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SUMMARY

Members of the SWI/SNF chromatin-remodeling
complex are among the most frequently mutated
genes in human cancer, but how they suppress
tumorigenesis is currently unclear. Here, we use
Drosophila neuroblasts to demonstrate that the
SWI/SNF component Osa (ARID1) prevents tumori-
genesis by ensuring correct lineage progression in
stem cell lineages. We show that Osa induces a
transcriptional program in the transit-amplifying
population that initiates temporal patterning, limits
self-renewal, and prevents dedifferentiation. We
identify the Prdm protein Hamlet as a key component
of this program. Hamlet is directly induced by Osa
and regulates the progression of progenitors through
distinct transcriptional states to limit the number of
transit-amplifying divisions. Our data provide a
mechanistic explanation for the widespread tumor
suppressor activity of SWI/SNF. Because the Hamlet
homologs Evi1 and Prdm16 are frequently mutated in
cancer, this mechanism could well be conserved in
human stem cell lineages.

INTRODUCTION

Stem cell lineages often contain a transit-amplifying (TA) progen-

itor pool that multiplies the number of differentiating progeny

(Clarke and Fuller, 2006; Hsu and Fuchs, 2012; Lui et al.,

2011). Unlike in stem cells, the ability to self-renew has to be

limited in TA progenitors to prevent uncontrolled proliferation

(Clarke and Fuller, 2006; Goardon et al., 2011; Krivtsov et al.,

2006). Understanding the mechanisms that control the progres-

sion from unlimited to limited self-renewal and ultimately to

differentiation is therefore important for the treatment of stem

cell-originated tumors.

Drosophila larval neuroblasts (NBs) are an attractive model for

studying lineage progression in stem cells (Brand and Livesey,

2011; Homem and Knoblich, 2012; Reichert, 2011; Weng and
Lee, 2011). Invariantly, they generate progeny that can be

uniquely identified based on marker expression and the birth

order of cells (Brand and Livesey, 2011; Homem and Knoblich,

2012; Reichert, 2011; Weng and Lee, 2011). NBs express the

transcription factors (TFs) Deadpan (Dpn), Helix-loop-helix mg

(HLHmg), and Klumpfuss (Klu) (Bello et al., 2008; Berger et al.,

2012; Boone and Doe, 2008; Bowman et al., 2008; San-Juán

and Baonza, 2011; Xiao et al., 2012; Zacharioudaki et al.,

2012). The TF Pointed (Pnt), however, is only expressed in so-

called type II NBs, where it represses the expression of another

TF called Asense (Ase) (Zhu et al., 2011). In contrast to the more

abundant type I NB lineages, type II NB lineages contain a TA

population and are therefore particularly suitable for the analysis

of lineage progression. Asymmetric division of type II NBs gener-

ates an immature intermediate neural progenitor (imINP) that

initially downregulates Dpn, HLHmg, and Klu. Subsequently,

the imINP goes through several maturation steps, first turning

on Ase and then reinitiating the expression of the NB-specific

TFs Dpn, HLHmg, and Klu to become a mature INP (mINP)

(Bello et al., 2008; Berger et al., 2012; Boone and Doe, 2008;

Bowman et al., 2008; Song and Lu, 2011; Xiao et al., 2012;

Zacharioudaki et al., 2012). In addition, INPs but not NBs express

the TF Earmuff (Erm) (Weng et al., 2010). Subsequently, the INP

divides asymmetrically into another INP and a ganglion mother

cell (GMC) that generates two postmitotic neurons (Bello et al.,

2008; Boone and Doe, 2008; Bowman et al., 2008). In contrast

to NBs that divide many times, INPs differentiate after around

five rounds of asymmetric divisions. They consecutively express

the TFs Dichaete (D), Grainy head (Grh), and Eyeless (Ey), a

phenomenon that is called temporal patterning, which is impor-

tant for timely cell-cycle exit (Bayraktar and Doe, 2013). How this

transcriptional clock is established in INPs and how it progresses

through distinct stages are currently unclear.

Asymmetric division of type II NBs is controlled by the proteins

Brat and Numb that segregate into imINPs during each division.

Numb promotes the INP fate by inhibiting the Notch signaling

pathway in imINPs (Bowman et al., 2008; Weng and Lee,

2011). Brat can act as a translational inhibitor in other tissues

(Harris et al., 2011; Sonoda and Wharton, 2001). brat or numb

mutant type II NBs generate imINPs that fail to mature and

ultimately revert to NBs giving rise to transplantable tumors
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Figure 1. Knockdown of SWI/SNF Complex Subunits Causes Transplantable Tumors

(A) Close-up images of larval brains expressing RNAi against osa,mor, brm, or snr1 in type II lineages, stained for Dpn and Ase. Control type II lineage (outlined)

contains a single Dpn+, Ase� NB (indicated by a yellow arrowhead). RNAi of osa, mor, brm, or snr1 causes supernumerary Dpn+, Ase� type II NB-like cells.

(B) GFP+ tissue from larval brains expressing RNAi against osa,mor, brm, or snr1 transplanted into the abdomens of adult host flies causes tumor formation (green

abdomen).

