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Summary 

Proteins perform their role through the interactions they establish with other proteins and with 

small molecules, like ions or organic cofactors. The identification of these partners and of the 

mechanisms involved in their functional interactions can provide helpful insights into the 

molecular details of the protein annotation and for the development of new drugs. As many 

proteins lack of experimental structures and of annotated ligands, computational methods are 

required in order to predict these details and to guide the direction of experimental investigation.  

In this context, our main aim is to enhance protein functional annotation and to improve 

comparative models by inferring their potential binding cofactors. Moreover, we want to evaluate 

the current state-of-the-art methods for binding site prediction in order to understand their 

advantages and limitations for future developments. Additionally, we aimed to improve the 

assessment of binding site prediction methods by creating an automated system of continuous 

model evaluation. Finally, we created a new binding site descriptor for the de novo ligand and 

binding site prediction in protein models. 

The content of this thesis is organized as follows. Chapter 1 introduces protein structure, binding 

sites and experimental techniques for structure determination; moreover, we illustrate the current 

approaches to model protein structures and to predict their ligand binding sites. In chapter 2, we 

describe the assessment of the ligand binding site predictions within the 9th edition of the Critical 

Assessment of protein Structure Prediction (CASP) experiment, while in chapter 3 we discuss 

the latest developments in the 10th round. Within chapter 4 we illustrate the evolution of this 

assessment into the Continuous Automated Model EvaluatiOn (CAMEO) Ligand Binding 

category and we describe the homology predictor, which is used as reference for the 

comparison of the other methods registered to CAMEO. Chapter 5 presents the new SWISS-

MODEL server, which employs a base ligand modelling pipeline to place potential small 

molecules partners, inferred from the target‘s template, into the built models. Motivated by the 

performances of the previous method and by the results seen in the last CASP editions, in 

chapter 6 we present a new method to model ligands, especially ions and organic cofactors, into 

comparative models; this approach is based on the analysis of the similarities between a target 

and its homologous proteins. In chapter 7, we describe a novel descriptor for ligand binding 

sites, based on moment invariants and developed for the de novo prediction of ligands. Finally, 

in chapter 8 we draw the general conclusions of the work presented in this thesis.  
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1. Introduction 

Protein structure 

Many of the biological functions performed by living organisms are mediated by proteins, which 

can catalyse reactions (for instance, the production of metabolites), have a structural or 

mechanical role (like in the muscle fibre), propagate signals (e.g. the kinases), act as sensors of 

metabolites (as for neurotransmitter receptors), transport or store small molecules (e.g. oxygen 

in the haemoglobin). Proteins can be generally classified as "membrane proteins", when they act 

as receptors or as channels to allow the passage of charged molecules through a membrane, as 

"fibrous proteins", when they have a structural role, or as "globular proteins" in all the remaining 

cases. 

Primary and secondary structure 

A protein is a linear polymer composed of a chain of amino acids, called "residues", translated 

from a mRNA molecule, so that each protein has a well defined amino acidic sequence, 

indicated as the "primary structure". Each protein's residue is made of a central C-alpha carbon 

covalently bound to an amminic group, an acidic group - which together form the protein 

backbone - and a variable side-chain.  

The first two groups are condensed together by a peptide bond, which has partial double-bond 

behaviour due to the resonance between a neutral and a charged conformation. This 

characteristic does not allow the rotation of the bond itself, so that the residues' C-alphas are 

almost coplanar [1]. Additionally, due to sterical constraint between the CO and NH groups, the 

peptide bond reduces the degree of freedom of the backbone, which can rotate only around the 

two dihedral angles phi and psi, defined between N-C-alpha and C-C-alpha respectively. The 

value of these angles can be distributed only within a finite set of combinations, traditionally 

described by the so called "Ramachandran plot" and recently refined by Ting and colleagues [2].  

The variable side-chain is used to identify the amino acids in 20 "standard" types and to classify 

them in different chemical categories based on several properties, like for example charge or 

size. However, they can be broadly categorized in hydrophobic (non-polar) and hydrophilic 

(polar). Hydrophobic residues do not interact favourably with water molecules, so they are more 

often found in the core of a water-soluble protein; for the opposite reason, hydrophilic amino 
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acids can be exposed to the solvent - where an interaction with small molecules can occur - or 

can be located in the protein core, where they contribute to the structural stability of the protein 

by forming salt bridges with other residues [3]. Moreover, some residues have particular 

features. For example, cysteine can bind another residue of the same type to form disulfide 

bridges; glycine confers more flexibility to the surrounding structure as has only a hydrogen atom 

as side-chain; finally, proline has a cyclic structure that increases the conformational rigidity of 

the backbone.  

The variability in residues chemical properties and in their position along the protein sequence 

determines the structure and the biological function of the protein itself. Each residue can 

interact with the other amino acids by different non-covalent bonds, which might be hydrogen 

bonds, ionic bonds or Van der Waals interactions; all of these are weaker than a typical covalent 

bond, but they can act together to create a strong bonding network. The hydrogen bond in 

particular is involved in the stability of the two simplest and common structural patterns that can 

be found in proteins, that is, the alpha-helix and the beta-strand [4].  

The first is a right-handed helical conformation characterized by a hydrogen bond present every 

four residues between the CO and the NH groups of the backbone, creating a complete turn 

every 3.6 amino acids. Left-handed helices exist in nature, but they are less energetically 

favourable because of the steric clashes between the backbone and the side-chains. Usually 

alpha-helices can range from four to forty residues in length and are more frequent in proteins 

that cross a lipid membrane.  

The beta-strand, instead, is a fully extended backbone region characterized by several hydrogen 

bonds between the CO and the NH groups of residues located further apart in the protein 

sequence than in the alpha-helix. Two or more strands can organize themselves in a beta-sheet, 

with a twisted and pleated shape, where the side-chains are oriented to both sides of the sheet. 

In the parallel beta-sheets, the strands point to the same direction; in anti-parallel beta-sheets, 

strands point to opposite directions; finally, in mixed beta-sheets, both strand directions are 

present. Alpha-helices and beta-strands are connected by loops, which are structural motifs that 

do not create a regular pattern and in which the involved residues are positioned in close 

proximity.  

These three structural units (helices, strands and loops) constitute the "secondary structure" of a 

protein and the combinations of these elements are known as "protein folds". From the 

functional point of view, groups of secondary structures can give rise to three-dimensional 
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elements, named "domains", which are able to fold in a stable manner independently from the 

rest of the protein. Proteins might contain several domains, whose length usually ranges from 40 

to 350 residues, and the same type of domain - which defines a particular function - may appear 

in a variety of different proteins [3].  

Tertiary and quaternary structure 

The next level of complexity is defined by the "tertiary structure", which refers to the overall 

three-dimensional structure of a protein chain. The tertiary structure is the result of a 

thermodynamical process, called "protein folding", which is guided by the cooperative interaction 

of the residues. The forces driving this process are mainly hydrogen bonds [5] and hydrophobic 

effects, in which the non-polar side-chains tend to pack within the protein core in order to avoid 

any exposition to the surrounding water [6]. 

Some proteins are able to function as single chains and, therefore, they are indicated as 

―monomers‖; however, many others need to assemble in complexes called ―oligomers‖, which 

are stabilized by non-covalent bonds interacting at the chains interfaces. When these 

assemblies are composed of many copies of the same chain, they are called "homo-oligomers"; 

otherwise, assemblies consisting of at least two different chains are indicated as "hetero-

oligomers". This level of structural organization is referred to as the "quaternary structure" of a 

protein, while the single chains are called "subunits". A summary of all protein structural levels is 

shown in Figure 1.1.  

Protein oligomers perform, or regulate, their function by changing the conformation of individual 

chains or their relative orientation to each other. One example of this behaviour is haemoglobin, 

a hetero-oligomer in which the allosteric regulation of its function is achieved by the relative 

orientation of the subunits [7]. 
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Figure 1.1 Illustration of the hierarchical structural levels of a protein. From Wikipedia, retrieved 2014 
March 31, from http://en.wikipedia.org/wiki/Protein_structure  

Experimental techniques to determine protein structure 

The most important experimental methods to decipher the above mentioned structural levels of a 

protein are X-ray crystallography [8], Nuclear Magnetic Resonance spectroscopy (NMR) [9] and 

Electron Microscopy (EM) [10]. 

In the X-ray crystallography, a purified protein crystal is irradiated with X-ray beams in order to 

reconstruct the precise atom positions. The directions and intensities of the X-rays which are 

diffracted by the electrons in the crystal are measured from the so called "diffraction pattern", 

which can be converted, through a Fourier transform, to an electron density map. By combining 

the knowledge about the target amino acidic sequence with proteins‘ geometrical constraints, it 

is possible to reconstruct atom positions and to build a model of the protein. Although producing 

high-quality crystals is a time-consuming process and membrane proteins in particular do not 
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crystallize, the X-ray crystallography is still considered the gold standard method mainly because 

of its high accuracy and for the fact that the protein function is preserved in the resulting crystal 

[8]. 

In NMR spectroscopy, the magnetic properties of the atom nuclei are used to determine the 

structure and the dynamics of a target molecule. The proteins, usually suspended in a buffer 

solution, are placed within a strong magnetic field and irradiated with varying radio wave pulses. 

The measured variable is the resonance of the nuclei possessing a spin, i.e. those which 

produce a magnetic moment, like hydrogen (1H), carbon (13C) and nitrogen (15N). Depending 

on the atom type, on the surrounding atoms and on their distances, the resonance frequency of 

an atom can change and this information is used to infer the structure of the target molecule [9]. 

