTIPREP (Progen Biotechnik). The samples were centrifuged at 39,000 rpm for 3h at 4°C 

in a TLS-55 rotor (Beckman). Six equal fractions were collected from the top of the gradient and 

precipitated with either 10% TCA or 80% acetone. Free cysteines in the TCA pellets were 

modified with N-ethylmaleimide (NEM) as previously described [41] and subjected to 
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precipitation with Concanavalin A sepharose (GE healthcare) prior to non-reducing SDS-PAGE 

and Western blot. Equal amounts of protein from acetone-precipitated fractions were subjected to 

reducing SDS-PAGE and Western blot.  

DRMs were isolated essentially as published [44]. Briefly, PNS of Ero1a-C104A/C131A cells 

was centrifuged for 10 min at 10,400g to obtain a heavy membrane pellet, which was 

homogenized on ice in 200 ml 10 mM Tris, pH 7.4, 150 mM NaCl, 5 mM EDTA, 0.2 mM PMSF 

by sonication. The suspension was lyzed by addition of Triton X-114 (0.5% final concentration) 

and incubation for 30 min on ice, followed by the pelleting of DRMs for 1 h at 100,000g in a 

TLA-55 rotor (Beckman). Equal volumes of solubilized pellet and supernatant were analyzed by 

Western blot.  

 

2.5.9. Statistics 

Data sets were analyzed for statistical significance using student’s T-test (two-tailed distribution; 

heteroscedastic). When batch-specific differences in absolute values rendered a direct comparison 

of averages impossible, logarithmically transformed values were fitted to a linear model using a 

batch-specific offset. 95% confidence intervals and P values were calculated using linear 

regression in Microsoft Excel. For GSSG:GStot recovery curves after DTT washout in Ero1a 

cells, consistent with previously published data [41], the 300 s recovery time point was set to 

100% of steady state for joint presentation of individual washout experiments.  

 

2.5.10. Cell culture, recombinant DNA and transfections 

The culturing of HEK293 and FlipIn TRex293 cells for doxycycline (1mg/ml, Sigma)-inducible 

expression of Ero1 variants has been described [40]. The following FlipIn TRex293 cell lines 

have been published previously: Ero1a [40], Ero1a-C104A/C131A [18], and Ero1b-

C100A/C130A [2]. HT1080 shPrdx4 and HT1080 shGFP cells [29] were a kind gift of Neil 

Bulleid (University of Glasgow, UK).  

ShGPx8:Ero1a cells were created as follows: In a first step, two complementary oligos encoding 

a GPx8-targeting short hairpin (Fw: 

GATCCCCGGACTGTCCCAGTCAACATGATTCAAGAGATCATGTTGACTGGGACAGTC

CTTTTTGGAAA; Rev: 

AGCTTTTCCAAAAAGGACTGTCCCAGTCAACATGATCTCTTGAATCATGTTGACTGG
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GACAGTCCGGG) were annealed and ligated into HindIII/BamHI-digested pSuperior.neo+GFP. 

The resulting shRNA plasmid was transfected into FlipIn TRex 293 cells (Invitrogen), and stable 

shGPx8 clones selected with 1 mg/ml G418 (Sigma). In a second step, Ero1a-myc6his [40] was 

subcloned into the pcDNA3.1+.puro vector using XhoI and BamHI, which was stably transfected 

into shGPx8 cells using 1 mg/ml puromycin (Sigma) for clonal selection.  

Ero1a-C104A/C131A:HyPer and Ero1b-C100A/C130A:HyPer cells were created by transfecting 

Ero1a-C104A/C131A or Ero1b-C100A/C130A cells with the respective HyPer [45] (kindly 

provided by Miklos Geiszt, Semmelweis University, Hungary) followed by clonal selection with 

1 mg/ml G418. Ero1a-C104A/C131A:SypHer cells were equally created but using HyPer 

plasmids carrying the C121S mutation, which was inserted by site-directed mutagenesis 

(QuikChange, Stratagene) according to manufacturer’s guidelines.  

GPx7-HA and GPx8-HA sequences on pRK7 vector (kindly provided by Lloyd Ruddock, 

University of Oulu, Finland) were excised and cloned into pcDNA3 using HindIII and BamHI. 

The latter plasmid was used for site-directed mutagenesis to introduce the C79S mutation. PrxIV-

FLAG and PrxIV C124A-FLAG were amplified by PCR and cloned into pcDNA3.1+ using 

EcoRI and BamHI. These plasmids encoding for wild-type or mutant GPx7, GPx8, and PrxIV 

were transfected into Ero1a cells and clonal selection was conducted with 1 mg/ml G418.  

All transfections of plasmids were carried out with Metafectene Pro (Biontex) according to 

manufacturer’s guidelines.  

 

2.5.11. Antibodies 

The following antibodies were used: 9E10 (amyc, Covance), aHA (a kind gift of Hans-Peter 

Hauri, University of Basel, Switzerland), M5 (aFLAG, Sigma), aERp57 (a kind gift of Ari 

Helenius, ETH Zürich, Switzerland), aGFP (a kind gift of Jan Riemer, University of 

Kaiserslautern, Germany), aGPx8 (a kind gift of Lloyd Ruddock, University of Oulu, Finland), 

aGPx7 (ProteinTech; GeneTex), aPrxIV (Abfrontier), aeIF2a, aP-eIF2a, aJNK1, aP-JNK1, 

aCasp3, aPERK, aVDAC (all Cell Signaling Technology), aEro1a (a kind gift of Ineke 

Braakman, University of Utrecht, Netherlands), aGrp94 (DU-120, a kind gift of Christopher 

Nicchitta, Duke University Medical Center, USA), aIP3R-I/II/III , aFACL4, aActin (I-19) (all 

Santa Cruz), aTMX3 [46], aSec61a (a kind gift of Richard Zimmermann, Saarland University, 

Germany).  
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2.6. Supplemental Information  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure S1: Characterization of peroxidase knockdown cells.  

(A) For single and double knockdown, Ero1a-C104A/C131A cells were treated with the indicated siRNAs for 120 h and, where 

indicated, with doxycycline (Dox) during the last 24 h of knockdown and changes in mRNA levels of GPX8 and PRDX4 

determined by qPCR (n ≥ 4; mean ± SEM).  

(B) Ero1a-C104A/C131A cells were transfected with GPx8-targeting or control siRNA for 48 h and, where indicated, with Dox 

for 24 h and analyzed by Western blot using the indicated antibodies.  

(C) 293 cells were transfected or not with GPx7-HA and analyzed by Western blot using two different antibodies against GPx7 

(denoted aGPx7 I and II) or with aActin. The asterisk marks an unspecific band used as a loading control.  

(D) Expression of PRDX4, GPX7, and GPX8 in Ero1a-C104A/C131A cells was analyzed by qPCR using serial 10x dilutions of 

the reverse transcribed cDNA template. Plotted are the measured cycle threshold (Ct) values, which are supposed to be 
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proportional to the log-transformed [cDNA]. Note that the PRDX4 and GPX8 data points connect to a linear slope, indicating 

mRNA quantification to be accurate and specific. Conversely, no linear fit applies for GPX7 data points, pointing to unspecific 

DNA amplification. Indeed, unspecific products were apparent on agarose gels, although a single specific product was amplified 

from GPx7-HA-overexpressing cells (data not shown). The lower Ct values for PRDX4 compared to GPX8 demonstrate higher 

gene expression of the former.  

(E) Cell mass was quantified using sulforhodamine B staining of Ero1a-C104A/C131A cells transfected with control siRNA 

(siCtrl), or siRNAs targeting PrxIV (siPrxIV), GPx8 (siGPx8), or both for the indicated time periods. Dashed lines denote 

treatment with Dox during the last 24 h of knockdown. Values were normalized to 72 h knockdown without Dox (n = 3; mean ± 

SEM).  

(F) Ero1a-C104A/C131A cells were transfected with control (C) or KEAP1-targeting (K) siRNA 72 h before qPCR analysis of 

expression of the indicated genes (n = 3; mean ± SEM). NQO1 is a bona fide AR target gene, which is upregulated in response to 

KEAP1 siRNA.  

(G) Ero1a-C104A/C131A cells were treated with siRNAs and Dox as in Fig. 6A and subjected to Western blot analysis using the 

indicated antibodies. Positive control treatments of cells were 2 mM DTT for 1 h (for PERK/eIF2a signaling, left panel) or UV 

irradiation for 0.5 h followed by 0.5 h recovery (for JNK signaling, middle panel). For the detection of cleaved caspase-3 (Casp3), 

longer exposures of the same blot as for full-length Casp3 were used. One of at least two independent experiments is shown. 

Asterisk, phosphorylated (activated) form of PERK.  
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Figure S2: HyPerER control experiments.  

(A) Ero1a-C104A/C131A:HyPerER cells were fixed, stained using aPDI, and analyzed by confocal fluorescence microscopy.   

(B) Example HyPerER spectra from experiments presented in Fig. 7C (left graphs) or Fig. 7E (middle graphs). Dashed lines 

represent fluorescence data from cells treated with doxycycline (Dox). Graphs on the right depict reference spectra recorded from 

cells treated for 5 min with 100 mM H2O2 (red) or 10 mM DTT, which were routinely obtained in every experiment but were not 

used for quantification because of reproducible ratio manipulations by peroxidase knockdowns. For unknown reasons, Ero1a-

C104A/C131A:HyPerER cells were proliferation-inhibited upon knockdown of PrxIV in combination with Dox, explaining the 

lower amplitudes of the respective curves. Em., emission; RFU, relative fluorescence units.  

(C) SiRNA(120 h)/Dox(24 h)-treated Ero1a-C104A/C131A:SypHerER cells (stably expressing HyPerER-C199S) were subjected to 

fluorescence excitation spectrum analysis in absence (left) or presence (right) of 0.5 mM DTT. Plotted are the changes in ratios of 

500 and 420 nm peak amplitudes relative to control (C) siRNA-transfected cells along with 95% confidence intervals (n = 3). The 

inset shows the relative change in C-transfected cells upon Dox treatment.  

(D) 48 h post transfection with empty vector (V), GPx8-HA (8), or PrxIV-FLAG (IV) in presence or absence of Dox, Ero1a-

C104A/C131A:HyPerER cells were subjected to fluorescence excitation spectrum analysis. Changes in the 500/420 nm ratio 

relative to V-transfected cells without Dox (or with Dox in insets) are plotted along with 95% confidence intervals (n ≥ 3).  

(E) Experiment as described in panel D but using Ero1a-C104A/C131A:SypHerER cells.  

(F) Ero1a-C104A/C131A:HyPerER cells were transfected with empty vector (V) or GPx8-HA cDNA (8) and analyzed by qPCR 

using primers against GPX8 or PRDX4.  

* p < 0.05; ** p < 0.01; *** p < 0.001 

  



Project I: GPx8 peroxidase prevents leakage of H2O2 from the ER 

79 
 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure S3: HyPercyto control experiments. 

(A) Ero1a-C104A/C131A:HyPercyto cells were fixed and subjected to confocal microscopy. 

(B) Example HyPercyto spectra from experiments presented in Fig. 8B (left graphs) or Fig. 8A (middle graphs).  

(C) Same experiment as Fig. S2 panel (C) using Ero1a-C104A/C131A:SypHercyto cells (stably expressing HyPercyto-C199S).  

* p < 0.05; ** p < 0.01; *** p < 0.001 
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Figure S4: Supplementary and control experiments relating to DTT washout.  

(A) Lysates from shGPx8:Ero1a-WT cells treated or not for 72 h with doxycycline (Dox) were analyzed by Western blotting 

using the indicated antibodies. These cells are Dox-inducible for the expression of GPx8-targeting shRNA and, in addition, 

constitutively overexpress Ero1a-WT.  

(B) Experimental replica of Fig. 10B. For unknown reasons, the time window of shPrxIV-dependent overshoot of the GSSG:GStot 

ratio varied significantly, which made joint presentation of the three independent experiments impossible.  

(C) Lysates from Ero1a:PrxIV-FLAG or Ero1a:GPx8-HA cells treated or not for 24 h with Dox (where indicated) were analyzed 

by Western blotting using the indicated antibodies.  

(D) GSSG:GStot recovery upon DTT washout in Ero1a cells was compared to the recovery in Ero1a:GPx7-HA cells (mean ± 

SEM; two independent experiments each performed in triplet). Lysates from the same cells treated or not for 24 h with Dox were 

analyzed by Western blotting using the indicated antibodies.  

  



Project I: GPx8 peroxidase prevents leakage of H2O2 from the ER 

81 
 

 

 

 

 

 

 

 

 

 

 

Figure S5: Experimental replica of Fig. 11B 

Concanavalin A-precipitated Ero1a and Grp94 was analyzed as in Fig. 11B. These experiments document that the reduced and 

semi-reduced forms of endogenous Ero1a were not consistently detected in every experiment, as has been observed previously 

[40]. OX1, OX2, oxidized redox forms of Ero1a; #, unknown semi-reduced redox form of Ero1a.  
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3.1. Summary 

Oxidative folding in the endoplasmic reticulum (ER) involves disulfide formation in protein 

disulfide isomerase (PDI) by ER oxidoreductin 1 (Ero1), which consumes oxygen (O2) and 

releases hydrogen peroxide (H2O2). Strikingly, however, none of the available Ero1 structures 

discloses a path for entry and exit of these reactants. We report that mutation of Cys208/Cys241 

previously thought to form a static disulfide aggravates ER oxidation and cell toxicity by 

hyperactive Ero1a. The disulfide clamps two helices, which seal the flavin cofactor where O2 is 

reduced to H2O2. Through its carboxyterminal active site, PDI unlocks this seal by forming a 

Cys208/Cys241-dependent mixed-disulfide complex with Ero1a. The H2O2-detoxifying glutathione 

peroxidase 8 binds to the Cys208/Cys241 loop region at the site of H2O2 exit. We describe the first 

actively regulated O2/H2O2 diffusion path, provide molecular-level understanding of Ero1a 

regulation and H2O2 control, and establish the deleterious consequences of constitutive Ero1 

activity.  

 

3.2. Introduction 

Oxidative protein folding is defined as the assisted process of tertiary structure acquisition of a 

polypeptide chain, which requires the formation of covalent disulfide crosslinks between specific 

cysteine side chains. The enzymatic machinery for oxidative protein folding has been extensively 

described in three subcellular locations: the periplasmic space in gram-negative bacteria [4], as 

well as the mitochondrial intermembrane space [5] and the endoplasmic reticulum (ER) [6] in 

eukaryotic cells. In all three compartments, the electrons derived from disulfide-bond formation 

are transported along specialized biochemical cascades to finally target molecular oxygen (O2) 

[7]. In the ER, this final step can be catalyzed by the flavoproteins of the endoplasmic 

oxidoreductin 1 (Ero1) family (Ero1a and Ero1b in mammals), which are the best-conserved 

disulfide-producing enzymes of the ER [8,9]. The catalytic cycle of Ero1 produces stoichiometric 

amounts of hydrogen peroxide (H2O2) [10,11]. Newly generated disulfides are transferred from a 

flavin adenine dinucleotide (FAD)-associated active site via a “shuttle disulfide” cysteine pair in 

Ero1 to protein disulfide isomerase (PDI) and from there on to substrate proteins [8,9]. 



Project II: A sealable oxygen/hydrogen peroxide diffusion path in human Ero1 

 

87 
 

Mechanistically, all of these disulfide transfer reactions occur via interchain mixed-disulfide 

intermediates.  

The synthesis of disulfide bonds in the ER, the compartment where secretory and membrane 

proteins are formed and folded, is essential. Not only reducing but also oxidizing disturbances, 

which compromise native disulfide-bond formation in the ER, result in locally hampered protein 

homeostasis – a state referred to as ER stress [12]. Exaggerated Ero1 activity is also a source of 

limited ER hyper-oxidation and stress [13,14], which is aggravated in the absence of the H2O2-

detoxifying ER peroxidase GPx8 [15]. Accordingly, the catalytic rate of Ero1 enzymes requires 

tight negative feedback regulation in order to prevent Ero1-dependent toxicity [16].  

In their inactive state, the “shuttle disulfide” cysteines (Cys
94 and Cys99 in Ero1a or Cys90 and 

Cys95 in Ero1b) are engaged in intramolecular regulatory disulfides (Cys94
–Cys131 and Cys99

–

Cys104 in Ero1a or Cys90
–Cys130 and Cys95

–Cys100 in Ero1b) [13,14,17,18,19]. However, 

although the inhibitory mechanism of these regulatory disulfide bonds in mammalian Ero1 is 

understood, it is surprising how well cells tolerate the over-expression of hyperactive Ero1 

mutants lacking those disulfide bonds [13,14,20]. Furthermore, controversy exists as to the 

questions how O2 reaches the active center in Ero1 and how H2O2 can be released again [8,9].  

Here, we report the existence of an additional regulated disulfide bond in mammalian Ero1, 

which is located at the distal side of the molecule relative to cofactor and “shuttle disulfide” and 

was previously considered to serve a structural role. When this disulfide is unlocked by reduced 

PDI, conformational rearrangements open a diffusion pathway, through which O2 can penetrate 

and reach the cofactor. Ero1 devoid of all regulatory disulfides is constitutively active and 

produces cytotoxic levels of H2O2. We also show that GPx8 binding specifically occurs at the 

distal, H2O2-releasing end of Ero1a.  
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3.3. Results 

 

3.3.1. Yet another regulatory switch in Ero1a 

Previous data showed that the catalytic turnover of a hyperactive Ero1a mutant lacking all known 

regulatory disulfide bonds (Ero1a-C104A/C131A, in the following dubbed Ero1a-AA) was still 

enhanced by treatment of cells with the disulfide reductant dithiothreitol (DTT) [15]. 

Furthermore, DTT-mediated activation of Ero1a and Ero1b lowered the gel mobility of the 

Ero1–PDI mixed-disulfide complex [21]. This suggested the presence of at least one residual 

disulfide conferring negative regulation of Ero1a-AA, which we sought to identify. 

Concentrating on the housekeeping isoform Ero1a, we first showed that the conversion of the 

slower-migrating Ero1a–PDI complex (Ero1a–PDIslow) to the faster-migrating complex (Ero1a–

PDIfast) was independent of the Cys94
–Cys131 and Cys99

–Cys104 regulatory disulfides (Fig. 13A). 

The shutdown of Ero1a-AA was illustrated by assaying Ero1a activity following DTT washout 

[15,21] where the Ero1a-dependent peak of cellular GSSG:GStot declined in parallel with the 

shift in gel mobility of Ero1a–PDI (Fig. 13B+C and S6A-C).  

We next tested the hypothesis that the long-range Cys85
–Cys391 disulfide, which is homologous to 

one of the regulatory disulfides in yeast Ero1 [22], was resolved upon full activation of the 

oxidase [9]. For this purpose, we immunoprecipitated Ero1a-AA from cells activated with DTT 

followed by treatment with N-ethylmaleimide (NEM) to disable post-lysis thiol-disulfide 

rearrangements (Fig. S6D). Ero1a–PDIslow was then subjected to reduction and alkylation with 

iodoacetamide, tryptic digest and mass spectrometry (Fig. S6E). The peptides harboring Cys85 or 

Cys391 were exclusively detected as iodoacetamide-modified species (Table S1), suggesting a 

structural Cys85
–Cys391 disulfide. Moreover, we found Ero1a-AA+C85A/C391A not to display 

any signs of increased hyperactivity relative to Ero1a-AA in cells subjected to DTT washout, but 

instead to be incorporated into non-native oligomeric mixed-disulfide complexes (Fig. 13D+E). 

