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Abstract 

Smart drug delivery systems are versatile examples of successful nanomedicine with 

potential in diagnostics and medical therapy. The thesis presents selected 

approaches in current drug delivery systems in the (pre-)clinical trials, and deals with 

potential side effects, including complement activation and hypersensitivity reactions 

as well as the design requirements of the delivery systems. Furthermore, it presents 

approaches of cationic block copolymers, which are capable to condense negatively 

charged nucleic acid molecules such as plasmid deoxyribonucleic acid (pDNA) and 

small interfering ribonucleic acid (siRNA) with the aim of efficient cell gene delivery 

and specific gene suppression, respectively.  

The first part addresses the transfection efficiency of circular versus linearized 

plasmid DNA using a green fluorescent protein expressing vector with Lipofectamine 

2000 and linear 25 kDA polyethylenimine (PEI). These results show a considerably 

improved transfection efficiency with the circular compared to the linearized DNA for 

the two transfection reagents. The electron microscopy images with Lipofectamine or 

PEI demonstrate that the circular DNA gives rise to random coil appearance of 

compact, spherical shape, while linearized DNA appear as worm-like strands. 

Particle size and shape are important in the cell biology of endocytosis and 

phagocytosis. The findings indicate that the shape of the transfection particle is vital 

for successful gene transfer.  

To develop a delivery system for gene therapy, two cationic diblock copolymers 

consisting of primary and tertiary amines were synthesized and analyzed with 

respect to DNA condensation properties, morphology of the condensed plasmid DNA 

and transfection efficiency using two cell lines. This study revealed proof-of-concept 

showing an order of magnitude lower transfection efficiency of primary amine diblock 

copolymers compared to PEI after 48 h with increasing plasmid DNA concentration. 

Furthermore, primary amines compared to tertiary ones show much stronger binding 

to DNA and improved transfection efficiency. Transmission electron and atomic force 

microscopy data revealed morphologies of primary and tertiary amines regarding the 

condensation of the plasmid DNA, in agreement with the transfection efficiency. 

 



In a second part the design and characterization of pentablock-based polyplexes 

based on the combination of cationic pentablock copolymers with folic acid 

functionalized copolymers for targeted specific siRNA delivery is described. The 

achieved 31 % knockdown efficiency shows its potential regarding cancer gene 

therapy. The pentablock architecture allows the formation of highly stable 

micelleplexes of (21 ± 3) nm in 10 mM PBS buffer solution with a neutral surface 

charge, excellent siRNA condensation properties, outstanding colloidal stability in 

10 % serum over 24 h and biocompatibility deduced from the absence of 

considerable cytotoxicity even after 48 h incubation. Furthermore, selective delivery 

of the siRNA could be proven by the introduction of a ligand-linked block copolymer, 

resulting in 31 % compared to 8 % gene suppression for targeted a non-targeted 

micelleplexes. This pentablock-based delivery system might yield impact to future 

delivery systems as well as being a potential platform to be applied in vivo for cancer 

gene therapy. 

 

 

 

 

 

 

 

 

 

 

 

 



Zusammenfassung 

Innerhalb des Bereichs der Nanomedizin weisen intelligente Wirkstoffabgabesysteme 

ein großes  Potenzial auf, sowohl hinsichtlich der Diagnostik wie auch der 

medizinischen Therapie. Die vorliegende Arbeit stellt im Rahmen einer 

Literaturrecherche ausgewählte Wirkstoffabgabesysteme vor, welche sich in (vor-) 

klinischen Studien befinden, den Nebenwirkungen welche durch diese entstehen 

können, im speziellen der Komplementaktivierung und Überempfindlichkeits-

reaktionen, sowie deren Konstruktionsanforderungen. Des weiteren werden in einem 

experimentellen Teil kationische Block-Kopolymere präsentiert, welche in der Lage 

sind, negativ geladene Nukleinsäuremoleküle zu binden - wie etwa Plasmid 

Desoxyribonukleinsäure (pDNA) und kleine interferierende Ribonukleinsäuren 

(siRNA) - mit dem Ziel der Transfektion von fremder DNA in die Wirtszellen und 

damit der spezifischen Unterdrückung der Genexpression.  

Der erste Teil der experimentellen Arbeit untersucht die Transfektionseffizienz von 

zirkulärer gegenüber linearisierter Plasmid-DNA mittels eines Vektors, welcher ein 

grün fluoreszierendes Protein exprimiert. Transfiziert wurde einerseits mit 

Lipofectamine 2000 und andererseits mit linearem 25 kDa Polyethylenimin (PEI), 

zwei etablierten Transfektionsreagenzien. Die Ergebnisse zeigen eine wesentlich 

verbesserte Transfektionseffizienz der zirkulären, verglichen mit der linearisierten 

DNA für beide Transfektionsreagenzien. Die elektronenmikroskopischen Bilder von 

Lipofectamine sowie PEI komplexiert mit DNA zeigen, dass die zirkuläre DNA 

zufällige, kompakte Kugelformen bildet, während die linearisierte DNA wurmartige 

Stränge aufweist. Partikelgröße und -form spielen in der Zellbiologie eine wichtige 

Rolle bei der Endozytose und Phagozytose. Die Ergebnisse legen die Vermutung 

nahe dass die Form der zu transfizierenden DNA-Transfektions-Komplexen eine 

wichtige Rolle einnimmt für einen erfolgreichen Gentransfer.  

Für die Entwicklung eines intelligenten Wirkstoffabgabe-Systems für die Gentherapie 

wurden zwei kationische Diblock-Kopolymere, die aus primären und tertiären Aminen 

bestehen synthetisiert und im Hinblick auf deren DNA-Kondensationseigenschaften, 

Morphologie der kondensierten Plasmid-DNA sowie Transfektionseffizienz unter 

Verwendung von zwei Zelllinien analysiert. Die Studie bestätigt trotz einer um den 

Faktor 10 schwächeren Transfektionseffizienz der primären Amin-Diblock-



Kopolymeren im Vergleich zu PEI nach 48 h mit zunehmender pDNA Konzentration 

eine Bestätigung des Konzepts. Außerdem weisen die primären Amin-Block-

Kopolymere im Vergleich zu den tertiären eine viel stärkere Komplexbildung der DNA 

auf - wie transmissions-elektronen- und rasterkraft-mikroskopische Daten ergaben - 

als auch eine verbesserte Transfektionseffizienz. Diese physikalisch-

morphologischem  Erkenntnisse über die Kondensation der primären und tertiären 

Amine mit Plasmid-DNA konnten mittels der biologischen Transfektionseffizienzdaten 

validiert werden. 

 

Der zweite Teil der experimentellen Arbeit befasst sich mit dem Design sowie der 

Charakterisierung von pentablock-basierten Polyplexen für einen gezielten siRNA 

Transport. Diese Polyplexe beruhen auf einer Kombination von kationischen 

Pentablock-Kopolymeren mit folsäure-funktionalisierten Kopolymeren. Die erreichten 

31% Gen-Suppression in einem Krebszellkulturmodell, zeigen das Potenzial des 

Wirkstoffabgabesystems in Bezug auf eine Krebstherapie auf. Die Architektur 

ermöglicht die Bildung von sehr stabilen Mizellen mit einer Grösse von (21 ± 3) nm in 

10 mM PBS Pufferlösung, eine neutrale Oberflächenladung, ausgezeichneten siRNA-

Kondensationseigenschaften, hervorragender kolloidaler Stabilität in 

Zellkulturmedium supplementiert mit 10 % Serum über 24 h, sowie guter 

Biokompatibilität aufgrund fehlender erheblicher Zytotoxizität auch nach 48 h 

Inkubation in einem Zellkulturmodell. Ferner konnte durch die Einführung eines 

liganden-gebundenen Block-Kopolymers der selektive Transport der siRNA 

nachgewiesen werden, was zu einer Gen Suppression von 31% gegenüber 8% nicht 

funktionalisierter Polyplexen führte. Das in dieser Arbeit eingeführte und 

charakterisierte pentablock-basierte Wirkstoffabgabesystem könnte Auswirkungen 

auf das Design zukünftiger Wirkstoffabgabesystem haben als auch als eine 

potentielle Plattform für in vivo-Krebsgentherapien angewendet werden. 
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Chapter 1: General Introduction 

Since several years, nanotechnology has a significant impact within the field of 

medicine and its development. A broad range of novel nanomaterials have emerged 

and have been tested for biomedical applications such as scaffolds for skin wound 

healing, bone tissue engineering and intelligent drug delivery (1-3). Intelligent drug 

delivery systems belong to the most successful and versatile examples of 

nanomedicine, with a large potential regarding imaging, sensing or therapy. Several 

nanomaterial based platforms have been reported in the last decade and been tested 

for biomedical application such as drug delivery and cancer therapy (4). The proper 

design of a delivery system is a key issue since the therapeutic efficacy of many 

payloads is often limited in the administration by their stability, safety and 

bioavailability (5,6). In addition, the large freedom in design allows the construction of 

intelligent delivery systems with complex functionality to expand possible diagnostic 

and therapeutic options in medicine. Functional materials turn delivery systems 

intelligent through stimuli-responsiveness, which then can take advantage of unique 

patterns or multimodal factors of the diseased area. Intelligent systems include 

locally/internally triggered (pH, redox potential, enzymatic activity, temperature), 

externally switchable (temperature-, light-, electromagnetically-, radiation - ultrasound 

sensitive) and actively targeted systems (7). Ligand decorated nanoparticles for 

actively targeted delivery, have been found to improve control of biodistribution. 

Prominent examples include the molecule GalNAc, which is been used as a ligand to 

target receptors on the surface of hepatocytes and folate, targeting delivery of rapidly 

dividing cancer cells (8,9).  

Polymers have gained significant attraction as delivery systems, due to the large 

variety of properties that can be programmed into polymers by design, rendering 

them attractive for the development of new applications in the biomedical field (10). 

Different types of polymers, such as biodegradable, non-degradable, synthetic and 

natural are being investigated (11-14). They can either form small sized micelles (10-

100 nm) with an inner hydrophobic core or they can self-assemble to polymeric 

vesicles (polymersomes) containing an inner aqueous compartment, allowing the 

control of the membrane thickness (15). Both variants can exhibit the ability to 

accumulate in tumor tissue trough Enhanced Permeability and Retention (EPR). In 
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addition, certain synthetically produced polymers offer the advantage of longer 

circulation times in blood, low cytotoxicity, improved ability of local drug delivery, 

active targeting and controlled cellular uptake (16). Various types of functional 

multiblock copolymers including biodegradability, stimuli-responsiveness and surface 

modification properties are opening new possibilities for efficient delivery (16-18). A 

topic of strong interest in nanoparticle based therapies is the development of cationic 

polymers, which are capable to condense negative charged nucleic acid molecules 

such as plasmid deoxyribonucleic acid (pDNA) and small interfering ribonucleic acid 

(siRNA) with the aim of efficient cell gene delivery and specific gene suppression, 

respectively. Such synthetic cationic vectors for nucleic acids may protect the nucleic 

acids from premature degradation and may enhance cellular uptake. While several 

platforms have been developed for this task, a major drawback of many designs is 

the overall positive surface charge. Positive charged polymers often show unspecific 

binding to plasma proteins and nonspecifically to cell surfaces, potentially resulting in 

premature elimination from the circulation by opsonization, lack of target specificity, 

and risk of increased toxicity (including immunotoxic phenomena like complement 

activation).  

The development of cationic polymer based gene and siRNA delivery systems with 

characteristics compatible with in vivo application, minimizing toxicity but maximizing 

specificity within drug targeting, remains a very important task. Small interfering RNA 

(siRNA) has gained significant attraction since its discovery, and is claimed by some 

to be one of the most important developments in biology in the last decade (19-21). 

In cancer research, siRNA therapeutics are seen as an innovation with a huge 

potential for personalized cancer treatment. Specific siRNA can interfere with a 

specific gene and therefore suppress cancer growth by post-transcriptional silencing 

of the target gene (22).  

Likewise, gene therapy has received significant attraction in medicine, because of its 

potential in treating acquired genetic diseases such as cancer, inflammation or 

cardiovascular diseases. Delivering naked DNA and using viral vectors for this task 

have significant limitations (23-25). For this reason, synthetic vectors based on 

polymeric nanosystems are attractive (26). DNA delivery is a difficult task and 

achieving high levels of transfection remains a challenge, associated with the 
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understanding of structure-activity correlations (27). However, due to their 

polyanionic characteristics, siRNA molecules and plasmid DNA are not able to 

spontaneously cross the cell membrane and thus require a delivery platform. 

Furthermore, several biological barriers must be overcome to achieve efficient 

delivery. These barriers include binding to the cell surface, traversing the plasma 

membrane, escaping lysosomal degradation, and overcoming the nuclear envelop. 

Therefore an optimal carrier should be versatile enough to target a cell of choice and 

be stable enough to avoid premature destruction. It should also show no unspecific 

adherence to proteins and cells, which could lead to its elimination from the 

circulation. In addition, it should be able to carry a load of molecules to its destination, 

where it would interact in a controlled way with the target receptor or target cell.  
 

Thesis goals and contributions 

Since the field of nanomedicine is highly interdisciplinary, this thesis required 

combined expertise from several fields, which were provided through several group 

members within our interdisciplinary research group as well as by interaction with 

scientists from other groups through the different projects. Following is a summary of 

my contribution to this manifold work.  

 

Extensive literature research: An initial literature survey was conducted with the aim 

to give an unprecedented overview of current intelligent drug delivery systems in the 

preclinical, clinical trial, and approved stages within the field of nanomedicine and the 

critical subject of possible unwanted side effects, such as complement activation and 

hypersensitivity reactions, in particular against polyethylene glycol (PEG) which is 

often being considered in the design of a drug delivery system, illustrating their 
advantages and disadvantages for further clinical application. 

Polymer design and synthesis: My emphasis was on the study of polymer-nucleic 

acid interaction and cellular impact of novel nanomaterials, in view of medical 

application, while the polymer synthesis has been carried out by our chemist, Kegang 

Liu. Iterative design trials of several polymers, based on an extensive literature 

survey, led to selection of the appropriate polymers for final nucleic acid delivery. The 
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selection criteria included biocompatibility, processability, specificity, reproducibility 
as well as colloidal and serum stability. 

Preparation of nucleic acid/polymer complexes: The siRNA and pDNA/polymer 

complexes were prepared by aqueous self-assembly. The polymers, depending on 

their structural composition, were dissolved in ethanol or phosphate buffered saline 

(PBS) and mixed accordingly to the N/P ratio. Different salt concentrations were 

tested to better understand binding behavior of polymers with nucleic acids and a 
standard preparation protocol has been established.  

Loading capacity determination: The loading capacity and condensing ability of the 

polymers play a crucial role for proper cellular uptake of the nanoparticles. The 

relative mobility of the nucleic acid/polyplexes at different charge ratios was studied 

by agarose gel electrophoresis. Agarose gel electrophoresis is a standard method 

used in molecular biology to separate nucleic acids or proteins in an agarose matrix 

accordingly to their charge and size. Complexation of nucleic acid with cationic 

polymers, prevent migration at a given N/P ratio, which indicates full neutralization of 

the negative charge of nucleic acids. In the case of siRNA, agarose gel 

electrophoresis revealed full neutralization at N/P ratio 5, considered to be 
appropriate for further experiments. 

Particle size and surface charge: The particle size and the zeta potential of the 

nanoparticles were examined using a zeta sizer (Nano ZS, Malvern Instruments Ltd., 

Malvern, UK) by dynamic light scattering (DLS) and electrophoretic mobility 

respectively for characterization of the nanoparticles. Nanoparticles with stable 

properties regarding size and charge could be prepared. Zeta potential measurement 

is currently the simplest and most straightforward way to characterize the surface of 

charged nanoparticles based on the potential difference between the dispersion 
medium and the stationary layer of fluid attached to the dispersed nanoparticles.  

Transmission Electron Microscopy (TEM) measurements: Size and morphology 

determination of the nucleic acid/polymer complexes were conducted with great 

support from V. Oliveri (Biozentrum, Microscopy Center) confirming the data 
observed by DLS.  
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Atomic Force Microscopy (AFM) measurements: To better understand proper 

morphological behavior, plasmid DNA condensation properties regarding diblock 

copolymers and in comparison to TEM measurements, atomic force microscopy 

imaging using a Bruker MultiMode V microscope was conducted, with great support 

from R. Wagner. AFM images gave further agreement and deeper understanding of 
polymer DNA interactions.  

Cell culture and transfection procedure: As a model system for gene knockdown 

studies, HeLa cells expressing green fluorescent protein (GFP) as well as folate 

receptor positive HeLa and negative HEK293 cells for targeted cellular uptake 

studies were used. Cells were passaged split and seeded in 24-well plates. 

Improvements of the standard manufacturers transfection protocols were achieved, 

regarding optimization of transfection time, wash procedure, cell medium composition 
and concentration of polyplexes applied to the cells.  

Fluorescence microscopy: Visualization of the cellular uptake and localization of 

siRAN/polymer complexes was achieved by introduction of fluorescently labeled 

siRNA and studied with introductional help of M. Abanto with an Olympus BX61 

Diana	   fluorescence microscope The observations showed clear correlation of the 

localization and the silencing efficiency but also left speculation regarding the proper 

cellular uptake mechanism involved, which still has to be identified. Furthermore, 

qualitative analysis of plasmid DNA transfection was conducted.  

Knockdown analysis: As a method of choice for quantification, the well established 

Western Blot technique was chosen to quantify green fluorescent protein suppression 

and folate receptor expression. Data analysis showed clear differences of folate 

receptor expression of HeLa and HEK293 cells, enabling receptor mediated uptake 

studies as well as receptor-mediated knockdown of GFP upon application of the own 
designed polymers. 

Stability studies: Colloidal stability and possible agglomeration of the polymer solely 

and siRNA complexed with the polymer were investigated by dynamic light scattering 

using a zeta sizer. Time dependent studies showed clearly that the micelleplexes do 

not aggregate in the presents of serum as compared with polyethylenimine. 
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Aggregation of cationic polymers is very important topic, since it determines the fate 
for successful in vivo application.  

Cytotoxicity measurements: The cytotoxicity of the polymers used for siRNA delivery 

was tested using the Resazurin reduction assay. The results showed that cytotoxicity 
occurs at more then 10 x higher concentrations then the ones used  

Cloning experiments: Plasmid DNA used in all experiments has been produced as 

following: Circular plasmid DNA, pEGFP-C1 (Clonetech) was transformed into 
competent bacterial cells (DH5α) and inoculated with the appropriated selective 

antibiotic. Purification and elution of plasmid DNA was done using a MaxiPrep Kit 

(Qiagen). The DNA quantitation was obtained spectrophotometrically and confirmed 
by the comparison with a high DNA mass ladder by gel electrophoresis. 

Flow Cytometer studies: Transfection efficiency was determined by flow cytometry 

with BD Accuri C6 (Becton Dickinson, San Jose, CA) in close collaboration with X. 

Wang. The measurements gave qualitatively understanding regarding different N/P 

ratios and cell lines on transfection efficiency as well as dependency of primary 

versus tertiary amide based polymers for condensing of the plasmid DNA and 

showed proof of concept.  

 

Structure of the thesis 

In this thesis, required properties and differences of basic delivery platforms in regard 

to deliver smart functionality, on building block suited to enhance tissue-, cell- and 

receptor specific targeting are discussed. Next it discusses advantages and 

disadvantages of those platforms for future clinical application with regard to the 

subject of immune system responses. It also deals with the highly relevant issue of 

advancing from the current, mostly passive medical nanosystems towards active 

nanosystems with advanced functionality, by the development of stimuli 

responsiveness and of multi-functionality, which permit progressive optimization of 

diagnosis and therapy and can be adapted to the needs of individual patients. 

Furthermore, the synthesis, characterization and efficiency of new block copolymers 

for siRNA and gene delivery are described. 
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A general introduction is presented in Chapter 1, providing the aim and the general 

background of the work and the structure of the thesis. In Chapter 2, a state of the 

art overview of intelligent nanomaterials for medicine such as polymers, liposomes, 

dendrimers, quantum dots, carbon nanotubes, nanogels, metallic as well as chitosan 

and peptide based nanoparticles is given. It presents a summary of current drug 

delivery systems in the preclinical, clinical trial, and approved stages within the field 

of nanomedicine and deals with the crucial subject of possible unwanted side effects, 

such as complement activation and hypersensitivity reactions, in particular against 

polyethylene glycol (PEG), illustrating their advantages and disadvantages for further 

clinical application. 

In Chapter 3 and 4, stimuli-responsive nanosystems and their potential for medical 

application are discussed. A variety of new nanomaterials have been introduced in 

the field of nanomedicine and found their way into clinical domain as drug delivery 

systems, for imaging, sensing and therapy. An important issue for the future design 

of nanomaterials is the development of stimuli responsive and multifunctional 

nanosystems for optimization of diagnosis and therapy. The wide variety of internal 

(pH, redox potential, enzyme responsive, temperature) and external stimuli (light, 

temperature, ultrasound, electromagnetically and radiation sensitive), as well as 

advantages and disadvantages of these stimuli and their challenges for possible 

medical application are described (Chapter 3).  
Among all stimuli, light represents a promising candidate due to its attractive features 

such as high sensitivity, ease of controllability and physical properties, which allow a 

wide variety to design sensitive nanomaterials. Chapter 4 thus gives an overview on 

light and its applications within the field of nanomedicine, identifies opportunities and 

describes gaps supported by the state of the art.  

Chapter 5 deals with the topic of the development of a suitable system for 

transfection of plasmid DNA (pDNA) into eukaryotic cells. The greatest obstacle in 

the field concerns the engineering of appropriate delivery systems able to deliver the 

plasmid DNA, inefficient long-term expression, low transfection rates and 

immunogenicity. In addition to the choice of the delivery system, the topology of the 

DNA seems to play a key factor for efficient transfection. To compare transfection 

efficiency in regard to the topology of the DNA, experiments of circular versus linear 
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plasmid DNA using a cationic lipid system (Lipofectamine) or a cationic polymer 

(polyethyleneimine) were conducted. Furthermore, cationic diblock copolymers were 

synthesized to test condensing of pDNA into compact nanostructures and been used 

for in vitro delivery studies. To understand condensing of the pDNA, the size and 

molecular morphology of the pDNA/polymer complexes was observed by atomic 

force microscopy and transmission electron microscopy at increasing charge ratios of 

the complexes. Transfection efficiency of the diblock copolymers was evaluated by 

flow cytometer analysis. In Chapter 6, a novel pentablock based block copolymer 

siRNA delivery system with targeting properties is presented. The concept of the 

study was to assess our novel siRNA drug delivery systems that expand the 

established PMOXA-PDMS-PMOXA triblock copolymer concept into a pentablock 

copolymer system that combines several desired characteristics. In combination with 

receptor-specific ligands, such polymeric constructs promize target specific 

interactions. The pentablock copolymer based siRNA delivery system was 

characterized concerning size, surface charge and serum stability by dynamic light 

scattering, zeta potential and transmission electron microscopy measurements. Gene 

silencing mediated by siRNA loaded pentablock based nanoparticles, was 

quantitatively determined by Western Blot analysis. The cellular uptake efficiency 

was investigated by fluorescence microscopy and cytotoxicity was determined by 

measuring cell viability using the resazurin reduction assay.  

The dissertation closes with Chapter 7 giving conclusions along with 
recommendations for future work.  

 

The work described in this thesis has either been published or is currently being 
patented or to be submitted for publication:  

Chapter 2: R Lehner, X Wang, S Marsch, P Hunziker: Intelligent nanomaterials for 

medicine: Carrier platforms and targeting strategies in the context of clinical 

application. Journal of Nanomedicine: Nanotechnology, Biology, and Medicine 9 
(2013) 742-757 
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Chapter 3: R. Lehner, X. Wang, M. Wolf, P. Hunziker: Designing switchable 

nanosystems for medical application. Journal of Controlled Release 161 (2012) 307-
316 

Chapter 4: R. Lehner, P. Hunziker: Why not just switch on the light?: light and its 

versatile applications in the field of nanomedicine. European Journal of 
Nanomedicine 2012;4(2-4):73–80 

Chapter 5: R. Lehner, X. Wang, P. Hunziker: Plasmid linearization changes shape 

and efficiency of transfection complexes. European Journal of Nanomedicine 2013; 
5(4): 205–212 

Chapter 6: R. Lehner, K. Liu, P. Hunziker: Efficient receptor mediated siRNA delivery 

in vitro by folic acid targeted pentablock copolymer-based micelleplexes. (Material 

currently being patented, manuscript ready for submission) 
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Abstract

Nanomedical approaches are a major transforming factor in medical diagnosis and therapies. Based on important earlier work in the field
of liposomal drug delivery and metallic nanomaterials, the last decade has brought a broad array of new and improved intelligent nanoscale
platforms which are not only suited to deliver drugs and imaging agents but also to carry advanced functionality including internal and
external stimuli-responsiveness in a highly targeted fashion to a diseased area. This review focuses on required properties and differences of
basic delivery platforms in regard to deliver smart functionality, on building blocks suited to enhance tissue-, cell- and receptor-specific
targeting and on nano-bio interaction. Further it discusses advantages and disadvantages of those platforms for future clinical application
with regard to the subject of complement activation and hypersensitivity reactions in particular against polyethylene glycol (PEG) and
possible functionalization with nanosize switches.