The electron microscopy method uses a beam of electrons to illuminate a sample and to 

produce a magnified image, which has a much higher resolution than an image produced with 

conventional light. This technique is based on the high scattering power of electrons; for this 

reason, the sample must be a very thin crystal. Moreover, the possibility to focus the electrons 

by an electric or magnetic field allows retaining the crystallographic phase information in the 

resulting image. However, biological material is sensitive to radiation and, for this reason, the 

electron dose must be limited, at a cost of a small signal to noise ratio. The most used approach 

to create an image is the single particle averaging, in which several 2D images of the molecule 

densities are collected and averaged; then, by applying a back projection in real space, the three 

dimensional density of the sample is assembled. A second approach, in which the diffraction 

pattern of a two-dimensional crystal is produced, is more commonly applied to determine the 

structure of membrane proteins. The main limitation of electron microscopy consists in the need 

of a relatively large array of ordered macromolecules to achieve a resolution around 3.5 

Angstroms [10]. 

The structural data of biological macromolecules obtained through any of the three techniques 

described above is deposited by experimentalists in the database "Protein Data Bank" (PDB) 

[11]. At the moment of its inauguration, in 1971, the PDB contained only 7 structures, but since 

1980 the number of entries started to increase substantially. The reason of this growth mainly 

resided in the improvement of the crystallographic techniques and in the emergence of new 

methods to determine the structure of a protein, as for instance NMR. Recently, structural 

genomic initiatives like the Protein Structure Initiative are increasing even more the number of 

deposited structures, which has reached almost 100'000 entries. Apart from atomic coordinates, 

other types of information are deposited in the PDB, including experimental details, raw density 
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maps and quaternary structures, to name a few. To increase the robustness of the service to the 

public, three mirror sites are available: RCSB [12], PDBe [13] and PDBj [14]. Finally, since 

several structures were deposited long ago and were refined with different types of algorithms, 

an updated and optimized version of the PDB entries is now available through PDBredo [15]. 

Ligand binding sites 

Apart from the role played by the structural conformation, a critical element that defines the 

function of a protein is the ―binding site‖, that is, the portion of the protein surface through which 

it interacts with either other proteins or small non-protein molecules, for example ions, organic 

ligands or nucleic acids. These interactions can be stable, i.e. they are required to stabilize the 

structure and to perform the function (for instance, in the case of quaternary assemblies), or 

transient, as for example, when the protein binds to the substrate during an enzymatic reaction 

or to a signalling molecule (as in Figure 1.2). 

Knowing the ligands bound by a protein and the residues involved in these interactions can 

provide a significant help in the identification of the protein function and in the understanding of 

its mechanism of action at the atomic level. Moreover, the information regarding the ligand 

preferences of a protein can constitute a valuable insight for protein mutational experiments, 

structure-based drug design and virtual screening. 

 

Figure 1.2 (A) The protein folding shapes and brings together a group of residues that constitute the 
protein binding site. (B) An example of the molecular interactions, hydrogen bonds and ionic interactions, 
between a small molecule (in pink cyclic AMP) and a protein binding site. From [16]. 
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Protein structure prediction 

Sequence-structure gap 

The dependency of the protein's three-dimensional structure on its sequence was revealed for 

the first time by the work of Anfinsen [17], in which he performed denaturation experiments on 

the ribonuclease enzyme showing the relationship between the conformation of a protein and its 

biological function. The major finding of Anfinsen consisted in the fact that the enzyme in a 

denaturated (or unfolded) state spontaneously regained its native activity under particular buffer 

conditions. More in particular, a pivotal role in the transition to the functional conformation of the 

enzyme was played by a decrease in free energy of the system. Afterwards, similar experiments 

showed that, while many proteins can fold in their native state under proper conditions, other 

proteins need the help of assistant proteins, called "chaperons", to reach the correct 

conformation and to avoid uncontrolled aggregation within the cell.  

The relationship between the sequence and the structure was further investigated by the work of 

Chothia and Lesk [18], who showed a non-linear correlation between the divergence of the 

protein sequence and the structure core in a set of evolutionary related proteins solved by X-ray 

crystallography (Figure 1.3). This observation implicated that the success of protein structure 

prediction involving evolutionary related sequences depends on the extent of the sequence 

identity between the target protein and its homologs. However, because of convergent evolution, 

even a distantly related protein with overall low sequence identity to the sequence of interest can 

turn out to be a useful template for modelling the active site [18]. 

Despite the rapid increase in the number of experimentally determined structures, the number of 

sequences identified by Next-Generation Sequencing (NGS) techniques grows even faster. 

Consequently, the difference between protein structures and sequences, also called "sequence-

structure gap", is constantly widening. Structural genomic initiatives, as for instance the Protein 

Structure Initiative (PSI) [19], are trying to reduce the uncovered protein space by determining 

the structures of proteins with less than 30% sequence identity to existing structures. In the 

attempt to fill the sequence-structure gap, several computational methods were developed for 

building models of proteins with still unknown structure; these can be classified in "de novo" 

methods, in which a candidate structure is selected from a set of pre-generated models, and 

"template-based" approaches, which adopt the sequence-to-structure relationship to find the 

best structure for a given protein sequence. 



14 
 

 

Figure 1.3 The non-linear correlation between the residue identity percentage and the root mean squared 
deviation in the common cores of the backbone atoms from 32 pairs of homologous proteins. 

Template-based structure prediction 

The template-based structure prediction methods take advantage of existing structures to 

generate a model of a protein, also called "target", at atomic resolution, weighting more 

evolutionary information than physics-based energy functions. The first step of this procedure is 

the identification and alignment of sequences taken from the structures found to be evolutionary 

related to the target protein. In the next step, the target sequence is modelled on the selected 

structure, called "template", and the model is subsequently refined. Finally, the quality of the built 

model is evaluated in order to assess whether the model is reliable or not. In case of a negative 

answer, the above procedure must be repeated to find a suitable model [20].  

The initial step of the prediction is the most crucial one, since it significantly affects the quality of 

the model; previously, it was performed by local alignment tools, for example BLAST [21], which 

can be used to generate accurate alignments when the sequence identity between the target 

and the templates is above 50%. Below this threshold, more sensitive and sophisticated 

methods based on sequence-profile [22], sequence-HMM [23] or HMM-HMM [24] alignments 

showed to be more successful. Protein threading methods can be applied in case only remote 

homologs are found and, in particular, for homologs with sequence identity in the range called 

―twilight zone‖ [25]. An example of a tool implementing this approach is RaptorX, which assigns 
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more weight to the sequence features when a high sequence identity is measured, while it gives 

higher priority to the structural properties in case of remote structures [26].  

After a template and its alignment are selected, these are used to generate the three-

dimensional coordinates of the target protein. The main approaches employed during this stage 

can be divided in "fragment assembly" and "satisfaction of spatial restraints". According to the 

former method, the conserved structural elements are initially copied from the template and, in a 

later stage, the variable regions are remodelled; instead, in the satisfaction of spatial restraints 

method (an example of which is the software MODELLER [27]), the probability density function 

derived from geometrical criteria are used as spatial constraints to drive the global energy 

minimization of the model's atom coordinates. Overall, the higher is the sequence identity 

between the target and the template, the more successful become template-based approaches. 

De novo structure prediction 

The de novo structure prediction infers the structure of a protein either on the basis of the 

principles that guide molecular interactions, or by doing a statistical analysis of the native 

structure conformational features. In the former case, the method of prediction is named 

―physics-based‖, while in the latter the method is called ―knowledge-based‖. In general, the de 

novo approach samples the structural conformational space by using a scoring function based 

on one of the two above mentioned methods and generates a set of candidate structures, called 

―decoys‖, which are then filtered to select the native-like conformations. Even though the de 

novo approach does not achieve fold level quality in many cases [28], a successful example of 

this procedure is represented by ROSETTA [29]. Finally, although template-based methods are 

preferred when a suitable template is found, de novo methods can be useful for modelling 

targets with none or low template coverage, as well as for model refining. 

Ligand binding site prediction 

Several approaches of binding site prediction have been proposed in the last decade; these can 

be subdivided on the basis of the main information employed, which can be: target sequence 

conservation [30-35], protein surface geometry [36-42] or functional annotation from evolutionary 

related proteins [43-49]. Depending on the available data, different methods can be applied. In 

case the structure of the target protein is unknown or cannot be modelled, only the sequence 

conservation-based approach can be used; otherwise, the clefts on the protein surface can be 
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investigated to identify potential ligand binding sites; finally, the functional annotation-based 

methods can only be used in case homologous proteins are found. 

In the approach last mentioned above, the fundamental steps of ligand binding site prediction 

consist in: (i) finding the target's homologs, (ii) identify their functional sites, (iii) determine the 

corresponding residues in the target and (iv) transfer to these residues the annotations found for 

the homologs. While some methods rely on the alignment between the target and the 

homologous sequences (for example [43]), others superpose the homologous structures to the 

target model (as in [44, 46, 48, 49]) to identify the functional residues in the target and to transfer 

the available annotation. 

