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CHAPTER	1:	Introduction	
 

1.1	Innate	Immunity	

During evolution different components of the immune system have evolved to protect against 

a wide array of pathogens. One of such key event was the ability to distinguish between self 

and non-self, which is necessary to protect the organism from invading pathogens and to 

eliminate, modified or altered cells. In response to the initial infection, three phases of 

immune reactions can be seen (Figure 1). These are characterized by the innate phase, the 

early induced innate response, and the adaptive immune response [1]. The first two phases 

rely on the recognition of pathogens by germline-encoded pattern recognition receptors on 

the innate cells like NK cells, macrophages and Neutrophils, whereas adaptive immunity uses 

variable antigen-specific receptors [2].  Adaptive immunity is a delayed response, because of 

the involvement of B cells and T cells that must first undergo clonal expansion before initiating 

its effector functions [3]. The containment of infection until the adaptive arm of the immune 

system gets recruited to local site has long been considered the primary function of innate 

immunity. Once a pathogen gains access to the host tissue, contribution from both innate and 

adaptive immune responses becomes crucial. Overtime, this view has changed in the light of 

more important and fundamental role of host defense. Innate immunity provides a non-

specific response against any pathogen via a variety of components and processes. These 

include barrier functions, complement, innate cells, antimicrobial peptides, mucosal 

secretions, pattern recognition receptors (PRRs) and the commensal micro-organisms[2]. 

PRRs function as molecular sensors of infection and are predominantly found on critical 

immune cells such as macrophages and dendritic cells (DC). PRR activation, results in changes 

in the protein conformation. Further, it activates intracellular signaling pathways to amplify 

the signal and initiates the innate response [2] [4].  
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Figure 1. The response to the initial infection occurs in three phases. Modified from  [1,2] 

   

1.1.1 Innate immune recognition mechanism 

In response to endogenous stimuli (cell death) or exogenous stimuli (pathogen invasion), 

damage-associated molecular patterns (DAMPs) or pathogen-associated molecular patterns 

(PAMPs) are released respectively. These molecules get identified by genetically inherited 

PRRs on the innate cells and further activate them. Activation of PRR and signaling is a complex 

process that results in upregulated expression of pro-inflammatory chemokines, cytokines and 

anti-viral proteins [4]. Intracellular molecules such as ATP and heat shock proteins can activate 

PRRs by acting as a ligands. These endogenous ligands are collectively known as damage 

associated molecular pattern (DAMPs) [5]. PRR activation results in conformational changes 

that amplify the signal and initiates the innate response (Figure 2). PRRs use specific adaptors 

and different adaptor proteins result in the activation of different signaling pathways which 

activates downstream signaling complex [4]. The immune cells that participate in these 

processes include, for example, APC, such as dendritic cells and macrophages, as well as T cells 

and neutrophils (PMN). PRRs can further stimulate the adaptive response, resulting in 

autoimmune responses and tissue repair [5].  
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Figure 2.Danger and stranger models of innate recognition system. Infections of pathogenic bacteria or 
viruses cause release of PAMPs that bind to pattern recognition receptors (PRRs) on immune cells and 
stimulate an innate immune response that is accompanied by inflammation, activation of adaptive 
immunity, and eventually processes to resolve the infection and allow for tissue repair. The danger model 
recognizes similar events that occurs when cells are stressed or injured and that necrotic cells release 
molecules that are normally hidden within the cell. In the extracellular space these DAMPs can bind to PRRs 
or to specialized DAMP receptors to elicit an immune response by promoting release of pro-inflammatory 
mediators and recruiting immune cells to infiltrate the tissue. Adapted from [5]. 
 

1.1.2 Outcome of innate immune activation 

The cellular and molecular changes associated with PRR activation are both complex and 

subtle. However, they create a response that can be shaped to deal with the specific nature 

of the infection. As a result of PRR stimulation are proinflammatory effectors, an array of 

cytokine, most important of which such as tumor necrosis factor (TNF), interleukin (IL)-1 and 

IL-6 are produced [4]. These cytokines increases the permeability of the vasculature around a 

site and which helps in the recruitment of specialized immune cells, such as neutrophils, 

monocytes and macrophages [6]. The consequence of such infiltration is evidenced by the 

appearance of common symptoms, which include redness, heat, swelling and pain. Cellular 

death in localized areas of infection along with coordinate events in the whole body may lead 

to activation of the acute-phase response [1]. For example, in response to viral infection, type 

I IFNs production is triggered which further induces apoptosis in infected cells, thereby 
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removing the virus from the system. At the same time it triggers resistance to viral infection 

in neighbouring cells and so helps restrict the spread of infection.  

1.1.3 Interplay of Innate and Adaptive Immunity 

After being recognized by the innate immune system, the adaptive immune system comes 

into play [7]. Recognition of the PAMPs by PRRs, such as the TLR, generates signals that 

activate the adaptive immune system [8]. Following activation, endocytic pattern-recognition 

receptors, can bind to microbial components and mediate internalization and phagocytosis of 

pathogens by antigen-presenting cells such as dendritic cell or macrophage [8]. The 

internalized poteins are then processed in the lysosomes to generate antigenic peptides, 

which form a complex with major-histocompatibility-complex (MHC) class II molecules and 

presented on the surface of the antigen presenting cell (Figure 3). These processed peptides 

are then identified by T-cell receptors [3]. In the case of the signaling class of PRRs, the 

recognition of PAMPs by TLRs leads to the activation of signaling pathways that induce the 

expression of cytokines, chemokines, and costimulatory molecules. Thus, pattern-recognition 

receptors act as a bridge between innate and adaptive system by generating both the peptide–

MHC-molecule complex and the costimulation required for the activation of T cells [3]. 

 

Figure 3.The Receptors Involved in the Interplay of the Innate and Adaptive Immune Systems. Adapted 
from [3]. 
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1.2	Neutrophils:	First	Line	of	Defense	against	Infections		

Neutrophils are the major antimicrobial phagocytes of the innate immune system [9]. They 

originate from common myeloid progenitor cells in the bone marrow. After being released 

from bone marrow, neutrophils circulate in vessels until being attracted to tissues by 

chemotactic signals  (e.g. formyl peptides, lipid mediators and chemokines) [6].  They are the 

most abundant leukocytes in the peripheral blood, comprising up to 50% of white blood cells 

and further make up the majority of infiltrating cells found at the sites of infection or tissue 

injury [10]. Through interactions with various PPRs, neutrophils can recognize a large variety 

of stimuli, including immune complexes (IC), complement, and PAMPs. Thus, it is capable of 

shaping the immune response by affecting the early inflammatory milieu [6]. Although, 

neutrophils are known for their critical role in innate responses, recent discoveries have 

greatly broadened our knowledge about the functional role of this cell type in modulating 

secondary immune functions. Different types of granules are released depending on the 

strength and type of signal, allowing neutrophils to modulate their responses. Although, they 

are the first of defense against infection, under certain conditions, neutrophils known to be 

responsible for much of the damage to host tissues in some types of autoimmune disorders, 

such as rheumatoid arthritis. Depending upon the type of stimulation neutrophils switches 

between its multiple effector functions. Phagocytosis, oxidative damage, degranulation and 

newly identified NETosis plays prime function in host defense [10]. 

 

1.3	Stages	of	Neutrophil	activation	

The triggering of neutrophil towards effector function is a two-stage process involving an 

initial prerequisite “priming” step and a second “activation” step. Resting neutrophils, 

undergoing apoptosis within 12–18 hr. While, primed and activated neutrophils undergone 

molecular changes that extend their life span, probably by delaying apoptosis and alter their 

molecular properties, thereby allowing them to carry out multiple functions [11]. 
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1.3.1 Neutrophil Priming 

The priming of neutrophils can be defined as the process in which neutrophil responsiveness 

is significantly amplified to subsequent external stimuli, which may serve to augment the 

inflammatory response, but itself does not result in the desired response [9,12]. For example, 

exposure of neutrophils to high concentrations of LPS does not induce the oxidative burst, but 

will greatly potentiate the oxidative burst in response to another stimulus such as fMLP, C5a 

or PAF[13]. Later it was proposed that priming could serve as an essential “check point” which 

assures that the effector functions of neutrophil is localized to the site of infection[14]. 

Deregulation of such checkpoint could potentially contribute to disease pathogenesis. 

Alternately, inhibition could serve as potential drug targets against inflammation. 

Primed PMNs display altered structural organization of the NADPH oxidase, depending upon 

the type of stimuli which leads to phosphorylation of the oxidase subunits and/or 

translocation from the cytosol to the plasma or granular membrane [15]. Studies have 

suggested that priming of neutrophils by TNFα and GM-CSF induces an increase in fMLP-

receptor plasma membrane expression and triggers heterotrimeric G-protein activation or 

reorganization. In addition to partial p47phox phosphorylation and cytochrome b558 

translocation, other mechanisms may be at play but remain to be identified [13]. Priming 

occurs via two separate mechanisms. Rapid priming (within minutes of the cell receiving a 

signal) results from the mobilization of intracellular granules that possess pre-formed 

receptors (Figure 4) to the plasma membrane. This process increases the number (and 

sometimes the affinity) of surface-expressed plasma membrane receptors by mechanisms 

that do not involve protein biosynthesis. Often, however, the priming agent will also result in 

activation of transcription factors that trigger the de novo expression of molecules (e.g. 

receptors and cytokines), which enhance neutrophil function or lifespan. Thus, the molecular 

properties and hence functions of resting blood neutrophils and primed neutrophils are very 

different. For this reason, in vitro experiments using freshly isolated blood neutrophils often 

fail to recognize the full functional repertoire and capability of neutrophils. 



Chapter 1                                                                                                                                         Introduction                                                                 
 

April 2014                                                                                                    Chanchal Sur Chowdhury 6 

 

1.3.2 Neutrophil De-priming 

Neutrophil priming is not an irreversible event [16]. Work from Kitchen et.al., using platelet 

activation factor (PAF), has demonstrated a complete cycle of priming, depriming, and 

repriming [16]. This property of neutrophil is of prime importance, as it offers the potential 

for functional recycling of neutrophils at sites of inflammation. This is further evidenced by 

work form Singh et.al., has shown that neutrophils migrating into the healthy pulmonary 

vasculature, can be de-primed and released back into the circulation in a quiescent state, in 

the absence of further stimuli. However, if this pulmonary ‘de-priming’ mechanism fails, or a 

second insult occurs, such as trauma, primed neutrophils migrate from the pulmonary 

vasculature into the interstitial space with resultant lung injury [14]. Combining mathematical 

approach to inflammatory bowel disease (IBD), it was recently concluded that in vivo de-

priming must take place to limit the numbers of primed neutrophils in the circulation.  

1.3.3 Neutrophil Activation 

Neutrophil activation refers to processes that lead to recognizable (i.e. measureable) 

alterations in cells. Following priming state neutrophils could enter into a fully activated stage, 

by activation of transcription factors that trigger the de novo expression of molecules (e.g. 

receptors and cytokines) which increases the lifespan, followed by enhancement of neutrophil 

function such as phagocytosis, production of reactive oxygen species (ROS), degranulation, 

and generation of neutrophil extracellular traps (NETs) [13]. During this process complete 

assembly of the membrane-linked and cytosolic NADPH oxidase components occur on a PMN 

membrane, the plasma or granular membrane [15]. Thus, the molecular properties and hence 

functions of resting blood neutrophils and primed neutrophils are very different. This is 

probably why, in vitro experiments using freshly isolated blood neutrophils often fail to 

recognize the full functional repertoire and capability of neutrophils.                                                    
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.  

Figure 4. Schematic overview of the stages of neutrophil activation. Circulating neutrophils are freely 
flowing in a dormant state (resting). Upon infection and inflammation, pro-inflammatory mediators (ex-
TNFα, GM-CSF, IL-8, LPS) induce changes in the vascular endothelium that signal to circulating neutrophils 
to roll, adhere, and cross the endothelium. These pro-inflammatory mediators also prime neutrophils 
(priming). Primed neutrophil migrate to the inflammatory or infection site, where they get activated by a 
secondary stimuli, which may include the pathogen itself, its components or unknown factors (activation). 
In the absence of secondary simulation, neutrophil may get de-primed and migrate back into the blood 
vessel by an unknown mechanism. Activation of neutrophil is known to increases intracellular ROS level. 
The effector function of neutrophil is dependent on the specific type of secondary stimuli, which may results 
in degranulation, phagocytosis or NETosis. Modified from [13]. 
 

1.4	Effector	Mechanisms	of	Neutrophil	

1.4.1 Phagocytosis 

Elie Metchnikoff in the year 1880s observed specialized phagocytic cells ingesting bacteria and 

called it “Phagocytosis “. In this process neutrophils internalize or take up microbes into 

specialized compartments known as phagosomes. This process of phagocytosis is a receptor-

mediated, clathrin-independent process [17]. Fusion of neutrophil granules with the 

phagosome results in the formation of a phagolysosome, allowing for the assembly of the 
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nicotinamide adenine dinucleotide phosphate (NADPH) oxidase complex Nox2. The NADPH 

transfers electrons to molecular oxygen, to generate superoxide anions into the lumen of the 

phagolysosome [7] causing an oxidative environment that along with antimicrobial factors 

leads to the inactivation and killing of ingested microbes [18]. 

1.4.2 Degranulation 

Neutrophils are known to secrete 4 different types of granules classified as (1) primary 

granules, also known as azurophilic granules; (2) secondary granules, also known as specific 

granules; (3) tertiary granules; and (4) secretory vesicles (Figure 5). Degranulation from 

neutrophils has been has been associated with pulmonary disorders, including severe asphyxic 

episodes of asthma [19]. However, not much is known about the mechanisms that control 

neutrophil degranulation. Degranulation involves the fusion of granules with the plasma 

membrane and the release of cytokines and antimicrobial contents into the extracellular 

space. These molecules help coordinate the immune response and control pathogens 

extracellularly. Azurophilic granules lack the soluble ethylmaleimide-sensitive factor 

attachment protein receptors (SNAREs) that would direct them to fuse with the plasma 

membrane. The contents of these granules are either deployed inside the phagosome or are 

released extracellularly via the third antimicrobial strategy in the neutrophil repertoire: the 

formation of NETs.  
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Figure 5. Summary of neutrophil granules and their contents. Neutrophil granules are mobilized upon 
priming of the cell:secretory vesicles are mobilized first, followed by gelatinase granules, specific granules 
and finally azurophilic granules. Adapted from [9] 
 

1.4.3 Neutrophil Extracellular Traps 

NETs are web-like structures that are composed of decondensed chromatin in complex with 

over 30 different neutrophil proteins that can capture, neutralize, and kill a variety of 

microbes. Several studies have shown that extracellular chromatin traps are not exclusively 

released by neutrophils. Eosinophils and mast cells have also been reported to release ETs. 

These large extracellular structures provide a physical barrier to prevent microbial 

dissemination and increase the local concentration of antimicrobial effectors [13–15]. Aside 

from infection, NETs have been recently found to regulate B cell function in the spleen [16] 

and to play a role in various sterile diseases, such as auto inflammation or autoimmune 

disease. An increasing number of bacteria, fungi, viruses, and protozoan parasites have been 

shown to induce NETs. Deficiencies leading to impaired NET formation result in high 

susceptibility to opportunistic infections in humans and mouse models and imply a significant 

contribution of NET formation in antimicrobial defense. NETosis appears to be tightly 
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regulated and dysregulation has been implicated in severe autoimmune and 

autoinflammatory disease. Below, we discuss the molecular mechanisms that lead to release 

of NETs, taking into consideration the differences between different physiological stimuli in 

infection and highlighting the importance of tight regulation of NET formation in 

autoimmunity and sterile inflammation. In response to pro-inflammatory stimuli, neutrophil 

adopts a primed phenotype, which stimulates migration into the inflammatory tissue site. In 

the tissue, neutrophils exposed to secondary stimuli gets  “activated”, a state characterized 

by release of granule proteins and acquisition of phagocytic capabilities [10]. However, in 

2004, Brinkmann et al. through an elegant series of experiments documented a powerful 

method of neutrophil-mediated microbial killing through release of extracellular fiber-like 

structures (Figure 6), and termed it as neutrophil extracellular traps (NETs) [20]. 

 

 

 

Figure 6. Mechanism of NET release. Stimulation of receptors (A) by triggers (e.g. bacteria, fungi, viruses, 
parasites, chemical factors like PMA or LPS) leads to the adherence of neutrophils to endothelium. 
Activation of signalling components leads to chromatin decondensation mediated by PAD4, NE and MPO 
(B). In the final phase, the cytoplasmic membrane ruptures and NETs are released into the surrounding (C). 
Adapted from [21] 
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1.4.3.1 NETosis Different from Necrosis and Apoptosis 

NETosis is a novel cell death mechanism, shown to be different from necrosis and apoptosis 

(Table 1). Initial in vitro studies using phorbol-12-myristate-13-acetate (PMA), demonstrated 

that NET formation is a cell death dependent process. However, physiological stimuli such as, 

GM-CSF in combination with C5a, could show that NETs are generated by viable cells [22]. 

Whether the anuclear neutrophil should or should not be considered dead is questionable, 

and it remains unclear if these cells retain the capacity to activate other death programs. In 

this regard, it is important to note that similar to erythrocytes and platelets, cytoplasts 

(anuclear neutrophils generated in vitro) retain full capacity to die by apoptosis [22,23].  

 

Table 1- Differences between NETosis, apoptosis, and necrosis. Updated from [24] 

Necrosis Apoptosis  NETosis 

Membrane and organelle 
disintegration 

Membrane blebbing Vacuolization 

Phosphatidylserine exposure 
during early steps of necrosis 

Phosphatidylserine exposure No exposure to 
Phosphatidylserine 

Cellular swelling and bursting Nuclear chromatin condensation 
without disintegration of the 
nuclear membrane 

Nuclear chromatin 
decondensation with 
disintegration of the nuclear 
membrane 

Cell damage releasing the 
intracellular contents 

Programmed cell death Programmed cell death 

DNA fragmentation DNA fragmentation No DNA fragmentation 

Dependent of caspases and RIP-1 
kinases 

Dependent of caspases and RIP-1 
kinases 

Independent of caspases and RIP-
1 kinases 

Process require more than 10 
minutes 

Process require more than 10 
minutes 

NETs were formed as early as ten 
minutes after activation 

1.4.3.2 Slow vs Rapid mechanisms of NETosis 

To date, two major NET release mechanisms have been described. In the first mechanism, 

neutrophils release NETs via a slow lytic cell death mechanism. This appears to be a major 
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route for NET release. In addition, Pilsczek et al. have described that a small number of 

neutrophils rapidly expulse their nuclear content via vesicular secretion, yielding NETs and live 

intact cytoplasts that continue to crawl and digest microbes [25]. Both NET formation 

strategies are dependent on TLR2 and complement factor 3 (C3). NET formation is deficient in 

mice lacking either of these molecules. However, when added alone they were not sufficient 

to induce NET release in isolated neutrophils [23], suggesting that additional mediators or 

more complex mechanisms of activation are involved. 

 

Lytic or Slow Mechanism of NETosis 

The majority of neutrophils undertake a cell death-mediated NETosis program that lasts from 

2 to 4 hr. The initiating event generally occurs through engagement of cell surface receptors 

in the presence of a specific ligand through poorly understood mechanism. Evidence indicates 

involvement of the Raf–MEK–ERK pathway during NET. In most cases, NADPH oxidase is also 

involved.  Signaling to the nucleus results in chromatin modification. Histone citrullination 

mediated by peptidylarginine deiminase (PAD) appears to be a prerequisite for NET release. 

Concurrent with chromatin decondensation, the nuclear membrane disintegrates. Alterations 

of nuclear shape with chromatin decondensation, swollen and fragmentation of the nuclear 

membrane, which allow the association of granules and cytoplasmic proteins with the 

chromatin. Finally, the plasma membrane ruptures and DNA with associated histones and 

granule molecules are released into the extracellular environment. 
 

 

 

 

 

 

 

 

 

 

 

Non-Lytic or Rapid Mechanism of NETosis  

An alternative rapid mechanism for NET release has recently been described, that takes 5–60 

min after stimulation with S.aureus or LPS in the presence of platelets [25]. This was shown to 

be undertaken by a small subset of neutrophils, yielding NETs and live cytoplasts that continue 

to phagocytose. Since neutrophils are terminally differentiated cells with low transcriptional 

activity, loss of the nucleus does not incapacitate these cells. On the contrary, this alternative 

mechanism of NET release provides a multitasking means for rapid extracellular antimicrobial 

action while maintaining the capacity for phagocytosis. In this mechanism, the nuclear 

membranes separate and decondensed chromatin is seen in the inter-membrane space. 



Chapter 1                                                                                                                                         Introduction                                                                 
 

April 2014                                                                                                    Chanchal Sur Chowdhury 13 

 

Chromatin-containing vesicles bud from the nucleus and accumulate below the plasma 

membrane (Figure 7). Finally, NETs are formed through the degranulation of vesicle content 

into the extracellular space and their assembly with decondensed chromatin. Rapid NET 

release was also observed by intravital microscopy in mice that were treated with MIP-2 

(CXCL2) and intradermal infection of S. Aureusor or S. pyogenes. These cells were highly motile 

and were phagocytosing bacteria. In addition, a minority of anuclear neutrophils had already 

released their nuclear material and were crawling slowly, still able to digest microbes [23].  

 
Figure 7. Lytic and non-lytic mechanism of NETosis: Adapted from [17] 
 

1.4.3.3 Molecular basis of NETosis  

The signalling mechanism NETosis is poorly understood and involves a complex interaction of 

proteins and factors, which ultimately leads to the release of the chromatin in the extracellular 

medium. Nevertheless, understanding of some of the fundamental steps has laid the primary 

foundation. The initiating process can be triggered by a number of stimuli including, PMA, LPS, 
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C5a +GM-CSF, IFNα/γ. LPS, bacteria, and viruses. IL-8 is also able to trigger ET release by 

interacting with the CXCL2/8 receptor[26]. Following activation, neutrophils are known to 

produce large amounts of ROS through the action of NADPH oxidase (Figure 8). This 

observation was further supported by observations using different stimuli in both human and 

mouse primary neutrophils. After being stimulated, it was shown that enzymes stored in the 

azurophilic granules, neutrophil elastase (NE) and myeloperoxidase (MPO), could get 

relocated into the nucleus.  

It was hypothesized that in the nucleus, NE degrades the linker histone H1 and the core 

histones, leading to chromatin decondensation. Further decondition is enhanced by binding 

of MPO [27]. Later importance of another enzyme called PAD4enzyme was identified as 

mouse knockout for PAD4 losses their ability to release NET and histone hypercitrullination 

was not detectable [28]. Histone citrullination is a hallmark of NETosis and PAD4 is the only 

known neutrophil enzyme capable of translocation into to nucleus [29].  

Histone citrullination catalyzed by peptidylarginine deiminase 4 (PAD4) during NETosis, results 

in loss of negative charge. Following uncoiling of the heterochromatin, the nuclear membrane 

gets ruptured. Further, the expanding chromatin gets mixed with granular antimicrobial 

factors.  Finally, the cell membrane breaks, releasing NETs. Interestingly in a recent 

observation it was shown that, NETs can be also released within minutes from living neutrophil 

cells through an oxidant-independent mechanism as it was demonstrated in S. aureus 

infection.  The signalling mechanism of such a process remains a mystery. 
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Figure 8. Schematic representation of the cellular processes involved in the formation of NETs. Adapted 
from [26] 
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1.4.3.4 Activation of PAD4 during NET formation 

Out of five PAD enzyme isotype expressed in humans and mice [30], PAD4 and PAD2 is 

reported in granulocytes. PAD4 is of potential interest, as it is known to be associated with a 

number of pathogenic states, including autoimmune diseases, such as systemic lupus 

erythematosus (SLE), rheumatoid arthritis (RA), sepsis and thrombosis [31].  Although the 

activation of neutrophil towards NETosis by a number of stimuli has been shown as PAD4 

dependent, however the downstream signaling pathways required for PAD4 activation in 

neutrophils is not clear (Table- 2). It was shown that pretreatment of cells with nocodazole or 

cytochalasin D, which inhibit microtubule polymerization, prior to LPS stimulation leads to a 

reduction of histone citrullination and NET formation. Additionally, blockade of integrin 

signaling through Mac-1 and cytohesin-1 impeded PAD4 activity and NET formation. How 

cytoskeletal signaling impacts PAD4, is unknown; however, it has been proposed that the 

same receptors establish whether a cell will undergo phagocytosis or NET formation Indeed, 

studies have indicated that neutrophils initiate NET formation when phagocytosis of a large 

particle fails [32]. Perhaps cytoskeletal activity and PAD4-mediated citrullination are linked 

because the initiation of NET formation represents a back-up killing mechanism following 

unsuccessful phagocytosis. Subsequent studies have demonstrated that ROS generation is 

upstream of chromatin decondensation [33], suggesting that NADPH oxidase activation may 

also be a prerequisite for PAD4 activation (Figure 9). 

