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Das bipedale Gehen ist für gesunde Menschen eine einfache und alltägliche Bewegung. Das 

Gangmuster von Patienten kann jedoch stark von einem gesunden Gang abweichen, vor allem 

bei Patienten mit neuro-muskulären Erkrankungen. Für den Kliniker ist es essentiell, zu unter-

scheiden, ob eine Gangbildabweichung primär oder sekundär ist, um mit Hilfe der Gangana-

lysedaten eine geeignete Behandlung einzuleiten. Primäre Gangbildabweichungen werden als 

ursächlich angesehen und erfordern eine Behandlung. Sekundäre Abweichungen hingegen 

bedürfen, unabhängig davon, ob ihnen eine aktive Kompensation oder ein passiver physikali-

scher Effekt zu Grunde liegen, keiner Therapie. Sie sollten sich zurückbilden, sobald die ur-

sächliche körperliche Einschränkung behoben ist. 

Die Gangbilder von Patienten mit unterschiedlichsten Grunderkrankungen, z.B. Spastizität 

oder rein muskuloskeletalen Beeinträchtigungen, standen im Fokus dieser Arbeit. Das Ziel 

bestand darin, grundlegende Gesetzmäßigkeiten des krankhaften Gangs zu identifizieren. Die-

se Gesetzmäßigkeiten sollen in Zukunft die Unterscheidung zwischen primären und sekundä-

ren Gangbildabweichungen erleichtern. Mithilfe eines marker-basierten, dreidimensionalen 

Bewegungsanalyse-Systems (VICON) wurden Gangdaten der Patienten aufgezeichnet. Hier-

von wurden hauptsächlich die kinematischen Gelenkwinkeldaten, elektromyographische Da-

ten und Muskelkrafttests retrospektiv analysiert. Es wurde untersucht, ob und wie stark die 

Muskelkraft oder Orthesen Einfluss auf deren Gang haben, unabhängig von den Grunder-

krankungen der Patienten. 

Zunächst wurde eine Methode entwickelt und evaluiert, welche einen charakteristischen 

Gangzyklus für einen Patienten automatisch detektiert (SMaRT). Der Algorithmus basiert auf 

einer Hauptkomponenten-Analyse (PCA). Er ermittelt denjenigen Versuch, welcher über alle 

Gelenkwinkel-Kurven im Mittel am nächsten am Median aller Versuche liegt. SMaRT evalu-

iert die Daten objektiv und kann dabei eine uneingeschränkte Retest-Reliabilität aufweisen. 

Gleichzeitig ist die Methode mit 1,4 s/100 Daten-Sets um mehr als drei Größenordnungen 

schneller als die visuelle Identifizierung durch Experten. Besonders hervorzuheben ist die 

kleine Fehlerrate von 1,2% bei der Detektierung des representativen Trials. SMaRT kann so-

wohl durch anderen Gang-Parameter, z.B. Gelenk-Momente oder Gelenk-Leistung, erweitert 

werden als auch auf anderen Bewegungsanalyse-Kurven, wie z.B. in der sportartspezifischen 

Bewegungsanalyse, angewendet werden. Alle Studien in dieser Arbeit basieren auf dem re-

präsentativen Gangzyklus, welcher für jeden Patienten individuell durch SMaRT ermittelt 

wurde. 

Für zwei weitere Studien wurden 716 Patienten anhand ihrer Erkrankungen in sieben Gruppen 

aufgeteilt: Orthopädische Patienten uni-/bilateral betroffen, neurologische Patienten uni-/bi-

lateral betroffen mit hypotoner/spastischer Muskulatur mit/ohne Beeinträchtigung der 

Rumpfkontrolle. Ein negativer Effekt der Muskelkraft auf die Gelenkswinkel des Unterkör-

pers (Gait Profile Score, GPS) wurde mit der verallgemeinerten Methode der kleinsten Quad-

rate quantifiziert. Je schwächer die Patienten waren, umso stärker wich ihr GPS von der Norm 

nach oben ab. Die Stärke dieses Effekts unterschied sich in den sieben Patientengruppen nicht 

signifikant. Allerdings wurden zwischen den Gruppen bei einer normalen Muskelkraft signi-

fikante GPS Unterschiede deutlich. Je höher der Schweregrad der Grunderkrankung, umso 

stärker war die Regressiongerade in Richtung eines höheren GPS parallel verschoben. Ortho-
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pädische Patienten sowie Patienten mit zerebralparetischer Hemiplegie zeigten GPS-Werte, 

welche sich im Bereich derer von Gesunden bewegten (orthopädisch unilateral: 4.9°±0.7, or-

thopädisch bilateral: 5.0°±1.0, Hemiplegie: 5.4°±1.1). Dahingegen wichen Patienten mit Dip-

legie, Tetraplegie oder bilateral hypotoner Muskulatur signifikant von der Norm ab. Überra-

schender Weise wurde bei Patienten mit Diplegie und Patienten mit bilateral hypotoner 

Muskulatur eine gleich hohe GPS Abweichung von der Referenzgruppe beobachtet. Selbst 

der Vergleich der einzelnen Gelenks-Parameter zeigte nur geringfügige Unterschiede zwi-

schen den beiden Gruppen. 

Des Weiteren wurde eine Assoziation von Muskelkraft mit abnormer elektromyographischer 

Aktivität (EMG) gefunden, genauer gesagt mit verfrühter Plantarflexorenaktivität während 

der Gewichtsübernahme. Eine normale Muskelkraft reduzierte die verfrühte Gastrocnemius-

aktivität um mehr als 10% über alle Patienten. Die Patientengruppe mit neurologischer Kom-

ponente und unilateral hypotoner Muskulatur stellte hier die einzige Ausnahme dar. Dies ist 

vermutlich auf die geringe Patientenzahl in dieser Gruppe zurückzuführen, welche eine Inter-

pretation der Ergebnisse kaum zulässt. Auf Grund dessen, dass eine verfrühte 

Plantarflexorenaktivität in allen Patientengruppen auftrat, kann davon ausgegangen werden, 

dass diese Aktivität nicht nur durch die Grunderkrankung (z.B. Spastizität) hervorgerufen 

werden kann. 

Abschließend wurde untersucht, ob eine Änderung in der Unterkörperkinematik eine Adapti-

on im Oberkörper hervorruft. Hierzu wurden bei hemiplegischen Patienten die Oberkörper-

bewegungen beim Gehen auf Zehenspitzen (barfuß) und beim Gehen mit Fersen-Ballen Gang 

(mit Orthese) verglichen. Zwischen den beiden Konditionen wurden jedoch keine klinisch 

relevanten Unterschiede in der Rumpfbewegung gefunden. Allerdings verstärkte der gesunde 

Arm die Armschwungamplitude, um den reduzierten Armschwung der plegischen Seite zu 

kompensieren. 

Schlussfolgernd kann festgehalten werden, dass die kinematische Änderung des sagittalen 

Sprunggelenkswinkels in den untersuchten Patienten nicht zu einer Normalisierung der Ober-

körperbewegungen führten. Daher scheinen die verstärkten Oberkörperbewegungen nicht 

sekundäre Abweichungen zu sein, welche durch den Zehenspitzengang hervorgerufen wer-

den. Anders verhalten sich hier die kinematischen Unterkörperabweichungen (Gait Profile 

Scores) und die verfrühte Plantarflexorenaktivität. Beide Abweichungen scheinen sekundär zu 

einer Muskelschwäche zu sein, was offenbar für alle Patientengruppen zutrifft. Während der 

Einfluss von Muskelkraft auf die untersuchten Gangparameter nicht unterschätzt werden darf, 

scheint die Spastizität das kinematische Gangbild geringfügiger zu beeinflussen. Bei der In-

terpretation von Ganganalysedaten sollte demnach die Muskelkraft immer beachtet werden, 

unabhängig davon welche Grunderkrankung der Patient aufweist. 
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Walking for healthy humans is a basic everyday activity. In patients, especially those with 

neurologic disorders, the walking pattern can strongly deviate from those of healthy humans. 

For clinicians it is crucial to distinguish between primary and secondary gait deviations to 

plan the appropriate treatment. Primary gait deviations are causative and the target of therapy. 

Secondary gait deviations can be either active compensation or passive physical effects. Both 

do not require treatment as they are resolved when the primary impairment is corrected. 

The focus of this thesis relied on the walking patterns of patients with different primary pa-

thologies, e.g. patients with spasticity or orthopaedic patients. The aim was to identify princi-

pals of a pathological gait, with intention that it can further assist in differentiating between 

primary and secondary gait deviations. Three-dimensional gait analysis, driven by a marker-

based movement analysis system (VICON) provided the data. All studies had a retrospective 

study design. Besides joint kinematics and surface electromyographic (EMG) data, muscle 

strength data were also analysed. It was investigated which parameters, such as muscle 

strength or orthotics, influences the gait of patients besides the primary pathology. 

First, a method to detect a characteristic gait cycle for one subject was developed and evalu-

ated. Based on Principal Component Analysis, the algorithm selects a trial that is closest to 

the median of all trials across different parameters, e.g. joint angle curves. The Selection 

Method for a Representative Trial (SMaRT) evaluates the data automatically, without subjec-

tive bias, and provides full repeatability. Furthermore, SMaRT required 1.4 s to analyse 100 

datasets. Hereby, it was more than three orders of magnitude faster than the visual selection 

done by experts. Most importantly, the error rate of SMaRT with 1.2% was small; hence, the 

algorithm is relatively robust against a limited number of contaminated data. The algorithm 

can be individually adapted to any number and type of input parameters, e.g. joint moments, 

joint powers, etc. SMaRT is generally applicable to any type of curves derived by movement 

analysis, e.g. in the field of sports science. The representative trial for each subject was the 

base for further analysis. 

To analyse the influence of muscle strength on gait deviations, patients were clustered into 

seven groups according to their pathology: orthopaedic patients uni-/bilateral, neurologic pa-

tients with uni-/bilateral flaccid/spastic muscles, with/ without thoracal control. The effect of 

muscle strength on the lower joint kinematics was calculated by generalised least squares. 

Muscle strength had a negative effect on gait kinematics, measured in the form of a Gait Pro-

file Score (GPS). The weaker the patients were, the stronger the GPS differed from the norm. 

This effect was not significantly different across the different patient groups. Nevertheless, 

differences between the patients were found in the GPS offsets at normal muscle strength. The 

more severe the pathology of the patients, the higher the observed GPS offset was. Patients 

with orthopaedic diseases and patients with hemiplegic cerebral palsy were able to produce 

normal GPS values (orthopaedic unilateral: 4.9°±0.7, orthopaedic bilateral: 5.0°±1.0, hemi-

plegia: 5.4°±1.1). Patients with diplegia, tetraplegia, or flaccid muscles bilaterally differed 

significantly. Surprisingly, patients with diplegia and patients with flaccid muscles bilaterally 

showed the same GPS offsets to the reference group of 1.7° ±0.5. Even when comparing the 

particular joints, very few differences between these two groups were found. 
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Furthermore, muscle strength was observed to be associated with abnormal EMG timing, 

more exactly with premature plantarflexor activity during loading response of walking. 

Across all patient groups, a normal muscle strength reduced the number of patients with pre-

mature EMG by more than 10%. The only exception was the neurologic patient group with 

unilateral flaccid muscles. However the small amount of patients within this group might have 

biased the results. Abnormal EMG timing was prevalent across all pathology groups, indicat-

ing that it is not only caused by the primary pathology, e.g. spasticity. 

Lastly, it was investigated whether a change in the gait kinematics of the lower body results in 

adaptations in the upper body. Hemiplegic cerebral palsy patients were compared when walk-

ing on their toes (barefoot condition) to a heel-toe gait condition evoked by wearing a hinged 

ankle-foot orthosis. No clinically relevant changes were observed in the trunk angle parame-

ters when walking with orthoses compared to the barefoot condition. Nevertheless, the unaf-

fected arm increased its swing amplitude and compensates for the reduced arm swing on the 

hemiplegic side. 

In conclusion, kinematic changes of the sagittal ankle pattern in the specific hemiplegic pa-

tients do not result in a normalisation of the upper body kinematics. Consequently, none of 

the upper body abnormalities in this group seemed to be a secondary gait deviation resulting 

from toe walking. Contrarily, joint kinematics (GPS) of the lower body and activity timing of 

the plantarflexors can change secondary to the muscle weakness. Both effects seemed inde-

pendent of the primary disease, at least to some extent. While the impact of muscle strength 

on the observed gait parameters cannot be neglected, spasticity seemed of minor importance. 

Therefore, muscle strength has to be taken into account when interpreting gait analysis data 

irrespective of the pathology.  
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HUMAN GAIT 

Walking is one of the most basic human movements. According to Whittle
 [1]

 normal human 

gait is defined as "a method of locomotion involving the use of the two legs, alternately, to 

provide both support and propulsion" whereby "[…] at least one foot being in contact with the 

ground at all times". As bipedal walking might appeal natural and effortless to most healthy 

humans, some variability is present in normal gait. On the other hand, specific patterns of 

muscle activation as well as generated joint moments and powers can be identified in normal 

gait
 [1]

. 

"Walking uses a repetitious sequence of limb motion to move the body forward while simul-

taneously maintaining stance stability"
 [2]

. Normal gait is characterized by a stance phase, 

where the leg is loaded, supporting the body weight, and by a swing phase in which the leg is 

unloaded. These two gait sequences divide a gait cycle of 100% in a ratio of 60% to 40%. A 

gait cycle typically is defined as the period between two consecutive foot strikes of the same 

foot (0-100%)
 [2,3]

. According to Perry
 [2]

, the stance phase can be subdivided into initial con-

tact (IC) at 0%, loading response (LR) at 0-10%, mid stance (MSt) at 10-30%, terminal stance 

(TSt) at 30-50% and pre-swing (PSw) at 50-60% of the gait cycle. Likewise, the swing phase 

can be split into initial swing (ISw) at 60-73%, mid swing (MSw) at 73-87%, and terminal 

swing (TSw) at 87-100% of the gait cycle (Figure 1.1). 

 

Figure 1.1: The gait cycle. 

The gait phases of a gait cycle are illustrated according to Perry
 [2]

. The stick figure shows the posture at 

the start and end of each gait phase, with the black leg as the reference leg. 

Where healthy humans produce similar general walking patterns, patients with  

(neuro-)musculoskeletal impairment demonstrate a variety of gait deviations
 [2]

. Their de-

formities and the dysfunction of the locomotor system require adaptations, which can be ob-

served in their walking pattern. Pathological gait, can be more unstable, resulting in tripping, 

falling, or in a reduced gait velocity
 [4]

. Further, it can be more energy consuming
 [5-7]

 and 

hence, limiting the walking performance of patients. Subsequently, the altered biomechanics 

during walking might lead to joint degeneration over the years
 [8,9]

. For all of these reasons, 

the main focus of therapy in patients with locomotor dysfunction lies in the normalisation of 
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their gait pattern and/or preservation of their walking ability
 [10]

. Here, one should not forget 

the psychological aspect of a normalised gait pattern. Some patients emphasise that they sim-

ply want to 'look more normal'. For the clinicians this means that the patient's gait deviations 

need to be identified in order to find suitable treatment options. Three-dimensional gait analy-

sis provides valuable tools to assess human gait. "Clinical gait analysis allows the measure-

ment and assessment of walking biomechanics, which facilitates the identification of abnor-

mal characteristics and the recommendation of treatment alternatives"
 [11]

. 

GAIT ASSESSMENT & GAIT ANALYSIS 

Since the 80s "[…] gait analysis has been transformed from a purely academic discipline to a 

useful tool in the hands of physicians and therapists"
 [12]

. The whole process of examining a 

patient's gait and making suggestions for treatment is termed 'Gait Assessment', while the 

term 'Gait Analysis' should be reserved to the technical side of the procedure
 [13]

. Yet, it is a 

rather broad term, as it can include one or all of the following procedures: a detailed visual 

examination of the patient’s gait, and/or quantitative measurements such as spatiotemporal 

parameters, joint angles, forces and electromyography (EMG) recordings
 [12,14,15]

. While some 

gait abnormalities can be identified by eye, others can only be detected by using appropriate 

measurement systems
 [1]

. In the following text passage an overview is given on the parameters 

assessed and analysed on behalf of this thesis. These parameters are: kinematics, kinetics, 

surface EMG, and clinical testing. 

Kinematics 

Marker-based systems are currently the state-of-the-art techniques in gait analysis
 [11]

. They 

track the position of skin-mounted markers in a calibrated, three dimensional space. Typically 

three makers form a segment, which is simplified to a rigid body. On the basis of those data 

body segment movements in space, or in relation to each other, in terms of joint angles, can 

be calculated. Further the velocity and direction of the motion can be tracked
 [14]

. These kine-

matic data are recorded and presented in three dimensions, namely in the sagittal, coronal, and 

transversal plane. One of those movement analysis systems (VICON, Oxford Metrics Lim-

ited, Oxford, UK) was used in our gait laboratory for data acquisition for this thesis. The 

Plug-in-Gait model
 [14]

, a conventional model in the field of clinical gait analysis
 [16-23]

, was 

applied for the kinematic calculations. The marker placement is defined in Table 1.1, and Fig-

ure 1.2 displays the markers and electrodes fixation on a patient. The joint angles of healthy 

subjects are presented in Figure 1.3. 

Spatiotemporal parameters can easily be calculated from the marker trajectories. Walking 

velocity, step/stride time, step length/width, and the cadence grant a first impression about 

gait symmetry
 [2]

. The cadence represents the number of steps per minute. According to 

Perry
 [2]

 healthy men have an average walking velocity of 1.43 m/s and women of 1.24 m/s. A 

normal stride length in adults is 1.4 m, a normal cadence is 120 steps per minute 

(2 steps/s)
 [1,24]

. In children and adolescents these parameters vary along with age and height. 
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For scientific use, as in this thesis, the spatiotemporal parameters are commonly converted to 

non-dimensional values
 [25]

 to allow comparing subjects with different anthropometric appear-

ance. 

Table 1.1: Marker placement. 

Listed are the Marker names and anatomical positions (placement) of the markers according to the Plug-

in Gait model. 

Marker name Marker placement 

LFHD / RFHD Over the left/right temple 

LBHD / RBHD Back of the head left/right in a horizontal plane of the front head markers 

C7 Cervical vertebra 7 

T10  Thoracal vertebra 10 

CLAV Jugular notch where the clavicle meets the sternum 

STRN Xiphoid process of the sternum 

LBAK Left scapula 

LSHO / RSHO Left/right acromio-clavicular joint 

LELB / RELB Left/right lateral epicondyle 

LWRA / RWRA Left/right wrist bar thumb side 

LWRB / RWRB Left/right wrist bar pinkie side 

LFIN / RFIN Left/right below the head of the second metatarsal 

SACR Sacrum 

LASI / RASI Left/right anterior superior iliac spine 

LTHI / RTHI Left/right thigh in line with knee marker & trochanter major 

LKNE / RKNE Left/right lateral femoral epicondyles 

LTIB / RTIB Left/right shank in line with ankle & knee marker 

LANK / RANK Left/right lateral malleolus 

LTOE / RTOE Left/right second metatarsal head between fore-foot & mid-foot 

LHEE / RHEE Left/right calcaneaus same hight of toe markers 
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Figure 1.2: Marker and electrode fixation on a patient. 

Figure A) shows the marker and electrode placement on a patient. The infra-red cameras capture the 

markers and joint them to body segments as illustrated in Figure B). The arrows depict the ground reac-

tion forces measured by the force plates.  

Figure 1.3: Joint angles of healthy subjects. 

The mean and one standard deviation band of our healthy subjects are presented. The first column shows 

the angles in the sagittal plane, the second column presents the angles in the frontal plane, and the third in 

the transversal plane. The angles are time normalised to a gait cycle and are displayed in degrees. 

Post/ant = posterior/anterior, ext/int = external/internal, ext/flex = extension/flexion, add/abd = adduction/ 

abduction, val/var = valgus/varus, plan/dors = plantar/dorsal. 
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Kinetics 

The mechanical cause of movements are described through kinetics
 [15]

. Force transducers 

measure kinetic or static dimensions of the movement. We have two force plates integrated 

into the floor of our gait laboratory which quantify the amplitude, the direction and the origin 

of ground reaction forces (GRF) while walking. The subjects have to encounter each force 

plate properly, with one foot only, to obtain feasable kinetic data. By means of 'inverse dy-

namics' one can calculate the joint moments and joint power (Figure 1.4), using the kinematic 

data together with the force plate output
 [12]

. The segment masses, centres of gravity, and radii 

of gyration for each body segment are approximated according to anthropometric cadaver 

studies previously performed by Winter
 [26]

. 

Joint moments are calculated as external moments created by the GRF. Internal moments are 

approximately equal but opposite to the external moments
 [3]

. They result from muscle work 

and passive tissue resistance
 [27]

. In gait analysis, the moment responsible for supporting the 

body against gravity typically is displayed as the positive moment, normalised to body mass 

(Nm/kg)
 [3]

. Moments indicate which muscle group could be active, e.g. extensors or flexors. 

The joint power delivers the additional information whether this muscle group works eccen-

trically, absorbing energy, or generates power and therefore contracts concentrically
 [3]

. 

 

Figure 1.4: Kinetics of healthy subjects. 

Presented are the mean and one standard deviation band of the kinetics in our normal subjects. The first 

row shows the joint moments in newton meter per kilogram body weight (Nm/kg). The second row shows 

the total power in watts. Both, moments and powers are time normalised to a gait cycle. 

Flex/ex = flexion/extension, dors/plan = dorsal/plantar, abs/gen = absorption/generation. 
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Electromyography (EMG) 

Time-synchronised with the kinematic and kinetic data, surface EMG of the major muscles in 

the legs were recorded. EMG provides information on the neuromuscular activity. When a 

muscle changes its activation level, a temporal imbalance of ions around the muscle fibres 

originates
 [28]

. This electrical potential difference is quantified by electrodes. In kinesiological 

studies mainly non-invasive surface electrodes are used. They are attached parallel to the fibre 

direction over the muscle belly
 [29,30]

. In contrary to fine-wire EMG, surface EMG can assess 

muscles at the surface only. 

