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A B S T R AC T

Image segmentation is an important and challenging task in medical
image analysis. Especially from low-quality images, segmentation algo-
rithms have to cope with misleading background clutter, insufficient
object boundaries and noise in the image. Statistical shape models are
a powerful tool to tackle these problems. However, their construction
as well as their application for segmentation remain challenging. In this
thesis, we focus on the wisdom-tooth shape and its segmentation from
Cone Beam Computed Tomography images. The large shape variation
leads to difficult registration problems and an often too restrictive shape
model, while the challenging appearance of the wisdom tooth makes the
model fitting difficult.

To tackle these problems, we follow on kernel-based approaches to
registration and shape modeling. We introduce a kernel, which consid-
ers landmarks as an additional prior in image registration. This allows
to locally improve the registration accuracy. We present a Demons-like
registration method with an inhomogeneous regularization which allows
to apply such a landmark kernel.

For modeling the shape variation, we construct a kernel comprising a
generic smoothness and an empirical sample covariance. With this com-
bined kernel, we increase the flexibility of the statistical shape model.
We make use of a reproducing kernel Hilbert space framework for reg-
istration, where we apply this combined kernel as reproducing kernel.
To make the approach computationally feasible, we perform a low-rank
approximation of the specific kernel function.

Because of a heterogeneous appearance inside the wisdom tooth, fit-
ting the statistical model to plain intensity images is difficult. We build
a nonparametric appearance model, based on random forest regression,
which abstracts the raw images to semantic probability maps. Hence,
the misleading structures become semantic values, which greatly sim-
plificates the shape model fitting.
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I N T RO D U C T I O N & R E L AT E D WO R K





1I N T RO D U C T I O N

Medical imaging techniques have become very important in preoperative
surgery planning and risk assessments as well as in disease diagnostics.
Specifically, their noninvasive nature makes them indispensable. On the
basis of only images, obtained from a computed tomography scanner
for instance, an overview over the patient’s anatomy can be derived.
However, in the 3D case, it is difficult to a-priori recognize or see the 3D Imaging
three dimensional structure of an organ or a bone by looking solely at
slices of the image. Thus, having the possibility to look at a rendered
3D scene of the patient’s principal anatomical structures is much more
comfortable. To generate such a scene, the objects of interest have to
be virtually segmented in the image. However, the manual slice-by-slice
segmentation is a tedious task and can lead to tendinitis originating by
an excessive usage of the computer mouse (see Figure 1). Further, it
can be difficult to determine, where the border of the object is, since
the 3D structure can only be guessed by seeing the stacked 2D image
slices. Thus, computer added segmentation is crucial to reach fast and
accurate segmentations.

Since medical imaging techniques have improved and their handling
has become more comfortable, the need for applying them in routine ex-
amination has increased in the past few years. Hence, techniques such as
Cone Beam Computed Tomography (CBCT) became popular, because
of their low cost and the use of only low radiation. Especially in den-
tal medicine, CBCT devices are broadly used, because they allow for
examinations where the patient is not exposed to an intensive radiation.

However, this comes along with a loss of image quality, which poses Low-quality
Imagesa challenge to the segmentation algorithms. The low radiation has the

effect that the resulting images have a low contrast and a small signal
to noise ratio. In Figure 2, a slice through an image depicts a typical
jaw region. Between the tooth’s roots and the jaw there is nearly no
difference in intensity. Hence, it is difficult to distinguish between tooth
structure (object) and surrounding jaw (background). Further, the heavy
noise in the image disturbs the homogeneous appearance of the object
of interest. Segmentation algorithms for this kind of images have to cope
with insufficient object boundaries, misleading background clutter and
a strong noise.

3
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Figure 1: After segmentation of few wisdom teeth from CBCT images,
I got a tendinitis in my right arm. Fortunately, I am equipped with
another arm which lets me to use the computer mouse now with the left
hand.

1.1 shape models

To reach a global consistency across the segmented object shape, despite
the mentioned difficulties, the application of statistical shape models is
well established. The main idea is to introduce a prior over shapes, which

Wisdom
Tooth Shape

are expected as a segmentation result. This prior is usually built upon
given sample shapes, which represent the class of target shapes as good
as possible. Having modeled the variation of shape within this class,
the segmentation can be quantified in terms of such a shape prior, in
order to consider only meaningful shapes for segmentation. A challenge
remains, if there are few samples available compared to the variation ofStatistical

Shape Prior the object class, since the shape prior could become too restrictive. We
will address this problem and show opportunities to combine the sample
based prior with generic smoothness priors.

1.2 registration

The modeling of the variation of the target shape class requires that for
each point on a shape, the corresponding point in the remaining other
sample shapes is known. Thus, at each point, the distribution over the
shape variation is assessable. To put it another way, a (smooth) transfor-
mation from a reference shape to a target shape is desired. The process,
where such a transformation is sought, which gives rise to the point-to-
point correspondence between the shapes, is referred to as registration.
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Figure 2: In the left figure, a slice through a CBCT image is shown.
The right one shows the same slice but overlayed with the ground truth
tooth outline (blue).

The expressiveness of the final shape prior hinges on the quality of Correspon-
dence
Problem

the registration, whose derivation is, however, an ill-posed problem. That
means, a solution to the registration of two shapes, if it exists, is not
unique, since the concept of correspondence between arbitrary shapes
is ambiguous. Usually, smoothness heuristics for the transformation be-
tween the shapes are used to reduce this ambiguity. Moreover, in prac-
tice, it is important that the user is enabled to locally improve the
registration. By providing landmarks, the user adds pairs of correspond-
ing points, which influence the shape prior for a refined registration. In
Figure 3, examples are shown, where the incorporation of the landmarks
greatly improves the registration of wisdom tooth shapes. A main topic
of this work is, how different smoothness assumptions as well as land-
marks can be integrated into the registration.

1.3 appearance models

In deformable shape model based segmentation, a deformation to a ref-
erence shape is sought, such that it matches the shape in the target
image. The matching criterion depends not only on the shape prior but
also on a similarity measure between the varied reference and the target
shape. However, the plain intensity values are often not suited to be
considered in the similarity measure, since they do not directly match
structural facts. For instance, the roots and the jaw bone (see Figure 2)
share equal pixel intensities but are different objects. Furthermore, the
appearance inside the shape could be very heterogeneous which can vio-
late the correspondence assumption across the object class. To overcome
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Figure 3: In this figure, the ground truth target shapes are colorized
in blue, while the registered reference shapes are colorized in yellow. In
the first row, no landmarks have been used for registration, which yields
bad registration results. In these examples, this is mainly because of
insufficient image features. In the bottom row, landmarks, visualized
as red dots, have been incorporated applying the hybrid registration
approach presented in this work. The resulting registrations (yellow)
better match the target shapes (blue).

these issues, appearance models are in wide use. The representation ofAbstraction
of Low-level

Cues
the image by an appearance model abstracts the physically obtained
pixel intensities to semantic values. Ideally, such an abstraction allows
to distinguish between objects with equal pixel intensities and is robust
against the strong noise. In this work, we present a non-parametric ap-
pearance model, which is learned from sample data. In particular, we
focus on models for object/background prediction to make the statisti-
cal shape model based segmentation more robust. In Figure 4, example
object predictions are depicted, where on the right picture, beside the
bright tooth structures, the dark inside of the tooth is predicted as object
as well.
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Figure 4: The figure shows a slice through a denoised CT image (left).
Based on the pixel intensities, dentin and jaw as well as pulp and air
cannot be distinguished. An appearance model of the tooth, based on
solely the pixel intensities, leads to similar problems. In the middle, this
issue is visualized, where the object probability of the tooth, based on an
intensity based model is shown (red=1, blue=0). The pulp (dark inside of
the tooth) cannot be predicted as object. However, using neighborhood
dependent features, higher level structures can be learned. In the right
object probability map, the jaw and air have a low, while the dentin and
the pulp have a high object probability.

1.4 contribution

Our work has been inspired by the task of segmenting the wisdom tooth
from a CBCT image for preoperative risk analysis. The low image quality
motivates the use of statistical shape models. However, the variation of
the wisdom tooth shape is large and difficult to model, while the number
of sample images is relatively rare in our case. The consequence is, that
the statistical model becomes too restrictive and does not generalize
well. As such, in this work, we focus on kernel based approaches for
implementing smoothness priors, to reach a framework, where priors
can be flexibly changed and combined. For example, we construct kernels
to reduce the model bias in order to make the statistical model more
flexible.

Two approaches for registration are considered, where the first is
based on the variational registration approach [14, 19, 93, 94]1, where a

1 These approaches are also known as Demons-like registration methods, where
the Gaussian filtering approximates the diffusion regularization.
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partial differential equation is solved, and in the second one, a solution
is sought directly in a reproducing kernel Hilbert space (RKHS).

registration and shape models
• Inhomogeneous Regularization

We generalize the variational registration approach, to spatially
varying regularization (i.e. not translation-invariant). Thus, in
our approach, a kernel which incorporates landmarks can be in-
tegrated as prior, which enables a hybrid landmark and image
registration.

• Efficient Nonstationary Filtering
The variational approach is based on an iterative convolution
scheme. Hence, for the inhomogeneous regularization an efficient
nonstationary filtering has to be implemented. Using the Tucker
decomposition [96], we compress the local filter kernels, which
leads to an efficiently nonstationary filter method. For stationary
kernels, we apply low-rank approximation of the filter kernel to
achieve fast separable filtering.

• Incorporating Landmarks in RKHS Registration
We show, how the same hybrid landmark prior can be integrated
in the very general registration method of Schölkopf et al. [87],
where a solution is directly sought in the corresponding RKHS.

• Low-rank Approximation of Kernels
To take advantage of this flexible registration framework, even
for large 3D images, we approximate an orthogonal basis of the
corresponding kernel function using the Nyström approximation.

• A Framework for Statistical Model Bias Reduction
This formulation leads to a unified framework for registration and
statistical shape model fitting. With the combination of both, a
statistical model and a generic smoothness prior, we reduce the
model bias and thus relax the restrictions of the shape model, to
reach better fitting performance.

• Geodesically Damped Kernels
In addition, we construct a geodesic surface prior. This prior
damps correlations between parts on the surface of the shape,
which are geodesically wide apart. With this prior, the model is
equipped with a localized property which reduces the bias of sta-
tistical surface models as well.
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appearance model Moreover, for the statistical shape model
based segmentation, we present a combined approach of a parametric
shape and a nonparametric appearance model.

• Random Forest Regression as Appearance Model
The appearance model is based on random forest regression. By
incorporating features, which consider a long range neighborhood,
high level structures are predicted as object resp. background,
which significantly improves the statistical shape model based seg-
mentation.

• Appearance Model and an Implicit Shape Model
The reference object, represented as a label map, is deformed by
a statistical deformation model. Such an implicit model allows to
easily combine the modeled shape variation with the appearance
model.

• Incorporate Regions and Object Boundary
We propose an image similarity metric for the model fitting, which
incorporates the regional object and background probability as
well as the object boundary.

• Surface Fitting to Object Boundary
We apply the boundary part of the metric in surface model fitting,
where for instance the geodesically damped surface model is used.

1.5 related work

Non-rigid image registration has been extensively studied in literature
and several attempts have been made to reach a general framework for
different smoothness priors. In the following, the literature of this field
is reviewed, focused to the work in hand. For a more detailed study
of deformable image registration we refer to the survey of Sotiras et al.
[91]. Subsequently, we examine the related work to statistical shape mod-
els, with the focus to the application of segmentation. A comprehensive
overview can be found in Tsechpenakis [95].

registration The first attempts to non-rigid and nonparametric
image registration go back to the 90’s. The deformations have been mod-
eled in terms of linear elasticity, which is described by the Navier-Cauchy
partial differential equation (PDE) (cf. Evans [31], McOwen [66] and Elastic

Image
Registration

Modersitzki [67] for a thorough study of PDEs). The smoothness prior,
better known as the regularization, is implemented by the convolution
of the differential operator’s Green’s function with the force field [19].
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The shortcoming in this approach is its computational demand. In the
popular and very efficient Demons algorithm (Thirion [94], Pennec et al.
[74]) the registration is modeled in terms of a diffusion process with the
price of giving up the elastic property of the resulting deformations. How-
ever, with an efficient local linearization scheme, the regularization could
be implemented by fast Gaussian filtering. In the same manner, Long
et al. [60] proposed to implement the regularization by filtering with the
exponential kernel, which better approximates the Green’s function of
the linear elasticity operator. But, the filtering remains expensive, sinceKernel

Functions as
Smoothness

Prior

the convolution could not be efficiently implemented separable, as it is
done for the convolution with a Gaussian. Beuthien et al. [14] proposed
an efficient separable filter approximation scheme for the filtering with
arbitrary stationary kernel functions. But, their approach only works
efficiently if the filter kernel is separable. In our work, we use a low-
rank approximation, to more accurately approximate separable filters of
arbitrary nonseparable ones to still benefit from separable filtering.

Further, another type of regularization have become popular, where
the resulting deformations are smoothly invertible. This is in particular
meaningful in medical applications, where spatial foldings are unnatu-
ral and undesirable. First attempts were presented by Christensen andSmoothly

Invertible
Deformations

Johnson [22], where in the registration the forward and reverse transfor-
mation are jointly estimated as being inverse of one another. To stay in
the efficient Demons-framework, in [12, 84, 100], exponential maps have
been applied, which ensures the deformations to be diffeomorphic. We
also integrate this extension in our approach.

In contrast to the diffeomorphic Demons approach [100], Beg et al.
[13] introduced the LDDMM framework, which is based on time-varying
speed vector-fields. This ensures that the resulting deformations are
smoothly invertible i.e. diffeomorphic. Schmah et al. [83] extended this
approach to spatially varying kernels.

hybrid registration The above mentioned methods are based
on local iterative optimization schemes. As such, they rely on reasonable
initializations and are prone to get stuck in local minima. Furthermore,
due to e.g. artifacts, the image forces not always lead to the desired
correspondence. To cope with these problems, hybrid registration algo-
rithms have been proposed, where the image as well as landmarks are
considered. For example in [39, 47, 72], the landmarks are treated as ad-Incorpora-

tion of
Landmarks

ditional constraints. The methods require a perfect interpolation of the
landmarks resulting in challenging numerical problems during optimiza-
tion. Other methods do not enforce the landmark constraints strictly,
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but add the landmark differences as another cost term to the minimiza-
tion functional [62, 71, 87, 90]. In our work, we propose to integrate the
landmarks into the regularization, as an additional deformation prior us-
ing Gaussian process regression. Advantageous is, that the uncertainty
of the landmarks can directly be defined independently of the image
similarity. For applying this in the Demons-like approach nonstationary
filtering is required, since the regularization depends on the spatial loca-
tion. Using tensor decomposition techniques, we present an efficient way
to implement the nonstationary filtering. Locally adaptive regulariza-
tions have been proposed also by Cahill et al. [20]. With a coupled PDE
system, an efficient image-driven adaptive regularization is derived.

rkhs registration An alternative approach to registration is
the direct search of a solution in a reproducing kernel Hilbert space
(RKHS) [86, 87, 92]. Each positive definite kernel function gives rise to
a specific regularization property. The flexibility of the RKHS framework
comes at the price of a computational demand that exceeds capabilities
in medical image applications. However, using low-rank approximations
of the corresponding kernel, we present a very general and efficient reg- Low-rank

Approxima-
tion

istration approach, where arbitrary kernels, as for example an empirical
covariance function learned from sample data, are applied, combined
and conditioned on landmarks. Unlike the approach of Schölkopf et al.
[87], where a generic kernel is used as regularization (e.g. a Gaussian
kernel) and landmark costs are added as a separate term to the opti-
mization, in our work, we derive a hybrid registration by conditioning
the prior kernel on the landmarks. We derive a covariance function of
the posterior model using Gaussian process regression.

The use of Gaussian process models for non-rigid registration has been
extensively studied in the 90’s by Grenander and Miller [38] (and refer-
ences therein). The novelty of our work is the use of the Nystöm approx- Subsampling

Basis
Functions

imation [77] to obtain a low-rank approximation of the corresponding
Gaussian process. This leads to an efficient numerical method, for any
kernel function which is sufficiently smooth. An analytical form of the
kernel’s basis functions is not required. In particular, this makes it pos-
sible to combine kernel functions for shape model fitting and non-rigid
registration.

shape and appearance models Since generic regularizers
often are not restrictive enough, statistical shape model approaches like
Active Shape Models [25] and the Morphable Model [16], which are based
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on point distributions, have been extensively used in image segmentation
[95].

In parametric approaches, a segmentation is sought within the mod-
eled variation of the reference shape. This process is referred to as model
fitting. In approaches based on point distributions [18, 25, 58], appear-
ance profiles orthogonal to the object boundary drive the model fitting.
One problem common to these approaches is, that they do not model the
object and background explicitly, since they only consider informationModelling

Appearance
and Shape
Boundary

along the object boundary (cf. Schönborn et al. [88]). Region based ap-
pearance methods [17, 26, 54] model the whole inside of the object using
the learned intensity or appearance distribution of the object from regis-
tered training samples. However, no background is modeled. In Van Gin-
neken et al. [98], the background is considered, but only based on few
feature landmarks.

Cootes et al. [24] and a similar approach by Lindner et al. [59] use
random forest regression voting to drive the evolution of the surface
model. However, it has only been applied to 2D images with small surface
models of between 17 to 65 points.

Atlas-based segmentation methods [33, 34, 73] try to construct a refer-
ence shape, having a representative appearance, which is fitted to unseen
data. An advantage of atlas-based approaches is that the optimization
is straightforward. However, an atlas has to be selected or constructed
and it is difficult to cover the background in an atlas.

Cremers et al. [29] propose a linear model of probabilistic training
shapes as a prior and derive a convex energy term for segmentation.
The linear model is essentially an eigenface model [97] of label maps,
which is fitted to a target object probability map. In our work, however,Implicit

Shape Model we consider a deformation model on a reference shape (cf. Rueckert
et al. [80]), which leads to a nonconvex optimization, but allows to gen-
erate shapes of a broader class of objects. In Cremers et al. [29], color
histograms are learned to predict object probabilities, whereas in Rug-
geri et al. [81], conditional random fields are used for capturing local
pixel dependencies for classification. To improve the object prediction,
we propose to apply random forest regression using advanced features
as for example harmonic filters [82], for considering possibly long range
neighborhood.

Lempitsky et al. [56] introduced the use of random forest classifica-
tion for image segmentation in ultrasound images. They count on the
image intensities and the spatial position as features. Geremia et al.
[36] applied random forests directly for image segmentation as well. AsRandom

Forest
Classification

features they used mean intensities over displaced asymmetric cuboidal
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regions. Margeta et al. [65] invented a layered random forest segmen-
tation scheme. They first normalize the image intensities with the help
of random forests, perform a rigid image registration of the target and
again learn a random forest for the final segmentation. Similar features
have been used as in Geremia et al. [36]. All these approaches, however,
rely on the random forest appearance model for segmentation and do
not combine their model with a shape model to reach global consistency
across the segmentation, as it is done in our work.

Geometric approaches [28, 57, 68] are topology independent and are
very successful. But, because of a large degree of freedom, the optimiza-
tion is not straightforward and computationally intensive [78]. These
approaches are not in the scope of this work.

enhanced model space Statistical shape models are often too
rigid as they do not capture the full variability of an object class. Espe-
cially, if the number of training samples is small, compared to the shape
variability, the generalization of shape models can be poor. Hence, var-
ious approaches have been proposed to relax these model restrictions.
For instance, Wang and Staib [102] and Albrecht et al. [8] proposed to
add the statistical model prior as soft-constraint to the registration func- Enhancing

the Model
Span

tional. Alternative approaches try to artificially enhance the model span.
Lebart [55] introduced a local principal component analysis, where cor-
relations between points of the shape are damped with respect to their
spatial proximity. In a similar way, Lötjönen et al. [61] created an arti-
ficially enhanced training set of shapes. However, both approaches only
work with small shapes, since the full covariance matrix has to be ex-
plicitly calculated.