 At the protein level, calcium binding, dimerization, and autocitrullination may help regulate 

its activity. Catalysis by all of these enzymes is calcium dependent, and, at least in vitro, 

requires calcium concentrations that are higher than that available in homeostatic cytoplasm, 

indicating calcium flux or a calcium-producing event is necessary to induce activity [34]. The 

generation of reactive oxygen species (ROS) is initiated by a wide variety of neutrophil stimuli, 

including phagocytosis of pathogens and signaling by LPS and TNF [35]. Interestingly, the 

addition of H2O2 to primary murine or human neutrophils induces PAD4-dependent histone 

citrullination [34]. The link between ROS and NET formation was first recognized by the fact 

that patients with chronic granulomas disease (CGD), who are missing the Nox2 protein 

essential for NADPH assembly and, thus, cannot form ROS. Neutrophils isolated from CGD 
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patients do not make NETs in response to S. aureus or phorbol myristate acetate [36]. This 

phenotype is rescued by addition of H2O2 or exogenous glucose oxidase, which generates 

H2O2, indicating that the ROS production facilitated by Nox2 is necessary for NETs [36].  

Table 2 NETotic stimuli and PAD activation. Adapted from [34] 

NET Stimuli Activation of PAD4 

Activated endothelial cells  n.d 

Aspergillus fumigatus n.d 

Candida albicans n.d 

OpsonizedCandida albicans n.d 

Cryptococcusspecies  n.d 

Escherichia coli Yes 

f-MLP  Yes 

H2O2 Yes 

Haemophilus influenzae n.d 

IL-8+Shigella flexneri n.d 

IL-8 Yes 

Calcium ionophore Yes 

Klebsiella pneumoniae n.d 

Leishmaniaspecies  n.d 

Listeria monocytogenes n.d 

LPS  Yes 

Lipoteichoic acid  n.d 

Mycobacteriumspecies  n.d 

Nitric Oxide  n.d 

Platelet activating factor  n.d 

Platelet TLR-4  n.d 

Phorbol-12-myristrate-13-acetate Yes 

Pseudomonas aeruginosa n.d 

Salmonella typhimurium n.d 

Shigella flexneri Yes 

Staphylococcus aureus n.d 

OpsonizedStaphylococcus aureus n.d 

Staphylococcus epidermidisδ-toxin  n.d 

Streptococcusspecies  Yes 

Streptococcus pneumoniae n.d 

α-Enolase n.d 

TNFα Yes 

Toxoplasma gondii n.d 

Yersinia enterocolitica n.d 

Zymosan  Yes 
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Figure 9. Model of PAD4 activation in NET formation. Pathways that activate NET formation are less 

defined than phagocytic pathways, but are known to require NADPH oxidase activity and the activation of 

PAD4 and subsequent histone citrullination. PAD enzymes are Ca2+-dependent. Since PAD4-mediated 

histone citrullination is abrogated by the NADPH inhibitor apocyanin we speculate that NADPH regulated 

ROS generation and increase Ca2+ levels may converge to activate PAD4 in neutrophils [34]. 

 

1.4.3.5 Citrullination- A key event during NETosis 

Conversion of arginine residues to the non-ribosomally encoded amino acid citrulline by the 

action of PAD enzymes is known as “Citrullination”. During NETosis PAD4 has been shown to 

citrullinates a number of nuclear proteins, including the histones and protein arginine 

methyltransferase 1 [28,37]The loss of charge following citrullination of cytokeratin causes 

disassembly of the histone DNA complex and results into decondensation of the chromatin 

(Figure 10) which is a key event of NETosis [38]. Citrullination is capable modifying biochemical 

pathways by altering the structure and function of target proteins. For example the proteomic 

analysis of NETotic material contained several citrullinated protein including vimentin that are 
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important RA autoantigens[24]. Citrullination of vimentin is known to correlated with the 

proliferation of fibroblast-like synoviocytes which can further stimulates TNF-α and IL-1 

production in these cells[39].  

 

Figure 10: PAD-mediated histone tail citrullination leads to chromatin decondensation. Adapted from 

[38]. 

 

1.4.3.6 Composition of NETs 

The protein cargo extruded on NETs varies depending on the specific type of stimulant used 

to induce these structures. For example, Matrixmetalloproteinase-8 (MMP-8), histone 3, and 

vasodilator-stimulated phosphoprotein were only detected in RA IgG–induced NETs, whereas 

catalase, moesin, transaldolase, phosphoglyceratemutase, and olfactomedin-4 were only 

found in IgMRF–induced NETs. In a recent experiment when neutrophils were stimulated with 

IgM RF or RA IgG enriched in ACPA, as many as 36 proteins were identified in the NETs, 

whereas TNF-a stimulation led to the identification of 28 proteins (Table-3) [24]. 
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 Table  3.  Proteins  expressed  in  control  NETs  upon  TNF-α stimulation 
[24] 
1 TNF 15 Myosin 9  

2 β-Actin  16 Neutrophil defensin 2  

3 α-Actinin-1  17 Neutrophil elastase  

4 Actin-related protein  18 Lysozyme  

5 α-enolase  19 Plastin-2  

6 Filamin-A  20 Profilin-1  

7 Glucose-6-phosphate dehydrogen 21 ProteinS100-A8  

8 Glyceraldehyde-3 phosphate 
isomerase 22 Protein S100-A9  

9 Histone H2A  23 Protein S100-P  

10 Histone H2B  24 Resistin  

11 Histone H4  25 Transketolase  

12 Lactoferrin  26 Tropomyosin 3 

13 Myeloperoxidase heavy chain 27 Vimentin  

14 Neutrophil gelatinase associated 
lipocalin 28 Calmodulin 

	
	
1.5	NETs	in	infection	

NETs possess a broad range of antimicrobial activities, which can kill or restrict the invading 

pathogen.  They are known to can act upon different species of gram-negative and gram-

positive bacteria, fungi, parasites and viruses[40] [41]. For example, S. flexneriis trapped and 

killed by NETs, which contain NE that degrades virulence factors such as IcsA and IpaB. NE-

deficient mice, lacking the capacity to form NETs, are more susceptible to infection with 

K.pneumoniae [42], but this may be due to inefficient phagocytic killing as well as the absence 
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of NETs. Neutrophils play a crucial role in containing fungal infections and NETs appear to be 

an important part of the neutrophil antifungal arsenal. Hyphae of C. albicans are too large to 

be phagocytosed.  Extracellular killing by release of NETs is an ideal strategy to contain the 

hyphal form and a number of studies have demonstrated that NETs are sufficient to kill such 

yeast and its hyphae (Figure-11) [43]. Calprotectin has also been shown to be an important 

NET component in the defense against Aspergillus nidulansas. Calprotectin deficient mice are 

more susceptible to aspergillosis. Neutrophils are not regarded as important effector cells 

against viruses and few studies have examined the role of NET formation in response to viral 

infection. NETs are able to capture and neutralize the negatively charged HIV virions, 

significantly decreasing HIV infectivity [44]. Several studies have explored the potential role of 

NETs in the immune response against protozoan parasites. Circulating NET structures have 

been detected in the blood of Plasmodium falciparum infected children with uncomplicated 

malaria [45]. Entrapment in NETs leads to decreased viability of the parasites, although 

authors of different studies conclude that the main function of NETs in Leishmania infection 

is the immobilization of the parasite and containment of the infection [46]. Of interest is 

Induction of NETs by Leishmania spp has been reported to be independent of NADPH oxidase 

activity and ROS production. Interestingly, some pathogenic organisms have evolved 

mechanisms to escape NETs mediated killing and some are completely resistant to it. For 

example, S. pneumoniaehas evolved strategies to escape NETs. In a passive manner, the 

polysaccharide capsule reduces NET binding [47]. The invasive pneumococcus type TIGR4 

expresses the DNase endA, which enables escape from NETs, leading to increased virulence in 

vivo. Saitoh et. al. demonstrated that HIV engages CD209 on dendritic cells (DCs) with its 

envelope glycoprotein gp120. Engagement of DC-SIGN leads to production of IL-10 by DCs, 

which suppresses NET formation [44]. 
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Figure 11. Mechanism of NETosis under infection. Neutrophils are stimulated by contact with bacteria, 
protozoan, fungi (yeast and hyphae forms) or their products (not shown), leading to: (a) ultrastructural 
alterations of nuclear shape with chromatin decondensation, swollen and fragmentation of the nuclear 
membrane, which allow the association of granules and cytoplasmic proteins with the chromatin, and (b) 
release of extracellular structures consisting of a DNA-backbone, decorated with histones, neutrophil 
granular and cytoplasmatic proteins (NETs), which ensnare and kill microorganisms. Modified from [11] 
 

	
1.6	NETs	in	Inflammation	

In the development of Deep vein thrombosis (DVT), NETs have been shown to form scaffolds 

in circulation that promote thrombus formation by interacting with the endothelium, 

platelets, coagulation factors and red blood cells. IL-8 and ROS released from endothelial cells 

can recruit and trigger neutrophils to form NETs, which in return activate and damage the 

endothelium by binding of histones to endothelial membranes. The release of Weibel–Palade 

bodies from the endothelium and deposition of fibrin and von Willebrand factor (vWF) 

promotes blood coagulation by formation of thrombus scaffolds. vWF and fibrin have a high 

affinity for histones and therefore readily bind to NETs [17]. Furthermore, histones have been 

shown to inhibit anticoagulants in the plasma, thereby further promoting thrombus 

formation[48].  Depletion of neutrophils or injection of exogenous DNase I have been shown 

to prevent thrombus formation in mouse models [49]. In Periodontitis, which is a chronic 

inflammation of the periodontium, neutrophil influx followed by NETosis in the gingival crevice 

leads to formation of a purulent crevicular exudate, which may prevent bacterial spread to 

the gingival surface [50]. Previously it was shown that placental micro-debris has been shown 



Chapter 1                                                                                                                                         Introduction                                                                 
 

April 2014                                                                                                    Chanchal Sur Chowdhury 23 

 

to activate neutrophils and stimulate the release of NETs in a dose-dependent manner. 

Excessive release of these micodebris in the maternal blood circulation might be associated 

with the pathology of Preeclampsia [51,52]. Direct contact of neutrophil elastase is known to 

injure epithelial cells, altars mucus secretion and upregulates expression of pro-inflammatory 

cytokines [53]. Therefore, extracellular NE release via NETosis may be an important cause of 

lung tissue damage and disease progression in CF although there is no published evidence of 

this finding. 

 

1.7	NETs	in	Autoimmune	disease	

Autoimmune diseases are characterized by defective discrimination of self and non-self 

molecules, leading  to  inappropriate recognition  of  host  tissues  as  foreign  structures,  and  

concomitant  immune  attack  against  host  organs.  Current research appears to validate the 

view that NETs could be the key player in the aetiology of a number of inflammatory 

conditions, including preeclampsia, and most recently in rheumatoid arthritis (RA) [51] [54] 

[55]. In a recent investigation, 84% of NET components have been identified as autoantigens 

in patients with autoimmunity, cancer, or both.  Out of these 74% have been reported to be 

autoantigens in SLE, RA, and vasculitis (Figure- 12).  

 

 

Figure 12. NETs as autoantigens. (A) Of the 25 NET components identified, 84% have been reported as 
autoantigens in cancer, autoimmunity, or other disorders. 74% of these proteins have been reported to be 
the target of autoantibodies in systemic autoimmune diseases. (B)The number of NET proteins reported to 
be autoantigens in various diseases is quantified and reveals that NET autoimmunity is most common in 
patients with vasculitis, SLE, and RA. Adapted from [56]. 
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This observation suggests that redistribution into NETs may be a previously unappreciated 

unifying property of several autoantigens [56]. For example in Gouty arthritis  which is the 

most common form of arthritis, deposition of monosodium urate (MSU) needles in the SF 

leads to release of IL-1βby monocytes and induction of IL-8,with subsequent neutrophil 

recruitment. MSU needles induce release of NETs that stimulate a feedback loop of IL-1β 

production by monocytes [57]. In Systemic lupus erythematosus (SLE) a subset of low-density 

granulocytes has been shown to spontaneously release NETs in SLE patients. The NET 

component LL-37 enhances the ability of naked DNA to activate plasmacytoid dendritic cells 

(pDC) via toll-like receptor 9 (TLR9). pDCs subsequently secrete IFN-αthat primes neutrophils 

to recognize autoimmune complexes of antinuclear 

 

1.8	Study	Objective	

 
The main objective of this thesis is to investigate whether PMN derived from inflammatory 

disorders are more prone to undergo NETosis. In the chapters to follow we provide evidence 

in support of the notion that NETosis is implicated in autoinflammatory disorders like 

rheumatoid arthritis and preeclampsia. Next, we identity PAD4 translocation as a key event 

during NETosis signalling, which could contribute towards the generation of auto-antigens or 

be the target of auto-antibodies (ACPA) (Chapter 2). Further we identify that neutrophil 

derived from RA patients exhibit an increased propensity to undergo NETosis or degranulation 

during the serum clotting process, products of which may have diagnostic implications 

(Chapter 3).  Finally, we provide evidences of profound NETosis in the feto-placental junction 

of Ad-Sflt-1 treated mouse model of preeclampsia (Chapter 4) 
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CHAPTER	2:	Enhanced	neutrophil	
extracellular	trap	formation	in	RA	is	
characterized	by	increased	nuclear	
translocation	of	PAD4	and	augmented	histone	
H3	citrullination	
 

2.1	Summary		

Rheumatoid Arthritis (RA) is a progressive chronic disease causing inflammation in the joints 

and resulting in painful deformity and immobility. Despite intensive work, the cause of RA 

remains unknown. Citrullinating enzymes and citrullinated proteins are known to be involved 

in the pathogenesis of the RA. Immune response against citrullinated proteins have been the 

basis for the early recognition of the disease and provided a better understanding of its 

pathophysiology. Innate immune mechanisms are indispensable for the onset and course of 

synovitis.  As part of the first line of defense, neutrophils are known to play a pivotal role by 

regulating its effector functions such as phagocytosis, degranulation or recently reported 

Neutrophil Extracellular Trap (NETs) formation.  Interestingly, many studies have shown 

exuberant NETosis, and its impaired clearance could implicate in various, autoimmune 

diseases, such as preeclampsia, psoriasis, systemic lupus erythematosus (SLE), and most 

recently in rheumatoid arthritis (RA).  In the latter instance, it has been suggested that NETs 

could serve as the source of citrullinated autoantigens, thereby stimulating an auto-

inflammatory condition. Since peptidylarginine deiminase 4 (PAD4) play a key role in the 

NETotic process and is implicated in the production of citrullinated autoantigens, we have 

examined its behavior in neutrophils isolated from RA patients. Our data confirm that 

neutrophils from RA patients display an increased propensity to undergo NETosis, a feature 

that correlated with increased levels of key components of the underlying signal transducing 

cascade such as reactive oxygen, myeloperoxidase and neutrophil elastase. Most noteworthy, 
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however, was a significant increase of PAD4 in the nucleus of RA neutrophils and associated 

elevation in citrullinated histone H3 levels. Our data, furthermore, suggest that PAD4 may be 

extruded into the extracellular environment during NETosis, as cell-free DNA associated 

complexes could be detected in culture supernatants.  Since anti-PAD4 antibodies precede RA 

and enhance the citrullinating activity of PAD4 in an extracellular milieu by reducing their 

calcium requirement, our findings provide a mechanism by which such autoantigens could be 

generated to form auto-antibodies, as well as a source of auto-antigens in their presence.  

	
2.2	Introduction	

Rheumatoid arthritis (RA) is a disease of multifactorial aetiology, resulting in progressive 

disability and systemic complication by affecting the anatomical components of articular and 

juxta-articular tissues of diarthrodial joints [58]. After being hit by an unknown trigger, the 

process involves infiltration of the tissue by inflammatory cells, such as neutrophils, 

macrophages and plasma cells, which characterize the early events in the synovium. A 

secondary joint specific hit has been shown to increase vascularization, proliferation of the 

synovial lining cells [59,60]. This leads to inflammation of the capsule around the joints causing 

swelling of synovial cells, excess accumulation of synovial fluid, and the development of 

fibrous tissue called as “pannus” in the synovium [61]. Symptoms of RA include joint pain, 

swelling, stiffness, and fatigue. Some individuals may have mild and moderate forms of the 

disease while others can experience severe disease involvement characterized by acute 

episodes of pain and inflammation, known as “flares” followed by phases of reduced or no 

symptoms called as “remissions”. RA is a multi-joint disorder. In a quick frame of time, 

inflammation could progress from few joints to many other joints. Further it known to be 

associated with increased rates of cardiovascular illness, including myocardial infarction, 

cerebrovascular events, and heart failure. RA affects between 0.5 and 1% of adults in the 

developed world with between 5 and 50 per 100,000 people newly developing the condition 

each year. Women and elderly people are highly susceptible to this disease [62]. In fact, 70% 

of the patients with rheumatoid arthritis are women, with 80% of the total cases range 
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between 35 and 50 years of age[63]. Compared to healthy persons, the mortality rate is higher 

among patients with RA. 

2.2.1 Normal vs RA Joint	

The normal synovial joint, also referred as a “diarthrosis”, are the most movable joint in the 

body found in the bones of the limbs. The complex structure of a synovial joint consists of two 

opposing bone surfaces that are protected with the cover of specialized, fibrous hyaline 

cartilage (composed of fibrous connective tissue),  which provides an articulating interface 

with reduced friction. The interface of the synovial joint is filled with synovial fluid and has 

special ligaments which hold the bones together [64]. The “synovium” is the clear, viscous, 

lubricating fluid secreted by synovial membrane which provides essential nutrition for the 

articular cartilage and lubricates the top layer of the cartilage. It surrounds the joint cavity and 

is the site of production of synovial fluid [58]. The synovial membrane is usually less than 100 

μm in thick. The synovial lining, facing towards the bone and cartilage consists of a thin layer 

of synoviocytes (1–3 cells). Synovial joint can be differentiated from fibrous joint by the 

presence of a protective capsule around the articulating surface and the synovial joint and 

secondly by the lubricating synovial fluid within those capsules. Only a few mononuclear cells 

are distributed in the sublining connective tissue layer [58]. 

 

The RA synovial joint is characterized by a transendothelial migration of a variety of 

inflammatory cells such as T cells, B cells, dendritic cells, neutrophils, mast cells, plasma cells 

and macrophages followed by a phase of angiogenesis [62].  Invasion of inflammatory cells 

results in thickening of the inner lining layer, which gains a thickness of more than 20 cells. 

However recent reports suggest; change in histological appearance of RA is independent of 

the phase of the clinical signs [65]. While the synovial linings grows and expands, the 

inflammatory mass of tissue adjacent to the articular cartilage is eventually extended (Figure 

13), and further leads to villus like projections [66]. The progressive overgrowth of the articular 

surface causes formation of the so-called 'pannus', which means 'cloth' in Latin and ‘web’ in 

Greek [58]. The pannus containing osteoclast is the primary destructive cellular element, 

whereas the repair function of osteoblasts is inhibited in RA, resulting in alteration of bone 



Chapter 2                                                                                                                                          NETs in RA                                                                 
 

April 2014                                                                                                    Chanchal Sur Chowdhury 28 

 

resorption machinery [67]. The destruction of bone is often initiated at the cartilage-bone-

synovial membrane junction. Although joint fluids are rich in polymorphonuclear leukocytes, 

very rarely they are seen in the synovial membrane[68]. A set of proteolytic enzymes released 

from neutrophils along with enzymes secreted by chondrocytes and synoviocytes causes 

degradation of the cartilage around the synovium [66]. Important to mention that, although 

the association between inflammation and progression of joint damage is clear from the 

literature, the destruction of bone, may still progress even under suppressed inflammatory 

condition [66]. 

           

Figure 13- Schematic view of normal joint and rheumatoid arthritis joint. In the healthy joint (Left) the thin 

synovial membrane lines the non-weight-bearing aspects of the joint. In rheumatoid arthritis (b) the 

synovial membrane becomes hyperplastic and infiltrated by chronic inflammatory cells. Ultimately it 

develops into ‘pannus’, which migrates onto and into the articular cartilage and underlying bone. 

Reproduced from [69] 
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2.2.2 Clinical Phases in Rheumatoid Arthritis	

Six phases (phases A–F) of RA development were formulated by the European League Against 

Rheumatism (EULAR) Standing Committee on Investigative Rheumatology in the year 2011 

[70]. 

 

Phases A-B: Genetic and environmental trigger 

Risk factors for developing RA are both genetic and environmental [61]. Family history of RA 

and tobacco smoking are frequently being associated as risk factors for RA. A change in 

lifestyle such as, to avoid tobacco smoking and consuming foods rich in Omega 3 [71]and 

awareness of family history can help to prevent the risk of RA (Figure 14).  

Phase C: Systemic autoimmunity associated with RA  

Systemic autoimmunity without synovial inflammation followed by a short period of 

asymptomatic synovitis characteristics the initial phase of RA. During this period, 

abnormalities in different body parts can be found preceding the clinical onset of RA. 

Although, synovium is known as the primary site of clinical pathogenesis, it may not be the 

place where the disease initiates. Lungs, lymph nodes, bone marrow, periodontal tissue, gut 

and neuroendocrine system could be the site where the initiating stimuli might have 

originated [70].  

 

Phase D: Symptoms without clinical arthritis 

This phase is characterized by symptoms such as joint pain and morning stiffness. Synovial and 

bone abnormalities can be detected by imaging tools like ultrasound and MRI [72]. Other 

abnormalities, for example, increased synovial vascularity, thickening of the synovial 

membrane and bone marrow edema are seldom present. 

 

Phase E: Unclassified arthritis 

Although, in this phase, inflammatory joint swelling is clinically apparent, patients still do not 

fulfil the characteristic criteria of a recognized RA case.  

Phase F: RA 
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In this phase, patients fulfil the classification criteria for RA.  Many patients will develop 

damage to cartilage bone as a result of acute synovial inflammation. 

 

Figure 14.Overview of the six preclinical phases of rheumatoid arthritis (RA). Modified from [73]. 

2.2.3 Risk Factors 	

In recent years, a number risk factors have been identified for the development of RA. It is 

now known that a random set of genetic, physiological or environmental factors is involved, 

and their interaction may be decisive in the development and progression of the disease. 

 

Genetic Risk Factors   

The most compelling evidence for a genetic component was in monozygotic twins, in whom 

the concordance rate is 12% to 15% when one twin is affected compared to 1% for the general 

population. In the predetermined aspect of the genetic component, the human leukocyte 

antigen (HLA) and major histocompatibility (MHC) genes are the most important. (HLA)–DRB1 

locus is known to be strongly associated with rheumatoid factor and/or ACPA positive RA cases 

[74]. Some of the HLA-DRB1 alleles contain a common amino acid motif (QKRAA) known as 

"shared epitope" or SE, which has been shown to confer particular susceptibility [74]. 

