
 

 
 

 
 
 

 Institutional Repository of the University of Basel 

 University Library 

 Schoenbeinstrasse 18-20 

 CH-4056 Basel, Switzerland 

 http://edoc.unibas.ch/ 

  

 

 

Year: 2014 

 

 

Drosophila Neural Stem Cells in Brain Development and Tumor 

Formation 

Jiang, Yanrui and Reichert, Heinrich 

 

 

 

 

 

 

 

 

 

Posted at edoc, University of Basel 

Official URL: http://edoc.unibas.ch/dok/A6271908 

 

Originally published as: 

Jiang, Yanrui and Reichert, Heinrich. (2014) Drosophila Neural Stem Cells in Brain Development and 
Tumor Formation. Journal of neurogenetics, Vol. 12. S. 181-189. 
 



Drosophila neural stem cells in brain development and tumor formation 

 

Yanrui Jiang and Heinrich Reichert 

 

Biozentrum, University of Basel, Klingelbergstrasse 50/70, CH-4056, Basel, Switzerland 

 

 

Address correspondence to Yanrui Jiang, Email: yanrui.jiang@unibas.ch 

 

 

 

 

 

 

 

 

 

 



Abstract 

Neuroblasts, the neural stem cells in Drosophila, generate the complex neural structure of the 

central nervous system.  Significant progress has been made in understanding the mechanisms 

regulating the self-renewal, proliferation, and differentiation in Drosophila neuroblast lineages.  

Deregulation of these mechanisms can lead to severe developmental defects and the formation of 

malignant brain tumors.  Here, we review the molecular genetics of Drosophila neuroblasts and 

discuss some recent advances in stem cell and cancer biology using this model system. 
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The central brain of Drosophila is a highly complex neural structure composed of tens of 

thousands of neurons that are inter-connected into intricate neural circuitry.  All of these neurons 

(and a small subset of glial cells) are generated during development by a surprisingly small 

number of neural stem cells that are called neuroblasts (Urbach and Technau, 2004; Doe, 2008; 

Knoblich, 2008; Egger et al., 2008; Reichert, 2011; Homem and Knoblich, 2012).  Each 

hemisphere of the Drosophila central brain is the product of approximately 100 neuroblasts, 

which are specified during embryogenesis from the cephalic neuroectoderm (Urbach and 

Technau, 2004).  During development, most of the neuroblasts undergo two rounds of 

proliferation; during embryonic development they generate the neurons of the larval brain, and 

during post-embryonic development they give rise to the adult-specific neurons of the mature 

brain (Hartenstein et al., 2008). 

The balance between self-renewal and differentiation of neuroblasts and their progeny is tightly 

regulated, and deregulation of this process often results in profound pathological defects during 

brain development (Doe, 2008; Knoblich, 2008; Egger et al., 2008; Reichert, 2011; Chang et al, 

2012; Homem and Knoblich, 2012).  Notably, mutations in key regulatory genes can result in 

dedifferentiation of their lineal progenitors and uncontrolled proliferation of neuroblasts, which 

leads to the formation of lethal brain tumors (Bello et al., 2006; Betschinger et al., 2006; Lee et 

al., 2006a; Lee et al., 2006b; Wang et al., 2006).  Recent neurogenetic analyses of tumorigenesis 

in Drosophila have established a firm link between impaired neuroblast division and brain tumor 

formation (Caussinus and Gonzalez, 2005). 

In this review, we consider the molecular genetic mechanisms by which the ensemble of neural 

stem cells generates the circuitry of the Drosophila brain during normal development.  We focus 

on the recently discovered type II neuroblasts, which generate transit amplifying intermediate 



progenitors and give rise to about one-fourth of the total number of neural cells in adult 

Drosophila central brain, and discuss how the lineage progression is regulated in these neuroblast 

lineages.  Furthermore, we discuss recent advances using Drosophila neuroblasts in analyzing 

how deregulation of these developmental mechanisms can lead to neural stem cell 

overproliferation and tumorigenesis. 