Based on the low-rank approximation framework, which we present in
this work, we show two different possibilities to enhance the model span.
First, the statistical model is combined with a generic kernel, which
reduces the model bias. The combination is again a kernel, whose basis
functions are approximated within our framework. Second, we construct
a kernel, where the correlations between points is damped with respect Combining

Kernel
Functions

to their geodesic distance on the surface of the object. As a result, the
model is less restrictive and the kernel regularizes distances on the shape
surface rather than direct Euclidean distances.

1.6 overview

This thesis is organized as follows. In the following Chapter 2, the el-
ementary minimization formulation for registration is introduced. Two
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approaches for minimization are presented. In Section 2.2 the variational
approach for registration is introduced. This is followed by the inhomo-
geneous regularization approach in Section 2.2.3, which is applied to
hybrid landmarks and image registration. In Section 2.4, the low-rank
Gaussian process approach for registration is presented, which is ap-
plied to hybrid registration as well, using a landmark posterior model.
In Chapter 3, the statistical shape model is introduced from the Gaus-
sian process perspective, which matches the low-rank Gaussian process
formulation of Chapter 2. This is followed by the nonparametric statis-
tical appearance model in Section 3.2 which is used for statistical model
fitting for segmentation. In Chapter 4, the presented approaches are
evaluated. We conclude our contributions in the last Chapter 5.
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S H A P E M O D E L I N G & O B J E C T
S E G M E N TAT I O N





2R E G I S T R AT I O N

In this chapter, we introduce a very general objective functional, which
will appear throughout this work. It is interpreted as registration prob-
lem in this chapter and it will turn out in the following chapter, that
it can also be interpreted as statistical deformable model-based image
segmentation problem. To flexibly model smoothness prior, we focus on
two kernel-based approaches to minimize that functional. The first is
based on the variational principle where a semilinear PDE is approxi-
mately solved. We additionally present an inhomogeneous regularization
scheme, which makes it possible to incorporate landmarks into the reg-
ularization. In the second approach, a solution is directly sought in an
RKHS. This allows to incorporate landmarks in the regularization as
well, however, an exact solution is computationally costly. Finally, we
present an approximation scheme, to efficiently find an approximated
version of the optimum in the RKHS.

2.1 problem description

In registration, the goal is to express a new target image by a well
known reference image, such that knowledge about the reference can be
transfered to the target. More concretely, the point-to-point correspon-
dence between the images is sought, such that this knowledge transfer
becomes possible. For instance, if in the reference an object is marked
by a label, this label can be transfered to the target image and gives
rise for a segmentation. Given a target image IT : Ω ⊂ IR3 → IR, for Segmenta-

tion by
Registration

each point x ∈ Ω in a certain domain Ω the assignment of the label
l ∈ {0, 1} that corresponds to the object (l = 1) or the background
(l = 0) is sought, which yields a label map LT : Ω ⊂ IR3 → {0, 1}. If a
representative reference image IR : Ω ⊂ IR3 → IR and its corresponding
label map LR : Ω ⊂ IR3 → {0, 1} is known, the segmentation problem
can be formulated in terms of a registration problem. That means, a
displacement field u : Ω ⊂ IR3 → IR3 is sought, such that each point in
the warped reference image semantically corresponds to the point in the
target image IR(x + u(x)) =̂ IT (x), ∀x ∈ Ω. Having found a reasonable
u, the reference label LR can be transfered to the target image where
LR(x+u(x)) =̂ LT (x), ∀x ∈ Ω is finally the segmentation. In Figure 5, a

17
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Figure 5: As a result from the registration, a displacement field u is
given, which can be used to transform the reference (blue) to the target
shape (red).

reference tooth shape (blue) is transformed along u to the target shape
(red).

loss functions For finding an u, which registers IR and IT , a
matching criterion between the two images is needed. Such a criterion is
quantified in terms of a distance function D[IR, IT , u], which measures
the dissimilarity between the transformed reference and the target im-
ages. This measure can be expressed by a loss function L : IR × IR → IR,
which defines the dissimilarity of two point values IR(x + u(x)) and
IT (x). By integrating over the full domain Ω, the corresponding image
to image dissimilarity metric becomes

Squared Loss

D[IR, IT , u] :=
∫

Ω
L(IR(x + u(x)), IT (x))dx. (2.1)

A simple and very frequently used loss function is the squared loss

Geman
McClure

Loss

Huber Loss

Ls(x, x′) := (x − x′)2 (2.2)

which strongly penalizes dissimilar values. Hence, it is not robust with
respect to e.g. artifacts in the image. The Geman McClure loss [35]

LGM (x, x′) := (x − x′)2

1 + (x − x′)2 (2.3)

is a robust loss function, which relaxes the penalty for large differences.
Thus, the influence of outliers, as for example artifacts, is reduced. A
behavior of something in between these two loss functions results from
the Huber loss [45]

Lh(x, x′) := β2
(

|x − x′|
β

− log
(

1 + |x − x′|
β

))
. (2.4)
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Reference Target undesirable desirable

Figure 6: Based on this example, the ambiguity of the correspondence
problem can be discussed. Let assume that the background value greatly
differs from the values inside the circle or the oval. If we sum up the
point value difference of the transformed reference and the target at
the four displacement vectors, this leads to the same “cost” in both
scenarios undesirable and desirable. However, in medical image analysis,
transformations as the ones in undesirable are unnatural and would mean
that tissue or bone structures can be folded over. Therefore we prefer
transformations as the desirable one.

In the experiments in Chapter 4, we apply the squared as well as the
Huber loss functions, depending on which kind of images are registered.
Further, in combination with the appearance model introduced in this
work (cf. Section 3.2), we present a more complex similarity measure,
where the object and its boundary as well as the background is consid-
ered.

2.1.1 Regularized Minimization Functional

Minimizing the image distance with respect to u is an ill-posed problem,
since no unique minimum exist. For instance, a trivial and undesirable
solution would be to find an arbitrary point x′ in the target image,
where IR(x) ≈ IT (x′) and define u(x) := x − x′. Figure 6 illustrates this
problem.

Hence, some regularity resp. smoothness of the displacement field u is
desirable. Instead of simply considering D, in the following regularized
minimization functional

û := arg min
u∈U

D[IR, IT , u] + ηR[u], (2.5)

a regularizer R is incorporated, which additionally measures how well
the current solution u fits to the prior assumption about the space of
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admissible deformations U . The trade-off between the two terms is con-
trolled by the parameter η.

regularizers For penalizing undesirable deformations as visual-
ized in Figure 6, the following regularizers quantify the smoothness of
the sought transformation. The diffusion regularization

Rdiff[u] := 1
2

d∑
i=1

∫
Ω

‖∇ui(x)‖2dx, (2.6)

favors small changes in u i.e. smooth displacement fields. The sum in
Equation 2.6 goes over all space dimensions d, and ui indicates the i-
th component of u. This regularization is often applied in Demons-like
registration methods [93, 94]. However, since only the gradients are con-
sidered in this transformation model, this can still lead to unnatural
expansions resp. compressions in the transformation. A soft incompress-
ibility can be ensured by adding the divergence1 ∇· of u to the regular-
ization, which is known as the linear elasticity model [7, 19, 67]

Relas[u] := μ
1
2

d∑
i=1

∫
Ω

‖∇ui(x)‖2dx + ν
1
2

∫
Ω

(∇ · u)2dx. (2.7)

μ and ν define the stiffness and the compressibility respectively. In reg-
istration, the linear elasticity model is often desirable, since it softly
prevents folds in the deformations and penalizes volume changes. Later
in this work, we approximate this model by using an exponential filter
kernel.

2.1.2 Hybrid Image Registration

The image distance D does not necessarily reflect the desired imageIncorporate
Landmark

Displace-
ments

similarity. For instance, high-level features not present in the image or
artifacts, may lead to misleading correspondences. Hence, it is impor-
tant to have the possibility to influence the registration result e.g. by
providing landmarks. In addition to the images IR and IT therefore, lists
XR = {xR

i }n
i=1 and XT = {xT

i }n
i=1 of n corresponding points for each

1 The divergence of u corresponds to the linearization of det[D(x + u(x))] =
1 +∇ · u+ (nonlinear term), which is the degree of compression (it is 1 for no
compression).
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image are considered. The displacements induced by these landmarks
are given by

X ={(xT
1 , xR

1 − xT
1 ), . . . , (xT

n , xR
n − xT

n )}
:={(x1, y1), . . . , (xn, yn)}.

In various methods [32, 39, 47, 72], the landmarks are treated as hard
constraints to the registration functional. The resulting problem is to
find a displacement field that minimizes Equation 2.5, but subject to
additional landmark constraints:

arg min
u∈U

D[IR, IT , u] + ηR[u] s.t. Dlm[XR, XT , u] ≤ ε, (2.8)

where Dlm measures the landmark distance. If ε = 0, a perfect interpo-
lation of the landmarks is required, which results in numerical problems
during optimization. Other methods [62, 71, 87, 89], do not strictly en-
force the landmark constraints, but add the landmarks as an additional
cost to Equation 2.5:

arg min
u∈U

D[IR, IT , u] + τDlm[XR, XT , u] + ηR[u], (2.9)

where τ is a weighting parameter. This approach has the advantage that
the optimization problem is straight-forward to integrate into existing
registration schemes. Moreover, we argue that it is more natural to treat
the landmarks as soft constraints, since they are usually approximately
known only. Later in this work, in Section 2.2.4, we will consider the
landmarks in the regularization term of Equation 2.5.

2.1.3 Shape Representations

The very general formulation introduced above allows for various regis-
tration strategies. Beside CT image to image registration, where e.g. the
squared or the Geman McClure loss function can be used, the frame-
work allows also for surface registration, where an object is represented
as a label map L : IRd → {0, 1}. The object is indicated as 1 and the
background as 0. The boundary of the object is defined as the surface
Γ := {x|x ∈ |∇L(x)| > 0}. For the registration of the reference and a
target surface, ΓR and ΓT can be represented as distance maps obtained
by the signed Euclidean distance transform which is defined as

ID(x) =

⎧⎪⎨⎪⎩
dist(x, Γ) if x ∈ outside(Γ)
0 if x ∈ Γ
−dist(x, Γ) if x ∈ inside(Γ).

(2.10)
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(a) (b) (c) (d)

Figure 7: Example of a: (a) CT image, (b) label map, (c) distance
image and (d) tooth probability map.

Registering the two distance maps ID
R and ID

T by minimizing Equa-
tion 2.5 corresponds to a closest point surface registration. For building
the statistical shape model, later in this work, we used this representa-
tion.

One further type of representation finds application in this work. As aProbabilistic
Shape

Functions
generalization of the label map, we define the probability map P : IRd →
[0, 1], which indicates the probability of a point in the image being part
of the object. For image segmentation we use target probability maps.
In Figure 7, examples of the different representations are shown.

In the following, two different strategies are discussed on how the
registration functional Equation 2.5 can be minimized. In Section 2.2
and Section 2.2.3, we introduce the variational approach, which leads
to solving a system of semilinear PDEs and in Section 2.4, we directly
minimize Equation 2.5 in a reproducing kernel Hilbert spaces.

2.2 variational registration

Minimizing the regularized functional in Equation 2.5 is a nonlinear
optimization problem, since the nonrigid transformation to the images is
a nonlinear operation. To find a local optimum, the variational approach
turned out to be very useful in literature [14, 19, 93, 103]. We now
introduce the essentials of the approach and refer to Evans [31] and
Modersitzki [67] for more details.

A displacement field u : IRd → IRd that registers the two images IR

and IT is sought as the minimum of the joint functional

J [u] = D[IR, IT , u] + R[u]. (2.11)
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Using methods from calculus of variations, the functional is differenti-
ated with respect to transformation u. If the space of all admissible Functional

Derivativetransformations is denoted as Φ, the functional derivative of J becomes
the sum of the derivatives dD = f : Φ → IRd and dR = A : Φ → Φ. A is
usually restricted to be a linear self-adjoint differential operator which
leads to the following system of semilinear2 partial differential equations

Au = f(u), (2.12)

whose solution minimizes the functional (2.11). Equation 2.12 is called
the Euler-Lagrange equations of Equation 2.11, where A measures the
regularity of u and f is referred to as force field. (see Section A.6 for more
details about functional derivatives). For the squared loss for instance
the force field is give as

f(u)(x) = 2(IR(x + u(x)) − IT (x))∇(IR(x + u(x))). (2.13)

Because it contains the warped reference image IR(x + u(x)), the term Image Forces
f depends nonlinearly on u. This makes an analytical solution of the
system in Equation 2.12 intractable.

An efficient method to approximately solve Equation 2.12, which has
well established in 3D medical image registration [14, 19, 93, 94], is by
find a solution to the problem Equation 2.12 using the “gradient flow”.
It can be interpreted as a continuous gradient descent for minimizing
Equation 2.11. A time variable is introduced which leads to a time-
dependent partial differential equation Gradient

Flow∂

∂t
u − Au = f(u) (2.14)

ut = 0 for t = 0,

whose stationary solution u∗(x) solves Equation 2.12, since the time
derivative ∂

∂t
u∗ vanishes cf. the work of Evans [31] and Nolen [69]. By

Duhamel’s principle, the solution to the nonhomogeneous initial-value
problem Equation 2.14 is

ut =
∫ t

0
Tsf(us)ds, (2.15)

where (Tsf)(x) =
∫

Ω ks(x−y)f(y)dy is the solution to the homogeneous
problem

∂

∂t
u − Au = 0, us = f(us). (2.16)

2 Equation 2.12 is called to be semilinear because A is a linear operator but f
depends on u.
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k : IRd × IRd → IR is called the fundamental solution of ∂
∂t

− A and isFixed-Point
Iteration a positive definite kernel function if A is linear, self-adjoint and positive

definite (cf. Steinke and Schölkopf [92] and Ascher et al. [11]).
Since f still depends nonlinearly on u, Equation 2.15 is iteratively

solved using Picard’s iteration process [21]

ui+1
t =

∫ t

0
Tsf(ui

s)ds, u0
t = 0. (2.17)

For each time step the forward Euler method yields the final fixed-point
iteration scheme

ui+1 = k ∗ (ui + f(ui)). (2.18)

In each iteration, the previous solution ui is known and there is no nonlin-
ear dependence on ui+1. In fact, Equation 2.15 is linearized by evaluating
f at ui and not at ui+1. The iterative scheme Equation 2.18 amounts to
solving the time-dependent partial differential equations Equation 2.14
and can be seen as a discrete gradient descent of the initial functional
Equation 2.11, in which the “gradient” is efficiency handled by the con-
volution operator k∗.

2.2.1 Linear Operators

In the classical example of the Demons algorithm [94], the diffusion
regularization term Rdiff (Equation 2.6) finds application. Its derivative
is given as

Adiff = −Δ. (2.19)

Using Adiff in Equation 2.14, the PDE is called the reaction diffusion
equation3. The fundamental solution of the homogeneous time-dependent
PDE is given as the Gaussian kernel

Gaussian
Kernel

kG(x, y) = 1
(
√

2πσ)d
· exp

(
−‖x − y‖2

2σ2

)
. (2.20)

Since the Gaussian kernel is separable, the convolution in Equation 2.18
can be very efficiently implemented by separate 1D convolutions.

The derivative of the linear elasticity regularization operator Relas

(Equation 2.7) is given as

Aelas = −μ∇2 − ν∇∇ · . (2.21)

3 The PDE is called “reaction” diffusion equation because the right-hand side f
depends on u, which makes the system semilinear.
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Based on the eigen-function basis of Aelas (derived in [23]), Bro-Nielsen
and Gramkow [19] approximated a convolution kernel of this operator.
Since, the computation of this kernel is not cheap, Long et al. [60] pro-
pose to efficiently approximate it by the exponential kernel

ke(x, y) = 1
Cd

· exp
(

−‖x − y‖
α

)
, (2.22)

where C1 = 2α, C2 = 2πα2, C3 = 8πα3 and d is the space dimension.

Exponential
Kernel

However, since both kernels are not separable, the convolution becomes
computationally demanding and is not directly applicable in usual med-
ical image registration. Later in this chapter, we will present a convolu-
tion scheme based on separable filter approximation, which enables an
efficient convolution with the exponential kernel.

choosing kernel functions In variational image registra-
tion, the regularization outcome fundamentally depends on the choice of
the operator A, since it defines the regularity the transformation has to
satisfy. Unfortunately, the fundamental solution of only few regularizers Knowing the

Regulariza-
tion
Property

are analytically known, whilst it is hard to derive k given a particu-
lar regularization operator. In principle, however, it is sufficient to find
the particular kernel function, which leads to the favored regularization
property. Therefore, the specific regularization operator does not have
to be explicitly known. Later in this work, we will construct a land-
mark kernel without actually knowing the corresponding regularization
operator.

2.2.2 Neighborhood Preservation

Common simple regularizers, as the ones discussed above, penalize un-
smooth transformations. But, using the iteration scheme of Equation 2.18,
foldings (cf. Figure 6) cannot be avoided. In medical application however,
foldings are unnatural and undesirable, since that would mean, that tis-
sue and bone structures can be folded over. If we restrict the resulting
transformation to be smoothly invertible i.e. diffeomorphic, guarantees
that there are no foldings in the transformation. This is why in medical
applications invertible transformations are preferred. Various authors
[10, 13, 22, 84, 100] have therefore addressed an additional restriction of
the mappings ui ∈ Diff(Ω) to be diffeomorphic. Following the diffeomor- Diffeomor-

phic
registration

phic Demons approach [100], the restriction of an optimal displacement
field to be diffeomorphic can be achieved by mapping the current trans-
formation ui back onto the Lie group of diffeomorphisms. This ensures
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Figure 8: In this toy example, a circle is registered onto a C. With this
example, the difference between “non-diffeomorphic” and diffeomorphic
registration can be well illustrated. In the first row, the target (C) and
the references (circle and shaded circle) are shown. In the second row,
the standard Demons registration method [94] was used, while in the
third row the diffeomorphic Demons [100] was applied for registration.
From left to right: the warped reference circle, the warped shaded circle
and the corresponding warped grid is depicted. In the standard Demons
example, foldings lead to strong artifacts, while in the diffeomorphic
Demons example, the circle is “naturally” deformed.

the transformations to be smoothly invertible and thus neighborhood
preserving. A possible way to do that, which only marginally changes
the optimization scheme in Equation 2.18, is by calculating the group
exponential map exp of the Lie group of diffeomorphisms for ui after
evaluating the field update

ui+1 = k ∗ (ui + exp(f(ui))). (2.23)

The exponential mapping can be efficiently approximated by a scaling
and squaring algorithm [10, 100]. In Figure 8, the impact of the diffeo-
morphic constraint is visualized using a toy registration example.
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2.2.3 Inhomogeneous Regularization

The regularization introduced above is homogeneous i.e. independent
of the spatial location. This bases on the assumption that, in the full
domain of the image, the same smoothness requirement is true. In med-
ical image registration, where tissues and bone structures with different
deformable properties are present in the image, the homogeneity assump-
tion is not true anymore. To include such image driven cues, Weickert Locally

Adaptive
Regulariza-
tion

et al. [103] introduced anisotropic diffusion which adapts to image gradi-
ents. Cahill et al. [20] presented an image-driven locally adaptive regular-
ization, where the degree of regularity is weighted inversely proportional
to the local gradient magnitude of the image.

