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Summary 

 The blood-brain barrier (BBB), which is formed by brain capillary endothelial cells, 

effectively protects the central nervous system (CNS) from potential neurotoxic agents 

and maintains the brain homeostasis for synaptic signaling (Abbott, 2004). Unfortunately, 

the restrictive permeability properties of the BBB also exclude the majority of potential 

therapeutics from entering the brain and present a major challenge in the treatment of 

many CNS disorders such as Alzheimer’s disease and brain tumors (Pardridge, 2003). 

Therefore, strategies to deliver drugs across the BBB to the brain are of increasing 

interest. Moreover, a predictive in vitro BBB model retaining barrier-specific properties 

for the screening of drug candidates and for the evaluation of drug delivery strategies to 

the brain would be of great benefit in the development of CNS therapeutics.  

 Primary brain capillary endothelial cells mimic the in vivo BBB characteristics the best 

with respect to paracellular tightness and functional expression of transporters and 

receptors (Gumbleton and Audus, 2001). However, primary cells can be maintained in 

culture only for a limited life span before they undergo senescence. Moreover, since 

primary brain endothelial cells are often isolated from animals, species differences may 

exist (Reichel et al., 2003). Immortalized cells can be used to overcome these drawbacks 

of short life span and species differences. However, immortalized cell lines suffer from 

reduced paracellular resistance and downregulation of gene expression of most 

transporters (Pardridge, 2004a). A potential approach to overcome these limitations is to 

generate a conditionally immortalized cell line using a temperature-sensitive 

immortalization gene. This immortalization gene is only active at a temperature of 33°C 

that leads to cell proliferation. At physiological temperature of 37°C, this immortalization 

gene is inactivated and cell differentiation is favored (Terasaki et al., 2003). 

 Therefore, a focus of the present thesis was to characterize the conditionally 

immortalized human BBB in vitro model, termed TY09, with respect to its BBB-specific 

characteristics and its potential application in transendothelial drug transport screening 

(section 3.1). This in vitro model was obtained by immortalization of primary 

microvascular endothelial cells isolated from a human brain tissue with a temperature-
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sensitive immortalization gene. The cells exhibited spindle-shaped morphology similar 

to primary cells, expressed von Willebrand factor and γ-glutamyl transpeptidase, and 

showed acetylated LDL uptake. Western blot and mRNA analysis revealed the expression 

of important tight junction proteins, solute carriers, and ATP efflux transporters up to a 

passage of 50. Transendothelial transport experiments of reference compounds with 

different physicochemical properties in TY09 cells showed similar transport 

characteristics as compared to the well-characterized human hCMEC/D3 model. 

However, the slightly higher paracellular tightness of TY09 model led to a lower 

background signal and allowed a better differentiation of compounds with low, medium 

and high permeability. This enhanced tightness enables mechanistic bidirectional 

transport studies of compounds with similar lipophilicity. Transport studies of 

psychoactive compounds (i.e. cathinones) in TY09 cells revealed good brain penetration 

for all tested cathinones. An asymmetric transport characteristic was detected for 

methylenedioxypyrovalerone (MDPV), indicating the potential participation of an active 

uptake process, which may contribute to the high potency of this compound. Section 3.2 

discusses the in vitro evaluation of the BBB permeability of the psychoactive compounds.  

 As stated above, the poor penetration of neurotherapeutics remains a challenge for the 

treatment of brain diseases. Therefore, much research has been put on the development 

of drug delivery strategies. Utilization of endogenous receptor-mediated transport 

systems that are highly expressed at the brain endothelium offers an effective strategy to 

overcome the BBB (Pardridge, 2003). Antibodies directed against these receptors have 

been shown to undergo transcytosis in animals and can be used as transport vectors for 

brain drug delivery (Pardridge, 1997; Pardridge et al., 1995). Conjugation of 

nanoparticles to targeting antibodies directed against an endogenous receptor system 

offers the possibility to carry drugs to the brain in pharmacologically significant 

quantities. Hence, much research has been focused on the development of different 

nanoparticles for brain drug delivery. In the past years, drug delivery systems based on 

artificial vesicles, such as polymersomes, have attracted much attention due to their 

tunable carrier properties and their ability to carry hydrophilic compounds in their 

aqueous core and lipophilic substances in their membrane (Ahmed and Discher, 2004; 

Christian et al., 2009; Discher and Eisenberg, 2002).  
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 Hence, another aim of this thesis was to evaluate the potential of antibody-targeted 

polymersomes for the implementation of drug targeting strategies to the brain 

(section 3.3). For this purpose, the anti-human insulin receptor antibody 83-14 

(83-14 mAb) was used as targeting vector because this antibody has been shown to 

undergo transcytosis in vivo upon binding to the insulin receptor with high affinity 

(Pardridge et al., 1995). Polymersomes based on poly(dimethylsiloxane)-block-poly(2-

methyl-2-oxazoline) [PDMS-b-PMOXA] block copolymers were used in this study. 

Characterization of polymersomes confirmed their hollow sphere and vesicle-shaped 

morphology. Fluorescence correlation spectroscopy experiments showed the successful 

conjugation of the 83-14 mAb to the polymersomes. Flow cytometry analysis revealed 

binding and uptake of the 83-14 mAb conjugated polymersomes by brain capillary 

endothelial cells expressing the insulin receptor. Competitive uptake inhibition studies 

confirmed the specificity of this process. Intracellular trafficking analysis showed the 

colocalization of the 83-14 mAb with a subpopulation of early endosomes and lysosomes 

after incubation for 20 min. An altered intracellular localization of the 83-14 mAb 

conjugated polymersomes was observed. The transcytosis process of the 83-14 mAb 

across the BBB remains unresolved and the factors involved in the altered trafficking of 

83-14 mAb conjugated polymersomes need to be elucidated. Nevertheless, these 

observations contribute to the further understanding of the transcytosis process of the 

83-14 mAb and the intracellular pathway of 83-14 mAb conjugated nanoparticles.  

 With respect to screening of BBB permeability of compounds, sensitive analytical 

methods are required. This is particularly important for substances where only small 

quantities cross the BBB such as macromolecules. Capillary electrophoresis represents 

with its advantages (high sensitivity, low sample requirement, fast and automated 

measurements) a promising analytical technique for the quantification of molecules in the 

context of transport studies.  

 Therefore, another objective of this thesis was to develop a sensitive analytical method 

based on capillary electrophoresis equipped with laser-induced fluorescence detector 

(CE-LIF) for the quantification of the transport of macromolecules across the BBB in 

vitro (section 3.4). In this study, we aimed to quantify the BBB permeation of 

fluorescently labeled 83-14 mAb across monolayers of hCMEC/D3 and TY09 cells 
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expressing the insulin receptor. The analytical method using CE-LIF obtained a low limit 

of quantification (LLOQ) for the antibody in the picomolar range. However, in contrast 

to the in vivo observation of the 83-14 mAb transcytosis to the brain (Pardridge et al., 

1995), in vitro analysis of the transported amount of fluorescently labeled 83-14 mAb 

across human brain endothelial cell monolayers did not reveal the active process of 

transcytosis. Possible reasons for this observation are discussed in this section. 

 With regard to future applications of therapeutic antibodies, one of the topics of the 

present thesis was to extend the analytical method based on capillary electrophoresis for 

the viscosity determination of therapeutic antibody solutions (section 3.5). Therapeutic 

antibodies are often administered as highly concentrated solutions in order to achieve a 

therapeutic effect. These highly concentrated solutions show an increase in viscosity 

which limits their application. Therefore, in drug development, the viscosity of the protein 

solutions needs to be determined in order to optimize the formulation and adjust the 

viscosity appropriate for parenteral application. Different methods are applied for 

viscosity measurements. Most methods need a relatively high amount of the expensive 

samples and are time consuming. Therefore, in the present thesis, the possibility to 

employ capillary electrophoresis for viscosity measurements of protein samples was 

evaluated. Using CE, it was possible to estimate the viscosities (in the range of 2 to 

40 mPas) of typical protein formulations with Newtonian flow behavior. The advantages 

of this analytical method over other methods for viscosity measurements are the low 

sample consumption and the fully automated viscosity determination. 
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1 Introduction 

 This chapter introduces the structure, functions and key features of the blood-brain 

barrier (BBB) and gives an overview of strategies to bypass this restrictive barrier 

including their advantages and disadvantages. Furthermore, BBB models are outlined and 

their possibilities and limitations are discussed.  

 

1.1 History of the blood-brain barrier 

 Paul Ehrlich (1854-1915) observed that water-soluble dyes injected into the 

peripheral circulation practically stained all organs, except the brain and the spinal cord. 

He first explained this observation with the low binding affinity of the dye to the central 

nervous system. Additional experiments by his student Edwin Goldmann showed that a 

direct injection of the dye trypan blue into the cerebrospinal fluid (CSF) stained all brain 

cells including the spinal cord, but not the tissue in the periphery. In 1900, Max 

Lewandowsky (1876-1918) was the first who introduced the term “Bluthirnschranke” 

(Eng. blood-brain barrier) based on his studies with the dye potassium ferrocyanate. After 

intravenous injection, this dye showed only limited permeation into the brain (Hawkins 

and Davis, 2005; Ribatti et al., 2006). 

 

1.2 Structure and functions of the blood-brain barrier 

 The BBB, created at the level of cerebral endothelial cells, forms the key interface 

between the blood circulation and the brain (Abbott et al., 2006). Although the BBB 

capillaries only occupy 1% of the total brain volume, it has a combined length of 

approximately 600 km, and a total surface area of 20 m2 for exchange in an average 
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human adult (Pardridge, 2001). The cerebral endothelium of the BBB differs from the 

periphery endothelial cells in an increased mitochondrial content, absence of 

fenestrations, minimal pinocytotic vesicles, and the presence of tight interendothelial 

junctions (Hawkins and Davis, 2005; Joó, 1996). The permeability is about two orders of 

magnitude lower than that of the endothelia in peripheral organs (Tuma and Hubbard, 

2003). Other brain cells, such as pericytes, astrocytes, microglia, and nerve cells, are in 

close association with the cerebral endothelium and together they constitute the 

neurovascular unit (Figure 1). This close interaction of the brain capillaries with other 

brain cells plays a crucial role in the induction and maintenance of the physiological 

function of the BBB (Abbott et al., 2010).  

 The BBB maintains an optimal ionic composition for synaptic signaling (Abbott et al., 

2010). This is accomplished by a protective barrier and a selective transport function. 

Potential neurotoxic agents are effectively excluded from the brain by interendothelial 

tight junction formation and expression of active efflux transporters. The presence of 

enzymes further prevents a variety of compounds from entering the brain. Circulating 

lipophilic compounds reach the brain via diffusion, except they are substrate of efflux 

transporters. Polar solutes and macromolecules selectively gain access to the brain via 

carrier- and receptor-mediated transporters. 

 

Figure 1: Schematic cross-sectional representation of a cerebral capillary. The capillary lumen is formed 

by a single endothelial cell (EC) with its both ends connected by tight junction. Astrocyte (AC) end-feet, 

pericytes (PC) are in close association with the EC. The basal lamina (BL) surrounds the EC and the PC, 

and is contiguous with the plasma membrane of the AC. This cell association forms the neurovascular unit 

(Hawkins and Davis, 2005). 
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Protective function of the blood-brain barrier 

Tight interendothelial junctions  

 The brain capillary endothelial cells are characterized by the presence of extremely 

restrictive tight junctions (TJ) between the cells limiting the paracellular diffusion 

pathway for ions, polar solutes and macromolecules (Abbott et al., 2006). The 

transendothelial electrical resistance (TEER) in vivo reaches a value of approximately 

1800 Ωm2 (Abbott et al., 2010). The complexes between the endothelial cells, including 

adherens junctions (AJ) and TJ proteins, contribute to the characteristic of tight 

interendothelial junctions. AJs are responsible for keeping the cells together and giving 

the tissue structural support. AJ proteins, including VE-cadherin and PECAM (Abbott et 

al., 2010), play an essential role for tight junction formation (Abbott et al., 2010; Wolburg 

and Lippoldt, 2002). The TJ proteins include occludin (Furuse et al., 1993; Hirase et al., 

1997), claudin (Nitta et al., 2003; Ohtsuki et al., 2007; Wolburg et al., 2003) and 

junctional adhesion molecules (JAMs). Occludin and claudins interact with zonula 

occludens 1, 2, 3 (ZO-1, ZO-2, ZO-3) which are responsible for cytoplasmic scaffolding 

and regulatory processes (Abbott et al., 2010). These proteins have been shown to play 

an important role in the restrictive BBB property. Figure 2 illustrates schematically the 

junctional protein complexes.  

 

 

Figure 2: Junctional protein complexes of the BBB (Abbott et al., 2010). 
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 The interaction of the junctional protein complexes is modulated by locally produced 

circulating factors released in the CNS and regulate the paracellular diffusion across the 

BBB (Abbott et al., 2010; Wolburg et al., 2003). Many cell types of the neurovascular 

unit release vasoactive substances and cytokines (Abbott et al., 2006, 2010). Culturing 

primary porcine brain endothelial cells reveal the relevance of the circulating factors on 

junction modulation. Cells cultured with astrocytes conditioned medium show a strong 

staining pattern of ZO-1 and reorganized structure of actin cytoskeleton (Török et al., 

2003).  

 

Active efflux transport 

 Potential harmful endogenous substances or xenobiotics are prevented from entering 

the brain by means of active efflux transporters. These transporters belong to the ATP-

binding cassette (ABC) gene family (Begley, 2004). The ATP-binding cassette (ABC) 

genes represent one of the largest families of transmembrane proteins. ABC transporters 

are integral membrane proteins that use the energy derived from ATP hydrolysis to 

transport various molecules across cell membranes (Dean, 2002; Loscher and Potschka, 

2005). Their main function at the BBB is the transport of a broad variety of lipid-soluble 

substances out of the cerebral endothelium and the brain. The multidrug resistance 

protein, P-glycoprotein (Pgp; MDR1, ABCB1), multidrug resistance-associated proteins 

(MRP; ABCC) family members, and the breast cancer resistance protein (BCRP; 

ABCG2) are found at the BBB. Pgp and BCRP are only located at the apical side of the 

BBB and transport compounds from the endothelial cells back to the blood. MRP family 

members are found either at the apical, basolateral or even at both sides of the 

endothelium (Loscher and Potschka, 2005) [Figure 3]. 

 These ABC transporters play an important role in the maintenance of vital functions 

of the brain (Dallas et al., 2006) by means of active efflux of potential neurotoxic 

compounds (Abbott et al., 2010; Dallas et al., 2006). Their broad substrate specificity 

effectively hinders potential toxic agents from reaching the CNS (Loscher and Potschka, 

2005). However, this characteristic also presents a major challenge in the development of 

CNS drugs, since a variety of potential drug molecules are substrate of the efflux 

transporters.  
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Transport across the blood-brain barrier 

Lipid-mediated transport of small lipophilic compounds 

 A broad range of small molecular weight lipophilic molecules is able to cross the BBB 

via lipid-mediated diffusion. Lipophilicity, determined as the logP (logarithmic 

octanol/buffer partition coefficient of the neutral species), correlates positively with brain 

permeation. LogP values between 2-4  have been correlated with good brain penetration 

(Waterhouse, 2003). Factors which restrict passive permeability include polar surface 

area greater than 60-80 Å2 (Kelder et al., 1999; Pardridge, 2003), number of hydrogen 

bonding capacity exceeding 10 (Pardridge, 2005a), and a molecular weight higher than 

450 Da (Clark, 2003; van de Waterbeemd et al., 1998; Waterhouse, 2003). However, the 

prediction of BBB permeability based on physicochemical characteristics is limited to 

compounds which are not subjected to active transport mechanisms (Clark, 2003). For 

example, lipophilic drugs which are substrates of active efflux transporters do not comply 

these general rules (Loscher and Potschka, 2005). 

 

Carrier-mediated transport  

 Tight junctions effectively block the paracellular diffusion of polar solutes. Thus, to 

supply the CNS with essential polar nutrients (e.g. glucose and amino acids) a number of 

specific solute carriers are expressed at the cerebral endothelium including the GLUT1 

glucose transporter, the MCT1 monocarboxylic acid carrier, the LAT1, CAT1 amino acid 

carriers, and the CNT2 purine nucleoside carrier (Pardridge, 2005b). Some transporters 

are either expressed on the apical or basolateral side of the membrane only, whereas other 

transporters are found at both sides of the membrane. With the distinct orientation of the 

transporters, substrates can be preferably transported either from the blood circulation 

into the brain or vice versa, from the brain out to the blood (Abbott et al., 2010).  

 

Receptor- and adsorptive-mediated transport 

 Large molecular weight compounds are transported to the brain via the transcytotic 

pathway. This transport process involves either specific receptor-mediated transcytosis 

(RMT) or adsorptive-mediated transcytosis (AMT). In RMT, the specific ligand-receptor 
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interaction mediates the internalization of the complex. The complex is then transported 

across the cytoplasm and finally, exocytosis at the opposite side of the membrane takes 

place. The ligand-receptor dissociation occurs either during the cellular transit or during 

the exocytosis (Abbott et al., 2010; Pardridge, 2002). Examples for essential 

macromolecules which are transported to the brain via receptor-mediated transcytosis 

include insulin and transferrin (Pardridge, 1997). Some cationic molecules are able to 

cross the BBB non-specifically via the adsorptive-mediated transcytosis (AMT) after 

interaction with the negative charged surface of the cerebral endothelium (Abbott et al., 

2006). Figure 3 illustrates schematically different transport mechanisms across the BBB. 