 

EMBRYONIC AND POSTEMBRYONIC DEVELOPMENT OF DROSOPHILA 

NEUROBLASTS 

Drosophila neuroblasts are formed in the neuroectoderm during early embryonic development 

around stage 9 (Fig. 1A) (stages of embryogenesis according to Campos-Ortega and Hartenstein, 

1997).  Initially, clusters of neuroectoderm cells express proneural genes, including genes of the 

achaete-scute locus and daughterless (Fig. 1A).  All of these genes encode transcription factors 

containing a DNA-binding basic helix-loop-helix (bHLH) motif (Campos-Ortega, 1993; 

Goodman and Doe, 1993).  Shortly afterward, single neuroblast cells are determined within each 

cluster through Notch/Delta signaling (Fig. 1A).  This process, usually referred to as lateral 

inhibition, inhibits the expression of proneural genes in all cells within a cluster except the 

neuroblast (Campos-Ortega, 1993; Goodman and Doe, 1993).  Specified neuroblasts then 

delaminate from the neuroectoderm and start to divide along their apical-basal axis (Goodman 

and Doe, 1993). 

In the central brain, most neuroblasts undergo two rounds of proliferation during normal 

development (Fig. 1B) (Hartenstein et al., 2008).  During embryonic development, neuroblasts 

divide only a limited number of times to generate a small number of neurons that make up the 

larval brain (Fig. 1B).  At the end of embryogenesis, most neuroblasts enter a quiescent phase.  



Near the end of the first larval instar, these silent neuroblasts exit the quiescent stage and 

reinitiate proliferation (Fig. 1B).  This second phase of proliferation continues throughout larval 

development and results in the production of the numerous adult-specific neurons that comprise 

the mature brain (Fig. 1B) (Hartenstein et al., 2008).  Neuroblasts entry into quiescence is 

controlled intrinsically by Hox proteins and temporal identity factors (Tsuji et al., 2008).  

Neuroblasts exit from quiescence is regulated by extrinsic dietary nutrients through a fat-body to 

glia to neuroblasts relay mechanism (Sousa-Nunes et al., 2011). 

Like other types of stem cells, an important feature of Drosophila neuroblasts is their ability to 

divide asymmetrically to self-renew and generate a large number of more differentiated progeny 

(Doe, 2008; Knoblich, 2008; Egger et al., 2008; Reichert, 2011).  Although the division of many 

types of stem cells, for instance the germ line stem cells, depends on the interaction between the 

stem cells and their surrounding microenvironment (called stem cell niche) (Li and Xie, 2005), 

the proliferation of neuroblasts seems to be controlled primarily by cell-intrinsic mechanisms 

acting in several crucial steps.  These steps are the establishment of an apical-basal polarity 

before neuroblast division, the asymmetric localization of cell fate determinants during 

neuroblast division, and the proper segregation of these determinant proteins into only one of the 

two daughter cells (Knoblich, 2008; Neumüller and Knoblich, 2009; Homem and Knoblich, 

2012).  Essential cell fate determinants in Drosophila neuroblast lineages include Brain tumor 

(Brat) (Bello et al., 2006; Betschinger et al., 2006; Lee et al., 2006a), Numb (Rhyu et al., 1994; 

Spana et al., 1995), and Prospero (Pros) (Hirata et al., 1995; Knoblich et al., 1995; Spana and 

Doe, 1995); their segregation into the differentiating progeny, but not into the self-renewing 

neuroblasts, is most important during the brain development and will be further discussed below. 