These observations were consistent with the literature [23,24] and suggested that the conversion 

of Ero1a–PDIslow to Ero1a–PDIfast did not involve formation of Cys85
–Cys391.  
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Figure 13: Ero1a–PDIslow to Ero1a–PDIfast transition does not involve closure of the Cys94
–Cys131, Cys99

–Cys104, or 

Cys85
–Cys391 disulfides. (A) Doxycycline-induced Ero1a WT and Ero1a-AA cells were metabolically labeled with 35S-

methionine, treated with TCA, and subjected to amyc immunoprecipitation (IP) followed by reducing (red.) or non-reducing 
(non red.) SDS-PAGE and western blot (WB) analysis using aPDI. Where indicated, cells were treated with 1 mM DTT 
ahead of TCA lysis. A phosphoimager scan (IP: amyc (Ero1a)) and an immunoblot (WB: aPDI) of the same membrane are 
shown. The gel mobilities of dimeric Ero1a–PDI complexes are indicated. (B) Intracellular levels of GSSG and GStot were 
recorded from DTT-treated Ero1a-AA cells, which were cultured for 24 h with or without doxycycline (Dox), after washout 
of the reductant for 0, 10, 60, or 300 s. The GSSG/GStot ratio is expressed as percentage of the steady-state value that was 
independently measured. (C) Acid-precipitated pellets from doxycycline-induced cells from the experiment described in (B) 
were treated with NEM and subjected to precipitation with concanavalin A-sepharose followed by non-reducing SDS-PAGE 
and WB using amyc. The labeled identities of mixed-disulfide complexes involving Ero1a were determined by separate 
immunoblots using antibodies against the respective PDI family member (Fig. S6A-C). (D and E) Experiment performed as 
in (C) and (D) using Ero1a-AA+C85A/C391A cells. R, monomeric Ero1a with the mobility of reduced Ero1a; Diamond, 
probably non-native Ero1a redox forms of unknown identity; n. n., non-native mixed-disulfide complexes involving Ero1a. 
see also Fig. S6, Table S1 
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3.3.2. The Cys
208

/Cys
241

 pair does not form a static disulfide 

Ero1a–PDIslow trapped after DTT treatment during full catalytic Ero1a activity involves Cys94 in 

Ero1a and represents the disulfide transfer complex between Ero1a and PDI [21]. Therefore, 

Ero1a–PDIfast, which arose concomitantly with Ero1a-AA inactivation and was prominent at 

steady state (Fig. 13C), reflected the formation of either an inhibitory intramolecular disulfide in 

Ero1a-AA or an Ero1a–PDI complex that was molecularly distinct from Ero1a–PDIslow. In 

support of the latter explanation, Ero1a–PDIfast still formed in the absence of Cys94 (Fig. 14A).  

We envisioned an involvement of the Cys208/Cys241 pair, which forms a disulfide in inactive 

Ero1a and in the available crystal structures [17,19]. Cell lines inducible for the expression of 

Ero1a-C104A/C131A/C208S/C241S (in the following dubbed Ero1a-AASS) were therefore 

generated (Fig. S7). Indeed, Ero1a-AASS displayed a qualitatively different Ero1a–PDI mixed-

disulfide pattern following DTT washout, the most obvious difference to the Ero1a-AA pattern 

being the lack of Ero1a–PDI mobility transition over time (Fig. 14B and S7B-D). Co-transfected 

wild-type PDI was detected in a Ero1a–PDIfast complex with Ero1a-AA+C94S at steady state, 

but not with Ero1a-AASS+C94S (Fig. 14C). Furthermore, the Ero1a–PDIfast complex between 

endogenous PDI and Ero1a-AA disappeared upon mutation of either Cys208 or Cys241 (Fig. 14D). 

PDI trapping mutants where C-terminal active-site cysteines were mutated to serine were used to 

further characterize the interchain disulfide between Cys208 or Cys241 and PDI. The trapping 

mutation in the a´ domain active site (CXXS-2) promoted the formation of the same complex as 

detected with wild-type PDI and also moderately stabilized a complex of unclear identity with 

Ero1a-AASS+C94S (Fig. 14C). In contrast, the a domain trapping mutant (CXXS-1) formed a 

distinct Ero1a–PDI complex irrespective of the presence of Cys208/Cys241 (Fig. 14C). Similar 

albeit less prominently detectable complexes were found using ERp57 trapping mutants (Fig. 

14E), which was consistent with the observation of a Cys208/Cys241-dependent slow-migrating 

complex between Ero1a-AA and endogenous ERp57 (Fig. 13C and 14B). These data revealed 

nucleophilic attack by the a´ domain active site in PDI family members on Cys208
–Cys241 in 

Ero1a.  
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Figure 14: In Ero1a–PDIfast, PDI links to the distal end of Ero1a in a Cys208/Cys241-dependent way. (A) Ero1a-AA or Ero1a-
AA+C94S cells were induced with doxycycline for 24 h and free sulfhydryl groups blocked by treatment with PBS/NEM or TCA 
before cell lysis. 10% of the cell lysates were subjected to reducing SDS-PAGE (lower panel) and western blot (WB) using amyc, 
and the rest to amyc immunoprecipitation (IP) using covalently coupled immunobeads and non-reducing SDS-PAGE (upper panel). 
Ero1a-PDI mixed disulfide complexes were revealed by WB using aPDI. The minor downward shift in response to C94S could 
potentially reflect the stabilization of a Cys99

–Cys394 disulfide in analogy to yeast Ero1 [1]. (B) Experiment performed as in Fig. 13C 
using Ero1a-AASS cells. The labeled identities of mixed-disulfide complexes involving Ero1a were determined by separate 
immunoblots using antibodies against the respective PDI family member (Fig. S7B-D). (C) HeLa cells were co-transfected with wild-
type (WT) or mutant V5-tagged PDI and the indicated Ero1a mutants followed by IP using covalently coupled aV5. 
Immunoprecipitates and 10% of total cell lysates (input) were resolved by non-reducing or reducing SDS-PAGE, respectively, and 
the indicated proteins or protein complexes visualized by WB. Asterisk, background band; #, endogenous PDI; diamond, Ero1a–
PDIfast; X, Ero1a–PDI complex presumably analogous to Ero1a–ERp44 (see Discussion); arrowhead, Ero1a–PDI complex of 
unknown identity. (D) Lysates from HeLa cells that were transiently transfected with the indicated Ero1a mutants and treated with 
PBS/NEM were resolved by non-reducing SDS-PAGE followed by aPDI WB. Asterisk, unidentified mixed-disulfide complex 
involving PDI. (E) Experiment as in (C) using HA-tagged ERp57 and aHA. Ero1a–ERp57 complexes are labeled in analogy to (C). 
(F) Ero1a-AASS cells were transfected with control (Ctrl) or ERp44-targeting siRNA and subsequently induced or not for 24 h with 
doxycycline (Dox). Cells and media were collected, and the latter incubated with concanavalin A-sepharose to precipitate/concentrate 
secreted glycoproteins. Cell lysates and secreted glycoproteins were analyzed by SDS-PAGE and WB using the indicated antibodies. 
Note that in ERp44-silenced cells, intracellular Ero1a-AASS decreases due to secretion. As a positive control for Ero1a-AASS 
secretion, the mutant protein was overexpressed by transient cDNA transfection. Asterisk, background band. see also Fig. S7 



Project II: A sealable oxygen/hydrogen peroxide diffusion path in human Ero1 

 

92 
 

As the intracellular retention of Ero1a relies on the formation of mixed disulfides with PDI and 

ERp44 [25], we also tested the impact of Cys208/Cys241 on Ero1a secretion. Of potential 

relevance, we noted that the Ero1a-AASS–ERp44 complex formed more prominently at steady 

state than the Ero1a-AA–ERp44 complex (Fig. 13C and 14B). Consistent with our expectations, 

a fraction of Ero1a-AASS was secreted from ERp44 knockdown but not from control cells, 

while Ero1a-AA was not secreted at all in this setup (Fig. 14F). Thus, Cys208/Cys241-dependent 

complex formation with PDI contributes to ER localization of Ero1a.  

 

3.3.3. Ero1a-AASS is constitutively active 

Based on the above results, we speculated that rearrangement of the Cys208
–Cys241 disulfide was 

an essential step in the activation of Ero1a, which prompted us to characterize Ero1a-AASS-

expressing cells. Already after 24 h expression of Ero1a-AASS but not of Ero1a-AA, cell 

proliferation and viability were significantly affected, which was aggravated by glutathione 

depletion (Fig. 15A+B). Interestingly, this was not correlated with higher expression of ER-

stress-regulated target genes in Ero1a-AASS- compared to Ero1a-AA-expressing cells (Fig. 

S8A). We particularly noted that the ATF6-target genes HSPA5 and HERPUD1 [26] were less 

induced in response to Ero1a-AASS, which could potentially be due to the stabilization of 

disulfide-linked, inactive ATF6 oligomers [12]. Ero1a-AASS-dependent ER redox changes were 

also hinted by the findings that viability and proliferation of Ero1a-AASS-expressing cells were 

significantly rescued by the antioxidant N-acetylcysteine (Fig. S8B+C).  

Indeed, ERp57 was more oxidized following Ero1a-AASS compared to Ero1a-AA expression 

(Fig. 15C). A similar difference was observed using analogous mutants of Ero1b (Fig. S8D), 

underlining a previous report on the conservation of regulatory disulfides between human Ero1 

isoforms [14]. Ero1a-AASS did not specifically affect ERp57 oxidation, since also the ER-

targeted glutathione-specific Grx1-roGFP1-iEER sensor [2] and the H2O2-responsive HyPerER 

sensor [27] were more oxidized upon Ero1a-AASS compared to Ero1a-AA expression (Fig. 

15D+E). Thus, profound hyperoxidation of the ER was the likely cause of the Ero1a-AASS-
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induced decrease in cell health. In contrast, cells expressing Ero1a-C208S/C241S displayed only 

a trend towards ER hyperoxidation and no drop in cell viability/proliferation (FIG. S8E-G).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Increased catalytic efficiency of Ero1a-AASS was also observed in vitro. Addition of Ero1a-

AASS to a solution containing saturating O2 and reduced PDI led to faster and higher transient 

accumulation of H2O2 compared to the Ero1a-2x-catalyzed reaction (Fig. 16A). We also 

Figure 15: Ero1a-AASS increases ER oxidation and decreases cell viability. (A) The indicated cell lines were induced or 
not for 24 h with doxycycline (Dox) and stained with crystal violet. (B) Cell viability was determined by the WST-1 assay upon 
induction of Ero1a variants for 24 h and/or depletion of glutathione by 1 mM L-Buthionine-sulfoximine (BSO) for 16 h (n = 5; 
mean ± SD). (C) Cells were treated or not with Dox for 24 h followed by differential alkylation and western blot (WB) analysis 
of ERp57. The mobilities of oxidized (Ox) and reduced (Red) ERp57, as verified by control lysates from DTT- or diamide 
(Dia)-treated cells, are indicated. The diagram shows the oxidized fraction in percent (n = 4; mean ± SD). (D) Cells were 
transfected with Grx1-roGFP1-iEER, induced or not with Dox (24 h), treated with PBS/NEM, and subjected to aGFP 
immunoprecipitation followed by non-reducing SDS-PAGE and aHA WB [2]. The mobilities of oxidized (Ox) and reduced 
(Red) Grx1-roGFP1-iEER are indicated (n = 3; mean ± SD). (E) Indicated cell lines treated or not with Dox for 24 h were 
subjected to HyPerER fluorescence excitation spectrum analysis. Plotted are the ratios of the 500 and 420 nm peak amplitudes (n 
= 4; mean ± SD). *p < 0.05; **p < 0.01; ***p < 0.001. see also Fig S8 
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analyzed the kinetics of PDI oxidation by malPEG2k modification followed by SDS-PAGE. 

During Ero1a-AA-catalyzed oxidation, reduced PDI completely disappeared at the expense of 

partially or fully oxidized forms within 3 min of reaction (Fig. 16B). Ero1a-AASS, however, 

consumed reduced PDI more rapidly within 1.5 min (Fig. 16B), which was in agreement with the 

faster generation of H2O2.  

 

 

 

 

 

 

 
3.3.4. Ero1a-AASS is catalytically hampered 

Despite its increased catalytic efficiency, Ero1a-AASS was catalytically less active than Ero1a-

AA when assayed under hyper-activating (i.e. reducing) conditions. Thus, when GSH was added 

to the reaction mixture to constantly regenerate reduced PDI for repeated oxidase cycles, the 

catalytic turnover rate of purified Ero1a-AASS was lower than that of Ero1a-AA (Fig. 17A+B). 

Likewise, Ero1-dependent H2O2 generation in the ER of DTT-bathed cells and cellular GSSG 

accumulation upon DTT washout [15] was less prominent in Ero1a-AASS- or Ero1a-

C208S/C241S- compared to Ero1a-AA-expressing cells (Fig. 17C+D). It should be noted that 

DTT washout with Ero1a-AASS-expressing cells was technically challenging due to their loose 

adherence in response to compromised cell viability (Fig. 15A+B). We therefore repeated the 

experiments using an Ero1a-AASS clone with lower inducible expression (Fig. S7A) and 

improved adherence (unpublished observation) and obtained comparable GSSG:GStot curves 

(Fig. S9). Collectively, these results suggested that the constitutive absence of the Cys208
–Cys241 

Figure 16: Improved catalytic efficiency of Ero1a-AASS in oxidation of PDI. (A) Quantitative analyses of Ero1a-generated 

H2O2. Profiles indicate the time course of oxidation of PDI catalyzed by Ero1a-AA or Ero1a-AASS. Experiments were 
performed at 30°C using 4 mM Ero1a, 100 mM reduced PDI and a saturated level of O2. At indicated time points, the reaction 
mixture was subjected to Pierce Quantitative Peroxide Assay (n = 3; mean ± SD). (B) Time course of PDI oxidation. Protein 

concentrations and assay conditions were the same as in (A). At indicated time points, the reaction mixture was quenched with 

TCA, washed with acetone and alkylated with malPEG2k prior to non-reducing SDS-PAGE.  
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disulfide from Ero1a could affect optimal catalysis of PDI oxidation possibly by allowing non-

native protein–protein interactions or conformational freedom.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

3.3.5. GPx8 interacts with the mouth of the putative O2/H2O2 channel 

The discharge of Ero1a-derived H2O2 into the ER lumen is prevented specifically by the 

peroxidase GPx8 [15], which is likely mediated by the physical interaction of GPx8 (or the 

closely related GPx7) with Ero1a [28]. We therefore examined the possibility that GPx7 or GPx8 

bound to the Cys208/Cys241 region in Ero1a. Bimolecular fluorescence complementation (BiFC) 

Figure 17: Ero1a-AASS displays suboptimal oxidase activity under reducing conditions. (A) O2 consumption was 
monitored over time in a mixture of 2 mM Ero1a-AA or Ero1a-AASS, 10 mM PDI, and 10 mM reduced glutathione. 

(B) Consumption of NADPH coupled to Ero1a catalysis (see Materials and Methods; 2 mM Ero1a mutant, 10 mM PDI) 
was detected by following the absorbance at 340 nm. (C) Indicated cell lines were treated and analyzed as in Fig. 15E 5 
min after the addition of 0.5 mM DTT (n ≥ 3; mean ± SD). (D) GSSG/GStot recovery curves upon DTT washout were 
compared between Ero1a-AA- and Ero1a-AASS-expressing cells. Values are expressed as percentage of 0 s washout 
(WO) in Ero1a-AA cells (mean ± SD; two independent experiments each performed at least in doublet). **p < 0.01; 
***p < 0.001. see also Fig. S9 



Project II: A sealable oxygen/hydrogen peroxide diffusion path in human Ero1 

 

96 
 

analyses in the ER of living cells demonstrated significantly weaker interaction of GPx7 or GPx8 

with Ero1a-AASS than with Ero1a-AA (Fig. 18A and S10A). This result suggested that unlike 

Ero1a-AA, the constitutively active Ero1a-AASS was impaired in associating with its 

endogenous H2O2 scavenger GPx8 [15]. Consistent with this interpretation, ERp57 and HyPerER 

redox assays did not show increased ER oxidation in Ero1a-AASS-expressing cells upon 

knockdown of GPx8 (Fig. 18B+C), as was reported in Ero1a-AA-expressing cells [15]. 

Surprisingly though, the stability of GPx8 was affected by expression of Ero1a-AASS (Fig. 

18D). While the precise trigger and mechanism of GPx8 degradation is currently unknown, we 

propose that increased generation of free H2O2 by Ero1a-ASS (Fig. 15E and 16A) may elicit 

enhanced turnover of the peroxidase.  

The data so far supported the notion that GPx8 interacted with the distal end of Ero1a where 

H2O2 is presumably expelled. Using BiFC, we characterized the GPx8–Ero1a interaction in more 

detail. First, as Cys208 and Cys241 in Ero1a were required for the binding of GPx8, we tested 

whether or not the active-site Cys79 in GPx8 was required, too. As Fig. S10B shows, this was not 

the case, indicating the interaction not to be founded on thiol-disulfide exchange. Next, we 

followed up on our previous finding that GPx8 knockdown led to Ero1a-derived but not to 

Ero1b-derived H2O2 accumulation [15], which suggested a stronger interaction of GPx8 with 

Ero1a than with Ero1b. The 32 amino acid loop between Cys208 and Cys241 (Cys207 and Cys240 in 

Ero1b) is highly conserved between the two isoforms except for a divergent nonapeptide 

sequence (Fig. S10C). As hypothesized, replacement of the nonapeptide sequence in wild-type 

Ero1a with the Ero1b sequence decreased the BiFC signal, whereas deletion of the nonapeptide 

somewhat unexpectedly enhanced it (Fig. 18E). Thus, the nonapeptides in Ero1a and Ero1b 

negatively control GPx8 binding to varying extents. Taken together, the results demonstated that 

GPx8 (and GPx7) specifically associated with the loop region between Cys208 and Cys241, which 

we consider as the site of H2O2 exit.  
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Figure 18: GPx7 and GPx8 interact with the distal end of Ero1a. (A) 18 h after transfection with the indicated constructs, 
HeLa cells were trypsinized and analyzed by flow cytometry for BiFC fluorescence. As negative control, P5-YFP1 was co-
transfected with GPx7-YFP2 or GPx8-YFP2, respectively. Values are expressed as percentage of negative control (dashed line). 
(B) Ero1a-AASS cells were treated for 48 h with the indicated siRNAs and for 24 h with doxycycline (Dox), followed by redox 
analysis of ERp57 as in Fig. 15C (upper blot and chart) and control western blot (WB) using aGPx8 and aactin (lower blots) (n = 
9; mean ± SD). Asterisk, background band. (C) HyPerER measurements in Ero1a-AASS-expressing cells 48 h after transfection 
with control (Ctrl) or GPx8-targeting siRNA in presence or absence of 0.5 mM DTT (n = 4; mean ± SD). (D) Ero1a-AASS and 
Ero1a-AA cells were induced or not for 24 h with Dox and then treated for indicated times with 100 mg/ml cycloheximide (CHX), 
followed by WB analyses as indicated. Note that GPx8 is destabilized in response to Ero1a-AASS. (E) BiFC analysis as in (A) 
using the indicated constructs. Values are expressed as percentage of fluorescence by Ero1a WT-YFP1 and GPx8-YFP2 (dashed 
line). (F) Mechanism of regulated O2 access and H2O2 detoxification in Ero1a. (1) Oxidation of PDIa´ at the proximal end of 
Ero1a leads to the reduction of FAD to FADH2. (2) Via its C-terminal active site, reduced PDI (PDIred) attacks the Cys208–Cys241 
disulfide (either at Cys208 or Cys241), which leads to the formation of a long-lived interchain disulfide and the opening of a 
diffusion pathway towards FADH2 in Ero1a. (3) O2 diffuses to and reacts with FADH2 to H2O2 and FAD. (4) GPx8 is recruited to 
the peptide loop connecting Cys208 and Cys241 and reacts with H2O2 to produce H2O and a sulfenylated active-site cysteine (SOH). 
(5) As worked out for GPx7 [3], the active site in GPx8 is reductively restored by the N-terminal active site in PDI, which occurs 
either directly by nucleophilic attack at SOH or indirectly via an intramolecular disulfide-bond in GPx8 (not depicted) and 
produces H2O. (6) Upon dissociation of reduced GPx8, the Ero1a–PDI interchain disulfide is resolved, leading to release of PDI 
oxidized in its N-terminal domain (PDIaoxa´red) and restoration of Cys208–Cys241. For simplicity, the deprotonations of thiol groups 
prior to nucleophilic attack are not depicted. n.s., not significant; **p < 0.01; ***p < 0.001. see also Fig. S10 
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3.4. Discussion 

The chemical basis for O2 reactivity of flavoenzymes is an actively investigated area in 

enzymology and cofactor biochemistry. In particular, how O2 can diffuse into the active sites of 

oxidases and monooxygenases has attracted ample interest [29]. Some of these flavoenzymes 

have well-defined channels predicted to funnel the gas to the FAD cofactor in a constitutive 

manner [30,31,32]. For many others including Ero1 the molecular basis for O2 reactivity is a 

puzzling enigma [8,9]. Here, by scrutinizing the molecular basis of reductive activation of human 

Ero1 we discovered, to our knowledge, the first disulfide-sealable and, therefore, actively 

regulated pathway for O2 diffusion into a flavoenzyme active site. In addition, our results 

strongly suggest that the same path guides the exit of the reaction product H2O2, because the 

peroxidase in charge of cleaning up Ero1a-derived H2O2, GPx8 [15], binds to this very region of 

the enzyme.  

Cofactor unlocking for O2 penetration requires rearrangement of the Cys208
–Cys241 disulfide. 