 

 

Figure 3: Schematic representation of different transport mechanisms and selected ABC efflux transporters 

located at the BBB. Pgp and BCRP are expressed at the apical membrane and MRPs are expressed on the 

apical, basolateral or both membrane sides (adapted from Abbott et al., 2006). 

 

 The restrictive permeability properties of the BBB effectively protect the brain from 

potential neurotoxic agents. However, these restrictive characteristics also prevent the 

majority of drug candidates from reaching the CNS (Pardridge, 2003) and represent a 

major limiting factor in the development of drugs for treatment of neurological diseases 
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(Jeffrey and Summerfield, 2010). Therefore, different invasive and non-invasive 

strategies are currently being used or investigated for the delivery of drugs to the brain.  

 

1.3 Strategies for brain drug delivery 

1.3.1 Invasive methods 

 Drug delivery to the brain can be achieved using invasive methods, such as direct 

intracerebroventricular injection or intracerebral implantation. The low drug diffusion 

from the injection site into the brain parenchyma limits the effectiveness of these 

methods. Some areas may not be reached by the drug due to low diffusion (Gabathuler, 

2010; Pardridge, 2003). Therefore, these methods are only effective if a drug has only to 

be delivered to a local defined part of the brain (Gabathuler, 2010). Thus, the most 

effective way to achieve a widespread distribution of drugs into the whole brain is via 

crossing the cerebral microvascular capillaries, since every single neuron is perfused by 

its own capillary. However, since the majority of CNS drugs cannot penetrate the BBB 

(Pardridge, 2003), strategies are needed to overcome this barrier.  

 One approach to deliver drugs across the BBB is by intracarotid injection of a 

hyperosmolar solution, which causes a transient disruption of the tight junctions resulting 

in the opening of the BBB for drugs. This method has been used to reach therapeutic 

concentration of chemotherapeutic agents in human (Neuwelt et al., 1986). However, the 

disadvantage of this strategy is the general increase in passage of blood components to 

the CNS which may damage the brain cells (Gabathuler, 2010). Therefore, much research 

is focused on physiological approaches to overcome the BBB. 

 

1.3.2 Physiological methods 

 A physiological strategy to overcome the BBB is based on using endogenous 

transporters and receptors expressed at the cerebral endothelium (Figure 3). 

Reformulation of the drugs is often required to be delivered to the brain via endogenous 

BBB transport mechanisms (Pardridge and Boado, 2012). Table 1 summarizes the 

physiological strategies available for drug delivery to the CNS and the limitations of the 

different approaches. Selected examples of the different strategies are listed. 
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Carrier-mediated transport 

 There are several nutrient transport systems expressed at the BBB, which transport 

small water-soluble nutrients into the brain. Drugs with structural similarity to an 

endogenous nutrient of a transporter system may enter the brain via a carrier-mediated 

transport (CMT) pathway. CMT mechanism has been successfully used for the delivery 

of L-DOPA (L-3,4-dihydroxyphenylalanine) to the brain via LAT1. L-DOPA is a prodrug 

of dopamine that itself does not penetrate the BBB. Once L-DOPA is transported to the 

brain via LAT1, it is subsequently metabolized to the water-soluble dopamine by the 

aromatic amino acid decarboxylase. This molecule is used for the therapy of Parkinson’s 

disease (Pardridge, 2003). 

 

Adsorptive- and receptor-mediated transcytosis 

 Macromolecules can be transported to the brain via adsorptive-mediated transport 

(AMT) and receptor-mediated transport (RMT). In AMT, positively charged molecules 

or particles are internalized to the cells upon binding to the negatively charged plasma 

membrane. This process is highly non-specific, therefore, the application of this strategy 

in the clinics is limited (Gabathuler, 2010).  

 RMT offers the possibility to selectively transport macromolecules or nanoparticles to 

tissues expressing a specific receptor. The BBB is enriched with different receptor 

systems, including the insulin receptor (IR), transferrin receptor (TfR), and low density 

lipoprotein (LDL) receptor and its related proteins (Dehouck et al., 1997; Gabathuler, 

2010; Pardridge, 2003). Drugs can be conjugated to a peptide or protein (e.g. monoclonal 

antibody) that mediates cellular transcytosis of the conjugates upon interaction with an 

endogenous receptor system (Pardridge, 2003). 

 A receptor system exploited for brain drug delivery is the low-density lipoprotein 

(LDL) receptor and its related proteins 1 and 2 (LRP1 and LRP2). LRP is a type I 

transmembrane protein and is expressed in many tissues including the CNS. These 

receptors have been described to be involved in the internalization and degradation of 

multiple ligands of diverse metabolic pathways (Gabathuler, 2010). Compared to 

antibodies targeting the TfR in mouse, the brain uptake value is 10-fold lower (Pardridge, 

2012) 
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 The transferrin receptor system is most widely characterized for brain drug targeting 

(Gaillard et al., 2005). While the high endogenous plasma concentration of transferrin 

limits its application as a vector for drug targeting in vivo (Gaillard et al., 2005), 

antibodies directed against the transferrin receptor (TfR) can be used for delivery of drugs 

to the brain. Pardridge and colleagues have extensively exploited this receptor system for 

brain drug delivery with the murine anti-rat TfR OX-26 mAb (Pardridge, 2003). This 

antibody interacts with the receptor on a distinct epitope that is not involved in transferrin 

binding and thus avoid a competitive binding inhibition between the endogenous Tf and 

OX-26 mAb (Pardridge, 2012). Several macromolecules and nanoparticles have been 

successfully delivered to the brain via receptor-mediated transport by TfR system 

(Huwyler et al., 1996; Zhang and Pardridge, 2005, 2006).  

 Similar to the TfR, the insulin receptor (IR) has been widely used for the 

implementation of drug delivery strategies to the brain (Pardridge and Boado, 2012; 

Zhang et al., 2003a, 2003b). For instance, Pardridge and coworkers used the high-affinity 

murine anti-human insulin receptor monoclonal antibody 83-14 (83-14 mAb) as a vector 

for drug and gene delivery (Pardridge and Boado, 2012; Zhang et al., 2003a, 2003b). The 

antibody binding site on the receptor is different from that of the endogenous insulin. An 

interference with the function of the endogenous ligand is thus avoided (Pardridge and 

Boado, 2012). Moreover, since overdosing of insulin causes hypoglycemia, the use of 

insulin as a targeting vector is limited (Partridge, 2012). The 83-14 mAb interacts with 

an exofacial epitope on the insulin receptor and is rapidly transported across the BBB to 

the brain after intravenous administration. The brain uptake 83-14 mAb accounts 3.8% 

per initial dose per 100g brain in primates (Pardridge et al., 1995). The BBB permeability 

surface area (PSA) product of the 83-14 mAb is nine-fold higher than that of the OX-26 

mAb. The most active BBB molecular Trojan horse is an antibody directed against the 

human IR (Pardridge and Boado, 2012). Moreover, in contrast to OX26 mAb, chimeric 

and humanized forms of the 83-14 mAb are available. Therefore, this antibody may be 

used in humans with less immunogenic response (Boado et al., 2007; Coloma et al., 

2000).  

 In addition, RMT offers the possibility to specifically transport nanocarriers containing 

drugs to the brain (Huwyler et al., 1996). Drugs that are normally not able to penetrate 
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the BBB due to their unfavorable physicochemical properties or not in sufficient 

quantities can be loaded into ligand-targeted nanocarriers and specifically delivered to 

the brain. 
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1.3.2.1 Brain drug delivery using nanoparticles 

 The advantages of the application of nanoparticles in drug delivery include the 

possibility to determine the biodistribution and pharmacokinetic of the encapsulated 

compounds by tuning the physicochemical properties of the nanocarriers. The circulation 

half-life and drug accumulation at the target site can be modulated. Conjugation to a 

targeting ligand enhances the cellular uptake at the target sites (Kamaly et al., 2012). 

Different nanoparticles with active targeting properties have been created to deliver drugs 

to the brain in animals. These nanoparticles include targeted liposomes and 

polymersomes (Boado and Pardridge, 2011; Pang et al., 2008).  

 

Liposomes 

 Liposomes are phospholipid vesicles that have been widely employed as drug carriers 

in pharmaceutical fields (Torchilin, 2005). Liposomes possess the ability to carry and 

deliver large amounts of drugs to the site of action. Biocompatibility and the lack of 

toxicity of the phospholipids make liposomes good and safe candidates for the 

implementation of drug delivery systems to the brain. Much research has been put on 

ligand-targeted liposomes for brain drug delivery (Huwyler et al., 1996; Schnyder and 

Huwyler, 2005). 

 

Polymersomes 

 In the past years, artificial vesicles, such as polymersomes, have attracted much 

attention. Polymersomes are vesicles that are formed upon hydration of synthetic 

amphiphilic block copolymers, which constitute of at least two distinct fully synthetic 

hydrophilic and hydrophobic polymers that are covalently linked (Discher and Eisenberg, 

2002) [Figure 4]. Polymersomes can entrap hydrophilic compounds in its aqueous core 

and lipophilic molecules in its membrane (Lee and Feijen, 2012). Depending on the 

molecular weight of the block copolymers, their membrane thickness ranges between 10 

to 50 nm. In comparison, liposomes possess a membrane thickness of approximately 

3-5 nm (Le Meins et al., 2011). This explains the increased mechanical stability and 

enhanced diffusional barrier property to encapsulated compounds of polymersomes 

compared to liposomes (Le Meins et al., 2011).  
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Figure 4: Schematic illustration of a polymersome formed by spontaneous self-assembly of amphiphilic 

diblock copolymers in dilute aqueous solution. 

 

 The large variety of amphiphilic block copolymers offers the possibility to form 

polymersomes with a broad range of carrier properties. Polymersomes with desirable 

characteristics, such as stimuli-responsiveness, multifunctionality, loading capacity, and 

membrane permeability, can be designed by applying block copolymers with specific 

chemical composition, hydrophilic to lipophilic ratio, molecular weight, and functionality 

(Cabane et al., 2012; Discher and Ahmed, 2006; Gaitzsch et al., 2012; Najer et al., 2013; 

De Oliveira et al., 2012). These tunable properties of polymersomes render them 

attractive for biomedical applications. Moreover, bioconjugation of polymersomes to 

targeting moieties offers the possibility for selective drug delivery to the site of interest 

(Egli et al., 2011; Ben-Haim et al., 2008; Lin et al., 2006; Meng et al., 2005). Hence, there 

is an increasing interest in the implementation of drug delivery systems using 

polymersomes. A variety of block copolymers, including poly(2-methyloxazoline)-

block-poly(dimethylsiloxane)-block-poly(2-methyloxazoline) [PMOXA-b-PDMS-b-

PMOXA] triblock copolymer, have been employed for drug delivery applications (Egli 

et al., 2011; Lee and Feijen, 2012).  
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Figure 5: Chemical structure of PDMS-b-PMOXA diblock copolymer.

 

 Polymersomes based on PDMS-b-PMOXA or PMOXA-b-PDMS-b-PMOXA block 

copolymers (Figure 5) are biocompatible and have a low toxicity in vitro. They have been 

designed for the application as nanoscale bioreactor (Nardin et al., 2000), artificial 

peroxisomes (Tanner et al., 2013), and for specific targeting of cancer cells (Egli et al., 

2011) and macrophages (Brož et al., 2005). Interestingly, non-specific uptake by 

macrophages was not observed for non-targeted polymersomes, indicating a reduced 

nonspecific elimination of these polymersomes by macrophages (Brož et al., 2005). 

 The stealth property of these polymersomes is due to the protein-repellent effect of the 

hydrophilic PMOXA polymer. This polymer has been described to show similar stealth 

property as PEG polymer but is less prone to degradation in physiological and oxidative 

environment (Konradi et al., 2008; Pidhatika et al., 2012). Therefore, previous work 

suggested PMOXA polymer as a good alternative to PEG polymer (Pidhatika et al., 

2012). These findings highlight the potential of polymersomes based on PDMS-b-

PMOXA diblock or PMOXA-b-PDMS-b-PMOXA triblock copolymers for biomedical 

applications, including specific drug delivery.  
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1.4 BBB models 

 To predict the BBB permeability of drug candidates different BBB models have been 

exploited. BBB models based on in silico and in vitro techniques allow for high 

throughput screening and optimization of drug candidates prior to in vivo studies in 

animals (Booth and Kim, 2012). Each of these models has its own advantages and 

limitations.  

 

1.4.1 In silico models 

 In silico models can be used for screening a large number of compounds with respect 

to the BBB permeability. These computational methods attempt to predict the passive 

BBB permeability based on the molecular structures and physicochemical properties 

(Feng, 2002). Parameters such as lipophilicity (logP), hydrogen bonding, polar surface 

area, and molecular weight are used to estimate the BBB permeability (Clark, 2003; 

Kelder et al., 1999). In vivo log BB (drug concentration in brain to that in blood) values 

at steady states or BBB PS (permeability surface area) products have been employed to 

correlate with physicochemical properties of the drug candidates in order to define rules 

or equations to predict CNS penetration (Abbott, 2004; Nicolazzo et al., 2006). Log BB 

values correspond to the ratio of the whole drug concentration in the brain to that in the 

blood. This parameter does not only consider the free drug, which is responsible for the 

pharmacological action but also cytoplasmic bound drug. Therefore, discussions about 

the validity of in silico models based on log BB values has been arisen (Martin, 2004). 

Another approach to generate an in silico model for prediction of BBB permeation is to 

use in vivo BBB PS product values, which give a measure of unidirectional clearance 

from blood to brain across the BBB. BBB PS product predicts the level of free drug in 

the brain and is more reliable than log BB. Therefore, it has been suggested to replace 

log BB by BBB PS product for in silico predictions (Pardridge, 2004a). The quality and 

quantity of the training set applied for the generation of the computational models 

determines the validity of the in silico prediction (Abbott, 2004). To date, it is still 

difficult to generate in silico models that are able to predict active transport and metabolic 

processes since detailed knowledge on the structure-activity relationship of transporters 
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and enzymes is still missing. Therefore, in vitro and in vivo models are needed to account 

for active transport mechanisms (Abbott, 2004, 2013).   

 

1.4.2 In vitro models  

 In order to predict the in vivo situation, in vitro models need to reproduce BBB 

characteristics as much as possible. Such an in vitro model offers the possibility to 

examine several processes at the BBB, including the mechanistic aspects of BBB 

transport, cell-to-cell interaction, and fundamental biological and pathological processes 

(Abbott, 2004; Gumbleton and Audus, 2001). Functional expression of important tight 

junctional proteins providing restrictive paracellular barrier properties to polar molecules 

as well as polarized expression of influx and efflux transporters are prerequisites for an 

in vitro model to reliably screen transendothelial transport of potential CNS drug 

candidates (Cecchelli et al., 2007).  

 One of the first in vitro BBB models was reported in the 1970s after successful 

isolation of brain capillaries from rat brain (Joó and Karnushina, 1973). This model was 

then followed by the isolation of brain capillaries of different species. Isolated brain 

capillaries can be used for the investigations of transport systems, for mechanistic studies, 

such as receptor- and adsorptive-mediated endocytosis, and for the investigations of BBB 

alterations in CNS pathology (Pardridge, 1999). Isolated brain capillaries resemble in vivo 

BBB to the highest extend. However, since the apical side of the capillaries is not easily 

accessible in vitro, permeability studies are difficult. This limitation led to the 

development of in vitro models based on culturing isolated primary brain endothelial cells 

on semipermeable supports (Bowman et al., 1983). 

 Apart from isolated capillaries, primary or low passage brain capillary endothelial cells 

retain many BBB key properties and resemble the in vivo BBB the best, although many 

BBB-specific features are downregulated (Gumbleton and Audus, 2001; Reichel et al., 

2003). These cells are mostly obtained from bovine and pig because they provide a larger 

amount of brain capillaries compared to rodents (Gumbleton and Audus, 2001; Wilhelm 

et al., 2011). Primary brain endothelial cells have been successfully employed as BBB 

in vitro models for several studies, including permeability screening, BBB efflux 

transport experiments, and mechanistic investigations on brain permeation (Reichel et al., 
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2003). However, the short lifespan of primary cells combined with the time-consuming 

and technical demands required for the isolation, limit their routine use as BBB in vitro 

models. Moreover, potential species differences to human and variability in the 

phenotypic properties between the isolated batches further limit their widespread use 

(Gumbleton and Audus, 2001).  

 Therefore, immortalized cell lines have been created in order to allow prolonged 

passage of the cells and thus reducing the need for isolation (Wilhelm et al., 2011). 