 



TYPE I AND TYPE II NEUROBLASTS IN DROSOPHILA BRAIN 

Surprisingly, the complex central brain (suparesophageal ganglion) of Drosophila is derived only 

from approximately 200 neuroblasts (~100 per hemisphere of the brain) (Urbach and Technau, 

2004).  The majority of the neuroblasts are type I neuroblasts that proliferate in a rather simple 

way (Fig. 2); they divide asymmetrically to give rise to a renewed neuroblast and a smaller 

ganglion mother cell (GMC), which further divides only once to produce two daughter cells that 

later differentiate into neurons or glia (Fig. 3) (Doe, 2008; Knoblich, 2008; Egger et al., 2008; 

Reichert, 2011).  Another type of neuroblast, the type II neuroblast, has been recently discovered 

in the Drosophila brain (Bello et al., 2008; Bowman et al., 2008; Boone and Doe, 2008).  Unlike 

the type I neuroblasts, only eight type II neuroblasts are present at the posterior brain of each 

hemisphere (Fig. 2).  Six of them are formed at the dorsomedial edge (referred to as DM 

neuroblasts in some publications) and the other two localize at a more lateral position (Fig. 2) 

(Bello et al., 2008; Bowman et al., 2008; Boone and Doe, 2008). 

In the Drosophila brain, a typical type I neuroblast can give rise to a lineage consisting of 

approximately 100-150 neurons (Fig. 2).  In contrast, each type II neuroblast can generate a 

lineage that contains 400-500 neurons (Fig. 2) (Bello et al, 2008).  Such an amplification of 

proliferation is achieved through a specific population of self-renewing intermediate progenitor 

cells called INPs (intermediate neural progenitors) (Bello et al., 2008; Bowman et al., 2008; 

Boone and Doe, 2008).  When a type II neuroblast divides, it gives rise to a neuroblast and an 

INP cell both of which can carry out self-renewing asymmetric divisions (Fig. 3).  Each new-born 

immature INP cell undergoes a stereotyped maturation process which involves the sequential 

expression of specific developmental control genes (Fig. 3).  Once mature, INPs can undergo 

further rounds of asymmetric cell division (in a similar fashion to the type I neuroblasts) to self-



renew for a limited time and to give rise to GMCs, each of which divides once to generate two 

post-mitotic cells (Fig. 3).  As a result, a significant increase in the number of neural cells occurs 

in the type II neuroblast lineages (Fig. 2) (Bello et al., 2008; Bowman et al., 2008; Boone and 

Doe, 2008). 

Indeed, neurons derived from the eight type II neuroblasts constitute approximately one-fourth of 

the adult brain.  They comprise diverse neuronal types, exhibit extraordinary complex projection 

patterns, and arborize in almost all the neuropile regions of the central brain (Yu et al., 2013; Ito 

et al., 2013).  Such diversity might be specified by sequential expression of an array of various 

transcription factors called temporal identity factors in both type II neuroblasts and INPs 

(Bayraktar and Doe, 2013).  Furthermore, recent clonal analyses suggest that type II neuroblasts 

generate sibling INP lineages consisting of a series of morphologically similar but temporally 

divergent neurons (Wang et al., 2013).  Interestingly, during post-embryonic development, 

programmed cell death occurs in many cells in the type II neuroblast lineages to counter-balance 

the amplified proliferation.  This elimination of excess neurons appears to be essential for the 

correct neuropile structure in the adult brain (Jiang and Reichert, 2012).  In addition to neuronal 

progeny, type II neuroblasts also give rise to glial cells (Fig. 2).  At least two types of glial cells 

have been shown to have a type II neuroblast origin, namely central complex glia and optic lobe 

glia.  This suggests that type II neuroblasts can be considered as multipotent neuroglial 

progenitors in the Drosophila brain (Izergina et al., 2009; Viktorin et al., 2011; Viktorin et al., 

2013). 

 

CONTROLLING LINEAGE PROGRESSION IN TYPE II NEUROBLASTS 



As type II neuroblasts generate self-renewing INPs to amplify their proliferation, it is extremely 

important to ensure that their lineage progression is tightly controlled during development.  For 

correct lineage progression, the self-renewal capacity of the neuroblasts must be maintained, the 

maturation of the immature INP cells must be ensured, the proliferation potential in mature INPs 

must be restricted, and the transit amplifying process must be terminated at the correct time point.  

Although the molecular control mechanisms involved in these processes remain largely unknown, 

recent discoveries have started to identify some of the regulators controlling the lineage 

directionality in the type II neuroblast lineages. 