To assess the performances of these different methods, each two years the Critical Assessment 

of protein Structure Prediction (CASP) Function prediction (FN), evaluates the accuracy of the 

participant methods. Recently, algorithms based on the homology transfer approach have shown 

excellent results in the ligand binding site prediction [50, 51]. To tackle the challenges involved in 

the precise evaluation of binding site predictions emerged during the last CASP editions, an 

automated server, the Continuous Automated Model EvaluatiOn (CAMEO) Ligand binding site 

for the ligand binding site prediction assessment was developed (http://cameo3d.org/lb/). 

Objectives 

The main focus of this thesis is to improve the information contained in the models built by the 

SWISS-MODEL server, by introducing a new ligand modelling pipeline. Secondly, we examined 

and assessed the current methods available for predicting binding sites and for modelling 

ligands into protein models.  

In the next chapters, we first show our assessment of the current state-of-the-art methods for the 

CASP9 and CASP10 editions. Then, we describe the method developed to assess the 

predictions of the servers registered to CAMEO. Afterwards, we illustrate the approach used for 

ligand modelling and implemented in SWISS-MODEL. Finally, we describe a method to 

represent binding site geometries, called ―moment invariants‖, which we studied to develop a 

future de novo ligand binding site predictor.  
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FM: Free Modelling 

Abstract 

Interactions between proteins and their ligands play central roles in many physiological 

processes. The structural details for most of these interactions, however, have not yet been 

characterized experientially. Therefore, various computational tools have been developed to 

predict the location of binding sites and the amino acid residues interacting with ligands. In this 

manuscript, we assess the performance of 33 methods participating in the ligand binding site 

prediction category in CASP9. The overall accuracy of ligand binding site predictions in CASP9 

appears rather high (average MCC of 0.62 for the ten top performing groups), and compared to 

previous experiments more groups performed equally well. However, this should be seen in 

context of a strong bias in the test data towards easy template based models. Overall, the top 

performing methods have converged to a similar approach using ligand binding site inference 
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from related homologous structures, which limits their applicability for difficult ―de novo‖ 

prediction targets. Here, we present the results of the CASP9 assessment of the ligand binding 

site category, discuss examples for successful and challenging prediction targets in CASP9, and 

finally suggest changes in the format of the experiment to overcome the current limitations of the 

assessment. 

Introduction 

To perform their functions, proteins interact with a plethora of small molecules within the cell. 

Most of these interactions are unspecific and transient in nature (e.g. interactions with water and 

ions), some are persistent and may play a structural or functional role (e.g. certain metal ions), 

and others might be transient but nevertheless highly specific, often resulting in essential 

changes of the protein or the ligand (e.g. enzyme-substrate complexes or receptor-ligand 

complexes). Hence, the identification of a protein‘s functionally important residues, such as 

ligand binding sites or catalytic active residues, is a crucial step towards the goal of 

understanding the protein‘s molecular function and its biological role in the cell. Although protein 

ligand interactions are crucial for the function of a protein, in many cases they are unknown. 

While the kind of ligands interacting with a protein is often known from biochemical analyses, 

elucidating the structural details of these interactions requires elaborate and time-consuming 

studies by X-ray crystallography or NMR. Therefore, computational tools have been developed 

aiming at predicting the precise location of binding sites, and specifically which amino acid 

residues in a protein are directly interacting with ligands. Various approaches for the prediction 

of ligand binding sites have been proposed,[1] both from structure and from sequence, based on 

sequence conservation [2-7], geometric criteria of the protein surface [8-12] or homology transfer 

from known structures.[13-17] 

The function prediction category (FN) was introduced in the 6th Critical Assessment of Protein 

Structure Prediction (CASP), where predictions for Gene Ontology molecular function terms, 

Enzyme Commission numbers, and ligand binding site residues were evaluated. [18, 19] Since 

very little new functional information becomes available during and after the experiment, the first 

two categories were difficult to assess. Therefore, since CASP8 the prediction task has been to 

identify functionally important residues such as ligand binding residues or catalytic residues. [20] 

Here, we present the assessment of 33 groups participating in the recent CASP9 experiment. In 

the ligand binding site prediction category (FN), the sequence of a protein with unknown 
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structure was provided to predictors. The task was to predict the residues directly involved in 

ligand binding in the experimental control structure. This approach differs significantly from 

typical ligand binding studies (like docking or virtual screening), where the chemical identity of 

the ligand is given, and the correct geometric orientation of the molecule in the receptor protein 

is to be determined. [11, 21-24] In CASP however, the chemical identity of the ligand is unknown 

at the time of prediction, and only the interacting residues are predicted. 

In summary, all top performing groups have applied a similar approach, using ligand information 

derived from homologous structures in the PDB.[25] In comparison to CASP8 [20], we could not 

observe a significant progress by the top groups, but rather a larger number of groups 

performing at the same level. We believe that this observation is caused on one side by the bias 

in the data set to ―easy‖ template based predictions with only a very small number of difficult ―de 

novo‖ targets in recent rounds of CASP. This gives strong advantage to methods using PDB 

information directly, but discourages the development of methods addressing the more 

challenging ―de novo‖ cases. Another limiting factor is the binary format of the prediction task, 

which does not allow specifying probabilities for specific residues or differentiating between 

types of ligands. 

Materials and Methods 

Prediction targets 

All CASP9 target structures were analyzed for non-solvent non-peptidic ligand groups in the 

deposited protein structures. Based on literature information, UniProt [26] annotations, structures 

of closely related homologues (Table SI, Supplementary Information), and conservation of 

functionally important residues, we aimed at identifying ligands with biological / functional 

relevance for the specific protein. All targets, including those containing ligands classified as 

―non-biologically relevant‖, were further analyzed to indentify cases where a ligand clearly 

mimicked the interactions of known biologically relevant ligands for this target. 

Binding site definition 

For each prediction target, binding site residues were defined as those residues in direct contact 

with the ligand in the target structure, i.e. all protein residues with at least one heavy atom within 

a certain distance from any heavy atom of the ligand. The distance cutoff was defined by the 
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CASP organizers as the sum of the Van der Waals radii of the involved atoms plus a tolerance 

of 0.5 Å. In addition, different tolerance values ranging from 0 to 2.0 Å were evaluated. 

In cases where multiple chains with bound ligands were present in the target structure (e.g. 

homo-oligomeric assemblies), the definition of the binding site residues for individual chains 

were combined into a single binding site definition. For targets where ligands were observed to 

bind in the interface between multiple chains, the oligomeric structure as defined by the authors 

and PISA [27] (5 cases) or only PISA (1 case) was used for the binding site definition. Analysis 

of structures and ligand binding sites were performed using OpenStructure (version 1.1). [28] 

For targets in which only part of the relevant ligand was present, the binding site definition was 

extended to include the entire biologically relevant ligand. In these cases, two separate 

evaluations of the prediction performance were conducted. The first, denoted as ‗extended 

binding site‘, all atoms of the partial and the extended ligand were used to define the binding site 

in the same way as described above. The second, denoted as ‗partial binding site‘, only atoms of 

the partial ligand were used to define the binding site, whereas all residues exclusively in contact 

with the extended part of the ligand were treated as neutral and excluded from the evaluation. 

Binding site prediction evaluation 

As in the previous assessment,[20] binding site prediction performance was measured using the 

Matthews Correlation Coefficient[29] (MCC) which accounts both for over and under predictions. 

For each target, residue predictions were classified as true positives (TP: correctly predicted 

binding site residues), true negatives (TN: correctly predicted non-binding site residues), false 

negatives (FN: incorrectly under predicted binding site residues), false positives (FP: incorrectly 

over predicted non-binding site residues) based on the binding site definition described before. 

The MCC was computed using Eq. 1: 

)()()()( FNTNFPTNFNTPFPTP

FNFPTNTP
MCC






 

The MCC ranges from +1 (perfect prediction) over 0 (random prediction) to -1 (inverse 

prediction). Empty submissions which did not include any binding site predictions and missing 

predictions were assigned a MCC score of zero. 

To reduce the effects of target difficulty on the ranking, MCC scores were standardized by 

computing Z scores among all predictions P for a given target T using Eq. 2: 
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𝑍𝑃,𝑇 =
𝑀𝐶𝐶𝑃,𝑇 − 𝑀𝐶𝐶𝑇

                

𝜎𝑇
 

In this equation, MCCP,T is the raw MCC score for target T given by predictor P, 𝑀𝐶𝐶𝑇
         is the 

mean MCC score for target T, σT is the standard deviation of MCC scores for target T. The 

overall performance for each predictor was computed as the mean of Z scores over all targets, 

which was subsequently used for obtaining a final ranking.  

In addition to the MCC score, we computed the recently published binding site distance test 

(BDT) [30]. BDT takes the actual three dimensional locations of the predicted residues into 

account and scores residues differently, according to the distance between the predicted and the 

observed binding site. Predictions close to the binding site score higher than more distant 

predictions. The BDT score ranges from 0, for a random prediction to 1, for a perfect prediction. 

Robustness and significance 

Statistical significance of the ranking and robustness with regard to composition of the target 

data set was assessed using two different methods. First, two-tailed Student‘s paired t-tests as 

well as Wilcoxon signed rank tests [31] between all predictor groups were performed based on 

MCC scores for each target. Both T-tests and Wilcoxon signed rank tests were performed using 

R (version 2.11.1). [32] Second, bootstrapping was performed, where scores were computed on 

a randomly selected subset of ¾ of all targets (i.e. 23 of 30 targets). 75 rounds of bootstrapping 

were executed for different target subsets, and for each bootstrapping experiment, mean, 

minimum and maximum Z scores per group were calculated as previously described. 