From a homeostatic point of view, it is intuitive that this reaction is driven by the reduced a´ 

domain active site in PDI, which is also the bona fide substrate of the Ero1 “shuttle disulfide” 

[11,18,21,33]. Thus, Ero1a itself controls the gating of its O2 consumption and activity via the 

redox state of its major substrate PDIa´. This negative feedback mechanism provides an elegant 

additional mode of PDI-dependent regulation of human Ero1 [17,34].  

While Ero1–PDI mixed-disulfide complexes were formerly thought to depend on the “shuttle 

disulfide” [23,35], our data indicate that the major complex formed at steady state in human cells 

(“Ero1a–PDIfast
”) involves the distal end of Ero1 instead. As mixed-disulfide intermediates of 

thiol–disulfide exchange reactions are short-lived, the abundance of this complex is remarkable. 

In fact, it is comparable to the one of the Ero1a–ERp44 complex (Fig. 13C), which, due to the 

CXXS active-site sequence in ERp44, is not a thiol–disulfide exchange intermediate but a 

trapped species. We therefore propose Ero1a–PDIfast to be stabilized by non-covalent interactions 

reminiscent of the disulfide-linked dimer formed by tapasin and ERp57 in the MHC class I 

peptide-loading complex [36]. These considerations imply that there is no net oxidation of PDIa´ 

taking place at the Ero1a distal end, but rather an equilibrium being formed between PDI-bound, 

open state and Cys208
–Cys241 disulfide-bound, closed state. Consistently, despite the presence of a 
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CXXC active-site motif, PDIa´ apparently cannot interact with Ero1a mutants where either 

Cys208 or Cys241 is absent (Fig. 14D). Unfortunately, our proposal that the dithiol configuration of 

Cys208/Cys241 does not occur in the catalytic cycle of Ero1a could not be tested by mass 

spectrometry, since the corresponding peptides were consistently undetectable (Table S1 and 

unpublished observations). In contrast to Ero1a–PDIfast, the Ero1a–ERp44 complex is not 

diminished but rather enhanced upon mutation of Cys208/Cys241, suggesting a vicinal disulfide 

such as Cys35
–Cys48 or Cys37

–Cys46 as a target of ERp44 [19]. It is likely that the “ERp44-like” 

CXXS-1 mutants of PDI and ERp57 attack the same disulfide (Fig. 14C+E).  

Based on the facts that (i) Ero1a–GPx8 association depends on Cys208/Cys241 (Fig. 18A) but not 

on Cys79 in GPx8 (Fig. S10B) and that (ii) our efforts to detect this association with isothermal 

titration calorimetry or size-exclusion chromatography using purified proteins all failed 

(unpublished observations), the data suggest that Ero1a–PDIfast serves as a platform for GPx8 

binding to the Cys208/Cys241 region in Ero1a (Fig. 18E). This proposition makes functional sense, 

because GPx8 would be recruited to the H2O2 exit site in the open configuration. We propose the 

following sequence of events (Fig. 18F): By its reduced active site in the C-terminal a´ domain, 

PDI attacks the Cys208
–Cys241 disulfide and thereby opens a diffusion pathway towards reduced 

FAD (FADH2). In the resulting Ero1a–PDIfast complex, FADH2 reduces penetrated O2 to H2O2. 

Concomitantly, GPx8 (or GPx7) is recruited to the site of H2O2 exit where it is oxidized by H2O2 

to form a sulfenylated active site cysteine. Oxidized GPx8 then reacts with the N-terminal a 

domain active site in PDI to form a disulfide in PDI [3]. Finally, GPx8 and PDI dissociate from 

Ero1a following the reformation of Cys208
–Cys241, thereby restoring the original state.  

The model in Fig. 18F only covers the mechanism of FADH2 oxidation. The catalytic cycle of 

Ero1a is completed by subsequent FAD reduction, which is accomplished by PDIa´-derived 

electrons via the “shuttle disulfide”, an inner active-site cysteine pair, and a charge transfer 

complex (see also Introduction) [8,9]. Although not formally proven, two observations indicate 

that these two phases of the catalytic cycle are temporally separated. First, the Cys94-dependent 

disulfide-transfer complex between the “shuttle disulfide” and PDI (Ero1a–PDIslow in Fig. 14C) 

[21] predominantly exists without a second PDI molecule attached to the distal end of Ero1a. 

This indicates that the O2 diffusion path is closed during PDI oxidation/FAD reduction. Second, 

Ero1a-AASS, which features a constitutively open O2 diffusion path and, presumably, a flexible 
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Cys208/Cys241 region, is catalytically hampered (Fig. 17A-D). Thus, we speculate that Ero1a 

operates through a yin-yang mechanism where the active conformations of the O2-reducing end 

and the PDI-oxidizing end alternate.  

The catalytic cycle of yeast Ero1 can also be fuelled by addition of FAD instead of O2 as an 

oxidant [10,37]. Thus, although the removal of the Cys208
–Cys241 disulfide permanently unblocks 

an access path for O2 to FAD, the exchange of FAD molecules within the core of Ero1a upon 

Cys208
–Cys241 reduction cannot be excluded. However, purified Ero1a-AASS was found to 

firmly associate with FAD (our unpublished observations), indicating O2 and H2O2 and not FAD 

to be the diffusible entities. This interpretation is consistent with a recent study, demonstrating 

the inability of Ero1a to use FAD as alternate electron acceptor [34].  

This work demonstrates that Ero1a-AASS represents the first variant of human Ero1 that is truly 

constitutively active. Accordingly, although this mutant is catalytically crippled for the reasons 

discussed above, it has strong effects on ER redox homeostasis and cell viability (Fig. 15). We 

therefore posit that expression of Ero1a-AASS (or of Ero1b-AASS) constitutes the currently best 

tool to study the impact of ER hyper-oxidation on physiological processes such as protein 

folding, ER-associated degradation, Ca2+ signaling, unfolded protein response activation, 

membrane trafficking, lipid droplet formation, or autophagy. It will also be interesting to 

investigate the subroutine of cell death that is triggered by Ero1a-AASS. Given the predominant 

ER localization of the reactive oxygen species-generating photosensitizer hypericin, it is quite 

possible that Ero1a-AASS has mechanistically similar cytotoxic effects as hypericin-based 

photodynamic cancer therapy [38].  

On the basis of three regulatory disulfides (Cys94
–Cys131, Cys99

–Cys104, Cys208
–Cys241) in Ero1a, 

which are present in the majority of Ero1a molecules to mediate their shutdown [17], the 

question arises as to why the cell would maintain such a repertoire of inactive oxidase molecules 

in the ER. One possible answer relates to the known oxidase-independent functions of Ero1a, 

namely the regulation of ER Ca2+ signaling and of the secretion of disulfide-linked oligomers [9]. 

In addition, it is likely that the hyperoxic setup of tissue culture does not reflect the in vivo 

situation where O2 supply is more limited. Indeed, regulatory disulfides in Ero1a are opened 
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upon O2 withdrawal [39], and ERO1L is transcriptionally upregulated in response to hypoxia 

[40,41], e.g. in solid tumors where its levels positively correlate with tumor aggressiveness [42].  

In summary, we provide a molecular-level understanding of ER redox homeostasis in human 

cells that reaches beyond the previously described regulatory disulfides in Ero1a. This involves 

both the control of O2 consumption by a novel mechanism of regulated “FAD sealing” and the 

local conversion of the reaction product H2O2 into a disulfide bond and water, which is catalyzed 

within the Ero1a–PDI–GPx8 oxidase–peroxidase complex defined herein.  
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3.5. Materials and Methods 

 

3.5.1. RNA isolation and qPCR analysis 

Total RNA isolation, qPCR analysis, and target gene-specific primer sequences have been 

described [43]. 

 

3.5.2. RNA interference 

SiRNA transfections were conducted as previously published [43]. For depletion of ERp44 (10 

nM for 72 h) the following siRNA was used (only coding strand): 

GUAGUGUUUGCCAGAGUUGTT (Microsynth). 

 

3.5.3. Redox state analysis of ERp57 and Grx1-roGFP1-iEER  

The protocol for alkylation of originally oxidized cysteines with 4-acetamido-4’-

maleimidylstilbene-2,2’-disulfonic acid (Life Technologies) has been described [17]. Redox 

western blot of the Grx1-roGFP1-iEER sensor has been published [2]. 

 

3.5.4. Fluorescence excitation spectrum analysis  

Cells stably transfected with HyPerER were subjected to fluorescence excitation spectrum analysis 

as described before [2]. 

 

3.5.5. Metabolic labeling  

Metabolic labeling with 35S-methionine (Perkin Elmer) followed by western blot has been 

described [21].  

 

3.5.6. WST-1 assay  

This assay was essentially performed as published elsewhere [13]. However, 50,000 cells were 

seeded per well in a 24-well plate and treated the following day, where indicated, with 1 µg/ml 

doxycycline and/or 1 mM L-Buthionine-sulfoximine (BSO; Sigma) for 24 h. 
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3.5.7. Dithiothreitol (DTT) washout assays  

The cellular GSSG:total glutathione (GStot) ratio after DTT washout was measured using a 5,5’-

dithiobis(2-nitrobenzoic acid)/glutathione reductase recycling assay as previously described [21]. 

 

3.5.8. Bi-molecular fluorescence complementation (BiFC)  

A total of 5*105 HeLa cells were seeded per well into a 6-well plate and co-transfected the 

following day with YFP1 and YFP2 constructs (2 µg each) using Turbofect (Thermo Scientifc). 

To minimize non-specific BiFC complex formation cells were trypsinized 18 h post-transfection 

[44] and washed twice with phosphate buffered saline (PBS). Routinely, one half of each sample 

was subjected to aGFP western blot analysis using normalized amounts of total protein. These 

control analyses (data not shown) were essential to exclude unequal expression of different YFP 

fusion proteins. The other half of the cells was gently re-suspended in PBS containing 1% fetal 

calve serum, subjected to fluorescence analysis using a Becton Dickinson FACSCanto II, and 

data processed with Flowing Software 2 (version 2.5.1). 

 

3.5.9. Crystal violet staining  

2,5*105 cells were grown in 60 mm dishes for 24 h before treatment with or without 1 µg/ml 

doxycycline for 24 h. The cells were fixed with 4% paraformaldehyde for 5 minutes prior to 

staining for 30 minutes with 0,05% crystal violet (dissolved in distilled water and filtered (0,45 

µm filter); Sigma). After washing twice with tap water, the dishes were dried and photographed. 

 

3.5.10. Indirect immunofluorescence staining  

Staining procedure and image acquisition were published before [2], with the only exception here 

being the use of conjugated secondary goat-anti-mouse antibody Hilyte 647 (AnaSpec).  

 

3.5.11. Antibodies 

The following antibodies were used: 9E10 (amyc, a kind gift from Hans-Peter Hauri, University 

of Basel, Switzerland); 12CA5 (aHA, a kind gift from Hans-Peter Hauri, University of Basel, 

Switzerland); aERp57 (a kind gift from Ari Helenius ETH Zürich, Switzerland); aGFP (a kind 

gift from Jan Riemer, University of Kaiserslautern, Germany); aGPx8 (a kind gift from Lloyd 
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Ruddock, University of Oulu, Finland); I-19 (aactin, Santa Cruz Biotechnology); RL90 (aPDI, 

Abcam); 36C9 (aERp44, a kind gift from Roberto Sitia, Vita-Salute San Raffaele, Italy). 

 

3.5.12. Statistics 

Data sets were analyzed for statistical significance using Student’s t test (two-tailed distribution; 

heteroscedastic). 

 

3.5.13. In situ acid trapping, immunoprecipitation, and concavanalin A precipitation 

Preparation of thiol-disulfide quenched protein samples was done as before [21]. Where indicated 

antibodies for immunoprecipitation were chemically cross-linked to protein A sepharose using 

dimethyl pimelimidate (Sigma) or Anti V5 agarose affinity gel (Sigma) was used.  

 

3.5.14. Sample preparation and mass spectrometry analysis 

Twenty 10 cm dishes of doxycycline-induced (24 h) Ero1a-AA cells were grown to 90% 

confluency. Following treatment with 1 mM DTT the cells were subjected to in situ acid trapping 

and amyc-IP (see above). After SDS-PAGE, proteins were stained with Simply Blue (Life 

Technologies) followed by de-staining with water. The protein band was excised, reduced with 

10 mM DTT for 2 h at 37oC and alkylated with 50 mM iodoacetamide for 15 min at room 

temperature in the dark. Subsequently, the gel piece was digested with 125 ng trypsin 

(Sequencing Grade, Promega) for 18 h at 37oC. The peptides in the supernatant were collected 

and the gel piece was extracted with 0.1% acetic acid/50% acetonitrile. The extract was pooled 

with the tryptic peptides, dried in a speed vac and redissolved in 0.1% acetic acid. 10 µl were 

used for mass spectrometric analysis. 

The trypic peptides were analyzed by capillary liquid chromatography tandem MS (LC/MS/MS) 

using a homemade separating column (0.075mm x 15cm) packed with Reprosil C18 reverse-

phase material (2.4 mm particle size, Dr. Maisch, Ammerbuch-Entringen, Germany). The column 

was connected on line to an Orbitrap FT hybrid instrument (Thermo Scientific). The solvents 

used for peptide separation were 0.1% acetic acid in water/0.005% TFA (solvent A) and 0.1% 

acetic acid/0.005% TFA and 80% acetonitrile in water (solvent B). 2 ml of peptide digest were 

injected with a Proxeon nLC capillary pump (Thermo Scientific) set to 0.3 ml/min. A linear 

gradient from 0 to 40% solvent B in solvent A in 95 min was delivered with the nano pump at a 
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flow rate of 300 nl/min. After 95 min, the percentage of solvent B was increased to 75% in ten 

minutes. The eluting peptides were ionized at 2.5 kV. The mass spectrometer was operated in 

data-dependent mode. The precursor scan was done in the Orbitrap set to 60,000 resolution, while 

the fragment ions were mass analyzed in the LTQ instrument. A top ten method was run so that 

the ten most intense precursors were selected for fragmentation. The MS/MS spectra were then 

searched against a databank consisting of Ero1a-AA-myc6HIS and PDI using the Sequest HT 

software (Thermo Scientific) with 20 ppm precursor ion tolerance, while the fragment ions were 

set to 0.5 Da tolerance. The following modifications were used during the search: 

carbamidomethyl-cysteine, NEM-cysteine, and oxidized methionine as variable modifications. 

The peptide search matches were set to ‘high confidence’. 

 

3.5.15. Recombinant DNA  

The following expression vectors have been previously published: HA-ERp57 [45] and HA-

ERp57 CxxS-1 and CxxS-2 [17], CRTss+EYFP1+mature Ero1a, CRTss+EYFP2+mature GPx7, 

CRTss+EYFP2+luminal domain GPx8, CRTss+EYFP1+P5 [28] (kind gifts from Lloyd 

Ruddock, University of Oulu, Finland). 

For generation of the PDI-V5 CxxS1, PDI-V5 CxxS2 and PDI-V5 CxxS1+2 we used 

pcDNA3.1/PDI-V5 (a gift from Neil Bulleid, University of Glasgow, UK) as a template for 

QuikChange mutagenesis (Stratagene) using the following primers (only coding strand 

sequences): CxxS1: 5'-GGTGTGGCCACAGCAAGGCTCTGGC-3'; CxxS2: 5'-

CATGGTGTGGTCACTCCAAACAGTTGGCTCC-3'; the combined mutant construct PDI-V5 

CxxS1+2 was produced by two rounds of mutagenesis.  

For generation of the Ero1a-AA+C94S, Ero1a-AA+C208S, and Ero1a-AA+C241S we used 

pcDNA5/FRT/TO/Ero1a-C104A/C131A [13] as a template for QuikChange mutagenesis 

(Stratagene) using the following primers: C94S: 5′-

GAATGACATCAGCCAGTCTGGAAGAAGGGACTG-3′, C208S: 5'-

GGAATGTCATCTACGAAGAAAACTCTTTTAAGCCACAGAC-3', C241S: 5'-

GGCTAGAAGGTCTCTCTGTAGAAAAAAGAGCATTCTAC-3', the combined mutant 

construct Ero1a-AASS was produced by two rounds of mutagenesis.  

For generation of Ero1a-C208S and Ero1a-C208S/C241S we used pcDNA5/FRT/TO/Ero1a  

[17] as template for Quikchange mutagenesis (Stratagene) and the same primers as above.  
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For generation of the Ero1b-AASS mutant we used pcDNA5/FRT/TO/Ero1b-C100A/C130A [2] 

as template for QuikChange mutagenesis (Stratagene) using the following primers: C207S: 5'-

GCATCTATGAAGAGAACTCTTTCAAGCCTCGATCTGTTTATC-3', C240S: 5'-

GCTAGAAGGTTTGTCTCTGGAGAAAAGAGTCTTCTATAAGC-3'. 

For generation of BiFC Ero1a point mutant constructs we performed the same QuikChanges and 

C104A and C131A QuikChanges [13,17] using pcDNA3.1/CRTss+EYFP1+mature Ero1a as 

template. For the nonapeptide mutations, we first mutated the NdeI restriction site within the 

CMV promoter of the template pcDNA3.1/CRTss+EYFP1+mature Ero1a using the following 

primers: 5'-GCAGTACATCAAGTGTATCATTTGCCAAGTACGCC-3'. The resulting construct 

could then be digested with NdeI and BamHI to excise the mature Ero1a coding sequence, which 

was replaced by either mature Ero1a-nonaa->b or mature Ero1a-Dnona. These two sequences 

were generated by sequence overlap extension PCR using the following primers: mature 

Ero1a-nonaa->b: NdeI-fragment: 5'-

CCGTCATCTTCTCCTCGGGATGGAGCCAAAGGATTTAAAGGTC-3'/5'-

AGAGAGCATATGGAGGAGCAGCCC-3' (restriction site underlined); BamHI-fragment: 5'-

CCATCCCGAGGAGAAGATGACGGAGAAACTTTTTACAGTTGGCTAGAAGGTC-3'/5'-

CTCTCTGGATCCTCAATGAATATTCTGTAACAAGTTCCTGAAG-3';  

mature Ero1a-Dnona: NdeI-fragment: 5'-

GCCAACTGTAAAAAGTAGCCAAAGGATTTAAAGGTC-3'/5'-

AGAGAGCATATGGAGGAGCAGCCC-3'; BamHI-fragment: 5'-

CCTTTGGCTACTTTTTACAGTTGGCTAGAAGGTC-3'/5'-

CTCTCTGGATCCTCAATGAATATTCTGTAACAAGTTCCTGAAG-3'; the two 

corresponding fragments were annealed and amplified with the following primer pair: 5'-

AGAGAGCATATGGAGGAGCAGCCC-3'/5'-

CTCTCTGGATCCTCAATGAATATTCTGTAACAAGTTCCTGAAG-3'; Finally the products 

were ligated via NdeI/BamHI into the BiFC vector backbone.  

For generation of CRTss+EYFP2+luminal domain GPx8-C79S we used CRTss+EYFP2+luminal 

domain GPx8 as template for QuikChange mutagenesis (Stratagene) using the following primers: 

5'-CGTGGCCAGTGACTCCCAACTCACAGACAG-3'.  
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3.5.16. Cell culture and transient transfections 

The culturing of HeLa cells [2] and FlipIn TRex293 cells for doxycycline (1 µg/ml, Sigma)-

inducible expression of Ero1 variants [17] has been described. The following FlipIn TRex293 

cell lines have been published previously: Ero1a [17], Ero1a-AA [13], Ero1a-AA:HyPerER [43], 

Ero1a-AA+C85A/C391A [13] Ero1b-C100A/C130A [2]. Corresponding cell lines with 

inducible expression of Ero1a-AA+C94S, Ero1a-C208S/C241S, Ero1a-AASS, and 

Ero1b-AASS were generated equally. Ero1a-C208S/C241S:HyPerER and Ero1a-

AASS:HyPerER cell lines were created as before [43] (with the HyPerER vector kindly provided 

by Miklos Geiszt, Semmelweis University, Hungary).  

Transient transfections of HeLa cells were carried out using Turbofect (Thermo Scientific). 

Transient transfections of FlipIn TRex293 cells were carried out using Metafectene Pro 

(Biontex).  

 

3.5.17. Analysis of H2O2 generation 

Reduced PDI (final concentration of 100 mM) was incubated with 4 mM of either Ero1a-AA or 

Ero1a-AASS in buffer (50mM Tris pH7.5, 300 mM NaCl) saturated with O2. The concentration 

of Ero1a-generated H2O2 was analyzed by Pierce Quantitative Peroxide Assay Kit (Thermo). At 

several time points, 10 ml of the reaction mixture was mixed with 100 mL of Pierce Quantitative 

Peroxide Assay reagents solution. After incubation for 20 min at room temperature in the dark, 

the absorbance at 560 nm was measured using spectrophotometer Hitachi-U3310.  