In the type II neuroblasts, one of the most important regulators identified to date is the Ets 

domain transcription factor Pointed (Pnt) (Zhu et al, 2011).  One of its isoforms, PntP1, is 

specifically expressed in type II neuroblasts, where it is necessary for the specification of type II 

neuroblasts and the generation of INPs (Fig. 3).  The function of this protein appears to be to 

suppress the expression of Asense (Ase), as loss of PntP1 results in a reduction or elimination of 

INPs and ectopic expression of Ase (Fig. 4) (Zhu et al, 2011).  Normally, and in contrast to the 

type I neuroblasts, the proneural transcription factor Ase is not expressed in type II neuroblasts, 

and for this reason they were sometime called PAN (posterior Asense negative) neuroblasts (Fig. 

3) (Bowman et al., 2008).  Ectopic expression of Ase in type II neuroblasts leads to a reduction of 

INPs, and eventually results in lineages consisting of much fewer progeny, presumably by 

converting type II neuroblasts into type I neuroblasts (Bowman et al, 2008). 

Similar to type I neuroblasts, type II neuroblasts express the bHLH-O transcription factor 

Deadpan (Dpn), and the cell fate determinants Brat and Numb (Fig. 3).  However, a third cell fate 

determinant protein Pros is not expressed in type II neuroblasts (Fig. 3) (Bello et al, 2008; 

Bowman et al, 2008).  The immediate progeny of type II neuroblast division are immature INPs, 



which lack the expression of both Ase and Dpn (Ase- imm. INPs) (Fig. 3).  During the 

subsequent maturation process, they express first Ase (Ase+ imm. INPs) and later express Dpn to 

become mature INPs (Fig. 3).  In neuroblasts, Dpn acts together with members of the E(spl) locus 

to maintain the self-renewing potential of these cells (Fig. 4) (Zacharioudaki et al., 2012; Zhu et 

al., 2012). 

A second important regulator of self-renewal in neural progenitors is the Zn finger transcription 

factor Klumpfuss (Klu) (Berger et al., 2012; Xiao et al., 2012).  Like Dpn, Klu expression is 

found in both type I and type II neuroblasts and in the mature INPs, but not in the immature INPs 

(Fig. 3).  In klu mutant brains, type II neuroblasts are progressively lost due to premature 

differentiation, while overexpression of klu causes dedifferentiation of immature INPs and 

accumulation of numerous ectopic neuroblast-like cells (Berger et al., 2012; Xiao et al., 2012).  

Thus, downregulation of klu expression seems to be required for the transition from immature to 

mature INPs (Fig. 4) (Berger et al., 2012). 

Another Zn finger transcription factor Earmuff (Erm) is expressed in the mature INPs and plays a 

role in restricting the proliferation potential of these INPs (Fig. 3) (Weng et al., 2010).  Although 

the initial maturation of INPs appears normal in erm mutants, the mature INPs gradually 

dedifferentiate back into a neuroblast state, which is functionally indistinguishable from normal 

type II neuroblasts.  Erm may function by activating Pros to limit proliferation and by 

antagonizing Notch signaling to prevent dedifferentiation (Fig. 4) (Weng et al., 2010). 

Recent genome-wide transgenic RNAi analyses have begun to reveal other novel genes that are 

involved in controlling the self-renewal and differentiation of neuroblasts (Neumüller et al., 

2011).  Using the well-established GAL4/UAS binary system and a whole genome transgenic 

RNAi collection, more than 17,000 RNAi lines (corresponding to 89% of the Drosophila genome) 



were screened for an abnormal brain phenotype.  Their study used a driver line (insc-Gal4) that is 

expressed in both type I and type II neuroblasts, to target the knock-down of candidate genes in 

all neuroblasts.  In total, 620 genes were identified as potential regulators of Drosophila 

neuroblast self-renewal and differentiation.  These candidate genes were further assigned to 

different functional subgroups including asymmetric cell division, neuroblast self-renewal, cell 

growth, and others (Neumüller et al., 2011). 