(C) Table showing the frequency of tumor formation 14–28 days after transplantation.

(legend continued on next page)
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(Bowman et al., 2008; Caussinus and Gonzalez, 2005). Although

the molecular mechanisms that regulate the asymmetric segre-

gation of Brat and Numb are well understood, how their asym-

metric distribution is translated into irreversible fate changes in

INPs is not clear.

In genome-wide RNAi screens for regulators of NB self-

renewal, we identified Osa, Brahma (Brm), Moira (Mor), and

Snr1, subunits of the chromatin-remodeling SWI/SNF complex

(Neumüller et al., 2011) (unpublished data). Transcriptional

changes mediated by the SWI/SNF complex have been impli-

cated in controlling mammalian stem cell self-renewal and differ-

entiation (Ho et al., 2009; Kidder et al., 2009; de la Serna et al.,

2006; Lessard and Crabtree, 2010). The complex is also required

at different stages of neural development, its functions ranging

from the control of neural stem cell self-renewal and proliferation

(Lessard et al., 2007; Matsumoto et al., 2006; Seo et al., 2005), to

dendritic development and neural circuit formation (Parrish et al.,

2006; Tea and Luo, 2011; Wu et al., 2007). Additionally, a recent

study shows a critical role for the SWI/SNF complex in modu-

lating direct versus indirect neurogenesis (Tuoc et al., 2013).

Two subtypes of the SWI/SNF complex, BAP and PBAP, have

been described in Drosophila (Collins et al., 1999; Mohrmann

and Verrijzer, 2005). Brm is the core subunit carrying the enzy-

matic activity; Mor and Snr1 are essential assembly and stability

factors (Crosby et al., 1999; Dingwall et al., 1995; Reisman et al.,

2009; Tamkun et al., 1992). Osa is a signature subunit, only

present in BAP, and is involved in the recruitment of the complex

to specific loci (Moshkin et al., 2007; Vázquez et al., 1999).

Recently, exome-sequencing studies of primary human tumors

identified the mammalian homolog of Osa, ARID1A, as the

most frequently mutated SWI/SNF subunit in human cancers

(Kadoch et al., 2013; Ronan et al., 2013; Shain and Pollack,

2013), underlining the importance of understanding its role in

stem cell lineages.

We identified the protein Hamlet (Ham) as a key target of the

SWI/SNF complex in Drosophila type II NB lineages. Ham has

critical roles in cell fate decisions in external sensory organs

(Moore et al., 2002, 2004) and the olfactory system (Endo

et al., 2012). Molecularly, Ham is known to induce epigenetic

modifications that allow cells to respond to iterative Notch

signals (Endo et al., 2012). Ham contains a PR domain that has

homology to histone methyltransferases and is the common

Drosophila homolog of Prdm3/Evi1 and Prdm16, two mamma-

lian Prdm proteins that can act as proto-oncogenes and tumor

suppressors in cancer (Fog et al., 2012; Hohenauer and Moore,

2012). A recent report has demonstrated that Evi1 and Prdm16

act redundantly in initiating heterochromatin formation in mam-

mals (Pinheiro et al., 2012).

Here, we use the type II NB lineages to ask how the loss of

SWI/SNF activity can lead to tumor formation. We show that

loss of Brm, Mor, Snr1, or Osa causes transplantable brain

tumors due to dedifferentiation of imINPs to NBs. We identify a
(D) Control and osamutant MARCM clones marked by membrane-bound GFP, st

Ase� type II NB (left panel, indicated by an arrow). osa308 clone contains multipl

(E) As in the control type II NB, pH3+-mitotic NB expressing osa shmiR shows a

marker, white arrows).

Scale bars: 10 mm (A and E), 15 mm (D). See also Figure S1.
transcriptional program activated by Osa in INPs that is required

for temporal patterning and self-renewal control. Ham is an inte-

gral part of this program. It is required for the progression of

temporal patterning in INPs and ensures timely cell-cycle exit.

Because Ham is both necessary and sufficient for limiting self-

renewal in stem cell lineages, we propose a model where Osa

ensures that a self-renewal restriction program is initiated before

TA cells resume asymmetric division, and failure to do so leads to

the formation of stem cell-derived tumors.

RESULTS

Osa Is a Tumor Suppressor in the Drosophila Brain
A genome-wide RNAi screen for defects in NB self-renewal

identified the subunits of the SWI/SNF complex: Osa, Mor, and

Brm (Neumüller et al., 2011). Another subunit of the complex,

Snr1, was identified in an independent screen to cause a similar

overproliferation phenotype (Figure S1A available online). Larval

brains expressing RNAi against osa,mor, brm, or snr1 contained

additional Dpn+, Ase� NB-like cells (Figure 1A) and resulted

in tumor formation upon transplantation (Figures 1B and 1C),

indicating that the tumor suppressor function of SWI/SNF is

conserved in Drosophila. No tumors were formed upon RNAi of

PBAP complex-specific subunits (data not shown), indicating

that only the BAP complex controls NB self-renewal. Therefore,

we focused on BAP-specific subunit Osa for in-depth analysis.

