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Abstract 

 A substantial body of judgment and decision-making research focuses on decisions made 

under risk, where all relevant option outcome and probability information is known a priori. 

However, most real-world decision tasks are made under uncertainty, where such population-

level information is unknown. Against this background, how can, do, and should organisms 

obtain and use information in order to improve their judgments and decisions under uncertainty? 

This dissertation addresses these questions in two distinct domains: external information search 

in competitive tasks (papers 1 and 2) and internal search in the context of the inner-crowd 

(papers 3 and 4). In paper 1, we develop a new paradigm called the Competitive Sampling Game 

(CSG) to study how organisms adjust search in the presence of both natural uncertainty (i.e., 

gamble parameters) and social uncertainty (i.e., behavior of others). The paradigm produces 

simulation and empirical results showing that organisms should and do dramatically reduce 

search in the presence of competition to almost minimal levels. In paper 2, we expand on the 

initial results of the CSG to show how different levels of competition drive the evolution of 

decision strategies. In a second domain, we address how people can improve their judgments by 

harnessing a diverse inner-crowd using dialectical bootstrapping. In paper 3, we apply dialectical 

bootstrapping to a Bayesian reasoning paradigm to show how dialectical instructions induce 

strategy change and how people can become more Bayesian by averaging biased non-Bayesian 

judgments in their inner-crowd. In paper 4, we apply the inner-crowd to a cue-based estimation 

task and model the effects of different estimation strategies on final estimates and confidence. 

Our results suggest that people can use their confidence judgments to outperform the simple 

average of their inner-crowd. Moreover, dialectical bootstrapping increases these effects. 
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Introduction 
 

Traditional economic theory postulates an “economic man,” who, in the course of being 

“economic” is also “rational.” This man is assumed to have knowledge of the relevant 

aspects of his environment which, if not absolutely complete, is at least impressively 

clear and voluminous. He is assumed also to have a well-organized and stable system of 

preferences, and a skill in computation that […] enables him to reach the highest 

attainable point on his preference scale. (Simon, 1955, p. 99). 

 

If knowledge is power, then the rational human homo economicus assumed in classical 

economics is nothing short of a king in his1 world. Homo economicus begins every decision with 

both perfect knowledge of his internal preferences and complete knowledge of all external 

choice options combined with their potential outcomes and probabilities. As a result of his 

complete a priori knowledge, homo economicus never needs to engage in any kind of 

information search, either internally or externally. In addition, he has immense computational 

capabilities that allow him to calculate the option with the highest expected value and thus 

optimize his decisions. For these reasons, decision making is easy for homo economicus – in 

each and every decision-making task, from deciding what to eat to whom to marry, he simply 

chooses the option that maximizes his expected utility. The concept of uncertainty is as foreign 

to homo economicus as fire is to a fish. 

The myth of homo economicus 

In 1955, Herbert Simon exposed homo economicus is an idealized fictional character – 

one that makes for a nice mathematical story, but cannot serve as a model for how real people do 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
1 I refer to the rational economic man homo economicus as ‘he’ for historical continuity.  
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or should make decisions. Simon showed that real organisms, in contrast to homo economicus, 

never have perfect information about their environments. When a bee forages for food, it cannot 

know for certain how likely it is to find a patch in one corner of a field versus another 

(Montague, Dayan, Person, & Sejnowski, 1995). When hermit crab spots a new shell, it does not 

know for certain how robust the shell will be against future damage – or how many other crabs 

might be lurking nearby, waiting to swoop in and take it (Rotjan, Chabot, & Lewis, 2010). 

Instead, organisms must navigate a world of uncertainty, where the set of possible options, and 

the outcomes associated with those options, are a priori unknown. Moreover, real organisms are 

not blessed with an unconstrained cognitive system – instead, they have psychological and 

physiological limitations that preclude the use of complex optimization algorithms and force 

them to use simplifying algorithms.  

Simon knew that homo economicus was an unattainable ideal that needed to be 

abandoned. In its place, he called for a new decision-making model that could make decisions 

under uncertainty while conforming to biological and psychological constraints. While he 

proposed some essential characteristics of this model (e.g., information search rules and 

aspiration levels), he lamented that “the distance is […] great between our present psychological 

knowledge of the learning and choice processes and the kinds of knowledge needed for 

economic and administrative theory” (Simon, 1955, p. 100).  

Since Simon’s early critique of homo economicus, there have been substantial gains in 

research knowledge about the psychological processes underlying judgments and decisions. 

Psychologists have developed a number of promising theories that describe how flesh-and-blood 

decision makers with physiological constraints can make good decisions in uncertain worlds. 

Research on heuristic decision-making strategies such as the recognition heuristic (Goldstein & 
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Gigerenzer, 1999) and take-the-best (Gigerenzer & Goldstein, 1999) shows how people can 

make good decisions based on limited information by taking advantage of certain environmental 

contingencies. Cognitively grounded judgment models such as the Naïve Sampling Model 

(Juslin et al., 2007) explain how people make judgments from exemplars learned from past 

experience and stored in long-term memory. Reinforcement-learning models describe how 

people update impressions of options over time (e.g., Gonzalez, Lerch, & Lebeire, 2003; 

Hertwig, Barron, Weber, & Erev, 2004), how unbiased judges can form biased opinions through 

incomplete feedback (Denrell, 2005), and how people select strategies for a given task 

(Rieskamp & Otto, 2006). Information foraging models explain how organisms can adaptively 

search for information in their environments given limited time and potential search costs (e.g., 

Stephens, Brown, & Ydenberg, 2007).  

My goal in this cumulative dissertation is to continue these lines of research by adding a 

small piece to help fill the void left by Simon’s destruction of homo economicus. Specifically, I 

try to understand how real people with a limited cognitive architecture can make good decisions 

in uncertain environments. I address this question in four papers that examine two distinct 

decision domains: information search in competitive contexts (papers 1 and 2) and the wisdom of 

the inner-crowd (papers 3 and 4). 

From Decisions From Description to Decisions From Experience 

All organisms must make decisions between options with unpredictable outcomes. 

Consider the decision between staying in one’s current job or changing to a new job: This 

decision can be viewed a choice between a “sure thing” – the known happiness of one’s current 

job – and a “risky” second option that can lead to either an increase or a decrease in happiness. 

Experimentally, decision-making researchers typically represent such options as monetary 
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gambles (see Figure 1), where each option can result in one or more potential outcomes with 

explicitly defined probabilities. Importantly, because all outcome and probability information for 

each gamble is presented to participants, these tasks are known as decisions from description. 

 

Option A     Option B 

$100 with probability 1.0   ‒$50 with probability .50 

$150 with probability .50 

 

Figure 1: The “drosophila” of judgment and decision making research: two options 

represented as monetary gambles. 

 

Since at least the 1970s, the simple descriptive monetary gamble has served as the 

“drosophila” of judgment and decision making, driving the majority of basic research in the 

field. Notably, prospect theory (Kahenman & Tversky, 1979), perhaps the most influential theory 

of decision making, is primarily tested using monetary gambles.2 Prospect theory assumes that 

people begin a decision task by transforming each option’s objective outcomes and probabilities 

using a utility weighting function and a probability weighting function, respectively. People are 

then assumed to multiply and add these transformed probabilities and utilities to calculate an 

expected utility for each option, and then choose the option with the highest expected utility. 

Among prospect theory’s many predictions, which are now widely accepted in decision-making 

research, is that people will overweight outcomes with small probabilities and underweight 

outcomes with large probabilities (Kahneman & Tversky, 1979).  

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
2 Although prospect theory has also been applied to non-monetary, affective decisions (Pachur, 
Hertwig, & Wolkewitz, 2013; Rottenstreich & Hsee, 2001). 
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However, despite its popularity, prospect theory has a major shortcoming in that it falls 

prey to the false assumptions of homo economicus exposed by Simon (1955). Namely, prospect 

theory assumes that decision makers make decisions from description (Hertwig et al., 2004), 

where they have perfect population-level information about all options, their associated 

outcomes, and their probabilities. This applies to choice domains from monetary gambles to 

mate selection. In deciding between potential mates, prospect theory must assume that decision 

makers know all possible outcomes and probabilities associated with each candidate. But, of 

course, people in the real world do not walk around with outcome and probability labels floating 

above their heads, as the gambles in Figure 1 would suggest. In the real world, decision makers 

must navigate a world of uncertainty, where the set of outcomes and their associated outcomes 

and probabilities are a priori unknown. 

Decisions from experience. Thankfully, organisms have a tool that can help them make 

better decisions in an uncertain world: exploratory search. People can go on dates before 

proposing marriage; hermit crabs can examine shells before deciding whether or not to make a 

move. Decisions such as these that require pre-decisional information search are known as 

decisions from experience (Hertwig et al., 2004).  

How does research on decisions from experience depart from the decisions-from-

description paradigm depicted in Figure 1? In the laboratory, decision-from-experience tasks are 

typically represented as two or more opaque options (i.e., urns or boxes) on a computer screen, 

where each option represents an a priori unknown probability distribution of outcomes. In the 

sampling paradigm, participants are invited to learn about these options by drawing sequential 

random samples from the options’ underlying distributions at no financial cost. When players 
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decide they are ready to make a final choice, they indicate which option they want and obtain a 

real monetary outcome from their chosen option. 

Early research on decisions from experience found that the impact of information search 

during decision making can turn key results from the decisions-from-description literature 

upside-down. Consider the role of rare events: Prospect theory assumes that people apply a non-

linear weighting function to probabilities, which leads them to overweight small probability 

events. However, when people choose between gambles in a decisions-from-experience 

paradigm, they behave as if they underweight rare outcomes (Hertwig et al., 2004). Hertwig et al. 

explained this reversal from prospect theory by showing that, in decisions from experience, 

people do not explore options long enough to discover rare events, and thus make decisions as if 

the rare outcomes do not exist. This result can explain real-world examples of people apparently 

underweighting rare events. One striking case given by Hertwig (in press) is the housing 

decisions of people living in the shadow of Mount Vesuvius in the gulf of Naples, Italy. Despite 

repeated warnings by experts that the volcano is increasingly likely to erupt with each passing 

year, residents in the area firmly reject the idea that they are in real danger and refuse to move. 

Research on decisions from experience suggests that because the residents of Naples have never 

experienced an eruption in their lifetime, they act as if the threat of such a rare event did not 

exist. 

Clearly, information search strategies and the experiences they reveal play a critical role 

in how people make decisions under uncertainty. So what do we know about the processes 

underlying decisions from experience? To guide the reader through a brief summary of the 

literature, I present a conceptual model of the critical steps underlying decisions from experience 



!

in Figure 2. The model assumes that people follow a cycle of three stages: Information Search, 

Impression Updating / Comparison, and Stopping Decision. 

 

Figure 2: Conceptual model of search, impression formation, and decision making in 

decisions from experience. There are three key stages: (1) Information Search, (2) 

Impression Updating / Comparison, and (3) Stopping Rule. Decision makers cycle 

through these stages until the stopping rule is satisfied. 

 



!

The model depiction in Figure 2 is split into a top part representing an external environment and 

a bottom part indicating the mind of the decision maker. A decision maker begins in the 

“Search” stage, where she decides which option to sample. Research suggests that most people 

are approximately equally likely to sample from either option (Wulff & Hertwig, 2014), but 

perhaps with some tendency to sample more from the option with the higher sample variance 

(Lejarraga, Hertwig, & Gonzalez, 2012). Engaging in search incurs some cost for the decision 

maker. While search costs may not be explicit (i.e., direct monetary costs), the model assumes 

that most if not all search incurs some cost, perhaps in the form of opportunity costs or lost time 

(Hertwig et al., 2014).  

After deciding where to search, the decision maker observes a sample from the selected 

option and updates her impression of that option in the Impression Updating stage. Three 

impression-updating models are popular in the literature. The value-updating model (Hertwig et 

al., 2004) is a reinforcement-learning model which states that people update their impressions as 

a weighted average of their prior impressions and new information with a parameter that can 

capture recency and primacy effects. The natural mean heuristic (Hertwig & Pleskac, 2010) 

assumes that people store all experienced outcomes and use the running overall mean as the 

current impression. Finally, the instance-based learning model (IBL; Gonzalez et al., 2003) 

assumes that people store each unique outcome from an option as an “instance,” and that these 

become more activated with each repeated occurrence but also decay over time. Under the IBL, 

impressions of options are formed as the blended (i.e., weighted average) of the instances of an 

option weighted by their probability of retrieval.  

After updating their impression of the sampled option, decision makers compare their 

impressions of each option. In the Stopping Decision stage, they then decide whether or not to 
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stop search by referring to their stopping rule. If the organism decides to continue search, it will 

return to the Search stage and repeat the cycle. If it decides to stop search, it will leave the cycle 

and consume (i.e., choose) an option. More research is needed into how people select stopping 

rules. Several normative and descriptive stopping models have been proposed that assume that 

stopping decisions are a function of both search costs and the current state of the impression 

comparison (Busemeyer & Rapoport, 1988). Other models suggest that organisms stop search 

when their working memory capacity has been filled (Hertwig, in press). Moreover, a recent 

meta-analysis of papers on decisions from experience has found evidence for consistent 

individual differences in stopping rules, suggesting that different people accrue different costs 

during search (Wulff & Hertwig, 2014). 

How does competition affect search rules in decisions under uncertainty? Papers 1 

and 2 address a critical real-world search cost that has previously been ignored in the decisions-

from-experience literature: the threat of competition. In many real-world environments, from 

mate selection to housing choice, organisms search for information in the presence of 

competitors who can consume options during the search process. While it seems clear that 

organisms should reduce search in the presence of competition, the extent to which the presence 

of competition should affect exploration‒exploitation trade-offs remains unclear. Further, is it 

always better to be faster than an opponent, or is it sometimes better to be more patient and allow 

competitors to choose first? What characteristics of the environment affect optimal search 

strategies in the presence of competition? Descriptively, how do organisms jointly manage 

uncertainty in their natural (i.e., options) and social (i.e., degree of competition) environments? 

To answer these questions, we created a new task called the Competitive Sampling Game 

(CSG). In this game, two players have the option to repeatedly sample from options before 
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making a choice on a first come, first served basis. In paper 1, we introduce this game and use 

both mathematical and agent-based simulation analyses to generate predictions for how people 

should make decisions in the task and test those predictions in an experiment. We find that real 

participants do indeed drastically reduce their search in the presence of competition.  

 

Paper 1: Rivals in the dark: How competition influences search in decisions under 

uncertainty 

Phillips, N. D., Hertwig, R., Kareev, Y., & Avrahami, J. (2014). Rivals in the dark: How 

competition influences search in decisions under uncertainty. Cognition, 113(1), 104-119. 

 

Organisms in the real world must frequently make decisions under uncertainty, where the 

set of possible outcomes and the qualities associated with each outcome are a priori unknown. 

To shed light on these options, including their potential outcomes and probabilities, organisms 

can engage in a sequential search process. For example, humans can go on dates with potential 

mates, and bees can sample flowers in a patch. Because search in the real world can be costly in 

terms of time, energy, and missed opportunities, organisms must develop effective strategies that 

produce valuable information without exacting excessive costs (Pirolli, 2007). To understand 

how people conduct pre-decisional information search in decisions from experience, Hertwig et 

al. (2004) developed the sampling paradigm, in which decision makers are presented with 

several a priori unknown options (i.e., gambles) and can learn about them by drawing random 

samples. Although the sampling paradigm is certainly a better model of many real-world 

decisions than is the decisions-from-description paradigm, it still ignores a critical real-world 

search cost: the possibility of competitors consuming good options during search. For example, 
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the longer someone spends looking for a flat in a new city, the more likely other flat-hunters are 

to snap up good options. Moreover, because a flat-hunter does not know exactly how many other 

searchers there are and how quickly they can be expected to make a decision, competition 

presents an additional form of social uncertainty on top of uncertainty about options.  

How do organisms jointly manage this social uncertainty alongside the uncertainty about 

options? To answer this question, we developed a new game we call the Competitive Sampling 

Game (CSG). In the game, two (or potentially more) decision makers conduct a simultaneous 

search for information about two (or potentially more) choice options (see Figure 3).  

 

Figure 3: Diagram of the competitive sampling game (CSG). Players draw samples with 

replacement from urns at the same rate until one player decides to stop and choose an 

urn. This “chooser” gets the expected value of her chosen urn and the remaining player, 

the “receiver,” gets the expected value of the remaining urn. 

Receiver 
Gets EV of Urn B 

Chooser 
Gets EV of Urn A 

END 
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The basic rules of the CSG are as follows: Both players begin with one sample from an 

option of their choosing. They are then both asked if they would like to make a decision or 

continue sampling. Players continue the cycle of drawing samples as long as both wish to 

continue. As soon as one player is ready to make a decision, the faster “chooser” takes the option 

of his or her choice, leaving the remaining option to the “receiver.” After each player obtains an 

option, they are rewarded with the expected value of the option’s underlying probability 

distribution.  

The CSG forces players to make a trade-off between information quality and decision 

speed: The more samples a player takes, the better he can estimate the options’ long-term gains 

and the better his expected decisions will be; however, with more samples comes a higher chance 

that the other player will stop the game and take the better option. The CSG shares the 

competitive aspect of existing games of timing (Dutta & Rustichini, 1993), where two players 

independently decide whether or not to take an existing reward or to wait for a larger reward in 

the future. However, the CSG departs from these games because players must deal with 

uncertainty with regard not only to their social environment, but also to the choice environment. 

In the CSG, rewards do not increase over time by a well-defined rule (as is the case in existing 

games of timing); instead, what increases is the quality of choice-relevant information. 

To generate normative benchmarks for the game, we used mathematical analyses and 

simulation methods to compare the performance of multiple strategies in the CSG. Because 

search costs in the CSG depend on social environments, we simulated decision strategies in three 

social environments representing different degrees of competition speed. We found that an 

omnipotent decision maker who knows exactly how long her competitor will search should take 
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one fewer samples than her competitor. However, if a player does not know exactly how long her 

opponent will search (as is the case in virtually all real-world competitive tasks), then the player 

should dramatically reduce search relative to her expectations of her opponent’s search length. In 

other words, we found that it is much better to under-estimate an opponent’s search length, by 

any amount, than to over-estimate an opponent’s search length by even one sample. Moreover, 

we found that the only sampling strategy that guarantees obtaining the best option in no less than 

50% of cases is a one-sample strategy we call the “take-good-enough, otherwise-shift” heuristic. 

These results suggest that participants should not only qualitatively reduce search in competitive 

contexts, but that they should reduce it to almost minimal amounts. 

 To see how much people actually reduce search in competitive contexts, we had groups 

of university students play the competitive sampling game for real monetary rewards. Consistent 

with our normative predictions, people playing in competitive contexts dramatically reduced 

their search – from a median of 18 in a solitary condition, to just 1 under competition. In terms of 

rewards, while fast choosers in the competitive condition obtained fewer rewards than solitary 

participants, they nonetheless outperformed slower receivers in the competitive condition. These 

results are consistent with our normative analysis and show that people are willing to 

dramatically reduce their exploration levels in the presence of competition.  

 We expanded these analyses by simulating the effects of different statistical 

environments that can either reward or punish minimal search. We show that one-sample 

decision-making using the “take-good-enough, otherwise-shift” heuristic will only be beneficial 

in environments that satisfy strict distributional criteria. We call these “one-sample friendly” 

environments and prove their necessary criteria (see Appendix of Manuscript 1). Next, we show 

why environments involving extremely rare events should dramatically shift the benefits of fast 
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search in competitive contexts. Because competition dramatically reduces search, we expect that 

people making fast decisions under competition will tend to grossly underestimate rare events 

(see Hertwig et al., 2004) and choose options that appear good in the short term, but have 

potentially large losses in the long term.  

In paper 2, we use the CSG to explore how competition affects the evolution of decision 

strategies. We conduct a series of simulations where we evolve agents using different decision 

strategies in environments with varying levels of competition. Consistent with the results of 

paper 1, we find that – relative to agents in less competitive environments – agents in highly 

competitive environments evolve decision strategies that rely on far less information. Moreover, 

consistent with the fast and frugal heuristics program (Gigerenzer, Todd, & the ABC Research 

Group 1999), these results suggest that evolution favors decision speed and satisficing over 

absolute estimation accuracy. 

 Paper 2: The Janus face of Darwinian competition 

Hintze, A., Phillips, N. D., Adami, C., & Hertwig, R. (2014). The Janus face of Darwinian 

competition.  

 Darwinian evolution is driven by competition. Organisms that successfully out-compete 

others in obtaining resources, from food to mates, will replicate their genes in the next 

generation, while those that fail in competition risk their genetic future. In the process, 

competition forces sequential generations to become better adapted to their environments. While 

this basic functional role of competition is a foundation in biology, it is unclear how different 

degrees of competition shape the cognitive capacities and decision strategies of organisms. In 

other words, how do information search and decision strategies evolve in environments with high 

versus low levels of competition? Will the cognitive architectures evolved in highly competitive 
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environments be systematically more complex or more accurate than those evolved in less 

competitive environments?  

In this paper, we provide initial answers to these questions using an evolutionary 

simulation. In this simulation, successive generations of agents play versions of the CSG (see 

Phillips, Hertwig, Kareev, & Avrahami, 2014) in which each agent’s fitness is defined as its 

outcomes in the game. Importantly, in contrast to the original version of the CSG, in this task we 

assign a fully realized reference option to each agent at the beginning of each game. Thus, agents 

are repeatedly faced with the decision of choosing the reference option, sampling from an 

unknown option, or choosing the unknown option. In the simulation, we distinguish between 

three kinds of competitive environments. In the indirect competition environment, each agent 

plays the CSG with two options. Agents play alone, and each agent’s decision does not affect the 

choice environment of other agents. In this environment, competition happens at the population 

level and not at the level of individual agents. In the direct competition environment, agents play 

the CSG with three options in pairs, and each agent’s decision does affect the choice set of other 

agents. Here, an agent’s competitors can consume desirable options and remove them from the 

agent’s choice set. Finally, in the extreme competition environment, we further increase the level 

of competition from the direct competition environment by reducing the number of options from 

three to two. 

Across environments, agents evolved a high probability of choosing the reference option 

when the sampled difference between the reference urn and the sampled option was high. 

Additionally, the more variability in option outcomes (defined as the variance of option 

distributions), the more samples agents drew before making a decision. This result suggests that, 

in contrast to Phillips et al. (2014), where we assumed agents use a “fixed-N” sampling size rule, 
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evolution can be expected to drive organisms to dynamically adjust their sampling rules as a 

function of the variability of sample outcomes. We found that agents evolved dramatically 

different search strategies in the three competition environments. The more competitive the 

environment was, the less agents sampled the unknown option and the more likely they were to 

choose the reference option. Interestingly, the effect of option variability on search length 

vanished in the extreme competition environment. Here, agents evolved to make a decision after 

a single sample, regardless of the variability in option outcomes. In other words, in extremely 

competitive environments, organisms should evolve strategies that trade estimation accuracy for 

fast choosing. With regard to payoffs, we found that agents in the indirect competition 

environment evolved strategies that led to almost perfect choice performance. This is because 

low competition allows organisms to sample extensively and obtain very accurate estimates of 

option values before making a choice. In contrast, agents in the extreme competition 

environment chose so quickly that they obtained payoffs at near-chance level. 

 In conclusion, the results from this evolutionary simulation confirm the key insight from 

Phillips et al. (2014) that increased levels of competition should dramatically decrease search 

efforts in decisions under uncertainty. They further indicate that evolution should drive 

organisms in competitive environments to be less sensitive to outcome variability (i.e., 

uncertainty) than organisms in solitary environments. This means that extreme competition can 

inhibit the evolution of decision strategies that are sensitive to differences in environmental 

uncertainty.  

Summary of Papers 1 and 2. These two papers add to the growing body of research on 

decisions from experience by introducing the CSG, a novel variant of the decisions-from-

experience paradigm that allows researchers to measure the effects of competition on 
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information search rules. As we describe in our papers, we believe that our results have direct 

implications for how entities from hermit crabs to pharmaceutical companies make decisions. As 

a final example, consider the case of the drug Vioxx. On May 20, 1999, the US Food and Drug 

Administration (FDA) approved the anti-inflammatory drug Rofecoxib under the brand name 

Vioxx. This drug gained immediate and widespread acceptance from doctors and patients, many 

of whom found it the only way to get relief from arthritic pain. Doctors prescribed Vioxx to over 

80 million people, and the drug quickly generated over $2.5 billion in sales revenue for its 

marketer Merck & Co (“Rofecoxib,” 2014). However, after less than five years on the market, it 

became apparent that Vioxx presented a rare risk of heart attack and stroke from long-term, high-

dosage use. In September 30, 2004, Merck withdrew Vioxx from the market and the company 

was forced to set aside $4.85 billion for legal claims from patients (“Rofecoxib,” 2014). While 

we do not know for certain whether Merck rushed the drug to market without adequate testing, 

our results suggest that the highly competitive pharmaceutical industry may have pushed Merck 

to “bet” too quickly on a drug with short-term gains, but long-term losses. Perhaps if the 

pharmaceutical industry were not so competitive, companies would spend more time developing 

and testing drugs before bringing them to market. 

In papers 1 and 2, we described how people could use external search to improve their 

outcomes in decisions under uncertainty. In the next section, we shift to another possible 

approach: harnessing the wisdom of crowds within one mind by means of dialectical 

bootstrapping. But before we begin, let us take a trip back to 1906, when a scientist at a fair 

made a notable discovery that still resonates today. 
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The wisdom of the inner-crowd and dialectical bootstrapping 

Sir Francis Galton (1822‒1911) was a prolific scientist who published over 340 papers 

and books in myriad fields including statistics and anthropology (“Francis Galton,” 2014). 

Despite (or perhaps as a result of) his education, Sir Francis Galton did not believe in democracy. 

For Galton, the general population could not be trusted to make important election decisions. To 

test his beliefs, he took advantage of an opportunity that presented itself at a livestock fair he 

attended in 1906. The fair had a prediction contest where fairgoers were asked to estimate the 

weight of an ox. Each fairgoer wrote his or her estimate on a piece of paper and placed it in a jar. 

After everyone had made their predictions, Galton gathered the estimates and compared them to 

the actual weight of the ox. Having expected the estimates of these lower class fairgoers to be 

highly inaccurate, he was shocked to find that the group as a whole was incredibly accurate: 

While the true weight was 1,198, the group-mean estimate was 1,197 pounds, an error of only 

one pound! 

Galton’s discovery was not a fluke. Rather, it is a classic example of what is now known 

as the wisdom of the crowds. The wisdom of the crowds describes scenarios in which the 

aggregate (usually arithmetic mean) estimate of a group outperforms even the most accurate 

estimate of a single member of the group. The wisdom of crowds is a rather straightforward 

mathematical implication of error cancellation. By way of illustration, let us consider the case of 

two media figures Dick Morris (a Republican but former adviser to President Bill Clinton) and 

Jim Cramer, host of CNBC’s television show “Mad Money.” In November 2012, these two men 

each predicted the electoral college outcome of the upcoming 2012 US Presidential election 

(Figure 4): 
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Figure 4: Example of error cancellations in aggregated judgments. The average estimate 

of the number of votes for Obama is much closer to the truth than is either judge’s 

original estimate.  

 

Dick Morris challenged existing poll results and projected a landslide victory for Romney, 

predicting that Obama would win only 213 of a necessary 270 votes (Morris, 2012). Jim Cramer 

made an equally bold prediction but in favor of Obama, projecting a 440-vote victory for the 

incumbent (Fitzgerald, 2012).  

On the evening of November 6, Obama won the Presidential election with 332 electoral 

college votes. Looking back at Morris’s and Cramer’s predictions, both were way off the mark: 

Morris underestimated Obama’s votes by 119 (|213 – 332|) and Cramer overestimated by 127 

(|440 – 332|). On average, the two pollsters were off by an astounding 123 votes. However, 

consider the accuracy of the average of their two predictions: their average estimate of 326.5 

deviated from the true value by only 5.5 votes! How is it possible that the average estimate is so 

Negative Error Positive Error

Truth!
332

213 440326.5

(-119) (+108)

Dick Morris Jim Cramer
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much more accurate than the prediction of either individual pollster? The reason is error 

cancellation – because the two estimates had large opposing errors (one positive and one 

negative), their average was much closer to the true answer than either individual estimate. 

The inner-crowd. While extensive psychological research has been conducted on the 

wisdom of crowds since the 1970s (e.g., Hogarth, 1978), researchers have only recently applied 

the phenomenon to an individual judge’s inner-crowd (Herzog & Hertwig, 2009; Vul & Pashler, 

2008). In Figure 5, I present a conceptual overview of the processes underlying the inner-crowd. 

 

Figure 5: Conceptual model of processes underlying the inner-crowd. In paper 3, we 

explore the benefits of the inner-crowd on Bayesian reasoning judgments. In paper 4, we 

test how people can outperform the simple average of their inner-crowd by using 

confidence-based choice. 
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The inner-crowd works as follows: After viewing a question, judges follow three phases. 

In phase 1 (left side of Figure 5), they form an initial estimate. This estimation phase contains 

two parts: strategy selection and strategy application. In the strategy selection part, the judge 

decides both what kind of estimation strategy to use and which information to use within the 

chosen strategy (e.g., which cues to use, which exemplars to search for). Previous inner-crowd 

research has provided only a general statistical description of the estimation process by 

describing strategies as a combination of truth, bias, and random error (Herzog & Hertwig, 

2009). In papers 3 and 4, we take a theory-based approach to understand the strategies that 

people use. In paper 3, where judges are faced with a probabilistic estimation task, we assume 

that judges select one of many simple intuitive strategies. In paper 4, where judges estimate 

county populations based on binary cues, we assume that judges follow an exemplar-based 

model of estimation (specifically, Juslin et al.’s, 2007, Naïve Sampling Model) and select a 

probe cue to search long-term memory.  

In the second, application part, judges apply their strategy to derive final estimates. For 

the probability estimation task described in paper 3, this would mean following the arithmetic 

calculations dictated by the selected strategy (i.e., averaging the base-rate and hit-rate). For the 

county population estimation task in paper 4, this could mean searching long-term memory for 

examples of counties that are similar to the target specified in the question (e.g., what counties 

do I know that are similar to Los Angeles county?), and then using the populations of those 

examples to estimate the population of the unknown target. 

Dialectical bootstrapping. After deriving their first estimate, judges either immediately 

begin a second estimation phase or undergo an intervention (such as a time delay; Vul & Pashler, 

2008) designed to increase their estimate diversity. In our research, we focus on dialectical 
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bootstrapping, a method of increasing the diversity of the inner-crowd (Herzog & Hertwig, 2009, 

2014a, 2014b). In dialectical bootstrapping, judges are explicitly encouraged to generate second, 

dialectical estimates that have differently signed errors than their original estimates. To this end, 

dialectical estimates should rely on different knowledge, assumptions, or strategies than the 

initial estimates do. Going back to the U.S. Presidential election example, if a person’s first 

estimate looks like Dick Morris’s, her dialectical estimate should look like Jim Cramer’s. While 

dialectical bootstrapping does not specify a single dialectical intervention, Herzog and Hertwig 

have typically used Lord, Lepper, and Preston’s (1984) consider-the-opposite technique, which 

encourages judges to think of reasons why their first estimates may have been wrong, and to 

derive new estimates on the basis of those considerations. In several studies, Herzog and Hertwig 

(2009, 2014a, 2014b) have found that consider the opposite instructions do indeed decrease 

signed error correlations, and increase subsequent averaging gains, between first and second 

estimates relative to control groups. However, the specific process underlying this change in 

signed errors has not been studied. In papers 3 and 4, we explicitly model the effects of 

dialectical instructions on strategy change and averaging gains in two new estimation paradigms. 

In paper 3, we apply dialectical bootstrapping to a Bayesian reasoning paradigm and explore 

how dialectical instructions change strategy use and subsequent averaging gains in different 

statistical environments. We propose that people can use dialectical bootstrapping to combine 

multiple, non-Bayesian algorithms to become more Bayesian without any knowledge of Bayes 

theorem.  
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Paper 3: How the inner-crowd can help non-Bayesians become more Bayesian 

Phillips, N. D., Herzog, S., & Hertwig, R. (in prep). How the inner-crowd can help non-

Bayesians become more Bayesian. 

 Are people intuitive Bayesians? Bayes theorem states that people should update their 

probabilistic beliefs by integrating base-rates (prior probabilities) with new information in the 

form of a hit-rate (the likelihood of an event given a hypothesis) and a false-alarm rate (the 

likelihood of an event given an alternative hypothesis). In the 1960s, Ward Edwards claimed that 

people rely too much on base-rate information and do not sufficiently update their beliefs in the 

presence of new information (hit-rates and false-alarm rates). However, they are close enough to 

the Bayesian norm to be labeled “conservative Bayesians” (Edwards, 1968). Fast-forward to 

1972 at the start of the heuristics-and-biases movement, and it seems readers have been 

bamboozled. According to Kahneman and Tversky (1972), not only are people not “conservative 

Bayesians,” they are “not Bayesian at all.” In particular, Kahneman and Tverksy suggested that 

people routinely violate normative rules by using a “representativeness heuristic” that completely 

ignores base-rate information.  

Since the 1970s, evidence has been accumulating that people cannot be simply 

categorized as “conservative Bayesians” or “not Bayesian at all.” Instead, people apply a variety 

of simple strategies that use and combine statistics in different ways (McKenzie, 1994). 

Moreover, depending on the statistical environment to which they are applied, strategies have 

different biases relevant to Bayes theorem: some tend to have positive biases (over-estimate), 

others to have negative biases (under-estimate). Against this background, can people improve 

their Bayesian reasoning judgments by harnessing an inner-crowd of non-Bayesian strategies? In 

other words, can judges become more Bayesian by being both “conservative” (i.e., relying too 
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much on base-rates) and “not Bayesian at all” (i.e., ignoring base-rates) in one mind? Moreover, 

can dialectical bootstrapping increase strategy diversity and subsequent averaging gains? 

Dialectical bootstrapping is a method of boosting the benefits of the inner-crowd (Herzog 

& Hertwig, 2009). The procedure works by having a judge generate both an initial estimate to a 

problem and a second, dialectical estimate based on different considerations and assumptions. 

Judges then combine their estimates by averaging them into a single, final estimate. Previous 

research suggests that dialectical bootstrapping increases estimate diversity and subsequent 

averaging gains (Herzog & Hertwig, 2009, 2014a, 2014b). However, no study has directly 

modeled discrete strategy change in the inner-crowd framework. Thus, it is unclear to what 

extent dialectical bootstrapping produces qualitatively different strategy use in one mind. In this 

paper, we directly measure strategy use and strategy change in the Bayesian reasoning task in a 

simulation study followed by two experiments. 

In a simulation study, we took simple strategies proposed in the literature (Gigerenzer & 

Hoffrage, 1995; McKenzie, 1994) and simulated their solitary performance relative to Bayes in 

two different environments. In the “Valid Cue” (VC) environment, cue values ranged across the 

entire probability space, with the added restriction that false-alarm rates were smaller than hit-

rates. This is a highly uncertain environment in which it is difficult to predict cue values in 

advance. In the “Rare Event plus Valid Cue” (RE+) environment, base-rates were small, hit-rates 

were large, and false-alarm rates were small. This environment represents important real-world 

environments in which a judge predicts the probability of a rare event (e.g., a rare disease) based 

on a cue with a large hit-rate and a small false-alarm rate (e.g., a medical test). In addition to 

being of interest for domain-specific reasons (e.g., medical reasoning), this environment is 

known to produce large opposing biases in simple strategies that ignore one or more cues 
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(McKenzie, 1994). If a person combines strategies with different biases in this domain, they 

could potentially reap large averaging gains. 

The key results from our simulation were as follows: First, strategies had much larger 

biases in the RE+ than the VC environment. Second, consistent with our predictions, averaging 

gains were consistently higher in the RE+ than the VC environment. Finally, averaging two 

strategies led to larger averaging gains when the two strategies have different base-rate usage 

(i.e., one uses base-rates and one ignores base-rates) than when they have the same base-rate 

usage. These results suggest that if people construct multiple strategies and combine them, they 

stand to improve their accuracy – especially in RE+ environments. 

We tested our simulation results in two online experiments. In both experiments, 

participants were first presented with several Bayesian reasoning problems that required them to 

estimate the probability of an event given information on the base-rate, hit-rate, and false-alarm 

rate. In study 1, the problems were vignettes taken from Gigerenzer and Hoffrage (1995). In 

study 2, the problems were given in a standardized “boxes and balls” format. All participants 

then gave a second set of estimates to each problem. In control conditions, participants were 

asked to estimate again as if they were seeing the problem for the first time. In dialectical 

conditions, participants read “consider-the-opposite” instructions that directed them to actively 

construct a new strategy.  

We used statistical modeling techniques (Lewandowsky & Farrell, 2010) to classify the 

strategy each participant used in each estimate phase. Using these classifications, we could 

determine whether or not a participant used the same strategy in both phases (possibly with 

different application errors) or used a categorically new strategy. 
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Our key results were as follows: First, participants given dialectical instructions were 

substantially more likely to change strategies than were control participants. This is the first 

analysis to demonstrate this effect. Second, participants who switched strategies between first 

and second estimates reaped larger potential averaging gains than did participants who 

maintained the same strategy with random error. The effect was even stronger when participants 

switched between a strategy that did not use base-rates and one that did use base-rates. These 

findings demonstrate the importance of strategy diversity in averaging gains. Finally, consistent 

with our simulation results, the effect of strategy switching on averaging gains was larger in RE+ 

environments than in VC environments. This suggests that domains with extremely rare events, 

where people traditionally do poorly relative to Bayes, are especially conducive to averaging.  

In summary, we find that people can indeed improve their estimates in Bayesian 

reasoning tasks by using dialectical bootstrapping. Importantly, they can do this without any 

training in Bayesian reasoning and without change in stimuli formats (e.g., Gigerenzer & 

Hoffrage, 1995). While we do not suggest that dialectical bootstrapping is the best solution to 

“fixing” errors in a Bayesian reasoning task, our results do show that dialectical bootstrapping is 

an effective method for people to improve their estimates in tasks where the optimal rule is 

unknown. 

Confidence in the inner-crowd: Can choosing outperform the average? 

Most prior research on both the wisdom of crowds and the inner-crowd has tested the 

accuracy of the average (i.e., simple mean) of the crowd relative to individual judgments (e.g., 

Herzog & Hertwig, 2009, 2014a, 2014b; Vul & Pashler, 2008). However, both advice-taking 

(Soll & Larrick, 2009) and wisdom-of-crowds (Surowiecki, 2004) research has identified cases 

where the average can be beaten by strategies that favor one estimate over another. Specifically, 
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when estimates are highly correlated (bracketing rates are low) and one estimate is much more 

accurate than the other, it can be better to choose the more accurate estimate than to take the 

mean (Soll & Larrick, 2009). Are there cases in the inner-crowd where these conditions hold and 

people can outperform averaging by choosing a single estimate, and could confidence be the 

key? 

Confidence has gotten a bad rap in cognitive psychology. A long history of confidence 

research with both laypeople and experts (notably physicians; Christensen-Szalanski & 

Bushyhead, 1981) suggests that people are much more confident in their judgments than is 

empirically warranted.3 However, despite reliably finding data indicative of overconfidence, 

researchers have also consistently found that confidence is a valid cue to accuracy (e.g., Winkler, 

1971; Yaniv & Foster, 1997; Yates, 1990). In other words, although people are generally 

overconfident, the more confident they are in their estimates, the more accurate their estimates 

will be. No previous research has tested the accuracy of confidence judgments in the inner-crowd 

context. If high-confidence estimates tend to be more accurate than low-confidence estimates, 

then choosing high-confidence estimates could potentially outperform simple averaging. 

However, if confidence is weakly related to accuracy, then choosing could backfire and lead to 

worse performance than simple averaging. In paper 4, we propose that people can use confidence 

ratings to boost the effects of a choosing strategy in their inner-crowd. 

 

Paper 4: Confidence and Dialectical Bootstrapping Facilitates Choosing in The Inner-

Crowd 

!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!!
3 But see the debate on whether overconfidence is a true phenomenon or the result of improper 
measurement (e.g.; Erev, Wallsten & Budescu, 1994). 
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Phillips, N. D., Herzog, S., Kämmer, J., & Hertwig, R. (in prep.). Confidence and Dialectical 

Bootstrapping Facilitates Choosing in The Inner-Crowd. 

 

 A growing body of research has shown that people can improve their judgments by 

harnessing a diverse inner-crowd (Herzog & Hertwig, 2009, 2014a, 2014b; Vul & Pashler, 

2008). In the same way as groups of diverse individuals can produce an average judgment that 

outperforms that of even the best individual member, a single person can benefit from combining 

multiple estimates drawn from a diverse pool of internal information and strategies. 