Immortalization can be achieved by transfection of primary endothelial cells using a viral 

tumor gene, such as simian virus 40 (SV40) large T-antigen gene. Immortalization genes 

inactivate tumor suppressor genes that are responsible for replicative senescent (Sano et 

al., 2010). Different immortalized cell lines have been generated and characterized to 

different extends. The most widely used cell lines include the RBE4  (Roux et al., 1994) 

and GPNT (Régina et al., 1999), both derived from rat, and the mouse b.End3 (Omidi et 

al., 2003). Immortalized brain endothelial cell lines of human origin have been developed 

in order to avoid potential species differences, e.g. BB19 (Prudhomme et al., 1996). In 

contrast to primary cells, monolayers of immortalized cells generally suffer from the 

drawback of insufficient tightness (Reichel et al., 2003).  

 Recently, a human BBB immortalized cell line, hCMEC/D3, has been developed by 

SV40 T antigen transfection (Weksler et al., 2005). Since then, much research has been 

put on the characterization of this cell line. It has been shown to retain many BBB 

characteristics, including the expression of tight junction proteins and efflux transporters 

(Poller et al., 2008; Weksler et al., 2005). For the hCMEC/D3 model, a better paracellular 

tightness compared to other cell lines was reported. This property allows its use for 

transendothelial transport studies discriminating between low and high permeabilities of 

compounds (Poller et al., 2008).  

 To date there is no in vitro cell culture model reaching the paracellular tightness 

comparable to primary cells. Immortalization enables the brain endothelial cells to stably 

grow and maintain a prolonged passage in culture. However, it is a general challenge to 

make the immortalized cells arrest their proliferation and differentiate after they have 

reached confluency. Therefore, many immortalized cell lines failed to reach an 

appropriate paracellular tightness (Reichel et al., 2003). 
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 An attempt to overcome this limitation is to generate a conditionally immortalized cell 

line. Conditionally immortalized BBB cell lines derived from transgenic mice and rats 

harboring a temperature-sensitive immortalization gene have been generated. This 

immortalization gene is only active at a temperature of 33°C. At physiological 

temperature of 37°C, the immortalization gene is inactive and the cells resemble primary 

cells lacking tumor gene again. These cell lines have been shown to highly express 

transporters specific to BBB (Hosoya et al., 2000a, 2000b; Pardridge, 2004b; Terasaki et 

al., 2003). Recently, Sano and his coworkers have developed a human conditionally 

immortalized BBB in vitro model using a temperature-sensitive SV40-T antigen. These 

cells express several important tight junction proteins and efflux and influx transporters 

(Sano et al., 2010). Therefore, conditionally immortalization might be an interesting 

approach to generate in vitro BBB cell models retaining barrier-specific properties. 

 

1.4.2.1 Analytical methods to measure blood-brain barrier transport in vitro 

 To monitor the transport of compounds across the BBB, sensitive analytical techniques 

are required. Scintillation counting is a sensitive method and it has been employed to 

quantify the amounts of compounds transported across the BBB in vitro (Audus and 

Borchardt, 1986; Poller et al., 2008; Shah et al., 1989). Compounds of interest are 

radioactive labeled and applied to the cell culture system. Sample preparation for analysis 

is very simple, as it only requires the addition of scintillation liquid. However, this 

analytical method does not provide any information about the metabolism of the molecule 

since metabolites, if bearing the radioactive label, would show the same radioactive signal 

as the intact molecule. Moreover, this technique can be expensive due to the cost resulting 

from the radiolabeling and the infrastructure required (Sloan et al., 2012).  

 Another analytical method for transport studies is capillary electrophoresis (CE). This 

technique offers several advantages, including low sample consumption and the 

possibility to couple CE to a laser-induced fluorescence (LIF) detector that enables a 

higher sensitivity compared to an UV detector. The low sample volume injected for a 

measurement, which is in the range of a few nanoliters, render CE very attractive for the 

analysis of samples derived from in vitro transport experiments (Freed et al., 2002). The 

most commonly used experimental setup for in vitro transport studies is based on 
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Transwell systems (Bickel, 2005). The transport experiments often require repeated 

sampling over a defined period of time. To keep the hydrostatic pressure on the cell 

monolayer from both sides of the Transwell system constant, the removed sample volume 

is usually replaced by the same amount of fresh transport buffer or medium leading to a 

dilution of the compound of interest in the acceptor chamber. This is particularly critical 

for substances where only small quantities cross the BBB, such as peptides or 

macromolecules. However, the low sample volume needed for CE measurements 

minimizes this dilution effect and presents a considerable benefit. Furthermore, CE 

technique allows to detect potential metabolic fragments of parent molecules resulting 

from the interaction with endothelial cells (Freed et al., 2001).  

 Liquid chromatography - mass spectrometry (LC-MS) provides another analytical 

approach to detect compounds in BBB transport experiments. LC-MS/MS has been 

employed for the quantification of transport of peptide across an in vitro BBB model. 

This technique has been shown to be more sensitive as compared to CE-LIF (Chappa et 

al., 2007; Freed et al., 2002) and be able to detect peptide metabolites (Chappa et al., 

2007; Sloan et al., 2012). Advantages of this analytical method over other techniques 

include the possibility to detect compounds based on mass-to-charge (m/z) ratio without 

prior derivatization (e.g. fluorescence or radiolabeling), good sensitivity and selectivity, 

and the absence of e.g. radioactive waste (Chappa et al., 2007). However, using this 

method, buffer or cell culture medium present a challenge since the high salt 

concentration required for the proper cellular function during the experiment may damage 

the MS. Therefore, careful sample preparation and optimization of the analytical method 

is required prior to analysis. 

 Taken together, all analytical techniques mentioned above have their own advantages 

and limitations. When choosing an analytical method for measurements of BBB transport 

studies, several factors need to be considered. These include the expected amount of 

compound transported to the acceptor side, the sample volume needed for the 

measurements, the ability to modify the test compound with fluorescence or radioactive 

marker, and the compatibility of the cell culture medium or buffer with the chosen 

technique (Sloan et al., 2012).  
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1.4.3 In vivo models 

 To determine brain uptake in vivo, several techniques are used. These include the 

carotid artery single injection or perfusion technique, intravenous injection technique, 

cerebrospinal fluid (CSF) sampling, and intracerebral microdialysis. Animal models have 

the advantage to detect the complex in vivo situation. However, they are rather costly 

compared to computational and cell culture models and they cannot be used for high-

throughput screening of potential CNS compounds. 
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2 Aim of the Thesis 

 The blood-brain barrier (BBB) excludes the majority of drug candidates from entering 

the brain. Therefore, it is of substantial importance to evaluate the BBB permeability of 

potential drugs in an early phase of drug development. For this purpose, predictive in 

vitro BBB models that exhibit important key characteristics of the human BBB are 

needed. Downregulation of BBB specific proteins in culture presents a major challenge 

in the development of in vitro models. Conditionally immortalized cell lines have been 

proposed to have a great potential to be employed as an ideal in vitro BBB model since 

the gene expression of specific brain endothelial proteins remains high in culture (Bickel, 

2005; Pardridge, 2004b; Terasaki et al., 2003). Therefore, an aim of the present thesis 

was to characterize the newly generated human conditionally immortalized cell line TY09 

derived from primary isolated brain capillary endothelial cells with respect to the 

expression of BBB key proteins and the potential to screen compounds with different 

physicochemical properties. 

 Synthetic cathinones have become increasingly popular as recreational drugs (Simmler 

et al., 2013). Although it is known that the cathinones exert a pharmacological effect in 

the CNS, to which extent these psychoactive compounds cross the BBB remains unclear. 

Another topic of this thesis was to analyze the BBB permeation of the psychoactive 

compounds and to elucidate potential involvement of active transport processes using the 

TY09 cell line.  

 Specific drug delivery systems to overcome the BBB are of great benefit to deliver 

drugs with unfavorable physicochemical properties to the brain. Therefore, a further goal 

of this thesis was to develop a specific drug delivery system using novel polymeric 
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nanoparticles and to evaluate the cellular binding, uptake, and intracellular trafficking of 

this drug delivery system in human brain capillary endothelial cells.  

 To quantify the permeability of compounds across the BBB, a sensitive analytical 

method is required. This is particularly relevant for substances where only small amounts 

penetrate the brain such as macromolecules. Capillary electrophoresis (CE) with its 

advantages (high sensitivity, low sample requirement, fast and automated measurements) 

presents a promising technique to quantify the permeability of compounds across the 

BBB. Antibodies have been widely used as targeting vectors for drug delivery systems. 

Thus, it is of increasing interest to measure the transcytotic capacity of the targeting 

antibodies across the BBB in vitro. Hence, another focus of this thesis was to develop a 

sensitive analytical method based on CE for the quantification of macromolecules, i.e. 

antibodies, in the context of transendothelial transport and transcytosis in vitro. 

 Monoclonal antibodies gain increasing relevance not only as targeting vectors but also 

in the treatment of diseases such as cancer, autoimmune diseases, and others. Therapeutic 

antibodies are often administered as highly concentrated solutions in order to achieve the 

therapeutic effect. These highly concentrated protein solutions also show an increase in 

viscosity that limit their parenteral application. Thus, the viscosity of antibody solutions 

needs to be determined in drug development process in order to optimize the 

formulations. A high-throughput method with minimal sample consumption would be of 

great benefit for the viscosity measurement of expensive antibody solutions. Therefore, 

the suitability of CE for high-throughput viscosity determination of antibody formulations 

was further evaluated. 
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ABSTRACT 

 The blood-brain barrier (BBB) remains an obstacle for many drugs to reach the brain. 

A strategy to cross the BBB is to modify nanocarrier systems with ligands that bind to 

endogenous receptors expressed at the BBB to induce receptor-mediated endocytosis and 

transcytosis. The aim of the present study was to investigate the potential of 

polymersomes composed of the amphiphilic diblock copolymer poly(dimethylsiloxane)-

block-poly(2-methyl-2-oxazoline), PDMS-b-PMOXA, for active BBB targeting. We 

conjugated PDMS-b-PMOXA polymersomes to the anti-human insulin receptor antibody 

83-14 (83-14 mAb) and studied their uptake by brain capillary endothelial cells. 

Transmission electron micrography and light scattering measurements revealed the self-

assembly of the block copolymers into 200 nm vesicles after extrusion. Fluorescence 

correlation spectroscopy was employed to calculate the number of antibodies coupled to 

one polymersome. Binding and uptake of the polymersomes conjugated to 83-14 mAb 

were studied in the human BBB in vitro model hCMEC/D3 expressing the human insulin 

receptor. Competitive inhibition with an excess of free 83-14 mAb demonstrated the 

specificity of cellular binding and uptake. Our results suggest that PDMS-b-PMOXA 

polymersomes conjugated to 83-14 mAb may be suitable nanocarriers for drug delivery 

to the brain.  

 

KEYWORDS Polymersomes, PDMS-b-PMOXA diblock copolymers, Blood-brain 

barrier, Insulin receptor, Anti-human insulin receptor antibody 83-14, Active targeting  
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INTRODUCTION 

 A major obstacle in the development of drugs targeted to the brain remains the blood-

brain barrier (BBB) which prevents many drugs from entering the brain. Most 

macromolecules and many small molecules are excluded from the central nervous system 

(Pardridge, 2003). One strategy to overcome the BBB is to encapsulate a drug into a 

nanoparticulate system decorated with a ligand. This complex binds to an endogenous 

receptor expressed at the BBB, thus mediating cellular uptake and transcytosis upon 

interaction. Transport of ligand-conjugated liposomes across the BBB has been 

successfully demonstrated in vivo (Cerletti et al., 2000; Huwyler et al., 1996). 

 In the past years, delivery systems for drug targeting using polymersomes have 

received much attention. Polymersomes are vesicles which spontaneously form by self-

assembly of amphiphilic block copolymers in dilute aqueous solutions. Similar to 

liposomes, polymersomes can encapsulate hydrophilic compounds in their aqueous core 

and lipophilic substances in their membrane (Discher and Eisenberg, 2002). Depending 

on the molecular weight of the block copolymers, their vesicle membrane thickness 

ranges between 8 and 21 nm (Bermudez et al., 2002), which explains their increased 

mechanical stability compared to liposomes (Balasubramanian et al., 2010). The large 

variety of amphiphilic copolymers supports formation of polymersomes with a membrane 

permeability ranging from impermeable to small molecules (Kumar et al., 2007) up to 

porous membranes that allow a molecular exchange with the environment (van Dongen 

et al., 2009). Moreover, by choosing a suitable copolymer with appropriate chemical 

nature of each polymer block or hydrophilic-to-hydrophobic ratio, a broad range of 

tunable carrier properties with specific advantages (e.g.  encapsulation efficiency, stimuli-

responsiveness, multifunctionality) can be achieved (Cabane et al., 2012; Gaitzsch et al., 

2012; Najer et al., 2013; De Oliveira et al., 2012). 

 Polymersomes prepared from poly(2-methyl-2-oxazoline)-poly(dimethylsiloxane)-

poly(2-methyl-2-oxazoline) [PMOXA-PDMS-PMOXA] triblock copolymers have 

shown low toxicity and low immune response in different cell lines (Broz et al., 2005; 

Ranquin et al., 2005; Tanner et al., 2011). In addition, they combine a high stability in 

oxidative environments with a tight membrane, which does not allow escape of 

encapsulated molecules (Kumar et al., 2007). Polymersomes based on PDMS-b-PMOXA 
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diblock copolymers have recently been used for cellular targeting. PDMS-b-PMOXA 

polymersomes functionalized with trastuzumab bind specifically to HER2-positive breast 

cancer cells (SKBR3) and mediate cellular uptake (Egli et al., 2011).  

 The present study aimed to assess the potential of polymersomes based on PDMS-b-

PMOXA diblock copolymers for active drug targeting to the brain. To implement an 

active and physiological targeting strategy, the human insulin receptor expressed by brain 

capillary endothelial cells was used as a model system. Such an in vitro system allows 

studying the molecular mechanisms of cellular interactions between target cells and 

polymersomes. The insulin receptor is enriched at the BBB and is known to mediate 

transcytosis of insulin across the BBB (Pardridge et al., 1985). In addition, in vivo 

receptor binding of the anti-human insulin receptor antibody 83-14 (83-14 mAb) is 

followed by receptor-mediated endocytosis and transcytosis (Pardridge et al., 1995) with 

a nearly 10-fold higher BBB transport than an anti-transferrin receptor antibody (Wu et 

al., 1997). Therefore, targeting the insulin receptor is a promising approach to deliver 

drugs to the brain.  

 We conjugated the 83-14 mAb to the polymersomes during the polymer film 

rehydration process in a fast, one-step conjugation reaction. To the best of our knowledge, 

this was the first time to functionalize polymersomes with the high-affinity anti-insulin 

receptor antibody 83-14 mAb for drug targeting.  

 Brain delivery of ligand-targeted polymersomes has already been described in vivo in 

animals (Pang et al., 2011). However, to improve polymersome uptake by the brain, the 

underlying molecular mechanisms of transport at the cellular level have to be understood. 

In the present work, we first tested the functional expression of the human insulin receptor 

by the human brain capillary endothelial cell lines hCMEC/D3 and TY09 (Poller et al., 

2008; Sano et al., 2012). Subsequently, we studied binding, cellular uptake, and 

intracellular trafficking of polymersomes conjugated to 83-14 mAb in brain endothelial 

cells.  
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EXPERIMENTAL PROCEDURES 

MATERIALS 

 Triethylamine (≥99%), 4-(dimethylamino)pyridine (≥99%), succinic anhydride 

(≥99%), N-hydroxysuccinimide (≥98%), N, N'-dicyclohexylcarbodiimide (99%), and 

anhydrous dichloromethane (≥99.8%, containing 50-150 ppm amylene as stabilizer) were 

purchased from Sigma-Aldrich (Schnelldorf, Germany). Regenerated cellulose dialysis 

membranes (3.5k Da molecular weight cut-off [MWCO]) were obtained from Spectrum 

Labs (Breda, Netherlands). 5(6)-carboxyfluorescein diacetate N-hydroxysuccinimidyl 

(NHS) ester, ethanol puriss. and sodium bicarbonate were purchased from Sigma-Aldrich 

(analytical grade, Schnelldorf, Germany). Milli-Q water was obtained from Millipore 

(Billerica, Massachusetts, USA). A hybridoma cell line producing the mouse monoclonal 

antibody against the human insulin receptor (83-14 mAb) was kindly provided by 

Professor Ken Siddle (Department of Clinical Biochemistry, University of Cambridge, 

UK). DyLight 488 NHS ester and goat polyclonal anti-rabbit antibody DyLight 633 were 

obtained from ThermoFischer Scientific (Waltham, MA, USA). Rabbit polyclonal anti-

early endosome-associated protein 1 (EEA1) antibody and rabbit polyclonal anti-

lysosome-associated membrane protein 1 (Lamp1) antibody were purchased from Abcam 

(Cambridge, UK). Suppliers of the cell-culture reagents and chemicals are indicated 

below. All other chemicals were obtained from Sigma-Aldrich (Schnelldorf, Germany). 

 

METHODS 

Synthesis and characterization of block copolymers  
 

Synthesis of hydroxyl functionalized poly(dimethylsiloxane)-block-poly(2-methyl-2-

oxazoline) block copolymers (PDMS65-b-PMOXA14-OH).  