EMG gives valuable information on the timing of muscle activity
 [31]

. When interpreting sec-

ondary gait deviations, EMG assists in distinguishing between an active compensation and a 

passive effect. Interpretation of the EMG signals can either be based on the raw signal 

(Figure 1.5), as it is often the practice in a clinical environment, or on the processed signals. 

The on-off pattern of a muscle can be determined by a visual inspection of the raw 

signal
 [28,30,32]

. A more quantitative analysis of the amplitude requires filtering
 [33]

, inverting 

and calculation of the mean trend, namely the envelop EMG
 [30]

. By transforming the EMG 

signal to wavelets, information on timing and frequency of the signal can be interpreted
 [34]

.  

 

 

Figure 1.5: Electromyographic signal in healthy subjects. 

The raw electromyographic signal (EMG) in one of our normal subjects is exemplified here. The four 

most important leg muscles for walking were selected. The signal is time normalised to a gait cycle and 

displayed in volts. 
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Clinical Testing 

Together with the gait analysis, patients are commonly screened clinically. The physical ex-

amination can include a passive range of motion (RoM) evaluation of the joints, manual mus-

cle strength testing
 [35]

, spasticity testing, and/or functional assessments
 [36]

. 

The muscle strength was of interest for this thesis. It was manually determined for the hip 

flexors/extensors, abductors, internal/external rotators, the knee flexors/extensors, and the 

plantar flexors/dorsiflexors at the ankle. The scale ranges from 0 (muscle is paralysed) to 5, 

resembling maximum muscle strength
 [35]

. As muscle strengths below 2 are not measurable 

without fine wire EMG, the physiotherapist determines the strength as follows: 

<2 = no active movement possible 

  3 = active movement against gravity is possible, 

  4 = movement against a moderate restrain by the therapist is possible, and 

  5 = movement against hard restrain by the therapist is possible. 

Often the clinical examination yields valuable information for the interpretation of the gait 

analysis data. For instance it is the case, if the knee flexion/extension angle derived from gait 

analysis shows that a patient is unable to extent his knee during walking. The RoM angle of 

the knee extension and the knee extensor strength will deliver the information as to whether 

the gait deviation is due to weakness or joint contracture. 

PATIENTS 

All studies included in this thesis were performed retrospectively. Gait data derived in daily 

clinical practice since 2001 were provided. The data were acquired in the Laboratory for 

Movement Analysis of the University Children's Hospital Basel (UKBB). Here, clinical gait 

analysis is conducted in patients with a wide variety of pathologies. In Table 1.2 the pathol-

ogy distribution of the patients visiting in this specific laboratory is displayed. Merely patients 

who walked independently without walking aids were included. Similar to other clinical gait 

laboratories
 [11,37]

, the most prevalent group in our gait laboratory by far are children and ado-

lescents with cerebral palsy (CP). 

This thesis is not limited to a specific patient group; rather it includes patients suffering from 

various pathologies, stated in Table 1.2. Hence, only the main pathologies or disease groups 

can be briefly explained in the following. Furthermore, it is almost impossible to provide a 

complete overview on existing gait patterns in these patients. This is due to the following 

three reasons. Firstly, gait deviation can occur in various combinations for each individual 

patient, even given the fact that they suffer from the same disease. Secondly, gait patterns can 

change over time due to the development and growth of the children, especially in progressive 

pathologies. Lastly, as there exist simply too many gait deviations, describing them all is be-

yond the scope of this thesis. Therefore, only an excerpt of typical gait deviations in the fol-

lowing patient groups is described. 
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Table 1.2: Pathology distribution. 

The pathology distribution in the Laboratory for Movement Analysis of the University Children's Hospi-

tal Basel (UKBB) between 1999 and 2012 is listed. Included in the statistics were freely, barefoot walk-

ing patients only (n=1131). 

Type Pathology 
% of all 

patients 

Absolute 

Nr. 

Neuro Hemiplegia (CP) 22.19% 251 

Neuro Diplegia (CP) 16.00% 181 

Neuro Tetraplegia (CP) 7.43% 84 

Ortho Torsional abnormality 5.48% 62 

Ortho Clubfoot 5.13% 58 

Ortho Leg length discrepancy 4.60% 52 

Ortho Patella dislocation 2.83% 32 

Ortho Other knee problems (e.g. fractures, total endoprothesis, tumors, 

pain, instability) 2.74% 31 

Ortho Talipes equinus (pes equinus) 2.74% 31 

Neuro Spina Bifida (Meningomyelocele) 2.56% 29 

Neuro Ataxia (CP) 2.21% 25 

Neuro Other neuromuscular diseases (e.g. Becker dystrophy, multiple 

sclerosis, myotonia, myopathy, HSMN, Polineuropathy, Myoclonic 

dystrophy (Curschmann-Steinert) 2.21% 25 

Neuro Paraplegia 2.21% 25 

Ortho Other ankle problems (e.g. fractures, total endoprothesis, tumors, 

pain, instability) 2.12% 24 

Neuro Developmental retardation / coordination disorder / unclear brain 

disorder 1.95% 22 

Ortho General disease with orthopead. problem (e.g. multiple osteochon-

dromas, achondroplasia, pseudohypoparathyreoidism, dysmorphic 

syndrome,TAR-syndrome, Turner-syndrome) 1.41% 16 

Neuro Hemiplegia (not CP) 1.41% 16 

Ortho Knee ligament instability 1.33% 15 

Ortho Malalignement of knee axis 1.24% 14 

Ortho Planovalgus foot (pes planovalgus) 1.33% 15 

Neuro Poliomyelitis 1.24% 14 

Ortho Other hip problems (e.g. fractures, total endoprothesis, tumors, 

pain, instability) 1.06% 12 

Ortho Back pain 1.06% 12 

Neuro Nerve palsy (lower body) 1.06% 12 

Ortho Arthrogyposis multiplex congenita 0.88% 10 
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Ortho Perthes disease 0.88% 10 

Neuro Duchenne's muscular dystrophy 0.88% 10 

Ortho Developmental dysplasia of hip (DDH) 0.71% 8 

Ortho Talipes calcaneus 0.53% 6 

Ortho Flatfoot (pes planus) 0.44% 5 

Ortho Scoliosis 0.44% 5 

Ortho Femoral deformity 0.27% 3 

Ortho Other spine deformity (not scoliosis) 0.27% 3 

Ortho Rectus fibrosis 0.27% 3 

Neuro Spastic hereditary paraparesis 0.27% 3 

Neuro Tetraplegia (not CP) 0.27% 3 

Neuro Down Syndrome 0.18% 2 

Neuro Spinal paralysis 0.18% 2 

CP = cerebral palsy 

Ortho = orthopaedic impairment 

Neuro = neurological impairment 

 

Cerebral Palsy (CP) 

The term CP covers several symptoms caused by lesion of the central nervous system
 [38]

. A 

uniform definition of CP does not exist. In their review, Kavčič et al.
 [39]

 list different defini-

tions postulated throughout the years. There is a general consensus about the fact that CP is a 

non-progressive disease
 [38,40-45]

, but the movement characteristics and walking abilities of 

these patients can change throughout maturation
 [38,40]

. CP is restricted to brain damage occur-

ring prenatal or in early childhood
 [38,40,41,43-47]

. In her surveillance of CP, Cans
 [38]

 states a 

prevalence of CP in Europe of 1.5-3 per 1000 live births.  

The damage to the central control system causes some or all of the following abnormalities: 

"(1) loss of selective muscle control, (2) dependence on primitive reflex patterns for ambula-

tion, (3) abnormal muscle tone, (4) relative imbalance between muscle agonists and antago-

nists across joints, and (5) deficient equilibrium reactions"
 [36]

. Depending on their dysfunc-

tions, patients can be either classified according to the topographical expression of the 

impairment, or according to the neurological implication. Topographically, the arm and leg of 

only one body side can be involved as in hemiplegic patients. The sensory and motor system 

of the contralateral side in these patients are usually relatively intact, and therefore walking is 

nearly always possible
 [36]

. In diplegic patients, primarily both legs are affected. Most of those 

patients have the ability to walk, but they can show greater balance problems than hemiplegic 

patients and might need walking aids
 [36]

. Tetraplegic patients have involvement of all four 

extremities
 [48]

. Additionally, they suffer from a loss of trunk control. Some tetraplegic pa-

tients are still able to walk, but in many the balance and motor control is severely impaired. 
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Therefore, they are often unable to ambulate
 [36]

. Alternatively, CP patients can be classified 

to three neurological implication groups: the group with spastic muscles, the group with 

ataxia, and the group with dyskinesia. Spastic CP is characterised by increased, not necessar-

ily constant, muscle tone, and/or by pathologically increased reflexes. Movements of a patient 

with ataxia are performed with abnormal force, accuracy, and rhythm. Dyskinetic CP patients 

show involuntary, uncontrolled, recurring, and occasionally stereotypical movements. If the 

dyskinesia is dystonic, then the movements are stiff (hypokinesia) due to the increased muscle 

tone (hypertonia). Contrarily, choreo-athetotic dyskinetic CP is characterised by a reduced 

muscle tone (hypotonia) and stormy movements
 [38]

. 

CP patients show a wide variety of gait deviations, depending on the age, severity, and ana-

tomical location of their neurological impairment. Nonetheless, typical gait patterns are: 

equinus foot contact, in-toeing, and a stiff knee in swing. These gait deviations occurred in 

more than 50% of the hemiplegic, diplegic, and quadriplegic patients in the study of Wren et 

al.
 [49]

. In the same study, more than half of the diplegic and quadriplegic patients presented 

increased hip flexion and crouch gait. Increased hip adduction was prevalent in more than 

50% of the quadriplegic subjects
 [49]

. 

Neurologic Patients with Flaccid Muscles 

The problem of neurologic patients with flaccid muscles is a local or global muscle weakness. 

Typical pathologies that can result in local muscle weakness, where single muscles or parts of 

the body are flaccid, are Nerve Palsy or Poliomyelitis 
[50]

. Contrarily, muscular dystrophies 

and Myelomeningocele globally weaken the lower/whole body, as can Poliomyelitis. 

Myelomeningocele 

Myelomeningocele (MMC) is the most severe form of Spina Bifida, where the neural tube is 

defective and spinal lesions occur
 [51]

. In MMC patients, the vertebra was not fully closed in 

uterus, which can result in a protrusion of the spinal cord through the opening in the bones. 

This often causes muscle paresis and sensory defects proportional to the ascending vertebrae 

lesion level
 [21]

. The most common gait deviations in MMC patients comprise of increased 

knee flexion due to plantarflexor weakness, excessive anterior pelvic tilt
 [52,53]

, and increased 

pelvic and trunk rotation and sway
 [53,54]

. 

Muscular Dystrophy 

Muscular dystrophy or myopathy are both umbrella terms for progressive muscle diseases, 

such as Duchenne's or Becker's muscular dystrophy. They all bring along structural and func-

tional impairments of the skeletal muscles
 [55]

. These impairments lead to muscle weaknesses, 

and consequently to constraints of the walking abilities
 [10,56,57]

. Most myopathies implicate 

symmetrical extremity weakness, however, in some diseases the weakness can be asymmetri-

cal
 [55]

. With the progression of this disease, the weakness can cause the loss of ambulation
 [10]

. 
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Complementary to patients with neuromuscular pathologies, muscular dystrophic patients in 

general maintain preserved sensation
 [55]

. 

The most common myopathy in early childhood is the Duchenne muscular dystrophy with 1 

in 3500 live births worldwide. The disease is an X-linked recessive disorder. Children lose the 

ability to ambulate at a mean age of nine years
 [56]

. A typical gait pattern observed in these 

patients is an excessively plantarflexed ankle during the swing phase and a compensatory hip 

flexion and abduction to maintain foot clearance
 [56]

. 

Patients with Orthopaedic Diseases 

Patients with an orthopaedic impairment typically show deformity, instability, or pain in their 

musculoskeletal system. A neurological cause for their impairment should be excluded. The 

impairment can involve only one joint on one leg, such as an instable knee due to a torn ante-

rior cruciate ligament, or it can be symmetrical as it is commonly the case in habitual toe 

walkers. In our gait laboratory the majority of orthopaedic patients with isolated joint impair-

ments have problems at the foot or knee. Hip impaired patients are relatively rare and thus not 

further described here. 

Within the orthopaedic children/adolescents with foot problems seen in a gait laboratory, pa-

tients with clubfoot or habitual toe walkers are the most typical. This might be due to the fact 

that clubfoot occurs with 1 of 200 live births relative frequently. The foot of these patients is 

either plantarflexed or dorsiflexed at birth. The plantarflexed foot is inverted at the heel and 

forefoot, and adducted in the forefoot (talipes equinovarus). Contrarily, the talipes calcane-

ovalgus is dorsiflexed, abducted in the forefoot, and in eversion at the heel and forefoot. This 

deformity is in 50% of cases bilateral. Boys are twice as often affected as girls. Even when 

treated successfully, the foot can be smaller and less mobile than a healthy foot, which can 

result in functional problems during walking
 [58]

. The foot is the only body segment that is in 

contact with the floor during the stance phase; hence, the foot acts as an effective lever arm to 

control the GRF. In patients with foot deformity where this lever arm is deformed (e.g. by 

clubfoot or toe walking) or instable (e.g. by mid-foot break), gait deviations can occur
 [59]

. 

One study has revealed that a mid-foot break, together with an external rotation of the foot, 

leads to an internally rotated hip and pelvis
 [59]

. In patients with clubfoot, the peak ankle plan-

tarflexion moment was found to be reduced
 [60]

. This indicates that the plantarflexion-knee 

extension couple is affected in these patients. 

Patients with knee problems analysed in our gait laboratory mainly suffer from instable knees, 

such as torn knee ligaments or habitual patella dislocation. The knee is the most critical joint 

of the lower body to control due to its anatomical structure. Without a bony enclosure, this 

joint is primarily stabilised by muscles, ligaments and surrounding tissues
 [61]

. When those 

structures are injured or lax, a patient can show a reduction in the magnitude of the flexion 

moment about the knee to avoid or reduce the contraction of the quadriceps
 [62]

. 
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GAIT DEVIATIONS 

While healthy people can have walking patterns with similar kinematic, kinetic, and EMG 

parameters
 [63]

, these parameters can deviate strongly in patients with (neuro-)musculoskeletal 

diseases
 [2]

. Gait deviations can be either primary or secondary. Primary gait deviations are 

defined as a direct result of the pathology
 [17]

. For instance, patients with weak hip abductors 

can show a pelvic drop of the contralateral side in single stance, namely the Trendelenburg 

sign
 [24]

. In these patients, the ipsilateral hip abductors are too weak to hold the pelvic up 

against the weight of the upper body when the contralateral leg is in the swing phase. Patients 

with spastic contractures of the hip adductors can also show signs of Trendelenburg. In these 

patients, the ipsilateral contracted hip adductors pull the pelvis down on the contralateral 

side
 [24]

.  

Secondary gait deviations have to be divided into passive physical effects and active compen-

sations. Passive effects follow as a physical consequence of the primary deviations
 [64]

. When 

the biomechanics of one joint is altered as a result of the pathology, then anatomical coupling 

of the body parts and gravity acting on them inevitably result in deviations of the other joints. 

Forward simulation has revealed that when the leg is loaded during the contracture of the tri-

ceps surae muscle, hip flexion, internal rotation, and adduction together with external pelvic 

rotation
 [65]

 is produced. This computer model has no ability for active interaction; hence, the 

physical effects are of purely passive nature. Contrarily, active secondary deviations, or com-

pensations, work in order to actively offset the primary deviations and secondary physical 

effects
 [17,64,66-68]

. These compensations are needed to maintain adequate functionality. For 

example, in a patient with a strong sign of Trendelenburg, the pelvis was positioned too low, 

giving the swinging leg not enough space to swing through. In order to gain foot clearance the 

thorax can be actively shifted laterally over the stance limb (Duchenne gait). As the pelvis is 

connected to the upper body, this will pull the contralateral pelvis up, resulting in an enhanced 

foot clearance
 [24]

.  

Both active and passive secondary deviations are the main topic of this thesis. Therefore, an 

overview of active compensations and passive physical effects described in the literature is 

provided in the following. 

Secondary Passive Physical Effects 

As described previously, excessive plantarflexor work that primarily leads to an equinus ankle 

position provokes secondary hip flexion, internal rotation, and adduction together with exter-

nal pelvic rotation
 [65]

. In the past, these passive effects had been incorrectly referred to as 

compensations
 [69,70]

. Excessive foot rotation during stance, resulting in increased hip rotation, 

is another passive effect. When an abducted (externally rotated), plano-valgus foot is dorsi-

flexed under loading conditions, the tibia is automatically pushed into an internally rotated 

position. This distant effect of the foot rotates the entire leg internally
 [59]

. Therefore, the rota-

tion of the leg is seen as an internal rotation at the hip and pelvis. Likewise, an internally ro-

tated foot (in-toeing gait) produces an external rotation at the hip
 [16,71,72]

. In Table 1.3, secon-
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dary physical effects are listed of patients which were observed in laboratory settings, to-

gether with the computer models that were used in studies. 

Table 1.3: Physical effects. 

The table summarises the passive physical effects identified in the literature. This table is a fusion and 

amendment of tables 3 & 5 in
 
Schmid et al.

 [64]
. 

Biomechanical 

constraints due to 

primary pathology 

Physical effect Patients showing this effect 

Equinus position of 

ankle (toe walking) 

Anterior pelvic tilt (hip flexion), 

hip internal rotation and external 

pelvic rotation (pelvic retrac-

tion) 

Spastic hemiplegic CP 
[17,69,70]

; Spastic diplegic 

CP 
[67,70]

; 3D full body forward simulation 
a
 
[65]

 

Internal rotation 

deformity of foot 

(in-toeing gait) 

Hip external rotation * Idiopathic clubfoot 
[16,71]

; Charcot-Marie-Tooth 

disease, types I and II 
[72]

 

External foot rota-

tion due to 'mid-

foot break' 

Hip/pelvic internal rotation Diplegic cerebral palsy 
[59]

 

 

  * indicates effects that appear to be independent from the underlying pathology. 

   a
  computer simulation studies 

  CP = cerebral palsy 

 

Secondary Active Compensations 

The walking ability of patients is mainly restricted by a reduced RoM in selective joints or by 

a weakness of muscles
 [15]

. 

Compensations for Muscle Weakness 

Patients generally have three main principles to compensate for muscle weakness. First, they 

can use synergistic muscles to replace or support the weak muscles. Second, they can displace 

the centre of mass (CoM) to reduce the GRF arm at a joint. Third, they can 'restore' the lever 

arm of a specific muscle group.  

Muscular weakness in one muscle or muscle group can be counter-balanced by synergistic 

muscles. When plantarflexors are weak, then different compensations can be applied. The 

forward propulsion can be sustained by higher hip and knee extension moments in stance 

phase
 [6,60,73]

. Prolonged EMG activity in the vastus medialis and rectus femoris muscle was 

found to support these mechanisms in patients 
[6]

. In a modelling study, a prolonged hamstring 

contribution to the support moment was needed when the soleus contribution was 

diminished
 [74]

. Furthermore, patients with chronic stroke can have weak plantarflexors, which 



 Chapter 1 

 

34 
 

limits push-off in these patients. Hip extensor strength was reported to be positively associ-

ated with walking speed within stroke patients
 [75]

. The hip extensor torque in late stance was 

supposed to 'load' the passive hip flexor structures that can 'pull' the leg up during toe-off
 [75]

. 

The hip flexors were also described to actively pull the leg up to achieve foot clearance in 

patients
 [6,76]

 and in a musculoskeletal modelling study
 [73]

. Riad et al.
 [77]

 observed a larger 

power generation at the hip to balance a decreased ankle power generation in hemiplegic CP 

patients. Further, co-contraction of the hamstring and quadriceps muscles can be used to re-

duce the net quadriceps moment at the knee
 [62,78-80]

. In patients with an instable or painful 

knee quadriceps femoris muscle activity can cause an increased tibia forward translation. The 

hamstrings can hold the tibia back. The co-contraction around the knee was found to stabilise 

this joint by shifting the hamstrings activity to extend the hip instead of flexing the knee
 [32]

. 

This mechanism is supported by a single case modelling study where one patient substituted 

the knee extensor moment by an increased hip extensor moment
 [81]

. 

A global leg weakness can be compensated by hyperactivity of the ankle plantar flexors 

around foot strike. This activity controlled the leg of weak orthopaedic patients
 [32]

 by the 

plantarflexion-knee extension couple
 [36]

. The authors of the same study proposed that the co-

contraction of the knee extensors and hamstrings produces a shift of the hamstrings activity 

from a potential knee flexion to a hip extension
 [32]

. A prolonged activity of the contralateral 

hip abductors was found to decelerate the weight acceptance on the ipsilateral limb
 [82]

. This 

mechanism reduces the angular velocities, and thereby, the flexion moments one has to coun-

teract during loading response. Van der Krogt et al.
 [83]

 simulated muscle weakness in a for-

ward modelling study. They systematically reduced the force applied by the muscles of the 

legs in their model. Then, they analysed which synergistic muscles increased their activation 

to compensate for the weakened muscle. Further, it was evaluated whether the activation in 

the weakened muscle increased, and which of the antagonistic muscles decreased their activa-

tion in response to the weakness. Table 1.4 lists the main results. Their results were supported 

by Knarr et al.
 [84]

, who described the plantarflexors and hamstrings to compensate for each 

other. Additionally, Jonkers et al. 
[85]

 confirmed the hamstrings to contribute to stance hip 

extension when the gluteus maximus muscle is weakened. The same authors also reported the 

gastrocnemius and soleus muscle to compensate for each other in their muscle model. 