 

3.5.18. Oxygen and NADPH consumption assay, MalPEG2k modification 

Oxygen consumption was measured as previously described [46]. NADPH consumption assay 

and MalPEG2k modification of PDI have been described before [47]. 
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3.6. Supplemental Information 

 

 

 

 

 

 

 

 

 

Figure S6: Characterization of Ero1a–PDIslow. 

(A-C) Replicate samples of the experiment presented in Fig1B+C were immunoblotted using the indicated antibodies to identify 

the mixed-disulfide partners of myc-tagged Ero1a-AA (as labeled in Fig. 13C). The lower antigenicity of Ero1a–PDIslow to aPDI 

(A) compared to Ero1a–PDIfast was observed before [21].  

(D) Large-scale immunoprecipitation of Ero1a-AA from cells treated with 1 mM DTT followed by 10% TCA and 15 mM NEM 

(as described in Experimental Procedures) using amyc covalently crosslinked to protein A-sepharose. The immunoprecipitate was 

separated by 7.5% non-reducing SDS-PAGE and stained with Coomassie blue. Subsequently, Ero1a–PDIslow was excised and 

subjected to mass spectrometry.  

(E) Cartoon depicting the processing of reduced and disulfide-bound cysteines in Ero1a-AA. Upon treatment with NEM and 

immunopreciptation, Ero1a-AA was denatured for SDS-PAGE, reduction by DTT, re-alkylation with iodoacetamide (IAM), and 

tryptic digest ahead of mass spectrometry analysis. Accordingly, originally reduced cysteines were NEM-modified and originally 

disulfide-bound cysteines carried the mass of IAM.  
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a Calculated cross-correlation score for all candidate peptides queried from the database (sequest searches only)  
b Protonated monoisotopic mass of the peptides in Daltons 
c Difference between the theoretical mass of the peptide and the experimental mass of the precursor ion 
d Mass-to-charge ratio of the precursor ion in Dalton;  

Table S1: Identified peptides in Ero1a–PDIslow. 

Ero1a-AA (Human ERO1-like protein a C104A/C131A-myc6HIS) and PDI peptides that were identified by liquid 

chromatography tandem mass spectrometry (LC/MS/MS) were sorted according to their position. Cysteine residues were 

annotated as either iodoacetamide (Carbamidomethyl)- or N-ethylmaleimide-modified. Note that the peptides harboring Cys85 and 

Cys391 (rows highlighted in grey) were exclusively found in the carbamidomethyl-modified form, indicating their participation in 

a disulfide bond. 
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Figure S7: Mixed disulfide complexes involving Ero1a-AASS: Absence of Ero1a–PDIfast and Ero1a–ERp57slow. 

(A) Doxycycline (Dox)-inducible expression of Ero1a-AASS in two FlpIn TRex 293 cell clones was compared to Ero1a-AA 

cells using western blot (WB) and indicated antibodies. Note that clone #3 shows lower expression relative to the other two clones 

(primarily used in this study).  

(B-D) Replicate samples of the experiment presented in Fig. 14B were immunoblotted using the indicated antibodies to identify 

the mixed-disulfide partners of myc-tagged Ero1a-AASS (as labeled in Fig. 14B).  
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Figure S8: Physiological consequences of C208S/C241S mutant: Supplemental experiments. 

(A) Ero1a WT, Ero1a-AA, and Ero1a-AASS cells were induced or not for 24 h with doxycycline (Dox) and subjected to 

quantitative real-time RT-PCR using primers specific for HSPA5 (encoding BiP/GRP78), DDIT3 (encoding CHOP/GADD153), 

or HERPUD1 (encoding Herp). Plotted are fold increases of mRNA levels relative to the uninduced control sample (-Dox, dashed 

line) (n ≥ 4; mean ± SEM).  

(B) Crystal violet staining of Ero1a-AASS cells treated, where indicated, with 5 mM N-acetyl cysteine (NAC) in 2 mM HEPES 

pH 7 (or with buffer alone) with or without Dox for 24 h.  

(C) Viability of Ero1a-AASS cells was determined by the WST-1 assay following indicated treatments (n = 5; mean ± SD). 

(D and E) Experiments analogous to Fig. 15C using Ero1b-AA and Ero1b-AASS cells (n = 4; mean ± SD) (D) or Ero1a-

C208S/C241S cells (n = 4; mean ± SD) (E).  

(F) Experiment analogous to Fig. 15E using Ero1a-C208S/C241S:HyPerER cells (n = 3; mean ± SD). 

(G) Experiment analogous to Fig. 15A using Ero1a-C208S/C241S cells.  

#p < 0.07; **p < 0.01; ***p < 0.001.  
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Figure S9: Results in Fig. 17D are likely not an artifact of compromised cell viability. 

Experiment performed as in Fig. 17D using Ero1a-AASS clone #3 cells (mean ± SD; two independent experiments each 

performed at least in doublet).  

*p < 0.05 
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Figure S10: Supplementary experiments relating to BiFC. 

(A) HeLa cells were co-transfected with the indicated YFP half site fusion proteins for BiFC and fixed 48 h post-transfection. For 

co-localization, endogenous PDI was stained with indirect immunofluorescence. PDI staining (red) and BiFC fluorescence (green) 

were recorded by confocal microscopy. Scale bars (10 mm) are indicated.  

(B) BiFC assay using the indicated combinations of YFP half site constructs. BiFC fluorescence is expressed as percentage of the 

signal by Ero1a-AA-YFP1 and GPx8-YFP2 (dashed line).  

(C) The amino acid sequences of the loop regions connecting Cys208 and Cys241 in Ero1a or Cys207 and Cys240 in Ero1b are 

shown, along with the engineered loop regions of the Ero1a-nonaa–>b and Ero1a-Dnona mutants.  
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4. Project III: Elucidation of the PDI interactome  

 

4.1. Introduction 

The most conserved disulfide relay responsible for oxidative folding in the ER of mammalian 

cells is comprised of the disulfide-generating oxidase Ero1a and the disulfide-transferring 

proteins of the PDI family [1]. Among the total of over 20 PDIs in human cells [2], ample 

evidence exists suggesting a preferential role of PDI, the archetypal member of this protein 

family, as electron donor for Ero1a [3,4,5,6,7]. Therefore, PDI is thought to be a central element 

in the transfer of disulfide bonds from Ero1a onto a broad range of client proteins. However, 

knowledge on specific in situ substrates for PDI-mediated oxidation is limited (see section 1.3). 

An intermediate step in this dithiol disulfide exchange reaction is the formation of a short-lived 

mixed disulfide complex between the N-terminal active site cysteine in the oxidoreductase and a 

cysteine in the folding client. Thus, the potential trapping and isolation of a mixed-disulfide 

complex between PDI and another protein strongly indicates the participation of the former in the 

folding pathway of the latter. These complexes can be trapped by quenching the dithiol disulfide 

exchange reaction either using acids or alkylating agents like NEM or iodoacetamide (IAM).  

PDIs serve another function besides this role as disulfide introducing enzymes. They can detect 

erroneously introduced non-native disulfides, which they are able to reduce or isomerize, if their 

active site cysteines are in the dithiol state [8,9]. Since these reactions also proceed via the 

formation of transient mixed disulfide complexes, one way to discriminate between PDIs-

mediated oxidation and reduction is the mutation of the C-terminal active site cysteine in the 

oxidoreductases. A comprehensive analysis employing this method was carried out using V5 

epitope-tagged CxxA-trapping mutants of different PDIs, in order to elucidate PDIs-specific 

substrates for reduction/isomerization [10]. However, whereas for other PDI family members 

various reduction substrates could be documented, the results for PDI itself in this study were 

rather disappointing, since only Ero1a and PrxIV, two known disulfide donors, but no client 

proteins were detected [10]. This result, together with the preferential oxidation of PDI by Ero1a, 

point into the direction, that PDI predominantly acts as disulfide donor.  
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Therefore, I employed a different approach in order to elucidate the PDI interactome, which was 

based on an in situ acidification/in vitro alkylation protocol recently developed in our lab 

(appenzeller-herzog et al embo 2010) and proven to quench dithiol-disulfide exchange reactions 

more efficiently than the previously used in situ alkylation (data not shown). In an untargeted-

screening effort, mixed-disulfide complexes between PDI and cognate substrates were 

immunoprecipitated and subsequently subjected to mass spectrometry (MS) analysis.  

 

4.2. Results 

In a first set of analytical-scale experiments, I transiently transfected HEK293 cells with a 

recombinant variant of PDI, which contains a V5 epitope immediately upstream of the C-terminal 

ER-retrieval signal KDEL (PDI-V5) [10]. Transfected cells were radiolabeled with 35S-

methionine and subjected to the in situ acidification/in vitro alkylation protocol to trap mixed 

disulfide intermediates. As negative control for subsequent immunoprecipitation (IP) I used mock 

transfected cells and cells pretreated with the reductant DTT, which breaks existing 

intermolecular disulfide bonds. As Fig. 19 shows, immunoisolation of PDI-V5 was both efficient 

and specific, highlighted by the lack of signal in the mock transfected lanes. Whereas reducing 

SDS-PAGE mainly resulted in the detection of monomeric PDI-V5, four prominent complexes 

with a molecular weight between 100 and 150 kilo Dalton (kDa) were visible upon resolving the 

immunoprecipitate under non-reducing conditions. Formation of the lower three complexes was 

largely abolished upon pretreatment with DTT, whereas the slowest running complex at ~150 

kDa partially persisted. The latter is in agreement with previously published data and most likely 

represents a DTT-resistant mixed disulfide complex of PDI and a glycoprotein of unknown 

identity, since this complex can be precipitated by concanavalin A (ConA) sepharose, too (Fig 6B 

in [4]). Having established the isolation of mixed-disulfide complexes using the novel trapping 

protocol and anti-V5 IP, I continued with the development of a suitable method for release of the 

PDI-bound interactors.  

To specifically elute disulfide-bound PDI interactors, I treated one half of an anti-V5 

immunoprecipitate with DTT. Following a short incubation period, I separated the supernatant 

(elution fraction) and the beads by centrifugation and subjected both together with the non-DTT 

treated sample to non-reducing SDS-PAGE (Fig. 20). Even though the signal of the previously 



Project III: Elucidation of the PDI interactome 

120 
 

appreciated mixed disulfide complexes was lower than in Fig. 19 (probably due to decreased 

transfection/IP efficiency), the overall pattern was largely reproduced. Additionally, efficient 

DTT-mediated reductive release of the PDI-bound interactors was observed, and the interaction 

of covalently coupled V5 antibody with PDI-V5 was mainly unaffected.  

 

 

 

 

 

 

 

 

 

 

 

 

 

Having established this workflow, I omitted the 35S-methionine radiolabeling and increased the 

scale of the experiment from analytic to preparative quantity. Following acid/NEM-quenched 

immunoisolation from transiently transfected HEK293 cells, the eluate after reductive release 

was subjected to proteomic analysis, which was performed in collaboration with the laboratory of 

Dr. Paul Jenö at the Biozentrum of the University of Basel. PDI interactors were identified by 

searching against the human SwissProt database using the Mascot search engine. Thereby, I 

obtained a list of potential candidates, which was filtered with regard to subcellular localization 

(ER) and the presence of cysteine residues or known intramolecular disulfide bonds. Furthermore 
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I subclassified the potential interaction partners of PDI-V5 into either “client” (C), i.e. proteins 

that are processed in the ER, but destined for further transport through the secretory pathway, or 

ER-resident (R), i.e. proteins that – like PDI – belong to the protein folding machinery or embody 

an unrelated enzymatic activity of the ER (Table 1).  

 

 

 

 

 

 

 

 

 

 

The known PDI-interacting proteins Ero1a and PrxIV, were the top hits on this list and served as 

proof-of-principle. Thus, I concluded that the obtained results likely reflected specific 

interactions with PDI. Furthermore, I could validate the interaction between ERp57, ERp72 and 

PrxIV by western blot analysis (data not shown), further strengthening the significance of the 

analysis. Unfortunately, however, my effort to identify the glycoprotein covalently interacting 

with PDI in a DTT-resistant manner (see above), the protein band of which was excised from a 

Coomassie-stained non-reducing SDS gel, was not successful.  

 

 

 

 

 

Table 1: Filtered hits from the LC/MSMS analysis of the elution 

fraction obtained after anti-V5 IP of acid/NEM-quenched HEK 293 

cells transfected with PDI-V5  
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4.3. Discussion 

The outlined untargeted proteomic approach enabled me to shed some light on the hitherto poorly 

characterized in situ interactome of human PDI. Knowledge on specific substrates for PDI-

mediated oxidative folding was so far scarce and confined to MHC class I molecules [11] and 

thyroglobulin [12]. I could potentially expand this list of “clients” by the following proteins:  

· Laminin g1: component of heterotrimeric, cross-shaped and disulfide linked extracellular 

laminin glycoproteins [13] 

· Integrin b1: also called CD29, forms disulfide-linked hetero-dimers with a integrins, 

involved in cell adhesion/migration and pathogen invasion [14] 

· Fibrillin 2: involved in formation and maintenance of extracellular microfibrils [15], 

mutations are associated with congenital contractural arachnodactyly [16] 

· Saposin precursor: proteolytically cleaved in five different sphingolipid activator proteins, 

involved in (glycol)sphingolipid degradation [17] 

· Follistatin-related protein 1: member of the secreted protein acidic rich in cysteines 

(SPARC) family; involved in various developmental processes [18] and implicated in IL-

1b secretion modulation by NLRP3 inflammasome [19] 

· Kunitz-type protease inhibitor: transmembrane serine proteinase inhibitor, which impacts 

(among others) pericellular proteolysis of kallikrein, plasmin, hepatocyte growth factor 

activator [20] 

In order to validate these candidates we have initiated a collaboration with Prof. Ineke Braakman 

at the University of Utrecht, since her laboratory is expert in monitoring oxidative protein folding 

using well-established in vitro transcription/translation assays. The anticipated results will most 

certainly provide novel insights regarding the folding kinetics of selected client proteins and 

further characterize their dependency on PDI-mediated maturation.  

The most prominent hits identified in this study were proteins of the PDI family, namely ERp46, 

ERp57, ERp72 and P5. Therefore, the idea of a PDI-specific subclass of substrates might actually 

not reflect the in vivo situation. Since PDI is the preferential target for Ero1a-mediated oxidation 

[3,4,5,6,7] a major function, besides direct client oxidation might be the specific delivery of 

Ero1-derived disulfides to other PDI family members. These PDIs in turn could then engage with 
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their respective substrates and promoting folding by transferring oxidative equivalents. 

Accordingly, a unidirectional network of electron transport pathways from diverse folding clients 

to the different PDIs could eventually converge on the PDI-Ero1a disulfide relay. In this sense, 

PDI would act as a redox sensor for other oxidoreductases [5] and, if needed, initiate de novo 

disulfide production by reduction of the non-catalytic regulatory disulfide bonds in Ero1. It is 

important to note that oxidation of PDI family members is not strictly dependent on PDI, since 

ERp46 and ERp57, albeit to a lesser extent than PDI, can be oxidized by Ero1 directly [5]. Even 

though the PDI-mediated route is thought to be more efficient, disulfide transfer from PDI to 

other PDI family members is limited by the respective redox equilibrium constants [5]. 

Therefore, this mechanism might confer an additional regulatory layer in ER redox homeostasis, 

which protects against ER hyperoxidation and enables reduction/isomerization reactions executed 

by PDIs.  

In conclusion, the described approach to identify new substrates for PDI-mediated oxidation 

seems to have been successful, even though validation of the observed client hits from the MS 

analysis will require further attention. Beyond that, the generated results possibly open an 

exciting new field of oxidative folding-centered research, which will aim on deciphering the 

cooperation of different PDI family members in client maturation. Mutual exchange of 

oxidizing/reducing equivalents likely coupled with complementary actions between PDIs will 

render future dissection of this multifactorial folding system a challenging task. 
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4.4. Materials and Methods 

 

4.4.1. Cell culture, Transfection, recombinant DNA 

HEK293 cells were cultivated in minimum essential medium eagle (MEM) alpha modification 

(Sigma), which was supplemented with 10% fetal calf serum (FCS), 100 U/ml penicillin, 100 

µg/ml streptomycin at 37°C in 5% CO2. Transient transfections were carried out for 24 h with 

Metafectene Pro (Biontex) according to the manufacturer’s guidelines. pcDNA3.1/PDI-V5 was a 

kind gift of Neil Bulleid, University of Glasgow, UK.  

 

4.4.2. Radiolabeling, in situ acidification/in vitro alkylation, anti-V5 IP 

Transfected cells were starved for 15 min in Dulbecco’s Modified Eagle’s Medium (DMEM) 

without methionine and cysteine (Sigma). Subsequently, the cells were labeled with 50 µCi/ml 
35S-protein labeling mix (Perkin Elmer) for 2 h. Where indicated cells were pretreated with 1 mM 

dithiothreitol (DTT) prior to in situ acidification with 10% trichloroacetic acid (TCA). 

Precipitated cells were incubated for 15 min on ice, pelleted for 10 min and resuspended by 

sonication in a buffer containing 58mM Tris ph7, 1,5% SDS, 7,3% glycerol, 0,1% bromocresol 

purple, 27% dimethyl sulphoxide, 15 mM N-ethylmaleimide (NEM) and 200 µM 

phenylmethanessulfonylfluoride (PMSF). Following incubation at room temperature (RT) for 1h, 

10 sample volumes of cold 30 mM Tris/HCl pH 8.1, 100 mM NaCl, 5 mM EDTA and 1,5% TX-

100 were added, incubated on ice for 30 min, centrifuged for 1 h and the supernatant subjected to 

anti-V5 IP using Anti V5 agarose affinity gel (Sigma). After overnight incubation at 4°C on an 

end over end shaker, IPs were washed four times with 30 mM Tris/HCl pH 8.1, 100 mM NaCl, 5 

mM EDTA, 1,5% TX-100 and 0,2% SDS and once with the same buffer without detergents. 

Where indicated reductive release of disulfide-bound interactors was carried out using 50 µl of a 

buffer containing 100 mM Tris/HCl pH 8, 150 mM NaCl and 10 mM DTT. Samples to be 

subjected to non-reducing SDS-PAGE were solubilized at 95°C for 5 min in a suitable volume of 

58 mM Tris/HCl pH 6.8, 5% glycerol, 1,67% SDS, 0,002% bromophenol blue. 

 

4.4.3. SDS-PAGE, gel dyring and phosphoimaging  

Following separation of the samples by 7,5% SDS-PAGE, run at 30 milliamperes for ~1 h, gels 

were fixed with 45% methanol/10% acetic acid for 15 min, washed twice with dH2O and dried 
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under vacuum on Whatman paper at ~80°C for 1 h. Dried gels were placed into a 

phosphoimaging cassette (GE Healthcare) and labeled proteins visualized by scanning on a 

Typhoon 7000 (GE Healthcare). 

 

4.4.4. Mass spectrometry (MS) analysis  

Anti-V5 IPs were obtained as outlined above using three confluent 10 cm cell culture dishes of 

transiently transfected HEK293 cells. The elution fraction after reductive release of disulfide-

based PDI-interactors was transferred into a separate Eppendorf tube (see below), while the beads 

were subjected to non-reducing SDS-PAGE. The gel was stained with Simply Blue (Life 

Technologies) followed by de-staining with water. The protein band was excised, reduced with 

10 mM DTT for 2 h at 37oC and alkylated with 50 mM iodoacetamide for 15 min at room 

temperature in the dark. Subsequently, the gel piece was digested with 125 ng trypsin 

(Sequencing Grade, Promega) for 18 h at 37oC. The resulting peptides in the supernatant were 

collected and the gel piece was extracted with 0.1% acetic acid/50% acetonitrile. The extract was 

pooled with the tryptic peptides, dried in a SpeedVac and redissolved in 0.1% acetic acid. 10 µl 

were used for mass spectrometric analysis. In contrast, 15 µl of the elution fraction was reduced 

with 10 mM DTT for 1 h at 37°C and alkylated with 50 mM IA for 15 min at RT in the dark. 