To confirm the osa RNAi phenotype, we used the MARCM

system for clonal analysis (Lee and Luo, 1999). Although 98 hr

control clones contained only one Dpn+, Ase� primary NB, osa

mutant clones contained multiple Dpn+, Ase� NB-like cells (Fig-

ure 1D). This is not due to defects in asymmetric cell division

because localization of aPKC, Mira, Numb, and Brat was unaf-

fected (Figures 1E, S1B, and S1C). Similarly, Notch signaling

was successfully suppressed in imINPs as revealed by mg-

GFP reporter (Figure S1D). Thus, the BAP complex acts after

asymmetric cell division to inhibit the generation of supernumer-

ary type II NBs and prevents tumor formation.

osa Mutations Cause Dedifferentiation of Progenitors
To define the origin of the additional NBs, we analyzed osa

mutant MARCM clones at various time points. Fifty hours after

clone induction, control type II lineages contained a single

Dpn+, Ase� NB (Figure 2A). This was unchanged in osa mutant

clones (Figure 2A), although Osa protein was undetectable (Fig-

ure S2A). In addition, control clones contained two to three

Dpn�, Ase� and three to four Dpn�, Ase+ imINPs, and this

number was slightly but significantly increased in osa mutant

clones (Dpn�, Ase� imINPs: control 2.62 ± 0.18 SEM [n = 13

clones], and osa308 3.5 ± 0.26 SEM [n = 12 clones]; p = 0.01).

Seventy-five hours after clone induction, however, osa mutant

clones contained several Dpn+, Ase� cells (2.24 ± 0.55 SEM,

n = 21 clones) (Figure 2B), although the number of Dpn�, Ase�
ained for Dpn and Ase 98 hr after clone induction. Control clone has one Dpn+,

e Dpn+, Ase� type II NB-like cells (marked with arrows).

symmetric localization of aPKC (apical marker, yellow arrows) and Mira (basal
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Figure 2. osa Mutant Dpn�, Ase� imINPs Revert to NB-like Cells

(A and B) Control and osa308 MARCM clones (outlined), stained for Dpn and Ase, analyzed at indicated time points after clone induction.

(A) Fifty hours after clone induction, osa308 clone has a single Dpn+, Ase� type II NB (marked with an asterisk), indistinguishable from the control clone. Yellow

arrowheads indicate Dpn�, Ase� imINPs.

(B) Seventy-five hours after clone induction, ectopic Dpn+, Ase� type II NB-like cells (marked with white arrows) emerge in the osa308 clone. Most recently born

daughter cells (marked with yellow arrowheads) are correctly specified (Dpn�, Ase�). Parental NB is marked with an asterisk.

(C) Close-up images of larval brains expressing osa shmiR in Dpn�, Ase� imINPs by erm-GAL4 (II), stained for Mira and Ase, contain supernumerary Mira+, Ase�

cells (white arrows).

(D) Cartoon showing the control and mutant lineage. Numbers indicate birth order.

(E) GFP+ tissue from larval brains expressing osa shmiR by erm-GAL4 (II) transplanted into the abdomens of host flies causes tumor formation (green abdomen

and green spots in the eye [indicated by a white arrow]). GFP levels are low due to loss of GFP expression in revertant cells.

(F) Overview and close-up images of extracted tissue from the transplanted host stained for Dpn. Large Dpn+, GFP� revertant cells (indicated bywhite arrows) are

neighbored by Dpn�, GFP+ imINPs (indicated by yellow arrowheads).

Scale bars: 15 mm (A, B, and C), 10 mm (F). See also Figure S2 and Movies S1 and S2.
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imINPs was no longer significantly different from the control

(control 2.64 ± 0.34 SEM [n = 14 clones], and osa308 3 ± 0.27

SEM [n = 21 clones]; p > 0.05). Similarly, there was no significant

difference in the number of mINPs (control 28.57 ± 2.44 SEM

[n = 7 clones], and osa308 23.75 ± 2.35 SEM [n = 21 clones];

p > 0.05). Supernumerary Dpn+, Ase� cells were several cell

diameters away from the primary NB (Figure 2B). Similar obser-

vations were made in snr1mutant clones (Figure S2B). Because

live-imaging experiments indicated that the revertant NBs

behave similar to normal NBs in terms of cell-cycle length and

lineage (Movies S1 and S2; Figures S2C–S2E), we conclude

that the BAP complex is required for stabilizing cell fate, and in

its absence, INPs revert to type II NBs.

To determine the precise origin of the reverting cells, we

depleted Osa by RNAi in the Dpn�, Ase� imINPs by erm-GAL4

(II) or in the Dpn�, Ase+ imINPs by erm-GAL4 (III). osa RNAi in

the Dpn�, Ase� imINPs caused formation of supernumerary

Mira+, Ase� cells (Figures 2C and 2D) and transplantable tumors

(6 out of 59 flies in osa RNAi versus 0 out of 40 flies in control,

after 5 weeks) (Figures 2E and 2F), whereas osa RNAi in Dpn�,
Ase+ imINPs had no effect (Figure S2F). Similar observations

were made for snr1 (Figure S2G). Thus, reverting Dpn�, Ase�

imINPs are the origin of tumor.