 PDMS65-b-PMOXA14-OH diblock copolymer (Figure 1) was synthesized according to 

the procedure reported by Egli and coworkers (Egli et al., 2011).  
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Figure 1: Chemical structures of PDMS65-b-PMOXA14-OH (1) and PDMS65-b-PMOXA32-NHS (2) 

diblock copolymers. 

 

Synthesis of monocarboxyl acid modified poly(dimethylsiloxane)-block-poly(2-methyl-2-

oxazoline) block copolymers (PDMS65-b-PMOXA32-COOH).  

 Succinic anhydride (39 mg, 0.39 mmol), triethanolamine (TEA, 50 µL, 0.36 mmol), 

and 4-(dimethylamino) pyridine (DMAP, 6.9 mg, 0.06 mmol) were added to the 

anhydrous dichloromethane solution of PDMS65-b-PMOXA32-OH (500 mg, 0.07 mmol) 

at 0°C under argon. The reaction was maintained for 24 h. Finally, the reaction solution 

was dialyzed against dichloromethane for two days while changing dichloromethane four 

times.  

Synthesis of NHS activated ester modified poly(dimethylsiloxane)-block-poly(2-methyl-

2-oxazoline) block copolymers (PDMS65-b-PMOXA32-NHS) [Figure 1]. 

 N-Hydroxysuccinimide (NHS, 30 mg, 0.26 mmol) and 

N, N'-dicyclohexylcarbodiimide (DCC, 35 mg, 0.17 mmol) were added to the anhydrous 

dichloromethane solution of PDMS65-b-PMOXA32-COOH (300 mg, 0.04 mmol) at room 

temperature under argon. The reaction was maintained in this condition for 24 h. Finally, 

the reaction solution was dialyzed against dichloromethane for two days while changing 

dichloromethane four times. Figure S1 shows the route of synthesis. 

 

Characterization of the synthesized PDMS65-b-PMOXA32-COOH block copolymers  

 The synthesized PDMS65-b-PMOXA32-COOH block copolymer was characterized 

using proton nuclear magnetic resonance (1H NMR; Figure S2). Fourier transform 

infrared spectroscopy (FTIR) was used to characterize the presence of specific chemical 

groups. Polymer samples were placed on the detector and measured with 256 scans and 
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2 cm-1 resolution. FTIR spectra were obtained from 400 to 4000 cm-1 (PerkinElmer 

Spectrum 100 FTIR Spectrometer) [Figure S3]. 

 

Preparation and characterization of polymersomes  
 

Preparation  
 

 Polymersomes composed of a mixture of amphiphilic diblock copolymers PDMS-b-

PMOXA (95% PDMS65-b-PMOXA14-OH and 5% PDMS65-b-PMOXA32-NHS) were 

prepared using the film rehydration method as described previously (Egli et al., 2011). In 

brief, block copolymer (5 mg) was dissolved in absolute ethanol (1 mL). To form a thin 

film, the solution was transferred to a round-bottom flask, and the solvent was evaporated 

at 40°C and 100 mbar using a rotary vacuum evaporator (Buchi Rotavapor R-124 with 

vacuum controller B-721, Flawil, Switzerland). This film was then further dried overnight 

in a vacuum oven (ThermoFischer Scientific, Waltham, MA, USA). Bicarbonate buffer 

(1 mL, 0.1 M, pH 8.3) was added drop-wise to the film and stirred constantly (600 rpm) 

overnight. Copolymer solution was extruded with an Avanti mini-extruder (Avanti Polar 

Lipids, Alabama, US) through polycarbonate membranes with pore-size diameters of 

400 nm and 200 nm (Whatman GmbH, Bottmingen, Switzerland) 11 times each to 

homogenize the size distribution of the polymersomes. 

 

Morphology and assemblies size  
 

 Morphology and size distribution of polymersomes were analyzed using transmission 

electron microscopy (TEM) and light scattering (dynamic light scattering, DLS, and static 

light scattering, SLS). For TEM analysis, 5 µL of non-conjugated polymersomes and 

polymersomes conjugated to 83-14 mAb were negatively stained with freshly prepared 

2% uranyl acetate solution, mounted on a carbon-coated copper grid, and air-dried 

overnight before analysis. The samples were readily visualized with a Philips Morgagni 

268D transmission electron microscope at 293 K. 

 DLS measurements of the samples (5 mg/mL in phosphate-buffered saline [PBS] 1X) 

were performed using Delsa Nano C Particle Sizer (Beckman Coulter, Brea, California, 

USA). The angle for the measurements was set to 165° (back scattering mode). Size 

distribution was calculated using the CONTIN algorithm.  
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 To confirm the vesicular structure of the assembled block copolymers in solution, 

further light scattering measurements were performed. DLS and SLS experiments were 

performed on an ALV goniometer (ALV GmbH, Germany), equipped with an ALV He-

Ne laser (λ = 632.8 nm). Light scattering measurements were performed in 10 mm 

cylindrical quartz cells at angles of 30 – 150° at 293 K. The obtained data were processed 

using ALV static & dynamic fit and plot software (version 4.31 10/01). SLS data were 

processed according to the Guinier model, and DLS data by using the Williams-Watts 

function. 

 

Fluorescent labeling of 83-14 mAb 
 

 

 83-14 mAb (1 mg/mL in PBS 1X) was incubated with a molar excess of NHS ester-

functionalized 5(6)-carboxyfluorescein or DyLight 488 for 2 h at 4°C. The sample was 

then extensively dialyzed using a Spectra Por 4 dialysis membrane with MWCO of 

12,000-14,000 Da (Spectrum Labs, Breda Netherlands) against PBS 1X at pH 7.4. The 

fluorophore to protein (F/P) labeling molar ratio was calculated according to the 

manufacturer’s instruction using the Beer-Lambert Law. In brief, absorbance of the 

sample was measured at wavelengths of 280 nm and 493 nm to obtain the protein and dye 

concentration in the sample, respectively. Absorbance of the protein at 280 nm was 

corrected for the absorbance at 280 nm caused by the dye (manufacturer’s recommended 

correction factor = 0.147). The extinction coefficient was 210,000 M-1 cm-1 for the protein 

and 70,000 M-1 cm-1 for the dye. To calculate the F/P ratio, the molar concentration of the 

dye was divided by the molar protein concentration. Absorbance measurements were 

carried out with Spectramax M2e (Molecular Devices LLC, Sunnyvale, California).  

 

Conjugation of the polymersomes to fluorescently labeled 83-14 mAb 
 

 Polymersomes conjugated to 83-14 mAb were prepared with fluorescently labeled 

83-14 mAb. On average, one antibody was labeled with five DyLight 488 molecules. For 

conjugation, PDMS65-b-PMOXA14-OH (95%) and PDMS65-b-PMOXA32-NHS (5%) 

were dissolved in anhydrous ethanol and then dried to form a thin film. Monoclonal 

antibody in bicarbonate buffer (9.4 µM, pH 8.3) was added to the film and stirred 

overnight (600 rpm). The ratio of NHS-functionalized block copolymer to mAb was 4:1. 
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The conjugated polymersomes were then extruded 11 times each with 400 nm and 200 nm 

filters, and free antibodies were separated by size-exclusion chromatography using 

Sepharose CL-2B column (GE Healthcare, Little Chalfont, Buckinghamshire, UK) 

eluting with PBS 1X pH 7.2. 

 

Fluorescence correlation spectroscopy  
 

 The number of fluorescently labeled 83-14 mAb per polymersome was determined by 

fluorescence correlation spectroscopy (FCS). Measurements were carried out as 

described previously using a laser-scanning microscope (Zeiss LSM 510-

META/Confcor2) equipped with different laser lines (488, 458, 477, 488, 514, 543, and 

633 nm) and a 40X water immersion objective lens (Zeiss C-Apochromat 40X, NA 1.2) 

(Egli et al., 2011). Samples of DyLight 488 dye, DyLight-labeled 83-14 mAb, and 

polymersomes conjugated to DyLight 488-labeled 83-14 mAb were measured at room 

temperature on a thin cover glass (Huber & Co AG, Reinach, Switzerland). In FCS mode, 

fluctuations in fluorescence intensity were analyzed in terms of an autocorrelation 

function. To reduce the number of free fitting parameters, diffusion times for free dye 

(DyLight 488) and DyLight 488-labeled antibodies were independently determined. The 

fluorescence intensity signal was detected in real time and calculated by a software 

correlator (LSM 510 META - ConfoCor 2 System) using an autocorrelation function as 

well as brightness measurements. Autocorrelation curves were obtained by taking the 

average of 10 measurements over 30 s. 

 

Cell culture 
 

 Immortalized human brain capillary endothelial cells, hCMEC/D3 cells, were obtained 

under license from the Institut National de la Santé et de la Recherche Médicale, Paris, 

France (Weksler et al., 2005). Passages from 30 to 35 were used for the experiments. 

Cells were cultured in endothelial cell basal medium (Provitro GmbH, Berlin, Germany) 

supplemented with 5% fetal bovine serum (FBS; AMIMED BioConcept, Allschwil, 

Switzerland), 1 ng/mL basic fibroblast growth factor (PeproTech, Hamburg, German), 

5 µg/mL ascorbic acid, 1.4 µM hydrocortisone (Sigma-Aldrich, Schnelldorf, Germany), 

chemically defined lipid concentrate 1:100 dilution, 10 mM HEPES, 2 mM glutamax 
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(Gibco Life Technologies, Carlsbad, CA, USA), 100 U/mL penicillin, and 100 mg/mL 

streptomycin (Sigma-Aldrich, Schnelldorf, Switzerland).  

 Conditionally immortalized human brain endothelial cells, TY09, were obtained under 

license from the Department of Neurology and Clinical Neuroscience, Yamaguchi 

University, Japan. The cells were maintained in culture as described previously (Sano et 

al., 2012; Simmler et al., 2013). In brief, cells were grown in growth medium (EGM-MV 

BulletKit CC-3125, Lonza, Verviers, Belgium) supplemented with 20% FBS (AMIMED 

BioConcept, Allschwil, Switzerland), 100 U/mL penicillin, and 100 mg/mL streptomycin 

(Sigma-Aldrich, Schnelldorf, Switzerland). 

 Cells were passaged every 3 to 4 days. Before cell seeding, all culture flasks were 

coated with 0.1 mg/mL rat tail collagen (BD Biosciences, San Jose, CA, US) for 1 h at 

37°C. 

 

Receptor expression, cellular uptake, and subcellular localization 
 

Flow cytometry  
 

Receptor expression 
 

 To analyze cell receptor expression, hCMEC/D3 cells and TY09 cells were washed 

with Dulbecco’s Phosphate-buffered Saline 1X (DPBS) [Sigma-Aldrich, Schnelldorf, 

Switzerland] and then detached from the culture flask with Accutase (Gibco Life 

Technologies, Carlsbad, CA, USA). The reaction was stopped using medium containing 

10% FBS, and the cells were centrifuged and washed two times to remove Accutase. The 

cells were incubated with mouse 83-14 mAb (1.25 µg/mL) for 20 min at 4°C in staining 

buffer (DPBS 1X, 0.05% NaN3, 1% FBS, 2.5 mM EDTA), washed, and further incubated 

with the 2nd anti-mouse Alexa 488 antibody, 1:500 dilution (Invitrogen Life 

Technologies, Carlsbad, CA, USA) for 20 min at 4°C. Control cells were only treated 

with the 2nd anti-mouse Alexa 488 antibody. To exclude dead cells, all samples were 

treated with 7-AAD before the measurements. The cells were analyzed using FACS 

Calibur flow cytometer (BD Biosciences, San Jose, CA). The results represented the 

percentages of cells with positive fluorescence signals after gating to exclude the 

autofluorescence signal of the control cells. Samples were excited at 488 nm. The green 

fluorescence signal was detected in FL1 after passing 530/30 nm bandpass filter, and the 
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7-AAD signal was detected in FL3 after 670 nm LP filter. The data were analyzed using 

FlowJo analysis software version V9/X (TreeStar, Ashland, OR, USA). Cell count was 

normalized to mode by FlowJo algorithm. Therefore, the absolute count is represented by 

100% of total (% of maximum). 

 

Cellular uptake 
 

 To analyze uptake of polymersomes conjugated to 83-14 mAb, hCMEC/D3 cells were 

seeded on a 12-well plate (TPP, Trasadingen, Switzerland) at a density of 5 x 104 

cells/cm2 and grown for two days in culture medium. Polymersome-antibody conjugates 

suspended in DPBS 1X were mixed with culture medium and added to the cells to a final 

concentration of 500 µg/mL. Incubation was performed for 1 h and 2 h at 37°C. Cells 

were washed with ice-cold DPBS 1X to deplete the free polymersome-antibody 

conjugates and incubated with 0.25% Trypsin-EDTA (Gibco Life Technologies, 

Carlsbad, CA, USA) until the cells had detached. Trypsin reaction was stopped with ice-

cold DMEM (Sigma-Aldrich, Schnelldorf, Switzerland) supplemented with 10% FBS. 

The cell suspension of each well was centrifuged for 5 min at 200 g (4°C). After washing 

the pellets with staining buffer (DPBS 1X, 0.05% NaN3, 1% FBS, 2.5 mM EDTA), the 

cells were treated with 7-AAD and analyzed using a CYAN flow cytometer. Excitation 

was performed at 488 nm. The DyLight signal was collected in FL1 (530/40 nm) and the 

7-AAD signal in FL4 (680/30 nm). The data were analyzed using FlowJo analysis 

software as described above.  

 

Confocal laser scanning microscopy 
 

Intracellular localization 
 

 HCMEC/D3 cells were seeded on collagen-coated cover glasses at a density of 

2.5 x 104 cells/cm2 and grown to 70-80% confluency. The cells were washed with 

DPBS 1X and incubated with polymersomes (500 µg/mL) for 2 h at 37°C. The nuclei 

were counterstained with Hoechst 33342 (1 µg/mL). After washing three times with ice-

cold DPBS 1X, the cells were fixed with 4% paraformaldehyde (15 min at 4°C). The cells 

were then incubated with either rabbit polyclonal anti-EEA1 or anti-Lamp1 antibodies 

for endosomes and lysosomes staining (1:500), respectively. The cells were washed with 
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DPBS 1X, followed by staining with the 2nd antibody, i.e., goat anti-rabbit polyclonal 

antibody Dylight 633 (1:1000). Images were captured using an Olympus FV 1000 

inverted laser scanning microscope equipped with 40x (NA 1.30) and 60x (NA 1.40) oil 

immersion objectives (Olympus, Tokyo, Japan). Samples were excited with 488 nm laser 

for the localization of the fluorescent polymersome-antibody conjugates, 405 nm laser 

for visualization of the nuclei, and 635 nm laser for the detection of intracellular 

organelles.  

 

RESULTS AND DISCUSSION 

 Polymersomes have the potential to be employed as carriers for active drug targeting 

(Kamaly et al., 2012). In the present study, we used polymersomes composed of the 

amphiphilic diblock copolymers PDMS-b-PMOXA for targeting brain endothelial cells 

(Figure 1). A previous study showed the spontaneous self-assembly of the hydroxyl-

functionalized diblock copolymers, PDMS65-b-PMOXA13, into vesicles in aqueous 

solution by the film rehydration method (Egli et al., 2011). The mixture of  PDMS65-b-

PMOXA14 (95%) with NHS ester-modified PDMS65-b-PMOXA32 copolymers (5%) 

allowed to conjugate the polymersomes with 83-14 mAb, which binds with high affinity 

to the human insulin receptor and subsequently mediates cellular uptake and transcytosis 

in vivo (Pardridge et al., 1995). 

 

Synthesis and characterization of PDMS-b-POMXA diblock copolymers 
 

 Synthesis and characterization of hydroxyl-functionalized PDMS-b-PMOXA diblock 

copolymer has been described previously (Egli et al., 2011). The NMR spectra of 

hydroxyl-functionalized PDMS65-b-PMOXA32 diblock copolymer before and after 

modification to carboxyl acid-functionalized copolymer revealed an additional peak with 

a chemical shift of 2.55 ppm (Figure S2, Ha). This demonstrates the successful addition 

of the carboxyl acid group on the PDMS65-b-PMOXA32 diblock copolymer. Moreover, 

FTIR results showing an additional peak with wave number of 1728 cm-1 for the carbonyl 

group of the carboxylic acid (Figure S3) further confirmed the reaction to PDMS65-b-

PMOXA32-COOH. This copolymer was further treated with N-hydroxysuccinimide and 
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N, N'-dicyclohexylcarbodiimide in anhydrous dichloromethane. The appearance of a 

white precipitate during the reaction was indicative of successful esterification. After 

purification, the final product was used without any additional treatment.  

 

Preparation and characterization of polymersomes conjugated to 83-14 mAb  
 

Fluorescently labeled 83-14 mAb 
 

 The antibody was first labeled with NHS ester-functionalized fluorescent dye. This 

functional group reacts with primary amines on the antibody forming amid bonds leading 

to stable antibody-dye conjugates. Reaction of the fluorophore with primary amines on 

the binding site may reduce antibody functionality and may even lead to inactivation of 

the antibody (Vira et al., 2010). Therefore, labeling was optimized in order to achieve a 

strong fluorescence signal while retaining antibody functionality. We systematically 

modified the 83-14 mAb with the fluorescent dye 5(6)-carboxyfluorescein NHS ester and 

tested its functionality after labeling using flow cytometry. We used hCMEC/D3 cells 

that express much larger quantities of insulin receptor than TY09 cells (Figure 4A). With 

increasing amount of dye, the fluorophore to protein (F/P) labeling ratios increased 

linearly. Moreover, flow cytometry analysis revealed increasing fluorescence intensity 

with increasing F/P ratios. This indicated that the antibody retained its functionality even 

after modification with an average of 9.4 dye molecules per mAb molecule (Table 1). 