Additionally, the rank for each prediction group was calculated and mean, minimum and 

maximum ranks over all bootstrapping experiments were computed. 

To assess the performance of groups on different types of ligands, we have analyzed the 

prediction performance separately on targets including only metal ions (10 targets) and on 

targets including only non-metal ligands (17 targets). Mixed targets including both metal and 

non-metal ligands (3 targets) were not considered in this sub-analysis. 

Results and Discussions 

Overall performance 
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In the CASP9 protein binding sites prediction category (FN), the predictors were given a protein 

sequence with unknown structure and asked to identify the residues involved in ligand binding. 

According to the CASP format, the predictions were binary and thus, classified each residue as 

either binding-site or non-binding-site residue. As defined by the organizers, only protein-small 

molecule interactions were considered in this category. The assessment of this category 

consisted of the following three steps: (1) identification of biologically relevant ligands in the 

target structures, (2) definition of binding site residues, (3) assessment of the prediction 

performance. 

One dominant factor in assessing the correctness of ligand binding site prediction is the 

availability of experimental data, and the evaluation of the biological relevance of the specific 

ligand binding. Whether a certain ligand is observed in an experimental structure is first and 

foremost determined by the specific purification procedure, by the experimentalist‘s choice of 

using this ligand for a co-crystallization experiment, and the specific experimental conditions 

(ligand concentration, pH and buffer conditions, ionic strength, precipitant etc.). If a ligand is not 

observed in a specific experimental structure, it could still bind under different conditions, i.e. it 

cannot be considered as a ―true negative‖ data point for the assessment. On the other hand, if a 

certain ligand is observed in a target structure, we can classify the residues within this structure 

into ―binding‖ and ―non binding‖ with regard to this specific ligand. Note that a target protein 

might be able to bind different ligands under different experimental conditions, and only a subset 

of them might be present in the target structure at hand. For example, the structure of an 

enzyme might be crystallized in complex with the cofactor, but without substrate or product 

molecules.  

Although the identification of ligands in CASP9 was based only on experimentally observed 

ligands, it was still not straightforward to categorize their biological relevance. Although in 73% 

of the target structures in CASP9 various ligands were present, most of them were not 

considered biologically relevant but rather as originating e.g. from solvent, crystallization 

precipitant, or buffers. For the assessment, however, we included only ligands which we 

considered to be biologically relevant. The decision on biological relevance was done by manual 

curation, primarily based on the type and location of the ligand, literature information, and 

UniProt[26] annotations. In addition, information from structurally closely related homologues 

and conservation of functionally important residues was used to guide the selection process. 

Using this approach, 16 target structures with biologically relevant ligands were selected out of 

the 109 targets available in CASP9 for the assessment. 
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In addition, we have analyzed all remaining heteroatomic groups, if they occupied binding sites 

which mimicked the interactions of a known biologically relevant ligand for this protein. In these 

cases, we defined an ―extended binding site‖ consisting of all residues in contact with the known 

biologically relevant ligand. We were careful to include only targets where the assignment was 

unambiguous, in order to avoid the inclusion of false binding site definitions. Using this 

approach, the number of target structures in the FN category was extended by 14, yielding a 

total of 30 targets in this category (Table I). 

Table I Summary of CASP9 targets with bound ligands. 

Target PDB 
Partial  
Ligand 

Extended 
Ligand 

Chemical Class Interface 
CASP 
Category 

T0515 3MT1 SO4 PLP, LYS Non-metal A-B TBM 

T0516 3NO6 IMD PF1 Non-metal  TBM 

T0518 3NMB NA  Metal  TBM 

T0521 3MSE CA, CA  Metal  TBM 

T0524 3MWX GOL GAL Non-metal  TBM 

T0526 3NRE PEG GLA Non-metal  TBM 

T0529 3MWT MN  Metal  TBM 

T0539 2L0B ZN, ZN  Metal  TBM 

T0547 3NZP PLP PLP, LYS Non-metal A-B TBM 

T0548 3NNQ ZN  Metal  TBM 

T0565 3NPF CSA DGL, ALA Non-metal  TBM 

T0570 3NO3 MG, GOL  Metal, Non-metal  TBM 

T0582 3O14 ZN  Metal  TBM 

T0584 3NF2 SO4 DST, IPR Non-metal  TBM 

T0585 3NE8 ZN  Metal  TBM 

T0591 3NRA LLP  Non-metal A-B TBM 

T0597 3NIE ANP  Non-metal  TBM 

T0599 3OS6 SO4 ISC Non-metal  TBM 

T0604 3NLC FAD  Non-metal  TBM / FM 

T0607 3PFE ZN ZN, BES Metal, Non-metal  TBM 

T0609 3OS7 TLA GAL Non-metal  TBM 

T0613 3OBI EDO GAR, NHS Non-metal  TBM 

T0615 3NQW MN, SO4 MN, GPX Metal, Non-metal  TBM 

T0622 3NKL SO4 NAD Non-metal  TBM 

T0625 3ORU ZN  Metal  TBM 

T0629 2XGF 
FE, FE, FE, FE, FE, 
FE, FE 

 Metal A-B-C FM 

T0632 3NWZ COA  Non-metal A-B-C TBM 

T0635 3N1U CA  Metal  TBM 
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T0636 3P1T TLA HSA, PLP Non-metal A-B TBM 

T0641 3NYI STE  Non-metal  TBM 

 

Within the selected targets, ten were found in complex with metal ions (Ca, Fe, Mg, Mn, Na, Zn), 

and further 17 targets in complex with non-metal ligands (Table I). The latter included amino 

acids and derivatives, nucleotides, sugars, fatty acids and others. Additionally, in three cases 

non-metal ligands were coordinated to metal ions (Mg, Mn, Zn). In most of the targets, the ligand 

binding site was located within a monomer, while for six targets the ligand was bound in the 

interface between multiple chains: T0515, T0547, T0591, T0636 (dimeric structures), T0629 

(trimeric structure) and T0632 (tetrameric structure). The ligands were bound between all chains 

of the oligomeric structure, except for T0632 where the ligand is bound to only three of the four 

chains. Following the identification of biologically relevant ligands, the binding site residues for 

those targets were defined as those residues directly in contact with the ligand. Atoms were 

considered to be in contact if they were within a distance of the sum of their van der Waals radii 

plus a tolerance distance.  

The list of binding site residues used in the assessment for each target is provided in Table SI 

(Supplementary Material). The tolerance distance was defined as 0.5 Å by the CASP organizers. 

We tested the influence of different values for the tolerance distance of the binding site definition 

and their influence on the assessment of prediction performance. No significant differences in 

the overall prediction performances were observed for different tolerance distances (Fig. S1, 

Supporting Information).  

The majority of FN targets in CASP9 were classified as template based modeling targets (TBM), 

and only two targets were free modeling (FM) targets: (1) target T0629, where the ligand binding 

domain had no template structure (Fig. 8C), (2) target T0604, where the ligand was bound 

between two domains where one was a template based modeling (constituting 90% of the 

binding site residues) and one a free modeling domain (constituting 10% of the binding site 

residues). This strong bias in the data set has direct consequences for the assessment, as it is 

to be expected that template-based prediction methods will perform much better than ―de novo‖ 

methods in this context. 

In total, 33 groups made predictions in the CASP9 FN category. A summary of the predictions is 

given in Figure 1. Among the participating groups, 18 were registered as ―human predictors‖ and 

15 as ―servers‖ (Table II). Most groups predicted at least 25 of the assessed 30 targets, i.e. 12 
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groups (6 humans, 6 servers) predicted between 25 and 29 of the assessed targets and 15 

groups (6 humans, 9 servers) predicted all 30 targets; 6 human groups returned predictions for 

only 6 or less targets. Binding site prediction performance was measured using Z-scores of 

Matthews correlation coefficients (see Methods).1  

 

Figure 1. Overview of predictions per group. Predictions for targets which were assessed in the FN 
category (i.e. targets with a relevant binding site) are displayed in dark colours, additional predictions 
which were not assessed (i.e. targets without an experimentally confirmed binding site) are displayed in 
light colours. Human groups are shown in purple, servers in orange. 

Table II Groups participating in the FN category in CASP9. 