From the Clinical Editor: This review focuses on the properties of platforms designed to deliver smart functionality, using appropriate
building blocks to enhance tissue-, cell-, and receptor-specific targeting. The authors also discuss potential complications such as
complement activation and hypersensitivity reactions, and possible functionalization with nanosize switches.
© 2013 Published by Elsevier Inc.

Key words: Nanoplatforms; Targeted delivery; Stimuli-responsive nanocarriers; Active targeting; Passive targeting

During the last decade, nanotechnology has had a steadily
increasing impact on preclinical development in medicine,
shaping the emerging scientific field of nanomedicine. Today,
many of these developments are entering the clinical domain. An
important topic is the development of composite nanosystems for
diagnosis and therapy within the body. Such systems often
consist of i) a carrier platform, ii) a payload for imaging, sensing,
or therapy and iii) optional targeting ligands. Beyond such basic
systems, the large freedom in design allows to compose nano-
systems with complex functionality that pave the way to
intelligent and responsive behavior, potentially applicable in
medicine. Different basic nanomaterial platforms have emerged
and have been tested for biomedical applications such as drug
delivery and cancer therapies. Nanoparticles (NPs) are nanosized
materials (diameter 1–200 nm) that can carry different payloads

such as small molecular drugs, imaging agents, proteins, nucleic
acids or other content.1–4 Nanocarriers are designed to improve
efficacy and safety for drug delivery in general and for target
specific non-viral drug delivery in particular.5,6 The design of
such nanomaterials requires the ability to control particle size, to
assure biocompatibility and stealth properties, to optimize
specificity, and to achieve controlled release and functionality.7,8

As basic materials, liposomes, dendrimers, polymers, carbon
nanotubes, metallic NPs, organic NPs, quantum dots, nanogels
and peptidic nanoparticles have been applied as possible
nanotechnological carrier platforms (Figure 1).

With an emphasis on medical therapy, this review aims to
shed light on design principles suited to create complex
nanosystems by combining carrier platforms, engineering
nanomaterial–cell interactions and enabling such systems to
show stimuli responsiveness by equipping them with elements
from the toolbox of switches on the nanoscale, considering the
critical factors of such systems for success in clinical application
with regard to complement activation and hypersensitivity
reactions in particular against polyethylene glycol (PEG).

POTENTIAL CLINICAL RELEVANCE
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Nanotechnology carrier platforms suited for
switch functionality

In recent years, major efforts have been devoted to develop
suitable nanotechnological platforms to improve drug delivery to
tumor tissue. For the development of such platforms, several
challenges need to be mastered: (i) the control of the particle size,
which can have influence on the NP distribution, clearance by
kidney or liver and payload uptake; (ii) biocompatibility, to
achieve an optimal benefit/risk relation; (iii) stealth properties, to
escape immunological recognition and serum protein interac-
tions; (iv) optimal blood circulation time for a specific
application; (v) high target specificity for delivery of drugs or
advanced functionality; (vi) controlled release mechanisms, e.g.
endosomal escape; (vii) further functionality control through
stimuli responsiveness. Multiple nanoscale platforms have been
developed for this purpose, of which the most important will be
discussed now.

Micelles and liposomes

Micelles are nanosize structures characterized by a hydro-
phobic core and a hydrophilic coat and form spontaneously from
amphiphilic molecules in aqueous environments. Liposomes are
self-assembling structures with a spherical shape, composed of a
lipid bilayer, which entirely surrounds an aqueous core, able to
deliver different kind of biomolecules.9 Depending on the

assembly technique used, the size of the vesicles can range from
tens of nanometer to micrometers. Under specific conditions,
liposomes of ~ 100 nm in diameter have been successfully used
to deliver chemotherapeutic agents to tumors.10 Drug delivery of
poorly soluble molecules can be achieved through micelles using
lipid moieties as hydrophobic blocks linked to hydrophilic
polymers.11 Different lipids have different fatty acid chain
lengths and different head groups, resulting in a broad range of
achievable physicochemical characteristics like minimal micellar
concentration or melting temperature, allowing the creation of
environment-sensitive (e.g., temperature-, pH-sensitive,
mechano-sensitive) liposomes by choosing the specific
setup.12 Several liposome-based cancer drugs have entered the
clinical domain, e.g. carrying the anthracyclines doxorubicin
(Doxil, Myocet, Caelyx) for treatment of Kaposi’s sarcoma,
ovarian cancer, multiple myeloma, metastatic breast cancer or
daunorubicin (DaunoXome) for treatment of Kaposi’s
sarcoma.13,14 Beyond approved agents, liposomal chemothera-
peutics are finding their way into clinical trials.15–17 One
important future direction is the development of receptor-specific
targeting for cell-specific delivery, which may render liposomes
suited for purposes such as siRNA delivery. As reported recently
by Gao et al, delivering siRNA by immunoliposomes to
epidermal growth factor receptor (EGFR) overexpressing breast
cancers in principle is possible.18 However, early trials have also
shown that important challenges, in particular due to interaction
of such systems with the immune system, need more work.

Figure 1. Schematic illustration, showing established therapeutic nanocarrier platforms (NPs) in preclinical development.
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Liposomes are interesting carrier candidates for delivery of
intelligent switches at the nanoscale because the inner aqueous
core offers a “nano-compartment” where processes may take
place that require protection from the surrounding body fluids
when injected into an organism. Liposomes have already been
converted into intelligent nanosystems by incorporating a wide
variety of stimuli response functionalities such as temperature,
light, pH, ultrasound, enzymatic response or even as drug
delivery system for radiation sensitive nanoparticles19–24

highlighting that liposomes are simple, but effective carriers
for multimodal nanoscale trigger and effector functionalities.

Polymeric systems

Polymeric and polymeric-biologic hybrid nanomaterials have
gained increasing attention as modifiers of pharmacokinetics of
“biologicals” (pharmaceutical products originating from bioma-
cromolecules), as carriers of hydrophobic drugs and in particular
as non-viral vectors for nucleic acid delivery. A structurally
simple approach is to couple a polymer (typically polyethylene
glycol, PEG) with a protein, a strategy that allows the control of
pharmacokinetics while maintaining the biological properties of
the protein. Self-assembly to nanoparticles is not exploited here.
Different types of polymers, biodegradable or non-degradable,
synthetic and natural are being used for formation of polymeric
micelles and polymersomes (polymeric vesicles) as drug
delivery systems.12,25–27 One difference of certain synthetic
polymers compared to natural polymers is their longer lifetime
and therefore improved ability to concentrate at a disease
location. This increases the possibility of prolonged drug release
over several days to weeks.5 Polymeric micelles can be built by
self-assembly of amphiphilic-block copolymers exhibiting a
hydrophilic outer shell and a hydrophobic core, which can enable
transport of water insoluble drugs to their specific target. Several
important anticancer drugs like paclitaxel, tamoxifen or
campthotecin28,29 are highly water insoluble. The relatively
small size of polymeric micelles (10–100 nm) compared to
polymeric vesicles enhances their ability to accumulate in tumor
tissues through the enhanced permeability and retention (EPR)
effect.30 Another important aim is the development of cationic
polymers that are able to form complexes with nucleic acids with
the goal achieving cell transfection and siRNA delivery, thereby
promising new approaches to the therapy of severe diseases
including inherited metabolic disease or cancer. For example,
Mao et al reported a cationic triblock copolymer for the delivery
of siRNA targeting the acid ceramidase gene for cancer therapy.
They demonstrated biodegradable micellar triblock copolymer/
siRNA complexes that efficiently deliver siRNA into cancer cells
and thereby induce gene silencing effects.31 A number of
cationic polymers used for encapsulating siRNAs have shown
toxicity, rendering their clinical application challenging.32

Nevertheless, the positive charge of cationic polymers can
facilitate cellular uptake and endolysosomal escape as reported by
Park et al, thereby overcoming onemajor cellular barrier in target-
specific drug delivery.33 Other nucleic acid carrier systems
include cationic polymers poly(L-lysine)(PLL), poly(ethylene-
imine)(PEI), chitosan and dendrimers.34 Detailed information
of cationic carriers for nucleic acid delivery is given by.35

Polymeric delivery platforms are excellent carrier platforms for
integration of switches at the nanoscale and other complex
functionality, due to the large freedom of design, their
improved stability compared to liposomes, and their ability to
integrate functional biomolecules within the hydrophobic
bilayer. However, there is less experience in clinical application
of composite polymeric nanosystems and vesicles compared to
the well established liposome field, which is a factor to keep in
mind when developing commercial products for clinical
application that will require thorough insight into pharmaco-
kinetics, metabolism and mass balance, toxicity for the
regulatory process and industrial scale-up and production.

Dendrimers

Dendrimers are large and complex molecules with very
regular chemical structure, which were pioneered in the early
80s.36 They are nearly perfect monodisperse macromolecules
with a regular and highly branched tree like architecture.
Dendrimers are constructed through a repeating sequence of
chemical reaction steps, leading to predictable alterations in their
size determined by each generation.12,37,38 In typically used
chemical syntheses, dendrimers are structures with a size of 1 to
10 nm and a hydrophobic interior, which enables drug delivery
of hydrophobic compounds such as cancer drugs. Poly(amidoa-
mine), PAMAM is the most well known dendrimer for biological
applications.39–41 Cationic PAMAM dendrimers show cytotoxic
effects, which have been thought to result from the interaction
with negatively charged molecules. To overcome this effect, Jia
et al reported the use of phosphorylcholine, a zwitterionic
molecular segment found mainly at external surfaces of cell
membranes and the end of some lipids.42 Such zwitterionic
PAMAM dendrimers encompassing a phosphorylcholine surface
efficiently lower the cytotoxity compared with the native
PAMAM dendrimers.42,43 Dendrimers have been explored
clinically as outlined by.44–46 Dendrimers significantly differ
in size from micelles, liposomes and polymeric systems leading
to differential distribution behavior after injection into an
organism. Forming a single, covalently linked structure, they
are mechanically more stable than liposomes. They offer some
inner, hydrophobic cavity space for the encapsulation of
payloads and switch functionality, but payload/carrier ratio,
measured as weight/weight ratio, is lower compared to micelles
and lipid/polymer vesicles, which represents a limitation when
space-consuming smart sensors or nanoscale switches need to be
integrated in the interior of a nanosystem. A challenge for
development of intelligent nanoscale systems based on dendri-
mers as commercial products at the current time is the fact that
clinical experience with such systems is still limited. This is
associated with a degree of uncertainty for pharmaceutical
development, regulatory path and clinical success, which needs
to be taken into account in decision making for industrial
development.

Carbon nanotubes

Carbon nanotubes are a distinct molecular form of carbon
atoms, yielding a hexagonal arrangement. Carbon nanotubes
exist as single-walled and multi-walled variants.47 Their
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structure, formed from layered graphite sheets, gives them
extreme physical strength, ten times as strong as steel, and
unusual heat and conductivity properties.48 Recently carbon
nanotubes have attracted attention due to their use in
controlled drug release as well as delivery of nucleic acids,
peptides and antibodies. Their inner core and their outer
surface allow the insertion of specific payload into the small
inner core, while the outer surface can be modified to achieve
the necessary biocompatibility within the body or to attach
targeting ligands or drug payloads.49 Gu et al recently
published data concerning single-walled carbon nanotubes
(SWNT) coated with doxorubicin, exhibiting a pH-responsive
drug release behavior.50 They covalently attached hydrazino-
benzoic acid to the SWNTs using hydrazine as linker
molecule. Doxorubicin was bound to the modified SWNTs
forming hydrazone bonds with hydrazinobenzoic acid. In vitro
testing of these SWNTs showed drug release upon pH change.
In an acidic tumor microenvironment, this application could
provide a specific drug release system. Conflicting results have
been reported for cytotoxicity from in vitro and in vivo studies
dependent on size, length, and surface topology.51–53 One
challenge in toxicity testing is that due to their hydrophobicity,
carbon nanotubes can only be brought into solution in
physiologic liquids through detergents or surface modification.
Although surface functionalization of carbon nanotubes by
attachment of appropriate molecules showed dramatically
lowering of their toxicity, more effort has to be put into
understanding the cytotoxicity of carbon nanotubes.54 Animal
experiments resulted in specific targeting, tumor binding and
drug delivery from which one can envision new therapeutic
approaches.55,56 Clinically however carbon nanotubes have not
overcome phase I trials. A number of research groups have
reported the functionalization of carbon nanotubes in relation to
sensitivity to environmental conditions such as pH, temperature
or glutathione. Most SWNT have a diameter of close to 1 nm
incorporating the graphene layer, forming an inner core
of b1 nm. Compared to the achievable payload volume of
other platforms such as liposomes and polymeric vesicles, the
much smaller volume to weight ratio of carbon nanotubes is
another limiting factor for their therapeutic use. To compete
against micelles, liposomes, polymeric systems and dendrimers
as platform for clinical development of intelligent nanomaterials,
a compelling argument based on their unique characteristic is
probably required and not yet achieved.

Metallic nanoparticles

Metallic nanoparticles such as iron oxide, gold and silver
have been developed and modified for use in drug delivery,
magnetic separation and diagnostic imaging.57–59 Superpara-
magnetic nanoparticles (SPION) built from oxide nanoparticles,
such as magnetite (Fe3O4) and maghemite (Fe2O3), exhibit
particular features like ultrafine size, biocompatibility and
magnetic properties. The superparamagnetic properties become
manifest when a magnetic moment is induced through the
application of a magnetic field. The large magnetic moment
yields a strong signal change in magnetic resonance imaging
(MRI) allowing therefore sensitive detection at high resolution.

Another application of iron oxide nanoparticles is tumor
treatment by magnetically induced hyperthermia.60

Thanks to its chemical inertness and suited mechanical
properties gold has been used in medicine for teeth implants and
is also in use in cancer radiotherapy.61 Gold nanoparticles can be
formed with core sizes ranging from 1 to N100 nm. The initial
claim of absence of cytotoxicity has raised enthusiasm as an
excellent drug delivery system although increasing recognition
of size dependent cytotoxicity needs to be considered before
their application.62 Gold nanoparticles are capable of delivering
peptides, proteins nucleic acids or small molecules. When
functionalized with quaternary ammonium groups, they can bind
negatively charged DNA or RNA and also protect the nucleic
acids from enzymatic degradation.63

Silver has been used for a long time as a staining agent for
glass and as a bacteriostatic agent.64 Elemental silver and silver
salts are well known to be relatively nontoxic to human cells and
have been applied in the treatment of burn wounds, diabetic skin
ulcers and newborn eye infections.65–67 Silver nanoparticles
have therefore been developed for antibacterial applications
including coating of medical catheters to prevent contamination
and infections.68

The electromagnetic properties of various metallic nanopar-
ticles render them interesting for electromagnetic control, in
particular induced hyperthermia; plasmon effects on metallic
nanoparticles are another physical effect that can be used to
incorporate switches at the nanoscale. Metallic nanoparticles can
be surface-functionalized with relative ease, allowing to equip
the particles with a wide range of advanced functionalities,
including pH sensitivity and redox responsiveness. A potential
disadvantage is the weight/weight ratio between functional
payload and inert platform, which tends to be low in metallic
nanoparticles. The absence of an inner cavity is a disadvantage,
and the question of long-term behavior (mass balance,
bioaccumulation, elimination pathways) after injection into an
organism, and of cell toxicity need to be carefully weighted when
their application for clinical trials is considered.

A potential concern of metallic nanoparticles using heavy
metals is their release into the environment in a potentially non-
recyclable form; a mass balance in the body and an estimation of
the environmental mass balance of such materials seems prudent
when industrial products are developed.

Other organic nanoparticles: carbohydrate based NPs,
chitosan and starch

Certain organic nanoparticles originating from natural
materials feature good water solubility, low toxicity, biocom-
patibility and biodegradability, rendering them interesting
candidates for carriers. Chitosan is a polymer obtained by
deacetylation of chitin. Chitin itself can be found in the
exoskeleton of crustaceans like shrimps and crabs but also in
the cell walls of fungi.69 Studies have shown the versatility of
chitosan for drug delivery and stimuli responsiveness in pH- and
temperature-triggered applications.70–73 Starch can be found
abundantly in nature in crops such as rice, corn or potatoes.
Chemical modification of starch allows a wide range of different
applications e.g. biodegradable packaging material or as target
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specific drug delivery system.74 Suyao et al showed preparation
of folate-conjugated starch nanoparticles for tumor targeting.
They encapsulated the anticancer drug doxorubicin with folate
modified starch polymers. Successful cellular uptake followed
by loss of tumor cell viability could be shown.75 The
biodegradability and the low potential of toxicity of organic
materials render them a competitive nanomedical platform for
clinical application. Nevertheless, issues regarding the dissolu-
tion of the polymer matrix at low pH as well as poor mechanical
strength as seen for chitosan have been raised.72

Quantum dots

Quantum dots (QDs) are small sized (1–10 nm) semicon-
ductor nanocrystals which were developed in the early 80s by
Alexei Ekimov and Louis E. Brus.76 They are composed of an
inorganic elemental core (e.g. Cd and Se) surrounded by a
metallic shell (ZnS), which constitutes a barrier between the
optically active core and the surrounding medium. QDs can be
modified by ligand attachment or encapsulated with amphiphil-
ic polymers to improve solubility, specificity, size and
visualization properties in tissue.77,78 They are widely used in
biological research as fluorescence imaging tool due to their
resistance to photobleaching and their excellent quantum yield
compared to organic dyes.79 QDs can also be used as drug
carriers or simply as fluorescent labels for other drug carriers.
Derfus et al have demonstrated the use of QDs as beacons to
track siRNA delivery by PEGylating QD cores, conjugating
them with siRNA and tumor-homing peptides necessary for
cellular uptake.80 A second approach is the labeling of common
drug carriers such as polymers, liposomes or dendrimers with
QDs. Zintchenko et al have introduced a drug nanocarrier called
“quantoplex”. Quantoplexes are polyethylenimine nanocarriers
incorporating plasmid DNA and QDs, allowing real-time
nanoparticle tracking in living animals.81 QDs are of particular
interest when combined with other nano platforms, as one
functional building block among other functionalities. For
clinical application, their ability to combine molecular imaging
and cancer therapy can open new doors in the field of cancer
therapy,82–84 but the toxicity of certain materials used in QD
synthesis is an important concern.

Nanogels

The field of nanogels is a new and fast developing domain of
research in nanomedical drug delivery. Nanogels are a three-
dimensional network either formed chemically (covalent bonds)
or physically (hydrogen bonds, Van der Waals and electrostatic
interactions) of cross-linked hydrophilic polymers with a size
of b 200 nm. Due to their hydrophilic properties, nanogels can
swell and encapsulate a high volume of water when added to an
aqueous solution. Due to their polymeric nature, a broad range of
chemical modifications is possible. Such hydrogels can entrap
through spontaneous processes a large amount of biological
molecules as e.g. DNA, RNA, proteins and drugs, rendering
them well suited for drug delivery. For site-specific tissue
targeting within the body, the surface structure of nanogels can
be chemically modified with different ligands. Nanogels proved
their value as carrier platform for siRNA and for stimuli

responsiveness (pH, temperature).85,86 Wu et al have presented
multi-functional core-shell nanogels combining magnetic regu-
lation with biochemical sensing. They formed a core from
magnetic Ni and fluorescent Ag surrounded by a pH-sensitive
p(EG-MAA) nanogel shell. Combination of a pH-dependent
magnetic response with fluorescent pH sensing allows the
creation of an intelligent carrier system for diagnostic and
therapeutic applications.87 Nanogels exhibit high stability in
vivo, controllability of size, biodegradability, surface function-
ality and specific drug delivery. Nanogels have found their way
into clinical applications.88,89

Peptide-based nanoparticles as delivery system

Peptides can have lipophilic or hydrophilic properties based
on their amino acid composition and can therefore be used to
construct amphiphilic molecules that form nanostructures by
self-assembly.90,91 Design considerations of these biopolymers
for drug carriers are similar to other biocompatible polymers,
but should take into account that peptides may act as strong
immunogens and that the body already contains several lines of
defense against foreign proteins and peptidic structures like
virus capsids. In addition, a variety of peptidases exist in the
body; if a system is preclinically developed for later clinical use
in man, species differences in peptidase expression needs to be
carefully considered. Virus self-assembly can act as an
inspiration to build hollow or solid, peptidic nanostructures.92,93

Bawa et al showed enhanced cellular delivery and activity of
the anticancer drug ellipticine to human lung carcinoma A549
cells using self-assembling peptide-based nanoparticles.94

Naskar et al presented the formation of multivesicular
structures from self-assembling peptides, depicting sensitivity
upon exposure to calcium ions leading to vesicular disruption.
This intelligent sensing/switching functionality, allows cargo
release suited for medically relevant payloads.95 However, a
natural extension of peptide-based systems is the exploitation
of biologic peptide functions like their use as receptor ligands
or enzymatic activity, naturally leading to nanomaterials with
complex or switchable functionalities. Clinically, peptidic
systems have entered clinical trials dominantly as nano-
platforms for vaccines offering multivalency as a potent
immune system stimulant.

Advanced functionality including internal and external
stimuli-responsiveness

Many different nanomaterial-based platforms have been
developed to improve drug delivery to tumor tissue, expand
diagnostic and enhance the therapeutic efficacy while minimiz-
ing possible side-effects, but only a few have found their way
into clinical application. An important direction of future
research is the development of smarter, functional materials
that turn nanosize delivery vehicles into “intelligent” nanopar-
ticles through stimuli responsiveness. Insights into the complex
biological properties of e.g. a diseased area may be exploited to
enhance specific drug release within the diseased area or the
cytoplasm of a key cell type involved in pathophysiology, by
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taking advantage of unique patterns or multimodal factors of the
microenvironment. The design of such intelligent, stimuli
responsive nanoplatforms also promises diagnostic opportunities
with increased disease specificity.

Switchable nanoparticles can be classified based on the
modality of stimulus into locally/internally triggered and
externally switchable nanoparticles.

Internal stimuli such as pH, redox potential, enzymatic
activity or temperature are increasingly used for the design of
intelligent, stimuli responsive nanoplatforms in preclinical
studies.24 They have the advantages of high specificity due to
the possible control by a molecular mechanism dependent on a
certain disease. Internally switchable nanosystems are expected
to exhibit less damage to healthy tissues compared to non-
switched materials; as their control signal is tissue specific,
bystander organs are spared as well. Nanomaterial switched by
internal stimuli have entered clinical trials,96,97 but the
widespread clinical benefit for the patient has not yet been
achieved. An important challenge is the fact that not every
disease shows a specific internal molecular trigger suitable for
exploitation as a trigger for switchable nanosystems.

Externally controlled nanosystems can be divided into
temperature-, light-, electromagnetically, radiation- or ultra-
sound-sensitive delivery systems and have the advantage of
external regulative application properties regarding the area of
interest.24 A limiting factor for externally controlled nanomater-
ials is the tissue penetration of the control signal and the potential
for tissue damage between energy source and target organ.
Tissue damage may arise upon interaction of certain forms of
radiation (heat, light, electromagnetic fields) with biomacromo-
lecules (e.g. membrane proteins), leading to tissue disruption and
damage also in healthy bystander tissues. Some externally
controlled systems have already proven clinical benefit as seen
for iron oxide based NanoTherm® nanoparticles developed by
the company MagForce for the treatment of glioblastoma by
magnetic hyperthermia98 or the photodynamic therapy based
compounds Visudyne®, Photofrin® and Levulan®Kerastick®
for the treatment of age-related macular degeneration, esopha-
geal cancer and actinic keratosis.21,99 In the year 2000 the U.S.
Food and Drug Administration (FDA) approved the first
antibody linked drug named Mylotarg®, developed by the
Celltech Group and American Home Products, for the treatment
of acute myelogenous leukemia based upon redox-sensitivity.100

Rejected by the European Medicines Agency (EMA) in 2008
due to failure of full remission and an inappropriate cost-benefit
ratio for the patient, the FDA also decided to take Mytolarg® off
the market.

Engineering cell and tissue interaction at the nanoscale

Targeting strategies

Liposomes and more recently other nanoparticles have found
broad application for delivery of diverse payloads. Their small
size, biocompatibility, stability and stealth properties render
them capable of prolonged circulation half-life, targeting of
tumor tissue and cellular uptake (Table 1). Successful targeting
implies sufficient stability to avoid premature drug release into

the bloodstream and to circumvent degradation of the payload in
the circulation prior to target arrival. Of equal importance are
adequate stealth properties, which allow nanoparticles to avoid
interactions with plasma proteins or the immune system that
could lead to early elimination of the material. Cancer therapy is
one of the most frequently pursued applications because of the
severity of the disease and of the well-known severe side effects
of many conventional therapies. Specific targeting of only the
diseased tissue while sparing the rest of the body is therefore the
Holy Grail for this clinical application. Targeting to tissues and
cells can either be passive, through properties of cancer
vasculature, or active, through receptor-specific ligands on the
nanoparticle surface intended for cell binding. Intraarterial
injection into disease-related arteries is a further variant of
‘targeted’ delivery.