Identification of Osa-Regulated Transcriptional Targets
To understand how Osa prevents imINP reversion, we per-

formed transcriptome analysis. We isolated mRNA from FACS-

sorted control and Osa-depleted type II lineages of similar

cell-type composition (Figures 3A–3C, S3A, and S3B). Deep

sequencing identified 49 differentially expressed genes (false

discovery rate 0.1; p < 0.1; Table S1A). AlthoughNotch activation

can also cause lineage reversion (Bowman et al., 2008; Weng

et al., 2010; Xiao et al., 2012), we did not identify Notch target

genes (Figure S3C), indicating that Osa does not regulate the

Notch pathway. Gene Ontology (GO) term analysis of differen-

tially expressed genes revealed a strong enrichment for tran-

scriptional regulators (Table S1B). Because Osa acts in INPs,

we FACS sorted type II NBs and INPs/GMCs (Figure S3D) and

performed quantitative PCR (qPCR) to find INP-specific targets.

As expected, dpn,mira, klu, and HLHmgwere expressed in NBs

and INPs, whereas ase and erm were upregulated in INPs (Fig-

ure 3D). Of the 13 TFs that were downregulated upon osa RNAi

(Table S1A, in bold), only ham, oaz, opa, D, and ap were more

than 10-fold upregulated in INPs (Figure 3D). These are likely

to be components of a transcriptional program induced by Osa

to stabilize the INP fate and prevent INP reversion. RNAi of

oaz, opa, D, and ap did not cause overproliferation (data not

shown), indicating functional redundancy within this program.

For ham, however, we observed a specific phenotype (see

below), and we focused on ham for further analysis.

Ham Is a Direct Transcriptional Target of Osa
Antibody staining showed that Ham is neither found in type I nor

type II NBs, nor in Ase� imINPs (Figures 4A and 4B). It is

activated with Ase during INP maturation but is absent in osa

mutant clones (Figure 4B). Chromatin immunoprecipitation

(ChIP)-qPCR experiments revealed reproducible binding of

Osa upstream of the first and third transcription start sites
(TSSs) of the ham locus (Figures 4C and S4A) and near the

TSSs of the erm, opa, oaz, and D loci (Figures S4B and S4C;

see below), but not upstream of the dpn, HLHmg, or ase loci

(Figure S4B; data not shown). Analysis of the identified binding

sites revealed a GA-rich motif that is enriched in potential Osa

targets (see Extended Experimental Procedures; Figure S4D).

Although Osa is ubiquitously expressed (Figure 4D), it does not

bind to the identified target loci in type II NBs because target

binding was reduced to background levels in bratmutants where

tumors consisting entirely of type II NBs are formed (Figures 4E,

S4E, and S4F). Thus, our results indicate that the BAP complex is

recruited to specific target loci in INPs where it activates a tran-

scriptional program that prevents reversion to NBswhen expres-

sion of self-renewal genes is reinitiated.

Ham Limits Proliferation in INPs
To test whether the upregulation of Ham is an essential compo-

nent of the Osa-induced transcriptional program, we performed

rescue experiments (Figures S5A–S5D0). Indeed, tumor forma-

tion upon osa RNAi was completely prevented upon coexpres-

sion of Ham (Figures S5C–S5C0). Thus, upregulation of Ham is

sufficient to prevent tumorigenesis in osa mutants.

What could be the function of Ham in type II lineages? Unlike

its mammalian homologs, Ham does not regulate global hetero-

chromatin formation because the levels of H3K9me1 are not

changed in mutant clones (Figure S5E) (Pinheiro et al., 2012).

Instead, Ham limits proliferation in INPs because the induction

of ham RNAi by erm-GAL4 resulted in the formation of additional

Mira+, Ase+ cells (Figures 5A and S5F). Upon hamRNAi, both the

numbers of mINPs and GMCs were increased (Figures 5B and

5C), and 2.3-fold more pH3+-mitotic INPs were detected. Similar

effects were found in ham1 mutant clones (mINPs: control

32.33 ± 1.76 SEM [n = 9 clones], and ham1 49.11 ± 3.65 SEM

[n = 9 clones]; Figures 5D and 5E), and neither aPKC nor Mira

localization was affected (Figure 5F). Importantly, however,

ham mutant INPs did not revert to NBs (Figure 5D), and ham

RNAi did not result in tumor formation upon transplantation (0

out of 58 flies upon transplantation of ham RNAi-expressing

tissue, after 5 weeks), indicating partial redundancy with other

Osa downstream targets.

To determine the origin of the supernumerary cells, we

analyzed the division patterns of INPs and their daughters by

live imaging in culture. Control INPs and INPs expressing ham

RNAi divided at the same rate (Figure S6A), reproducibly gener-

ating a GMC that divides once more into two differentiating

neurons (Figures S6B–S6K; Movies S3 and S4) (control, n = 24

INPs, ham RNAi n = 29 INPs followed for three to four divisions).