Proteins were treated with 0,25 µg endoproteinase LysC (Wako Chemicals) for 2h at 37°C and 

further digested with 0,5 µg trypsin overnight. Digestion was stopped with 1% trifluoro acetic 

acid (TFA) and peptides desalted on a MicroSpin cartridge (The Nest Group) according to 

manufacturer’s recommendations. The peptides were dried in a SpeedVac and dissolved in 50 µl 

0,1% acetic acid in water/0,005% TFA. 2 µl were used for mass spectrometric analysis (for 

details see section 3.5). The obtained MS/MS spectra were searched against the human SwissProt 

database using the Mascot search engine.  
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5. Project IV: Reducing substrates of GPx7 

 

5.1. Introduction 

GPx7 is an ER-resident member of the glutathione peroxidase family. Whereas the peroxidase 

function of GPx7 has been validated by various groups, glutathione specificity for subsequent 

reduction, as the family name implies, is largely absent [1,2,3]. In contrast members of the PDI 

family have been implicated in the process of GPx7 regeneration, which provides a link between 

ER H2O2 detoxification and oxidative folding [2,3]. Along this line, a recent knockout study has 

further underlined the physiological importance of GPx7, since transgenic mice devoid of GPx7 

suffered from multiple organ dysfunctions, malignant neoplasms and shortened lifespan [4]. 

GPx7 was proposed to play a crucial role as oxidative stress sensor, which catalyzes peroxide-

driven disulfide transfer onto the reducing substrate BiP, thereby stimulating the activity of the 

latter [4]. Similarly, Peng et al. could link a decrease of GPx7 expression, as a consequence of 

promoter hypermethylation, to the neoplastic transformation of premalignant Barrett’s 

oesophagus to oesophageal adenocarcinoma (OAC) [5]. The implicated tumor suppressor activity 

for GPx7 was validated in both in vitro and in vivo OAC models by reconstitution of GPx7 

expression [6]. Furthermore, GPx7 has also been linked to the processing of small RNAs. In this 

context, GPx7 expression was found to be induced upon nontargeting siRNA transfection and 

thiol-disulfide transfer to the nuclear exoribonuclease XRN2, albeit topologically prohibited, was 

reported [7]. 

In conclusion, GPx7 seems to be involved in a variety of different (patho)physiological 

processes, which is likely mediated by the oxidation of specific reducing substrates. Therefore, I 

sought to trap potential reducing substrates of GPx7 using an unbiased proteomic approach. With 

the help of the previously described in situ acidification/in vitro alkylation protocol combined 

with anti-GPx7 immunoprecipitation (IP) I isolated mixed-disulfide complexes, which will be 

subjected to mass spectrometry analysis.  
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5.2. Results 

In a first set of analytical-scale experiments, I transiently transfected FlipIn TRex cells inducible 

for the expression of Ero1a with recombinant variants of GPx7 or GPx8, which contain an 

influenza hemagglutinin (HA) epitope tag immediately upstream of the C-terminal ER-retrieval 

signal REDL (GPx7-HA) or KEDL (GPx8-HA), respectively. GPx7-HA-transfected cells were 

radiolabeled with 35S-methionine and either treated with DTT or not. Following washout of the 

reductant, cells were subjected to an in situ acidification/in vitro alkylation protocol to trap mixed 

disulfide intermediates prior to anti-HA immunoprecipitation. Upon resolving the samples by 

non-reducing SDS-PAGE, multiple mixed-disulfide complexes could be isolated with GPx7-HA, 

which disappeared under reducing conditions (Fig. 21). Furthermore, I could observe that DTT 

washout resulted in more prominent formation of mixed-disulfide complexes compared to control 

conditions. This at first glance unexpected effect is most likely ascribed to DTT-mediated 

activation of Ero1 and concomitant H2O2 production [8,9]. Thus, GPx7 peroxidase activity was 

stimulated with this treatment and the abundance of oxidized GPx7 increased, which 

subsequently resulted in more prominent formation of mixed-disulfide complexes. In contrast, 

doxycycline-mediated induction of Ero1a expression prior to DTT washout did not increase the 

abundance of mixed-disulfide complexes (data not shown). Based on these results, subsequent 

pulldowns were performed without addition of doxycycline but including DTT-mediated 

activation.  

 

 

 

 

 

 

 

 

Figure 21: Isolation of mixed-disulfide complexes after DTT washout 

is more efficient. Anti-HA IP of 35S-radiolabeled cells after either DTT 

washout or not from GPx7-HA transfected FlipIn TRex cells. Monomeric 

GPxs-HA are indicated with arrows, mixed-disulfide complexes 

involving GPx7 with asterisks. R, reducing and NR, non-reducing SDS-

PAGE 
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In order to address the specificity of the trapping and isolation procedure for potential reducing 

substrates I repeated the pulldown together with GPx8-HA-transfected cells and also included the 

respective active site cysteine mutants (GPx7-C57S-HA and GPx8-C79S-HA), which lack 

peroxidase activity. As Fig. 22 shows, the pattern of mixed-disulfide complexes isolated with 

GPx7-HA was reproduced and dependency on Cys57 for all complexes except for one (running 

between 37 and 50 kDa) was noted. In contrast, GPx8-HA pulldowns displayed only a few 

weakly detectable, Cys79-dependent complexes, which were not further analyzed.  

 

 

 

 

 

 

 

 

 

 

 

 

Having established this workflow, I omitted the 35S-methionine radiolabeling and increased the 

scale of the experiment from analytic to preparative quantity using a FlipIn TRex cell line stably 

expressing GPx7-HA. To this end, twenty confluent 10 cm tissue culture dishes were subjected to 

DTT washout, in situ acidification/in vitro alkylation and subsequent anti-HA IP. The resulting 

precipitate was resolved by non-reducing SDS-PAGE, the gel stained with Coomassie blue and a 

total of eleven visible protein bands was excised (Fig. 23). In the near future, mass spectrometry 

Figure 22: Distinct mixed-disulfide patterns of GPx7 and 

GPx8. Anti-HA IP of 35S-radiolabeled cells after DTT washout 

from either GPx7/8 wildtype or respective active site cysteine 

mutant transfected FlipIn TRex cells. Monomeric GPxs-HA are 

indicated with arrows, Cys57-dependent mixed-disulfide 

complexes involving GPx7 with asterisks. 
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analysis of these samples will be conducted in collaboration with the laboratory of Dr. Paul Jenö 

at the Biozentrum of the University of Basel. The anticipated results are expected to contain 

known interaction partners as proof-of-principle and, in addition, novel potential reducing 

substrates that will broaden our knowledge of the cellular functions of GPx7. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 23: Coomassie-stained gel of an aGPx7-HA IP. 

Preparative isolation of GPx7-HA bound mixed-disulfide 

complexes after DTT washout in FlipIn TRex cells stably 

transfected with GPx7-HA. aHA antibodies covalently coupled to 

ProtA sepharose were used as negative control. Excised bands, 

which will be subjected to mass spectrometry analysis, are 

highlighted with black boxes. 
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5.3. Materials and Methods 

 

5.3.1. Cell culture, Transfection, recombinant DNA 

Cultivation of FlipIn-TRex293 cells inducible for Ero1a expression [10] and the stable GPx7 cell 

line (Ero1a:GPx7) [11] was previously described. Transient transfections were conducted for 24 

h with Metafectene Pro (Biontex) according to the manufacturer’s guidelines. The following 

expression vectors have been published before: pcDNA3/GPx7-HA, pcDNA3/GPx8-HA and 

pcDNA3/GPx8-C79S-HA [11]. For generation of pcDNA3/GPx7-C57S-HA I used 

pcDNA3/GPx7 as template for QuikChange mutagenesis (Stratagene) using the following primer 

(only coding strand sequence): 5’- GGCCAGCGAGTCCGGCTTCACAGACC -3’ 

 

5.3.2. Radiolabeling, in situ acidification/in vitro alkylation, anti-HA IP 

Radiolabeling and in situ acidification/in vitro alkylation was performed as described in section 

4.4.2. Anti-HA IP was conducted by chemically crosslinking 12CA5 antibodies (aHA, a kind gift 

of Hans-Peter Hauri, University of Basel, Switzerland) to protein A sepharose with dimethyl 

pimelimidate (Sigma).  

After overnight incubation at 4°C on an end over end shaker, IPs were washed four times with 30 

mM Tris/HCl pH 8.1, 100 mM NaCl, 5 mM EDTA, 1,5% TX-100 and 0,2% SDS and once with 

the same buffer without detergents. Prior to reducing/non-reducing SDS-PAGE samples were 

solubilized at 95°C for 5 min in a suitable volume of 58 mM Tris/HCl pH 6.8, 5% glycerol, 

1,67% SDS, 0,002% bromophenol blue with or without b-mercaptoethanol, respectively. 

 

5.3.3. SDS-PAGE, staining, gel dyring and phosphoimaging 

Following separation of the samples by 11% SDS-PAGE, run at 30 milliamperes for ~1 h, gels 

were fixed with 45% methanol/10% acetic acid for 15 min, washed twice with dH2O and dried on 

Whatman paper under vacuum at ~80°C for 1 h. Dried gels were placed into a phosphoimaging 

cassette (GE Healthcare) and labeled proteins visualized by scanning on a Typhoon 7000 (GE 

Healthcare). In the case of sample preparation for MS analysis, non-reducing SDS-PAGE was 

followed by staining with Simply Blue (Life Technologies), de-staining with water and 

subsequent excision of protein bands. 
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6. Discussion I: The physiological functions of mammalian 

endoplasmic oxidoreductin 1 (Ero1): on disulfides and more 

 

 

  



Discussion I: The physiological functions of mammalian Ero1 

134 
 

6.1.  Abstract 

Significance The oxidative process of disulfide-bond formation is essential for the folding of 

most secretory and membrane proteins in the endoplasmic reticulum (ER). It is driven by electron 

relay pathways that transfer two electrons derived from the fusion of two adjacent cysteinyl side 

chains onto various types of chemical oxidants. The conserved, ER-resident endoplasmic 

oxidoreductin 1 (Ero1) sulfhydryl oxidases that reduce molecular oxygen to generate an active-

site disulfide represent one of these pathways. In mammals, two family members exist, Ero1a 

and Ero1b.  

Recent Advances The two mammalian Ero1 enzymes differ in transcriptional and post-

translational regulation, tissue distribution, and catalytic turnover. A specific protein-protein 

interaction between either isoform and protein disulfide isomerase (PDI) facilitates the 

propagation of disulfides from Ero1 via PDI to nascent polypeptides, and inbuilt oxidative 

shutdown mechanisms in Ero1a and Ero1b prevent excessive oxidation of PDI.  

Critical Issues Besides disulfide-bond generation, Ero1a also regulates calcium release from the 

ER and the secretion of disulfide-linked oligomers through its reversible association with the 

chaperone ERp44. This review explores the functional repertoire and possible redundancy of 

mammalian Ero1 enzymes.  

Future Directions Systematic analyses of different knockout mouse models will be the most 

promising strategy to shed new light on unique and tissue-specific roles of Ero1a and Ero1b. 

Moreover, in-depth characterization of the known physical interactions of Ero1 with peroxidases 

and PDI family members will help broaden our functional and mechanistic understanding of Ero1 

enzymes.  

 

6.2.  Introduction: Primary lessons from yeast 

A common characteristic of a vast majority of secretory and membrane proteins is their need to 

form disulfide bonds. These covalent linkages, generated between two cysteine side chains by 

dehydrogenation (oxidation), can either be located within a single polypeptide chain 

(intramolecular disulfide) or connect two proteins to form dimeric/oligomeric complexes 
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(intermolecular disulfide). Disulfide bonds often play a pivotal role in promoting proper folding 

of native polypeptide chains entering the endoplasmic reticulum (ER) and in stabilizing the 

structure of folded proteins destined for the secretory system. An elaborate, enzymatic machinery 

that is responsible for oxidative protein folding, i.e. the introduction of disulfide bonds into 

folding substrates, is present in the ER of all eukaryotic organisms. During this process, disulfide 

bonds move from one pair of cysteines to another (Fig. 24). These thiol-disulfide exchange 

reactions are orchestrated by a specialized family of disulfide carrier enzymes, the protein 

disulfide isomerases (PDIs) [1]. Importantly though, the ER is also capable of generating 

disulfide bonds de novo. While several pathways that can convert diverse types of oxidants into 

disulfides exist in parallel [2], this review – along with a review by Araki and Inaba that 

elaborately works out the structural and evolutionary point of view [3] – will discuss endoplasmic 

oxidoreductin 1 (Ero1) enzymes, which use molecular oxygen (O2) as electron acceptor (and are 

therefore termed “oxidases”).  

ERO1 has first been described in baker’s yeast as an essential gene [4,5]. Its product Ero1p is an 

ER-resident glycoprotein and a critical determinant for the oxidizing capacity of the yeast cell 

[4,5]. It possesses two redox-active di-cysteine active sites. The “inner active site” is oxidized by 

a proximally bound flavin adenine dinucleotide (FAD) cofactor [6,7], which itself receives 

oxidizing equivalents by reducing O2 to hydrogen peroxide (H2O2) [8]. The resulting disulfide 

bond is then transferred from the core of the protein to the “outer active site” [9], which is located 

in a flexible peptide loop [6]. Via its outer active site – also termed the “shuttle disulfide” – Ero1p 

can directly and specifically oxidize one of the two active-site cysteine pairs in PDI, the 

archetypal member of the PDI family [7,10,11]. This disulfide relay from Ero1p to PDI enables 

oxidized PDI to subsequently introduce disulfide bonds into folding substrates [7,10] (Fig. 25).  

Since the resolution of mismatched substrate disulfides by reduced PDIs is a fundamental 

component of oxidative protein folding, an unregulated (hyper-)oxidation of PDI by Ero1p would 

be undesirable. Thus, a redox-sensitive shutdown mechanism represented by non-catalytic, 

intramolecular disulfide bonds effectively impairs Ero1p activity [12,13]. As the oxidation state 

of these cysteine pairs is controlled by the ER redox poise, a regulatory feedback loop ensues in 

which Ero1p is solely active when new disulfides are required [12]. Taken together, many of the 

conserved features of Ero1 sulfhydryl oxidases including their fold, mechanism of action, 
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physiological relevance, substrate specificity, and the principle of their tunable activation status 

have been unraveled in experiments with the yeast enzyme.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 25: Disulfide relay from Ero1 via PDI to substrate proteins. 

A disulfide bond is generated by the transfer of two oxidizing 
equivalents from the FAD cofactor (shown as three black rings 
embedded between the four Ero1 core a-helices, drawn as dark grey 
cylinders) to the inner-active-site cysteine pair in Ero1 (step a). 
Following the intramolecular thiol-disulfide exchange reaction (see 
Fig. 24) between inner and outer active site of Ero1 (step b), the 
disulfide bond is transferred from the outer active site (located within a 
flexible loop region in Ero1, depicted by a sinuous black curve) to one 
of the two di-cysteine active sites in PDI (step c). As a consequence, 
PDI is capable of introducing disulfide bonds into native polypeptides 
(dubbed “substrate”) through thiol-disulfide exchange (step d). Arrows 
denote the flow of two oxidizing equivalents; cysteine pairs are 
depicted only by their sulfur atoms (S); the four thioredoxin-like 
domains in PDI are represented by grey circles. 

Figure 24: The thiol-disulfide exchange reaction. 
Cartoon depicting the mechanism of thiol-disulfide 
exchange between a reduced (SH) and a disulfide-
linked (S-S) cysteine pair (e.g. residing on two 
separate proteins). Upon deprotonation of one of the 
cysteinyl thiol groups, the resulting thiolate anion 
nucleophilically attacks one of the disulfide-bound 
sulphur atoms, leading to the formation of a mixed-
disulfide complex. Deprotonation of and 
nucleophilic attack by the second thiol group then 
prompts the formerly reduced pair of cysteines to 
form a disulfide bond. In the course of this redox 
reaction, two electrons are transferred from the 
reductant to the oxidant in exchange of two 
“oxidizing equivalents”. 
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6.3.  What yeast has failed to teach us 

Orthologs of Ero1p exist in all eukaryotes. Mammalian genomes harbor two Ero1-like genes, 

ERO1L and ERO1LB, which encode Ero1a and Ero1b, respectively [14,15], and will be the 

subject of this review. Interestingly, the study of Ero1a and Ero1b has not only unveiled many 

parallels to the yeast enzyme, but also a number of important differences. Most prominently 

among these, the mammalian Ero1 genes appear to be non-essential, as evidenced by the viability 

of mice carrying mutated copies of both ERO1L and ERO1LB [16]. The mutated genes feature an 

intronic “gene trapping” insertion containing a strong viral splice acceptor. As a consequence, the 

vast majority of mRNAs derived from the ERO1L/ERO1LB loci will give rise to non-functional, 

truncated protein.  

Lipopolysaccharide-activated spleen cells (LPS blasts) isolated from the mutant mice were nearly 

indistinguishable from their wild type counterparts with regard to the efficiency of oxidative 

folding of immunoglobulin M (IgM) [16,17]. With one known exception (the oxidative folding of 

proinsulin in the b-cells of the pancreas, discussed further below), it is therefore reasonable to 

assume that the overall pace of disulfide-bond formation is not severely compromised in 

ERO1L/ERO1LB mutant mice and does not phenocopy the fatal situation in Ero1p-deficient yeast 

cells.  

These observations can be explained by alternative mechanisms for de novo disulfide-bond 

generation in the mammalian ER [2] and/or by incomplete gene trapping, which would allow the 

low-level synthesis of operational Ero1 molecules. Indeed, residual amounts of Ero1b were 

detected on mRNA level in cardiomyocytes [18] as well as on protein level in pancreatic tissue 

and LPS blasts from Ero1 double mutant mice [16]. In all cell types studied so far, only a minor 

portion of Ero1a and, presumably, Ero1b is maintained in an active form [18,19,20] (see also 

below). Consequently, when shifted to increased activity through redox regulation, the residual 

levels of Ero1b in ERO1L/ERO1LB compound mutant mice might actually suffice to support 

disulfide-bond formation. Along the same lines, yeast cells can proliferate in the presence of very 

low amounts of Ero1p. Sufficient levels of Ero1p to allow for growth of an ero1-null strain can 

be provided by a plasmid encoding ERO1 under the control of a galactose-inducible promoter 

even when cells are grown in glucose (where the promoter is largely repressed) (Carolyn S. 

Sevier, personal communication). It is therefore important to consider that the designation of 
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ERO1L/ERO1LB mutant mice as “knockout animals” can provoke an underestimation of the 

functional significance of Ero1 enzymes in mammals. Interestingly, the high proliferation rate of 

immortalized mouse embryonic fibroblasts is profoundly affected by the ERO1L/ERO1LB 

compound mutation (Ester Zito, David Ron and C. A.-H., unpublished observations), suggesting 

that under in vitro conditions, normal levels of Ero1 enzymes are required for optimal cell 

growth. On the other hand, flies homozygous for a nonsense allele of their single ERO1L gene 

develop almost normally [21], which strongly suggests the existence of ERO1L-independent 

pathways for disulfide-bond formation.  

In addition, while both Ero1p and Ero1a (and, most likely, Ero1b) are soluble ER proteins, 

which are peripherally membrane-associated [4,14,15], only Ero1p possesses a C-terminal 

membrane-targeting domain [22]. Further differences between Ero1p and the mammalian Ero1 

enzymes include a distinct set of regulatory disulfide bonds for the shutdown of oxidase activity 

as well as different mechanisms of substrate recognition and oxidation. These issues will be 

covered in subsequent sections.  

 

6.4.  Ero1 enzymes are feedback-regulated sulfhydryl oxidases 

Of note, not all of the cysteines within the primary sequence of Ero1 are positionally conserved 

from yeast to mammals. While the inner and outer active-site cysteines (Cys394-Cys397 and Cys94-

Cys99 in human Ero1a) as well as the long-range disulfide connecting the two active-site peptides 

(Cys85-Cys391 in Ero1a) are preserved, intramolecular disulfide bonds homologous to the 

regulatory Cys143-Cys166 and Cys150-Cys295 in Ero1p are absent from both Ero1a and Ero1b (Fig. 

26). Amino acid substitution and mass spectrometry analysis revealed that Ero1a in its most 

oxidized redox state forms a disulfide bond between Cys94 and Cys131 [19,23]. As Cys94 is a 

constituent of the outer active site, Cys94-Cys131 has to be resolved in order to allow disulfide 

shuttling to PDI. Interestingly, also Cys99 very likely forms a “non-active-site” disulfide with 

Cys104 in the shut-off state of Ero1a [23]. Like Cys131, Cys104 has no equivalent in Ero1p.  

The identification of these new types of regulatory disulfide, which are likely to be present in 

Ero1b, too [24], has implications for the redox-driven mechanisms of enzyme (in)activation. 