In a subsequent study, an assay for isolation of large amounts of pure neuroblasts and 

differentiated neurons by FACS from Drosophila larval brains was developed and used in further 

transcriptome analyses based on mRNA sequencing (Berger et al., 2012).  These analyses 

revealed a total of 3,532 genes that were differentially expressed in neuroblasts versus neurons of 

which 1702 (48%) were upregulated in neuroblasts.  Among these, this study identified 28 genes 

encoding neuroblast-specific transcription factors (including klu) and proposed a hypothetical 

transcriptional network for neuroblast self-renewal based on these findings.  Importantly, the 

RNA-seq data showed a tight correlation with the knock-down results from the genome-wide 

RNAi screen, thereby validating the results of both studies (Berger et al., 2012).  The functions of 

the new candidate genes from these two large-scale genome-wide studies are now being verified 

using classical genetic methods, thus, these two studies represent a valuable resource for further 

investigation. 

 

TUMORIGENIC OVERGROWTH INDUCED BY DEFECTIVE ASYMMETRIC CELL 

DIVISIONS 

During asymmetric cell division of Drosophila neuroblasts, the three cell fate determinants Brat, 

Pros, and Numb localize to the basal cortex and are differentially segregated into only one of the 



daughter cells (Knoblich, 2008).  In these differentiating progeny, the proteins suppress the 

expression of neuroblast-specific genes to inhibit cell self-renewal, while at the same time 

initiating a differentiative program to induce cell differentiation (Fig. 4) (Knoblich, 2008).  

During the division of type I neuroblasts and mature INPs, all three proteins are inherited only by 

the GMCs.  In the type II neuroblasts, Pros is not present and only Brat and Numb are segregated 

into the immature INPs.  Asymmetric segregation of cell fate determinants is critical during the 

development of Drosophila brain, because mutations in genes encoding these proteins result in 

defective asymmetric cell division and lead to neuroblasts overproliferation and the formation of 

brain tumors (Bello et al., 2006; Betschinger et al., 2006; Lee et al., 2006a; Lee et al., 2006b; 

Wang et al., 2006). 

Although the three cell fate determinants Brat, Numb, and Pros have been intensively 

investigated during the past decade, their exact functions in the proliferating neuroblasts are still 

not completely understood.  Brat is a RNA-binding protein that appears to inhibit cell growth and 

ribosomal RNA synthesis (Bello et al., 2006; Betschinger et al., 2006; Lee et al., 2006a).  Numb 

is a membrane protein and it acts as a suppresser in the Notch signaling pathway (Rhyu et al., 

1994; Spana et al., 1995).  Pros is a homeodomain containing transcription factor, which enters 

the nucleus of the GMC and transcriptionally regulate the expression of more than 700 target 

genes that may be necessary for neuronal differentiation (Fig. 4) (Hirata et al., 1995; Knoblich et 

al., 1995; Spana and Doe, 1995; Choksi et al, 2006). 

Interestingly, overproliferation occurs mainly in mutant type II neuroblast lineages, which 

suggests that type II neuroblasts are more vulnerable for mutations in the cell fate determinant 

genes (Bowman, et al., 2008).  Presumably, this is due to the presence of transit amplifying INPs 

in these lineages which may have a propensity to dedifferentiate into neuroblast-like cells.  



Among these lines, Brat may also act by antagonizing the function of both Klu and β-

catenin/Armadillo (Arm) to specify the identity of the INPs and to suppress the reversion of these 

progenitors into ectopic neuroblasts (Fig. 4).  Reducing the activity of Klu or Arm can largely 

suppress the formation of supernumerary neuroblasts in brat mutant brains (Xiao et al., 2012; 

Komori et al., 2013).  Numb / Notch signaling-regulated cell growth seems to involve the well-

studied growth regulators eukaryotic translation initiation factor 4E (eIF4E) and dMyc (Fig. 4).  