Thus, excessive INPs upon Ham loss are not due to altered

division rates, symmetric INP divisions, or GMC-to-INP rever-

sion. In addition, TUNEL staining revealed almost no apoptotic

wild-type (WT) INPs (Figure S6L), excluding reduced cell death

as a potential mechanism. Taken together, these experiments

suggest that INPs remain proliferative for an extended period

in ham mutants. Thus, we conclude that Ham is required to

restrict the number of asymmetric divisions in the TA population

of type II lineages.

To test whether Ham is also sufficient to limit self-renewal, we

ectopically expressed the protein in NBs. All except one to two
Cell 156, 1259–1273, March 13, 2014 ª2014 The Authors 1263
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Scale bars: 20 mm (B), 10 mm (C). See also Figure S3 and Table S1.
type II lineages per brain lobe were lost upon Ham overexpres-

sion (Figures S5D–S5D0). This is not due to apoptosis because

the phenotype cannot be rescued by the apoptosis inhibitor

p35 (zero type II NBs detected, n = 7 brains) (Figure S6M).

Twenty-four hours after the induction of Ham expression by

PntP1-GAL4 (McGuire et al., 2004; Zhu et al., 2011), the average
1264 Cell 156, 1259–1273, March 13, 2014 ª2014 The Authors
NB diameter decreased by 22% (control 11.5 ± 0.5 mmSEM [n =

10 type II NBs], and UAS-ham 8.9 ± 0.2 mm SEM [n = 10 type II

NBs]; p < 0.001). In addition, 64% of type II NBs activated Ase

(n = 14 type II NBs), and NBs started to downregulate the

PntP1-GAL4 driver (Figure 6A), indicating loss of NB identity.

When expressed in type I NBs, Ham resulted in 80% NB loss
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(B) Control and osa308MARCM clones stained for Ham and Ase 75 hr after clone induction. Control clones contain a Ham�NB (indicated by asterisks) and imINPs

(marked with yellow arrowheads). Ham and Ase are coexpressed during INPmaturation (marked with arrows). osa308 clones have Ase+ INPs but lack Ham+ cells.

Schematic of various markers in control versus osa308 clones is shown to the right.
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(E) ChIP-qPCR analysis at ham locus in brat mutant larval brain tissue for Osa and control IgG. ChIP signals are represented as the percentage of input
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Error bars, SEM in (C) and (E). Scale bars, 20 mm (A and D) and 15 mm (B). See also Figure S4.
(Figures 6B and 6C). The remaining NBs had less progeny (Fig-

ure 6B), were smaller (Figure 6D), and often showed nuclear

Pros (11%, n = 5 brains, Figure 6E). In culture, Ham-expressing

type I NBs generated fewer progeny due to increased cell-cycle

times (Figures S6N–S6P; Movies S5 and S6). Thus, Ham is a
potent inhibitor of self-renewing divisions and cellular growth in

Drosophila neural stem cells. We propose that Ham is upregu-

lated by Osa in INPs to limit their self-renewal capacity, so that

they divide only a limited number of times, a feature that distin-

guishes them from NBs.
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Scale bars: 20 mm (A and D), 10 mm (F). ***p < 0.001, Student’s t test. See also Figures S5 and S6 and Movies S3 and S4.
Osa and Ham Are Required for Temporal Patterning in
INPs
Besides Ham, our search for Osa targets in INPs identified the

Sox domain TF D (Table S1A) (Russell et al., 1996). In mammals,

Sox factors play important roles in multiple stem cell lineages

(Sarkar and Hochedlinger, 2013). In Drosophila, D is part of a
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series of TFs (D, Grh, and Ey) that confer temporal identity to

INPs and ensure timely cell-cycle exit (Bayraktar and Doe,

2013). Indeed, antibody staining confirmed that osa mutant

clones failed to activate D expression 72 hr after clone induction

(Figure 7A). As for Ham, ChIP-qPCR experiments demonstrated

that Osa directly binds to the D locus upstream of the second
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TSS (Figure 7B). Thus, in addition to upregulating Ham, Osa also

initiates temporal patterning in INPs.

The functional connections between Osa, D and Ham promp-

ted us to test whether Ham could actually control the number of

INP divisions by influencing temporal patterning. In contrast to

osa mutants, INPs depleted for Ham successfully activated D

and Grh (Figures 7C and S7A). Unlike in control, however,

expression of Grh was not repressed in middle-aged INPs

upon ham RNAi (Figures 7C and S7B). As a consequence, the

percentage of Ey+ INPs was significantly reduced (Figure S7C),

although Ey expression was not completely blocked (Fig-

ure S7D). Thus, INPs require Ham to transit from the middle-

agedGrh+, Ey+ to the old Grh�, Ey+ stage (Figure 7D). Consistent
with this, Toy+ neurons generated from those ‘‘old’’ INPs were

almost entirely missing in Ham-depleted clones (Figures S7E

and S7F) (Bayraktar and Doe, 2013). In addition, the lifespan of
INPs was severely extended upon ham RNAi. Type II NBs disap-

pear �0–16 hr after larvae undergo pupariation (after puparium

formation [APF]) at 29�C, and after this stage, the number of

INPs is gradually reduced as they exit proliferation (Homem

and Knoblich, 2012; Maurange et al., 2008; Truman and Bate,

1988) (data not shown). WT pupal brains contained few Grh+

INPs 25 hr APF (Figure 7E) and none 50 hr APF (Figure 7F).