External flexion/extension moments are created by the GRF arm. For instance, the GRF tends 

to dorsiflex the ankle in a standing position, as the GRF is anterior to the ankle. These exter-

nal moments must be counterbalanced by an internal moment created by muscles and passive 

structures on the opposite side of the joint
 [36]

. In the example this would be the Achilles ten-

don and the triceps surae. By translating the CoM so that the GRF vector moves closer to the 

joint centre or even on the opposite side of the joint, one can reduce the muscle work needed 

to stabilise a joint. Therefore, patients with weak hip extensors were found to extend the trunk 

posterior to shift the CoM behind the hip in order to produce an external hip extension mo-

ment
 [53,86]

. Hip abductor weakness was found to be handled by trunk lean over the affected 

leg in single leg stance, namely in patients with Duchenne limp
 [21,53,87-89]

. Patients with knee 

extensor weakness translated the CoM anterior by forward trunk lean. This was achieved ei-

ther by flexion of the hip
 [90-93]

 or anterior pelvic tilt
 [94]

. As a result the external knee flexion 
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moment is changed into an external extension moments and the use of the quadriceps can be 

avoided. The activation of the plantarflexion-knee extension couple has a similar 

effect
 [32,73,81,82,95,96]

. The plantarflexor activity at the ankle during loading response and mid 

stance displaces the centre of pressure forward along the foot. The GRF that is posterior to the 

knee in these gait phases is, thereby, transferred closer to the knee joint centre
 [82]

. 

Table 1.4: Compensations to simulated muscle weakness. 

The table shows the compensations by the same muscle, by synergistic muscles, and by antagonistic mus-

cles as a reaction to a specific, weakened muscle. The table is a modified version of Table 1 in Van der 

Krogt et al.
 [83]

. Abbreviations: GMAX: gluteus maximus, GMED: gluteus medius, ILPS: iliopsoas, 

HAM: hamstrings (semitendinosus, semimembranosus and biceps femoris long head), RF: rectus femoris, 

VAS: vasti (vastus medialis, lateralis, and intermedius), TA: tibialis anterior, GAS: gastrocnemius (me-

dialis and lateralis combined), SO: soleus, GMIN: gluteus minimus, QF: quadratus femoris, PIRI: piri-

formis, SMM: semimembranosus, TFL: tensor fascia lata, BFS: biceps femoris short head, SAR: sarto-

rius, GRA: gracilis, ADD: adductors, PERT: peroneus tertius, EXTD: extensor digitorum longus, TIBP: 

tibialis posterior, FLD: flexor digitorum longus, FLH: flexor hallucis longus, PERB: peroneus brevis, 

PERL: peroneus longus, SMT: semitendinosus, PSO: psoas, (sw): only in swing. Muscles in brackets 

only have minor contributions. More ventral parts are indicated by lower numbers (GMAX1, GMED1, 

etc.), dorsal parts of the muscle by higher numbers.  

Weakened muscle Compensations 

 Increased activation in 

this muscle 

Synergistic muscles that 

increase their activation 

Reduced activation in 

antagonistic muscles 

GMAX - GMED3 (GMED2 GMIN3 

HAM ADD VAS QF PIRI) 

- 

GMED  GMIN SMM TFL BFS 

SAR GMAX1 GAS RF 

(VAS) 

PSO GMAX2,3 SO 

ILPS Up 

HAM  SAR GRA ADD GMAX 

GAS TA PERT EXTD 

GMED2,3 SO 

RF  (sw) ILPS VAS SO TFL 

(GMED2,3) 

SMT BFS GAS GRAC 

TA 

VAS  ADD GMAX GMIN1 HAM (sw) ILPS (sw) 

TA - EXTD PERT - 

GAS - SO BFS SMT SMM ILPS 

(GMED GMIN SAR) 

TA 

SO - GAS TIBP FLD FLH 

PERB PERL VAS RF 

TA EXTD BFS ILPS 

SAR (GMIN) 

 marks increased activity 

-  indicates no increased activity 
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Lastly, the muscle's force generating capacity can be diminished by reduced force arms due to 

deformity. In patients with increased femoral anteversion the force arm of the gluteus medius 

muscle was found to be impaired. For this reason, these patients suffer from hip abductor 

weakness. In order to restore the moment arm of the gluteus medius they produce an internal 

rotation at the hip
 [97]

. Contrarily, patients with an increased Q-angle showed a reduced inter-

nal rotation of the hip
 [98]

. The Q-angle is the angle between the elongated tibia and the line 

from the mid-point patella to the anterior superior illiac spine. Reducing the internal rotation 

of the femur could ease the lateral force vector on the patella, and restore the force arm of the 

quadriceps muscle
 [98]

. Aside from that, the outward spreading of the arms can be a compensa-

tion to keep balance during walking in patients with diplegic CP
 [99,100]

. 

Compensations for Restricted Range of Motion 

Restricted range of motion in a joint can be compensated by increased motion in adherent 

joints. A limited hip extension that would lead to a trunk forward lean, was adjusted by an 

increase lumbar lordosis
 [87]

 or knee flexion
 [101]

 to keep the trunk near the vertical. Similarly, 

a loss of lumbar lordosis would move the centre of mass anterior. This was prevented by hy-

per-extending the hips
 [102]

 or flexing the hip and knee and dorsiflexing the ankle (crouch 

gait)
 [102,103]

. The same three joints were flexed to functionally shorten the longer leg in pa-

tients with leg length discrepancy
 [104]

. Patients with a reduced foot clearance during swing 

phase of walking were found to have five different compensatory patterns: three on the sound 

side and two on the affected side. The sound side was functionally elongated by lifting the 

heel from the floor (vaulting) while the contralateral leg was in swing
 [17,77,92,105,106]

. Contrac-

tion of the hip abductors on the unaffected side leveraged the pelvic up on the problematic 

side (pelvic hike) to gain foot clearance
 [6,53,75,92,107]

. Excessive compensatory posterior pelvic 

tilt while standing on the sound leg was reported to accelerate the affected foot into 

swing
 [2,76]

. The affected leg was also seen to be swung in a half-cycle around the stance leg 

(circumduction) typically together with excessive hip abduction and external 

rotation
 [6,56,72,91,92]

. Increased hip and/or knee flexion in form of a steppage gait was found to 

lift the affected leg of the floor. All five compensatory patterns can be combined with each 

other. Table 1.5 provides a comprehensive overview on described gait compensations in the 

literature. Further, it informs about in which pathologies they were observed or the computer 

models that were used in the studies. 
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Table 1.5: Compensatory mechanisms. 

The compensatory mechanisms known from the literature are summarised in the second column. The pa-

tients or conditions under which they have been observed (e.g. single case study, simulation study) are 

listed in the third column. This table is a fusion and amendment of tables 3 & 4 in Schmid et al.
 [64]

. 

Constraints due 

to pathology 
Compensatory mechanisms Patients showing this compensation 

Hip extensor 

weakness 

Posterior trunk extension Myelomeningocele 
[53]

; facioscapulohumeral 

muscular dystrophy
 c
 
[86]

 

Hip abductor 

weakness 

Duchenne limp * Myelomeningocele 
[21,53]

; Unilateral osteoarthri-

tis hip 
[87]

; Legg Calvé Perthes disease 
[88]

; 

Hemi- & diplegic CP 
[89]

; three-dimensional 

model (3D) 
a
 
[93]

 

Restoring moment arm by internal 

rotation 

Patients with excessive femoral 

anteversion 
a
 
[97]

 

Knee extensor 

weakness / Quad-

riceps avoidance 

Hip extensors (hamstrings) for 

knee extensors * 

 

Unilateral anterior cruciate ligament 

deficiency 
[62,78,79]

; Several orthopedic condi-

tions 
[32]

; Chronic patellofemoral pain syn-

drome 
[108]

; Two dimensional (2D) model of the 

knee 
a
 
[109,110]

; Full body 2D musculoskeletal 

model 
a
 
[73]

; 3 patients with knee extensor 

weakness due to sarcoma or amyotrophic lateral 

sclerosis 
c
 
[81]

 

Centre of mass anterior to the 

knee joint by: 

 Increased activity of 

 plantarflexion-knee  

 extension couple * 

Several orthopaedic conditions 
[32]

; Hereditary 

spastic paraplegia & mild spastic diplegia 

CP 
[95]

; Spinal muscular atrophy, type III 
[82]

; 

Full body 2D musculoskeletal model 
[73,96]

 
a
; 3 

patients with knee extensor weakness due to 

sarcoma or amyotrophic lateral sclerosis 
c
 
[81]

 

 Hip flexion * Juvenile chronic arthritis 
[90]

; Hemiparesis after 

stroke 
[91,92]

; 3D model 
a
 
[93]

 

 Anterior pelvic tilt Bilateral, medial osteoarthritis of the knee 
[94]

 

Kneehyperextension (e.g. by 

prolonged contralateral plantar-

flexor activity) 

Duchenne muscular dystrophy 
[60]

; 3 patients 

with knee extensor weakness due to sarcoma or 

amyotrophic lateral sclerosis 
c
 
[81]

 

Ankle plantar-

flexor weakness 

Eccentric work of hip flexors for 

progression in stance 

Unilateral congenital clubfoot 
[60]

 

Hip and knee extensors in 

stance * 

Unilateral congenital clubfoot 
[60]

; Charcot-

Marie-Tooth disease 
[6]

; Full body 2D muscu-

loskeletal model 
a
 
[73]

; 3D full body model 
a
  

[111]
 

Hip flexors (pulling) in 

preswing * 

Charcot-Marie-Tooth disease 
[6]

; Hemiplegia 

after stroke 
[76]

; Full body 2D musculoskeletal 

model 
a
 
[73]

 

Hip extensor torque strategy in 

late stance (loading flexor tissue) 

Chronic stroke 
[75]

; 2D full body model 
a
 
[74]
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 Internal rotation of trunk and 

pelvis on contralateral side 

Myelomeningocele 
[53]

 

Larger symmetrical hip power 

generation  

Spastic hemiplegic CP 
[77]

 

Global leg weak-

ness 

Hyperactivity ankle plantarflex-

ors * 

Several orthopaedic conditions 
[32]

; Spinal mus-

cular atrophy, type III 
[82]

; Full body 2D muscu-

loskeletal model 
[73]

 
a
 

Co-contraction around knee Several orthopaedic conditions 
[32]

 

Prolonged activity of contralateral 

hip abductors (weight acceptance)  

Spinal muscular atrophy, type III 
[82]

 

Gait instabiliy 'Guard position' of the arms (in-

creased abduction in shoulder & 

elbow flexion) 

Spastic diplegic CP 
[99,100]

 

Limited hip ex-

tension 

Lumbar lordosis Unilateral hip osteoarthritis 
[87]

 

Knee flexion to allow the pelvis 

to progress forward 

Unilateral congenital dysplasia of the hip 
[101]

 

Loss of lumbar 

lordosis (Center 

of mass anterior) 

Hip hyperextension Postoperative flatback 
[102]

 

Crouch gait Postoperative flatback 
[102]

; healthy subjects 

asked to walk with flexed hip 
b
 
[103]

 

Rotational knee 

instability / in-

creased medial 

knee load 

Lateral shift of center of mass 

(e.g. pelvic hike) * 

Anterior cruciate ligament deficiency 
[78]

; Bilat-

eral medial knee osteoarthritis 
[8,94]

; Healthy 

subjects walking with increased medio-lateral 

trunk sway 
b
 
[112]

 

Patella 'out of 

line' (Q-angle in-

creased) 

Reduced hip internal rotation Patellofemoral pain syndrome 
[98]

 

Knee pain Co-contraction of quadriceps and 

hamstrings 

Patellofemoral pain, patient driven model 
a
 
[113]

 

Leg length dis-

crepancy 

Hip, knee flexion and ankle dorsi-

flexion on unaffected (longer) 

side 

Spastic hemiplegic CP with leg-length discrep-

ancy 
[104]

; artificial long leg by raising the sole 

of one foot using pelite 
b
 
[114]

 

Reduced foot 

clearance 

Pelvic up tilt (posterior tilt) on 

unaffected side 

Hemiplegia after stroke 
[2,76]

 

Pelvic hike * Chronic stroke 
[75]

; Charcot-Marie-Tooth dis-

ease 
[6]

; Myelomeningocele 
[53]

; Hemiplegia 

after stroke 
[92,107]

; Artificial unilateral knee 

immobilization 
b
 
[115,116]

 

Circumduction, hip abduction, hip 

external rotation * 

Duchenne muscular dystrophy 
[56]

; Charcot-

Marie-Tooth disease 
[6,72]

; Hemiparesis after 

stroke 
[91]

; Hemiplegia after stroke 
[92]

 

Hip flexion and/or knee flexion 

(steppage gait) * 

Duchenne muscular dystrophy 
[56]

; Charcot-

Marie-Tooth disease type 1A 
[105]

; Unilateral 

artificial reduced knee flexion in healthy sub-

jects 
b
 
[115]
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Increased plantarflexion on unaf-

fected side (vaulting)  * 

Charcot-Marie-Tooth disease type 1A 
[105]

; 

Spastic hemiplegic CP 
[17,77]

; Hemiplegia after 

stroke 
[92]

; Artificial unilateral knee immobiliza-

tion 
b
 
[115,116]

; Traumatic brain injury 
c
 
[106]

 

Initial toe contact Early onset of plantarflexors, 

reduces dorsiflexor activity 

Hemiplegic CP 
[117]

 

* indicates compensations that appear to be independent from the underlying pathology. 

a
  computer simulation studies 

b 
 in-vivo simulation studies / mimicking studies 

c
  single-case studies 

CP = cerebral palsy 

 

RELEVANCE & AIMS 

Clinical gait analysis is primarily used for treatment planning in patients. For the clinician it is 

hereby essential to identify the gait deviations that are primary and those which are 

secondary
 [1]

. This differentiation is crucial, as only primary gait deviations should be targeted 

by medical treatment. As soon as the primary source of the problem is corrected, the secon-

dary gait deviations are meant to resolve spontaneously
 [17,68]

. When secondary deviations are 

mistaken as cause of the gait abnormality and treated accordingly, this therapy can either be 

inefficient or even deteriorate the walking performance of a patient
 [17,66-68]

. "Regrettably, er-

rors of this type are all too common, particularly when treatment is prescribed without the 

benefit of gait assessment"
 [1]

. Unfortunately, the distinction between primary and secondary 

gait abnormalities is not always obvious. Especially an overuse of the term 'compensation' is 

present in literature
 [64]

. 

Comparing a pathological gait pattern to a healthy one, as it is common practice, does not 

allow a clear differentiation between primary and secondary gait deviations
 [64]

. A more suit-

able method is to investigate patients under two different conditions, e.g. pre and post 

surgery
 [17]

, or with and without orthotics. Those gait parameters on the other joints that be-

come normal after surgery, or with orthotics, are most likely secondary gait deviations. An-

other possible method is to have healthy controls mimicking the gait pattern of a specific pa-

tient group, such as toe walking
 [117]

. Similarly, in vivo simulation studies, where a primary 

abnormality is induced can help to reveal secondary abnormalities
 [64]

. Walsh et al.
 [114]

 artifi-

cially elongated one leg of healthy subjects to simulate leg length discrepancy
 [114]

. Short 

hamstrings were imitated by a knee brace limiting knee extension by Whitehead et al.
 [118]

. 

Computer simulation
 [73,74,80]

, and especially forward modelling
 [65]

, are useful tools to distin-

guish between physical effects and compensations. In forward modelling it is possible to 

change one parameter, e.g. excessive plantarflexion, and evaluate if this alteration has a 

physical effect on adherent joints
 [65]

. Otherwise, one can search for similar gait patterns in 

patients with various pathologies. If patients with different primary diseases show similar gait 

deviations, these alterations are most likely secondary. Literature on such studies is scarce. To 
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the authors knowledge only one study has assessed abnormal muscle activity in patients with 

different orthopaedic impairments
 [32]

. However, Table 1.5 implies that there are compensa-

tions that are independent of the primary pathology. 

For all the reasons stated above, the objective of this thesis was to identify principles of 

pathological gait that are independent of the primary pathology. For instance, some gait devia-

tion could be a result of the (neuro-)musculoskeletal alteration in the first place, e.g. muscle 

weakness or joint stiffness, rather than spasticity. Therefore, it was investigated how muscles 

strength and changes of the gait pattern, e.g. when wearing orthoses, do influence the gait 

deviations of patients. The research question was whether there are similarities in the gait pat-

terns of patients with various primary diseases. It was aimed to provide an overview on the 

association between the muscle strength in relation to gait kinematics and abnormal EMG 

patterns during walking in patients with different (neuro-)musculoskeletal diseases. The hy-

potheses were: (i) A negative correlation between the amount of gait deviation and the mean 

manual muscle strength of the leg muscles exists; (ii) This correlation is similar across differ-

ent patient groups; (iii) The severity of the pathology is reflected in a higher gait deviation in 

patients with normal muscle strength; (iv) Abnormal EMG activity is present in all patient 

groups; (v) Muscle weakness and equinus gait are aetiological factors for EMG activity inde-

pendent of the pathology. Furthermore, the effect of a modified walking pattern of the lower 

limbs on the gait deviations of the upper body was evaluated. This was achieved by compar-

ing hemiplegic CP patients when walking on their toes (barefoot) and when an orthosis cor-

rects their ankle pattern to a heel-toe gait. 

ANALYSIS METHODS 

Principal Component Analysis (PCA) 

The Principal Component Analysis (PCA) is a common method for dimensionality reduction 

of high dimensional data. Mathematically, the PCA converts the i inter-related variables X = 

x1, x2, . . ., xi with an orthogonal transformation into a mutually uncorrelated space. The prin-

cipal component vectors (PC-vectors) are the eigenvectors E = e1, e2, . . ., ei of the covariance 

matrix of X, and they are often arranged in decreasing order of their sample variances. Hence, 

the first eigenvector is where the highest variance of the data is found and so on.  

Z = z1, z2, . . ., zi is the principal component score (PC-score) vector derived from the product 

of the eigenvectors and the data, hence Z = E
T
X, with the variables zi referred to as PC-scores. 

They contain information about the contribution of the PC-vector to the individual 

waveform
 [119]

. 

In the field of human movement analysis PCA can be successfully applied as feature extractor 

or as a data-driven filter
 [120]

. Due to the sensitivity of a PCA to the waveform
 [121]

, and as a 

data reduction technique
 [119,122]

, PCA became a valuable tool used on time series data such as 

joint angles in biomechanics
 [123-127]

. In this thesis PCA was applied to kinematic gait data to 

select a representative trial (see Chapter 3). 
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OUTLINE 

This cumulative thesis includes four publications addressing the two general research ques-

tions: Which gait deviations are primary and which are secondary, and can similar gait devia-

tions be observed in patients with different pathologies? The manuscript in Chapter 2 pro-

vides a method to analyse gait data. Chapter 3 and 4 consist of two cross-sectional studies 

comparing patients with different pathologies regarding their similarities and dissimilarities in 

gait. In Chapter 5 the effects of hemiplegic toe walking on the upper body were investigated. 

Chapter 2 describes a method based on PCA
 [119]

 to find a representative trial among numer-

ous measurements of a patient. Each patient, undergoing a gait analysis in the laboratory, has 

to walk several times under the same condition. Thereby, it is assured that one obtains a few 

characteristic trials or gait cycles for each patient. In order to be able to compare gait between 

different patients or between normal subjects and patients, one trial per person had to be se-

lected. The aim of this study, therefore, was to develop an algorithm for an automatic detec-

tion of a representative trial. The developed algorithm is described in detail and the results of 

its evaluation are presented and discussed. 

Chapter 3 evaluates how the muscle strength influences the gait kinematics in patients with 

different pathologies. The gait analysis data of 716 patients were retrospectively assessed. All 

patients were clustered into seven patient groups. The groups were formed according to the 

source of the problem: orthopaedic, neurologic with flaccid or spastic muscles, with or with-

out trunk control, and uni- or bilaterally involved. The Gait Profile Score
 [128]

 was calculated 

from the joint angles of these patients in comparison to healthy controls, as a global measure 

on the quantity of gait deviation. Manual muscle strength testing
 [35]

 delivered the mean mus-

cle strength of each patient. By means of the generalised least square models, the correlation 

between muscle strength and Gait Profile Score was calculated. Additionally, it was tested 

whether the influence of muscle strength on the gait pattern defers between the different pa-

tient groups. 

Chapter 4 addresses premature plantarflexor activity in the loading response during walking. 

Throughout this gait phase the calf muscle is typically quiet within healthy subjects. Two hy-

potheses where explored retrospectively: (i) premature plantarflexor activity correlates with 

equinus foot contact, and (ii) weak patients show premature gastrocnemius muscle activity 

more often than patients with normal muscle strength. This study provides also an overview 

on the prevalence of premature gastrocnemius activity in the same seven patient groups as in 

Chapter 2. To avoid a possible bias by the patient group clustering according to their diagno-

sis, all patients were also clustered according to their impaired joints. The hypothesis (ii) was 

tested again on this second patient clustering. 

Chapter 5 discusses the effects of toe walking and hinged ankle-foot orthoses (hAFO) on the 

upper body kinematics of hemiplegic CP patients. These patients typically walk on their toes 

on the hemiplegic side. Therefore, it is possible that some of the upper body deviations that 

are clinically observed are rather secondary to their instable foot position than primary due to 

spasticity. In a first step, it was detected which upper body joint angles deviated from the 
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norm when the patients walked on their toes. In a second step, the same patients were ana-

lysed while walking with an hAFO, which corrected their foot position to a heel initial con-

tact. The main objective was to investigate if any of the abnormal upper body parameters 

while toe walking are corrected by wearing an hAFO.  

The thesis is completed by a conclusion and outlook on future research in Chapter 6. 