Especially, if landmarks are given, e.g. in regions of artifacts, the ho-
mogeneity assumption is also not true anymore. In the vicinity of the
landmarks, the transformation is known, thus, a higher smoothness is
required at this location during registration. In contrast to image-driven
regularization weighting, in this section, we present a kernel, which in-
corporates given landmarks and thus changes the regularization depend-
ing the image location. This property is called nonstationarity (i.e. not
translation-invariant). To apply this kernel in the present approach, we
generalize the variational image registration framework to kernels func-
tions, which possibly are nonstationary.

fredholm integral equations For the generalization of
Equation 2.18 to nonstationary kernels, the optimization scheme has to
be rewritten. We explicitly write the convolution integral, but for kernels
which are not stationary

ui+1 =
∫

Ω
k(·, s)(ui + f(ui))ds. (2.24)

Similar, with u restricted to be diffeomorphic, Equation 2.23 becomes Inhomoge-
neous
Fredholm
equation

ui+1 =
∫

Ω
k(·, s)(ui + exp(f(ui)))ds. (2.25)

Note that now, k depends on both arguments and not only on their
difference k(x − y) �= k(x, y). The integral equation Equation 2.24 is
known as the inhomogeneous Fredholm equation. For more extensive
work on this type of equations we refer to Pipkin [76] and Kress et al.
[52].
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2.2.4 Incorporating Landmarks

In literature, landmarks are often incorporated using an additional cost
term in the registration functional [62, 87]. Thus, the landmarks and the
regularization are treated independently, even though landmarks clearly
provide a-priori information about the deformations. Further, parame-
ter tuning becomes difficult, since the weighting of the landmark cost
and the regularization term are mutually dependent. In the following,
we construct a kernel which is aware of the prior landmark displace-
ments and thus incorporate the landmarks into the regularization. The
only additional parameter we will introduce is the uncertainty σ of the
landmark positions, which is usually approximately known.

For constructing a kernel, which incorporates prior displacements
(landmarks), we use the concept of Gaussian processes, which is strongly
related to kernel functions. A Gaussian process defines a probability dis-
tribution over a function space. It is a collection of random variablesGaussian

Processes u(x), x ∈ Ω, where Ω is an index set, with the property that for any fi-
nite number of observations, x1, . . . , xn ∈ Ω, the values u(x1), . . . , u(xn)
are jointly normally distributed. Without loss of generality, scalar-valued
kernels are considered where each space dimension is treated indepen-
dently. For the generalization to matrix-valued kernels see Section 2.4.1.

A Gaussian process is completely defined by a mean function μ :
Ω → IRd and a covariance function k : Ω × Ω → IR. By specifying a
covariance function k, it is defined which functions are likely under the
given process. The covariance function specifies for each pair of points
x, y their covariance and is often referred to as kernel. In fact, covariance
functions are exactly the same mathematical object. Throughout this
work, we will use the term kernel function.

Assume an i.i.d. sample X = {(x1, y1), . . . , (xn, yn)} ⊂ Ω×IRd is given
and let u ∼ GP(μ, k) be a Gaussian process with some mean μ : Ω → IRdRegression

and
Uncertainty

and a kernel k : Ω × Ω → IR. Let us infer the distribution p(u|X).
Additionally, let assume that y ∼ N (u(x), σ2Id). That means, instead of
observing the actual values u(x), noisy instances y thereof are observed.
Under this assumption, the posterior distribution p(u|X) ∝ p(u)p(X|u)
is known in closed form and is again a Gaussian process GP(μX , kX)

μX(x) =μ(x) + KX(x)T (KXX + σ2In)−1Y (2.26)

kX(x, x′) =k(x, x′) − KX(x)T (KXX + σ2In)−1KX(x′). (2.27)

Here, KX(x) = (k(x, xi))n
i=1 ∈ IRn, KXX ∈ IRn×n is the kernel matrix

with entries Ki,j = k(xi, xj) and Y = (y1−μ(x1), . . . , yn−μ(xn))T ∈ IRn

are the mean free landmark displacements and σ2 models the uncertainty
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(a) Gaussian process regression (b) Prior samples

(c) Posterior samples (d) Confidence interval

Figure 9: Gaussian process regression example in 1D. The observed
function in (a) colored in red is y(x) = sin(x) exp(−0.05x)+0.2 sin(6x)+
ε. The posterior mean μX given the landmark points (black dots) is
plotted in blue. In (b), samples are plotted from GP(0, kG), where kG

is the Gaussian kernel with σ = 2. In (c), samples are plotted from the
posterior process GP(μX , kX) and in (d), the confidence interval of two
standard deviations is depicted as gray shaded area.

about matching accuracy of the landmarks (see also e.g. Rasmussen [77],
Chapter 2.2).

In Figure 9, an example Gaussian process in 1D is shown. Since the
full posterior distribution is known, a confidence interval can be given
and samples can be drawn from p(u) resp. p(u|X).
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gaussian processes for registration Let the prior
knowledge about the deformations u in Equation 2.11 be modeled using
a Gaussian process u ∼ GP(μ, k), which is defined by a mean function
μ : Ω → IRd and a kernel function k : Ω × Ω → IR. We adjust Equa-
tion 2.11

JGP [u] := DGP [IR, IT , μ, u] + RGP [k, u], (2.28)

where the target image is warped by IT (x + μ(x) + u(x)). The strengthHybrid
registration of this generalized interpretation is that now the hybrid registration

problem can be formulated by conditioning the Gaussian process on the
given landmark displacements. Hence, the functional which is minimized
becomes

JGPX [u] := DGPX [IR, IT , μX , u] + RGPX [kX , u], (2.29)

using μX as landmark based mean transformation and the kernel func-
tion kX for regularization. In this context, we name kX landmark kernel.

Since the landmark kernel depends on the landmark displacements,
it is not stationary and the inhomogeneous optimization scheme Equa-
tion 2.25 is required.

2.3 discrete filtering approach

So far, we have derived a continuous formulation to minimize the regis-

2D Filter

tration functional. For stationary regularizers, an iterative convolution
scheme Equation 2.18 has been introduced, which is of wide use in medi-
cal image registration. We generalized the formulation to nonstationary
regularizers (Equation 2.25) to enable kernels which depend on the im-
age location. In this section, we discretize the two formulations in order
to implement this registration approach.

We start by writing the spatially discretized version of Equation 2.18
where the kernel k becomes a filter mask H0:

3D Filter

ui+1(x) = H0 ∗ (ui + exp(f(ui)))x. (2.30)

H0 is the discretized kernel function k at location 0 with elements
H0ijq = k(0, (i, j, q)T ) and i, j, q cover the neighborhood around 0. The
subscript x of the second term indicates the equally large discrete neigh-
borhood around the point x. In the two dimensional case, the filter mask
H0 is a matrix, while in the 3D case H0 becomes a third order tensor.

If the Fredholm integral Equation 2.25 is spatially discretized

ui+1(x) = Hx ∗ (ui + exp(f(ui)))x, (2.31)
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where Hx is the discretization of k at location x, i.e. Hxijq = k(x, (i, j, q)T ),
H depends on x, which makes the problem nonstationary. In general, all
the local filter kernels have to be calculated in order to approximate the
Fredolm integral.

Spatial filtering, especially in 3D is computationally costly. Moreover,
nonstationary filtering is computationally even worse. In the following
sections, we present two approaches to accelerate on the one hand the
stationary and on the other hand the nonstationary filtering.

2.3.1 Separable Filter Decomposition

The iteration scheme of Equation 2.30 can be accelerated greatly, if the
convolution can be performed separately in each space dimension by
successive 1D convolutions. In the two dimensional case the separable
convolution is given as

H2D
0 ∗ f =

(
H1D

0 ⊗ H1D
0
)

∗ f

= H1D
0 ∗

(
H1D

0 ∗ f
)

, (2.32)

where H2D
0 denotes the 2D and H1D

0 the 1D filter kernel and ⊗ the
outer product. In the separable convolution, the associativity (2.32) of
the convolution operation is exploited. For each output pixel, the com-
putational complexity is reduced from m2 to 2m, where m is the width
of the filter. However, this is only possible if the filter kernel is separable
i.e. H2D

0 = H1D
0 ⊗ H1D

0 . The Gaussian kernel has this nice property of
separability. Therefore, without any further effort, the convolution with
this kernel can be performed separately.

To still benefit from this performance gain for nonseparable kernels,
like the exponential kernel [60], separable filters of them have to be
approximated. In 2D, this can be achieved by low-rank approximation
using standard singular value decomposition. However in 3D, this leads Tensor De-

compositionto mathematical challenges that go beyond standard linear algebra, since
a filter kernel in 3D is a third order tensor. In contrast to 2D matrices, it
is an NP-hard problem to determine the rank of a specific given higher
order tensor (see Kolda and Bader [50]). Hence, the rank R becomes
a parameter which has to be estimated. Nevertheless, we are able to
compute the approximation using the Candecomp/Parafac (CP) decom-
position model [50]. This gives us separable 1D approximations of the
discrete filter kernel H0. In Figure 10, the decomposition model is visu-
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H � a1

b1

c1

+ a2

b2

c2

+ … + aR

bR

cR

Figure 10: Candecomp/Parafac tensor decomposition model.

ally illustrated. The decomposition can be formulated as a minimization
problem

arg min
ar,br,cr

‖H0 − H̃0‖ with H̃0 =
R∑

r=1

ar ⊗ br ⊗ cr, (2.33)

where the operation ⊗ denotes the three-way outer product H̃0ijq =∑R

r
airbjrcqr. Standard algorithms to optimize Equation 2.33 are based

on the alternating least squares (ALS) method [41], which is explained in
more detail in the appendix (Section B.1). The parameter R is estimated
by testing the approximation performance for different ranks.

Once the decomposition is performed, the distributivity (2.34) andSeparate
Convolution again the associativity (2.35) property of the convolution is exploited to

perform the convolution separately with ar, br and cr

H0 ∗ f ≈ H̃0 ∗ f =

[
R∑
r

ar ⊗ br ⊗ cr

]
∗ f

=
R∑
r

[ar ⊗ br ⊗ cr ∗ f ] (2.34)

=
R∑
r

ar ∗ (br ∗ (cr ∗ f)) . (2.35)

For cubic filter kernels, having a filter width m, the computational cost
for each output pixel reduces significantly from m3 to 3Rm. In Figure 11,
a kernel reconstruction of the 2D exponential kernel with different ap-
proximation ranks is depicted. The higher rank R of the approximation
is, the more accurate the kernel can be reconstructed.
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(a) Exponential kernel (b) Rank-1 approximation

(c) Rank-2 approximation (d) Rank-3 approximation

Figure 11: In this figure, the 2D exponential kernel and its different
approximations are depicted. The higher the rank of the approximation
the better, the original kernel is approximated.

2.3.2 Efficient Nonstationary Filtering

For spatially varying filter kernels, where the nonstationary filtering
scheme Equation 2.31 is used, separable filtering is not possible since
the associativity of the convolution operation no longer holds. Hence, for
each output pixel, the filter mask has to be computed and the convolu-
tion at this location has to be performed, which is computationally costly
applying 3D medical images. However, in the particular case where the
hybrid registration functional in Equation 2.29 is minimized, following
properties of the landmark kernel kX (Equation 2.27) can be exploited
to reach an optimization scheme which is computationally feasible.

The landmark kernel kX consists out of the kernel k subtracted by a
landmark dependent term. The difference between k and the full land- Landmark

Kernel
Properties

mark kernel kX becomes negligible if

∀xi ∈ X k(x, xi) < ξ (2.36)
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i.e. if x is not in the neighborhood of any landmark. This property is
used to approximate the integral of Equation 2.31 by only considering k,
the first part of the landmark kernel kX , if the value of its second part
goes to zero. We perform the approximation in two steps:

1. At first, the whole image is filtered separately using the stationary
part k.

2. Subsequently, the nonseparable and nonstationary filtering with
the full kernel kX is performed, but only for pixels where (2.36)
is not fulfilled.

The second part is the most expensive step, because for each point in
the vicinity of the landmarks the discretization Hx has to be calculated.
This means a cubically increasing amount of kernel evaluations, which
covers the neighborhood of all points having landmark support, and
this in each iteration of Equation 2.31. To reduce the computational
demands, we propose the following caching scheme.

local filter caching Since the landmark kernel is nonsta-
tionary, but still time-invariant, it is reasonable to keep the computed
filter kernels in memory to save computational time for the following it-
erations. However, the amount of memory to cache all the filter kernels
grows rapidly depending on the filter width and the number of land-Compressing

Local Filter
Kernels

marks. Therefore, we propose to compress these local filter kernels by
again taking advantage of tensor decomposition, before they are cached
in the memory.

As we have seen in Section 2.3.1, the CP decomposition is obtained us-
ing the ALS method, which is costly due to its iterative nature. Because
H0 has to be decomposed only once, it is still well suited to approximate
the separability of the stationary filter. But the ALS method is too slow
to decompose all the local filters Hx.

Compared to the CP decomposition, the Tucker decomposition [96]
is significantly faster. It is an alternative model to decompose a tensor
(see Figure 12). Similar to the CP model, the tensor is decomposed into
triplets of vectors, but they are weighted by a full so called “core” tensor

H̃x =
P∑

p=1

Q∑
q=1

R∑
r=1

gpqrap ⊗ bq ⊗ cr, (2.37)
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H � A

G

Figure 12: Tucker tensor decomposition model.

where gpqr are the elements of the core tensor G and P, Q, R are the
ranks for each space dimension. Using the Higher-order SVD algorithm
of De Lathauwer et al. [30]

arg min
G,ap,bq,cr

‖Hx − H̃x‖ (2.38)

can be very efficiently minimized (see Section B.2 for more details).
Compared to the CP model, the Tucker decomposition is a less re-

stricted model where the core G can be dense, while in the CP model,
the core is a super diagonal tensor4 with ones on the diagonal. Although Saving

Memoryit cannot be used for separable filter approximation due to the weighting
with the dense G, the memory savings are similar to the CP model. Set-
ting P = Q = R and having a filter length m, the memory consumption
reduces from m3 to R3 +3Rm per voxel in the support of the landmarks.
Similar to the parameter R in the CP decomposition, P, Q, R have to
be estimated by testing the approximation performance.

2.3.3 Multi-Resolution

The presented method is mainly based on the local iterative minimiza-
tion scheme Equation 2.31. As such, it relies on a reasonable initializa-
tion and is prone to getting “stuck” in local minima. This is a well-known
problem in image registration and is typically tackled by adopting a
multi-resolution strategy. By first solving the registration problem on
low-resolution approximations of the images, a good initialization for

4 A super diagonal tensor is the generalization of a diagonal matrix to higher
order tensors, where the entries outside the main diagonal are zero.
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the high resolution images is computed. As an added benefit, the low-
resolution registrations are computationally less intensive.

An image pyramid is built

Il−1 = downsample(G ∗ Il), l = 1, . . . , L (2.39)

for the reference and target image IR, IT . L is the number of levels
in the pyramid. IL is the original high resolution image and G is a
Gaussian smoothing kernel. The iteration scheme in Equation 2.31 is
first computed at resolution level 0. Each higher level is initialized by
the preceding result, the displacement field u, up-sampled to the next
higher resolution. This approach is widely used in image analysis but in
combination with the posterior mean function μX , more effort is needed.
The problem is, that the support in voxels of the kernel function k im-
plicitly increases towards the lower resolution levels. At the same time,
the mean function μX only depends on the landmark points and is inde-Harmonize

Mean on
Multiple

Scales

pendent of the spacing and sampling rate of the images. Therefore, the
kernel parameters for calculating the mean μX and for regularizing the
displacement fields ul are different in lower resolution levels. In order
to harmonize that, we propose to use a kernel that simultaneously rep-
resents multiple scales, which can be achieved by a linear combination
of different single scaled kernels (cf. Opfer [70]). The landmark based
mean transformation μX is computed using the multiscale kernel

k̃(x, y) =
L∑

l=0

λlk
l(x, y), (2.40)

where the λl are positive weights and kl correspond to k with adjusted
kernel parameters per scale level l. The parameters e.g. for the Gaussian
kernel becomes σl

G = 2L−lσG. The weights λl are equivalent to the scales
of the Gaussian kernels.

2.4 rkhs registration

In this section, we will introduce a different view onto the registration
problem where the space of admissible deformations is restricted to func-
tions in a reproducing kernel Hilbert space (RKHS) [87]. Similar to the
variational approach, we restrict the regularization operator A to oper-
ators, where a corresponding kernel function k exists. Contrary to the
variational approach discussed in the previous section, where a station-
ary solution to a system of semilinear partial differential equations is
sought, the objective functional Equation 2.5 is directly minimized in
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the RKHS. The key difference is, that in the variational approach, the
fundamental solution to a time-dependent PDE admits a smooth solu-
tion to the Euler-Lagrange equations, while in the reproducing kernel
Hilbert space approach, the kernel function k of A∗A leads to a solution
of the initial registration functional. By expressing the deformations u

in the basis of the RKHS induced by this k, the solution is regular with
respect to A.

The variational approach for image registration became popular in
the 90’ [19, 94], while the RKHS framework is still rarely used for image
registration [64, 87]. In this section, we intend to emphasize the key dif-
ference between the approaches and we show how the RKHS framework
can be applied for efficient image registration. Subsequently, we will put
the RKHS formulation in context of Gaussian processes to flexibly model
new regularization properties.

2.4.1 Minimizing in the RKHS

In the following, we summarize the essentials of the variational approach
to then introduce the RKHS approach. Recall the objective functional
for registration

J [u] = D[IR, IT , u] + ηR[u]. (2.41)

Here, we restrict the regularization term to have the form

R[u] = 1
2‖Au‖2 (2.42)

with A as a positive definite linear operator which has an adjoint op-
erator A∗. In Section 2.2, the minimization strategy is to derive the
functional derivative of Equation 2.41 with respect to u, and thus to
solve the Euler-Lagrange equations

A∗Au = f(u). (2.43)

The solution to Equation 2.43 yields a minimizer for Equation 2.41.
A solution of Equation 2.43 is also the steady state of the semilinear
evolution equation

∂

∂t
u − A∗Au = f(u), ut = 0 for t = 0. (2.44)

Since f depends nonlinearly on u, the system is linearized, which
yields a fixed-point iteration scheme

ui+1 = k ∗ (ui + f(ui)), u0 = 0, (2.45)
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which converges to a minimizer of Equation 2.41. If A spatially varies,
the convolution becomes an integral operator (Tkf)(x) =

∫
k(x, y)f(y)dy.

Further, as long as the linear operator in Equation 2.44 has the form
A∗A, k is a positive definite kernel function [31, 92].

In Section 2.2, we argued that, depending on k, different time-dependent
operator equations are solved without necessarily knowing their exact
form. Note that in each iteration step the convolution with the kernel k

ensures that ut+1 satisfies the regularity induced by the linear operator
whose kernel function is exactly k. In case of the Gaussian kernel the
linear operator has the form ∂

∂t
− Δ and ut+1 ∈ C∞.

In the RKHS approach, a space of functions is defined

Hk =
{

u|u(x) =
∞∑

i=1

αik(xi, x), (2.46)

xi ∈ Ω, αi ∈ IR, ‖u‖k < ∞
}

.