Additionally, it was shown that, in  individuals with the shared epitope (SE), arginine to  

citrulline  conversion may increase peptide binding affinity to MHC class II molecules 

specifically  in  the  P4  binding  pocket [75]. Thus, it plays a role in determining which ACPA-

positive individuals will ultimately develop arthritis [76].  

Non genetic - Risk Factors 
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Recently it was estimated that the heritability for ACPA negative RA is approximately 20%, 

which indicates that the significant risk factors for this subset of disease is dependent on non-

genetic factors [77]. However it is noteworthy that, a recent finding has reported stochastic 

factors as the main contributors to ACPA development of RA [78]. Although no specific 

exposure has been identified as a pivotal agent, numerous environmental or non-genetic 

factors certainly contribute to RA susceptibility (Table-4). Among the known environmental 

risk factors, smoking is the best defined for seropositive RA in certain populations. A recent 

finding implicates that ACPA positivity, in unaffected first-degree relative RA patients; with a 

high prevalence of smoking and SE was 48%, whereas, in the healthy controls, ACPAs were 

hardly evident [79]. Apart from smoking, citrullinated proteins such as citrullinated enolase 

can be produced by bacterial infection that may cross-react with endogenous enolase 

peptides to produce anti-citrulllinated antibodies [80]. It was hypothesized that activation of 

innate immunity, especially in an individual with underlying genetically determined 

autoreactivity, potentially could contribute to the autoreactivity and the initiation of RA.  

 

Table 4- Non Genetic Risk factors for RA. Data Source [81]. *Increase disease severity (+), Decrease 

disease severity (-) 

Non-genetic Risk Factors Determent component Final Effect on RA 

Socioeconomic factors Without a university degree + 

Hormones Oral contraceptives 

Extended breastfeeding 

Early menopause 

Low testosterone 

 

+ – 

+ – 

+ 

+ 

Dietary factors More intake of Omega 3 rich food  – 

Vitamin D Lower serum levels of vitamin D +  – 

Alcohol More alcohol consumption – 

Coffee More than 10 cups a day + 

Bacterial Infections Porphyromonas gingivalis 

Periodontitis 

+ 

+ 
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Silica Crystalline silica + 

Tobacco/Smoking Cyanate  

Free radical 

+ 

+ 

Viral infection Parvovirus  

Retroviruses 

+ 

 

2.2.4 Cellular Mediators of joint inflammation 

The inflammatory process of RA is coordinated event, involving cellular mediators of both 

innate and adaptive immune system (Table-5), which not only play a critical role in driving and 

maintaining inflammation, but also has a protective function to suppress or shut the 

inflammation of the synovitis. In patients with RA the synovial membrane is characterized by 

infiltration of inflammatory cells, hyperplasia and increased vascularity [68]. After invasion 

into the synovium, dendritic cells process the local antigens and present them to germinal 

centers of the synovium. Thus, through interactions with native T they via surface receptors, 

they help B cells to produce pathogenic antibodies [82]. Alternately, they can also migrate to 

specific sites in the joints where they produce an array of chemokines with destructive 

properties such as IL-17 on the cartilage [82]. Furthermore they can stimulate other cells like 

osteoclast resulting in bone erosion and damage. The detailed mechanisms of these complex 

cellular interactions remain elusive.  

 

Table 5.Key Cellular Mediators Implicated in the Pathogenesis of Rheumatoid Arthritis. Source [83,84] 

Cellular Mediators Key Disease-Relevant Functions 

Monocytes and macrophages 

 

Produced GM-CSF that activates expression of human leukocyte antigen 

(HLA)-DR molecules on antigen-presenting cells (APCs). Plays a major role 

in osteoclast development. Major source of IL-7 in RA synovium. 

Dendritic cells 

 

Presenting arthritogenic antigens to T cells.  

Produce cytokines that can influence T cell differentiation in the joint. 

Synovial  T  lymphocytes 

 

Th1 and Th17 subset dependent antibody production. Express RANKL and 

other effector cytokines with either stimulatory or inhibitory effects on 

osteoclastogenesis 

Synovial  B  cells  

 

Production of autoantibodies such as rheumatoid factors (RFs) and ACPA 

and immune complexes. 
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Mast cells 

 

Activate chondrocytes, synovial fibroblasts, and macrophages to produce 

metalloproteinases, cytokines, and prostaglandins that all contribute to 

joint destruction and induce localized tissue edema. Mast cell derived 

heparin has significant effects on connective tissue 

Natural killer cells  

 

Can stimulate B cells to produce RFs, produce cytokines or enhance 

proinflammatory cytokine production by T lymphocytes and  

Macrophages. 

Polymorphonuclear neutrophils 

 

Release various proteases that can adversely affect the lubricating 

properties of synovial fluid and the integrity of the cartilage 

Osteoclast Bone resorption through the elaboration of MMPs and cathepsin K 

Chondrocytes Remodeling the cartilage matrix in the RA joint.  

 

 

Fibroblast-like synoviocytes 

Production of proteases that degrade the extracellular matrix, and 

invasion into cartilage. Produce a variety of molecules that modulate the 

growth, inflammation, angiogenesis, and cell recruitment, and induce 

activation of and cytokine production by immune cells. 

Bone marrow cells Contribute to synovial inflammatory responses 

 

2.2.5 Molecular Mediators of joint inflammation 

Cytokines and chemokines are at mediators of cell-to-cell communications. They stimulate the 

cells involved in innate and adaptive immunity to enhance or inhibit inflammatory responses 

[85].The transendothelial influx of inflammatory cells from the circulation following synovial 

cell hyperplasia, stimulate the secretion of an array of cytokines with a broad range of 

functions (Table-6) which leads to induction of acute phase response and appearance of 

systemic features (e.g. fever, fatigue, cachexia) [59]. The formation of ectopic lymphoid 

structures in the synovium which are found in ~25% of RA synovial tissue samples, involve the 

expression of several key cytokines and chemokines [68]. In the synovium, they can carry out 

a broad range of activity such as activation of B cells and osteoclast, regulate expression of 

adhesion molecules, upregulated expression of cartilage-degrading enzymes such as matrix 

metalloproteinase (MMP) at the cartilage–pannus junction and promote inflammation and 

tissue catabolism.  
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Table 6 .Key Molecules and Signal Mediators Implicated in the Pathogenesis of Rheumatoid Arthritis. 

Updated from [61,83,84] 

Molecule or Signal 

Mediator Cytokines 

Key Disease-Relevant Functions 

Cytokine  

TNF-α Activates leukocytes, endothelial cells, and synovial fibroblasts, inducing production of 

cytokines, chemokines, adhesion molecules, and matrix enzymes; suppression of regulatory 

T-cell function; activation of osteoclasts; and resorption of cartilage and bone; mediates 

metabolic and cognitive dysfunction 

Interleukin-1α  

and 1β 

Activate leukocytes, endothelial cells, and synovial fibroblasts; induce matrix-enzyme 

production by chondrocytes; activate osteoclasts; mediate fever; enhance glucose 

metabolism; and reduce cognitive function 

IL-2 and IFN-gamma  

Interleukin-6 Activates leukocytes and osteoclasts; is involved in B-lymphocyte differentiation; regulates 

lipid metabolism, acute-phase response, and anemia of chronic disease; and is implicated in 

hypothalamic–pituitary–adrenal axis dysfunction and fatigue 

Interleukin-7 and 

15 

Promote and maintain T-cell and natural killer–cell activation and T-cell memory, block 

apoptosis, and maintain T-cell–macrophage cognate interactions 

Interleukin-12 key role in the differentiation of T cells and inflammation 

Interleukin-15 T cell chemotaxis and proliferation, production of immunoglobulins by B cells, and the 

generation of natural killer cells 

Interleukin-17A  

and 17F 

Act synergistically to enhance activation of synovial fibroblasts, chondrocytes, and 

osteoclasts. 

Interleukin-18 Promotes activation of Th1, neutrophils, and natural killer cells 

Interleukin-21 Activates Th17 and B-cell subsets 

Interleukin-23 Expands Th17 

Interleukin-32 Activates cytokine production by several leukocytes and promotes osteoclast differentiation 

Interleukin-33 Activates mast cells and neutrophils 

TGF-beta Inhibits T cell activation and proliferation, downregulates B cell proliferation and 

differentiation, inhibits biosynthesis of metalloproteinases, protects articular cartilage from 

the degradative influences of IL-1, protects articular cartilage from the degradative 

influences of IL-1 

Growth and differentiation factors 

BLyS and APRIL Activate B cells and have a role in the maturation of B cells and enhancement of 

autoantibody production 

GM-CSF and M-CSF Enhance differentiation of granulocyte and myeloid-lineage cells in the bone marrow and 

synovium 

RANKL Promotes maturation and activation of osteoclasts 
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Intracellular signaling molecules and transcription factors 

JAK Tyrosine kinase that regulates cytokine-mediated leukocyte maturation and activation, 

cytokine production, and immunoglobulin production 

Syk Tyrosine kinase that regulates immune-complex–mediated and antigen-mediated activation 

of B and T cells and other Fc receptor–bearing leukocytes 

PI3K Mediates signals that drive proliferation and cell survival 

BTK Plays important role in the activation of B cells, macrophages, mast cells, and neutrophils, 

through regulation of B-cell receptor and Fc receptor signaling as appropriate 

NF-κB Helps integrate inflammatory signaling and is important for cell survival 

 

2.2.6 Innate immune system in RA	

Depletion of neutrophils and mice lacking mast cells are both resistant to onset arthritis, 

indicating a clear role of innate immune system in RA pathogenesis. Further, environmental 

triggers such as smoking, bacterial products, viral elements, are known to be involved in RA 

pathogenesis, suggesting a possible involvement of the innate arm as a key event [86]. Innate 

immune cells through their primitive pattern-recognition system, are known to cause rapid 

inflammatory responses [87]. The pattern recognition receptors recognize preserved 

structures in bacteria and other infectious agents and permit rapid release of inflammatory 

mediators, activation of antigen presenting cells [88]. Repeated activation of innate immunity, 

especially in an individual with underlying genetically determined autoreactivity, potentially 

could contribute promoting the development of adaptive immunity in RA [84].  Further clinical 

phases of RA were shown to be driven by a cascade of inflammatory events in the synovium, 

defined by intercommunication between cells of the innate immune system, including NK 

cells, macrophages, dendritic cells and mast cells with fibroblast-like synoviocytes, along with 

cells of the adaptive immune system [88]. The central role of innate cells in RA pathogenesis 

is to produce proinflammatory cytokines, chemokines and matrix-degrading enzymes that 

drive chronic inflammation [84]. The activation of the innate response can further, activate 

the complement proteins, which by the engagement of C5a can producing membrane 

attacking complexes (MAC) which can cause tissue damage in RA [89].   
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2.2.7 Adaptive immunity in RA	

Over last few years, a repertoire of antibodies has been identified that are associated with the 

pathology of RA. To understand how and why such autoimmune system gets activated to drive 

pathogenetic consequences is the recent focus in arthritis research. The autoimmune 

mechanism in RA begins with the recognition of endogenous and exogenous citrullinated 

autoantigens by antigen presenting cells (APCs). After antigen processing, they present them 

to T cells with the help of MHCII molecules on its surface. T cells then differentiate into TH1 

and TH17 cells that stimulate macrophages to release proinflammatory cytokines that 

stimulate B cells to produce antibodies. These autoantibodies bind to target antigen to form 

immune complexes. Binding of complement and to immune complexes can augment secretion 

of TNF, IL-6 and IL-1 from macrophages (Figure 15).   These cytokines by virtue of osteoclast 

activation and condrocyte causes damage to cartilage and bone and thus establishes the 

clinical onset of the disease [90]. However, there is growing data to support the claim that 

both T-cell-dependent and independent mouse models of arthritis requires innate immunity 

in the initiation phase for the activation of adaptive immunity.  
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Figure 15- Adaptive mechanism of RA pathogenesis. Adapted from [90] 

 

2.2.8 ACPA/anti-CCP hallmark of RA 

Anticitrullinated protein antibodies (ACPA) are a group of (partly) cross-reactive antibodies, 

which are capable of identifying citrulline-containing proteins and peptides [91]. Extensive 

research over a decade has confirmed the notion that the pathophysiology of RA is strongly 

associated with autoantibodies to citrullinated protein antigens (ACPAs), which can further 

characterize the heterogeneous phenotype of RA with respect to outcome and therapeutic 

intervention. These auto-antibodies bind to the Fc domain of IgG molecules (IgM rheumatoid 

factor, IgM-RF) and against citrullinated autoantigens to form immune complexes which can 

initiate a cascade of events resulting in joint inflammation. PAD2 and PAD4 enzymes as well 

as citrullinated proteins can be identified in the inflamed synovium during all stages of the 
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disease and correlate with local inflammation [92]. Direct transfer of serum anticitrullinated 

antibodies from RA patient, has failed to induce arthritis in mice [93]. Similarly, direct transfer 

of mouse monoclonal antibodies against citrullinated fibrinogen to DBA/1J mice, also failed to 

induce arthritis. However, in the presence of mild synovitis with anticollagen II antibodies, 

could successfully induce the disease [94]. Moreover ACPA-positive patients with RA seem to 

be ACPA positive years before the onset of disease [95], therefore suggesting indirect 

involvement of ACPA in the pathogenesis of RA. The efficacy of selective B‑cell depletion in 

the treatment of RA provides evidence for the involvement of B cells and possibly ACPA in its 

pathogenesis [96]. In addition to immune complex formation, ACPAs have been suggested to 

mediate a number of effector function such as activation of macrophages by binding to toll-

like receptors, activation of osteoclast which may induce bone loss, mast cells degranulation 

which contribute to the development of synovitis, activation of neutrophils to produce NETs 

which may promote aberrant adaptive and innate immune responses in the joint, activation 

of complement proteins to form membrane attacking complex (MAC) [93] (Figure-16). 

Majority of individuals with RA (50–80%) have serum positive titers for IgM-RF and/or ACPA. 

However, in comparison to IgM-RF, ACPA seems to be more reliable diagnostic marker 

predictors of poor prognosis of RA as it has higher specificity (98%) and sensitivity (up to 80%) 

for diagnosis of RA than IgM-RF.  
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Figure 16. Model of ACPA generation and its tentative effector functions [93]. 

2.2.9 PAD Enzymes- key regulator of RA pathogenesis 

It is now well known that PAD enzymes are activated during the inflammation process. Some 

of its isotypes (PAD2 and PAD4) are in abundance in plasma and synovial biopsy specimen 

from patients with RA[97]. Calcium ions catalyze PAD dependent enzymatic reactions.  

However, under physiological conditions the levels of Ca2+ is about 100 fold less than the 

required amount for its activity[98].  In the synovium, neutrophils, macrophages and mast 

cells could be the possible source of PAD4 and PAD2 [99]. PAD enzymes are known to generate 
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self-antigen, which can as the fuel for ACPA generation. However, they are also known to play 

a role in the recruitment of immune cells and destruction of joint during RA pathogenesis 

[100]. In the K/B×N model Severity of inflammation including infiltration, synovial hyperplasia 

and hypervascularization correlate significantly with the expression levels of PAD2 and PAD4 

in the vicinity of citrullinated fibrin deposits [97]. However, induction of arthritis was found to 

be independent of PAD4 in K/B×N serum transfer model, using PAD4 deficient mice. Notably, 

Willis et al. showed that the PAD inhibitor Cl-amidine could rescue joint damage in collagen-

induced arthritis model although this theory did not hold grounds when the disease was 

induced by the administration of anti-collagen antibodies.  Further studies are essential to 

fully characterize the role of the PAD enzymes in various phases of the disease. 

2.2.10 Why Joints of RA are affected when citrullination is non-specific?	

The process of citrullination is not specific to the synovium RA patients [101]. It can also be 

detected in non-rheumatoid arthritis inflammatory synovitis as well [91]. It is a part of normal 

biological processes of the body, such as epidermal differentiation, formation of the hair 

follicle and during development of the central nervous system[99]. Even in their presence, it 

may not elicit an anticitrullinated protein response. Now the question is, if citrullination is not 

a unique feature, then why particularly the joints are affected in RA? A possible explanation 

could be that, under normal circumstances dying cells will be removed by phagocytes. As a 

consequence, the immune system would not respond to citrullinated proteins. However, 

when the clearance system is impaired or when too many cells are dying, the dying cell can 

release citrullinated proteins into the extracellular space [102]. PAD enzymes released in this 

process will citrullinate extracellular synovial proteins, such as fibrin.  The presence of ACPA 

and citrullinated proteins in inflamed joints will lead to the formation of immune complexes, 

which will result in complement and inflammatory cell activation. Smoking and possession of 

HLA-DR shared epitope (SE) alleles are established risk factors for the development of RA, 

which may trigger HLA-DR restricted immune reactions [99]. Further, it is known that 

individuals having these SE alleles, will present citrullinated peptides more efficiently (to CD4 

+ T lymphocytes) than the corresponding arginine-containing peptides, as the binding pocket 

on MHC classII prefers negatively or neutral charged peptides [34]. Therefore, it can be 
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concluded that only in some individuals (depending on their hormonal and genetic 

backgrounds) ACPA can be produced which may lead to the development of chronic 

inflammation of joints leading to RA [84]. 

2.2.11 Mechanism of Rheumatoid Arthritis 

2.2.11.1 The Frist Hit - Environment and Genetic trigger 

A combination of predetermined (genetic) and stochastic (random/ environmental or non-

genetic) events is known to initiate the cascade of events in RA. Genetic risk factors such as 

HLA-DRB1 alleles and shared epitope account for approximately 36% of the heritability 

whereas 45 non-HLA variants explain approximately 15% of heritability [103]. But many other 

genes are also involved and contribute to susceptibility and severity [103]. Environmental 

factors such as tobacco, silica, hormones, bacterial infections, alcohol, coffee, vitamin D and 

dietary factors are designated as a risk factor for RA, although the scientific evidence on their 

exact involvement is inconclusive in many cases [81]( Table 1).  

Heavy cigarette smoking was shown to stimulate an influx of cells into the lungs. In the 

presence of toxic components of the smoke, the inflated cells can get activated which render 

more prone to cell death [104]. 

2.2.11.2 Activation of Innate Immune System to create autoantigen 

Activation of the innate immune system (particularly mast cells, macrophages, neutrophils, 

and dendritic cells) might provide the foundation, or lower the threshold, for disease initiation 

through other immune mechanisms [88]. Innate immune cells through its primitive pattern-

recognition system can lead to rapid inflammatory responses by engaging of Fc receptors by 

immune complexes and perhaps Toll-like receptors (TLRs) by bacterial products [87].  

2.2.11.3 Autoantigen processed to produce ACPA Formation    

By virtue of cell death mechanisms, PAD enzymes comes out of the cell and may citrullinate 

native proteins in the local organ. Presentation of citrullinated peptides or other neo-epitopes 

from citrullinated proteins, in  genetically predisposed individuals, such as those carrying the 
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HLA-DR, SE alleles could activate autoreactive T cells, which via B cells stimulate the 

production of ACPA. Research indicates that IgM rheumatoid factor (IgM-RF) and 

anticitrullinated protein antibodies (ACPA) can be detected in patient serum samples up to 14 

years before the first clinical signs and symptoms [105,106]( Figure- 17). 

 

Figure 17- Autoantibody production in rheumatoid arthritis. Rheumatoid factors and anticitrullinated 

peptide (CP) antibodies are detected in the blood long before the onset of clinical arthritis in many patients. 

Adapted from [76] 

2.2.11.4 Inflammation of Synovium- Second Hit 

ACPA positive individuals remain unaffected for years and majority of them never get affected, 

suggest a second hit or stimulus in the joint is required for the induction of RA [84]. A non-

identified second hit, could be a minor trauma or viral infection that might lead to synovial 

citrullination with local emergence of identical citrullinated epitopes as presented previously 

during the first hit, resulting in a “transformed phenotype” of synovial lining cells. In the G6PI 

(KBxN) serum transfer mouse model of RA, it was shown that the production of immune 

complexes may act as a critical initial step which would allow pathogenic autoantibodies to 

access the synovium [107]. Circulating ACPA enter the joint, bind to the citrullinated proteins, 

and form immune complexes (IC). Circulating immune complexes containing citrullinated 

fibrinogen, was found in a significant proportion, in ACPA positive RA patients. These immune 

complexes and citrullinated fibrinogen co-localize with complement component C3 could 
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result in immune complex deposition and complement activation causing ongoing synovitis 

[76].  

2.2.11.5 Angiogenesis and immune cell infiltration 

One of the earliest histopathologic responses in RA joint is the generation of new synovial 

blood vessels. Morphometric studies reveal the presence of relatively small number of blood 

vessels, adjacent to the expanded lining layer. These vessels in combination with an increasing 

metabolic demand of the highly cellular structure could drive the onset of hypoxic 

environment [108]. Hypoxia is a strong stimulus for the expression of vascular endothelial 

growth factor (VEGF) and other angiogenesis mediators, which are highly expressed in 

inflamed RA synovium. As the new vessels develop, inflammatory mediators such as IL-17A, 

TNF, IL-1, IL-6, IL-18, VEGF, IL-33 and HMGB1 are produced in the synovium[68]. This may 

activate endothelial cells to produce adhesion molecules, which expedite activation-

dependent sticking of leukocytes, thereby facilitating diapedesis and extravasation of both 

lymphocytes and polymorphonuclear leukocytes into the synovial fluid. Mast cell products 

may also have an important role[84]. Cadherin-11, a synovial fibroblast membrane protein, 

mediates the organization and invasion of fibroblast-like synoviocytes (FLS) into synovial tissue 

[109]  

2.2.11.6 Pannus formation 

Positive feedback loops mediated by the interactions among leukocytes, synovial fibroblasts, 

chondrocytes, and osteoclasts, together with the molecular products of damage, drive the 

chronic phase in the pathogenesis of RA (Figure 18) [110]. In the chronic phase of 

inflammation the synovial tissue lining the joint, leads to tissue proliferation, also known as 

“pannus” formation. Pannus is defined as thickening of the synovial tissue that covers articular 

cartilage. A progressive pannus can invade the bone marrow and destroy structures such as 

joint capsule and tendons of the surrounding leading to loss of joint motion, loss of joint space, 

bony fusion (ankylosis), joint subluxation, tendon contractures, and chronic deformity [86].  
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2.2.11.7 Cartilage and destruction 

Activated rheumatoid synovium eventually destroys cartilage at the cartilage-pannus junction 

[84]. Osteoclasts cause subsequent bone erosions, whereas cartilage dissolution results from 

proteolytic enzymes produced by synoviocytes in the pannus or synovial fluid neutrophils. The 

destruction of cartilage, bone, and tendons is initiated mainly by metalloproteinases specially 

metalloproteinase-3 (MMP-3), as it is known to degrade cartilage proteoglycans, fibronectin, 

and type IV collagen in the basement membrane, and activates collagenase [86]. At sites of 

active RA, there is a dramatic imbalance of bone turnover in which local bone resorption 

outweighs bone formation [111]. 
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Figure 18- Model of Mechanism of Joint Inflammation in RA. 1) A random set of intrinsic or extrinsic factors 
like smoking or hormones can induces citrullination of proteins in local organ. In the presence of specific 
susceptible gene, the newly generated epitopes are more efficiently presented to the immune system that 
breaks tolerance resulting in the generation of ACPA long before disease onset. 2) In the following years, 
isotype repertoire expansion and epitope spreading lead to the appearance of multiple ACPA specificities 
with the individual ACPA phenotype already present when the diagnosis of RA is finally, made. 3) A non-
identified second hit, possibly minor trauma or viral infection might lead to synovial citrullination with local 
emergence of identical citrullinated epitopes as presented previously during the first hit. 4) This will 
promote localization of ACPAs in the joint that will initiate a cascade of antibody and immune complex 
mediated events, leading to chronic inflammation. 5) Local synovial presence of citrullinated antigens might 
facilitate local autoantigen-driven differentiation of B cells into ACPA-producing plasma cells, further 
contributing to the vicious circle of chronic inflammation and tissue destruction. Modified from [112]  

2.2.12 Current treatments and new targets in RA 

The pathogenesis of RA is complex and thought to involve a number of different interacting 

cells and molecules that provide numerous suitable targets for therapy [90]. Treatment of 

early rheumatoid arthritis by Methotrexate is usually the first DMARD administered to people 

with rheumatoid arthritis. When methotrexate is contraindicated, sulfasalazine or 

leflunomide are alternatives. The key aim of treatment for established rheumatoid arthritis is 

minimization of disease activity. This goal can be achieved with DMARDs and biological agents 

singly or in combination, with or without glucocorticoids. Growing knowledge of inflammatory 

pathways in RA has led the foundation for new drug developments that target inflammatory 

cytokines, B cells and T-cell co-stimulation. T-cell directed approaches target co-stimulation, 

as well as molecules involved whereas B-cell, directed therapies comprise anti--CD20 

therapies, CD19-directed and CD52-directed depletion strategies; alternative approaches 

include CD22 mediated ligation of inhibitory B-cell receptor and modification of adhesion 

molecule expression by B cells in T-cell activation and regulation (such as CD4 antigen). 