 Previous studies on the inner-crowd have focused on the accuracy of the average 

(arithmetic mean) of an individual’s inner-crowd. There is good reason for this; the arithmetic 

mean is an elegant combination rule that benefits from error cancelation amongst diverse 

estimates with opposing errors. Advice-taking research has shown that trying to “chase the 

expert” by choosing one estimate and ignoring the rest outperforms taking the arithmetic mean 

only when three strict criteria are met: (a) Errors must be highly correlated (i.e., bracketing rates 

must be low), (b) the accuracy of one source (i.e., advisor) must be substantially higher than that 

of the other, and (c) the most accurate source must be easily detected. If any of these conditions 

fail, chasing the expert will lead to poorer performance than taking the simple mean. If all 

conditions hold, however, chasing the expert can be the better strategy. Can these conditions be 

satisfied in the inner-crowd? If so, is confidence the key? 

 On the one hand, relying on confidence judgments to improve estimation seems like a 

fool’s errand. While people trust high-confidence advisers more (Sniezek & Van Swol, 2001) 

and give more weight to advice from advisers with high confidence than those with low 

confidence (Yaniv, 2004), many researchers argue that confidence judgments are notoriously 
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inaccurate (Glaser, Langer, & Weber, 2013; Soll & Klayman, 2004) and the result of a biased 

information processing system (e.g., Klayman, Soll, González-Vallejo, & Barlas, 1999). 

However, a counter-movement suggests that this picture of the systematically biased judge is 

wrong. Rather than being biased information processers, humans might be “naïve intuitive 

statisticians” (Fiedler & Juslin, 2006; Juslin et al., 2007) who are unbiased in their assessment of 

sample information, but naïve with respect to potential sampling biases that might make their 

sample unrepresentative of the respective population. Consistent with the naïve intuitive 

statistician idea, there is evidence that confidence judgments do contain veridical information 

about estimates: although people are generally overconfident, confidence is a reliable predictor 

for accuracy (e.g., Winkler, 1971; Yaniv & Foster, 1997; Yates, 1990). In other words, people’s 

(overconfident) high-confidence estimates tend to be more accurate than their (still 

overconfident) low-confidence estimates. Accordingly, advice-taking research has found that, in 

some cases, the optimal way to aggregate information from two judges is to use a maximum 

confidence slating heuristic, where the advice from the most confident judge is taken and the 

advice from the least confident judge is ignored (Koriat, 2012). But will the benefits of high-

confidence choosing carry over to the inner-crowd? Are multiple confidence judgments from the 

same mind sufficiently correlated with accuracy to allow choosing to outperform averaging? 

Finally, do people actually rely on their confidence judgments when deciding how to aggregate 

multiple estimates from their inner-crowd? 

 To measure the descriptive and normative role of confidence in the inner-crowd, we 

created a cue-based estimation study where judges gave repeated estimates and confidence 

judgments. In each of 16 questions, judges (i.e., participants in an empirical study and agents in a 

simulation) estimated the population of a real, but unnamed U.S. county based on four binary 
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cues. In addition to giving their population estimates for each county, judges gave 90% 

confidence intervals. After giving initial (phase 1) estimates, judges were assigned to one of 

three conditions: one control, and two dialectical. Judges in the control condition were told to 

give a second set of estimates as if they were seeing the questions for the first time. Those in the 

dialectical “consider-the-opposite” (D-CTO) condition read Lord et al.’s (1984) “consider-the-

opposite” instructions. These instructions have been used in previous dialectical bootstrapping 

research to increase estimate diversity. Finally, those in the dialectical “consider-other-

exemplars” (D-COE) condition read a novel set of instructions that we explicitly designed to 

increase estimate diversity for people using an exemplar-based model of estimation (e.g., Juslin 

et al.’s, 2007, Naïve Sampling Model, NSM). In phase 2, judges gave a second set of estimates 

and confidence intervals for each county. Finally, in phase 3, we removed the county cue values 

and asked judges to make their best estimates based solely on their previous responses from 

phases 1 and 2. 

 In order to make predictions for how confidence should be related to accuracy in this 

task, we conducted an agent-based simulation where agents gave NSM-based estimates for the 

same stimuli given to our experimental participants. Among other variables, we assigned each 

agent a long-term memory storage composed of exemplars of US counties, a short-term memory 

capacity, and an estimation strategy consistent with the three conditions in the study. We had 

three key simulation results: First, confidence was highly correlated with estimate accuracy. 

Second, for the majority of agents, choosing high-confidence estimates outperformed averaging. 

Finally, (simulated) dialectical instructions increased the benefits of high-confidence choosing. 

Our empirical results largely coincided with our simulation. While participants were 

generally overconfident, high-confidence estimates were consistently more accurate than low-



!

confidence estimates for a majority of participants. Thus, confidence was indeed a valid cue for 

accuracy. When we compared the estimate accuracy of taking the simple average relative to 

choosing high-confidence estimates for each participant, we found that high-confidence choosing 

outperformed both initial estimates and average estimates for a majority of participants. 

However, for those participants where confidence was unrelated to accuracy, averaging 

outperformed choosing. Additionally, dialectical instructions reliably boosted the potential 

benefits of high-confidence choosing. Finally, modeling results suggested that most participants 

did not use confidence-based strategies and instead either used a simple average strategy or 

chose their first or second estimates. Thus, most participants could have improved their phase 3 

estimates by relying on their confidence estimates more than they actually did.  

 In conclusion, this paper provides new insights into how people do, and should, benefit 

from their inner-crowd. While previous research on the inner-crowd has emphasized gains from 

averaging estimates, we find that people can use their confidence judgments, a much-derided 

measure, to extract better gains from their inner-crowd. Moreover, just as dialectical 

bootstrapping increases gains from averaging, it can also increase gains from high-confidence 

choosing. 
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General Discussion 
 
 In 1955, Simon struck down homo economicus. In its place, he left the outline of a 

boundedly rational decision maker who makes “good-enough” decisions given informational, 

physiological, and psychological constraints that prevent her from applying rational, normative 

models of decision making. In this dissertation, I have attempted to fill in a small portion of this 

outline by showing how people can make good decisions in competitive environments (papers 1 

and 2) and apply the wisdom of their inner-crowd to Bayesian reasoning (paper 3) and cue-based 

estimation tasks (paper 4). 

Bridging Research Gaps 

 In this dissertation, I have sought to connect research areas that are typically kept 

separate. In the process, I show how each area can provide critical insights into the others.  

Game theory and psychology. In our work on the CSG and how competition affects 

decisions under uncertainty, we connect behavioral game theory research (specifically economic 

games of timing; Dutta & Rustichini, 1993) to psychological models of information search in 

decisions under uncertainty (Hertwig et al., 2014). In so doing, we highlight shortcomings in 

each individual approach. While behavioral game theory provides a rich account of how people 

should (and, to some extent, do) make decisions in competitive tasks (Camerer, 2003), it 

typically ignores uncertainty at the level of choice options and instead assumes that decision 

makers have complete knowledge of all options. While psychology and behavioral ecology have 

produced models explaining how organisms manage uncertainty in real-world decision making 

through information search, updating, and stopping rules, previous research has failed to address 

how competition affects decision making under uncertainty. Given the promising initial results 
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derived from the CSG in this dissertation, I hope that the CSG will become a new tool for 

behavioral game theorists and psychologists to collaborate on their common questions. 

 Estimation and group aggregation. In our work applying the inner-crowd to Bayesian 

reasoning and cue-based estimation, we seek to connect disparate lines of research on estimation, 

on the one hand, and group aggregation (wisdom of crowds and advice-taking), on the other. 

Previous work on estimation has explored how people use cue- and/or exemplar-based strategies 

to derive best estimates and confidence intervals. However, in this research context, the 

questions stop once solitary estimates have been made. In Bayesian reasoning research, different 

groups have claimed that people are either “conservative Bayesians” or “not Bayesian at all.” 

Yet, this research ignores that people, from groups to individuals, can use a diverse set of 

strategies that can then be harnessed to improve estimates relative to individual biased judgments 

(paper 3). In confidence research, researchers place perhaps too much focus on the accuracy of 

individual confidence judgments and miss the fact that even biased individual confidence 

judgments can be used to improve the judgment of a group (paper 4). 

 We also show how advice-taking and wisdom-of-crowds research can stand to benefit 

from estimation research. Specifically, we used simulations to establish the ecological rationality 

of different aggregation methods (i.e., averaging versus choosing). In the Bayesian reasoning 

domain, we modeled the estimation accuracy of both individual and averaging strategies to 

reveal specific statistical environments that benefit averaging (i.e., “RE+” environments that pair 

a rare event with a diagnostic cue). Additionally, we found characteristics of strategies – 

specifically, use of base-rate information – that predict when averaging will benefit accuracy. In 

the cue-based estimation task presented in paper 4, we used Juslin et al.’s (2007) Naïve Sampling 

Model to predict when people should use the average of their inner-crowd and when they should 
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instead choose their high-confidence estimates. Results of an agent-based simulation using 

psychologically grounded assumptions (including limited working memory spans, finite 

exemplars stored in long-term memory, and noisy retrieval processes) indicated that most people 

should have a high correlation between confidence and accuracy in the task and thus benefit 

from confidence-based estimation. Accordingly, in our study, we found that most participants 

stood to gain much more from choosing their high-confidence estimates than from taking their 

average.  

Conclusion 

 This dissertation demonstrates two ways in which people depart from the mythical homo 

economicus. By adapting information search to the presence of competition and tapping into the 

wisdom of crowds within one mind through dialectical bootstrapping, flesh-and-blood organisms 

can improve their decisions under uncertainty.  



!

References 

Busemeyer, J. R., & Rapoport, A. (1988). Psychological models of deferred decision making. 

Journal of Mathematical Psychology, 32(2), 91-134. doi:10.1016/0022-2496(88)90042-9 

Camerer, C. (2003). Behavioral game theory: Experiments in strategic interaction. New York, 

NY:!Princeton University Press. 

Christensen-Szalanski, J., & Bushyhead, J. (1981) Physicians’ use of probabilistic information in 

a real clinical setting. Journal of Experimental Psychology: Human Perception and 

Performance, 7(4), 928-935. doi:10.1037//0096-1523.7.4.928 

Denrell, J. (2005). Why most people disapprove of me: Experience sampling in impression 

formation. Psychological Review, 112(4), 951-978. doi:10.1037/0033-295X.112.4.951 

Dutta, P. K., & Rustichini, A. (1993). A theory of stopping time games with applications to 

product innovations and asset sales. Economic Theory, 3(4), 743-763. doi:xxx 

Edwards, W. (1968). Conservatism in human information processing. In B. Kleinmuntz (Ed.), 

Formal representation of human judgment (pp. 17-52). New York, NY: Wiley. 

Erev, I., Wallsten, T. S., & Budescu, D. V. (1994). Simultaneous over-and underconfidence: The 

role of error in judgment processes. Psychological Review, 101(3), 519-527. 

doi:10.1037/0033-295X.101.3.519 

Fiedler, K., & Juslin, P. (Eds.). (2006). Information sampling and adaptive cognition. New York, 

NY: Cambridge University Press. 

Fitzgerald, S. (2012, November 4). CNBC’s Jim Cramer: Obama by a landslide. Retrieved from 

http://www.newsmax.com/US/Jim-Cramer-election-prediction/2012/11/04/id/462697/ 

Francis Galton. (n.d.). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Galton 



!

Gigerenzer, G., & Goldstein, D. G. (1999). Betting on one good reason: Take the best and its 

relatives. In G. Gigerenzer, P. M. Todd, & the ABC Research Group, Simple heuristics 

that make us smart (pp. 75-95). New York, NY: Oxford University Press. 

Gigerenzer, G., & Hoffrage, U. (1995). How to improve Bayesian reasoning without instruction: 

Frequency formats. Psychological Review, 102(4), 684. doi:10.1037/0033-

295X.102.4.684 

Gigerenzer, G., Todd, P. M., & the ABC Research Group (1999). Simple heuristics that make us 

smart. New York, NY: Oxford University Press. 

Glaser, M., Langer, T., & Weber, M. (2013). True overconfidence in interval estimates: 

Evidence based on a new measure of miscalibration. Journal of Behavioral Decision 

Making, 26(5), 405-417. doi:10.1002/bdm.1773 

Goldstein, D. G., & Gigerenzer, G. (2002). Models of ecological rationality: The recognition 

heuristic. Psychological Review, 109(1), 75-90. doi:10.1037//0033-295X.109.1.75 

Gonzalez, C., Lerch, J. F., & Lebiere, C. (2003). Instance-based learning in dynamic decision 

making. Cognitive Science, 27(4), 591-635. doi:10.1016/S0364-0213(03)00031-4 

Hertwig, R. (in press). Decisions from experience. In G. Keren & G. Wu (Eds.), Blackwell 

handbook of decision making. Oxford, UK: Blackwell. 

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from experience and the 

effect of rare events in risky choice. Psychological Science, 15(8), 534-539. 

doi:10.1111/j.0956-7976.2004.00715.x 

Hertwig, R., & Pleskac, T. J. (2010). Decisions from experience: Why small samples? Cognition, 

115(2), 225-237. doi:10.1016/j.cognition.2009.12.009 



!

Herzog, S. M., & Hertwig, R. (2009). The wisdom of many in one mind: Improving individual 

judgments with dialectical bootstrapping. Psychological Science, 20(2), 231-237. doi: 

doi:10.1111/j.1467-9280.2009.02271.x 

Herzog, S. M., & Hertwig, R. (2014a). Harnessing the wisdom of the inner crowd. Trends in 

Cognitive Sciences. doi:10.1016/j.tics.2014.06.009 

Herzog, S. M., & Hertwig, R. (2014b). Think twice and then: Combining or choosing in 

dialectical bootstrapping? Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 40, 218-232. doi:10.1037/a0034054 

Hogarth, R. M. (1978). A note on aggregating opinions. Organizational Behavior and Human 

Performance, 21(1), 40-46. doi:10.1016/0030-5073(78)90037-5 

Juslin, P., Winman, A., & Hansson, P. (2007). The naïve intuitive statistician: A naïve sampling 

model of intuitive confidence intervals. Psychological Review, 114(3), 678-703. 

doi:10.1037/0033-295X.114.3.678 

Kahneman, D., & Tversky, A. (1972). Subjective probability: A judgment of representativeness. 

Cognitive Psychology, 3, 430-454. doi:10.1016/0010-0285(72)90016-3 

Kahneman, D., & Tversky, A. (1979). Prospect theory: An analysis of decision under risk. 

Econometrica, 47(2), 263-291. doi:10.2307/1914185 

Klayman, J., Soll, J. B., González-Vallejo, C., & Barlas, S. (1999). Overconfidence: It depends 

on how, what, and whom you ask. Organizational Behavior and Human Decision 

Processes, 79(3), 216-247. doi:10.1006/obhd.1999.2847 

Koriat, A. (2012). When are two heads better than one and why? Science, 336(6079), 360-362. 

doi:10.1126/science.1216549 



!

Lejarraga, T., Hertwig, R., & Gonzalez, C. (2012). How choice ecology influences search in 

decisions from experience. Cognition, 124(3), 334-342. 

doi:10.1016/j.cognition.2012.06.002 

Lewandowsky, S., & Farrell, S. (2010). Computational modeling in cognition: Principles and 

practice. Thousand Oaks, CA: Sage. 

Lord, C. G., Lepper, M. R., & Preston, E. (1984). Considering the opposite: A corrective strategy 

for social judgment. Journal of Personality and Social Psychology, 47(6), 1231-1243. 

doi:10.1037//0022-3514.47.6.1231 

McKenzie, C. (1994). The accuracy of intuitive judgment strategies: Covariation assessment and 

Bayesian inference. Cognitive Psychology, 26(3), 209-239. doi:10.1006/cogp.1994.1007 

Montague, P. R., Dayan, P., Person, C., & Sejnowski, T. J. (1995). Bee foraging in uncertain 

environments using predictive hebbian learning. Nature, 377(6551), 725-728. doi: 

10.1038/377725a0 

Morris, D. (2012, November 6). Prediction: Romney 325, Obama 213. Retrieved from 

http://thehill.com/opinion/columnists/dick-morris/266027-prediction-romney-325-

obama-213- 

Pachur, T., Hertwig, R., & Wolkewitz, R. (2014). The affect gap in risky choice: Affect-rich 

outcomes attenuate attention to probability information. Decision, 1(1), 64-78.!

doi:10.1037/dec0000006 

Phillips, N. D., Hertwig, R., Kareev, Y., & Avrahami, J. (2014). Rivals in the dark: How 

competition influences search in decisions under uncertainty. Cognition, 133(1), 104-119. 

doi: 10.1016/j.cognition.2014.06.006 

 



!

Pirolli, P. L. (2007). Information foraging theory: Adaptive interaction with information. New 

York, NY: Oxford University Press. 

Rieskamp, J., & Otto, P. E. (2006). SSL: A theory of how people learn to select strategies. 

Journal of Experimental Psychology: General, 135(2), 207-236. doi:10.1037/0096-

3445.135.2.207 

Rofecoxib. (n.d.). In Wikipedia. Retrieved from http://en.wikipedia.org/wiki/Rofecoxib 

Rotjan, R. D., Chabot, J. R., & Lewis, S. M. (2010). Social context of shell acquisition in 

Coenobita clypeatus hermit crabs. Behavioral Ecology, 21(3), 639-646. 

doi:10.1093/beheco/arg027 

Rottenstreich, Y., & Hsee, C. K. (2001). Money, kisses, and electric shocks: On the affective 

psychology of risk. Psychological Science, 12(3), 185-190. doi:10.1111/1467-

9280.00334 

Simon, H. A. (1955). A behavioral model of rational choice. The Quarterly Journal of 

Economics, 69(1), 99-118. doi:10.2307/1884852 

Sniezek, J., & Van Swol, L. (2001). Trust, confidence, and expertise in a judge‒advisor system. 

Organizational Behavior and Human Decision Processes, 84(2), 288-307. 

doi:10.1006/obhd.2000.2926 

Soll, J., & Klayman, J. (2004). Overconfidence in interval estimates. Journal of Experimental 

Psychology: Learning, Memory, and Cognition, 30(2), 299-314. doi:10.1037/0278-

7393.30.2.299 

Soll, J. B., & Larrick, R. P. (2009). Strategies for revising judgment: How (and how well) people 

use others’ opinions. Journal of Experimental Psychology: Learning, Memory, and 

Cognition, 35, 780-805. doi:10.1037/a0015145 



!

Stephens, D. W., Brown, J. S., & Ydenberg, R. C. (Eds.). (2007). Foraging: behavior and 

ecology. Chicago, IL: University of Chicago Press. 

Surowiecki, J. (2004). The wisdom of crowds: Why the many are smarter than the few and how 

collective wisdom shapes business, economies, societies and nations. Garden City, NY: 

Doubleday. 

Vul, E., & Pashler, H. (2008). Measuring the crowd within: Probabilistic representations within 

individuals. Psychological Science, 19(7), 645-647. doi:10.1111/j.1467-

9280.2008.02136.x 

Winkler, R. (1971). Probabilistic prediction: Some experimental results. Journal of the American 

Statistical Association, 66(336), 675-685. doi:10.2307/2284212 

Wulff, D., & Hertwig, R. (2014). The description‒experience gap in the sampling paradigm: A 

meta-analytic review. Manuscript in preparation.  

Yaniv, I. (2004). Receiving other people’s advice: Influence and benefit. Organizational 

Behavior and Human Decision Processes, 93, 1-13. doi:10.1016/j.obhdp.2003.08.002 

Yaniv, I., & Foster, D. (1997). Precision and accuracy of judgmental aggregation. Journal of 

Behavioral Decision Making, 10(1), 21-32. doi:10.1002/(SICI)1099-

0771(199703)10:1<21::AID-BDM243>3.0.CO;2-G 

Yates, J. F. (1990). Judgment and decision making. Englewood Cliffs, NJ: Prentice-Hall.   



Rivals in the dark: How competition influences search
in decisions under uncertainty

Nathaniel D. Phillips a,⇑, Ralph Hertwig a, Yaakov Kareev b, Judith Avrahami b

a Max Planck Institute for Human Development, Berlin, Germany
b The Center for the Study of Rationality, The Hebrew University of Jerusalem, Jerusalem, Israel

a r t i c l e i n f o

Article history:
Received 24 September 2013
Revised 8 June 2014
Accepted 10 June 2014

Keywords:
Decisions under uncertainty
Competition
Information search
Decisions from experience

a b s t r a c t

In choices between uncertain options, information search can increase the chances of dis-
tinguishing good from bad options. However, many choices are made in the presence of
other choosers who may seize the better option while one is still engaged in search.
How long do (and should) people search before choosing between uncertain options in
the presence of such competition? To address this question, we introduce a new
experimental paradigm called the competitive sampling game. We use both simulation
and empirical data to compare search and choice between competitive and solitary
environments. Simulation results show that minimal search is adaptive when one expects
competitors to choose quickly or is uncertain about how long competitors will search.
Descriptively, we observe that competition drastically reduces information search prior
to choice.

! 2014 Elsevier B.V. All rights reserved.

1. Introduction

Whether the question is what to eat, where to live, or
with whom to mate, decisions are often made under com-
petitive conditions. This holds for species ranging from
humans to hermit crabs. Arguably choosier than humans
are about their housing, hermit crabs are always on the
look-out for new and better shells. Because the abdomen
of a hermit crab is extremely vulnerable, hermit crabs need
find suitable seashells to protect their vital organs in order
to pass their genes on to the next generation. When a sol-
itary crab encounters an empty shell, it thoroughly
inspects the potential new home. The crab will meticu-
lously explore the outer surface of the shell looking for
holes and weak points. It will then insert its vulnerable

abdomen into the shell opening to see whether the
potential new home is a good fit. If the shell passes this
thorough inspection, the crab may decide to discard its
current shell and exchange it for the new one. However,
when a group of crabs simultaneously encounters an
empty shell, each individual crabs’ search process is dra-
matically truncated. In this competitive situation, the crab
nearest to the shell will make a split-second decision on
whether or not to take it based on a brief visual inspection
alone (Rotjan, Chabot, & Lewis, 2010).

Swap the hermit crab for a human and the shell for a
television on a clearance rack, and intuition suggests that
human behavior may be similar to that of hermit crabs’.
On a slow shopping day, the leisurely shopper can take
his time deciding whether or not to buy the television.
He can thoroughly examine the television’s attributes, look
up expert reviews on his smartphone, or take advantage of
the wisdom of crowds by soliciting advice from friends on
a social networking site. However, on a frantic shopping
day like Black Friday, the same shopper is likely to behave
very differently. Surrounded by dozens of other eager
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shoppers, he might spend only a few moments looking at
the television before deciding to grab it before someone
else does. Why might competition reduce pre-decisional
search so dramatically? What costs and benefits do organ-
isms reap by reducing their search efforts in the presence
of competition? What factors in choice options and the
social environment affect good search rules? In this paper,
we seek to provide initial answers to these questions using
a new experimental paradigm that we call the competitive
sampling game.

Organisms rarely have complete and certain informa-
tion about options before making even the most conse-
quential choices; instead, they must make choices in the
darkness of uncertainty. To shed light on the available
options, they must learn about those options’ possible out-
comes and their associated probabilities through an
exploratory search process (Real, 1991). Most people go
on dates before proposing marriage, vacationers research
and compare hotels before deciding where to stay, and
hermit crabs inspect new shells before making a move.
After a period of exploration, organisms exploit an option
by making a long-term consequential choice. Exploration
and exploitation represent two diametric goals associated
with choice, namely, gathering information about options
(exploration) versus consuming an option (exploitation)
based on current information (Cohen, McClure, & Yu,
2007). Although exploration provides organisms with
more information, it can come at costs in the form of
money, time, or lost opportunities. There is thus a tradeoff
between exploration and exploitation: If you search too lit-
tle, you might struggle to distinguish good from bad
options. If you search too much, you may suffer from
excessive search costs.

In solitary choice situations, the exploration–exploita-
tion tradeoff has been extensively studied both theoreti-
cally (Brezzi & Lai, 2002; Gittins, 1979; Gittins, 1989) and
empirically (Gans, Knox, & Croson, 2007; Groß et al.,
2008), mostly in ‘‘multi-armed bandit’’ problems in which
individuals attempt to maximize their payoffs from multi-
ple gambles with initially unknown reward distributions.
However, previous research on the exploration–
exploitation tradeoff has largely ignored a real-world
search cost that dramatically changes how organisms
behave: the impact of competition during search. Although
search affords more information about available options, it
also increases the risk that good option(s) will be taken by
competitors.

In this article, we research how competition affects
pre-decisional exploration from a descriptive as well as a
normative perspective. The essence of what we study con-
cerns supply and demand. In a solitary environment, the
‘‘supply,’’ that is, the number of options available to choose
from, is stable. It cannot be affected by the actions of
others. Hence, a solitary decision maker can engage in
extensive exploration, allowing her to carefully separate
good from bad options at leisure before making a conse-
quential choice. In contrast, in a competitive environment,
‘‘demand’’ increases and the danger lurks that competitors
will claim desirable options, leaving the thoroughly explor-
ing decision maker with an inferior option set to choose
from. With the increased tension between exploration

and exploitation driven by competition, decision makers
might be best advised to choose as soon as they detect
an option that is likely to be good enough. But when does
that moment come? Does search under competition
indeed become as truncated as the crab’s shell search
and the shopper’s television search suggest and, if so,
how good or bad are the resulting choices? To address
these questions, we take advantage of an experimental tool
that has recently been used to study the process of search
in a range of solitary choice situations (Erev & Barron,
2005; Hertwig, Barron, Weber, & Erev, 2004; Weber,
Shafir, & Blais, 2004): the sampling paradigm from
research on decisions from experience (Hertwig & Erev,
2009). In this paradigm, participants explore options with
a priori unknown underlying probability distributions
before deciding between them (exploration before exploi-
tation). In the present research, we pit a solitary variant
of this paradigm against a novel competitive variant that
we call the competitive sampling game.

1.1. Decisions from experience

In the sampling paradigm, a solitary player learns about
(i.e. explores) options with a priori unknown payoff distri-
butions that differ in value by sampling outcomes for as
long as she wishes, without financial cost. When ready,
she chooses (i.e. exploits) her preferred option on the basis
of her sampling experience. This final choice then results in
a real financial consequence, such as a random payment
drawn from the option’s payoff distribution. Since the
information decision-makers gain through sampling
reduces uncertainty about options and increases the likeli-
hood of choosing good over bad options, a key measure in
the sampling paradigm is how long people search for infor-
mation before making a choice. Given that sampling has no
cost other than time, one might expect solitary choosers to
sample extensively, but previous research shows that pro-
tracted search is not the norm. Across studies, participants
have generally been found to take between 11 and 19
draws, or about 7 ± 2 samples per option before making a
final choice between two gambles (for a review, see
Hertwig, in press). Researchers have proposed several rea-
sons why people do not search extensively in solitary
choice: small sample statistics can be quite accurate where
differences are large enough to matter (Johnson, Budescu,
& Wallsten, 2001), frugal search reduces choice difficulty
(Hertwig & Pleskac, 2010), short-term maximization
goals prompt limited search (Wulff, Hills, & Hertwig,
2014), short-term memory constrains information use,
and opportunity costs mount as search continues
(Hertwig, in press).

1.2. The Competitive Sampling Game (CSG)

In this paper we introduce a competitive variant of the
sampling paradigm called the competitive sampling game.
In the game, players choose between two options realized
as urns on the computer screen. Each urn contains 100 vir-
tual balls, with each ball bearing a number. The distribu-
tion of numbers in an urn dictates its value. Before
making a final consequential choice, players have the
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opportunity to learn about the distribution of numbers in
each urn by drawing random balls (with replacement),
one at a time, from either urn as often as and in any order
they wish at no financial cost. When a player decides to
stop sampling and chooses an urn, she receives the
expected value of the distribution of numbers in her cho-
sen urn. In the solitary condition, players play alone, as in
the sampling paradigm (see Hertwig et al., 2004). In the
competition condition, they play in pairs. Each player sam-
ples independently but at the same rate, meaning that all
players see the same number of samples. As long as both
players wish to continue sampling, they both do so. As
soon as one or more players decide to stop searching and
choose an option, all sampling stops and the choosing
phase begins. Players receive the option of their choice fol-
lowing the rule of first come, first served. If only one player,
the ‘‘chooser,’’ decides to stop sampling and make a final
choice, that player obtains her chosen option. This forces
the other player, the ‘‘receiver,’’ to accept the remaining
option. If both players simultaneously stop sampling then
one of two outcomes can occur: If players want different
options, each player gets the option of his or her choice.
If both players want the same option, the options are ran-
domly assigned to each player.

The competitive sampling game is akin to ‘‘games of
timing’’ (Dutta & Rustichini, 1993), in which two players
independently decide when to stop a game and seize a
reward while the reward either increases (preemption
games) or decreases (war-of-attrition games) over time.
An example of a preemption game is the ‘‘grab-the-dollar’’
game, in which two players have the option of either
grabbing the money on a table or waiting for an additional
period, during which the pot increases by one unit (Park &
Smith, 2008). The players’ dilemma is that they want both
to wait for a larger pot and to be the one claiming the
money. The competitive sampling game has the nature of
a preemptive race; here, the value of the options becomes
clearer over time, but the first person to terminate sam-
pling can decide which option to exploit. Nonetheless, it
differs fundamentally from previous games of timing in
that players face uncertainty not only about the other’s
behavior but also about what is at stake—that is, the distri-
bution of each option’s outcomes. In other words, the com-
petitive sampling game is a competitive social game
(Hertwig, Hoffrage, & the ABC Research Group, 2013), rep-
resenting situations in which organisms need to trade off
exploration of the quality of options for earlier exploitation
in order to reduce the risk of the best option being
snatched away by a competitor. In the following sections,
we address the normative question of how much search
is optimal in different variants of the competitive sampling
game, and then describe the results of an experimental
study.

2. How should accuracy and opportunity be traded off: a
simulation study

How should decision makers adjust exploration efforts
between solitary and competitive environments? To answer
this question, we began by making the following

assumptions about the choice ecology, sampling rules, deci-
sion rules, and social environment, respectively. Let us
emphasize here that our conclusions regarding good
sampling sizes in the game will be contingent on these
assumptions. In the discussion, we turn to alternative, more
elaborate assumptions and more complex environments.

2.1. Choice ecology

Each game presents players with two options with
two-outcome payoff distributions. Each distribution has a
positive and a negative outcome that occur with comple-
mentary probabilities. Positive (O+) and negative (O!)
outcomes are drawn from uniform distributions ranging
from 0 to +100 and !100 to 0, respectively. The probability
of the positive outcome p(O+) is drawn from a uniform
distribution with support [0, 1], while the probability of
the negative outcome p(O!) is set to 1 ! p(O+). We define
the option in the pair with the higher expected value
as the H option, and we define the performance of a strat-
egy as its likelihood of obtaining the H option.1 For our
analyses, we generated 10,000 pairs of payoff distributions
and averaged expected strategy performance across all pairs.

2.2. Sampling rules

All players use a ‘‘fixed-N’’ sampling rule, where N rep-
resents the player’s planned sampling size. A player with a
fixed planned sampling size N will elect to continue sam-
pling until the N + 1 sampling round, at which point he will
stop search and choose. Players distribute their samples
equally,2 between the two options except where N is odd,
in which case the player will allocate one additional sample
to a randomly chosen option. Strategies with small N values
dictate little exploration prior to exploitation, while those
with large N values mandate extensive exploration. We cal-
culated expected performance for fixed-N strategies with
planned sampling sizes ranging from 1 to 50.

2.3. Decision rules

Given a pair of players, the player with the smaller
planned sampling size is the chooser in the game and gets
to decide which option to take. The player with the larger
planned sampling size is the receiver and automatically
receives the remaining option that was not chosen by their
competitor. Choosers choose the option that has the high-
est observed sample mean (i.e., highest mean reward). This
rule has been proposed in the context of n-armed bandit

1 We discuss other reasonable performance measures in Section 5. For
now, we note that for the two-gamble case, the probability of obtaining
option H is similar, if not identical, to other performance measures such as
the probability of outperforming one’s competitor. Additionally, assuming
that distributions are not heavily skewed, the probability of obtaining
option H in most cases should be very similar to the average expected
reward.

2 This assumption is made for simplicity. Although, on average, people
draw roughly equal samples from both options in solitary decisions from
experience (see Hertwig et al., 2004 Fig. 1), there is also evidence that
sampling effort is impacted by factors such as the variability of outcomes
encountered during search (Lejarraga, Hertwig, & Gonzalez, 2012).
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problems as a computationally simple method for estimat-
ing the values of actions such as the play of one of a slot
machine’s levers, and for using the estimates to select an
action (Sutton & Barto, 1998). Unlike in n-armed bandit
problems, in the sampling paradigm as studied here, the
outcomes in the sampling stage inform the players about
the value of an option but do not yet represent actual
rewards (that is, sampling is exogenous; Denrell, 2007).

In the case that players sample only once, and thus
observe an outcome from one option only, they use the
following decision rule: If the sample is positive, choose that
option, if the sample is negative, choose the other option. This
rule is in the spirit of the win-stay, lose-shift strategy that
has been shown to be effective in repeated games environ-
ments (e.g., Nowak & Sigmund, 1993). We refer to our vari-
ant of this strategy as the take-good-enough, otherwise-shift
strategy. It specifies that a player will take an observed
option if the sample was satisfying (any positive value in
our simulation), otherwise he will reject the observed option
and take the alternative, unobserved option.3

2.4. Social environments

The cost of sampling in competitive environments is
likely to depend on the probability that a desirable option
will be scooped up by a competitor. For this reason, we
expect that the performance of sampling strategies will
depend on the specific social environment an organism is
in. To measure how competitors’ decision speed affects
the performance of different levels of search, we simulated
choice performance in four different social environments.
Mathematically, we defined social environments in terms
of the probability distribution of opponents’ sampling
sizes. We generated four social environments: a slow envi-
ronment in which competitors tend to have large sampling
sizes and thus require extensive information before mak-
ing a decision; a fast environment in which competitors
tend to have small sampling sizes and are primarily moti-
vated to not let good options slip away; an uncertain envi-
ronment where competitors vary equally between small,
medium, and large sampling sizes; and an as-if solitary
environment that consisted of searchers taken from the
original Hertwig et al. (2004) study on solitary decisions
from experience. This environment is called as-if solitary
because competitors behave as if they are in a solitary
environment. To the extent that competition will likely
reduce search, the as-if solitary environment represents
one possible distributional upper bound on how long indi-
viduals will search under competition.

2.5. Simulation results

We show mean performance results across 10,000 ran-
domly generated pairs of payoff distributions drawn from

the aforementioned choice ecology (see Appendix A for
details). Again, the benchmark used to assess the perfor-
mance of a sampling rule is the probability that an agent
obtains the option with the higher expected value in a
gamble pair (the H option). We present the simulation
results in three sections. First, we contrast expected out-
comes for agents who are choosers versus agents who
are receivers in a game as a function of the number of sam-
pling rounds in that game. Second, we demonstrate an
imbalance in the costs of oversampling versus undersam-
pling. Finally, taking into account this imbalance in costs,
we derive the best search length for each social
environment.

To what extent does being the chooser (i.e., the one
whose planned sampling size is smallest) increase the like-
lihood of obtaining the H option? Is it always good to be
the chooser in a game or is it sometimes better to be the
receiver and allow a competitor to choose? To answer this
question, we calculated the probability that an agent
obtains the H option given that he ends the game as the
chooser across sampling rounds 1–50.4 In other words,
assuming the game lasts for x sampling rounds, what is
the probability that an agent obtains the H option if he or
she is the chooser in the game? Fig. 1 shows the expected
outcomes for choosers compared to receivers across rounds
1–50. Recall that, as our implementation of the competitive
sampling game requires that the receiver take the option not
chosen, the probability that the receiver obtains the H option
is simply the complement of the probability that the chooser
chose it.

We draw two main conclusions from the data presented
in Fig. 1. First, across all sampling rounds, choosers are
always expected to obtain the H option with probability
greater than .50. Because receivers receive the H option
with the compliment of the chooser’s probability, receivers
always obtain the H option with a probability less than .50.
No matter how few samples one takes, the expected out-
come of being a chooser is always better than the expected
outcome of being a receiver. Second, the probability that a
chooser obtains the H option increases monotonically with
additional sampling rounds, but with marginally decreas-
ing gains. In other words, the gain in information a chooser
gets from an additional sample in early sampling rounds is
larger than the gain in later sampling rounds. From these
two findings, it follows that it is always better to have
more sampling rounds as long as one ends the game as
the chooser. In Fig. 1, this means that an agent should try
to get as far to the right on the choosing line as possible
without being ‘‘scooped’’ and dropping down to the
increasingly negative receiving line.

These findings also allow us to construct an optimal
sampling rule for an omnipotent player who knows how
long her competitor plans to sample. If the omnipotent
player knows that his competitor has a fixed and known
planned sampling size of nc, then his best sampling size
is nc ! 1 (or 1 when nc = 1). Of course, most people are
not omnipotent and do not have perfect knowledge of their3 Importantly, this rule assumes no uncertainty aversion (Ellsberg, 1961),

in that players do not hesitate to take a completely unobserved option
when an observed option is found to contain negative outcomes. In the
empirical study, we test this assumption (and find evidence against it).
However, for the purposes of simplicity we maintain the assumption in
determining good sampling sizes in the simulation.

4 Hertwig and Pleskac (2010) conducted a very similar simulation that
paralleled ours (in the case where a player is always the chooser). Our
results are virtually identical.
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opponent’s planned sampling size. Instead, we suspect that
people will base their sampling decisions on their expecta-
tions of their competitors’ behavior, where expectations
are defined as a probability distribution over sampling
sizes. In other words, players could ask themselves:
‘‘How likely is my competitor going to stop search on each
sampling round? Once a player has these expectations, she
then needs to take into account the costs of over- versus
undersampling. If the costs of undersampling (deciding
too quickly) are larger than the costs of oversampling
(deciding too slowly), then a player should err on the side
of sampling too much relative to her expectations of her
opponent. On the other hand, if the costs of undersampling
are smaller than the costs of oversampling, then the player
should shorten her search relative to her expectations of
her opponent.

To determine the relative costs of over- versus under-
sampling in the competitive sampling game, we calculated
the expected choice performance of an agent given all
combinations of planned sampling sizes from 1 to 10 that
an agent and his or her competitor might implement.
These data are presented in Fig. 2, where the x-axis repre-
sents an agent’s planned sampling size and the y-axis rep-
resents a competitor’s planned sampling size.

Consistent with our previous conclusion, Fig. 2 shows
that for any competitor’s planned sampling size nc, an
agent’s best planned sampling size, na, equals nc ! 1 (or 1
when nc = 1). For example, if a competitor’s planned sam-
pling size is 8, the best planned sampling size for the agent
is 7, with an 83% chance of obtaining option H. However,
consider the cost of over- versus undersampling against
this competitor. If the agent undersamples by 2, with a
planned sampling size of 5, he will still be the chooser in
the game and have an 80% chance of obtaining option
H—a drop of only 3 percentage points relative to the best
possible outcome. If, on the other hand, the agent oversam-
ples by 2, with a planned sampling size of 9, he will be the
receiver in the game and will have only a 16% chance of
obtaining option H—a plunge of 67 percentage points.

These results show that the cost of oversampling is much
larger than the cost of undersampling: it is always better
to undersample (by any amount) and keep the chooser
advantage, than to oversample (by even one sample) and
suffer the receiver disadvantage.

Given that it is better to err on the side of undersam-
pling versus oversampling, how should an individual
behave in different social environments? In other words,
how little should one sample before making a decision
given certain expectations about the behavior of competi-
tors? To answer this, we calculated a player’s expected
probability of obtaining the H option given his or her
planned sampling size within each of the four social envi-
ronments (see Appendix B for details). In the slow environ-
ment, competitors had relatively large planned sampling
sizes (mean of 30), following a bounded, discretized nor-
mal distribution with a standard deviation of 5. In the fast
environment, competitors had relatively small planned
sampling sizes (mean of 3.33) following a right-skewed
distribution. In the uncertain environment, competitors
had—with equal probability—any planned sampling size
from 1 to 50 (mean of 25.5). Finally, in the as-if solitary
environment, competitors had a right-skewed distribution
of sampling sizes (mean of 18). Fig. 3 (left panel) shows the
probability mass functions for each of these social
environments.5

The right panel of Fig. 3 shows the expected probability
than an agent obtains the H option given the planned sam-
pling size within a specific social environment. In a slow
environment, agents with a planned sampling size of 18
did best, with an 88.2% chance of obtaining H. In contrast,
in an uncertain environment, the best planned sampling
size was 6, with a 75.8% chance of obtaining H. In a fast
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Fig. 2. Probability that an agent obtains the H option given the agent’s
planned sampling size and the competitor’s planned sampling size. The
figure shows mean values over 10,000 randomly generated two-outcome
gambles.

5 For the purposes of the prescriptive analyses, these distributions can
represent either the variability in the behavior of one’s opponent from one
game to another, or the variability in the behavior of an entire population of
individual competitors. Assuming that an opponent’s sampling rule in each
game is an independent, random sample from its parent distribution, the
mathematics are the same whether we attribute variability to inter- or
intra-individual causes.
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environment, agents with a planned sampling size of just 1
did best, obtaining the H option 59% of the time. In the as-if
solitary environment, a planned sampling size of 4 proved
best, with a 73.8% chance of obtaining H. Finally the only
sampling size that ensures that one will obtain option H
with probability no less than .50, regardless of the behavior
of one’s competitor, is a sample size of just 1 using the
take-good-enough, otherwise-shift strategy.