ID Rank Name Type Group 

 FN017 22 3DLIGANDSITE1 S Michael Sternberg 

 FN035 5 CNIO-FIRESTAR H Gonzalo Lopez 

 FN057 21 3DLIGANDSITE3 S Michael Sternberg 

 FN072 23 3DLIGANDSITE4 S Michael Sternberg 

 FN094 8 MCGUFFIN H Liam McGuffin 

 FN096 1 ZHANG H Yang Zhang 

 FN097 30 KOCHANCZYK H Marek Kochanczyk 

 FN102 15 BILAB-ENABLE S Shugo Nakamura 

 FN104 7 JONES-UCL H David Jones 

                                                
1
 As described in Materials and Methods, the authors decided that assigning a MCC score of zero to empty submissions which did 

not include any binding site predictions and to missing predictions would most appropriately reflect a ―real life‖ prediction situation in 
the assessment. Please note that this policy has consequences for the final ranking as it penalizes methods which are not able to 
make predictions for some targets, and encourages the risky development of novel methods as there is no implicit penalty for making 
predictions for challenging targets. 
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 FN110 6 STERNBERG H Michael Sternberg 

 FN113 9 FAMSSEC H Katsuichiro Komatsu 

 FN114 10 LEE H Jooyoung Lee 

 FN132 27 MN-FOLD S Chris Kauffman 

 FN147 28 GENESILICO H Janusz Bujnicki 

 FN154 33 JAMMING H Gabriel del Rio 

 FN193 24 MASON S Huzefa Rangwala 

 FN207 26 ATOME2_CBS S Jean-Luc Pons 

 FN236 12 GWS S Jooyoung Lee 

 FN240 32 TMD3D H Hiroshi Tanaka 

 FN242 4 SEOK H Chaok Seok 

 FN303 20 FINDSITE-DBDT S Jeffrey Skolnick 

 FN311 31 ALADEGAP H Kei Yura 

 FN315 3 FIRESTAR S Gonzalo Lopez 

 FN316 18 LOVELL_GROUP H Simon Lovell 

 FN339 2 I-TASSER_FUNCTION S Yang Zhang 

 FN353 17 SAMUDRALA H Ram Samudrala 

 FN402 13 TASSER H Jeffrey Skolnick 

 FN415 25 3DLIGANDSITE2 S Michael Sternberg 

 FN425 19 INTFOLD-FN S Liam McGuffin 

 FN446 16 KIHARALAB H Daisuke Kihara 

 FN452 11 SEOK-SERVER S Chaok Seok 

 FN453 14 HHPREDA S Johannes Soeding 

 FN458 29 BILAB-SOLO H Mizuki Morita 

 

The comparison between all groups is shown in Figure 2 where the error bars indicate minimum 

and maximum Z scores obtained by bootstrapping on a randomly selected subset of three-fourth 

of the targets. The error bars indicate a fluctuation in the average Z score for each group. 

However, in case of a correlated movement in the score, this would not influence the groups 

ranking. Therefore, the rank for each prediction group was computed in each bootstrapping 

experiment and the average, minimum and maximum rank over all bootstrapping experiments is 

shown in Figure 3. 
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Figure 2. Mean Z scores over all targets for the top 20 predictor groups. Error bars show minimum and 
maximum average Z scores obtained from bootstrapping experiment. Human predictor groups are shown 
in purple, servers in orange. 

 

Figure 3. Mean rank based on bootstrapping experiment for the top 20 predictor groups. Error bars show 
minimum and maximum rank obtained from bootstrapping experiment. Human predictors are shown in 
purple, servers in orange. 
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The top 12 predictors clearly distinguished themselves from the following 21 groups and show a 

significantly better performance. Two predictors from the Zhang group (FN096, Zhang and 

FN339, I-TASSER_FUNCTION) show a better performance in terms of MCC compared to the 

following 10 groups, whereas the performance among those is comparable. Since many 

predictors seemed to perform similarly, statistical tests were used to assess the significance of 

the differences between these groups. Paired t-tests on all targets between all pairs of predictors 

were performed. The results are shown in Table III, with cells shaded according to computed P 

values. According to the t-test, the differences between the top ranked group (FN096, Zhang) 

and groups FN339 (I-TASSER_FUNCTION), FN242 (Seok) and FN035 (CNIO-Firestar) are not 

statically significant, while the differences between FN096 and the remaining predictors are 

significant. In addition, the non-parametric Wilcoxon signed rank test was performed, which 

yielded comparable results to the t-tests (Table SII, Supplementary Information). 

Recently, McGuffin and coworkers published an alternative binding site distance test (BDT) [30]. 

Opposed to MCC, BDT takes the actual three dimensional positions of the predicted residues 

into account and scores residues differently, according to the distance between the predicted 

and the observed binding site. Hence, BDT limits the boundary effects originating from 

ambiguous definition of binding sites. When applying the BDT score on the predictions (Fig. S2, 

Supporting Information), for the top ranked groups no significant deviations to the MCC based 

prediction assessment were observed. 2 

Table III. P-values computed by paired t-Test of all against all predictors. Significant differences 
between two groups are indicated by cells with white background. For clarity, only the 12 top performing 
predictors are shown, sorted by their overall performance. 

 FN096 FN339 FN315 FN242 FN035 FN110 FN104 FN094 FN113 FN114 FN452 FN236 
FN096 - 0.24 0.01 0.08 0.06 0.01 0.01 0.00 0.00 0.00 0.00 0.00 
FN339 0.24 - 0.27 0.20 0.28 0.20 0.05 0.04 0.02 0.05 0.02 0.02 
FN315 0.01 0.27 - 0.81 0.56 0.63 0.17 0.20 0.03 0.14 0.12 0.07 
FN242 0.08 0.20 0.81 - 0.85 0.90 0.31 0.28 0.27 0.19 0.10 0.09 
FN035 0.06 0.28 0.56 0.85 - 0.88 0.44 0.52 0.38 0.45 0.45 0.31 
FN110 0.01 0.20 0.63 0.90 0.88 - 0.33 0.28 0.27 0.30 0.33 0.18 
FN104 0.01 0.05 0.17 0.31 0.44 0.33 - 0.88 0.88 0.89 0.93 0.93 
FN094 0.00 0.04 0.20 0.28 0.52 0.28 0.88 - 0.99 0.98 0.94 0.79 
FN113 0.00 0.02 0.03 0.27 0.38 0.27 0.88 0.99 - 0.99 0.95 0.76 
FN114 0.00 0.05 0.14 0.19 0.45 0.30 0.89 0.98 0.99 - 0.96 0.56 
FN452 0.00 0.02 0.12 0.10 0.45 0.33 0.93 0.94 0.95 0.96 - 0.83 
FN236 0.00 0.02 0.07 0.09 0.31 0.18 0.93 0.79 0.76 0.56 0.83 - 
 

As described earlier, for 14 targets, the partial binding sites were individually extended around 

the observed ligand to reflect a binding site accommodating the most probable biologically 

                                                
2
 The largest change in ranking by 3 positions would be for group FN110. 
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relevant ligand. To investigate the influence of this extension, the assessment was performed 

both on all residues of the extended binding site and separately on all the residues of the partial 

binding site while treating the residues exclusively in the extended binding site as ―neutral‖ for 

the analysis. For the top ranked groups no significant differences in the overall prediction 

performances were observed between partial and extended binding site definitions (Fig.3 

Supporting Information)3.  

Assessment by type of binding sites 

In addition to the overall performance, subsets of the targets were evaluated individually, 

according to the ligand chemotype. The distinct chemical properties of metal ions and organic 

ligands give raise to diverse binding sites. Thus, it could be expected that various prediction 

methods perform differently. To address this question, we have analyzed the prediction 

performance separately on all targets including only metal ligands (10 targets) and on targets 

including only non-metal ligands (17 targets). The mean Z-score per group separated into metal 

and non-metal targets are shown in Figure 4. Within the top 10 groups most of them show a 

better performance for non-metal targets, with the exception of FN242 (Seok) and FN114 (Lee). 

Especially group FN114 shows a better performance on metal ligands, compared to an average 

performance on the full set of targets. 

Among the CASP9 FN targets, in six cases the ligand binds in the interface between multiple 

chains of an oligomeric protein complex. Although, the number of interface targets is very 

limited, we were interested in the question if the prediction of ligand binding sites of interface 

targets is more difficult than non-interface targets. We compared the average prediction 

performance, both according to mean MCC values, as well as the number of very good 

predictions (MCC > 0.85), for interface vs. non-interface targets. No significant difference was 

observed, thus on average, in those target categories it seems equally difficult to predict the 

binding site residues. However, it should be considered that four of the six targets are ―trivial‖ 

oligomers, where a simple blast query returns a homologues template-ligand complex with the 

correct oligomeric state. 

                                                
3
 The largest difference was observed for group FN113 which would change rank by 3 positions. 
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Figure 4. Mean Z scores of the top 20 groups, separated by the ligand chemotype. Metals are shown in 
blue, non-metals are shown in green. 

Human versus server prediction 

Looking at the top 10 groups, 8 of them were registered as ―humans‖, and only 2 as ―servers‖. 

Overall, there is a striking difference between the average performance of human groups and 

server groups with a mean Z score of 0.47 and 0.15, respectively. Although predictor groups 

registered as ―human‖ performed considerably better than ―servers‖, the role of human beings in 

the prediction process was difficult to evaluate.  

Several aspects seemed to contribute to this observation: Human predictors had access to 

multiple servers for structure modeling and various server binding site predictions, while server 

predictors have to rely on their own method only. While human predictors can make use of 

additional annotation from biological knowledgebases and scientific literature, servers have to 

rely on structured machine-readable information. A major bottleneck in this context seems the 

lack of consistent annotation of ligands found in PDB entries with respect to their biological 

relevance. It appears that human predictors benefit from the longer prediction time mainly by 

their ability to distinguish relevant from irrelevant ligand predictions. 

Prediction methods have converged to similar approach 

When comparing the methods of the top performing groups, it seems they have converged to 

similar approaches, which are based on homology transfer from related structures in the PDB. 
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By identifying homologous protein structures with bound ligands, putative binding site residues in 

the target model are classified by spatial proximity after alignment or superposition. The 

methods differ in their specific implementations with regards to the underlying structure 

databases (PDB vs. curated binding site libraries), target representation (alignment to structure 

vs. full atomic models), superposition to related structures to identify putative binding sites, and 

the use of residue conservation information in the prediction process.  

The major draw-back of these homology-based inference methods is that they rely on the 

availability of related protein structures with bound ligands and are thus unable to make 

predictions for novel proteins without prior ligand information. 