Cytokines such as IL-20 and IL-21 contribute to the pathogenesis of RA and have a promise as 

potential targets for treatment [113].  

Despite remarkable success of such approaches in a proportion of patients with RA, 

many individuals do not derive sufficient benefit from these treatment modalities and new 

approaches are still necessary. Biological therapies that target pathogenic cytokines such as 

TNF, IL-1b or IL-6 have heralded a so-called therapeutic revolution, transforming the outlook 

for patients with RA [87]. However, about 20% to 40% of patients treated with biologics such 

as TNF inhibitor do not respond to the treatment and further 20% and more lose response 
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over time [114]. Additionally biological agents such as anti TNF-α are associated with an 

increased risk of serious infections, including tuberculosis, suggesting alternative drivers of RA 

pathogenesis that might serve as promising therapeutic targets [108]. Future targets will 

include target specific cytokines such as IL23, IL37, IL36 and Il38, which will be capable of 

modulating synovial fibroblast and proteases involved in joint destruction. Transcription factor 

like FOXO3 is known to be involved in the biology of neutrophils and lymphocytes. Its 

overexpression in patients with RA seemed to contribute to neutrophil activation and 

increased lifespan [115]. Further, it was shown that FOX03 inhibition could reduce production 

of proinflammatory cytokines, including TNFα, and increase production of anti- inflammatory 

cytokines such as including IL-10. Recent work from Nie et al. reported defect in TREG cell 

function in RA as a consequence of abnormal phosphorylation of forkhead box protein P3 

(FOXP3), which is a key transcription factor for TREG cell function. By inducing the 

dephosphorylation of FOXP3, it would be possible to reestablish the balance between TNF, 

TREG cells and pathogenic TH17 and TH 1 cells in the joints of patients with RA [116]. 

 

2.2.13 Polymorphonuclear Neutrophils in RA	

The presence of PMNs remains one of the most consistent indices, which contribute to the 

perpetuation of the inflammation within joints. In very active disease, up to one billion cells 

may gain access to a rheumatoid knee joint each day[84]. Although, in the setting of RA, 

neutrophils have been subjected to less intensive scrutiny than have, T and B 

lymphocytes[90,113] they are the most abundant cells in the synovial fluid (SF) of the 

rheumatoid joint, comprising as much as 80% of all infiltrating cells [117]. They are also 

present in high numbers at sites of bone erosion [118,119].  

Upon entry to the synovial fluid via the postcapillary venules of the synovium, they 

adhere to activated synovial microvasculature by interacting with selectins and integrins [9]. 

Inside the synovium, they move rapidly to the synovial fluid, drawn by the activated 

component of cleavage of C5a, LTB 4, platelet-activating factor, and chemokines. The CXC 

family of chemokines, including ENA-78 and IL-8, are especially abundant in synovial fluid and 
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can attract neutrophils into the intra-articular space. In addition, soluble immune complexes 

in the circulation can bind neutrophils in the synovial microvasculature and induce increased 

vascular permeability. Expression of the transcription factor, Foxo3a, ensures neutrophil 

survival during inflammation by suppressing the induction of Fas ligand (FasL), a molecule that 

promotes programmed cell death. Foxo3a inhibition in mice can potentially limit the acute 

inflammatory response in certain diseases where neutrophils play a prominent role. 

 Neutrophils, although detected in the synovial membrane, are found mainly in the 

synovial fluid compartment. The cells in the fluid region seem to be primed (Table 7) and 

activated, but their precise contribution to pathogenesis is disputed.  

 

Table 7 - Neutrophil-activating factors found within SF [9]. 

 

 

In the joint, neutrophils engage immune complexes through Fc receptors and other activating 

signals. This engagement leads to cytoskeletal reorganization, release of granule content, 

generation of reactive oxygen and nitrogen species by enhanced phagocytosis, as well as 

recently reported neutrophil activity called as NETosis [120].  These reactive oxygen 

intermediates, prostaglandins, proteases secreted by neutrophils contribute to synovitis [61]. 

Adhesion of platelets-neutrophil complexes and release of chemokines in vivo is known to 

contribute towards acute inflammatory responses as well as enhance migration of new cells 

into the joint space. These cells also release numerous proteases that can adversely affect the 

lubricating properties of synovial fluid and the integrity of the cartilage, including elastase, 
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trypsin, and neutrophil collagenase. They also contain immune complexes within phagosomes 

that include IgG and IgM along with complement proteins such as C1q, C3, and C4. 

PMNs from synovial fluid in RA release de novo synthesized proteins, including matrix 

proteins such as fibronectin, neutral proteinases, and IL-1. Neutrophils also secrete IL-1Ra as 

a major product. Although the amount of IL-1Ra each neutrophil produces is low compared 

with that produced by macrophages, the sheer number of PMNs allows them to produce large 

amounts in synovial effusions. Oncostatin M, known as a member of the IL-6 family, is released 

by synovial fluid neutrophils (Figure-20). 

In animal models, a variable role for neutrophils in the inflammatory and destructive 

processes is seen. The K/BxN and collagen-induced arthritis models, depleting neutrophils 

with antibodies almost completely prevents synovial inflammation. In the K/BxN model, 

neutrophils initiate vascular permeability, which permits pathogenic antibodies to gain access 

to the joint space. In serum transfer model of arthritis, Sky deletion from neutrophils was 

sufficient to block the initiating event of the disease [121]. Similar findings in immune complex 

nephritis [122], suggest neutrophils being the key dominant pathogenic cell in most immune 

complex-mediated diseases.  .   
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Figure20. Neutrophil activity in the RA joint. Data source [9,119] 

2.2.14 Neutrophil extracellular traps in RA 

In response to pro-inflammatory stimuli, neutrophil adopts a primed phenotype, which 

stimulates migration into the inflammatory tissue site. In the tissue, neutrophils get exposed 

to secondary stimuli and gets  “activated”, a state characterized by release of granule proteins 

and acquisition of phagocytic capabilities. [10] However, in 2004, Brinkmann et al. through an 

elegant series of experiments documented a powerful method of neutrophil-mediated 

microbial killing through release of extracellular fiber-like structures and termed it as 

neutrophil extracellular traps (NETs) [20]. NETs consist of chromosomal extruded DNA 

decorated with granular components that include antimicrobial peptides and proteases. The 

molecular pathways leading to NETosis involve generation of reactive oxygen species (ROS) by 

NADPH-oxidase, calcium mobilization, nuclear delobulation involving the enzymatic activities 
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of myeloperoxidase (MPO) and neutrophil elastase (NE), and chromatin modification via the 

citrullination of histones by peptidyl arginine deiminase 4 (PAD4) [27,36,123,124]. 

A number of studies have implicated NETs in the etiology of auto-inflammatory or 

autoimmune conditions such as preeclampsia, Felty’s syndrome, systemic lupus 

erythematosus (SLE), multiple sclerosis (MS), and most recently, rheumatoid arthritis (RA) 

[24,125-128]. In the context of RA these findings are especially interesting, as NETs have been 

proposed to contribute to the generation of anti-citrullinated protein antibody (ACPA) auto-

antigens [24,129,130]. These findings indicated that neutrophils isolated from RA cases 

exhibited an increased propensity to undergo spontaneous NETosis in-vitro; a feature was 

enhanced when triggered with a second stimulus such as lipopolysaccharide (LPS) [24]. This 

activity could be transferred to normal PMN by the addition of either RA serum or synovial 

fluid (SF) to in-vitro cultures, and appears to be in-part mediated via inflammatory cytokines 

such as tumour necrosis factor alpha (TNF-�� or interleukin-17 (IL-17), as it could be 

diminished by the addition of corresponding antibodies [24]. Of interest is that this NETs 

promoting activity could be hindered by the addition of agents that inhibited NADPH-oxidase 

or PAD4 activity, implying that enhanced NETosis induced by RA serum or SF was evoked by 

changes in the underlying signal transduction cascade. These authors further demonstrated 

the presence of citrullinated autoantigens, specifically enolase and vimentin, directly on NETs, 

thereby providing insight into a possible mechanism whereby ACPA are generated. Their data 

also provide a basis for the targeting of NETs by such auto-antibodies [24]. As the presence of 

ACPA has been shown to precede the onset of RA symptoms [131], and have high predictive 

value for the development of this disorder [61], these data suggest that the erroneous NETosis 

could contribute directly to the underlying aetiology of RA [24,129,130]. 

In the context of these data, it is apparent that PAD4 could play a duel role in the 

development of RA: on the one hand by being intimately entwined with the NETotic process, 

and on the other hand by contributing to the production of citrullinated auto-antigens. This 

hypothesis is supported by recent studies suggesting that a pharmacological modulation of 

PAD4 activity may ameliorate RA symptoms, albeit in model systems [132]. 
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The citrullination of a broad spectrum of auto-antigens as is evident in RA would, 

however, require an extracellular presence of PAD4, and probably other members of this 

family, with different substrate specificities [133]. Indirect evidence for such an event is 

provided by the detection of anti-PAD4 antibodies [30], a phenomenon that frequently 

precedes the onset of RA symptoms, and the finding that such antibodies enhance enzymatic 

activity of PAD4 by reducing its extracellular calcium requirement [134]. Our data indicate that 

the enhanced propensity of RA-derived PMN to undergo NETosis is characterized by a 

significantly increased nuclear presence of PAD4 and associated levels of citrullinated histone 

H3. Our data, furthermore, suggest that PAD4 may be extruded into the extracellular 

environment on extruded NETs, as we could readily detect cell-free DNA/PAD4 complexes in 

culture supernatants. Consequently, these findings provide a possible mechanism for anti-

PAD4 auto-antibody production, and enhanced peptide citrullination in their presence. 

 

 

 

 

 

2.3	Materials	and	Methods		

2.3.1 Human Subjects  

All patients fulfilled the American College of Rheumatology classification criteria for RA. 

Healthy volunteers, matched for gender and age, were recruited at the Blood Bank of the 

Swiss Red Cross, Basel. Inclusion criteria for healthy controls were fair general condition, age 

≥ 28 and ≤ 70 years and for blood donors fulfilling national criteria for blood donation. 

Exclusion criteria were current or previous systemic autoimmune disease, asthma, 

reconvalescence after major illness, surgery, current medication with corticosteroids, 

immunosuppressive agents and malignant neoplasia or chemotherapy within 5 years before 

recruitment for the study. RA cases had a DAS ≤ 3.0, were from age ≥ 27 to ≤ 70 years and had 

no other systemic autoimmune disease, including ankylosing spondylitis and psoriatic 

arthritis. Exclusion criteria were corticosteroids ≥ 40 mg equivalent of prednisone daily, and 
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those mentioned above for healthy controls. Informed, written consent, was obtained from 

all subjects in the study, which was approved by the Ethical Review Boards of the Cantons of 

Aargau-Solothurn and Basel/Basel-Land, Switzerland.  

2.3.2 Neutrophil isolation  

PMNs were isolated by Dextran-Ficoll density centrifugation [125]. Briefly, peripheral blood 

was obtained by venipuncture and collected in EDTA-containing BD vacutainer tubes. PB was 

fractionated via density gradient  centrifugation  using  Ficoll-Paque  Plus  (GE) at 1800rpm for 

20min without breaks.  After carefully removing the PBMC layer, the pellete was resuspended 

in 1X HBSS solution,-without Ca or Mg (Gibco). Neutrophils were sedemented by dextran 

sedimentation of the RBC layer. RBC lysis was performed with hypotonic salt solution for 5 

mins. After two cycles of washes using 1X HBSS, cells were resuspended in RPMI without 

phenol red(Gibco), containing 2% FCS.  Isolated neutrophils were stained with trypan blue (MP 

Biomedical), to confirm >95% viability. 

2.3.3 ELISA of NETotic Complexes 

2.3.3.1 Neutrophil elastase (NE), myeloperoxidase (MPO), peptidyl arginine deiminase 4 

(PAD-4) and cell-free histone/DNA complex expression analysis 

The concentration of neutrophil elastase (NE), myeloperoxidase (MPO), peptidyl arginine 

deiminase 4 (PAD4) were measured by sandwich ELISA (Elastase/a1-PI Complex ELISA Kit, 

Calbiochem), the human MPO ELISA Kit, Hycult Biotech; the human PAD4 ELISA Kit, (USCN Life 

Science). Nucleosomes were measured using the Human Cell Death Detection ELISAPLUS (Roche 

Diagnostics) and histone/DNA complexes in cell culture supernatants by incubation with 

DNaseI (10U for 5min) (Roche Diagnostics). 

2.3.3.2 MPO/DNA complex detection  

MPO is present on extruded NETs. To detect such structures, NETs associated MPO/DNA 

complexes were quantified utilizing a modified capture ELISA [54]. In brief, NETs associated 

MPO in serum or culture supernatant was captured using the coated 96 well plate of the 

human MPO ELISA Kit, (Hycult Biotech), following which the NETs associated DNA backbone 
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was detected using the detection antibody of the Human Cell Death Detection ELISAPLUS 

(Roche Diagnostics). 

2.3.3.3 PAD4/DNA complex detection  

To detect the presence of PAD4 on extruded NETs in culture supernatants following 

spontaneous NETosis, cell-free PAD4/DNA complexes were quantified utilizing a modified 

capture ELISA, akin to that described for MPO above. In brief, cell-free PAD4 were captured 

using the coated 96 well plate of a commercial human PAD4 ELISA (USCN Life Science Inc) and 

associated DNA was detected using Human Cell Death Detection ELISAPLUS kit (Roche 

Diagnostics). 

2.3.4 ROS generation analysis 

ROS was measured using a 2’, 7’-dichloro dihydro fluorescein diacetate (DCFH-DA) assay [135]. 

5 x 105 cells in a final volume of 500 μl were incubated for 30 min with 25 μM DCFH-DA. 

Fluorescence was measured by flow cytometry (FACSCalibur; BD Biosciences). 

2.3.5 Fluorescence and scanning electron microscopy  

5 x 104 cells isolated PMN seeded on poly-L-lysine coated coverslips (BD Biosciences) were 

stimulated with PMA for 90 minutes and dehydrated with a graded ethanol series (30%, 50%, 

70%, 100%), coated with 2nm platinum and analysed with a Nova NanoSEM 230 scanning 

electron microscope (FEI) [125].  PMNs were incubated for 10min with 5µM Sytox Green dye 

(Invitrogen Life Technologies) for assessment of NETs with an Axiovert fluorescence 

microscope coupled to a Zeiss AxioCam colour CCD camera (Carl Zeiss) [125]. 

2.3.6 Immunohistochemical staining and quantification of NETs  

5 x 104 isolated PMNs seeded on poly-L-lysine-coated glass coverslips (BD Biosciences) in 

tissue-culture wells and allowed to settle prior to stimulation as described above. Coverslips 

were rinsed with ice-cold HBSS and the cells fixed with 4% paraformaldehyde and blocked 

overnight (HBSS with 10% goat serum, 1% BSA, 0.1% Tween20, and 2 mM EDTA) at 4°C. NETs 

were detected with rabbit anti-NE (Abcam), rabbit anti-MPO (Dako), rabbit anti-PAD 4 

(Abcam), mouse anti-histone H1+core proteins (Millipore) and rabbit anti-citrullinated histone 
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H3 (citH3, Abcam). Secondary antibodies were goat anti-rabbit IgG AF555 and goat anti-rabbit 

IgG AF488 (Invitrogen). DNA was stained with 4',6-diamidino-2-phenylindole (DAPI, Sigma) 

and NETs were visualized using a Zeiss Axioplan 2 Imaging fluorescence microscope in 

conjunction with a Zeiss AxioCam MRm monochromatic CCD camera and analyzed with 

Axiovision 4.8.2 software (Carl Zeiss). A minimum of 20 fields (at least 500 PMNs) per case was 

evaluated for MPO/NE and DNA co-staining; nuclear phenotypes and NETs were counted and 

expressed as a percentage of the total number of cells in the fields. 

2.3.7 Protein isolation and western blot analysis  

Total protein was isolated by NucleoSpin® TriPrep kit (Macherey-Nagel) from 3 x 106 PMNs. 

Proteins from the nuclear and cytoplasmic fractions were isolated using the Nuclear and 

Cytoplasmic Protein Extraction Kit (Thermo Scientific). Western blotting was performed using 

AnykDTM Mini-PROTEAN® TGX Gels (Biorad) and nylon/nitrocellulose membranes (Biorad). 

Primary and secondary antibodies utilized were: rabbit anti-PAD4 (Abcam), rabbit anti-MPO 

(Cell Signalling), mouse anti-β-Actin (Sigma), goat anti-Mouse and/or anti-Rabbit, human anti-

HRP (Southern Biotech). HRP activity was detected by using SuperSignal® West Pico 

Chemiluminescent Substrate (Thermo Scientific). Equal loading was verified using beta-actin 

or histone H3, where appropriate. Western blots of citrullinated H3 (citH3) protein as 

described previously [136]. Densitometric analysis and protein quantification of the western 

blots was performed using the ImageJ software. 

2.3.8 RNA isolation and quantitative real-time PCR  

Total RNA was isolated using RNeasy Mini Kit (Qiagen). TaqMan real-time quantitative RT-PCR 

was performed using the Applied Biosystems StepOne PlusTM cycler (Applied Biosystems) and 

TaqMan Gene Expression Assay primer/probe sets (Applied Biosystems) for NE 

(HS00236952_m1), MPO (HS00924296_m1), PAD4 (HS00202612_m1) and β2-microglobulin 

(HS99999907_m1). Data were normalized using the housekeeping gene B2M, after a selection 

procedure involving 6 different endogenous reference genes as suggested in the MIQE 

guidelines [137]. Relative values were calculated by 2−DDCt analysis. 
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2.3.9 Statistical analysis  

All data are presented as mean ± SE. Descriptive statistics for continuous parameters consisted 

of median and range and categorical variables were expressed as percentages. Comparisons 

between patients and healthy controls were by the Mann-Whitney U test with a Welch post-

test correction. Statistical significance in multiple comparisons was by one-way analysis of 

variance (ANOVA) with a Dunn’s post-test correction. P < 0.05 was considered statistically 

significant. Data were processed in GraphPad Prism version 5.0b for MacOSX (GraphPad 

software Inc., www.graphpad.com). Additional professional statistical assistance was 

provided by A. Schoetzau (www.eudox.ch).  
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2.4	Results	

2.4.1 RA-derived PMN exhibit increased spontaneous NETosis 

Recent observations have described greater degrees of spontaneous NETosis in RA-derived 

PMN than control PMN in vitro culture [24]. In order to study this facet in more detail, we 

examined the kinetics of spontaneous NET extrusion, for which purpose PMN were isolated 

from peripheral blood samples, allowed to settle for 1 hour and then cultured for a period of 

up to three hours in vitro (Figure-21A). Akin to very recent observations [24], we observed 

that RA-derived PMN underwent greater degrees of NETosis than control PMN in vitro, as 

detected by fluorescence microscopy for Sytox Green (Figure- 21B) and scanning electron 

microscopy (SEM) (Figure-21C). In addition NETs being detected by immunohistochemistry for 

neutrophil elastase (NE) and DAPI (4',6-diamidino-2-phenylindole) (Figure-21D). These results 

suggest that the peripheral blood neutrophils from RA patients has a tendency of spontaneous 

NETosis under unstimulated in vitro conditions. 
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Figure 21 . RA-derived PMNs exhibited increased spontaneous NETosis and elevated levels of NET 
component release. (A) Schematic representation of the time course design for studying in-vitro 
spontaneous NET release. (B) Fluorescent microscopy using Sytox Green DNA stainings, (C) Scanning 
electron micrographs, Magnification: 10x; scale bars: 10 μm and (D) in vitro NETosis by 
immunohistochemistry for neutrophil elastase (NE) (green) and DAPI (blue). Magnification: 20x; scale bar: 
50 nm indicative of increased spontaneous NETosis observed in PMN isolated from representative patients 
with RA compared to healthy donors. IF Data provided by S. Giaglis. 

C 

D 



Chapter 2                                                                                                                                          NETs in RA                                                                 
 

April 2014                                                                                                    Chanchal Sur Chowdhury 58 

 

2.4.2 NETotic spread in RA PMN is more pronounced than in normal PMN 

During NETosis, the morphology of the PMN nucleus changes from the familiar lobulated to a 

diffused and then to a spread phenotype (Figure-22A) [36,138]. By examining and 

enumerating these features, it was observed that at baseline (T1) nuclei from healthy control 

PMN were predominantly lobulated, while the majority of RA-derived PMN nuclei exhibited a 

delobulated or diffused nuclear phenotype (Figure-22B). In RA derived PMN this delobulated 

population decreased over time, giving rise to NETotic cells with a spread phenotype (Figure-

22C). In contrast, in normal PMN there was a steady progression in the proportion of 

delobulated cells (Figure-22D). The spontaneous progression of nuclei to the NETotic spread 

phenotype was more pronounced in RA than in normal PMN, a feature most evident after 3 

hours (T3). 

 

 

  

 

 

 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
 
Figure 22. Changes in PMN nuclear morphology during NETosis. (A) Changes in PMN nuclear morphology 
during NETosis detected by immunohistochemistry for NE and DAPI. (B) Steady state (T1) RA-derived PMNs 
exhibited a greater proportion of delobulated/diffused cells and progressed rapidly to a NETotic spread 
phenotype during in vitro culture. Data are represented as mean ± SE.  *P < 0.05, **P < 0.01, ***P < 0.001, 
****P < 0.0001. All data are representative of at least six independent experiments. IF Data provided by S. 
Giaglis 
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2.4.3 RA derived PMN generates more extracellular complexes of NETotic 
origin 

During the process of NETosis the released DNA forms complex with several cellular proteins 

like MPO, histones and LL337, which could be considered specific products of NETosis. Here 

we quantitatively assessed the degree of in vitro NETosis in culture supernatants by 

determining the concentration of cell-free nucleosomes in the respective supernatants 

(Figure-23A), MPO-DNA complex (Figure-23B) and MPO-histone complexes (Figure- 23C), 

indicative of the NETotic origin of this material. These experiments clearly indicated that RA-

derived PMNs generated NETs more rapidly, to a greater magnitude and more extensively 

than control healthy PMNs, a feature particularly evident at the 3-hour stage of in vitro 

culture. 

 

 

 

 

 

 

 

 

 

 
Figure 23. Quantification of complexes of NETotic origin. (A) Concentration of cell-free nucleosomes in 
PMN culture supernatant by ELISA. (B) Quantification of NETs associated MPO/DNA complexes and (C) 
Histone-MPO complexes. These assays indicate that, more rapid and extensive progression of NET 
formation is observed in RA versus control PMNs.  
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2.4.4 Increased expression of NET-associated signaling elements  

NETosis has been shown to depend on a number of biochemical signaling elements, among 

which are the generation of reactive oxygen species (ROS) by nicotinamide adenine 

dinucleotide phosphate (NADPH) oxidase, the action of NE in combination with MPO, and 

histone citrullination by PAD4 [20,27,29,36,123,124]. RA-derived PMN exhibited increased 

basal intracellular ROS levels (Figure 25A), as well as increased levels of NE (Figure 24B) or 

MPO (Figures 24C and 24D), as determined by real-time PCR and/or western blotting. 