Higher labeling ratios were not studied since over-labeling can increase non-specific 

background signals and lead to inactivation of the targeting protein (Vira et al., 2010). 

Our results confirm previous reports indicating that a final labeling with 2-8 moles of 

fluorophore per mole antibody is optimal (Haugland, 1995; Vira et al., 2010). 

 For further conjugation of the fluorescently labeled 83-14 mAb to polymersomes, 

antibodies with an average of five dye molecules per mAb molecule were used. This ratio 

was chosen because it did not affect the antibody functionality and in addition, free 

accessible primary amines on the antibody for coupling to the polymersomes were still 

available (Table 1). For further experiments, 5(6)-carboxyfluorescein NHS ester was 

replaced by the photostable dye DyLight 488 NHS ester. 
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Table 1: Flow cytometry analysis of the fluorescently labeled 83-14 mAb with 5(6)-carboxyfluorescein 

NHS ester. Molar excess of dye applied, resulting F/P ratio, and median fluorescence intensity (MFI) are 

listed. F/P ratio: dye to protein labeling ratio. Calculation of this ratio is described in the Materials and 

Methods section. Absorbance measurements were carried out with Spectramax M2e. HCMEC/D3 cells 

were used for this analysis. 

 

Molar excess of dye to 

83-14 mAb 

 

F/P ratio 

 

MFI 

 

5 

 

2.9 

 

9 

10  5 11.2 

20  9.4 13.2 

 

Polymersomes conjugated to fluorescently labeled 83-14 mAb 
 

Morphology and size 
 

 By combining static and dynamic light scattering data, it is possible to study the 

structure of the supramolecular assemblies in aqueous solution (Stauch et al., 2002). Light 

scattering measurements of non-functionalized diblock copolymer assemblies revealed 

dimensions of 109 nm for radius of gyration (Rg) and 115 nm for radius of hydration (Rh). 

The ρ-value (ρ=Rg/Rh) of 0.95 indicated a hollow sphere structure of the assemblies 

(Stauch et al., 2002) (Table 2, Figure S4). This observation is in line with findings from 

a previous study, where a ρ-value of 0.92 was obtained for the PDMS65-b-PMOXA13 

diblock copolymer (Egli et al., 2011). Addition of 5% PDMS65-b-PMOXA32-NHS 

diblock copolymer did not alter the polymersomes structure as confirmed with light 

scattering data (Table 2). Upon antibody conjugation, the hydrodynamic size of the 

polymersomes was 117 nm in radius. The polymersomes exhibited a monodisperse size 

distribution (polydispersity index 0.13). These particles were bigger than liposomes and 

polymersomes previously used for receptor-mediated brain drug delivery (Huwyler et al., 

1996; Pang et al., 2011). However, 200 nm ApoE-coated nanoparticles have recently been 

shown to cross the BBB (Zensi et al., 2009), and it has been demonstrated that this active 

process is mediated by the low-density lipoprotein receptor-related protein 
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(Wagner et al., 2012). We therefore did not consider size to be a limiting factor for our 

polymersomes to cross cellular barriers in vivo.  

 

Table 2:  Light scattering data of polymersomes purely composed of PDMS65-b-PMOXA14-OH block 

copolymer and polymersomes composed of PDMS65-b-PMOXA14-OH (95%) and PDMS65-b-PMOXA32-

NHS (5%) block copolymers in aqueous solution. 

Block copolymer 
a
Rg (nm) 

b
Rh (nm) ρ (𝛒 =

𝑹𝒈

𝑹𝒉
) 

 

PDMS65-b-PMOXA14-OH (100%) 

 

109 ± 0.2 nm 

 

115 

 

0.95 

PDMS65-b-PMOXA14-OH (95%) 

PDMS65-b-PMOXA32-NHS (5%) 

 

102 ± 0.2 nm 114 0.89 

a
Rg: radius of gyration 

b
Rh: radius of hydration 

 

 TEM showed the spherically shaped vesicular morphology of non-conjugated 

polymersomes and polymersomes conjugated to 83-14 mAb (Figure 2). Five percent of 

NHS ester-functionalized PDMS65-b-PMOXA32 block copolymer served for the 

conjugation. This molar percentage of functionalized copolymers is in a similar range as 

the one that was previously used (Egli et al., 2011) and did not affect the self-assembly 

process as shown in TEM pictures (Figure 2B).  

 

 

Figure 2: TEM images of PDMS-b-PMOXA diblock copolymers with non-conjugated polymersomes (A) 

and polymersomes conjugated to 83-14 mAb (B). Size bars in A: 2000 nm and B: 500 nm.  
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Conjugation of antibody 
 

 To calculate the number of labeled antibodies attached to one polymersome, we used 

FCS. Figure 3 shows the normalized FCS autocorrelation curves of free DyLight 488 dye, 

antibodies labeled with DyLight 488 dye, and polymersomes conjugated to antibodies 

labeled with DyLight 488. Diffusion times (τD) of free DyLight 488 dye, free DyLight 

488-labeled antibodies, and polymersomes conjugated to DyLight 488-labeled antibodies 

were 53 µs, 384 µs, and 12 ms, respectively. Significant differences in diffusion times 

indicated the association of the antibodies to polymersomes. Molecular brightness of free 

DyLight 488 dye, free DyLight 488-labeled antibodies, and polymersomes conjugated to 

DyLight 488 dye-labeled 83-14 mAb allowed to estimate the number of free DyLight 488 

dye per antibody, and also the number of antibodies per polymersome. On average, each 

83-14 mAb was labeled by five DyLight 488 molecules. This result is in line with the F/P 

ratio obtained by the absorbance measurements. In total, 13 antibodies were attached to 

one polymersome. Because the conjugation reaction of amine-functionalized antibody 

with NHS ester-functionalized diblock copolymers was performed during the self-

assembly process, topological orientation of antibody was not predefined.  

 Recently, polymersomes composed of PDMS-b-PMOXA diblock copolymers were 

modified with an antibody to specifically target HER2-positive breast cancer cells, 

SKBR3 (Egli et al., 2011). The antibody-polymersome conjugation technique used by the 

authors comprised two steps. First, the surface of the polymersomes and antibody were 

modified with two different functionalities, i.e., 4-succinimidyl 4-formylbenzoate and 

succinimiyl 6-hydrazinonicotinate acetone hydrazone. In a second step, the modified 

reactants were allowed to react resulting in a bis-aryl hydrazone bond (Egli et al., 2011). 

This conjugation led to a stable covalent bond. However, this method involves multiple 

purification steps that may impact on the overall recovery of samples (GE Healthcare, 

2010). In contrast, our approach offers a rapid one-step preparation of polymersomes and 

simultaneous conjugation to antibodies. This method is straightforward and simple since 

it is a “one-pot” reaction and only needs one purification step to remove unbound 

antibody. 

 Vesicles composed of similar block copolymers, i.e., PMOXA-b-PDMS-b-PMOXA, 

are stable in buffer over a period of four months (Litvinchuk et al., 2009). Nevertheless, 
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we have used the conjugated polymersomes immediately after preparation in order to 

ascertain the integrity of the polymersome-antibody conjugates for all cell experiments. 

 

 

Figure 3: Fluorescence correlation spectroscopy analysis of polymersomes conjugated to fluorescently 

labeled 83-14 mAb. Normalized autocorrelation curves of free DyLight 488 dye (X), DyLight 488-

labeled 83-14 mAb (Ο), and polymersomes conjugated to DyLight 488-labeled 83-14 mAb (●). Different 

diffusion times of free DyLight 488 (53 µs), DyLight 488-labeled 83-14 mAb (384 µs), and 

polymersomes conjugated to DyLight 488-labeled 83-14 mAb (12 ms) indicated the successful 

conjugation of the polymersomes. Autocorrelation curves represent the averages of 10 measurements 

over 30 s.  

 

Expression of insulin receptor by brain capillary endothelial cells 
 

 High expression of the targeted receptor is a prerequisite for the study of receptor-

mediated cellular uptake of particles in in vitro models. We have quantified the expression 

of insulin receptor in two human BBB in vitro models, i.e., hCMEC/D3 and TY09. The 

hCMEC/D3 cell line is a well-characterized BBB in vitro model which retains typical 

BBB characteristics (Poller et al., 2008; Weksler et al., 2005). TY09 is a human 

conditionally immortalized BBB cell model that shows barrier-specific properties even 

after repeated passages (Sano et al., 2012).  

 Flow cytometry analysis revealed high expression of the human insulin receptor by 

hCMEC/D3 cells. Approximately 94% of the cell population expressed this receptor on 

the cell surface. In contrast, only 13.4% of the TY09 cell population expressed the insulin 
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receptor (Figure 4A). Therefore, our result revealed the preservation of insulin receptor 

functionality in culture conditions in hCMEC/D3 cells and support previous observations 

that the insulin receptor is expressed at gene and protein levels (Ohtsuki et al., 2013; Urich 

et al., 2012). Consequently, we used the hCMEC/D3 cell line for further investigations. 

 

 

Figure 4: Flow cytometry analysis of insulin receptor expression and uptake of polymersomes conjugated 

to 83-14 mAb by brain endothelial cells. A: Human insulin receptor expression by hCMEC/D3 and TY09 

cells. Solid line, shaded area: negative control, cells only stained with anti-mouse Alexa 488 2nd antibody. 

Solid line, white area: cells stained with 83-14 mAb and 2nd anti-mouse antibody Alexa 488. B: Uptake of 

polymersomes conjugated to 83-14 mAb by hCMEC/D3 cells. Solid line, shaded area: negative control 

(untreated cells); solid line, white area: cells incubated with polymersomes conjugated to 83-14 mAb for 

1 h or 2 h. Dashed line: competitive inhibition of uptake with an excess of free 83-14 mAb. FL 1 Log: 

Fluorescence signal was collected in FL1 detector as described in the Materials and Methods section and 

is expressed in logarithmic unit. 
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Endocytosis of polymersomes conjugated to 83-14 mAb by hCMEC/D3 cell line 
 

Cellular uptake 
 

 To investigate cellular interactions, hCMEC/D3 cells were incubated with 

polymersomes conjugated to 83-14 mAb for predefined times at 37°C.  Flow cytometry 

analysis revealed cellular uptake of polymersomes conjugated to 83-14 mAb by 

hCMEC/D3 cells. Median fluorescence intensity (MFI) increased from control level by a 

factor of 2.6 to 5.6 after 1 h and to 10.8 after 2 h of incubation (Figure 4B). To further 

analyze the specificity of uptake, we treated the cells with polymersomes conjugated to 

83-14 mAb in the presence of an excess of free 83-14 mAb. The MFI values decreased 

to the level of control cells after incubation for 1 h and to 3.5 after incubation for 2 h. 

Thus, competitive inhibition of uptake indicated the specificity of this process and the 

involvement of a receptor-mediated uptake mechanism for polymersomes conjugated to 

83-14 mAb. 

 To further confirm these results, cellular uptake of polymersomes conjugated to 

83-14 mAb by hCMEC/D3 cells was visualized using confocal laser scanning microscopy 

after 2 h of incubation at 37°C. This demonstrated intracellular localization of 

polymersomes conjugated to 83-14 mAb (Figure 5B). For comparison, the cells were 

incubated with DyLight 488-labeled 83-14 mAb at 37°C for 20 min leading to a similar 

green fluorescent signal in perinuclear regions (Figure 5A).  

 

Intracellular localization 
 

 To elucidate the intracellular trafficking of polymersomes conjugated to 83-14 mAb 

in endothelial cells, EEA1 and Lamp1 were stained for visualization of early endosomes 

and lysosomes, respectively. In order to investigate whether polymersomes conjugated to 

83-14 mAb followed the same intracellular trafficking mechanism as 83-14 mAb alone, 

the cells were incubated with free labeled 83-14 mAb and polymersomes conjugated to 

83-14 mAb. After 20 min of incubation, 83-14 mAb showed a colocalization with a 

subpopulation of early endosomes and lysosomes (Figure 5C). Intracellular localization 

of polymersomes conjugated to 83-14 mAb in hCMEC/D3 cells could be observed after 

to 2 h of incubation. Again, polymersomes conjugated to 83-14 mAb showed 

colocalization with a subpopulation of early endosomes and lysosomes after exposure for 
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2 h at 37°C (Figure 5D). However, the colocalization signal of the targeted polymersomes 

with intracellular organelles was much weaker than the signal obtained with labeled 

83-14 mAb. This is in line with a previous study where only few intracellular PMOXA-

b-PDMS-b-PMOXA-based polymersomes were detected in endolysosomal 

compartments (Tanner et al., 2013). Previous findings suggested that nanoparticle 

conjugation influences the mechanism of antibody-mediated receptor endocytosis and 

subsequent trafficking (Bhattacharyya et al., 2010). Therefore, the different intracellular 

localization of the polymersome-antibody conjugates relative to the antibody alone may 

be due to altered trafficking upon conjugation. In addition, the slower accumulation of 

polymersomes conjugated to 83-14 mAb in these organelles as compared to free mAb 

can be attributed to the size of the polymersomes since the time needed for cellular uptake 

and intracellular trafficking of particles is influenced by particle size (Albanese et al., 

2012). Although receptor-mediated endocytosis and subsequent intracellular trafficking 

to the endosomes and lysosomes of antibody is rapid (Smith and Gumbleton, 2006), larger 

particles may require longer for this transport process (Rejman et al., 2004). For this 

reason, previous uptake studies with nanoparticles used prolonged incubation times 

(Balasubramanian et al., 2011; Massignani et al., 2009). However, an incubation time 

exceeding 2 h might result in non-specific uptake (Egli et al., 2011). Thus, in our 

experiment, the exposure of particles to cells was limited to 2 h. Nevertheless, this period 

allowed comparing intracellular trafficking between free antibody and antibody 

conjugated to polymersomes.  

 

CONCLUSION 

 In summary, we have successfully functionalized PDMS-b-PMOXA-based 

polymersomes with the high-affinity anti-insulin receptor antibody 83-14 via a one-step 

reaction. This method allowed to rapidly prepare polymersome-antibody conjugates for 

investigations of cellular nanoparticle interactions. In vitro experiments demonstrated 

endocytosis of the ligand-targeted polymersomes by human brain capillary endothelial 

cells. Competitive inhibition of uptake indicated the specificity of this process. Therefore, 

polymersome-83-14 mAb conjugates based on PDMS-b-PMOXA block copolymers may 

be useful to deliver drugs to the brain. The exact molecular mechanism for the uptake of  
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large particles by brain endothelial cells has not yet been elucidated. We observed altered 

intracellular trafficking of the polymersome-antibody conjugates compared to free 

83-14 mAb. Particle size seems to critically affect the kinetics of cellular uptake and 

trafficking (Massignani et al., 2009). Further investigations are required to elucidate if 

other factors may be involved in this distinct trafficking pattern for the polymersomes 

conjugated to 83-14 mAb compared to antibody alone and if these findings can be 

confirmed in animal experiments. 
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Figure 5: Intracellular localization of 83-14 mAb and polymersomes conjugated to 83-14 mAb 

(PS-83-14 mAb) in hCMEC/D3 cells. The cells were either exposed to DyLight 488-labeled 83-14 mAb 

for 20 min (A, C) or to polymersomes conjugated to 83-14 mAb for 2 h (B, D). In C and D, the samples 

were additionally stained with biochemical organelle markers. Endosomes were visualized with EEA1 

staining, and lysosomes with Lamp1 staining. Blue: cell nuclei were stained with Hoechst 33342. Green: 

83-14 mAb or 83-14 mAb-PS, yellow: colocalization of the organelles with 83-14 mAb or 

PS-83-14 mAb. Control samples were stained with Hoechst 33342 and showed no background 

fluorescence. Size bars: 20 µm. 
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SUPPORTING INFORMATION 

 

Figure S1: Chemical synthesis of PDMS65-b-PMOXA32-COOH and PDMS65-b-PMOXA32-NHS block 

copolymers. Reagents and conditions for modification of PDMS65-b-PMOXA32-OH (1) to PDMS65-b-

PMOXA32-COOH (2): Succinic anhydride, TEA, DMAP, 0°C to room temperature, 24 h (yield 95%); 

reagents and conditions for modification of PDMS65-b-PMOXA32-COOH (2) to PDMS65-b-PMOXA32-

NHS (3): NHS, DCC, room temperature, 24 h (yield 96%). 