Although many groups have used similar approaches to make their predictions, we observed a 

surprising heterogeneity of performance within targets. As shown in Figure 5 (and Figure S4), 

the 12 top performing groups show overall a similar spectrum of results, with a few nearly 

perfectly predicted targets and some poorly predicted targets.  

 

Figure 5. MCC scores for the 12 top performing groups for all targets. Targets were sorted by their 
respective MCC score, individually for each group. 

Interestingly, when analyzing the results for individual targets, at least one good prediction was 

achieved across all groups (MCC value of at least 0.56; on average 0.84; see Fig. 6), and even 

predictors with a poor overall performance, can yield the best individual prediction for certain 
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targets, as shown in Figure 7. Thus, either the performance of the different methods is highly 

target specific, or there is a considerable random component in the prediction process in 

combination with a strong influence by the small and biased target data set. 

 

Figure 6. Overall target difficulty. MCC value of the best overall prediction for each target. 

 

Figure 7. Number of targets where a particular group returned the best prediction. Groups are sorted by 
their overall performance. For one target, multiple groups can perform equally. 
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Prediction examples 

Obviously, target T0604 was the most difficult target in the FN category in CASP9, with a 

maximum MCC score of 0.56 for the best prediction, and an average score of 0.29. The protein 

is a putative FAD dependent oxidoreductase with a bound FAD molecule (PDB: 3nlc). The 

protein is monomeric and forms a large binding pocket for the ligand. The structure is shown in 

Figure 8(A) together with the binding site predictions of group FN035 (CNIO-FIRESTAR) as one 

of the best predictions for this target. The top performing methods were able to accurately 

predict the lower part of the binding site around the adenine moiety, whereas all of them failed 

for the upper part of the binding site around the flavin moiety. This stems from the fact that this 

target structure has only remote homologues, which differ significantly in the flavin binding site 

region. This example clearly demonstrates the limitations of prediction methods that are based 

on homology transfer. 

Target T0629 is the only target in the current ligand binding target set which was classified as 

free modeling target and thus has no template structure. The protein (PDB: 2xgf) is the 

bacteriophage T4 long tail fiber receptor-binding tip. It contains a long fiber like structure which is 

formed by three chains and binds seven iron atoms. Each iron atom is complexed with six 

histidine residues. Each protein chain contributes two histidines to each binding site, where the 

two histidines are in a His-X-His motive, with X being any of Ser, Thr or Gly. The target structure 

is shown in Figure 8(C) together with the binding site predictions of group FN114 (LEE), the best 

predictor for this target among the top 10. Common to all predictions for this target is that they 

correctly predicted a subset of the seven binding sites – most likely due to local similarity to 

another metal binding protein with a His-X-His motif, but no predictor identified all sites correctly. 

The structure of target T0632 (PDB:3nwz) is a homo-tetramer which binds coenzyme-A. This 

ligand is interacting with three of the four chains of the protein, which seems to present a 

challenge for binding site residue prediction observed by a low average MCC of 0.22. An 

excellent prediction was obtained by group FN096 (Zhang) with an MCC of 0.72, which is 

depicted in Figure 8(B) along with the target structure. Many residues were well predicted 

despite originating from different chains. In this prediction, the largest errors originate from 

missing some binding site residues due to an elongated terminus compared to structurally 

closely related templates. 
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Figure 8. Examples of binding site predictions. All ligands are shown in spheres render mode. The protein 
backbone is shown in cartoon mode with each chain colored separately. All side chains of observed and 
predicted binding site residues are shown in licorice sticks. Correctly predicted residues (true positives) 
are colored in green, incorrectly under predicted binding site residues (false negatives) in yellow and 
incorrectly over predicted non-binding site residues (false positives) in red. (A) Target T0604 with 
predictions of group FN035. (B) Predictions of group FN096 for target T0632. (C) Group FN114‘s 
predictions for target T0629. 

Conclusion 

The task of predicting binding sites from a protein‘s sequence is of high relevance for life science 

research, ranging from functional characterization of novel proteins to applications in drug 

design, and consequently the ligand binding site prediction category in CASP has received 

increasing attention over the past years. In CASP9 it attracted a total of 33 predictors - ten more 

groups than in CASP8. In contrast to the previous CASPs, where only three predictors yielded 

reliable predictions,[20] in this assessment nearly half of the prediction groups yielded reliable 

predictions for the majority of targets. Two groups (FN096, Zhang; FN339, I-

TASSER_FUNCTION) performed better than the rest (when accounting for missing target 

predictions in the assessment), while the following ten prediction groups performed comparably 

well. This is not very surprising with respect to the observation that in this round all top 
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performing groups based their methods on approaches, which are similar to the best performing 

strategy in previous CASP experiments (i.e. Sternberg[33] and LEE[15]). 

Limitation of the current format and recommendations for future experiments 

The very low number of target structures with relevant ligands is a major limitation to the 

assessment as it does not allow to draw significant conclusions on the specific strengths and 

weakness of different prediction methods, e.g. with regard to target difficulty or type of the 

ligands. Only 30 of the total 109 CASP9 targets (28%) were considered to have a biologically 

relevant ligand bound in the target structures and were thus assessed in the FN category. It is 

likely that some of the remaining target proteins would bind interesting ligands under different 

experimental conditions, but such conclusions cannot be made with the available data. In the 

previous CASP8 experiment, the total number of targets in this category was 27, illustrating that 

this is a recurring problem - and not specific to this round of CASP. Another rather drastic 

limitation of the FN category is the binary prediction format which classifies residues as either 

ligand binding/non-binding based on a hard distance cutoff. Consequently, all ligands are 

currently treated uniformly, independent of their chemical type, and all potential binding sites are 

treated uniformly, independent of their affinity (or binding probability) for different ligands. 

Moreover, most targets in the FN category were straightforward TBM targets with numerous, 

closely related template structures, and only one of the 30 targets was categorized as free 

modeling (FM). However, exactly this class of target structures is of highest interest for 

computational ligand binding site prediction, where no obvious information about the location of 

their binding sites is available. We would like to suggest the following modifications to the 

assessment of ligand binding site predictions to enable the community to benefit even further 

from future rounds of this experiment: 

 In order to accumulate a sufficiently large number of prediction targets, the assessment 

of this category should be done continuously based on a weekly PDB pre-release. This 

would allow assessing the performance in different ranges of target difficulty, similar to 

other CASP categories, and facilitate analyzing the strengths and weakness of different 

approaches. During the CASP meeting in Asilomar, we have suggested that the CAMEO 

project (Continuous Automated Model EvaluatiOn) of the Protein Model Portal [34] could 

contribute to this effort. 

 Binding sites differ chemically and structurally from each other e.g. a metal ion binding 

site has different characteristics compared to e.g. a sugar binding site. We therefore 
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suggest that the assessment of binding site residue predictions should be made 

according to chemotype categories of the ligand expected to be bound. We would like to 

propose the following categories: ―metal ions‖ (e.g. Na, Ca, Zn, Fe, Mn, Mg, etc.), 

―inorganic anions‖ (e.g. SO4, PO4), ―DNA/RNA‖ for poly-ribonucleic acid binding sites, 

and ―organic ligands‖ for cofactors, substrates and receptor agonists/antagonists (e.g. 

NAD, FAD, ATP, SAM, CoA, PLP, etc.). More fine grained assessment categories might 

be necessary if more specific prediction methods emerge in the future. 

 The binary prediction of binding site residues should be replaced by a continuous 

probability measure, thus reflecting the likelihood for a residue to be involved in binding a 

ligand of a certain type. For example a certain residue might be predicted as having a 

high probability to bind a metal ion, but a low probability to bind an organic ligand. The 

assessment of continuous prediction variable (e.g. using ROC type analysis) would 

better reflect the spectrum of ―high affinity‖ and ―low affinity‖ sites of different types. 

 The experimentalist solving a protein structure typically will have more insights and 

experimental evidence for the biological role and relevance of ligands observed in a 

protein structure than the information which is publicly available to assessors during the 

CASP experiment. It would therefore be beneficial to capture the information about the 

biological role of ―HETATM‖ records during PDB deposition. 

Predicting binding sites from a protein‘s sequence has the potential for yielding high impact on 

life science research – if the predictions are specific and accurate enough to help addressing 

relevant biological questions. We hope that with the suggested modifications, the assessment of 

ligand binding site predictions will be more suited to evaluate the current state of the art of 

prediction methods, identify possible bottlenecks, and further stimulate the development of new 

methods. 

Acknowledgements 

The authors would like to thank the experimental groups for providing the target structures for 

the CASP9 experiments, and all predictors for their participation. We are especially grateful to 

Mike Sternberg and Johannes Söding for fruitful discussions on ligand binding site prediction 

and assessment. This work was partially supported by the SIB Swiss Institute of Bioinformatics 

and by grant U01 GM093324-01 from the National Institute of General Medical Sciences. 



40 
 

Supplementary material 

 

Figure S1. Influence of different binding site definitions on the prediction performance of the top 12 
predictors. Mean Z score are shown for different tolerance distance used for binding site definition. All 
residues with a least one atom within the sum of the van der Waals radius plus the tolerance distance 
were considered to belong to the binding site. 

 

Figure S2. Comparison between the overall prediction performance evaluated using the Mathews 
Correlation Coefficient (MCC, in orange) and the Binding site Distance Test (BDT, in cyan). Overall 
prediction performance is shown in mean Z Scores over all targets. 
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Figure S3. Comparison of the overall prediction performance observed with the extended (red) and the 
partial (green) binding site definitions. Overall prediction performance is shown in mean Z Scores over all 
targets. 