 

 

 

                           

        

 

 

 

 

 

 

 

Figure 24. Increased expression of NET-associated signaling elements (A) Baseline ROS levels, measured 

by flow cytometry, were higher in RA-derived PMN than control PMN. (B) Quantitative real-time PCR 

analysis of NE mRNA and (C) MPO mRNA expression as well as (D) western blot analysis of MPO protein 

levels indicated that the levels of these two components required for NETosis were elevated in RA-derived 

PMN. 
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2.4.5 Nuclear localization of PAD4 and augmented H3 citrullination in RA 
derived PMN 

Work from Foulquier et. al., has shown that PADI2 and PAD4 are the only PAD isotypes 

expressed in the synovial tissue of patients with RA. Further it was shown that inflammatory 

cells are a major source of these enzymes [97]. Surprisingly, neither PAD4 mRNA expression 

nor PAD4 levels in total cellular protein showed any discernible difference between RA PMN 

and controls (Figures 25A and 25B, respectively). Since PAD4 translocates to the nucleus upon 

activation where it citrullinates histone proteins [37,139,140], such as H3, we examined 

nuclear and cytoplasmic PMN fractions for its presence. When compared to control PMNs, we 

found that PAD4 was preferentially located in the nucleus of RA-derived PMN (Figure 25C). 

The nuclear presence of PAD4 was associated with increased citrullinated histone H3 (citH3) 

levels by western blot analysis in PMN from RA cases compared to control (Figure 25D). 

Furthermore, citrullinated histone H3 could be readily detected on NETs structures (Figure2 

5E). 
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Figure 25- Nuclear localization of PAD4, a key fetcher of RA PMN. (A) Total PAD4 protein or (B) PAD4 mRNA 
expression levels did not indicate any significant difference between control and RA-derived PMN. (C) 
Quantification of PAD4 protein levels in cytoplasmic and nuclear fractions of PMNs from healthy controls 
and RA patients. Nuclear levels of PAD4 were significantly increased in RA patients, whereas the cytoplasmic 
levels were lower compared to the healthy control PMN. (D) Elevated citrullinated histone H3 levels in RA 
PMN extracts detected by western blot. (E) Co-localization of citrullinated histone H3 (green) with histone 
components detected with a pan-histone antibody (red) spread over the entire NETs surface (blue). 
Magnification: upper panel 20x, scale bar: 50 nm; lower panel 63x, scale bar: 10 nm. IF Data provided by S. 
Giaglis 
 

2.4.6 Potential extracellular localization of PAD4 on NETs  

Since we observed elevated nuclear translocation of PAD4 in RA PMN, we examined whether 

this enzyme is extruded into the extracellular environment during NETosis. Unfortunately, the 

visualization of such an event by fluorescent immunohistochemistry proved to be difficult 

using a variety of commercially available antibodies, and we only obtained rudimentary 

evidence for the presence of PAD4 on NETs by this means (Figure 26A).  We were, however, 

able to detect PAD4/cell-free DNA complexes in culture supernatants from isolated PMN, the 

levels of which were increased in cases with RA (Figure 26B). It is, therefore, quite probable 

that PAD4 is associated with NETs structures following aberrant NETosis in RA. 

  

 

A 
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Figure 26- Extracellular localization of PAD4. (A) Immunofluorescence staining of PAD4 (red) on extruded 
NETs by multi-colour fluorescent immunohistochemistry. NET DNA is stained blue (DAPI) and histones 
(panH) are stained green. Magnification: 20x, scale bar: 50 nm. (B) Detection of PAD4/cell-free DNA 
complexes in the culture supernatants of isolated PMN undergoing spontaneous NETosis. Higher levels of 
these complexes were detected in RA derived PMN cultures. Data are represented as mean ± SE. **P < 0.01, 
***P < 0.001, ****P < 0.0001, n.s.: statistically not significant. All data are representative of at least six 
independent experiments. IF Data provided by S. Giaglis 
 

2.4.7 RA neutrophils are subject to increased NETosis following stimulation 
by a secondary signal 

In certain auto-inflammatory or malignant conditions, such as SLE or cancer, an elevated 

NETotic response of PMNs to an external activation signal has been shown [127,128,141]. A 

similar phenomenon was recently observed in RA-derived PMN [24]. In addition, RA serum 

and SF were determined to enhance the NETotic response of normal PMN [24]. In our 

experiments, it was noted that when treated with PMA, RA-derived PMN responded far more 

vigorously with regard to NETosis than controls, as detected by SEM and fluorescence 

microscopy (Figures 27A and 27B respectively). In addition, this could be assessed 

morphologically, which indicated that RA-derived PMN exhibited a larger decrease in cells 

with a delobulated phenotype and a greater progression towards a NETotic spread nuclear 

phenotype than control PMN (Figure 27C), a feature accompanied by excessive release of cell-

free nucleosomes in culture supernatants (Figure 27D). PMA appears to activate PAD4, as it 

enhanced translocation from the cytoplasm to the nucleus (Figure 27E). The stimulatory effect 

of PMA on the release of nucleosomes into the supernatant was abrogated by chloramidine, 

B 
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a chemical inhibitor of PAD4, indicating that PAD4 signaling is necessary for NETosis induced 

by PMA (Figure 7D). These data confirm that PMN in RA is subject to increased NETosis 

following stimulation by a secondary signal, such as that mediated by PMA, and indicate that 

nuclear translocation of PAD4 (Figure 27E) and its enzyme activity are involved in this process. 

We examined these features with regard to PAD4 nuclear translocation and extrusion on NETs. 

As an additional stimulus, we used phorbol-12-myristate-13-acetate (PMA), while 

chloramidine was used to inhibit PAD4 activity. 
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Figure 27. Increased NETotic response of RA-derived PMNs to PMA. (A) Scanning electron micrographs of 
NETs induced by PMA (25 nM) indicate the excessive NETotic response of RA-derived PMN. Scale bar: 20 
μm. (B) Assessment of NETs induced by PMA treatment by fluorescent immunohistochemistry for MPO 
(red) and DAPI (blue) indicating the increased response of RA PMN to PMA (25 nM). Magnification: 20x, 
scale bar: 50 nm. (C) Analysis of the nuclear phenotype indicated that a vast decrease in 
delobulated/diffused RA PMN nuclei after treatment with PMA and rapid increase in the NETotic spread 
phenotype. (D) Release of cell-free nucleosomes following PMA treatment is abrogated by the PAD4 
inhibitor chloramidine. (E) Increased nuclear localization and a concomitant decrease in cytoplasmic PAD4 
protein levels following PMA treatment, with clear tendency for increased responsiveness to the PMA 
stimulus by RA PMN. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s.: statistically not significant. 
All data are representative of at least four independent experiments. IF Data provided by S. Giaglis 
 

 

 

 

 

 

 

 



Chapter 2                                                                                                                                          NETs in RA                                                                 
 

April 2014                                                                                                    Chanchal Sur Chowdhury 67 

 

2.4.8 RA serum and synovial fluid stimulate enhanced NETosis to normal 
PMN. 

Sera from auto-inflammatory conditions such as SLE have previously had been shown to 

confer an increased NETotic response on normal PMN [127,128]. Since this feature was also 

recently observed with RA serum and synovial fluid [24], we examined the influence of these 

factors on PAD4 activity. As a non-inflammatory control, we used healthy serum or 

osteoarthritis synovial fluid. Both RA sera and synovial fluid induced a pronounced increase in 

ROS production (data not shown), as well as in NETosis (Figures 28A and B) when compared 

to healthy serum or osteoarthritis synovial fluid, respectively. The activity of RA synovial fluid 

appeared to be more pronounced than RA serum (Figure 28A), confirming previous 

observations [24].  
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Figure 28. Influence of RA serum and synovial fluid on normal PMNs. (A) Incubation of healthy donor PMN 
with serum (Se) from healthy donors orRA patients, synovial fluid (SF) from patients with non-inflammatory 
osteoarthritis (OA) or synovial fluid from RA patients. Immunohistochemical analysis of three main 
components of NETs (NE, MPO and citH3) revealed that RA-derived serum and SF enhanced NETosis in 
normal PMN compared to healthy control serum or non-inflammatory OA SF. CitH3 (empty arrowheads) 
co-localizes with unmodified histones on NETs. Magnification: 20x; Scale bars: 50 μm. (B) Release of cell-
free nucleosomes during in vitro culture by PMNs from healthy controls incubated with control serum, RA 
serum, OA SF or RA SF or PMA. Data are represented as mean ± SE. *P < 0.05, **P < 0.01. All data are 
representative of at least four independent experiments. IF Data provided by S. Giaglis  

 

 

 

B 
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2.5	Discussion	

 

Although PMN figures prominently in the joint effusions and inflamed synovial tissue of RA 

patients [61], the potential roles of NETotic events in the pathophysiology of this disorder have 

only recently been become the focus of attention [24,129,130]. These studies indicated that 

RA-derived PMN were more prone to undergo NETosis and that NETs themselves could 

contribute to the generation of auto-antigens (ACPA) or be the target of auto-antibodies 

(Figure-29) [24,130].  

In our studies, which were performed independently at a similar time as these current 

reports, it is noteworthy that our data confirm that NETosis is enhanced in RA, thereby 

suggesting a possible fundamental role of this phenomenon in the underlying aetiology of RA. 

More importantly, we extended upon these observations by detecting changes in the 

underlying signalling elements required for the induction of NETosis. These findings indicate 

that the propensity of circulatory PMN in RA patients to undergo NETosis is associated with 

elevations in elements of this cascade including increased intracellular ROS production, 

enhanced expression of NE and MPO, increased nuclear translocation of PAD4 and 

citrullination of histones, notably H3. Consequently, these key NETotic pathway members 

could serve as potential therapeutic targets for intervention strategies, a hypothesis which is 

supported by recent data using PAD4 inhibitors in model systems [132]. 

Furthermore, by examining kinetic changes during extended in vitro culture it was 

observed that PMN from RA cases exhibited different nuclear morphometric characteristics, 

having a lower proportion of the classical lobulated phenotype, coupled with a much higher 

proportion of delobulated cells at the initial time-point. Unlike controls, in which an increase 

in this population was noted over time, this latter population decreased during in vitro culture 

of RA PMN. RA PMN also progressed more rapidly and extensively to a NETotic spread 

phenotype than controls, a finding confirmed by analysis of culture supernatants for the 

products of NETosis. Akin to what has been observed in an array of other pathological 

conditions ranging from SLE to cancer [24,127,128,141], PMN from RA patients exhibited an 

increased response to further stimulation, for instance by treatment with the phorbol ester 
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PMA. This response is in part mediated via the action of PAD4, as the effect of PMA could be 

significantly reduced by treatment with chloramidine, an inhibitor of PAD4. In addition, PMA 

treatment lead to increased nuclear presence of this enzyme, where it presumably could be 

able to carry out more extensive citrullination of histone proteins, thereby speeding up the 

induction of NETosis. 

 

Figure 29. Model of NETosis in RA PMN 

 

Although our data are very preliminary, they do suggest that PAD4 is extruded onto the NETs 

during NETosis, as detected by ELISA technology and to a lesser extent by fluorescence 

microscopy. Such an occurrence would have important implications for the development of 

anti-PAD4 auto-antibodies observed in cases with RA [30]. Since the presence of such 

antibodies precedes the development of RA, our data provide further support that NETs may 

contribute to the underlying aetiology of RA, and may be a relatively early event. As the 

presence of such anti-PAD4 antibodies has been shown to enhance the enzymatic activity of 
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PAD4 in an extracellular environment by reducing the calcium requirement [134], their 

combination with NETs associated PAD4 could lead to prodigious quantities of citrullinated 

autoantigens. In addition, the extracellular presence of PAD4 on NETs may further promote 

the prodigious generation of citrullinated antigens, since molecular structures involving the 

attachment of enzymes to DNA lattices have been shown to increase their catalytic activity 

enormously, and thereby form the basis of nano-machines or nano-factories, generating such 

autoantigens [142]. 

Although these findings will need to be verified, and it remains to be ascertained 

whether extracellular NETs associated PAD4 is active, these data do support and extend upon 

recent reports indicating that NETs can be a source for citrullinated autoantigens and that they 

react with ACPA or anti-PAD4 antibodies [24,129,130]. Taken together, these data provide 

further evidence concerning a key role for PAD4 in the underlying aetiology of RA, and offer a 

potential explanation for the efficacy of PAD4 inhibitor chloramidine in reducing disease 

symptoms, in collagen-induced rat and murine models for RA [132]. In summary, our data 

reaffirm an intricate relationship between NETosis and the aetiology of RA, since the signalling 

elements associated with NETs extrusion are significantly enhanced to promote NETosis in RA 

compared to healthy controls.  Furthermore, by implying the extracellular presence of PAD4 

on NETs, these data provide a potential link with the generation of anti-PAD4 autoantibodies 

and ACPA in the development of RA. 

 

2.5.1 Hypothetical model of pathophysiology of Rheumatoid Arthritis 

A number of exogenous or endogenous trigger may cause heavy influx of cells into the lungs 

and may prime the circulating neutrophils or macrophages. A simultaneous second hit may 

activate neutrophils and render the RA neutrophils more prone to NETosis compared to 

neutrophils from normal subjects. As a consequence of which citrullinated proteins along with 

native intracellular proteins including PAD enzymes can be released into the local site. The 

extracellular PAD enzymes tangled to the NET structure or its free form, could further 

citrullinate proteins present in the local site and thus generate an array of citrullinated 

proteins some of which act as a potential autoantigen for the onset of the disease. These 
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autoantigens are then engulfed by resident macrophages or dendritic cells which flags the 

autoantigen at its cell surface in combination with class II MHC. This processing and 

presentation of unspecified but not necessarily rheumatoid-specific antigen, likely occurs in 

central lymphoid organs and initiates the adaptive immune response. In genetically 

predisposed individuals, such as those carrying the HLA-DR SE alleles, presentation of 

citrullinated peptides or other neo-epitopes from citrullinated proteins could activate 

autoreactive T cells, which in turn could induce B cell help and stimulate the production of 

ACPA. A second, joint-specific inflammatory event is initiated by an unknown and unspecific 

stimulus such as, infection or trauma resulting in the release of angiogenic factors such as 

vascular endothelial growth factor (VEGF). The inflammatory cytokine milieu, along angiogenic 

factors, encourages angiogenesis, endothelial activation, cell migration and hypoxia. Activate 

endothelial cells produce adhesion molecules, which expedite activation-dependent sticking 

of inflammatory leukocytes, thereby facilitating diapedesis and extravasation into the 

synovium. Inside the synovium, a number of pro-inflammatory cytokines such as TNFα, IL8, 

IL17a along with HIF gene products, could potentially activate neutrophils towards 

extracellular trap formation as a result of which PAD enzymes are released in the synovial fluid 

which produce a repertoire of citrullinated proteins. The resulting anti-citrullinated 

protein/peptide antibodies (ACPAs) are distributed through the circulation and may form 

immune complexes with citrullinated proteins produced in an inflamed synovium. Immune 

complexes, containing autoantibodies such as RFs or anticitrullinated protein antibodies can 

fix complement, leading to the generation of chemoattractants. Further, it can stimulate 

antigen-presenting cells (APCs) such as dendritic cells, by binding to complement and Fc 

receptors. Activated APCs present more citrullinated antigens activate more T and B cells and 

thus increase the ACPA production along with RF production. Increased production of 

proinflammatory cytokines, including TNF, IL-1, and IL-6, in turn recruits more immune cells 

into the joint, perpetuating the inflammatory process. Activation of neutrophils towards 

NETosis will release more PAD enzymes which generate more citrullinated proteins, 

establishing a vicious cycle that ultimately leads to the development of chronic RA (Figure 30).  
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Figure 30. Hypothetical model of the immune response in the development of RA. Multiple preclinical 
immune and inflammatory events eventually exceed a threshold after which clinical disease is initiated. 1) 
Repeated episodes of stimulation of the innate immune system, leads to 2) activation of myeloid cells, and 
possibly chondrocytes. 3) Local inflammation in mucosal-lined organs leads NETosis by activated 
neutrophils causing release of citrullinated autoantigens and PAD enzymes.4) Autoantigens are presented 
by antigen presenting cells to T-cells via MHC II. 5) Interaction of T-cell with B cell leads to differentiation 
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into plasma cells leading to ACPA production. 6) Memory B cells migrates to bone marrow. 7) ACPA 
antibodies released into the circulation 8) ACPAs bind to exogenous or modified endogenous antigens to 
form circulating immune complexes that 9) interact with myeloid cells in the synovial microvasculature and 
tissue. 10) Increased vascular permeability results, with diffusion of autoantibodies into the joint. 11) 
Second unknown hit leads to citrullination of proteins in the cartilage 12) ACPAs bind to specific citrullinated 
epitopes in the cartilage 13) leading to more influx of inflammatory cells and damage to cartilage 
components. ACPAs might also bind to citrullinated epitopes in the synovium. In both sites, the classical 
and alternative pathways of complement are activated. 14) Synovium inflammation is induced with 
infiltration of macrophages leading to further citrullination, enzymatic and oxidative damage to structural 
proteins and creation of neoepitopes. 15) DCs loaded with joint-specific antigens are present in the 
synovium and 16) process the altered self-peptides, and then 17) migrate to regional lymph nodes where 
18) T-cell activation initially occurs. 19) Epitope spreading follows over time with the development of a true 
autoimmunity. Modified from [82]. 

 

2.6	Future	Directions	

2.6.1 NETosis could be a link between RA and associated cardiovascular 
disease. 

Rheumatoid arthritis (RA) is a chronic systemic inflammatory disease with leading cause of 

mortality being coronary artery disease (CAD), accounting for nearly 40–50% of deaths [143]. 

In a recent cohort study from Taiwan consisting 29238 RA patients and 116952 controls, it was 

found that the risk of developing deep vein thrombosis (DVT) and pulmonary 

thromboembolism (PE) was 3.36-fold and 2.07-fold, respectively, in patients with RA 

compared with patients without RA [144]. RA is associated with increased plasma levels of 

fibrinogen, von Willebrand factor, and plasminogen activator inhibitor 1, producing a 

prothrombotic state [145]. Recent evidence from Fuchs et al., implicates the release of 

neutrophil extracellular traps (NETs) can stimulate thrombus formation and coagulation and 

are abundant in thrombi in animal models of DVT by representing a third thrombus scaffold 

of extracellular DNA, in addition to fibrin and von, Willebrand factor [146].  Our results and 

recent investigations reported that neutrophils in RA are primed to make NETs [24,130]. Low-

dose aspirin has been shown to be beneficial for the prevention of myocardial infarction, and 

ischemic stroke, and increases hemorrhagic stroke and major bleeding associated with 

cardiovascular disease[147] and thus reduce the risk of mortality [148]. However, recent 

observation reported that treatment of neutrophils with aspirin inhibited NET formation by 

inhibiting NF-kB signaling in both in vitro and vivo condition [149]. Additionally, in the 
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experimental TRALI model, treatment with aspirin decreased NET formation and lung injury 

[150]. Thus monitoring cardiovascular risk and damage in a NET deficient PAD4-/-  mouse model 

which is injected with serum or IgG from arthritic miceK/BxN [151] will provide useful 

information about the contribution of NETotic DNA towards cardiovascular disease in 

rheumatoid arthritis (Figure-31). Future studies should focus on investigating whether the 

extracellular DNA of NETotic origin could contribute towards enhanced thrombotic events in 

RA and the underlying mechanism. 

 

 

Figure 31- Model of NETs mediated cardiovascular damage in RA   

2.6.2 Can hypoxia regulate NETosis in RA? 

One of the most important characteristic fetcher of RA is synovial tissue hypoxia of the 

inflamed joints which was first revealed in 1970. This was further confirmed by other studies 

using nuclear magnetic resonance spectroscopy, pimonidazole, as well as video arthroscopy. 

[152] Hypoxia-inducible factor 1a (HIF-1a), the key transcriptional factor in the hypoxic 

response, shows unregulated expression in RA. [153] Hypoxia and HIF-1α could regulate many 
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pathways in RA, such as inflammation, angiogenesis, migration and cell survival. Recent 

findings from Fanlei Hu, et al. suggest that hypoxia and HIF-1α may function in conjunction 

with TLR-stimulated innate immune responses to, drive inflammation in RA [154]. Deletion of 

HIF-1α in conditional murine model resulted in impaired myeloid leukocyte aggregation, 

motility, extravasation, and microbial killing. HIF-1α thus been termed a “master regulator” of 

innate host defense responses. [91] Nevertheless, the activities of HIF-1α in human 

neutrophils remain largely uncharacterized. Pharmacologic and genetic inhibition of mTOR 

and HIF-1α signaling inhibit NET-mediated extracellular bacterial killing. [16] Recent findings 

from Fanlei Hu, et al., suggest that HIF-1α may function in conjunction with TLR-stimulated innate immune 

responses to, drive inflammation in RA [154]. In another study, it was shown that pharmacological inhibition 

of HIF-1α signaling could inhibit NET-mediated extracellular bacterial killing. They further describe that HIF-

1α mediated bacterial killing is dependent on mTOR signaling cascade [155]. Based on preliminary data 

from our lab which indicates that exposure of native PMNs to hypoxic conditions in-vitro, leading to the 

higher degree of NETosis, it can be postulated that upregulation of HIF signaling could regulate signaling 

during NETosis via PI3K/Akt/mTOR signaling pathway. Further inhibition of PI3K/Akt/mTOR signaling 

pathway in vivo arthritis model and in an isolated cell from clinical samples could reveal novel drug targets 

to rescue damage in RA (Figure 32).  
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Figure 32- Model of regulation of NETois by hypoxia of Joint. 

2.6.3 Switching neutrophils from NETosis to Apoptosis 

NETosis tends to be pro-inflammatory process, leading to the release of novel self-antigens, 

such as deiminated proteins, which stimulate auto-inflammatory response. By contrast, 

apoptosis is anti-inflammatory, in that it leads to the promotion of M2 macrophage 

development associated with wound healing and tissue repair processes [6]. On the basis of 

the evidence currently available, suggesting NETosis as a probable regulator of RA 

pathogenesis, it seems fair to meditate a possible mechanism, which could switch the cells 

from NETosis to apoptosis.  In a recently published data from Douda et. al,. propose that the 

inhibition of Akt, a regulator of mTOR, switches PMA treated neutrophil death, from NETosis 

to apoptosis and thus acts as a “bona fide molecular switch” that regulates the NETosis-

apoptosis axis [156]. This finding is further supported by another study showing, mammalian 

target of rapamycin (mTOR) signaling is crucial for joint destruction in experimental arthritis 

and is activated in osteoclasts from patients with rheumatoid arthritis [155]. Interestingly 

generation of intracellular reactive oxygen species (ROS), which is a key event behind the 
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mechanism of NETosis, was found in synovial fluid neutrophils of RA patients, but not with 

other arthritis [157]. ROS, which is overexpressed in RA neutrophils, may inactivate 

intracellular caspases to inhibit apoptosis and induce autophagy, which would promote the 

breakdown of cellular membranes during NETosis [28]. However, the identities of other key 

kinases that regulate NETosis apoptosis pathways remain elusive. Inhibitors of Akt inhibit DNA 

release by activated neutrophils in a dose-dependent manner and, therefore, activation of Akt 

is essential for NADPH oxidase mediated NETosis (Figure-33). Additionally it demonstrates that 

the cartilage-degrading activity of blood- and synovial fluid-derived neutrophils is regulated, 

at least partially, by PI3-K [158]. Further, it was proposed that ROS could inactivate 

intracellular caspases to inhibit apoptosis and induce autophagy, which would promote the 

breakdown of cellular membranes during NETosis [28]. Based on current evidences suggesting 

NETosis as a probable regulator of RA pathogenesis [21, 22], it seems fair to hypothesize that 

inhibition of Akt could switch primed neutrophils in RA from NETosis towards apoptotic 

clearance (Figure 2). 
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Figure 33.  Model of HIF regulation of NETosis signaling and Inhibition of NETosis by inhibitor of AKT 

signaling pathway. 