These results show that players should dramatically
reduce exploration in a competitive context when they lack
clear information of their competitors’ intentions. Consider
for illustration the uncertain social environment, in which a
competitor is equally likely to stop anywhere between 1 and
50 samples (see Fig. 3, left panel). If an omnipotent player
knew exactly how long her competitor planned to sample,
then the best strategy would simply be to take one fewer
samples than her opponent. However, in this uncertain
social environment, the exact planned sampling size of the
opponent is unknown. What happens if a player plans to
sample one less than the expected planned sampling size
of her competitor? In this uncertain social environment
where the expected planned sampling size of a competitor
is 25.5, this rule would dictate a planned sampling size of
25. Reference to Fig. 3 (right panel) shows that this planned
sampling size constitutes dramatic oversampling, as the
best planned sampling size for this social environment is
only 6—less than one-fourth of the competitor’s expected
sampling size. In this example, planning to sample one
round less than the expected sampling size of one’s uncer-
tain competitor leads to oversampling by over 19 rounds.
The reason behind this dramatic effect of uncertainty about
the other agent’s actions on the best planned sampling size
is the disproportionate costs of over- versus undersampling.

To conclude, adaptive sampling in the competitive sam-
pling game depends on expectations of one’s competitors. If
competitors value accuracy highly and consequently repre-
sent a slow social environment, decision makers can afford
to gather more information. Yet there is considerable asym-
metry in the costs of over- versus underestimating compet-
itors’ need for accuracy. In our choice ecology,
underestimating one’s competitor’s sampling size, no mat-
ter by what degree, will always ensure that one will be the

chooser and thus more likely than not to obtain option H.
On the other hand, overestimating one’s competitor’s sam-
pling size, no matter by what degree, will always ensure that
one will be the receiver and thus more likely than not to
obtain the short end of the stick (i.e., the lower expected
value option, L). For these reasons, we find that it is better
to err on the side of underestimating the competitor’s sam-
pling size and minimizing the risk of being scooped.

These simulations show that competition presents a
substantial additional cost of search. Consequently, we
expect that real people will search much less in a compet-
itive compared to a solitary context. But how much more
restricted will it be? Will real people competing with oth-
ers decrease their search in a magnitude prescribed by our
simulations? Or will people be reluctant to decrease pre-
decisional search so dramatically? To answer this question,
we conducted an empirical study on the competitive sam-
pling game and compare the search behavior of people par-
ticipating in solitary to competitive games.

3. An empirical investigation of the competitive
sampling game

3.1. Method

A total of 180 students from the University of Basel par-
ticipated in the study.6 They received a flat fee of CHF 7.50
(approximately $8.12 at the time) for their participation, as
well as a bonus contingent on their winnings in the game.
The mean bonus across both experimental conditions was
CHF 1.18 (approximately $1.26) with a standard deviation
of CHF 1.19. Participants completed the study in groups of
four, each on a separate computer. They received no infor-
mation about the choice ecology prior to beginning the task.
All players began by playing three practice games without
financial consequences to familiarize themselves with the
experimental interface (see Appendix C for practice game
parameters). They were then presented with five decision
tasks. Each decision task contained two, two-outcome
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environments (see text). Right panel: Results from the agent-based simulation averaged across 10,000 randomly generated decision problems. The x-axis
indicates the planned sampling size of an agent, and the y-axis shows the expected probability of obtaining the higher expected value option (H) as a
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6 Gender data were not recorded due to a programming error.
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Table 1
Choice ecology.

Task 1 Task 2 Task 3 Task 4 Task 5

Gamble
set

H L H L H L H L H L

1 (37, 0.44, !17):
6.76

(25, 0.22, !11):
!3.08

(29, 0.36, !13):
2.12

(43, 0.35, !20):
2.05

(33, 0.46, !15):
7.08

(49, 0.28, !23):
!2.84

(55, 0.41, !26):
7.21

(55, 0.28, !26):
!3.32

(37, 0.44, !17):
6.76

(37, 0.26, !17):
!2.96

2 (43, 0.43, !20):
7.09

(29, 0.24, !13):
!2.92

(49, 0.35, !23):
2.20

(33, 0.35, !15):
1.80

(25, 0.5, !11):
7.00

(37, 0.26, !17):
!2.96

(55, 0.41, !26):
7.21

(55, 0.28, !26):
!3.32

(37, 0.44, !17):
6.76

(37, 0.26, !17):
!2.96

3 (55, 0.41, !26):
7.21

(55, 0.28, !26):
!3.32

(37, 0.44, !17):
6.76

(37, 0.26, !17):
!2.96

(29, 0.48, !13):
7.16

(43, 0.27, !20):
!2.99

(49, 0.42, !23):
7.24

(33, 0.25, !15):
!3.00

(25, 0.36, !11):
1.96

(37, 0.35, !17):
1.90

4 (37, 0.44, !17):
6.76

(25, 0.22, !11):
!3.08

(29, 0.36, !13):
2.12

(43, 0.35, !20):
2.05

(37, 0.44, !17):
6.76

(55, 0.28, !26):
!3.32

(49, 0.42, !23):
7.24

(49, 0.28, !23):
!2.84

(33, 0.46, !15):
7.08

(33, 0.25, !15):
!3.00

5 (33, 0.46, !15):
7.08

(33, 0.25, !15):
!3.00

(49, 0.42, !23):
7.24

(49, 0.28, !23):
!2.84

(55, 0.35, !26):
2.35

(37, 0.35, !17):
1.90

(43, 0.43, !20):
7.09

(29, 0.24, !13):
!2.92

(25, 0.5, !11):
7.00

(37, 0.26, !17):
!2.96

6 (55, 0.41, !26):
7.21

(37, 0.26, !17):
!2.96

(25, 0.36, !11):
1.96

(37, 0.35, !17):
1.90

(29, 0.48, !13):
7.16

(43, 0.27, !20):
!2.99

(49, 0.42, !23):
7.24

(49, 0.28, !23):
!2.84

(33, 0.46, !15):
7.08

(33, 0.25, !15):
!3.00

7 (43, 0.43, !20):
7.09

(43, 0.27, !20):
!2.99

(33, 0.46, !15):
7.08

(49, 0.28, !23):
!2.84

(29, 0.48, !13):
7.16

(29, 0.24, !13):
!2.92

(55, 0.35, !26):
2.35

(37, 0.35, !17):
1.90

(37, 0.44, !17):
6.76

(25, 0.22, !11):
!3.08

8 (55, 0.41, !26):
7.21

(37, 0.26, !17):
!2.96

(49, 0.35, !23):
2.20

(33, 0.35, !15):
1.80

(25, 0.5, !11):
7.00

(37, 0.26, !17):
!2.96

(43, 0.43, !20):
7.09

(43, 0.27, !20):
!2.99

(29, 0.48, !13):
7.16

(29, 0.24, !13):
!2.92

9 (25, 0.36, !11):
1.96

(37, 0.35, !17):
1.90

(49, 0.42, !23):
7.24

(33, 0.25, !15):
!3.00

(29, 0.48, !13):
7.16

(29, 0.24, !13):
!2.92

(43, 0.43, !20):
7.09

(43, 0.27, !20):
!2.99

(37, 0.44, !17):
6.76

(55, 0.28, !26):
!3.32

10 (55, 0.41, !26):
7.21

(37, 0.26, !17):
!2.96

(29, 0.36, !13):
2.12

(43, 0.35, !20):
2.05

(33, 0.46, !15):
7.08

(49, 0.28, !23):
!2.84

(37, 0.44, !17):
6.76

(37, 0.26, !17):
!2.96

(25, 0.5, !11):
7.00

(25, 0.22, !11):
!3.08

11 (49, 0.35, !23):
2.20

(33, 0.35, !15):
1.80

(43, 0.43, !20):
7.09

(29, 0.24, !13):
!2.92

(37, 0.44, !17):
6.76

(37, 0.26, !17):
!2.96

(25, 0.5, !11):
7.00

(25, 0.22, !11):
!3.08

(37, 0.44, !17):
6.76

(55, 0.28, !26):
!3.32

12 (49, 0.42, !23):
7.24

(33, 0.25, !15):
!3.00

(55, 0.35, !26):
2.35

(37, 0.35, !17):
1.90

(29, 0.48, !13):
7.16

(43, 0.27, !20):
!2.99

(37, 0.44, !17):
6.76

(37, 0.26, !17):
!2.96

(25, 0.5, !11):
7.00

(25, 0.22, !11):
!3.08

Note: Gamble sets used in both the solitary and the competitive conditions. Rows correspond to the 12 different combinations of decision tasks. H represents the higher expected value option, and L represents the
lower expected value option within each decision task. Each option is a discrete, two!outcome random variable with one positive and one negative outcome that occur with complementary probabilities. Values
in parentheses are the value and the probability of the positive outcome, and the value of the negative outcome, for each gamble. The value outside the parentheses is the expected value of the gamble.
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gambles, each with one positive and one negative outcome
occurring with complementary probabilities. The gamble
sets were constructed such that in certain pairs the options
differed in expected value and in others they did not; like-
wise, in certain pairs the options differed in range and in
others they did not (see Appendix C for a full description
of how gamble parameters were selected). Three different
orders of each of the 12 gamble sets were created, resulting
in 36 unique experimental sessions (see Table 1). Location of
the urns on the screen was randomly determined for each
decision task and on each run.

At the outset of each decision task, participants saw two
options represented visually as opaque urns. They were told
that each urn contained 100 virtual balls, each of which was
worth a (not necessarily unique) number of points. Partici-
pants were informed that they would be rewarded with
one-tenth of the average value of all the balls in the urn they
chose (or were allocated). Each of the participants (n = 36)
assigned to the solitary condition completed one of the 36
unique experimental sessions. These participants could
sample from the urns as many times as they wished before
making a final choice. Having made a final choice of an urn
in a decision task, they moved onto the next task. The other
144 participants played each decision task in the competition
condition. At the beginning of each task, they were paired
randomly with one of the other three participants. This pair-
ing was done independently between tasks. Players were
not told which person (of the three) they were playing
against in each decision task.

Every decision task, in both the solitary and competi-
tion conditions, began with one mandatory sampling
round. On every subsequent sampling round, each player
indicated whether he or she wanted to sample from an
urn or to make a final choice. These decisions were made
privately and were only revealed to both players after both
had made a sampling or choice decision. If both wanted to
take a sample, they were asked to click on an urn and
viewed a randomly sampled outcome from that urn. Play-
ers could see which urn the other player sampled from, but
could not see the outcome the other player observed. If,
after observing a sample, both players wanted another
sample then another sampling round began. If one player
decided to make a final choice (becoming the ‘‘chooser’’7),
she then selected the urn she wanted and her choice was
recorded. Subsequent to the chooser’s choice, the other
player (the ‘‘receiver’’) was informed that her competitor
had made a choice and that he must take the remaining non-
chosen urn. If both players made a choice on the same sam-
pling round, one of two outcomes was possible: If the two
players chose different urns, they each received the urn of
their choice. If both players chose the same urn, the two urns
were randomly assigned to the players. After final choices
were made and players learned which urn they received,
they were randomly paired again and the next decision task
began. The random pairing was done independently of prior
rounds, so a player could play the same opponent on
sequential games. Participants did not receive immediate

task-by-task feedback on how much money they won from
their chosen urns. At the end of the session, participants
were informed how much money they had earned across
the five decision tasks and were paid accordingly.

4. Results

We used Bayesian graphical modeling for all inferential
statistics. Bayesian posterior densities were calculated
using the R2Jags package in R. Posterior densities were cal-
culated with uninformative uniform priors, 10,000 itera-
tions, a burn-in value of 1000, and no thinning. We
conducted Bayesian hypothesis tests using Bayes Factors
calculated using the Savage–Dickey method for nested
model comparisons. We used the conventions developed
by Jeffreys (1961) to determine the categorical degrees of
strength indicated by Bayes Factors (BF). All raw data and
complete code are available in our online supplementary
materials. In the following sections, we first report on search
and then on choice, comparing both behaviors in the compe-
tition condition relative to the solitary condition.

4.1. How drastically do people restrict explorative behavior
under competition?

We measure exploration efforts by the number of sam-
pling rounds tasks lasted prior to a choice. For solitary
games, this is simply the number of samples the player
took. For competitive games, this is the number of sam-
pling rounds that occurred prior to the first choice. Fig. 4
presents the distribution of sampling rounds across all
decision tasks in the solitary and competition conditions.
In the solitary condition, the median number of sampling
rounds was 18 (mean of 21.05; 95% highest density inter-
val [HDI]: 18.78, 23.67).8 In the competition condition, in

Fig. 4. Distribution of sampling rounds across all decision tasks and
individuals, separately for the solitary and the competition conditions.
One sampling round value of 100 in the solitary condition is not
displayed. The 95% HDI interval for the solitary condition is plotted
‘behind’ the solitary sample mean.

7 Players were not explicitly given the ‘‘chooser’’ and ‘‘receiver’’ labels in
the experiment.

8 The mean for the distribution of sampling sizes in the solitary condition
was calculated from the 95% HDIs for the p and r parameters in the negative
binomial distribution.
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contrast, the median number of sampling rounds was 1
(mean of 1.82; 95% HDI: 1.61, 2.08).9 The difference in sam-
ple means was 19.27 (95% HDI: 17.00, 21.92) and provides
extremely strong evidence against the hypothesis that the
means of the two distributions were the same (BF > 100).
Thus, the amount of sampling by participants who were
competing for resources was dramatically lower than that
of participants who were searching alone.10

4.2. How much does very restricted search compromise
decision quality?

To see how the restricted search in the competition
condition affected decision quality, we calculated how
often choosers in the competition condition chose the H
option relative to receivers and to participants in the soli-
tary condition. These results are presented in Fig. 5. In the
solitary condition, players chose the H option in 71% (95%
HDI: 64%, 78%) of decision tasks. This result constitutes
extremely strong evidence for the hypothesis that partici-
pants in the solitary condition were more likely than
chance to choose the H option (BF > 100). Next we analyze
the outcomes for choosers and receivers in the competition
condition. In cases where players chose the same option
simultaneously, one player was randomly assigned to be
the chooser (and obtained the option both chose) and the
remaining player was assigned to be the receiver (and
obtained the alternative option). Choosers obtained the H
option in 58% of decision tasks (95% HDI: 53%, 63%)—fewer
than in the solitary condition (BF = 12.36, strong evidence),
but more than would be expected by chance alone
(BF = 8.90, moderate evidence).

Thus, the reduced information available to fast choosers
in the competitive condition indeed reduced their choice
performance relative to solitary choosers. Nevertheless,
as choosers took the better option at above chance level,
receivers obtained option H in only 42% (95% HDI: .37,
.47) of cases11 This is consistent with our simulation
analysis (Fig. 3, right panel) showing that fast choosing is
advantageous under competitive conditions.

4.3. How did players make choices based on minimal
information?

The following analyses focus on the competition condi-
tion only. To further analyze the specific decisions that
produced the distribution of sampling rounds in the
competition condition, we looked at how quickly players
terminated sampling. For each of the 720 decision tasks
(144 participants ! 5 decision tasks each), we recorded
the total number of sampling rounds that occurred in the
task, and whether players were choosers or receivers (i.e.,
two choosers or one chooser and one receiver). We found
that in 32% (227 of 720) of all cases, participants were
choosers who decided to choose immediately after the first
sampling round. Of these choices, 88% (200 of 227) were
consistent with the take good enough, otherwise-shift heu-
ristic. The remaining 12% (27 out of 227) either chose an
option with an observed negative value, or did not choose
an option with an observed positive value. In 22% (159 of
720) of all cases, participants were receivers after the first
sampling round, because they opted to continue sampling
while their competitors decided to choose. Participants
made it to the second round in only 46% (334 of 720) of
cases. Of these 334 participants, 34% (113 of 334) were

Fig. 5. Proportions of tasks where players obtained the higher expected
value (H) option in the solitary and the competition conditions. Error bars
represent 95% highest density intervals for the population probability.

9 The mean for the distribution of sampling sizes in the competition
condition was calculated from the 95% HDIs for the p parameter in the
geometric distribution.

10 The fact that sampling rounds decreased in competition relative to
solitary conditions, is necessary, but not sufficient evidence that compe-
tition reduced individual sampling decisions. The reason for this lies in how
sampling rounds are defined. Under competition, sampling rounds are
defined at the level of pairs of participants rather than individual
participants. Because sampling rounds are restricted by the behavior of
the fastest player in a pair, we would expect a decrease in sampling rounds
in the competitive task relative to the solitary task even if players did not
change their sampling rules. For example, if two players employ fixed-N
rules of 5 and 10, respectively, across solitary and competitive games, the
average number of sampling rounds in the solitary games would be 7.5,
while the average number of sampling rounds under competition would
(always) be 5. To test whether or not this shrinkage effect could explain the
different distributions of sampling rounds between solitary and competi-
tion conditions, we generated all possible pairs of sampling rounds from
the solitary game and calculated the minimum sampling round number
from each pair. This represented the expected distribution of sampling
rounds in the competition condition if behavior was the same as in the
solitary condition. The median number of sampling rounds in this
distribution was 11 (mean of 12.61, 95% HDI: 12.45, 12.76). The difference
in the mean sampling rounds between this distribution and the observed
distribution for the competition condition was 10.76 (95% HDI: 10.49,
11.06), thus offering extremely strong evidence against the hypothesis that
the means of the two distributions are the same (BF > 100). We conclude
that the difference between the mean number of sampling rounds in the
competition condition and the solitary condition was due not only to the
rules of the competitive game (i.e., the fastest player determines sample
size) but also to the fact that competition per se shifted the balance from
exploration to exploitation.

11 Receivers did not receive option H at a percentage exactly equal to one
minus the percentage that choosers wanted option H (which was 57%). This
is due to the effects of simultaneous choosing by choosers. In games where
both players simultaneously chose option H, both wanted option H, but
only one player got it.
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choosers who decided to stop sampling, 25% (82 of 334)
were receivers, and 41% (139 of 334) ‘‘survived’’ to the
third sampling round. This analysis demonstrates that,
while not all choosing decisions were made after one
round (as prescribed by the analysis of the fast environ-
ment; Fig. 3), people indeed drastically confined their
information search, and to a greater extent than prescribed
by the uncertain and solitary search environments.

What makes people decide to choose after just one
sample versus to continue sampling? Our data suggest
the valence of the first sample influences this decision. Of
the 261 cases in which a player experienced a positive out-
come in the first sample, he or she stopped sampling and
chose immediately in 130 cases (50%; 95% HDI: 44%,
56%). Of the 459 cases in which a player experienced a neg-
ative outcome in the first sample, he or she stopped sam-
pling in only 97 cases (21%; 95% HDI: 18%, 25%). Thus,
players were more willing to immediately choose an
option with a known positive outcome than they were to
reject an option with a known negative outcome and take
a completely uncertain option (BF > 100, extreme evi-
dence)—perhaps a manifestation of aversion to ambiguity
(Ellsberg, 1961).

4.4. How closely did players pursue a single strategy?

Next, we examined how consistent individual partici-
pants were in their behavior across tasks. In the competi-
tive sampling game, some players could always try be
the chooser, while others might require so much pre-deci-
sional information that they always defer the choice to
their competitor. To see if people had stable choosing ver-
sus receiving outcomes, we calculated the percentage of all
5 games that each participant was a chooser. Table 2
reports the distribution of these percentages across indi-
viduals. We found little evidence that people’s search strat-
egies resulted in stable outcomes across decision tasks.
Only 19 individuals (13.2%) were either always choosers
(17) or always receivers (2), while the remaining 86.8%
ended some tasks as the chooser and other tasks as the
receiver.

Next, we determined whether and how individuals
changed their behavior across the tasks. For example, if a
player ended up as a receiver in one task, did she decrease
her sampling in order to increase the chance of being a
chooser in the subsequent task? In contrast, did the choo-
ser take the liberty of sampling a little more in the next
task? To answer this question, we calculated the marginal
probability that a player was the chooser each task in addi-
tion to the probability of being the chooser conditional on
his or her status in the previous task (i.e., chooser versus
receiver). If behavior in a game changes as a function of
the outcome in the previous game, we would expect differ-
ences in the conditional probability of choosing when a
player was a chooser in the previous game compared to

being a receiver in the previous game. Table 3 reports the
results.

We begin by looking at the marginal probability of
choosing across decision tasks. If players adjust their
explorative efforts downward with each round, the proba-
bility that they end games by choosing (rather than receiv-
ing) should increase and converge toward 1. We did not
find substantial evidence for this, as the probability of
choosing oscillated between around 57% and 61% across
tasks. Next, we looked at the probability of choosing, con-
ditioned on the outcome of the previous task. We found no
evidence that being a receiver in one round prompted less
search and a higher probability of being the chooser in the
next task. In other words, we do not find clear evidence
that players changed their behavior across tasks based on
experience. One possible explanation for this finding is
that, although players were told whether they were the
chooser or the receiver in any given round, they did not
receive immediate feedback on the direct monetary conse-
quences of their behavior. Without immediate consequen-
tial feedback, players may not have had sufficient
information to adjust their sampling strategies.

5. General discussion

We designed the competitive sampling game to extend
the sampling paradigm used in research on decision from
experience (see Hertwig & Erev, 2009) to competitive deci-
sion tasks under uncertainty. The task enables researchers
to investigate how people adapt their exploration efforts in
response to the simultaneous presence of uncertainty
about nature (i.e., the parameters of the payoff distribu-
tion) and uncertainty about the social environment of
competitors (i.e., their desire for accuracy versus their
desire to beat their competitors to the punch). In our initial
research using the game, we found that competition dra-
matically affects the exploration–exploitation tradeoff. In
a simulation analysis, we found that sampling sizes as
low as 1 or 2 can be best in certain environments when
people compete with others for advantageous options.
Empirically, our participants showed dramatically reduced
search in competitive task compared to solitary one.

5.1. Varying the number of players and options

In our experiment and simulations, we contrasted a sol-
itary task with one player and two options, with a compet-
itive task with two players and two options. One could
wonder whether it is merely the presence of competition,
or the ratio between competitors and the number of avail-
able options that drives the need for speedy decisions.12 A
moment’s reflection makes it clear that good sampling rules

Table 2
Distribution of participant-level proportion of decision tasks ending with a choice.

0/5 1/5 2/5 3/5 4/5 5/5
2 (1.4%) 16 (11.1%) 34 (23.6%) 45 (31.3%) 30 (20.8%) 17 (11.8%)

12 We thank Jonathan Nelson for pointing this out.
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are likely to depend both on the number of options available,
and the number of competitors: If there are many options
available relative to players, then one can take more time
for sampling, knowing that even if all other players make
quick decisions, there will likely be many good options
remaining. To find out the relationship between the number
of competitors and number of options on good decision
speed, we ran a supplementary set of simulations in which
we systematically manipulated three factors: number of
players (from 2 to 5), number of options (from 2 to 5) and
the speed of competition (fast, uncertain, and slow). For each
factor combination, we simulated the performance of an
agent using a fixed sampling size of 1 through 15. In contrast
to our previous simulations, we now define performance as
the average expected reward the agent obtained across all
simulations.13 Details of the simulation are in Appendix E.

We present the main results of the simulation in Fig. 6.
Each plot shows an agent’s planned sampling size on the
horizontal axis, and the agent’s expected reward on the
vertical axis. Each line corresponds to a different social
environment, mirroring three of the four (excluding the
as-if solitary condition) from our earlier simulations (see
left panel of Fig. 3). Plots in each column refer to different
numbers of players, from 2 to 5, while plots in each row
refer to different numbers of options, from 2 to 5. The
top left graph (2 players and 2 options) replicates the same
social and environmental structure as our initial simula-
tion. Within each plot, the sampling size that maximizes
an agent’s expected rewards for each social environment
is highlighted with an enlarged point.

We briefly summarize 4 key results from Fig. 6. First,
holding the number of players constant, as the number of
options increases the best sampling sizes tend to increase.
Additionally, the expected reward given the best sampling
size increases as well. This means that the more options
there are, the longer one should search, and the better
one’s expected outcomes will be. Second, holding the num-
ber of options constant, as the number of players increases
the best sampling sizes tend to decrease. Both of these
results support our prior intuitions: the degree to which
people should reduce sampling in the presence of compe-
tition depends on the number of options available and
the number of other players.

Next, we look at the effect of the player/option ratio on
performance. If the ratio of players to options remains the
same, does the absolute number of players and options
matter? We find that indeed, there is a substantial effect.
Consider games where the player: option is 1:1. Here, we
find that as the absolute number of players and options
increases, the risk involved with taking large samples
increases in a fast environment, but decreases in a slow
one. To see this, compare the expected rewards of having
a large (15) sampling size in the 2:2 game (top left panel)
compared to the 5:5 game (bottom right panel). In the 2:2
game, extensive search against slow competition leads to
an expected reward of around 20, while the same level of
search against fast opponents leads to an expected loss of
around !10. Here, the difference in expected rewards
against slow and fast opponents is 30. Now consider the
5:5 game. Here, the expected reward against slow oppo-
nents increases to around 35, while the expected loss
against fast opponents decreases to around !15. Now, the
difference in expected rewards between competitors is
50, an increase of 66% in the range of potential outcomes
compared to the smaller 2:2 game. This means that when
the absolute number of players and options increases,
while keeping the player to options ratio 1:1, both the
potential benefits one can gain using extensive search
against slow competition increases while the potential
losses on can suffer against fast competition increases. In
other words, the more players and options are in the game,
the more risk one runs (with ‘risk’ defined as the difference
between the expected reward with the best sample size
and with the largest sample size) by extensive search, in
fast and uncertain environments. Independently of this
effect, the main result from our previous analyses still
hold—the faster you expect your opponents to decide, the
faster you should decide, regardless of how many options
and how many players are in the game.

Next, we consider games where there are more players
than options. These games are akin to real-world problems
such as house-hunting and mate-search where there may
be more ‘buyers’ than ‘sellers.’ For example,14 in Beijing,
men outnumber women, and thus (heterosexual) men find
themselves in a competitive game with more players than
options (Jacobs, 2011). Assuming that options cannot be
shared among players, these games necessitate that some
players will leave without an option of their own. In our sim-
ulation, we assumed that these players receive neither
rewards nor losses from leaving empty-handed. However,
one can easily imagine real world decisions where this
assumption does not hold. If you are competing with others
for one of three open positions at a company, it might be
much worse to get no job at all than to get a random (or
even the worst) job of the three. Similarly, in mate-selection,
leaving empty-handed could very well be the worst possible
outcome from an evolutionary perspective. To incorporate
this cost, one could assign a fixed negative loss for players
that leave the game empty-handed, with larger losses repre-
senting domains where it is especially bad to leave with
no option (e.g.; mate-search). While we do not run these

Table 3
Choosing behavior across sequential decision tasks.

Rounds/
decision
task

p(choosing) p(choosing|previous
choosing)

p(choosing|previous
receiving)

1 82 (56.9%)
2 83 (57.6%) 48 (58.5%) 35 (56.4%)
3 87 (60.4%) 51 (61.4%) 36 (59.0%)
4 83 (57.6%) 54 (62.1%) 29 (50.9%)
5 89 (61.8%) 55 (66.3%) 34 (55.7%)

13 We use expected reward instead of the probability of obtaining the
highest expected value option for two reasons. First, organisms frequently
want to obtain good options, not necessarily the best option. Second, as the
number options increases, the probability that any player will discover and
take the highest expected value option will necessarily decrease. This
makes it more difficult to compare performance between option number
conditions. 14 We thank Jonathon Nelson for providing this example.

114 N.D. Phillips et al. / Cognition 133 (2014) 104–119



simulations, our prediction for the effect is clear: as the cost
of leaving empty-handed increases, sampling sizes should
decrease.

5.2. Alternative search and decision rules

In our simulations, we assumed that players used a
‘‘fixed-N’’ sampling rule. That is, players were assumed to
have a fixed sampling size threshold that they had to reach
before making a decision. Additionally, we assumed that
players distribute their samples equally between options.
We chose to limit our analyses to this simple class of

search rules as a starting point for exploring the effects
of different exploration efforts on performance. Of course,
the fixed-N sampling rule plus equal allocation constitutes
just one of many possible search rules people are likely to
use. For example, one promising, more complex, class of
search rules are those that compare sample statistics with
an information threshold in order to decide whether to
stop or to continue sampling. These rules have been found
to be promising both normatively and descriptively (e.g.,
Busemeyer & Rapoport, 1988). While we cannot claim that
fixed-N sampling rules represent either the best approach
to the competitive sampling game or that most
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Fig. 6. Simulation results depicting the expected reward (vertical axes) of an agent in the competitive sampling game given a specified sampling size
(horizontal axes). Separate plots in each column correspond to different numbers of players in the game, while separate plots in each row correspond to
different numbers of options in the game. Solid, dashed, and dotted lines refer to the slow, uncertain, and fast social environments respectively.
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participants employed them, we do predict that fixed-N
rules will mimic the behavior of more complex search
rules. For example, a fixed-1 rule should behave very sim-
ilarly to a rule that says ‘‘Always try to choose before your
opponent’’ or ‘‘Choose after the difference in sample means
is greater than e (where e is a small threshold).’’ Similarly, a
Fixed-30 rule will behave similarly to a conservative rule
such as: ‘‘Choose when the expected probability of choos-
ing the best option is greater than p (where p is a large
probability).’’ Here is our point: to the extent that small
fixed-N values mimic search rules that make do with min-
imal information before making a decision, and large fixed-
N rules mimic those that require extensive information,
our conclusion that competition should and does reduce
the amount of information people require before making
a decision should hold.

Finally, we did not deal with agents’ expectations con-
cerning their competitor’s search behavior Rather, we took
the competitor sampling size distributions as given, and
determined which sampling size best responds to them.
We do suspect that real people in competitive tasks (in
our empirical study and in the real world) try to predict
the sampling size of their opponents and, through some
iterated process of strategic thinking (e.g., Ho, Camerer, &
Weigelt, 1998) settle on a sampling size. Future research
should model the processes by which a person generates
expectations of other player’s behavior, translates those
expectations into a decision rule, and after gaining experi-
ences, updates their expectations.

5.3. When will very frugal search fail?

Our simulation results are based on aggregation across
specific distributions of gambles and are only valid within
those distributions. It is clear that other gamble distribu-
tions can lead to very different results. One important fac-
tor is how much the gamble distributions are favorable for
decisions based on small samples; if options are
‘unfriendly‘ to small samples, then our previous conclu-
sions will not hold. The gamble distributions in our stimuli
and empirical study, were indeed small-sample-friendly.
When averaged over 10,000 simulated pairs of gambles,
we found that a sample size of 1 results in an expected rate
of obtaining the H option of greater than .50 (see Fig. 1).
Thus, we created an environment where a sample of size
1 using the take-good-enough, otherwise-shift rule was,
on average, sufficient. However, this success rate does
not generalize to any gamble environment. In Appendix
D, we show that only gamble pairs where the sum of the
probability of obtaining a positive outcome from option
H and the probability of obtaining a negative outcome from
option L is greater than 1 guarantees an expected probabil-
ity of choosing the H option that is greater than .50 (see
proof in Appendix D). We label gamble pairs that satisfy
this condition as ‘‘one-sample favorable.’’ In our simula-
tions, the proportion of gamble pairs that were one-sample
favorable was .787; in these gambles, the probability of
choosing option H using one sample was .688. The remain-
ing portion of gamble pairs that were not one-sample
favorable was thus .213; in these gambles, the probability
of choosing option H using one sample .414. This result

highlights the fact that the accuracy of decisions based
on very small samples will depend on the specific distribu-
tions encountered by agents.

One of the most important findings from early research
on decisions from experience was that, in experience-
based decisions, low-probability (rare) events appear to
receive less impact than they deserve in light of their
objective probability (Hertwig et al., 2004). This effect is,
among other factors (Hertwig & Erev, 2009), caused by
the fact that people do not search long enough to experi-
ence rare events often enough or at all during search. For-
mally, in environments where the ranks of most samples
from each option diverge greatly from the true rank of
options’ long-term average values, choosing based on a
small sampling size can lead to a small probability of
obtaining the H option. In other words, in gambles where
small samples (e.g., a single date with a potential mate, a
glance at a TV on sale) produce data that are inconsistent
with an option’s long-term value (e.g., a disastrous first
date with Mr. or Ms. Right, a paid celebrity endorsement
of a low-quality product), frugal predecision sampling
can lead people to choose poor options. For example, con-
sider a payoff distribution that delivers +1 with probability
.9 and !100 with probability .1 and thus has an expected
value of !9.1. Small samples are unlikely to reveal the rare
but large negative outcome of !100, making the distribu-
tion look advantageous to most agents that inspect it only
briefly. This suggests that fast choosers in competitive
environments involving rare events run the risk of choos-
ing options that appear beneficial in the short term but
have detrimental long-term consequences resulting from
rare but impactful negative events (e.g., ‘‘black swans’’;
Taleb, 2007). Indeed, in such environments, a player could
even benefit from competing against others who are
‘‘tricked’’ into grabbing options with apparent short-term
gains, but actual long-term losses.

6. Conclusion

Our findings suggest that competition shifts the balance
between exploration and exploitation in an uncertain
choice environment: Faced with the threat of being outp-
aced in the process of making a decision, people dramati-
cally reduce search. As our results show, this is a smart
thing to do in ecologies in which competitors can be
expected to choose quickly, and modal samples are good
indicators of an option’s value. Although exploitation
means forgoing the benefits of exploration that can be
enjoyed in solitary situations, those who seize the first-
mover advantage do better than those who do not in many
(but, of course, not all) competitive situations. It is a pro-
verbial truth that you should ‘‘look before you leap’’ (see
also Savage, 1954/1972, p. 16). In our competitive environ-
ment, it emerged that a quick peek before leaping was very
helpful—but that more extensive looking permitted the
competitor to leap first and gain an edge.
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Appendix A

A.1. Calculating the expected probability of obtaining option H
given a choice ecology and social environment

We calculated a player’s expected probability of obtain-
ing the option with the higher expected value (H) given its
planned sampling size using Eq. (1):

pðHjniÞ ¼ pðHjnc > niÞ $ pðnc > niÞ þ pðHjnc

< niÞ $ pðnc < niÞ þ pðHjnc ¼ niÞ $ pðnc ¼ niÞ ð1Þ

Eq. (1) represents the weighted sum of three possible
scenarios that differ with respect to the relationship
between the player’s planned sampling size (ni) and the
planned sampling size of the competitor (nc), that is,
whether the player faces an opponent with a smaller, lar-
ger, or the same planned sampling size.

The first half of the first term in Eq. (1) corresponds to
the probability of obtaining the H option given that the
competitor will sample longer than the player, and, conse-
quently, the probability that the player will obtain H
equals that of choosing the H option given ni samples.
Because choices are based on sample means, this equals
the probability that the order of the sample means from
the two options matches the order of the population
means. In this case, the option with the higher sample
mean will also be the option with the higher popula-
tion mean and the player will choose the better option.
Formally:

PðHjnc > niÞ ¼ pð!xH > !xLjniÞ ð2Þ

Note that this calculation is specific to the choice ecology
under consideration. For two outcome payoff distributions
such as those used here, this can be calculated directly by
comparing the results of two binomial distributions. The
second half of the first term is the weight given to this out-
come, defined as the probability of encountering an oppo-
nent with a larger sample size than the player’s sample size.

The remaining two terms in Eq. (1) follow the same logic.
When the competitor samples less than the player, the prob-
ability that the player obtains the H option is the probability
that the competitor will not choose the H option. This equals
the probability that the opponent observes sample means

whose order is not equal to the true order of population
means and can be calculated as follows:

pðHjnc < niÞ ¼ pð!xH < !xLjncÞ ð3Þ

Finally, the third term in Eq. (1) represents the expected
outcome when both players have the same sampling size.
This is set to .5 and is independent of the sampling distri-
butions of payoff distributions H and L (=lower expected
value distribution):

pðHjnc ¼ niÞ ¼ :5 ð4Þ

Appendix B

B.1. Distributions of planned sampling sizes for competitive
social environments

In the fast environment F, the probability that a ran-
domly sampled agent has a planned sampling size nk is
given by a geometric distribution with p = .3, ranging from
1 to 50 and normalized to sum to 1:

f ðF ¼ nkÞ ¼
ð1& :3Þnj&1 $ :3

P50
i¼1ð1& :3Þ

i&1 $ :3
nk ¼ 1;2; . . . ;50

In the slow environment S, the probability that a ran-
domly sampled agent has a planned sampling size nk is a
reflected version of F around the point nk = 25.5:

f ðS ¼ nkÞ ¼
ð1& :3Þ50&nk&1 $ :3
P50

i¼1ð1& :3Þ
i&1 $ 3

nk ¼ 1;2; . . . ;50

In the uncertain environment U, the probability that a
randomly sampled agent has a planned sampling size nk

is given by the discrete, uniform distribution with bounds
at 1 and 50:

f ðU ¼ nkÞ ¼
1

50
nk ¼ 1;2; . . . ;50

In the as-if solitary environment A, the probability that a
randomly sampled agent has a planned sampling size nk is
given by a negative binomial distribution with p = .071 and
r = 1.59. The distribution is bounded from 1 to 50:

f ðA¼nkÞ ¼

nkþ1:59&1
nj

! "
ð1& :071Þ1:59 $ :017nk

P50
i¼1

1þ1:59&1
i

! "
ð1& :071Þ1:59 $ :071i

nk ¼1;2; . . . ;50

Appendix C

C.1. Properties of the practice games

Practice 1 Practice 2 Practice 3

H L H L H L

(32, .458, &13) (39, .352, &18) (47, .417, &25) (42, .349, &21) 53, .407, &24) (35, .458, &17)
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C.2. How gamble parameters were selected

We started out with four binary-valued options, labeled
A1–A4. Their values were (!17, 37), (!20, 43), (!23, 49),
and (!26, 55), for options A1 through A4, respectively.
Each of these options had three versions, differing in
expected value; the expected values were high (EV = 7),
medium (EV = 2), or low (EV = !3). The three EVs were
obtained by modifying the probabilities of the two out-
comes. Additionally, each A option had a corresponding B
option, for which the two values spanned a smaller range
(hence, smaller variance); the range of the B option was
about 2/3 that of the corresponding A option. We then con-
structed 12 gamble sets, each comprising five decision
tasks (displayed in Table 1). One involved a choice between
an A option with an EV of 7 and a B option with an EV of !3
(e.g., A1High and B1Low); a second involved a choice
between another A option and its corresponding B option,
in which the A option had the low EV and the B option the
high EV (e.g., A3Low and B3High); a third involved a choice
between another A and B pair in which the two were both
of the medium value, with EV = 2 (e.g., A2Medium and
B2Medium); a fourth involved a choice between two (large
variance) A options belonging to the same set but differing
in value (e.g., A4High and A4Low); a fifth involved a choice
between two (small variance) B options belonging to the
same set but differing in value (e.g., B4High and B4Low).
There were 12 such sets, and we used them all.

Appendix D

D.1. Conditions that make decision tasks one-sample
favorable

Consider an environment containing two gambles
(options) H and L, where E(H) > E(L). Assume a player selects
a gamble at random and draws a random sample. Let the
random variable S represent the selected option where
S e {H, L}. Let the random variable X e R be outcome drawn
be the outcome drawn from the selected gamble. Finally,
let the random variable C e {H, L} be the chosen option.

Consider a player using a one-sample search and deci-
sion rule: (1) Select an option at random and draw one
sample. (2) If the sample value is positive, choose the selected
option. If the sample value is negative, chose the unselected
option. From the law of total probability, the probability
that player will choose option H can be written as the
sum of the probabilities of two disjoint events:

pðC ¼ HÞ ¼ pðS¼ HÞpðX > 0jS¼ HÞ þ pðS¼ LÞpðX < 0jS¼ LÞ

Because options are selected at random,
p(S = H) = p(S = L) = .50:

pðC ¼ HÞ ¼ :5pðX > 0jS ¼ HÞ þ :5pðX < 0jS ¼ LÞ

Moving terms around

pðC ¼ HÞ ¼ :5ðpðX > 0jS ¼ HÞÞ þ pðX < 0jS ¼ LÞ

It follows that for p(C = H) to be greater than .50,
p(X > 0|S = H) + p(X > 0|S = L) must be greater than 1.0.