CONTRIBUTORS 

In order to secure the best possible outcome, the contents of the following chapters were de-

veloped within an interdisciplinary team. Although the main work was done by the author of 

this thesis (KS), five experienced scientists have supplied valuable contributions, namely, 

Prof. Dr. med. Reinald Brunner (RB), Dr. Jacqueline Romkes (JR), Prof. Dr. Bert Müller 

(BM), Prof. Dr. Philippe Cattin (PCC), Dr. Cora Huber (CH), and Dr. Michael Coslovsky 

(MC). In the following the contributions of the authors are listed. The authors' order is the 

same as in the published articles. 

Chapter 2: A Selection Method for a Representative Trial 

PCC: Assistance with development of the algorithm, and critical reviewing of the manu-

script for important intellectual content. 

RB:  Assistance with development of the algorithm, suggestions for graphical representa-

tion of figures, and critical reviewing of the manuscript for important intellectual con-

tent. 

BM:  Suggestions for graphical representation of figures, and critical reviewing of the 

manuscript for important intellectual content. 

CH:  Assistance with programming the algorithm, evaluation of the algorithm, and critical 

reviewing of the manuscript for important intellectual content. 

JR:  Assistance with development of the algorithm, suggestions for graphical representa-

tion of figures, and critical reviewing of the manuscript for important intellectual con-

tent. 

Chapter 3: The Influence of Muscle Strength on Gait Kinematics 

JR:  Design of the study, suggestions for data interpretation, suggestions for graphical rep-

resentation of figures, and critical reviewing of the manuscript for important intellec-

tual content. 

MC:  Statistical calculations, and assistance with writing of the results and discussion sec-

tion. 
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RB:  Design of the study, suggestions for data interpretation, suggestions for graphical rep-

resentation of figures, drafting of the introduction and discussion section of the manu-

script, and critical reviewing of the methods and results section for important intellec-

tual content. 

Chapter 4: The Influence of Muscle Strength and Equinus Gait on EMG 

JR:  Design of the study, suggestions for data interpretation, suggestions for graphical rep-

resentation of figures, and critical reviewing of the manuscript for important intellec-

tual content. 

RB:  Design of the study, suggestions for data interpretation, suggestions for graphical rep-

resentation of figures, and critical reviewing of the manuscript for important intellec-

tual content. 

Chapter 5: The Effect of Toe Walking on the Upper Body 

RB:  Design of the study, suggestions for data interpretation, suggestions for graphical rep-

resentation of figures, and critical reviewing of the manuscript for important intellec-

tual content. 

JR:  Design of the study, suggestions for data interpretation, suggestions for graphical rep-

resentation of figures, and critical reviewing of the manuscript for important intellec-

tual content. 
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ABSTRACT 

Experimental data in human movement science com-

monly consist of repeated measurements under compara-

ble conditions. One may face the question of how to 

identify a single trial, a set of trials, or erroneous trials 

from the entire dataset. This study presents and evaluates 

a Selection Method for a Representative Trial (SMaRT) 

based on a Principal Component Analysis. SMaRT was 

tested on 1841 datasets containing 11 joint angle curves 

of gait analysis. The automatically detected characteristic 

trials were compared with the choice of three independ-

ent experts. SMaRT required 1.4 s to analyse 100 data-

sets consisting of 8 ± 3 trials each. The robustness 

against outliers reached 98.8% (standard visual control). 

We conclude that SMaRT is a powerful tool to determine 

a representative, uncontaminated trial in movement 

analysis datasets with multiple parameters.  
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INTRODUCTION 

Experimental data in human movement science commonly consist of repeated measurements 

under comparable conditions. A trial often comprises of several parameters as a function of 

time, such as joint angle curves. Here, the question arises on how to identify a number of 

characteristic trials or how to exclude erroneous trials. For simplified interpretation, the ex-

perimental data might be reduced to a single characteristic trial or to a mean of several trials 

to alleviate assimilation
 [1]

. Calculating the mean, however, can filter out peaks and time 

shifts
 [2]

. Regardless if one prefers to progress with one or with a mean of several trials, a de-

fined number of uncontaminated trials from the entire dataset has to be selected. 

In the literature some alternative methods to identify representative trials were proposed
 [3-6]

. 

The most common approach is visual inspection
 [6]

. While outliers and contaminated data are 

easily identified, the constraints of this approach lie in time consumption and lack of objectiv-

ity. Random selection of trials is fast
 [3]

, but only meaningful for entirely uncontaminated data. 

Duhamel et al.
 [4]

 published an algorithm to select the subset of four knee flexion/extension 

curves based on the intra-class correlation coefficient. Although this approach can be ex-

tended to several joint angles, it is unlikely that the same trial for each curve will be selected. 

The drawback of the proposal to detect one representative trial across several inter-segment 

angles from Carson et al.
 [5]

 is the averaging, as waveform information is neglected. There-

fore, it is desirable to reveal a method, which allows to (1) identify representative trials across 

several joint angles, (2) be automatic and fast, (3) be reliable and avoid the subjectivity of 

visual inspection, and (4) to be robust against erroneous data, including labelling errors. The 

purpose of this work is to evaluate the Principle Component Analysis (PCA)
 [7]

, as an ap-

proach for the automatic detection of representative trials. 

METHODS 

Data acquisition and processing 

To evaluate SMaRT, 1841 retrospective datasets, acquired from daily clinical practice be-

tween 1999 and 2010, were included. Data originated from patients with various gait disor-

ders (1653 datasets) and healthy subjects (188 datasets). All participants signed written con-

sent, as required by the responsible ethical committee. 

A VICON motion capture system (Oxford, UK) with six cameras was used to track the trajec-

tories of reflective markers which were attached to anatomical landmarks according to the 

Plug-in-Gait model
 [8]

. Eleven joint angles were calculated and normalised to one gait cycle 

by means of 51 discrete values: pelvic tilt/obliquity/rotation, hip flexion/abduction/ rotation, 

knee flexion/abduction, ankle flexion/rotation, and foot progression. 
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SMaRT 

SMaRT was implemented in MATLAB (MathWorks Inc., R2010a, Natick, USA) and was run 

separately for each body side. In the supplementary material we provide the SMaRT code. 

A dataset for one subject consisted of a three-dimensional matrix Xtif containing a patient de-

pendent number of trials t (3 to 18), data points i = 51, and angles f = 11. 

Firstly, SMaRT applied a PCA
 [7]

 on Xti, i.e. on each trial and each angle of one individual 

subject, separately. The output delivered PC-scores Ztn, where n is the number of PC-scores, 

i.e. number of trials minus one. Secondly, the median Mn of the PC-scores was determined 

across all trials of one individual subject for the 11 angles, separately. Thirdly, the Euclidean 

distances dt
 [9]

 of each trial of a subject to the median of the PC-score were computed 

(Figure 2.1). 

After applying the three steps for each angle individually, the distances of each trial across all 

angles were summed. In this specific evaluation of SMaRT, the trial with the smallest overall 

distance to the median (Figure 2.2) was selected and defined as a representative trial. 

Figure 2.1: PC-scores and median for all seven trials of a single subject 

The scatter plot represents the first two PC-scores for the foot progression angle during walking for each 

trial (symbols) of a subject. The calculated median of the PC-scores is represented with a cross. 
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Figure 2.2: Flowchart of SMaRT, showing the single steps to select the representative trial 

The black fields represent each step of the algorithm. The text boxes on the right give an accurate descrip-

tion of the input and output data of the single steps. As an example, we used here 11 joint angles normal-

ised to 51 data points for 7 trials. 

 

Evaluation of SMaRT 

Two evaluation procedures were accomplished. Firstly, the robustness of SMaRT against out-

liers was determined by counting the false positives. The first author estimated the error rate 

via visual inspection of 1841 datasets. 

Secondly, three experts in clinical gait analysis visually selected representative trials to be 

compared with the SMaRT choice. From the experimental data, 30 sets with 219 trials were 

randomly selected using a MATLAB routine. The experts independently worked through 

these datasets, where each dataset was plotted into consistency graphs containing all recorded 

trials for a subject. The experts assessed each trial and angle. They then decided whether the 

trial was representative or not. Multiple selections were allowed. 

The number of representative trials on which one, two, or all three experts agreed on was ex-

pressed in percentage of the total number of trials. Additionally, the percentage of conformity 

between the selections of SMaRT and experts were evaluated. 
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RESULTS AND DISCUSSION 

SMaRT, since based on PCA, is sensitive to waveforms
 [10]

. Whereas trials with large wave-

form deviation (e.g. mirrored curves due to labelling errors) will have a large Euclidean dis-

tance to the median, trials with similar waveforms but with an offset from the median have a 

small distance. This is beneficial, as we usually consider larger waveform deviations more 

likely to result from measurement errors than offset curves with characteristic waveforms. 

Note that SMaRT does not evaluate the variability of the data. The consistency of the data 

could be determined by one of the methods proposed by Chau et al.
 [1]

 before running SMaRT. 

Performance of SMaRT 

SMaRT took 1.4 s to analyse 100 datasets consisting of 8 ± 3 trials each on a 64-bit computer 

(HP Compaq 8100 Elite). The three experts needed 15, 28, and 43 minutes to assess the 30 

datasets. Hence, SMaRT evaluates the data, without subjective bias, more than three orders of 

magnitude faster than the experts. While visual and random selection can produce different 

results in multiple assessments, SMaRT provides full repeatability. 

Evaluation of SMaRT 

In datasets with contaminated trials, SMaRT selected a trial without visible sign of contami-

nation (Figure 2.3). The first author revealed an error rate of SMaRT of 1.2%. SMaRT filters 

adequately erroneous data because the median, which is robust against outliers, is calculated. 

Hence, SMaRT operates as quality assurance where visual control is impossible due to large 

amounts of data. This procedure is limited to data with less than half of the trials contami-

nated. 

The SMaRT selection agreed with those of at least one expert to 96.7% (29/30), with those of 

at least two experts to 80.0% (24/30), and with those of all three experts to 56.7% (17/30). 

SMaRT once selected a trial not chosen by the experts. This trial, not a distinct outlier, 

showed a small irregularity in one angle. Although selection of multiple representative trials 

was allowed, the inter-rater reliability between the three experts was low. The three experts 

agreed on 25.1% (55/219) of representative trials only, and at least two experts agreed on 

44.3% (97/219). This affects the agreement between SMaRT and the choice of two, or even 

three experts. Nonetheless, the agreement between two experts and SMaRT is still regarded as 

high. 

In conclusion, SMaRT meets our requirements for an objective, fast, reliable, and automatic 

selection tool of a characteristic trial from multiple trials containing numerous angles. Hence, 

the selected trial is the same trial for all curves. Additionally, the method can be used as a 

filter for contaminated data or as a quality assurance procedure, as it is robust against a lim-

ited number of outliers. The algorithm can either be extended to an arbitrary choice of trials or 

to an individually required number of parameters (e.g. kinetic parameters) or both. The suc-
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cessful application of SMaRT may be profitably applicable to any kind of time series derived 

from movement analysis. 

 

 

Figure 2.3: Consistency plot of all seven trials for one subject 

The joint angle curves are plotted for all seven trials of one dataset, representing a single subject. The rep-

resentative trial (bold line) is the trial selected by the algorithm. 
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ABSTRACT 

Background: Muscle strength greatly influences gait 

kinematics. The question was whether this association is 

similar in different diseases. 

Methods: Data from instrumented gait analysis of 716 

patients were retrospectively assessed. The effect of 

muscle strength on gait deviations, namely the Gait Pro-

file Score (GPS) was evaluated by means of generalized 

least square models. This was executed for seven differ-

ent patient groups. The groups were formed according to 

the type of disease: orthopaedic/neurologic, uni-/bilateral 

affection, and flaccid/spastic muscles.  

Results: Muscle strength had a negative effect on GPS 

values, which did not significantly differ amongst the 

different patient groups. However, an offset of the GPS 

regression line was found, which was mostly dependent 

on the basic disease. Surprisingly, spastic patients, who 

have reduced strength and additionally spasticity in clini-

cal examination, and flaccid neurologic patients showed 

the same offset. Patients with additional lack of trunk 

control (Tetraplegia) showed the largest offset. 

Conclusion: Gait kinematics grossly depend on muscle 

strength. This was seen in patients with very different pa-

thologies. Nevertheless, optimal correction of biome-

chanics and muscle strength may still not lead to a nor-

mal gait, especially in that of neurologic patients. The 

basic disease itself has an additional effect on gait devia-

tions expressed as a GPS-offset of the regression line. 
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INTRODUCTION 

Instrumented gait analysis provides detailed information on the gait kinematics of a tested 

individual under standardised laboratory conditions. Inter-individual comparison of this data 

can become difficult, especially if large numbers of individuals are involved. Several gait 

scores have been developed for the purpose of an easier general overview: the Gillette Gait 

Index (GGI), earlier described as the Normalcy Index
 [1]

, the Gait Deviation Index (GDI)
 [2]

, 

and the Gait Profile Score (GPS)
 [3]

. These indices summarise kinematic data as a representa-

tion of the overall gait deviation as a single value. The more this index deviates from normal, 

the more the patient’s gait is pathological. The strong point of these indices is that they can 

give a statistical overview over a large cohort. A weak point is that they neither provide the 

direction of gait deviation (e.g. below or above the norm) nor the factors contributing to the 

change of function. Another weak point is that they do not show whether the deviation is due 

to time-shifts, or if the joint curves deviate in magnitude only. Until now, such indices have 

been mainly used for patients with neurologic diseases. As an example, Schwartz et al.
 [2]

 

found the GDI to decline with the severity of cerebral palsy when they compared the overall 

gait pathology in hemiplegia, diplegia, triplegia, and quadriplegia. This study revealed a co-

herence of the biomechanical deviation during gait with the variable geographical expression 

of a single basic disease, in this case the lesion of the central nervous system. 

While GPS and GDI are computed on the entire joint curve, the GGI is computed on specific 

parameters of each curve. Therefore, it reduces the information given by each curve before-

hand. The GPS was chosen for the present study as it is the most compound and neutral score 

in respect of the contributing parameters. It has the advantage over the GDI in that one can 

split the GPS up to the single joint levels, namely the GVS
 [3]

 for further analysis. 

Clinical testing, such as functional muscle strength testing, delivers further valuable informa-

tion to interpret gait analysis data. In the literature, muscle strength was identified as a major 

factor that influences gait
 [4-7]

. However, it is unknown to date, how the widely used GPS is 

associated with muscle strength. Further, one does not know if muscle weakness has the same 

effect on the gait deviations in patients with different pathologies. Although Schwartz et al.
 [2]

 

found higher gait deviations in more severe impaired cerebral palsy patients, it is necessary to 

investigate whether these findings were due to the increasing weakness of these patients or 

independent of their muscle strength. 

The purpose of the present study was to investigate the association between the muscle 

strength of patients and the kinematic gait deviation across various pathologies. We hypothe-

sised a negative correlation between the GPS, as a measure of the gait deviation, and the mean 

manual muscle strength of the leg muscles. The question posed was whether this correlation 

was similar across different patient groups. Additionally, we hypothesised that the severity of 

the pathology was reflected in a higher gait deviation in patients with normal muscle strength. 

Knowledge on the association between MMS and GPS in different patient groups is of high 

relevance as both parameters are widely used in the field of clinical gait analysis. 
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METHODS 

In this retrospective study all three dimensional gait analysis datasets from daily clinical prac-

tice in our Laboratory for Movement Analysis were considered. Consecutive data from 2001 

till 2012 were available, covering patients with different orthopaedic and neurologic patholo-

gies. All patients signed an informed consent. The study was approved by the local ethical 

committee. 

Subjects 

Patients were included in this study when providing at least three lower body kinematic trials. 

Only patients walking barefoot without any assistive devices were evaluated. Subsequently, 

data on manual muscle strength testing
 [8]

 had to be available. In total, 716 out of 1144 pa-

tients with 46 different primary pathologies met the selection criteria. Pathology groups of 

comparable size were formed in order to gain overview. The groups were clustered according 

to the source of the problem (only orthopaedic, neurologic spastic with trunk control, neu-

rologic spastic without trunk control, neurologic flaccid) and whether the problem was uni- or 

bilateral. Accordingly, seven groups were formed:  

1) Orthopaedic unilateral (OUni): All problems of foot, knee, hip including true diseases such 

as Morbus Perthes disease, as well as simple pain, and unilateral torsional malalignment; 

2) Orthopaedic bilateral (OBi): Spinal disorders without any neurologic involvement, Arthro-

gryposis Multiplex Congenita, leg length discrepancy, bilateral torsional malalignment; 

3) Neurologic flaccid unilateral (NflaUni): Poliomyelitis, palsy of single nerves; 

4) Neurologic flaccid bilateral (NflaBi): Spina bifida, paraplegia, muscle dystrophy, bilateral 

poliomyelitis, developmental retardation, trisomias with ligamentous laxity and muscle 

hypotonia; 

5) Neurologic spastic unilateral (NspUni): Hemiparesis of various aetiologies; 

6) Neurologic spastic bilateral with adequate trunk control (NspBi): Diplegia 

7) Neurologic spastic bilateral without adequate trunk control (NspBiNTC): Tetraplegia of 

various aetiologies (cerebral palsy, brain injury, syndromes). 

For an exact composition of the patient groups, please refer to the appendix Table S1. 

Data Collection 

Kinematic gait analysis data were collected by a VICON motion analysis system (six-camera 

system 370, 60 Hz, marker diameter 25 mm, years 2001-2002; six-camera system 460, 120 

Hz, marker diameter 14 mm, years 2003-2010; twelve-camera system MXT20, 200 Hz, since 

2011). Patients and controls walked on a 10 m level ground walkway at a self-selected speed. 
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According to the protocol of Kadaba et al.
 [9]

, fifteen passive reflective markers were fixed 

bilaterally to specific anatomical landmarks on the subject's legs and pelvis. For appropriate 

anthropometric scaling height, weight, leg length, width of ankles and knees, and tibial torsion 

were measured. The knee alignment device was used in the static trial to establish the knee 

flexion axis (Motion Lab Systems, Inc., Los Angeles, USA). 

Additionally, manual muscle strength was tested by a physiotherapist (scale 0 = paralysed 

muscle to 5 = strong/normal)
 [8]

 prior to the gait analysis. The muscle groups accessed were 

hip flexors/extensors/abductors and in-/external rotators, knee flex-/extensors, plantar-/ 

dorsiflexors. 

Data Processing and Analysis 

Kinematic data were normalised to a gait cycle containing 51 data points (0-100%) using 

MATLAB software (MathWorks, Inc. Version R2010a, Natick, MA, USA). For each patient 

the GPS
 [3]

 was calculated as a quantity of overall gait deviation. For patients in groups with 

similar GPS, the GDI
 [2]

, GGI
 [1]

, and Gait Variable Scores (GVS)
 [3]

 were additionally calcu-

lated to distinguish gait deviations in each joint of the lower body and each body plane. The 

Geers' Metric, as summarised in Lund et al.
 [10]

, helped identify whether the joint angle devi-

ated in magnitude or showed a time/phase shift. For calculation of the gait indices, 102 data-

sets of healthy subjects acquired in our laboratory were used. The mean manual muscle 

strength (MMS) of a patient was calculated by averaging all values derived by the manual 

muscle testing on the leg. 

Primary variables of interest were the GPS and MMS. For patient groups with similar GPS, 

the GGI, GVS, and Geers' Metric values in sagittal plane of the pelvis, hip, knee, and ankle 

were compared. In frontal plane the pelvis and hip were of interest and in transversal plane the 

pelvic, hip, ankle, and the foot progression angle. 

Statistical Analysis 

One representative gait trial for each patient was automatically selected for further analysis. 

The selected trial was the trial closest to the median of the principal component score across 

all angles
 [11]

. In unilateral impaired patients, the involved leg was investigated. For those with 

bilateral impairments, one leg was selected randomly. 

Statistical analysis was performed with R2.12.0
 [12]

. To assess whether the effects of MMS 

level on GPS differ among pathology groups we included MMS and its interaction with pa-

tient group into the model. The results were adjusted for Body Mass Index (BMI), age, age
2
, 

and sex. The interactions of patient group with age and age
2
 were also tested. Due to hetero-

geneity of the data, generalised least squares were used
 [13]

. Models with different variance 

structures were compared using Akaike’s Information Criteria to determine the optimal vari-

ance structure. The variance structure giving the best fit, allowed for different variances per 

treatment group (function varIdent, R package nlme). For ease of interpretation, GPS levels 

between the groups were compared at a MMS of 5 (normal muscle strength), and age was 
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centred on its mean (17.5 years). Interactions were removed from the model when not signifi-

cant (p>0.05). Three data points were identified as outliers and removed from the analysis, 

making no qualitative difference in the results but a better estimation of coefficients. Values 

are represented as estimates and standard errors (SE) unless otherwise specified. 

Kruskal-Wallis multiple comparison testing and Mann-Whitney U post hoc tests with the 

Bonferroni-Holm adjustment were conducted to derive differences between the patient char-

acteristics of the OUni group and the remaining patient groups. Further, Mann-Whitney U-

tests were conducted for GVS and Geers' Metric values for groups with similar GPS, as the 

majority of the data was not normally distributed according to the Shapiro-Wilk test. 

RESULTS 

Table 3.1 describes the characteristics of the seven patient groups and healthy controls. 

Table 3.1: Subject groups characteristics. 

For each patient group the number of subjects (N), the sex (female/male), as well as the mean (± one 

standard deviation) age in years, body mass index (BMI), cadence, walking speed and step length are re-

ported. The last three gait parameters are reported as non-dimensional parameters. The abbreviation for 

the patient groups are orthopaedic uni-/bilateral (OUni/OBi), neurologic flaccid uni-/bilateral 

(NflaUni/NflaBi), neurologic spastic uni-/bilateral with/without adequate trunk control 

(NspUni/NspBi/NspBiNTC). Significant differences compared to the reference group (OUni) are high-

lighted in bold. 