Further, k is defined as the fundamental solution of A∗A. The RKHS
norm becomes

‖Au‖2 = 〈Au, Au〉 = 〈u, A∗Au〉 = 〈u, K−1u〉 =: ‖u‖2
k, (2.47)

where K = (A∗A)−1 is a covariance operator with 〈δx, Kδy〉 = k(x, y).
Smoothness of u can be achieved by defining u in the basis of the RKHS,
u ∈ Hk. Thus, each u satisfies the regularity of A. The new minimization
functional to registration becomes

arg min
u∈Hk

D[IR, IT , u] + η‖u‖2
k, (2.48)

where u is in the RKHS Hk and the regularity of u is fully defined by
k. The following valuable fact makes this functional very important. It
is guaranteed that a minimizer û of Equation 2.48 can be found in the
parameters α̂i, which follows from the representer theorem, see proofs
in [85, 92]. Furthermore, it states that

〈u, K−1u〉 = 〈α, Kα〉. (2.49)

Hence, a (local) solution is found applying gradient descent on the pa-
rameters.

The difference between the variational and the RKHS approach be-
comes apparent if for both approaches we plug-in the Gaussian kernel kG.
In the variational approach the Gaussian kernel implies that A = −∇
resp. A∗A = −Δ as it is the fundamental solution to the homogeneous
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version of Equation 2.44. In the RKHS framework the kernel k defines
the RKHS Hk over functions u which all satisfy the regularity of A

where A∗A = K−1. In the case of the Gaussian kernel, A is a linear
combination of differential operators with even orders (cf. Steinke and
Schölkopf [92]).

probabilistic interpretation The minimization problem
in Equation 2.48 can be also interpreted as the MAP estimation prob-
lem of arg maxu p(u)p(IT |IR, u), where p(u) ∝ exp(−R[u]) is a Gaussian
process prior and p(IT |IR, u) ∝ exp(−λ−1D[IR, IT , u]) is the likelihood
(cf. Wahba [101]). A MAP solution can be found by solving the mini-
mization problem (2.48) in the RKHS Hk. The main advantage of using
Gaussian processes to model the deformations lies in its flexibility. It
will turn out later in this work (in Chapter 3), that the mean and the
kernel function can be estimated from samples to obtain a statistical
shape model constraint. Furthermore, generic kernel functions can be
combined with a statistical shape model kernel.

In the following, we will spatially discretize Equation 2.48. This will
result in a minimization scheme, which has a complexity of O(N2) kernel
evaluations, where N is the number of discretized points. Using a low-
rank Gaussian process model, introduced in the following Section 2.4.2,
the minimization of the functional becomes computationally feasible.

matrix-valued kernels Using an RKHS, not only scalar-
valued (Section 2.2.4) but also vector-valued functions as e.g. displace-
ment fields can be modeled. In this case, the kernel function becomes
a matrix-valued function k(x, y) : Ω × Ω → IRd×d, with k(x, y) =
E[(u(x) − μ)(u(y) − μ)∗]. The most simple case of matrix-valued kernel
functions arises when the output dimensions are assumed to be uncorre-
lated. In this case, a matrix-valued kernel function k can be constructed
from scalar-valued kernel functions κ by setting

k(x, y) = Idκ(x, y). (2.50)

While vector-valued Gaussian processes seem like an extension of the
theory, it can be shown that they can be reduced to the scalar case [43].
Thus, all known results from real Gaussian processes carry over to this
more general setting. For the discretization of the RKHS minimization,
which will follow next, we use matrix-valued kernels to express the vector-
valued Gaussian process for the registration.
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discretization Applied the RKHS optimization framework to
registration, spatial discretization is needed. If the image domain Ω is
sampled uniformly at N ∈ IN points {xi}N

i=1, u ∈ Hk (including the
mean μ) becomes

u(x) = μ(x) +
N∑

i=1

k(xi, x)αxi := μ(x) + KT
x α, (2.51)

where αxi ∈ IRd, Kx = (k(x, xi))N
i=1 ∈ IRNd×d and α = (αxi )N

i=1 ∈
IRNd. This can be directly plugged into the full objective functional
(2.41)

arg min
α∈IRNd

1
N

N∑
i=1

L(IT (xi), IR(xi + μ(xi) + KT
xi

α)) + ηαT Kα, (2.52)

where L is a loss function and K ∈ IRNd×Nd|Kij = k(xi, xj) ∈ IRd×d

is the kernel matrix. Equation 2.52 can be minimized using standard
gradient descent based optimization (see Section A.3).

2.4.2 Low-Rank GP Model

The minimization of Equation 2.52 requires O(N2) kernel evaluations.
Especially in 3D, this becomes computationally demanding, since N

becomes usually large. The goal is now, to express the terms in Equa-
tion 2.52 involving k, by an approximated and feasible representation of
k̃. We perform principal component analysis on K to find an orthogonal
basis expansion of k, such that

arg min
α∈IRNd

1
N

N∑
i=1

L(IT (xi), IR(xi + μ(xi) + Qα)) + η‖α‖2, (2.53)

where Q is an orthogonal basis matrix.
Following the Mercer’s theorem (see e.g. Rasmussen [77]), a kernel k

has an expansion in terms of a orthonormal set of basis functions

k(x, y) =
∞∑

i=1

λiφi(x)φ∗
i (y), (2.54)

where (λi, φi) are the eigenvalue/eigenfunction pairs of the integral op-
erator

∫
Ω k(x, y)f(y)dy. A Hilbert space can be defined, by linear com-
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binations of the eigenfunctions φ. Thus, each function u =
∑∞

i=1 φiαi

with
∑∞

i=1
α2

i
λi

< ∞. The RKHS norm becomes

‖u‖2
k =

∞∑
i=1

α2
i

λi
, (2.55)

and penalizes the eigenfunction components corresponding to small eigen-
values particularly strong. Now, each deformation in the space modeled
by the Gaussian process GP(μ, k) can be written as a sum u(x) =
μ(x) +

∑∞
i=1 αiφi(x). To get rid of the infinite sum, and to actually

compute φi we propose to perform a low-rank approximation of the ker-
nel k. We truncate the infinite sum to a finite sum over the main n

basis functions φi, having the largest λi. If the eigenvalue spectrum of
k decreases fast enough only few basis functions already lead to a good
approximation.

the nyström approximation Using the Nyström approxi-
mation [44, 77], the basis functions φ in the Mercer expansion can be
computed. Let N ∈ IN points XN = {x1, . . . , xN }, xl ∈ Ω be sampled
uniformly on the image domain Ω. The computation of φi becomes an
eigenvalue problem:

λiφi(x) =
∫

Ω
k(x, y)φi(y)dy ≈ 1

N

N∑
l=1

k(x, xl)φi(xl) (2.56)

which results in a matrix eigenvalue problem

λ̃iui = Kui, (2.57)

where Kj,l = k(xj , xl), ui denotes the i-th eigenvector and λ̃i the corre-
sponding eigenvalue. λ̃i can directly be used as an approximation of the
real eigenvalue λi, while the eigenfunction φi is approximated using

φ̃i(x) =
√

N

λ̃i

KXN (x)T ui ≈ φi(x), (2.58)

with KXN (x) = (k(x1, x), . . . , k(xN , x)) ∈ IRNd×d.
In medical image registration, N is usually large, i.e. beyond 1 mil-

lion. Therefore, deriving the eigenvectors u is computationally demand-
ing. However, the Nystöm method allows to solve the eigen system on
a smaller sample size XM = {x1, . . . , xM }, xq ∈ Ω and extend it to
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Figure 13: The first 12 leading eigenfunctions of a low-rank Gaussian
σG = 1, N = 200, xi ∈ [−5, 5].

the remaining higher resolution sample set [44]. The estimates of the
eigenvalue/eigenvector pairs become

λ̂i = N

M
λ̃M

i φ̂i(xl) =
√

M

N

1
λ̃M

i

KXM (xl)T uM
i , (2.59)

where KXM (xl) = (k(x1, xl), . . . , k(xM , xl)) ∈ IRMd×d. Thus, ûi =
(φ̂i(xl))N

l=1 can be precomputed to using it in the registration.
If the main l singular vectors of the subsampled kernel matrix KM are

approximated using the randomized SVD method of Halko et al. [40],
the computational complexity for the approximation is O(2Ml2).

low-rank gp registration With the help of the Nyström
approximation, a low-rank approximation k̃ of the kernel k can be com-
puted. This allows to construct a finite generative linear model of defor-
mations u. Let u be spatially discretized on N ∈ IN points X = {xi}N

i=1
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Figure 14: In this figure, 20 samples of the low-rank Gaussian pro-
cess prior are shown, approximated with 1 (a), 5 (b), 10 (c) and 20 (d)
eigenfunctions.

in the image domain. And let us sample the mean μ and the leading n

basis functions φ̂ at these points as well

μ = (μ(xi))N
i=1 ∈ IRNd (2.60)

Q = (q1, · · · , qn) ∈ IRNd×n, qj =
(√

λ̂j φ̂j(xi)
)N

i=1
∈ IRNd.

(2.61)

The coefficient vector α is normally distributed N (0, In), and the defor-
mations expressed by the model

u(α) = μ + Qα (2.62)
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are distributed according to N (μ, QQT ).
This formulation allows to reformulate the objective functional for

registration (2.48) to a parametric minimization functional

arg min
α∈IRn

D[IR, IT , uα] + η‖α‖2, (2.63)

with

uα(x) = μx + Qxα (2.64)

where the subscript indicates the i-th entry which corresponds to x,
resp. the row-wise sub-matrix from row i to i + d.

Applying the Gaussian kernel kG and a zero mean μ0, for instance, reg-
istration is finally performed by minimizing Equation 2.63 using e.g. gra-
dient descent based optimization methods. In Figure 13, approximated
basis functions of the kernel kG (in 1D) are shown. Since, we constructed
a generative model N (0, QQT ) out of the Gaussian process GP(μ0, kG),
samples can be drawn from the low-rank Gaussian process prior. In Fig-
ure 14, samples of the same 1D low-rank Gaussian process are plotted
using different number n of approximated basis functions φ̃i.

2.4.3 Landmark Posterior Model

Using the Nyström approximation, the orthogonal basis functions of the
Gaussian process prior k can be approximated. The obtained low-rank
Gaussian process GP(μ, k̃) can be discretized on a finite domain result-
ing in a normal distribution of deformations u ∼ N (μ, QQT ). Similar to
the posterior Gaussian process derived in Section 2.2.4, a conditional dis-
tribution in finite domain given landmark displacements can be derived
in closed form. The eigenvalue/eigenvector pairs of the new conditional
model can be efficiently computed as well. Thus, the resulting linear
model, conditioned on the landmarks,

uc(α) = μc + Qcα (2.65)

can conveniently integrated into the minimization functional for regis-
tration Equation 2.63. In the following, for the interested reader, we will
provide the corresponding formulas to calculate the conditional model.
We additionally refer to Albrecht et al. [9] for a deeper discussion about
posterior models and to Bishop et al. [15], Chapter 2.3 for a detailed
derivation of the closed form solutions.
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conditional model Lets assume, p landmarks are given X =
{(x1, y1), . . . , (xp, yp)} ⊂ X × IRd. Additionally, let assume that y ∼
N (u(x), σ2Id) are noisy observations of u. Under the given distribution
N (μ, QQT )

uX(α) = μX + QXα + ε, (2.66)

where μX = (μxi
)p

i=1 ∈ IRpd, QX = (Qxi )p
i=1 ∈ IRpd×n, xi ∈ X. Let us

infer the distribution p(α|uX) and p(u|uX)

p(α|uX) = N (η, Λ) (2.67)

η = (QT
XQX + σ2In)−1QT

X(uX − μX) (2.68)

Λ = σ2(QT
XQX + σ2In)−1, (2.69)

p(u|uX) = N (μ + Qη, QΛQT ) =: N (μc, Σc) (2.70)

μc = μ + Q(QT
XQX + σ2In)−1QT

X(uX − μX) (2.71)

Σc = σ2Q(QT
XQX + σ2In)−1QT . (2.72)

eigen analysis of the posterior model If the number
of spatially sampled points N is high, Σc = QΛQT ∈ IRNd×Nd gets very
large and cannot be stored in memory anymore. Therefore, to get the
eigenvectors for the conditional model a detour is made. Let D ∈ IRn×n

be a diagonal matrix with Dii =
√

λ̂i. Further, let U = QD−1. Then,

Σc = U σ2D(QT
XQX + σ2In)−1D︸ ︷︷ ︸

Σs

UT . (2.73)

If eigen analysis is performed on Σs, it decomposes into UsD2
sUT

s , where
Us is the orthonormal basis matrix of Σs and D2

s is a diagonal matrix
with the corresponding variances on the diagonal. It follows that Σc =
(UUs)D2

s(UsU)T and therefore

Qc = (UUs)Ds. (2.74)

The conditional model can be represented as uc(α) = μc + Qcα and
directly be used in the minimization functional for registration Equa-
tion 2.63.

discussion

So far, we have introduced the regularized minimization functional Equa-
tion 2.5 for image registration. We have first focused on the variational Variational

Registration
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approach to minimize the functional. With the linearization of the cor-
responding system of semilinear partial differential equations and hav-
ing given its fundamental solution, an iteration scheme leads to a local
solution. We extended this framework by kernel functions which are
nonseparable resp. nonstationary. This enables to apply a kernel, which
incorporates prior landmark displacements.

In contrast to the variational approach, we introduced the RKHS
framework for registration. The registration functional Equation 2.5 isRKHS

Registration directly minimized in a reproducing kernel Hilbert space, where the
smoothness is defined by the corresponding kernel function k. To make
the minimization feasible even for large images (3D CT images), we have
proposed a low-rank approximation of the kernel using the Nyström
approximation. We derived a posterior low-rank Gaussian process prior,
conditioned on landmark displacements, to enable hybrid landmark and
image registration.

Applied the same operator A to each of the presented approaches, not
the very same problem is minimized. In the variational approach, no as-
sumptions about the displacement field u are made when calculating the
forces. The fundamental solution k of the time-dependent PDE ∂

∂t
−A∗ADifference

between two
Approaches

induces smoothness to the solution u. Contrary, in the RKHS approach,
the fundamental solution k of A∗A defines the smoothness of the solu-
tion which is sought, to minimize the functional (Equation 2.5). In the
experiments later in this work (Chapter 4), the performance of the two
approaches is evaluated and compared. However, we now roughly con-
clude the different properties of the two approaches, to give an intuition
about how they can be applied.Spatial

Support The efficiency of the variational approach strongly depends on the
properties of the kernel function. If k is stationary, the extra memory
needed can be neglected, and the optimization can be performed very
fast (cf. Section 4.1). In the case of a nonstationary kernel, the memory
consumption and the computational costs depend on the spatial varia-
tion of the kernel. For the landmark kernel, this keeps within reasonable
bounds. However, for kernels having a large support, the computational
costs explode.

The RKHS registration impresses with its flexibility to construct a
prior. Furthermore, samples from the prior can be drawn, which can be
used to visualize the designed prior. The extra memory and the compu-Decreasing

Eigenvalue
Spectrum

tational costs for the minimization depend on the eigenvalue spectrum
of the kernel. If it decreases fast, the extra memory needed to store the
eigenvectors is low, while the computational costs for minimization are
low as well. This is the case, if only small variations in the deformations
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are allowed. On the other hand, if a large variation is allowed, e.g. a
small σG of the Gaussian kernel, a large number of eigenfunctions have
to be approximated using a lot of sampled points in the Nyström ap-
proximation. This requires more computational power to decompose the
subsampled kernel matrix and a lot of memory to store basis matrix.

conclusion In this chapter, we thoroughly studied two approaches
for registration. By providing a kernel function, in both approaches a
prior about admissible deformations is defined. In particular, we incor-
porate landmarks as prior deformations. This allows to locally improve
the registration.

In the next chapter, the RKHS registration framework is used to ap-
ply a statistical shape model to robustly segment medical images. A
kernel function is constructed which captures the covariance of already
registered samples. Thus, statistical model fitting can be viewed as reg-
istration with an empirical kernel function.
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In the previous chapter, two strategies to optimize the registration func-
tional have been presented. The goal is to express a target image through
a reference image by finding a smooth mapping from the reference to the
target. A generic smoothness prior, which penalizes high derivatives for
instance, ensures the resulting transformation to be smooth. But, this
approach is often too generic, and does not incorporates prior knowledge
about the object class when the registration is performed. However, in
many applications, sample data is available, which can be used for con- Learning

from samplesstructing a shape prior over an object class. Moreover, beside an empir-
ical shape model, the appearance can be learned from sample data as
well, to using it in the data term i.e. in the matching criterion of the
fitting procedure.

In this chapter, we introduce the idea of statistical shape models and
how they fit in the low-rank Gaussian process registration framework
presented above. Additionally, we examine in more detail the matching
criterion i.e. the image to image metric, when fitting a statistical shape
model to unobserved data. Having available the sample images, which
are also used to build the statistical shape model, we present a nonpara-
metric statistical appearance model, which makes it possible to robustly
fit the statistical shape model to a target image.

3.1 statistical shape model

Recalling the registration problem, discussed in the previous section, a
target image was expressed by a reference image, by finding a smooth
transformation from one to another. The space of admissible defor-
mations, was restricted to deformations which are smooth in a rather
generic sense, of small gradients for instance. Regarding the scenario,
where some sample images and corresponding object label maps of the
same object class are given, the space of admissible deformations could
be further restricted. The sample images can be registered in a simpli-
fied setting since ground truth labels are given. The resulting transfor-
mations are used as a prior in the registration of unseen images. The
assumption, which is usually made, is that the space of transformations
which are considered is a linear space in IRp (p = number of samples)

49
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Figure 15: 10 sample tooth shapes.

and that an instance s ∈ span(S) can be formed by any linear combina-
tion of a set of sample transformations S. Thus, registration becomes a
search for the coefficients of the linear combination which leads to the
best match. This is also referred to as model fitting.

Let p ∈ IN sample displacement fields S = {si}p
i=1 be given. We

restate the minimization functional for registration

arg min
α∈IRp

D[IR, IT ,

p∑
i=1

αisi] + R[α]. (3.1)

The choice of the regularization R[α] defines the prior over the samples.
In Figure 15, samples of tooth shapes are shown. Note that the samples
si are displacement fields which are applied to a reference shape. These
displacement fields are the outcome of the registration of the reference
to the sample tooth shapes.

gaussian process prior Lets assume the sample transforma-
tions are a Gaussian process s ∼ GP(μ, k). Since μ resp. k are not known,
they are estimated from the given samples in S. From the definition of
Gaussian processes follows, that each finite set of samples from a given
Gaussian process are jointly normal distributed. As such, the empirical
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mean μS(x) and the empirical covariance kS(x, y) of this normal distri-
bution N (μS , kS) are given as follows

μS(x) =1
p

p∑
i=1

si(x) (3.2)

kS(x, y) = 1
p − 1

p∑
i=1

(si − μS)(x) ⊗ (si − μS)(y), (3.3)

where ⊗ is the outer product.
Following the low-rank Gaussian process model of Chapter 2, we are

interested in a parametrization, where the parameters α are normally
distributed according to N (0, Ip), such that a model instance becomes

sα(x) = μS(x) +
p∑

i=1

αiψi(x), (3.4)

where ψi are orthogonal basis functions. The computation of ψi becomes
an eigenvalue problem:

λiφi =
∫

Ω
kS(x, y)φi(y)dy, (3.5)

where ψi =
√

λiφi. Spatially discretized with {xl}N
l=1, xl ∈ Ω, N ∈ IN,

Equation 3.5 results in a matrix eigenvalue problem

λ̃iui = KSui, (3.6)

where KS ij = kS(xi, xj), ui denotes the i-th eigenvector and λ̃i the
corresponding eigenvalue. Like in Chapter 2, the approximated eigen-
functions φ̃i could be derived using the Nyström approximation. How-
ever, in this case the rank of the kernel kS is exactly p − 1 compared to
the Gaussian kernel kG which has infinite rank. Thus, in this case, the
rank is much smaller than the number of sampled points N . Therefore,
instead of performing the Nyström approximation, principal component
analysis (PCA) is more efficient.

principal component analysis Recall the Mercer theorem
for kS , which states that each kernel can be expanded as follows,

kS(x, y) =
p∑

i=1

λiφi(x)φ∗
i (y), (3.7)
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where φi are orthonormal functions (since only p samples are given, the
sum goes from 1 to p). In the finite domain, this means, KS can be
decomposed as follows

KS = UΛUT , (3.8)

where U ∈ IRNd×p is an orthonormal matrix UT U = Ip and Λ is a
diagonal matrix with Λii = λi. Multiplied by U, Equation 3.8 becomes

KSU = UΛUT U = UΛ, (3.9)

which corresponds to the matrix eigenvalue problem Equation 3.6 for
the i-th column ui of U.