Appendix E

E.1. Second simulation procedure

We simulated the performance of agents with varying
fixed sampling sizes playing the competitive sampling game
against varying numbers of competitors, number of options,
and competitor speed. The key parameters we varied were:
N.Players (2, 3, 4, 5, 6): the number of competitors in the
game. N.Options (2, 3, 4, 5, 6): the number of options (gam-
bles) in the game. Competition.Speed (Slow, Uniform, Fast):
the decision speed of competitors. This created 72 simula-
tion classes. For each simulation class, we simulated the
decision performance of 15 agents playing the competitive
sampling game, each using a fixed sample size of 1–15. We
aggregated each agent’s performance over 5000 stochastic
factors: (1) the outcome distributions within each of the
(N.Options) options and (2) the specific stopping rules of
its (N.Competitors) competitors. Each option represented a
discrete, two-outcome gamble with one positive and one
negative outcome, each occurring with complementary
probabilities. For each of the options, we drew a positive
outcome from Unif(0, 100) and a random negative outcome
from Unif(!100, 0). We then drew the probability of the
positive outcome (p+) from Unif(0, 1) and set the probability
of the negative outcome (p!) to 1 ! p+. We constructed the
probability mass function for each option independently of
other options. For each of the competitors, we drew a sam-
ple size from its corresponding decision speed distribution
(Slow, Uniform, or Fast). These distributions corresponded
to those in Appendix B

Each game proceeded as follows: agents sampled
equally from options until the first player reached its sam-
pling size. That agent then choose the option with the
highest observed sample mean (with ties broken at ran-
dom). In the case where two agents stopped at the same
time, one of two outcomes could occur: If they wanted dif-
ferent options, they each got their desired option. If they
wanted the same option, then the desired option was ran-
domly given to one agent, and the remaining agent then
attempted to take is next most desired option. After all
agents who stopped on that round received an option,
the game continued with the remaining players and
options. At the end of each game, each agent got the
expected value of its chosen option. In the games where
there were more players than options, if a player ends
the game with no option (because all options were taken
by other players), then it received a reward of 0.

Appendix F. Supplementary material

Supplementary data associated with this article can be
found, in the online version, at http://dx.doi.org/10.1016/
j.cognition.2014.06.006.

References

Brezzi, M., & Lai, T. L. (2002). Optimal learning and experimentation in
bandit problems. Journal of Economic Dynamics and Control, 2(1),
87–108.

118 N.D. Phillips et al. / Cognition 133 (2014) 104–119



Busemeyer, J. R., & Rapoport, A. (1988). Psychological models of deferred
decision making. Journal of Mathematical Psychology, 32(2), 91–134.

Cohen, J. D., McClure, S. M., & Yu, A. J. (2007). Should I stay or should I go?
How the human brain manages the trade-off between exploitation
and exploration. Philosophical Transactions of the Royal Society B,
362(1481), 933–942.

Denrell, J. (2007). Adaptive learning and risk taking. Psychological Review,
114(1), 177–187.

Dutta, P. K., & Rustichini, A. (1993). A theory of stopping time games with
applications to product innovations and asset sales. Economic Theory,
3(4), 743–763.

Ellsberg, D. (1961). Risk, ambiguity, and the Savage axioms. The Quarterly
Journal of Economics, 75, 643–669.

Erev, I., & Barron, G. (2005). On adaptation, maximization, and
reinforcement learning among cognitive strategies. Psychological
Review, 112(4), 912–931.

Gans, N., Knox, G., & Croson, R. (2007). Simple models of discrete choice
and their performance in bandit experiments. Manufacturing and
Service Operations Management, 9(4), 383–408.

Gittins, J. C. (1979). Bandit processes and dynamic allocation indices.
Journal of the Royal Statistical Society, Series B, 41, 148–177.

Gittins, J. C. (1989). Multi-armed bandit allocation indices. New York, NY:
Wiley.

Groß, R., Houston, A. I., Collins, E. J., McNamara, J. M., Dechaume-
Moncharmont, F. X., & Franks, N. R. (2008). Simple learning rules to
cope with changing environments. Journal of the Royal Society
Interface, 5(27), 1193–1202.

Hertwig, R. (in press). Decision from experience. In G. Keren & G. Wu
(Eds.), Blackwell handbook of judgment and decision making. Oxford,
UK: Blackwell.

Hertwig, R., Barron, G., Weber, E. U., & Erev, I. (2004). Decisions from
experience and the effect of rare events in risky choice. Psychological
Science, 15(8), 534–539.

Hertwig, R., & Erev, I. (2009). The description–experience gap in risky
choice. Trends in Cognitive Sciences, 13(12), 517–523.

Hertwig, R., Hoffrage, U., & the ABC Research Group (2013). Simple
heuristics in a social world. New York, NY: Oxford University Press.

Hertwig, R., & Pleskac, T. J. (2010). Decisions from experience: Why small
samples? Cognition, 115(2), 225–237.

Ho, T. H., Camerer, C., & Weigelt, K. (1998). Iterated dominance and
iterated best response in experimental ‘‘p-beauty contests’’. The
American Economic Review, 88(4), 947–969.

Jacobs, Andrew (2011, April 11). For many Chinese men, no deed means no
dates. <http://www.nytimes.com/2011/04/15/world/asia/
15bachelors.html>.

Jeffreys, H. (1961). Theory of probability (3rd ed.). Oxford, UK: Oxford
University Press.

Johnson, T. R., Budescu, D. V., & Wallsten, T. S. (2001). Averaging
probability judgments: Monte Carlo analyses of asymptotic
diagnostic value. Journal of Behavioral Decision Making, 14(2),
123–140.

Lejarraga, T., Hertwig, R., & Gonzalez, C. (2012). How choice ecology
influences search in decisions from experience. Cognition, 124(3),
334–342.

Nowak, M., & Sigmund, K. (1993). A strategy of win-stay, lose-shift that
outperforms tit-for-tat in the Prisoner’s Dilemma game. Nature,
364(6432), 56–58.

Park, A., & Smith, L. (2008). Caller number five and related timing games.
Theoretical Economics, 3(2), 231–256.

Real, L. A. (1991). Animal choice behavior and the evolution of cognitive
architecture. Science, 253(5023), 980–986.

Rotjan, R. D., Chabot, J. R., & Lewis, S. M. (2010). Social context of shell
acquisition in Coenobita clypeatus hermit crabs. Behavioral Ecology,
21(3), 639–646.

Savage, L. J. (1954). The foundations of statistics (2nd rev. ed.). New York,
NY: Dover.

Sutton, R. S., & Barto, A. G. (1998). Reinforcement learning: An introduction.
Cambridge, MA: MIT Press.

Taleb, N. N. (2007). The black swan: The impact of the highly improbable.
New York, NY: Random House.

Weber, E. U., Shafir, S., & Blais, A. R. (2004). Predicting risk sensitivity in
humans and lower animals: Risk as variance or coefficient of
variation. Psychological Review, 111(2), 430–445.

Wulff, D. U., Hills, T. T., & Hertwig, R. (2014). The impact of long- and
short-run frames on search and choice in decisions from experience.
Submitted for publication.

N.D. Phillips et al. / Cognition 133 (2014) 104–119 119



The Janus Face of Darwinian Competition
Arend Hintze ⇤,Nathaniel Phillips †,Chris Adami? ‡,Ralph Hertwig †

⇤MSU,†MPIB, and ‡

Submitted to Proceedings of the National Academy of Sciences of the United States of America

Without competition organisms would not evolve any meaningful
physical or cognitive abilities, and as such competition can be un-
derstood as the driving force behind Darwinian evolution. But can
this trend be extrapolated, and more competitive environments nec-
essarily evolve organisms with more sophisticated cognitive abilities
than those in less competitive environments? Answering this ques-
tion will tell us if there is a breaking point at which competition does
more harm than good, or if ultimately the most competitive envi-
ronments will produce the most sophisticated organisms. We evolve
decision strategies of virtual agents that have to perform a repetitive
sampling task in three di↵erent environments. These environments
di↵er in the degree in which the actions of a competitor can a↵ect
the fitness of the sampling agent, and in the variance of the sample.
We find that under weak competition agents evolve decision strate-
gies that sample often and make accurate decisions, which not only
improve their own fitness, but are also good for the entire popula-
tion. However, under extreme competition the Janus face reveals
it’s dark side and forces agents to sacrifice accuracy for speed, and
also prevents agents to sample more often than higher variance in
the environment would require it. Modest competition is therefore
a good driver for evolving cognitive abilities and the population as a
whole, whereas too much competition is devastating.

term | term | term

Introduction

Competion is the basic principle of Darwinian evolu-
tion. Over time it brings out better adapted organ-

isms, and weeds out weaker physical and cognitive designs.
But does this mean that more competition will always re-
sult in more adaptive and sophisticated cognition? There are
many biological examples of competition driving the evolu-
tion of cognitive abilities [West-Eberhard(1979),Whiten and
Byrne(1997),Flinn et al.(2004)Flinn, Geary, andWard,Arbilly
et al.(2014)Arbilly, Weissman, Feldman, and Grodzinski], and
we successfully use competition in genetic algorithms [Stan-
ley et al.(2005)Stanley, Bryant, and Miikkulainen, Edlund
et al.(2011)Edlund, Chaumont, Hintze, Koch, Tononi, and
Adami,Marstaller et al.(2013)Marstaller, Hintze, and Adami],
yet there is also evidence that find that the level of accuracy
achieved in human decision making can be lower under com-
petition [Phillips et al.(2014)Phillips, Hertwig, Kareev, and
Avrahami] than without. In decision making, more compe-
tition between agents typically forces them to answer faster.
However faster responses exact a cost: they rely on less in-
formation and in the most extreme on little to no informa-
tion. Less information often - yet not always [Gigerenzer
et al.(2011)Gigerenzer, Hertwig, and Pachur]- means a lower
level of inferential accuracy. How does evolution tradeo↵ ac-
curacy and speed? We will show that in less competitive envi-
ronments accuracy wins over speed, whereas more competition
necessitates quicker and less accurate decisions. Ultimately, in
extremely competitive situations agents may rely on minimal
information to prevent competitors from claiming desirable
options, possibly leaving the thoroughly exploring agent with
an inferior option set to choose from. The downside of this
strategy however is risking to end up with an inferior option
due to minimal sampling.

In nature we find a good example of this explo-
ration/exploitation tradeo↵ [Gittins et al.(2011)Gittins,

Glazebrook, and Weber]. Hermit crabs outgrow the shells
they live in, and from time to time, have to find better ones.
In order to improve their housing situation, they need to
find a new shell,and investigate (sample) their potential new
home [Rotjan et al.(2010)Rotjan, Chabot, and Lewis,Phillips
et al.(2014)Phillips, Hertwig, Kareev, and Avrahami]. Once
they find that the new shell is better than their own (outside
reference) they move into the new shell. Obviously, hermit
crabs have been evolved to sample su�ciently well in order to
improve their housing situation while they grow. If a lonely
hermit crab finds a new shell it will sample su�cienty often
to make an accurate assessment. If the hermit crab, on the
other hand, finds the shell in the presence of a conspecific
the situation is radically di↵erent. Being slower in arriving
at a decision than a competitor can mean that the competi-
tor claims the better shell. However, a hermit crab changing
into another shell does not destroy its old one, and therefor
a population of directly competing hermit crabs sorts out the
inferior shells for the benefit of everyone - a process similar
to crowd sourcing. This situation was conducive for the evo-
lution of a cognitive strategy that samples su�ciently often.
Contrary to that, imagine a situation of a di↵erent organism
where leaving a shell destroys it, or more generally a resource
perishes. Here immediate decisions under direct competition
are potentially more adaptive than thorough sampling, and
thus could prevent organisms from evolving the cognitive abil-
ity to explore (sample) thoroughly. It seems as if the type
of competition but also the nature of the resource competed
about [Tilman(1982)] matters.

To show how varying degrees of competition can lead to
the evolution of the ability to sample thoroughly as well as pre-
vent its evolution, we computationally evolve decision making
agents in environments featuring indirect or direct competi-
tion. In the following we will describe these di↵erent environ-
ments: The game we use is a competitive variant of a sam-
pling paradigm [Hertwig et al.(2004)Hertwig, Barron, Weber,
and Erev,Weber et al.(2004)Weber, Shafir, and Blais,Phillips
et al.(2014)Phillips, Hertwig, Kareev, and Avrahami], where
players have to draw random numbers from an urn, and de-
cide whether the urn they are sampling from has a higher
mean value than an outside reference. This is a typical ex-
ample for experienced-based decision making [Hertwig and
Erev(2009)]. The outside reference has a payo↵ known to
the agent, whereas for the urn, only sampling can reveal its
value. The outside reference could be understood as another
urn that has already been exhaustively sampled from. De-
pendent of the agents decision, it will either receive the value
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of the outside reference or the mean value of the urn sampled
from. This game is designed in such a way that sampling from
the unknown urn more often, while integrating the sampled
data, will increase the ability of the agent to accurately assess
its value (see law of large numbers [Bernoulli(1713)]). The
accuracy of an assessment given a certain number of samples
depends on the underlying distribution. The performance of
agents competing in an evolving population will determine
their fitness, and ultimately those players who sample more
often will make more accurate decisions than those who sam-
ple little. This only holds as long as decisions of competing
agents can not remove the more desirable urn. This is the
case when competition is indirect and happens only on the
population level (See Figure:1 A). We call this the indirect

competition environment.
In order to allow for agents to directly compete in our

model, two agents sample from the same urn and try to es-
tablish whether the urn has a higher or lower mean than each
agent’s respective reference urn. Once an agent decides to
either stay with its reference urn or to pick the urn sampled
from, the game ends, and the other agent receives its reference
urn’s value as payo↵. If both agents decide simultaneously to
pick the same urn, it will be given randomly to either agent,
while the other agent will receive the value of the reference
urn as payo↵ (See Figure:1 B). This is the case when compe-
tition is direct. That is, one agent’s decision directly a↵ects
the other agent’s choice environment, and, by extension, its
fitness. We will call this the direct competitive environment.

In the third environment we amplify the e↵ect of direct
competition even more. Both agents are in possession of an
urn, and they know the payo↵ of their respective urns (out-
side reference). They can sample from the other agent’s urn
and decide to claim it, leaving the competitor with the aban-
doned urn. Agents can stop the game by deciding to keep
their urn or by choosing the other agent’s urn. Now agents do
not only compete over an outside resource, but can actively
decrease their opponents fitness (See Figure:1 C). We call this
theextreme competitive environment. We now test how these
di↵erent environments a↵ect the evolution of sampling strate-
gies and their e↵ect on agents’ payo↵.

Methods
Agents sample from urns that upon sampling return a value
drawn from normal distribution, with a mean of 1, 2, 3, or
4, and with a variance of 0.1, 1.0, 3.0, or 5.0 respectively.
We distinguish three evolutionary environments, involving in-
direct competition, direct competition, and extreme competi-
tion. The first and simplest condition forces a player to choose
between two urns. The first urn’s mean payo↵ is known to
the player and thus more sampling is not necessary [Buse-
meyer(1985)]. This urn is called the reference. The second
urn’s mean is unknown and the agent can sample in order to
decide whether to keep the reference, or to claim the other
urn. Once an agent decides upon an urn it receives it’s value
as a payo↵. Agents choose between three alternative actions:
stay, continue, or select. An agent who chooses to stay thus
decides to claim the urn with the known payo↵. An agent who
continues will draw one more sample from the unknown urn.
The agent that selects claims the sampled urn. Each agent
can have a range of possible mappings between sampled ex-
periences and actions (stay, continue, or pick). The agents
experiences are represented by two di↵erent parameters. The
first parameter (m) is the di↵erence between the average of
all samples taken so far and the reference urn. The second
parameter is the number of samples already taken (n). Here,

m describes how di↵erent both urns are, but this estimate
depends on the number of samples taken. A large di↵erence
after one sample might be misleading, whereas a large di↵er-
ence after many samples is more likely to be a valid indicator.
The parameter n allows the agents to take the number of sam-
ples into account. To avoid infinitely many samples, we set
the maximum number of samples to 100. We start the game
always with the continue action so that an agent samples at
least once. We encode the decision strategy of an agent as
two probabilities that determine the actions it chooses. The
first probability defines whether or not an agent stays. If an
agent decides against staying, the second probability defines
the likelihood of an agent to continue or to select. In order to
make the probabilities dependent on the di↵erence (m) and
the number of samples (n), we use an exponential function
that incorporates these two parameters according to the fol-
lowing equation:

p(m,n) = g1m
3 + g2n

3 + g3m
2 + g4n

2 + g5m

+g6n+ g7m
2n+ g8m

2n+ g9mn+ g10.
[1]

We use this equations to encode the strategy of each agent,
once to determine the probability of a player to stays or not,
and another time to decide whether an agent continues or
picks. This equation is not limited to be between 0.0 and 1.0.
Therefore, a negative value or p(m,n) is defined to be a prob-
ability of 0.0, whereas a value of p(m,n) > 1.0 is defined to be
a probability of 1.0. To allow for agents to evolve a wide va-
riety of di↵erent probabilities to stay, continue and pick, two
parameter vectors g are required. The first is used to deter-
mine the probability of the initial choice to either stay or to
choose one of the two other actions. The second vector con-
sequently determines the probability to continue or to pick.
The values of the parameter vectors g can be understood as
the genome of the agent and determines its decision strategy.
We use a well mixed population of 1024 agents, and at each
update play each agent against four randomly selected neigh-
bors (when necessary). After each update 1% of the agents are
replaced proportional to the payo↵ they accumulated over the
last updates (Moran death birth process using roulette wheel
selection [Moran(1962)]). Each of the components of the vec-
tors g have a 1% chance to mutate, once an agent was selected
to make o↵spring. A mutation adds a uniform random num-
ber from the interval [�0.5, 0.5] to the mutating component,
with no upper or lower limit thereafter. The simulation is run
for 500,000 updates. A random organism from the population
at the end of the simulation is selected, and the line of decent
for this organism is reconstructed. The population usually
converges fast to a most recent common ancestor ( 15,000
updates, data not shown); therefore we choose the agent at
update 450,000 as the representative result of that simulation
run. Running the simulation longer does not change the re-
sults, because agents reached the fitness optimum, or can not
find ways to further improve their strategies.

Each of the three competitive environments is used in 100
replicate experimental runs. In the indirect competitive envi-
ronment the agent’s performance solely depends on its strat-
egy; in the other two environments the performance of an
agent also depends on its opponent. Consequently we can
not measure the performance of an agent by itself. Pitting
an agent against a very un-evolved or poorly choosing oppo-
nent would overestimate its performance. Pitting it against
an extremely well choosing opponent would underestimate it.
Therefore, we measure an agents performance by pitting it
against itself. Thus, the representative agent at the end of
the simulation competed against itself 1, 000, 000 times. Three
outcome criteria are measured: the number of samples taken
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before selecting an urn, how well sampling was tuned to the
variance in the environment, and how often each of the urns
was taken by that agent. However, we distinguish between
the individual’s and the population payo↵. The results for
100 representative agents at the end of the simulation are av-
eraged.

Results
How does the degree of competition a↵ect what decision strat-
egy evolves, measured in terms of the outcome criteria? Be-
fore we turn to the number of samples taken, we first show
the evolved probabilities to stay, continue, or pick in Figure
2. All agents evolved a high probability to stay with their
reference urn when the di↵erence between sampled urn and
reference urn is negative. This negative di↵erence indicates
a situation in which the reference urn has a higher payo↵
and thus should be chosen. The maximum of this probability
changes only dependent on the intensity of competition. The
more competitive the environment the higher the likelihood
to choose the reference urn. Consequently, agents evolved a
high probability to select the sampled urn when the di↵erence
between sampled urn and reference is positive. And again,
the more competitive the environment, the earlier we find the
maximum probability of picking the sampled urn. Figure 3
shows the number of samples taken before an urn was se-
lected. This number generally decreases with competitiveness
of the environment, and only increases with increasing vari-
ance among the samples taken from an urn. This is expected,
since a wider distribution requires more samples to assess the
true mean. Interestingly, in the extremely competitive envi-
ronment the number of samples for either variance is merely
1. In this environment agents base their decision only on the
minimal sample of 1. Here strategies evolved to choose ex-
tremely fast rather than to gauge the urn’s mean value by
drawing more samples.

The di↵erent types of environments not only have an ef-
fect on the strategy evolved, but also on the payo↵. If every
agent in the indirect competitive environment (see Figure:1 A)
plays optimally the population is expected to have an optimal
gain. An agent in the indirect competition environment can
at best always choose the better of the two urns, thus result-
ing in a maximum average payo↵ of 3.3̄. Randomly choosing
would result in a payo↵ of 2.5 (See Supplementary Informa-
tion). Evolved strategies in this environment come close to
this optimal payo↵ with 3.12 on average (See Figure:4 left).
Here the individual’s payo↵ is identical to the average payo↵
in the population. Furthermore, competition causes agents to
evolve strategies that sample dependent on the variance of the
environment (See Figure 3).

In the direct competitive environment (See Figure:1 B),
two players are confronted with three urns in total. Ideally
the best agent will be able to always choose the best out of
three urns, with a payo↵ of 3.75. The competing agent, if not
getting the highest possible payo↵, but the remaining second
highest, receives 2.5 (See Supplementary Information for the
outcome of choices 5).

A perfect strategy playing itself will win in 50% of the
cases, and consequently loose in 50%. Therefor the average
maximum payo↵ is 3.125 ( 3.752 + 2.5

2 ). The average payo↵ is

3.01 and is thus close to the expected maximum payo↵ (See
Figure:4 middle). Again the individual’s and average pop-
ulation payo↵ is higher than randomly choosing. However,
competition causes agents to only evolve a moderate ability
to sample more often in higher variance environments (See
Figure 3).

In the extreme competitive environment(See Figure:1 C)
both agents compete over two urns at the same time, and the
loosing agents always receives the urn the player who picks
first left behind. Here the best possible strategy optimally re-
ceives 3.3̄, whereas the worst possible strategy would only get
1.6̄, while choosing randomly gives 2.5. Strategies evolved in
the extreme competitive environment on average receive 2.49,
that is the payo↵ of a randomly choosing agent (See Figure:4
right). Here competition is so extreme that the risk that a
competitor beats one to the punch is larger than a benefit
gained from one more sample. This prevents the evolution of
repeated sampling as well as the ability ot adjust sampling as
a function of environmental variance (See Figure 3)

Discussion
The starting point of our investigation was the question
whether more competition will always result in better adapted
cognition, or if overly competitive environments may even
hamper the evolution of adaptive decision strategies? Organ-
isms evolved in environments of varying competitive pressures,
and these conditions shaped their behaviors in the present.
We designed three di↵erent environments in which agents had
to evolve a decision strategy under indirect, direct, and ex-
treme competition. Indirect competition drove the evolution
of repeated sampling and sampling that was rsponsive to the
variance in the environment(See Figure 3). Direct competition
let to a similar result except that sampling was only moder-
ately responsive to the variance in the environment. Extreme
competition, in contrast, forced agents to make an immedi-
ate decision (based on one sample), and evolved no sensitivity
to the variance in the environment. To avoid misunderstand-
ing, agents evolved optimal decision strategy for the environ-
ment they faced. Yet, agents in the extremely competitive
environment evolved the least sophisticated decision strategy,
measured in terms of number of samples and sampling being
responsive to environmental variance. A related consequence
is the agents inability to evolve decision strategies that not
only improve the agent’s fitness but also the fitness of every
member in the population. In less competitive environments,
however, agents evolved a strategy that not only maximized
their own payo↵, but also allowed the average payo↵ in the
population to increase. Our results show that competition
can optimize decision strategies not only for the benefit of the
individual, but also for the benefit of the others. But there
comes a point at which competition becomes too much of a
good thing. Under extreme competition, the agents evolved
behavior that exclusively bets on speed over accuracy. Exces-
sive competition reveals the dark side of the Janus face, by
inhibiting the evolution of decision strategies, that can trade-
o↵ speed for accuracy.
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Fig. 1. Di↵erent Competitive Situations

Fig. 2. Probabilities of actions: The probabilities to stay (pstay) on the left, and the prob-
ability to pick (ppick) on the right, mapped over the range of di↵erences [�10, 10] between
urns (y axis) and number of samples drawn [0, 50] as gray scales. The probability to continue
is implicit since it is 1 � ppick . White represents high probabilities, black low. At the top
results for indirect competition (See Figure:1A), in the middle results for direct competition
(See Figure:1B),and at the bottom results for extreme competition (See Figure:1C).
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Fig. 3. Sampling Time: Average number of samples the representative agents took, for
each of the three di↵erent environments: indirect (left), direct (middle), and extreme (right).
Each environment was tested using four di↵erent variances on the distribution of the urns. ’X’
indicate a variance of 0.1, squares indicate a variance of 1.0, circles for a variance of 3.0, and
diamonds represent a variance of 5.0. The error bars indicate two standard errors.

Fig. 4. Probability that each evolved strategy ended up choosing an urn. Left most figure for
indirect competition. Here each player samples alone, and the probability (p) that an evolved
strategy decides to pick an urn of a given size (x-axis) in red. The middle figure shows the
probability of a player to pick an urn in the direct competition environment, assuming that
player always wins playing against an identical player in red, and in black assuming the same for
a player that always looses against an identical competitor. On the right the same for evolved
players in the extreme competitive game.

Fig. 5. Supplementary Information about the outcome of choices. In the indirect competitive
environment that agent is randomly presented with two di↵erent urns, and thus can experience
the following six possible scenarios: 1-2, 1-3, 1-4, 2-3, 2-4, 3-4. Choosing the best in all cases
sums to 20, and taking into account that each scenario has the same probability to appear
we find a mean payo↵ for optimal choosing to be 3.3̄. In case of choosing always the worst,
the sum is 10, and consequently the expected least payo↵ on average is 1.6̄. In the direct
competitive environment, the two agents are presented with four possible scenarios of payo↵
in the three urns: 1-2-3, 1-2-4, 1-3-4, 2-3-4. The agent choosing the optimum will receive
15 in total, and because each of the four scenarios occurs with the same probability 3.75 is
on average the expected maximum payo↵. The second agent could now choose the remaining
second highest urn which amounts to 10. The expected best mean payo↵ for the second agent
choosing optimally is therefor 2.5. In the extreme competitive environment the best choosing
agent, similar to the indirect environment can choose the best of two option resulting in 3.3̄ as
the expected average maximal payo↵. In turn the opponent would then be left with the lower
urn, resulting in 1.6̄ as the expected payo↵. Randomly choosing would result in 2.5 since any
of the four options would be chosen with equal probability.

6 www.pnas.org/cgi/doi/10.1073/pnas.0709640104 Footline Author
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Abstract 
 

Can people become more Bayesian by contradicting themselves with dialectical 

bootstrapping (i.e., simulating the wisdom of a diverse crowd within their minds)? In a 

simulation study, we found that if people were to average non-Bayesian strategies when 

making diagnostic judgments, their answers would come closer to the Bayesian answer. 

Accuracy improved most in problems with a rare target event (i.e., p[hypothesis] < 0.2) 

and when combining strategies that did and did not use base rates, respectively (e.g., 

averaging the base rate, p[hypothesis], with the likelihood of the data under the target 

hypothesis, p[data|hypothesis]). In two empirical studies, we found that contradicting 

oneself with dialectical bootstrapping (Herzog & Hertwig, 2009) increased the diversity 

of strategies used (as assessed by formal strategy classification analyses). As diversity 

increased, averaging gains increased as well. This research suggests that people can use 

their eclectic inner crowd to become more Bayesian even without any explicit knowledge 

of Bayes’ rule. 

 Keywords: Bayesian reasoning, probabilistic inference, dialectical bootstrapping, 

inner crowd, crowd within, wisdom of crowds 
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How The Inner Crowd Can Help Non-Bayesians Become More Bayesian 

In order to make good decisions, organisms must find ways to successfully 

navigate a world of both risk and uncertainty, where information about their internal and 

external environment is incomplete and outcomes are impossible to predict with perfect 

precision. One way that organisms can make better decisions in unpredictable worlds is 

by relying on information that is probabilistically related to important outcomes, states, or 

hypotheses (H, Brunswik, 1943). For example, consider a mouse that is deliberating 

whether or not to move to a new foraging patch. To help its decision, the mouse would 

benefit from knowing if there are predators lurking in the shadows of the new patch. If 

the ‘predator hypothesis’ were false, then the mouse could benefit from the move; 

however, if the predator hypothesis were true, the mouse should avoid the patch. To help 

make its decision, the mouse could rely on a social cue in the environment; for example, 

“Are there other mice foraging in the new patch?” If the answer is ‘no’ then the mouse 

may infer that the probability of a predator is more likely than if the answer was ‘yes,’ 

and use this information to inform its decision. 

While this social cue should be useful, it is only probabilistically related to the 

predator hypothesis and cannot give a definitive answer. How should the mouse, or any 

organism, make good inferences about important hypotheses given noisy, probabilistic 

cues? Statistically, the normative solution to this class of estimation problems is Bayes 

theorem. Experimental psychologists have compared human probabilistic inference to 

Bayes theorem since the 1960s. The result has been an ongoing debate regarding whether 

or not people act as “intuitive Bayesians,” with some researchers suggesting that peoples’ 

judgments are correlated with Bayes but are too “conservative” (Edwards, 1968) and 
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others claiming that people are “not Bayesian at all” (Kahneman & Tversky, 1972, p. 

450). In the current paper, we argue that both camps are (figuratively speaking) arguing 

for black or white answers to gray problems; rather than using a single strategy, we show 

that people use a variety of strategies (both across people and within one mind) that differ 

in their accuracy relative to Bayes theorem. We then suggest that people can become 

more Bayesian by generating and combining this diverse set of non-Bayesian strategies 

within one mind. At the same time, we use the Bayesian reasoning paradigm to model 

how dialectical bootstrapping (Herzog & Hertwig, 2009) produces strategy change 

within one mind. 

 The paper proceeds as follows: First, we review research on how people solve 

Bayesian reasoning tasks and find that people are not generally “conservative Bayesians,” 

nor are they “not Bayesian at all.” (Kahneman & Tversky, 1972, p. 450) Rather, people 

use a variety of ‘intuitive’ strategies (Gigerenzer & Hoffrage, 1995; McKenzie, 1994) 

that vary in their complexity and errors relative to Bayes theorem. We suggest that, in the 

same way groups of error-prone individuals can produce surprisingly accurate judgments 

(Larrick, Mannes, & Soll, 2012; Surowiecki, 2004), individuals may be able to harness an 

inner crowd (Herzog & Hertwig, 2014a) of intuitive strategies to improve their accuracy 

in Bayesian reasoning tasks. We then review recent research on the wisdom of crowds 

within one mind, and suggest that dialectical bootstrapping (Herzog & Hertwig, 2009), a 

method of increasing the benefits of the inner-crowd, could increase strategy diversity in 

probability estimation tasks. To make predictions for when people should benefit from 

the inner-crowd, we conduct a simulation where we average non-Bayesian strategies and 

compare their errors in different environments. From this, we find both environmental 
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and strategy characteristics that are especially conducive to averaging. Finally, we 

present results from two experiments that test the extent to which participants can, and 

do, benefit from averaging non-Bayesian strategies. We conclude that people indeed can 

become more Bayesian by harnessing their inner crowd. 

Bayesian Reasoning 

In a typical Bayesian reasoning task, participants are asked to estimate the 

probability of a hypothesis (or event) given three pieces of information: base-rate (i.e., 

the prior probability of the hypothesis; BR), hit-rate (i.e., the likelihood of data given the 

critical hypothesis; HR), and false-alarm rate (i.e., the likelihood of data given an 

alternative hypothesis; FAR). For example, consider a doctor whose patient has non-

specific symptoms. The doctor could have the critical hypothesis “This patient has 

malaria” and an alternative hypothesis “This patient does not have malaria.” In a 

Bayesian framework, judges always begin with an a priori belief in the critical 

hypothesis before observing any additional information. This a priori belief is captured 

by the critical hypothesis’ base-rate. In this example, the base-rate could be the 

proportion of people in the doctor’s patient population with malaria. The judge can then 

observe some data, such as a diagnostic medical test, that probabilistically differentiates 

between the critical hypothesis and the alternative hypothesis. For example, in testing for 

malaria, a doctor can examine a patient’s blood under a microscope and look for evidence 

of the Plasmodium falciparum parasite. If the data is more likely given the critical 

hypothesis than the alternative hypothesis, then the judge’s posterior probability estimate 

should increase relative to the base rate. This likelihood of getting a signal consistent 

with the critical hypothesis is given by the hit-rate: for example, the probability of 
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obtaining a positive test for malaria given that the patient really has the disease (i.e., the 

malaria hypothesis is true). Finally, the false-alarm rate indicates the likelihood of getting 

a signal consistent with the critical hypothesis given the critical hypothesis is actually 

false. For example, the probability of obtaining a positive test result given that the patient 

really does not have malaria. Once a judge has these three pieces of information, Bayes 

theorem specifies that a judge should combine them via Bayes rule: 

!"#$%&"'!!"#$%&'"&!!"#$%$&'&() = !"∙!"
!"∙!"!(!!!")∙!"#  Equation 1. 

 (Equation 1) to calculate a posterior probability (but see Birnbaum, 1983; 

Gigerenzer, 1996). 

“Conservative Bayesians” vs. “not Bayesian at all”. Psychologists have 

compared human judgments to Bayes theorem since the 1960s. Early work by Edwards 

and colleagues (Edwards, 1968; Phillips & Edwards, 1966) measured peoples’ 

probability estimates using a “poker chips and bags” paradigm. Participants imagined that 

random chips were drawn from one of several bags containing different combinations of 

red and blue poker chips and were asked to estimate the probability that each type of bag 

had been chosen as more randomly drawn chips were revealed. From this work, Edwards 

and found concluded that participants act as ‘conservative Bayesians’, in that they 

overweighed base-rate information and did not adjust their estimates sufficiently in light 

of new information (i.e., hit rates and false-alarm rates). In a review of related literature, 

Peterson and Beach (1967) concluded that, despite conservatism and other deviations 

from normative statistical rules, Bayes theorem and other normative rules provided a 

useful initial descriptive model of human statistical inference. 
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The claim that normative statistical rules such as Bayes theorem provided 

adequate descriptions for human inference was quickly challenged. Kahneman and 

Tversky (1972, 1973) compared human judgment to normative models and claimed to 

have found striking discrepancies between the two. For example, while Bayes theorem 

requires attention to base-rate information, Kahneman and Tversky (1972) claimed that 

people judged as if they ignored base-rates. They concluded that, instead of being 

intuitive statisticians or conservative Bayesians, people are users of biased heuristics such 

as the representativeness heuristic (Kahneman & Tversky, 1972), which violate 

normative rules by ignoring normatively relevant information such as base rates (i.e., 

exhibiting “base-rate neglect”) and sample sizes. In sharp contrast to Peterson and Beach 

(1967), Kahneman and Tversky (1972) concluded that “In his evaluation of evidence, 

man is apparently not a conservative Bayesian: he is not Bayesian at all” (p. 450). 

Debate over the “Bayesian man” continued to rage over the next decades, with 

particular attention to whether or not people use base-rate information (e.g., Barbey & 

Sloman, 2007; Koehler, 1996). While earlier research claimed to routinely find base-rate 

neglect (e.g., Lyon & Slovic, 1976), more recent research found that people routinely use 

base-rates (Christensen-Szalanski & Bushyhead, 1981; Stanovich & West, 1998; 

Pennycook & Thompson, 2012; for a summary, see Koehler, 1996). The current body of 

research seems to suggest that, rather than categorically ignoring base-rates, people seem 

to selectively use base-rates based on factors such as the causal nature of base-rate 

information (Ajzen, 1977), the perceived relevance of base-rates (Bar-Hillel, 1980), the 

verbiage of vignettes (Macchi, 1995), and the reasoning system people use (Barbey & 

Sloman, 2007). 
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Strategy variability in Bayesian reasoning. So who between the rival camps of 

Edwards vs. Kahneman and Tversky were right? Are people conservative Bayesians who 

rely too much on base-rate information? Or do they not Bayesian at all because they 

neglect base rates entirely? Rather than relying on a single strategy with a consistent bias, 

we argue that there is strategy variability both between and within people. To 

demonstrate this, the following example vignette from Bar-Hillel (1980, p. 228): 

Two cab companies operate in a given city, the Blue and the Green (according to 

the color of cab they run). Eighty-five percent of the cabs in the city are Blue, and 

15% are Green. A cab was involved in a hit-and-run accident at night, in which a 

pedestrian was run down. The wounded pedestrian later testified that though he 

did not see the color of the cab due to the bad visibility conditions that night, he 

remembers hearing the sound of an intercom coming through the cab window. 

The police investigation discovered that intercoms are installed in 80% of the 

Green cabs, and in 20% of the Blue cabs. What do you think are the chances that 

the errant cab was Green? 

A Bayesian reasoner would answer this problem by extracting the base-rate (15%), hit-

rate (80%) and false-alarm rate (20%) information, and combining it using Bayes 

theorem to arrive at a posterior probability estimate of 41.38% (rounded to two decimal 

places). In Figure 1, we present the distribution of responses to this Bayesian reasoning 

problem from Bar-Hillel (1980). Responses between 15% and 41.38% represent 

conservatism (over-weighting of base-rates), while responses between 41.38% and 80% 

represent anti-conservatism (under-weighting of base-rates). A response of 80% (i.e., the 

hit rate) could be considered the quintessential base-rate-neglect answer. 
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Figure 1: Distribution of responses to Bar-Hillel’s (1980) problem 7 (Figure 4 in 

Bar-Hillel, 1980). The downward facing arrow at a response of 41.38% indicates 

the Bayesian posterior probability. The median-participant response is indicated 

by the letters “Mdn” at 48%. 

 

The diversity of responses in Figure 1 shows that people are not conservative Bayesians, 

nor are they not Bayesian at all—they act as if they use a variety of strategies1. We are 

not the first to observe this. Upon observing the estimate variability in Figure 1, Bar-

Hillel remarked that “[T]here is no prevailing strategy or integration favored by a large 

proportion of the [participants]” (1980, p. 228). Thus, rather than simply being 

conservative Bayesians or habitual base-rate neglectors, it seems that people use different 

strategies that can either result in errors of different sign and magnitude. This leads us to 

our key research question: If people use a variety of simple strategies for Bayesian 

""""""""""""""""""""""""""""""""""""""""""""""""""""""""
1 We do not mean to argue that every psychological theory that does not explicitly account for response 
variability is immediately falsified by said variability. Rather, we argue that the wide, systematic response 
variability in Bayesian reasoning tasks suggests that Kahneman and Tversky’s (1972) and Edward’s (1968) 
conclusions are inadequate at best and misleading at worst. 
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estimation, could they benefit from averaging those strategies within their own mind (cf. 

Herzog & Hertwig, 2009)? Indeed, we can find some suggestive evidence from Bar-

Hillel’s (1980) existing data that indeed they can. Bar-Hillel’s (1980) data in Figure 1 

show a wisdom of crowds effect (Surowiecki, 2004): while the Bayesian response 

(indicated by a downward facing arrow located at a response of 41%) is not a common 

response, the median participant estimate of 48% is quite close to Bayes. To what extent 

is this effect representative of other Bayesian reasoning tasks and how could an 

individual replicate these gains? We address this question in the context of research on 

the inner-crowd (Herzog & Hertwig, 2014a).  

The Wisdom of The Inner Crowd 

People can improve accuracy of their quantitative judgments by harnessing a wisdom 

of crowds within one mind (Herzog & Hertwig, 2014a) in the same way that groups of 

separate people gain crowd benefits (Armstrong, 2001; Hogarth, 1978; Larrick et al, 

2012; Surowiecki, 2004). The process works as follows: an individual generates an initial 

estimate (x1) to a problem with an unknown answer T. The person then, possibly after an 

intervention such as a time delay (Vul & Pashler, 2008) or dialectical processing 

instructions (Herzog & Hertwig, 2009; Herzog & Hertwig, 2014b; Phillips et al., 2014), 

generates a second estimate (x2) to the same problem. Finally, the individual estimates x1 

and x2 are combined into an average estimate xavg12 – usually the arithmetic mean of x1 

and x2. When the error of the average estimate xavg12 is less than the error of the original 

estimates (typically their initial estimate x1), the person benefits from their inner crowd 

(Herzog & Hertwig, 2009). 
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 All crowds, regardless if they derive from one person or many, derive their 

benefits from error cancellation (Herzog & Hertwig, 2014a). When two estimates x1 and 

x2 fall on different sides of (‘bracket’) the truth T, the average estimate xavg12 will always 

have a smaller error than the average error of the original estimates (Larrick & Soll, 

2006). In cases where the initial estimates have large opposing errors, the accuracy of 

xavg12 can even be higher than the accuracy of the best original estimate. For this reason, a 

crowd can be ‘wiser’ than even its most accurate individual member. 

Dialectical bootstrapping. Because error cancellation drives the wisdom of 

crowds effect, researchers have tried different methods to get people to generate a diverse 

set of estimates, including increasing the time delay between first and second estimates 

(Vul & Pashler, 2008; but see also Steegen, Dewitte, Tuerlinckx, & Vanpaemel, in press). 

In the current paper, we focus on dialectical bootstrapping (Herzog & Hertwig, 2009), 

which attempts to increase inner-crowd benefits by having participants generate estimates 

using different knowledge that in turn should increase estimate diversity. By using a 

dialectical instructions inspired by the consider-the-opposite technique (Lord, Ross & 

Lepper, 1984), dialectical bootstrapping has been found to increases estimate diversity 

and improves averaging gains in the inner-crowd in both general knowledge tasks 

(Herzog & Hertwig, 2009; 2014b), and multiple-cue judgment tasks (Phillips, Herzog, 

Kämmer & Hertwig, 2014).  