Passive targeting
Passive targeting depends on the Enhanced Permeability and

Retention effect (EPR), characterized by enhanced accumulation
of nanoparticles within tumor tissues.102–105 Fast growing tumor
tissue is characterized by rapid angiogenesis triggered by tissue
anoxia and expression of growth factors like the vascular
endothelial growth factor (VEGF). Newly formed blood vessels
show a higher rate of vascular fenestration and therefore,
permeability, in different tumors.106–108 Nanoparticles extrava-
sate through the walls of such blood vessels and tend to show
prolonged retention in the tumor tissue. Nanoparticle extravasa-
tion is size dependent.109–111 In passive targeting strategies, a
sufficiently long blood circulation time of the nanoparticles is
important to allow a high contrast between tumor accumulation
compared to that in liver, spleen and kidney, where particles tend
to accumulate in the absence of a suited tissue target. This goal
can be achieved through optimal stealth properties, typically by
incorporation of polymers like PEG into the shell of the
nanomaterial. In addition, premature release of the payload
from the nanocarriers (e.g. exchange of hydrophobic drugs with
albumin) is an important issue, which needs to be considered. A
frequently used animal model of human cancer, the xenograft
mouse transplantation model, shows significant differences in
vascular biology compared to human cancers,112 partly explain-
ing why it is much easier to cure human cancer in mice than in
humans. For this reason, the development of alternative models
to study nanoparticle-tissue interaction before clinical applica-
tion is desirable.

Active targeting
Active targeting was conceptually introduced in 1906 by Paul

Ehrlich, who coined the term “magic bullet” by describing the
need for a system able to target specific drug delivery within the
body.113–115 For active targeting, nanocarriers need to first arrive
in the target organ; therefore initial design considerations are
similar to those for passive targeting. Active targeting then
exploits specific mechanisms that increase specific particle-
target cell interaction through suited ligands. These ligands
(either small molecules like folic acid and carbohydrates, or
macromolecules including aptamers, antibodies, proteins, pep-
tides or oligonucleotides) must be carefully chosen to exhibit
maximal binding to the target while minimizing binding to
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healthy tissue.111,116,117 Popular cancer targets include transfer-
rin, folate118,119 and epidermal growth factor receptors due to
their over-expression in tumor tissues.120,121 Targeted delivery
requires highly specific target recognition and target binding
with sufficient affinity, but as stealth properties imparted through
polymers tend to compete with specific binding sites, careful
titration of these effects, e.g. by optimizing the length of
branches carrying a ligand and the number of ligands per
nanocarriers is of key importance.122

Endocytotic cellular uptake

Once a delivery nanodevice has arrived in a target tissue,
several barriers to optimize pharmaceutical activity remain.
Cellular uptake is a first step: different routes to enter a cell exist,
including the physiological uptake mechanisms like passive
diffusion through the cell membrane, channel or transport protein
mediated uptake, or various vesicular uptake mechanisms. The
endocytotic pathway is the major uptake mechanism of cells for
nutrients, but also for therapeutic DNA, siRNA and proteins.
There are several distinct endocytotic pathways including
clathrin-mediated endocytosis, phagocytosis, caveolar endocy-
tosis and macropinocytosis.123,124 Detailed information con-
cerning these uptake pathways can be found in excellent
reviews.125–130 Various ligands used in active targeting actually
bind to membrane proteins that are associated with endocytosis
and thus trigger endocytosis upon receptor binding. Prominent
examples are the folate receptor and the transferrin receptor.

After cellular uptake, molecules internalized via the plasma
membrane will follow the intracellular endocytotic pathway
involving early endosomes (with potential receptor recycling to
the cell surface) or may progress to late endosomes and
lysosomes. If the payload has its cellular target in the nucleus,
the nuclear membrane is a second barrier, which is difficult to
pass. Endocytotic nanoparticle uptake can be overcome using
liposomes as delivery platform or through surface modification
using cell-penetrating peptides as discussed below.123,131

Cellular uptake by cell penetrating peptides

More than 20 years ago, Frankel and Pabo found that the trans-
activating transcriptional activator (TAT) protein of HIV-1 is able
to cross mammalian cell membranes and translocate into the
nucleus.132 A few years later, Prochiantz et al reported the same
effect for the Drosophila melanogaster Antennapedia
homeodomain.133 It was found that a short sequence of 10–16
amino acids was responsible for translocation. Based on this
discovery, numerous cell-penetrating peptides (CPPs) have been
developed for potential delivery of various biomolecules such as
oligonucleotides, DNA,RNA, proteins, peptides and drugs. CPPs
are typically cationic or amphiphatic peptides of less than 30
amino acids showing lack of toxicity, and can be grouped into two
major classes comprising covalent linkage and non-covalent
complexation with cargo molecules.131 Cationic CPPs are
generally composed of positively charged amino acids as
arginine, lysine and histidine, whereat amphiphatic CPPs are

Table 1
Examples of nano-based platforms and their stages in clinical use.

Nanoplatform Size range Compound
(Trade name)

Application Target Status References

Liposome b100 nm Doxorubicin
(Doxil/Caelyx)

Cancer therapy Kaposi’s sarcoma, ovarian
cancer, breast cancer

FDA approved In market

Daunorubicin
(DaunoXome)

Cancer therapy FDA approved In market

Dendrimer 1–10 nm (VivaGel) Microbicide Cervicovaginal Phase II 44

Methotrexate Cancer therapy Several different cancers In vitro/in vivo 142

Polymer 50–200 nm Pegaspargase
(Oncaspar)

Cancer therapy Acute lymphoblastic
leukemia

FDA approved In market

Doxorubicin Cancer therapy Breast/Lung cancer Phase II 143

Paclitaxel Cancer therapy Breast cancer Phase II 144

Micelle 10–100 nm Paclitaxel
(Genexol-PM)

Cancer therapy Breast cancer Phase IV No publication
provided

Paclitaxel (Taxol) Cancer therapy Psoriasis Phase II 145

Carbon nanotubes 1–25 nm diameter Cancer therapy Lung cancer Phase I 146

Paclitaxel Cancer therapy Breast cancer In vivo 147

Metallic nanoparticles 1–150 nm Ferumoxides
(Feridex)

MRI contrast agent Liver FDA approved In market

Iron-oxide
(NanoTherm)

Cancer therapy Glioblastoma EU approved 98

Organic nanoparticles 20–400 nm Cancer therapy Liver cancer Phase II 148

Quantum dots 1–10 nm Doxorubicin Cancer therapy Ovarian cancer In vivo 149

Cancer therapy Breast, prostate cancer In vivo 150

Nanogels b200 nm NB-001 Anti-viral Herpes labialis Phase III No publication
provided

MuGard Mucositis Head and neck Phase IV No publication
provided

CPP ~30aa residue long Azurin Cancer therapy Refractory solid tumors Phase I 151

Synthetic peptides XG-102 Cancer therapy c-Jun-N-terminal kinases Phase II 101
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comprised out of lipophilic and hydrophilic parts.134 Cellular
uptake can occur through endocytotic (clathrin dependent,
macropinocytosis, via caveola) or non-endocytotic pathways
although mechanisms are not fully elucidated. Effective CPP-
based delivery to target different diseases has been shown using
covalently linked cargos such as Tat, transportan, penetratin,
polyarginine or VP22.135–138 Covalent linking the cargo to CPPs
can be a limitation by altering the biological activity of the
payload as seen by Juliano et al who examined CPPs conjugated
to siRNA.139 In contrast to a covalently bound payload,
amphiphatic peptide carriers such as MPG and Pep-1 show
successful in vivo and in vitro cargo delivery of siRNA, plasmid
DNA or proteins without the need for chemical cross-
linking.140,141

Endosomal escape

Many examples of endosomal escape by pathogens can be
observed. In fact certain bacteria (e.g. listeria) or viruses are able
to escape lysosomal degradation through specific interactions
with the vesicle membrane in a surprisingly successful manner
and are an example where human ingenuity has not yet been able
to mimic the capability of biologic organisms.152 Endosomal
escape belongs to the key challenges still to overcome to enable
clinical application of therapeutic delivery of nucleic acids to
target cells. In endosomes, mild acidification detaches typical
ligands from their receptors. The latter are recycled to the cell
surface, while the vesicle content progresses to late endosomes
and lysosomes. Various strategies have been explored to achieve
endosomal escape. Behr et al have proposed a proton sponge
effect in 1995, suggesting that specific agents become protonated
at low pH in endosomes, leading to an influx of ions and water,
causing swelling and rupture of the endosome with release of the
payload. A prominent example for this effect is the use of
polyethylenimine (PEI) for transfection of plasmid DNA or
siRNA, which becomes protonated due to its amino groups at
endosomal pH.153,154 Another approach for endosomal escape is
incorporation of fusogenic peptides into the endosomal mem-
brane. These peptides are derived from viruses and show
conformational changes upon changes in pH, which allow them
to fuse with the endosomal membrane by inducing membrane
perturbations. This has been well documented for haemagglu-
tinin, an influenza virus derived fusogenic peptide.155,156 A
strategy called photochemical internalization has been described
by Bert et al Payload release was achieved through incorporation

of photosensitizers into the endosomal or lysosomal membrane.
The membranes are disrupted through chemical action of singlet
oxygen, which is formed upon light exposure of the
photosensitizers.157,158 Several photosensitizers as TPPS4,
TPPS2a or AlPcS2a have already been used to this end in
different studies.153,159–162

Clinical application of nanomaterials

The clinical trial landscape: an emphasis on cancer

On Sep 25, 2012, there were 116 clinical trials registered at
http://www.clinicaltrials.gov mentioning the keyword “nanopar-
ticle”. Most of them are Phase I and Phase II trials in the status of
‘recruiting’ or ‘active and not recruiting’ (Figure 2). Within the
last 10 years, the number of clinical trials has increased
continuously and it is likely that this trend will continue in the
future due to innovative research. Most nanomaterials that have
entered clinical trial are currently devoid of switch functionality
(Table 2). The majority of the mentioned trials are focusing on
cancer treatment applying the cancer drug paclitaxel in a
liposomal or nanoparticulate carrier, or its albumin bound
formulation Abraxane®. According to world health organization
(WHO) estimations, cancer is a leading cause of death around the
world, accounting for 7.6 million deaths in 2008. Even though
cancer treatment has evolved significantly within the last few
decades, surgery, radiation and chemotherapy are still the main
pillars for cancer therapy.While some spectacular successes have
been achieved in specific malignant diseases (e.g. in certain
leukemia types), most current chemotherapies for solid cancers
are not curative and prolong life for a few months or years rather
than for decades. Advances in cancer management with the goal
of prolonging lifespan and eventually curing cancer depend on
early cancer detection, prevention of recurrence and metastatic
spread and effective management of established metastases. All
factors together play a key role, and this is where novel
nanomaterial-based strategies could have the highest impact.

Early stage cancer diagnosis is desirable to prevent
metastasis, but remains challenging because clinical symptoms
usually become manifest only in advanced cancer stages.
Nanoparticles have specific features which render them
interesting for imaging in cancer as well as for therapy of solid
cancer because of the propensity of nanoscale materials to
distribute preferentially to vessels with altered permeability
(enhanced permeation and retention EPR effect) and the

Figure 2. Illustration of nanoparticles in clinical trial phases as seen from
www.clinicaltrials.gov, date 25.09.2012.

Table 2
Nanoplatforms in clinical trials.

Platform Cancer Global

Liposome 443 590
Polymer 32 204
Gold 171 1110
Silver 104 379

The numbers of ongoing clinical trials involving various nanoplatforms
illustrating their application in cancer studies or global clinical application.
Data adapted from www.clinicaltrials.gov and www.clinicaltrialsregister.eu
(25.09.2012).
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Table 3
Clinically approved nanoparticle-based therapeutics and their benefits and risks.

Nanoplatform Constitution Trade name Application Target Benefits through
platform implementation

General possible risks
regarding platform

Liposomes Lipsomomal
amphotericin B

Abelcet Antifungal Fungal infections Decrease in toxicity by factor 20,163

lowering of nephrotoxicity of 58%,
reducing risk of mortality by 28%164

Hypersensitivity reactions to liposomal
drugs emerging from complement
activation-related pseudoallergies
(CARPA) as seen for Doxil, AmBisome,
DaunoXome, can lead to life-threatening
reactions in first time treated patients
especially with a cardiovascular
disease background165–167

AmBisome Antifungal Fungal and protozoal
infections

Lowering of nephrotoxicity
of 30%163,168 and infusion related
toxicity of 30-40%,163,169 treatment
success increase of 24%170

Amphotec Antifungal Fungal infections Decrease of mortality of 10% and
renal toxicity of 25%171

Amphocil Antifungal Fungal infections Decrease in nephrotoxicity172

Liposomal daunorubicin DaunoXome Cancer therapy HIV-related Kaposi’s
sarcoma, Leukaemia,
Non-Hodgkin lymphoma

Increase of drug concentration at
the site of KS lesions,173 decrease in
alopecia 30% and neuropathy 30%
in Kaposi’s sarcoma treatment,174

escape multi drug resistance175

Liposomal doxorubicin Myocet Cancer therapy Combinational therapy
with cyclophosphamide
in metastatic
breast cancer

Decrease of cardiotoxicity
of 16%,176 total retention of activity177

Liposomal-PEG
doxorubicin

Doxil, Caelyx Cancer therapy Metastatic breast and
ovarian cancer,
HIV-related
Kaposi’s sarcoma

Increase of circulation half-life of
74h vs. 10min, less frequent dosing
schedule and reduction in cardiotoxicity
of 20% for breast cancer178

Liposomal verteporfin Visudyne Neovascularization Age-related macular
degeneration, pathologic
myopia, ocular
histoplasmosis

First and only drug therapy approved
for treatment of macular degeneration99

Skin toxicity in areas of vitilgo related
to pegylated liposomal doxorubicin179

Liposomal vincristine Onco TCS Cancer therapy Non-Hodgkin’s
lymphoma

Reduction of neurotoxicity,180 increase
of circulation half-life of 72h vs.
several minutes, less frequent
dosing schedule181

Liposomal cytarabine DepoCyt Cancer therapy Neoplastic meningitis
and lymphomatous
meningitis

Less frequent dosing schedule and
delaying neurological progression182

Liposomal IRIV vaccine Epaxal/Inflexal V Anti-viral Hepatitis A, Influenza Achievement of 100% seroprotection in
infants and children, increase
in immunogenicity of 10%174

Liposomal morphine DepoDur Postsurgical
analgesia

Treatment of postsurgical
analgesia

Increase in analgesia for hip arthroplasty
up to 48h183

Liposomal propofol Diprivan Anesthetic
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Polymers PEGylated formations Oncaspar Cancer therapy Acute lymphoblastic
leukemia

Increase of circulating half-life, less
frequent dosing schedule,184 decrease
of immunogenicity185

PEGylation is well tolerated and has not been
associated with any adverse events regarding
Pegasys, PegIntron, Neulasta, Somavert203

Somavert Cancer therapy Acromegaly Increase in half-life of clearance187

Neulasta Cancer therapy Cancer chemotherapy
associated with
neutropenia

Increase of serum half-life of
40h vs. 3h188

PEG can generate complement activation
products in human serum, leading to possible
infusion-related reactions190

Adagen Immunosuppression Severe combined
immune deficiency

Mircera Anemia Anemia treatment with
associated chronic
kidney disease

Increase in half-life, less frequent
dosing schedule191

PEGylated proteins possibly trigger antibody
formation against PEG, leading to
accelerated clearance186

Pegasys Anti-viral Hepatitis B, C Longer half-life, reduced clearance192

Macugen Macula treatment Age-related
macular degeneration

First available opthalmic
anti-VEGF agent195

Detection of PEG antibodies of 22–25%
in patients treated with
PEG-asparaginase193,194

Cimzia Inflammation Crohn’s disease Increase in half-life,
less frequent dosing196

Glu-Ala-Tyr copolymer Copaxone Immunomodulator Multiple sclerosis
Poly(alylamine
hydrochloride)

Renagel Chronic kidney disease Reduction of 20-35% in mortality
for elderly people, decrease in bone
disease, vascular calcification197

Colesevelam hydrochloride Welchol Anti-diabetic Type 2 diabetes
Iron nanoparticlesik SPIONS Feridex Imaging Liver Dextran-coated superparamagnetic

iron oxide nanopartcles (SPIO) as Feridex
show interactions with plasma proteins,
which can lead to complement activation
and further clearance by the liver
or spleen198,199

Gastromark Imaging Gastrointestinal
Lumirem Imaging Gastrointestinal
Resovist Imaging Liver

Iron oxide based Venofer Anemia Chronic kidney disease
Cosmofer Anemia
Ferrlecit Anemia

Other platforms Albumin-bound
paclitaxel

Abraxane Cancer therapy Metastatic breast cancer Increase in overall response
efficacy of 14%, reduction of risk
for death by 28%, decrease
of toxicity permitting administration
of 50–70% higher doses200,201

Nanocrystalline Emend Antiemetic Brain Increase of bioavailability202

Tricor Anti-
hyperlipidemic

Vascular endothelium Increase of bioavailability202

Triglide Anti-
hyperlipidemic

Vascular endothelium Increase of bioavailability207

Rapamune Immunosuppressant Binding of mTOR
complex1

Increase of bioavailability 21%202

Megace ES Antianorectic Pituitary Increase of bioavailability202

Emulsions Estrasorb Menopause
treatment

Estrogen receptor

Elestrin Menopause
treatment

Estrogen receptor
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additional possibility to apply active tissue targeting through
targeting ligands or physical means. Conventional, small
molecular chemotherapeutics often have a short circulation
half-life due to rapid kidney filtration or liver metabolism, have a
small therapeutic index limiting their dose and exhibit a relative
lack of specificity for cancer tissue compared to other fast
growing cells, which leads to the well known, undesirable side
effects of cancer therapies. Many clinical cancer treatment
protocols are dose-limited due to side effects and thus of
suboptimal efficacy. The emergence of drug resistance is another
challenge in conventional cancer chemotherapeutics. The
combination of chemotherapy with nanoparticle based drug
delivery systems has shown to improve tolerability and there is
some evidence for improved efficacy in specific contexts, but
challenges for clinical applications still remain.

Potential risk factors regarding approved nanoparticle
based therapies

A number of nanoparticle-based therapies have been
approved by the U.S. Food and Drug Administration (FDA)
for clinical use, highlighting the benefit that can be achieved
through nanomedicine strategies (Table 3). Although all
mentioned approved drugs have fulfilled the safety requirements
of the FDA, the European Medicines Agency (EMA) or other
agencies, clinical observation has led to heightened awareness of
potential side effects. In particular, possible interactions
involving complement activation and antibody formation against
PEG that may lead to hypersensitivity reactions or preterm drug
clearance by the liver and kidney186 are a concern, although
PEGylation has been claimed to be safe in particular if applied to
proteins.203 The fact that such complement activation related
pseudoallergic reactions (CARPA)165,166,189,204,205 have been
observed only in a minority of patients, but in various liposomal
drugs including Doxil, AmBisome, DaunoXome and others,
points to individual predisposition. This effect might be related
to direct complement activation on the particle surface or to
reactive antibodies against polymers such as PEG as triggers of
complement activation, infusion reactions, and might also lead to
altered particle clearance through opsonization. Garratty et al
observed a 22–25% occurrence of PEG antibodies in 350 healthy
blood donors193 whereas in 1984 a value of 0.2% had been
described.206 It has been hypothesized that such an increase in
the occurrence of PEG antibodies in the last 30 years could be
due to a higher appearance of PEGylated compounds within
pharmaceuticals, cosmetics and processed food products, as
being suggested by Armstrong et al,194 though major method-
ological differences preclude firm conclusions.

Conclusions and outlook

Medicine needs new solutions to achieve highly effective,
side effect free, and cost efficient solutions for major diseases.208

The emerging field of intelligent nanomaterials for medical
diagnosis, therapy and their combination ‘theragnostics’ is based
on a range of well studied carrier platforms, a number of
targeting strategies each offering advantages and challenges and
a “smart” payload. This combination has the goal of increasing

specificity and efficacy in the diseased tissue, while abolishing
toxicity largely. Although pioneering work has been done in
oncology, both in preclinical development and clinical applica-
tion, it is widely felt that the added capabilities of intelligent
systems beyond “target cell killing” may render intelligent
nanosystems a shaping force for a much broader range of
diseases. To advance in such applications, a thorough know-how
about clinical challenges, material properties, physicochemical
properties, nano-bio interactions, toxicity, regulatory pathways
and clinical trials results is required.
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Within the last decade, nanotechnology has had amajor impact on preclinical development inmedicine, shaping
the emerging scientific field of nanomedicine. Diverse nanomaterial platforms have been introduced as a carrier
systems for the delivery of a variety of payloads (e.g. drugs, proteins, peptides, nucleic acids) but additional im-
provement by stimulus responsiveness would be of tremendous significance. The design of intelligent, stimuli
responsive nanosystems promises to expand diagnostic and therapeutic options inmedicine bymaking available
an array of highly effective, well tolerated platforms that go beyond simple delivery of drugs or imaging agents.
Controlled by internal triggers which may be characteristic for a disease or by external devices that permit tight
spatiotemporal control of activity, enhancement of desired therapeutic effects and further suppression of side ef-
fects in remote organs may be possible. This review focuses on the toolbox of available internal and external
switches suited for the integration into nanoscale carriers and on the clinical experience with stimuli-
responsive nano-platforms. A substantial body of evidence shows that internal stimuli including pH, redox po-
tential, enzymatic activity and temperature are suited to trigger nanosystems. For some such systems, clinical
trials are in progress, but solid clinical proof of significant patient benefit will be required next. Externally con-
trolled systems include electromagnetically-, temperature-, light-, radiation- and ultrasound triggered systems,
and for certain clinical indications, such systems have already proven clinical benefit.

© 2012 Elsevier B.V. All rights reserved.
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1. Brief introduction

Nanomedical approaches are amajor transforming factor inmedical
diagnosis and therapies. Based on important earlier work in the field of
liposomal drug delivery and inorganic nanomaterials, the last decade
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has brought a broad array of new and improved nanoscale carrier plat-
forms such as biodegradable and non-degradable polymers, dendri-
mers, carbon nanotubes, metallic and organic nanoparticles, quantum
dots, nanogels or peptidic nanoparticles. These systems are not only
suited to deliver drugs and imaging agents but also to carry advanced
functionality including internal and external stimuli-responsiveness in
a highly targeted fashion to a diseased area. Improvements in efficacy,
safety, target specific non-viral drug delivery, cellular uptake, as well
as intracellular stability and activity, are major reasons for the design
of multifunctional, intelligent and switchable nanosystems. Such switch-
able nanosystems can be classified into pH-, redoxpotential-, enzymatic-,
temperature-, light-, ultrasound-, mechano- and electromagnetic-/
radiation sensitive nanoparticles [1]. First insights in the variety of exis-
ting stimuli responsive nanosystems and their impact to therapy and
diagnosis have been given in the last years [2,3]. With the aim to prepare
the ground for a new generation of smart, highly active, well tolerated
nanoscale therapeutic systems, this review considers advantages and dis-
advantages of nanoscale carrier platforms for further functionalization
with nanosize switches. The focus is on the toolbox of internal and exter-
nal stimuli that can be used to incorporate switch functionality into such
nanocarriers and review the clinical experience with various nanosize
carrier systems as a basis for the design of new, improved, functional
and “intelligent” nanosystems for benefit to patients. As prior reviews
on multifunctional and stimuli responsive nanocarriers have put their
focus mainly on pH and temperature sensitivity, a further aim of this re-
view is to include and compare a broad range of stimuli suited for switch-
able nanosystems.

2. Engineering stimulus responsiveness into nanomaterials

To enhance therapeutic efficacywhileminimizing side effects, and to
allow molecular imaging in patients, a large number of nanomaterial-
based platforms have been developed that allow simple delivery of
drugs or diagnostic agents. A next frontier is to achieve more complex
functionality of nanoparticles through stimuli responsiveness. This will
allow the exploitation of specific biologic properties of a diseased area
for more specific, functional diagnosis to trigger a therapeutic response
in an intelligent fashion. Switches at the nanoscale are expected to
play a key role in progressing from “dumb” nanosize delivery vehicles
to “intelligent” nanosystems, reacting at specific spatiotemporal loca-
tions. Switchable nanoparticles can be classified based on the type of
stimulus as internally and externally controllable materials. Internal
stimuli (e.g. activation by pH, redox potential, enzymes) might be con-
trolled by amolecularmechanismhighly specific for a disease and there-
fore excel in targeting properties. However, absolutely disease-specific
internalmolecular triggers are difficult tofind for certain diseases. Exter-
nal stimuli like light, ultrasound, electromagnetic fields or ionizing radi-
ation have the advantage of being focusable on certain body areas. This
may be a significant advantagewhere a target cell is strongly involved in
pathogenesis at one location (e.g., cancer stem cells in a cancer tissue),
but of vital importance in other locations (e.g., stem cells in the bone
marrow). A key challenge in externally controlled nanomaterials is tis-
sue penetration and avoidance of undesired tissue damage in the radia-
tion path from radiation source to target tissue. The ease of temporal
control in external stimuli may represent a particular advantage for
certain applications.