Let S ∈ IRNd×p be a matrix where the columns are the vectorized
mean free sample displacement fields si − μS , sampled a N points. The
empirical covariance matrix, which is equivalent to the kernel matrix
KS is

KS = 1
p − 1SST ∈ IRNd×Nd. (3.10)

Because KS and the smaller matrix Cs = 1
p−1 ST S share the first p − 1

main eigenvalues (see more details in Section A.4), the eigenvectors of
KS with non-zero eigenvalues can be derived by

US = SVsD−1
s with Cs = UsD2

sVT
s . (3.11)

The linear generative model, which spans the samples in S with α ∼
N (0, Ip) finally becomes

s(α) = μS + QSα, (3.12)

where μS ∈ IRNd, μS i = μS(xi) and QS = USDs. The minimization
functional for model fitting, using a Gaussian prior on the given samples
S becomes

arg min
α∈IRp

D[IR, IT , μS + QSα] + η‖α‖2 (3.13)

and has the form of a low-rank Gaussian process model of the previous
Chapter 2, which can be minimized with the same methods. In Figure 16,
the mean and the first 5 main variations of a tooth model are visualized.
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Figure 16: In this figure the 5 main principal components are row-wise
visualized. Upper row: +1.5σ, lower row: −1.5σ. The model mean is
depicted in blue.

variational statistical shape model fitting Ap-
plying the statistical model kernel kS to the variational registration
framework introduced in Chapter 2

ui+1 =
∫

Ω
kS(·, x)(ui + f(ui))dx, (3.14)

is computationally very expensive. That is, because kS has “global” sup-
port, i.e. kS(x, y) varies for each y ∈ Ω holding x fix. Furthermore, kS
spatially varies for each x ∈ Ω, which exceeds the capabilities of the
caching scheme.

3.1.1 Extended Statistical Model Kernels

Since the true distribution among the considered object class is only ap-
proximated by a linear combination of a finite training set, parts, which
cannot be explained by the model during model fitting, are biased by
the model. While this property is actually desired when using statisti-
cal shape models, it might be too restrictive. This is the case especially,
if only few samples are given. A combination of a generic deformation Enhancing

the Model
Span

model on top of the statistical shape model can be used to reduce such
a bias. In the following, we present two different approaches where the
model bias is reduced.
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bias reduction In the low-rank Gaussian process framework,
the full prior is encoded in a single kernel function. We therefore propose
to construct a kernel which allows a generic deformation model on top of
the empirical shape model. This is achieved by combining the statisticalCombining

Kernels model kernel with a Gaussian kernel

kB = kS + τkG, (3.15)

where τ indicates the scale of the generic deformation. The bias reduced
kernel kB can be interpreted as follows. On top of a deformation which
is regular in kS , we add a generic deformation, which is itself regular
under kG, but irregular under kS . The combined deformation thus is
regular with respect to the bias reduced kernel kB . Using the Nyström
approximation, the combined kernel can be approximated to get the
low-rank approximation of the corresponding Gaussian process model
GP(μS , kS + λkG). The impact of the bias reduced model is evaluated
in the experiments Chapter 4.

General kernel combinations, which result again in valid kernel func-
tions are provided in Section A.2.

geodesic correlation damping Modeling the correlation
between parts of the shape in terms of the Gaussian kernel kG means
that points which are spatially close are strongly correlated, while points
having a large Euclidean distance are barely correlated. Considering the
tooth shape, and in particular the tooth’s root tips, this model does
not intuitively hold. The root tips might be spatially quite close, while
they do not have a lot to do with each other. However, incorporating
the geodesic distance on the surface of the object to model the point-to-Considering

Topology point correlations is much more intuitive. We present a generic kernel,
which is aware of the geodesic distance on the surface. For using such
a kernel, in the low-rank Gaussian process framework presented in this
work, we have to restrict the image domain to a surface domain.

Let LR : Ω ⊂ IR3 → {0, 1} be a reference label map on the im-
age domain Ω. The boundary of the object is defined as the surfaceObject

Boundary as
Surface

ΓR := {x|x ∈ |∇LR(x)| > 0} ⊂ IR3. Further, let be uΓR : ΓR → IR3

a displacement field, defined on the domain ΓR. Then, the deforma-
tion prior in the registration resp. statistical shape model fitting can
be modeled by replacing the domain in the low-rank Gaussian process
framework with ΓR. The data term, i.e. the image distance, becomes a
distance between the warped reference surfaces ΓR + uΓR and a target
surface ΓT .
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Figure 17: The geodesic shape distance starting from the right root tip
is color coded on the tooth shape surface.

Let define a function ψΓ : ΓR × ΓR → IR, which returns the geodesic
distance of two points on ΓR

1. Having further constructed a statisti-

Euclidean
Distance

Euclidean
Distance

cal surface model kernel kS , based on sample displacement fields SΓ =
{si

ΓR
}p

i=1, kS can be combined with the following geodesic kernel2

kΓ(x, y) = exp
(

−ψΓ(x, y)2

σ2

)
, x, y ∈ ΓR. (3.16)

The model bias reduction can be obtained by damping the correlation
of a point-pair if they are geodesically wide apart

kBΓ = kS · kΓ. (3.17)

Technically, ψΓ could be implemented by pre-computing the shortest
path distance of all point pairs on a discretized mesh of the surface ΓR.
Consequently, the Nyström approximation of kBΓ is also performed only

Geodesically
Damped
Surface
Model

on these discretized points. In Figure 17, the geodesic distance from the
right root tip to all other points on the tooth surface is visualized in
color.

To show the effect the geodesically damped shape model has, in Fig-
ure 18, a simple empirical shape model has been built using two sample
tooth surfaces, one with underdeveloped roots and one with relatively
long roots. The first and only main variation of this model is visualized
as well. The model fit to the target tooth shape, which has different root

1 It could be implemented with the Floyd-Warshall algorithm Cormen et al. [27],
Section 26.2.

2 ψΓ could also be squared.
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(a) Sample 1 (b) Sample 2 (c) Target

(d) PC 1, +σ (e) PC 1, -σ (f) Fit

Figure 18: (a) and (b) are the sample shapes to build the empirical
model. (c) is the target to with the model is fitted. (d) and (e) visualize
the first and only eigenmode ± 1 standard deviation. (f) shows the model
fit in yellow and the again the target shape in blue.

length, is the best compromise with roots which are equally long. Addi-
tionally, the first two eigenmodes of a geodesically damped model have
been approximated. The main variations are visualized in Figure 19. By
adding this flexibility, the model is able to fit the target with different
root lengths. In the experiments Chapter 4, we quantitatively evaluate
the geodesically damped model using a surface to image similarity met-
ric presented in the next section.

3.2 statistical appearance model

In the previous section, the focus was on building a prior over the admis-
sible deformations given a sample dataset. Sample displacement fields
S = {si}p

i=1 have been given, which originate from the registration of
the sample images I = {Ii}p

i=1 resp. the corresponding sample label
maps L = {Li}p

i=1 to a reference image IR resp. reference label map
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(a) PC 1, +σ (b) PC 1, -σ

(c) PC 2, +σ (d) PC 2, -σ (e) Fit

Figure 19: In the first row the first eigenmode of the geodesically
damped model is visualized ± 1 standard deviation. (c) and (d) show
one further approximated eigenmode ± 1 standard deviation as well. (e)
shows the model fit in yellow and again the target in blue.

LR. In this section, we focus on the data term D of the minimization
functional for model fitting Equation 3.13.

In the registration as well as in the model fitting, the reference image
IR is used as an atlas. Having established point-to-point correspondence
to a target image IT , features such as object labels can be transfered Point-to-

point
correspon-
dence

form the reference to the target. This approach involves several prob-
lems. For instance, it is assumed, that for each point in the reference
image there exists a corresponding point in the target. Lets look at the
CBCT-tooth images considered in this work (see three examples in Fig-
ure 20). At least in the background, defining correspondence is difficult.
Examining the tooth shape in more detail, we conclude, that even inside
the tooth object, the point-wise correspondence assumption is incongru-
ous. In Figure 21, examples of the nerve structure of the inside of the
tooth, called pulp, are visualized. Despite the tooth has only two roots,
the pulps can have a different number of tracts. Additionally, the several
hunches make the registration of the pulp difficult.
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Figure 20: Sample image slices of CBCT images where the wisdom
tooth shape is outlined in blue.

Figure 21: Sample pulp shapes.

These correspondence problems occur not only in the model fitting,
but already in the registration of the sample images. To simplify the reg-
istration, instead of the CBCT images, distance maps of the given tooth
label maps are registered (see Section 2.1.3). Thus, the background as

Label map

Signed
distance map

well as the correspondence-less parts inside the object are omitted, and
only the tooth surface is considered. However, the problems remain in
the model fitting. It is difficult to find a reference, where the pulp struc-
ture inside the tooth and the background can be explained with such a
statistical model.

To tackle the background problem there are different strategies. An
easy way to relieve the misleading influence of the background is to sim-
ply mask it out. That means, only the image difference inside the object
is considered. However, this again involves problems. Since only the ob-
ject inside contribute to the matching error, the shrinkage of the object
would give lower costs. Therefore, the background has to be included in
the image metric.

We propose to learn an appearance model, based on the given sample
images I, which can estimate the object resp. background probability of
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a point in the target image IT . The outcoming probability map will be
used in the image metric presented in Section 3.2.2. The goal with this
approach is to predict the background as accurate as possible, and to pre-
dict the pulp structure as object together with the dentin/enamel. Since
we do not expect a perfect object/background prediction, a statistical
shape model is fitted onto the probability map.

segmentation problem revised The segmentation prob-
lem can be formulated as follows. A reference label map LR : Ω ⊂
IRd → {0, 1} is deformed by a parametric deformation model M[α](x) :
IRp, IRd → IRd, such that it matches the unknown target label map LT ,
which assigns each point of a corresponding target image IT : Ω → IR
as belonging to object or background. Since LT is not known, the object
probability of the target image is predicted. The prediction is repre-
sented by a probabilistic shape function PT : Ω → [0, 1], where PT (x)
denotes the probability of a point x ∈ Ω being part of the object of
interest. The minimization functional becomes

arg min
α∈IRp

DP [PT , LR, M[α]] + ηR[α]. (3.18)

Instead of comparing intensity values, DP quantifies the matching be-
tween the deformed reference label map and the predicted target prob-
ability map. Hence, all that is needed is an accurate object and back-
ground predictor for IT .

3.2.1 Random Forest Regression

Because of the correspondence-less pulp structures, an appearance model
is needed which is correspondence-less as well. We propose to learn the
density p(PT |I, L, IT ) in a nonparametric and discriminative manner us-
ing random forest regression. Additional to the sample images {Ii}p

i=1

Random
forest

regression

and the corresponding ground truth label maps {Li}p
i=1, let further

Fi : Ω → IRm be a feature image of Ii obtained by a general feature
extraction method. Hence, for each point in the image, there is p-times
an m-dimensional feature vector Fi(x) with a corresponding binary la-
bel Li(x) indicating the point being object or background. With this
training data, the object and background prediction can be learned by
any regression method. Since there is a lot of training data, we propose
to use random forest regression.

If only the image intensities are considered as feature, the intensity
distribution (histogram) is estimated. However, more advanced features
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(a) Intensities (b) GGM 1.0 (c) Sobel

(d) LoG 0.5 (e) LoG 1.0 (f) LoG 2.0

Figure 22: The following features are visualized: (a) intensity, (b) Gaus-
sian gradient magnitudes with σ = 1, (c) Sobel edges, (d) Laplacian of
Gaussians σ = 0.5, (e) Laplacian of Gaussians σ = 1.0 and (f) Laplacian
of Gaussians σ = 2.0.

as e.g. Laplacian of Gaussians, Sobel edges or Harmonic Filters, incorpo-
rate neighborhood relations and are able to capture long range structural
dependencies of different parts in the object. For instance, the pulp struc-
ture inside the tooth can be predicted as object as well. In Figure 22, an
example of the different features are visualized. In Figure 23, a probabil-
ity map based on the intensity values, and one based on the mentioned
features are depicted.

3.2.2 Probabilistic Similarity Metric

The obtained probability map could be directly compared to the de-
formed label map by a squared loss for instance. However, we propose
a more advanced distance metric, which also takes the boundary of the
object into account.

In the following, we define a rather general (dis)similarity metric DP .
Recall, that a global consistency in the object estimate is established
by fitting the statistical shape model. At this stage however, the ob-
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(a) CBCT image (b) PM intensity (c) PM feature

Figure 23: (a) Intensities of the CBCT image, (b) probability map
obtained by random forest regression learned on solely the intensities,
(c) probability map where various features have been used for training.
Red corresponds to the object probability of 1, blue to 0.

ject and background probability for each point in the image domain is
estimated separately and treated as independent. Hence, for the full ob-
ject resp. background probability, we integrate over the logarithms of
all object resp. background points in the image. Additionally, as object
boundary term, a weighted total variation (TV) norm [79] is added to the
metric. An edge indicator serves as the weighting. Note, that classically,
the image gradients are used for the weighting in the TV norm. But, in
our low quality images, especially in the region of the tooth’s roots, it is
difficult to estimate edges. Therefore, we use the object probability map
for the edge indicator.

Let the deformed reference label map be denoted as LR(x+u(x)) and
the probability map for the object as PT . The similarity measure is

DP [u] =λ

∫
Ω

− log(PT (x))LR(x + u(x))dx︸ ︷︷ ︸
foreground

(3.19)

+ λ

∫
Ω

− log(1 − PT (x))(1 − LR(x + u(x)))dx︸ ︷︷ ︸
background

+ (1 − λ)
∫

Ω

1
1 + |∇PT (x)| |∇LR(x + u(x))|dx︸ ︷︷ ︸

boundary

,
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(a) LR(x+ u∗(x)) (b) PT (x) (c) P (x) (d) Q(x)

Figure 24: (a) is the reference label map, which is transformed with the
ground truth displacement field, (b) depicts the probability map of the
target image obtained by random forest regression, (c) is the simplified
regional part P (x) of the metric and (d) is the boundary part Q(x). The
interval [0, 1] has been color coded with [blue,red] (except for the label
map). The gradients have been calculated by Gaussian gradients with
σ = 0.3.

where λ is a trade-off parameter between the regional and the boundary
terms. The long expression can be simplified to

DP [u] =λ

∫
Ω

log
(

1 − PT (x)
PT (x)

)
LR(x + u(x))dx (3.20)

+ (1 − λ)
∫

Ω

1
1 + |∇PT (x)| |∇LR(x + u(x))|dx.

Finally, the first factor of the region part is referenced as P (x) and the
one of the boundary part to Q(x)

DP [u] =λ

∫
Ω

P (x)LR(x + u(x))dx (3.21)

+ (1 − λ)
∫

Ω
Q(x)|∇LR(x + u(x))|dx.

For illustration purposes, the individual terms and components appear-
ing in this metric are visualized by an example in Figure 24 and Figure 25.
The terms are shown for an optimal displacement field u∗ and for a sub-
optimal one u′. One can see, that for the optimal displacement field, the
regional part as well as the boundary part give low values (blue), while
for the suboptimal one, they become more “red” i.e. higher values.
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(a) (b) (c) (d)

(e) (f) (g) (h)

Figure 25: (a) is the reference label map which is deformed by the
ground truth displacement field LR(x + u∗(x)). In (b), the metric value
of the regional part with this ground truth label map P (x)LR(x+u∗(x))
is depicted. (c) is the gradient magnitude of the ground truth deformed
reference label map |∇LR(x + u∗(x))|. In (d), the metric value of the
boundary part with the ground truth boundary Q(x)|∇LR(x + u∗(x))|
is depicted.
(e) is the reference label map which is deformed by another displacement
field LR(x + u′(x)). In (f), the metric value of the regional part with
this other label map P (x)LR(x + u′(x)) is depicted. (g) is the gradient
magnitude of the reference label map deformed by another displacement
field |∇LR(x+u′(x))|. In (h), the metric value of the boundary part with
this other boundary Q(x)|∇LR(x+u′(x))| is depicted. The colors in the
second column are coded as [−4, 4] = [blue,red] and 0 = gray. In last
two columns the colors are [0, 1.4] = [blue,red].
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The derivative of this metric3 with respect to the displacement field
is given as

dDP [u]
du

=λ

∫
Ω

P (x)(∇LR)(x + u(x))Ju(x)dx (3.22)

+ (1 − λ)
∫

Ω
Q(x) (∇LR)(x + u(x))Ju(x)

|(∇LR)(x + u(x))Ju(x)|
·
((

(∇2LR)(x + u(x))Ju(x)
)T Ju(x)

+ (∇LR)(x + u(x))Ju(x)Hu(x)
)

dx,

where J denotes the Jacobian. Since in the low-rank Gaussian process
framework u is linear in the parameters, the Hessian H vanishes and the
derivative can be efficiently computed.

3.2.3 Shape to image metric

The metric presented in the previous section is applied if a statistical
deformation model is given. However, the regional part of the metric
does not make sense if a statistical surface model is fitted to a target
as it is the case for instance with the geodesic model. In this case, we
propose the following surface to image metric which is only based on the
boundary of the object

DΓ[α] =
∫

ΓR

1
1 + |∇PT (x + M[α](x))|dx. (3.23)

In Chapter 4, we will show experiments with this metric and the geodesic
surface regularized model.

discussion

We introduced the standard approach to statistical shape model con-
struction. To obtain the empirical basis, we provided the viewpoint of
the previous introduced low-rank approximation, where an orthogonalCombined

Models basis expansion of a kernel is derived. Further, we presented two dif-
ferent approaches to relax the model bias. Both are based on kernel
composition. In the first approach, a generic Gaussian kernel is added
to the statistical model kernel. The second approach focuses on plain

3 Note: the following rule for differentiating is needed: f(x) = |a|, f ′(x) = a·a′
|a| .
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surface models where the empirical correlations of the points on the ref-
erence surface are damped with respect to their geodesic distance. This
is achieved by the multiplication of the statistical model kernel with a
Gaussian kernel which acts on the surface.

Since the direct fitting of the shape models to intensity images is diffi-
cult, in the second part of this chapter, we presented an approach where
the model is fitted to object probabilities. This has the advantage, that Non-

parametric
Appearance
Model

systematic appearance structures of an object class can be learned and
predicted as foreground. For example the pulp structure inside a wis-
dom tooth, which barely has meaningful correspondence, can be jointly
predicted as object with the dentin and enamel. The object is predicted
based on a nonparametric appearance model, where the appearance is
learned using random forest regression. Several features, extracted from
the image have been used including Harmonic Filters which yield 3D
rotation invariant properties.