Subject 

group     
Normalised Gait Parameters 

N 

 

Sex  

[f/m] 

Age [years] 

(SD)  

BMI [kg/m
2
] 

(SD)  

Walking 

speed (SD) 

Cadence 

(SD) 

Step length 

(SD) 

Controls 102 51/51 25.1 (12.0) 21.7 (3.4) 0.45 (0.05) 35.42 (2.05) 0.77 (0.07) 

OUni (ref.) 93 48/45 20.9 (13.7) 21.8 (4.4) 0.43 (0.07) 34.76 (2.93) 0.75 (0.09) 

OBi 176 81/95 15.7 (8.7) 20.5 (4.0) 0.44 (0.06) 35.12 (2.77) 0.76 (0.09) 

NflaUni 12 4/8 21.8 (16.3) 19.6 (3.5) 0.41 (0.09) 33.09 (4.58) 0.76 (0.10) 

NflaBi 83 41/42 19.4 (12.9) 21.5 (5.6) 0.36 (0.09) 32.03 (4.45) 0.66 (0.13) 

NspUni 176 80/96 16.7 (10.0) 20.8 (5.1) 0.41 (0.08) 33.31 (3.98) 0.72 (0.10) 

NspBi 119 46/73 15.8 (7.9) 20.0 (3.9) 0.37 (0.09) 33.36 (4.33) 0.67 (0.12) 

NspBiNTC 57 20/37 19.1 (9.5) 20.3 (4.5) 0.34 (0.12) 32.01 (6.60) 0.61 (0.16) 
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MMS had a strong and negative effect on the GPS score (MMS: -2.9 SE 0.22, t701 = -13.7, 

p < .001). No significant differences in this relationship existed between the patient groups, as 

the interaction between MMS and patient group was not significant (F6,695 = 0.5, p = .807) 

(Figure 3.1). However, Patient groups strongly differed in the GPS offset (F6,701 = 6.7, 

p < .001) at a MMS of 5 (Table 3.2).  

Figure 3.1: Effect of muscle strength on GPS 

Regression lines and scatter plots of mean manual muscle strength (MMS) are plotted against Gait Profile 

Score (GPS) in the different patient groups. The grey band represents 95-GPS-percentile of the norm, and 

the white line marks the median of the norm. The patient groups are orthopaedic uni-/ bilateral (OUni/ 

OBi), neurologic flaccid uni-/ bilateral (NflaUni/ NflaBi), neurologic spastic uni-/ bilateral with/ without 

adequate trunk control (NspUni/ NspBi/ NspBiNTC).  
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Table 3.2: Summary of differences in mean Gait Profile Score (GPS) by patient groups at mean 

manual muscle strength (MMS) of 5. 

The differences in the intercepts (Gait Profile Scores value) at the mean age (17.5 years) and at normal 

muscle strength (MMS = 5) of each patient were compared to the reference group OUni. Hence, the sum 

of the intercept of OUni and another patient group estimates the GPS of this group. Coefficients are ex-

pressed per year of age relative to the centred age. Interaction values represent the differences in the 

strength (slope) of the effect of centred age (AgeC = 17.5 years) in the different groups. The abbreviation 

for the patient groups are orthopaedic uni-/bilateral (OUni/OBi), neurologic flaccid uni-/bilateral 

(NflaUni/NflaBi), neurologic spastic uni-/bilateral with/without adequate trunk control 

(NspUni/NspBi/NspBiNTC). Standard error (SE) of the intercepts, t-values and significance of the differ-

ence (p) are reported. Significant differences are highlighted in bold. 

Patient group Intercept (SE) t p-value 

OUni (reference) 4.9 (0.7) ------ ------ 

OBi 0.1 (0.3) 0.34 .739 

NspUni 0.5 (0.4) 1.24 .217 

NspBi 1.7 (0.5) 3.83 <.001 

NflaBi 1.7 (0.5) 3.22 .001 

NspBiNTC 2.5 (0.6) 4.08 <.001 

NflaUni 3.1 (1.0) 3.07 .002 

AgeC:OUni (reference) -0.09 (0.04) -2.25 .025 

AgeC:OBi -0.04 (0.03) -1.31 .190 

AgeC:NspUni 0.02 (0.03) 0.65 .511 

AgeC:NspBi 0.04 (0.04) 0.86 .391 

AgeC:NflaBi -0.08 (0.04) -2.21 .028 

AgeC:NspBiNTC 0.08 (0.06) 1.41 .158 

AgeC:NflaUni -0.15 (0.06) -2.38 .018 

 

In comparison, our healthy controls had a median GPS of 4.8° (interquartile range 3.9-5.8). 

The GPS offset of NspUni compared to the reference group (OUni) was minimal (0.5) and 

similar to OBi (0.1). It was larger with NspBiNTC (2.5) and NflaUni (3.1). The offsets of 

NflaBi and NspBi were similar (1.7). Figure 3.2 displays the mean angles of the NspBi and 

NflaBi. Table 3.3 lists the differences between these two groups concerning the single joint 

levels and body planes in GVS and Geers' Metric. 

The interaction patient group*age
2
 was not significant, and was removed from the model 

(F6,681 = 0.792, p = 0.577). The effect of age on GPS was quadratic, and depended on patient 

gender (age*sex: F1,701 = 9.5, p = .002; age
2
*sex: F1,701 = 5.9, p = .015). The marginal effects 

of age and sex on GPS can be summed as GPS = -0.09 x age + 0.002 x age
2 

for females and 

GPS = 0.16 + 0.03 x age + 0.006 x age
2
 for males. 
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BMI had a positive effect on GPS score (0.08 SE 0.03, F1,701 = 6.5, p = .011). Age had a sig-

nificantly different effect on GPS score amongst patient groups (F1,701 = 3.1, p = 0.005). Ta-

ble 3.2 lists the slope of the age effect for each group separately. 

Figure 3.2: Joint angles of patients with spasticity and flaccid muscles. 

Mean joint angles with ± one standard deviation band of patients with spasticity bilateral (NspBi = black) 

and patients with neurologic involvement and flaccid muscles (NflaBi = gray). The data are time normal-

ised to 0-100% of a gait cycle (x-axis) and expressed in degrees (y-axis). 
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Table 3.3: Differences between spastic patients and patients with flaccid muscles in various gait in-

dexes. 

The median of each group and the interquartile ranges are stated, as well as statistical differences between 

the two groups (p-values). Significant differences are highlighted in bold. Rows denote the different gait 

indexes. List of abbreviations: NspBi = patients with neurologic impairment and spasticity bilateral, 

NflaBi = neurologic flaccid bilateral patients, GDI = Gait Deviation Index, GGI = Gilette Gait Index, 

GPS = Gait Profile Score, GVS = Gait Variable Score, Geers = Geers Metric where M = magnitude and 

P = phase shift, flex/ex = flexion/extension, plan/dors = plantar/dorsiflexion, ab/add = ab-/adduction, 

rot = rotation. 

 
NspBi NflaBi 

 
Index Median Range Median Range p-value 

GDI kinematic 75.3 (66.4-83.8) 75.8 (65.6-86.3) .868 

GGI 157.7 (71.6-175.4) 144.6 (57.7-156.7) .143 

GPS 11.3° (8.3°-14.1°) 11.5° (7.5°-14.5°) .907 

GVS pelvic flex/ex 10.0° (5.4°-13.8°) 9.8° (4.7°-13.0°) .501 

GVS hip flex/ex 11.5° (6.8°-15.1°) 13.3° (7.5°-18.3°) .071 

GVS knee flex/ex 14.0° (8.9°-17.3°) 12.8° (7.8°-16.8°) .172 

GVS ankle plan/dors 10.0° (5.7°-11.3°) 12.6° (6.8°-17.1°) .002 

GVS pelvic ab/add 3.8° (2.2°-5.1°) 3.9° (2.4°-4.4°) .878 

GVS hip ab/add 5.0° (3.1°-6.1°) 5.9° (3.3°-7.5°) .255 

GVS pelvic rot 6.6° (4.0°-8.2°) 7.0° (3.4°-8.2°) .461 

GVS hip rot 12.2° (6.7°-16.9°) 11.3° (5.8°-13.8°) .216 

GVS foot rot 14.1° (7.3°-19.5°) 13.4° (6.4°-18.1°) .457 

Geers pelvic flex/ex (M) 90.9 (47.1-131.7) 86.0 (38.2-128.4) .528 

Geers pelvic flex/ex (P) 4.9 (2.8-6.9) 4.3 (2.1-5.8) .010 

Geers pelvic ab/add (M) 79.2 (28.2-107.0) 84.2 (14.6-125.7) .642 

Geers pelvic ab/add (P) 26.7 (17.1-35.5) 27.9 (16.4-38.3) .695 

Geers pelvic rot (M) 174.6 (93.4-240.7) 201.1 (63.1-256.7) .876 

Geers pelvic rot (P) 27.5 (18.3-35.9) 25.8 (17.1-32.8) .509 

Geers hip flex/ex (M) 27.8 (11.8-43.7) 31.4 (1.2-58.1) .903 

Geers hip flex/ex (P) 7.9 (5.3-10.2) 9.9 (6.6-13.0) .002 

Geers hip ab/add (M) 48.7 (9.9-77.2) 74.6 (19.6-94.3) .071 

Geers hip ab/add (P) 33.1 (23.4-42.8) 34.8 (22.0-47.3) .644 

Geers hip rot (M) 155.2 (50.9-229.0) 141.6 (51.9-184.0) .386 

Geers hip rot (P) 34.4 (28.2-39.4) 34.3 (25.7-41.7) .667 

Geers knee flex/ex (M) 6.9 (-9.7-17.9) 2.0 (-15.8-13.1) .048 

Geers knee flex/ex (P) 10.8 (7.0-14.1) 10.6 (7.0-14.5) .777 

Geers ankle plan/dors (M) 35.4 (-12.4-42.2) 67.9 (-1.0-109.9) .001 

Geers ankle plan/dors (P) 28.4 (19.7-35.6) 31.2 (22.2-40.2) .079 

Geers ankle rot (M) 99.5 (-6.2-187.4) 139.7 (30.9-201.4) .043 

Geers ankle rot (P) 25.8 (14.3-26.9) 24.3 (13.9-24.2) .616 

Geers foot rot (M) 72.6 (-10.2-114.6) 98.5 (6.8-184.2) .073 

Geers foot rot (P) 48.8 (19.4-74.2) 33.8 (13.7-51.0) <.001 
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DISCUSSION 

In this study, the association between the gait deviation (GPS) and muscle strength (MMS) in 

various patient groups was investigated. The GPS is one single number which expresses the 

degree of gait pathology in an individual.  

The results showed a clear dependence of gait deviations, assessed by the GPS, on muscle 

strength represented by a negative correlation. It is interesting that this correlation does not 

differ in the various pathology groups. Although the GPS does not represent a specific gait 

pattern, the severity of gait affection seems to depend on muscle strength. Even though Fig-

ure 1 yields the impression that the correlation is linear, this must be taken cautiously consid-

ering the MMS is a categorical ordered scale and not truly metric.  

Our healthy controls had a similar GPS (4.8°) than the reference group in Baker et al. 
[3]

 with 

5.2°. Neurologic diseases show a constant offset of the GPS for all muscle strength levels. 

The reference group OUni has an almost normal GPS at normal muscle strength. OBi and 

NspUni are only slightly higher and are still in the interquartile range of the norm. This im-

plies that these three patient groups can still produce normal gait patterns given the fact that 

they have normal muscle strength. In contrast, NflaBi, NspBi, and NspBiNTC patients can 

hardly ever reach normal gait values. The NflaUni group GPS values may be difficult to ex-

plain, however, they could be biased due to the small group size. 

It is further surprising that for well comparable groups, such as NspBi and NflaBi, the GPS 

offset is above the Minimal Clinically Important Difference
 [14]

 to OUni, and is equal for both 

groups. This is interesting as NspBi have a neurologic pathology and weakness similar to 

NflaBi, and one would expect spasticity to contribute to a higher gait deviation in comparison 

with NflaBi. However, this was not reflected in any of the gait indices GPS, GGI or GDI. This 

is probably due to their good correlation with each other
 [2,3]

. The visual inspection of the joint 

angle curves confirmed these results, as there were no greater visual differences between the 

curves of NspBi and NflaBi. The significant difference in the GVS ankle plantarflexion angle 

between these two groups resulted mainly from the magnitude offset as discovered by the 

Geers' Metric. Although the Geers' Metric results disclosed further significant phase shifts at 

the pelvic, hip, and knee flexion angle, the absolute differences of the means were within 0.6-

4.9%, which is rather low. The differences in ankle rotation magnitude and in foot progression 

phase shift were higher, however, these are not the most reliable and relevant angles in the 

model. Furthermore, some of the significant results in Table 3.3 might result from multiple 

testing, which was not corrected for. 

Similarly, the group NspUni differed only slightly from OUni, which again did not show a 

clear effect of spasticity. These results raise the questions: how much does spasticity influence 

the gait pattern, and how important is spasticity to gait deviations at least in patients with 

good trunk control? 

The large GPS offset of NspBiNTC implies that the lack of trunk control adds additional dif-

ficulties to walking. These patients, mainly with tetraparetic cerebral palsy, present more 

global stiffness than patients with a more hyperreflexic type of spasticity like diplegics. It is 
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impossible to separate the effect of stiffness from the lack of trunk control, but probably these 

two factors are linked.  

GPS increase depends on muscle strength. The severity of the basic disease adds an offset 

which limits the best possible result of treatment. Spasticity seems to be of minor importance 

whereas trunk control has a major effect on gait. Other factors may change the biomechanics, 

which at least to some degree also depend on the basic disease. For instance, extensibility of a 

joint, e.g. knee hyperextension, reduces the need of muscle strength to control posture
 [15]

. 

However, some diseases have an increased tendency to flexion deformity, such as cerebral 

palsy
 [16]

. Thus, some basic diseases can cope better with muscle weakness than others, which 

are limited in their compensatory availability. 

All modelled interactions only had the function to control their effect on the model. The re-

sults are not extensively discussed here. First, because they were not subject to the main re-

search question, and second, because their effects were small and should not be overempha-

sised.  

The study has some weaknesses. Some patient groups, such as OUni, OBi, and NflaBi, in-

cluded patients with diverse diagnoses, whereas other groups, such as NspUni and 

NspBiNTC, were more homogenous. The groups themselves differed in the distribution of 

their basic affection severity and in their mean age. The orthopaedic groups included more 

patients with normal muscle strength than the groups with neurologic diseases. 

Furthermore, the results merely apply to unassisted ambulant patients. Patients walking with 

assistive devices might behave differently. However, excluding these patients was inevitable, 

as walking aids stabilise the body, which in turn would distort the results. 

Other than measuring muscle strength with a dynamometer or an isokinetic machine, the 

manual muscle strength testing (MMST) is not highly exact and reliable by its nature
 [17]

. 

Some levels are less clearly defined than others: for instance, a value of 5 may be something 

between strong and extremely strong, whereas 3 is well defined as full activity against grav-

ity. Therefore, MMST provides only a general overview on muscle strength. In literature the 

intra-rater reliability for MMST was estimated medium to good with a weighted Kappa be-

tween 0.71-0.93 depending on the muscle group tested
 [18]

. Inter-rater reliability was estimated 

between 0.76-0.88 (intra-class correlation coefficient) for trained examiners
 [17]

. Although 

more reliable tests of muscle strength exist
 [17]

, MMST is a widely used examination in daily 

clinical practise
 [18,19]

. The advantages of its quick execution and the applicability to different 

patients, especially children, often overcome its weaknesses in clinical evaluation
 [19]

. In order 

to ensure the highest reliability possible, our physiotherapists participate in yearly trainings. 

This study found a negative correlation of muscle strength with the gait deviation. Besides 

muscle strength, the basic disease also has a direct effect on gait deviations. This was repre-

sented by the offset of the data which was independent of muscle strength. This aspect is of 

great interest as it may explain why, in spite of therapeutic interventions and surgical correc-

tions, neurologic patients hardly ever reach normal gait values. The remaining offset could be 

caused by the neurologic disease which remains after the correction of gait biomechanics. 
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However, it is interesting that spasticity did not increase the offset further than weakness, at 

least in cases with good trunk control. This may indicate that spasticity contributes much less 

to gait deviations as commonly expected, and may be overestimated in daily clinical practise. 

CONCLUSION 

In conclusion, gait kinematics depend on muscle strength. This correlation is independent of 

the basic disease. The basic disease, however, adds a constant factor which depends on the 

severity of the basic affection. Spasticity seems to play only a minor role in gait deviations as 

long as trunk control is adequate, whereas muscle strength and neurologic impairment have a 

major impact. 
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ABSTRACT 

This study provides an overview on the association be-

tween premature plantarflexor muscle activity (PPF), 

muscle strength, and equinus gait in patients with various 

pathologies. The purpose was to evaluate whether mus-

cular weakness and biomechanical alterations are aetio-

logical factors for PPF during walking, independent of 

the underlying pathology. In a retrospective design, 716 

patients from our clinical database with 46 different pa-

thologies (orthopaedic and neurologic) were evaluated. 

Gait analysis data of the patients included kinematics, 

kinetics, electromyographic activity (EMG) data, and 

manual muscle strength testing. All patients were clus-

tered three times. First, patients were grouped according 

to their primary pathology. Second, all patients were 

again clustered, this time according to their impaired 

joints. Third, groups of patients with normal EMG or 

PPF, and equinus or normal foot contact were formed to 

evaluate the association between PPF and equinus gait. 

The patient groups derived by the first two cluster meth-

ods were further subdivided into patients with normal or 

reduced muscle strength. Additionally, the phi correla-

tion coefficient was calculated between PPF and equinus 

gait. Independent of the clustering, PPF was present in 

all patient groups. Weak patients revealed PPF more fre-

quently. The correlations of PPF and equinus gait were 

lower than expected, due to patients with normal EMG 

during loading response and equinus. These patients, 

however, showed higher gastrocnemius activity prior to 

foot strike together with lower peak tibialis anterior mus-

cle activity in loading response. Patients with PPF and a 

normal foot contact could possibly be applying the plan-

tarflexion-knee extension couple during loading re-

sponse. While increased gastrocnemius activity around 

foot strike seems essential for equinus gait, premature 

gastrocnemius activity does not necessarily produce an 

equinus gait. We conclude that premature gastrocnemius 

activity is strongly associated with muscle weakness. It 

helps to control the knee joint under load independent 

from the underlying disease, and it is therefore a secon-

dary deviation. If it is treated as a primary target, then 

caution should be exercised. 
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INTRODUCTION 

Three dimensional (3D) gait analysis is applied to prescribe treatment interventions in patients 

with different pathologies. The range spans from patients with orthopaedic impairments to 

flaccid muscles as well as patients with spasticity
 [1]

. Due to anatomical and functional restric-

tions, patients typically reveal gait deviations, such as premature plantarflexor muscle activity 

(PPF) during the loading response of walking
 [2-8]

. 

In the literature, abnormal plantarflexor timing is mainly described in association with initial 

forefoot contact 
[2,3,9]

 and/or neurological impairment
 [5,7,8]

. For years, PPF was thought to 

result from spasticity or poor neuromuscular control in neurological patients
 [6,10]

. More recent 

studies, however, have claimed PPF to be a secondary deviation
 [4,5,9,11]

. According to Schmid 

et al.
 [12]

, secondary deviations are either passive secondary effects that follow as a physical 

mechanism to the primary deviation, or active compensations. The named studies came to the 

conclusion, that muscular weakness has been shown to provoke abnormal electromyographic 

(EMG) activity in orthopaedic patients with different impairments
 [4]

. Hereby, no anatomical 

relationship between a specific weak muscle and a muscle showing abnormal EMG timing 

was possible. The medial gastrocnemius muscle was the most frequently involved muscle 

with abnormal EMG timing in orthopaedic patients
 [4]

. This conforms to the findings of Gold-

berg et al.
 [13]

 where the plantarflexors were able to compensate for weakness in most of the 

major muscle groups in a forward dynamics simulation. Subsequently, PPF can result from 

biomechanical alteration alone, given that similar abnormal muscle activity patterns were ob-

served in healthy subjects when mimicking the walking pattern of patients
 [5,9,11]

. 

Although PPF can be observed in patients with various pathologies
 [3]

, the prevalence across 

different patient groups, such as in patients with neurological or orthopaedic impairments is 

still unknown. Muscle weakness and biomechanical alterations, seen as aetiological factors 

for PPF, were only examined in orthopaedic patients or healthy subjects. Therefore, it remains 

indistinct whether these are aetiological factors for all patients, independent of the primary 

pathology. 

The objective of the present study was to provide an overview of the association between ini-

tial equinus foot contact, muscle strength, and PPF during walking in patients with various 

pathologies. We hypothesised that PPF is present in all patient groups, and that muscle weak-

ness and equinus gait are aetiological factors for PPF independent of the pathology. The out-

come is of clinical relevance, as it will assist in interpreting PPF as a primary or secondary 

deviation. For clinicians this distinction is crucial. Whereas a primary deviation requires 

treatment, secondary deviations resolve spontaneously once the primary abnormality is 

treated
 [14,15]

. Consequently, the results of this study may improve treatment planning and 

therapy outcome. 
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METHODS 

We retrospectively examined our 3D gait analysis database that has been collected in our 

laboratory for movement analysis in the context of everyday clinical practice. The parameters 

included for all patients were spatiotemporal parameters, lower body kinematics and kinetics, 

a clinical examination including manual muscle strength testing, and EMG recordings. 

Subjects 

All 1144 patients of the consecutive clinical gait analysis database from 2001 till 2012 were 

considered for this study. The database comprised of patients with various orthopaedic and 

neurologic pathologies, mainly children and adolescents, but also adults. Selected for this 

study were all patients who walked barefoot without any assistive devices. They also should 

have provided complete EMG, kinetic and kinematic data for at least three trials, as well as a 

complete manual muscle strength testing. Finally, 716 patients with 46 different primary pa-

thologies and 102 healthy controls were included. All subjects signed an informed consent at 

the time of the gait analysis. The study was approved by the local ethical committee. 