While dialectical bootstrapping has shown promise in these tasks, the specific 

estimation procedures people use, and the way people change their estimates from one 

phase to another, has been less clear. Judgment research has proposed a wide variety of 

estimation models, from rule-based (e.g.; Hertwig, Hoffrage & Martignon, 1999; von 
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Helversen & Rieskamp, 2008) to exemplar models (Juslin, Winman & Hansson, 2007; 

Lindskog, Winman & Juslin, 2013; Stewart, Chater & Brown, 2006). However, no 

research on the inner crowd has attempted to model the specific estimation strategies 

people use, and how people change strategies as a result of dialectical instructions. This is 

a substantial gap because without knowing which strategies people use, and how people 

switch from one strategy to another, we cannot predict the conditions (i.e., judgment 

tasks) under which people will benefit from the inner-crowd. In the current paper, we 

seek to fill this gap by modeling strategy use in the inner-crowd in Bayesian reasoning 

tasks while simultaneously measuring how people can use dialectical bootstrapping to 

improve their judgments in Bayesian reasoning tasks. 

Ecological rationality of averaging the inner crowd. Using the simple average 

(i.e., arithmetic mean) of a group is often a wise aggregation strategy (Davis-Stober, 

Budescu, Dana, & Broomell, 2014); however, the accuracy of averaging compared to 

alternative strategies, such as weighted-averaging or choosing, depends on several 

statistical properties of the judges and the estimation environment. The Probability, 

Accuracy and Redundancy (PAR; Soll & Larrick, 2009) model specifies three of these 

statistics where one must decide how to aggregate advice from two judges: the 

probability of detecting the most accurate judge, the relative accuracy of one judge to the 

other, and the degree of error redundancy (i.e., error correlation) between judges. As the 

first two statistics (probability and accuracy) increase and the third statistic (redundancy) 

decreases, the benefits of the simple average relative to other strategies decrease. Unless 

one judge is much more accurate than the other, one can easily identify the more accurate 
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judge and there is a low correlation between the judges’ errors, then the simple average 

will be more accurate than choosing the estimates of the judge deemed more accurate.  

Thus, the accuracy of the average depends on the statistical environment to which 

it is applied. In applying environmental considerations to Bayesian reasoning tasks, we 

define an environment as a distribution of cue profiles that satisfy certain criteria, where a 

cue profile is a combination of the three statistics BR, HR and FAR. For example, a 

reasoning task with a base rate of 20%, a hit rate of 70% and a false-alarm rate of 10% 

corresponds to the cue profile of [20%, 70%, 10%]. Conceptually, we view environments 

as different ‘worlds’ of cue profiles that strategies can be applied to.  

McKenzie (1994) accessed the accuracy of individual non-Bayesian strategies in 

Bayesian reasoning tasks, and found that while many ignore one of the three key 

statistics, some nonetheless performed reasonably well relative to Bayes rule. In 

particular, the strategy that averaged base-rate and hit-rate information performed 

extremely well2. However, McKenzie (1994) also found that the accuracy of strategies 

could vary dramatically depending on the statistical environment they are applied to. 

Generally, strategies that ignore base-rate information tend to do reasonably well in 

domains with moderate base-rates (e.g.; between 40% and 60%), but quite poorly in 

domains with extreme base-rates (e.g.; less than 10% or greater than 90%). 

In our analyses, we expand on McKenzie’s (1994) results by calculating the 

accuracy of the average of pairs of intuitive strategies in two different statistic 

environments. We call the first stimuli environment “Valid Cue (VC).” In the VC 

environment, base rates range from 0 to 100%, hit rates range from 0% to 100%, and 

""""""""""""""""""""""""""""""""""""""""""""""""""""""""
2 Indeed, Mckenzie’s (1994) finding that an averaging strategy performed quite well was one of the 
inspirations for the current paper. 
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false-alarm rates are strictly less than hit-rates3. We call this environment “Valid Cue” 

because it contains a cue whose hit-rate is larger than its false-alarm rate, and thus should 

normatively be used to change beliefs. This stimuli environment has a relatively high 

level of uncertainty, because it is difficult a priori to predict what the cue-profile will be 

for any specific question in the environment.  

Many interesting diagnostic problems involved the detection of a rare event (such 

as a rare medical condition) based on an imperfect, but informative cue (such as a 

medical test). To model the effects of intuitive strategy combination in these tasks, we 

generated a “Rare Event plus Valid Cue (RE+)”. In this environment, base-rates range 

from 0% to 20%, hit-rates range from 80% to 100%, and false-alarm-rates range from 0% 

to 20%4. We are particularly interested in the effectiveness of averaging in RE+ 

environments for two reasons: First, because cue profiles in the RE+ environment have 

extreme base-rates, they lead to large errors when people ignore base-rates (Kahneman & 

Tversky, 1972). Second, because statistic values in RE+ environments are so extreme, we 

expect strategies to have large biases in RE+ environments. To the extent that different 

strategies have large opposing biases, this could lead to substantial averaging gains. 

Applying the Inner Crowd to Bayesian Reasoning Tasks 

In the next section, we report results from a simulation where we test the benefits 

of averaging non-Bayesian estimation algorithms in the two different statistical 

environments. We seek to answer four key questions in the simulation: First, to what 

""""""""""""""""""""""""""""""""""""""""""""""""""""""""
3 In cases where hit-rates are smaller than false-alarm rates (e.g., a faulty smoke alarm that is more likely to 
activate when smoke is not present than when it is present), we assume that judges would reverse the 
interpretation of the cues, forcing hit rates to be larger than false-alarm rates. 
4 The 20% and 80% cut-off values we used are somewhat arbitrary. We chose them because they separated 
our stimuli in study 1 into two relatively equal sets. In a similar simulation, McKenzie (1994) used cut-offs 
ranging from 10% and 90%. Our general conclusions also hold for the cut-off values used by McKenzie. 
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extent does averaging non-Bayesian strategies decrease error? Second, do all strategies 

equally benefit from averaging or are some strategies more conducive to averaging than 

others? Third, are there specific environments that favor averaging? Finally, does the use, 

or non-use, of base-rate information predict the extent to which averaging benefits 

strategies?  

Simulation Study 

We began by constructing a list of simple, non-Bayesian strategies that have been 

proposed in two previous papers (Gigerenzer and Hoffrage, 1995; McKenzie, 1994). We 

extracted seven non-Bayesian, non-averaging5 strategies from these papers and present 

them in Table 1. 

Strategy 

Number 

Long Name Short Name Formula Uses Base 

Rate? 

1 Likelihood Hit.Rate HR No 

2 False Alarm 

Complement 

cFAR 1 – FAR No 

3 Relative 

Likelihood 

Rel.Lik HR / (HR + 

FAR) 

No 

4 Likelihood 

Subtraction 

Lik.Sub HR – FAR No 

5 Base Rate BR BR Yes 

""""""""""""""""""""""""""""""""""""""""""""""""""""""""
5 Two averaging strategies (i.e.; those that compute the average of cue values or average of strategies), 
called “Likelihood Average” and “Relative Likelihood Average” have been proposed in the literature. For 
our simulation, because we are interested in seeing how the accuracy of individual, non-averaging, 
strategies changes as a result of averaging, we did not include these two averaging strategies in the 
simulation. However, we do include them in our behavioral classification analyses in studies 1 and 2. 
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6 Joint 

Occurrence 

Joint BR * HR Yes 

7 Hit Rate Minus 

Base Rate 

HRmBR HR – BR No* 

 

Table 1: Description of seven strategies used in our simulation. Strategy 7 (Hit 

rate minus base rate) technically uses Base rate information but in a non-Bayesian 

manner as it decreases the posterior probability of the hypothesis as the base-rate 

of the hypothesis increases. 

 

We would like to briefly emphasize the psychological relevance of three of these 

strategies. Strategy 1 (Likelihood), which uses only hit rate information, is one 

instantiation6 of the representativeness heuristic (Kahneman & Tversky, 1972). Strategy 2 

(False Alarm Complement) amounts to what many people do when they confuse null-

hypothesis p-values and the Bayesian posterior probability of the null hypothesis 

(Gigerenzer, 2004). Finally, Strategy 5 (Base Rate) amounts to an extreme version of 

conservatism (Edwards, 1968). 

The seven strategies in Table 1 depart from Bayes theorem in two fundamental 

ways. First, they differ in which cues they use, with different strategies using different 

combinations of the three statistics. Importantly, these intuitive strategies are frugal as 

none of them use all three statistics as Bayes theorem requires. Second, the strategies 

differ in how they combine the statistics. Two of the strategies (BR only and HR only) 

use only single statistics, one strategy (FAR complement) takes the complement of a 
""""""""""""""""""""""""""""""""""""""""""""""""""""""""
6 Though as Gigerenzer (1996) points out, the representativeness heuristic is difficult to precisely define. 
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statistic, and two take the difference between two statistics (HR minus BR and 

Likelihood subtraction). Only two of the strategies include multiplicative operations 

involving the base rate (as Bayes theorem requires): The Joint Occurrence strategy 

multiplies two statistics, while the Relative Likelihood strategy combines addition and 

division operations. 

Simulation Procedure and Results 
 

The simulation procedure was modeled after that of McKenzie (1994) who also 

simulated the performance of non-Bayesian strategies7. However, in contrast to 

McKenzie (1994), who defined accuracy using correlation measures, we define strategy 

performance using absolute deviation (and mean absolute deviation, MAD)8.  

First, we generated a matrix containing all combination of the three (BR, HR and 

FAR) cues’ values from .01 to .99 in steps of .01, leading to 1,000,000 cue profiles. Next, 

for each cue profile, we calculated the estimate for each of the 7 strategies listed in Table 

1. We then calculated both the signed error (bias) and absolute error (accuracy) between 

each strategy’s estimate and the corresponding Bayesian posterior probability. Note that 

because we applied each strategy without error, there was no random sampling involved 

in any of our calculations. 

""""""""""""""""""""""""""""""""""""""""""""""""""""""""
7 Our simulation departs from that of McKenzie (1994) in one key respect. McKenzie defined each cue 
profile in the form of a 2 x 2 frequency contingency table. He then created a set of cue profiles by creating 
all combinations of cell frequencies, where each cell contained a number from 1 to 50. As we show in 
Appendix D, this procedure leads to a non-uniform distribution of base-rates, hit-rates, and false-alarm 
rates across cue profiles, with a peak in at 0.50. Additionally, it allows for hit-rates to fall below false-alarm 
rates, which we expect will not hold for most real-world tasks. To correct for these issues we manipulated 
statistics directly instead of using McKenzie’s frequency contingency table approach. 
8 While correlation measures are informative, they can mask large absolute differences between a strategy 
and Bayes and do not reveal strategy biases. To illustrate, a strategy can be perfectly correlated with Bayes 
while simultaneously having a large bias.  
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Bias of non-Bayesian strategies . We begin by exploring the accuracy of 

individual strategies. Signed error distributions for each strategy separated by the two 

statistic environments are displayed in Figure 2: 
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Figure 2: Distribution of signed errors for individual strategies in the VC (top 

panel) and RE+ (bottom panel) statistic environments respectively. Each figure in 
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the plot is a “bean”: a smoothed and vertically mirrored density (Kampstra, 2008). 

Horizontal lines represent medians. 

 

We begin by examining error distributions in the VC environment (Figure 2, top 

panel). Here, some strategies (Joint (S6), Likelihood Subtraction (S4), and Hit Rate 

minus Base Rate (S7)) tended to have moderately large negative biases, meaning that 

they tended to give estimates lower than Bayes, while the remaining strategies had small 

biases. Moreover, most strategies had large error ranges, with some cue profiles leading 

to large negative errors and others leading to large positive errors. The one exception was 

the Base Rate (S5) strategy, which tended to give small, negative errors across most 

stimuli profiles. Clearly, in this environment, the Base Rate (S5) strategy appears to be 

both frugal and moderately accurate relative to other simple strategies. 

 A different picture emerged in the RE+ environment. In this environment, we see 

clearer biases in strategies. All but two strategies (Joint (S6) and Base Rate (S5)), 

systematically overestimated the posterior probabilities (i.e.; had a positive bias). In 

contrast, Joint (S6) and Base Rate (S5) overwhelmingly estimates that were too  (i.e.; had 

a negative bias). Compared to VC environments, the Base Rate (S5) strategy does 

substantially poorer in RE+ environments. 

These results allow us to make some predictions as to which environments favor 

averaging, and which pairs of strategies will benefit from averaging in which 

environment. Because strategies are more likely to have large and opposing biases in the 

RE+ environment, we expect larger averaging gains here than in the VC environment. 

Second, in the RE+ domain we expect that combining strategies with negative biases 
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(such as Joint (S6) and Base Rate (S5)) with strategies with positive biases will lead to 

greater averaging gains than combining strategies with similar biases. In the next section, 

we compare the accuracy of individual strategies with averaging strategies. 

Accuracy of averaging strategies. Next, we compared the accuracy of the 

individual strategies in Table 1 to the averages of pairs of strategies. We label averaging 

strategies using the convention Siaj, where i and j are the two strategies being averaged. 

For example, the strategy S1a2 takes the average of Likelihood (S1) and False Alarm 

Complement (S2). We generated estimates for all 21 (7 choose 2) averaging strategies by 

taking the average estimate of each pair of strategies for each stimuli profile. Next, we 

calculated the absolute difference between the estimates of the averaging strategies and 

the Bayes posterior probability for all cue patterns in both stimuli environments. We 

present full absolute error distributions of each strategy in Figure 3: 
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Figure 3: Distributions of absolute deviations for all averaging strategies across Valid Cue (VC, left panel) and Rare Event 

Plus Valid Cue (RE+, right panel) environments. Each figure in the plot is a “bean”: a smoothed and vertically mirrored 

density (Kampstra, 2008). Lower values indicate better accuracy. Horizontal bars in each bean show median values. The 
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intersection between a row and column strategy presents the distribution of errors for the average of those two strategies. 

Distributions on the main diagonal (in gray) represent individual strategies. The horizontal dotted line in each row shows the 

mean absolute deviation of the individual strategy corresponding to that row. 
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In Figure 3, the intersection of a row and column shows the distribution of 

absolute errors for the average of the two strategies named in the respective row and 

column across all stimuli profiles within an environment. Distributions on the main 

diagonal correspond to individual strategies while distributions on the off diagonal 

represent averaging strategies. 

We begin by looking at the VC environment (left panel of Figure 3). In the VC 

environment, some strategies tend to be aided by averaging while others tend to be hurt. 

For example, the individual strategy Hit Rate minus Base Rate (S7) tends to have large 

errors, while averaging strategies using Hit Rate minus Base Rate (S7) appear to have 

lower absolute errors. Thus, the Hit Rate minus Base Rate strategy (S7) lends itself to 

averaging in VC environments. In contrast, the Base Rate (S5) strategy tends to perform 

well on its own. Averaging strategies that use Base Rate (S5) tend to have larger absolute 

errors than the individual Base Rate (S5) strategy. Thus, the Base Rate strategy does not 

tend to benefit from averaging in valid cue environments. 

In the RE+ environments, by contrast, the mass of most averaging strategies tend 

to be lower than that of the individual strategies, suggesting that averaging usually 

improves accuracy. For example, the Base Rate (S5) strategy tends to be less accurate on 

its own than when it is averaged with other strategies. This is in contrast to the VC 

environment where the strategy did fairly well on its own. Similarly, the Joint (S6) 

strategy appears to have lower errors when it is averaged with other strategies. These 

results suggests that, consistent with our predictions, the RE+ environment favors 

averaging more than the VC environment. To see this relationship more clearly, we 
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plotted the mean absolute deviation (MAD) of each solitary strategy relative to the MAD 

of all averaging strategies that contain that solitary strategy in Figure 4. 
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Figure 4: Mean absolute deviation (MAD) of individual strategies and combined 

strategies in two statistic environments. Each figure in the plot is a “bean”: a 

smoothed and vertically mirrored density (Kampstra, 2008). Gray circles show 

individual strategies while numbers show combined strategies. Horizontal bars 

show the median MAD value for all averaging strategies. Each distribution shows 

the MAD values for all averaging strategies that use a specific “starting” strategy 

(indicated by the graph labels). The numbers indicate the MAD value of the 

averaging strategy that combined the starting strategy and the numbered strategy. 

For example, the number 7 in the far left plot in the left panel represents the MAD 

value of S1a7 - the averaging strategy that combines Likelihood (S1) and the Hit 

Rate Minus Base Rate (S7) strategy. The numbers are jittered horizontally to 

make them easier to read. The gray circles represent the MAD value for the 

individual starting strategy. When most numbers fall below the gray circle, then 

the strategy tends to benefit from averaging. When most numbers fall above the 

green dot, then the strategy tends to be hurt by averaging.  

 

In the aggregated results presented in Figure 4, the distinction between VC and 

RE+ environments becomes more clear: In VC environments, some strategies tend to 

benefit from averaging (e.g., Likelihood Subtraction (S4) and Hit Rate Minus Base Rate 

(S7)) while others do not reliably benefit (e.g.; Relative Likelihood (S1)), and some are 

even generally hurt by averaging (e.g, Base Rate (S5)). Additionally, one can see that the 

number 5 falls below most of the green dots. This shows that the Base Rate strategy (S5) 



DIALECTICAL BOOTSTRAPPING 27#

is a good ‘pairing’ strategy that, when averaged, improves the performance of other 

strategies. 

The picture in RE+ environments is very different. Here because the median 

MAD of averaging strategies is less than the individual strategy MAD for all strategies, 

all strategies tend to benefit from averaging. Additionally, strategies Joint (S6) and Base 

Rate (S5) appear to be especially beneficial strategies for other strategies to average with. 

For all other strategies, averaging with these strategies dramatically decreases average 

error relative to individual strategy performance. For example, when Likelihood (S1) is 

averaged with Base Rate (S5), Likelihood (S1) reaps a decrease in mean absolute error 

from .41 to .16, while Base Rate (S5) shows a decrease in MAD from .41 to .17.   

Simulation conclusions. Our simulation showed that averaging gains depend on 

which strategies are combined and the environment strategies are applied in. In VC 

statistic environments, there is large variability between strategies in averaging gains: 

some reap large benefits (Likelihood Subtraction (S4) and Hit Rate Minus Base Rate 

(S7)), while others do not reliably benefit, and others are even hurt by averaging (Base 

Rate (S5)). In contrast, we find that in RE+ environments, all strategies tend to benefit 

from averaging. Additionally, we also find that two strategies, Base Rate (S5) and Joint 

(S6) appear to be especially conducive to averaging in that, when they are averaged with 

other strategies, they can lead to large reductions in error in one, if not both strategies. 

We can explain this with reference to whether or not strategies use base-rates. While 

strategies 1 through 4 do not use base rate information at all, Base Rate (S5) and Joint 

(S6) are highly influenced by base rates. By using base rate information, strategies Base 

Rate (S5) and Joint (S6) serve as promising ‘helping strategies’ that, when averaged, 
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increase the accuracy of other strategies. Strategy Hit Rate Minus Base Rate (S7) does 

use base-rate information, but not in a way consistent with Bayes theorem9. From this, we 

can predict that people who switch between using a strategy that does not use base rate 

information, and a strategy that does use base rate information (excluding Hit Rate Minus 

Base Rate (S7)), will reap larger averaging gains than those who do not. 

Does Dialectical Bootstrapping Increase Strategy Diversity and subsequent 

averaging gains? Two Empirical Studies 

To test the degree to which people could benefit from their inner crowd in a 

Bayesian reasoning task, we conducted two studies.  In each study, participants gave 

estimates for several estimation problems. Each problem presented participants with a 

cue profile in the context of a vignette and asked them to estimate the Bayesian posterior 

probability. In study 1, we used a subset of the problems used by Gigerenzer and 

Hoffrage (1995). These stimuli contained vignettes from a wide variety of content 

domains (e.g., medical, eyewitness identification). Moreover, because some of the 

questions fell into the RE+ environment while others did not, the data allowed us to test 

whether statistic environments affect averaging gains within participants. In study 2, we 

created a new set of stimuli using a “balls and boxes” vignette across all questions. This 

standardized vignette was designed to minimize idiosyncratic differences between 

questions. In study 2, we constructed two separate sets of stimuli profiles that satisfied 

RE+ and VC criteria and included stimuli type as a between-participant manipulation. 

########################################################
9 Hit Rate Minus Base Rate (S7) uses base rate information, but it combines it with other cues in a non-
Bayesian manner. Instead of multiplicatively combining base rates with hit rates (as prescribed by Bayes 
theorem), it subtracts base rates from hit rates. In cue combinations with low base rates, Hit Rate Minus 
Base Rate effectively ignores the base rate cue and relies solely on the hit rate cue. Of course, this is 
completely antithetical to Bayes theorem’s posterior probability, which is heavily influenced by small base 
rates. Thus, while Hit Rate Minus Base Rate (S7) uses base rate information, it does not help other 
strategies the way that Base Rate and Joint do. 
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In both studies 1 and 2, participants gave two separate estimates to each problem 

across two phases. After giving a first set of estimates in phase 1, participants were 

assigned to one of two conditions before giving a second set of estimates on phase 2. In 

the control conditions, participants were told to give a second set of estimates as if they 

were seeing the problems again for the first time (cf. Herzog & Hertwig, 2009, 2014b). 

We included this condition to measure baseline changes in strategy use between phases. 

In the dialectical conditions, participants read dialectical instructions, which encouraged 

participants to think of new ways of deriving estimates by challenging the assumptions 

they made in their previous estimates (Herzog & Hertwig, 2009). In previous studies on 

dialectical bootstrapping, dialectical instructions have been found to increase estimate 

diversity and subsequent averaging gains relative to control instructions. However, no 

previous study has used probabilistic modeling techniques (Lewandowsky & Farrell, 

2010) to measure the effects of dialectical instructions on qualitative changes in 

strategies. In the current two studies, we use probabilistic modeling techniques to classify 

the estimation strategy participants used in each of the two phases as well as whether or 

not participants switched strategies. This classification analysis allowed us to test the 

effects of dialectical instructions on strategy switching, and the extent to which 

participants used strategies that, according to our simulations, should lead to averaging 

gains.  

In study 1 we included an additional control condition where, after phase 1, 

participants spent four minutes solving anagrams unrelated to the reasoning task 

(anagram condition). We included this condition to test whether or not distraction from 

the Bayesian reasoning task was sufficient to produce strategy changes between 
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Distraction can provide an incubation period that increases creative problem solving (e.g., 

Baird, Smallwood, Mrazek, Kam, Franklin & Schooler, 2012). Thus, in order to test if 

distraction can match dialectical instructions in inducing strategy change, we included the 

anagram condition in study 110. In study 2, we included an additional third estimation 

phase that was designed to test how people decide to aggregate their inner crowd (cf. 

Fraundorf & Benjamin, 2014; Herzog & Hertwig, 2014; Müller-Trede, 2011). For each 

question in this phase, instead of presenting the cue profile, we showed participants their 

phase 1 and 2 estimates for each of the problems and asked them to come up with their 

best estimate in light of those two estimates. We used these response data to determine if 

people were able to outperform the simple average of their phase 1 and phase 2 estimates. 

Hypotheses 

Because dialectical instructions should spur participants to think of a new way to 

make estimates (Herzog & Hertwig, 2009), we expect participants in this dialectical 

condition to be more likely to switch strategies between phases 1 and 2 (H1). Based on 

our stimulation study, we predicted that averaging gains would be larger in the RE+ 

environment than the VC environment (H2) and that participants who switch between a 

strategy that uses base-rates and another that does not use base-rates in phases 1 and 2 

will reap larger averaging gains than participants who do not (H3). 

Methods 

Participants. 575 participants (350 in study 1 and 225 in study 2) were recruited 

from Amazon Mechanical Turk (mturk) participated in the study. They each received a 

flat payment of $3.50 for participating. In addition to the flat payment, they were eligible 

########################################################
10 However, as the reader will see, participants in the anagram condition in study 1 actually changed 
strategies less often than those in the control condition. As this discredits the hypothesis that distraction was 
sufficient to produce strategy change, we did not include the condition in study 2. 
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for a performance-based bonus reward of up to $2.00. We restricted participants to those 

located in the United States with at least a 95% mturk work acceptance rate. We informed 

participants that the study would take between 60 and 90 minutes to compete. 

Materials and procedure. In both studies, participants gave estimates to several 

questions that required them to make a posterior probability estimate in light of three 

statistical cues contained in a vignette. They were told that each question had a correct 

answer, and that they would receive a monetary bonus proportional to the agreement 

between their estimates and those that a statistician would give. The order of questions 

was randomized for each participant. After reading each question, participants gave a 

posterior probability estimate in percentage format from 0 to 100 up to two decimal 

places. 

Study 1 stimuli. In study 1, participants gave estimates to ten probability estimate 

tasks using the standard probability format11 taken from Gigerenzer and Hoffrage’s 

(1995) stimuli and translated into English12. We selected ten out of the fifteen tasks from 

their study that maximized the variance in predictions from the 7 estimation strategies in 

Table 1 (and thus increased model identifiability). Each problem was presented as a 

vignette that asked the participant to indicate the posterior probability of an event given 

base-rate, hit-rate, and false-alarm rate information. A list of the cue profiles and 

verbatim texts used in each of the ten questions is shown in Appendix A. 

Study 2 stimuli. In study 2, participants were asked to estimate the probability of 

an event in a “boxes and balls’ paradigm (see Appendix A for verbatim instructions). In 

########################################################
11 The standard probability format of a Bayesian inference task provides information (base-rates, hit-rates, 
and false-alarm rates) in single event probabilities (Gigerenzer & Hoffrage, 1995). We chose to use this 
format because it is the one where people are known to have the most difficulty deriving Bayesian 
estimates. 
12 We thank Ulrich Hoffrage for providing us with the raw questionnaires from their study. 
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each question, participants were asked to imagine that a “game master” had a “choosing 

hat” containing “Choose-A” and “Choose-B” tickets, and two boxes labeled “A” and “B” 

containing different distributions of Green and Red balls. Participants were told to 

imagine that the game master selected a random ticket from the choosing hat and drew a 

randomly selected ball from the box named on the ticket. They then answered the 

question: “Given that the game master drew a Green ball from the selected box, what is 

the probability that the ball came from box A?” At the beginning of each question, they 

were given three pieces of information that corresponded to the base-rate, hit-rate and 

false-alarm rate of the target question: the proportion of “Choose-A” tickets in the 

choosing hat (base rate), the proportion of Green balls in box A (hit rate), and the 

proportion of Green balls in box B (false-alarm rate). A screenshot of the game is 

presented as Figure A1 in Appendix A. We generated 2 sets of cue-profiles 

corresponding to Valid Cue and Rare Event + Valid Cue conditions13. The final stimuli 

profiles we selected and used for each condition are presented in Table A1 in Appendix 

A. 

Phase 2 Conditions. After giving their first set of estimates to each problem, 

participants were told that they would be giving a second set of estimates to each of the 

questions. They did not previously know that they would be making second estimates. 

They were randomly (and independently) assigned to one of three conditions in study 1, 

and one of two conditions in study 2. In the control condition (study 1 N = 108, study 2 N 

########################################################
13#To generate the stimuli profiles for each condition, we simulated 10,000 sets of 15 stimuli profiles where 
each cue value was drawn from a uniform distribution from 0 to 1. After removing stimuli profiles that did 
not satisfy the cue-profile constraints of the respective environment, we selected the set of 15 stimuli 
profiles that maximized the standard deviation of the strategy estimates in Table 3. By maximizing the 
standard deviation of the strategy estimates, we increase the identifiably of strategies. 
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=109), participants were told that the researchers were interested in the natural variability 

in their estimates, and would provide second estimates to the questions (cf. Herzog & 

Hertwig, 2009, 2014b). They were instructed to answer the questions “as if they were 

seeing them for the first time.” In the dialectical condition (study 1 N = 13114, study 2 N 

= 116), participants read dialectical instructions. Specifically, they were instructed 

(Herzog & Hertwig, 2009, p. 234): 

First, assume that your first estimate is off the mark. Second, think about a few 

reasons why that could be. Which assumptions and considerations could have 

been wrong? Third, what do these new considerations imply? Was the first 

estimate too high or too low? Fourth, based on this new perspective, make a 

second, alternative estimate. 

In study 1, we included a third anagram condition (N = 111), where participants solved 

anagrams (unrelated to the estimation task) for four minutes. After the four-minute 

anagram period completed, participants were given the same instructions as those in the 

reliability condition. 

Following the condition specific manipulations, all participants were also told that 

their performance bonus for each question would be based on the better of their two 

estimates in phases 1 and 2. This was meant to encourage participants to try different 

estimation strategies (cf. Herzog & Hertwig, 2009, 2014b). Phase 2 then began and 

participants were presented with the same problems from phase 1 a second time in a 

newly randomized order. Participants in the dialectical condition were also reminded of 

########################################################
14 The imbalance in sample sizes per condition was due to sampling error in our independent random 
assignment. 
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their original estimates, in addition to being presented with the problem stimuli, in order 

to further facilitate changes in estimates. 

Phase 3 in study 2. In study 2, we included a third estimate phase (cf. Herzog & 

Hertwig, 2014b; Müller-Trede, 2011). After giving second estimates in phase 2, 

participants were told (again, without warning) that they would be making a third, and 

final, set of estimates for each problem. They were told that they would earn an 

additional performance based bonus for the accuracy of their phase 3 estimates 

independent of their estimates in phases 1 and 2 (cf. Herzog & Hertwig, 2014b). 

However, in contrast to phases 1 and 2, participants were not be reminded of the cue 

statistics for each question, and instead had to make an estimate on the basis of their 

phase 1 and phase 2 estimates alone. We then presented participants with each of their 

phase 1 and phase 2 estimates for each problem and asked them to make a new set of 

estimates.  

Results 

Definitions. In the following formulas, we use the notation xki to designate an 

estimate in phase k for question i, and bi to designate the Bayesian criterion for question i. 

For each participant, we calculated the mean absolute deviation (MAD) between their 

estimates and the Bayesian criterion across problems.  

!"#! =
!!" − !!!

!!!
!  

We separately calculated MAD values for each participant’s phase 1 and phase 2 

estimates (labeled MAD1 and MAD2 respectively). In addition, we calculated the MAD 

value of each participant’s average estimate between phase 1 and phase 2 across 

problems (labeled MADavg12): 
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!"#!"#!" =
!!! + !!!

2 − !!!
!!!

!  

To calculate averaging gains, we subtracted the MAD of each participant’s 

average estimates from the MAD of their phase 1 estimates: 

!"#$%&'(&!!"#$ = !"#! −!"#!"#!" 

Next, we calculated each participant’s bracketing rate and accuracy ratio. A participant’s 

bracketing rate is defined as the proportion of questions where a person’s phase 1 and 

phase 2 estimates fall on either side of the Bayesian estimate (i.e., have different signed 

errors; Larrick & Soll, 2006). Finally, a participant’s accuracy ratio is defined as the ratio 

of her higher phase MAD value to her lower phase MAD value (Soll & Larrick, 2009): 

!!!"#$!%!!"#$% = max!(!"#!,!"#!)
min!(!"#!,!"#!)

 

The minimum accuracy ratio is 1 which occurs when a person’s phase 1 and phase 2 

estimates have the same average error. 

We use Bayesian parameter estimation procedures for all analyses (for 

information on the strengths of a Bayesian approach to statistics, see, for example, 

Dienes, 2011; Kruschke, 2010, 2011a, 2011b; Wagenmakers, 2007). To make inferences 

to group means, we use the BEST package in R (Kruschke, 2013). For regression 

analyses, we conduct Bayesian mixed-level analyses using the MCMCglmm package in 

R (Baayen, Davidson & Bates, 2008; Hadfield, 2010). When applicable, we include 

random intercepts for participants and stimuli. For all analyses, we summarize parameter 

posterior distributions of interest using 95% highest density intervals (HDIs). 

Summary statistics. Summary estimate change and accuracy statistics separated 

by instruction condition and stimuli environment are presented in Table 4. We only 



DIALECTICAL BOOTSTRAPPING 36#

include data from participants (272 out of 350 in study 1, 206 out of 225 in study 2) who 

were not classified as using a Bayesian strategy in either phase 1 or phase 2. We highlight 

four key results here. First, participants in dialectical conditions appeared to change their 

estimates between phases 1 and 2 more than those in the control conditions (and the 

anagram condition in study 1). This suggests that dialectical instructions were successful 

in changing participants’ estimation strategies (we will test this using a modeling 

approach in the next section). Second, estimates were generally more accurate (had 

smaller absolute errors) in the VC environment compared to the RE+ environment. This 

is consistent with previous research (and our simulation results) showing that people 

make poorer estimates relative to Bayes theorem for problems with very low base-rates to 

those with moderate base-rates (McKenzie, 1994). Third, bracketing rates appear 

consistently higher in RE+ environments compared to VC environments. This suggests 

that RE+ stimuli do indeed lead strategies to produce different errors than VC 

environments, which should in turn lead to larger averaging gains. Finally, bracketing 

rates tended to be fairly low. The smallest mean bracketing rate was only 6% in the 

control condition of study 1 for VC stimuli and the largest was 19% in the dialectical 

condition of study 2 for RE+ stimuli. These rates are substantially lower than has been 

found in previous inner-crowd research. For example, Herzog and Hertwig (2014b) had a 

smallest group mean bracketing rate of 14% in their reliability condition, and a largest 

group mean bracketing rate of 22% in their dialectical condition.
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 Control Anagram Dialectical 
 VC RE+ VC RE+ VC RE+ 
Mean Estimate 
Change 9.33 [0, 31.84] 20.28 [1.74, 48.14] 8.77 [0, 25.85] 20.55 [1.66, 46.16] 15.11 [0, 45.31] 24.91 [1.5, 65.61] 
MAD1 18.98 [0.73, 49.71] 51.37 [8.91, 85.58] 15.87 [0.08, 51.34] 51.1 [11.43, 94.68] 19.04 [0.05, 49.76] 50.48 [0.14, 86.52] 
MAD2 18.47 [0.14, 49.46] 48.08 [3.92, 79.54] 15.11 [0, 50.76] 52.53 [2.06, 83.04] 20.93 [0.09, 48.39] 46.01 [3.92, 81.48] 
MADavg12 18.72 [0.21, 42.91] 49.71 [17.99, 84.91] 15.49 [0.63, 50.51] 51.81 [9.69, 86.78] 19.98 [0.67, 45.4] 48.23 [11.42, 85.03] 
MAD1 – 
MADavg12 0.26 [-9.17, 12.66] 1.66 [-11.11, 19.28] 0.38 [-12.01, 11.31] -0.71 [-14.86, 15.98] -0.94 [-17.44, 9.06] 2.25 [-18.49, 32.31] 
Bracketing 0.06 [0, 0.25] 0.09 [0, 0.33] 0.09 [0, 0.5] 0.09 [0, 0.5] 0.11 [0, 0.5] 0.12 [0, 0.5] 
Accuracy Ratio 2.64 [1, 9.93] 1.58 [1, 3.12] 3.03 [1, 12.53] 1.68 [1.03, 3.04] 2.59 [1, 9] 2.08 [1, 8.33] 
 
 

 Control Dialectical 
 VC RE+ VC RE+ 
Mean Estimate Change 7.44 [0, 14.73] 10.85 [0.19, 33.47] 7.45 [0, 21.6] 14.82 [0.93, 45.73] 
MAD1 21.49 [7.04, 36.04] 21.38 [0.06, 38.87] 31.96 [1.61, 43.66] 35.29 [19.31, 45.59] 
MAD2 20.05 [8.56, 36.3] 22.53 [0.24, 48.59] 32.24 [1.35, 45.2] 34.08 [9.9, 53.62] 
MADavg12 20.16 [7.46, 36.17] 21.14 [0.14, 40.99] 31.3 [1.77, 43.92] 32.84 [15.03, 44.03] 
MAD1 – MADavg12 1.32 [-0.8, 5.87] 0.24 [-13.39, 6.49] 0.66 [-4.01, 7.92] 2.45 [-2.27, 19.87] 
Bracketing 0.08 [0, 0.27] 0.13 [0, 0.4] 0.08 [0, 0.33] 0.19 [0, 0.73] 
Accuracy Ratio 1.2 [1, 1.89] 2.23 [1, 4.1] 1.26 [1, 1.86] 1.55 [1, 2.59] 

 
Table 4a and 4b: Study 1 (4a) and study 2 (4b) summary statistics. Each cell contains the sample mean across participants in a 
condition and the corresponding 95% highest density interval (HDI). In calculating summary statistics for accuracy ratios, we 
excluded data from 15 participants with VC accuracy ratios greater than 15 and 3 participants with RE+ accuracy ratios greater 
than 15. The corresponding table for all 350 participants, including those who used a Bayesian strategy in at least one phase, is 
in Appendix B. 
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Strategy classification. In order to measure how dialectical instructions influenced 

strategy change, and how strategy change affected averaging gains, we conducted a strategy 

classification analysis. We assume that each participant uses one estimation strategy across most 

questions within each estimation phase. However, we do allow some application variability due 

to factors such as calculation errors or spontaneous use of a different strategy. Formally, we 

define the likelihood of responses for question i from strategy j applied by participant k as a t-

distribution with mean equal to the estimate of strategy j, degrees of freedom equal to one, and 

standard deviation specific to each participant.  

!(! = !! !"! ,!"! ,!"#! ,! = !!" ,!" = 1)   EQ 1. 

Where sj is the output function of strategy j, and BRi, HRi, and FARi correspond to the 

base-rate, hit-rate, and false-alarm rate values for question i. We chose to model errors using the 

t-distribution because its fat tails can accommodate outliers better than the normal distribution. In 

addition, we truncated the probability density function (PDF) below 0 and above 1 and 

normalized it to integrate again to 1. For a visual representation or the modeling procedure, we 

refer to Figure 6 where we compare the likelihoods given by two different strategies A and B 
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Figure 6. Likelihood functions of two different strategies A and B, plotted in black and 

gray lines, respectively to two responses of .20 and .70 from a hypothetical participant. 

The solid lines are the respective likelihood functions for question 1 (Q1) while the 

dashed lines are the respective likelihood functions for question 2 (Q2). Strategy A 

depicted predicted values of .18 and .71, while strategy B predicted values of .30 and .50. 

Because strategy A made predictions close to the participant’s responses, its standard 

deviation can be very low and thus give high likelihood to the responses. In contrast, 

because strategy B made predictions relatively far from the responses, its standard 

deviation is forced to be relatively high and it gives low likelihood to the participant’s 

responses. Multiplied across both problems, strategy A gives higher cumulative 

likelihood to the data than strategy B. 
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For these two questions, the participant indicated estimates of 0.20 and 0.70, respectively 

(). Strategy A predicts responses of 0.18 and 0.71, while strategy B predicts responses of 

0.30 and 0.50 for questions 1 and 2, respectively. The participant’s responses have higher 

likelihood under strategy A than strategy B. 

 

For each participant and each estimate phase, we compared the maximum-likelihood fits 

of twelve different strategies in Table 5. In addition to the seven non-averaging strategies from 

Table 1, we included Bayes theorem, two averaging strategies proposed in prior literature 

(Gigerenzer & Hoffrage, 1995; McKenzie, 1994), and two base-line models that ignored the cue-

profile information. The two averaging strategies were the Relative Likelihood Average (defined 

as the average of the Base Rate (S5) and Relative Likelihood (S3)), and the Likelihood Average 

(defined as the average of Likelihood (S1) and Base Rate (S5)). Prior research has suggested that 

some people spontaneously adopt the strategies (Gigerenzer & Hoffrage, 1995; McKenzie, 

1994). For this reason, we elected to include them in our strategy classification analysis. The two 

base-line models were called “Random” and “Mean.” The “Mean” model sets the mean of the t-

distribution in EQ 1 to the mean of the participant’s responses, while the “Random” model uses a 

uniform distribution from 0 to 1. A table of all twelve strategies is presented in Table 5. 

 

Strategy 
Number 

Strategy Name Averaging 
Strategy? 

Cue-Based? Number of 
free 

parameters 
0 Bayes No Yes 1 

1 - 7 See Table 4 No Yes 1 

8 Relative Likelihood Yes Yes 1 
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Average 

9 Likelihood Average Yes Yes 1 

10 Mean No No 2 

11 Random No No 0 

 

Table 5. Twelve strategies used in our strategy classification analysis. Averaging 

strategies average 2 or more cue values. Cue-based strategies make estimates as a 

function of cue (i.e., base rate, hit rate and/or false-alarm rate) while non-cue-based 

strategies ignore cue values.  

 

Strategies 0 through 9 have one free parameter, which is the standard deviation of the t-

distribution; the smaller the standard deviation, the better a strategy captures a participant’s 

estimates across questions (see also Figure 6). Strategy 10 (Mean) has one additional parameter, 

which is the mean of its t-distribution. Strategy 11 (Random) models estimates as a uniform 

distribution ranging from 0 and 1 (i.e., with no free parameters).  