Both proteins are up-regulated in the dedifferentiating progenitor cells in a Notch hyperactivation 

condition, and removal of either eIF4E or dMyc can strongly inhibit the overproliferation defect 

seen in these brains (Song and Lu, 2011). 

The overgrowth phenotype observed in brat, numb, and pros mutants indicates that these genes 

can act as tumor suppressors during brain development.  Indeed, the tumorigenic property of 

these mutant cells has been clearly demonstrated by transplantation experiments; mutant brain 

tissue transplanted into wild-type host flies can form malignant and metastatic tumors (Caussinus 

and Gonzalez, 2005).  The tumor cells show apparent genome and centrosome instability and kill 

the host flies rapidly, and they can give rise to new tumors indefinitely upon re-transplantation 

(Caussinus and Gonzalez, 2005). 

Like most of the other regulators of asymmetric cell division, the three cell fate determinants in 

Drosophila have homologues in vertebrates.  The functions of these vertebrate homologues are 

less well-characterized, and only a few have been shown to be functionally conserved and play a 

similar role during mammalian neurogenesis (Petersen et al., 2002; Li et al., 2003; Dyer et al., 

2003; Schwamborn et al., 2009).  For instance, TRIM32, one of the mouse orthologues of 

Drosophila Brat, is required in dividing cortical progenitor cells for suppressing self-renewal and 

inducing neuronal differentiation during mouse brain development (Schwamborn et al., 2009).  



Similarly, loss of function of these homologues can lead to brain malformation and early lethality 

(Li et al., 2003).  However, a tumor suppressor function of the vertebrate homologues of 

Drosophila Brat, Numb, and Pros has not been described, and the link between mutations in the 

homologous genes and human brain tumors is still missing, probably due to functional 

redundancy of other tumor suppressors not yet identified (Schwamborn et al., 2009). 

 

AN EMERGING MODEL TO STUDY STEM CELL-DERIVED BRAIN TUMORS 

The cancer stem cell hypothesis proposes that some types of cancer consist of both tumorigenic 

and nontumorigenic cells, and it is a small fraction of stem cell-like progenitor cells, the “cancer 

stem cells”, that are tumorigenic and have the potential to proliferate indefinitely, which 

eventually drive the propagation of tumor (Reya, et al, 2001; Magee et al., 2012).  Although this 

hypothesis has been supported by an increasing number of studies on human cancers, it remains 

controversial due to the complexity of human cancers and the technical limitations in assays 

currently used to identify these cancer stem cells (Magee et al, 2012). 

In recent years, Drosophila has become an emerging model for investigating the mechanisms 

underlying tumor formation (Read, 2011; Miles et al., 2011; Gonzalez, 2013).  Following up on 

the discovery of malignant overproliferation in Drosophila brains and discs reported more than 

three decades ago by Gateff, (Gateff, 1978), recent experiments have now firmly demonstrated 

that overproliferating brain tissue in Drosophila can develop into lethal tumors upon 

transplantation (Caussinus and Gonzalez, 2005).  In view of these findings, it seems that 

Drosophila neuroblasts might serve as an excellent stem cell model to test the “cancer stem cell” 

hypothesis.  Of course Drosophila has other advantages suitable for such analysis such as 

powerful genetic and genomic tools, well-characterized cell markers, established driver lines 



which allow more specific knock-down or overexpression of target genes in particular type of 

cells, and recently developed techniques like transgenic RNAi and FACS isolation of progenitor 

populations.  Thus, further analysis of the known mutant genes and new candidate genes from 

large-scale genome-wide screens, should provide more insight into the mechanisms regulating 

the formation, progression, and hopefully even suppression of neural stem cell-derived brain 

tumors. 

 

CONCLUDING REMARKS 

Studies on Drosophila neuroblasts have already led to significant progress in understanding the 

mechanisms controlling neural stem cell specification, self-renewal, proliferation, and 

differentiation during brain development.  The recent discovery and analysis of type II neuroblast 

lineages continues to provide important insight into both stem cell and cancer biology in this 

neurogenetic model.  As mammalian neural stem cells often generate large numbers of neural 

progeny through transit amplifying intermediate progenitors, the molecular and cellular 

mechanisms identified in type II neuroblast lineages in Drosophila are likely to be evolutionarily 

conserved and might operate during the development of mammalian brains as well (Brand and 

Livesey, 2011; Homem and Knoblich, 2012). 