 

 

Figure S2: 1H NMR spectra of PDMS65-b-PMOXA32-OH (A) and PDMS65-b-PMOXA32-COOH (B) 

block copolymers. PDMS65-b-PMOXA32-COOH, Ha: peak corresponds to carboxyl acid. 1H NMR (400 

MHz, δ, CDCl3): 0 ppm (m, -Si(CH3)2), 0.54 ppm (m, -SiCH2), 0.88 ppm (t, -CH3), 1.31 ppm (m, CH3-

CH2-CH2-), 1.62 ppm (m, -SiCH2-CH2-CH2O-), 2.08-2.21 ppm (m, CH3-C=O), 2.54 ppm (m, -CH2-CH2-

COOH), 3.40-3.60 ppm (m, -CH2-O-CH2-CH2-N-CH2-CH2-), 4.18 ppm (t, -CH2-O-C=O). 
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Figure S3: FTIR spectra of PDMS65-b-PMOXA32-OH and PDMS65-b-PMOXA32-COOH block 

copolymers. Peak at wavelength 1728 cm-1 corresponds to carbonyl group of carboxyl acid. 

 

 

Figure S4: DLS (left) and SLS (right) plots of PDMS65-b-PMOXA14-OH polymersomes (A) and of 

PDMS65-b-PMOXA14-OH polymersomes including 5% of PDMS65-PDMS65-b-PMOXA32-NHS (B). DLS 

data were calculated by using the Williams-Watts function. Guinier function was employed to fit the SLS 

data.  
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3.4 Bioanalytical Application of Capillary Electrophoresis to 

Study Transcytosis in Vitro 

 

INTRODUCTION 

 Capillary electrophoresis (CE) is a powerful tool in bioanalytical applications and 

allows the analysis of a variety of biomolecules (e.g. amino acids, proteins, peptides, 

nucleic acids and others) (Powell and Ewing, 2005). The minimal sample requirement 

(nanoliter range) makes this analytical method attractive for several applications, 

including the investigation of neurological samples and in the context of quantification 

of transendothelial transport across the BBB (Freed et al., 2002; Powell and Ewing, 

2005). The transport of macromolecules, such as monoclonal antibodies, presents a 

challenge from an analytical point of view, since only small quantities cross the BBB. A 

sensitive analytical technique is necessary in order to detect the transport of antibody 

across the BBB in vitro. Capillary electrophoresis equipped with a laser-induced 

fluorescence detector (CE-LIF) is a sensitive analytical method that has already been 

employed to determine the transport of neuropeptides across the BBB in vitro (Freed et 

al., 2002). Therefore, the present study aimed to evaluate the potential applicability of CE 

to study transcytosis of macromolecules, i.e. antibodies, in vitro.  

 We used the anti-insulin receptor antibody  83-14 (83-14 mAb) as our model antibody 

because it binds with high affinity to the insulin receptor and has been shown to cross the 

BBB in vivo (Pardridge et al., 1995). The 83-14 mAb and the extracellular marker 

albumin were fluorescently labeled. The fluorescent proteins were then applied to a 

human BBB in vitro model expressing the insulin receptor. The extracellular marker 

monitors the integrity of the cell monolayer during the transport. The quantification of 

transport of the proteins was performed using CE-LIF. 
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EXPERIMENTAL PROCEDURES 

 

MATERIALS 

 Milli Q water was obtained from Millipore (Billerica, Massachusetts, USA). A 

hybridoma cell line producing the mouse monoclonal antibody against the human insulin 

receptor (83-14 mAb) was kindly provided by Professor Ken Siddle (Department of 

Clinical Biochemistry, University of Cambridge, UK). Suppliers of the cell culture 

reagents and chemicals are indicated in section 3.3. 5(6)-carboxyfluorescein diacetate N-

hydroxysuccinimidyl (NHS) ester, sodium bicarbonate, and all other chemicals were 

obtained from Sigma-Aldrich (Schnelldorf, Germany). 

 

METHODS 

Fluorescent labeling of the proteins 

 Three milligrams of antibody were labeled with 10-fold molar excess of 

5(6)-carboxyfluorescein-NHS and 3 mg albumin were modified with 20-fold molar 

excess of the same dye. The labeling was performed on ice in 0.1 M sodium bicarbonate 

buffer for 2 h at pH 8.3. The non-reacted dye was removed by size exclusion 

chromatography using a Sephadex G50 column as described in section 3.3. The end 

protein concentration was determined using Modified Lowry Protein Assay kit (Thermo 

Scientific, Waltham, MA, US) according to manufacturer’s instructions. Albumin was 

used as standard for this protein assay. The fluorescent dye to protein ratio (F/P ratio) was 

quantified for the labeled 83-14 mAb in order to ensure that the fluorescent modification 

did not exceed the accepted number of dyes per molecule. Previously, we have shown 

that a F/P ratio up to 10 did not affect the antibody activity. The labeling efficiency was 

determined according to the manufacturer’s instruction using the Beer-Lambert Law 

(section 3.3). For the transport experiments, the ratio of the fluorescence intensity in the 

acceptor compartment to that in the donor compartment was determined at each time 

point. Therefore, it was not necessary to quantify the F/P ratio for albumin. 
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Capillary electrophoresis  

 The ProteomeLab PA 800 capillary electrophoresis instrument (Beckman Coulter Inc., 

Fullerton, CA, USA) equipped with a laser-induced fluorescence detector (CE-LIF) was 

used for the analysis. A fused-silica capillary (50 µm ID, 375 µm OD, 50 cm to detection 

window, total length 60 cm; Beckman Coulter) was employed for the separations. Sample 

was injected into the capillary by pressure (0.5 psi for 20 s). The separation was carried 

out at 30 kV at 25°C in 50 mM borate buffer, pH 8.8. Excitation was performed using a 

488 nm argon-ion laser. Between two runs, the capillary was rinsed 5 min with 

1 M NaOH, 5 min with MilliQ water, and another 5 min with borate buffer.  

 

Cell culture  

 HCMEC/D3 cell line was obtained under license from the Institut National de la Santé 

et de la Recherche Médicale, Paris, France (Weksler et al., 2005). The cells were 

maintained in culture as described in section 3.3. 

 

Transport experiments 

 In the transport experiments, the hCMEC/D3 cells were treated as previously 

described (Poller et al., 2008). In brief, hCMCE/D3 cells were seeded on polycarbonate 

Transwell filter inserts (0.4 µm pores, 1.12 cm2) at a density of 5 x 104 cells per cm2 and 

cultured for 7 to 10 days. The transport assays were performed in growth-factor-depleted 

medium (EBM-2 supplemented with bFGF 1 ng/mL, 2.5% FCS, 0.55 µM hydrocortisone, 

10 mM HEPES, and 1X penicillin-streptomycin). In the transport studies, 0.1 mg/mL of 

fluorescently labeled 83-14 mAb was added in presence of the same amount of the 

extracellular marker albumin to the cell monolayer. Throughout the transport experiment, 

samples of 20 µL were drawn at 2, 4, 8, and 24 h. The volume was replaced by the same 

amount of medium. The permeabilities of the test proteins were calculated as described 

previously and were given as permeability coefficients (Pe). The Pe values of the test 

compounds across the cell monolayers were corrected by the Pe values of the compounds 

across blank coated filter inserts without cells (Poller et al., 2008; Sano et al., 2012).  
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RESULTS AND DISCUSSION 

Fluorescent labeling of the proteins 

 The proteins were fluorescently labeled prior to the transport experiments. The F/P 

ratio was quantified for the antibody. On average, 5 dyes were labeled to each antibody 

molecule. This ratio is in the range where the antibody functionality is retained 

(section 3.3). As mentioned above in ‘methods’, the F/P ratio of the labeled albumin was 

not determined since the relative fluorescence signals were recorded by comparison with 

the intrinsic fluorescence intensity of the donor compartment at each time point. 

Therefore, it was not necessary to quantify the labeling efficiency of albumin.  

 

Capillary electrophoresis 

 

 

Figure 1: Electropherogram of the stock solution containing 83-14 mAb (t = 5.2 min) and albumin 

 (t = 7.3 min). 

 

 The low sample requirement of CE-LIF is of particular advantage when performing 

transport experiments. A volume of 20 µL was drawn from the acceptor chamber and 

only few nanoliters were injected into the capillary per run. Therefore, this analytical 

technique allows multiple sampling during the experiment with only minimal dilution 

effect because only a small sample volume is replaced by the medium. The transport 

experiment was performed in transport medium in order to provide the cells with essential 

nutrients during the period over 24 hours. Moreover, the fetal calf serum in the medium 
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minimized the sample loss due to potential non-specific adsorption of the antibody to the 

Transwell chamber. Figure 2 shows the electropherogram of the stock solution containing 

the fluorescently labeled 83-14 mAb and albumin. The method separated the antibody 

and albumin in less than 10 min. Using CE-LIF, the labeled antibody reached a low limit 

of quantification (LLOQ with a signal to noise ratio: 5) of 45 ng/mL (0.3 nM) and albumin 

165 ng/mL (2.5 nM) when diluted in transport medium containing serum.  

 

Transcytosis and transendothelial transport 

 

 

Figure 2: Permeability coefficients of fluorescently labeled 83-14 mAb and albumin. The transport was 

determined in hCMEC/D3 cell monolayers in apical to basolateral direction (AB) and basolateral to 

apical direction (BA). Values are means ± SEM (n = 3). 

 To examine whether the 83-14 mAb actively crossed the BBB in vitro, we performed 

bidirectional transport studies. The transport was carried out in presence of the 

extracellular marker albumin in order to monitor the integrity of the cell monolayers 

during the experiments. Albumin does not cross the BBB in vivo and has been employed 

as extracellular marker (Bickel, 2005). Pe values of albumin in the experiments were 

comparable to the permeability coefficient previously observed for Dextran of similar 
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size (70 kDa) in hCMEC/D3 cell monolayers, indicating monolayer integrity (Weksler et 

al., 2013). Low permeabilities of 83-14 mAb were determined for both directions (A to 

B and B to A) with no statistically significant differences. Moreover, the extracellular 

marker albumin exhibited in both directions a 2-fold higher transport rates across the cell 

monolayer as compared to 83-14 mAb (Figure 2). This indicates that the detected amount 

of 83-14 mAb in the receiver side was attributable to passive diffusion enabled by 

paracellular leakage of our model rather than active transport. The 2-fold higher 

permeability of albumin compared to the antibody in both directions may be due to the 

difference in molecular weights of the transported molecules (albumin: 66 kDa, antibody: 

150 kDa). 

 Comparable experiments could not be performed with the TY09 in vitro model since 

the enhanced tightness of this cell line (section 3.1) led to lower signals of the proteins at 

different time points that were below the detection limit. However, when comparing the 

transported amount of 83-14 mAb with that of albumin in the receiver compartment at 

the end of the experiment, similar ratios were obtained as observed in hCMEC/D3 cell 

line. Similarly, the transport of the 83-14 mAb did not exceed that of albumin. These 

results suggest that the lack of transcytosis activity was not cell line dependent.  

 These preliminary experiments indicate that transendothelial transport of fluorescently 

labeled antibodies can be studied using our cell culture model. Detection limits of the 

used analytical method, i.e. CE-LIF, allowed for an assessment of the tightness and 

integrity of the cell monolayers. Passive diffusion of the used antibody across filter 

membranes could be quantified. However, it was not possible to detect an active 

transendothelial transport. A possible explanation for the absence of transcytotic activity 

in our in vitro system may be the high-affinity interaction between the 83-14 mAb and 

the insulin receptor (KD of 0.45 ± 0.1 nM) (Pardridge, 2001) that competes with the 

dissociation of the antibody from the receptor. With respect to high-affinity antibody 

receptor interactions, much research has been focused on the well-known OX26 anti-

transferrin receptor antibody. Although the high-affinity OX26 anti-transferrin receptor 

antibody has been shown to cross the BBB in vivo, the antibodies were predominantly 

associated with the brain capillary endothelial cells and were mainly excluded from the 

brain parenchyma (Gosk et al., 2004; Moos and Morgan, 2001). Yu et al. recently 

supported these observations by testing antibodies of different binding affinities against 
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the transferrin receptor. They showed that high-affinity antibodies mainly remained 

bound to the brain vasculature and only a limited amount reached the brain parenchyma, 

whereas low-affinity antibodies were more likely to dissociate from the receptor leading 

to a higher accumulation in the brain parenchyma (Yu et al., 2011).  

 In vitro transcytosis has been reported for the FcRn receptor (Dickinson et al., 1999; 

Stapleton et al., 2011). However, this was observed in epithelial cell lines and the results 

are not directly comparable with endothelial cells. Moreover, the antibodies used for these 

studies exhibited at least 1000 times lower affinity to the receptor than the 83-14 mAb.  

 Furthermore, methodological limitations may also contribute to the lack of 

transcytosis. Our in vitro system consists of brain endothelial cells grown on porous filter 

inserts that were placed in Transwell chambers filled with medium. This commonly used 

set-up is convenient and facilitates the sampling procedures during the whole period of 

the transport experiment. However, the question arises whether this simplified 

experimental set-up is suitable to detect transcytosis activities of the BBB. In vivo, the 

brain endothelial cells are in close proximity to other cells, i.e. astrocytes, pericytes, 

microglia, and neurons. For instance, 99% of the surface of the BBB in vivo is surrounded 

by astrocyte foot processes (Pardridge, 1999). This close contact of the BBB to other 

brain cells may favor the dissociation of the antibody from the receptor at the basolateral 

side. In vivo, once an antibody crosses the BBB, it can immediately interact with acceptor 

cells. Therefore, further studies can be done with a co-culture system in order to mimic 

the close cell association in vivo. 

 All these possible explanations may contribute to the discrepancy between the in vitro 

and in vivo data. However, these hypotheses need to be verified in the future. 

 To the best of our knowledge, the transport of the 83-14 mAb across BBB cell 

monolayers has not yet been documented in vitro. The mechanism by which 83-14 mAb 

reaches the brain remains unresolved. Mechanistic studies in brain endothelial cells to 

elucidate the molecular mechanism of the transport of the 83-14 mAb might contribute 

to the understanding of the transcytosis process and the discrepancy between the in vivo 

and in vitro data.  

 With respect to the analytical technique used in the present study, CE-LIF provides a 

sensitive analytical method for protein quantifications. The high sensitivity in the 
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picomolar to nanomolar range, combined with the low sample volume requirement, 

renders this technique attractive for the use in transport studies. 
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ABSTRACT 

 Characterization of viscosity of protein formulations is of utmost importance for the 

development of subcutaneously administered formulations. However, viscosity 

determinations are time-consuming and require large sample volumes in the range of 

hundreds of microliters to a few milliliters, depending on the method used. In this article, 

we describe an automated, high-throughput method to determine dynamic viscosity of 

Newtonian fluids using standard capillary electrophoresis (CE) equipment. CE is an 

analytical method routinely used for the separation and characterization of proteins. The 

capillary is filled with the test sample, and a constant pressure is applied. Migration time 

of a riboflavin peak moving through the filled capillary is converted to the viscosity by 

applying the Hagen-Poiseuille’s law. The instrument is operated without using an 

electrical field. Repeatability, robustness, linearity, and reproducibility were 

demonstrated for different capillary lots and instruments, as well as for different capillary 

lengths and diameters. Accuracy was verified by comparing the viscosity data obtained 

by CE instrumentation with those obtained by plate/cone rheometry. The suitability of 

the CE method for protein formulations was demonstrated, and advantages and 

limitations of the method were explored in comparison to different rheological methods 

used in protein formulation development (plate/cone rheometry, capillary viscosimeters, 

falling ball viscosimeter). Typical viscosities in the range of 2 to 40 mPas were reliably 

measured with the CE method. Advantages of the CE method included short 

measurement times (1 – 15 min) and small sample volumes (few microliters) for a 

capillary with a diameter of 50 μm and a length of 20.5 cm. Our method promises to be 

suitable for high-throughput measurements. 
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INTRODUCTION 

 Viscosity of protein formulations is a key challenge during formulation development 

of biologics, such as monoclonal antibodies, for subcutaneous use. At high protein 

concentrations (>50 – 100 mg/mL), antibodies form viscous solutions due to volume 

exclusion, protein-protein interactions, and macromolecular crowding (Harris et al., 

2004). The viscosity increases exponentially with increasing protein concentration 

leading to limitations during manufacture (e.g., filtration) and drug 

administration/injection (Shire, 2009; Shire et al., 2004). Therefore, it is essential to 

characterize viscosity during formulation and process development. However, only a 

limited number of rheological methods suitable for viscosity characterization of protein 

formulations are available. Preferably, viscosity determination should require small 

amounts of material (in the microliter range) as only limited quantities tend to be available 

during formulation development. Moreover, viscosity determination should cover a broad 

viscosity range (preferably between 1 and ~100 mPas) (Jezek et al., 2011), and the method 

should be manageable in an automated, high-throughput mode. Current methods are 

sample- and time-consuming and allow a throughput of only a few samples per hour.  

 Capillary viscosimeters have been used for over a century. The best-known and most 

frequently used capillary viscosimeters are instruments based on the Ostwald-

viscosimeter, the Ubbelohde, and the Canon-Fenske-viscosimeter (Cannon et al., 1960; 

Mezger, 2010; Ostwald, 1899, 1911; Ubbelohde, 1936; Ubbelohde and Göttner, 1965). 