2.1. Internal stimuli

2.1.1. pH-switchable nanoparticles
Tumor and inflammatory tissues showdifferences in pH-levels com-

pared to healthy tissue. In many tumors of a certain size, pH decreases
from physiological conditions (pH≈7.4) to acidic levels (pH≈6.5)
[4], although considerable differences even between healthy organs
and between different tumor types exist [5]. An acidic pH can also be
found in endosomal and lysosomal compartments of cells (pH≈5–6)
used for the degradation of undesired internalized molecules. This
lower pH can be utilized for the preparation of a potential switch for
drug release or gene delivery from a pH sensitive nanoparticle [3,6–9].
Successful application has already been demonstrated in the mid
1990s by Geisert et al., using immunoliposomes for delivery of dyes,
drugs, proteins and DNA [10]. A variety of polymeric pH-sensitive com-
ponents with pH-cleavable bonds have been described to self-assemble
to nanoparticles, permitting release of entrapped drugs at compart-
ments with lowered pH [11]. Kim et al. have published an L-histidine
based polymeric micelle system, which can be triggered by an early
endosomal pH of 6.0 [12]. The advantage of this system is the effective-
ness of high dose drug delivery into the cytoplasm with minimal drug
loss [4]. Another approach for exploiting the acidic pH is activation of
a payload enzyme upon arrival at the cellular target as published by
Broz et al. by encapsulating a pH-sensitive enzyme and a water-
soluble substrate with synthetic triblock copolymers [13]. To enable a
controlled substance transport across the impermeable polymer mem-
brane, the porin OmpF was integrated into the synthetic bilayer. OmpF
is known to remain fully functional in acidic pH and allows passive dif-
fusion of molecules smaller than 600 Da [14,15]. The pH-switchable
functionality could be demonstrated upon variation of the surrounding
pH, whereas the enzyme hydrolyzed the water-soluble substrate into a
water-insoluble fluorescent molecule [13]. Further development of this
system enabled the successful encapsulation of the pH-triggerable en-
zyme acid phosphatase in combination with glucose-1-phosphate and
gadolinium chloride, which are being proceeded into insoluble gadolin-
ium phosphate precipitates upon lower pH related enzyme activation,
describing a novel gadolinium nanoparticle-based contrast agent for
imaging [16]. Mok et al. have recently published a pH-sensitive siRNA
nanovector for targeted gene silencing to C6 glioma cells. They created
a nanoparticle with an iron oxide core, coated with polyethylenimine
(PEI), siRNA and chlorotoxin. The covalently bound PEI is cleaved after
cellular internalization by the acidic microenvironment but also en-
hances the biocompatibility of the nanoparticle at physiological condi-
tions. Chlorotoxin reacts as a tumor-specific targeting ligand while
effective gene silencing could be detected upon siRNA delivery [17].
Sethuraman et al. reported a cell-penetrating peptide (CPP) based de-
livery system that exploits the pH difference between inflammatory
and healthy tissue [18]. The system consisted of two parts, a polymeric
micelle forming a hydrophobic core with a TAT peptide sequence
attached to it, enabling drug incorporation combined with an ultra
pH-sensitive anionic block copolymer and shielding the positive char-
ges of the TAT peptide. There was no binding or cellular uptake at phys-
iological conditions, whereas de-shielding of the anionic copolymer at
the tumor site in the slightly acidic microenvironment could be ob-
served. Kale et al. used pH-sensitive TAT-modified pegylated liposomes
to show transfection enhancement in tumor bearing mice, attaching
PEG via a pH sensitive bond to the liposome. Detection of transfection
efficacy has been done using plasmid DNA encoding for the green fluo-
rescent protein (GFP) [19]. Up to now, pH-sensitivity has been the inter-
nal trigger that has attracted most attention [3].

2.1.2. Redox potential sensitive nanoparticles
Redox-sensitivity is another switch functionality of major potential

impact in intelligent nanomaterials. In vivo, a large difference in redox
potential by factor of 100–1000 between the oxidizing extracellular
and reducing intracellular space has been reported [1,20]. The high in-
tracellular redox potential is due to a high intracellular concentration
of thiols, in particular glutathione (GSH), free cysteine and homocyste-
ine. In an oxidative environment, thiol groups form disulfide bonds,
which will be cleaved in a reductive environment. The formation and
reduction of disulfide bonds in oxidized and reduced environments
allows to the construction of nanoscale switches. Wang et al. have
shown that such redox-responsive copolymer based nanoparticles
can overcome multidrug resistance in cancer cells [4,21]. Multidrug
resistance (MDR) is a major drawback within chemotherapy based
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cancer treatment [5,21]. MDR is cancer cell phenotype characterized
by over-expression of efflux pumps, which are actively removing che-
motherapeutic drugs from the cytoplasm. Therefore, they designed
redox-responsive nanoparticles based on disulfide-bond bridged
copolymers PCL-SS-PEEP loaded with doxorubicin (DOX), showing a
high internalization rate by cells. After cellular uptake, the disulfide-
bridged copolymers were reductively cleaved and the nanoparticles
disintegrated, leading to enhanced release of DOX and enhanced cyto-
toxicity to MDR cancer cells. Zhao et al. have shown successful protein
delivery into several human cancer cell lines and release through
redox-responsive nanoparticles [9]. They demonstrated effective encap-
sulation of caspase-3 (CP-3) with positively charged, disulfide con-
taining cross-linker polymers followed by internalization into cancer
cells. Subsequent release into the cytosol induced cancer cell apoptosis
due to active CP-3 in HeLa, MCF-7 and U-87MG cells. Mesoporous silica
nanoparticles have been studied as a redox-sensitive drug delivery sys-
tem, characterized by a high surface area, diversity in surface function-
ality, uniform and tunable pore size and biocompatibility [9,10,22–24].
Liu et al. used a polymeric cross-link network on the surface of meso-
porous silica nanoparticles as a gatekeeper for controlled release of
the payload [11,22]. After loading the silica nanoparticles with dye, the
pores surrounded by the covalently linked polymers were blocked via
addition of cystamine, forcing disulfide cross-linking of the polymers.
The pores could be reopened by the reducing agent dithiothreitol
(DTT), mirroring glutathione-based reductive cleavage in the cytosol.
Kim et al. demonstrated a similar gate-keeping effect usingmesoporous
silica nanoparticles covalently linked through disulfide bridges with cy-
clodextrin instead of polymers and loaded with DOX [12,23]. Cyclodex-
trin blocked the pores and inhibited undesired DOX release. In vitro
studies using A549 cancer cells showed reduced cancer cell survival
after application of DOX loaded mesoporous silica nanoparticles with
GSH induced drug release. Liposomes are also under investigation for
redox-sensitive drug delivery [4,23,25–28]. In the year 2000, FDA ap-
proved the anti-CD33 antibody linked drug Mylotarg®, developed by
Celltech Group and American Home Products and based on disulfide
bond and acylhydrazone linkers, for the treatment of acute myeloge-
nous leukemia [13,29]. As confirmatory trials failed to confirm a clinical
patient benefit, the FDA decided in 2010 to take Mylotarg® from the
market.

2.1.3. Enzyme responsive nanoparticles
Enzyme responsive systems exploit differential enzyme expression

in a diseased area for site-specific drug release. Much effort has been
put into investigation of enzymes secreted to the extracellular matrix
such as matrix metalloproteases (MMPs) [14,15,30]. MMPs are endo-
peptidases containing zinc and are responsible for the remodeling of
the extracellular matrix (ECM) by degradation of extracellular matrix
proteins. Different MMPs are over-expressed in specific locations,
e.g. the arteriosclerotic plaque or certain tumor tissues (lung, breast,
skin, ovarian), where they degrade the ECM and appear to contribute
to invasive tumor growth [13,31,32]. This differential expression and
the relevance of the enzyme for thedisease process renderMMPshighly
interesting as triggers for intelligent nanomaterials. Garipelli et al. have
synthesized MMP-sensitive thermogel polymers by incorporation of
MMP2-sensitive peptides into amphiphilic co-polymers. Upon in vivo
injection, the polymers form a gel structure due to their thermo-
sensitivity, which can act as drug reservoir for hydrophobic cancer
drugs like paclitaxel. Degradation of the polymer due to cleavage of
the MMP2-sensitive peptide with subsequent release of paclitaxel
could be shown by addition of MMP2 [17,33]. Singh et al. published bo-
vine serum albumin (BSA) based nanoparticles with MMP-2 sensitive
peptide coating. They investigated two different peptides, revealing dif-
ferential sensitivity toMMP-2 cleavage, and allowing regulation of drug
release. Similar results were also published by Elegbede et al., using li-
posomes and MMP-9 instead of polymers and MMP-2, with drug re-
lease triggered by cleavage of the lipopeptide [18,34]. Over-expressed
MMPs in a tumor can be exploited for molecular imaging. Jiang et al. in-
troduced activatable cell-penetrating peptides (ACPPs) incorporating
an inhibitory domain with negatively charged residues, which disables
cellular translocation of the ACPPs. Upon arrival at sites of MMP over-
expression, cleavage of the linker by proteases allows the CPPs to regain
their capacity to bind and enter cells [3,35]. This allows an effective im-
aging of MMP activity within different cancer types as shown by Olson
et al. [36]. Park et al. reported the synthesis of silica nanoparticles
modified with cyclodextrin as gatekeeper molecule responding to
α-amylase and lipase, as both enzymes are related to acute pancreatitis.
Silica nanoparticles were loaded with calcein, a fluorescent dye, which
could be detected upon cleavage of the gatekeeper by the enzymes
[37]. Bernardos et al. used lactose and starch as gatekeeping molecules,
synthesized on silica nanoparticles and demonstrated selective cleav-
age by β‐D-galactosidase with proof of cellular uptake by HeLa cancer
cells [38,39]. Patel et al. reported the synthesis of ‘snap-top’ silica
nanocontainers blocked byα-cyclodextrin, where enzymatic activation
could be achieved by addition of liver esterase resulting in release of the
cargo molecules [40]. Another approach using enzyme responsive
hydrogels was published by Thornton et al. [41]. Hydrogel particles
were functionalizedwith peptide-based actuators composed of enzyme
cleavable sites and positive charged amino acids able to entrap proteins.
Addition of thermolysin resulted in cleavage of the peptide and there-
fore release of anionic fragments, rendering the residual hydrogel parti-
cles positively charged, which induces particle swelling and drug
release. Exploiting over-expressed enzymes in cancer tissues for drug
release is thus a promising option awaiting successful clinical applica-
tion. A step beyond exploitation of native local enzymes is the design
of artificial, receptor targeted nanosize organelles as reported by [42]
that deliver an enzymatic pathway to a target cell, thus expanding the
metabolic repertoire of the target cell and, by choosing suited substrate
molecules, allow to exploit such “designer pathways” to run a pharma-
cologic or biologic reaction of choice at a target.

2.2. Internal/external stimuli

2.2.1. Temperature sensitive nanoparticles
A spontaneous temperature difference between diseased and

healthy tissue is a hallmark of various diseases, and producing local hy-
perthermia or hypothermia by physical means as a therapeutic strategy
is widely utilized in trauma, inflammation and other diseases. Nanoscale
triggers sensitive to spontaneous and induced local temperature change
are therefore of interest. Temperature-sensitive polymers exhibit a
phase transition at a certain temperature. Polymers which become solu-
ble upon heating have an upper critical solution temperature (UCST)
whereas those who turn insoluble upon heating, have a lower critical
solution temperature (LCST) [43]. LCST polymers exist in an extended
conformation below the phase transition temperature and turn into a
collapsed state above LCST. This feature has beenused in tumor research.
Certain tumor cells aremore sensitive to heat-induced damage thannor-
mal cells, rendering a combination of tumor hyperthermia and heat
responsive nanomaterials promising [3]. Liposomes and dendrimers
have been rendered temperature sensitive by incorporation of LCST
polymers. Upon an increase in temperature above the LCST, the poly-
mers collapse, the liposomal membrane bursts and a drug can be re-
leased [11,44]. A well-known representative of this class is poly(N-
isopropylacrylamide) (PNIPAM) [45]. Wei et al. have synthesized a
star-block copolymer based on PMMA and PNIPAAM for controlled
drug delivery. PNIPAAM is highly soluble in water at temperatures
below about 32 °C, while it becomes dehydrated and therefore insoluble
in water beyond that temperature [46]. Lee et al. have recently shown
cytosolic delivery of siRNA followed by gene silencing through a tem-
perature sensitive cationic polymer nanoparticle [47]. They used
pluronic poly(ethylenimine), which exhibits a thermo-sensitive and re-
versible volume phase transition in a temperature range of 20–37 °C
[48]. At 37 °C, pluronic/PEI2K nanoparticles were in a collapsed state
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Fig. 1. A) Representative illustration, showing perfusion of normal and cancerous tis-
sue. Nanoparticles predominantly permeate through the vascular endothelium within
cancerous tissue due to larger fenestration. Cancer tissue showing decrease of pH and
overexpression of MMPs (green) compared to healthy tissue, which can be used as in-
ternal stimuli for responsive nanoparticles (gray). B) Schematic overview of a cancer
cell, presenting internal (glutathione) and external stimuli (e.g. magnetic field, ultra-
sound, light, radiation) used for imaging, drug release and therapeutical treatment.
Targeted cellular uptake can be achieved via endocytosis and non-endocytotic cellular
uptake through cell penetrating peptides (CPPs).
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with an average diameter of 120 nm compared to a diameter of 350 nm
at room temperature. After uptake via endocytosis, a short cold shock
induced disruption of the endosome (150–200 nm) due to an abrupt
swelling of the nanoparticles, with siRNA delivered into the cytoplasm
leading to effective gene silencing. Temperature sensitive liposomes
(TSLs) can release their payload near their phase transition tempera-
ture (Tm), where the lipidmembrane shows a transition from a gel to
a liquid crystalline phase [49,50]. Several studies have showndelivery
of doxorubicin by thermosensitive liposomes triggered by induced
tumor hyperthermia [51,52]. DPPC/MSPC/DSPE-PEG2000, a so‐called
low-temperature-sensitive liposome (LTLS) is currently undergoing
clinical phase III trials for liver cancer and phase II for breast cancer
[53] (Fig. 1).

2.3. External stimuli

2.3.1. Light switchable nanoparticles
Light is an attractive form of energy for triggering switchable drug

delivery systems. Therefore it is not surprising that major efforts have
been invested into the development of light responsive nanoparticles,
including polymers, liposomes and dendrimers as drug delivery sys-
tems [54–58]. Light-responsive materials can be built through covalent
incorporation of specific light-sensitive chemical groupswith the aim to
release a payload by illumination [59]. Cabane et al. have reported the
synthesis of a photocleavable amphiphilic block copolymer. They used
an o-nitrobenzyl linker as a photosensitive molecule, which they incor-
porated between the hydrophobic and hydrophilic blocks. Through self-
assembly of the copolymers in buffer media, the formation of vesicles
and micelles could be achieved. Rapid structural changes in size of the
vesicles were observed in electron microscopy and dynamic light scat-
tering after irradiation with UV-light, demonstrating successful photo-
cleavage [60]. UV damage to the surrounding tissue is a major limitation
to broad clinical application of this chemistry, however.

In photodynamic therapy, activation of photosensitizers via light
generates highly reactive singlet oxygen radicals, which are known
to have damaging effects on biological macromolecules such as mem-
brane lipids and proteins [61]. Built into a nanocarrier system, such
nanoscale photodynamic approaches have found their way into clini-
cal applications such as photodynamic eye therapy for treatment of
neovascularization or abnormal endothelial proliferation [62]. Photo-
dynamic therapy using photosensitizers can also be used for cancer
treatment due to its cytotoxic effects and direct cellular damage [63].
Tissue penetration of light is the limiting factor, which has to over-
come for successful drug release in the depth of a tissue. Near-
infrared (NIR) light at wavelengths of 700 to 1000 nm can penetrate
up to several centimeters deep into tissue without causing any dam-
age [64,65]. This renders NIR much more attractive than UV-light
with its potential for severe tissue damage [57]. Babin et al. published
a two-photon-sensitive block copolymer, incorporating a coumarin
chromophore, which absorbs NIR at 794 nm. They used Nile red, a hy-
drophobic dye, to detect micelle formation and disruption by NIR irra-
diation by analysis of the changes in the fluorescence spectra [56]. Sun
et al. reported a two-photon-sensitive, carbohydrate targeted dendrit-
ic nanocarrier for NIR-triggered doxorubicin release. An NIR-induced
DOX release proportional to irradiation time proved their concept.
Carbohydrate coating of the dendritic micelles allows for specific
carbohydrate–target receptor interaction of such phototriggered
nanosystems [57]. Parak et al. showed an effective NIR light triggered
delivery of macromolecules such as proteins into the cytosol [66].
Nucleic acids (DNA, siRNA) are an attractive payload for light-
triggered release, and can be achieved by caging [67]. Caging involves
incorporation of a photolabile group into a molecule of interest, which
inhibits its biological function. Mikat et al. caged siRNA such that it be-
came inactive and could be successfully reactivated upon irradiation
with UV light. They introduced a photolabile group into a single nucle-
otide, located in the central part of an siRNA, leading to a bulge in the
double helix with disruption of RNA interference [68]. Several
photolabile groups have been used to cage biomolecules since caging
of ATP by Kaplan was first reported in 1978 [25,69]. An alternative
form of controlling gene silencing through caging of DNAzymes was
demonstrated by Young et al. DNAzymes are enzymatical active des-
oxyoligonucleotides capable for site-specific cleavage of RNA. The cag-
ing group inhibits hybridization of DNAzymes with mRNA, permitting
mRNA translation by the cell [70]. Yamaguchi et al. reported caging of
DNAwith a biotinylated photolabile protection group for light activated
gene expression [71]. Caged plasmid DNA has been reported by several
groups, but inducing effective gene expression by a low dose of light
remained amajor challenge [72,73]. This could be explained by the cag-
ing method used which inserts a photolabile protecting group at ran-
dom positions in the plasmid DNA phosphate backbone, resulting in
various differently caged plasmid DNAs; another detrimental factor is
the high level of light required for activation of gene expression,
which also can cause phototoxicity [74]. By site-specific labeling of the
promoter region, using a biotinylated photolabile group, Yamaguchi et
al. could show a more effective activation of gene expression in HeLa
cells by a low dose of light, rendering this method a more promising
candidate for light induced gene expression within living cells [71].

2.3.2. Ultrasound sensitive nanoparticles
Ultrasound has a number of attractive features as a trigger for drug

delivery. It can penetrate deep into the body, is non-invasive and can
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be applied in a precise and focused controlled manner with millimeter
precision [75]. Energy-based tumor treatment requires tumor imaging,
often performed byMR or CT before treatment. Ultrasound allows com-
bination of dual-modality imaging and therapy using high intensity fo-
cused ultrasound (HIFU) [76–78]. Twomain physical mechanisms arise
from focused ultrasound: heat and pressure. By applying long pulsed
signals with high energy, the temperature can be raised in order to re-
lease an encapsulated drug in addition to the pressure effects. Using
shorter pulsed signals with lower energy, pressure-mediated release
without hyperthermia can be achieved [79]. Ultrasound induces partial
drug release from micelles as shown by Rapoport and Husseini et al.
using a triblock ABA-type polymer encapsulating Doxorubicin [80,81].
In 1968, Gramiak and Shah pioneered the field of ultrasonic micro-
bubble imaging by documenting improvement of aortic wall delinea-
tion through injection of saline containing tiny air bubbles [82].
Currently, microbubble-based contrast agents are made from polymers
or phospholipids and filled with inert gas. Microbubbles are in the
micro- rather than in the nano range, as the stable incorporation of
gas into smaller objects is challenging; the gas content is important
for function because it is the cause of strong nonlinear resonance effects
required for imaging and ultrasound-mediated destruction. The deliv-
ery of drugs and gene delivery by such microbubbles is an active field
[79,83–86]. Comparedwith other drugdelivery systems, therapeutic ul-
trasound has the advantage of potentially delivering payload into the
cytosol without the endocytosis pathway due to pore formation in the
cell membrane by oscillating or disrupting microbubbles [87]. Takashi
et al. reported successful transfer of therapeutic genes into the spinal
nerve system using ultrasound and microbubbles [88]. Desphande
showed a 200-fold efficiency increase inDNA transfection by combining
ultrasound and PEI [89]. Ultrasound has also been used for delivery of
siRNA. Negishi et al. reported the development of bubble liposomes
entrapping siRNA. Efficiency could be proven by down-regulation of lu-
ciferase activity [90]. Otani et al. have published the delivery of siRNA
into mesenchymal stem cells, indicating that this technique could be a
useful strategy for genetically modifying stem cells for therapy [91].
Using the systems described above, it would be possible to specifically
deliver drugs, genes, therapeutic proteins and diagnostic agents into
deep sites for example heart or pancreas, which will be exposed to
ultrasound [92,93].

2.3.3. Electromagnetically sensitive nanoparticles
As electromagnetism has been a valuable biomedical principle for

imaging and energy transmission, magnetic nanoparticles have quickly
raised the interest as diagnostic and therapeutic agents. Magnetic
nanoparticles are widely used in drug delivery, cell labeling, magnetic
resonance imaging, cell separation, magnetic hyperthermia and as
magnetic sensors for metabolites [94–101]. Magnetic nanoparticles
are typically made from iron oxides with diameters of 1 to 100 nm.
The two main forms for iron oxide particles have a magnetite (Fe3O4)
or maghemite (γ-Fe2O3) core, which is surrounded by a biocompatible
material [102]. Due to their relatively low toxicity, such super-
paramagnetic iron oxide nanoparticles (SPIONs) have attracted sig-
nificant attention. “Naked” SPION's are not stable at physiological
conditions but aggregate quickly. Therefore, a hydrophilic, biocompati-
ble coating is necessary for biomedical application [11]. Usage of PEI
polymer to coat SPIONs can increase the efficiency of gene delivery
and can also protect DNA from further degradation by nucleases
[103]. Al-Deen et al. have reported in vitro data about the usage of PEI
complexed, superparamagnetic nanoparticles for the triggered delivery
of malaria DNA vaccine. Application of an external magnetic field
resulted in major improvement of the transfection efficiency [104].
For magnetically targeted therapy, magnetic nanoparticles are injected
into the bloodstream and are then concentrated at the target, through
application of a magnetic field, although deposition of particles at non-
targeted sites still must be taken into account [105]. Critical parameters
for targeting include field strength, magnetic properties of the particle,
blood flow rate or tissue depth [95]. Pouponneau et al. proposed the
concept ofmagnetic resonance navigation (MRN), which enables track-
ing and targeting of deep tissue within a weak magnetic field, using an
upgraded magnetic resonance imaging scanner [106,107]. Recently
they reported the development of biodegradable microcarriers, loaded
with magnetic nanoparticles and doxorubicin, for in vivo treatment of
hepatocellular carcinoma with control of the microcarriers to a depth
of 4 cm below the skin [105]. Cancer treatment can be achieved via in-
duced hyperthermia. To this purpose, magnetic nanoparticles have to
be dispersed within the target tissue. Through the application of a
magnetic field of sufficient strength and frequency, the particles can
be heated to the therapeutic threshold of 42 °C for cancer destruction
[108,109]. The advantage of magnetic hyperthermia treatment is that
healthy tissue will not be affected but only the designated tissue is
heated [104]. The first clinical applications have been realized by
the company MagForce, using their iron oxide based NanoTherm®
nanoparticles for glioblastoma. A number of diagnostic platforms
based on nanoparticles withmagnetic or superparamagnetic properties
have been developed for biomoleculemeasurements to enable early de-
tection of different diseases. Magnetic nanoparticles coupled to affinity
ligands can function as sensitive biosensors, also known asmagnetic re-
laxation switches [110]. Superparamagnetic nanoparticles, conjugated
with a specific ligand such as nucleic acids, peptides, small molecules,
proteins or antibodies, form stable nano-assemblies upon their interac-
tion, which leads to a corresponding decrease in the spin–spin relaxa-
tion time of neighboring water molecules [111–113]. This feature has
been recently used with aptamer-functionalized gold-coated iron oxide
nanoparticles, for detection of thrombin by Liang et al.: gold-coated
iron oxide nanoparticles with conjugated aptamers corresponding to
human α-thrombin were synthesized. Through addition of a solution
containing human α-thrombin, the nanoparticles switched from a dis-
persed into an aggregated state, leading in a change in the spin–spin re-
laxation time as well as the UV–vis absorption spectra. Therefore it was
possible for the first time to develop a magnetic relaxation and colori-
metric switch [110]. Alexiou et al. showed effective treatment of squa-
mous cell carcinoma in rabbits by injection of magnetic particles
(ferrofluids) bound to mitoxantrone with no signs of toxicity [114].