For each participant we calculated maximum-likelihood estimates of the parameters for 

each strategy for each estimate phase. We then calculated the Bayesian Information Criterion 

(BIC) for each strategy m using the equation: 

!"#! = −2 !" !"#! !! + !!ln!(!)
!"

!!!
#

 

Where k is an index for questions, likm is the likelihood of the estimate bk given model m using 

the maximum likelihood estimates for each parameter pm in model m, and N is the number of 

data points (N = 15 for all models). The BIC measure rewards models that give high maximum-
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likelihoods to the data while simultaneously punishing models with many free parameters 

(Lewandowsky & Farrell, 2010). We then calculated ΔBIC values for each model by subtracting 

the minimum BIC value from each model’s BIC value. Finally, we calculated posterior 

probabilities of each model m using the equation: 

!"#!! = !!.!∗∆!"!!
!!.!∗∆!"!!!

!!!
#

 

We classified each participant as using the model with the highest posterior model probability. 

See Appendix C for model recovery simulations supporting the validity of this model 

classification procedure. 

Strategy classification results. Strategy classification results are presented in Figure 7 

using heat plots. Vertical axes show results from phase 1 while horizontal axes show results from 

phase 2. Cells on the diagonal indicate cases where participants were classified as using the same 

strategy in both phases 1 and 2. Cells in the off diagonal indicate cases where participants were 

classified as using a different strategy in the two phases. Aggregated classification results are 

presented in Table 7.
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Figure 7. Strategy classification results in phases 1 (horizontal axis) and 2 (vertical axis) separated by study and instructions 

condition. Values on the main diagonal indicate participants who were classified as using the same strategy in phases 1 and 2. 

Values off the main diagonal indicate participants who were classified as using different strategies in phases 1 and 2.  

 

Strategy Study 1 Study 2 

Index Name Phase 1 Phase 2 Combined Phase 1 Phase 2 Combined 

0 Bayes 60 (22%) 60 (23%) 120 (23%) 20 (10%) 18 (9%) 38 (9%) 

1 Likelihood 80 (30%) 64 (25%) 144 (27%) 32 (16%) 24 (12%) 56 (14%) 

2 False alarm complement 5 (2%) 4 (2%) 9 (2%) 4 (2%) 4 (2%) 8 (2%) 

3 Relative likelihood 17 (6%) 16 (6%) 33 (6%) 13 (6%) 8 (4%) 21 (5%) 

4 Likelihood subtraction 47 (17%) 41 (16%) 88 (17%) 7 (3%) 11 (6%) 18 (4%) 

5 Base rate 7 (3%) 15 (6%) 22 (4%) 69 (33%) 59 (30%) 128 (32%) 

6 Joint occurrence 52 (19%) 54 (21%) 106 (20%) 48 (23%) 52 (27%) 100 (25%) 

7 Hit rate minus base rate 2 (1%) 3 (1%) 5 (1%) 1 (<1%) 4 (2%) 5 (1%) 

8 Relative likelihood average 0 (<1%) 1 (<1%) 1 (< 1%) 2 (1%) 2 (1%) 4 (1%) 

9 Likelihood average 0 (<1%) 2 (1%) 2 (< 1%) 10 (5%) 14 (7%) 24 (6%) 



DIALECTICAL BOOTSTRAPPING 45#

10 Mean 1 2 3 14 24 38 

11 Random 78 89 167 5 5 10 

 

Table 6. Strategy classification results aggregated across conditions separately for each study and phase. Percentages are 

column percentages for cue-based strategies (strategies 0 through 9) and ignore non cue-based strategies (strategies 10 and 11).
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In Study 1, we classified participants to a cue-based strategy in 530 out of 700 (76%) of 

cases across phases. The remaining 24% of participants were mostly classified as using the 

Random strategy15. Of those participants using cue-based strategies, the most common strategies 

were (S1) Likelihood (27%), (S0) Bayes (23%), (S6) Joint Occurrence (20%), and (S4) 

Likelihood Subtraction (17%). These four strategies accounted for 86% of the all cue-based 

strategies. These classification rates coincide fairly closely with Gigerenzer and Hoffrage (1995), 

who classified participants using a combination of write-aloud protocols and direct behavioral 

measures16. 

In study 2, we classified participants to a cue-based strategy in 402 out of 450 (89.3%) of 

cases across phases. Of those participants using cue-based strategies, the most common strategies 

were (S5) Base rate (32%), (S6) Joint occurrence (25%), (S1) Likelihood (14%), and (S0) Bayes 

(9%). These four strategies accounted for 80% of all cue-based strategies. One major difference 

in strategy use between study 1 and study 2 was the use of the Base rate (S5) strategy. In study 1, 

this strategy was only used in 4% of cases while in study 2, it was used in 32% of cases. We 

conjecture that the increase in use of the BR strategy is due to the direct causal function of the 

base-rate in the Experiment 2 vignette (see Ajzen, 1977). 

Strategy switching. Next, we explored the relationship between experimental condition 

and strategy change between phases 1 and 2. For each participant (including those who were 

classified as using Bayes in either phase), we calculated whether s/he was classified as using the 

same strategy or different strategies in the two phases. We used Bayesian graphical modeling to 

########################################################
15 Participants who were classified to the “Random” strategy were not necessarily responding randomly. They may 
have been using an estimation strategy other than those in Table 5. Alternatively, they may have violated our 
modeling assumptions by, for example, alternating between two strategies. 
16 In Gigerenzer and Hoffrage’s (1995) first study using the standard probability format, they found the following 
classification rates (our rates from phase 1 in Study 1 given in the parentheses): Bayes 22% (23%), Joint: 12% (0%), 
Likelihood: 32% (27%), Likelihood-Subtraction: 10% (17%), Base Rate: 2% (4%). Additionally, they failed to 
identify the strategy of 27% (22%) of participants. 
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compare the probability that participants switched strategies as a function of their experimental 

condition17. We then computed 95% HDI for the difference in proportions between conditions. 

Strategy switching rates for each condition are presented in Figure 8. 

 

Figure 8: Percentage of participants classified as changing strategies between phases 1 

and 2 by instructions condition and study. Error bars represent 95% highest density 

intervals (HDI). 

 

  In study 1, 54% participants in the dialectical condition changed strategies compared to 

41% in the anagram condition. The difference between these two conditions was credible (95% 

HDI of the difference: [.09, .25]). The difference in proportions between the dialectical and the 

control condition (.023) was positive, but not credibly different from 0 (95% HDI of the 

difference: [–.10, .15]). In study 2, 49% of participants in the dialectical condition switched 

strategies compared to 32% in the control condition. This difference was credible (95% HDI of 
########################################################
17 We used an uninformative beta(1,1) prior distribution for the switching probability in each condition and modeled 
the likelihood that each participant changed strategies as following a binomial distribution with sample size 1 and 
probability p corresponding to its experimental group. 
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difference: [.04, .29]). Thus, with the exception of the non-credible difference between the 

control and dialectical condition of study 1, we find evidence that dialectical instructions does 

indeed increase the probability that people change their estimation strategies. To our knowledge, 

this is the first analysis that uses probabilistic modeling techniques to demonstrate that dialectical 

instructions induce a qualitative shift in strategy use.  

Our simulation results suggested that averaging gains are most pronounced when people 

switch between strategies with differential base-rate use. Did participants in our studies 

frequently change their base-rate usage and if so did dialectical instructions increase this 

tendency? To answer this question, we looked at how often those participants who used non-

averaging, cue-based strategies in both phases 1 and 2, switched between strategies using 

differential base-rate usage in each condition. We excluded participants who were classified as 

using Bayes in either estimate phase. Results are presented in Table 7. 

 

 Study 1 Study 2 

Control 3 / 49 (6%) 3 / 75 (4%) 

Dialectical 11 / 55 (20%) 7 / 73 (10%) 

Anagram 4 / 51 (8%) – 

Total 18 / 155 (12%) 9 / 148 (6%) 

 

Table 7. Frequencies and proportions of participants who switched between strategies 

with different base-rate usage. Only participants who used cue-based strategies (S1–S9) 

in both phases 1 and 2 are included in this table. 
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Overall, we found low levels of base-rate strategy switching in both study 1 (12% across 

conditions) and study 2 (6% across conditions). However, we did find credibly higher rate of 

base-rate switching in the dialectical conditions compared to the control conditions when 

aggregated over both studies 1 and 2 (95% HDI of difference 2.1%, 16.5%) Thus, we find that in 

addition to increasing the overall rate of strategy switching, dialectical instructions changed how 

people on average used base-rate information.  

Predictors of averaging gains. Next, we calculated the effect of strategy switching on 

averaging gains for RE+ and VC stimuli. To do this, we conducted a Bayesian mixed-level 

regression analyses for each study. In each analysis, we regressed averaging gain on three fixed 

factors: 1) stimuli type (with RE+ coded as 1 and VC coded as 0), 2) a dummy variable 

indicating whether or not the participant switched between strategies with different base-rates, 

and the interaction between the two18. Point estimates and 95% HDIs for the beta values in these 

two regression analyses are presented in Table 8. 

 Study 1 Study 2 

 Mean 95% HDI Mean 95% HDI 

Fixed     

     RE+ Stimuli 2.75 [–2.72, 8.08] –0.23 [–1.49, 1.23] 

     BR Change 6.26 [0.51, 12.48] 2.44 [–0.28, 5.53] 

     RE+ x BR Change 9.34 [2.67, 15.74] 17.38 [12.42, 22.89] 

Random     

     Stimuli 16.04 [2.30, 37.35] 0.34 [0.00, 1.43] 

########################################################
18 We also included random intercepts for participants and stimuli. In order to keep our assumptions as close as 
possible to our simulation, we only included data from participants who were classified as using a non-Bayesian, 
non-averaging cue-based strategy (strategies 1 through 7) in both phases 1 and 2. 
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     Participant 37.00 [18.01, 56.28] 7.49 [4.15, 11.26] 

 

Table 8: Averaging gains (measured by the difference in MAD1 – MADavg12) separately 

for non-RE+ stimuli (first row) and RE+ stimuli (second row), and for those participants 

who do not switch strategies (first column) and those who did switch strategies (second 

column). 

 

In study 1 we found both a credible positive main effect for base-rate cue switching and a 

credible positive interaction between base-rate strategy switching and stimuli type. In study 2, 

we replicated the interaction from study 1 but did not quite replicate the main effect for base-rate 

strategy switching. Together, we find that switching between strategies that differentially use 

base-rates increases averaging gains over either not switching strategies or switching between 

strategies with the same base-rate usage. Moreover, these averaging gains are larger for RE+ 

stimuli compared to VC stimuli19. These results are consistent with our simulation-based 

predictions. 

Were participants able to beat their inner crowd? In study 2 we included a third 

estimate phase where we had participants give their best estimates in light of their estimates in 

phases 1 and 2. In the next analyses, we focus on how well participants in phase 3 of study 2 

were able to beat the average of their inner-crowd. Previous research has found that people are 

########################################################
19 To see if all strategy switching, irrespective of base-rate use, was related to averaging gains, we repeated the same 
regression analyses but replaced the BR-Change fixed factor with a variable indicating whether or not people simply 
changed their strategy between phase 1 and phase 2. In these analyses, the effect of strategy change was not credible 
(i.e., the 95% HDIs of the strategy change variable included 0) but the interaction between strategy change and 
stimuli condition were credibly different from 0 for study 1 (95% HDI [0.836, 9.66]) and nearly credibly different 
form 0 for study 2 (95% HDI [–0.17, 7.01]. Thus, strategy switching (independently of base-rate use) does increase 
averaging gains to a greater extent for RE+ cue profiles compared to VC cue profiles. However, the magnitude of 
these interactions was not as large as the interactions between base-rate strategy switching and cue profile presented 
in Table 11. 
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largely unable to beat the average of their inner-crowd when they use an alternative strategy such 

as choosing one of their two estimates (Herzog & Hertwig, 2014b; Müller-Trede, 2011; but see 

Phillips, Herzog, Kämmer & Hertwig, 2014). However, our analyses of study 2 suggest that the 

simple average may not be as affective in study 2 relative to past studies (see Table 4). 

According to the PAR (Soll & Larrick, 2009) model, larger criterion bracketing rates favor 

averaging strategies while lower criterion bracketing rates favor non-averaging strategies. 

Previous studies on the inner-crowd found mean bracketing rates ranging from 8% (reliability 

condition in Herzog & Hertwig, 2009) to 22% (dialectical condition in Herzog & Hertwig, 

2014b). In study 2, the median participant produced estimates that bracketed the criterion in only 

7% of problems in both the control and dialectical conditions. This suggests that the accuracy of 

participants’ inner-crowd average may not be very high. However, because we know from 

previous analyses that averaging gains are larger for participants who change their base-rate use, 

especially for RE+ cue profiles, we expect these participants to be less likely to beat the average 

of their inner crowd. 

To see how often participants were able to beat the average of their inner crowd, we 

calculated the percent of participants who had MADphase3 values smaller than their MADavg12 

values (cf. Herzog & Hertwig, 2014b). These are participants whose phase 3 estimates were, on 

average, more accurate than the simple average of their phase 1 and phase 2 estimates. Across all 

conditions and participants, just less than half of all participants (46% or 97 out of 211) were 

able to beat the simple average of their inner crowd; these results are similar to Herzog and 

Hertwig (2014b), where the proportions were 47% and 44% for their control and dialectical 

conditions, respectively. To test the effects of base-rate change and cue-profile environment 

condition on this effect, we regressed the difference in absolute error between each participant’s 
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phase 3 estimates and the average of their phase 1 and phase 2 estimates on the same three fixed 

factors and two random factors in our previous regression analysis. We did not find a credible 

effect of stimuli condition (95% HDI: [–2.57, 0.75]. However, we did find credible negative 

effects of base-rate cue change (95% HDI: [–8.00, –1.34]) and the interaction term (95% HDI: [–

19.67, –8.13]). These negative results suggest that people were less able to beat the average of 

their inner crowd when they changed their base-rate usage between phases 1 and 2. Additionally, 

this effect was even larger in the RE+ environment. 

Discussion 

 Results from the two empirical studies confirmed three key predictions from the 

simulation study. First, people can improve the accuracy of their estimates by combining 

multiple, non-Bayesian strategies. Second, averaging gains are largest when people combine a 

strategy that does not use base-rate information with another strategy that does use base-rate 

information. Finally, averaging gains are highest in environments with small base-rates and large 

hit-rates. Consequently, participants in study 2 were less able to beat their inner crowd when they 

used strategies with differential base-rate use—especially in the RE+ environment. 

 There was one major difference between our simulation assumptions and participants’ 

behavior. While our simulation assumed that participants would be equally likely to use each 

strategy (see Figure 4), our participants clearly preferred some strategies to others. For example, 

strategy 2 “False Alarm Compliment” was used by about 2% of participants in studies 1 and 2. 

Moreover, only a small minority of participants (12% in study 1 and 6% in study 2) switched 

between a strategy that used base rates and a strategy that did not. Because base-rate switching 

drove much of our expected averaging gains, this meant that participants did not reap as much 

gains as one would expect based on our simulation. 
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General Discussion 

 Psychologists have been comparing human probabilistic inference to Bayes theorem for 

decades and the result has been a collection of seemingly disparate conclusions in favor of one of 

two qualitative extremes. While some have argued that people are “conservative Bayesians,” 

(e.g., Edwards, 1968), others claimed that people are “not Bayesian at all” (Kahneman & 

Tversky, 1972, p. 450). Additionally, some argue that people ignore base-rate information and 

thus exhibit a categorical base-rate neglect (Lyon & Slovic, 1976), while others argue that people 

routinely use base rates (e.g., Christensen-Szalanski & Bushyhead, 1981). At the same time, with 

the notable exception of Gigerenzer and Hoffrage (1995)’s work on natural frequency formats, 

this debate seems to have ignored a fundamental calling of decision-making research; namely 

how to help people make better judgments and decisions given their cognitive architecture? To 

do this, we test how people can use their inner-crowd to improve their Bayesian reasoning 

judgments. We propose and support the claim that people use a wide variety of estimation 

strategies that differ in the information they use (i.e., base rates) and the kind of errors they 

commit. In a simulation and two empirical studies, we find that people can harness this diversity 

by using their inner crowd (Herzog & Hertwig, 2014a) in order to improve the accuracy of their 

judgments without any explicit knowledge of Bayes theorem. We find that people can harness 

the largest gains when they combine strategies with different base-rate use in environments with 

rare events and a diagnostic cue (“Rare event plus valid cue” environments). Moreover, based on 

formal strategy classification analyses we find evidence that dialectical bootstrapping, a method 

of increasing the diversity of the inner crowd (Herzog & Hertwig, 2009), increases both the 

diversity of strategies used and the probability that people chase their use of the base-rate cue in 

Bayesian reasoning tasks.  
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People do not neglect base-rate information 

 Our simulation and empirical results suggest that it is crucial for people to use base-rate 

information, especially in rare-event environments with very small base rates. Early research in 

the heuristic and biases movement of the 1970s and 1980s concluded that people ignore base-rate 

information (i.e., exhibit “base-rate neglect”) and thus are “not Bayesian at all.” (Kahneman & 

Tversky, 1972, p. 450) Our model based classification procedure does not support this 

conclusion. A substantial number of our participants were classified as using strategies that are 

sensitive to base rates. In study 1, almost half of our participants (46%) used a strategy that used 

base-rates (strategies 0, 5 and 6), with almost half of those using a Bayesian strategy (23%). 

Moreover, in study 2, the percentage of participants who used a strategy using base rates 

increased to a full 66% of participants. We are certainly not the first to demonstrate that a 

substantial number of people use base rates. For example, Gigerenzer and Hoffrage (1995) found 

that 36%20 of participants used base-rates, while Stanovich and West (1998) found that 42%21 of 

participants view base rates as necessary for estimating posterior probabilities. Thus, it is clear 

that there is substantial variability between people in the strategies they use in Bayesian 

reasoning tasks. However, as far as we know, we are the first to show that people can generate 

strategy diversity within one mind, and harness that diversity to improve their judgments.  

Spurring and Modeling Strategy Variability 

 Previous research on the inner crowd (Herzog & Hertwig, 2014a) has found that 

interventions such as time delay (Vul & Pashler, 2008) and dialectical instructions (Herzog & 

Hertwig, 2009, 2014b) can decrease error correlations between estimates from the same mind 

and subsequently improve averaging gains. But where do these decreases in error come from and 

########################################################
20 We calculated this percentage from the standard probability format column in their Table 3 on page 695. 
21 Study 1 of Stanovich and West (1998). 
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when can we predict when they are most likely to occur? At a conceptual level, researchers 

predicted a decrease in errors when people generate second estimates “using knowledge that is at 

least partially different from the knowledge they used to generate the second estimate” (Herzog 

& Hertwig, 2009, p. 233). However, the specific estimation process underlying both initial and 

dialectical estimates has largely been undefined. As a result, previous inner-crowd research has 

not addressed how people change their estimation strategies from initial to second estimates, and 

how different methods of strategy change affect averaging gains. 

In this paper, we took an initial step in answering these questions by modeling the 

specific estimation strategies people used in both estimation phases. We found that dialectical 

instructions increase the probability that people adopt new strategies. It would be valuable to use 

a similar modeling procedure to test how people change their strategies in other estimation 

domains, such as general knowledge estimation tasks. In the Bayesian reasoning paradigm, all 

relevant information about the question is presented in the problem (for an alternative view, see 

Birnbaum, 1983; Gigerenzer, 1996) and all participants have access to the same information. 

However, when answering general knowledge questions, such as “How tall is the Eiffel Tower?” 

no statistical information is given and individuals must generate estimates based on their own 

idiosyncratic knowledge and idiosyncratic estimation strategies (Brown, 2002). For example, in 

exemplar-based models of judgment, people answer general knowledge questions by first 

selecting cues relevant to the criterion (e.g., major landmark, building in France) and then 

retrieve exemplars from long-term memory with similar cue values (e.g., one building I know in 

France is 80m tall, and the other is 20m tall) and use that distribution to form an estimate (Juslin 

et al., 2007). How do dialectical instructions affect the process of answering such general 

knowledge questions? Do they cause people to use different cues or use the same cues and use 
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different exemplars? In another paper, we address these questions in the context of a population-

estimation task and model the processes underlying changes in estimates induced by dialectical 

bootstrapping (Phillips et al., 2014). 

Our model-based simulation results (here and in Phillips et al., 2014) allow us to predict 

which combination of strategies would lead to the largest averaging gains in which environment. 

We believe that our method of combining simulation (or analytical) predictions with formal 

strategy classification methods improves our ability to both predict when averaging gains will 

occur and to test the empirical accuracy of those predictions with participants. 

Judging From Experience: The Normative Adequacy of Bayes Theorem When 

Probabilities Need to Be Learned 

 In this paper, we assumed that Bayes theorem is the appropriate normative solution to 

diagnostic reasoning tasks when the relevant probabilities are given (i.e., base rate, hit rate, and 

false-alarm rate). However, in everyday life, people often have to learn relevant probabilities by 

experience because those probabilities are not already conveniently summarized (Hertwig & 

Erev, 2009). When base rates, hit rates, and false-alarm rates have to be learned based on 

relatively small samples of experience, a naïve estimate of the Bayesian posterior probability—

taking the observed rates at face—is no longer the gold standard and simpler, “non-Bayesian” 

strategies can outperform it (Juslin, Nilsson, & Winman, 2009). The basic explanation is that 

multiplication (as used in the Bayes theorem) can exacerbate random error in its noisy inputs, 

while linear weighting (e.g., such as taking a simple average of the base rate (S5) and hit rate 

(S1); likelihood average, S9) benefit from the cancellation of opposing random errors and can 

thus make better out-of-sample predictions than a naïve implementation of Bayes theorem that 

does not account for sampling error. Because averaging can “tame” random error better than 
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multiplication can, the accuracy benefits of averaging intuitive non-Bayesian strategies in the 

inner crowd should be even larger (than we have already observed in our simulations) when base 

rates, hit rates and false-alarm rates have to be learned from experience. People who use the 

same strategy in two separate estimation phases could potentially reap inner-crowd averaging 

gains through the cancelation of random error if their estimates of the relevant probabilities are 

based on different samples from the underlying populations. Furthermore, averaging the same or 

different non-Bayesian strategies could potentially even outperform a naïve Bayesian estimator. 

Dialectical Bootstrapping And Natural Frequencies: Two Different Ways to Boost Bayesian 

inferences? 

The inner-crowd in general, and dialectical bootstrapping in particular, is one of many 

methods of bringing people’s judgments closer to the Bayesian criterion. The purpose of this 

research was not to supplant other methods of improving Bayesian inference with dialectical 

bootstrapping. Indeed, the benefits our participants gained from their inner crowd were relatively 

small and do not surpass the gains from other methods, such as natural frequencies (Gigerenzer 

and Hoffrage, 1995). Information in natural frequency formats is presented as summary 

frequencies of events instead of marginal probabilities. When people are given cue profiles 

transformed into natural frequencies, up to 50% of participants adopt a strategy that makes 

estimates identical to Bayes theorem (Gigerenzer & Hoffrage, 1995). However, we argue that the 

natural frequencies and dialectical bootstrapping represent two separate solutions to the same 

problem. Gigerenzer and Hoffrage argued that probabilities are a relatively recent invention that 

the human brain did not evolve to process them. Thus, using Hogarth’s (2005) terminology, 

environments where information is only conveyed in a probability format could be seen as 
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“wicked,” where the environment does not provide transparent information to decision makers.22 

Gigerenzer and Hoffrage’s solution to the problem was to change the environment by using 

natural frequencies instead of probabilities as the representational format. In doing this, they 

changed a wicked information environment into a “kind” information environment that “invite[s] 

Bayesian algorithms” (Gigerenzer & Hoffrage, 1995, p. 695). In this paper, we asked, given that 

people find themselves in a ‘wicked’ information environment (i.e., probability information), 

what strategies could they use to improve their judgments? We proposed and tested the extent to 

which people could bootstrap themselves out of a wicked probability environment using their 

inner crowd. These two approaches represent two different, but mutually complimentary ways to 

improve human judgment. 

Conclusion 

In the 1960s, Edwards claimed that people are conservative Bayesians who rely too much 

on base-rates. In the 1970s, Kahneman and Tversky (1972) argued that people ignore base rates 

and are thus “not Bayesian at all” (p. 450). We argue that both views are too extreme. People use 

a variety of strategies in Bayesian reasoning tasks. At times they show base-rate neglect while at 

other times they show base-rate sensitivity. People can harness the diversity of their inner crowd 

of non-Bayesian strategies using dialectical bootstrapping to become more Bayesian without any 

explicit knowledge of Bayes theorem. Averaging two wrongs make it (almost) right.  

########################################################
22 Hogarth’s (2005) original definition of “wicked” versus “kind” environments focused on learning tasks, where 
kind environments provide immediate and transparent information to the decision maker and wicked environments 
provide information that is delayed or misleading. While the vignette-based Bayesian reasoning tasks we use are not 
learning tasks, we find the transparency aspect of the wicked-kind distinction to be relevant. 
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Appendix A 

Stimuli Used in Study 1 (from Gigerenzer & Hoffrage, 1995) 

The following stimuli were taken from Gigerenzer and Hoffrage’s (1995) standard 

probability formats. 

 

Question 1: AIDS. A consulting center for AIDS specializes in testing people for the 

AIDS virus. Before an employee of this consulting center informs somebody about a positive 

result, he wants to know how great the risk is that a person who tests positive for AIDS really is 

infected with the AIDS virus. He has the following information to make this judgment. The 

probability is 0.01%, that a man, who is testing for AIDS, is really infected with the AIDS virus. 

If a man, who is testing for AIDS, really IS infected, the probability is 100.00% that he will get a 

positive result. If a man, who is testing for AIDS, really is NOT infected, the probability is 

0.10% that he will get a positive result. If a man, who is testing for AIDS, got a positive result, 

what is the probability that he is really infected? ___% 

Question 2: Heroin. A hospital has the problem that a lot of men between 20 and 30 

years are frequently admitted while unconscious with symptoms of illegal drug use. Doctors 

often find in such cases pinholes in the patient`s elbow. Doctors then want to know whether or 

not such patients are heroin users in order to provide appropriate medication. Consider the 

following statistics relating heroin use and pinholes. The probability is 0.01% that a man 

admitted to the hospital in this age range is a heroin user. If a man this age IS a heroin user, the 

probability is 100.00%, that he will have one or more pinholes in his elbow. If a man this age is 

NOT a heroin user, the probability is 0.19% that he will have one or more pinholes in his elbow. 
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If a man has one or more pinholes in this elbow, what is the probability that he is a heroin user? 

___% 

Question 3: Pregnancy. A lab assistant at a gynecological clinic is interested in how 

accurate pregnancy tests are. She knows the following statistics related to true pregnancies and 

the results of a pregnancy test: The probability that a woman who gets a pregnancy test at the 

clinic is really pregnant is 2.00%. If a woman who takes a pregnancy test IS pregnant, the 

probability is 95.00% that she will get a positive result. If a woman who takes a pregnancy test, 

is NOT pregnant, the probability is 0.51% that she will get a positive result. If a woman at the 

clinic has a positive pregnancy test, what is the probability that she is really pregnant? ___% 

Question 4: Pimp. There are stereotypes in the US regarding pimps and Rolex watches. 

One common belief is that American pimps wear a Rolex watch because if they are on the run, 

they will have still money in the form of an expensive watch. Consider the following statistics 

regarding pimps and Rolex watches: The probability is 0.005% that an American man is a pimp. 

If an American man IS a pimp, the probability is 80% that he is wearing a Rolex. If an American 

man is NOT a pimp, the probability is 0.05% that he is wearing a Rolex. If an American man is 

wearing a Rolex, what is the probability that he is a pimp? ___% 

Question 5: Mammogram. A reporter of a woman's health magazine would like to write 

an article about breast cancer. He is doing some research about a test that is normally used to 

identify breast cancer. Because he knows that the test is not perfect and can make errors, he is 

interested in what it means if a woman has a positive result in a breast cancer test. Consider the 

following statistics regarding breast cancer and mammogram tests: The probability that a woman 

who participants in routine breast cancer screening has breast cancer is 1.00%. If a woman who 

participates in routine screening HAS breast cancer, the probability is 80.00% that she will get a 
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positive result in the test. If a woman who participates in routine screening does NOT have 

breast cancer, the probability is 9.60% that the test will make a mistake and she will get a 

positive result. If a woman, who is going to a routine examination receives a positive test result, 

what is the probability that she really has breast cancer? ___% 

Question 6: Rubella. During a mother's pregnancy, doctor's are concerned about whether 

or not she will have an outbreak of the disease rubella, as a rubella outbreak during pregnancy 

can cause a variety in illnesses for her baby. One doctor wants to what the probability is that a 

baby will have an illness after birth if its mother has an rubella outbreak during pregnancy. 

Consider the following statistics: The probability is 0.21%, that a baby has an illness after it has 

been born. If a baby HAS an illness after it has been born, The probability is 48.00% that its 

mother had a rubella outbreak during pregnancy. If a baby does NOT have an illness after it has 

been born, the probability is 0.50% that its mother had a rubella outbreak during pregnancy. 

What is the probability that the baby has an illness after it has been born if its mother had a 

rubella outbreak during pregnancy? ___% 

Question 7: Drunken. There are many accidents at the intersection of Pine street and 

Oak street. A group of police officers are trying to reduce the number of accidents at this 

intersection. As there were a lot of drunk drivers involving in these accidents, they are thinking 

about introducing a breath test. Before they start using the test, they want to know how important 

it is to know whether or not drivers are drunk. That is, they want to know the relationship 

between being drunk and getting in a car crash. Consider the following statistics related to 

drunkenness and car accidents: The probability is 1.00% that somebody crashes with the car on 

this road at night. If somebody DOES crash his car on this road at night, the probability is 

55.00% that he is drunk. If somebody does NOT crash his car on this road at night, the 
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probability is 5.00% that he is drunk. If somebody drives drunk on this road at night, what is the 

probability that he crashes the car? ___% 

Question 8: Accident. The department of education receives statistics that give 

information about the causes of accidents during childrens' trips from home to school. There is 

evidence that children's neighborhood type (urban or rural) is an important risk factor. The 

department wants to know what the relationship between neighborhood type and the likelihood 

of an accident is. Consider the following statistics relating neighborhood type and the rate of 

accidents: The probability is 3.00%, that a child has an accident on the way to school within one 

year. If a child HAS an accident on his way to school, the probability is 90.00% that he is living 

in a city. If a child does NOT have an accident on his way to school, the probability is 40.00% 

that he is living in a city. If a child lives in a city, what is the probability that he has an accident 

on his way to school within one year? ___% 

Question 9: Cab. In an American city there are two taxi companies. One of them has 

only green taxis, the other one has only blue taxis. One day a taxi caused an accident and the 

driver took off. The case eventually comes to a trial. One witness identified the taxi as a blue 

one. The court is now investigating the witness`s ability to correctly identify a blue taxi by night. 

To help understand how accurate the witness is at distinguishing blue and green taxis, a court 

usher and the witness went to the location of the accident. The witness then proceeded to identify 

the color of random cars that were driving by. Consider the following statistics that the court 

usher gathered relating witness identification and taxi color: The probability that a blue taxi 

passes by is 15.00%. If a passing taxi really IS blue, the probability is 80.00% that the witness 

identifies it as blue. If a passing taxi is green and thus is NOT blue, the probability is 20.00% that 
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the witness identifies it as blue. If the witness identifies this taxi as blue, what is the probability 

that the taxi really is blue? ___% 

Question 10: Feminist. The editors of an Austrian Radio station are planning a broadcast 

regarding "Feminism and Profession". Participants of this broadcast are asked to guess the 

representation of feminists (between 20 and 30 years old) in several professions. To evaluate the 

answers of the participants, the editors obtain the following data: The probability is 5.00%, that a 

woman this age is an active feminist. If a woman this age IS an active feminist, the probability is 

0.40% that she is a bank employee. If a woman this age is NOT an active feminist, the 

probability is 2.00% that she is a bank employee. If a woman in this age range is bank employee, 

what is the probability that she is an active feminist? ___% 

 

 Base Rate Hit Rate False Alarm 

Rate 

Rare Event + 

Valid Cue 

Stimuli 

1 0.01% 100% 0.10% Y 

2 0.01% 100% 0.19% Y 

3 2.0% 95.00% 0.51% Y 

4 0.005% 80.00% 0.05% Y 

5 1.00% 80.00% 9.60% Y 

6 0.21% 48.00% 0.50% N 

7 1.00% 55.00% 5.00% N 

8 3.00% 90.00% 40.00% N 

9 15.00% 80.00% 20.00% Y 
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10 5.00% 0.40% 2.00% N 

 

Table A1: Cue patterns contained in the ten vignettes used in study 1. The last column 

states whether or not the question satisfies the criteria for being in the Rare Event + 

Diagnostic Cue environment (BR <= .2, HR >= .8, FAR <= .2) 

Study 2 Instructions 
 

In this HIT, you will be playing several games that have the same structure. I will tell you 

about 2 boxes: Box A and Box B. These boxes are filled with balls. In each game, I will choose a 

box, show you a ball from that box, then ask you to tell me how likely it is that I chose each box. 

Here is how the games will look: 

I will begin each game by filling each box with 100 balls, some of which are White and some of 

which are Black. The two boxes will have different mixtures of Black and White balls. I will tell 

you the mixtures in both boxes A and B. For example, I might tell you that Box A has 80 Black 

balls and 20 White balls, and Box B has 10 Black balls and 90 White Balls. 

After I fill the two boxes with 100 balls, I will choose one of the boxes (without telling 

you which one I chose!) and take a random ball out of that box. 

Here is how I will choose a box. I have a hat with 100 tickets. Some of these tickets in the 

hat say “Choose Box A” and some say “Choose Box B”. I will draw a random ticket out of the 

hat. I will read the ticket, then choose the box that the ticket tells me. Then I will take a random 

ball out of that box and tell you what color the ball was. 

The number of tickets that say “Choose Box A” and “Choose Box B” will be different in 

different games. For example, in one game the hat might have 30 tickets that say “Choose Box 
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A” and 70 that say “Choose Box B.” In this game, there would be a 30% chance that I would 

choose a ticket that says “Choose Box A” and subsequently show you a ball from box A. 

Again, after I tell you the color of the ball, your job is to estimate the probability that the 

ball came from box A 

 

 Figure A1: Screen shot of an example stimuli in study 2. 

 

 

 Valid Cue Rare Event + Valid Cue 

 BR HR FAR BR HR FAR 

1 0.87 0.71 0.24 0.05 0.87 0.03 

2 0.44 0.72 0.17 0.2 0.89 0.03 

3 0.02 0.74 0.23 0.17 0.99 0.07 
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4 0.19 0.79 0.14 0.2 0.83 0.05 

5 0.12 0.88 0.18 0.19 0.97 0.09 

6 0.7 0.62 0.14 0.01 0.95 0.1 

7 0.33 0.82 0.47 0.16 0.92 0.02 

8 1 0.57 0.19 0.15 0.87 0.16 

9 0.99 0.54 0.24 0.05 0.8 0.18 

10 0.03 0.93 0.18 0.18 0.86 0.15 

11 0.94 0.88 0.03 0.04 0.89 0.06 

12 0.06 0.85 0.29 0.07 0.97 0.08 

13 0.96 0.97 0.14 0.13 0.86 0.18 

14 0.95 0.72 0.15 0.15 0.84 0.17 

15 0.32 0.51 0.39 0.02 0.98 0.17 

 

 Table A2. Cue profiles used in study 2.  
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Appendix B 

 Control Anagram Dialectical 
 VC RE+ VC RE+ VC RE+ 
Mean Estimate 
Change 9.55 [0, 29.19] 19.65 [1.74, 48.14] 8.78 [0, 26.71] 18.93 [1.66, 46.16] 16.6 [0, 47.75] 26.4 [3.32, 74.33] 
MAD1 22.6 [0.11, 49.71] 59.28 [17.97, 89.23] 20.47 [0.08, 50.26] 61.91 [15.3, 94.68] 20.63 [0.05, 49.91] 58.99 [11.72, 93.93] 
MAD2 21.65 [0.14, 52.32] 54.58 [9.73, 87.4] 20.45 [0.79, 58.16] 60.34 [19.93, 90.54] 22.04 [0.09, 51.91] 51.17 [5.87, 84.49] 
MADavg12 22.12 [0.21, 49.88] 56.92 [19.03, 84.87] 20.46 [0.63, 52.78] 61.12 [19.56, 92.92] 21.33 [0.67, 48.1] 55.07 [17.35, 90.57] 
MAD1 – 
MADavg12 0.48 [-9.17, 13.2] 2.36 [-11.11, 19.28] 0.02 [-12.01, 12.4] 0.8 [-14.86, 15.98] -0.7 [-15.56, 15.56] 3.92 [-18.49, 32.31] 
Bracketing 0.05 [0, 0.25] 0.08 [0, 0.33] 0.07 [0, 0.25] 0.07 [0, 0.33] 0.1 [0, 0.5] 0.11 [0, 0.33] 
Accuracy Ratio 2.78 [1, 11.11] 1.48 [1, 2.36] 3904.17 [1, 20.27] 1.72 [1.01, 3.04] 8.25 [1, 22.9] 6.73 [1, 8.42] 
 
 Table B1a: Study 1 summary statistics (with Bayesians) 
 

 Control Dialectical 
 VC RE+ VC RE+ 
Mean Estimate Change 7.93 [0, 24.8] 8.63 [0, 31.2] 12.9 [0.19, 38.87] 16.6 [0.93, 67.67] 
MAD1 23.44 [7.04, 36.8] 32.77 [1.61, 43.66] 21.7 [0.83, 38.87] 35.53 [18.19, 43.74] 
MAD2 22.14 [8.56, 36.3] 32.76 [1.35, 45.2] 23.94 [4.67, 48.59] 34.11 [16.96, 53.62] 
MADavg12 22.18 [7.46, 36.17] 31.63 [1.77, 43.92] 21.69 [1.08, 40.99] 32.46 [18.15, 44.03] 
MAD1 – MADavg12 1.26 [-3.44, 8.16] 1.14 [-4.78, 7.92] 0.01 [-13.39, 4.87] 3.07 [-2.27, 19.87] 
Bracketing 0.08 [0, 0.4] 0.1 [0, 0.33] 0.14 [0, 0.4] 0.21 [0, 0.8] 
Accuracy Ratio 1.22 [1, 2.17] 1.24 [1, 1.86] 2.17 [1, 3.25] 1.47 [1, 2.13] 

 
 Table B1b: Study 2 summary statistics (with Bayesians) 
  



DIALECTICAL BOOTSTRAPPING 75#

Appendix C 

Formal Strategy Classification Method: Model Recovery Analysis 

We conducted a model recovery analysis in order to test the efficacy of our model 

classification procedure. In the analysis, we simulated the estimates of agents who used the 

twelve estimation strategies in Table 8 across 10 randomly generated cue profiles in the VC 

stimuli environment. 

For the ten cue-based strategies (including both averaging strategies), we added two 

sources of error to each agent’s estimates: random noise added to each estimate, and a number of 

contamination responses (i.e., where the estimates are not based on the strategy proper, but 

represent an “erratic” random response). To model random noise, we added normally distributed 

error to each agent’s estimate with mean of 0 and a standard deviation σi (where σi represents the 

agent’s level of noise; randomly drawn from the set of values {0, 0.05, 0.10, 0.15, 0.20}). To 

simulate contamination responses, we replaced ci of the agent’s 10 responses (where ci is drawn 

randomly from the set {0, 1, 2, 3, 4}) with a random draw from a uniform distribution ranging 

from 0 to 1. 

 For agents using strategy 10 (Mean) we generated t-distributed responses with mean µi 

(where µi was drawn from a uniform distribution with bounds at 0 and 1), df = 1, and standard 

deviation equal to σi (randomly drawn from the same set as depicted above). For agents using 

strategy 11 (Random) we generated responses from a uniform distribution with bounds at 0 and 

1. 

 After generating phase 1 and phase 2 responses from all 5,000 agents, we classified their 

estimation strategy using the classification procedure outlined in the Results section.  
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Results. To see how well we were able to recover each agent’s true generating strategy, 

we looked at how often the classified strategy was the same as the generating strategy. Across all 

agents, the mean recovery rate was fairly high at 86%. As expected, we also found that the 

recovery rate decreased as the level of error increased (for both random error and contamination 

responses). Mean model recovery rates by error levels are presented in Table C1:  

 Contamination Responses 

0 1 2 3 4 

Noise 

standard 

deviation 

0 99% 97% 98% 98% 97% 

.05 95% 94% 93% 96% 97% 

.1 91% 87% 89% 87% 82% 

.15 81% 83% 76% 78% 74% 

.20 77% 80% 71% 74% 62% 

 

Table C1. Rates of correct recovering the true underlying model as a function of 

contamination responses and the standard deviation of random noise. Chance level is 9% 

(1 : 11 strategies). 