Upon ham RNAi, however, pupal brains contained numerous

Grh+ INPs 25 hr APF (Figure 7E), some of which even perdured

to 50 hr APF (Figure 7F). Thus, the function of Ham is required

in INPs to complete their temporal patterning program and for

timely cell-cycle exit.

Taken together, our data indicate that SWI/SNF activates a

‘‘transit-amplifying’’ program in imINPs that induces temporal

patterning, restricts self-renewal capacity, and prevents rever-

sion to NBs (Figures 7G and 7H). Ham is a key component of
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this program that limits the number of ensuing self-renewal

divisions by ensuring the progression of temporal patterning

initiated by the SWI/SNF complex.

DISCUSSION

Our data reveal an essential function for the chromatin-remod-

eling SWI/SNF complex in ensuring lineage progression in stem

cell lineages. When neural stem cells/NBs progress toward the

TA/INP fate, the SWI/SNF complex activates a transcriptional

program that limits self-renewal and initiates a temporal TF

cascade to confer temporal identity. Failure to do so results

in lineage reversion and tumor formation. We identify the tem-

poral TF D and the Prdm protein Ham as direct SWI/SNF

targets and show that induction of Ham limits the number of

TA divisions by ensuring the progression of temporal patterning

(Figure 7G). Members of the SWI/SNF complex, particularly the

Osa homologs ARID1A and ARID1B, are among the most

frequently mutated genes in human cancer, and our findings

provide a potential mechanism for their tumor-suppressing

activity.

We propose a model where two distinct transcriptional pro-

grams act in concert to ensure directionality in Drosophila neural

stem cell lineages (Figure 7H). In type II NBs, a ‘‘self-renewal’’

program comprising the TFs Dpn, Klu, and HLHmg allows

long-term self-renewal (Berger et al., 2012; San-Juán and

Baonza, 2011; Song and Lu, 2011; Xiao et al., 2012; Zachariou-

daki et al., 2012; Zhu et al., 2011). Upon asymmetric division,

Numb andBrat terminate this program in one of the two daughter

cells, which therefore progresses toward the imINP stage. As

INPs undergo maturation, Brat and Numb disappear, allowing

the program to reinitiate and self-renewal to resume. Our data

indicate that Osa activates a second ‘‘self-renewal restriction’’

program before this reinitiation occurs to ensure that INPs, unlike

NBs, differentiate after around five rounds of asymmetric cell

division. In osamutants, the restriction program is not activated.

The self-renewal program, however, is unaffected, and there-

fore, INPs regain NB-like properties resulting in unlimited self-

renewal and brain tumor formation (Figure 7H).

Why does Osa not activate the self-renewal restriction pro-

gram in NBs? In mammalian neural stem cells, a subunit switch

in the SWI/SNF complex is thought to trigger the switch from

self-renewal to differentiation (Lessard et al., 2007; Wu et al.,

2007, 2009; Yoo and Crabtree, 2009), but we could not detect

a similar switch in the Drosophila larval brain (data not shown).

More likely, Dpn, Klu, and HLHmg prevent Osa binding in NBs,

for example by competing with SWI/SNF for binding sites. In

fact, all three factors can act as transcriptional repressors (Bier
(D) Cartoon summarizing the defects in INP temporal patterning upon ham and o

(E and F) Overview and close-up images of pupal brains expressing ham shmiR

(E) Control brain contains few Mira+, Grh+ INPs (indicated by white arrows in clo

(F) Fifty hours APF (at 29�C), noMira+, Grh+ INPs are detected in the control brain.

arrows).

(G and H) Graphical model.

(G) Osa directly activates D and Ham to ensure proliferation control in progenito

(H) Although the self-renewal program is not affected in osamutants, the self-rene

Scale bars, 10 mm (A and C), 30 mm (overview images), and 15 mm (close-up ima
et al., 1992; Jennings et al., 1994; Klein and Campos-Ortega,

1997), and opa (one of the SWI/SNF targets we identified) is

actually also a direct Dpn target in the embryonic CNS (Southall

and Brand, 2009).

Our results suggest a tight functional connection between the

SWI/SNF complex and the temporal TF cascade that confers

temporal identity to INPs. SWI/SNF directly induces transcription

of D, the first member of this cascade. In addition, it induces

Ham, a chromatin regulator that can limit self-renewal capacity

in INPs but also when ectopically expressed in NBs. In INPs,

Ham is specifically required for the transition from Grh+, Ey+

middle-aged INPs to Grh�, Ey+ old INPs. Because transition to

the terminal transcriptional state is important for timely cell-cycle

exit in mINPs (Bayraktar and Doe, 2013), this explains the over-

proliferation phenotype observed in ham mutants.