2.3.4. Radiation sensitive nanoparticles
Neutron Capture Therapy (NCT) is another interesting approach for

stimulus responsive nanoparticles, which can be used for enhanced
cancer therapy. The concept of NCT for cancer treatment was first
introduced in 1936 by Locher [115]. In NCT, the target is irradiated
with neutrons, which are then captured by atoms characterized by a
large absorption of neutrons, measured by the neutron cross-section.
Typically used high cross-section materials are 10B with 3830 barn,
155Gd with 55000 barn and 157Gd with 255000 barn (1 barn=
10−24 cm2) [116]. Neutron energy ranges typically used for NCT are
thermal (≈0.025 eV) or epithermal (1.0 eV–10 keV). Using thermal
neutrons just allows low tissue penetration (about 1.5 cm) whereas
epithermal neutrons show deeper penetration depth (about 3–4 cm).
Epithermal neutrons are slowed down during tissue penetration to
thermal energies, allowing them to be captured by the boron or gado-
linium neutrons [117]. Irradiation of 10B with thermal neutrons yields
formation of lithium-7 ions (7Li) and helium-4 nuclei or alpha particles
(4He), which have a high energy of 2.31 MeV and can kill cells through
various mechanisms. The ions path lengths are roughly 10 μm, which
is comparable with the diameter of one cell, therefore destroying only
10B containing cells without causing any damage to normal cells
[116,118,119]. Successful treatment of cancer requires about 20–30 μg
of 10B per g of tissue or 109 atoms/cell [89,120]. In addition, irradiation
of gadoliniumwith thermal neutrons leads to generation of gamma rays
up to 7.8 MeV and Auger electrons in the energy range of 41 keV.
Gamma rays can travel several centimeters through the tissue, there-
fore destroying tissue in a less focused area, whereas low energy
Auger electrons only have path lengths of several nanometer, which is
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sufficient to impart significant DNA damage when the emitting nucleus
is in close proximity to the DNA helix [90,121]. Up to now, most re-
search has been done in the field of boron neutron capture therapy
(BNCT), but targeting of boron labeled drugs into cancer tissue in suffi-
cient concentration still is a challenge with the use of current BNCT
agents used clinically, p-boronophenylalanine (BPA) and disodium-
mercaptoundecahydrododecaborate (BSH) [91,122–124]. Nanosize de-
livery systems have been introduced to neutron capture therapy as po-
tential drug delivery system to increase target concentration of the
BNCT agents, using liposomes as drug delivery systems functionalized
with antibodies, folate, transferrin or epidermal growth factor (EGF)
as ligands [92,93,125–130]. Yanagie et al. used liposomes as drug deliv-
ery systems for BNCT. They conjugated a murine monoclonal antibody
with liposomes, forming immunoliposomes which could deliver high
amounts of 10B to the tumor cells [92,94–101]. Shirakawa et al. have
synthesized a novel liposome containing BPA-peptide conjugate able
to increases the number of boron up to 12 or 15, therefore overcoming
the need of high boron concentration for successful BNCT [131]. Ueno
and his group have developed new vehicles for boron delivery based
upon dodecaborate lipid liposomes [132]. The unique feature within
these vesicles is that their shell itself possesses cytocidal potential in
combination with neutron irradiation. Hawthorne et al. described en-
capsulation of polyhedral boron compounds by liposomes made from
distearoylphosphatidylcholine (DSPC) and cholesterol [133]. Dendri-
mers can also be used as boron delivery system as reported by Shukla
and Backer et al. [134,135]. Gadolinium could combine diagnostic
(MRI) and therapeutic properties (NCT) in a single material. Watanabe
et al. investigated the biodistribution of Gd lipid nanoemulsion in
tumor tissue by intravenous injection as an alternative application to in-
traperitoneal injection [136]. Oyewumi et al. compared the cell uptake,
biodistribution and tumor retention of folate- and PEG-coated gadolin-
ium nanoparticles [137]. Significantly enhanced cellular uptake and
tumor retention was shown in the case of folate–coated nanoparticels
over PEG-coating. Encapsulation of a gadolinium compound into lipo-
somes and further addition into a thermo-sensitive polymeric gel was
reported by Le et al. [138]. This system showed extended retention of
the Gd compound in tumors, rendering it a potential system for trans-
port of cytotoxic chemotherapeutic agents.

3. Challenges for switches at the nanoscale in medicine

A key challenge for switches at the nanoscale is complexity [163].
Added complexity requires more sophisticated engineering, adds
new pitfalls for behavior prediction and probably most important,
tends to increase costs in manufacturing. These downsides must be
counterbalanced by a significant improvement in efficacy and safety
to render more complex systems viable in clinical application. Cancer
therapy with switchable nanosystems will serve as a test case in this
regard: Even though cancer treatment has evolved significantly with-
in the last few decades, surgery, radiation as well as chemotherapy
still are the main pillars of cancer therapy. While some spectacular
successes have been achieved in specific malignant diseases (e.g. in
certain leukemia types), most chemotherapies for solid cancer are
not curative and prolong life for a fewmonths up to a few years rather
than for decades. Advancement in cancer management with the goal
of prolonging lifespan and eventually cure of cancer depends on early
cancer detection, prevention of recurrence and metastatic spread and
effective management of established metastases. All factors together
play a key role, and this is where novel nanomaterial-based strategies
could have the highest impact.

3.1. Challenges for internal stimuli response

Functionalization of nanoparticles for response to internal stimuli
exploit biologic characteristics of the tumor cell or the tumor-
specific microenvironment to improve specificity and efficacy, and
at the same time to reduce side effects on bystander tissues. Tissue ac-
idosis reflected in differential pH values in tumor tissues, presence of
high amounts of glutathione in the cytosol and over-expression of
matrix metalloproteases are internal mechanisms which can be
used for targeting and drug release. The feasibility of pH switchability
within tumor tissue has been shown in principle, but at the same time
has exposed problems with this approach. The application of pH-
sensitive nanoparticles as drug delivery systems profits from active
targeting whereby receptor mediated endocytosis can be achieved.
In contrast, passively targeted long circulating PEGylated drugs are
associated with only low intracellular uptake [121–124,164,165]. A
combination of PEGylation, pH responsiveness and active targeting
may thus be a preferred approach. The over-expression of matrix
metalloproteases into the tumor microenvironment may provide an
opportunity for PEGylated nanoparticles to have their stealth provid-
ing surface groups removed in the extracellular matrix, allowing fur-
ther cellular uptake. When exploiting the gradient in redox potential
between the exterior and interior environment of cells is chosen, the
presence of low concentrations of reducing agents as GSH and cyste-
ine in the blood stream needs to be taken into account, which may
lead to premature reduction of disulfide bonds and loss of the desired
effect [92,125–130,166]. Internal triggers in complex biological sys-
tems like an entire organism are inherently difficult to control. Tem-
perature sensitive nanoparticles combine multiple external and
internal control properties, including hyperthermia associated with
inflammation, local application of ultrasound and electromagnetic
fields and are therefore of particular promise.

3.2. Challenges for external stimuli response

Switchable nanomaterials responsive to external stimuli can be
controlled and regulated by an external control apparatus, allowing
a wider choice of parameters. The ‘control’ does neither require
nanosize scale nor introduction in the body and therefore offers
more freedom in design. The advantages of light as external trigger
are availability (although the protection of the patient from excess
ambient light for a certain period may be a downside) and the “bio-
compatibility” of light, in particular for wavelengths longer than ul-
traviolet. The major drawback of light is tissue penetration depth,
which severely restricts the applications of caged compounds and
therapies based on nano-photodynamic therapies. The use of near
infrared light and the exploitation of two-photon effects and up-
converting schemes is a solution, albeit with significant challenges
to today's science and engineering. Most published data using NIR
use irradiation times in the range of hours, therefore complicating
practical application in trials and clinical practice. Ultrasound has
deeper penetration depth, but tissue damage in high intensity ultra-
sound applications does occur and requires particular care in design
of materials with optimal ultrasound sensitivity to allow reduction
of transmitted energy. Electromagnetically and magnetically control-
lable nanosystems require ingenious designs, in particular if the field
needs to be focused in deep tissue or if the field is used to control the
trajectory of the materials. Neutron capture depends on a strong
source of neutrons within a defined range, which are only available
in a few locations. Chemical elements present in normal tissue, like
nitrogen and hydrogen, have a lower neutron capture cross section,
but are present in extremely high concentrations. Therefore achieving
a sufficient contrast between tissue and neutron capturing nano-
materials is often difficult (Table 1).

4. Conclusions and outlook

Nanomedicine, the emerging field of applying nanosciencemethods,
tools and materials to the benefit of human health, has evolved into a
significant driver of medical progress, in particular in the area of drug
delivery. Different platforms have been established to overcome major
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Table 1
Illustrative overview of stimuli responsive nanoparticles and their current clinical state.

Application Stimuli Origin Nanocarrier Target Drug/Trade name Status Ref.

Internal pH Decreased pH in tumor and
inflammatory tissue, endosomal
and lysosomal compartments

Liposome MCF-7, A-549 cells Docetaxel In vivo [139]
Liposome K562 cells Mastoporan In vitro [140]
Micelle Ovarian cancer Doxorubicin In vitro [12]
Iron nanoparticle Glioma cells siRNA In vitro [17]
CPP Breast cancer no available data In vitro [18]
Polymer Breast cancer Paclitaxel In vivo [141]
Polymer Murine colon cancer Doxorubicin In vivo [142]

Internal Redox-potential Presence of different thiol based
compounds such as glutathione,
free cysteine and homocysteine
in the intracellular lumen
compared to its extracellular
concentration

Antibody–drug
conjugate

Multiple myeloma Maytansine Phase I [143]

Antibody–drug
conjugate

Breast cancer Trastuzumab-
DM1

Phase II/III [144]

Cationic polymer Different cancer cell lines Doxorubicin In vitro [145]
Copolymer J7741A-1 no available data In vitro [146]
Polymer A-549, MCF-7, Hela cells Paclitaxel In vitro [147]
Dendrimer BV-2 microglial cells N-Acetyl-l-

cysteine
In vitro [148]

Internal Enzyme-
responsive

Tumor associated over-expressed
enzymes

Liposome MT1-MMP expr. cell lines Docorubicin In vivo [149]
Polymer HT1080 cells Paclitaxel In vitro [33]
Polymer Glioma cells Adriamycin In vitro [150]
Micelle Lewis lung carcinoma Doxorubicin In vivo [151]

Internal/
External

Temperature Internal through pathological
induced hyperthermia

Liposome Liver/Breast cancer Doxorubicin Phase II/III [53]
Liposome Squamos cell carcinoma Doxorubicin In vivo [51]
Liposome B16F10 cells Doxorubicin In vitro [152]

External through locally applied
ultrasound or high frequency
causing oscillation and further
heat release

Liposome Liver cancer ThermoDox Phase III [131]
Liposome Murine adenocarcinoma Doxorubicin In vivo [153]

External Light UV, two-photon laser, NIR Liposome Neovascularization Visudyne FDA
approved

In market

Liposome Gastric cancer Photofrin In vivo [154]
External Ultrasound High or low pulsed ultrasound

signals
Micelles Breast cancer Doxorubicin In vitro/in

vivo
[76]

Micelles HL-60, MCF-7 cells Doxorubicin In vitro [155]
Liposome Mouse ascites tumor cells Plasmid DNA In vivo [156]
Liposome Lymph cancer Cisplatin In vivo [157]

External Electro-magnetic Magnetic field application Ferrofluid Glioblastoma NanoTherm EU approved [158]
Iron nanoparticle Hepatocellular carcinoma Doxorubicin Phase I/II [159]
Iron nanoparticle Lewis lung carcinoma Doxorubicin In vivo [160]

External Radiation Neutron capture therapy Boronphenylalanine Glioblastoma Boron Phase I/II [161]
Liposome Colon cancer Boron In vivo [132]
Polymer Neoplastic tissue in the rat

jejenum
Boron In vivo [162]
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bottlenecks such as biocompatibility, stealth properties, specific tar-
geting and controlled drug release, where a number of products have
found their way into themarket. However, the progress in drug delivery
systems for specific clinical applications is still a challenging task. One
important avenue for the future evolution of nanomaterials is the devel-
opment of stimuli responsiveness and of multi-functional nanosystems
that permit progressive optimization of diagnosis and therapy and can
be adapted to the needs of individual patients. Such nanosystems are
expected to be a key enabling technology for personalized medicine
[167].
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       Abstract 

 Over the last decade, the emerging fi eld of nanomedicine has 
undergone rapid progresses. Different internal and external 
stimuli like pH, temperature, radiation, ultrasound or light 
have been introduced to expand the diagnostic and thera-
peutic options of various applications within the fi eld. This 
review focuses on the novel application of light in the fi eld 
of nanomedicine as a mechanism to control drug delivery, 
release and biochemical and genetic functionality at the tar-
get. The fi eld of functional nanomaterials for medicine, and 
in particular of light responsive nanocarriers, polymers and 
biomolecules offer new therapeutic options but also requires 
substantial further research to render this approach broadly 
applicable in clinical practice.  

   Keywords:    light;   nanoparticles; photodynamic therapy; 
photothermal therapy.    

   Introduction 

 A variety of new nanomaterials such as polymers, liposomes, 
micelles, dendrimers or metallic nanoparticles have shaped 
the constant and rapid progressing fi eld of nanomedicine 
within the last decade. Today, nanoparticles have found their 
way into the clinical domain as drug delivery systems, for 
imaging, sensing and therapy. To provide specifi c character-
istics, nanoparticles can be tailored into  “ intelligent ”  nano-
particles through stimulus responsiveness. Stimuli responsive 
nanoparticle for medicine can be classifi ed based on the type 
of stimuli into locally/internal triggered systems responding 
to their close environment, and externally triggered stimuli-
responsive nanoparticles that can be remote-controlled even 
from outside the body. Various internal stimuli such as pH, 
redox potential, enzymatic activity, temperature and external 
stimuli like ultrasound, magnetic fi eld, temperature and light 

are being intensively investigated. Out of all these stimuli, 
light shows particularly attractive features such as high sensi-
tivity, ease of controllability and a range of physical properties 
(e.g., light intensity, wavelength, exposure time) that allow in 
principle to design selective and multiplexed activities to be 
programmed into a material. Therefore, it is not surprising 
that a signifi cant effort is currently invested into the devel-
opment of light responsive nanoparticles, oligonucleotides or 
peptides. 

 This review presents a brief overview on light and 
its applications within the fi eld of nanomedicine. It will 
describe mechanisms of light-controlled drug delivery, con-
trolled drug release, light-controlled activity switching for 
biochemical mechanisms, gen expression and gene silenc-
ing at the target. The aim of this paper is to identify opportu-
nities, describe gaps, and thus to stimulate further research, 
such that light- controlled nanomedical therapies develop 
into well tolerated, highly effective interventions to the ben-
efi t of the patient.  

  Application of light in nanomedicine 

  Light for triggered release and activation 

of drugs and biomolecules 

 Despite the efforts in drug delivery design and developments, 
major obstacles such as endosomal escape and effi cient pay-
load release within the diseased tissue and cell have to be 
overcome for effi cient clinical application. Light can be used 
to enhance drug delivery and payload release by applying 
light sensitive moieties to drug delivery platforms and of pho-
tolabile protecting groups to biologically active molecules by 
a strategy called caging (Figure 1). 

 Caging is an attractive way of turning biological molecules 
e.g., nucleic acids (DNA, RNA), proteins or peptides light 
sensitive for the investigation of biological processes. Caged 
biomolecules incorporate a light-removable protecting group, 
so-called  “ caging group ” , which aborts its native biological or 
biochemical activity. Since caging of ATP was fi rst reported 
in 1978 by Kaplan et al., several different photolabile groups 
have been introduced to turn biomolecules temporarily inac-
tive  (1 – 3) . Examples of caged biomolecules are neurotrans-
mitters  (4) , nucleotides  (4) , peptides  (5, 6) , siRNA  (7)  or 
DNA  (8) . The most widely used caged neurotransmitter so 
far is glutamate for which different protecting groups have 
been applied  (9) . RNA interference is a mechanism able to 
inhibit protein translation by gene silencing. Nguyen et al. 
caged a 1-(2-nirophenyl)ethyl (NPE) group to the 5 ′  terminal 
phosphate of the siRNA antisense strand, which inactivates 
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the siRNA activity  (10) . They could demonstrate an approxi-
mately 70 %  effi cient light induced RNA interference using 
wavelengths between 345 and 385 nm. An alternative form to 
siRNA mediated control of gene silencing has been reported 
by Young et al.  (11) . They introduced a caging group to 
DNAzymes to inhibit hybridization with mRNA. DNAzymes 
are enzymatically active desoxyoligonucleotides, which can 
cleave RNA in a site-specifi c manner. Translation of mRNA 
can be aborted upon illumination with UV-light to photo-
release the caging group. Caging of DNA has widely been 
studied as seen from several publications  (8, 12, 13) . To ren-
der those approaches suitable for future clinical application, 
extension of the work towards longer wavelengths and there-
fore reduced toxicity should be accompanied by identifi ca-
tion of suitable in vitro and in vivo disease models of human 
disease. 

 Light-responsive materials for drug delivery can be con-
structed by the covalent incorporation of specifi c light-sensi-
tive chemical groups with the aim to locally release cargo by 
illumination. The synthesis of a photocleavable amphiphilic 
block copolymer has been demonstrated by Cabane et al. 
 (14) . As photosensitive molecule they introduced an o-ni-
trobenzyl linker between the hydrophobic and hydrophilic 
blocks, which form vesicles or micelles upon self-assembly 
in aqueous solution. Successful disruption of the vesicles 
could be demonstrated after irradiation with UV-light by 
electron microscopy and dynamic lights scattering data. The 
design of photocleavable liposomes for drug delivery using 
different photolabile groups has been reported in several 
publications  (15, 16) . Dvir et al. presented a simple proof of 
concept by carboxylated polystyrene nanoparticles labeled 
with the unspecifi c amino acid sequence YIGSR, which 

adheres to  β 1 integrins present on most cell surfaces  (4, 
17) . The peptide was caged with a nitrobenzyl group, which 
could be removed via illumination, leading to nanoparticle 
binding to the cells. Another approach of light sensitive 
nanoparticles currently being investigated uses nano-impel-
lers. Nano-impellers are nanomechanical systems allowing 
the spatiotemporal drug release upon illumination, turning 
them into an attractive application for clinical trials  (5, 6, 
18, 19) . A clear disadvantage of many published systems is 
the requirement for light energy in the UV range, limiting 
their application due to phototoxicity and the very limited 
penetration range of short wavelength light in biological 
tissues.     

  Light induced gene expression and control 

of gene silencing 

 Light-mediated control of gene expression and silencing is a 
powerful and fast growing fi eld in the areas of systems bio-
logy, functional genomics and biotechnology. Spatiotemporal 
and precise gene expression represents the most fundamen-
tal level of further complex biological processes such as the 
control of thousand of proteins and the associated control of 
metabolic processes. Therefore, light represents a suitable 
stimulus for in vitro as well as in vivo studies as it is non-in-
vasive, sensitive and allows the spatiotemporal and precise 
application without interfering with metabolic conditions. 
Light-induced gene expression can either be achieved using 
caged biomolecules such as plasmid DNA  (12, 13) , tran-
scription factors  (8, 20, 21)  or via photoreceptors harboring 
a chromophore  (9, 22, 23) . Several reports focused on caged 
plasmid DNA ’ s have been published, whereas effective gene 

 Figure 1    (A) Light responsive drug delivery system built through covalent incorporation of specifi c light-sensitive chemical groups (red 
rectangles) with the aim to locally release cargo (red circles) by illumination. (B) Site-specifi c caging of DNA can be used for light-activated 
gene expression.    
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expression remained a major challenge due to ineffective 
random backbone modifi cations  (8, 10) . In addition, suc-
cessful uncaging and activation of gene expression required 
high levels of light that can cause phototoxicity  (24) . A 
more effective approach for light controlled activation of 
gene expression was shown by Yamaguchi et al. using a 
site-specifi c labeling of the promoter region with a bioti-
nylated photolabile group, leading to effective activation 
of gene expression in HeLa cells even under low levels of 
light  (12) . A successful gene regulation system combining 
light-sensitive proteins and programmable zinc fi nger tran-
scription factors has been published by Polstein et al.  (14, 
20) . The system is based on two light-inducible fusion pro-
teins from Arabidopsis thaliana, GIGANTEA (GI) fused to 
a Zinc fi nger protein leading the complex to the target DNA 
sequence and the LOV domain of FKF1 fused to the tran-
scriptional activation domain VP16. Illumination with light 
leads to fusion of the GI and LOV domain, which guides 
the LOV-VP16 domain to the target gene and enables gene 
expression.    

 Beside light induced gene expression, the focus of photo-
chemical control of gene function has been directed to RNA 
interference. RNA interference represents one of the major 
approaches leading to gene silencing/such as that occurring in 
embryogenesis) and is being extensively explored as a thera-
peutic strategy for different kind of diseases, including can-
cer. Two primary approaches for photochemical regulation 
have been developed. The caging groups are either covalently 
attached to the phosphate backbone or terminal phosphates or 
on the nucleotide bases to inhibit the further process of RNA 
induced silencing (Figure 2). The fi rst report of caged siRNA 
has been described by Shah et al. using 1-(4, 5-dimethoxy-2-
nitrophenyl)ethyl (DMNPE) attached to the phosphate back-
bone which only showed a 3 %  caging effi ciency  (15, 16, 24) . 
Caging of guanosine and thymidin bases by attaching 2-(2-
nitrophenyl)propy (NPP) groups has been reported by Mikat 
and Heckel  (25) . The modifi cations have shown knockdown 
effi ciency of about 75 %  after light irradiation. Jain et al. 
designed a siRNA caged at the terminal phosphates with a 

cyclo-dodecyl DMNPE, which is more bulky and therefore 
shows higher steric hindrance  (11, 26) . In contrast to the 
DMNPE, which has been introduced to the phosphate back-
bone, siRNA terminally caged with cyclo-dodecyl DMNPE 
showed an effi ciency of 89 % .  

  Photodynamic therapy 

 The therapeutic effect of light has been known for thou-
sands of years and was applied by the Egyptians, Indians 
and Chinese  (8, 12, 13, 27) . Its therapeutic relevance to 
cancer treatment and further development into the photody-
namic therapy (PDT) was reported at the beginning of the 
last century by Oscar Raab, a German medical student and 
his professor Hermann von Tappeiner  (28) . The principle 
of photodynamic therapy involves the administration of a 
photo sensitizer, which will form highly reactive singlet oxy-
gen radical (ROS) from molecular oxygen after illumination 
with light (Figure 3). Singlet oxygen radicals are known to 
cause severe damage to biological macromolecules such as 
membrane lipids and proteins  (29) . After absorption of light, 
photosensitizers will change from a ground state into a rela-
tively long-lived excited triple state and a short-lived excited 
single state. The excited single state can return to the ground 
state by emitting fl uorescence that can be used for clinical 
detection. In the excited triple state, the photosensitizer mol-
ecule can transfer its energy via a type-I or -II reaction. In the 
type-I reaction, the photosensitizer can react directly with a 
surrounding substrate to form radicals, which then can further 
interact with oxygen to produce oxygenated products. In the 
type-II reaction the energy of the excited photosensitizer can 
be directly transferred to oxygen to form highly reactive sin-
glet oxygen  (30) .    

 Photodynamic therapy has found its way into clinical appli-
cations using nanocarrier platforms as delivery system such 
as photodynamic eye therapy for the treatment of neovascu-
larization, abnormal endothelial proliferation or for different 
cancer treatments (bladder, skin, head and neck, esophageal, 
or endobronchial cancer)  (31, 32) . A number of nanoparticle-

 Figure 2    Schematic illustration of caged siRNA strategies. (A) Caged phosphate backbone and (B) caged terminal phosphates of siRNA. (C) 
Introduction of a caged base into a siRNA antisense strand to inhibit RNA interference.    
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based photodynamic therapies have been approved by the 
U.S. Food and Drug Administration (FDA) such as e.g., 
Visudyne  ®  , Photofrin  ®  , Levulan  ®   Kerastick  ®   opening doors 
for future applications and new possible approaches for future 
therapies  (31) . There are several advantages of PDT as a clini-
cal application including a single dose requirement for treat-
ment followed by illumination compared to radiotherapy and 
chemotherapy, which both depend on a treatment over several 
weeks or months. Further, it is a local treatment without inter-
fering with the whole organism and retreatment can be sim-
ply done in the case of recurrence of a tumor without severe 
healthy tissue damage. However, further development in 
the direction of controlled drug release, as well as improved 
payload capacity of nanoparticle-based delivery systems is 
warranted.  