Thus, in an oxidizing ER environment when reduced substrates for Ero1a are scarce, newly 
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produced disulfide bonds arising from the inner active site will be “stored” as Cys94-Cys131 and 

Cys99-Cys104. Molecularly, a likely scenario would be the nucleophilic attack of the shuttle 

disulfide by Cys131 (giving rise to Cys94-Cys131) followed by the transfer of a second disulfide 

from the inner active site via the transient formation of Cys99-Cys394 (in analogy to Ero1p; [9]), 

which is then resolved through nucleophilic attack by Cys104. As to the reactivation under 

reducing conditions, the situation is less straightforward. Two electrons are required to break 

either of the two regulatory disulfide bonds, before the shuttle disulfide can be reformed through 

nucleophilic attack. The finding that the concentration of reduced PDI in the ER influences the 

extent of Cys94-Cys131 formation suggests PDI as the reductant [19]. However, PDI has proven to 

be an ineffective activator of Ero1a in a reconstituted reaction [23,25,26,27]. In keeping with the 

predominantly inactive state of Ero1a in the ER [18,19,20], this relative resistance of 

Ero1a!towards PDI-mediated reduction could be a critical determinant of ER redox control rather 

than a manifestation of its poor catalytic proficiency. Indeed, when the thiol load of the ER is 

maximized by treatment with a strong reducing agent, the Ero1a-dependent re-formation of 

disulfides is exceptionally fast upon washout of the reductant [28]. These findings are consistent 

with the concept that Ero1a is an environment-dependent sulfhydryl oxidase, the activity of 

which is governed by the redox state of its own substrate(s).  

In contrast to the aforementioned disulfide bonds, the long-range disulfide, which is conserved in 

all Ero1 orthologs, does not involve any active-site cysteines (Fig. 26). Two alternative views 

exist on the role of this disulfide during catalysis. Based on the finding that purified Ero1a 

C85A-C104A-C131A-C391A – although well-folded – is less active in an oxidase assay than 

Ero1a C104A-C131A [26], one opinion holds that Cys85-Cys391 must be intact for efficient 

substrate oxidation. The second view, which we tend to favor, suggests a rearrangement of this 

disulfide during enzyme activation. Thus, an as yet unidentified cysteinyl thiolate anion might 

attack e.g. Cys85 and thereby free Cys391 to create a new short-range disulfide in Ero1a that 

facilitates the communication between inner and outer active site. It can also be speculated that 

the presumed isomerisation reaction is not readily triggered through intramolecular attack, but 

instead catalyzed by a thiol-disulfide isomerase such as ERp44 or another PDI that could initially 

resolve the long-range disulfide (for discussion of mixed-disulfide interactions of Ero1, see 

below). In potential support of this second view, activated Ero1a [23] and Ero1b [24] virtually 

co-migrate with the fully reduced forms on non-reducing gels. In addition, presumably catalytic 
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mixed-disulfide complexes between Ero1a or Ero1b and PDI trapped in living cells following 

treatment with a reductant display markedly decreased gel mobility – indicative of long-range 

disulfide resolution – as compared to the complexes trapped at steady state [28]. Intriguingly, the 

crystal structure of a hyperactive Ero1a C104A-C131A mutant, which still harbors Cys85-Cys391, 

does not reveal any obvious pathway for O2 to reach the protein-embedded FAD moiety [29]. We 

speculate that structural flexibility upon disruption of Cys85-Cys391 will be instrumental for the 

emergence of such an aqueous O2 channel. A detailed study on the reductive activation of Ero1p 

has also indicated that a subfraction of the long-range disulfide is resolved prior to the catalysis 

of substrate oxidation [13].  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 26: Cysteine connectivity of oxidatively silenced Ero1 enzymes. Ero1a, Ero1b, and Ero1p polypeptides are depicted 
by grey bars. Numbered dots represent the positions of cysteine residues within the respective Ero1 sequences, and brackets 
connecting two dots show intramolecular disulfide bonds. Ero1a, Ero1b, and Ero1p possess two di-cysteine active sites (black 
dots), the C-terminal inner active sites (Cys394+397, Cys393+396, Cys352+355) and the N-terminal outer active sites (Cys94+99, Cys90+95, 
Cys100+105). Regulatory disulfides, which negatively control oxidase activity, are pictured by dark grey brackets. Not all of the 
regulatory cysteines (dark grey) are positionally conserved between Ero1p and Ero1a/b, and disulfide linkages between 
regulatory and outer-active-site cysteines only exist in the mammalian enzymes. Note that the functional colouring of the long-
ranging disulfide (Cys85-Cys391, Cys81-Cys390, Cys90-Cys349) as well as the cysteine connectivity of Ero1b is speculative at 
present (see main text for details). Cysteines of structural or unknown function (light grey) are connected with dotted brackets in 
case of disulfide-bond connection. Question marks denote that no conclusive redox state has been demonstrated, yet. Ero1p 
possesses an additional C-terminal domain that is responsible for its tethering to the membrane (dark grey box). For more 
detailed information regarding redox-state-dependent changes in the cysteine connectivity refer to the main text. 
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6.5.  Mechanisms of selection of specific sulfhydryl substrates 

Among the total of approximately twenty PDI-like proteins in humans [1], PDI itself has been 

shown to be the major substrate for Ero1-mediated oxidation. Numerous cues in favor of this 

view exist including data from both cell culture and in vitro assays [19,24,28,29]. Ero1a 

recognizes PDI by a lock-and-key principle irrespective of whether or not the redox-active 

cysteines are present in PDI [29,30]. Thus, initial binding prior to the formation of a catalytic 

mixed disulfide occurs through non-covalent interactions. It has been conclusively demonstrated 

that these interactions are of hydrophobic nature [29]. They involve a protruding b-hairpin in 

Ero1a, which contains a critical tryptophan residue at its very tip (Trp272), and a hydrophobic 

cleft in the substrate-binding domain of PDI [31]. Even though experimental data were 

exclusively generated with Ero1a, both the hairpin structure and the crucial tryptophan are 

present in Ero1b as well (Fig. 27). Accordingly, the principle of substrate recognition is probably 

conserved among the mammalian isoforms. In addition, as hinted by in silico complex modeling 

[31], this mode of interaction presumably facilitates the specific thiol-disulfide exchange between 

the C-terminal active-site domain of PDI and the shuttle disulfide in Ero1a [23,25,26,27,28]. In 

contrast, Ero1p harbors no tryptophan-containing b-hairpin [6] and preferentially oxidizes the N-

terminal active-site domain of yeast PDI [32].  

As opposed to the bona fide substrate PDI, its homolog ERp44 can efficiently bind to Ero1a even 

in the absence of the b-hairpin [31]. Furthermore, equal amounts of ERp44–Ero1a mixed 

disulfides are detected with all single-cysteine mutants of Ero1a! [33], indicating that ERp44 can 

attack at least one disulfide other than the shuttle disulfide with its active-site cysteine. Besides 

these, also other PDI-family members – although inferior substrates for oxidation [24,29] – form 

mixed disulfides with Ero1a and Ero1b within cells under steady-state conditions [28,34,35]. As 

pointed out for PDI [28], these complexes most likely involve an oxidized (non-catalytic) form of 

Ero1a. In addition, they are not strictly dependent on the presence of an intact shuttle disulfide 

[28,33] so that they might be formed in analogy to the ERp44–Ero1a interaction. The 

physiological roles of these covalent complexes are currently unclear.  
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6.6.  Ero1a and Ero1b: Functional substitutes or brothers in arms? 

While the above sections have highlighted many shared catalytic characteristics between Ero1a 

and Ero1b, the two homologs have also diverged in a number of features. For instance, the 

transcriptional regulation of ERO1L and ERO1LB is different, which undoubtedly contributes to 

the distinct expression profiles in human tissues [14] (Fig. 28). The high Ero1b levels in insulin-

producing b-cells of the pancreas are maintained by the key pancreatic transcription factor PDX1 

Figure 27: Annotated sequence alignment of human Ero1a and Ero1b. The aligned amino acid sequences are 
shown in single letter code. Both proteins possess an N-terminal ER-targeting signal peptide (light grey boxes; 
predicted by the SignalP 3.0 program available at http://www.cbs.dtu.dk/services/SignalP), an inner and outer di-
cysteine active site (grey boxes), four core a-helices (marked by coiled hairlines above the sequence) as well as a 
tryptophan (white)-containing β-hairpin (dark grey box) that is crucial for the interaction with PDI. Cysteine 
residues are highlighted by black-framed boxes, and asparagine residues within N-glycosylation consensus sites by 
bold letters and the attachment of a schematised high-mannose oligosaccharide. Numbers next to cysteines, N-
glycosylation sites, and the PDI-binding tryptophan show the respective position in the amino acid sequence. 
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[36]. The importance of Ero1b in these cells is highlighted by the finding that the oxidative 

maturation of proinsulin is delayed in pancreatic islets from ERO1LB mutant mice, which 

manifests in a diabetic phenotype [16]. Intriguingly, this phenotype is neither complemented by a 

compensatory increase in Ero1a levels nor exacerbated by additional mutation of ERO1L, which 

argues against redundancy of Ero1 isoforms in the endocrine pancreas of mice [16]. ERO1LB is 

also a target of the ER-stress-responsive transcription factor ATF6a [37] that is preferentially 

activated under reducing ER conditions [38].  

ERO1L, on the other hand, is a transcriptional target of HIF1a that is upregulated in response to 

hypoxia or hypoglycemia [39,40]. Indeed, Ero1a is instrumental in counteracting ER hypo-

oxidation brought about by hypoxic treatment of cells [18]. In addition, the expression of ERO1L 

is enhanced during adipogenesis, which depends on the nuclear hormone receptor peroxisome 

proliferator-activated receptor gamma (PPARg) [41]. Finally, Ero1a is induced during a late 

stage of ER stress signaling through the binding of C/EBP homologous protein (CHOP; also 

known as Gadd153) to its promoter [42] (see below).  

Ectopic expression of Ero1b – in contrast to Ero1a that has no discernible effect – moderately 

increases the oxidation of ER oxidoreductases and glutathione [19]. This is likely owing to the 

relative lability of the regulatory disulfide bonds in Ero1b, since mutation of Cys100 and Cys130 in 

Ero1b does not activate the purified enzyme to the same extent as the equivalent mutations in 

Ero1a [24]. Furthermore, wild-type Ero1b shows higher rates of oxygen consumption during in 

vitro substrate oxidation compared to Ero1a [24]. At the same time, however, the initial slope of 

glutathione re-oxidation after complete chemical reduction is less pronounced in Ero1b- than in 

Ero1a-over-expressing cells [28]. Thus, the catalytic turnover rates of Ero1a and Ero1b differ in 

a context-dependent manner.  

Can these disparities be explained at the molecular level? The two intercalating amino acids 

between the inner active-site cysteines in Ero1a and Ero1b are different (Fig. 27). When mutated 

to the Ero1b active-site sequence, the catalytic turnover number of Ero1a increases [24]. 

Moreover, Ero1b harbors an additional cysteine at position 262 (Fig. 27), which has been 

proposed to form a unique type of regulatory disulfide together with Cys100 [24]. However, as 

predictable by homology to Ero1a, Cys262 is located at the end of one of the four core a-helices 
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and immediately upstream of the PDI-interacting b-hairpin loop (Fig. 27). We therefore consider 

it unlikely that this region adopts a fundamentally different conformation in Ero1b. In a structural 

homology model, the side chain of Cys262 is located ~30 Å away from Cys100 and buried in the 

structure (data not shown). Finally, Ero1b harbors three unique N-glycosylation sites in the 

peptide surrounding Cys130 (Fig. 27). In the model, the glycosylated asparagines are solvent 

exposed and positioned between the PDI-binding site and the shuttle disulfide (data not shown), 

raising the possibility that substrate recruitment might be modulated by the presence of bulky 

oligosaccharides. Overall, Ero1b – basally expressed at low levels (Fig. 28). and an early target 

of the ER stress response [37] – represents an effective stress oxidase that can counteract ER 

hypo-oxidation. Ero1a, on the other hand, likely fulfills a tightly regulated housekeeping 

function with regard to disulfide generation. Whether and to what extent the two isoforms 

functionally and/or physically interact in tissues where they are co-expressed remains to be 

examined.  

 

 

 

 

 

 

 

 

 

 

 

 

Figure 28: Tissue-specific mRNA levels of human ERO1L and ERO1LB. Expression levels of ERO1L and ERO1LB mRNAs 
(encoding Ero1a and Ero1b, respectively) in a range of human tissues shown as signal intensity on Affymetrix Human Genome 
U133A array (probe sets: 218498_s_at for ERO1L and 220012_at for ERO1LB). The figure was generated with all available 
datasets using the Genevestigator software (https://www.genevestigator.com/gv). The signal intensity on the abscissa is expressed 
on an arbitrary, logarithmic scale. The abundance of ERO1L mRNA is overall higher than that of ERO1LB. ERO1LB expression 
peaks in stomach, testis, and the pancreatic islets of Langerhans (highlighted with dark grey boxes). In contrast, elevated levels of 
ERO1L mRNA can be detected especially in tonsils, oral region, and oesophagus (highlighted with light grey boxes). 
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6.7.  Ero1a is critical for ER-stress induced apoptosis 

Besides the regulated production of disulfides, Ero1a has additional roles. A major fraction of 

Ero1a molecules localizes to so-called mitochondria-associated membranes (MAMs), a 

subdomain of the ER that is tethered to mitochondria [43,44]. When activated by exogenous 

reductants or under hypoxic conditions, Ero1a relocates to the bulk of the ER [43], suggesting 

that its function at the MAM might be independent of its activity as an oxidase. The excitable 

calcium channels of the inositol 1,4,5-trisphosphate receptor (IP3R) family are also enriched in 

MAMs, and IP3R-facilitated calcium shuttling to cytosol and mitochondria is a critical branch of 

apoptotic cell death signaling during severe ER stress [45]. One of the switches that positively 

regulate such calcium flow is Ero1a [46], which is induced by the ER stress-dependent, 

apoptogenic transcription factor CHOP [42]. Since the channeling activity of IP3R subtype 1 is 

impeded by reversible binding of ERp44 [47], elevated levels of Ero1a – a preferred ligand of 

ERp44 [31,48] – likely activate IP3R1 during ER stress by sequestering ERp44 (in analogy to the 

mechanism described in the next section). Conversely and similar to the knockdown of IP3R1, 

silencing of Ero1a in macrophages inhibits ER-stress-induced apoptosis by lowering ER calcium 

release [46]. Recently, knockdown of Ero1a in HeLa cells has been demonstrated to 

predominantly hamper the accumulation of calcium in mitochondria  upon stimulation of IP3Rs 

(and only marginally in the cytosol), which is in agreement with the enrichment of Ero1a in 

MAMs [44].  

An alternative, although less plausible possibility is that Ero1a does not enhance IP3R1 activity 

by lowering the availability of ERp44 but by hyper-oxidizing the ER. The association with 

ERp44 depends on two reduced cysteinyl thiols in IP3R1 [47], the oxidation of which upon ER 

stress could consequently lead to channel derepression. In potential support of this, antioxidant 

treatment mimicked the inhibitory effect of Ero1a knockdown on ER calcium release [46]. 

However, as the CHOP–Ero1a–IP3R1 signaling pathway induces NADPH oxidase 2-derived 

reactive oxygen species (ROS), which in turn further amplify CHOP [49], the application of 

antioxidants did not necessarily exert its effect by counteracting Ero1a activity. Moreover, given 

the tight regulatory mechanisms that prevent excessive disulfide and H2O2 synthesis by Ero1a 

(see above), its increased expression does not per se hyper-oxidize the ER [19,28]. The probably 
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minor contribution of Ero1-derived ROS to ER-stress-induced cell death has recently been 

evaluated in detail elsewhere [50].  

 

6.8.  Role of Ero1a in ERp44-mediated ER retention/retrieval 

Apart from their involvement in calcium signaling, Ero1a and ERp44 orchestrate the secretion of 

diverse disulfide-linked dimers and higher order oligomers by the reversible formation of mixed-

disulfide ERp44–protein adducts (Fig. 29). ERp44 binds to substrates via its non-classical CXXS 

active-site motif [48], which lacks a resolving cysteine and therefore renders these intermolecular 

disulfide adducts longer-lived than typical catalytic complexes. Moreover, despite its C-terminal 

ER retrieval signal ERp44 is atypically enriched in the ER-Golgi intermediate compartment 

(ERGIC)/cis-Golgi [51,52], which favors a model in which ERp44 retrieves substrates from 

ERGIC/cis-Golgi to ER.  

What is the role of Ero1a in the intracellular retention of secretory proteins? Increased expression 

of Ero1a displaces ERp44 from most of its endogenous substrates [48], indicating it to be a 

preferred mixed-disulfide ligand of ERp44. Accordingly, the secretion of ERp44 retention 

substrates such as IgM [48], the adipose-derived hormone adiponectin [51], or sulfatase 

modifying factor 1 (SUMF1; also known as formylglycine-generating enzyme) [52,53] is 

enhanced upon over-expression of Ero1a (Fig. 29). In the case of adipocytes, endogenous 

induction of Ero1a by PPARg agonists is physiologically relevant during differentiation and 

stimulation [41,51]. Although speculative, vascular endothelial growth factor (VEGF) might also 

add to the list of ERp44 substrates, as its secretion, which is prominent in hypoxic tumors, is 

positively regulated by Ero1a [39] (Fig. 29).  

All secretory ERp44 substrates identified so far (and VEGF) undergo cysteine-dependent 

dimerization/oligomerization in order to be secreted. The cysteines engaged in this process have 

– in case of retention – previously been linked to ERp44 (Fig. 29), which is consistent with the 

concept that ERp44 traps incompletely assembled subunits. Although this concept is commonly 

referred to as “thiol-mediated retention”, it is still unclear how these trapping interactions are 

formed. As ERp44 comprises a single-cysteine active site, the oxidizing equivalents to join two 

thiol groups would either have to be contributed by the binding partner (e.g. through an 
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intramolecular disulfide or glutathionylation) or by ERp44 itself. The latter possibility could 

involve a disulfide-linked homodimer or a heterodimer composed of Ero1a and ERp44. 

However, as detailed above, abundant Ero1a–ERp44 complexes rather inhibit than promote 

”thiol-mediated retention”.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 29: Interplay between Ero1α and ERp44 governs the secretion of various disulfide-linked 
dimers/oligomers. ERp44 mediates ER retention or retrieval from ERGIC/cis-Golgi of various immature 
monomers destined for dimerization/oligomerization and secretion. In this process, substrate binding by 
ERp44 is stabilized by formation of an interchain disulfide bond involving Cys29 in ERp44. Upon exogenous 
overexpression or endogenous induction, Ero1a can – most likely by a competitive mechanism – displace 
these substrates from ERp44, thus promoting their maturation into disulfide-linked protein complexes and 
subsequent secretion. In addition to the known ERp44 substrates immunoglobulin M (IgM), sulfatase 
modifying factor 1 (SUMF1), and adiponectin, vascular endothelial growth factor (VEGF) displays similar 
properties, rendering it a potential ERp44 substrate (as indicated by the question marks). While the cysteine 
residues responsible for ERp44-association and oligomerization have been identified in the substrate proteins, 
it is still unclear, whether a specific cysteine in Ero1a is involved or Ero1a acts as a multivalent mixed-
disulfide partner of ERp44 (question mark). The graphical depiction of the structure of the mature IgM 
pentamer (that contains two heavy and two light chains per monomer) is simplified, and the existence of 
alternative oligomers (involving a J-chain) is neglected. The N-terminal domains of the adiponectin trimer 
form a collagen-like triple helix that can dimerize (or multimerize, not show) through Cys36-mediated 
interchain disulfide-bond formation. Regarding SUMF1, it is important to point out that the drawn mechanism 
of Ero1a-induced secretion only applies to over-expressed protein (endogenous SUMF1 is an ER-resident 
enzyme). Cysteine residues are represented only by their sulfur atoms, S; numbers, where indicated, show the 
position of the cysteine in the human amino acid sequence. 
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6.9.  Conclusions and perspectives 

Ero1 enzymes are an integral part in our understanding of redox maintenance in the ER. The two 

mammalian isoforms, which differ from the yeast enzyme in a number of aspects, fulfill similar 

roles in regulated disulfide production, but also display distinctive features. While recent work 

has begun to link these features to isoform-specific in vivo functions, there is certainly more room 

for discovery regarding the physiological roles of Ero1a and Ero1b. An eminent question for the 

future is how redundant these roles are in mammals. Given the viability of ERO1L/ERO1LB gene 

trap mice that still harbor detectable levels of the stress oxidase Ero1b [16], it is possible that 

Ero1b can largely substitute for Ero1a deficiency. Motivated by the finding that cardiomyocytes 

show decreased excitability due to lowered calcium transients in ERO1L mutant mice [18], 

however, it will be important to look more closely at e.g. ER-stress-induced apoptosis or the 

secretion of ERp44 substrates in these mice. Moreover, the question whether ERO1L/ERO1LB 

knockout mice are also viable remains to be answered.  