How could Hammediate temporal progression of INPs? It has

been previously shown that recruitment of the earliest compo-

nent of the NB ‘‘transcriptional clock’’ to the nuclear periphery

permanently silences its expression and limits NB competence

(Kohwi et al., 2013). Evi1 and Prdm16, the mammalian homologs

of Ham, have been postulated to initiate heterochromatin forma-

tion by methylating H3K9 (Pinheiro et al., 2012). Because H3K9

methylation is crucial for recruiting gene loci to the nuclear

periphery, it is interesting to speculate that Ham acts in INPs

by driving the transition to the next transcriptional state and,

ultimately, to differentiation (Gonzalez, 2013; Towbin et al.,

2012; Yuzyuk et al., 2009).

Mutations in the mammalian SWI/SNF complex subunits are

potential drivers of tumorigenesis in a wide variety of tissues

including the brain (Kadoch et al., 2013; Shain and Pollack,

2013; Wilson and Roberts, 2011). The Brm homolog SMARCA4

and the Osa homologs ARID1A and ARID1B are among the chro-

matinmodifiers that are recurrently mutated inmedulloblastoma,

the most common malignant childhood brain tumor (Northcott

et al., 2012; Parsons et al., 2011). Identifying the cell of origin

in brain tumors is crucial in designing effective therapeutic stra-

tegies (Liu and Zong, 2012). Stem cells could acquire oncogenic

mutations that initiate tumor formation (Alcantara Llaguno et al.,

2009). On the other hand, tumors could also originate from more

restricted progenitors that inherit these mutations and become

malignant (Liu et al., 2011; Schüller et al., 2008; Yang et al.,

2008). Our study offers an alternative explanation: provided

that the function of SWI/SNF is conserved in humans, mutations

occurring in restricted progenitors could affect lineage progres-

sion causing progenitors to revert into stem cells. In this case, the

cell of origin would be a progenitor despite the fact that tumors

are made up of stem cells. In fact, this possibility has been pro-

posed for other tumor suppressors (Schwitalla et al., 2013) and
sa loss of function (LOF).

by insc-GAL4 stained for Mira, Grh, and D (E) 25 hr or (F) 50 hr APF at 29�C.
se-up images), whereas ham shmiR-expressing brain contains several.

ham shmiR-expressing brain contains fewMira+, Grh+ INPs (indicated by white

rs.

wal restriction program fails to turn on, and progenitors revert to NB-like cells.

ges in E and F). See also Figure S7.
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could be tested rigorously for SWI/SNF mutations given the

recent significant advances in cell lineage tracing in tumors

(Chen et al., 2012; Driessens et al., 2012; Schepers et al., 2012).

EXPERIMENTAL PROCEDURES

Drosophila Strains and Clonal Analysis

Drosophila stocks used in this study were brm RNAi (transformant ID [TID]

37720 and 37721; Vienna Drosophila RNAi Center [VDRC]); mor RNAi (TID

6969 and 110712; VDRC); osa RNAi (TID 7810; VDRC); ham shmiR

(BL32470); osa shmiR (generated in this study); snr1 RNAi (TID 108599;

VDRC); snr1 shmiR (BL32372); mCherry shmiR (BL35785); bratK06028 (Arama

et al., 2000); UAS-ham (Moore et al., 2002); UAS-p35; and mg-GFP (Almeida

and Bray, 2005). Mutant fly strains used for clonal analysis were ham1,

FRT40A (Moore et al., 2002), FRT40A; ham shmiR, FRT82B, osa308 (Treisman

et al., 1997) (BL5949), and FRT82B, snr1R3 (Zeng et al., 2013). GAL4 driver lines

used were UAS-dcr2; insc-GAL4, UAS-mCD8-GFP; tub-Gal80ts (Neumüller

et al., 2011), ase-GAL4, UAS-stinger-GFP (Zhu et al., 2006), UAS-mCD8-

GFP;;PntP1-GAL4 (Zhu et al., 2011), erm-GAL4 (II); UAS-mCD8-GFP (Xiao

et al., 2012), UAS-mCD8-GFP; erm-GAL4 (III) (Pfeiffer et al., 2008;

Weng et al., 2010), UAS-dcr2; wor-GAL4, ase-Gal80; UAS-mCD8-GFP (Neu-

müller et al., 2011), UAS-dcr2; wor-GAL4, ase-Gal80;UAS-stinger-RFP

(Homem et al., 2013). Clones of NBs homozygous for osa308, snr1R3, or

ham1 were generated by Flippase (FLP)/FLP recombination target (FRT)-medi-

ated mitotic recombination, using the elav-GAL4 (C155) (Lee and Luo, 1999).

Larvae were heat shocked for 1 hr at 38�C and dissected as wandering

third-instar larvae. RNAi crosses were set up and reared at 29�C, and wander-

ing third-instar larvae were dissected 5 days after. For analysis of INP perdur-

ance, white prepupae were collected and staged at 29�C for 25 or 50 hr.