2.6.4 Role of Neutrophil Hybrids in RA	

The initial perception of the neutrophil playing a passive role and merely responding to 

external signals has now been replaced by appreciation that activated neutrophil can respond 

to factors within their local environment to change their molecular properties and hence 

acquire the capacity to perform new cellular functions [9]. An interesting observation by Cross, 

A., et al, has shown that, peripheral blood neutrophils from patients with RA but not healthy 

controls express class II MHC mRNA, but the SF neutrophils in RA can synthesize and express 

large amounts of class II MHC [159]. This finding was further supported by a recent 

observation suggesting neutrophils that extravagate at sites of inflammation or infection, 

differentiate into a unique hybrid population that expresses surface markers of both 

neutrophils (Ly6G, 7/4, CXCR2, and CD62L) and DCs (CD11c,MHC II, and costimulatory 
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molecules) [160], underlining a novel interaction of neutrophils with T cell in RA disease 

pathology. In the K/B x N mouse model of rheumatoid arthritis, anti-Ly6G mAb administration 

(which depletes both neutrophils and hybrids) not only completely prevented the disease 

onset but also reversed disease progression [161]. At this point, it is tempting to speculate 

that neutrophil-DC hybrids may contribute to the pathophysiology of autoimmune 

inflammatory diseases like RA although their pathophysiology of inflammatory diseases 

remain totally unknown.  

2.6.5 Pregnancy and RA 

Pregnancy results in altered immune state, which contributes to a change in the course of 

autoimmune illness, include RA. Hormonal factors linked to age, gender, and reproductive 

status are undoubtedly involved in regulating the onset of numerous autoimmune diseases. It 

does not appear to adversely affect the fetal outcome. Pregnancy loss rate in RA has been 

recorded (17%), which is similar to a control population of (16%)  [162]. Pregnancy often is 

associated with remission of the disease in the last trimester. More than three quarters of 

pregnant patients with RA improve in the first or second trimester, but 90% of these 

experience a flare of disease associated with an increase in RF titers in the weeks or months 

after delivery. The increased risk of ACPA-negative RA in parous women of reproductive age 

seemed to be associated with an increased postpartum risk and young age at first birth[163]. 

Infants of women with JIA did not have an increased risk of adverse neonatal outcomes 

HOWEVER compared with other women, those with JIA had significantly higher rates of pre-

eclampsia, postpartum hemorrhage, premature birth and severe maternal morbidity [164]. 
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2.7	Conclusion	

It is evident by now that the study of citrullination, ACPAs, and citrullinating enzymes becomes 

more and more important to understand the pathophysiology of RA. It is likely that other 

modifications of cellular proteins may be intrinsic factors of other autoimmune diseases. 

Future studies have to prove this idea that both predetermined and random events contribute 

to the initiation of the disease. However, much remains to be resolved. It is widely accepted 

that RA must be treated early with effective therapy in order to prevent unfavourable 

outcome.  

 At the present no univocal, effective and safe pharmacological treatment is available 

even if growing advancement has been accomplished in recent years by using biological drugs. 

There is a growing interest of better understanding of the factors and cascade of events that 

lead to loss of tolerance, and causes localization of inflammation in the joint. It is still uncertain 

whether arthritis commences as a principal problem in the bone and subsequently moves to 

the joint, or the other way around. Extensive research over decades has made progress in 

understanding the complexities of RA. Questions about the origin, pathophysiology and 

disease specificity still require further extensive investigations. Results from research are 

having an impact today, enabling people with rheumatoid arthritis to remain active in life, 

family, and work far longer than was possible 20 years ago. There is also hope for tomorrow, 

as researchers continue to explore ways of stopping the disease process early, before it 

becomes destructive, or even preventing rheumatoid arthritis altogether. Early treatment in 

RA is important as it can prevent irreversible damage of the joints. The mechanisms underlying 

the activation of PADs, which generate citrullinated autoantigens in RA, remain unclear. Being 

able to predict who will develop RA would allow researchers to look at ways to prevent it. 

During the last decade, the involvement of citrullinated proteins and antibodies 

reactive with these proteins in a citrulline-dependent manner in the pathophysiology of RA 

has been well established. Only a minority of those individuals who develop anticitrulline 

immunity will develop arthritis, and that a large proportion also of those ACPA positive 

individuals never develops RA. Thus, we need to understand what determines the emergence 

of the autoimmunity to citrullinated and other autoantigens; which factors determine who of 
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the autoantibody-positive individuals will develop arthritis; and who may eventually actively 

be protected against arthritis. 

The initial trigger for the immune system to respond to citrullinated epitopes is still 

enigmatic, although increasing evidence suggests that environmental factors, such as 

smoking, are involved. Today, the use of biologicals has revolutionized the treatment of RA 

patients. In recent years, use of biologicals has brought a revolution in the treatment of 

patients with RA. However subclinical inflammation along with flares is evident despite clinical 

remission. Therefore, the need for development of targeted drugs that could abolish or 

further, reduce the remaining inflammation is highly indispensable. Drug targets, which could 

abrogate ACPA signalling cascade or could specifically neutralize such antibodies could indeed 

be a way of terminating the subclinical inflammation.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

2.8 Tables 8. Demographics and patient population characteristics versus healthy blood donors. 
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F: female; M: male; DAS28: disease activity score; n.a.: not applicable; pos: positive;  neg:  negative; *: 
mm/h;**: mg/l;***:  cells/µl; ACPA: anti-citrullinated protein antibodies; RF: rheumatoid factor; ANA: 
antinuclear antibodies; ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; n.d.: not determined; 
PBMC: peripheral  blood  mononuclear  cells;  PMN:  polymorphonuclear leukocytes;  DMARDs:  disease-
modifying  anti-rheumatic  drugs;  n.u.:  not utilized.
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CHAPTER	3:	Can	neutrophil	extracellular	trap	
products	in	serum	assist	with	the	detection	of	
RA?	
 

	
3.1	Summary	

A number of studies have suggested that elevations in cell-free DNA in serum or plasma can 

serve as surrogate markers for aberrant neutrophil extracellular traps (NETs) generation. 

These are based on observations made in variety of conditions including preeclampsia, sepsis 

and cancer. Deregulated NETosis been recently been implicated in rheumatoid arthritis. As we 

had previously observed that rheumatoid arthritis is associated with elevated concentrations 

of serum cell-free DNA, we did a more extensive analysis of neutrophil derived or NETosis 

associated products in RA serum. For this purpose we examined serum samples from 32 cases 

with RA and 34 matching control samples. Our data indicate that serum cell-free DNA 

concentrations are indeed significantly elevated in RA samples when compared to controls. 

This was paralleled by similar elevations in cell-free nucleosomes, and mirrored by equivalent 

increases in neutrophil elastase and myeloperoxidase. To confirm the NETotic origin of the 

cell-free DNA in RA serum, we assessed MPO/cell-free DNA complexes. As these were similarly 

elevated in RA serum, these data suggest that RA neutrophil exhibit an increased propensity 

to undergo NETosis or degranulation during the serum clotting process. Thereby, these data 

provide independent evidence of aberrant NETosis in RA. These findings may have clinical 

implications, as suggested by a ROC (receiver operator curve) analysis of the individual factors 

examined, particularly that of cell-free nucleosomes.  
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3.2	Introduction	

“Arthritis”, also known as inflammation of one or more joints, may be a symptom of a more 

serious condition such as rheumatoid arthritis, lupus, infection or malignancy [84]. In such a 

scenario, an accurate diagnosis becomes indispensable to lead the way for proper treatment. 

A number of serological test are globally used for the diagnosis of RA, apart from disease 

characteristics and specific symptoms (Figure 1). Additionally, medical history, genetic 

background and imaging studies are also considered as vital information[165]. Increased risk 

of organ damage is often associated with certain medication. For example, kidney or lung 

failure is often associated with non- steroidal anti-inflammatory drug such as Ibuprofen. 

Commonly use drug Methotrexate, can be associated with liver damage and low white blood 

count. Thus, monitoring blood parameters for abnormalities could help to avoid long-term 

health problems and at the same time, help doctors to track response to certain therapy.  

3.2.1 Serological diagnosis of RA  

A number of blood test are available to help, diagnose arthritis, monitor treatments, and track 

disease activity of patient having signs or symptoms of arthritis of over two weeks (Figure-34) 

[166]. Rheumatoid factor (RF), which is known as the immunologic hallmark of RA, was later 

found to be non-specific for RA, as could be elevated during chronic hepatitis, primary biliary 

cirrhosis, any chronic viral infection, bacterial endocarditis, leukemia, dermatomyositis, 

infectious mononucleosis, systemic sclerosis, and systemic lupus erythematosus (SLE) [99].  

Moreover, 5% of healthy individuals and in 10–20% of those over the age of 65 years are also 

positive for RF. However, up to 30% of RA patients remain negative for RF throughout the 

course of their disease [167]. The discovery of citrullinated proteins as autoantigens and the 

development of new assays detecting antibody against citrullinated proteins, has given a 

major breakthrough in the laboratory diagnostics of RA (Table 9) [168]. Anti-cyclic citrullinated 

protein antibodies (ACPA) test is currently the best-known biomarker of RA [169]. ACPA can 

be detected up to 10 years before RA patients first present to a clinician, predicting the future 

development of RA [84]. In both early and fully established disease anti CCP test is more 

specific and sensitive than, IgM rheumatoid factors [167]. 
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Figure 34. Schematic representation of the sequence of different blood tests for differential diagnosis of 

RA. Adapted from [165]. 

By comparing different ACPA assays it was shown that, compared to protein- based assays, 

peptide based assay can further improve both sensitivity and specificity [170]. However, other 

investigation has contradicted this observation [39]. Following the success of the CCP test, a 

number of optional methods for detecting ACPA have been developed such as, mutated 

citrullinated vimentin (MCV) and viral citrullinated peptide (VCP; VCP1 and VCP2) [171].  

Simultaneously, several other autoantigens have been suggested as a target of autoantibodies 

in RA such as fibrinogen, immunoglobulin binding protein (BiP), fibronectin, alpha-enolase, 

type II collagen, Ra33. However due to limited data and contradictory results the data remains 

inconclusive with respect to the sensitivity and specificity of these assays and hence, none of 

these markers are currently widely used in routine diagnosis of RA [172]. In addition to ant-

CCP, Autoantibodies recognizing carbamylated proteins has been reported in sera of patients 

with rheumatoid arthritis which can further predict joint damage [173].  



Chapter 3                                                                                                NETs as Serum Biomarker for RA 

April 2014                                                                                                    Chanchal Sur Chowdhury 87 

 

 

3.2.2 Serum as diagnostic sample for RA 

Serological diagnostic testing is an essential tool for the growing importance in the early 

detection and differentiation of rheumatoid arthritis. Cell free DNA from serum and plasma 

has been reported to be a valuable biomarker in a number of diseases including cancer [174]. 

However the amount of cell-free DNA in the serum samples is reported to be higher than in 

plasma [175]. Based on the observations suggesting that serum DNA concentrations correlate 

with leukocyte counts, it was hypothesized that rupture of leukocytes during serum separation 

might release DNA into the serum that accounts for 4-6 times more abundance of DNA in the 

serum compared to plasma. By quantifying DNA from serum and plasma without purification, 

using PCR based detection of ALU repeats, Umetani et al., found that the contribution of 

extraneous DNA, was 8.2% of total DNA, which is minor for explaining the 4-6 times difference 

between serum and plasma DNA levels [176]. Unequal distribution of DNA during separation 

of serum or plasma from whole blood could be a possible explanation for such difference. 

3.2.3 Blood coagulation in serum tubes 

BD Vacutainer® Plus Plastic Serum and SST™ Tubes are coated with silicone and micronized 

silica particles which promote and accelerate the clot formation, silicone coating reduces 

adherence of red cells to tube walls[177]. Work form Margolis. J has shown that, colloidal silica 

can accelerate blood coagulation by adsorption and partial denaturation of specific plasma 

protein, the Hageman factor [178].  

Table 9-  Specificity and sensitivity of serological test for the diagnosis of RA . Modified from [169] . 
 

Test Target Specificity % Sensitivity% 

IgM-RF Fc portion of IgG 96.7 45 

APF (Anti-perinuclear facto) Keratohyalin granules in 
the cytoplasm, profilaggrin 

90 50-70 

AKA (Antikeratin antibodies) Filaggrin in keratin 94 45 

AFA (Anti-citrullinated filaggrin 
antibody) 

Citrullinated fibrin >90 60 

ACF (Anti-citrullinated 
fibronectin) 

Citrullinated Fibrinogen >90 55 

Anti CCP (anti-cyclic citrullinated 
Peptide antibodies) 

Synthetic peptides >98 ~80 

Anti-MCV  (Recombinant 
mutated citrullinated vimentin) 

Vimentin, Recombinant 
MCV 

99 40 



Chapter 3                                                                                                NETs as Serum Biomarker for RA 

April 2014                                                                                                    Chanchal Sur Chowdhury 88 

 

3.2.4 Neutrophil as source of Cf-DNA 

Cell-free DNA (cfDNA) in body tissues or fluids is extensively investigated in clinical medicine 

and other research fields. However, due to lack of understanding, the initial discovery of cell-

free nucleic acids in patient plasma made in 1948 remained largely overlooked, until the 1990s 

when the presence of tumor-derived oncogenic DNA was observed in the plasma of patients 

with cancer and DNA of fetal origin was detected in the maternal circulation [179]. 

Subsequently it was discovered that cfDNA levels were significantly increased in patients with 

trauma, stroke, autoimmune disorders and sepsis. The entire mechanism of cfDNA increases 

has not been elucidated. However, the origin of these cf-DNA was formerly thought from 

necrotic and/or apoptotic cells [180,181], although the degree of the input of the other cell 

death type over the other has been a subject of controversy[181]. Recent investigations 

explain more spontaneously occurring accumulations of cfDNA might be an active cfDNA 

release of extracellular or intracellular DNA [182], leukocyte oxidative burst or extracellular 

trap formation [52]. Neutrophils are known to form extracellular traps under inflammation 

[183] along with significant change in turnover. Impairment in clearing this DNA may play a 

subsequent role in the appearance of increased amounts of circulating DNA in the blood of 

individuals with different ailments [184,185]. Previously it was reported that predominant 

portion of cfDNA in hemodylisis patients originates from apoptotic leukocytes. Although, 

neutrophils die by apoptosis under physiological conditions, after their activation, they are 

able to switch to different types of cell death like autophagy or NETosis[186]. Recent 

investigations have suggested that under certain conditions NETs could be a major factor for 

increase in cf-DNA [127,141,146,187]. More interestingly, in an recent report it was shown 

that Akt, also known as Protein Kinase B, can act as a bona fide molecular switch which could 

regulate the NETosis-apoptosis axis [156]. During inflammation neutrophils become activated 

and their longevity increases by several fold. It was therefore concluded that the 

concentration of cf-DNA could serve as a non-invasive blood biomarker to reflect the rate of 

tissue damage, cellular death and turnover [188]. 
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3.2.5 Working Hypothesis 

Although the underlying etiology is currently unknown, several lines of evidence suggest that 

PMN may play an important role in the development of RA. These include the observation 

that PMN form a large proportion part the primary leukocyte infiltrate in RA joints and that 

their depletion in animal model systems can reduce RA symptoms [189,190]. Recent studies 

have suggested that neutrophil NETs are implicated in rheumatoid arthritis (RA), in that they 

exhibit an increased NETotic response and interact with auto-antibodies frequently observed 

in RA, termed anti- citrullinated protein antibodies (ACPA) [24,130]. Subsequently, a number 

of studies ranging from sepsis to patients at risk for thrombosis have suggested that the 

analysis of cell-free DNA, or cell-free nucleosomes may be used as a surrogate marker for 

NETosis[144,146]. As we had previously shown that RA is associated with significantly elevated 

concentrations of cell-free DNA[191], we wished to determine whether this material was of 

NETotic origin.   

 

 

 

 

 

 

 

3.1	Materials	and	Methods		

3.3.1 Human Subjects  

All patients fulfilled the American College of Rheumatology classification criteria for RA. 

Healthy volunteers, matched for gender and age, were recruited at the Blood Bank of the 

Swiss Red Cross, Basel. Inclusion criteria for healthy controls were fair general condition, age 
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≥ 28 and ≤ 70 years and for blood donors fulfilling national criteria for blood donation. 

Exclusion criteria were current or previous systemic autoimmune disease, asthma, 

reconvalescence after major illness, surgery, current medication with corticosteroids, 

immunosuppressive agents and malignant neoplasia or chemotherapy within 5 years before 

recruitment for the study. RA cases had a DAS ≥ 3.2, were from age ≥ 27 to ≤ 70 years and had 

no other systemic autoimmune disease, including ankylosing spondylitis and psoriatic 

arthritis. Exclusion criteria were corticosteroids ≥ 40 mg equivalent of prednisone daily and 

those mentioned above for healthy controls. Informed, written consent was obtained from all 

subjects in the study, which was approved by the Cantonal Ethical Review Boards of Aargau-

Solothurn and Basel/Basel-Land, Switzerland. Since this study was conducted in a blinded 

manner, it was not possible to correct for any potential gender imbalance, evident by the large 

number of female cases with RA (N=24). Undue skewing is countered by the inclusion of an 

equivalent number of female control samples. 

3.3.2 Preparation of plasma and serum  

Plasma and serum was collected and processed as described previously. Care was taken to 

process the plasma samples rapidly after phlebotomy to avoid any artefacts. Serum samples 

were allowed to coagulate, without the addition of an accelerator, at room temperature for 

at least 1 hour. Samples were studied immediately or stored in aliquots at -70°C until analysis. 

3.3.3 Cell free DNA isolation and quantification 

Cell free DNA extracted from 850 μl plasma or serum using the QIAamp Circulating Nucleic 

Acid Kit (Qiagen) was quantified by TaqMan® real-time PCR (StepOne™ Plus Real-Time PCR 

System, Applied Biosystems) specific for the glyceraldehyde-3-phosphate dehydrogenase 

(GAPDH) gene[191]. 

3.3.4 NETotic complex detection analysis 

The concentration of neutrophil elastase (NE) and myeloperoxidase (MPO) were measured by 

sandwich ELISA (Elastase/a1-PI Complex ELISA Kit, Calbiochem) and the human MPO ELISA Kit, 

Hycult Biotech. Nucleosomes were measured using the Human Cell Death Detection ELISAPLUS 

(Roche Diagnostics).MPO is present on extruded NETs. To detect such structures, NETs 
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associated MPO/DNA complexes were quantified utilizing a modified capture ELISA. In brief, 

NETs associated MPO in serum or culture supernatant was captured using the coated 96 well 

plate of the human MPO ELISA Kit, (Hycult Biotech), following which the NETs associated DNA 

backbone was detected using the detection antibody of the Human Cell Death Detection 

ELISAPLUS (Roche Diagnostics). 

3.3.5 Statistical analysis  

All data are presented as mean ± SE. Descriptive statistics for continuous parameters consisted 

of median and range, and categorical variables were expressed as percentages. Comparisons 

between patients and healthy controls were by the Mann-Whitney U test with a Welch post-

test correction. Statistical significance in multiple comparisons was by one-way analysis of 

variance (ANOVA) with a Dunn’s post-test correction. P < 0.05 was considered statistically 

significant. Data were processed in GraphPad Prism version 5.0b for MacOSX (GraphPad 

Software Inc., www.graphpad.com). Additional professional statistical assistance was 

provided by A. Schoetzau (www.eudox.ch).  
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3.4	Results	

3.4.1 Peripheral blood samples of RA has more PMN and less PBMC than 
healthy controls 

Details of the RA study group and control group are described in Table 11 and Figure 35. These 

data confirm that RA is associated with an increase in the number of circulating PMN and a 

decrease in PBMC (peripheral blood mononuclear cell) counts. They also confirm the gender 

disparity regarding RA incidence, in that in our study more women were affected by RA, than 

men. To counter this aspect, we examined samples from an equivalent number of age-

matched healthy female blood donors. 

 

Figure 35. Neutrophil, peripheral blood leucocyte counts and age distribution in RA cases and control 

cohorts. (A) Neutrophil levels in cases with RA (n = 32) and matched healthy blood donors (n = 56). (B) 

Peripheral blood mononuclear cell count in RA cases and healthy control donors. (C) Age distribution of 

RA cases and matched healthy blood donors. *P < 0.05, ***P < 0.001, n.s.: statistically not significant, 

Mann-Whitney U test; PMN: polymorphonuclear leukocytes; PBMC: peripheral blood mononuclear cells. 

 

3.4.2 Histone associated DNA fragments significantly elevated in RA serum 
samples 

By using real-time PCR we confirmed that cell-free DNA levels were indeed significantly 

elevated in RA serum samples when compared to controls (Figure 36A). No elevation was 

observed in rapidly processed plasma samples obtained from RA patients. As the analysis of 

cell-free DNA by real-time PCR is costly and requires large sample volumes, we examined the 
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use of a commercial EIA kit to detect cell-free nucleosomes. This analysis confirmed that 

histone associated DNA fragments were highly elevated in RA serum samples (Figure 36B).  

 

Figure 36. Elevated serum levels of NETs components, in RA patients have potential clinical utility. (A) Cell-free 
DNA levels in plasma and serum from healthy matched blood donors (n=41) and patients with RA (n=32) 
determined by real-time PCR. (B) Cell-free nucleosome levels in plasma and serum from healthy donor controls 
and patients with RA, determined by ELISA. In contrast to the serum levels, none of the plasma levels of these 
NET components attained statistical significance (Fig. 2A-2B).  
 

3.4.3 Enhanced PMN degranulation or NETosis in serum samples of RA 

To determine the contribution by PMN to this material, we examined the levels of azurophilic 

granular proteins, myeloperoxidase (MPO) and neutrophil elastase (NE), as these have been 

implicated in the NETotic process, and are associated with externalised NETs structures. These 

analyses indicated a parallel elevation of these enzymes in RA serum (Figure 37A and B). A 

similar increase in MPO/cell-free DNA complexes in RA serum suggests that a large proportion 

of this material is derived via NETosis (Figure 37C). In all instances no significant elevations 

were noted in rapidly processed plasma samples. From these experiments it was however not 

clear whether these elevations were merely attributable to the increased number of PMN in 

RA cases or whether they were reflective of a propensity of these cells to undergo increased 

NETosis during clotting. In this manner, these data do provide additional independent support 

that RA PMN are more prone to undergo NETosis than those from healthy counterparts. 
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Figure 37. Enhanced PMN degranulation or NETosis in serum samples of RA (A) Determination of NE protein 
concentrations in plasma and serum from healthy donors and patients with RA as assessed by sandwich ELISA. 
(B) MPO concentrations in plasma and serum from healthy donors and patients with RA as determined by 
sandwich ELISA. (C) NETs-associated MPO/DNA complexes quantified utilizing a modified capture ELISA. In 
contrast to the serum levels, none of the plasma levels of these NET components attained statistical significance 
(Fig. 2A-C).  

 

3.4.4 Influence of clotting accelerator on cell-free nucleosome quantification 

A crucial finding made during these examinations is that the results were considerably skewed 

if the clotting of the serum sample was sped up by the addition of accelerators, as is evident 

from an analysis of comparable serum samples obtained with or without such agents (Figure 

38A).  

A B 

C 
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Figure 38. Influence of clotting accelerator on levels on cell-free nucleosomes in RA serum. The use of agents 
to speed up blood clotting in serum preparation was determined to significantly reduce the levels of cell-free 
nucleosomes in comparable RA serum samples. 