These viscometers consist of a glass capillary which is filled with the sample fluid. The 

sample flows through the capillary driven by gravity, and the migration time for a defined 

sample volume is measured. The migration time can be converted into the dynamic 

viscosity of the sample by applying the Hagen-Poiseuille’s law. However, large sample 

volumes in the milliliter range are needed for the commercially available instruments 

(Jezek et al., 2011; Macosko, 1994; Mezger, 2010). In the recent decades, various efforts 

have been made to optimize capillary viscometers for smaller sample consumption (Grupi 

and Minton, 2012; Han et al., 2007; Mach and Arvinte, 2011; Pipe and McKinley, 2009; 

Pipe et al., 2008; Srivastava et al., 2005). However, these methods do not fulfill all 

requirements for protein preparations.  
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 The present study aimed to establish an automated, high-throughput method to 

determine the dynamic viscosity of Newtonian liquids using standard capillary 

electrophoresis (CE) equipment. 

 

MATERIALS AND METHODS 

MATERIALS 

Aqueous sucrose and glycerol solutions 

 For calibration of the CE instrument, standard solutions with defined viscosities 

consisting of 0% to 60% (w/v) sucrose (Ferro Pfanstiehl, Waukegan, IL, USA) were 

prepared. The aqueous sucrose solutions covered a viscosity range from 1 to 75 mPas. 

Viscosity was verified by plate/cone rheometry. For accuracy testing, glycerol/water 

mixtures were produced by diluting glycerol (99.9%; Acros Organics, Morris Planes, NJ, 

USA) with water for injection to achieve concentrations between 0% and 80% (w/w) 

covering a viscosity range of 1 to 65 mPas. 

 

Commercial protein therapeutics 

 Five commercial protein therapeutics (CPT) were used. These were obtained as either 

prefilled syringes for CPT 1 (IgG, 60 mg/mL), CPT 2 (IgG, 100 mg/mL), CPT 3 (IgG, 50 

mg/mL), and CPT 4 (fusion protein, 50 mg/mL), or as a lyophilisate for CPT 5 (IgG, 100 

mg/mL). The products were stored at 2 – 8°C and were used before expiry. 

 

Monoclonal antibody formulation 

 The purified monoclonal antibody mAb1 (IgG1, pI = 8.5; Mw = ~150 kDa; 

kD = 5.97 mL/g determined according to Lehermayr et al. 18) was provided by F. 

Hoffmann-La Roche Ltd (Basel, Switzerland), and was formulated in a 20 mM histidine-

acetate buffer (Ajinomoto, Louvain-la-Neuve, Belgium) pH 5.5 at concentrations of 20 

to 150 mg/mL.  
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METHODS 

Viscosity measurement using a capillary electrophoresis instrument 

 A ProteomeLab PA 800 CE instrument (Beckman Coulter Inc., Fullerton, CA, USA) 

equipped with a photodiode array detector was used. The temperature for sample storage 

and the capillary was set to 20°C. Bare fused-silica capillaries eCapTM with inner 

diameters of 50 μm and 75 μm were obtained from Beckman Coulter Inc. (Brea, CA, 

USA). The instrument was operated without application of an electric field. After rinsing 

steps with water, 0.1 M HCl, and 0.1 M NaOH at 70 psi (5 min), the capillary was filled 

with the test sample at high pressure (80 psi) during 5 min. The dye consisting of a 0.02% 

riboflavin 5’ phosphate sodium salt hydrate solution (Sigma Aldrich, St. Louis, MO, 

USA) was loaded into the capillary by applying pressure (1 psi) for 15 s. Before and after 

loading, the inlet of the capillary was placed in a vial filled with water to remove 

remaining dye/sample from the surface of the capillary inlet. After performing an 

autozero, constant pressure was applied to the system (4 ± 0.05 psi) with the sample vial 

positioned at the capillary entrance. The dye moved towards the detection window and 

was detected at 445 nm. Migration time was recorded and related to viscosity. The sample 

volume for a single measurement was dependent on the capillary properties. A volume of 

100 μL in the storage vial with a sample consumption of a few microliters was found to 

be sufficient for the tested viscosities and set-ups.  

 The method was tested for repeatability, robustness, linearity, accuracy, and 

reproducibility using different capillary lots, instruments, capillary lengths, and 

diameters. Aqueous sucrose and glycerol solutions with defined viscosities showing 

Newtonian behavior were used. After calibration of the equipment set-up with the sucrose 

solutions (1 – 75 mPas), dynamic viscosity data for different glycerol concentrations (1 – 

65 mPas) were compared to viscosity data obtained by plate/cone rheometry. 

 

Plate/cone rheometry 

 For comparison, dynamic viscosity was measured on a MCR 301 plate and cone 

rheometer (Anton Paar AG Switzerland, Zofingen, Switzerland) at 20°C (N = 2). The 

rheometer was equipped with a measuring cone with an angle of 0.5° and a diameter of 

25 mm (Anton Paar AG Switzerland, Zofingen, Switzerland), and a sample volume of 
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80 μL was used. After equilibration of the sample at a shear rate of 100 s-1 for 1 min, the 

shear rate was increased from 100 s-1 to 2,000 s-1 over 1 min Dynamic viscosity was 

determined as the mean of 6 consecutive measurements at a shear rate of 2,000 s-1. 

 

Measuring principle  

Figure 1 shows the instrumental set-up and measuring principle based on a capillary 

electrophoresis with an inner diameter D and total length L. 

 

Figure 1: Instrumental set-up and measuring principle of viscosity measurement using CE 

instrumentation. ∆P = applied pressure [Pa], L = total length of capillary [m], l = length of capillary from 

inlet to detection window [m], D = inner capillary diameter [m]. (OD = optical density) 

 

 The distance between the capillary entrance and window for UV detection corresponds 

to the capillary length l. At time zero (t0), the capillary is completely filled with the 

sample. A small amount of dye (riboflavin) is injected into the capillary by applying 

constant pressure by the CE apparatus (t1). The instrument is operated without use of an 

electrical field. The volume of the dye is considered negligible compared to the sample 

volume in the capillary. When applying a constant pressure ∆P, the dye migrates through 
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the capillary. During this time period, the fluid is continuously drawn up into the capillary 

which remains completely filled (t2). At t3, the dye is detected as a peak at the capillary 

window. The migration time t is converted into dynamic viscosity as follows: 

 The flow of a fluid through a capillary driven by a constant pressure can be described 

by the Hagen-Poiseuille’s law (Equation 1) (Hagen, 1839; Mezger, 2010; Pipe and 

McKinley, 2009; Poiseuille, 1840; Schiller, 1933; White, 1991). Equation 1 describes the 

dynamic viscosity η [Pa s] as a function of the applied pressure ∆P [Pa], inner capillary 

diameter D [m], and time t [s] that the sample takes to flow through the capillary with the 

length l [m]. 

 

𝜼 =
∆𝑷 𝑫𝟐

𝟑𝟐  𝒍𝟐 
∙ 𝒕 Equation 1 

 

 In our set-up, the migration time t was equal to the migration time of the dye, 

representing the time needed for the sample to flow from the inlet of the capillary to the 

detection window. This distance is equal to the capillary length l. Equation 1 shows that 

the dynamic viscosity 𝜂 of the fluid is directly proportional to the migration time t. To 

ensure consistent flow and applicability of the Hagen-Poiseuille’s law, special attention 

has to be paid to the completely filled capillary during the measurement. The Hagen-

Poiseuille’s equation is valid for laminar flow in a tube defined by a Reynolds number 

Re << 2300 (Mezger, 2010; Reynolds, 1883, 1895). For all tested set-ups, the Reynolds 

number was equal to 4.5 or smaller and was calculated for the worst case as follows: 

Re =  
 𝑙 𝐷 𝜌

𝜂 𝑡
 = 4.5 with l = 30 cm, 𝐷 = 50 μm, density 𝜌20 °𝐶 = 1 g/mL, 𝜂20 °𝐶 = 1 mPas, and 

migration time t = 33 s. Figure 2 shows the migration time of the dye as a function of 

dynamic viscosity determined by plate/cone rheometry for different concentrations of 

sucrose solutions. 
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Figure 2: Comparison of measured and calculated migration times based on Hagen-Poiseuille’s law for 

different concentrations of sucrose solutions as a function of dynamic viscosity determined by plate/cone 

rheometry (2,000 s 1; 20°C). Mean values and standard deviation are reported. 

 

 With increasing viscosity, the migration time increased linearly. Figure 2 compares 

the measured and calculated migration times based on Equation 1. A shift to higher values 

was found for the measured values due to a lag phase at the beginning of the measurement 

where the pressure is built up. Therefore, calibration of the system is required before start 

of the measurement. 

 Figure 3 (A) shows representative examples of riboflavin peaks with corresponding 

migration times for different glycerol and sucrose solutions with viscosities between 1 

and 25 mPas (D = 50 μm and l = 20.5 cm). The migration time increases with increasing 

viscosity. The symmetrical peaks are broadening and their intensity decreases with 

increasing migration time due to Taylor dispersion (Chapman and Goodall, 2008; 

Lewandrowska et al., 2013). This leads to an upper viscosity limit of the method. 

Exceeding this limit leads to detection of asymmetrical peaks. Representative examples 

are shown in Figure 3 (B) for viscosities of 41, 63, and 74 mPas (D = 50 μm, l = 20.5 cm). 
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However, the viscosity limit changes depending on the capillary diameter and capillary 

length as described below.  

 

 

Figure 3: (A) Representative examples of dye peaks (445 nm) for viscosities between 1 and 25 mPas at 

20°C. (B) Representative examples of dye peaks (445 nm) below and above the viscosity limit of 

approximately 40 mPas at 20°C. (Capillary: l = 20.5 cm, D = 50 μm) 

A 

B 
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 The sample volume required for one measurement depends on the diameter and length 

of the capillary. A volume of 100 μL (storage vial) with a sample consumption of a few 

microliters was found to be sufficient for the tested viscosities and set-ups.  

 

RESULTS 

 Figure 4 shows the repeatability, linearity, accuracy, and limit of viscosity 

measurements at 20°C for different  capillaries (A), instruments (B), capillary lengths 

(C), and capillary diameters (D).  

 

Linearity 

 In all set-ups used, migration time and dynamic viscosity for the different sucrose 

solutions (0 – 60% / 1 – 75 mPas) correlated in a linear fashion (Figure 4). The correlation 

coefficients were between R2 = 0.9988 and 0.9998 (for details see ‘Supporting 

Information’, Table S-1). This confirms the direct proportionality of viscosity and 

migration time in accordance with Hagen-Poiseuille’s law.  

 

Repeatability (intra-assay precision) and robustness  

 Repeatability and robustness were tested by triplicate measurements of different 

sucrose solutions using three different capillary lots (D = 50 μm, l = 20.5 cm, 20°C; 

Figure 4, A). Deviations between 0.2 – 1.4% ± 0.2 – 1.9% (average ± standard deviation) 

were found for the three different capillary lots and different sucrose solutions (intra-

capillary repeatability), with the inter-capillary repeatability (robustness) amounting to 

1.2 ±1.3% (for details see ‘Supporting Information’, Table S-1). 

 

Accuracy and viscosity limit 

 Figure 4 (A) shows the correlation between CE and plate/cone viscosity data for the 

glycerol solutions and the three different capillary lots. Good agreement between 

viscosity data obtained from plate/cone rheometry and CE instrumentation was found for 

viscosities between 2 and 40 mPas. The upper viscosity limit was defined at 

approximately 40 mPas due to the irregular shape of the riboflavin peak. Accuracy varied 
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between 1.9% – 5.6% ± 1.9 – 3.5% for the three tested capillaries with a minimum 

deviation of <0.1% and a maximum deviation of 9.4% (for details see ‘Supporting 

Information’, Table S-1). 

 

Reproducibility 

 For reproducibility testing, measurements were performed on two different CE 

instruments in different laboratories on different days. Sucrose calibration curves were 

almost identical for the two CE instruments, (Figure 4, B). Accuracies of 3.2% ± 2.9% 

(first instrument) and 3.1% ± 2.3% (second instrument) were found for the glycerol 

samples when comparing the viscosity data obtained by CE and plate/cone 

instrumentation with a minimum accuracy of 0.1% and 0.3%, and a maximum accuracy 

of 8.3% and 6.2% for instruments 1 and 2, respectively. The viscosity range ensuring 

accurate measurements was 2 to 40 mPas as shown also for the first set-up (Figure 4, A).  

 

Optimization: Capillary length  

 To optimize the method in terms of a shorter measuring time and larger viscosity 

range, two different capillary lengths (Figure 4, C) and capillary diameters (Figure 4, D) 

were tested. Figure 4 (C) shows the results for two different capillary lengths, namely 

20.5 cm and 30 cm (D = 50 μm, 20°C). The shorter capillary (20.5 cm) was the shortest 

length feasible and had the smallest distance between inlet vial and the detection window 

of the capillary. Comparison of the calibration curves showed that elongation of the 

capillary led to a shift of the calibration curve to longer migration times, in accordance 

with Equation 1 indicating that the migration time t is directly proportional to the capillary 

length l. Comparison of viscosity data of the glycerol solutions obtained by plate/cone 

rheometry and the CE instrument showed good agreement in the range of 2 to 40 mPas 

(20.5 cm) and 2 – 60 mPas (30 cm), respectively. Although migration time for the 30 cm 

capillary increased leading to peak broadening and lower intensity, the upper viscosity 

limit increased to approximately 60 mPas. For the 30 cm capillary, an accuracy of 4.7% 

± 2.1% with a minimum of 1.5% and a maximum of 6.6% was found.  
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Optimization: Capillary diameter 

 Figure 4 (D) shows the comparison of two different capillary diameters, i.e., 50 μm 

and 75 μm (l = 20.5 cm, 20°C). The calibration curve for the 75 μm capillary shifted to 

shorter migration times. This is explained by the Hagen-Poiseuille’s equation 

(Equation 1) as the capillary diameter D is inversely proportional to the migration time t. 

Comparison of viscosity data of the glycerol solutions obtained by plate/cone rheometry 

and the CE method revealed good agreement in the viscosity range of 2 to 40 mPas for 

the 50 μm capillary. However, the upper viscosity limit decreased to approximately 

15 mPas when using the 75 μm capillary. An accuracy of 5.9% ± 1.9% was found for the 

75 μm capillary with a minimum of 4.5% and a maximum of 8.3%.  
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Figure 4: Repeatability, linearity, accuracy, and limit of viscosity measurements at 20°C for different (A) 

capillaries, (B) instruments, (C) capillary lengths, and (D) capillary diameters. Measurements were 

performed in triplicates (CE) or duplicates (plate/cone), and mean values and standard deviation are 

reported. (D = inner capillary diameter, l = capillary length from inlet to detection window) 
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Application of the CE method to protein formulations 

 The method to measure viscosity using a CE instrument (D = 50 μm, l = 20.5 cm, 

20°C) was applied to protein formulations. As outlined, riboflavin was chosen as a dye 

which has an absorption maximum at 445 nm. At this wavelength, the absorption of 

proteins and protein formulations was tested and is considered negligible. Therefore, the 

proteins and their matrices (formulation) do not interfere with the detection of the dye 

during UV absorption measurement. 

 

Commercial protein therapeutics 

 Table 1 compares the viscosity data obtained by plate/cone rheometry with those 

obtained by the CE instrumentation for the CPT 1 to 5. Good agreement was found 

between the two methods. Maximum deviation between the viscosity data obtained by 

the two methods was found for CPT 5 (3.5 mPas) with a deviation of 0.7 mPas. 

 

Table 1: Viscosity of commercial protein therapeutics: Comparison of viscosity data using a CE 

instrument and plate/cone viscosimeter (20°C). Measurements were performed in triplicates (CE) or 

duplicates (plate/cone), and mean values and standard deviation are reported. 

Product 
Protein concentration 

[mg/mL] 

Dynamic viscosity 

(CE) [mPas] 

Dynamic viscosity 

(plate/cone) [mPas] 

CPT 1  60 2.1 ± 0.1 2.0 ± 0.1 

CPT 2  100 3.2 ± 0.0 3.0 ± <0.1 

CPT 3  50 1.6 ± 0.0 1.6 ± <0.1 

CPT 4  50 3.9 ± 0.1 3.7 ± <0.1 

CPT 5 100 4.2 ± 0.0 3.5 ± 0.1 

CPT = commercial protein therapeutic; CE = capillary electrophoresis 

 



  3 Results 

 

109 

 

Concentration series of a monoclonal antibody formulation 

 Viscosity of a monoclonal antibody formulation (mAb1) was determined by the CE 

method and plate/cone rheometry at different protein concentrations. Figure 5 (A) shows 

representative riboflavin peaks obtained by the CE instrument with the corresponding 

migration times for the different protein concentrations. With increasing protein 

concentration and viscosity, migration time increased as expected; the peaks were 

broadening, and the intensity decreased. As an example, a migration time of 7.8 min was 

measured for the highest protein concentration of 151 mg/mL with a viscosity of 

13.1 mPas. Figure 5 (B) shows the correlation between the viscosity data obtained by the 

CE method and plate/cone rheometry. Generally, the data for the measured protein 

concentrations obtained by CE agreed well with that obtained by plate/cone rheometry, 

although a small systematic deviation was found for higher viscosities and higher 

migration times.  
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Figure 5: Dynamic viscosity of mAb1. (A) Representative examples of riboflavin peaks (445 nm) during 

viscosity measurement (CE) for different concentrations of mAb1 at 20°C. (B) Correlation of dynamic 

viscosity determined by plate/cone rheometry (N=2) and CE instrumentation (N=3) for different 

concentrations of mAb1. Mean values and standard deviation are reported.  
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DISCUSSION 

 The present study aimed to establish an automated method for high-throughput 

measurement of dynamic viscosity using standard CE equipment. CE is routinely used 

for the separation and characterization of macromolecules, such as monoclonal antibodies 

for example (Cianciulli et al., 2012; Stackhouse et al., 2011; Wacker et al., 2011; Zhang 

et al., 2010). In 1993, Bello et al. have described a method to determine the viscosity 

using CE instrumentation. They determined the migration time of a boundary between 

the test liquid and a reference fluid, which was related to the dynamic viscosity of the 

sample. However, accurate results were only obtained for viscosities up to 3 mPas due to 

non-linearity (Bello et al., 1994). This limitation was overcome in our set-up by the 

completely filled capillary thus complying with Hagen-Poiseuille’s law. We showed the 

method to be reproducible, robust, and accurate. 