Antibodies

Antibodies generated in this study were guinea pig anti-Osa (maltose-binding

protein [MBP] fusion of aa 2,123–2,717, affinity purified IgGs, 7.5 mg/ChIP);

rabbit anti-Ham (against the peptide DAFFKDRAQAEHILQEWVRRREPVC,

affinity purified, 1:50); guinea pig anti-Dpn (against full-length MBP fusion

protein, serum, 1:1,000); rat anti-Ase (Bhalerao et al., 2005); and rabbit anti-

Pros (serum, 1:1,000; Vaessin et al., 1991). Other antibodies used were mouse

anti-Osa (Developmental Studies Hybridoma Bank [DSHB]); guinea pig anti-

Ase (1:100; Bhalerao et al., 2005); rabbit anti-Mira (1:100; Betschinger et al.,

2006); guinea pig anti-Mira (1:100); chicken GFP (1:500; Abcam); mouse

anti-Pros (1:100; DSHB); mouse anti-pH3 (1:1,000; Cell Signaling Technology);

rat anti-Elav (1:100 7E8A10; DSHB); rabbit anti-aPKC (1:500; Santa Cruz

Biotechnology); rabbit anti-Numb (1:100; Schober et al., 1999); rabbit anti-

Brat (1:100; Betschinger et al., 2006); rat anti-Grh (1:1,000; Baumgardt et al.,

2009); rabbit anti-D (1:1,000; Ma et al., 1998); mouse anti-Ey (1:10; DSHB);

guinea pig anti-Toy (gift from U. Walldorf), rabbit anti-H3K9me1 (9045;

Abcam); Alexa Fluor 488 phalloidin (Invitrogen); and normal guinea pig IgG

(Santa Cruz Biotechnology). In situ cell death detection kit (TMR red by Roche;

12156792910) was used for TUNEL staining.

Cell Dissociation, FACS, Sample Preparation, and RNA Sequencing

Cell dissociation, FACS, and bioinformatic analysis were done as previously

described with minor modifications (Berger et al., 2012; Harzer et al., 2013).

UAS-dcr2; wor-GAL4, ase-Gal80; UAS-mCD8-GFP line was used to induce

the expression of membrane-bound GFP and osa RNAi. Decreasing levels

of GFP were observed in neurons due to lack of driver expression in differen-

tiated cells. Because tumors arising from osa RNAi are enriched for type II NBs

and INPs and contain less neurons, GFPhigh and GFPlow populations were

separated to exclude neurons. A total of 200–300 larval brains were dissected

to obtain sufficient WT type II NBs and INPs per replicate of the qPCR exper-

iment. Seventy-six-base pair Illumina paired-end sequencing of Poly-A-mRNA

libraries was performed on GAIIx. The experiment lacked biological replicates

due to difficulties in getting sufficient material to prepare the sequencing

library. For the analysis, DESeq was instructed to ignore the condition labels

and estimate the variance by treating all the samples as if they were replicates

of the same condition (method = ‘‘blind’’) (Anders and Huber, 2010).
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ChIP

ChIP experiments were performed as described before by Lee et al. (2006) and

Richter et al. (2011) with minor modifications. See Extended Experimental

Procedures for details and qPCR primer sequences.

qPCR Analysis of FACS-Sorted Cells

First-strand cDNA was generated using random primers on TRIzol-extracted

total FACS-sorted cell RNA. qPCR was done using Bio-Rad IQ SYBR Green

Supermix on a Bio-Rad CFX96 cycler. Expression of each gene was normal-

ized to RpS8, and relative levels were calculated using the 2�DD C
T method

(Livak and Schmittgen, 2001). See Extended Experimental Procedures for

qPCR primer sequences.
ACCESSION NUMBERS

The Gene Expression Omnibus accession number for the RNA-sequencing

data reported in this paper is GSE48242.
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Ziegler, P.K., Canli, O., Heijmans, J., Huels, D.J., Moreaux, G., et al. (2013).

Intestinal tumorigenesis initiated by dedifferentiation and acquisition of

stem-cell-like properties. Cell 152, 25–38.

Seo, S., Richardson, G.A., and Kroll, K.L. (2005). The SWI/SNF chromatin

remodeling protein Brg1 is required for vertebrate neurogenesis and mediates

transactivation of Ngn and NeuroD. Development 132, 105–115.

Shain, A.H., and Pollack, J.R. (2013). The spectrum of SWI/SNF mutations,

ubiquitous in human cancers. PLoS One 8, e55119.

Song, Y., and Lu, B. (2011). Regulation of cell growth by Notch signaling and its

differential requirement in normal vs. tumor-forming stem cells in Drosophila.

Genes Dev. 25, 2644–2658.

Sonoda, J., andWharton, R.P. (2001). Drosophila brain tumor is a translational

repressor. Genes Dev. 15, 762–773.

Southall, T.D., and Brand, A.H. (2009). Neural stem cell transcriptional

networks highlight genes essential for nervous system development. EMBO

J. 28, 3799–3807.

Tamkun, J.W., Deuring, R., Scott, M.P., Kissinger, M., Pattatucci, A.M., Kauf-

man, T.C., and Kennison, J.A. (1992). brahma: a regulator ofDrosophila home-

otic genes structurally related to the yeast transcriptional activator SNF2/

SWI2. Cell 68, 561–572.

Tea, J.S., and Luo, L. (2011). The chromatin remodeling factor Bap55 functions

through the TIP60 complex to regulate olfactory projection neuron dendrite

targeting. Neural Dev. 6, 5.
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