Since the reduction of O2 by Ero1 oxidases produces cytotoxic H2O2 in the ER, the function of 

ER-resident H2O2-degrading peroxidases and their crosstalk with the PDI family are likely to be 

fundamental [2,50]. For instance, the activity of peroxiredoxin IV can produce disulfides and 

channel them into oxidative folding [17]. As for Ero1-derived H2O2, it will be most interesting to 

carry out loss-of-function analyses with two other PDI peroxidases, GPx7 and GPx8, which 

physically interact with Ero1a [54].  

Many additional features of mammalian Ero1 enzymes still require further investigation. The 

functional significance of covalent Ero1 dimerization [55] that apparently involves Cys166 in 

Ero1a [29] is completely obscure. Likewise, the molecular basis of membrane association of 

Ero1a is not known, and it remains to be clarified whether its ER retention/MAM localization is 

mostly mediated by interaction with the ER membrane [14,15] or with ERp44 and other PDI 

family members [30]. In addition, the conservation among metazoans of the N-terminal segment 

including two disulfides in Ero1a (but not Ero1b, Fig. 26) suggests some as yet enigmatic 

function for this stretch of amino acids. It will also be instrumental to molecularly describe the 

mode(s) of interaction between Ero1a and ERp44 including the cysteine connectivities and 

subcellular localization of the complex (ER, ERGIC, or MAM) and compare it to the complex 

involving PDI [31]. Since the catalytic Ero1a–PDI interaction plays a critical role during the 
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PDI-assisted translocation of the cholera toxin A1 subunit from the ER to the cytosol [56], it also 

remains to be explored, if endogenous ER-associated degradation substrates require this 

interplay. Furthermore, the mechanism of redox-driven activation of Ero1a/b remains to be 

elucidated, which – in conjunction with the aforementioned – will set the stage for more exciting 

Ero1 news in the future.  
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7.1. Abstract 

Peroxidases are enzymes that reduce hydroperoxide substrates. In many cases, hydroperoxide 

reduction is coupled to the formation of a disulfide bond, which is transferred onto specific 

acceptor molecules, the so-called reducing substrates. As such, peroxidases control the spatio-

temporal distribution of diffusible second messengers such as hydrogen peroxide (H2O2) and 

generate new disulfides. Members of two families of peroxidases, peroxiredoxins (Prxs) and 

glutathione peroxidases (GPxs), reside in different subcellular compartments or are secreted from 

cells. This review discusses the properties and physiological roles of PrxIV, GPx7, and GPx8 in 

the endoplasmic reticulum (ER) of higher eukaryotic cells where H2O2 and – possibly – lipid 

hydroperoxides are regularly being produced. Different peroxide sources and reducing substrates 

for ER peroxidases are critically evaluated. Peroxidase-catalyzed detoxification of 

hydroperoxides coupled to the productive use of disulfides, for instance in the ER-associated 

process of oxidative protein folding, appears to emerge as a common theme. Nonetheless, in vitro 

and in vivo studies have demonstrated that individual peroxidases serve specific, non-overlapping 

roles in ER physiology.  

 

7.2. Introduction 

Hydrogen peroxide (H2O2) is an intracellular metabolite, which serves important roles as a 

second messenger in redox signaling [1]. However, since elevated levels of H2O2 (and of other 

reactive oxygen species, ROS) can damage proteins, nucleic acids, and lipids by peroxidation, 

temporal and spatial limitation of H2O2 levels is critically important. Thus, half-life and spatial 

distribution of H2O2 in the cell are tightly regulated by non-enzymatic antioxidants as well as by 

specific scavenging enzymes, including the so-called peroxidases of the peroxiredoxin (Prx) or 

glutathione peroxidase (GPx) families [2]. Prx and GPx isoforms reside in different subcellular 

compartments where they catalyze the reduction of H2O2 to H2O [2]. The most relevant producers 

of intracellular ROS/H2O2 are the transmembrane enzyme complexes of the nicotinamide adenine 

dinucleotide oxidase (NOX) family, various enzymes and the respiratory chain in mitochondria, 

peroxisomal enzymes, and sulfhydryl oxidases in the endoplasmic reticulum (ER) [3,4,5,6,7]. 
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Due to the presence of specific aquaporin channels in cellular membranes, the local diffusion of 

H2O2 is usually not restricted by organelle boundaries [8,9].  

There are a total of six isoforms of Prx in mammals, all of which form distinct types of 

antiparallel homooligomers [10]. H2O2-mediated oxidation of the active site peroxidatic cysteine 

(CP) to a cysteine sulfenic acid is a common feature of Prxs. However, only so-called 2-Cys Prxs 

possess a resolving cysteine (CR), which attacks the CP sulfenic acid, leading to the formation of 

a CR–CP disulfide bond. In typical 2-Cys Prxs, the CR–CP disulfide connects antiparallel dimers, 

whereas in atypical 2-Cys Prxs, it forms intramolecularly. In order to complete the catalytic 

cycle, these disulfide bonds are reduced by a thioredoxin-type oxidoreductase [10,11,12]. In 

contrast, 1-Cys Prxs (such as human PrxVI) lack a CR and instead form a mixed disulfide 

heterodimer with p glutathione S-transferase, which catalyzes the glutathione-driven reductive 

regeneration of the Prx [13,14].  

A remarkable feature of Prxs is their susceptibility to oxidative inactivation. Thus, CP sulfenic 

acid can react with a second molecule of H2O2, which gives rise to CP sulfinic acid. This leads to 

Prx inactivation, stabilization of decameric over dimeric configuration, and, in some cases, to an 

increase in chaperone activity [15,16,17]. At least in cytoplasmic and mitochondrial typical 2-Cys 

Prxs, sulfinic acid formation can be reversed by the action of sulfiredoxin at the expense of ATP 

[18,19]. Under highly oxidizing conditions, CP sulfinic acid can further and irreversibly react 

with a third molecule of H2O2 to form CP sulfonic acid [15].  

The GPx family is phylogenetically unrelated to Prxs but shares the ability to reduce 

hydroperoxide substrates [2]. A total of eight mammalian GPxs are known. They are sub-

classified into two groups according to the amino acid tetrad in their catalytic center. In SecGPxs 

(human GPx1-4, and 6) or CysGPxs, (GPx5, 7, and 8), the common constituents Gln, Trp and 

Asn are supplemented with a peroxidatic selenocysteine (Sec) or Cys, respectively [20]. 

Furthermore, GPxs differ with regard to their oligomeric state, with GPx1-3, 5, and 6 constituting 

homotetramers and GPx4, 7, and 8 monomers [21].  

Upon hydroperoxide-mediated oxidation of the active-site selenocysteine, SecGPxs typically 

react with two molecules of glutathione (GSH) yielding glutathione disulfide (GSSG), which 

historically accounted for the generalized family name glutathione peroxidases [2,21]. However, 

the use of GSH as reductant is not a common feature of GPxs nor is it strictly conserved within 
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the SecGPx subgroup [2,21,22,23,24,25]. In invertebrates and plants, monomeric CysGPxs 

harbor a CR and exhibit an identical reaction mechanism as atypical 2-Cys Prxs (see above) 

[20,26,27]. In contrast, no typical CR is present in the human monomeric CysGPxs GPx7 and 8.  

The ER serves many distinct cellular functions [28]. One of these is chaperone-mediated folding 

of nascent polypeptide chains, which often involves the introduction of disulfide bonds via 

oxidation of two adjacent cysteines. This process termed oxidative protein folding is driven by a 

number of distinct pathways, the most conserved of which involves the sulfhydryl oxidase 

endoplasmic oxidoreductin 1 (Ero1) as disulfide donor [29]. Since Ero1 can utilize molecular 

oxygen (O2) as terminal electron acceptor, it generates stoichiometric amounts of H2O2 for every 

disulfide bond produced, as demonstrated in vitro [30]. In addition, H2O2 sources other than the 

paralogs Ero1a and Ero1b exist within the mammalian ER. Although initially assigned to 

phagocytic cells only, more recent findings have shown that NOX family members are expressed 

in various cell types [3] where they produce H2O2 at different subcellular sites including the ER 

[31,32,33]. Likewise, the secreted quiescin-sulfhydryl oxidases were identified as producers of 

H2O2 [34], although these enzymes function in the extracellular space [35] and their contribution 

to intracellular oxidative protein folding is uncertain [36,37]. It has also been suggested that ROS 

produced by mitochondrial respiration could impact on disulfide-bond formation in secretory 

compartments including the ER [38]. Leakage of the mitochondrial electron transport chain, 

predominantly at complex III, releases superoxide and H2O2 into the intermembrane space of 

mitochondria [39,40]. The close apposition of ER and mitochondria [41] could enable these ROS 

to contribute to ER-associated oxidative protein folding.  

This review will focus on PrxIV, GPx7, and GPx8, which reside in the ER of vertebrates, 

lancelets, ascidians, and – in case of PrxIV – echinoderms and arthropods [42]. As detailed 

further below, all ER-resident peroxidases can use protein disulfide isomerases (PDIs; the 

“thioredoxins of the ER”) as reducing substrates, allowing them to exploit the oxidizing power of 

ER peroxide sources for oxidative protein folding. However, reducing substrates other than PDIs 

may also participate in the reaction cycle of ER peroxidases.  
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7.3. H2O2 in the ER: Bulk metabolite or locally restricted messenger? 

Reliable detection of the cellular distribution of H2O2 is a challenging task. The recent 

development of genetically encoded sensors, which can be expressed in different subcellular 

compartments, significantly facilitated the monitoring of spatial and temporal changes in 

H2O2/ROS concentration though [43]. For instance, targeted expression of the yellow fluorescent 

protein-based, ratiometric, and H2O2-sensitive HyPer sensor was used to record the oxidizing 

environment in the mammalian ER [33,44,45,46]. On the basis of the predominantly oxidized 

state of ER-localized HyPer (HyPerER) and the predominantly reduced state of HyPer on the 

cytoplasmic surface of the ER, a high [H2O2]ER, which is strictly confined to the lumen of the 

organelle, has been inferred [44]. Several lines of evidence argue against this interpretation 

though. First, as detailed in the following paragraph, numerous examples for signaling roles of 

ER-derived H2O2 are known, which suggest analogy to the critical involvement of Nox-derived 

H2O2 in receptor tyrosine kinase (RTK) signal transduction at the cell surface [47,48,49,50] (Fig. 

30). Second, the presence of peroxidases in the ER lumen (see below) appears incompatible with 

a high steady-state [H2O2]ER. Third, the demonstration of aquaporin 8-facilitated entry of H2O2 

into the ER [8] suggests that aquaporin 8 can also facilitate exit of ER-derived H2O2 (see also 

Fig. 30). Forth, since the ratiometric readout of HyPer is based on the formation of an 

intramolecular disulfide bond [51], oxidation of HyPer in the ER could be catalyzed by resident 

oxidoreductases independently of H2O2. Consistent with this assumption, no effect on HyPerER 

oxidation was observed upon overexpression of PrxIV or of ER-targeted catalase in pancreatic 

beta-cells [46]. The increased oxidation of HyPerER observed in response to higher levels of 

Ero1a [44,52] can therefore reflect both enhanced oxidation of PDIs and a rise in [H2O2]ER. 

Thus, the Ero1a-induced increase in oxidation of HyPerER can only be partially reversed by 

addition of the H2O2 scavenger butylated hydroxyanisole (our unpublished observations). 

Conversely, increased oxidation of HyPerER in response to NOX4 induction is blunted by co-

expression of catalase in the ER [33].  

The role of H2O2 as signaling molecule typically manifests in the formation of short-lived 

microdomains of elevated [H2O2] [49,53]. For instance, ligand binding to RTKs at the cell 

surface such as platelet-derived growth factor receptor, epidermal growth factor receptor (EGFR), 

or insulin receptor stimulates the local production of H2O2 via crosstalk with NOX enzymes 
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[47,49,54,55]. This leads to oxidative inactivation of protein tyrosine phosphatases (PTPs), which 

prolongs RTK signaling until cytosolic ROS scavengers such as Prxs have cleared H2O2 

[56,57,58,59,60] (Fig. 30a). At least in certain contexts, such H2O2-dependent signal 

amplification is mediated by ER-resident NOX4 and PTP1B [31] (Fig. 30b). Thus, activated 

EGFR is internalized into endosomes and transported close to the ER [61] where its PTP1B-

dependent dephosphorylation is negatively regulated by NOX4-derived H2O2 [31]. In the case of 

the granulocyte-colony stimulating factor receptor pathway, also ER-resident PrxIV (see next 

section) can modulate the signaling amplitude [62] (Fig. 30b).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 30: RTK signaling involves NOX-derived H2O2 as second messenger. (a) Binding of ligand (L) to 
receptor tyrosine kinases (RTK) on the cell surface activates NADPH oxidases (NOX) and leads to the 
generation of extracellular or, following endocytosis, endosomal superoxide (O2

-), which can be dismutated to 
H2O2. Upon aquaporin 8 (AQP8)-facilitated diffusion across the plasma/endosomal membrane, H2O2 locally 
inactivates the intracellular negative regulators phospho tyrosine phosphatases (PTPs) and peroxiredoxins 
(Prxs), which prolongs RTK signal transduction. This step mostly, but not exclusively (as depicted by an 
asterisk) involves the endoplasmic reticulum (ER)-associated PTP1B. Spatial restriction of H2O2 is achieved by 
cytosolic ROS scavengers like Prxs. (b) An ER-centered route of RTK-mediated signal transduction involves 
NOX4 in the ER membrane and PTP1B. In this context, ER-luminal build-up of H2O2 is controlled by ER-
resident PrxIV. 
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NOX4-initiated signal transduction is linked to the adaptive/apoptotic output of the ER stress 

response – a conglomeration of ER-derived signaling cascades known as the unfolded protein 

response (UPR) [63]. In the context of atherosclerosis, oxysterol-stimulated smooth muscle cell 

apoptosis depends on NOX4, which is upregulated through the ER stress sensor Ire1a to produce 

H2O2 [32]. Similarly, NOX4 is induced in endothelial cells in response to a subset of ER 

stressors, leading to presumably locally restricted H2O2 signaling [33]. In both cases, proper 

activation of UPR pathways requires NOX4-derived H2O2. Of note, NOX4-dependent, ER-

associated oxidative signaling through the RAS–ERK pathway in endothelial cells promotes pro-

survival autophagy rather than cell death [33]. A related link operates in smooth muscle cells 

where NOX4-derived H2O2 stimulates autophagy by inhibiting authophagy-related gene 4B 

activity, which antagonizes ER stress and cell death [64].  

Little is known about signaling roles of H2O2 sources other than NOX4 in the ER. Nevertheless, 

the available data on NOX4 strongly suggest that – in analogy to the situation in other 

compartments – H2O2 operates in the ER as a spatially restricted second messenger rather than a 

bulk metabolite.  

 

7.4. Peroxiredoxin IV 

PrxIV is the only ER-resident representative of the Prx family. Its predominant isoform harbors a 

classical signal peptide, which is cleaved upon co-translational entry into the ER, but no ER 

retrieval motif to ensure its retention in the early secretory pathway (ESP) [65,66]. Instead, 

similar to the ER retention mechanism of Ero1a, physical interactions with the ESP 

oxidoreductases ERp44 and PDI inhibit PrxIV secretion from cells [67]. Therefore, cell-specific 

differences and/or saturation of the retrieval machinery, e.g. following exogenous 

overexpression, might explain the ambiguity in the literature on the intracellular or secreted 

nature of PrxIV [68,69,70,71,72]. This review will focus on the role of the ER-resident fraction 

of PrxIV. 

PrxIV belongs to the subclass of typical 2-Cys Prxs and predominantly exists in decameric 

configuration. The toroid shaped pentamer of antiparallel dimers (Fig. 31) is stabilized by 

hydrophobic interactions at dimer-dimer interfaces. In contrast to other family members [73], 

PrxIV does not show significant transition from the decameric to the dimeric state upon disulfide-
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bond formation between CP and CR, even though this process is associated with local unfolding 

[74]. Furthermore, PrxIV harbors a unique N-terminal extension. As judged from the positions of 

the truncated N-termini in the crystal structure, these flexible extensions protrude into the center 

of the decameric assembly of full length PrxIV protomers (Fig. 31). In addition to hydrophobic 

interactions, neighboring antiparallel dimers are linked by Cys51
–Cys51 interchain disulfide bonds 

between N-terminal regions (Fig. 31), but mutagenesis to serine or alanine neither affected 

decamerization nor the catalytic parameters of PrxIV [74,75,76]. The impact of the N-terminal 

extensions for correct quaternary structure is still unclear. In an N-terminal truncation mutant, 

Wang et al. observed a significant transition from the decameric to the dimeric state upon 

oxidation. In contrast to this, Ikeda et al. reported a shift from decameric to higher oligomeric 

forms [76,77].  

 

 

 

 

 

 

 

 

 

 

 

Like other Prxs, PrxIV exhibits an exceptionally fast reactivity towards H2O2 (2.2 x 107 M-1 s-1) 

[76]. As data on PrxIV reacting with peroxide substrates other than H2O2 is scarce, PrxIV may 

exclusively react with H2O2 in vivo (Table 2). PrxIV knockout cells stained with H2O2-reactive 

dye showed a bright signal, which was blunted upon reconstitution of PrxIV (Fig. S10 in [62]). 

Figure 31: Oligomeric structure of PrxIV. (a) Upon peroxide-mediated oxidation, antiparallel PrxIV 
dimers are transiently linked by disulfide bonds between CP (C124) on one subunit and CR (C245) on the 
other subunit (depicted in red), which is the characteristic feature of typical 2-Cys Prxs. However, dimer 
formation relies on hydrophobic interactions and is redox state-independent. The flexible N-terminal region 
(NTR) of PrxIV is oriented towards the center of the toroid-shaped, decameric complex (b). The role of the 
disulfide bonds linking adjacent dimers via Cys51 in the NTR (depicted in blue) is currently unclear. 
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Where does this H2O2 come from? A popular model implicates Ero1a-derived H2O2, a regular 

byproduct of oxidative protein folding [78], as oxidizing substrate of PrxIV [79]. This model is 

based on the finding that activation of Ero1a in cells by dithiothreitol (DTT)-mediated reduction 

of its regulatory disulfide bonds increased the hyperoxidized fraction of PrxIV [80]. In further 

support, DTT-triggered hyperoxidation of PrxIV was inhibited by knockdown of Ero1a (Neil 

Bulleid, personal communication), and Ero1a-dependent accumulation of H2O2 in response to 

DTT treatment was increased by PrxIV knockdown and decreased by PrxIV overexpression (our 

unpublished observations). However, in contrast to GPx8 (see below), this crosstalk between 

Ero1a-derived H2O2 and PrxIV was only observed in the presence of DTT (our unpublished 

observations), which likely does not reflect normal physiology. Experiments with murine or 

fungal loss-of-function models of Ero1 strongly suggested that PrxIV can be coupled to (an) 

Ero1-independent source(s) of H2O2: ectopic expression of PrxIV rescues the thermosensitive 

ero1-1 yeast strain by Ero1-independent oxidative protein folding [81] (see below) and PrxIV is 

required to protect Ero1-deficient mice against H2O2-mediated ascorbate depletion [82]. The 

H2O2 source(s) targeted by PrxIV remain(s) to be identified [12].  

Following disulfide-bond formation between CP and CR, PrxIV acts as PDI peroxidase by using 

several different PDIs as electron donors [75,83] (Table 2). As discussed further below, these 

PDIs can subsequently shuttle the disulfide onto various substrate proteins, implicating PrxIV as 

an important element of oxidative protein folding.  

It is intriguing that despite the fact that the ER is devoid of sulfiredoxin activity, PrxIV has 

retained specific structural features to support H2O2-mediated hyperoxidation [74,76]. 

Accordingly, sulfinylation of CP in PrxIV could potentially serve a specific function. It has been 

speculated that hyperoxidized PrxIV could operate as a molecular chaperone or as a secreted 

damage associated molecular pattern [65].  

 

7.5. GPx7 and GPx8 

GPx7 and 8 are closely related ER-luminal members of the GPx family. Whereas GPx7 possesses 

a cleavable N-terminal signal sequence, GPx8 is a transmembrane protein with a short N-terminal 

cytoplasmic tail. Retention in the ESP is mediated by exposed, C-terminal motifs, –Arg-Glu-Asp-
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Leu and –Lys-Glu-Asp-Leu in GPx7 and 8, respectively, which are recognized in the Golgi by 

KDEL retrieval receptors [84]. This ESP-retention mechanism is noteworthy for GPx8, since ER 

membrane proteins are usually retrieved to the ER via cytosolic interactions with retrograde coat 

proteins [85]. The physiological implications of this peculiarity are currently unclear.  