 

Table C2 shows that our classification procedure was able to produce high model recovery rates 

across a wide range of error values. The procedure seemed particularly robust against 

contamination responses. 

Next, we looked at how often we were able to recover strategy-switching behavior. For 

each agent, we classified whether it truly used two different strategies in phases 1 and 2, and 

whether it was classified as using two different strategies. We call this variable “strategy switch 
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recovery.” Across agents, the strategy switch recovery rate was very high at 96%. As before, we 

also found that this measure varied as a function of error rates. In Table C2, we present mean 

strategy switch recovery percentages as a function of error levels. 

 

 Contamination Responses 

0 1 2 3 4 

Noise 

standard 

deviation 

0 99% 98% 98% 100% 98% 

.05 98% 100% 98% 98% 99% 

.1 97% 97% 96% 97% 95% 

.15 97% 95% 93% 92% 94% 

.20 95% 94% 96% 95% 90% 

 

Table C2. Rates of correctly recovering strategy switching as a function of contamination 

responses and the standard deviation of random noise. Chance level is 9% (1 : 11 

strategies). 

 

The results in table C2 show that strategy switch recovery rates were quite high and robust to a 

wide range of error values. Thus, this provides evidence that our modeling procedure is useful in 

detecting qualitative strategy change in noisy data. 
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Appendix D 

Statistic distribution of McKenzie’s (1994) stimuli 

McKenzie’s (1994) created cue profiles by generating 6.24 million combinations of 2x2-

contingency frequency tables where each cell, labeled A through D, contained a frequency from 

1 to 50. He defined statistics for each contingency table as follows: base-rate = (A + B) / (A + B 

+ C + D), hit-rate = A / (A + B), false-alarm rate = C / (C + D). We replicated his calculations 

and obtained the following (non-uniform) marginal distributions of base-rates, hit-rates, and 

false-alarm rates (Figure D1) 

 

Figure D1. Marginal and joint distributions of base rates and hit rates / false alarm rates 

that result from McKenzie’s (1994) contingency table method. Hit rate and false alarm 
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rate distributions are identical and are represented here in one plot. Red values indicate 

higher density. 
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Abstract 

Individuals can improve their judgments by invoking an “inner crowd”, that is, by 

generating multiple, non-redundant estimates and then combining them into a single one. 

People are often unable to outperform their own inner-crowd when they deviate from averaging 

their estimates—in part because they cannot reliably identify their more accurate estimates and 

the statistical structure of estimation environments often favors averaging. In this paper, we 

explore if people can use their own confidence judgments to identify their more accurate 

judgments and outperform their average by choosing. We derive predictions for how 

confidence and accuracy are related in a cue-based estimation task using the Naïve Sampling 

Model (Juslin et al., 2007). In an empirical study, we confirm key simulation predictions: 

confidence predicts accuracy in the inner crowd and “high-confidence choosing” outperforms a 

simple averaging strategy. Furthermore, “dialectical bootstrapping” (i.e., boosting the inner 

crowd by actively increasing the diversity of estimates) increases the gains reaped by 

confidence-based estimation. 

 Keywords: inner crowd, dialectical bootstrapping, wisdom of crowds, judgment 

aggregation, multiple-cue judgments, confidence,  
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Confidence and Dialectical Bootstrapping Facilitates Choosing in The Inner-Crowd 

Individuals can improve their judgments by invoking an “inner crowd”, that is, by 

generating multiple, non-redundant estimates and then combining them into a single one 

(Herzog & Herzog, 2014a). For example, given the question “What is the height of the Eifel 

tower?” a judge can improve the accuracy of a single estimate by generating multiple estimates 

and averaging them. The driving force underlying inner-crowd benefits is the same underlying 

the “wisdom of the crowds” phenomena (Davis-Stober, Budescu, Dana, & Broomell, 2014; 

Larrick, Mannes & Soll 2012; Surowiecki, 2004), where the average of estimates from different 

people can outperform most, if not all, of its members because non-redundant errors cancel 

each other out (Larrick & Soll, 2006). 

People are, however, reluctant to trust the crowd average and often rather try to “chase 

the expert” (Soll & Larrick, 2009). Although not using the whole crowd can be a profitable 

strategy if done wisely (Mannes, Soll & Larrick, in press), chasing a single expert can a risky 

and often inferior strategy (Davis-Stober et al., 2014; Mannes et al., in press). Similarly, people 

are often unable to outperform their own inner crowd when they deviate from a simple equal-

weight-averaging strategy (Fraundorf & Benjamin, 2014; Herzog & Hertwig, 2014b; Müller-

Trede, 2011) because their low skill in identifying their more accurate estimates and the 

statistical structure of the environment (i.e., somewhat non-redundant errors and not much 

differences in accuracy to be exploited) favors averaging (Fraundorf & Benjamin, 2014; 

Herzog & Hertwig, 2014b; Soll & Larrick, 2009). 

However, averaging is not always the best aggregation strategy. Many optimal 

aggregation strategies depart from simple averaging by weighting estimates as a function of 

confidence. When confidence is positively correlated with accuracy, giving more weight to 
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high-confidence estimates (Yaniv, 2004a) or even choosing high-confidence estimates and 

ignoring low-confidence estimates (Koriat, 2012b) can outperform averaging. Does this benefit 

of confidence-based aggregation apply to the inner-crowd? 

 In this paper we test the benefits of confidence-based aggregation in the inner-crowd by 

simultaneously modeling the cognitive processes underlying estimate and confidence 

generation. We use both simulation and experimental data to investigate how confidence is 

related to accuracy in the inner-crowd and test how people can outperform the simple average 

of their inner crowd by choosing their more confident estimate (cf. Koriat, 2012b). 

Additionally, we explore whether “dialectical bootstrapping,” a method of boosting the 

averaging gains of the inner crowd by actively increasing the diversity of estimates (Herzog & 

Hertwig, 2009) can increase the gains reaped by confidence-based estimation.   

Aggregating Different Opinions of the Inner Crowd: 

Combining, Choosing and Confidence 

 Just as a group can improve its accuracy by combining multiple estimates (Davis-

Stober et al., 2014; Larrick, Mannes & Soll, 2012; Surowiecki, 2004; Yaniv, 2004b; Ariely et 

al., 2000), an individual can improve her accuracy by generating multiple estimates and 

combining them into a single, average “inner-crowd” estimate. A typical inner-crowd research 

task follows three separate phases. In phase 1, participants give initial quantitative estimate to 

estimation questions, such as “What percent of the Earth’s surface is covered by water?1” In 

phase 2, participants give second estimates to the same set of problems, possibly after a time-

delay (Vul & Pashler, 2008), or dialectical processing instructions that encourage judges to use 

a different estimation strategy (e.g., Herzog & Hertwig, 2009, 2014b). Finally, in phase 3, a 

                                                

1 Try thinking of a few different estimates before reading the answer (it’s 71%). 
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participant’s average estimate across phases 1 and 2 for each question is computed and its 

subsequent accuracy (e.g., in terms of mean absolute deviation from the true values across 

questions) is compared to a reference such as the average accuracy of phase 1 and phase 2 

estimates, or the accuracy of phase 1 estimates. If the inner-crowd works, then the participant’s 

average estimate will be, on average, more accurate than these references. 

The reason why the average estimate from an inner-crowd (or any crowd) leads to 

accuracy improvements is error cancellation: when two estimates have opposing errors, their 

average will have a smaller absolute error than the average error of the original two estimates. 

For example, consider a problem with a true answer of 100, and two estimates in a crowd (of 

different people or within one mind) of 50 and 150. These two estimates have signed errors of -

50 and +50 respectively. On average their absolute deviation from the true answer is 50. 

However, the average estimate of the inner-crowd of 100 (50 + 150 / 2) is identical to the true 

answer and has no error. Thus, to the extent that the estimates from a crowd have opposing 

errors, whether the crowd is derived from multiple individuals or one mind, the average 

estimate from the crowd will likely outperform most if not all of its individual members. 

Because error cancelation drives averaging benefits, individuals reap maximum crowd benefits 

when the correlation of signed estimate errors is low. This can be achieved by interventions 

such as a time-delay (Vul & Pashler, 2008) or dialectical instructions in the context of 

dialectical-bootstrapping (Herzog & Hertwig, 2009); a method of increasing inner-crowd 

benefits by having judges generate dialectical estimates that derive from different knowledge or 

estimate strategies (Herzog & Hertwig, 2009; 2014a; 2014b). 
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How Do and Should People Aggregate Multiple Estimates Themselves? 

Averaging is a robust strategy in a wide variety of contexts (Soll and Larrick, 2009). 

However, in advice-taking tasks, people often fallaciously believe that the average judgment is 

no better than the average judge and try to find the best estimate (aka, “chase-the-expert) in a 

group (Soll & Larrick, 2009). As a result, people rarely outperform the group average. 

However, there are specific estimation environments where averaging leads to less accuracy 

than other aggregation strategies such as weighted-averaging or choosing. Normatively, the 

probability, accuracy, redundancy (PAR) model (Soll and Larrick, 2009) establishes the 

environments where averaging outperforms choosing. Generally, the model states that 

averaging is better when two estimate sources (either two separate judges or two separate 

estimates from the same mind) have similar overall levels of accuracy, have relatively 

uncorrelated estimate errors, and when it is difficult to know a priori which judge is more 

accurate (Soll and Larrick, 2009).  

While it is clear that people could potentially benefit from averaging their inner-crowd, 

it is less clear when people decide to use their average instead of, for example, choosing one of 

their individual estimates. Papers that have explored this question showed mixed results, with 

some studies showing that people do not consistently average their inner-crowd (Müller-Trede, 

2011) and others finding that averaging is indeed a common strategy (Fraundorf & Benjamin, 

2014; Herzog & Hertwig, 2014a). However, all studies found that people can only rarely 

outperform the average of their inner-crowd when they decide not to average their estimates 

(Müller-Trede, 2011; Fraundorf & Benjamin, 2014; Herzog & Hertwig, 2014a). 
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Can The Meta-Cognitive Cue of Confidence Identify The “Expert in Your Head”? 

Previous inner-crowd research has ignored a key variable that could improve people’s 

ability to outperform averaging: confidence. On the one hand, if high-confidence estimates in 

the inner-crowd are substantially more accurate than low-confidence estimates, then choosing 

high confidence estimates could outperform averaging. On the other hand, if confidence is 

unrelated to accuracy, then confidence-based choice could be another form of ‘chasing the 

expert’ that fools people into thinking they can outperform the average. How do, and should, 

people use confidence in managing their inner-crowd? 

In advice-taking tasks, people weigh advice as a function of the confidence with which 

it is given. When receiving advice from two advisers, people trust high confidence advisers 

more (Sniezek & Van Swol, 2001; Bonaccio & Dalal, 2006; Price & Stone, 2004) and weight 

advice from more confident advisers more than less confident advisers (Yaniv, 1997). When 

combining their own estimates with the advice of others, people weight their own estimates 

more as their own confidence increases, and less as their adviser’s confidence increases (e.g., 

Moussaïd, Kämmer, Analytis & Neth, 2013; Soll & Larrick, 2009). Thus, people act as if they 

believe that estimates given with high confidence are more accurate than those given with low 

confidence.  

While people use confidence as a cue for accuracy, the actual statistical relationship 

between confidence and accuracy is less clear. Researchers typically use two criteria to 

evaluate confidence: calibration, and resolution (or discriminability; Yates, 1990; Liberman & 

Tversky, 1993). Calibration measures the difference between a judge’s predicted probability of 

an event’s occurrence, and the empirical (or true) probability. The smaller the difference 

between predicted and true probabilities, the higher the calibration. Many studies show that 
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people exhibit over-confidence and thus poor calibration (e.g.; Lichtenstein & Fischoff, 1977; 

Hall, Ariss & Todorov, 2007; Soll & Klayman, 2004; Klayman et al., 1999; Block & Harper, 

1991; Christensen-Szlanski & Bushyhead, 1981; Glaser, Langer, & Weber, 2013; Juslin et al., 

2007; Moore, Tenney, & Haran, in press; Soll & Klayman, 2004). However, there is substantial 

controversy regarding whether or not measured overconfidence truly reflects a persistent 

cognitive bias or is due to, for example, random error in the estimation process (Erev, Wallsten 

& Budescu, 1994; Winman, Hansson & Juslin, 2004), or measurement biases (Gigerenzer, 

Hoffrage & Kleinbölting, 1991; for the discussion, see Griffin & Brenner, 2004; Keren, 1997; 

Merkle, Van Zandt, 2008a, 2008b; Olsson, Juslin, & Winman, 2008; Moore & Healy, 2008).  

Confidence resolution refers to the ability to discriminate between high and low 

probability events. The better one’s confidence judgments can distinguish between high and 

low probability events, the higher the judge’s resolution. Despite the ongoing controversy about 

the nature, reality and implications of people’s overconfidence in their choices, it is clear that 

people’s confidence intervals show above-chance-level resolution. Many studies have found 

that accuracy is a monotonically increasing function of confidence (e.g., Yates, 1990; Winkler, 

1971; Christensen-Szalanski & Bushyhead, 1981; Koriat, 1980). For example while people’s 

confidence intervals are generally too narrow (43% hit rate vs. 90% confidence intervals), the 

width of a confidence interval reliably predicts the accuracy of the point estimate it contains 

(Yaniv & Foster, 1997). Psychologically, this suggests that people have some ability to monitor 

the accuracy of their decisions and convey that monitoring process through a confidence rating. 

Practically, this means that confidence can be a valid cue to accuracy, which in turns means 

that it can benefit judges to weight advice as a function of the their associated level of 

confidence. Indeed, many studies have found that weighting and adding estimates a function of 
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each judge’s confidence improve accuracy (Bang et al., 2014; Bahrami, Olsen, Latham, 

Roepstorff, Rees & Frith, 2010; Koriat, 2012b; Yaniv, 1997).  

One method to use confidence is to weight high confidence estimates more than low 

confidence estimates, another is to completely ignore low confidence estimates and choose 

high-confidence estimates. Koriat (2012b) found normative support for high-confidence 

choosing by showing that a dyad of judges can benefit by using a maximum confidence slating 

(MCS) heuristic, which states that a judge should choose the estimate from the high-confidence 

adviser and completely ignore the estimates from the low-confidence adviser (but see Bang et 

al, 2014). Thus, choosing can outperform averaging in a crowd if confidence is sufficiently and 

positively related to accuracy. 

This leads us to our critical question: can the inner-crowd parallel to Koriat’s (2012b) 

MCS heuristic, which we call inner-MCS, also outperform an averaging strategy2? Or is high-

confidence choosing within one mind another method of ‘chasing-the-expert” that leads to 

poorer estimation than simple averaging? Additionally, we test the extent to which dialectical 

bootstrapping, a method of increasing estimate diversity in the inner-crowd (Herzog & 

Hertwig, 2009; 2014a; 2014b) can increase the benefits or the inner-MCS heuristic. We will 

answer these questions using a cue-based estimation task. In the task, judges are asked to 

estimate the population of several US counties on the basis of four binary statistics from that 

county. In addition to providing best estimates, judges provide 90% confidence intervals. 

Judges provide their estimates to each county twice (in phases 1 and 2). In a third phase, we 

present judges with their estimates and, in absence of cue values, ask them to provide their best 

                                                

2 Koriat (2012b) did test the effectiveness if an inner-MCS heuristic on perceptual decisions but did not find 
substantial differences between averaging. However, is unclear if Koriat’s (2012b) results will replicate in 
estimation tasks and whether people actually use confidence in harnessing their inner-crowd.  
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possible estimate of the county population. To make predictions for behavior in the task, we 

take a cognitive modeling approach to both estimation and accuracy.  

A Cognitive Perspective On the Inner Crowd: Modeling the Estimation Process 

With one notable exception (Hourihan & Benjamin, 2010), previous research on the 

inner-crowd has focused on how people should aggregate their estimates and has largely 

ignored how estimates are generated in the first place. This is both a major practical and 

theoretical research gap: without knowing the processes underlying estimates, one cannot make 

more precise predictions for when one should average their inner-crowd or use an alternative 

strategy. In this paper, we focus on sampling models of estimation which assume that people 

form estimates based on a small sample of problem-relevant information drawn from long-term 

memory (e.g., Wallsten & Gonzalez-Vallejo, 1994; Juslin, Olsson & Olsson, 2003; Koriat, 

2012a). Specifically, we rely on predictions from the Naïve Sampling Model (NSM, Juslin, 

Winman & Hansson, 2007). The MNSM simultaneously describes how estimates and 

confidence judgments are generated. The model assumes that people estimate unknown 

criterion values by sampling a small number of examples similar to a target from long-term 

memory, and use the distribution of criterion values tied to those observations to derive both 

best estimates and confidence intervals for the criterion. Importantly, the judge’s working 

memory capacity constrains the number of observations that can be used at the time of 

judgment. Thus, only a finite number of examples from long-term memory will be used (e.g., 

Miller, 1956; Cowan, 2001). This class of models has recently been used to correctly predict 

that people with smaller working memory spans will experience larger inner-crowd benefits 

than those with larger working memory spans (Hourihan & Benjamin, 2010). More generally, 

their results provide support for models that assume estimates and confidence judgments are 
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based on noisy information sampled from long-term memory (Hansson, Juslin, & Winman, 

2008; Lindskog & Winman, 2014; Lindskog, Winman, & Juslin, 2013a, 2013b; Vul & Pashler, 

2008; but see Rauhut & Lorenz, 2011). 

Simulation Study: Extending The Naïve Sampling Model to Model The Inner Crowd, 

Confidence and Dialectical Bootstrapping 

 The simulation study served two purposes: First, by simultaneously modeling 

estimation and confidence using the Naïve Sampling Model (Juslin et al., 2007), we can predict 

how confidence should be related to accuracy in the inner-crowd for the US county stimuli we 

use in a subsequent behavioral study. Second, the simulation allowed us to predict the potential 

effects of dialectical instructions, those that encourage judges to generate a diverse inner-

crowd, on estimate accuracy and confidence (Herzog & Hertwig, 2009). Before we describe the 

NSM in more detail, we first introduce the task environment used in the simulations and in the 

empirical study. 

The Task Environment: Estimating US County Populations Based On Binary Cues 

Participants (called “agents” in the simulation) estimated the populations of 16 US 

counties, based on four statistical cues taken from the 2010 US census database3 (see Juslin, et 

al., 2007, for a similar simulation based on one single cue). Importantly, participants did not 

know the names of the counties and instead were forced to make estimates based on cue values 

alone4 (cf. Peterson & Pitz, 1986). We calculated cue values and populations from the complete 

database of all 3,007 US counties as of 2010. We chose four statistics to use as population cues: 
                                                

3 Retrieved from 
http://web.archive.org/web/20130921075947/http://quickfacts.census.gov/qfd/download_data.html). 
4 We chose to hide the county names for two reasons. First, we wanted to prevent participants from directly 
retrieving the true population from memory in order to force them to make estimates under uncertainty. Second, 
because we collected experimental data online and rewarded participants for their accuracy, we wanted to prevent 
them from doing an online search for the true population of each county.  
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poverty % (i.e., the percentage of the county population living at or below the poverty level), # 

housing units (i.e., the number of housing units in the county), bachelor’s % (i.e., percent of 

residents with Bachelor’s degrees), and population density (i.e., the number of inhabitant’s per 

square mile). We conducted a median split on each cue, with values below the median set to 0 

and values above the median set to 1, to create binary value across all counties5. We define an 

individual county’s cue profile as its combination of all four binarized cues. For example, a cue 

profile of [0, 0, 0, 0] represents a value in the bottom 50% on all four cues. There were 16 

unique cue profiles corresponding to all 24 = 16 possible combinations of the four binarized 

cues. Next, we grouped counties with the same cue profile and calculated the median county 

population in each of the 16 groups. This median population value for a given cue-profile 

represented the criterion value for that profile. Table 1 shows all cue profiles including the 

number of counties that satisfied each cue profile, and the median county population (criterion): 

Stimulus Bachelor's 

% 

Poverty % Population 

Density 

Housing 

Units 

N Median 

(population

) 

1 Low Low Low Low 275  8,804  

2 Low Low Low High 31  33,052  

3 Low Low High Low 47  20,624  

4 Low Low High High 120  46,904  

5 Low High Low Low 539  11,961  

6 Low High Low High 72  36,982  

7 Low High High Low 131  20,210  

                                                

5 Cue values at the median were independently and randomly assigned to 0 or 1. 
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8 Low High High High 285  45,573  

9 High Low Low Low 331  7,187  

10 High Low Low High 78  36,492  

11 High Low High Low 42  20,211  

12 High Low High High 571  130,016  

13 High High Low Low 124  7,765  

14 High High Low High 51  39,321  

15 High High High Low 14  22,460  

16 High High High High 296  113,917  

 

Table 1: 16 stimuli used in the study. Low values indicate being in the bottom 50% of 

the statistic, while High values indicate being in the top 50% of the statistic. N shows 

the number of counties in the dataset that satisfy each cue profile. Median (population) 

shows the median population of all counties matching a cue profile. 

 

The Naïve Sampling Model (Juslin et al., 2007) 

The Naïve Sampling Model (Juslin et al., 2007) assumes three sequential phases in the 

estimation and confidence interval process. We depict both the general process and a specific 

example for the county estimation task in Figure 1.  
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Figure 1: General steps in the NSM and an example estimation procedure for the county 

population estimation task. For the example, we assumed that the “Poverty Rate” cue 

was randomly selected in step 1 of the example procedure. 

 

In Step 1 (after being presented with the stimulus) judges select a cue and observe its 

value. For example, a judge could select the cue “poverty rate” and observe the value “LOW”. 

This cue-value combination becomes the memory probe. Next, judges search their long-term 

memory for exemplars that with cue-value combinations that match the memory. This 

distribution of exemplars in long-term memory defines a subjective environmental distribution 

(SED). For example, this distribution could represent all counties that a judge knows with a low 

poverty rate. In Step 2, the judge selects a small sample of observations from the subjective 
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environmental distribution and brings those samples into working memory. This sample 

comprises the judge’s subjective sampling distribution (SSD) for that question. In Step 3, the 

judge uses the sample distribution of criterion values in their SSD to generate both best 

estimates and confidence intervals for the criterion. Judges are assumed to use a measure of 

central tendency such as the sample median to calculate best estimates (Lindskog, Winman & 

Juslin, 2013), and a measure of variability such as the sample range to calculate a confidence 

interval (cf. Juslin et al., 2007). For example, a person with an SSD corresponding to the four 

counties Orange (NY), Middlesex (VA), Cautauqua (KS) and Mackinac (MI), could use the 

median and range6 of those four counties as a best estimate and confidence interval for the 

criterion (see the example procedure in Figure 1 for details). 

Modeling dialectical instructions in the NSM. In previous dialectical bootstrapping 

research, dialectical instructions, usually those inspired the consider-the-opposite technique 

(Lord, Ross & Lepper, 1984), were designed to spur judges to produce phase 2 estimates using 

different knowledge from what produced their phase 1 estimates (Herzog & Hertwig, 2009). 

While previous studies have found that dialectical instructions lead to increased estimate 

change and decreased signed error correlations between phases 1 and 2 (Herzog & Hertwig, 

2009; Herzog & Hertwig, 2014b), no studies have modeled the exact process by which 

dialectical instructions influence estimate change (but see Phillips, Herzog & Hertwig, in prep). 

In our simulation, we implemented one potential process of dialectical strategy change relating 

to cue use in Step 1 of phase 2. When control participants (agents) start Step 1 in phase 2, we 

                                                

6 The original formulation NSM (Juslin et al., 2007) proposed that people generate X% confidence intervals with a 
width equal to w = 2 * sd * zp , where sd is the sample standard deviation of the SSD and zp is the z score 
delimiting the central proportion p of the normal distributions. In our simulations, we assume, for psychological 
simplicity, that people do not have access to a standard normal table and simply use the range of their SSD as their 
confidence interval. 
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assume that they use the same probe cue from phase 1. The control procedure was designed to 

capture random variability in the estimation process. When those in the dialectical condition 

start Step 1 of phase 2, they select a new probe cue different from the one they (randomly) 

selected in phase 17. This dialectical method was designed to capture how agents, and people, 

could increase the diversity of their estimates. We expect the increased diversity of cue use in 

the dialectical condition to lead to larger estimate changes and lower signed error correlations 

between phases 1 and 2.  

Simulation Procedure 

We present a general description of the simulation process in this section. Full details 

are presented in Appendix A. We generated 5,000 agents that produced both best estimates and 

confidence intervals to the 16 stimuli in Table 1 across two separate phases. Agents differed in 

several parameters relevant to long-term memory knowledge and working memory capacity8. 

Each agent began by generating phase 1 best estimates and confidence intervals for each of the 

16 stimuli in Table 1 by following the NSM procedure outlined in Figure 2. Each agent was 

then randomly assigned to one of two phase 2 conditions. In the control condition, agents 

skipped Step 1 of phase 2 and used the same memory probe they used in Step 1 of phase 2. 

They then drew a new random set of exemplars matching the memory probe (with 

replacement). In the dialectical condition, agents selected a new random cue in Step 1 of phase 

2 that differed from the cue they selected in Step 1 of phase 1. They then used this new cue to 

generate a new probe cue for Step 2 of phase 2.  
                                                

7 There are certainly alternative valid methods of simulating the effects of dialectical instructions on the estimation 
procedure and we do not mean to suggest that our method is the only one. Rather, we use it as a starting point to 
model dialectical estimates. 
8 Each agent was assigned a long-term memory storage consisting of a subset of exemplars from the total county 
database. In order to capture errors in memory, we assigned each agent a bias and random error term that was 
added to their memory of county populations. Each agent also had a set working memory capacity that constrained 
the number of exemplars it could process in step 2 of the NSM procedure. See Appendix A for full details. 
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Simulation Analyses: Defining Measures of Interest 

Each agent provided three values for each question in each phase, totaling six values 

across both phases: two best estimates (b1 and b2), a lower and upper bound for phase 1 (l1, and 

u1) and a lower and upper bound for phase 2 (l2, u2). We label the criterion (“Truth”) value for a 

question k as Tk. We use the index j for estimate phase (j in {1, 2}) and k for questions (k in {1, 

2, …. 16}). 

Estimation error: Absolute deviation (AD), and Mean Absolute Deviation (MAD). 

We define the absolute deviation of an estimate for a question as the log10-transformed absolute 

difference between the best estimate in a phase and the criterion value (i.e.; the median county 

population) corresponding to the question. 

!"!" = !"#!" !!" − !!  

 We further define mean absolute deviation (MAD) values across stimuli separately for 

phases 1 and 2. 

!"#!!!"#! = !"!!!"
!!!
!" , !"#!!!"#! = !"!!!"

!!!
!"  

Confidence (C). We defined confidence in a question as a decreasing function of the 

width of an agent’s confidence interval (i.e., the absolute difference between lower and upper 

value). Because wider confidence intervals indicate less confidence, we multiplied the absolute 

difference between the maximum and minimum confidence interval values by -1 so that larger 

values in the measure indicate more confidence: 

!!" = −!"#!" !!" − !!"  



CONFIDENCE IN THE INNER CROWD 18 

After an agent completed phases 1 and 2, we then defined its high-confidence best 

estimate (bH) as the best estimate in the phase with higher confidence, and its low-confidence 

best estimate (bL) as the best estimate in the phase with lower confidence. For example, if an 

agent produced estimates b1 = 20,000, l1 = 10,000, u1 = 30,000 and b2 = 50,000, l1 = 49,000, l2 

= 51,000, then its high-confidence estimate would be 50,000 (the phase 2 best estimate) and its 

low-confidence estimate 20,000 (the phase 1 best estimate). If an agent gives the same 

confidence to both estimates, then bH and bL are undefined. We then defined each agent’s 

average high-confidence estimate error (MADHC) and average low-confidence estimate error 

(MADLC) values by calculating the mean absolute deviation between the agent’s higher and 

lower confidence best estimates across problems. If an agent always gave its low-confidence 

estimates in phase 1 (or phase 2), then its MADLC values would be equal to its MADPhase1 (or 

MADPhase2) values. 

Changing one’s opinion between phase 1 and 2: Estimate change (Δb). Estimate 

change for each question is defined as the (log10 transformed) absolute difference between an 

agent’s best estimate in phase 1 and its best estimate in phase 2. 

∆!!" = !"#!" !! − !!  

The next three variables, bracketing, phase accuracy ratio, and confidence accuracy ratio, each 

relate to Soll and Larrick’s (2009) PAR model and help dictate when choosing outperforms 

averaging. 

Error cancelation: Bracketing (Br). Bracketing is a binary value indicating whether 

or not, for a specific question, the criterion value falls between phase 1 and 2 best estimates 

(Soll & Larrick, 2009). 

!" = 1, !"!{!! < ! < !!|!! < ! < !!} 
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!" = 0, !"!{ !! < !!&!!! < ! | ! < !!!&!! < !! } 

We can subsequently define an agent’s bracketing percentage (BP) as its average bracketing 

value across stimuli: 

!" = !"!!"
!!!
16  

Phase accuracy ratio (Aphase). An agent’s phase accuracy ratio measures the ratio of 

mean errors in phases 1 and 2. It is defined as the ratio of the higher to the lower phase-based 

MAD value (cf. Soll & Larrick, 2009): 

!!!!"# =
max!(!"#!!!"#!,!"#!!!"#!)
min!(!"#!!!"#!,!"#!!!"#!)

 

A large phase accuracy ratio suggests an agent’s set of estimates in one phase is is much more 

accurate than its other phase. However, it does not show whether phase 1 or phase 2 estimates 

are more accurate. 

Confidence accuracy ratio (Aconf). In the same way that an agent’s phase accuracy 

ratio measures the relative accuracy of its phase 1 to phase 2 estimates, its confidence accuracy 

ratio measures the relative accuracy of its high confidence estimates to its low confidence 

estimates. To calculate an agent’s confidence accuracy ratio we calculated the ratio of its higher 

to lower confidence-based MAD values: 

!!"#$ =
max!(!"#!" ,!"#!")
min!(!"#!" ,!"#!")

 

High confidence accuracy ratios suggest that an agent’s high (or low) confidence 

estimates are much more accurate than its low (or high) confidence estimates. Just as Aphase 

does not show which phase has a lower MAD value, Aconf does not show whether an agent’s 

high-confidence or low-confidence estimates are more accurate. 
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Simulation Results 

We analyzed9 the simulation results with Bayesian mixed-level regression analyses 

(Baayen, Davidson & Bates, 2008) using the glmmMCMC package in R (Hadfield, 2010). We 

included random intercepts for agents and stimuli in each analysis except when specified 

otherwise. We report 95% highest density intervals (HDI) for the posterior distribution of 

coefficients (Kruschke, 2011). 

Estimate change. Agents in the dialectical condition changed their estimates more than 

control agents; and the more confident agents were in phase 1, the less they changed their 

estimates between phases 1 and 2. We regressed estimate change (Δb12) on two fixed factors: 

an indicator variable indicating the agent’s phase 2 estimate procedure condition (with the 

repeated condition coded as 0 and the dialectical condition coded as 1) and phase 1 confidence 

(C1). We found credible positive effects for the dialectical condition (95% HDI: 0.10, 0.13) and 

a credible negative effect of phase 1 confidence (95% HDI: -0.30, -0.32).  

Phase 2 confidence. The more confident agents were in their phase 1 estimates, the 

more confident they were in their phase 2 estimates. However, there was no effect of dialectical 

instructions on phase 2 confidence. We regressed phase 2 confidence (C2) on two fixed factors: 

dummy-coded phase 2 estimate procedure condition and phase 1 confidence (C1). We found a 

credible positive effect for phase 1 confidence (95% HDI: 0.20, .21) suggesting that the more 

confident an agent was for a question in phase 1, the more confident the agent was that question 

in phase 2. We did not find a credible effect for the dialectical condition (95% HDI: -0.02, -

0.01). 

                                                

9 Technically, we could increase the number of agents in our simulation to such a large size that we would not 
need to conduct any inferential tests. However, because the simulations were computationally intensive, we 
elected to restrict the number of agents to 5,000. 
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PAR parameters. Dialectical agents had higher phase accuracy ratios (Aphase), 

confidence accuracy ratios (Aconf), and bracketing percentages (BP) relative to controls: We 

conducted three separate mixed-level regression analyses on phase accuracy ratios, confidence 

accuracy ratios and bracketing percentages. For each regression, we entered an indicator 

variable for phase 2 condition as a fixed factor and random intercepts for each agent. The effect 

of condition was positive and credible for phase accuracy ratios (95% HDI: 0.00, 0.13), 

confidence accuracy ratios (95% HDI: 0.24, 0.47), and bracketing percentages (95% HDI: 0.08, 

0.10). 

Confidence calibration and resolution. Agents gave confidence intervals that were 

poorly calibrated (relative to 90%). Across both estimate phases, the average agent produced 

confidence intervals that captured the criterion in 60.6% [IQR: 43.8%, 81.3%] of cases. 

However, and most importantly, agents’ confidence intervals had positive resolution: the more 

confident agents were, the more accurate their best estimates were. For each estimate phase, we 

regressed the absolute deviation (AD) on confidence (C). In both phases 1 and 2 we found a 

credible negative effect of confidence on absolute deviation (Phase 1: 95% HDI: 0.007, 0.070; 

Phase 2 95% HDI: 0.103, 0.106). This suggests that confidence is indeed a valid cue to 

accuracy in the county estimation task. This finding is critical. If confidence was not a valid cue 

to accuracy, than confidence-based aggregation could not outperform the simple average. 

Comparing inner-MCS to averaging. Taken together, our simulation suggests that 

confidence intervals provide a window into the estimation process: confidence in phase 1 

predicts estimate change and phase 2 confidence. Most importantly, they also suggest that 

confidence is indeed correlated with accuracy within (simulated) one mind.  Thus, confidence 

could potentially be used by an agent (or person) to detect its most accurate estimates (Soll & 
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Larrick, 2009). To our knowledge, this is the first time a cognitive model has simultaneously 

modeled the processes underlying confidence and estimation and found a positive relationship 

between the two. 

Next, we explore how agents should aggregate their estimates to generate a single 

estimate from the original two. Our finding that confidence and accuracy are correlated 

suggests that confidence could be used as an estimate-weighting cue for these stimuli. But will 

confidence-based estimation beat the simple average? To test this, we compared the 

performance of two strategies: Average, where agents take the average of their best estimates 

from phases 1 and 2, and Inner-MCS, a heuristic inspired by Koriat’s (2012b) maximum-

confidence slating heuristic, where agents choose their estimate with the higher confidence for 

a given question10. For each agent, we compared the mean absolute deviations (MAD) values 

of these strategies to two reference strategies: Choose randomly, where agents randomly 

choose between their phase 1 and phase 2 estimates for each problem, and Choose first, where 

agents always chose their phase 1 estimates. See Table 2 for a list of strategies and error labels.  

 

Strategy Name Description Error Label 

Average Average best estimates for 

a problem across phases 1 

and 2. 

MADAverage 

Inner-MCS Choose the best estimate 

corresponding to the 

phase with the smallest 

confidence interval. 

MADInnerMCS 

                                                

10 If agents have the same confidence levels for both estimates to a question, they choose randomly. 
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Choose randomly Choose a phase 1 or phase 

2 estimate at random 

MADChooseRandom 

Choose first Choose the phase 1 best 

estimate 

MADChooseFirst 

 

Table 2: Description of strategies for managing the inner-crowd. 

 

For each agent, we calculated its accuracy improvement for the two target strategies 

(Average and Inner-MCS) over the reference strategies by subtracting the MAD of the target 

strategy from the MAD of the reference strategy. For example, the accuracy gain of Inner-MCS 

over Choose randomly is calculated as MADChooseRandom – MADInnerMCS. Positive values in this 

difference indicate less error and higher accuracy for the target strategy. A distribution of these 

gains separated by phase 2 procedures is presented in Figure 2. 

 

Figure 2: Distribution of accuracy gains in the simulation. The left and right panels 

show gains relative to Choose randomly and Choose first respectively. Higher values 
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indicate better performance by Average and Inner-MCS. The horizontal lines show 

median values. 

 

We found much higher accuracy gains from Inner-MCS than from Average relative to 

both reference strategies. Across both phase 2 conditions, the mean accuracy gain from 

Average over Choose randomly was 0.044 [IQR: 0.019, 0.059], while the mean accuracy gain 

from Inner-MCS was almost four times as large at 0.154 [IQR: 0.031, 0.239]. Gains were 

similar relative to Choose first. Additionally, relative to both reference strategies, simulated 

dialectical instructions increased the gains from both Average and Inner-MCS. These results 

provide strong empirical support for the benefits of confidence-based choice in the inner-crowd 

in the US county domain. 

Boundary conditions for inner-MCS gains. However, we note that not all agents 

benefited from using Inner-MCS relative to Average. We found that 30% of agents had worse 

performance (i.e.; higher MAD values) by using Inner-MCS than by using Average. To see 

what variables contributed to this effect, we conducted a Bayesian mixed logistic regression 

where we regressed the binary variable MADAverage < MADInnerMCS indicating when an agent 

had lower error from Average versus Inner-MCS on two fixed factors: the agent’s bracketing 

percentage (BP), and the agent’s confidence accuracy ratio (Aconf). We found a credible 

positive effect of bracketing percentage (95%HDI: 2.71, 3.30,) and a credible negative effect of 

confidence accuracy ratio (95% HDI: -3.09, -2.88). The higher an agent’s bracketing rate and 

the lower its confidence accuracy ratio, the less likely it benefited from Inner-MCS over 

Average. 



CONFIDENCE IN THE INNER CROWD 25 

Simulation Discussion 

 Our simulation analysis generated three key results that we use as predictions in our 

empirical study. First, confidence in phase 1 estimates predict both best estimate change 

between first estimates and second estimates as well as confidence in phase 2 estimates. This 

suggests that confidence measures provide us with a window into a person’s estimation process 

that best estimate measures are silent to. Second, confidence predicts accuracy. As a result of 

this relationship, people may benefit from choosing their high-confidence estimates using 

Inner-MCS instead of averaging. Moreover the degree to which people benefit from Inner-

MCS should be a function of their confidence accuracy ratio. Finally, simulated dialectical 

instructions that caused agents to search for new information (new exemplars with a different 

memory probe) increased best estimate changes, averaging gains, and Inner-MCS gains. 

Empirical Study: 

Testing Predictions On The Inner Crowd, Confidence and Dialectical Bootstrapping 

To see if these results would carry over to human judges, we conducted a study using 

the same stimuli and estimation paradigm used in the simulation. We had three main 

experimental conditions in the study that changed how participants made their estimates in 

phase 2. In the control condition, participants were asked to make another estimate as if they 

were answering it for the first time. This condition aims to assess the natural variability in 

people’s estimates (see also Herzog & Hertwig, 2009, 2014b). We also included two dialectical 

conditions that were designed to increase estimate diversity. In the dialectical consider-the-

opposite condition, participants were given dialectical instructions identical to those used in 

Herzog and Hertwig (2009). The instructions implored participants to think of reasons why 

their first estimates were wrong, and—based on those reasons—to apply a new estimation 
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strategy to their subsequent estimates (see Method section for the verbatim instructions). A 

benefit of this dialectical technique is that is purposefully generic and can thus be applied to 

different kinds of estimation strategies (e.g., from non-compensatory rule-based to exemplar-

based strategies; von Helversen & Rieskamp, 2009).  However, because the technique does not 

provide judges with specific instructions on how they could change their estimates, we 

anticipated that some participants might have difficulty deriving an alternative strategy. To help 

participants derive a new strategy, we created a new estimation strategy tailored to exemplar-

based estimation processing that we call consider-other-exemplars. In the dialectical consider-

other-exemplars condition, participants were asked to think of additional exemplars that 

matched the target cue profile, but whose population was likely to be different from their 

estimates in phase 1. 

After completing their first two sets of estimates in phases 1 and 2, participants in all 

conditions were presented with each question again, along with their first two sets of 

judgments, and with all county cue profile information removed. They were then asked to make 

a third and final judgment based entirely on their previous confidence and best estimate 

judgments. This phase was designed to test the extent to which people use their confidence 

judgments in aggregating their inner-crowd. 

Method 

Participants 

 300 US-based adults (166 men and 134 women) were recruited online from the Amazon 

Mechanical Turk11 (Mason & Suri, 2012). Participants were compensated $4.00 for their 

                                                

11 For those not familiar with the Amazon Mechanical Turk (mTurk), the mTurk is an online recruitment tool 
where “Requesters” (i.e.; employers) post “HITs” (an acronym for a “human intelligence task” representing a one-
time job) which can be completed by “Workers” (i.e.; participants). Anyone in the general public can complete a 
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participation. Additionally, they were given a performance-based bonus based on the accuracy 

of the their first, second and third estimates12.  The median bonus was $3.70 (IQR: $3.40, 

$3.90). Participants worked a median of 45 minutes (IQR [34, 61]) on the study. 

Materials and Procedure 

 After giving consent to participate in the study, participants were told that the study 

would take place in several phases and that each phase would take approximately 10 minutes. 