  Photochemical internalization (PCI) 

 One of the key challenges that still needs to be overcome in 
order to enable the clinical application of therapeutic delivery 
of different payloads is endosomal escape. Various strategies 
have been developed to achieve endosomal escape and these 
are either based on the characteristic endosomal property of a 
lower intracellular pH compared to the cytoplasm, incorpora-
tion of fusogenic peptides into the endosomal membrane or a 
strategy called photochemical internalization (PCI). PCI is a 
site-specifi c method for intracellular drug delivery by induced 
endolysosomal escape based on photostimulation. The prin-
ciple behind PCI relies on photodynamic therapy targeted to 
endosomes or lysosomes, whereas the vesicular membrane 
bursts after coming into contact with highly reactive singlet 
oxygen after illumination of the photosensitizer (Figure 4). In 
comparison to conventional photodynamic therapy, where the 
intracellular localization of the photosensitizer does not play 
an important role because of its complete cellular destruction, 
PCI is based on the specifi c accumulation of the photosen-
sitizer in the endolysosomal compartment to achieve endo-
somal escape without harming the rest of the cell  (33) .    

 A fate that may be a consequence to nanocarriers after 
endocytotic uptake, is the accumulation in the endolysosome, 
whereas PCI offers a good solution. Lai et al. have demon-

 Figure 3    Light activation of a photosensitizer leads to the forma-
tion of highly reactive singlet oxygen for selective cell killing.     Figure 4    Intracellular drug delivery induced by endolysosomal 

escape based on photostimulation. Light-irradiation after endocytotic 
uptake leads to endolysosomal membrane burst upon highly reactive 
singlet oxygen.    

strated the effective delivery of doxorubicin and saporin 
by photochemical internalization using a poylamidoamine 
(PAMAM) dendrimer  (34, 35) . Recently, Lu et al. reported 
the overcoming of doxorubicin drug resistance in vivo by 
applying dendrimer phtalocyanine-encapsulated polymeric 
micelles combined with doxorubicin into doxorubicin-resis-
tant bearing mice  (36) . It has also been shown by Nishiyama 
et al. that PCI can mediate gene transfection, using a com-
binational system including polymeric micelles incorporat-
ing pDNA and a dendrimer-based photosensitizer  (37) . Both 
polymeric micelles are assumed to be taken up by the cells at 
the same time. After illumination, a remarkable enhancement 
of transgene expression could be detected while retaining cell 
viability. Beside enhancement of gene expression, PCI can 
also be used for siRNA mediated gene knockdown studies. 
The fi rst application of PCI to facilitate endosomal escape of 
siRNA was reported in 2007 by Oliveira et al.  (38) . They used 
TPPS 2a  as photosensitizer together with a siRNA able to knock-
down epidermal growth factor receptor (EGFR) expression. 
Complexes of EGFR siRNA and Lipofectamine were applied 
to the cells. A 10-fold increased effi ciency in EGFR knock-
down could be detected after illumination compared to siRNA 
treatment alone. A recently published study by Varkouhi et al. 
presents PCI mediated enhancement of gene silencing using a 
polymer-based nanocarrier platform consisting out of cationic 
polymethacrylates and N,N,N-trimethylated chitosan  (39) . 
Furthermore, PCI can enhance the effect of targeted protein 
toxins that have reached the tumors cells  (40) . Targeted protein 
toxins consist of a protein toxin moiety, initiating cytotoxicity 
and a cell binding moiety, which targets the protein actively to 
the cell. Denileukin diftitox is the fi rst FDA approved protein 
toxin for treatment of cutaneous T-cell lymphoma.  

  Photothermal therapy 

 Hyperthermia is a non-invasive approach for cancer treatment 
based on the principle of spatiotemporally increasing the tem-
perature to promote selective destruction of cancer cells, which 
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are more sensitive to hyperthermia than normal cells due to 
their higher metabolic rates. Several different approaches have 
already been applied for delivery of thermal energy such as 
ultrasound, microwaves or radiofrequency pulses  (41 – 43) . A 
disadvantage is their dispersive property with the result that 
high fl uences (high amount of particles that intersect an area 
at a specifi c timepoint) are needed, which lead to undesir-
able hyperthermic effects on surrounding tissues. Within the 
last few years, gold nanoparticles have received increasing 
attention due to their versatile applications such as imaging, 
cancer therapy, drug delivery and especially because of their 
unique surface plasmon resonance (SPR) absorption at vis-
ible or Near-infrared (NIR) wavelengths  (44) . The use of NIR 
is desirable due to its deep penetrating capacity and minimal 
interference with water and biomolecules in tissues. The prin-
ciple of photothermal therapy is the combination of light and 
gold nanoparticles (e.g., gold nanospheres, nanorods, nano-
shells, nanocages) for clinical treatment. Illumination of gold 
nanoparticles leads to conversion of absorbed light into ther-
mal energy, the resulting heat causes cell and tissue destruc-
tion (Figure 5). El-Sayed et al. have shown the use of gold 
nanorods labeled with an anti-EGFR antibody for selective 
photothermal treatment of cancer cells  (45) . A dual-modality 
approach for photodynamic and photothermal therapy has been 
recently published by Kuo et al.  (46) . They used gold nanoma-
terials conjugated with the hydrophilic photosensitizer, indo-
cyanine green, to achieve photothermal therapy (PTT) and 
photodynamic therapy (PDT). The combination of PTT and 
PDT showed enhanced destruction of cancer cells in contrast 
to their single application effectiveness. Photothermal tumor 
ablation in mice could be proven by O ’ Neal et al. using gold 
nanoshells  (47) . They subcutaneously injected murine colon 
carcinoma cells into immune-competent mice, followed by 
injection of gold nanoshells. After 6 h of circulation, tumors 
were illuminated with NIR. All treated mice looked healthy 
and tumor free after more then 90 days post-treatment.  

     Photoswitchable fl uorescent nanoparticles 

 Over the past decades a huge number of nanoparticles made 
of different materials have been developed and these have 
biological and medical applications. Whereas many of those 

platforms have been developed for the purpose of improved 
drug delivery and therapy another promising direction, 
which has attracted considerable interest is molecular imag-
ing. Nanoparticle-based imaging offers a non-invasive and 
quantitative detection method of biomolecules, while at 
the same time improves sensitivity and specifi city of diag-
nostic imaging as a tool for e.g., early cancer detection. 
Fluorescence spectroscopy is a powerful method used for 
molecular imaging of living cells, allowing very sensitive 
measurements at high resolution. Fluorescence imaging is 
based on the principle of the absorption of light by a fl uo-
rescent dye (e.g., fl uorophore or fl uorochrome), which emits 
fl uorescent light at a longer wavelength than that absorbed. 
Fluorescent nanoparticles such as polymer NPs, silica NPs, 
gold NPs or quantum dots (QD) gained intensive interest 
during the last years. They can be produced by doping the 
material with suitable fl uorescent dyes or luminescent met-
als while quantum dots can directly be applied due to their 
intrinsic fl uorescence properties  (48) . The advantages of 
fl uorescent nanoparticles compared to normal organic dyes 
are higher brightness due to the fact that a nanoparticle 
can carry several dye molecules, increase in photostabil-
ity because the dyes are entrapped within the nanoparticles, 
higher specifi city upon their functionalization properties 
and their long-term-tracking ability. 

 Understanding cellular networks is the essential key factor 
to understand the complex structure of certain diseases. To 
achieve this goal, signifi cant progress has been made in the 
development of quantum dots for cellular sensing which have 
been recently reviewed  (49) . Sensing quantum dots are based 
on the principle of the recognition of an analyte, which acts as 
a fl uorescence quencher, by a receptor or chemosensor caus-
ing changes upon emission of the fl uorophore. Various quan-
tum dots based on overcoating of the core with ZnS or CdSe 
to improve their fl uorescence quantum yield and additional 
modifi cation of the surface properties to increase their emis-
sion have been reported  (50 – 52) . Furthermore, this concept 
can be used to prepare glucose or maltose sensing systems, 
whereas a photoinduced electron transfer (PET) from the 
coating molecules to the valence band of an excited quantum 
dot results in emission quenching as shown by Cordes and 
Sandros et al.  (53, 54) . 

 Figure 5    Photothermal therapy is based on intracellular uptake of gold nanoparticles, which after irradiation with near-infrared light convert 
absorbed light into thermal energy for specifi c destruction of cancer cells.    
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and biocompatibility, in particular for wavelengths longer 
than UV. Furthermore, it has shown advantages regarding 
its high spatial and temporal precision. However, the major 
drawback of light is tissue penetration depth, which severely 
restricts the applications of caged compounds, light sensitive 
drug delivery systems and light-based therapies into clinical 
application. Thus, approaches like the usage of NIR linked to 
two-photon uncaging and up-converting systems seem to be 
promising but further optimization of these methods is needed 
to increase the chance of further application in clinical trials.    
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Original Article
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Plasmid linearization changes shape and 
efficiency of transfection complexes

Abstract: The ability to efficiently transfect plasmid DNA 
(pDNA) into eukaryotic cells has exerted major impact 
on scientific research in recent years, and translation to 
clinical application is ongoing, but challenging. In addi
tion to the choice of the delivery vector, the topology of 
the DNA seems to be a key factor for efficient transfection. 
The nanostructured DNA/Vector complexes may differ in 
size, charge, and shape, for example. This study therefore 
investigated the transfection efficiency of circular versus 
linearized plasmid DNA using a GFP expressing vector 
with Lipofectamine2000 and linear 25  kDA polyethylen
imine (PEI). Transfection efficiency and cytotoxicity were 
measured by flow cytometry and fluorescence micro
scopy. Shape was determined by transmission electron 
microscopy. Transfection agent concentrations were cho
sen below the toxicity level. We determined the optimal 
N/P ratio over 48 h by using two different concentrations 
of plasmid DNA. With the increase of DNA concentra
tion and increasing N/P ratio, transfection efficiency also 
increased. Our results showed a better transfection effi
ciency with the circular compared to the linearized DNA, 
under the same experimental conditions for both Lipo
fectamine and PEI. In electron microscopy, there was a 
notable difference in the shape of the complexes: circu
lar DNA had random coil appearance in well compacted, 
roughly spherical shape, while linearized DNA appeared 
as wormlike strands, both, when complexed with Lipo
fectamine or with polyethyleneimine. This generates the 
hypothesis that the shape of the transfection particle may 
be an important factor for successful gene transfer.

Keywords: cytotoxicity; DNA transfection; 
polyethylenimine.
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Introduction

The development of transfection techniques of DNA into 
eukaryotic cells has had a drastic impact on basic scien
tific research within the past decades such as to study 
the function of genes or gene products, by enhancing or 
inhibiting specific gene expression in cells and to produce 
recombinant proteins. Different purposes have even led to 
various clinical applications such as gene therapy (1) and 
DNA immunization (2). Application of nanotechnology in 
medicine, the emerging scientific field of nanomedicine, 
has yielded new synthetic transfection vectors for nucleic 
acids, leading to significant expansion of the potential for 
clinical applications. For the delivery of DNA to the target 
cell, several different delivery vehicles have been devel
oped, including liposomes (3), polymers (4), dendrim
ers (5) or magnetic nanoparticles (6), and the advent of 
receptortargeted delivery (7), smart nanomaterials (8, 9) 
and multifunctional smart nanosystems (10) expands our 
toolbox further. In addition to the gene delivery system, 
the structure of the DNA segment to be transfected plays 
also a key role for transfection efficiency. While DNA in the 
form of circular plasmids is often used even if the trans
fection target cell is eukaryotic, such circular plasmids 
are not the naturally occurring form of eukaryotic DNA, 
which typically is rather structured as a linear expression 
segment within a chromosome. While circular bacterial 
plasmids are easily produced in large quantities in bac
terial culture, alternatives like linear expression systems 
or microcircle DNA (11) are thought to confer advantages 
including improved nuclear translocation (linear con
structs) or absence of sequences that might lead to side 
effects, like nonmethylated CpG, or antibacterial resist
ance. Shape and charge of the DNA/Vector construct may 
also play a role for cell uptake.

The focus of this study was first, to compare trans
fection efficiency of circular versus linear plasmid DNA, 
using cancer cells as target cells, with a cationic lipid 
system (Lipofectamine) or a cationic polymer (polyethyle
neimine), and second, to develop hypotheses for potential 
differential efficiency. Lipofectamine is a standard pDNA 
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transfection agent usable only for in vitro transfection (12, 
13). Polyethylenimine (PEI) is a highly cationic polymer 
proven to be efficient and versatile for gene delivery in vitro 
and in vivo, and developed also with the goal of clinically 
applications (14). PEI is a highly cationic polymer avail
able at different molecular weights and different molecule 
structures such as branched and linear versions. High 
molecular weight PEIs (800 kDa) have shown increased 
toxicity compared to low molecular weight and linear PEI 
(25 kDa), rendering the latter the preferred transfection 
agent (15). We therefore compared circular and linearized 
forms of a plasmid DNA regarding transfection efficiency 
with either Lipofectamine®2000 or linear 25 kDa PEI.

Materials and methods

Preparation of plasmid DNA
The pEGFPC1 plasmid, encoding green fluorescent protein (Clon
tech) was used in this study for transfection. To linearize the plas
mid, the restriction enzyme AseI, (New England BioLabs) was used 
for digestion (Figure 1). Twenty units of enzyme were used to cleave 
2 μg of pDNA in 37°C for 15 min. The cut DNA was analyzed by 1.0% 
agarose gel and stained in ethidium bromide solution (0.5 μg/mL). 
Electrophoresis was carried out with a current of 80 V for 1 h in TAE 
running buffer.

Preparation of PEI solution
Linear 25 kDa PEI was purchased from Polyscience (Warrington, PA) 
and used to prepare a 1 mg/mL stock solution. To dissolve PEI, de
ionized H2O was heated to ∼80°C and mixed with 1 mg of PEI. In addi
tion the solution was cooled down to room temperature. The pH was 
adjusted to pH 7.2 and the solution was filtered using a 0.22 μm filter 
(Merck Millipore). Stock solution of linear PEI were stored at –20°C 
and thawed and stored at 4°C while in use.

Cell culture
HeLa cells were purchased from Deutsche Sammlung von Mikroor
ganismen und Zellkulturen (DSMZ; catalog number ACC57) and 
adapted to grow in Roswell Park Memorial Institute 1640 Medium 
(RPMI 1640 Medium; Invitrogen catalog number 31870025). All 
cells used in the experiment were cultured in RPMI containing 10% 
fetal calf serum (FCS), 1% GlutaMax™, 1% P/S and 1% NEAA. Cul
tures were maintained at a temperature of 37°C in a humified 5% CO2 
atmosphere.

Transfection procedures
All transfections were carried out in 24well plates (Corning) using 
either Lipofectamine®2000 (Invitrogen) or linear 25  kDa PEI. HeLa 
cells were seeded at 3 × 104 cells/well in 0.5 mL RPMI 1640+10% FCS, 
24 h prior to transfection.

Figure 1 Transfection efficiency and cytotoxicity of linear 25 kDa PEI at varying N/P ratios and different DNA concentrations. pEGFP-C1 
plasmid DNA 250 ng (A) and 500 ng (B) was complexed with the exact amount of PEI depending on the N/P ratio. (C) Fluorescence micro-
scopy images showing PEI transfection at different N/P ratios.
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For the transfections with linear PEI, circular and linearized plas
mid DNA (0.25 μg or 0.5 μg/well) and the exact amount of PEI depending 
on the N/P ratio was separately added to 50 μL OPTIMEM® Reduced
Serum Medium, briefly vortexed and kept at room temperature for  
5 min. The 50 μL of plasmid DNA was added to the 50 μL PEI solution, 
briefly mixed and kept at room temperature for 10 min. For the trans
fections with Lipofectamine, circular and linearized plasmid pEGFPC1 
DNA (0.25 μg or 0.5 μg/well) and 0.5 μL of Lipofectamine was separately 
diluted into 50 μL OPTIMEM and left at room temperature for 5 min. 
The 50 μL of plasmid DNA was added to the 50 μL Lipofectamine solu
tion, briefly mixed and kept at room temperature for 5 min.

The culture medium was removed from each well containing 
PEI/DNA complexes. The cells were washed with phosphate buffered 
saline (PBS) and fresh RPMI medium without antibiotics was added. 
The 100 μL of PEI/DNA and DNA/Lipofectamine complexes was 
added dropwise to the wells and the cells were incubated at 37°C. 
The cells treated with PEI were washed after 5 h with PBS and fresh 
medium was added following incubation at 37°C for additional 43 h.

Transfection efficiency measurements
Transfection efficiency was determined by flow cytometry analy
sis 24 and 48  h posttransfection. Briefly, transfected cells were 
washed twice with icecold PBS and harvested by trypsinization. 
Cells were collected by centrifugation at 1000 rpm for 5 min at RT, 
the supernatant was removed, and the pellet was resuspended in 
PBS containing 1% BSA at a concentration of 1 × 106 cells/mL. Per
centage of GFPexpressing cells and mean fluorescence intensity 
(MFI) were detected by flow cytometry equipped with BD Accuri C6  
(Becton Dickinson, San Jose, CA). Cytotoxicity was analyzed by adding  
0.05 μg/mL 7AAD (559925, BD pharmingen) to the samples 10 min 
before flow cytometry analysis.

Transmission electron microscopy
Transmission electron microscopy (TEM) was employed as imag
ing technique to visualize the circular and linearized plasmid DNA/

Lipofectamine and DNA/PEI complexes in aqueous environment. 
Complexes using 500 ng DNA were placed on a copper grid covered 
with a nitroglycerin film coated with carbon. A staining agent was 
added (2% uranyl acetate).

Statistical analysis
The data for flow cytometry analysis were analyzed by FlowJo X. 
Standard statistics including calculation of means and standard 
deviations (SD) and Student’s ttest for group comparisons. In all 
experiments, p < 0.05 was considered statistically significant.

Results

Transfection efficiency and cytotoxicity of 
linear 25 kDa PEI at varying N/P ratios

To determine the optimal N/P ratio of linear 25  kDa PEI 
regarding transfection efficiency, 250 ng as well as 500 ng 
of circular pEGFPC1 DNA was complexed with the appro
priate amount of PEI at N/P ratios of 5, 10, 15, 20, and 40. 
Transfection efficiency measurements were done by flow 
cytometry analysis. As shown in Figure 1, the percentage of 
GFP expressing cells increased with increasing N/P ratios 
and higher DNA concentration, reaching the highest value 
of 13% after 48 h at N/P ratio 40 using 500 ng DNA. The 
mean fluorescence intensity (MFI) significantly increased 
with the increase of N/P ratio and the higher DNA concen
tration. The maximal amount of nonviable cells was 2.5% 
after 48 h, revealing very low toxicity of the transfection 
agent.

Figure 2 Comparison of transfection efficiency and cytotoxicity of Lipofectamine and linear 25 kDa PEI. HeLa cells were plated at the 
density of 3 × 104 cells and transfected with 250 ng or 500 ng GFP plasmid DNA, complexed with Lipofectamine or PEI at N/P ratio 40. (A) GFP 
expression and cytotoxicity of transfected cells. (B) Mean fluorescence intensity of transfected cells. The data shown are the mean and SD 
from three different experiments. Two asterisks indicated p < 0.01 and three p < 0.001.
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Comparison of transfection efficiency 
and cytotoxicity of linear 25 kDa PEI and 
Lipofectamine
For the further comparison of PEI with Lipofectamine, the 
N/P ratio 40 was chosen due to the highest transfection 
efficiency. The optimal transfection condition for Lipo
fectamine was determined by seeding in a 24well plate 
2 × 104, 3 × 104, 4 × 104, and 6 × 104 cells per well and complex
ing 250 and 500 ng circular plasmid DNA with 0.5, 1.0, and 
1.5 μL Lipofectamine. The highest transfection efficiency 
was detected using 3 × 104 and 0.5 μL Lipofectamine for 
both 250 and 500 ng pDNA (data not shown).

After 48 h Lipofectamine displayed transfection effi
ciency superior to PEI (26% with 250 ng and 20% with  
500 ng vs. 11% with 250 ng and 13% with 500 ng plasmid 
DNA, respectively). Although the percentage of GFP 
expressing cells was higher with Lipofectamine, the MFI 
decreased with increasing amount of DNA. The compari
son of MFI of Lipofectamine with PEI N/P ratio 40 revealed 
much lower values at both DNA concentrations (Figure 2). 
Comparison of cytotoxicity showed no significant differ
ence between the transfection agents.

Comparison of transfection efficiency 
and cytotoxicity of circular and linearized 
plasmid DNA

The circular DNA showed very efficient GFP expression for 
both Lipofectamine and PEI. For Lipofectamine the GFP 
expression of linearized pDNA compared with circular 

dropped 6.5 times down with 250 ng DNA after 48 h. An 
eight times higher GFP expression was detected in the 
case of PEI with 500 ng circular plasmid DNA. The MFI 
of linearized plasmid DNA transfected cells decreased for 
Lipofectamine approximately 6 times and 40 times for PEI 
(Figure 3).

Shape of the transfection nanoparticle in 
transmission electron microscopy

Figure 4 shows the transmission electron microscopy of 
the resulting transfection nanoparticles created from 
Lipofectamine and PEI, respectively, with circular and 
linear plasmids. Circular plasmids display, in the case of 
both complexing agents, a random coil structure in an 
approximately spherical, well compacted shape. In con
trast, the linear construct appears with both complexing 
agents as wormlike strands, i.e., an apparently differen
tial tertiary structure.

Discussion
To advance clinical application of gene transfection/
delivery, progress in two key technical aspects, namely 
improved nanomaterialsbased vectors and optimal DNA 
cargo structure needs to be achieved. For transfection 
vectors, nanomaterials are seen as a promising route 
to the required optimal balance between nucleic acid 
binding and release at the target site. In addition, such 
vectors combine stealth properties (protecting the cargo 

Figure 3 Comparison of transfection efficiency and cytotoxicity of circular and linearized plasmid DNA. HeLa cells were plated at the 
density of 3 × 104 cells and transfected with 250 ng or 500 ng GFP circular or linearized plasmid DNA, complexed with Lipofectamine or PEI 
at N/P ratio 40. (A) GFP expression of transfected cells. (B) Mean fluorescence intensity of transfected cells. Blue columns indicate circular 
DNA, while red columns correspond to linear DNA. The data shown are the mean and SD from three different experiments. Three asterisks 
indicate p < 0.001.
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Figure 4 Transmission electron microscopy images of circular plasmid DNA (A) and linearized DNA (B) complexed with Lipofectamine and 
25 kDa PEI complexed with circular plasmid (C) and linearized DNA (D).

from premature scavenging by the immune system) with 
targeting capabilities to the target organ and target cell 
type. Optimally structured nucleic acid cargo is not less 
important, as this study shows that the topology of the 
expression vector has a substantial impact on expression 
success in vitro. In this study we performed comparative 
analysis of the transfection efficiency and cytotoxicity of 
linear 25  kDa PEI with the commercially available non
viral vector Lipofectamine in HeLa cells. Our study sup
ports that a circular plasmid offers advantages in terms of 
average expression intensity and expression homogeneity 
among cancer cells, while the linearized version led to 
expression in a limited number of cells. The findings were 

consistent for both the fluorescence microscopy as well as 
flow cytometry. The results showed that the transfection 
efficiency of linear 25 kDa PEI is dependent on the DNA 
concentration and N/P ratio. The highest GFP expression 
could be detected at N/P ratio 40 as already seen by others 
(16). It is known that the N/P ratio plays a crucial role for 
maximization of the transfection efficiency by influencing 
the size and the charge of the PEI/DNA complexes (17). 
Therefore, higher N/P ratios increase DNA condensation 
and endocytotic uptake by the cells (18). Although as seen 
in numerous studies, high transfection efficiency with PEI 
is mostly combined with high cytotoxicity whereas our 
study revealed very low toxicity values. The high amount 
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of free PEI at higher N/P ratios could be a key factor for the 
disruption of the endosomal membrane leading to higher 
expression efficiency from the PEItransfected DNA.

Lipofectamine is a lipidbased transfection agent, 
which is known to be highly efficient for the transfec
tion of a variety of cells. Our study revealed that trans
fection efficiency of Lipofectamine was up to two times 
higher than PEI. Although Lipofectamine shows better 
transfection efficiency, the MFI of PEI was higher than 
for Lipofectamine and increased with increasing DNA 
concentration. Moreover, we also investigated the trans
fection efficiency of circular and linearized plasmid DNA. 
Our results showed a reduced percentage of GFP expres
sion and MFI from linearized plasmid DNA after 48 h for 
both Lipofectamine and PEI compared with circular DNA.

In principle, differential expression may be due to dif
ferent composition of the vectors, e.g., different promoters 
etc. Differential expression may be a consequence of dif
ferential vectorcell binding and uptake as we believe that 
in nonreceptor targeted transfection used in this work, 
positive charge, i.e., a high N/P ratio facilitates nonspe
cific binding and uptake. Differential expression may be 
a consequence of intracellular processes like degradation 
by nucleases, of nuclear translocation or even integration 
of a vector into chromosomal DNA. Not all these factors 
could be assessed in this study, but future work will focus 
on an indepth understanding of the differential impact of 
these factors.