Patient Group Clustering 

All patients were clustered three times according to different aspects. Subsequently, two sub-

groups for each group derived by the second and third clustering method were separated ac-

cording to mean manual muscle strength (MMS)
 [19]

. Subgroup "almost normal MMS" has an 

MMS equal to/above 4.5, and subgroup "reduced MMS" has an MMS of less than 4.5. 

First clustering strategy: patients were grouped according to their diagnoses, referred to as 

pathology groups. Here, the primary source of the problem was of interest: orthopaedic im-

pairments, neurologic spasticity with trunk control, neurologic spasticity without trunk con-

trol, and neurologic flaccid patients. Furthermore, it was distinguished whether the impair-

ment was uni- or bilateral. Therefore, seven groups were formed that are described in 

Table 4.1. Please refer to the appendix for a more detailed composition of the patient groups. 

Second, independently of the first clustering, the entire patient population was clustered ac-

cording to the impaired joint level, namely impairment groups, to avoid bias by the second 

clustering. A joint was defined to be impaired if the kinematic deviation in sagittal plane was 

above the 97.5 percentile of the Gait Variable Score (GVS)
 [16]

 for our controls. The thresh-

olds were for the hip 10.9°, knee 11.0°, and for the ankle 7.2°. This resulted in eight impair-

ment groups: 1) patients with abnormal hip; 2) patients with abnormal knee; 3) patients with 

abnormal ankle 4) patients with abnormal hip and knee; 5) patients with abnormal hip and 

ankle; 6) patients with abnormal knee and ankle; 7) patients with abnormal hip, knee, and 

ankle; 8) patients with normal hip, knee, and ankle joints. 
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Table 4.1: The seven pathology groups. 

Group ab-

breviation 

Type of im-

pairment 

Muscle 

tone 

Topographical de-

scription of the im-

pairment 

Included pathologies 

OUni Orthopaedic - Unilateral All problems of foot, knee, hip, 

including true diseases such as 

Morbus Perthes, as well as solely 

pain, and unilateral torsional mala-

lignment 

OBi Orthopaedic - Bilateral Spinal disorders, Arthrogryposis 

Multiplex Congenita, leg length 

discrepancy, torsional malalign-

ment 

NflaUni Neurologic Flaccid Unilateral Poliomyelitis, palsy of single 

nerves 

NflaBi Neurologic Flaccid Bilateral Spina bifida, paraplegia, muscle 

dystrophy, bilateral poliomyelitis, 

developmental retardation, tri-

somias 

NspUni Neurologic Spastic Unilateral Hemiparesis of various aetiology 

NspBi Neurologic Spastic Bilateral with ade-

quate trunk control 

Diplegia 

NspBiNTC Neurologic Spastic Bilateral without ade-

quate trunk control 

Tetraparesis of various aetiologies 

 

Third, again the whole patient population was divided in patients with normal EMG or PPF, 

and equinus or normal foot contact to evaluate the association between PPF and equinus gait. 

Clinical Gait Analysis 

Three dimensional gait analysis data were collected and pre-processed by a VICON motion 

analysis system (years 2001-2002: six-camera system 370, 60 Hz, marker diameter 25 mm; 

VICON Clinical Manager software; years 2003-2010: six-camera system 460, 120 Hz, marker 

diameter 14 mm, VICON Workstation software; since 2011: twelve-camera system MXT20, 

200 Hz, VICON Nexus software; VICON, Oxford, UK). Controls and patients walked at a 

self-selected speed on a 10m level ground walkway. Kinetic data were acquired by two force 

platforms at a sampling rate of 2520 Hz (2001-2007) and of 2400 Hz since 2007 (KISTLER 

Instruments AG, Winterthur, Switzerland). 

For the kinematics, fifteen passive reflective markers were fixed to specific anatomical land-

marks bilaterally on the subject’s legs and pelvis according to the protocol of Kadaba et 

al.
 [17]

. Height, weight, leg length, width of ankles and knees, and tibial torsion were measured 
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clinically for appropriate anthropometric scaling. A knee alignment device was used for the 

static trial (Motion Lab Systems Inc., Los Angeles, USA).  

Surface EMG was recorded simultaneously. Bipolar Ag/AgCl surface electrode pairs (10 mm 

diameter, 22 mm inter-electrode spacing) were placed bilaterally on the gastrocnemius me-

dialis muscle (GM) and tibialis anterior muscle (TA) according to the SENIAM guidelines
 [18]

. 

The ground electrode was placed over the tibial tuberosity. The electrodes were connected to 

single differential amplifiers with integrated band-pass filters at 10–700 Hz (Biovision AG, 

Wehrheim, Germany). The pre-amplifiers and electrodes remained the same for all measure-

ments. Between 2001 and April 2007, pre-amplified EMG signals were collected using a 

Zebris System (Zebris, Tübingen, Germany) and sampled at a rate of 2520 Hz. Since May 

2007 signals were collected by a Neurodata System (Neurodata, Vienna, Austria) at a sam-

pling frequency of 2400 Hz.  

Gait events, i.e. foot strike and toe-off, were set manually, and the kinematic and kinetic data 

were filtered by the Woltring filter (mean squared error set to 10) in the VICON software 

pipeline. 

During the clinical examination, a physiotherapist assessed muscle strength for the lower ex-

tremity muscles of each patient according to the manual muscle strength scale described in 

Hislop et al.
 [19]

 (scale 0 = paralysed muscle to 5 = strong). The muscle groups accessed were: 

hip flexors/extensors/abductors and in-/external rotators, knee flex-/extensors, plantar-/dorsi-

flexors. The average on all leg muscles formed the MMS. 

Data Processing 

The entire post-processing and all calculations were done using the MATLAB software 

(MathWorks, Inc. Version R2010a, Natick, USA). Kinematic and kinetic data were normal-

ised to a fixed amount of 51 data points per gait cycle (0-100%). A gait cycle was defined as 

the time between two consecutive foot strikes of the same leg. Subsequently, one trial (gait 

cycle) for each patient and control subject was selected using the SMaRT method
 [20]

. Hereby, 

the distance of each principal component score to the median of all trials was calculated for 

each angle, and the trial which is closest to the median across all angles was then selected
 [20]

. 

Raw EMG signals were visually inspected for artefacts and noise, before they were filtered by 

a 4
th

 order Butterworth band-pass filter with a cut-off frequency of 20-500Hz
 [21,22]

. Subse-

quently, the signal was full-wave rectified, and a moving average was calculated with a 39.8 

seconds time window similar to Romkes et al.
 [5]

. The EMG signal was further normalised for 

stance (31 data points) and swing phase (20 data points), delivering together a gait cycle of 51 

data points. Finally, the EMG was amplitude-normalised to the average value of each cycle. 

http://www.motion-labs.com/
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Parameter Definition 

Walking speed, cadence, and step length were evaluated in non-dimensional values according 

to Hof
 [23]

. The GVS were calculated for all patients as a quantity of the kinematic gait devia-

tion by using our own normative data.  

A muscle was defined to be abnormally active if the normalised EMG signal was above a 

certain percentage of its peak value which was set according to the walking speed
 [24]

. The 

thresholds were 28%, 23% and 31% for the non-dimensional walking speeds
 [23]

 of <0.227, 

0.228-0.363, and >0.363. PPF was specified as activity of the GM above the threshold during 

loading response phase of gait (i.e. 0% to 10% of the gait cycle). Validity of this method was 

examined by checking how many of our control subjects showed "abnormal" EMG when ap-

plying this method. The less observed the better. 

Equinus at initial contact was defined as 5° of plantarflexion or more at initial contact. This 

corresponded to approximately two standard deviations (1 SD = 2.8°) below the mean (1.2°) 

of the norm. Additionally, to exclude patients with a drop foot pattern, plantarflexion had to 

increase by at least 5 degrees over the last 10% of the gait cycle. If the latter was not fulfilled, 

but the ankle angle stayed 5° or more in plantarflexion during the entire gait cycle, it was still 

defined as equinus gait. The ankle position was termed as "normal foot contact" when the 

sagittal ankle angle did not meet any of the criteria for an equinus gait. 

The variables and gait phases of interest were: MMS, mean GM activity during loading re-

sponse and terminal swing (87-100% of the gait cycle
 [6]

), mean TA activity during terminal 

swing and peak activity in loading response, equinus gait at initial contact, and mean ankle 

power during loading response. 

Statistics 

In unilateral impaired patients, the involved leg side was analysed. In those with bilateral im-

pairments, one leg was selected randomly. Randomisation was achieved by creating a binary 

vector of 716 rows with the "randi" function in MATLAB. 

The phi correlation coefficients for each pathology group were calculated between the two 

dichotomous variables PPF and equinus gait. As the majority of the kinetic and EMG data 

were not normally distributed according to the Shapiro-Wilk test, non-parametric statistics 

were applied to reveal significant differences. Mann-Whitney U tests were conducted for the 

GM activity of patients with normal EMG and equinus versus patients with normal ankle for 

the mean of loading response phase and terminal swing separately. The same patient groups 

were compared through Mann-Whitney U tests on the mean differences of their TA activity 

during terminal swing. They were performed as well on the peak differences in the muscle 

during loading response. The level of significance was set at 5% for all tests. 

Prevalence of PPF within the different pathology and impairment groups is given as a per-

centage of the total number of patients in this group. The influence of muscle weakness on 

PPF was qualitatively assessed. 
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RESULTS 

Characteristics of the control and patient groups are specified in Table 4.2. PPF was identified 

in 38.7% (277/716) of all patients. It was equally distributed for both genders, with 

38.8% (124/320) in females and 38.6% (153/396) in males. Abnormal EMG was unevenly 

distributed but present in all pathology groups (Figure 4.1a). Furthermore, PPF was observed 

in none of the subjects within the control group. 

Table 4.2: Characteristics of the subject groups. 

The number of subjects (N), the mean (± one standard deviation) age in years, the sex (female/male), as 

well as mean (± one standard deviation) of the Body Mass Index (BMI), step length, walking speed, and 

cadence are reported for the healthy controls and each patient group. The last three gait parameters are re-

ported as non-dimensional parameters [ND]. The patient groups are decoded as follows: O/N = orthopae-

dic/neurologic, Uni/Bi = unilateral/bilateral involvement, fla/sp = flaccid/spastic muscles, NTC = no tho-

racal control. 

Patient 

group 

N Age [years] Sex 

[f/m] 

BMI [kg/m
2
] Step length 

[ND] 

Walking 

speed [ND] 

Cadence 

[ND] 

Controls 102 25.1 (±12.0) 51/51 21.7 (±3.4) 0.77 (±0.07) 0.45 (±0.05) 35.42 (±2.05) 

OUni 93 20.9 (±13.7) 48/45 21.8 (±4.4) 0.75 (±0.09) 0.43 (±0.07) 34.76 (±2.93) 

OBi 176 15.7 (±8.7) 81/95 20.5 (±4.0) 0.76 (±0.09) 0.44 (±0.06) 35.12 (±2.77) 

NflaUni 12 21.8 (±16.3) 4/8 19.6 (±3.5) 0.76 (±0.10) 0.41 (±0.09) 33.09 (±4.58) 

NflaBi 83 19.4 (±12.9) 41/42 21.5 (±5.6) 0.66 (±0.13) 0.36 (±0.09) 32.03 (±4.45) 

NspUni 176 16.7 (±10.0) 80/96 20.8 (±5.1) 0.72 (±0.10) 0.41 (±0.08) 33.31 (±3.98) 

NspBi 119 15.8 (±7.9) 46/73 20.0 (±3.9) 0.67 (±0.12) 0.37 (±0.09) 33.36 (±4.33) 

NspBiNTC 57 19.1 (±9.5) 20/37 20.3 (±4.5) 0.61 (±0.16) 0.34 (±0.12) 32.01 (±6.60) 

 

All of the following results are visual trends derived by Figure 4.1. For all pathology groups, 

except for the NflaUni group, the percentage of patients with PPF increased from the sub-

groups "almost normal MMS" to "reduced MMS" (Figure 4.1a). When grouping the patients 

according to their impaired joints derived by the GVS, PPF was observed in all patient groups 

once again (Figure 4.1b). Patients with normal GVS values; hence with normal sagittal plane 

kinematics for all joints, have the smallest rate of incidence, followed by patients with abnor-

mal kinematics for one of the joints. Patients with two or all three joints impaired showed the 

highest prevalence of PPF. Furthermore, PPF is more frequent in weak patients than in pa-

tients with normal muscle strength.  
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Figure 4.1: Prevalence of premature m. gastrocnemius medialis activity. 

The figure shows the number of patients in each pathology group (1a) / impairment group (1b) with ab-

normal (bottom part) and normal EMG (upper part) expressed in percentage (y-axis) of the total number 

(in bars) of patients in this group. The first column in each figure represents the distribution across all pa-

tients within this group (all). The second column displays the distribution in the subgroup with mean 

manual muscle strength (MMS) ≥4.5 (almost no rmal MMS), and the third (reduced MMS) shows the dis-

tribution in the subgroup with MMS <4.5. The patient groups in Figure 4.1a are decoded as follows: 

O/N = orthopaedic/neurologic, Uni/Bi = unilateral/bilateral involvement, fla/sp = flaccid/spastic muscles, 

NTC = no thoracal control. In Figure 4.1b the patients are grouped according to the impaired joint, e.g. 

the group 'hip' includes patients with an abnormal Gait Variable Score (GVS) of the hip. 
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The correlations between equinus gait and PPF were low to moderate, and they were merely 

significant for all patients (total), OUni, OBi, and NspBi (Table 4.3). 

Table 4.3: Correlation between premature GM activity and equinus gait. 

The phi correlation coefficients of premature GM activity and equinus gait are presented for the different 

pathology groups in the second column. The p-values for the correlations are listed in column three. Val-

ues in bold are considered significant at p<0.05. The patient groups are decoded as follows: O/N = ortho-

paedic/neurologic, Uni/Bi = unilateral/bilateral involvement, fla/sp = flaccid/spastic muscles, and NTC = 

no thoracal control. 

Group Phi p 

Total 0.246 .000 

OUni  0.388 .000 

OBi 0.262 .001 

NflaUni -0.333 .248 

NflaBi 0.085 .440 

NspUni 0.113 .133 

NspBi 0.227 .013 

NspBiNTC  -0.008 .952 

 

Across all patients with normal EMG, 79.0% (347/439) did not show an equinus gait, while 

21.0% (92/439) did. Of all patients with PPF, a normal foot contact was present in 

56.0% (155/277) of patients and an equinus foot contact in 44.0% (122/277). Patients with an 

equinus gait but without a PPF during loading response showed a significantly (p=0.001) 

higher mean GM activity during terminal swing than patients with a normal foot contact 

(Figure 4.2). Additionally, they had significantly lower peak TA activity during loading re-

sponse (p=0.026) than in patients with a normal foot contact (Figure 4.2). Both mean GM 

activity during loading response and mean TA activity during the terminal swing phase did 

not differ significantly within these two groups (GM: p=0.209, TA: p=0.318). Patients with a 

normal foot contact, despite PPF, revealed a higher mean foot absorption power (p=0.007) 

during loading response compared to patients without PPF (Figure 4.3). 
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Figure 4.2: Normal foot contact vs. equinus gait in patients with normal EMG. 

The EMG of patients with a normal foot contact (grey) and of patients with equinus gait (black) is plotted 

for an entire gait cycle. The loading response and terminal swing are the gait phases of interest, and are 

the areas shaded in grey. Presented are the mean and one standard deviation of the enveloped EMG signal 

for the respective groups. The EMG signals was normalised to the mean amplitude of the signal before 

they were averaged. Asterisks indicate statistical significant differences (* p<0.05, ** p<0.01). The ab-

breviation "n.s." stands for non-significant. 

 

 

Figure 4.3: Premature gastrocnemius activity vs. normal EMG in patients with normal foot contact. 

The ankle power of patients with a normal foot contact and premature m. gastrocnemius medialis (GM) 

activity (black) and of patients with normal EMG (grey) is plotted for an entire gait cycle. The grey 

shaded area is the loading response phase. Presented are the mean and one standard deviation of the ankle 

power for the respective groups. The bold black lines indicate statistical significant differences. 
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DISCUSSION 

This study focused on the association between equinus gait, the muscle strength of patients, 

and their EMG pattern across a variety of different pathologies. It was hypothesised that mus-

cle weakness is among the causes for PPF, and that PPF correlates with equinus gait. Knowl-

edge on the interrelations between these parameters can assist clinicians in interpreting gait 

deviations across different patient groups. 

In order to prevent overestimation of the number of patients with abnormal muscle timing, the 

criteria for PPF during loading response were set according to walking speed. Thereby we 

took into account that the EMG amplitude differs depending on the walking speed
 [24]

. In addi-

tion, the activity had to be constantly above the threshold for the entire loading response 

phase. The detection method for PPF was considered as valid, since none of the healthy con-

trols had an abnormal EMG according to this method. 

PPF was present across all pathological groups; hence, PPF is not dependent on one sole neu-

rological component. It remains unclear whether in spastic patients the neurological disease 

itself is another factor for PPF or whether the higher incidence of PPF is only due to a poorer 

neuromuscular control. Except for the NflaUni group, the number of patients with PPF in-

creased drastically between the subgroups "almost normal MMS" to "reduced MMS". Al-

though it is difficult to quantify, there exists at least a qualitative relation between the EMG 

signal and the force of the muscle
 [25]

. Consequently, an explanation for these findings could 

be that weak patients might need higher muscle activity to produce the same force, or at least 

a sufficient force to control the joints under a loaded condition. The results for the NflaUni 

group might have been biased due to a reduced amount of patients. Particularly in the sub-

group with normal muscle strength, where there were only four patients. 

The formation of patient groups according to their pathology obviously is a limitation. When 

clustering according to the pathology, inevitably some groups comprised patients with very 

different diagnoses such as OUni, OBi, NflaBi, whereas other groups, such as NspUni or 

NspBiNTC, were rather homogenous. The less homogenous groups were composed of pa-

tients with very different diagnoses, as the total number of individuals with a given pathology 

was too small. To account for that, we also grouped the patients according to their impaired 

joints. Similar to the grouping according to the pathology, weak patients showed PPF more 

frequently than patients with good muscle strength. Considering that for the two different 

grouping strategies, the main results were the same, we are confident that the patient group 

clustering did not bias our work. 

The correlations between equinus gait and PPF were lower than expected and often not sig-

nificant. In the patient groups NflaUni, NflaBi, NspUni, NspBiNTC there seems to exist no 

such correlation. Even in the patient groups where the correlations were significant (OUni, 

OBi, NspBi) the phi values were low. This fact shows that equinus gait is a predictor for PPF 

in these patients, however, it is only a weak one. Similarly, PPF and equinus gait are signifi-

cantly associated for all patients (Total) but only to a low extent. These results can be ex-

plained by the unexpected high number of patients with a normal foot contact despite PPF and 
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also by the unexpected high number of patients with an equinus gait not showing a PPF. In 

patients without PPF and equinus, the higher GM activity just prior to foot strike, together 

with lower TA activity could promote equinus gait with lower GM activity needed during the 

loading response phase of walking. Further, it is possible that these patients use their soleus 

muscle more to keep the equinus upright. Unfortunately, there were no EMG data on the so-

leus muscle available. Patients with normal EMG and equinus may still have a higher activity 

of the GM in loading response, but this activity is not constant or above the thresholds to be 

categorized as PPF. However, after looking at the mean EMG signals of these patients, this 

seems to be the case. Patients visually show more GM activity during loading response than 

patients with a normal foot contact but the difference is not significant. Higher GM activity 

around foot strike in equinus gait is in accordance with the literature
 [5,9,11]

. Increased activity 

is supposed to be essential in order to keep the same force generating capacity of the plantar-

flexor muscles while they are acting on a less-optimal force-length condition
 [3]

. Patients with 

PPF and a normal foot contact produced higher ankle absorption power than patients with 

normal EMG and normal foot contact in loading response. An explanation could be that pa-

tients with PPF could possibly use their muscle activity to prevent the tibia in translating for-

ward; hence, they might control the knee using PPF during loading response. When this hy-

pothesis can be verified by muscle modelling, this would hold evidence that the 

plantarflexion-knee extension couple does not only act in mid stance
 [10]

 but can be used also 

during loading response. 

CONCLUSION 

This study indicates that muscle strength is an aetiological factor for PPF independent of the 

primary pathology. Even in neurological patients, it is not only spasticity which leads to PPF, 

but also muscle weakness. In consequence, we conclude that PPF should be regarded as a 

secondary gait deviation with clinical relevance in all patients. While, for equinus gait, in-

creased GM activity just prior to foot strike or during loading response seems essential, PPF 

does not necessarily produce an equinus gait. Rather it can also be used to control the knee 

through the plantarflexion-knee extension couple in loading response. 
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ABSTRACT 

Background: Although both the lower and upper body of 

patients with hemiplegic cerebral palsy (hemi-CP) are af-

fected, studies on deviated trunk and arm movements 

during gait are scarce. The aim was to document gait de-

viations in the upper body of children with hemi-CP 

walking barefoot (toe walking) and with a hinged ankle-

foot orthosis (heel-toe gait). 

Methods: Children with hemi-CP walking barefoot and 

with a hinged ankle-foot orthosis were compared to 

healthy children. Kinematics of the trunk and upper 

limbs were investigated. A gap between the 95% confi-

dence intervals defined significant differences. 

Findings: Range of motion (RoM) of the pelvis, spine, 

and thorax tilt was increased in patients compared to 

controls. In the coronal plane, the pelvis was lower on 

the affected side within the patients, and they showed a 

significant increased RoM of the thorax. The pelvis and 

thorax were more anterior rotated on the unaffected side, 

and thorax RoM was increased in comparison to the con-

trols. The orthoses had no effect on the trunk movement 

alterations. Despite both sides are within normal ranges, 

the unaffected elbow and shoulder flexion RoM was sig-

nificantly increased compared to hemiplegic side with 

orthotics. 

Interpretation: Trunk kinematics of patients revealed ab-

normalities in all three planes compared to controls. A 

hinged ankle-foot orthosis restoring the first ankle rocker 

had no clear influence on the upper body kinematics. 