We presented a dissimilarity metric where a ground truth label map
can be compared with the target probability map. In addition to the
areal object and background part, the boundary of the object is consid- Incorporate

Regions and
Boundary

ered as well. This object boundary is used as well for a mesh to prob-
ability map metric which we have presented for a plain surface model
fitting.

In Chapter 4, we will evaluate the presented methods to show their
applicability for medical image segmentation.
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This chapter provides qualitative as well as quantitative experimental
results for evaluating the presented approaches in this work. The list of
content below gives an overview over the structure of this chapter.

4.1 Variational Registration Experiments 68
4.1.1 POPI Breathing Thorax Model 69
4.1.2 Patellar Surface Registration 75

4.2 Low-rank Gaussian Process Registration vs.
Demons Registration 80

4.3 Wisdom Tooth Shape Model 81
4.3.1 Shape Model Bias 82

4.4 Wisdom Tooth Segmentation 84
4.4.1 Evaluation of Segmentation 86
4.4.2 Geodesically Damped Model 91

4.5 Discussion 94

In the first part Section 4.1, experiments with our variational ap-
proach to registration is provided. On the basis of a 4D lung CT dataset,
where also landmarks are provided, the approximation performance of
the used tensor decomposition techniques are analyzed in detail. The
method is compared with the Elastix [49] implementation of the B-spline
registration method of Rueckert et al. [80]. For the hybrid landmarks and
image registration an extended B-spline method was used which addi-
tionally considers the landmark errors as cost term. For a qualitative
and visual example, in Section 4.1.2, two femur shapes are registered.
Since the bone surface gives insufficient cues about the patellar surface
on the femur, landmarks are placed to register it more accurate.

In the second part Section 4.2, the low-rank Gaussian process regis-
tration is applied to a femur CT dataset. It is compared to the standard
Demons approach [94] and the B-spline registration method [80].

In Section 4.3, we present the statistical tooth model and we also
describe its construction. An experiment shows how the model bias can
be reduced by combining the statistical model with a generic Gaussian
kernel, to reach an overall better expressiveness of the model.

67
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In Section 4.4, the statistical shape model combined with the sta-
tistical appearance model is used to segment the wisdom tooth from
CBCT images. Our approach is compared to the method of Cremers et al.
[29], where a similar appearance model is used. Further, the geodesically
damped model is applied to segmentation and compared to the standard
empirical surface model.

4.1 variational registration experiments

In this section, registration experiments are performed for validating the
variational approach for registration. First, a detailed study about the
separable filter approximation is provided. We discuss its approximation
performance in terms of accuracy and computational aspects. Second,
the local filter compression with respect to memory consumption, com-
putational demands as well as approximation accuracy is analyzed. Our
method is compared to Elastix [49], where landmarks are incorporated
as an additional cost term to the registration functional.

As a quality measurement, the target registration error (TRE) and
the dice coefficient (DICE) are used. Further, the singularities in the
transformation serve as indicator of how well the deformation field can
be inverted. The singularity count is determined by counting the voxels
where the determinant of the Jacobian is smaller than zero. To com-
pare two deformation fields A and B, the magnitude differences and
the vectors directional discrepancy are considered for each vector pair.
Following that, we define the accuracy loss:

τ(A, B) =
∫

Ω
(‖A(x)‖ − ‖B(x)‖)2 +

∥∥∥∥ A(x)
‖A(x)‖ × B(x)

‖B(x)‖

∥∥∥∥2

dx, (4.1)

where τ(A, A) = 0 and greater than zero for dissimilar deformation
fields.

Since different regularizers and their approximations are compared
only, the mean squared differences similarity measure is used for all
experiments in this section. Following Thirion [93], gradient descent on
D is performed with the image forces

f(ϕ(x)) = − (IR ◦ ϕ(x) − IT (x))∇IR ◦ ϕ(x)
κ2(IR ◦ ϕ(x) − IT (x))2 + ‖∇IR ◦ ϕ(x)‖2 , (4.2)

with κ2 the reciprocal of the mean squared image spacing. Generally,
we set the prior mean function always to a rigid pre-alignment of the
images.
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elastix configuration For the registration with Elastix [49],
the B-spline transformation model combined with the mean squares
metric and an LBFGS optimizer is used. For the landmark examples
the mean squares metric with the “Corresponding Points Euclidean Dis-
tance Metric” is applied, which is equivalent to the target registration
error.

4.1.1 POPI Breathing Thorax Model

In this first experiment, quantitative results by different approximation
ranks of the nonseparable exponential kernel (α = 1) are shown (cf. Sec-
tion 2.3.1). The filter H0 has been discretized on a 233 voxel mask. The
results are compared to the exact method, which is obtained with the
same kernel, but without separable filtering. The POPI dataset [99], is
used, which contains 10 CT images of a breathing lung. The images have
a resolution of 482×360×141 voxels and a spacing of 0.98×0.98×2mm3.
For the experiment, the images have been resampled to 235 × 175 × 141
voxels and scaled to isotropic spacing at 2mm3. In the experiment, the
first image has been chosen to be the reference image. The registrations
have been calculated on a single scale level. The experiments have been
repeated with increasing rank R of the separable filter approximation
from one to four. R = 1 corresponds to the rank-one approximation used
in Beuthien et al. [14] which serves us as baseline. The exact method
corresponds to the algorithm of Long et al. [60] but extended to 3D.

In Figure 26, the image error change during the optimization is il-
lustrated. It has been averaged over the nine registrations. In the first
three experiments the convergence rate decreases with increasing rank R,
while the resulting image error is getting smaller. One can also observe
that for R ≥ 3 the image error stays nearly the same and is close to the
exact method. Moreover, the variance of the image error is getting more
narrow with higher R. It can be assumed that for R > 4 no significantly
improved approximation can be achieved. For a better comparison, all
mean curves are again shown together in the last plot.

In Table 1, the results of the experiments are summarized in nu-
merical terms. Evaluating the accuracy loss of Equation 4.1 between
the approximations and the exact method, higher rank approximations
reach greater accuracy. The CPU time is considerable high for the exact
method. With a third of the computational effort, our method achieves
a good approximation, without loosing much of accuracy.
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Figure 26: This figure shows the image error averaged over all nine
experiments for approximation R = 1 to 4 as well as for the exact
method. For each experiment the mean error is plotted as well as ± one
standard deviation in a solid style and the max/min as a dashed curve.
In the last subfigure the averages for all variants are again shown in one
plot.

For a more detailed comparison, the whole experiment is repeated but
on different scale levels. The results are listed in Table 2 and Table 3.
Note that all quantities are averaged over the nine experiments.
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Approx rank R = 1 R = 2 R = 3 R = 4 None

iterations to
converge 20 44 68 68 63

final average
image error 3588 2524 1808 1799 1737

accuracy loss 1.0033 0.6407 0.2299 0.2250 0.0000
relative CPU time 0.08 0.17 0.25 0.33 1.00

Table 1: This table shows the convergence properties with different
approximation ranks. The iterations to convergence in the first row
were computed as the number of iterations until the average image er-
ror change deceed the value 3. The accuracy loss is calculated by using
τ(A, B) in Equation 4.1 between A the resulting and B the exact method
transformation.

R = 1 R = 2 R = 3 R = 4 exact voxels

CPU time L0 (h) 0.21 0.41 0.61 0.83 3.69 87290
CPU time L1 (h) 1.81 3.54 5.18 7.01 25.71 712530
CPU time L2 (h) 13.88 27.28 40.23 53.19 159.13 5798625

Table 2: This table shows the computational time needed for the differ-
ent experiments. To show the time complexity depending on the num-
ber of voxels in the image, we calculated the experiments on 3 different
scale levels L0. . . L2 and performed 100 iterations per level. The timing
is given in average CPU hours needed to perform one registration.

The results show that for nonseparable kernels, a one-rank approxi-
mation is not accurate enough to approximate the filter’s regularization
property. With higher rank, the calculation time increases linear in R.
Since the resulting image error as well as the convergence properties
using R = 4 do not significantly differ from the exact method, we argue
that 4 ranks are sufficient to approximate the exponential kernel.

comparison to elastix For a meaningful comparison to Elastix,
three experiments have been performed. First, the smoothness parame-
ter σ of the B-spline transformation model has been tuned to a small
TRE (σ = 4). Second, σ was tuned in order that no singularities (∞)
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method TRE ∞ υ(A) DICE CPU

rigid alignment 1.673 ± 1.062 0 n/a 0.959 n/a

kexp (R = 1) 1.419 ± 1.059 0 0.094 0.966 15.5
kexp (R = 2) 1.027 ± 0.801 0 0.117 0.974 30.2
kexp (R = 3) 0.588 ± 0.158 0 0.146 0.981 45.9
kexp (R = 4) 0.584 ± 0.149 0 0.148 0.981 59.4
kexp(exact) 0.579 ± 0.103 0 0.198 0.981 188
elastix (σ = 4) 0.540 ± 0.104 6143.8 0.861 0.987 2.24
elastix (σ = 16) 0.601 ± 0.150 0 0.398 0.981 2.25
elastix (σ = 64) 0.819 ± 0.308 0 0.154 0.974 2.23

Table 3: In this table the performance evaluation of the POPI experi-
ment without considering the landmarks are shown. In our method the
exponential kernel is used as regularizer. For comparison, in Elastix the
B-spline transformation model was used.

are present in the result, but simultaneously for a TRE which is as small
as possible (σ = 16). Finally, the parameter was chosen for a resulting
transformation, which is approximately as smooth as the ones obtained
by our method (σ = 64). To quantify the smoothness of a deformation
field A the local displacement changes are integrated

υ(A) =
∫

Ω

∫
Bx

‖A(s) − A(x)‖dsdx, (4.3)

where Bx is the neighborhood around x with radius 1. The results in
Table 3 show the trade-off in Elastix between TRE and the smoothness
of the transformation. σ can be tuned for a small TRE accepting a less
smooth transformation or it is chosen such, that the resulting transfor-
mation is smooth, but with a higher TRE. However, our method reaches
significantly smoother transformations compared to Elastix with a sim-
ilar TRE. Since we regularize for diffeomorphic transformations it was
expected, that compared to Elastix using a small smoothness parameter,
no singularities will be present in the results. As soon as σ is increased
such, that the transformations are as smooth as in our method, the
TRE and DICE performance drops dramatically for Elastix. However,
the computational demands for the Elastix experiments are one order
of magnitude lower compared to our method.
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Ξ Level CPU CPU 1. iter Mem. (GB) Masked τ
w
it
ho
ut 0 4.05 2.32 10.17 29249 0

1 9.85 2.63 18.58 54933 0
2 58.89 5.60 28.61 84424 0

T
uc
ke
r 0 5.12 2.51 1.11 29249 6.46 · 10−5

1 12.48 3.22 1.44 54933 2.32 · 10−5

2 66.84 6.48 2.55 84424 9.69 · 10−6

Table 4: The table shows the resources needed to perform the exper-
iments. For the upper part of the table, no Tucker decomposition of
the local filter kernels was performed. In the lower part, the local fil-
ters were decomposed using the Tucker decomposition to save memory
during caching. Hx was discretized on a 233 mask. The approximation
ranks were set to P = Q = R = 5. The masked voxels (5th column) are
the ones, which are in the support of the landmarks. The support limit
ξ was set to 10−6.

incorporating landmarks To quantify the efficiency of our
filter caching approach, the experiments are performed once more, but
including 21 landmarks provided in the POPI dataset. The landmark un-
certainty was set to σ = 0.02. For comparison, the exact method, which
combines the separable filtering with R = 4 and the landmarks, does no
compression. In Table 4, the average resources needed for each experi-
ment are listed. As expected, for the Tucker decomposition, slightly more
CPU time is needed. However, it is negligible compared to the memory
savings reached with this compression. Furthermore, the approximation
of the local filter kernels is nearly perfect resulting in a very small loss
of accuracy. The most CPU intensive part in each experiment is the
1st iteration, because initially, all local filter responses have to be cal-
culated. Without the caching scheme therefore, the overall CPU time
would explode to CPU weeks.

To compare our hybrid results with Elastix, the hybrid B-spline reg-
istration was performed twice, using a small resp. a large weight w for
the landmark cost term (see Table 5). A large weight results in a smaller
TRE while the overall smoothness decreases. Several singularities (indi-
cated as ∞) are present in the Elastix results, while the singularities in
our method are negligible. The major advantage of our method becomes
apparent with the overall smoothness. Despite the landmark considera-
tion it is much higher than in the Elastix experiment.
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method TRE ∞ υ(A) DICE CPU

rigid alignment 1.673 ± 1.062 0 n/a 0.959 n/a

kexp (Tucker) 0.484 ± 0.127 0.4 0.144 0.981 80.1
elastix (σ/w = 4/1) 0.411 ± 0.086 6255.8 0.859 0.987 2.42
elastix (σ/w = 4/64) 0.024 ± 0.001 2565.9 0.624 0.987 2.41
elastix (σ/w = 16/1) 0.535 ± 0.089 869.8 0.544 0.984 2.95
elastix (σ/w = 16/64) 0.159 ± 0.042 948.0 0.534 0.984 2.96
elastix (σ/w = 64/1) 0.814 ± 0.303 0 0.156 0.974 2.35
elastix (σ/w = 64/64) 0.796 ± 0.300 0 0.154 0.974 2.34

Table 5: In this table the performance evaluation of the POPI experi-
ment including the landmarks are shown. In our method the exponential
kernel is again used as regularizer. In Elastix the B-spline transformation
model was used.

Level speedup (landmarks excl.) speedup (landmarks incl.)

0 13.8 11.3
1 17.7 12.4
2 17.9 14.9

Table 6: The speedups were calculated by (Time (1 process) −
Time (24 processes))/Time (24 processes). Therefore, an optimal full
parallelizable algorithm would have a speedup of 23, using 24 processes.

discretization artifacts The TRE could be decreased, but,
regarding the small uncertainty on the landmarks a smaller landmark
error would have been expected. This discrepancy originates from the
discretization of the mean transformation μX , which in this experiment
leads to a TRE drift of 0.264 ± 0.121.

T REdrift = T RE(μX discretized) − T RE(μX exact) (4.4)

Compared to the experiment in Section 4.1.2, where the resolution is
about twice as high the discretization error results in a TRE drift of
0.056 ± 0.002, which is negligible.

a note on the parallelization Since our method is based
on image filtering, it is well suited to perform the filtering for each voxel
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(a) (b) (c) (d)

Figure 27: In this figure, a reference femur shape (a) is registered
with the target femur shape (b). The landmarks along the border of the
patellar surface are marked in red (reference) and green (target). The
patellar surface, marked in dark gray, could not be registered without
incorporating the landmarks (c). With the hybrid registration approach
presented in this work, such a high-level feature as the patellar surface
could be well registered (d).

in parallel. We performed the experiments with 24 processes and reached
an average speedup between 15 and 18 as listed in Table 6. Because the
landmarks are not uniformly distributed over the image domain, the
work load is also not equally distributed to the processes. Therefore, a
lower speedup in the hybrid registration experiments has been reached.
The actual time needed to perform the experiments is the CPU time
listed in the previous tables divided by the speedups listed in Table 6.
For example, calculating the 9 registrations on level 2, the exact method
took us 2.5 days instead of 8.5 weeks.

4.1.2 Patellar Surface Registration

In this section, a 3D experiment is shown where the two femur shapes
of Figure 27, are registered. The challenge with this kind of data is
that the border of the patellar surface, as described as the gray marked
region in Figure 27, is potentially hard to recognize given solely the
shape surfaces. Moreover, its variation can be quite large. Therefore, an
accurate registration of the patellar surface using automatic algorithms
is difficult.

The patellar surfaces of the target and reference bone have been given
by experts. By incorporating well-chosen landmarks, our algorithm can
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Figure 28: The figures show the displacement field resampled on the
reference’s surface, depicted as arrows. First row: registration was per-
formed without landmarks. Second row: registration was performed in-
cluding the landmarks.

be forced to register even the patellar surface correctly. The shapes are
represented as signed distance images of 353×327×491 voxels (isotropic
spacing 0.57mm3 and registered on 5 scale levels l). The scales of the
mean transformation μX have been chosen to 10−l. For k the Gaussian
kernel with σG = 1 have been used and a landmark uncertainty of
σ = 0.3 × 10−3. We approximated the landmark kernel kX with P =
Q = R = 5. For illustration, the experiment is performed once without
landmarks and once including the landmarks.

In Figure 28, the displacement fields are shown resampled on the bone
surface depicted as arrows. Especially at the upper border of the patellar
surface, one can see the strong impact of the landmarks. In Figure 29,
the two different displacement fields are again visualized but sampled
on the reference landmarks. In Figure 30, the deformed reference shape
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(a) Excl. landmarks (b) Incl. landmarks

Figure 29: The figures show the displacement field resampled on the
reference’s landmarks, depicted as arrows.

method TRE ∞ υ(A) DICE

rigid aligned 12.268 ± 13.627 0 0 0.797
diffeomorphic demons 13.722 ± 31.546 0 0.250 0.989

elastix (σ/w = 1/1) 0.005 ± 1.199 20703 0.314 0.973
our approach 1.225 ± 1.328 48 0.251 0.990

Table 7: Quantitative measures of the femur example.

including the dark gray marked part is plotted. Without considering the
landmarks, the border of the patellar surface is clearly misaligned, while
it is correctly registered when the landmarks are incorporated.

The same experiment is performed again with Elastix and the sum-
marized results are in Table 7. The parameters of the hybrid B-spline
registration were tuned concerning the TRE and DICE performance
measures. While Elastix brings the TRE down to nearly zero, a very
large amount of singularities (∞) are present in the resulting transfor-
mation and the DICE coefficient is rather low. Our method reaches a
small TRE as well. Furthermore, the singularity count is very low, the
DICE quite high and the deformation field smooth.

smooth mean transformation Since multiple reference
landmarks can be forced to match one single target landmark by set-
ting the landmark uncertainty σ to zero, μX is not guaranteed to be
invertible. In Figure 31, an artificial example is shown where a grid is
transformed by the mean displacement using different values for σ. Set-
ting σ equal to zero, or too small, results in unfavorable folds and barely
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Figure 30: The figures show the deformed reference shape including
the colored patellar surface. First row: registration was performed with-
out landmarks. Second row: registration was performed including the
landmarks. Third row: ground truth target shape. While there is almost
no difference in shape among the rows, the patellar surface in the second
row match the one of the ground truth.



4.2 low-rank gaussian process registration vs. demons registration

Figure 31: This figure shows a transformed grid (200px2 and isotropic
spacing of 0.1mm2 with the mean transformation using the Gaussian
kernel (σG = 6). There are three landmarks defined as reference and
target points (red reference, green target, the yellow ones are equal for
both). The uncertainty on the landmarks is increased for the experiments
from left to right (σ = 0, σ = 0.5 × 10−3, σ = 0.75 × 10−3, σ = 0.1 ×
10−2, σ = 0.25 × 10−2). The arrows illustrate to which location a point
is transformed by the deformation field.

Figure 32: This figure shows the deformed reference femur shape by the
mean transformation using the multiscale kernel with five scale levels.

make sense in real wold medical problems. Therefore, in the patellar
surface experiment, the parameters have been chosen such that folds in
μX hardly ever occur. The mean transformed reference shape is shown
in Figure 32, where no holes can be identified on the surface.
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4.2 low-rank gaussian process registration
vs. demons registration

In this experiment, we show the registration performance of the low-
rank Gaussian process registration method compared to the standard
Demons and the B-spline registration. For this test, CT images of dry
femur bones, with a resolution of 176 × 163 × 622 are registered. A refer-
ence image was selected which has been registered to 27 target images
using the mean squares similarity measure. As a deformation model, a
zero mean Gaussian process with a Gaussian kernel (σG = 100) was ap-
plied. The low-rank approximation was computed by approximating the
first 300 basis functions. The squared image loss was used as well. The
registration performance was compared with the ITK implementation of
the standard Demons algorithm [46] and the Elastix implementation of
th B-spline registration [49]. To have a fair comparison, for each method
different parameters have been tested, while the best ones have been
used in the comparison. For the Demons method σ = 1.2 and for the
B-Spline registration σB = 16. As performance measure, we use a DICE
coefficient, which is computed on manual segmentations of the images.
In Figure 34, the reference and three target examples are shown.