 

3.4.5 Elevated serum levels of NETs components, in RA patients have 
potential clinical utility. 

As the significance attained by cell-free nucleosomes in RA serum was very striking, we 

ascertained whether an analysis of these serum products could be diagnostically useful, for 

which purpose we performed receiver operating characteristics (ROC) analyses. These 

analyses indicated that the ROC analysis of serum cell-free nucleosome determinations 

yielded a surprisingly large area under the curve (AUC) value of 0.97 (Table 12 and Figure 39A). 

Of interest is that there was little difference in this value regardless of whether the RA cases 

were ACPA positive or not (Figure 39B), although there was a trend for serum nucleosome 

levels to be higher in ACPA positive cases than ACPA negative cases (Figure 39C). The AUC for 

serum nucleosomes was significantly higher than for any of the other parameters examined 

(Figures 39D to F). With the cut-off set at 0.78 the ROC AUC translates into a sensitivity of 91% 

with a specificity of 92% for differentiating between RA cases and healthy controls. 
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Figure 39. ROC analysis of cell-free nucleosomes in serum of patients with RA and healthy controls. (A) ROC 
analysis of cell-free nucleosomes in RA serum. (B) Detail of cell-free nucleosome ROC curve with groups of ACPA+ 
and ACPA- RA cases and (C) scatter box and whisker plots with individual values for control, ACPA+ and ACPA- 
groups. The ROC curve analysis of other NET components, cell-free DNA (D), NE (E) and MPO (F), was not as 
conclusive as that for cell-free nucleosomes. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s.: statistically 
not significant. 
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3.5	Discussion	
 

A number of different studies have indicated that neutrophil NETs may contribute to human 

pathologies ranging from preeclampsia, SLE, sepsis to coagulopathies [26]. As many of these 

are associated with elevations in circulatory cell-free DNA, it has proposed that the 

quantitation of this material may serve as a surrogate marker for NETotic events [187,191]. 

Most recently, such an approach has been used to assess patients at risk for thrombosis, or to 

detect NETosis in stored blood cell products[192].  

As we had previously observed significant elevations in the concentration of cell-free 

DNA in RA serum, we were intrigued by recent reports indicating that RA PMN were more 

prone to undergo NETosis. The presented analysis of cell-free DNA and cell-free nucleosomes 

confirm previous observations, while that of neutrophil granular enzymes (MPO and NE), as 

well as combinations thereof (MPO/cell-free DNA complexes) suggest that RA PMN are more 

prone to degranulate or generate NETs during serum clot formation. In this manner, these 

data would corroborate previous studies on enhanced NETosis in RA by alternate means.  

It is of considerable interest that the more pronounced elevations detectable in RA 

were only discernible in serum, and not in rapidly processed plasma. Although it is well 

established that cell-free DNA levels are higher in serum samples than matching plasma 

samples, this difference was largely attributed to lysis of leucocytes during coagulation. The 

presented data, however, indicate that the coagulation process appears to trigger an 

enhanced response by RA PMN. The mechanistic basis for this feature is unclear and will need 

to be resolved. The data do, however, imply that serum cell-free DNA or nucleosome levels 

may be a better surrogate marker for NETosis than corresponding plasma evaluations. 

A further striking feature is that our observations were made in a patient cohort 

deemed to be responsive to DMARD or biologics therapy, having a low DAS score of 3.2. 

Consequently, these data would seem to suggest that while pharmacological intervention has 

dampened the clinical symptoms, it has not effectively down-modulated the underlying 

systemic inflammation inherent in RA. Akin to other studies on sepsis or thrombosis, a possibly 

useful side feature of the presented data are that they may have a clinical bearing by assisting 
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with the detection of a patients with suspected RA, as is evident from the ROC analysis. Of 

interest is that no significant difference was noted between ACPA positive and negative 

patients. While this biomarker does have high prognostic value in detecting cases at risk of 

developing RA, their use is diminished in patients not expression the prerequisite HLA-DRB1 

'shared epitope'. Consequently, cell-free nucleosome analysis may assist in detecting RA in 

such ACPA negative cases. The clinical validity of such an approach would, however, require 

extensive validation, especially to discern how useful these assays would be in distinguishing 

cases with RA from other auto-inflammatory conditions. 

 

3.6	Conclusion	
 

Our data suggest that PMN in RA exhibit an increased propensity for the release of granular 

proteins and NETs during the serum clotting process, which could have clinical implications. 

Of interest is that the levels of circulating nucleosomes are known to be elevated in plasma 

and serum in various non-malignant and malignant diseases [193]. However, they may be 

clinically valuable in the detection of disease during early phase. In addition, nucleosomes may 

be valuable surrogate markers for the evaluation of new drugs in preclinical studies. To be 

valuable in the clinical setting, nucleosome assays will have to be standardized, automated, 

and certified in order to enable rapid and reliable quantification in routine laboratories. The 

use of a universal set of RA patients and control sera will further allow a direct comparison of 

the diagnostic performance of current tests and those yet to be developed.  
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3.7	Tables	

Table 10. Demographics and patient population characteristics versus healthy blood donors. 

 Controls RA Statistics 

Age 50.34 ± 1.5 53.03 ± 1.5 P = 0.214 

Gender (F / M) 24 / 32 24 / 8 - 

DAS28 n.a. 3.07 ± 1.12 - 

Bone erosion (pos / neg) n.a. 22 / 10 - 

Serum ACPA (pos / neg) n.a. 20 / 12 - 

Serum RF (pos / neg) n.a. 19 / 13 - 

Serum ANA (pos / neg) n.a. 21 / 11 - 

ESR* n.a. 16.8 ± 13.1 - 

CRP** n.d. 6.9  ± 5.2 - 

PBMC*** 1961 ± 81.69 1513 ± 75.90 P < 0.0001 

PMN***  3641 ± 149.7 4575 ± 546.0 P = 0.021 

Therapy (yes / no) n.a. 31 / 1 - 

DMARDs (yes / no) n.u. 27 / 5 - 

Biologics (yes / no) n.a. 30 / 2 - 

F: female; M: male; DAS28: disease activity score; n.a.: not applicable; pos: positive; neg: negative; *: mm/h; 
**: mg/l; ***: cells/μl; ACPA: anti-citrullinated protein antibodies; RF: rheumatoid factor; ANA: antinuclear 

antibodies; ESR: erythrocyte sedimentation rate; CRP: C-reactive protein; n.d.: not determined; PBMC: 

peripheral blood mononuclear cells; PMN: polymorphonuclear leukocytes; DMARDs: disease-modifying 

anti-rheumatic drugs; n.u.: not utilized. 
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Table 11.  AUC values with corresponding 95% confidence intervals, P values and standard 

errors for serum cell free nucleosomes and the 3 different parameters, which were analyzed 

individually by logistic regression. 

 

Parameter Sample AUC 95% CI S.E. P value 

Cell-free  

nucleosomes 

Serum 

 

Plasma  

 

0.97 

0.57 

0.94 to 1.00 

0.43 to 0.71 

0.016 

0.072 

< 0.0001 

0.31 

Cell-free DNA  

(GAPDH) 

Serum 

 

Plasma 

 

0.83 

0.67 

0.70 to 0.97 

0.48 to 0.85 

0.067 

0.095 

0.000 

0.10 

Myeloperoxidase Serum 

 

Plasma 

 

0.77 

0.58 

0.61 to 0.93 

0.38 to 0.77 

0.081 

0.099 

0.007 

0.44 

Neutrophil  

elastase 

Serum 

 

Plasma 

 

0.74 

0.61 

0.57 to 0.90 

0.42 to 0.79 

0.084 

0.097 

0.017 

0.29 

 
AUC: Area under the curve; 95% CI: 95% confidence interval; S.E.: standard error; GAPDH: Glyceraldehyde 

3-phosphate dehydrogenase.
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CHAPTER	4:	Abnormalities	in	the	feto-
placenta	junction	in	PE	could	be	a	result	of	
thrombotic	event,	driven	by	extracellular	DNA	
of	NETotic	origin	
	
4.1	Summary		

Preeclampsia (PE) is a major cause of maternal and neonatal morbidity and mortality. 

Anomalies in the spiral arteries have been associated with abnormal placental development, 

miscarriage and fetal injury in PE. Previously, we have reported the presence of NETs in the 

intervillous space of preeclamptic placenta. Using in vitro experiments, we have shown that 

trophoblast micro-debris could stimulate neutrophils to form neutrophil extracellular traps 

(NETs). However the effect of such phenomena remained elusive. Recent data from Wagner 

lab suggest, NETs could act as a lattice, to stimulate platelet adhesion, promotes coagulation 

and thrombotic events. Given that PE, IUGR and even fetal loss are broadly related to elevated 

thrombotic events causing dysfunctions at the interface between innate immunity and 

haemostasis, it is of cardinal importance to investigate whether NETs could elucidate such a 

response. In this study, we adopted mice sFLT-1 overexpression model, to elucidate the 

impact of NETosis in murine pregnancy outcome. Preliminary results indicates 50% drop in 

pregnancies after sFLT-1 overexpression although there was only a partial induction of PE 

phenotype characterized by minor elevation in blood pressure and proteinuria. Staining of 

placentas from mice that retained pregnancy after sFLT-1 overexpression indicates heavy 

neutrophil infiltration in the feto-placental junction, with zones positive for NET specific 

markers. Plasma isolated from sFLT-1 treated mouse also indicates elevation of NET specific 

markers compared to healthy pregnant controls. Minor increase in plasma TAT complexes 

(although not significant), along with a drop in platelet count, indicates elevated thrombotic 

events. Further ongoing experiments will compare the impact of sFLT-1 overexpression in 

normal WT mice to those that are unable to form NETs. If NETs are implicated in the etiology 
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of preeclampsia, PAD4 inhibitors may provide a novel therapeutic approach for the treatment 

of this disease. 

 

4.2	Introduction	

PE is a syndrome that is usually defined as the onset of hypertension and proteinuria after 20 

weeks of gestation in previously normotensive non-proteinuric pregnant women. A worldwide 

incidence of 8,370,000 cases per year has been estimated [194]. PE complicates 6%–10% of 

all pregnancies in the United States, and the number goes even higher in underdeveloped 

countries. Recent evidence suggests that PE is a significant cause of perinatal morbidity and 

death a as it accounts for approximately 15.9% of all maternal deaths in the United States 

[195]. PE is a multisystem disorder of human pregnancy that may be explained by two 

generalized processes occurring within the maternal and fetal compartments, vasospasm and 

endothelial dysfunction (Figure )[196]. It is widely accepted that circulating factors, most likely 

placental in origin, are responsible for these systemic disturbances. The precise nature of 

these factors and the mechanism by which a placental disorder may induce these 

pathophysiologic changes remain unknown. It has been thought to result from reduced 

placental perfusion due to abnormal trophoblast differentiation [197]. Placental Infraction is 

frequently detected in PE and further characterised by rapid onset of hypertension and 

oedema in previously normotensive pregnant women. The underlying aetiology appears to 

involve a defect in trophoblast differentiation, resulting in failure to modify the maternal spiral 

arteries. This leads to a condition of placental hypoxia (oxidative stress), due to an inadequate 

supply of maternal blood to the fetal tissues. There is some data suggesting that the severity 

of clinical symptoms of PE correlates with the placental infraction. Furthermore, this may 

serve to distinguish PE from the associated HELLP (Haemolysis, Elevated Liver Enzymes, Low 

platelet Count) syndrome. When remains untreated, it moves towards more severe 

consequences such as eclampsia, defined by the presence of seizures, IUGR (Intra Uterine 

Growth Restrictions). It takes place only in the presence of placenta even without fetus 

(hydatidiform mole), and typically improves postpartum. 
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4.2.1 How PE complicates pregnancy? 

With the classical presentation, women typically develop PE after 20 weeks gestation and prior 

to 48hr postpartum. Current clinical guidelines support the differentiation of PE into mild and 

severe categories; these entities are treated differently, particularly at preterm gestations. 

Typically, eclampsia occurs after the onset of hypertension and proteinuria. A severe 

headache or visual blurring often heralds its onset. The cardinal features of PE are new-onset 

hypertension (defined as systolic blood pressure≥140 mm Hg or diastolic blood pressure≥

90 mm Hg) and proteinuria (300 mg or higher in a 24-h urine specimen) (Figure-40) [198]. The 

degree of proteinuria in PE may vary from minimal to nephrotic; however, the amount of 

proteinuria does not seem to affect maternal or fetal outcomes [199]. A percentage of women 

present atypically without one of these cardinal signs, making the diagnosis difficult to confirm 

or exclude. Up to 20% of women with atypical PE have minimal or no proteinuria [200].   

 

 

 

Figure 40- Classification and management of PE [201]. 

 

Early-Onset PE could get complicated with termination of pregnancy, intrauterine deaths and 

neonatal deaths [202] . However, in severe disease, women may develop severe headaches 

or visual changes, right upper quadrant pain from acute liver injury, pulmonary edema, 

oliguria from acute renal failure, hemolysis and/or thrombocytopenia, and/or grand mal 
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seizures or eclampsia. However, 20% of women who develop eclampsia do not have 

proteinuria [203]. Eclamptic seizures can occur in the immediate puerperium and, 

infrequently, 48 h to one month postpartum, in which case the condition is described as late 

postpartum eclampsia. Historically, edema was part of the diagnostic triad of PE (i.e., 

hypertension, proteinuria, and edema); however, edema is too nonspecific to be used for 

diagnostic purposes because a majority of pregnant women without PE develop edema 

toward the end of their pregnancies.  

Along with maternal complications, the developing fetus can also be affected (Figure-41). 

These include iatrogenic prematurity, fetal growth restriction oligohydramnios, and increased 

risk of perinatal death [204]. Pathogenesis of these fetal complications is not clear, yet 

impaired uteroplacental blood flow, placental abruption and infarction probably contributes. 

 

 

Figure 41- Maternal and fetal complications in PE. Data source [201] 

4.2.2 What are the risk factors?  

Risk factors for PE are quite diversified (Table-12). Broadly, they can be classified into maternal 

constitutional factors, pregnancy related factors and maternal environmental factors [205]. 

Genetic factors, bacterial infections, thrombotic diseases, diabetes, rheumatic disease has 

been linked to the onset of this condition. For example, past history of PE could increase the 

risk to seven-fold.  Genetic factors are at least partially responsible, because both a maternal 

and a paternal family history of the disease predispose to PE [206]. Multiple gestation and 
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triplet gestation carries a higher risk than twin, suggesting that increased placental mass plays 

some role. Interestingly, smoking during pregnancy was shown to reduce the risk of PE [207].  

 

 

Table 12- Risk factors for PE. Data source [205].   

Maternal constitutional factors Pregnancy related factors 

Chronic hypertension Nulliparity 

Extreme age Paternity 

Ethnicity Previous history of abortion (spontaneous 

and/or induced) 

Renal disease Previous history of abortion (spontaneous 

and/or induced) 

Obesity Assisted reproduction 

Urinary tract infection Molar pregnancy and fetal hydrops 

Glucose intolerance, insulin resistance, gestational 

diabetes mellitus 

Twin pregnancy 

Diabetes mellitus  

Systemic lupus erythomatosis and antiphospholipid 

syndrome 

 

Hyperthyroidism/hypothyroidism Maternal environmental factors 

Epilepsy Working activity 

Thrombophilia Smoking 

Migraine  

Polycystic ovary syndrome  

Family history of PE  

Family history of hypertension  
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Rheumatic Disease  

 

4.2.3 Abnormal placental development in PE 

PE is a condition characterized by systemic vascular endothelial dysfunction. A number of 

mechanisms have been shown to contribute towards the pathogenesis of PE. However, it is 

unclear whether the elucidated pathways have direct or indirect effects. Placenta is central to 

the pathogenesis of PE, as a number of researches have shown association between abnormal 

placental vascular developments, as the key event in the development of this disease [208]. 

The placenta plays a vital organ for the exchange of nutrients, oxygen and waste between the 

mother and developing fetus (Figure-42A).  

For proper development of placenta, a coordinated vascularization of the placenta is 

essential which involves the process of formation and growth of blood vessels [209]. Normally 

trophoblast cells transform from an epithelial phenotype to an endothelial phenotype as they 

invade the maternal decidua and myometrium in a process termed pseudovasculogenesis 

[210]. They express markers such as vascular endothelial-cadherin (VE cadherin), and 

alphavbeta3 integrin. 

These migrating trophoblasts transform the maternal spiral arterioles that supply 

maternal blood to the placenta from small caliber resistance vessels to large caliber 

capacitance vessels allowing adequate maternal blood flow to the placenta (Figure- 42B). In 

PE this process is disordered and the fetal trophoblasts fail to properly invade the maternal 

myometrium and spiral arterioles causing placental ischemia [196].  

This placental ischaemia stimulates a release of factors into the maternal vascular 

system resulting in systemic endothelial dysfunction which leads to hypertension, oedema and 

proteinuria [211]. Such a defective trophoblast invasion and inadequate maternal spiral artery 

remodelling are common to both intrauterine growth restriction and PE [212]. 
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Figure 42- Pathogenesis of pre-eclampsia Immunologic, genetic and environmental risk factors lay the 
foreground for placental dysfunction by unknown mechanism. As a result of which cytotrophoblasts fail to 
adopt an invasive endothelial which alters small-caliber resistance vessels to high-caliber capacitance 
vessels, required for providing placental perfusion sufficient to sustain the growing fetus. This, in turn, leads 
to the release of antiangiogenic factors (such as sFlt1 and sEng) and other inflammatory mediators to induce 
hypertension, proteinuria (glomerular endotheliosis), seizures (cerebral edema and/or vasospasm), and the 
hemolysis, elevated liver function tests, and low platelet count (HELLP) syndrome can be attributed to 
vascular and endothelial effects. Adapted from [196] [213]. 

 

4.2.4 Role of anti-angiogenic factors  

VEGF and TGF- β1 signalling in the vasculature plays a key role during pregnancy by 

maintaining vascular homeostasis. High quantities of sFLT-1, a soluble version of the VEGF 

receptor 1, is known to be present in the serum of preeclamptic women, which further 

correlate with low levels of free VEGF and PIGF [196]. sFlt1 binds to and neutralizes the 

proangiogenic actions of VEGF and placental growth factor (PlGF) [214]. During normal 

pregnancy, PlGF increases during the first and the second trimesters and decreases as 

pregnancy progresses to term. In contrast, levels of the anti-angiogenic factor sFLT-1 don’t 

B 

A 
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change during the early and middle stages of gestation and increase steadily until term. When 

sFLT-1 was overexpressed in rats, it reproduces phenotypes similar to human PE. Later, 

another anti-angiogenic protein, soluble endoglin (sEng) was found to be raised in maternal 

serum. Rats injected with sEng along with sFLT-1 could produce more severe condition, which 

is similar to HELLP syndrome. Although, it is not yet clear whether the abnormal sFLT-1 

production is a cause or consequence of abnormal placentation. In PE, excessive placental 

secretion of sFlt1 and sEng (2 endogenous circulating antiangiogenic proteins) is triggered by 

some unknown mechanism. These circulating sFLT-1 and sEng acts as a scavenger for VEGF 

and TGF-β1 and thus inhibits their signalling respectively, in the vasculature. This results in 

endothelial cell dysfunction, nitric oxide production, including decreased prostacyclin and 

release of procoagulant proteins (Figure 43). In preeclamptic women this results in 

hypertension, proteinuria, as well as seizures from cerebral edema [211].  

 

Figure 43. Molecular mechanism of PE. Healthy placenta secretes a balanced amount of soluble fms-like 
tyrosine kinase (sFLT) leading to normal levels of provasodilatory and anticoagulant factors available for 
binding to fms-like tyrosine kinase 1 (FLT1) on endothelial cells systemically, leaving healthy and responsive 
endothelium. However PE placenta secretes increased amount of sFLT, which scavenge VEGF from 
circulation thus depleting their availability to FLT1 binding. The result is a dysfunctional endothelial cell 
leading to maternal systemic vasculopathy. Adapted from [211]. 
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4.2.5 Neutrophil NETs and thrombosis in PE 

Preeclampsia is associated with an increased risk for venous thrombosis, an event that can 

lead to pregnancy complications. Preeclamptic women show an activation of their innate 

immune system, including the production of neutrophil extracellular traps (NETs). These fibers 

of chromatin were initially described as a part of antimicrobial defence, but accumulating 

evidence from several laboratories shows that they are implicated in a wide range of 

inflammatory and thrombotic diseases. While NETs can be found in placental tissue sections 

and their biomarkers in the blood of preeclamptic women, their role in the pathogenesis of 

this disease is completely unknown. In all cases, treatment with DNaseI prevents thrombus 

formation, underscoring the importance of NETs in triggering DVT. NETs bind Factor XII and 

stimulate fibrin and thrombin formation via the intrinsic coagulation pathway[215] .NE, a 

major component of NETs, is also known to enhance Factor Xa (FX) activity and proteolytically 

cleave tissue factor pathway inhibitor (TFPI), a major down-regulator of the coagulation 

cascade[216]. Furthermore, both NE and cathepsin G serine proteases are present in the NETs, 

and degrade a broad range of coagulation mediators [217]. In vitro, NETs stimulate fibrin 

formation and deposition, and fibrin colocalize with NETs in blood clots. NETs may also 

regulate haemostasis through its direct involvement in the resolution of the clots. In vitro 

studies have shown that the proteases NE and cathepsin G can degrade fibrin[218], and since 

they are present on NETs they could potentially enhance fibrinolysis. In addition, NETs could 

also recruit plasminogen from the plasma. Histones are shown to serve a receptors for 

plasminogen on the surface of human monocytes/macrophages[219] and could eventually act 

in the same capacity in NETs, since they represent their main structural component. In this 

context, neutrophils are most probably stimulated by activated platelets via TLR-4 in order to 

form NETs. Activated platelets not only stimulate NET formation, but the NETs that are 

generated trigger de novo platelet activation, red cell accumulation and thrombosis[220,221]. 

On the other hand, PMN co-cultures with activated endothelial cells have been shown to 

promote the formation of NETs, which is dependent on platelets or endothelium released IL-

8 and ROS[125]. NETs in turn induce endothelial cell death, an effect mediated by the 

proteases mounted on the NETs or related cationic proteins, such as defensins and histones. 
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Interestingly, platelets from patients with systemic lupus erythematosus (SLE) carry anti-DNA 

antibodies and DNA immune complexes on their surface, which can be released in the 

circulation after treatment with DNase[222].  

4.2.6 Hypothesis 

In a series of observations we previously reported tha PE is associated with increased presence 

of both fetal and maternal cell-free DNA [223]. Elevated levels of circulating cell-free DNA are 

present in patients with severe preeclampsia and HELLP syndrome, which further correlate 

with severity of the disease [224]. Further we reported prodigious amounts of NETs directly 

in the intervillous space of affected placentae [125], which could be a result of simulation of 

neutrophils by placental micro-particles, which are released in elevated amounts in PE [125]. 

Although these studies were supported by additional evidence for neutrophil involvement in 

PE, such as the detection of elevated amounts of cell-free nucleosomes [225],  or neutrophil 

elastase in patient sera, our interest grew as to whether NETs could contribute to placental 

abnormalities which is a hallmark PE and effect pregnancy outcome [51].  