None of the observed gait deviations in the trunk and 

arms seemed to be a secondary deviation caused by toe 

walking and lacking of the first ankle rocker. The unaf-

fected arm compensated for the hemiplegic side by in-

creased arm swing.  
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INTRODUCTION 

Patients with cerebral palsy (CP) are the most commonly observed patients in gait laborato-

ries
 [1,2]

. Contrarily to patients with stroke, the brain damage in CP patients occurs prenatal or 

in early childhood
 [3,4]

. Hemiplegic cerebral palsy (hemi-CP) is one of the subgroups. These 

patients show involvement of the arm and leg of mainly body side. The neuromuscular im-

pairment is typically of spastic nature. 

Due to the unilateral impairment, hemi-CP patients demonstrate an asymmetric leg swing 

with a 5.5% increased amplitude on the sound side
 [5]

. According to Wren et al.
 [6]

, 64% of 

hemi-CP patients have an equinus gait, 56% a stiff knee, 54% show in-toeing while walking, 

48% have excessive hip flexion, and 47% show a crouch gait pattern. 

Although, both the upper and lower body side is affected, studies on the trunk and arms in 

hemi-CP patients are scarce
 [7]

. Hemiplegic stroke patients were reported to have larger lateral 

displacement of the trunk with accentuation towards the sound side
 [8]

. This was supported by 

Hsue et al. 
[9]

 who found the centre of mass (CoM) displacement to be higher in the medio-

lateral and vertical amplitude in children with hemi-CP. Riad et al.
 [7]

 reported a decreased 

range of motion (RoM) in the elbow and shoulder on the hemiplegic side, together with an 

increased flexion of the elbow. Their results are in line with Meyns et al.
 [5]

 who found 22.9% 

reduced arm swing on the involved side compared to healthy children. Further, they found the 

sound side to compensate by a 53.3% higher arm amplitude. This enhanced arm swing 

seemed to be driven by trunk rotation towards the unaffected side
 [5]

. 

As equinus gait is one of the most typical gait deviations in hemiplegia, hinged ankle-foot 

orthoses (hAFO) are often prescribed in these patients. An hAFO blocks excessive plantar-

flexion in swing while allowing dorsiflexion. Numerous studies have confirmed the gait im-

proving capabilities of hAFOs for the lower body in hemi-CP patients
 [10-13]

. Patients walked 

with increased speed
 [11-13]

, longer stride and step length
 [10-13]

, and improved single support 

time
 [12]

 when wearing an hAFO compared to the barefoot condition. Most importantly hAFOs 

were found to reduce plantarflexion, especially at initial contract and during mid-

swing
 [10,12,13]

, thereby restoring a heel-toe gait. At the knee hAFOs decreased the flexion at 

initial contact
 [12]

, and prevented hyperextension in stance
 [10]

. At the hip the range of motion 

was increased and adduction was reduced compared to barefoot gait
 [11]

. When wearing an 

hAFO pelvic obliquity was more symmetric
 [11]

. 

While many studies have concentrated on the effect of hAFOs on the lower body in hemi-CP 

patients
 [10-13]

, similar studies for the upper body are scarce. Patients walking with a posterior 

leaf spring orthosis revealed increased RoM of the spine and thorax in frontal and transversal 

plane
 [14]

. Degelaen et al.
 [15]

 gave indications on increased trunk motion when hemiplegic 

patients walked with an ankle-foot orthosis. However, the differences seem not tested statisti-

cally. Brunner et al.
 [11]

 reported a visual trend of a less pronated arm and wider swing when 

walking with hAFOs. 
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Spasticity of the upper body seems to restrict the lower body when walking. Treating this 

spasticity, by means of botulinum toxin injections, improved gait speed
 [16]

 and stride time of 

the paretic leg in stroke patients
 [17]

.  

If treating the upper body can improve the gait parameter in the lower body the question 

arises, whether inversely, treatment of the lower body can improve movement parameters of 

the upper body as well? However, there was no comprehensive literature on upper body 

kinematics in hemi-CP patients. Therefore, the parameters that differ from normal when pa-

tients walk barefoot with their typical toe walking pattern needed to be identified first. In a 

second step, it was evaluated how these deviations changed as a result to a heel-toe gait pat-

tern when wearing a hAFO. Trunk movements are considered as an essential component of 

effective gait
 [8]

. To know which upper body angles are improved by a hAFO is of clinical 

relevance as it helps discriminating primary from secondary deviations.  

METHODS 

Participants 

For this retrospective study all hemi-CP patients in our gait database from 2006 till 2013 were 

considered. The patients had to meet the following inclusion criteria: hemiplegia of type CP, 

aged between 8-18 years, no botulinum toxin-A treatment within the last three months, full-

body gait analysis data of barefoot walking and with a hAFO with shoes at the same visit in 

the gait laboratory, no other assistive devices such as crutches or posterior walker. Further, 

patients had to show a flat-foot or toe initial contact on the affected side when walking bare-

foot that was corrected to a heel strike by the hAFO. These enclosing criteria were met by 23 

patients. The severity of the affection of the hemiplegic side was rated according to the four 

gait pattern groups described by Winters et al.
 [18]

. 

A group of 17 healthy children provided the reference gait data. All participants signed an 

informed consent. The study was approved by the local ethical committee. 

Kinematic Data Collection 

Patients and controls walked barefoot at a self-selected speed on a 10 m level ground walk-

way. Reflective markers (14mm diameter) were attached bilaterally to bony landmarks on the 

skin of the subjects (Figure 5.1A). Movement of the subjects were tracked by a VICON mo-

tion analysis system (six-camera system 460, 120 Hz, years 2006-2010; twelve-camera sys-

tem MXT20, 200 Hz, since 2011). The Helen Hayes Marker set
 [19]

 was used to model the 

lower body. For the upper body the Plug-in-Gait model (VICON) was applied as described by 

Gutierrez et al.
 [20]

. Subjects' height, weight, leg lengths, anterior superior iliac spine to tro-

chanter distances, tibial torsions, width of ankles, knees, elbows, wrists, and hands, and the 

shoulder offsets were measured for individual anthropometric scaling of the model. The knee 
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alignment device was applied in the static trial to estimate the knee flexion axis (Motion Lab 

Systems Inc., Los Angeles, USA). 

The patient completed a second walking session with a hAFO on the affected side and shoes. 

Both conditions, barefoot and with a hAFO, were tested on the same day. All but the toe and 

heel markers remained at the same positions in both conditions. Toe and heel markers had to 

be attached to the shoes in the hAFO session, and a new static trial was recorded. The  

hAFOs were hinged, allowing ankle dorsiflexion while blocking plantarflexion (Figure 5.1B). 

The foot plate of the hAFOs included the entire length of the foot to the tip of the toes, and the 

posterior part of the hAFOs extended to just below the knee. All hAFOs were custom made to 

suit the individual needs of each patient and to provide the best possible fit. The hAFO was 

fitted to the equinus deformity of the foot so that the sole of the shoes and the tibia stood or-

thogonal. The patients wore the hAFO in daily life; hence, they were accustomed to it. 

In addition, RoM of the knee and ankle as well as manual muscle strength
 [21]

 were clinically 

examined. The muscle strength was tested of the knee and ankle flexors and extensors on a 

scale from 0 (paralysed muscle) to 5 (strong/normal). 

 

Figure 5.1: Marker placement and orthosis. 

Figure 5.1A) pictures the marker placement on a hemiplegic patient. Figure 5.1B) shows a typical hinged 

ankle-foot orthosis. 
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Data Analysis 

The VICON-software was used for the pre-processing of the data. This included the visual 

setting of gait events, and filtering of the kinematic data with the built-in Woltring filter 

(mean squared error set to 10). 

The data were post-processed with the MATLAB software (MathWorks Inc., Version 

R2010a, Natick, MA, USA). All joint angles were time normalised to stance (0-60%) and 

swing phase (61-100%), and formed together a gait cycle consisting of 101 data points. A gait 

cycle was defined as the time between two consecutive foot strikes of the same leg. Spatio-

temporal parameters were transformed into non-dimensional parameters, accounting for indi-

vidual anthropometry according to Hof et al. 
[22]

. 

As upper body kinematics are more variable within subjects than lower body kinematics aver-

aging the trials per subject would distort the data. Therefore, the selection method for a repre-

sentative trial (SMaRT)
 [23]

 was applied to automatically extract one trial for each patient and 

each control. The method computes the distance of each principal component score to the 

median of all trials for each angle, and selects the trial that is closest to the median of all trials 

across all angles. However, the input angles for SMaRT differed from those previously de-

scribed in Schweizer et al.
 [23]

. In this study the elbow flexion, shoulder flexion and abduction, 

and the thorax and pelvic angles in all three planes and both body sides were used as input. 

The representative trial was chosen from 7 trials on average (patient range: 3-14, control 

range: 3-15). For further analysis one body side in healthy subjects was selected randomly, in 

patients the affected and unaffected side were compared. 

The variables of interest were the following parameters of the joint angles in sagittal plane: 

ankle at initial contact, mean in stance, maximum and mean in swing; RoM and mean over 

the gait cycle of the pelvis, spine, thorax, shoulder and elbow. In coronal plane: maximum in 

stance and minimum in swing for the pelvis and spine; minimum in stance and maximum in 

swing for the thorax; additionally, RoM and mean over the gait cycle for the pelvis, spine, 

thorax, and shoulder. In transversal plane the variables of interest were: the RoM and mean 

over the gait cycle of the pelvis, spine, and thorax. 

Statistic 

The 95% confidence intervals (CI) for the RoM, muscle strength, spatio-temporal parameters 

and joint angle parameters were calculated. A parameter of which the CI within the patients or 

compared to the controls did not overlap was defined as significantly different with a 95% 

probability
 [24,25]

. 
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RESULTS 

The control group and patient group had similar age and anthropometrics Table 5.1. Espe-

cially the RoM in dorsiflexion of the ankle and the muscle strength of the plantarflexors and 

dorsiflexors on the hemiplegic side were severely reduced compared to the unaffected side 

(Table 5.1). 

Walking speed did not differ neither between patients and controls nor between the two walk-

ing condition. When walking barefoot, the patients showed earlier foot-off on the affected 

side compared to the controls. Foot-off was earlier and step time was longer on the affected 

side than on the unaffected side. When walking with a hAFO, foot-off on the unaffected side 

came later than in controls. Analogue to the barefoot condition, step time was longer and foot-

off earlier on the unaffected compared to the affected side (Table 5.1). The step time was also 

longer compared to the controls. 

The mean joint angles for the patients are plotted in Figure 5.2. Pelvis and thorax angles are 

given in absolute angles referring to the gait laboratories' axis, and the spine angles are rela-

tive angles between those two segments. 

Barefoot Walking 

When walking barefoot, the affected ankle in sagittal plane was more plantarflexed at initial 

contact, during swing and stance than on the unaffected side and in the control group 

(Table 5.2). The maximum plantarflexion in swing of the hemiplegic side was higher than on 

the unaffected side.  

In the upper body, the RoM of the pelvis, spine, and thorax was increased in patients com-

pared to the controls. The difference for an excessive anterior pelvic tilt and a posterior spine 

tilt of the patients narrowly misses significance. Similarly, the RoM of the shoulder, in spite 

of seeming to be clinically increased on the unaffected compared to the affected side, was not 

significantly different. The elbow was significantly more flexed on the hemiplegic side in 

comparison to the unaffected side and the controls. The same tendency was seen at the unaf-

fected elbow, although without significance. 

The pelvis was lower on the affected side than on the non-affected side in the coronal plane. 

Compared to the controls, the patients showed a significant increased RoM of the thorax on 

the affected side. The increase of this parameter on the unaffected side was not significant. A 

tendency of higher shoulder RoM of both arms in patients was observed. 

In the transversal plane, the pelvis and thorax were more internally rotated on the unaffected 

side. The RoM of the thorax was increased on both sides of the patients in comparison to the 

controls. On the affected side, the pelvis, spine, and thorax were externally rotated compared 

to the unaffected side, the pelvic also more than the controls. 
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Walking with hAFO 

Wearing hAFOs reduced the excessive plantarflexion at initial contact and during swing 

phase (Table 5.2). Nevertheless, plantarflexion at initial contact and during stance was still 

increased compared to the unaffected side and to the controls. Maximum plantarflexion in 

swing was reduced compared to the unaffected side and controls. 

Figure 5.2: Joint angles. 

Mean joint angles in degrees of the patients are plotted normalised to a gait cycle (y-axis). The hemiple-

gic side of the patients is black, the unaffected side grey. Dashed lines illustrate barefoot walking (BF), 

continuous lines represent walking with hinged ankle-foot othrosis (hAFO). The grey band displays the 

mean ± one standard deviation of the control group. All data were normalised to stance and swing phase 

separately, with toe-off at 60% of the gait cycle which is indicated by the dashed vertical line. 



 

 

Table 5.1: Subjects' characteristics. 

Reported are means ± one standard deviation (95% confidence interval) unless stated otherwise. Significant differences are highlighted in bold and the direction of the 

difference is indicated by arrows. 

Parameter           Controls (n=17)                                                               Patients (n=23) 

Age in years (range)                    12.8 (8-18)                                                                      12.4 (8-18) 

Height [m] 1.59 ±0.14 (1.51, 1.66)                                                    1.49 ±0.12 (1.43, 1.54)  

Weight [kg] 47.8 ±10.7 (42.1, 53.4)                                                    42.1 ±13.6 (36.1, 48.1) 

Sex [female/male]                                8/9                                                                                9/14 

Hemiplegic type [type 

1/2/3] 
                                  -                                                                             15/5/3 

                 Unaffected side                     Affected side 

Analysed side [left/right] 9/8                                11/12                                 12/11 

Knee ext.,hip 90° flex. [°]* -             -39 ±11 (-44, -34)               -46 ±10 (-50, -42) 

Knee ext., hip ext. [°]* -             6.5 ±3.1 (5.1, 7.9)               2.6 ±4.4 (0.7, 4.6)  

Dorsiflex, knee 90° flex. 

[°]* 
-       17.2 ±4.1 (15.4, 19.0)           -0.4 ±10.2 (-4.9, 4.1)  

Dorsiflex, lower ankle joint 

fixed [°]* 
-           8.0 ±4.4 (4.3, 11.8)        -8.0 ±12.4 (-13.5, -2.6)  

MMS knee flex. -            5.0 ±0.1 (4.9, 5.0)                4.5 ±0.6 (4.2, 4.8)  

MMS knee ext. -            5.0 ±0.1 (5.0, 5.0)                  4.7 ±0.3(4.5, 4.8)  

MMS active knee ext.  

deficit [°] 
-           0.9 ±3.2 (-0.5, 2.3)                 2.4 ±4.7 (0.3, 4.4) 

MMS plantarflexion stand-

ing 
-            4.9 ±0.3 (4.8, 5.0)                 3.3 ±1.4 (2.7, 4.0)  

MMS dorsiflex. -           4.9 ±0.2 (4.9, 5.0)                  3.1 ±0.9 (2.7, 3.5)  
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  Barefoot unaffected hAFO unaffected Barefoot affected hAFO affected 

Walking speed  [ND]  0.45 ±0.05 (0.43, 0.48) 0.42 ±0.05 (0.40, 0.44) 0.45 ±0.06(0.43, 0.48)  0.43 ±0.05 (0.40, 0.45)  0.45 ±0.06 (0.43, 0.48)  

Cadence  [ND]                34 ±2 (33, 35)               34 ±3 (33, 35)              33 ±2 (32, 34)               34 ±3 (32, 35)                32 ±2  (32, 33) 

Step time  [ND] 1.76  ±0.14 (1.69, 1.84) 1.67 ±0.16 (1.60, 1.74) 1.78 ±0.15(1.71, 1.84)  1.90 ±0.18 (1.82, 1.98)   1.93 ±0.13 (1.87, 1.99) 

Step length  [ND] 0.79  ±0.07 (0.75, 0.83) 0.75 ±0.09 (0.71, 0.79) 0.83 ±0.10 (0.79, 0.87)  0.76 ±0.08 (0.72, 0.79)  0.83 ±0.10 (0.79, 0.87)  

Foot-off  [% of gait cycle]    60.1 ±1.9 (59.1, 61.2)   61.8 ±2.4 (60.8, 62.9)   62.3 ±2.2 (61.3, 63.3)  57.2 ±2.0 (56.3, 58.1)    58.7 ±2.0 (57.9, 59.6)  

 

Hemi type = Classification according to Winter et al. (1987) 

* = Joint mobility measures. Negative values indicate a deficit to reach neutral zero position. 

MMS = Manual muscle strength in clinical testing 

hAFO = Hinged ankle-foot orthosis condition 

ND = Non-dimensional values according to Hof et al. (1996) 

 = Higher/reduced compared to control group 

 = Affected side higher/reduced than unaffected side 

T
h

e E
ffect o

f T
o

e W
alk

in
g

 o
n
 th

e U
p

p
er B

o
d
y

 

 

1
0

3
 



 

 

Table 5.2: Joint angle parameters. 

Reported are means ± one standard deviation (95% confidence interval). Significant differences are highlighted in bold and the direction of the differences is indicated 

by arrows. 

Body  

plane 

Joint 

angle 

Gait 

phase 

Para-

meter 

Controls Patients unaffected side Patients affected side 

 Barefoot condition hAFO condition Barefoot condition hAFO condition 

Flexion/ 

Tilt 

 

Positive: 

Planar-

flexion/ 

Anterior/ 

Flexion 

Ankle  

IC   -1.9 ±4.3 (-4.1, 0.3)   -0.9 ±6.1 (-3.6, 1.7)   -5.2 ±5.0 (-7.3, -3.0)  14.2 ±7.1 (11.1, 17.3)   2.8 ±4.8 (0.8, 4.9)  

St Mean  -6.0 ±2.5 (-7.3, -4.8)   -6.0 ±4.0 (-7.7, -4.3)   -6.4 ±4.3 (-8.3, -4.6)   1.7 ±7.6 (- 1.6, 4.9)   -2.2 ±5.2 (-4.4, 0.1)  

Sw 
Max  19.5 ±6.9 (16.0, 23.0)   14.5 ±9.0 (10.6, 18.4)   17.1 ±6.5 (14.3, 19.9)   24.3 ±10.8 (19.6, 29.0)   5.1 ±5.4 (2.7, 7.4)  

Mean  3.0 ±4.3 ( 0.8, 5.2)   1.2 ±5.5 (-1.2, 3.6)  1.8 ±4.9 (-0.3, 3.9)   16.2 ±8.9 (12.3, 20.0)   2.6 ±4.8 (0.5, 4.7)  

Pelvis GC 
RoM  3.6 ±1.2 (3.0, 4.2)   7.0 ±3.1 (5.7, 8.4)   7.0 ±3.1 (5.6, 8.3)   7.5 ±3.3 (6.1, 9.0)   6.6 ±3.4 (5.1, 8.1)  

Mean  9.1 ±6.2 (5.9, 12.2)   15.0 ±6.7 (12.1, 17.9)   14.3 ±6.7 (11.4, 17.1)   15.1 ±6.6 (12.2, 18.0)   14.1 ±6.8 (11.2, 17.0)  

Spine GC 
RoM  5.0 ±1.7 (4.1, 5.9)   10.3 ±5.3 (8.0, 12.6)   9.2 ±5.3 (7.0, 11.5)   10.2 ±5.6 (7.8, 12.6)   8.6 ±5.6 (6.2, 11.0)  

Mean  -5.0 ±8.1 (-9.2, -0.9)  -12.4 ±10.0 (-16.8, -8.1)  -11.4 ±8.9 (-15.3, -7.6)   -12.3 ±9.8 (-16.6, -8.1)   -11.5 ±8.6 (-15.2, -7.8)  

Thorax GC 
RoM  4.0 ±1.0 (3.5, 4.5)   7.4 ±2.9 (6.2, 8.6)   6.8 ±2.7 (5.6, 8.0)   7.3 ±3.3 (5.8, 8.7)   6.8 ±2.8 (5.6, 8.0)  

Mean  3.1 ±4.8 (0.6, 5.5)   2.7 ±4.6 (0.7, 4.7)   2.8 ±5.0 (0.7, 5.0)   2.9 ±4.4 (1.0, 4.8)   2.6 ±4.9 (0.5, 4.7)  

Shoul-

der 
GC 

RoM  25.8 ±17.8 (16.6, 34.9)   29.0 ±16.1 (22.1, 36.0)   37.7 ±15.8 (30.9, 44.5)   20.9 ±11.3 (16.0, 25.8)   19.2 ±9.9 (14.9, 23.5)  

Mean -9.0 ±5.7 (-12.0, -6.1)  -13.5 ±7.9 (-16.9, -10.1)   -10.5 ±7.9 (-13.9, -7.1)   -14.6 ±6.1 (-17.3, -12.0)   -13.6 ±6.2 (-16.3, -10.9)  

Elbow GC 
RoM 19.4 ±14.3 (12.0, 26.7)   23.9 ±11.1 (19.1, 28.7)   25.4 ±10.8 (20.7, 30.1)   16.8 ±8.8 (13.0, 20.6)   15.5 ±8.8 (11.7, 19.3)  

Mean 35.6 ±5.5 (32.7, 38.4)   42.8 ±10.6 (38.2, 47.4)   41.1 ±10.5 (36.6, 45.6)  59.9 ±19.0 (51.6, 68.1)  56.1 ±15.8 (49.3, 63.0) 

Obliquity/ 

Abduction 

Positive: 

Up/ abduc-

tion 

Pelvis 

St Max  4.5 ±2.3 (3.3, 5.7)   6.2 ±3.1 (4.9, 7.6)   6.1 ±3.0 (4.8, 7.4)   3.6 ±3.2 (2.2, 5.0)   3.4 ±3.0 (2.1, 4.7)  