 Our data indicated that a short capillary with a larger inner diameter should be chosen 

for optimization/reduction of measuring time. However, expansion of the viscosity range 

requires longer capillaries with a small inner diameter. Therefore, a capillary with a 

diameter of 50 μm and a length of 20.5 cm represents a good compromise of short 

measuring time (1 – 15 min) and a viscosity range relevant for protein formulations. 

Aqueous glycerol solutions did not reveal any difference in viscosity values between the 

established method and standard plate/cone rheometry for viscosities in the range of 2 to 

40 mPas. The upper viscosity limit was defined by the irregular shape of the dye peak.  

 Application of the CE method to different commercial protein therapeutics revealed 

good agreement of viscosity data with those obtained using plate/cone rheometry. 

However, a monoclonal antibody formulation with increasing protein concentration 

exhibited systematic discrepancy between CE data and plate/cone data. One explanation 

might be an increase/change in capillary wall – protein interaction. We speculate that this 

increase might have resulted from a change in protein-protein interaction (PPI) with 

increasing protein concentration. As reported in the literature, attractive PPIs become 

predominant with increasing protein concentration. Even a change from repulsive forces 

at low protein concentration to the predominant attractive forces at high protein 

concentration was reported (Saluja and Kalonia, 2008; Yadav et al., 2010a, 2010b, 2012a, 

2012b). The interaction parameter kD between two molecules can be determined by 
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dynamic light scattering (DLS) experiments, as was previously described by our group 

(Lehermayr et al., 2011). This was found to be positive (5.97 mL/g) for mAb1, indicating 

repulsive interaction at low protein concentration. Therefore, the change from repulsive 

interaction at low protein concentration to predominating attractive forces at higher 

protein concentration might be responsible for the altered interaction between capillary 

wall and protein sample. As the deviation was systematic, it can be overcome by 

calibration with the drug product or ranking experiments. Another possibility is the use 

of differently coated capillaries, which is the subject of ongoing research.  

 Viscosity characterization is essential during protein formulation and process 

development. Methods involving low material consumption (in the microliter range) and 

a high throughput at a viscosity range between approximately 1 and 100 mPas are 

desirable. Compared to other rheological methods used in protein formulation 

development, such as capillary viscosimeters (e.g., Micro-Ubbelohde-

Viscometer/ViscoClock, Schott instruments [2 – 4 mL]; Texture Analyzer [few 

milliliters] (Allahham et al., 2004; Allmendinger et al., 2013; Rathore et al., 2011, 2012), 

falling ball viscosimeters (e.g., AMVn Microviscosimeter, Anton Paar [150 – 300 μL]), 

or standard plate/cone rheometer (e.g., MCR301, Anton Paar [80 μL]), the established 

CE method requires a small sample volume in the storage vial (100 μL) and a sample 

consumption of only a few microliters. The volume of 100 μL is a limitation of the 

instrument used and may be optimized by vial design or optimization of the inlet position. 

The CE instrumentation is a closed system which is temperature-controlled. The latter is 

a critical prerequisite for viscosity measurements. Most importantly, a unique feature of 

the CE instrumentation is that no time-consuming cleaning is needed due to automation 

of the method and cleaning process. This constitutes an advantage over other 

viscosimeters (including the micro-viscosimeter m-VrocTM, RheoSense Inc. (Pipe and 

McKinley, 2009; Pipe et al., 2008). As a result, the CE instrumentation allows for 

measurements in an automated manner with a throughput of approximately 30 samples 

per load defined by the capacity of the sample tray of the instrument used. 

 A method that provides a significantly higher throughput is based on DLS. The DLS-

based method measures the diffusion coefficient of polystyrene beads added to the sample 

solution. The diffusion coefficient is related to the dynamic viscosity according to the 

Stokes-Einstein equation (He et al., 2010). The system involves a disposable 384-well 
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plate (e.g., DynaoPro Plate Reader, Wyatt, 45 μL) and requires no cleaning. A drawback 

of the DLS method is that it requires the addition of the polystyrene beads leading to 

dilution of the sample by 10% thus inducing a change of sample composition. This limits 

the method to the non-exponential viscosity range at low protein concentrations or to 

studies requiring relative rather than absolute determination of viscosity. Additionally, 

prior exclusion of the risk of interaction/aggregation of protein with the polystyrene beads 

is mandatory. 

 A limitation of the CE method may be the potential for clogging of the capillary with 

particles. However, since filtration of protein samples (using sterilizing-grade filters) is 

routinely performed during sample preparation, particles >0.2 μm are typically excluded. 

Furthermore, potential interaction of the sample with the capillary wall at high protein 

concentration might require coated capillaries. An alternative approach is the calibration 

of the capillary with the specific product itself or the performance of ranking experiments. 

 Our method reliably determined the viscosity of Newtonian solutions between 2 and 

40 mPas. Variation in capillary length and capillary diameter led to different minimal and 

maximal viscosities. Moreover, using CE the shear rate applied to a sample can be varied 

by adjusting the pressure. Therefore, the method would also be applicable to non-

Newtonian liquids showing shear-rate-dependent behavior, which is the subject of 

ongoing research. This is of considerably importance as we have recently reported that 

protein formulations can show shear-thinning behavior especially at high protein 

concentrations (Allmendinger et al., 2013; Rathore et al., 2012). A complete list of 

methods to determine viscosity in protein formulations, including the established CE 

method, is provided in the Supporting Information, Table S-2. The table details the 

measuring principle, application, required volume, advantages, and limitations from an 

experimental point of view, highlighting that each method has its advantages and 

limitations. Therefore, the viscosity method most suited to the formulation in question 

has to be carefully chosen.  

 

CONCLUSION 

 In the present study, we developed a high-throughput method to determine the 

dynamic viscosity of Newtonian liquids using standard CE equipment. The method 
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generated precise and accurate results for different capillary lots and instruments, as well 

as for different capillary lengths and diameters. Viscosities in the range of 2 to 40 mPas 

were reliably measured. These values are in a typical range for protein formulations 

intended for therapeutic use. The CE method showed short measurement times (1 – 15 

min), and modest sample consumption (few microliters) for a capillary with a diameter 

of 50 μm and a length of 20.5 cm. Moreover, the usefulness of our method was shown for 

protein formulations, and possible limitations were outlined. The clear advantage of this 

method over other rheological determinations is the automation/high-throughput 

application in combination with small sample volumes required.  
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4 Conclusion and Outlook 

 The BBB remains a major obstacle in the treatment of disorders affecting the CNS. 

Many drug candidates do not cross the BBB. Therefore, extensive research has been put 

on the development of strategies to deliver therapeutics to the brain. To quantify the 

permeability of compounds and to evaluate different targeting strategies, in vitro BBB 

cell culture models that represent the in vivo system as much as possible would be of great 

benefit. Furthermore, a sensitive analytical method is required in order to determine the 

transport of compounds across the BBB.  

 

TY09 conditionally immortalized cell line: a useful BBB in vitro model  

 The existing high number of different BBB in vitro models to date reflects the 

challenge to obtain an ideal model retaining the BBB-specific key properties. Several 

immortalized BBB in vitro models have been established to overcome the limitations of 

primary cells (batch-to-batch variability, labor-intensive isolation). However, none of 

them reaches the paracellular tightness comparable to that of primary cells and 

downregulation of protein expression has been observed. Conditionally immortalized 

BBB cell lines have been suggested to better reflect the in vivo BBB properties than 

immortalized cell lines (Bickel, 2005; Pardridge, 2004; Sano et al., 2010; Terasaki et al., 

2003). TY09, a conditionally immortalized cell line harboring a temperature-sensitive 

immortalization gene and the hTERT adopts its phenotype according to the culture 

temperature. At 33°C, the cells are immortalized and proliferate. When switching the 

temperature to 37°C, the immortalization gene degrades, which favors cell differentiation. 

TY09 cells express important BBB tight junction proteins and transporters up to a passage 

of 50. This is a clear benefit of TY09 cell line, since primary cells rapidly undergo 
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senescence upon a limited time of division and continuous cell lines may gradually lose 

some typical BBB-specific properties (Reichel et al., 2003). Characterization of TY09 

cells with respect to transendothelial transport of reference compounds revealed slightly 

higher paracellular tightness as compared to the well-characterized hCMEC/D3 cell line. 

The enhanced tightness of the TY09 cell monolayers offers a slightly more sensitive 

discrimination of the transport rates of compounds. This characteristic allows 

bidirectional permeability studies of psychoactive compounds with similar 

physicochemical properties.  

 Therefore, the present study showed that the technique of conditionally 

immortalization of human primary brain endothelial cells offers the possibility to generate 

a BBB in vitro model retaining barrier-specific properties up to a high passage number. 

TY09 in vitro model is slightly tighter than the well-characterized hCMEC/D3 cell line 

and presents a useful tool for transendothelial transport screening of molecules with 

different physicochemical properties and for mechanistic investigations of transport 

processes.  

 Although TY09 is slightly tighter than hCMEC/D3 cells, it is by far less tight than the 

primary brain endothelial cells. Therefore, the paracellular tightness of TY09 cell line 

may be further optimized. The improvement of the paracellular tightness of immortalized 

cell lines remains a major challenge and is of ongoing research in different laboratories. 

It is known that co-culture systems with astrocytes or prericytes or both generally improve 

the tightness of endothelial cell monolayers and the expression of transporters (Abbott et 

al., 2012). Therefore, further investigations may focus on the improvement of culture 

conditions for TY09 cell line that better mimic the in vivo situation such as use of 

co-cultures with astrocytes and pericytes.  

 Static in vitro BBB models based on the Transwell system provide a simple and 

convenient experimental set-up for transport studies. However, static models do not 

include the factor of shear stress from fluid flow on endothelial cells that is critical in cell 

differentiation and tight junction formation. Recently, a microfluidic BBB in vitro model 

has been developed using the b.End3 cell line. This dynamic in vitro model showed 

significantly better paracellular tightness as compared to static models (Booth and Kim, 

2012). Therefore, cultivating under flow conditions might be another option to improve 

the tightness of the TY09 in vitro cell culture model. 



   4 Conclusion and Outlook 

 

121 

 

83-14 mAb conjugated polymersomes: a potential drug delivery approach 

 Polymersomes have considerable potential for the implementation of drug delivery 

systems. Therefore, a further focus of this thesis was to investigate the potential of 

83-14 mAb conjugated polymersomes for drug delivery strategy to the brain. The high 

brain uptake of the 83-14 mAb compared to other well-known targeting vectors, such as 

anti-transferrin receptor OX26 mAb, favors its use for the implementation of specific 

drug delivery strategies to the brain (Pardridge and Boado, 2012). However, the acute and 

chronic considerations of toxicity using an antibody directed against such an important 

receptor to enable brain uptake have to be investigated in the future. Moreover, the widely 

expression of the insulin receptor in human body limits its use for brain drug targeting 

strategies. However to date, there is no specific targeting vector available that solely 

reacts with the BBB.  

 Polymersomes based on PDMS-b-PMOXA block copolymers were chosen for this 

study because they possess several advantages including mechanical stability and 

minimal toxicity in vitro (Broz et al., 2005; Kumar et al., 2007). In vitro experiments with 

hCMEC/D3 cells revealed specific binding and uptake of the 83-14 mAb conjugated 

polymersomes. Therefore, the 83-14 mAb polymersomes based on PDMS-b-PMOXA 

block copolymers can be potentially used to implement specific drug targeting strategies 

to the brain. Further studies of the transport process are needed in order to elucidate the 

exact molecular mechanism for the uptake and intracellular trafficking of the 83-14 mAb 

conjugated polymersomes. This information will help to understand the interaction of 

83-14 mAb conjugated nanoparticles with brain endothelial cells and will therefore 

contribute to the optimization of this drug delivery strategy. Moreover, investigations of 

this drug delivery system in animals are required in order to confirm the in vitro data and 

to evaluate the in vivo biodistribution and potential toxicity. The PDMS-b-PMOXA block 

copolymers have been described to be biocompatible but not biodegradable (Lee and 

Feijen, 2012). Whereas the absence of biodegradability facilitates their experimental use, 

this characteristic also limits their clinical application in human. Therefore, further 

development in this field should focus on biodegradable drug delivery systems. 

An approach may be the use of nanoparticles based on amphiphilic poly(ethylene oxide)-

block-polycaprolactone (PEG-b-PCL) block copolymers. PEG and PCL polymers are 
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non-toxic, biodegradable, fully bioresorbable, and are FDA approved for drug delivery 

systems. Aggregates from block copolymers PEG-b-PCL have prolonged blood 

circulation times mediated by the hydrophilic PEG block and are biodegradable upon 

hydrolysis of the ester linkages of PCL in physiological condition. They maintain neutral 

pH environment upon degradation, and show slow erosion kinetics as compared to other 

biodegradable aliphatic polyester (Ghoroghchian et al., 2006). Hence, 83-14 mAb 

conjugated nanoparticles based on PEG-b-PCL block copolymer may be suitable to 

implement a drug targeting system to the brain in future.  

 The large variety of block copolymers allows the formation of nanocarriers with 

desirable and tunable properties. This offers a great potential to create nanocarriers that 

fulfill many requirements for an ideal (stealth property, biodegradable, non-toxic, stimuli-

responsive, high targeting efficiency, optimal pharmacokinetic and pharmacodynamic 

profiles etc.) drug delivery system to the brain in the future. 

 

BBB in vitro models: contribution to the development of drug delivery strategies 

 Research on targeting strategies would greatly benefit from a BBB in vitro system 

capable to predict the transport capacity of drug delivery systems or transport vectors, 

such as monoclonal antibodies. In contrast to in vivo data previously reported by 

Pardridge et al. (Pardridge et al., 1995), in vitro evaluation of 83-14 mAb transport across 

human BBB cell monolayers did not reveal transcytosis. The high-affinity interaction 

between the 83-14 mAb and the insulin receptor combined with the absence of acceptor 

cells in the in vitro system might contribute to the lack of transcytotic activity.  

 Mimicking the close cell association present in vivo with co-cultivation of the brain 

endothelial cells with astrocytes may facilitate the detachment of the antibody from the 

receptor. Moreover, using an antibody with lower binding affinity to the insulin receptor 

than the 83-14 mAb may further favor the release from the receptor to the acceptor side 

of the Transwell system. These experiments may help to elucidate the discrepancy 

between in vitro and in vivo data in future.  

 The constant high number of in vivo studies in this area reflects the technical difficulty 

accompanied with accurate quantification of transcytosis of macromolecules and drug 

delivery systems in vitro. Nevertheless, in vitro models enable mechanistic studies that 
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contribute to the understanding of the transport processes and are of substantial relevance 

in order to optimize drug delivery strategies.  

 

Capillary electrophoresis: bioanalytical applications   

 Capillary electrophoresis (CE) equipped with laser-induced fluorescence detector 

provides a sensitive analytical method for the quantification of macromolecules. 

Detection limits in the picomolar to nanomolar range for fluorescently labeled 

macromolecules (83-14 mAb and albumin) were obtained in the present study. The high 

sensitivity and low sample volume requirement render this technique attractive for the 

use in the context of transport studies.  

 The application of CE was further extended for the determination of the viscosity of 

therapeutic antibody solutions. This technique allows fast and automated viscosity 

measurements, and requires only minimal volumes of the expensive antibody samples. 

These characteristics are of great benefit for the optimization of protein formulations in 

the drug development process. With the use of CE, the viscosity of the protein samples 

can be determined with a high experimental throughput that may help to speed up the 

optimization of the protein formulations.  

 The characteristics of CE, i.e. high throughput measurement, minimal sample volume 

requirement, and high sensitivity make this technique attractive for different bioanalytical 

applications. An analytical approach based on CE for the characterization of polymeric 

nanoparticles would be of great benefit in the development of polymeric drug delivery 

systems.  Different studies indicate that CE may play a growing role in the 

characterization of liposomal drug delivery systems. In the recent years, CE has been used 

for the determination of the physicochemical properties (size and charge) of liposomal 

drug delivery systems, and for permeability and drug leakage studies (Franzen and 

Østergaard, 2012). The CE-based methods developed and applied for the characterization 

of liposomal drug delivery vehicles may be optimized and adapted for polymeric drug 

delivery systems in the future. 
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