A higher prevalence of risk factors for venous thromboembolism (VTE) has been found in 

women with preeclampsia and fetal loss [226]. For this reason we were intrigued by the 

findings of the Wagner Lab, which indicated that NETs could act as a lattice to promote 

coagulation and thrombotic events [141,227,228]. By utilizing a sFLT-1 induced murine model 

for PE [229], our intention is to investigate whether there is an impact of NETosis in placental 

dysfunction and modulating pregnancy outcome. The goal of our study is to determine the 

role of NETs in a murine model of sFLT-1 induced PE by comparing severity of the disease in 

wild type mice and mice lacking the chromatin-modifying enzyme peptidyl arginine deiminase 

4 (PAD4), as PAD4 deficient mice are unable to form NETs[123]. Thus, broadly it can be 

hypothesized that, abnormalities in the placenta of sFLT-1 treated mice, could be a result of 

thrombotic event, driven by extracellular DNA of NETotic origin. 
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4.3	Materials	and	Methods	

4.3.1 Mouse model of Preeclampsia 

All animal procedures were performed using 8- to 12-wk old C57BL/6 female mice (Jackson 

Laboratory). The Animal Care and Use Committee of the Immune Disease Institute approved 

all experimental procedures involving mice. All transplantation experiments were approved 

by the Institutional Animal Use and Care Committee of Massachusetts General Hospital. Beds 

from breeder male cages were transferred to induce estrous cycle in 8-week-old virgins 

C57BL/6 female mice (Jackson Laboratory). Mice with confirmed estrous were paired with 

proven breeder. After overnight mating (E=0.5), females were removed from the breeding 

cage, checked for postcopulatory plugs and weight was recorded. After 7.5 days of mating 

(E=7.5), those, which gained minimum of 2 gm of weight, were considered pregnant. On day 

9.5, weight was recorded, followed by tail vein injection of 5 X 1010 PFU of adenovirus to 

overexpress sFLT-1 (Ad sFLT-1) or adenovirus encoding murine Fc protein (Ad Fc) at equivalent 

doses or left untreated. Weight was recorded again on E=15.5 and E=17.5. Early morning urine 

was collected on E=17.5 and all of them were sacrificed. Litter was cut open. Weight and 

number of foetus and placenta was recorded. Heart, lung, liver, placenta, spleen, brain were 

isolated and fixed in formalin, OCT, zinc-fix or glutaraldehyde.  

4.3.2 Mouse Plasma Preparation and Analysis 

Blood was collected from the retro-orbital sinus (49:1 vol/vol of blood:0.5 mol/L EDTA). 

Plasma was prepared by centrifuging anticoagulated whole blood for 5 minutes at 2300g. 

Plasma supernatant was carefully removed and centrifuged again for 5 minutes at 2300g to 

remove any remaining blood cells [230]. Plasma was stored at −80°C un�l analysis. 

Nucleosome levels were measured using the Cell Death Detection ELISA or Cell Death 

Detection ELISAPLUS (Roche, Indianapolis, IN). This assay allows for the relative quantification 

of histone-complexed DNA fragments (mono- and oligonucleosomes). sFLT-1 was measured 

in 1:500 diluted plasma using ELISA kit (R&D Systems Inc, Minneapolis, MN). Human TAT and 

DNA was measured using ELISA (Affinity Bio-logicals), and Quant-iT Picogreen assay 

(Invitrogen) according to the instructions of the manufacturers 
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4.3.3 Differential Counts 

Whole blood was collected via the retroorbital sinus into EDTA-coated capillary tubes. Twenty-

five μL of blood was analysed by a Hemavet 950FS (Drew Scientific) for complete blood counts. 

 

4.3.4 Blood Pressure measurement by tail cuff method 

Tail cuff systolic blood pressure was measured by tail cuff method using (IITC, Inc.; Woodland 

Hills, CA) [231]. Mice were trained by placing them for 20mins inside the BP machine twice 

before taking the final measurement.  

4.3.5 Mouse peripheral blood neutrophil isolation  

Peripheral blood was collected via the retroorbital venous plexus, as described previously 

[141]. Briefly, mice were exsanguinated into PBS containing 1% (wt/vol) BSA and 15 mM EDTA. 

After centrifugation, blood cells were resuspended and layered onto a Percoll gradient of 78%, 

69%, and 52% in PBS (vol/vol), centrifuged and cells at the 69%/78% interface were collected. 

Red blood cell contamination was eliminated by hypotonic lysis, and final cell concentration 

was determined by hemacytometer. Neutrophil purity was established to be routinely>90%, 

as assessed by Wright–Giemsa staining on cytospin.  

4.3.6 NET induction and quantification 

Immunostaining of fixed cells was performed using anti–Ly6G and anti–H3cit antibodies [141].  

Isolated neutrophils were plated on a 96 well cell culture dish and stimulated with PMA. 105 

cells suspended in RPMI medium, was plated in each well of a 96 well plate and stimulated 

with Calcium Ionophore or left untreated for 3 hours. After stimulation, cells were fixed in 2% 

paraformaldehyde and permeabilized (0.1% Triton X-100, 0.1% sodium citrate) for 10 min at 

4 °C. Samples were blocked with 3% (wt/vol) BSA for 90min at 37 °C, rinsed, and then 

incubated overnight at 4 °C or for 1 h at 37 °C in antibody dilution buffer containing 0.3% BSA, 

0.1% Tween-20, and either rabbit antihistone H3 (citrulline 2, 8, 17) (0.3μg/mL, ab5103; 

Abcam) and rat anti-Ly6G (0.5μg/mL, clone 1A8; Biolegend). After several washes, samples 

were incubated for 2 h at room temperature in antibody dilution buffer containing Alexa Fluor-

conjugated secondary antibodies in 0.3% BSA in PBS. DNA was counterstained with 1 μg/mL 
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Hoechst 33342 and slides were cover slipped with Fluoromount gel (Electron Microscopy 

Sciences). Fluorescent images were acquired using an Axiovert 200 wide field fluorescence 

microscope (Zeiss) in conjunction with an Axiocam MRm monochromatic CCD camera (Zeiss) 

and analyzed with Zeiss Axiovision software. All channels were acquired using Zeiss Axiovision. 

Composite images were generated with the MosaicJ plugin (36) for ImageJ software. NETs 

were counted from six different fields in triplicate wells and expressed as percentage of NET-

forming cells per total number of cells in the field.   

4.3.7 Placental Histology and Immunostaining 

Placentas were harvested from killed animals and fixed in zinc fixative (100 mM Tris-HCl 

containing 37 mM zinc chloride, 23 mM zinc acetate, and 3.2 mM calcium acetate). Paraffin-

embedded sections were deparaffinized in xylenes and rehydrated through a graded alcohol 

series. Sections were stained with hematoxylin and eosin and observed by light microscopy. 

For fibrinogen/fibrin and VWF staining, the sections were stained with a sheep anti-fibrinogen 

antibody (ABD Bio-logicals) and rabbit anti–human VWF antibody (Dako) and incubated with 

anti-sheep Alexa-555 and anti-rabbit Alexa-488 (Invitrogen) as secondary antibodies. Sections 

were counter-stained with Hoechst-33342 to visualize all nuclei, mounted with Fluoro-gel 

(Electron Microscopy Sciences), and observed under an epifluorescent Axiovert microscope 

(Zeiss). 

4.3.8 Statistics 

Data are presented as means±SEM unless otherwise noted and were analyzed using a two-

sided Student t-test or Mann–Whitney Utest. All analyses were performed using GraphPad 

Prism software (Version 5.0). Results were considered significant at P<0.05 (*P<0.05, 

**P<0.01, ***P<0.001). 
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4.4	Results	

 

4.4.1 Overexpression of sFLT-1 in mice is associated with high risk of fetal 
loss 

Administration of adenovirus carrying sFLT-1 to pregnant rats has been shown by others to 

induce PE phenotype [214] as well as fetal growth restriction in pregnant mice[232]. 

Adenovirus (Ad sFLT-1 or Ad Fc) was injected intravenously into wild-type (WT) mice pregnant 

female at E=9.5 (Figure 44A). A decline in body weight along with loss of litter by E=17.5 was 

found in 50% of the mice injected with sFLT-1(Figure 44B). Plasma levels of sFLT-1 was found 

significantly increased in the sFLT-1 mice and was significantly higher than the adeno control 

group, indicate the overexpression of the sFLT-1 protein by the Ad sFLT-1 vector. Although, 

equal amount of Ad sFLT-1 was injected into the pregnant mice, it was found that those which 

lost their pregnancies after Ad sFLT-1 injection, expressed significantly higher amount of sFLT-

1, compared to those which retained their pregnancy (Figure 44C). Thus, we conclude that 

overexpression of sFLT-1 after a certain threshold, could induce a phenotype similar to sever 

form of PE, which could be responsible for fetal death and pregnancy loss.  
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Figure 44- sFLT-1 overexpression may lead to fetal loss. Treatment of pregnant wild type mice with an 
adenoviral vector on E=9.5. Body weight was record on five different time points and plasma sFLT-1 was 
measured to check the expression of the virus. (A) Administration of Ad sFLT-1, resulted into decrease of 
body weight and loss of pregnancy in 50% of them (B). More than 2.5 fold increase in plasma sFLT-1 
expression was evident in the fetal loss group of mice, compared to those which retained the pregnancy at 
the same dose of virus (C). Data are expressed as mean±SD in this and all subsequent figures, unless 
indicated otherwise. *P < 0.05, **P < 0.01, ***P < 0.001, ****P < 0.0001, n.s.: statistically not significant. 
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4.4.2 Elevated systolic pressure and markers of kidney dysfunction after 
sFLT-1 treatment  

PE is characterized by the onset of hypertension and proteinuria [204]. To induce the clinical 

features of PE in pregnant mice, we used adenoviral expression sFlt1 on E=9.5 day pregnant 

mice. High albumin and low creatinine concentration is a hallmark of kidney dysfunction, was 

evident in the group of mice treated with Ad sFLT-1 and attend significance in the group with 

pregnancy loss (Figure 45A and 45B). Further, the ratio of albumin to creatinine is significantly 

increased in the sFlt1-treated group and attained significance in the pregnancy loss group, 

when compared with the Adeno control group (45C).  The overexpression of sFLT-1 induced a 

change in mean systolic blood pressure compared to non-pregnant (45D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 45- Overexpression of sFLT-1 in pregnant mice causes PE like symptoms. Pregnant mice on day 
E=9.5 were injected with Ad sFLT-1. Urine samples were collected on day 17.5. Concentration of Urine 
albumin and (B) creatinine was measured by commercial ELISA kit. (C) Ratio of albumin to creatinine is 
plotted. (D)Systolic blood pressure was measured by tail cuff method on E=16.5.  

A B 

C D 



Chapter 4                                                                                     NETs in mouse model of PE (in preparation)                                                                
 

April 2014                                                                                                    Chanchal Sur Chowdhury 117 

 

4.4.3 Effect on sFLT-1-1 overexpression on fetus, placenta and spleen 

SFLT-1 overexpression during pregnancy on fetal and placental development had no 

significant effects on average fetal weight which were, ~1 g in all 3 groups (Figure 46A) or on 

the average placenta weight, although the sFLT-1 treated placenta has as tendency to be 

smaller than the control group (Figure 46B). Splenomegaly (enlarged spleen) is also commonly 

found in PE. In TLR activation model of PE enlarged spleen was previously reported [231]. In 

our experiments we found over expression of SFLT-1 significantly increased the size of the 

spleen compared tountreated pregnant mice (Figure 46C and 46D).  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 46. Effect of overexpression on sFLT on pregnancy and spleen Measures of (A) Fetal weight, (B) 
Placental weight (C) Spleen weight (D) Spleen size in pregnant mice treated with Ad SFLT-1. 
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4.4.4 Overexpression of SFLT-1 does not alter TAT complexes or platelet 
count 

VTE is one of the leading causes of morbidity and mortality during pregnancy [233]. A higher 

prevalence of risk factors for VTE has been found in women with PE and fetal loss [234]. The 

measurement of thrombin-antithrombin complexes (TAT) is a parameter for coagulation and 

fibrinolysis, used for the diagnosis of thrombotic events. In preeclampsia elevated 

concentrations of TAT and decrease in platelet count has been reported previously [235]. 

However in our experimental setup we did not see any significant increase in TAT complexes 

between sFLT-1 treated and control groups, although there is a slight tendency to be higher 

in sFLT-1 treated group (Figure 47A). Further analysis of platelet count was also not statistically 

significant between control and treated group both, although there is a tendency of reduced 

platelet count in sFLT-1 treat group (Figure 47B).  

 

 

 

 

 

 

 

 

 

 

 
 
 
 
 
 
Figure 47. Effect of sFLT-1 expression on thrombotic events (A) Plasma TAT complex concentration was 
measured by commercial ELISA. (B) Platelet count was measured by automated differential count of 
peripheral blood.  
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4.4.5 Circulating extracellular DNA is significantly elevated in sFLT-1 mouse 
plasma 

 

Circulating DNA is known to be elevated in a number of autoimmune diseases including 

rheumatoid arthritis, SLE. Recently, it has been reported to be increased in PE and HELLP 

syndrome [224]. To test whether sFLT-1 overexpression could promote extracellular DNA 

release, we measured the levels of circulating DNA in the plasma of our mouse model. Cell-

free DNA levels were indeed significantly elevated in plasma of sFLT-1 treated group compared 

to controls (Figure 48A).  

 

 

 

 
Figure 48 Overexpression of sFLT-1 induces extracellular DNA release. Quantification of extracellular DNA 
in the (A) plasma and in (B) serum of healthy donors and patients with PE. (C) Determination of extracellular 

DNA concentrations in mouse plasma. Data provided by L.Erpenbeck 

4.4.6 sFLT-1 overexpression is associated with granulocyte aggregation and 
tissue damage 
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The placenta has a central role in PE, as evidenced by rapid disappearance of disease 

symptoms after delivery. Because abnormalities in the placenta such as failure of modification 

of spiral arteries at the feto-placental junction, has been proposed to be a key pathogenic 

event [213]. Therefore we investigate the effect of sFLT-1 treatment in mouse placenta.  In 

our PE model when we expressed sFLT-1 by intravenous injection, extensive granulocyte 

infiltration including infarction at the feto-placental junction was evident (Figure 49E). 

Although, necrotic regions are seen also in control groups (Figure 49D), but no granulocyte 

infiltration was evident (Figure 49C and D). Further, the number of circulatory neutrophils in 

sFLT-1 treated or control groups attain no significant difference (Figure 49A), which further 

provides evidence of specific and enhanced neutrophil migration into the PE placenta.  
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Figure 49. Placental histology (H&E stain) of control and sFlt1 groups. (A) Schematic diagram of mouse 
placenta showing different layers, modified from. (B) Neutrophil count was not significant between the 
control and the SFLT-1 treated group. (E) SFlt-1treated mouse showed diffuse inflammation along with 
granulocyte aggregation (arrowheads) and fibrinoid necrosis at the feto-placental junction, which was not 
seen in control groups (C and D). Scale bar 1mm and 0.2mm.  

4.4.7  Enhanced NETosis in feto-placental junction of preeclamptic placenta 
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A significantly greater number of neutrophils but not lymphocytes or monocytes, have been 

shown to adhere to endothelium and infiltrated into the intimal space in the maternal 

systemic vasculature of preeclamptic women than in that of normal pregnant women or 

normal non-pregnant women [236]. Previously we have demonstrated the presence of 

diffused DNA staining, colocalizing with neutrophil specific elastase staining, in placenta of 

preeclamptic patients [125]. However, in the absence of NETs specific marker, it was not clear 

whether the diffused DNA staining was of NETotic origin. Further, location specific effect of 

these NETs remained unidentified. To understand whether sFLT-1 overexpression is sufficient 

to induce formation of NETs in the placenta causing impairment of the feto-placental junction, 

we combined immunofluroscence staining for DNA, neutrophil specific anti-Ly6G and NETs 

specific anti-H3Cit. Results indicate negligiable or quite small amount of NETs in untreated or 

control placenta (Figure 50B and 50C). However, a large area in the decudal region spanning 

the feto-placental junction of the sFLT treated placenta was covered with NETs specific 

sataining (Figure 50D). Knowing the fact that NETotic DNA could potentially contribute 

towards elevated thrombotic events [124], which is a featcher in pre eclemptic placenta, it 

can hypothesised that NETotic neutrophils, could impair the exchange of oxygen from materal 

circulaiton to the growing placenta, causing hypoxic condition which may lead to 

abnormalities in the placenta.  
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Figure  50. Immunofluroscent staining of mouse placenta Placent from mouse on 17.5 day of pregnancy 
was isolated and transverse sections were statined with DAPI (Blue), anti-H3Cit (Green) and anti-Ly6g 
(Red) antibodies (Neutrophil) . A) Isotype contorl B) Untreated control C) Adeno control D) Treated with 
adeno SFLT-1. H3cit staining colocalizes with neutrophil specific Ly6G staining at the feto-placental 
junction in the decudal region can be seen only in the PE placenta (D). Bar in the figures are 1mm and 
0.2mm. Data provided by L.Erpenbeck 
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4.4.8 Neutrophils from Ad sFLT-1 mice show enhanced NETosis upon 
stimulation. 

 

Formation of NETs is known as a two-step mechanism involving priming followed by activation 

resulting into NETotic spread [10]. Further neutrophils from SLE patients and mouse model 

were shown to be primed for NET formation [127,237]. To determine whether sFLT-1 

overexpression could promotes NET formation, we isolated the peripheral blood neutrophils 

form sFLT-1 treated pregnant mice (N=1), sFLT-1 treated mice with pregnancy loss (N=1) and 

a control non pregnant mice (N=1), all at the same time. The isolated neutrophils were 

stimulated with calcium ionophone (CaI), which is a known stimulator for NETosis. After 3hrs 

of stimulation, the cells were fixed and stained for NET specific anti- H3cit and neutrophil 

specific Ly6G antibodies. DNA was stained with DAPI and visualized under fluorescent 

microscope.  Enhanced NET formation was observed in sFLT-1 treated group compared to the 

non-pregnant control mice (Figure 50A). Morphometric analysis indicate more spread 

phenotype in the sFLT-1 treated pregnant mice compared to the mice which with pregnancy 

loss (Figure 50C). Further, the percentage of H3cit positive cells was lowest in the sFLT-1 

treated pregnant mice indicating the more number of neutrophils has attained the NETotic 

phenotype (Figure 50B). This indicates towards a faster kinetics of NETosis in neutrophils from 

sFLT-1 pregnant group, which suggest that the peripheral blood neutrophils that are treated 

with Ad sFLT-1 are more sensitive towards NET formation following a secondary stimulation.   
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Figure 51. Increased NETotic response to CaI in neutrophils derived from sFLT-1- treated mice.  (A) 
Immunostaining of neutrophils from sFLT-1 and control groups, after 3hrs of stimulation with CaI. Following 
fixation cells were stained for DNA (Blue), H3Cit(Green) and Ly6G(Red) (B) Morphological changes were 
divided into unstimulated/intact, diffused/highH3cit and Spread/NETting phenotypes. Morphometric 
quantification was done after counting six different fields from each well and represented as percentage 
change. 

 

 

 

 

 

4.5	Discussion	

 

For a long time, abnormalities of blood clotting in PE have been known [238]. But recent 

investigations suggests blood coagulation is not directly involved, as fetal loss could not be 

hindered by anti-clotting agents such as hirudin [239]. Nevertheless, NETs could eventually 

provide the necessary stimulus and scaffold for clot formation by promoting platelet and RBC 

adhesion and by concentrating effector proteins and coagulation factors involved in 

hemostasis[240].  

B C 
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PE, was reported to be associated with increased presence of both fetal and maternal cell-

free DNA [223], prompt us to investigate whether neutrophil NETs could be a contributing 

factor [52] to the disease’s pathobiology and progression. This study indicated that placental 

micro-particles, which are released in elevated amounts in PE, could trigger NETosis in isolated 

neutrophils in vitro [125]. We furthermore observed that there were prodigious amounts of 

NETs directly in the intervillous space of affected placentae [125]. Although these studies were 

supported by additional evidence for neutrophil involvement in PE, such as the detection of 

elevated amounts of cell-free nucleosomes [225],  or neutrophil elastase in patient sera, our 

interest grew as to whether NETs could contribute to placental hypoxia evident in PE [51].  

Our results reveal that treatment of pregnant wild type mice with an adenoviral 

vector carrying sFLT-1 cDNA leads to a significant elevation of serum sFLT-1 levels, although 

the mouse model did not completely mirror the human condition evidenced by low albumin 

to creatinine ratio and mild elevation in blood pressure. These sFLT-1 overexpressing wild type 

mice also showed an elevation of DNA in their plasma, indicative of NETosis. While no 

significant NETosis were evident in lung, liver or kidney sections of these mice. However, 

elevated numbers of neutrophils infiltrating the placenta of sFLT-1 treated mouse was clearly 

evident which further co-localize with NET specific anti-H3Cit staining. Further, the presence 

of NETotic areas in the feto-placental junction, suggest a specific inflammatory response in 

the placenta of these mice 

Circulating levels of VEGF and sFlt-1 are known to be increased in women during early 

pregnancy compared women that are not pregnant, indicating that VEGF and sFlt-1 are both 

associated with pregnancy [241].  In a recent study involving patients from recurrent 

spontaneous abortion (RSA), significant increase in sFlt1 and VEGF levels in serum was 

reported, suggesting over expression of sFlt-1 and VEGF might be associated with the 

pathogenesis of RSA [242]. Since 50% of the our mice treated with sFLT-1 lost their 

pregnancies within few days of the intravenous injection, it can be broadly postulated that 

uncontrolled NETosis production leads to impairment of maternal exchange with the growing 

fetus, resulting in placental injury and subsequent fetal loss. A possible trigger for neutrophil 

activation towards NETosis in PE could be interaction of neutrophils with activated cells, such 
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as platelets or endothelium [243,244]. Alternatively, hypoxia, ROS, cytokines, possibly 

coagulation proteases or even other environmental factors could additionally induce NETosis 

[36].  

 

As the production of ROS is a vital component of the pathway triggering NETosis and the 

release of DNA into the extracellular environment [245], it is enticing to speculate that NETs 

may occur in aPL induced fetal loss. Furthermore, as the presence of NETs can be cytotoxic to 

closely adjacent cells [243], it is possible that the occurrence of such entities can contribute to 

trophoblast injury apparent in this disorder. Recent data suggest that infections with Brucella 

abortis[246] or Listeria monocytogenes[247] leads to PMN recruitment and activation, 

including release of IL-8 and ROS production. As brucellosis in cattle or listeriosis in humans 

can be directly associated with spontaneous abortion[248], it is open to speculation whether 

NETs occur in infected placentae in these conditions, and thereby contribute to the process of 

fetal loss . Although there is no direct evidence that NETs may be implicated in fetal loss, 

induced either via the presence of autoantibodies or infectious agents, there is accruing 

evidence that PMN activation may play a crucial part in these events [249-251]. 

 

 

4.6	Future	Directions	

 

4.6.1 Role of NETs in Recurrent Fetal Loss (RFL) 

A recent finding suggest, high levels and over expression of sFlt-1 and VEGF might be 

associated with the pathogenesis of RFL, as significant (p<0.05) increase in sFlt1 and VEGF 

expression can be seen in patients who suffered subsequent miscarriages compare to controls 

[242]. Considering that we also observed significant loss in mice pregnancies after sFLT-1 

overexpression, suggest a possible role of NETosis in the underlying pathogenesis. However it 

is noteworthy that the presence of PMN is required for aPL induced fetal loss, as this effect 

was blocked via the depletion of PMN using appropriate antibodies[252]. When aPL were 
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infused into pregnant mice, fetal demise was not associated with a deposition of fibrin or 

increased presence of thrombi [253,254]. It was furthermore determined that aPL induced 

fetal loss involved the activation of the complement system, in particular components C3 and 

C5, and the repressive activity of Crry[253,254].  The activation of the complement implicated 

in the innate arm of the immune system, as the decidua of treated mice exhibited considerable 

PMN infiltration and elevated tissue factor (TF) expression[255].  

 

4.6.3 What is the possible role of hypoxia in the pathogenesis of PE? 

The role of hypoxia in triggering NETosis is not clear. Preliminary data from Basel indicates 

that exposure of native PMNs to hypoxia in-vitro leads to higher degrees of NETosis. This may 

play a role in pregnancy, since the placenta is a relatively hypoxic environment, a condition 

exacerbated in PE or intra-uterine growth restriction (IUGR) [211] . Moreover, PE occurs more 

frequently in pregnancies at high altitude suggesting reduced oxygen tension might trigger 

increased NETosis. This is supported by our previous observation of significant increases in 

cell-free DNA in pregnancies in Tibet.  

[256].
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