Sw Min  -4.8 ±1.8 (-5.7, -3.8)   -3.7 ±4.0 (-5.4, -1.9)   -3.5 ±3.2 (-4.9, -2.1)   -5.8 ±2.7 (-7.0, -4.6)   -6.2 ±2.7 (-7.3, -5.0)  

GC 
RoM  9.3 ±3.1 (7.7, 10.9)   10.1 ±4.0 (8.4, 11.8)   9.9 ±4.1 (8.1, 11.6)   9.5 ±3.6 (7.9, 11.0)   9.6 ±4.0 (7.9, 11.4)  

Mean  -0.3 ±1.6 (-1.1, 0.6)   1.4 ±2.6 (0.3, 2.5)   1.3 ±2.0 (0.4, 2.2)   -1.2 ±2.2 (-2.2, -0.3)   -1.4 ±1.9 (-2.2, -0.6)  
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Obliquity/ 

Abduction 

 

Positive: 

Up/ abduc-

tion 

Spine 

St Max  6.0 ±3.4 (4.2, 7.7)   6.3 ±3.9 (4.6, 8.0)   7.7 ±4.0 (5.9, 9.4)   7.3 ±5.6 (4.9, 9.7)   7.5 ±5.5 (5.1, 9.9)  

Sw Min  -6.7 ±2.8 (-8.2, -5.3)   -7.1 ±5.7 (-9.5, -4.6)   -7.2 ±5.6 (-9.6, -4.8)   -6.8 ±4.9 (-8.9, -4.7)   -7.9 ±4.2 (-9.7, -6.0)  

GC RoM  12.7 ±3.6 (10.9, 14.6)   13.8 ±4.4 (11.8, 15.7)   14.9 ±4.0 (13.2, 16.7)   14.1 ±4.8 (12.1, 16.2)   15.4 ±4.7 (13.3, 17.4)  

Thorax 

St Min  -2.0 ±2.5 (-3.3, -0.7)   -2.1 ±3.4 (-3.6, -0.6)   -3.0 ±4.1 (-4.8, -1.2)   -4.0 ±3.4 (-5.5, -2.5)   -4.1 ±3.4 (-5.6, -2.7)  

Sw Max  2.0 ±2.9 (0.5, 3.5)   3.8 ±4.0 (2.1, 5.6)   3.8 ±3.9 (2.1, 5.5)   2.7 ±4.7 (0.7, 4.8)   3.4 ±3.9 (1.7, 5.1)  

GC 
RoM  4.4 ±2.6 (3.0, 5.7)   6.9 ±3.9 (5.3, 8.6)   7.2 ±4.3 (5.3, 9.1)   7.3 ±3.8 (5.7, 9.0)   8.1 ±3.7 (6.4, 9.7)  

Mean  -0.1 ±2.1 (-1.1, 1.0)   0.9 ±2.9 (-0.4, 2.1)   0.4 ±3.2 (-0.9, 1.8)   -0.7 ±3.3 (-2.1, 0.7)   -0.4 ±2.8 (-1.7, 0.8)  

Should-

er 
GC 

RoM  8.2 ±6.4 (4.9, 11.5)   13.0 ±6.8 (10.1, 16.0)   13.5 ±5.9 (10.9, 16.0)   12.1 ±6.7 (9.1, 15.0)   12.3 ±8.8 (8.5, 16.1)  

Mean  10.9 ±8.5 (6.5, 15.2)   10.9 ±6.4 (8.1, 13.6)   9.9 ±6.0 (7.2, 12.5)   14.3 ±9.4 (10.2, 18.4)   12.1 ±8.5 (8.4, 15.8)  

Rotation 

 

Positive: 

Internal 

Pelvis GC 
RoM  12.5 ±7.0 (8.9, 16.1)   16.1 ±6.8 (13.1, 19.0)   16.0 ±6.7 (13.1, 18.9)   16.3 ±6.7 (13.3, 19.2)   15.8 ±6.2 (13.1, 18.5)  

Mean  -0.4 ±2.2 (-1.5, 0.8)   6.2 ±4.4 (4.3, 8.1)   6.4 ±4.1 (4.6, 8.1)   -6.6 ±3.7 (-8.2, -5.0)   -7.0 ±4.0 (-8.7, -5.2)  

Spine GC 
RoM  11.1 ±5.4 (8.3, 13.9)   15.2 ±5.0 (13.0, 17.3)  16.5 ±5.4 (14.2, 18.8)   16.1 ±6.4 (13.3, 18.8)   16.5 ±5.6 (14.1, 18.9)  

Mean  0.5 ±3.7 (-1.4, 2.4)   3.1 ±3.7 (1.5, 4.7)   2.8 ±3.4 (1.3, 4.2)   -3.0 ±4.0 (-4.7, -1.3)   -2.8 ±3.4 (-4.3, -1.3)  

Thorax GC 
RoM  6.1 ±2.4 (4.8, 7.3)   9.9 ±4.1 (8.1, 11.6)   11.0 ±4.0 (9.3, 12.8)   9.5 ±3.2 (8.2, 10.9)   10.1 ±4.5 (8.2, 12.1)  

Mean  -0.9 ±3.5 (-2.7, 0.9)   3.7 ±4.4 (1.8, 5.6)   4.0 ±4.3 (2.1, 5.8)   -4.1 ±4.2 (-5.9, -2.3)   -4.5 ±4.4 (-6.4, -2.6)  

 

IC = Initial contact 

St = Stance phase 

Sw = Swing phase 

RoM = Range of Motion 

hAFO = Hinged ankle-foot orthosis condition 

GC = Gait cycle 

 = Higher/reduced compared to control group 

 = Affected side higher/reduced than unaffected side 

 = Reduced/higher than in barefoot condition 1
0
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All parameters that were abnormal in the upper body when walking barefoot were unchanged 

with hAFOs. On the affected side, the pelvis was less upward tilted in stance and more 

downward in swing compared to unaffected side, it was still within the norm though. RoM of 

spine rotation with hAFO was higher than in the controls. The difference between the unaf-

fected and affected elbow and shoulder swing increased significantly, but both sides were 

within the range of the controls. None of the upper body kinematic parameters of the same 

side were different between the barefoot and hAFO condition. 

DISCUSSION 

The primary objective of this study was to evaluate trunk and arm movements in children with 

hemi-CP during gait. It was investigated which kinematic upper body parameter in patients 

differed from the norm when walking barefoot. Additionally, the influence of a hAFO on the 

upper body during gait was examined. It is of high clinical relevance to understand which 

upper body parameters are improved by wearing a hAFO, as these parameters are secondary 

deviations due to toe walking and not primary due to spasticity. 

Patients showed a typical toe walking pattern on the hemiplegic side with increased plantar-

flexion at initial contact and during swing phase of gait when walking barefoot. In this spe-

cific group of hemi-CP patients the hAFO restored the initial heel contact and adequate foot 

clearance during swing. However, as the hAFO is designed to block plantarflexion, patients 

are limited in their push-off around toe-off where plantarflexion would be needed. This was 

verified by the reduced ankle plantarflexion in swing which indicates a reduced power genera-

tion at push-off
 [14]

. 

The increased RoM in the trunk and shoulders in sagittal and coronal plane indicate a more 

unstable gait
 [14]

. Thorax RoM of the controls and hemiplegic patients in the barefoot condi-

tion were similar to the reported values by Molenaers et al.
 [14]

. Patients walked with increased 

lordosis due to excessive pelvic anterior tilt. The transverse plane kinematics revealed that the 

trunk is rotated so that the unaffected side is in front; hence, it is anterior rotated in both con-

ditions. 

The hAFO did not have a strong effect on the trunk motion. Although the first ankle rocker 

was restored, no clinically relevant changes compared to the barefoot condition were observed 

in the trunk. As the increased RoM in the trunk did not improve by the hAFO, it does not 

seem to be caused by the toe walking gait pattern in the barefoot condition. A possible expla-

nation could be that lateral trunk movements usually compensates for hip abductor weakness. 

However, hAFOs cannot control for hip abductor weakness, as they only control the foot 

mainly in sagittal plane. 

Contrarily, Molenaers et al.
 [14]

 found significantly increased thorax RoM when wearing an 

orthosis. However, these results are not directly comparable as diplegic and hemiplegic pa-

tients were mixed and wore posterior leaf spring orthoses. Another explanation for the diver-

gence of the results is that in the study of Molenaers et al.
 [14]

 patients walked significantly 
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faster and with increased step length when wearing an orthosis. In our study, these parameters 

did not differ significantly although they increased slightly in the hAFO condition. 

The observed asymmetry between the affected and unaffected arm swing in the elbow and 

shoulder is in line with Meyns et al.
 [5]

 and with the more severe hemiplegic group of Riad et 

al.
 [7]

. The asymmetry increased further when wearing a hAFO. A possible explanation can be 

that the increased arm swing on the unaffected side is a compensation to achieve slightly 

faster walking speeds with hAFOs. This explanation is supported by Stephenson et al.
 [26]

 who 

found increased arm swing amplitudes of the non-paretic side in stroke patients when walking 

faster. Although visual improvement of arm position was reported by Brunner et al.
 [11]

, no 

improvement by hAFO in hemiplegic arm position were observed in the parameters investi-

gated within our study. However, pronation of the arm was not analysed as it was not imple-

mented in the model. 

One has to bear in mind that in this study one third of the patients had the mildest type of gait 

deviation (type 1) according to Winters et al.
 [18]

; hence, it is possible that more severely im-

paired patients show increased gait deviations in the upper body. Furthermore, all patients 

were accustomed to walk with hAFOs in daily life. Therefore, it is theoretically possible that 

they have learned and adapted a gait pattern by wearing hAFOs, which they now use in bare-

foot walking as well. This is an open question for future research. A limitation of this study is 

the comparison between the barefoot condition and hAFOs in shoes. Data for a shoes-only 

condition are missing. However, it is also critical to analyse the patients with shoes only as 

the same shoes worn with hAFOs are typically too big if worn without hAFO. This could dis-

tort the gait pattern. Additionally, each patient wore individualised hAFO. This assured the 

best possible fit on one hand, on the other hand it implies that the hAFOs were not perfectly 

similar. 

CONCLUSION 

We conclude that trunk kinematics of a specific group of hemi-CP patients deviate from nor-

mal children in all three planes. Kinematic upper body deviations were observed in both con-

ditions: barefoot walking with a toe contact and when demonstrating a heel-toe gait in a 

hAFO. The entire trunk was rotated in the patients, so that the unaffected side was anterior 

rotated over the entire gait cycle. The hemiplegic elbow was almost double as much flexed as 

in typical developed children. Wearing hAFOs had little to no influence on the upper body 

kinematics in hemi-CP patients during gait. None of the observed gait deviations in the trunk 

and arms seemed to be a secondary deviation caused by toe walking or a missing of the first 

ankle rocker. As described before
 [5,26]

 this study supports the impression that the unaffected 

arm compensates for the hemiplegic side by increased arm swing. 
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CONCLUSION 

The primary focus of this thesis relied on the principals of pathological gait across different 

patients. The objective was to confirm that gait deviations are not only a result of the primary 

disease, but can also originate from muscle weakness. Additionally, it was aimed to differen-

tiate primary deviations from secondary. In the following, the knowledge gained from Chap-

ters 2-5 is summarised in a conclusion. Furthermore, indications for future research are em-

phasised. 

Selection of a Representative Trial 

Chapter 2 established a Method for Selecting a Representative Trial (SMaRT) from multiple 

measures in gait analysis. This method was applied for all other studies within this thesis. Be-

sides its benefits of selecting a representative trial quickly, it is objective, repeatable, and 

automatic. SMaRT is robust against a limited number of outliers within the data. Neverthe-

less, it is advisable to select the input parameters thoughtfully. On one hand, SMaRT should 

run over all the important parameters which are going to be analysed afterwards. This is be-

cause the selected trial might be representative for the input parameters only. On the other 

hand, the more of the input parameters are used, the more likely it becomes that the selected 

trial is not representative for each single one of these parameters. Furthermore, it can be un-

wise to apply SMaRT to datasets that have high within-subject variability. However, this is a 

general problem of the dataset itself and not a real weakness of SMaRT. In datasets with high 

within-subject variability, there simply does not exist a characteristic trial. Nonetheless, the 

algorithm does not evaluate the variability within the data. When applying SMaRT in clinical 

decision-making or in studies with very few subjects, it is advisable to check the consistency 

of the data beforehand. Despite the explained constraints, SMaRT is a valuable tool if one 

wishes to select one trial from a dataset. Other than computing an average over the trials, 

SMaRT keeps an actually measured trial. Especially, for data driven computer simulations 

this can be highly desirable. The same applies to studies where the data would be distorted by 

averaging. Practically, SMaRT is applicable to all types of movement parameters. It can be 

adapted to any number of input parameters. Therefore, it is generally advantageous for any 

type of movement analysis curves, even beyond the field of clinical gait analysis. 

The Influence of Muscle Strength on Gait Deviations 

Comparing patients with different primary diseases is a constructive method to understand 

which gait deviations are primary and which secondary. However, this has barely ever been 

done before in the literature. In order to compare different patient groups, one has to know 

which other parameters, e.g. muscle strength, do have an effect on the walking pattern in these 

patients. Additionally, it was important to investigate whether the effect of muscle strength on 

gait deviations behaves similar across different patient groups. Chapter 3 and 4 have empha-

sised the importance of muscle strength on the gait pattern of patients. The clinical impression 
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that the weaker the patients are, the more abnormal they walk was confirmed. This was ob-

served through the kinematic as well as electromyographic parameters. 

The kinematic gait deviation, measured by the Gait Profile Score (GPS), raised to a similar 

extent with increasing muscular weakness across all patient groups. The results from Chap-

ter 3 led to the conclusion that the response to muscle weakness does not defer between pa-

tients with different pathologies. Contrarily, the GPS coefficient at normal muscle strength 

differed significantly between the various groups. A trend of an increased gait deviation with 

an increased severity of the disease was also noted. Consequently, the basic pathology adds an 

offset to the GPS that depends on the severity of the primary affection. This is a possible ex-

planation as to why in neurologic patients, the gait pattern, despite successful surgery hardly 

ever appears normal. 

Muscle weakness is amongst the aetiological factors for abnormal electromyographic timing, 

such as premature plantarflexor activity (PPF). Independent on whether the patients were 

grouped according to their pathology or to the impaired joints, PPF was more prevalent in 

weak patients than patients with normal muscle strength (Chapter 4). Therefore, PPF can be 

understood as a secondary deviation due to its dependency on muscle weakness, at least to 

some extent. Some patients seemed to use PPF in producing an equinus gait. Others patients 

might need PPF to control the knee through the plantarflexion-knee extension coupling during 

the loading response phase. Despite normal muscle strength reducing the prevalence of PPF 

across all different patient groups, PPF was still present amongst these patients. This provides 

indications for further factors causing PPF. As this was not the main subject of this thesis, one 

can only speculate about these factors. The primary pathology could have an influence, as 

could the malalignment of joints. 

In conclusion, it is of high importance to take the muscle strength into account when interpret-

ing gait data. Therapy should not only focus on the primary pathology, but also on increasing 

the muscle strength of a weak patient, if possible. 

Spasticity and Gait Deviations 

Originally, one would have expected that the gait of patients with neurologic disease and 

spastic muscles would deviate more than that of neurologic patients without spasticity. How-

ever, this thesis revealed an unexpected low number of differences between patients with di-

plegia and patients with bilateral neurological diseases and flaccid muscles. This gives impli-

cation to question the influence of spasticity to gait deviations. Spasticity seems of minor 

importance when comparing the lower joint angles of patients with diplegia and neurologic 

patients with flaccid muscles bilaterally. Contrarily in tetraparetic patients, an increase of the 

kinematic gait deviations in the lower body were observed. On the basis of the presented data, 

it is not possible to distinguish whether the higher GPS offset is caused by the increased stiff-

ness or by the lack of trunk control. These two factors are probably linked. Nevertheless, af-

fection of the upper body appears to be an important factor that can increase gait kinematic 

deviations. 



 Conclusion & Outlook 

115 

 

Gait Deviations in the Upper Body of Hemiplegic Patients 

Patients with hemiplegic cerebral palsy typically walk with an initial toe contact. Toe walking 

goes along with a reduced gait stability due to a smaller base of support. Wearing a hinged 

ankle-foot orthosis corrects the foot to a heel-toe gait and assures contact of the entire foot 

with the floor. Although, it could have been expected that this would stabilise the gait pattern, 

walking with an orthosis did not reduce the sway of the trunk to a clinically relevant extent. 

Concluding from the results in Chapter 5, none of the trunk deviations observed in this spe-

cific patient group seemed to be a secondary deviation that was caused by the toe walking gait 

pattern. The unaffected arm tends to compensate for the reduced arm swing in the hemiplegic 

arm. 

OUTLOOK 

While studies are designed to dissolve specific research questions, the process of answering 

these questions can also create new potential for further research. In Chapter 4 it was hy-

pothesised that premature plantarflexor activity during loading response is used to control the 

knee. This implies that the plantarflexion-knee extension couple would not only operate dur-

ing mid-stance phase, but also during loading response. Muscle modelling could verify the 

explanation to the premature muscle activity in a patient with a normal ankle position during 

initial contact. 

Furthermore, it would be interesting to conduct an intervention study where weak patients 

undergo muscle strength training. According to the results of this thesis, one would expect the 

patients with a positive muscle strength outcome to have a lower GPS and less premature gas-

trocnemius muscle activity than before an intervention. However, this would need approval 

by an intervention study. If the results would come out as expected, this would prove that the 

results of this thesis are not only valid when comparing different patients, but also within pa-

tients. 

In general this thesis emphasises the need for further comparisons of gait deviations in pa-

tients with different pathologies, especially in order to understand the effect of spasticity on 

the gait pattern. The studies within this thesis have shown fewer differences between patients 

with spasticity and other neurological patients than expected, at least for diplegic patients. 

However, it is possible that spasticity is more visible in other gait parameters or through dif-

ferent analysis techniques, e.g. wavelet analysis. The questions that can be proposed are: In 

which gait parameters can spasticity be observed? Which gait deviations are caused by spas-

ticity, and which are solely the result of a muscle weakness? 
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Table A1: Composition of patient groups. 

The table lists the composition of the seven patient groups. The abbreviation for the patient groups are or-

thopaedic uni-/bilateral (OUni/OBi), neurologic flaccid uni-/bilateral (NflaUni/NflaBi), neurologic spastic 

uni-/bilateral with/without adequate trunk control (NspUni/NspBi/NspBiNTC). 

 

Patient 

group 
Diagnosis 

Absolute 

Nr. 

% of 

patients 

in the 

group 

OUni 

Patella dislocation 14 15.1 

Clubfoot 13 14.0 

Other knee problem (e.g. fractures, total endoprothesis, tumors, pain, 

             instability) 12 12.9 

Knee ligament instability 9 9.7 

Other ankle problem (e.g. fractures, tumors) 8 8.6 

Torsional abnormality 6 6.5 

Developmental dysplasia of hip (DDH) 5 5.4 

Talipes equinus (pes eqinus) 3 3.2 

Malalignement of knee axis 3 3.2 

Perthes disease 3 3.2 

Hip pain/ instability 3 3.2 

Talipes calcaneus 2 2.2 

Planovalgus foot (pes planovalgus) 2 2.2 

Femoral deformity 2 2.2 

Other hip problem (e.g. fractures, total endoprothesis, tumors) 2 2.2 

Flatfoot (pes planus) 1 1.1 

Epiphyseolysis capitis femoris (ECF) 1 1.1 

General disease with unilateral problem (e.g. multiple osteochon 

             dromas, achondroplasia, pseudohypoparathyreoidism, 

            dysmorphic syndrome,TAR-syndrome, Turner-syndrome) 3 3.3 

Foot instability/pain/arthrosis 1 1.1 

OBi 

Leg length discrepancy 46 26.1 

Torsional abnormality 23 13.1 

Talipes equinus (pes eqinus) 20 11.4 

Clubfoot 15 8.5 

Patella dislocation 11 6.3 
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OBi 

General disease with bilateral problem (e.g. multiple osteochon 

             dromas, achondroplasia, pseudohypoparathyreoidism, 

            dysmorphic syndrome,TAR-syndrome, Turner-syndrome) 9 5.1 

Back pain 9 5.1 

Planovalgus foot (pes planovalgus) 7 4.0 

Arthrogyposis multiplex congenita 6 3.4 

Scoliosis 4 2.3 

Talipes calcaneus 3 1.7 

Flatfoot (pes planus) 3 1.7 

Malalignement of knee axis 6 3.4 

Hip (pain/ instability) 3 1.7 

Perthes disease, epiphyseal dysplasia 2 1.1 

Developmental dysplasia of hip (DDH) 2 1.1 

Foot instability/pain/arthroses 2 1.1 

Other knee problem (pain/ instability) 2 1.1 

Talipes valgus (pes valgus) 1 0.6 

Other ankle problem (e.g. fractures, tumors) 1 0.6 

Other spinal deformity (not scoliosis) 1 0.6 

NflaUni Nerve palsy (lower body) 8 66.7 

 Poliomyelitis 4 33.3 

NflaBi 

Other neuromuscular diseases (e.g. Becker dystrophy, multiple 

             sclerosis, myotonia, myopathy, HSMN, Polineuropathy, 

             Myoclonic dystrophy (Curschmann-Steinert) 22 26.5 

 Spina bifida 21 25.3 

 Paraplegia 19 22.9 

 
Developmental retardation / coordination disorder / unclear 

             brain disorder 12 14.5 

 Duchenne's muscular dystrophy 5 6.0 

 Down syndrome 2 2.4 

 Spinal paralysis 1 1.2 

 Poliomyelitis 1 1.2 

NspUni Hemiplegia (CP) 164 93.2 

 Hemiplegia (not CP) 12 6.8 

NspBi Diplegia (CP) 116 97.5 

 Spastic hereditary paraparesis 3 2.5 

NspBiNTC Tetraparesis (CP) 54 94.7 

 Tetraparesis (not CP) 3 5.3 



 

 

 

 