 

Figure S4. MCC scores for all groups with at least 10 predictions for all targets. Targets were sorted by 
their respective MCC score, individually for each group. 
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Table SI Definition of binding site residues used in the assessment. [a] PDB id for the deposited 
target structure which was used to define the partial binding site. [b] PDB id of the protein structure related 
to the target structure, used in addition to define the extended binding site. 

Target Target 

PDB id [a] 

Related 

PDB id [b] 

Partial Binding Site Extended Binding Site Neutral Residues 

T0515 3MT1 1TWI 198, 199, 232, 233, 324 35, 37, 162, 198, 199, 230, 
232, 233, 269, 273, 324, 328 

35, 37, 162, 230, 269, 
273, 328 

T0516 3NO6 2QCX 44, 47, 48, 51, 113, 137, 
141, 208, 211 

44, 47, 48, 51, 113, 137, 138, 
141, 167, 171, 174, 208, 211 

138, 167, 171, 174 

T0518 3NMB  132, 133, 134, 162, 164, 
271, 273 

132, 133, 134, 162, 164, 271, 
273 

 

T0521 3MSE  48, 50, 52, 54, 59, 117, 
121, 123, 128 

48, 50, 52, 54, 59, 117, 121, 
123, 128 

 

T0524 3MWX 1SO0 73, 74, 177, 203, 230, 269, 
271, 283 

62, 63, 73, 74, 100, 101, 177, 
203, 230, 269, 271, 283, 285 

62, 63, 100, 101, 285 

T0526 3NRE 1NS0 56, 83, 148, 173, 200, 241, 
253 

43, 56, 77, 83, 148, 173, 200, 
241, 253 

43, 77 

T0529 3MWT  389, 390, 391, 533 389, 390, 391, 533  

T0539 2L0B  33, 36, 51, 53, 56, 59, 70, 
73 

33, 36, 51, 53, 56, 59, 70, 73  

T0547 3NZP 1TWI 84, 86, 87, 132, 231, 233, 
236, 273, 274, 320, 321, 
322, 323, 483, 519 

84, 86, 87, 132, 231, 233, 
236, 273, 274, 320, 321, 322, 
323, 452, 483, 484, 519 

452, 484 

T0548 3NNQ  58, 62, 95, 98 58, 62, 95, 98  

T0565 3NPF 3H41 191, 193, 202, 203, 262, 
263 

54, 80, 191, 193, 194, 202, 
203, 204, 221, 222, 262, 263 

54, 80, 194, 204, 221, 
222 

T0570 3NO3  30, 59, 61, 123, 156, 158, 
178, 222 

30, 59, 61, 123, 156, 158, 
178, 222 

 

T0582 3O14  58, 60, 64, 94 58, 60, 64, 94  

T0584 3NF2 1RQI 55, 58, 87, 104 55, 58, 87, 90, 91, 94, 103, 
104, 155, 183, 184, 221, 248 

90, 91, 94, 103, 155, 
183, 184, 221, 248 

T0585 3NE8  13, 28, 82, 84, 115 13, 28, 82, 84, 115  

T0591 3NRA  109, 110, 111, 135, 185, 
189, 217, 219, 251, 252, 
260, 283 

109, 110, 111, 135, 185, 189, 
217, 219, 251, 252, 260, 283 

 

T0597 3NIE  36, 37, 38, 39, 40, 41, 42, 
44, 57, 59, 73, 112, 114, 
117, 120, 158, 160, 163, 
174 

36, 37, 38, 39, 40, 41, 42, 44, 
57, 59, 73, 112, 114, 117, 
120, 158, 160, 163, 174 

 

T0599 3OS6 3HWO 213, 214, 215, 364, 377, 
381 

212, 213, 214, 215, 276, 304, 
328, 347, 348, 362, 364, 377, 
381 

212, 276, 304, 328, 347, 
348, 362 
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T0604 3NLC  113, 114, 116, 117, 118, 
137, 138, 166, 167, 170, 
171, 172, 174, 175, 177, 
178, 180, 241, 242, 243, 
272, 273, 274, 277, 280, 
352, 364, 365, 515, 516, 
523, 524, 527 

113, 114, 116, 117, 118, 137, 
138, 166, 167, 170, 171, 172, 
174, 175, 177, 178, 180, 241, 
242, 243, 272, 273, 274, 277, 
280, 352, 364, 365, 515, 516, 
523, 524, 527 

 

T0607 3PFE 2ZOF 96, 129, 163, 190, 442 96, 129, 162, 163, 165, 190, 
191, 205, 340, 410, 412, 413, 
414, 442 

162, 165, 191, 205, 340, 
410, 412, 413, 414 

T0609 3OS7 1Z45 67, 69, 108, 184, 288 67, 69, 80, 81, 108, 184, 245, 
286, 288, 300 

80, 81, 245, 286, 300 

T0613 3OBI 1C2T 177, 178, 225, 229, 230 173, 174, 175, 176, 177, 178, 
183, 192, 193, 194, 223, 225, 
226, 229, 230 

173, 174, 175, 176, 183, 
192, 193, 194, 223, 226 

T0615 3NQW 1VJ7 33, 36, 62, 63, 98, 102, 
123, 127, 139, 147 

26, 33, 36, 62, 63, 98, 102, 
123, 127, 128, 130, 131, 139, 
143, 147 

26, 128, 130, 131, 143 

T0622 3NKL 2VT2 10, 11, 12, 72 7, 9, 10, 11, 12, 33, 34, 35, 
38, 69, 70, 71, 72, 77, 81 

7, 9, 33, 34, 35, 38, 69, 
70, 71, 77, 81 

T0625 3ORU  126, 143, 207 126, 143, 207  

T0629 2XGF  73, 75, 105, 107, 119, 121, 
156, 158, 170, 172, 179, 
181, 188, 190 

73, 75, 105, 107, 119, 121, 
156, 158, 170, 172, 179, 181, 
188, 190 

 

T0632 3NWZ  76, 83, 109, 110, 117, 118, 
119, 120, 134, 136, 137, 
138, 139, 164, 166, 167 

76, 83, 109, 110, 117, 118, 
119, 120, 134, 136, 137, 138, 
139, 164, 166, 167 

 

T0635 3N1U  25, 27, 118 25, 27, 118  

T0636 3P1T 1GEX 22, 47, 145, 172, 197, 301, 
306, 313 

22, 47, 75, 76, 145, 169, 171, 
172, 194, 196, 197, 205, 206, 
225, 301, 306, 313 

75, 76, 169, 171, 194, 
196, 205, 206, 225 

T0641 3NYI  30, 65, 66, 67, 96, 97, 127, 
128, 129, 164, 166, 179, 
204, 241, 272, 275, 279, 
286 

30, 65, 66, 67, 96, 97, 127, 
128, 129, 164, 166, 179, 204, 
241, 272, 275, 279, 286 
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Table SII P-values computed by Wilcoxon Signed-Rank Test of all against all predictors. Significant 
differences between two groups are indicated by cells with white background. For clarity, only the 12 top 
performing predictors are shown, sorted by their overall performance. 

 
FN096 FN339 FN315 FN242 FN035 FN110 FN104 FN094 FN113 FN114 FN452 FN236 

FN096 - 0.11 0.01 0.16 0.14 0.00 0.01 0.00 0.00 0.01 0.00 0.00 

FN339 0.11 - 0.26 0.27 0.49 0.12 0.06 0.04 0.02 0.06 0.01 0.02 

FN315 0.01 0.26 - 0.76 0.23 0.79 0.39 0.10 0.05 0.18 0.16 0.09 

FN242 0.16 0.27 0.76 - 0.91 0.46 0.23 0.12 0.21 0.21 0.05 0.08 

FN035 0.14 0.49 0.23 0.91 - 0.92 0.39 0.10 0.10 0.18 0.18 0.17 

FN110 0.00 0.12 0.79 0.46 0.92 - 0.52 0.24 0.13 0.50 0.41 0.29 

FN104 0.01 0.06 0.39 0.23 0.39 0.52 - 0.78 0.71 0.37 0.73 0.50 

FN094 0.00 0.04 0.10 0.12 0.10 0.24 0.78 - 0.68 0.94 0.67 0.72 

FN113 0.00 0.02 0.05 0.21 0.10 0.13 0.71 0.68 - 0.87 0.95 0.64 

FN114 0.01 0.06 0.18 0.21 0.18 0.50 0.37 0.94 0.87 - 0.83 0.49 

FN452 0.00 0.01 0.16 0.05 0.18 0.41 0.73 0.67 0.95 0.83 - 0.87 

FN236 0.00 0.02 0.09 0.08 0.17 0.29 0.50 0.72 0.64 0.49 0.87 - 
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Abstract 

The identification of amino acid residues in proteins involved in binding small molecule ligands is 

an important step for their functional characterization, as the function of a protein often depends 

on specific interactions with other molecules. The accuracy of computational methods aiming to 

predict such binding residues was evaluated within the ―function prediction (prediction of binding 

sites, FN)‖ category of the critical assessment of protein structure prediction (CASP) experiment. 