The establishment of a Drosophila model to study neural stem cell-derived tumors is also 

relevant to human cancer biology.  In current basic and clinical research, it remains a challenge to 

isolate cell-of-origin and cancer stem cells from human cancer, and to characterize the 

contribution of these cancer-initiating cells and cancer-propagating cells during cancer 

development (Visvader, 2011; Magee et al., 2012).  The significant advantages of the Drosophila 

neuroblast model, as discussed in this review, may help to overcome some of the technical 



obstacles encountered in mammalian cancer research.  Progress made in the Drosophila model 

could therefore have notable implications for future prognosis and therapies in cancer biology, as 

well as in stem cell-based regenerative medicine (Gonzalez, 2013). 
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FIGURE LEGENDS: 

 

Figure 1.  Embryonic and postembryonic development of Drosophila neuroblasts. 

(A) Specification of neuroblasts during embryogenesis.  Drosophila neuroblasts are formed in the 

neuroectoderm around stage 9.  Initially, clusters of neuroectoderm cells express proneural genes 

(grey).  Shortly afterward, single neuroblast cells (dark blue) are determined through Notch/Delta 

signaling, which is usually referred to as lateral inhibition, to inhibit the expression of proneural 

genes in all cells within a cluster except the neuroblast.  (B) Two rounds of proliferation of 

neuroblasts.  During embryonic stages, each neuroblast (NB, dark blue) divides only a limited 

number of times to self-renew and to give rise to a ganglion mother cell (GMC, purple), which 

further divides once to generate two neurons.  The embryonic divisions only generate a small 

number of neurons (pink) that make up the larval brain.  At the end of embryogenesis, most 

neuroblasts enter a quiescent phase.  Near the end of the first larval instar, these silent neuroblasts 

exit the quiescent stage and reinitiate proliferation.  This second phase of proliferation continues 

throughout larval development and results in the production of the numerous adult-specific 

neurons (light blue) that comprise the mature brain. 

 

Figure 2.  Type I and type II neuroblast lineages in Drosophila brain. 

The central nervous system of Drosophila larvae consists of the optic lobe (OL), the central brain 

(CB), and the ventral nerve cord (VNC).  In the central brain, most neuroblasts are type I 

neuroblasts that can give rise to a lineage consisting of a neuroblast (dark blue), a few ganglion 

mother cells (GMCs, purple), and approximately 100-150 neurons (light blue).  In contrast, only 



eight type II neuroblasts (brown) are present at the posterior brain of each hemisphere; six of 

them are formed at the dorsomedial edge and the other two localize at a more lateral position.  

Each type II neuroblast can generate a lineage that contains a neuroblast (brown), several 

immature intermediate neural progenitors (INPs, grey) and mature INPs (orange), GMCs 

(yellow), and 400-500 neurons (green) and a few glial cells (red). 

 

Figure 3.  Cell division of type I and type II neuroblasts. 

Type I neuroblasts proliferate in a rather simple way.  They divide asymmetrically to give rise to 

a renewed neuroblast and a smaller GMC, which divides only once to produce two differentiated 

daughter cells.  When a type II neuroblast divides, it gives rise to a neuroblast and an immature 

INP cell, the latter undergoes a stereotyped maturation process which involves the sequential 

expression of specific developmental control genes.  Once mature, INPs can undergo further 

rounds of asymmetric cell division to self-renew for a limited time and to give rise to GMCs, 

each of which divides once to generate two post-mitotic cells.  The expression of some identified 

proteins in type I and type II lineages are indicated by different colors. 

 

Figure 4.  Factors regulating lineage progression in type II neuroblasts.  

Some identified proteins and their functions in controlling the lineage progression in type II 

neuroblasts.  See text for details. 

 

 