Figure 33 shows the results for the different algorithms. The low-rank
Gaussian process registration outperforms the Demons algorithm and
performs on par with the B-Spline registration. The B-spline registration
performs, however, slightly better when a multi-scale strategy is used.
This is expected, as the simple Gaussian kernel which is used in the low-
rank Gaussian process method only models deformations on a single
scale.

Rigid Demons Gaussian B-Spline B-Spline (multiscale)
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Figure 33: DICE coefficient comparison of femur registration experi-
ments. The rigid alignment was used as baseline.
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Figure 34: Example femur CT slices. The reference is depicted in the
top row. Target examples in the remaining three. In the left column the
CT and in the right one the label maps are shown.

4.3 wisdom tooth shape model

The following experiments are based on a dataset of 47 CBCT images
of the jaw region with the wisdom tooth as the object of interest. For all
images, a ground truth label map is given by experts for following labels:
whole tooth, pulp (nerve structure inside the tooth) and the joint struc-
ture dentin/enamel (whole tooth except the pulp) including the ones
of neighboring teeth. The dataset is restricted to double-rooted teeth.
The images have been similarity aligned and their histograms aligned
to a training sample. The pulp structure is jointly modeled as tooth
shape together with dentin and enamel, because the different number
of tracts and hunches makes the registration of the pulp difficult. The
point-wise correspondence assumption for this kind of structure is incon-
gruous (cf. Figure 21).
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standard shape model In the following experiments, differ-
ent shape models are constructed. The empirical shape models are all
built upon a given training set of deformation fields X = u1, . . . , un. The
variation of shape LR(x + uα(x)) is modeled by a linear model

uα(x) = μ(x) +
n∑

i=1

αiφi(x), (4.5)

where μ is the empirical mean deformation μ(x) = 1
n

∑n

i=1 ui(x) and
φi : IRd → IR the eigenmodes of the training set X obtained with prin-
cipal component analysis1. With this parametrization over α, a simple
Gaussian prior is used as regularization R[α] = ‖α‖2.

Having given n training label maps {Li}n
i=1, their representation is

switched to signed distance maps {Si}n
i=1 (cf. Section 2.1.3). Using a

non-rigid registration method, the shapes are matched to a reference
SR to obtain {ui}n

i=1. Which registration method, and how the refer-
ence is selected/constructed is mentioned for each specific experiment
separately.

4.3.1 Shape Model Bias

The aim of the following experiment is to show the impact of the statis-
tical model bias and how it can be reduced to reach better segmentation
performance. The distance maps of the 47 given samples have been reg-
istered to an arbitrary training sample using the B-spline registration
[80] with σB = 2 and 4 resolution levels. An empirical statistical shape
model GP full(μfull, kfull) has been constructed using all resulting defor-
mation fields {ui}46

i=1. Further, the set of deformation fields have been
randomly splitted into a training set and a test set with size 19 and 27
respectively. On the basis of this training set, another “reduced” statis-
tical model GPbias(μbias, kbias) have been constructed, which simulates
a model which does not fully spans the “real” shape variation. Fitting
both of the models to the distance maps which correspond to the sam-
ples in the test set, the full model clearly outperforms the biased one,
which was expected, since the test samples have been included to build
the full model (see Figure 35).

Since the biased model is too restrictive, a generic low-rank Gaus-
sian process model GPgeneric(0, kG) with a Gaussian kernel σG = 3 is
constructed. 700 basis functions have been approximated using 7000 uni-
formly sampled spatial points for the Nyström approximation. Samples

1 The shape models have been built with the open source software Statismo [63].
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Figure 35: DICE coefficient comparison of different models. For this
comparison, no regularization during fitting has been used (η = 0).
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Figure 36: (a) Eigenvalue spectra of two Gaussian models. The σ have
been set to 3 (blue) and 6 (green) respectively. For both models 700
eigenmodes have been approximated. While in the σ = 6-model 250
eigenmodes cover 99% of the variance in the σ = 3-model more than
650 are needed to reach the 99% of the variance. (b) Eigenvalue spectra
of the empirical model kS and a combined model kS + kσ with 100
approximated eigenmodes.

of such a model are visualized in Figure 37. For all experiments the
Huber loss function Equation 2.4, has been applied.

Fitting this model to the test set gives similar results than the ones
with the biased model cf. Figure 35. However, combining the biased and
the generic model GPcombined(μbias, kbias + kG) yields a better fitting
performance as if they are separately fitted.
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Figure 37: Sample deformation fields of a low-rank Gaussian process
model using the Gaussian kernel (σ = 6mm).

In Figure 36, the eigenvalue spectra of different generic models and
a bias reduced model is plotted. Restricting the admissible functions
to be smoother (using a larger σ of the Gaussian kernel) the spectrum
decreases faster. In the bias reduced model, one can observe, that the
overall variance have increased compared to the empirical model.

4.4 wisdom tooth segmentation

In this section, the segmentation performance using the statistical tooth
shape model and the statistical appearance model presented in this work
is evaluated. The performance of three different object prediction strate-
gies are evaluated. Our approach is compared to the classical Active
Shape Model of Cootes et al. [25] which serves as baseline2. Moreover,
we show comparisons with the method of Cremers et al. [29] and an ex-
tended version of their approach using the object prediction presented
in this work. The results are evaluated using two quantitative measures.
For the first measure, the boundary of the ground truth labels as well as
the ones of the segmentation results are sampled to get meshes, which
can be compared. As a quantitative measure, we apply the Bidirectional
Local Distance (BLD) which was proposed by Kim et al. [48] in order
to compare segmentations. Additionally, the segmentation performance
is evaluated using the DICE coefficient between the ground truth and
the segmentation label maps.

To build the statistical shape model, 26 training samples are registered
to an arbitrary training sample using B-spline registration of the signed
distance maps. Similar to the atlas construction of Frangi et al. [33],

2 We used the implementation of Kroon [53].
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the average deformation is applied to the reference label, resulting in an
average label map, which again is used as final reference for registration
of all training samples. In this way, the model bias towards the reference
is reduced.

object prediction Our method is tested with two object pre-
diction setups:

intensity A random forest classifier3 is trained on the whole tooth
labels using the intensity values only.

improved Two random forests are separately trained; one on the pulp
and one on the dentin/enamel labels. The following features have
been used:

• intensity values
• Laplacian of Gaussian on three scales (σ = {0.5, 1, 2})
• Gaussian gradient magnitudes
• Sobel edges
• Multi-channel Harmonic Filters features [82] of the order 3

on four scales (σ = {2, 5, 8, 11}, γ = {1, 1, 1, 1})
For prediction, the maximum of the two classifier outputs is used.

All random forests have been trained with 50,000 points per label, uni-
formly sampled as training data (a border of 0.75mm has been excluded
from sampling to reduce image boundary effects). 256 trees have been
learned per forest, where 30% of the sampled points have been used per
tree. The Gini index is used as criterion for the splitting function (more
details can be found in [51]).

In Figure 38, example probability maps of the two different prediction
methods intensity and improved applied to a test sample, are shown. Ad-
ditionally, another probability map is compared where the prediction is
based on the same features, which have been used in improved, but with
only one single random forest trained on the whole tooth label. In the
intensity probability map, the pulp could not be predicted as belonging
to the object, because it shares intensity values with the background.
Furthermore, the bone structure of the jaw is not fully predicted as
background. Overall, the noise from the original image is passed over to
the probability map, which originates in the simple intensity features.
On the tooth probability map, the background and even the neighbor-
ing teeth (upper left of the tooth crown) could be greatly reduced. But,

3 We used the random forest implementation of the computer vision library
VIGRA [51].
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(a) IT (b) PIntensity (c) PTooth (d) PImproved

Figure 38: Example probability maps. (a) denoised CBCT image, (b)
object probabilities based on intensity features, (c) object probabilities
based on improved features but with only one random forest and (d)
object probabilities based on improved prediction. Although the back-
ground is better predicted in (c) there are uncertainties left in the region
of the roots. In (d), the tooth is predicted more accurate, while the neigh-
boring teeth are predicted as object as well.

there is some uncertainty left in the region of the roots. In the im-
proved probability map, the background is predicted accurately, while
the neighboring teeth are predicted as object as well. Nevertheless, the
main objective, namely the overall tooth structure including the roots
is better predicted than in the other two probability maps.

In Table 8, we quantitatively evaluate the object prediction improve-
ment obtained with the presented methods. We applied two different
performance measures: Υobj, which considers the object prediction only
and ΥobjΥbg, which also incorporates the background prediction, where:

Υobj =
∑

x
L(x)P (x)∑

x
L(x)

, Υbg =
∑

x
(1 − L(x))(1 − P (x))∑

x
(1 − L(x))

. (4.6)

The results show, that the feature based methods greatly improve the
prediction. The improved features improve mainly the object prediction
accepting little less accurate background prediction.

4.4.1 Evaluation of Segmentation

In Table 9, our approach is quantitatively evaluated and compared to
the Active Shape Model approach [25]. Further, it is compared to the
method of Cremers et al. [29] where only the model fitting without the



4.4 wisdom tooth segmentation 87

Method Test Training

Υ
ob

j PIntensity 0.658 ±8.19e − 3 0.692 ±9.41e − 3
PTooth 0.810 ±8.77e − 3 0.879 ±2.78e − 3
PImproved 0.834 ±5.77e − 3 0.886 ±4.71e − 3

Υ
ob

jΥ
b

g PIntensity 0.601 ±1.44e − 3 0.605 ±1.81e − 3
PTooth 0.776 ±6.75e − 3 0.842 ±1.49e − 3
PImproved 0.794 ±2.31e − 3 0.825 ±1.11e − 3

Table 8: Numerical results: average performance ± 1 standard devia-
tion.

global optimization was used, since the images are pre-aligned. For our
method, the parameters have been chosen as follows: weighting of the
regularization γ = 0.0001 and the trade-off between region and boundary
terms λ = 0.75. Image gradients have been calculated by convolving the
first order derivative of a Gaussian, where σ = 0.15.

In the upper part of Table 9, the BLD between the ground truth
and resulting shapes was used as performance measure, while in the
bottom part, the DICE coefficient on the whole image domain serves as
segmentation accuracy measure. The ASM method was performed on
the histogram matched images and the method of Cremers et al. [29]
using the intensity and the improved object prediction. Two additional
variants for our approach are evaluated: one using an arbitrary training
label map as reference (arb. ref.) and one without the boundary term
(λ = 1) (no bound.). The two last rows show the maximum capability of
the segmentation methods where the ground truth label maps are used
as probability maps (ground truth).

On average, the improved object prediction could always improve
the test segmentation performance, compared to the intensity experi-
ments, even in the method of Cremers et al. [29]. The two additional
experiments arb. ref. and no bound show that the constructed refer-
ence shape as well as the incorporation of the boundary term improve
the test segmentation accuracy. Since the ASM method is based on
the object boundary and only considers the image intensities, where
the boundaries are barely pronounced, its segmentation performance is
minor. Compared to the intensity model of Cremers et al. [29] the de-
formation model and the incorporation of the object boundary in our
method leads to better segmentation results.
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Method Test (BLD) Training (BLD)

ASM 0.365/0.418 ±18.07e − 3 0.340/0.376 ±15.72e − 3
Cremers et al. (intensity) 0.354/0.366 ±3.996e − 3 0.349/0.345 ±5.530e − 3
Cremers et al. (improved) 0.322/0.341 ±3.720e − 3 0.337/0.328 ±5.188e − 3
Our (intensity, arb. ref.) 0.272/0.387 ±65.48e − 3 0.167/0.189 ±3.174e − 3
Our (intensity, no bound.) 0.266/0.365 ±44.02e − 3 0.156/0.170 ±2.463e − 3
Our (intensity) 0.268/0.350 ±38.61e − 3 0.159/0.174 ±2.134e − 3
Our (improved, arb. ref.) 0.306/0.362 ±20.29e − 3 0.197/0.235 ±7.487e − 3
Our (improved, no bound.) 0.263/0.338 ±22.47e − 3 0.184/0.193 ±1.168e − 3
Our (improved) 0.262/0.334 ±20.75e − 3 0.186/0.199 ±1.453e − 3

Cremers et al. (ground truth) 0.293/0.310 ±3.987e − 3 0.242/0.233 ±5.717e − 3
Our (ground truth) 0.192/0.211 ±3.276e − 3 0.090/0.091 ±0.131e − 3

Method Test (DICE) Training (DICE)

Cremers et al. (intensity) 0.883/0.881 ±0.397e − 3 0.887/0.886 ±0.683e − 3
Cremers et al. (improved) 0.892/0.892 ±0.260e − 3 0.891/0.896 ±0.435e − 3
Our (intensity, arb. ref.) 0.919/0.905 ±1.538e − 3 0.946/0.942 ±0.256e − 3
Our (intensity, no bound.) 0.920/0.907 ±1.067e − 3 0.950/0.946 ±0.193e − 3
Our (intensity) 0.920/0.910 ±0.860e − 3 0.949/0.945 ±0.165e − 3
Our (improved, arb. ref.) 0.912/0.904 ±0.511e − 3 0.937/0.932 ±0.302e − 3
Our (improved, no bound.) 0.919/0.909 ±0.638e − 3 0.941/0.941 ±0.063e − 3
Our (improved) 0.918/0.910 ±0.542e − 3 0.940/0.939 ±0.068e − 3

Cremers et al. (ground truth) 0.901/0.901 ±0.278e − 3 0.925/0.927 ±0.536e − 3
Our (ground truth) 0.939/0.936 ±0.155e − 3 0.968/0.968 ±0.015e − 3

Table 9: Numerical results: median / average performance measure ±
1 standard deviation.

In Figure 39 and Figure 40, qualitative results are shown. Three diffi-
cult test examples which have been well segmented by our method are
examined in more detail. The first is difficult, because of touching root
tips. In the second one, there is almost no contrast between jaw and
root structure. And in the last example there is a lot of noise present in
the region of the roots. The last column shows the ground truth shape
(blue) overlayed with our segmented shape (yellow).
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Figure 39: Three difficult test images. In the first column the original
CT images are shown. The second column shows the improved probabil-
ity maps. The third column shows the ground truth label in light blue
and the segmentation result in yellow. In the last column the teeth are
visualized as 3D meshes in the same colors.

incorporating landmarks The variance in the shape com-
parison shows that there are some outliers in our segmentation results.
In Figure 41, three bad examples are depicted. In such cases, it is impor-
tant to have the possibility to refine the result given some landmarks.
For these three examples the following additional experiments have been
performed. The empirical model kS , built from the 26 training sam-
ples, was conditioned on landmarks using the conditional model of Sec-
tion 2.4.3. Further, another conditional model based on the combined
model kS + kG was constructed. The results are visualized in Figure 42
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Figure 40: Three examples where the segmentation succeeded well. The
ground truth and the segmented shapes are colorized in blue and yellow
respectively.

(a) Sample 1 (b) Sample 2 (c) Sample 3

Figure 41: Three examples where the segmentation is bad. The ground
truth and the segmented shapes are colorized in blue and yellow respec-
tively.

and summarized in Table 10, where the resulting DICE coefficients are
listed when fitting the conditional models to the three target samples
using the improved probability map.

Despite the combined model has more flexibility (cf. the experiment
in Section 4.3.1), in the this setting, it is too flexible and results in
worse DICEs than the simple empirical model. However, if landmarks
are placed the constrained combined model results in significantly better
segmentations. For the Sample 1, 5 landmarks were enough. For the
other two samples, 9 landmarks have been placed. For all three samples,
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Figure 42: In the columns again the three outliers are depicted. In
the first row, the mean of the constrained combined model is shown,
where the landmarks are visualized as red dots. In the second row, the
constrained combined model was fitted to the improved probability map.
The ground truth and the segmented shapes are colorized in blue and
yellow respectively.

the fitting with the constrained combined model could not improve the
segmentations and look very similar compared with their mean.

4.4.2 Geodesically Damped Model

In this last experiment, a bias reduced statistical surface model has been
built, where the point-correlations are damped with respect to their
geodesic distance on the surface. With this experiment, the flexibility
of the low-rank Gaussian process framework is shown, since a complex
kernel which acts on the surface is approximated.

The same 26 training samples as in the previous experiment have been
used to construct the statistical shape model, which have been used in
the wisdom tooth segmentation experiment in the previous section. They
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Method Sample 1 Sample 2 Sample 3

Empirical (fitted) 0.896908 0.896476 0.866706
Constrained (mean) 0.877183 0.818361 0.885599
Constrained (fitted) 0.901916 0.849155 0.889986
Combined (fitted) 0.878206 0.842832 0.755303
Constrained combined (mean) 0.905973 0.874718 0.898643
Constrained combined (fitted) 0.905468 0.870980 0.857792

Table 10: Constrained: conditional model kX with an uncertainty on
the landmarks of σ = 0.1. Combined: combined model kcombined = kS +
kG with a Gaussian σG = 3. Constrained combined: combined model
kcombined conditioned on the landmarks.

have been registered to one arbitrary training sample ΓR using B-spline
registration. The empirical shape model, which is only defined on the
surface domain ΓR is denoted as kS , which is discretized on 28K points.
The geodesic kernel kΓ on the reference surface ΓR and σ = 3 has been
approximated with 100 basis functions and 3000 points for the Nyström
method. Similarly, the combined kernel kS · kΓ has been approximated
with the same parameters. As a comparison, the same models but with
a Gaussian kernel kG and σ = 3 have been built.

In this experiment, we mainly show the different behaviors of the
geodesic resp. Gaussian model and thus, we have not fine tuned the
parameters to the best possible segmentation results. For the model
fitting, the similarity metric of Equation 3.23 which only incorporates
the boundary was used. A first order gradient descent optimizer was
used to minimize the objective functional

arg min
α

DΓ[α] + λ‖α‖2, (4.7)

where λ was set to 0.1e−4 and the σ for the Gaussian gradient magnitude
of the object probability map to 0.3. In Table 11, the bidirectional local
distance (BLD)[48] is evaluated for the different results, where “(comb)”
indicates the combined kernel. To show the maximum capability of the
methods, in the bottom part of the table, the ground truth label maps
have been used as object probability maps.

Compared to the empirical model, all others could improve the seg-
mentation performance. Especially the combined models greatly improve
the segmentation. On average, the geodesic kernel performs on par with
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Model Test (BLD) Training (BLD)
P
ro
ba
bi
lit
y
M
ap Empirical 0.288/0.390 ±71.5e − 3 0.160/0.179 ±1.60e − 3

Geodesic 0.256/0.391 ±121e − 3 0.214/0.231 ±5.39e − 3
Geodesic (comb) 0.240/0.301 ±35.4e − 3 0.179/0.187 ±2.53e − 3
Gaussian 0.269/0.337 ±34.7e − 3 0.246/0.268 ±10.3e − 3
Gaussian (comb) 0.251/0.301 ±27.1e − 3 0.201/0.209 ±1.88e − 3

G
ro
un
d
T
ru
th Empirical 0.223/0.278 ±24.2e − 3 0.139/0.144 ±0.54e − 3

Geodesic 0.133/0.153 ±2.71e − 3 0.135/0.157 ±4.41e − 3
Geodesic (comb) 0.136/0.165 ±5.42e − 3 0.115/0.117 ±0.19e − 3
Gaussian 0.130/0.142 ±1.11e − 3 0.131/0.148 ±2.74e − 3
Gaussian (comb) 0.150/0.175 ±5.02e − 3 0.143/0.152 ±1.99e − 3

Table 11: Numerical results: median / average performance ± 1 stan-
dard deviation.