From the electron microscopy data, we found a 
notable difference in the shape of the complexes: circu
lar DNA had random coil appearance in well compacted, 
roughly spherical shape, while linearized DNA appeared 
as wormlike strands, both, when complexed with Lipo
fectamine or with polyethyleneimine. While the intrinsic 

persistence length of a double stranded DNA coil is known 
to be approximately 50 nm, defining the dimension of a 
DNA random coil, the binding of additional molecules 
to a DNA strand has the potential to alter its properties: 
polyethyleneimine, as a polycation, will bind through 
electrostatic interaction at multiple sites on a DNA strand, 
has an intrinsic persistence length below 1 nm in suited 
buffer and behaves, if stretched to a different shape, like 
an elastic rubber. At the scale of an individual polyethyl
eneimine molecule, a compacting molecule may there
fore impart an additional compacting force on the DNA. 
Charge of the complex may also significantly influence 
the overall shape: if complexation imparts an overall 
charge on the complex, electrostatic forces tend to stretch 
a segment within the Debye radius (i.e., the electrostatic 
screening distance by the acqueous electrolyte). The N/P 
ratio was â« in our experiments because transfection rates 
were low at N/P below 10. Interestingly, at N/P ratios of 
1.0, an impact on circular plasmid tertiary structure has 
been reported using a different polycationic polymer (19). 
Particle size and shape are important variables in the cell 
biology of endocytosis and phagocytosis (20). This sug
gests that the shape of the transfection particle may be an 
important factor for successful gene transfer.

Thus, for successful transfection of DNA into eukary
otic cells, and in particular for clinical in vivo applications 
(21), we hypothesize that control of shape of the DNA/cati
onic vector is an important design variable to be under
stood and controlled.
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5.2. Plasmid DNA condensation, size, molecular morphology and 

gene delivery efficiency by cationic diblock copolymers 
 
Introduction 
Within the past few years, a strong interest has arisen regarding the development of 

gene therapy as a potential cure for several diseases (1,2). A key challenge for gene 

therapy is the effective protection of the therapeutic DNA from enzymatic degradation 

and the transport to a specific target. Due to its polyanionic characteristic, the large 

size and the sensitivity regarding nuclease-induced degradation, naked DNA is 

unable to cross the cellular barriers by passive diffusion (3). Therefore, it is important 

to design suitable carrier systems to efficiently and safely carry therapeutic DNA into 

the target cells as well as release. Several non-viral gene delivery systems (e.g 

polymers, lipids) have been developed to condense and carry large nucleic acid 

constructs (4-7). Amongst all these materials, cationic polymers as polyethylenimine 

(PEI), poylamidoamine (PAMAM) or poly-L-lysine (PLL) are widely used due to their 

long-term safety, biocompatibility and strong condensing properties (8-10). PEI 

attracted great attention for gene delivery due to its highly cationic properties. 

However, PEI itself is not suitable as a drug delivery system for clinical application 

because of its cationic properties having the general tendency to bind to serum 

properties as well as increased cytotoxicity (11). Our approach was to synthesize two 

diblock copolymer, consisting of a hydrophilic poly-2-methyl-oxazole (PMOXA) block 

and a poly-2-(4-azidobutyl)-oxazole (PABOXA) block, with either terminal primary or 

tertiary amine groups. It is known that primary amines are especially responsible for 

DNA binding, while tertiary amines provide good buffering capacity to the system 

(12). The transfection efficiency of the two polymers was tested using HeLa and 

HEK293T cells at two different DNA concentrations over a time period of 48 h. In 

addition to the gene delivery system, comparison studies between circular and linear 

DNA demonstrated the structure dependency of the DNA segment to be transfected 

related to the transfection efficiency (13-15). 

The goal of this study was first the comparison of the newly synthesized diblock 

copolymers consisting of primary and tertiary amines with polyethylenimine (PEI) and 

the influence of DNA concentration concerning transfection efficiency using cancer 
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cell lines as target cells and second to investigate the molecular morphology of the 
condensed plasmid DNA by Transmission Electron and Atomic Force Microscopy.  

Material and Methods 

Synthesis of copolymers PABOXA5-b-PMOXA33-PA and PABOXA5-b-PMOXA33-
TA 
The novel polymers PABOXA5-b-PMOXA33-PA (Figure 1A) and PABOXA5-b-
PMOXA33-TA (Figure 1B) were synthesized by Dr.Kegang Liu.  
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Figure 1: Structures of the cationic diblock copolymers investigated. PABOXA5-b-
PMOXA33-PA (A), PABOXA5-b-PMOXA33-TA (B) 

DNA transformation, isolation and purification 

For transformation, DH5α	  competent cells were thawed on ice for 30 minutes. After 

10 minutes, 1ug of pEGFP-C1 was added to the cells. The cells were heat-shocked 

for 90 seconds in a 42° C water bath and put back on ice. Next, 800 μl pre-heated 

super optimal broth with catabolite repression (SOC) was added following an 

incubation at 37° C for 1 hour. Cells were then streaked out on LB agar plates 

containing 40 μg/ml kanamycin and put on 37° C overnight. A single colony from a 

freshly streaked selective plate was picked and a starter culture of 2 ml LB medium 

containing 40 μg/ml kanamycin was inoculated for ~ 8 hours at 37° C with vigorous 

shaking (250 rpm). The starter culture was then added into appropriate amounts of 

LB media and inoculated for additional 12 – 16 hours to let the cells grow to a late 

growth phase at 37° C with vigorous shaking (250rpm) Plasmid DNA from DH5α	  
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competent cells was extracted using Qiagen Plasmid Maxi Kit columns (Qiagen, 
Hilden, Germany) according to the manufacturers instructions. 

Preparation of PEI solution 
Linear 25 kDa PEI was purchased from Polyscience (Warrington, PA) and used to 

prepare a 1mg/ml stock solution. To dissolve PEI, de-ionized H2O was heated to 

∼80° C and mixed with 1mg of PEI. In addition the solution was cooled down to room 

temperature. The pH was adjusted to pH 7.2 and the solution was filtered using a 

0.22 µm filter (Merck Millipore). Stock solution of linear PEI were stored at -20° C and 

thawed and stored at 4° C while in use. 

Preparation of Polyplexes 
The plasmid DNA/polymer complexes were prepared by aqueous self-assembly. The 

diblock copolymers were dissolved in 10mM PBS and mixed accordingly to the N/P 
ratio, vortexed for 2 min followed by gentle stirring for 30 min at room temperature.  

Cell culture  

HeLa cells were purchased from Deutsche Sammlung von Mikroorganismen und 

Zellkulturen (DSMZ; catalog number ACC-57) and adapted to grow in Roswell Park 

Memorial Institute 1640 Medium (RPMI 1640 Medium; Invitrogen catalog number 

31870-025). All cells used in the experiment were cultured in RPMI containing 10 % 

fetal calf serum (FCS), 1 % GlutaMaxTM, 1 % P/S and 1 % NEAA. HEK293T cells 

were cultured in D-MEM containing 10 % FCS, 1 % GlutaMaxTM, 1 % NEAA and 1 % 

P/S Cultures were maintained at a temperature of 37° C in a humified 5 % CO2 
atmosphere.  

Transfection procedures 
All transfections were carried out in 24-well plates (Corning) using either 

pDNA/polymer complexes or linear 25 kDa PEI. Cells were seeded at 3 x 104 

cells/well in 0.5 ml growth medium, 24 hours prior to transfection.  

For the transfections, circular plasmid DNA (0.5 or 1.0 µg/well) and the exact amount 

of PABOXA5-b-PMOXA33-PA, PABOXA5-b-PMOXA33-TA or PEI depending on the 

N/P ratio was added to 250 µl OPTI-MEM® Reduced-Serum Medium, briefly 

vortexed and kept at room temperature for 30 min. The culture medium was removed 

from each well, the cells were washed with phosphate buffered saline (PBS) and the 



Chapter 5.2 

	   56	  

complexes were added to the wells and the cells were incubated at 37° C.  The cells 

treated with PEI were washed after 4 h with PBS and fresh medium was added 
following incubation at 37° C. 

Transmission Electron Microscopy 

Transmission electron microscopy (TEM) was employed as imaging technique to 

visualize plasmid DNA condensation by cationic diblock copolymers in aqueous 

environment. Samples were placed on a copper grid covered with a nitroglycerin film 
coated with carbon. A staining agent was added (2 % uranyl acetate). 

AFM Imaging 

A Bruker MulitMode V atomic force microscope was used for imaging in tapping 

mode with MPP-11100-10 cantilevers (Bruker AFM Probes; RTESP) with a nominal 

tip radius of 8nm. The scan frequency was typically 1.0 Hz. All samples were imaged 
in air. 

Preparation of Poylmer/pDNA complexes 

Plasmid DNA was first imaged in the absence of polymer. A 1.7 ug/ml in water stock 

solution was further diluted to 0.5 μg/ml in 5 mM MgCl2. Muscovite mica was used as 

a substrate for all AFM observations. Pretreatment of mica was necessary to promote 

electrostatic immobilization between the DNA/polymer condensates and mica. The 

mica sheet was pretreated with NiCl2 and 10 μl of the DNA solution was added and 

incubated for 1 min. Next, the mica sheet was thoroughly rinsed with 0.02 % uranyl 

acetate and then dried with a filter paper. Solutions with polymer/DNA complexes at 
NP ratio of 40 were treated in the same way.  

Flow cytometer measurements 

Transfection efficiency was determined by flow cytometry analysis 24 and 48 h post-

transfection. Briefly, transfected cells were washed twice with ice cold PBS and 

harvested by trypsinization. Cells were collected by centrifugation at 5000 rpm for 5 

min at RT, the supernatant was removed, and the pellet was re-suspended in PBS 

containing 1 % BSA at a concentration of 1 x 106 cells/ml. Percentage of GFP-

expressing cells was detected by flow cytometry equipped with BD Accuri C6 (Becton 
Dickinson, San Jose, CA).  
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Statistical analysis 
The data for flow cytometry analysis were analyzed by FlowJo X. Standard statistics 
including calculation of means and standard deviations (SD) for group comparisons.  

 

Results  

Gel retardation study 

Agarose gel electrophoresis was carried out to determine the plasmid DNA/polymer 

complexation at different N/P ratios. Polyplexes were formed at charge ratios of 10, 

20 and 40 and gel electrophoresis was subsequently carried out. Naked plasmid 

DNA migrates towards the anode, while complete retardation occurs at high charge 

ratios for PEI, PABOXA5-b-PMOXA33-PA and PABOXA5-b-PMOXA33-TA indicating 
formation of condensed nanostructures.  

 

Figure 2: Electrophoretic mobility shift assay of PABOXA5-b-PMOXA33-PA, 

PABOXA5-b-PMOXA33-TA and PEI plasmid DNA complexes on 1% agarose gels (A - 

C). Lane 1 – Ctrl (only plasmid), lane 2 – 4 are loaded with polyplexes formed at N/P 
ratios of 10, 20 and 40. 
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Transfection efficiency of PABOXA5-b-PMOXA33-PA and PABOXA5-b-PMOXA33-
TA at varying N/P ratios 

Plasmid DNA showed very efficient increasing GFP expression for the experiments 

with PEI for both HeLa and HEK cells and after 24 as well as 48 h. Comparison of the 

dependency of the DNA concentration revealed a concentration based increase of 

GFP expression for PEI for the HEK cells. The diblock copolymer PABOXA5-b-

PMOXA33-PA revealed minimal transfection efficiency with the highest values 

detected at N/P 40. For the HeLa cells, the transfection efficiency of PABOXA5-b-

PMOXA33-PA decreased after 48 h with increasing DNA concentration (36 times 

transfection efficiency decrease to 40 times for 0.5 μg DNA and 23 times decrease to 

28 times for 1.0 μg), whereas the HEK cells showed an increase after 48 h (13 times 

transfection efficiency increase to 10 times for 1.0 μg DNA). Transfection studies of 

PABOXA5-b-PMOXA33-TA resulted in no protein expression for both cell lines even 
after 48 h.  

 

A)
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B)

 
C)
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D)

 
 

Figure 3: Comparison of transfection efficiency of circular plasmid DNA. HeLa (A, B) 

and HEK293T (C, D) cells were plated at the density of 3 x 104 cells and transfected 

with 0.5 or 1.0 μg GFP plasmid DNA complexed with PABOXA5-b-PMOXA33-PA, 

PABOXA5-b-PMOXA33-TA or PEI at N/P ratios of 10, 20 and 40. Blue columns 

represent 24 h, while red columns 48 h measurements. The data shown are the 

mean and the SD from three different experiments.  

 

Shape of the transfection nanoparticle in TEM and AFM 
Figure 4 shows the transmission electron microscopy of the resulting transfection 

nanoparticles created from PABOXA5-b-PMOXA33-PA, PABOXA5-b-PMOXA33-TA 

and 25 kDa PEI, respectively. Circular plasmids display, in the case of PEI a random 

coil structure in an approximately spherical, well compacted shape. In contrast, 

PABOXA5-b-PMOXA33-PA forms flowerlike structures, whereas PABOXA5-b-
PMOXA33-TA shows the similar structure as naked pDNA.  
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Figure 4: Transmission electron microscopy images of free circular plasmid DNA (A) 

and complexed with PABOXA5-b-PMOXA33-PA (B), PABOXA5-b-PMOXA33-TA (C) 
and 25 kDa PEI (D). 

Figure 5 presents the atomic force microscopy images of free plasmid DNA, 

PABOXA5-b-PMOXA33-PA, PABOXA5-b-PMOXA33-TA and PEI. Naked plasmid DNA 

was first imaged displaying clearly visible double stranded DNA with closed loop 

structures forming twists, which are typical for uncondensed DNA (16). AFM images 

of PABOXA5-b-PMOXA33-PA reveal, that the polymer forms large aggregates. In 

contrast, PABOXA5-b-PMOXA33-TA showed two kinds of structures: a similar 

morphology like naked pDNA alone and plasmid molecules together with higher core 

structures indicating condensation start. PEI showed strong condensation of the DNA 
leading to spherically shaped structures.  
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Figure 5: Atomic force microscopy images of circular plasmid DNA and DNA 

complexed with PABOXA5-b-PMOXA33-PA, PABOXA5-b-PMOXA33-TA and 25 kDa 
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PEI. Naked pDNA (A), PABOXA5-b-PMOXA33-PA/DNA complexes (B), PABOXA5-b-
PMOXA33-TA/DNA complexes (C) and PEI/DNA complexes (D). 

Discussion 

Gene delivery is a complex process involving several steps and a challenging task to 

face all the barriers, such as proper DNA condensation, cellular uptake, gene 

expression and cytotoxicity, which have to be overcome. Our approach was the 

synthesis of diblock copolymers, comprising primary and tertiary amine groups. The 

first step, which has to be addressed, is to understand some of the factors that 

control DNA condensation such as DNA or salt concentration and material properties. 

Those parameters might affect DNA condensation as well as efficiency, size or 

aggregation of the nanomaterial.  

Therefore, the emphasis of this study was to investigate three parameters (DNA 

concentration, targeted cell line, chemical condensation properties) and investigate 

their influence on DNA condensation and transfection efficiency. The transfection 

efficiency of the cationic diblock copolymers was measured in HeLa and HEK293T 

cells, using a plasmid DNA containing a reporter gene encoding enhanced green 

fluorescent protein (GFP) and compared with the commercially available transfection 

reagent polyethylenimine. PEI is a highly cationic polymer proven to be efficient and 

versatile for gene delivery in vitro (17). This study supports the fact that primary 

amines compared to tertiary are showing much stronger binding to DNA (12). 

PABOXA5-b-PMOXA33-TA showed no transfection efficiency for all tested conditions 

(Figure 3 A - D). This can be explained by the fact that tertiary amine groups show 

weaker binding with DNA and therefore lower condensation, as also approved by 

TEM and AFM images. The results of PABOXA5-b-PMOXA33-PA compared with PEI 

showed that the transfection efficiency is dependent on the time, the cell line as well 

as the DNA concentration used (Figure 3 A – D). Increase in the N/P ration lead to 

higher transfection efficiency due to an increase in DNA condensation and 

endocytotic uptake by the cells, which is known by the literature (18,19). In principle 

different expression between PABOXA5-b-PMOXA33-PA and PEI may be because of 

the high amount of charges of PEI, helping to efficiently condense DNA into small 

spherical structures, which are favourably been taken up by endocytosis due to their 

cationic characteristic allowing interaction with negatively charged sugar moieties on 
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the cell surface. The study revealed, that the best transfection efficiency of 

PABOXA5-b-PMOXA33-PA was 10 times lower compared with PEI, when using HEK 

cells (Figure 3 D).  

The microscopy data showed clear differences in the shape of the complexes. PEI 

complexed plasmid DNA showed random coil appearance in well compacted, roughly 

spherical shape while PABOXA5-b-PMOXA33-TA showed flowerlike structures, 

implying that the condensation process has started (Figure 5 B – D). This was also 

been seen by Lidgi-Guigui et al (20). Condensation might lead either to 

monomolecular condensation or multimolecular aggregation as it can bee seen with 

PABOXA5-b-PMOXA33-PA, forming multimolecular aggregates (Figure 5 B). The size 

of the condensed DNA/nanoparticle plays a crucial role for efficient transfection, 

since smaller particles are more likely to be taken up the cells then larger particles, 

which can only enter the nuclear pore in dividing cells (21). This might explain the 

weak gene expression since the polyplexes are still being taken up by cells but due 

to the aggregate structure are not capable to enter the nuclear pore and therefore 

successfully start gene expression. In contrast, the compacted PEI polyplexes show 

strong transfection efficiency, which can be correlated to the highly condense and 

cationic structures formed, simplifying cellular uptake. A difference can be seen for 

PABOXA5-b-PMOXA33-PA by TEM (Figure 4 A) and AFM (Figure 5 B). TEM shows 

clear spherical structures, sticking to DNA and therefore forming a mesh like 

structure whereas AFM shows highly condensed multimolecular aggregates. This 

difference may be explained by the different sample preparation methods for the 

specific microscopic observations.  

Thus, the obtained results demonstrate proof of concept. It supports the fact that 

primary amines compared to tertiary are showing much stronger binding to DNA and 

better transfection efficiency. Furthermore, it gives insights into DNA concentration 

and cell line dependency regarding transfection efficiency.  

Conclusion 

The aim of this study was first to synthesize and understand the influence of primary 

and tertiary amines in regard to transfection efficiency of plasmid DNA. Furthermore, 

it attempted to give insights into the condensation efficiency of the diblock 

copolymers by visualization and comparison of the condensates via transmission 
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electron and atomic force microscopy. Transfection efficiency studies showed weak 

transfection with diblock polymers containing primary amines, whereas there was no 

significant signal detectable for polymers containing tertiary amines. Electron 

microscopy data revealed flowerlike structures of the diblock polymer consisting out 

of primary amines, whereas the AFM images showed strong aggregation formation. 

Diblock polymer consisting out of tertiary amines revealed for both, TEM as well as 

AFM analysis, showed similar morphology like naked pDNA alone, which is in 

agreement with the observed flow cytometer data of PABOXA5-b-PMOXA33-TA 

compared with naked pDNA.  

The data observed showed proof of concept and gives stimulation for further 

experimental investigations coupling in other factors like improvements of polymer 

design, pH, intracellular barriers etc, which need to be further explored.  
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Abstract 

Since its discovery, small interfering RNA (siRNA) has gained a lot of attraction as a 

promising biological strategy for treatment of several diseases. Due to its instability 

and poor cellular uptake efficiency, several delivery systems have been developed to 

overcome these problems. In this study we describe the design and characterization 

of novel pentablock based polyplexes, based on the combination of cationic 

pentablock copolymers with folic acid functionalized copolymers for target specific 

siRNA delivery. The resulting pentablock based micelleplexes spontaneously formed 

polymeric micelles of about 21 nm with a hydrophobic core surrounded by a cationic 

poly-2-(4-azidobutyl)-oxazole (PABOXA) and hydrophilic poly-2-methyl-oxazole 

(PMOXA) layer. The micelleplexes described form highly stable particles even in 

complete serum after 24 h compared with other cationic polymer and nanoparticles, 



which show aggregate formation in serum containing buffer solution. Targeted siRNA 

delivery and gene knockdown could be shown using GFP expressing HeLa cells, 

resulting in ̃  31% and ̃	 8% suppression of the gene (GFP) for targeted and non-

targeted micelleplexes, respectively. Comparison studies of folic-receptor positive 

HeLa cells with normal folic-receptor-negative HEK293 cells revealed clearly specific 

receptor mediated cellular uptake of fluorescently labeled siRNA. 

The new designed pentablock polymer based material showed no cytotoxicity during 

in vitro experiments, hence turning it into a promising candidate for further in vivo 

applications.  

 

Introduction 

Since the discovery of RNA interference (RNAi) there has been a considerable 

interest in the field of biology and medicine due to its possible huge capability for 

personalized treatment of several human diseases (1,2). The potential to selectively 

interfere and stop the development of gene-dependent diseases turns siRNA into an 

ideal therapeutic agent to suppress cancer growth. However, naked siRNA have a 

very short half-life when applied to systemic circulation because of rapid enzymatic 

degradation and clearance by kidney or liver due to its small molecular size, in 

average 21 base pairs and a weight of about 13.3 kDa versus a molecular renal cut-

off of 5-70 kDa for glomerular filtration (3-5). Naked siRNA molecules can also cause 

toxic effect, by stimulation of the immune response, off-target effects and saturation 

of the RNAi machinery (6). 

Due to their polyanionic characteristics, siRNA molecules are not able to 

spontaneously cross the cell membrane and thus require a delivery platform, which 

allows cellular uptake as well as cytosolic release for efficient gene knockdown. In 

regard to this given fact, numerous non-viral delivery platforms have been developed 

because of their low immunogenic effects, tunable size and targeting properties such 

as cationic lipids, polymers, dendrimers and inorganic nanoparticles (7). However, a 

major drawback of non-viral delivery platforms still is their cationic nature. The 

positive charge of the delivery platforms is relevant to complex negative charged 

siRNA molecules and is often involved in endosome disruption but positive charged 

nanoparticles often show increased cytotoxicity, cellular uptake by unspecific binding 

and binding to serum proteins, which inhibits cellular uptake of the particles (8-10). 



To improve the biodistribution, the specificity of cellular uptake and actively target the 

cell of interest, ligands can be incorporated that specifically bind to receptors on 

target cells to induce receptor-mediated interaction (11). Folic acid (FA) has been 

shown to be a favorable ligand to increase cellular uptake via receptor mediated 

endocytosis using polymer based delivery systems as seen by (12-14). Folate 

receptors are up-regulated in more then 90% of ovarian carcinomas and expressed 

at higher levels in lung, brain, kidney and breast carcinoma, whereas in most normal 

tissue it occurs at very low levels (15). However, the introduction of ligand molecules 

on the surface of polymer drug delivery systems can also have an adverse effect on 

the stability of micelles in aqueous solution.  

Promising candidates for in vivo therapeutic use are carrier systems composed from 

poly(2-methyloxazoline)-b-poly(dimethylsiloxane)-b-poly(2-methyl-oxazoline), 

PMOXA-PDMS-PMOXA, enabling the design of synthetic organelles with intelligent 

sensor-effector functionality (16,17). These copolymers form highly stable micelles or 

closed vesicles with a controlled diameter upon self-assembly in aqueous solution 

(18). In addition, they donʼt show cytotoxicity, limited nonspecific plasma protein 

binding due to their hydrophilic outer layer and avoid detection by the immune system 

and therefore prolonging blood circulation lifetime (19).  

The concept of this study was the design of a siRNA drug delivery system, based on 

PMOXA-PDMS-PMOXA block copolymers, combining cationic pentablock 

copolymers with folic acid functionalized copolymers for target specific interactions. 

The synthesized pentablock copolymer based siRNA delivery system was studied in 

the present manuscript and achieved outstanding colloidal stability in complete 

serum, siRNA condensation, targeted delivery, endosomal escape and neutral overall 

surface charge preventing undesired immunological interactions. To our knowledge, 

no related report exists dealing with the rational design of a pentablock copolymer 

siRNA delivery system for successful targeted siRNA delivery, based on PMOXA-

PDMS-PMOXA block copolymers.  

 

Material and Methods 
Synthesis of block copolymers 
The novel block copolymers discussed here were synthesized by Dr. Kegang Liu and 

are currently under patenting process. 



Scheme 1: 
 

 
 

Scheme 2: 

 

 
 

 

Preparation of siRNA loaded pentablock based micelles 
The siRNA loaded FA-PMOXA-PDMS/PMOXA-PABOXA-PDMS based micelles were 

prepared by aqueous self-assembly. Briefly, the polymers were dissolved in 200 µl 

ethanol under permanent stirring to give 2.5 % (w/v) solutions. The two polymers 

were mixed accordingly to the N/P ratio considering that the FA-PMOXA-

PDMS/PMOXA-PABOXA-PDMS mixture has a 0.5 mol% FA-PMOXA-PDMS content. 

The desired amount of this ethanolic solutions were subsequently added to 100 µl of 

10 mM PBS buffer containing 40 pmol of siRNA and the mixture was vortexed for 2 

min followed by gentle stirring for 1 h at room temperature.  