Whereas no other peroxide substrate besides H2O2 has been documented for GPx8 yet, GPx7 

(also known as non-selenocysteine containing phospholipid hydroperoxide glutathione 

peroxidase, NPGPx) can efficiently react with phospholipid hydroperoxides in vitro (k > 103 M-1 

s-1, Table 2) [86]. Although speculative at present, we consider it possible that also in its native 

context, GPx7 can reduce lipid peroxidation products in the luminal leaflet of the ER membrane. 

As to GPx8, which largely shares the active-site architecture with GPx7 (Fig. 32), the short linker 

between the transmembrane anchor and the catalytic domain might not confer enough flexibility 

for the active site to interact with the lipid bilayer. Accordingly, both GPxs (together with PrxIV) 

could protect ER-oriented lipids against peroxidation by scavenging ER-luminal H2O2, but only 

soluble GPx7, in analogy to GPx4 [87], would be able to directly reverse lipid peroxidation by 

enzymatic reduction.  

 

 

 

 

 

 

 

 

 

 

 

Figure 32: Superimposition of GPx7 and GPx8. Overlay of the carbon-
nitrogen backbones of GPx7 (green; PDB ID 2KIJ) and GPx8 (red; PDB 
ID 2P31) was done using the Swiss PDB viewer software (available at 
www.expasy.ch). The close resemblance of the two three-dimensional 
structures is particularly appreciable in the peptide loops surrounding the 
active-site Cys (CP). The ESP retention signal (KEDL motif) and the 
location of the transmembrane domain (TMD) of GPx8 (not part of the 
crystal structure) are indicated. 
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Another prevailing model implicates Ero1 activity to provide H2O2 as oxidizing substrate for 

GPx7 and 8 [21,88]. Using a split YFP complementation approach, Ero1α and GPx7 or 8 were 

found to associate within the ER, and addition of GPx7 increased the oxidase activity of Ero1α in 

vitro [88]. While the mechanistic basis for the latter finding remains to be elucidated, these data 

point to a functional interaction between GPxs and Ero1α. In line with this, knockdown of GPx8 

but not PrxIV aggravated the accumulation of H2O2 induced by a deregulated Ero1α mutant (our 

unpublished observations). Therefore, despite their lower reactivity towards peroxide, the 

physical interaction with Ero1α likely places the GPxs in a privileged position relative to PrxIV 

to detoxify Ero1α-derived H2O2.  

Irrespective of the peroxide source, the catalytic mechanism for the reductive regeneration of 

GPx7/8 remains controversial. Despite the absence of a canonical CR, GPx7 and 8 harbor an 

additional cysteine in a conserved Pro-Cys86/108-Asn-Gln-Phe motif [86]. Studies with GPx7 have 

highlighted two possible mechanisms of peroxidase reduction [86,89,90] (Fig. 33a). Of note, one 

of the possibilities features Cys86 as a non-canonical CR. However, since CP and Cys86 are ~11 Å 

apart in the crystal structure (PDB ID 2P31; Fig. 33b), this implies a major conformational 

change. Indeed upon H2O2 addition, the intrinsic fluorescence of Trp142, which, in reduced GPx7, 

is particularly solvent-exposed and in close proximity to CP (Fig. 33b), readily resumes in the 

time scale of 2-3 sec after initial decline [88,89]. This likely indicates the translocation of Trp142 

away from the fluorescence-quenching CP sulfenic acid. In this connection, we note the adjacent 

aromatic side chain of Phe89, which is part of the conserved motif surrounding Cys86 (see above), 

and speculate that stacking of Phe89 and Trp142 upon CP oxidation could promote formation of the 

CP–Cys86 disulfide (Fig. 33b). Interestingly, in addition to the Pro-Cys-Asn-Gln-Phe motif, the 

exposed Trp residue is conserved throughout the GPx family [86].  

If GPx7 (and likely GPx8) can oxidize reducing substrates in the absence of Cys86/108, what could 

be the reason for its conservation? We suggest that the function of CR-dependent intramolecular 

disulfide-bond formation is to prevent the accumulation of sulfenylated GPxs, which may display 

reactivity towards non-native thiol substrates. Rapid reaction with Cys86 largely prevents the 

accumulation of the CP-sulfenylated form of purified GPx7 in presence of H2O2 [89]. It will be 

interesting to assay the oxidation state of GPx7 and 8 in living cells. At all events, evidence for a 

possible toxic gain-of-function of sulfenylated GPxs came from experiments with an engineered 

H2O2-sensing fluorescent protein [91]. This protein is a fusion of redox-sensitive GFP (roGFP2) 
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and Orp1, which is yeast GPx3. Mutation of CR in Orp1 accelerated disulfide-bond formation in 

roGFP2 in response to H2O2 in vitro. In living cells, however, the CR-mutant sensor failed to 

respond to H2O2 addition, which was due to competing reactions with reducing substrates other 

than roGFP2 including glutathione [91].  

 

 

 

 

 

 

 

 

 

 

 

 

 

7.6. Reducing substrates of ER-resident GPxs 

In analogy to PrxIV, oxidized GPx7 and 8 were demonstrated to act as PDI peroxidases by using 

several different PDIs as electron donors [88] (Table 2). The utility of disulfide transfer onto 

PDIs shall be discussed in the next section. Here, we will touch upon alternative reducing 

substrates, which have been found to interact with GPx7 (Table 2). For instance, although 

glutathione reduces sulfenylated GPx7 at a far lower rate compared to PDI, it has been calculated 

to potentially represent a competing substrate taking into account its millimolar concentration in 

Figure 33: Suggested reaction mechanisms of GPx7. (a) Following peroxide-mediated oxidation of the active-site Cys 
(C57), sulfenylated C57 is either directly subjected to nucleophilic attack by a (deprotonated) Cys in the reducing substrate 
(PDIs/GRP78) or attacked by (deprotonated) Cys86, which results in formation of an intramolecular disulfide bond. In a 
second step, this intramolecular disulfide is attacked by a Cys in the reducing substrate. Both pathways converge in the 
formation of an intermolecular disulfide-bonded intermediate between GPx7 and the reducing substrate prior to the 
completion of the reaction cycle, which gives rise to regenerated, reduced GPx7 and oxidized PDIs/GRP78. (b) 
Hypothesized conformational change prior to formation of a Cys57–Cys86 disulfide bond in GPx7 is depicted on the structure 
of reduced GPx7 (PDB ID 2KIJ). Active-site rearrangement upon oxidation of Cys57 might involve a stacking interaction 
between the conserved aromatic side chains of Phe89 and Trp142 (green), which would embed Trp142 into a more hydrophobic 
environment (dashed white arrow). 
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vivo [86]. However, since the reaction of glutathione with oxidized PDI is very fast [92], the 

physiological relevance of direct glutathione-mediated reduction of GPx7 is questionable.  

In contrast, disulfide transfer from GPx7 to the abundant ER chaperone and UPR target 

GRP78/BiP – as evidenced by cysteine-dependent co-immunoprecipitation from H2O2-treated 

cells – appears to have critical influence on ER physiology [90]. GRP78/BiP carrying the 

resulting Cys41
–Cys420 disulfide exhibits increased chaperone activity towards misfolded clients, 

arguing for a role of GPx7 as oxidative stress sensor and positive regulator of GRP78/BiP [90]. 

Consistently, cells lacking active GPx7 were more susceptible to H2O2 and ER-stress-induced 

toxicity than wild-type control cells [90]. Very much like PrxIV knockout cells (see above), they 

also displayed increased staining with a H2O2-reactive dye compared to wild-type [90].  

Non-targeting siRNA-transfected GPx7 knockout cells displayed harmfully elevated levels of 

siRNA compared to transfected wild-type cells, indicating a potential link between ER-resident 

GPx7 and the degradation machinery of non-targeting cytoplasmic siRNA [93]. This link was 

proposed to involve thiol-disulfide transfer between GPx7 and the nuclear exoribonuclease 

XRN2, although this reaction appears topologically prohibited [93]. Irrespective of this paradox 

but consistent with a role of GPx7 in the processing of small RNAs, non-targeting siRNA 

selectively induced GPx7 expression in wild-type fibroblasts [93], a process mediated by the 

nuclear protein nucleolin and its activity as transactivator of the GPx7 promoter [94]. It is 

interesting to note that the cytosolic membrane leaflet of the rough ER is emerging as a central 

nucleation site of miRNA-/siRNA processing in plants and animals [95,96], and the interplay 

between the RNA silencing machinery and GPx7 (and possibly other ER-resident peroxidases) 

deserves further attention.  

 

 

 

 

Table 2: Published peroxide and reducing substrates of ER-resident peroxidases 
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Compared to GPx7, the enzymatic characterization of GPx8 including the identification of its 

reducing substrates is far less developed. However, since the structures of their active sites are 

nearly superimposable (Fig. 32), GPx7 and 8 are likely to share many of their catalytic properties.  

 

7.7. The two-disulfides-out-of-one-O2 concept 

Oxidative protein folding relies on de novo disulfide generating enzymes and on oxidants, which 

accept the electrons derived from thiol oxidation. While several such electron transfer cascades 

exist in the mammalian ER, resulting in a certain degree of redundancy, Ero1 oxidases (using O2 

as oxidant) and PrxIV (using H2O2 as oxidant) are evidently the dominant disulfide sources 

[29,36,81]. The fact that both enzymes can oxidize PDIs [75,78,81,83,97,98] has led to the 

intriguing concept that the four oxidizing equivalents in O2 can be exploited by the consecutive 

activity of Ero1 and PrxIV to generate two disulfides for oxidative protein folding [79,99] (Fig. 

34). Along the same lines, the PDI peroxidase activity of GPx7 constitutes a pathway for the 

productive use of Ero1α-derived H2O2 in the biosynthesis of disulfides [88,89].  

 

 

 

 

 

 

 

 

 

 

Figure 34: The two-disulfides-out-of-one-O2 concept. O2 (red)-mediated oxidation of Ero1a results in the 
generation of one disulfide bond (red), which is transferred to a reduced PDI, and of one molecule of H2O2. ER-
resident peroxidases (P) – probably exclusively of the GPx family (see main text for details) – can couple the 
reduction of Ero1a-derived H2O2 to H2O with the introduction of a second disulfide bond (red) into a PDI 
family member, thereby exploiting the oxidizing capacity of H2O2. 
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Evidence for a contribution of ER-resident peroxidases to oxidative protein folding is manifold. 

Mixed disulfide reaction intermediates between peroxidase and PDI were isolated from cells 

[75,81,89], and in the case of PrxIV, interactions with the PDI family members ERp46 and P5 

were also reported [75,83]. Interestingly, of the two Cys-X-X-Cys active sites in PDI, PrxIV 

preferentially oxidizes the a´ and GPx7 the a domain active site [75,89]. Since the mixed-

disulfide complexes were stabilized by a Cys-X-X-Ala active site configuration in PDI [75], they 

must have resulted from the reaction of reduced PDI with oxidized peroxidase [100]. 

Accordingly, consumed peroxidase molecules can be activated/recycled by PDIs. It is possible 

that the availability of reduced PDIs actively adjusts the activation state of ER peroxidases. Thus, 

peroxidases could be kept in an inactive state unless new disulfides are needed, as indicated by 

the accumulation of reduced PDIs. In a very related manner, the intramolecular disulfides, which 

shut off Ero1α, are feedback-regulated by the availability of reduced PDI [101]. In contrast to 

Ero1α, however, the redox state of PrxIV appears to be predominantly reduced in cells at steady 

state [83].  

Peroxidase/PDI-catalyzed oxidative protein folding can be reconstituted. Refolding of reduced 

RNase A, a process requiring introduction of four disulfides, occurs in the presence of PDI 

together with PrxIV or GPx7 [81,89]. It is important to note though that PrxIV-driven refolding 

appears to depend on the addition of H2O2, whereas GPx7-driven refolding readily works in 

presence of Ero1α, which generates H2O2 by reducing ambient O2 [81,89]. This difference 

parallels the evidence discussed above for a preference of GPx7 or 8 over PrxIV to detoxify 

Ero1α-derived H2O2.  

The role of PrxIV as a source of disulfide bonds is also strongly supported by genetics. Ero1-

deficient mouse embryonic fibroblasts are hypersensitive to the loss of PrxIV, which causes 

hypooxidation of an ER-targeted thiol-disulfide sensor, ER dilation, and decreased cell viability 

[81]. Somewhat counterintuitively, compound loss of Ero1α/β and PrxIV also leads to oxidative 

phenotypes such as glutathione depletion and cell senescence [82]. These phenotypes are 

attributed to the failure to reduce H2O2 from as yet unidentified origin, which causes shortage of 

intracellular ascorbate (vitamin C) associated with defects in collagen synthesis and scurvy [82]. 

Last but not least, co-depletion of PrxIV in hepatocytes exacerbates the cytotoxic phenotype of 

Ero1α/β depletion and further slows ER re-oxidation after reductive challenge [36].  
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Taken together, a role in oxidative protein folding is particularly well documented for PrxIV, but 

is also shared by the ER-resident GPxs. Still, although appealing, we consider it likely that the 

concept of peroxidase-dependent exploitation of Ero1α-derived H2O2 (Fig. 34) only applies to 

GPxs (see above).  

 

7.8. Organismal roles of ER peroxidases 

For PrxIV and GPx7, in vivo studies have been performed in different model organisms. One 

striking conclusion of these studies is that whole-body loss-of-function of GPx7 in mice shows a 

stronger organismal phenotype compared to PrxIV deficiency. No in vivo characterization of the 

role of GPx8 has been published so far.  

Male mice lacking a functional X-chromosomal PRDX4 gene (PrxIV-/y) display a mild 

phenotype, which manifests predominantly by testicular atrophy accompanied by increased DNA 

fragmentation and peroxidation of lipids and proteins [69]. The number of sperms is markedly 

decreased in the epididymis of PrxIV-/y mice, which, however, does not affect their fertility [69]. 

These phenotypes are likely attributed to loss of the testis-specific transmembrane isoform of 

PrxIV [65].  

Similarly, in fruit flies a decrease in PrxIV expression to 10-20% of wild-type levels is associated 

with increased [H2O2] and lipid peroxidation in membrane preparations from whole animals 

[102]. However, negative impact on longevity was only observed under oxidative stress 

conditions induced by H2O2 or paraquat treatment. Strikingly, 6-10 fold, global overexpression of 

PrxIV in flies, which shifted its subcellular distribution from predominantly ER-resident to 

cytosolic and secreted, resulted in dramatically shortened lifespan under non-stress conditions 

and increased apoptosis in thoracic muscle and fat body tissue [102]. Since this proapoptotic 

phenotype upon PrxIV overexpression was not reproducible in cultured fly cells, non-cell 

autonomous and/or fly-specific in vivo effects of secreted PrxIV need further consideration.  

In contrast to this, overexpression of PrxIV in mice has beneficial effects in the context of 

metabolic diseases. For instance, elevated levels of PrxIV in apolipoprotein E negative mice, 

which were fed a high cholesterol diet, have anti-atherogenic effects with less oxidative stress, a 

decrease in apoptosis, and suppressed T-lymphocyte infiltration [103]. In addition, cytoprotective 
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effects of overexpressed PrxIV were evident in non-genetic mouse models of both type 1 and 

type 2 diabetes mellitus (T1DM and T2DM) [104,105]. Specifically, autoimmune-induced 

apoptosis of pancreatic β-cells (in T1DM) and fatty liver phenotypes and peripheral insulin 

resistance (in T2DM) were diminished upon PrxIV overexpression. It is possible that more 

efficient clearance of inflammatory ROS is the underlying reason for the ameliorated phenotypes 

of these mice [104,105]. However, one has to bear in mind that overexpression of PrxIV above a 

certain threshold exceeds ERp44-mediated ESP retrieval [67] and therefore may result in 

abnormally high levels of secreted peroxidase. Overexpression studies therefore need careful 

evaluation, before implications on normal physiology can be conclusively deduced.  

Interestingly, endogenous PrxIV is dramatically upregulated during terminal B-cell 

differentiation [106], a process accompanied by increased ROS levels but not by discernible 

hyperoxidation of the ER lumen [107,108]. PrxIV knockout splenocytes, however, develop 

normally and do not show a defect in antibody secretion, arguing for redundancy among different 

oxidant control mechanisms [106].  

In contrast to the relatively mild PrxIV knockout phenotype [69], quite dramatic changes 

including a shortened lifespan were documented for GPx7-/- compared to control mice [90]. 

Besides induction of UPR hallmarks in different organs, these mice exhibited oxidative DNA 

damage and apoptosis predominantly in the kidney. Furthermore, multiple organ dysfunctions 

including glomerulonephritis, spleno- and cardiomegaly, fatty liver, and multiple malignant 

neoplasms were diagnosed [90]. Carcinogenesis and premature death were concluded to reflect 

systemic oxidative stress [90].  

Along this line, Peng and coworkers proposed a tumor-suppressive role for GPx7 in oesophageal 

epithelial cells [109]. Progression from healthy tissue to premalignant Barrett’s oesophagus (BO) 

and further to malignant oesophageal adenocarcinoma (OAC) is associated with gastro-

oesophageal reflux, leading to ROS accumulation and increased oxidative DNA damage. 

BO/OAC neoplastic transformation is accompanied by decreased expression of GPx7 [110]. The 

diminished levels of GPx7 in BO and OAC tissues are due to DNA-hypermethylation within the 

respective promoter region. Bile acid-mediated intracellular and extracellular ROS accumulation 

in oesophageal epithelial cell culture was also responsive to overexpression or downregulation of 

GPx7 [111]. Furthermore, reconstitution of GPx7 expression suppressed growth and promoted 
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cellular senescence in both in vitro and in vivo OAC models [109]. Therefore, inactivation of 

GPx7 is a crucial step in BO/OAC formation. Despite these conclusive links between oxidative 

injury and GPx7 expression in vivo, it is important to emphasize that the actual source of 

peroxide that causes ROS accumulation in absence of GPx7 remains to be identified. A possible 

involvement of Ero1α [112] remains to be experimentally verified.  

 

7.9. Conclusions and perspectives 

The reaction cycle of a peroxidase is split into an oxidizing part, which uses a source of 

hydroperoxide, and a reductive part, which uses a dithiol substrate. As such, available data 

highlight a two-fold function of ER-resident peroxidases; on the one hand, they can reduce and 

spatially restrict local H2O2 or lipid hydroperoxides and on the other hand, they are net producers 

of disulfide bonds.  

The model, which has probably generated the highest resonance, holds that ER peroxidases 

eliminate the obligatory and potentially harmful side product of Ero1-catalyzed disulfide-bond 

formation, H2O2, by exploiting its oxidizing power to generate a second disulfide in PDI for 

oxidative protein folding (Fig. 34). The fact that all ER peroxidases – PrxIV, GPx7, and GPx8 – 

can catalyze steps of this pathway in vitro [75,81,88,89] has led to the understanding that they 

basically perform the same function [65]. But do ER peroxidases really all do the same? Are their 

functions redundant? We believe that this is clearly not the case. For instance, the prominent 

phenotype of the GPx7-/- mouse strongly suggests that neither PrxIV nor GPx8 can broadly 

substitute for the loss of GPx7 [90]. This could be due to the fact that GPx7 uses unique reducing 

substrates (other than PDI family members) or metabolizes phospholipid hydroperoxides in the 

ER-facing membrane leaflet in vivo. Alternatively, tissue-specific expression levels might 

prohibit functional compensation between ER peroxidases. These questions are exciting subjects 

for future research. Clearly, it will also be interesting to learn about the phenotypes of GPx8-/- and 

GPx7/8 double knockout animals. Whether or not other human GPx isoforms like e.g. the 

ubiquitously secreted GPx3 [21] have an additional intracellular function in the ER is another 

open question.  
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Differences between ER peroxidases also manifest in terms of the source of hydroperoxide. 

There is clear proof for PrxIV reacting with Ero1-independent H2O2 [81,82], and unpublished 

data from our laboratory has demonstrated that this peroxidase does not react with Ero1a-derived 

H2O2 in cells under steady-state conditions. In this respect, one of the most urgent questions is, 

which is the H2O2 source that drives PrxIV-dependent oxidative protein folding [36,81,82]. 

Identification of this source will likely provide major new insights into the diffusion pathways of 

this metabolite.  

Another area for future investigation concerns potential signaling roles of H2O2 in the ER lumen 

and beyond. For instance, the interplay of ER-resident NOX family members and peroxidases is 

largely unexplored. Likewise, it is currently unclear whether or not the known proapoptotic role 

of Ero1a during ER stress [113,114,115] is mediated by diffusion of Ero1a-derived H2O2 into 

the cytoplasm, as is suggested [7]. It is foreseeable that aquaporins will be found to play a central 

function in these processes at the ER membrane [8]. As every discovery arouses further interest 

and curiosity, we are expecting new insights and again new questions to come.  
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