(a) Reference (b) Target (c) kG (d) kΓ

Figure 43: (a), (b) depict the reference and the target surface. (c) is
the registration where the Gaussian kernel has been used. (d) is the
registration where the geodesic kernel has been used.

the Gaussian kernel. We picked an example of the ground truth experi-
ments where either only the geodesic or Gaussian kernel have been used.
The results are shown in Figure 43. While in the Gaussian case the
roots cannot be “pressed” together, in the geodesic case they can, be-
cause topologically, the root tips are treated as being wide apart and
thus uncorrelated.
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4.5 discussion

In the first part of this chapter, we evaluated the variational registra-
tion approach where nonseparable and nonstationary kernels are applied.
On the basis of the POPI breathing thorax dataset, we have shown the
improvement of the approximation performance when a higher rank ap-
proximation of the filter kernels is used. We compared our method to
the B-spline registration of Elastix, where we have shown the trade-
off between smoothness and accuracy of the resulting registration. The
same experiments have been performed including landmark displace-
ments. Compared to Elastix with a similar target registration error, we
obtain smoother deformation fields accepting more computational power
of course. A qualitative patellar surface registration example is shown
where similar registration properties can be observed. Accepting a small
TRE, our method yields smoother and more accurate registration results
compared to Elastix.

We further compared the Demons registration to the low-rank Gaus-
sian process registration with a Gaussian kernel, applying them to a
dry femur dataset. Besides the better performance over the Demons reg-
istration our approach performs on par with the B-spline registration.
The flexibility of our approach has been shown with the bias reduced
statistical shape model, where we have shown that the composition of
the statistical model and a generic Gaussian model yields better fitting
performance.

In the second part of this chapter, we have evaluated the object pre-
diction and the segmentation performance of our method. We showed
prediction improvement using neighborhood dependent features. Our
model fitting outperforms the classical Active Shape Model approach
and the method of Cremers et al. [29]. We have shown, that the boot-
strap approach to construct a reference and the incorporation of the ob-
ject boundary into the minimization function, further improves the seg-
mentation performance. Finally, we used landmark displacements and
the bias reduced model to improve the segmentation performance of
outliers.

In the last experiment, we evaluated and compared different surface
models. The generic and the combined models outperform the empirical
statistical surface model. In a case study of a difficult tooth shape, where
the roots touch each other, we have shown that the geodesically damped
model is expressive enough to “press” the roots together.
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outlook There is room for improvements for the joint approach
to object prediction and model fitting. Since our method for object pre-
diction is not optimized at all, we think a clever feature selection in
the random forest learning, as it is done by Yaqub et al. [104], would
significantly accelerate the object prediction. Further, a grid search to
optimize the tree-count as well as the tree depth in a forest would relax
the computational demands as well.

Concerning the model fitting, we are also interested to train and use
the random forests to drive the shape evolution as it is done in Cootes
et al. [24]. Also interesting would be to learn a forest for each point on
the surface and project the predicted surface into the statistical model,
cf. Lindner et al. [59]. This approach could be combined with Margeta
et al. [65], where iteratively after each fit new random forests are learned
for the prediction.





5C O N C L U S I O N S

In this thesis, we examined the statistical model fitting approach to wis-
dom tooth segmentation from CBCT images. For modeling the variation
of shape, a main part was the registration. We presented and discussed
two major approaches. First, the nonparametric variational approach,
where a partial differential equation is solved, whose solution gives rise
to the registration. Using tensor decomposition techniques, smoothness
priors which are nonseparable and nonstationary could be efficiently im-
plemented, allowing us to additionally incorporate prior landmark dis-
placements. Especially, when allowing strong generic variations in the
transformation, the variational approach, equipped with the diffeomor-
phic constraint, is efficient to compute and yields smooth registration
results. However, if filter kernels have a long range support and are
highly spatially variable, the computational costs grow considerably.

A second approach to registration has been presented where the reg-
istration problem is directly solved in the basis of a reproducing kernel.
Using low-rank approximation and subsampling of the kernel basis, an
efficient and flexible algorithm for registration is derived. Thus, each
sufficiently smooth kernel function can be approximated and also con-
ditioned on landmark displacements. In particular, the same algorithm
can be used for registration, where a generic smoothness prior is applied,
as for statistical model fitting. The approach is however limited to ker-
nels, whose eigenvalue spectrum decreases rapidly, i.e. kernels which
favor small variations in the deformations. Otherwise, a large number of
basis functions have to be approximated which becomes computational
demanding.

We presented two different approaches to relax the statistical shape
model bias. With the help of the introduced low-rank Gaussian process
approach, we combined the empirical shape model and a generic Gaus-
sian deformation prior and showed the gain of flexibility using this model.
In addition, we built a statistical surface model, where the point corre-
lations are damped with respect to their geodesic distance on the sur-
face. In the segmentation experiments, the combined models yield better
segmentation performance compared to the empirical and generic defor-
mation priors. Manipulating the statistical covariance becomes feasible

97
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because of the presented low-rank method. Otherwise, the full covariance
matrix would have to be explicitly calculated.

For fitting the model to unseen data, we presented a nonparametric
appearance model based on random forest regression. Instead of using
the intensity images, we fit the models to object probability maps. With
the help of the appearance model, a guess about the object is provided
for each voxel separately. As such, the fit of the statistical model yields
a global consistency across the prior guesses. In the experiments, we
showed significant segmentation performance gain using this combina-
tion of appearance and shape model.

5.1 future work

In the presented variational registration approach, an efficient nonsta-
tionary filtering approach is derived to solving a partial differential equa-
tion using the landmark kernel as smoothness prior. Since the initial
filter kernel construction is still computational demanding it would be
interesting to investigate in the approach of Cahill et al. [20]. They
presented a coupled PDE system to locally adapt the regularization
strength. A weighting function would have to be built which implements
the landmark-aware part of the landmark kernel.

In our hybrid landmark and image registration approach, the land-
mark regression is not smoothly invertible. An additional extension to
this approach concerning diffeomorphic image registration would be to
add the diffeomorphic constraint to the landmark mean function. One
possibility would be the Gaussian process regression with fluid hyper-
priors of Girdziušas and Laaksonen [37].

In the RKHS framework for registration, we considered kernels which
are stationary. However, it would be interesting to use generic kernel
models which adapt their regularization strength to the image location.
In [42, 75], spatially aware kernels have been presented where the basis
functions have been locally weighted using spectral tempering. Schmah
et al. [83] have even extended the diffeomorphic registration framework
LDDMM to spatially varying kernels. To integrate the low-rank approx-
imation into their framework would be very interesting.

A detailed analysis of the Nyström approximation performance con-
cerning our registration approach would be interesting. For example,
an intuition about how to choose the number of sampled points in the
Nyström approximation given a kernel function would be helpful.

Our appearance model is integrated in the segmentation as a prepro-
cessing step. It would be interesting to intertwine it more with the shape
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model fitting. Margeta et al. [65] presented an approach where the inten-
sity normalized images are first rigidly initialized. Subsequently, again a
random forest is trained. Another interesting idea presented by Lindner
et al. [59] is to directly predict the shape surface using random forest
regression voting. In a similar approach by Cootes et al. [24], the random
forest regression voting is used for the shape evolution in the fitting.

Concerning the appearance model, additional experiments for select-
ing optimal features and a grid-search for estimating the best tree depth
resp. tree count in the random forest would be required to optimize the
prediction performance. Additionally, it would be interesting how sensi-
tive to the initial alignment the prediction is.





Part III

A P P E N D I X





AK E R N E L R E G I S T R AT I O N F R A M E WO R K

a.1 translation-invariant kernel functions

To construct a discrete filter kernel, the kernel function has to be nor-
malized in a way that the integral over the whole domain of the kernel
function is 1. Let k be our kernel function, the following condition has
to be fulfilled:

1
c

·
∫

IRd

k (0, x)dx = 1. (A.1)

Therefore c has to be determined for each kernel function.

gaussian kernel

k (x, y) = 1(√
2πσ

)d
· exp

(
−‖x − y‖2

2σ2

)
, (A.2)

where d is the number of dimensions.

exponential kernel For the c corresponding to the exponen-
tial kernel, the following integral has to be calculated:

c =
∫

IRd

exp
(

−‖x − y‖
σ

)
dx. (A.3)

An analytical solution can be derived by a transformation into spherical
coordinates to find a stamm function for:∫ ∞

−∞

∫ ∞

−∞

∫ ∞

−∞
exp

(
−
√

x2 + y2 + z2

σ

)
dxdydz

in the 3 dimensional case. The transform (x, y, z) → (r, θ, ϕ) is:⎡⎢⎣x

y

z

⎤⎥⎦ =

⎡⎢⎣sin θ cos ϕ

sin θ sin ϕ

cos θ

⎤⎥⎦ · r.
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The volume element then is:

dV = dxdydz = r2 sin θdθdϕdr.

The transformed integral of Equation A.3 becomes:∫ ∞

r=0

∫ π

θ=0

∫ 2π

ϕ=0
e

−r
σ · r2 sin θdϕdθdr. (A.4)

The solution to Equation A.3 therefore is (for 3D):∫
θ

∫
ϕ

sin θdθdϕ︸ ︷︷ ︸
4π

∫ ∞

0
e

−r
σ r2dr = 4π · 2σ3

and for 2D:

dV = dxdy = r2drdϕ∫ 2π

ϕ=0
1︸ ︷︷ ︸

2π

·
∫ ∞

0
e

−r
σ rdr = 2πσ2.

Finally the normalized kernel function is (in 3D):

k (x, y) = 1
4π · 2σ3 · exp

(
−‖x − y‖

σ

)
(A.5)

(and in 2D)

k (x, y) = 1
2πσ2 · exp

(
−‖x − y‖

σ

)
(A.6)

a.2 kernel compositions

Given valid kernels k1(x, y) and k2(x, y), the following new kernels will
also be valid (cf. Bishop et al. [15]):

k(x, y) = ck1(x, y) (A.7)
k(x, y) = f(x)k1(x, y)f(y) (A.8)
k(x, y) = q(k1(x, y)) (A.9)
k(x, y) = exp(k1(x, y)) (A.10)
k(x, y) = k1(x, y) + k2(x, y) (A.11)
k(x, y) = k1(x, y)k2(x, y) (A.12)
k(x, y) = k3(φ(x), φ(y)) (A.13)

k(x, y) = xT Ax (A.14)
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for c ∈ IR+ as a constant, f is any function, q is a polynomial with
nonnegative coefficients, φ is a function from x to IRM , k3 is a valid
kernel in IRM and A is a symmetric positive semidefinite matrix.

a.3 minimization in rkhs registration

In general the objective

arg min
u∈Hk

1
2N

N∑
i=1

(IT (xi + u(xi)) − IR(xi))2 + λ

2 ‖u‖2
k (A.15)

can be minimized by gradient descent optimization methods, where the
gradient is given by

1
N

N∑
i=1

(IT (xi+u(xi))−IR(xi))∇IT (xi+u(xi))−IR(xi))Ju(xi)+
λ

2
∂

∂α
‖u‖2

k.

(A.16)

Recall,

u(x) = μ(x) +
N∑

i=1

αT Kx. (A.17)

Thus, the derivative of this RKHS transform with respect to α is
∂

∂α
u(x) = Kx, (A.18)

and of the RKHS norm
∂

∂α
‖u‖2

k = 2αT Kx. (A.19)

a.4 pca and svd

Usually, the number of points N which need to be sampled is much
larger than the number of examples p (N >> p). Each matrix S ∈
IRNd×p, Nd ≥ p can be decomposed into

S = USDSVT
S , (A.20)

where US ∈ IRNd×p is an orthonormal matrix, DS is diagonal and
VS ∈ IRp×p is orthonormal as well. Thus, 1

p
SST can be reconstructed

with
1
p

SST = 1
p

USDSVT
S VSDSUT

S = 1
p

USD2
SUT

S . (A.21)
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Since the decomposition in Equation A.20 can be computed very effi-
ciently, and the 1

p
SST never has to be explicitly computed, S can be

decomposed into S = USDSVT
S which directly results in the sought

eigenvalues D2
S (ii) = λi and eigenvectors (US (ij))Np

j=1 = ui of Equa-
tion 3.6.

a.5 statistical model kernel

In the reproducing kernel Hilbert space framework, the displacement
field u becomes a linear combination of kernels centered at the sampled
domain points Equation A.22. If the statistical model kernel is plugged
into this framework, for each parameter vector α the displacement field
u is a linear combination of sample displacement fields si. The weights
of this linear combinations are βij Equation A.23.

u(x) =
∑

i

kS(x, xi)αi (A.22)

=
∑

i

∑
j

(sj − μS)(x) ⊗ (sj − μS)(xi)αi

=
∑

i

∑
j

[(sj − μS)(x)][(sj − μS)(xi)]T αi

=
∑

i

∑
j

(sj − μS)(x)βij ,

βij = [(sj − μS)(xi)]T αi (A.23)

a.6 functional derivatives

As discussed in Section 2.2 and Section 2.4, the functional

J [u] = D[u] + ‖Au‖2 (A.24)

can be minimized by finding a minimum of the functional derivative with
respect to u. Assuming fixed boundary conditions, a minimum bound
on D and A is an invertible linear operator, there exists a minimum
J [u∗] (proofs can be found in Evans [31]). As such, for each variation
ϕ : Ω → IRd, the function ε → J [u∗ + εϕ] has a minimum at ε = 0. It
follows that

J ′[u, ϕ] := ∂

∂ε
J [u + εϕ]

∣∣∣
ε=0

= 0 (A.25)
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if the derivative exists. Applying the fundamental lemma of calculus of
variation, we get the strong formulation

J ′[u] = 0. (A.26)

As example, we provide here the derivation of the functional derivative
of the squared loss. Recall, the dissimilarity measure between two images
I0, I1 with the squared loss

D[u] = 1
2

∫
Ω

(I0(x + u(x)) − I1(x))2dx. (A.27)

The functional derivative is

D′[u, ϕ] = d

dε
D[u + εϕ]

∣∣∣
ε=0

(A.28)

= d

dε

1
2

∫
Ω

1
C

(I0(x + u(x) + εϕ(x)) − I1(x))2dx

∣∣∣∣
ε=0

(A.29)

=
∫

Ω

1
C

(I0(x + u(x)) − I1(x))∇I0(x + u(x))ϕ(x)dx.

(A.30)

For simplicity and efficiency, we omit the weighting term C. The strong
formulation becomes

D′[u] =
∫

Ω
(I0(x + u(x)) − I1(x))∇I0(x + u(x))dx. (A.31)

a.7 c2circle

Matlab code for C and circles

m = 512;
[x,y] = meshgrid ( linspace (-1,1,m));
R = zeros (m);
R(x.^2+y.^2 >0.33^2 & x.^2+y .^2 <0.64^2) = 255;
R(x >0 & abs(y) <0.16) = 0;
T = 0.5^2 - x.^2 - y.^2;

figure , imshow (R ./255) ; % C
figure , imshow (T .*1000./255) ; % shaded circle
T(T >0) = 255;
figure , imshow (T ./255) ; % circle

�





BT E N S O R D E C O M P O S I T I O N S

b.1 alternating least squares method

The low-rank approximation of H0 is calculated by minimizing the op-
timization problem

min
ar,br,cr

‖H0 − H̃0‖ with H̃0 =
R∑

r=1

ar ⊗ br ⊗ cr. (B.1)

The minimizers ar, br and cr are obtained using the alternating least
squares (ALS) method [41]. To this purpose, we introduce a notation to
represent a tensor in a matrix form.

Let H ∈ IRP ×Q×R be a third-order tensor. By fixing one index the ten-
sor is sliced into two-dimensional sections which have horizontal (mode-
1), lateral (mode-2) and frontal (mode-3) orientation for the indices
{1, 2, 3} respectively. The mode-n unfolding denoted as H(n) concate-
nates the mode-n slices horizontally to a matrix.

Following Kolda and Bader [50], the CANDECOMP/PARAFAC model
can be expressed as

H = [[A, B, C]] ≡
R∑

r=1

ar ⊗ br ⊗ cr,

while H(1) = A(C � B)T , with A = (a1, a2, . . . , aR) and likewise B and
C. � is the Khatri-Rao product (see B.3).

The matrices A, B and C, which minimize Equation B.1 can be cal-
culated by alternately fixing all but one matrix e.g. A. This is followed
by minimizing

min
A

‖H(1) − A(C � B)T ‖F ,

which has the optimum at

A = H(1)[(C � B)T ]†.

Using the special property that

(A � B)† = (AT A � BT B)†(A � B)T ,

109
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where � is the Hadamard product (see B.3) and A† the Moore-Penrose
pseudo-inverse, the equations can be iteratively solved for A, B and C

A = H(1)(C � B)(BT B � CT C)†

B = H(1)(C � A)(AT A � CT C)†

C = H(1)(B � A)(AT A � BT B)†.

until the values of A, B and C converge. The convergence speed depends
on the initialization of the fixed matrices. A common choice for the
initialization is to use the Higher-order SVD [30] discussed in Section
B.2.

b.2 tucker decomposition

For the Tucker decomposition, we introduce the following notation to
write a tensor

H̃x = [[G; A, B, C]] ≡
P∑

p=1

Q∑
q=1

R∑
r=1

gpqrap ⊗ bq ⊗ cr, (B.2)

where gpqr are the elements of the core tensor G and P, Q, R are the
ranks for each space dimension. In this model the unfolded tensor H is
represented as

H(1) = AG(1)(C • B)T ,

where • is the Kronecker product (see B.3). Using the Higher-order SVD
algorithm of De Lathauwer and De Moor [30]

min
G,A,B,C

‖H(1) − AG(1)(C • B)T ‖

can be very efficiently minimized by setting A, B and C to the leading
left singular vectors of the corresponding mode-n unfolding H(n)

A = U
(1)
P , B = U

(2)
Q , C = U

(3)
R ,

where U
(n)
l is the matrix consisting out of the leading l singular vectors

of H(n) and G(1) = AH(1)(C • B)T .

b.3 matrix products

khatri-rao product Given a matrix A ∈ IRm×q and a matrix
B ∈ IRn×q, the Khatri-Rao product of A and B is the matching column-
wise Kronecker product

A � B = (a1 • b1, a2 • b2, · · · aq • bq) ∈ IRmn×q.
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hadamard product Given a matrix A ∈ IRm×n and a matrix
B ∈ IRm×n, the Hadamard product of A and B is the point-wise matrix
product

A � B =

⎛⎜⎜⎜⎜⎝
a11b11 a12b12 · · · a1nb1n

a21b21 a22b22 · · · a2nb2n

...
...

. . .
...

am1bm1 am2bm2 · · · amnbmn

⎞⎟⎟⎟⎟⎠ ∈ IRm×n.

kronecker product Given a matrix A ∈ IRm × IRn and a
matrix B ∈ IRq × IRr, the Kronecker product of A and B is given as

A • B =

⎛⎜⎜⎜⎜⎝
a11B a12B · · · a1nB

a21B a22B · · · a2nB
...

...
. . .

...
am1B am2B · · · amnB

⎞⎟⎟⎟⎟⎠ ∈ IRmq×nr.
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