They were instructed to not use any outside help in the form of an Internet search or calculation 

tool in any of the phases. They then read the following instructions for phase 1 of the study:  

“In Phase 1 of the study, you will be estimating the populations of US counties based on 

statistics about those counties. Here’s how the task will work: We created 16 different 

groups of US counties based on their values on 4 different statistics (you will learn what 

they are shortly). Within each of the 16 groups, all the counties have similar values on 

the statistics. From each of the 16 groups, we selected a typical county. Your task is to 

estimate the population of each of these 16 typical counties. We will not tell you the 

name of each county. Instead, we will show you the statistical information about the 

county, and then ask you to make a population estimate based on those statistics. Your 

goal is to come up with a population estimate that is as close as possible to each 

county's true population. The closer your estimates are to the true populations, the 

higher your bonus will be! The highest bonus you can earn for Phase 1 is $2.00. You 

                                                                                                                                                     

HIT in exchange for payment. We required that participants in our study had successfully completed 50 HITs in 
the past with at least a 95% acceptance rate from previous requesters. 
12 We awarded participants with two separate bonuses. The first bonus was determined by the most accurate of 
their phase 1 and phase 2 estimates for each stimulus. The second bonus was determined by the accuracy of their 
phase 3 estimate for each stimulus. The maximum possible bonus for phase 1 and phase 2 estimates was $2.00, 
and the maximum possible bonus for phase 3 estimates was $2.00. 
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will see 4 different statistics for each of the counties. For each county, you will see 

whether or not the county has a HIGH or a LOW value on each of the 4 statistics.”  

Participants then read descriptions of the four different cues. Next, participants viewed a 

sample version of the experimental stimuli with “??” replacing the cue values. They were then 

instructed to give a best estimate and upper and lower bounds of confidence intervals such that 

each interval had a 90% chance of containing the true county population (Russo & Shoemaker, 

1992). 

In phase 1, participants gave population estimates for each of the 16 stimuli. Stimuli 

were presented in the form of a 4 x 2 matrix, where each cue and its value was presented on a 

row (for a screenshot, see Appendix C). Participants were forced by the questionnaire to 

provide best estimates that were between the limits defined by their confidence intervals. 

Participants did not receive any feedback on their accuracy of their confidence intervals or their 

best estimates. We created two stimuli orders, one randomly generated and its reverse. 

Additionally, we created four different cue orders such that each cue was presented in each row 

across participants. Each participant was assigned to one of the stimuli and cue orders and 

viewed the stimuli in the same order in each of the three estimate phases.  

After making their initial estimates for the 16 stimuli in phase 1, participants received 

instructions for phase 2. All were told that they would be shown the questions again and would 

be asked to give a second round of estimates. They were told that their bonus would be based 

on the better of their two estimates for each problem. This was meant to encourage participants 

to make different estimates in the second round (see Herzog & Hertwig, 2009, 2014b). 

Participants assigned to the control condition were not given explicit instructions on how to 

answer the questions but were simply told to answer them as if they had seen them again for the 
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first time (see Herzog & Hertwig, 2009, 2014b). Participants in the dialectical-consider the 

opposite (D-CTO) condition were given the following instructions (Herzog & Hertwig, 2009, 

p. 234): 

First, assume that your first estimate was off the mark. Second, think about a few 

reasons why that could be. Which assumptions and considerations could have been 

wrong? Third, what do these new considerations imply? Was your first estimate too 

high or too low? Fourth, based on this new perspective, make a second, alternative 

estimate. 

Participants in the dialectical-consider other exemplars (D-COE) condition were instructed to 

think of example counties that matched the cue profile for each question, but whose size was 

substantially different from their first estimate as follows: 

For each question, look at the information you were provided with and the estimate you 

gave. Try to think of examples of counties that match the information you were given, 

but are likely to have a very different size than the estimate you gave. Then, using this 

information, try to come up with a new alternative estimate. 

After reading phase 2 instructions, participants viewed the questions again along with their best 

estimates and confidence intervals for that stimulus from phase 1. Participants then gave 

confidence intervals and best estimates in the same manner as Phase 1. 

After giving their second set of estimates, participants were told (again without 

warning) that they would be giving a third and final set of estimates for all problems. They 

were told that they would receive an additional bonus depending on the accuracy of their third 

set of estimates that was independent of the bonus they received in phases 1 and 2. For these 

final estimates, participants were not shown the stimuli, but instead were asked to make 
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estimates based purely on their previous estimates as follows: “County XXX. You first best 

estimate was ___, Your first confidence interval was ___ and ___. Your second best estimate 

was ___. Your second confidence interval was ___ and ___]. What is your current confidence 

interval for this county: ___ and ____. What is your current best estimate for the population of 

this county?” After completing the third estimation phase, participants completed a brief 

comprehension survey. 

Results 

 As in our simulation results, we used Bayesian mixed-level regression analyses to test 

our hypotheses (Baayen, Davidson & Bates, 2008) using the MCMCglmm package in R 

(Hadfield, 2010). Except when specified otherwise, we included random intercepts assigned for 

both participants and stimuli. All raw data and code are available in our supplementary 

materials. 

Estimate change. Dialectical estimates increased estimate change from phases 1 and 2, 

and phase 1 confidence was negatively related to estimate change: We regressed estimate 

change (Δb12) on three fixed factors: two indicator variables indicating the agent’s phase 2 

estimate procedure condition (with the repeated condition coded as 0 and the dialectical 

conditions coded as 1 in the two separate variables) and phase 1 confidence (C1). We found 

credible positive effects for both the D-CTO (95% HDI: 0.00, 0.28) and D-COE (95%HDI: 

0.08, 0.35) conditions, and a credible negative effect of phase 1 confidence (95% HDI: -0.74, -

0.70). These effects are consistent with our simulation results. 

Phase 2 confidence. The more confident participants were in their phase 1 estimates, 

the more confident they were in their phase 2 estimates. Additionally, there was no credible 

effect of dialectical instructions on phase 2 confidence: We regressed phase 2 confidence (C2) 
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on three fixed factors: two indicator variables for phase 2 estimate condition and phase 1 

confidence (C1). We found a credible positive effect for phase 1 confidence (95% HDI: 0.64, 

.68) suggesting that the more confident a participant was for a question in phase 1, the more 

confident the participant was that question in phase 2. We did not find a credible effect for the 

dialectical condition (D-CTO: 95% HDI: -0.05, 0.14; D-COE: 95% HDI: -.05, 0.14). These 

effects are consistent with our simulation results. 

PAR parameters. Consider-other-exemplars instructions consistently increased phase 

accuracy ratios, confidence accuracy ratios, and bracketing percentages. Consider-the-opposite 

instructions had less consistent effects: We conducted three separate mixed-level regression 

analyses on phase accuracy ratios, confidence accuracy ratios, bracketing percentages. For each 

regression, we entered two indicator variables for phase 2 condition as fixed factors and 

random intercepts for each agent. We present posterior means and 95% highest density 

intervals for phase 2 condition in Table 3: 

 Consider-the-opposite Consider-other-exemplars 

Phase Accuracy Ratio 

(Aphase) 

0.13 [-0.14, 0.39] 0.32 [0.06, 0.60] 

Confidence Accuracy 

Ratio (Aconf) 

0.56 [0.12, 0.99] 0.85 [0.40, 1.28] 

Bracketing Percentage 

(BP) 

0.01[-0.03, 0.05] 0.05 [0.01, 0.09] 

 

Table 3: Effects of dialectical instructions on PAR parameters relative to the control 

condition. 
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The sign of the effects of the consider-other-exemplars instructions mirrored those of our 

simulation. 

Confidence calibration and resolution. Participants’ confidence intervals were poorly 

calibrated and even less so than agents in our simulation. Across both estimate phases, the 

average participant produced confidence intervals that captured the criterion in only 34.4% 

[IQR: 12.5%, 50.0%] of cases. These values are consistent with prior research showing that 

confidence interval ranges tend to be far too narrow (e.g., Lichtenstein et al., 1982; Soll & 

Klayman, 2004; Yaniv & Foster, 1997; Yates, 1990). However, and most importantly for 

confidence-based aggregation, participants’ confidence intervals had credibly positive 

resolution. For each estimate phase, we regressed absolute deviation (AD) on confidence (C). 

In both phases 1 and 2 we found a credible negative effect of confidence on absolute deviation 

(Phase 1: 95% HDI: [0.70, 0.74]; Phase 2 95% HDI: [0.71, 0.74]). Consistent with our 

simulation results, this suggests that confidence is indeed a valid cue to accuracy. 
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Comparing Inner-MCS to Average. Next, we compared the accuracy of Inner-MCS 

to Average. As in our simulation analyses, we calculated accuracy gains relative to two 

reference strategies: Choose randomly, and Choose first. A distribution of these gains separated 

by experimental condition is presented in Figure 3: 

 

Figure 3: Distribution of accuracy gains for Average and Inner-MCS strategies in the 

study. The left and right panels show gains relative to Choose randomly and Choose 

first reference strategies respectively. Positive values indicate higher accuracy for 

Average and Inner-MCS. The horizontal lines show median values. 

 

As Figure 3 shows, Inner-MCS outperformed Average relative to both reference 

strategies and in all experimental conditions. Across all phase 2 conditions, the mean accuracy 

gain from Average over Choose randomly was 0.007 [IQR: 0.000, 0.005], while the mean 

accuracy gain from Inner-MCS was much larger at 0.217 [IQR: 0.034, 0.290]. Gains were 

similar relative to Choose first. Additionally, relative to both reference strategies, dialectical 

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Im
pr

ov
em

en
t i

n 
M

AD
 re

la
tiv

e 
to

 ra
nd

om
 c

ho
ice

Average vs. Random Inner−MCS v Random
Control D−CTO D−COE Control D−CTO D−COE

−0
.1

0.
0

0.
1

0.
2

0.
3

0.
4

0.
5

Im
pr

ov
em

en
t i

n 
M

AD
 re

la
tiv

e 
to

 fi
rs

t

Average vs. First Inner−MCS v First
Control D−CTO D−COE Control D−CTO D−COE



CONFIDENCE IN THE INNER CROWD 34 

instructions increased the gains from both Average and Inner-MCS, with the highest gains in 

the dialectical-consider other exemplars condition. 

While the benefits of high-confidence choosing in the study largely replicated those 

from our simulation (Figure 2), the benefits of Average in our study were much smaller than 

our simulation results. We suspect this is due at least in part to the small bracketing rates in the 

study. In the simulation, agents had a mean bracketing rate of 33% (IQR: 25%, 44%). In the 

study, this dropped to 16% (IQR: 6%, 25%). Because bracketing rates (an indicator of error 

correlation) drive averaging gains, our participants with small bracketing rates did not reap 

large averaging gains.  

Boundary conditions for inner-MCS gains. As in our simulation, not all participants 

benefited from Inner-MCS relative to Average. We found that 14% of participants had worse 

performance by using high-confidence choosing relative to a simple average13. To see what 

variables contributed to this effect, we replicated the Bayesian logistic regression analysis from 

the simulation where we regressed the binary variable MADAverage < MADInnerMCS (indicating 

when a participant had lower error from Average versus Inner-MCS) on two fixed factors: the 

participant’s bracketing percentage (BP), and the agent’s confidence accuracy ratio (Aconf). We 

found a credible positive effect of bracketing percentage (95%HDI: 0.31, 2.72,) and a credible 

negative effect of confidence accuracy ratio (95% HDI: -0.50, 0.37). The higher a participant’s 

bracketing percentage and the lower its confidence accuracy ratio, the less likely she benefited 

from Inner-MCS over Average. 

                                                

13 This value was lower than the percentage we observed in our simulation, where 30% of agents had higher 
accuracy from Average versus Inner-MCS. The lower percentage in our study could at least partially be due to the 
smaller bracketing rates in the study (16%) compared to the simulation (33%). 
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Confidence choosing (Inner-MCS) versus confidence weighting. Inner-MCS 

represents an extreme form of confidence-based estimation; namely, choosing the high 

confidence estimate and ignoring the low confidence estimate. How does confidence-based 

choice compare to confidence-based weighting – a strategy that can be normative in advice 

taking (Yaniv, 1997)? To test this, we calculated the optimal wH value for each participant that 

minimized their MADHC value. If Inner-MCS outperforms confidence weighting, then most 

participants’ optimal wH value will be close to 1 (otherwise optimal wH would be substantially 

less than 1). In Figure 4, we plot the cumulative distribution of our study participants’ optimal 

wH values next to the same values for agents from our simulation: 

 

Figure 4: Cumulative density of optimal high confidence weights (wH) for study 

participants and simulation agents. 
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As Figure 4 shows, the vast majority (80%) of our study participants had optimal wH values 

greater than 0.90, while a full 70% of participants had optimal wH values at 1.0, equivalent to 

Inner-MCS. For simulated agents, the magnitude of optimal wH values was also quite high: a 

full 60% of agents had optimal wH values greater than 90%. These results suggest that Inner-

MCS either matches, or closely approximates the optimal confidence-based aggregation 

strategy for most participants and agents. 

How did participants aggregate their first and second estimates?  

In the next section, we analyze how participants aggregated their inner-crowd in phase 

3. In this phase, participants were presented with their phase 1 and phase 2 estimates (both best 

estimates and confidence intervals) and were asked to make a single best estimate solely on 

their previous estimates. Our goal in this analysis is to see to what extent our participants 

actually used confidence as a cue in aggregating their phase 1 and phase 2 estimates. 

Before describing how we modeled phase 3 estimates, let us briefly define a few terms. 

Again, we label bi, li and ui as the best-estimate, confidence-interval lower-bound estimate, and 

confidence-interval upper bound estimate for phase i. We then model phase 3 estimates using 

equation 1 (e.g., Soll & Larrick, 2009; Herzog & Hertwig, 2014b; Müller-Trede, 2011): 

w1 × b1 + (1−w1) × b2 = b3 EQ 1. 

Rearranging terms allows us to define w1 as (b3 – b2) / (b1 – b2). The w1 parameter 

defines how much weight is given to b1, with w1 = 1 meaning that the third estimate is equal to 

b1 and w1 = 0 meaning that it equals b2. When b3 estimates fall outside of the range of b1 and b2, 

w1 is either less than 0 or greater than 1. For our phase 3 analyses, we ignore these estimates 

that fall outside of the range. 
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We use the term aggregation strategy as an umbrella term for all possible strategies that 

return w1 values in the (inclusive) range [0, 1]. We define combining strategies as any strategy 

that returns a w1 value in the (exclusive) range (0, 1). We further distinguish three types of 

aggregation strategies: weighted-averaging strategies as those where w1 is in the interval (0, .4] 

or [.6, 1). When participants use a weighted-averaging strategy, they weight both estimates but 

give more weight to one estimate than the other. We define averaging strategies are those that 

give relatively equal weight to both estimates and return w1 in the interval (.4, .6). Finally, we 

define choosing strategies as those where w1 is equal to 0 or 1. When participants use a 

choosing strategy, they elect to choose between their previous estimates and in the process 

completely reject one of them. Early research in advice-taking tasks concluded that people tend 

to use weighted-averaging strategies (e.g., Budescu, Rantilla, Yu & Karelitz, 2003; Yaniv, 

2004a), while more recent analyses performed at the individual level suggests that people 

mostly choose and only occasionally average (Soll & Larrick, 2009). When aggregating 

estimates in their inner-crowd, people tend to use an averaging strategy, but not consistently 

(Herzog & Hertwig, 2014b; Fraundorf & Benjamin, 2014).  

In addition to distinguishing between combining and choosing strategies, we also 

distinguish strategies on how they represent estimates: order-based versus confidence-based. 

Strategies that are order-based represent estimates as a function of the order (or “phase” in our 

paradigm) they were generated. Several order-based strategies have been studied in the 

judgment and decision making literature, with several such as the “Take the First” (Johnson & 

Raab, 2003) and “First Instinct Fallacy” (Kruger, Wirtz & Miller, 2005). However, alternative 

judgment and decision-making models such as belief-updating models (Hogarth & Einhorn, 

1992) and sequential sampling models (Hourihan & Benjamin, 2010) predict that people can 
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have a tendency to give more weight to later, more recent estimates. Strategies that are 

confidence-based represent estimates as a function of their associated confidence, where high-

confidence estimates are assumed to be weighted more than low-confidence estimates. While 

confidence-based strategies are common in advice-taking tasks (e.g.; Sniezek & Van Swol, 

2001; Yaniv, 1997; Moussaïd et al., 2013; Soll & Larrick, 2009), it is unclear whether people 

use confidence within one mind. 

To represent confidence-based strategies using equation 1, we replace b1 with bH, and b2 

with bL. This means that for confidence-based strategies, w represented the weight given to 

high-confidence estimates. We use the index h (wH) to indicate weights for confidence-based 

strategies. 
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Modeling strategy use. We applied equation 1 to estimates to obtain a vector of w1 (for 

order-based strategies) and wH (for confidence-based strategies) values for each participant 

across stimuli. We used these vectors of w weights to compare strategies by fitting this vector 

of w values to each strategy. As has been noted by other researchers on advice-taking (Soll & 

Larrick, 2009), people rarely use one strategy exclusively across problems. To accommodate 

this intra-individual variability in strategy use, we model each strategy with a probability 

distribution that captures variability in strategy use while simultaneously measuring general 

tendencies. We model combining strategies (strategies 1, 3, and 5) using t-distributions 

bounded on the range [0, 1] with one or two free parameters14 (see Table 4) corresponding to 

the mean and standard deviation. We model choosing strategies (strategies 2, 4 and 6) using 

beta distributions with either one or two free parameters corresponding to α and β (see Table 4) 

We compared 6 different combination strategies for each participant in addition to a random, 

null model. A description of each strategy is presented in Table 4 and a visual representation of 

the strategies is presented in Figure 5: 

Strategy Estimate 

representation 

Aggregation type Distribution Parameters 

0 - Random Symmetric NA Unif(0, 1) 0 

1 – Equal weighting Symmetric Combining t(µ = .5, σ, df = 1) 1 (σ) 

2 – Random 

Choosing 

Symmetric Choosing beta(α, α) 1 (α < 1) 

3 – Order-Based 

weighting 

Phase Combining t(µ, σ, df = 1) 2 (µ, σ) 

                                                

14 For symmetric strategies, we set the mean of the t-distributions (for combining strategies) to 0.50, and forced the 
alpha and beta parameters of the beta distribution (for choosing strategies) to be equal. In contrast, for the non-
symmetric strategies, we allowed the means of the t-distributions (for combining strategies) to be free and both 
alpha and beta parameters of the beta distributions (for choosing strategies) to be free. 
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4 – Order-Based 

choosing 

Phase Choosing beta(α, β) 2 (α < 1, β <1) 

5 – Confidence –

Based weighting 

Confidence Combining t(µ, σ, df = 1) 2 (µ, σ) 

6 – Confidence 

Based choosing 

Confidence Choosing beta(α, β) 2 (α < 1, β < 1) 

 

Table 4: Description of six different phase 3 aggregation strategies 
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Figure 5: Examples of the 6 different aggregation strategies. The top-left panel shows 

examples of strategy 1, a symmetric weighting strategy. The bottom-left panel shows 

examples of strategies 2, a symmetric choosing strategy. The top-right panel shows 

strategies 3 and 5. These are non-symmetric weighting strategies, where strategy 3 is 

order-based and strategy 5 is confidence-based. The bottom-right panel shows strategies 
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4 and 6. These are symmetric choosing strategies, where strategy 4 chooses according 

to phase, and strategy 4 chooses according to confidence.  

 

Strategy classification. For each participant, we calculated maximum likelihood 

estimates for each parameter in each strategy. Next, we calculated the Bayesian Information 

Criterion (BIC; Wagenmakers, 2007) for each model using the following equation, with the 

index m referring to a model (m in {0, 1, … 6}), k referring to a stimulus (k in {1, 2, … 16}), 

and pm referring to the number of parameters in model m (pm in {0, 1, 2}): 

!"#! = −2 !" !"#! !! + !!ln!(!)
!"

!!!
 

 Where likm is the likelihood of the data given model m using the maximum likelihood 

estimates for each parameter pm in model m, and N is the number of data points15. The BIC 

measure rewards models that give high maximum-likelihoods to the data while simultaneously 

punishing models with many free parameters. We then calculated ΔBIC values for each model 

by subtracting the minimum BIC value from each model’s BIC value. Finally, we calculated 

posterior probabilities of each model m using the equation 

!"#!! = !!.!∗∆!"!!
!!.!∗∆!"!!!

!!!
 

We classified each participant as using the model with the highest posterior model probability. 

                                                

15 For order-based models, N is always 16. However, for confidence-based models, when a participant gives the 
same confidence (i.e.; the same interval range) for both phase 1 and phase 2 estimates, wH is undefined and cannot 
be fit by confidence-based models. Thus, for confidence-based models, N is the number of questions where a 
participant gave different confidence to both estimates. To keep the comparison between order-based and 
confidence-based models fair, we fit both models to the same questions for each participant. We also only modeled 
participants with at least ten valid (i.e.; possible to fit) data points. 
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What strategies did participants use? A table of the distribution of best fitting models 

across participants is presented in Table 5. 

Strategy N Percent Posterior Model probability 

(Median and IQR) 

Insufficient Data 119 NA NA 

S0: Random weights / 

Unclassified 

33 19.29% 48.9% [40.2%, 55.5%] 

S1: Symmetric weighting 67 39.18% 57.9% [47.3%, 62.7%] 

S2: Symmetric choosing 6 3.51% 51.1% [47.3%, 51.7%] 

S3: Phase weighting 22 12.87% 56.2% [45.8%, 75.0%] 

S4: Phase choosing 13 7.60% 80.0% [61.4%, 98.1%] 

S5: Confidence weighting 26 15.2% 67.8% [50.4%, 81.2%] 

S6: Confidence choosing 4 2.34% 52.8% [50.7%, 64.7%] 

 

 Table 5: Frequencies of phase 3 aggregation strategy classifications. 

 

 Aggregating over strategy types, we find two main results. First, weighting strategies 

were more common than choosing strategies: Of those participants who were not classified to 

random weight/unclassified strategy, 83% used a weighting strategy while 17% used a 

choosing strategy. Second, phase combination strategies were about as common as confidence 

combination strategies: Of those participants who used a non-symmetric strategy, 46% used a 

confidence-based strategy, while the remaining 54% used a phase-based strategy. 

 Next, we look at the distribution of parameters in non-symmetric strategies (strategies 

3-6). The distribution of parameters in these strategies tells us whether or not participants give 

more weight to first or second estimates (for phase-based strategies), or high confidence or low 
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confidence estimates (for confidence -based strategies). For combining strategies (strategies 3 

and 5), we focus on the distributions of µ parameters (strategies 3 and 5). Values of µ greater 

than .50 indicate higher weight on phase 1 or high confidence estimates for phase and 

confidence based strategies respectively. For choosing strategies (strategies 4 and 6), we look at 

the difference in estimated β and α values. When α is greater than β (positive difference), this 

suggests a higher rate of choosing phase 2 estimates or high confidence estimates for phase and 

confidence based strategies respectively. Summary statistics are presented in Table 6.   

 Parameter N Median Proportion preferring 

second estimate 

(Strategies 3 and 4) or 

high confidence 

estimate (Strategies 5 

and 6) 

Strategy 3: Phase Weight (Mu) µ 22 .29 .91 

Strategy 5: Confidence Weight (mu) µ 26 .65 .88 

Strategy 4: Phase Choosing  α - β 13 -.22 1.00 

Strategy 6: Confidence Choosing α - β 4 .62 1.00 

 

 Table 6: Summary statistics of phase 3 aggregation model parameters. 

 

We begin by looking at the distribution of parameters for phase-based strategies (3 and 

4). Collapsed over combining and choosing strategies, 88% had parameter values that favored 

phase 2 estimates over phase 1 estimates (µ < .5 for strategy 3, and α > β for strategy 4). 

Therefore, participants who weighted or chose estimates based on the order they were made 

tended to prefer their second estimates to their first estimates. Next, we look at the distribution 

of parameters for confidence-based strategies (4 and 6). Collapsed over combining and 

choosing strategies, 24 out of 29 (83%) had parameter values that favored high-confidence 
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estimates over low-confidence estimates (µ < .5 for strategy 5 and α > β for strategy 6). 

Therefore, participants who weighted or chose estimates based on confidence preferred their 

high- confidence estimates. 

General Discussion 

 Extant research on the inner-crowd has explored how people can improve their 

judgments by generating multiple estimates and taking the simple average (Herzog & Hertwig, 

2014a).  In the current paper, we explored how people can, and should, use confidence 

associated with their estimates in deciding how to aggregate them. In an agent-based 

simulation, we found that confidence should be correlated with accuracy in our cue-based 

estimation task and that confidence-based choosing outperformed averaging. Further, simulated 

dialectical instructions that made agents diversity their estimates within the framework of the 

Naïve Sampling Model (Juslin et al., 2007) increased high-confidence choosing gains. In an 

empirical study, we replicated these effects and found that people could outperform the average 

of their inner-crowd with high-confidence choosing (as implemented by Inner-MCS). 

Confidence predicts accuracy in the inner-crowd. 

 Given the large number of studies finding that people’s confidence judgments are too 

high given their empirical accuracy (e.g.; Griffin & Brenner, 2004; Soll & Klayman, 2004), one 

might conclude that confidence is the result of a biased information processing system and thus 

should be ignored during an aggregation procedure. Our results do not support this view. While 

people’s individual confidence intervals may be poorly calibrated, we find that they exhibit 

sufficiently high resolution to allow for confidence-based aggregation strategies (such as Inner-

MCS) to out-perform others that ignore confidence (such as Average).  
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These results mirror previous research that found benefits of confidence-based aggregation 

between minds (e.g.; Koriat, 2012b, Yaniv, 1997) and extends them to the inner-crowd. 

Moreover, because our results were predicted by the NSM (Juslin et al., 2007), they are 

consistent with the idea that people act as naïve intuitive statisticians who process sample 

information (i.e.; samples in working memory) in an unbiased manner, but who are naïve with 

respect to biases that can occur in the sampling process (Fiedler & Juslin, 2000). Unfortunately, 

much (if not most) research on confidence in judgment seems to have focused on when 

confidence goes wrong with respect to calibration, and has ignored when it can go right with 

respect to resolution. 

Choosing vs. Averaging Environments In the Inner Crowd 

Our finding that confidence can improve inner-crowd judgments provides a new 

perspective on the ecological rationality of averaging versus choosing between inner-crowd 

estimates. To show this, we refer back to the PAR (Soll & Larrick, 2009) model. Again, the 

PAR model states how one should combine estimates from two advisers (call them A and B) 

each of whom are providing estimates across a number of problems. Under the PAR, the 

benefits of choosing estimates from one adviser (and ignoring the other) increase when the 

relative accuracy of one adviser to the other increases and the probability of detecting the better 

(i.e.; more accurate) of the two advisers increases. 

We can reframe the PAR model in the inner-crowd by thinking of the inner-adviser A 

as “Phase 1” and inner-adviser B as “Phase 2.” In previous inner-crowd research, accuracy 

ratios (based on phases) in the inner-crowd were fairly low (condition means of 1.12, 1.11 and 

1.09), Herzog & Hertwig, 2014b) which benefited averaging strategies. In our study, phase-

based accuracy ratios were higher than previous studies at a median of 1.47 which favored 
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choosing strategies. Importantly, confidence-based accuracy ratios were even higher at a 

median of 1.78. In PAR terms, confidence allowed our participants to generate a new set of 

virtual inner-advisers “High Confidence” and “Low Confidence” from their inner-crowd that 

had a higher accuracy ratio than their original inner-advisers “Phase 1” and “Phase 2.” In 

addition, using confidence to generate new advisers has the (likely) added benefit of increasing 

the probability of detecting the more accurate adviser. Previous research suggests that people 

are not very good at detecting whether or not their phase 1 or phase 2 estimates are more 

accurate (Fraundorf & Benjamin, 2014), which makes choosing strategies less accurate. A 

reason for this is that people differ dramatically in whether their first or second estimates are 

more accurate: in our study, 49%16 of participants’ phase 1 estimates were more accurate than 

their phase 2 estimates. Thus, unless individual participants have valid introspective insight into 

whether their first or second estimates are better, they can do no better than a coin-flip at 

detecting which phase is more accurate. In contrast, a full 87% of our participants’ high 

confidence estimates were, on average, more accurate than their low confidence estimates. This 

means that people should be much better at detecting their more accurate inner confidence-

based adviser than their inner phase-based adviser. These two effects of confidence, increased 

accuracy ratios and increased probability of detecting the better adviser, both increase the 

benefits of choosing over averaging. 

However, not all participants had accuracy ratios sufficiently high enough to beat 

averaging. For them, Inner-MCS heuristic could not beat Average. In future research, it will be 

important to determine which internal (i.e.; personality, expertise) and external (e.g.; content 

domains) factors predict confidence accuracy ratios. Indeed, our simulation results suggest that 

                                                

16 We calculated this by comparing each participants’ MAD1 and MAD2 values.  
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working memory capacity could be one important factor: in a regression analysis conducted on 

our simulation, we found that agents with higher working memory spans had smaller 

confidence based accuracy ratios than those with lower working memory spans (95% HDI: -

0.72, -0.56). This result parallels that of another simulation and empirical study that found that 

smaller working memory spans are associated with larger averaging gains in the inner-crowd 

(Hourihan & Benjamin, 2010). However, our results are speculative and should be confirmed in 

a future behavioral study. 

Thus, we are left with an important question: After increasing one’s estimate diversity 

using dialectical bootstrapping (Herzog & Hertwig, 2009), should one average or choose? The 

answer depends on the statistical environment you find yourself (Fraundorf & Benjamin, 2014; 

Herzog & Hertwig, 2014b; Soll & Larrick, 2009). Do you believe that your high-confidence 

estimates are likely to be substantially more accurate than your low-confidence estimates? Do 

you believe the rate at which your estimates bracket the true value are low? If the answer is 

“yes” to both of these questions, then you should probably choose your high- confidence 

estimate. If your answers to the questions are “no” and “no”, you should probably take the 

average. Either way, dialectical bootstrapping is likely to improve your estimates. 

Inner-MCS versus between-MCS 

In this paper we have focused on how an individual can benefit from high- confidence 

choosing within one mind using Inner-MCS, but how do the results compare to the 

performance of high confidence choosing between separate individuals (Koriat, 2012b)? Pairs 

of judges can benefit from using the MCS heuristic (which we label “Between-MCS”), wherein 

judges exchange estimates, and choose the estimate of the more confident judge (Koriat, 

2012b). However, before applying the Between-MCS heuristic, one must first normalize each 
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judge’s confidence estimates (Koriat, 2012b). Normalizing confidence judgments is data 

intensive because it requires knowledge of the mean and standard deviation of each judge’s 

confidence ratings. When applying Inner-MCS, this normalization procedure is unnecessary 

because normalization does not change the ordinal pattern of a person’s confidence 

judgments17. If we assume that people do not normalize confidence judgments, how does Inner-

MCS compare to Between-MCS? To test this, we simulated the performance of the Between-

MCS heuristic (without normalization) using our study data and compared it to Inner-MCS (see 

Appendix B for details).  

Accuracy gains were generally higher for Between-MCS than for Inner-MCS. Across 

conditions, the median participant stood to have a 53.52% decrease in MAD relative to their 

first estimates using Between-MCS and 18.03% decrease by using Inner-MCS. However, we 

did find an effect of experimental condition on the difference in Between-MCS and Inner-

MCS. The median difference in improvement between Inner-MCS and Between-MCS was 

smaller for the consider-other-exemplars condition than the control condition (% MAD change 

of 4.76% vs. 30.19%). Moreover, a full 41% of participants in the dialectical-consider other 

exemplars condition had lower MAD values by using Inner-MCS than Between-MCS. In other 

words, 41% of participants given consider-other-exemplars instructions would have performed 

better by themselves than by conferring with another random participant. In the control 

condition, this percentage dropped to 27%.  

In summary, when applying MCS, while most participants would perform better by 

consulting another random participant than by generating an inner-crowd, dialectical 

instructions dramatically narrow the gap between high-confidence choosing gains in the inner-

                                                

17 Applying a z-score transformation to a single person’s confidence estimates will not change their order. 
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crowd and two separate individuals. These results parallel those of Herzog and Hertwig (2009) 

who found the same effect for dialectical instructions on averaging gains.  

Conclusion 

 Previous research on how people manage both their inner-crowd and external advice 

suggested that people do not average as much as they should (Fraundorf & Benjamin, 2014; 

Herzog & Hertwig, 2014b; Müller-Trede, 2011; Larrick et al., 2012). In the current study, we 

simultaneously modeled estimation and confidence judgments on a real-world dataset and 

found that people can outperform averaging by choosing their most confident estimates (i.e.; an 

Inner-MCS heuristic, Koriat, 2012b). Further, we found that dialectical bootstrapping can 

increase the benefits associated with high-confidence choosing. 
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Appendix A: Simulation Details 

The following is a description of the agent-based simulation. Full code are available in our 

online supplementary materials. 

Modeling agents’ knowledge base and working memory (WM) capacity 

We began by specifying long-term memory (LTM) and working memory (WM) 

parameters for each agent. County knowledge in long-term memory was operationalized as the 

number of exemplars from the total county database that was stored in an agent’s long-term 

memory. Specifically we assigned to each agent a knowledge-base size drawn from a normal 

distribution with mean 100 and standard deviation 20. Further, each agent was assigned a 

working memory capacity randomly drawn from the set {3, 4, 5} (Cowan, 2001). 

We did not assume that agents would have perfect knowledge of county populations in 

long-term memory. Instead, we assigned a population bias and random error to each agent. 

Agents with positive population biases had population values that were too high stored in LTM, 

while those with negative population biases had values that were too low in LTM. Agents with 

high random errors hard larger noise in population LTM values, while those with low random 

errors had less noise. We assigned each agent a population bias value drawn from a normal 

distribution with mean 0 and standard deviation 1000, and a population random error value 

drawn from a normal distribution (truncated to be greater than 0) with mean 1,000 and standard 

deviation 300. 

 Additionally, we did not assume that all agents had perfect memory of population cue 

values. Instead, we assigned each agent a cue noise value between 0 and .5. Agents with a cue 

noise value of 0 had perfect knowledge of all county cues, while agents with a cue noise value 

of .5 had incorrect knowledge of half of all county cue values. Thus, agents with a cue noise 
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value of .5 could only remember county cue values at chance level. We assigned each agent a 

cue noise value randomly drawn from the set {0, .1, .2, .3, .4, .5}. 

 To summarize, the six agent-level parameters we varied in the simulation are presented 

in Table A1: 

Agent level parameters Parent Distribution 

Phase 2 Estimation procedure 

(Condition) 

{Repeated, New-Cue, New-

Exemplar} 

Knowledge in LTM (N.LTM) Normal(mu = 100, sd = 20) 

WM Capacity (N.WM) {3, 4, 5} 

Population bias (BIAS) Normal(mu = 0, sd = 1000) 

Population random error 

(RANDOM) 

Normal(mu = 1000, sd = 300) 

Cue noise (C.NOISE) {0, .1, .2, .3, .4, .5} 

 

 Table A1: Six agent level parameters varied in the simulation. 

 

We generated 5,000 agents and assigned to each of them a random parameter value for 

each of the six parameters in Table A1. Next, we had each agent generate phase 1 and phase 2 

best estimates and confidence intervals for all 16 cue profiles in Table 1 using Steps 1 – 6 

outlined below: 

Generating first estimates 

Agents gave best estimates and confidence intervals for each of the 16 stimuli in Table 

1. For each stimuli, agents were given the stimuli cue profile and followed the following six 

sequential steps. Note that we use the index i to represent the ith agent: 
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• Step 1 (Phase 1 - Cue Selection): The agent selected one of the four cues at random and 

looked up its value. The cue and its value represents the agent’s memory probe. For 

example, when presented with the cue-profile [0, 0, 1, 1], an agent could use 

“Bachelor’s degree cue is LOW” as the probe. 

• Step 2 (Phase 1 - SSD generation): The agent then searched its long-term memory 

LTMi for WMi counties in long-term memory that matched the probe cue, where WMi 

was the agent’s working memory capacity. The set of populations for those counties 

represented the agent’s SSD. For example, an agent i with a working memory capacity 

WMi = 4 and the probe cue “Bachelor’s degree is LOW” would select randomly four 

counties from its LTMi that were tagged as having a low bachelor’s degree. The four 

population values tagged to those four counties would constitute the agent’s phase 1 

SSD. 

• Step 3 (Phase 1 – Responses): The agent generated its best estimate for the question as 

the median population in its phase 1 SSD generated in Step 2, and its confidence 

interval as the minimum and maximum values in its SSD. For example, an agent with a 

phase 1 SSD of {5010, 10450, 8760, 12332} would give a phase 1 best estimate of 

9,605 and a phase 1 confidence interval of {5010, 12332}. 

Generating second estimates 

After generating its best estimates and confidence intervals for phase 1, agents 

proceeded to generate their phase 2 responses to the question. Unlike phase 1, we implemented 

two different phase 2 estimation procedures that agents could generate their phase 2 estimates. 

We implemented these different procedures to model the effects of different levels of estimate 

diversity as estimate diversity is known to drive much of the inner-crowd effect (Herzog & 
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Hertwig, 2014a). Agents using a “Repeated” procedure generated new exemplars in phase 2 

using the same probe cue as phase 1. Because these agents did not consider a new cue relative 

to phase 1, this procedure was meant to generate a relatively low level of exemplar diversity 

between phases 1 and 2 and could represent the control conditions from previous studies on the 

inner-crowd (see Herzog & Hertwig, 2009, 2014b). 

We implemented a estimation procedures called “New-Cue” that were designed to 

increase agents’ estimate diversity. Conceptually, this procedure could represent how 

dialectical participants may increase estimate diversity in their inner-crowd. Agents using the 

“New-Cue” procedure selected a new probe-cue that was different from the one they used for 

that question in Phase 1 and generated a new set of exemplars from that new probe-cue 

Next, agents generated estimates for phase 2 in the following three steps: 

• Step 4 (Phase 2 –Cue Selection): The probe-cue agents used in phase 2 depended on 

their estimation condition: 

1. Repeated: Use the same cue as in phase 1 

2. New-Cue: Select a new random probe cue that is different from the Phase 1 

probe-cue.  

• Step 5: (Phase 2 – SSD Generation): The Phase 2 SSD generation procedure agents 

used depended on their estimation condition: 

1. Repeated & New-Cue – Select WMi random exemplars from LTM that match 

the probe-cue selected in Step 4. For agents using the repeated  and new-cue 

procedure, these exemplars need not be different from those selected in phase 

2. 

The set of WMi exemplars generated in Step 5 constituted the agent’s Phase 2 SSD. 
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• Step 6: (Phase 2 – Responses): Generate best estimates and confidence intervals using 

the median and range of the set of population values in Step 5 (as in step 3).   
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Appendix B: Between-MCS vs. Inner-MCS 

To test whether the MCS algorithm succeeds in our estimation task, we simulated the expected 

estimation accuracy of inner-MCS with group-MCS as follows. First, we created virtual pairs 

of all participants i and j within each condition18. We looked at each participant’s estimate in 

both phases 1 and 2, giving us 4 total estimates for each stimulus. Next, for each stimulus k, we 

took the estimate with the highest confidence as the group-MCS estimate for participants i and 

j. We calculated the absolute deviation of this estimate and the stimuli criterion. Next we took 

the mean absolute deviation of group-MCS estimates across all stimuli to calculate a group-

MCS mean absolute deviation for participants i and j. For each participant i, we then calculated 

the median group-MCS MAD value across all possible pairings. We compared this median 

group-MCS MAD value to each participant’s first estimate MAD values to calculate a % 

improvement due to the two heads are better than one effect. Results are presented in Table C1: 

 

 Inner Crowd 

Median / IQR 

Between 

Median / IQR 

Between – Inner 

Median / IQR 

Control 8.90% [0.00%, 37.03%] 52.53% [27.13%, 71.70%] 30.19% [2.04%, 51.05%] 

CTO 15.64% [0.87%, 47.07%]  54.67% [31.90%, 70.36%] 25.80% [1.59%, 47.57%] 

COE 31.38% [0.02%, 60.29% 57.18% [18.96%, 75.63%] 4.76% [-11.4%, 31.80%] 

All 18.03% [0.03%, 49.72%] 53.52% [24.58%, 72.05%] 21.89% [-3.24%, 45.64%] 

 

 Table B1: Percent decrease in MAD by using Inner-MCS versus Between-MCS. 

                                                

18 In Koriat’s (2012b) analysis, Koriat only paired participants with similar accuracy levels and z-transformed 
participants’ confidence levels before applying the MCS algorithm. We elected to pair all participants and did not 
transform confidence levels prior to applying the algorithm. We did this because in real world advice-taking, one 
receives advice from people with varying levels of accuracy and without z-transformed confidence ratings. We did 
run alternative simulations by matching participants with similar accuracy levels and found very similar effects.  



CONFIDENCE IN THE INNER CROWD 67 

Appendix C: Study Stimuli 

The following is a screenshot of the an example stimuli from the study 

 

Figure C1: Screenshot of the experimental stimuli 
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