 

 

 



Determination of siRNA loading capacity of pentablock based micelleplexes 
The condensing ability of the pentablock based micelles was examined by agarose 

gel electrophoresis. The siRNA/copolymer polyplexes were self-assembled at 

different charge ratios (N/P) 0.5, 1, 2, 5, 10, 15, 30 and naked siRNA was used as a 

control. For electrophoretic separation, samples were loaded on a 1 % agarose gel 

and visualized with ethidium bromide (0.2 mg/ml). The retardation of siRNA mobility 

was detected via irradiation with UV light. 

 

Particle size and surface charge 

The particle size (diameter, nm) and the zeta potential of the nanoparticles were 

examined using a zeta sizer (Nano ZS, Malvern Instruments Ltd., Malvern, UK) by 

dynamic light scattering (DLS) and electrophoretic mobility respectively. All samples 

were measured in 10 mM PBS buffer pH 7.4 at 25 °C. Data were given as mean ± 

standard deviation (SD) based on three independent measurements. Transmission 

electron microscopy (TEM) images have been taken to confirm the size of the 

complexes.  

 

Transmission electron microscopy 

Transmission electron microscopy (TEM) was employed as imaging technique to 

visualize the size of the pentablock based micelleplexes in aqueous environment as 

well as to investigate aggregation formation of the micelleplexes and 

polyethylenimine in serum containing buffer solution. Samples were placed on a 

copper grid covered with a nitroglycerin film coated with carbon. A staining agent was 

added (2 % uranyl acetate). 

 

Stability studies 

Colloidal stability and agglomeration of the polymer solely and siRNA complexed with 

the polymer were investigated by incubating the polymer in PBS (pH = 7.4) for 4 days 

and siRNA-polymer complexes in PBS containing 10 % fetal calf serum (FCS) for 1 

h, 6 h and 24 h at 37 ° C, respectively. At each time point, an aliquot of nanoparticle 

(NP) solutions was collected to measure NP size. All samples were analyzed by 

dynamic light scattering based on three independent measurements. 

 



Cell culture 
HeLa cells expressing green fluorescent protein (GFP) were purchased from Cell 

Biolabs (catalog number AKR-213) and adapted to grow in Dulbeccoʼs Modified 

Eagle Medium (D-MEM; Invitrogen catalog number 31870-025). All HeLa cells used 

in the experiment were cultured in D-MEM containing 10 % FCS, 1 % GlutaMaxTM, 1 

% NEAA, 1 % P/S and 1% Blasticidin. HEK cells were cultured in D-MEM containing 

10 % FCS, 1 % GlutaMaxTM, 1 % NEAA and 1 % P/S. Cultures were maintained at a 

temperature of 37° C in a humified 5 % CO2 atmosphere. 

 

Transfection procedure 
Green fluorescent protein expressing HeLa cells were transfected in 24-well plates 

(Corning) using either pentablock based micelleplexes or the positive control 

LipofectaminTM RNAiMax according to the manufacturers protocol. Cy3-fluorescently 

labeled anti-GFP siRNA, anti-GFP siRNA and siRNA of random sequence was 

synthesized by Microsynth (Balgach, Switzerland). The siRNA sequence targeting 

GFP is 5′-GCA GCA CGA CUU CUU CAA G-3′ (sense) and 5′-CGU CGU GCU GAA 

GAA GUU C-3′ (antisense).  

Polymers were dissolved in Ethanol and gently mixed with 100 μl 10 mM PBS pH 7.4 

containing 40 pmol siRNA at the desired charge ratio. The mixtures were further 

incubated for 1 h at room temperature. Polymer siRNA complexes were used 

immediately after preparation. Complexes were prepared inside the well after which 

cells (10ʼ000 cells/well) and medium were added. The cells were washed after 24h 

with PBS and fresh growth medium was added following incubation at 37 °C for 

additional 48 h. Quantification of downregulation of target gene expression was 

analyzed by western blot analysis. 

 

Western blot  
HeLa cells were washed twice with ice-cold PBS and scraped into 1 ml cold PBS. 

The cells were pelleted by centrifugation at 3'000 rpm for 5 min and resuspended 

using 100 μl RIPA buffer containing protease inhibitors. The pooled cells were lysed 

mechanically and rotated for 30 min at 4°C. To remove nuclei, the samples were 

spun down (14,000 rpm, 15 min) and the protein concentration of the supernatant 

was determined by DC protein assay (Bio-Rad). Then, 30 μg of protein/well were 



loaded on 12% gels and separated by SDS-PAGE. Transfer to nitrocellulose 

membranes was applied at 100 V for 1.5 h, and the blots were blocked for 1 h with 

5% milk powder in TBS-Tween. Primary antibodies were applied overnight, 

secondary antibodies for 1 h. The immunoblots were detected by enhanced 

chemiluminescence (Pierce) on Kodak BioMax light films (Sigma). 

 

Cellular uptake determination of siRNA  
To visualize the cellular uptake of siRNA, the cells were transfected with complexes 

containing Cy3-labeled siRNA. HeLa and HEK cells were incubated with non-

targeted and targeted Cy3-siRNA/polymer, Cy3-siRNA/lipofectamine complexes and 

naked Cy3-labeled siRNA. Cells were seeded in 24-well plates in medium containing 

10 % FCS for 24 h. The naked Cy3-siRNA, Cy3-siRNA/polymer and Cy3-

siRNA/lipofectamine complexes were added to each well, and the cells were 

incubated at 37 °C for 4 h and 24 h, respectively. The culture medium was removed 

and the cells were washed with PBS (pH = 7.4). The cells were fixed with 4 % 

Paraformaldehyde (PFA) for 10 min. The cell nuclei were stained with 4',6-diamidino-

2-phenylindole (DAPI) solution for 20 min at room temperature. Subsequently, the 

cells were washed with PBS two times and then mounted with fluorescence mounting 

medium (Dako, Carpinteria, CA). The cells were visualized using a fluorescence 

microscope (Olympus BX61 Diana) under a magnification of 20. 

 

Cytotoxicity assay 
The cytotoxicity of pentablock based micelleplexes was evaluated with HeLa cells by 

measuring cell viability using the Resazurin reduction assay. Briefly, cells were 

seeded in 100 ml media in 96-well microtitre plates at a density of 4000 cells /well. 

Following overnight incubation, the cells were exposed to a range of different 

concentrations of pentablock based micelleplexes and grown at 37°C under a 5% 

CO2 atmosphere for 24 h and 48 h. Then, 6 ml of 0.02% (w/v) Resazurin (Sigma-

Aldrich, R7017) in phosphate buffered saline (PBS) was then added to each well and 

incubation was continued for an additional 1 h. Finally the fluorescence was read 

using a spectramax GEMINI XS microplate reader (lexc = 544 nm, lem = 590 nm). 

 

 



Results and Discussion 
Preparation and characterization of nanoparticles 

The pentablock based micelleplexes were prepared upon self-assembling in aqueous 

solution at the desired N/P ratio as shown in Figure 1. Dynamic light scattering (DLS) 

data showed a hydrodynamic diameter of 21 ± 3 nm (Figure 2). The slightly smaller 

hydrodynamic diameter observed by TEM analysis can be explained by the fact that 

the samples are dried during sample preparation, which leads to a decrease in 

particle size.  

To examine the loading capacity of the pentablock based micelleplexes, a gel 

retardation assay was employed (Figure 2). The quantity of siRNA was set as a fixed 

value, whereas the polymer concentration was increased accordingly to the N/P ratio. 

Complexation of siRNA with FA-PMOXA-PDMS/PMOXA-PABOXA-PDMS based 

micelles completely prevented siRNA migration at an N/P of 5, indicating full 

neutralization of the negative siRNA charge. Fully complexed siRNA stayed in the gel 

loading wells due to their large size of the complexes.  

The zeta potential of the polyplexes was determined by electrophoretic mobility and 

reveals that the particle surface of the polyplexes is slightly positive (+ 4 mV) before 

addition of siRNA, indicating that most of the positive charge is shielded by the outer 

PMOXA shell. It has been proven that nanoparticles with almost neutral surface 

charge (zeta potential between – 10 and + 10 mV) are less likely to effect 

immunological reaction in vivo (20,21). The micelleplexes, prepared at N/P 5, with a 

moderate positive charge (+ 4 mV) and small size (21 ± 3 nm) were selected for 

further biological experiments. 

 



 
Figure 1. Illustrative representation of siRNA pentablock copolymer formation.  

 

 
Figure 2. Characterization of the size and siRNA loading capacity of the 

micelleplexes. (A) Size determination by TEM. (B) Polymer based complexes at 

different N/P ratios were loaded onto agarose gel and electrophoresis was carried 

out. (C) Hydrodynamic size of micelleplexes measured by DLS. The FA-PMOXA-

PDMS/PMOXA-PABOXA-PDMS micelleplexes have a diameter of 21 ± 3 nm. 

 

Stability studies 
Cellular interactions of nanoparticles are well known to be based on physicochemical 

properties such as size, surface charge, structure and chemical composition of the 



particles (22-24). One of the key factors, which directly relates to cellular uptake is 

the surface charge of NPs (25).  

Positive charged NPs are strongly being taken up by the cells due to unspecific 

electrostatic interactions with negatively charged sugar moieties of monosaccharides 

and polysaccharides on the cell surface. Furthermore, the use of positive charged 

NPs in biological systems is often constrained due to the inherent toxicity associated 

with them (26). In regard to in vivo administration of the NPs, the positive surface 

charge often lead to binding with biomolecules such as serum proteins in biological 

fluids (27). Cationic polymers are well known to form aggregates in serum containing 

medium, which turns them highly unfavorable for further in vivo applications. 

Therefore, it is important while designing new vectors for siRNA delivery to consider 

the physicochemical properties to construct optimal nanoformulations for efficient in 

vitro and in vivo us.  

To evaluate the suitability of the micelleplexes for potential biomedical applications, 

stability studies regarding long-term storage, degradation and serum interactions 

were carried out. To evaluate the long-term stability, the NPs were prepared in PBS 

(pH = 7.4) at 37 ° C for 4 days and the size and zeta potential were measured as 

shown in Figure 3. During the study there was no significant change in the average 

diameter of the NPs whereas the surface charge decreased within time, which might 

be explained by the increased absorption of negative ions from the buffer solution 

such as phosphate ions.  

The stability of the pentablock based micelleplexes and the polymer/siRNA 

complexes in 10% serum, was investigated by DLS measurements. For the detection 

of nanoparticle aggregation, we chose to use DLS intensity distribution instead of the 

more popular number distribution, which is usually being used for nanoparticle 

characterization, due to the high sensitivity of the detection of larger particles such as 

aggregates compared to single particles. Based on the Rayleigh scattering 

approximation, the intensity of the scattered light by a particle is proportional to the 

sixth power of its diameter. Therefore, larger particles such as aggregates will be 

easily detected by the intensity distribution even though the total numbers within the 

whole sample is small. As seen in Figure 4 A, measurement of 100% serum shows 

two peaks at ∼ 10 and 50 nm, which are usually observed due to the high 

concentration of proteins in the serum as described by (28).  



Pentablock based micelleplexes and 25 kDa PEI were tested in serum containing 

buffer solution and analyzed after 1 h, 6 h and 24 h. As seen in Figure 4 B, after 

addition of the micelleplexes to the serum containing buffer solution, no significant 

change of the intensity spectra for large aggregates could be detected after all 

measured time-points. The micelleplexes are similar to the size of serum proteins but 

have in comparison much lower concentrations. On the contrary, the highly cationic 

polymer polyethylenimine, which is one of the most successful and widely used 

polymer for drug delivery shows an additional peak at much larger size, indicating 

aggregate formation. This observation could be assured by TEM images showing 

aggregate formation as compared to the pentablock based copolymers (Figure 4 D - 

E).  

The high colloidal stability of the micelleplexes can be attributed to their architecture. 

The PMOXA outer shell masks most of the positive charge of the PABOXA block, 

therefore reducing unspecific interactions with serum proteins. Former studies have 

evaluated that nanoparticles with zeta potential in the range between - 10 and + 10 

mV are less likely to cause immunological reactions (20,21).  

Furthermore, after loading of siRNA onto the micelleplexes a decrease of the zeta 

potential can be observed compared to the naked pentablock copolymer 

micelleplexes turning them slightly negative (- 1 mV). These studies demonstrated 

the excellent stability of pentablock based micelleplexes for potential in vivo 

application.  

 



 
Figure 3. Long-term stability conformation of micelleplexes. Stability conformation 

over 4 days indicating no significant change in the average diameter (blue), whereas 

a decrease of the zeta potential (red) can be measured. 

 



 
Figure 4. Characterization of the colloidal stability of the micelleplexes. (A) 

Hydrodynamic size measurements of serum, Polymer + 10% serum, siRNA/Polymer 

+ 10% serum and 25 kDa PEI in 10% serum. As compared with the micelleplexes, 



the hydrodynamic size pattern of the highly cationic PEI shows an aggregate peak. 

(B - C) Hydrodynamic size measurements of micelleplexes and 25 kDa PEI at 1 h, 6 

h and 24 h in 10% serum. TEM images of micelleplexes (D) and 25 kDa PEI (E) after 

24 h in buffer, containing 10% serum, demonstrating aggregate formation of PEI. 
 

Cellular uptake of siRNA 

We compared the cellular uptake efficiency of non-targeted and targeted 

siRNA/pentablock copolymer complexes on cancerous folate receptor (FR) positive 

(HeLa) or normal FR-negative (HEK293) cells. The cellular uptake of siRNA was 

observed with Cy3 fluorescently labeled siRNA. Naked Cy3-siRNA was employed as 

negative control for uptake study. HeLa and HEK cells were incubated with naked 

Cy3-siRNA, non-targeted and targeted Cy3-siRNA/polymer as well as 

Lipofectamin/Cy3-siRNA complexes for 4 h and 24 h at 37 °C. As compared to the 

non-targeted complexes, the red fluorescent Cy3-labeled siRNA were strongly 

observed in HeLa cells treated with FA targeted complexes after 24 h (Figure 5 A). 

These results indicate that the cellular uptake of the FA targeted complexes is mainly 

based on a folate-receptor-mediated endocytosis mechanism.  

However a small amount of Cy3-siRNA can be detected in HeLa cells treated with 

non-targeted complexes, which might be explained by fluid phase endocytosis, 

whereas particles are spontaneously being taken up through invagination of the cell 

membrane (29). 

The normal FR-negative HEK293 cells showed no significant signal regarding cellular 

uptake of the Cy3-siRNA, for the targeted and the non-targeted complexes even after 

24 h (Figure 5B) as expected, due to the lack of the folic acid receptor expression as 

proven by western blot analysis (Figure 6B). However, the proper mechanism of 

cellular uptake still remains a topic of research. 

 



 



 
Figure 5. Cellular uptake study of siRNA. Fluorescence microscopy images showing 

siRNA uptake of FR-positive HeLa (A) and of normal FR-negative HEK293 (B) cells, 

after 4 h and 24 h, respectively. Lipofectamine shows a high cellular uptake upon 

unspecific binding to cells, precluding its use in targeted “in vivo” context. DAPI 

staining, shown in blue, was added to visualize nuclei. Red signals represent Cy3-

labeled siRNA molecules (TRITC). 

 
Gene silencing mediated by siRNA loaded pentablock copolymer 

nanoparticles.  

To evaluate the gene knockdown efficiency of the polymer complexes, we used as a 

model stably green fluorescent protein (GFP) expressing HeLa cells and siRNA 

targeting GFP. Hela cells highly overexpress folic acid receptors (folate receptor 

alpha encoded by the FOLR1 gene) as compared to HEK cells (Figure 6 B). 

Quantification and visualization of the gene silencing was done by western blot 

analysis and fluorescence microscopy. GFP expression reduction was quantified by 

normalizing with tubulin expression. GFP expression was suppressed to 92 ± 4.2% 



and 69 ± 5.5% using non-targeted PMOXA-PABOBA-PDMS polymer and FA-

PMOXA-PDMS/PMOXA-PABOBA-PDMS polymer, respectively. In comparison, the 

common transfection reagent Lipofectamine showed a strong protein suppression to 

46 ± 7% (Figure 6 B). Adsorption of serum proteins on the nanoparticle surface may 

hinder ligand–receptor interaction and therefore preventing cellular uptake.  

However, these results demonstrate that introduction of a ligand clearly enhanced 

siRNA delivery and knockdown. Even though compared to Lipofectamine the 

decresase is not that high, Lipofectamine itself undergoes a non-specific cellular 

uptake route and is therefore not suitable for in vivo application in targeted delivery 

strategies. The gene knockdown efficiency can be qualitatively directly correlated with 

the uptake efficiency. Whereas lipofectamine shows a high cellular uptake and high 

level of GFP expression suppression, the targeted and non-targeted polymer/siRNA 

complexes lead to less cellular uptake and lower levels of protein expression 

suppression. Furthermore, no silencing effect was confirmed in all complexes using 

non-targeted siRNA (data not shown). Our results show also that siRNAs were 

localized to perinuclear regions and this localization was correlated to the silencing 

efficiency (Figure 6 C). In addition, a slight difference in the fluorescence pattern of 

the taken up siRNA by Lipofectamine or the micelleplexes can be seen. The 

micelleplexes show a more even distribution of the siRNA within the cytoplasm, 

whereas the Lipofectamine samples show concentrated dot like structures, localized 

around the periphery of the nucleus. This pattern might be explained by the fact that 

non-targeted micelleplexes are also been taken up by the cells, possibly by fluid 

phase endocytosis, whereas their intracellular fate might differ from the one of 

Lipofectamine. These observations possibly correlate, that RNAi activity is associated 

with siRNA localization to specific compartments in the cytoplasm, such as the 

perinuclear localization, as already stated by others (30). 



 
Figure 6. Gene silencing evaluation of siRNA, targeting GFP using non-targeted and 

targeted siRNA/polymer complexes compared with the classic transfection agent 

Lipofectamine. (B) Western blot showing protein expression of FR in HeLa and 

HEK293 cells as well as GFP knockdown in HeLa cells. 30 μg of protein from total 

lysates were loaded and subjected to WB analysis. (C) Fluorescent microscopy 

images showing cellular uptake of the siRNA. Green and Red signals represent GFP 

(FITC) and Cy3-labeled siRNA molecules (TRITC). Data were normalized versus an 

untreated control. The results are representative of three independent experiments. 

 

In vitro cytotoxicity evaluation 

Toxicity is an important consideration in the design of nanoparticles for efficient 



nucleic acid delivery. The toxic effect is mostly based on the cationic nature of the 

carrier system and often combined with high transfection efficiency (31). Therefore, 

many approaches have been conducted using polyethylenglycol (PEG) to prevent 

cationic nanoparticles from unwanted interactions and lower cytotoxicity. However, 

although PEGylation of NPs has been claimed to be safe in particular, recent findings 

have shown that PEG might lead to complement activation related pseudoallergic 

reactions and should be considered for design of new delivery systems (7). 

Cytotoxicity of the pentablock based polyplexes was assessed with HeLa cells by 

measuring cell viability using the Resazurin reduction assay. As shown in Figure 7 

cytotoxicity detection was at much elevated polymer concentrations then the one 

used in the experiments (5 mm) The low level of cytotoxicity can be explained the 

architecture of the pentablock copolymer. The positively charged polymer PABOXA 

block is surrounded by a hydrophilic PMOXA polymer layer, which generates a 

shielding effect of the nanoparticle from direct charge induced interactions with the 

cells.  

 

 

 



Figure 7. (A) Viability assessment of HeLa cells treated with micelleplexes at various 

concentrations for 24 h (blue) and 48 h (red). The cell viability is still above 90 % after 

48 h at concentrations 10 x higher then the one used in the experiments compared to 

untreated cells. (B - D) Microscopical images of HeLa cells treated with different 

polymer concentrations.  

 

Conclusion 
In this study, we have developed well defined pentablock-copolymer based 

micelleplexes of FA-PMOXA-PDMS/PMOXA-PABOXA-PDMS for efficient targeted 

siRNA delivery in vitro. The currently achieved 31 % knockdown efficiency shows its 

possible potential regarding gene therapy. The pentablock architecture allows the 

formation of highly stable micelleplexes with a neutral surface charge, siRNA 

condensation properties, excellent colloidal stability in serum and good 

cytocompatibility, due to the absence of considerable cytotoxicity. Furthermore, 

selective delivery of the siRNA could be proven by the introduction of a ligand linked 

block copolymer. This pentablock based system design for siRNA delivery might 

provide a great feasible and potential platform to be applied in vivo for cancer gene 

therapy. 
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Chapter 7: Conclusions and outlook 

The field of nanomedicine has evolved into an important driver for the finding of new 

solutions within the field of medicine to improve medical diagnosis and therapy of 

various diseases. Different nanomaterials have emerged and been tested for 

biomedical applications whereas drug delivery systems belong to the most successful 

and versatile examples. As seen by this study, a broad array of different delivery 

systems exists with the aim to overcome the major barriers such as specific cell 

targeting, controlled payload release and biocompatibility. But when compared with 

the number of developed delivery systems, only a few have found their way into the 

market, demonstrating the still existing difficulties from bench to bedside.  

To advance preclinical development and possible clinical application, the design of 

future delivery systems should comprise stimuli responsiveness and multi-

functionality. To progress in this direction, comprehensive and deepened knowledge 

is required. Light shows highly suitable properties as a stimuli such as sensitivity, 

biocompatibility and spatial and temporal precision turning light-based therapies into 

a very promising future application to expand the diagnostic and therapeutic options. 

Thus, a lot of effort is being put into the usage of NIR linked to two-photon uncaging 
and upconverting systems, two very interesting approaches with a high impact.  

Polymers have received great attention within the last decades due to their 

multifaceted design properties and their possible application in the biomedical field. 

Polymers based on block copolymers were developed for the controlled and efficient 

delivery of siRNA and plasmid DNA. The ability to efficiently transfect plasmid DNA 

into eukaryotic cells had a major impact on scientific research in the recent years as 

a potential cure for genetic diseases and the translation to clinical application is 

ongoing. In a first study we showed that next to the choice of the delivery vector, the 

topology of the DNA, as well as the control of shape and condensing properties seem 

to be key factors for efficient transfection. In a second study we synthesized cationic 

diblock copolymers to understand the influence of primary and tertiary amines in 

regard to transfection efficiency and DNA condensation. The data observed showed 

proof of concept and gave insights into polymer/DNA condensation properties by 
transmission electron and atomic force microscopy.  
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Small interfering RNA has gained a lot of attraction since its discovery, especially in 

the field of cancer research, considering a significant potential for personalized 

cancer treatment. We have explored the potential of novel pentablock-copolymer 

based micelleplexes for efficient targeted siRNA delivery in vitro with a high potential 

for future in vivo applications for cancer gene therapy. The design of the 

micelleplexes incorporated the consideration about future clinical implications such 

as compliment activation and hypersensitivity, which has been found for polyethylene 

glycol. Thus, the architecture of the micelleplexes proofed the formation of highly 

stable nanoparticles with a neutral surface charge and excellent colloidal stability in 

serum without the usage of polyethylene glycol as a shielding molecule. Furthermore, 

they show excellent siRNA condensation properties and good biocompatibility due to 

the absence of considerable cytotoxicity as well as selective delivery of the siRNA by 
receptor-ligand specific interactions. 

 

Future perspectives 

The synthesized pentablock based micelleplexes showed clear receptor mediated 

cellular uptake and efficient gene knockdown. Future steps would include the in vivo 

application of the micelleplexes to study its distribution pattern within an organism 

(mouse model) using a fluorescently labeled siRNA. Since the GFP cell line used 

represents a model system and to evaluate the variety of other possible targets of 

this delivery system, it would be necessary to switch towards a more clinically 

relevant application by knocking down specific oncological important targets to inhibit 
cancer growth.  

In addition to properly understand and improve cellular uptake, studies regarding 

detailed analysis of the cellular uptake mechanism involved such as receptor-

mediated endocytosis, normal endocytosis or pinocytosis should be conducted. 

Intracellular trafficking experiments could give insights into the fate of the 

micelleplexes, e.g endosomal escape and give further understanding how RNAi 

activity is associated with siRNA localization to specific compartments in the 
cytoplasm, such as the perinuclear localization. 
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Furthermore, targeting is an important topic for the design of a delivery system to 

increase specific biodistribution and therefore decrease unwanted interactions with 

healthy tissue. To further increase the specificity and sensitivity regarding clinical 

application of the system, caging of the siRNA incorporating newest developments 
such as two-photon uncaging and upconverting systems should be considered. 

To improve plasmid DNA transfection first the variation of the polymer architecture of 

primary amine containing polymers, meaning size and charge ratios between the 

single blocks (PMOXA vs PABOXA) of the polymers, which plays an important roles 

in dictating DNA condensation, should be considered. Second, combination of 

primary and tertiary amine containing polymers should be conducted, since tertiary 

amine, due to their buffering capacity, can improve endosomal escape and therefore 

increase transfection efficiency. Furthermore, introduction of a ligand-coupled 
polymer for specific receptor mediated cellular could be a potential improvement.  

Third, the designed primary amine containing polymers show strong aggregate 

formation. To better understand aggregation formation, comparison studies taking 
into account salt and pH dependency upon condensation should be executed. 
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