In the last edition of the experiment (CASP10), 17 research groups participated in this category, 

and their predictions were evaluated on 13 prediction targets containing biologically relevant 

ligands. The results of this experiment indicate that several methods achieved an overall good 
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performance, showing the usefulness of such methods in predicting ligand binding residues. As 

in previous years, methods based on a homology transfer approach were dominating. In 

comparison to CASP9, a larger fraction of the top predictors are automated servers. However, 

due to the small number of targets and the characteristics of the prediction format, the 

differences observed among the first ten methods were not statistically significant and it was 

also not possible to analyze differences in accuracy for different ligand types or overall structure, 

difficulty. To overcome these limitations and to allow for a more detailed evaluation, in future 

editions of CASP, methods in the FN category will no longer be evaluated on the ―normal‖ CASP 

targets, but assessed continuously by CAMEO (continuous automated model evaluation) based 

on weekly pre-released sequences from the PDB. 

Introduction 

Proteins interact with a broad range of molecules to perform their function. While the majority of 

these interactions are unspecific and transient (e.g., with water molecules, ions and other 

solutes in the cell), others are very specific and essential for the function of the protein. Specific 

interactions can be stable, for example oligomeric proteins, or transient, for example in signaling 

networks or motor proteins. Binding partners of a protein are not limited to other proteins, but 

can include the whole range of other molecule types. Typical examples include complexes of 

enzymes with substrates and co-factors, receptors and ligands, antibodies and epitopes, 

transcription factors and cognate DNA, protein–RNA assemblies such as the ribosome, or 

ligands in a protein structure with a structural role. For the characterization of a new protein, 

information about ligands, cofactors and binding sites often provides crucial hints about its 

function. However, when determining the structure of a protein experimentally, ligands with 

medium to low binding affinities are often lost during the purification procedure, and the resulting 

structures often do not contain ligands. Additionally, in many cases neither the three-dimensional 

structure of the protein itself is known, nor the location and identity of possible ligands. To 

overcome these limitations, computational methods were established to predict from a protein's 

sequence its three-dimensional structure and possible ligand binding residues. Several 

computational approaches for predicting ligand binding sites have been developed, which differ 

with respect to the information they are based on: (1) only the sequence of the protein; (2) its 

structural properties; (3) both sequence and structure; (4) homologue proteins.[1-12]  
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The aim of the critical assessment of protein structure prediction (CASP) experiment is to assess 

the current state of the art of such methods, and to highlight bottlenecks and opportunities for 

further development. The accuracy of predictions of three-dimensional structures is assessed as 

part of the template-based (TBM) and free-modeling (FM) categories,[13-16] which includes the 

accuracy of binding site coordinates.[17, 18] Function prediction (FN) was introduced as a new 

category in CASP6.[19] In later editions, the definition of function predictions was specified as 

prediction of residues involved in binding relevant ligands.[20-22] Here, we describe the results 

of the assessment in the category ―prediction of binding sites (function prediction, FN)‖ of the 

CASP10 experiment. 

Materials and Methods 

Prediction format 

As in previous CASP experiments, the format for the predictions of binding residues for a given 

target protein consisted of a list of the amino-acid positions that were predicted to be in contact 

with a biologically relevant ligand. The CASP format did not include a confidence score, so that 

residues are classified in a binary way, either binding or not binding to any ligand. Predictors 

could optionally propose the name and the category of the compounds that could bind to these 

residues. One consequence of the prediction format is that it is not possible to correctly assess 

over-predictions; neither in case a target did not include any biologically relevant ligand, nor if a 

prediction indicated a binding site for a different ligand elsewhere in the target. 

Prediction targets 

All CASP10 target sequences were sent out as prediction targets in the FN category. [23] For 

the assessment, a subset of the target structures (coordinates available as of 2013-08-05) were 

selected, which contained at least one biologically relevant ligand. To define which ligands were 

considered as ―biologically relevant,‖ we used information coming from scientific literature, 

Swiss-Prot[24] annotations, sequence conservation of functionally important residues, and 

information from homologous structures. For the purpose of the assessment, covalently bound 

ligands in the reference structure were handled the same way as noncovalently bound ones. In 

case of oligomeric assemblies, the ―biological assembly units‖ as defined by the authors were 

used as reference target structures. 
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Binding site definition 

A binding site was defined by all protein residues in the target structure having at least one (non-

hydrogen) atom within a certain distance (di,j) to biologically relevant ligand atoms: 

𝑑𝑖,𝑗 = 𝑟𝑖 + 𝑟𝑗 + 𝑐 

where di,j is the distance between a residue atom i and a ligand atom j, ri and rj are the Van der 

Waals radii of the involved atoms, while c is a tolerance distance of 0.5 Å. In case the biological 

assembly of the experimental target structure represents a homo-oligomeric protein, or in case 

of NMR ensembles, residues were included in the binding site definition if they fulfilled the 

distance criterion in at least half of the reference chains. The binding site definitions used for the 

assessment are shown in Table 2. Analysis of ligand binding sites was implemented using 

OpenStructure (version 1.4). [25, 26] 

Binding site prediction evaluation 

According to the binding site definition in the experimental reference structure, predicted binding 

residues were classified as true positives (TP: correctly predicted binding site residue), true 

negatives (TN: correctly predicted nonbinding residue), false negatives (FN: incorrectly not 

predicted binding site residue), false positives (FP: incorrectly predicted non-binding residue). As 

in the previous CASP assessment [22]the evaluation of the quality of the binding site predictions 

was performed using the Matthews correlation coefficient (MCC): 

)()()()( FNTNFPTNFNTPFPTP

FNFPTNTP
MCC






 

MCC is a useful measure when the two classes (in our case binding and non-binding residues) 

are of very different sizes. MCC ranges from +1 (perfect prediction) to −1 (inverse prediction), 

where a MCC of 0 corresponds to random prediction. Raw scores and confusion matrices for all 

groups and all targets are provided in Supporting Information Table SI, SIV, and Figure S1. 

Finally, the MCCs were standardized by calculating their Z scores to allow the combination of 

scores for targets of different difficulty: 

𝑍𝑃,𝑇 =
𝑀𝐶𝐶𝑃,𝑇 − 𝑀𝐶𝐶𝑇

        

𝜎𝑇
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where MCCP,T is the MCC of the predictor P for target T, 𝑀𝐶𝐶𝑇
         is the mean MCC for the target T 

by all predictors P and σT is the standard deviation of the MCCs for the target T by all predictors 

P. The final ranking of the methods was based on the average value of the MCC across all 

targets. Cumulative confusion matrices are provided in Supporting Information. For 

completeness, we also assessed the accuracy of the predictions using the distance based 

method BDT[27] (see Supporting Information Table SIII). 

Statistical significance and robustness of the ranking 

To measure the statistical significance of the assessment results, we applied two-tailed 

Student's paired t test and Wilcoxon signed-rank test on the MCCs values for each target's 

predictions. Both tests were performed using the R statistical package (version 2.11.1) [28]. The 

robustness of the ranking based on MCC values was assessed by 100 rounds of random 

sampling using 70% of the targets. 

Results and discussion 

Prediction targets 

Although the CASP10 experiment had in total about 100 prediction targets, only very few of 

them had ligands which were classified as biologically relevant[23, 29]. In total, we identified 13 

targets with biologically relevant ligands, as listed in Tables 1 and 2. In eight targets, metal ions 

(Zn2+, Mg2+, Mn2+, Na+) are present, one contained an iron–sulfur cluster (SF4), one bound an 

adenine-mono-phosphate (AMP), one had a reduced Flavin mononucleotide (FNR), two had 

Flavin-adenine-dinucleotide (FAD) ligands, and one had LPP (N′-pyridoxyl-lysin-5′-

monophosphate) covalently bound at the dimer interface. It is worth emphasizing that the 

presence or absence of a ligand in a target structure depends on the experimental conditions, 

that is, the same binding site can be occupied by a ligand under one condition, and be empty or 

occupied by a different ligand under different conditions. Therefore, target structures without 

bound ligands can therefore not be considered as reference in the assessment. This issue is 

especially pronounced in prediction targets solved by high-throughput methods, where the 

experimental conditions often do not contain the biologically relevant ligands or cofactors. As a 

consequence, the number of targets that bind a relevant compound and that can be used for 

further prediction assessment in CASP10 is quite small. The following paragraph provides a 

short overview of the assessed targets. 
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Table 1 Targets with biologically relevant ligands used in the FN prediction assessment. 

Target PDB ID Ligand ID Type Interface 

T0652 4HG0 AMP Non-metal No 
T0657 2LUL ZN Metal No 
T0659 4ESN ZN (2) Metal No 
T0675 2LV2 ZN (2) Metal No 
T0686 4HQO MG Metal No 
T0696 n.a. NA Metal No 
T0697 n.a. LLP (2) Non-metal A-A 
T0706 n.a. MG (2) Metal A-A 
T0720 4IC1 MN(10)/SF4(10) Metal No 
T0721 4FK1 FAD (2) Non-metal No 
T0726 4FGM ZN Metal No 
T0737 3TD7 FAD Non-metal No 
T0744 2YMV FNR Non-metal No 

 

Table 2 Definition of ligand binding residues. 

Target Binding site (residue numbers) 

T0652 74, 79, 80, 99, 100, 101, 102, 103, 104, 165, 180, 182, 183 
T0657 121, 132, 133, 143 
T0659 43, 48, 63 
T0675 21, 24, 37, 42, 49, 52, 65, 70 
T0686 28, 30, 103 
T0696 18, 69, 104 
T0697 91, 150, 151, 152, 190, 243, 245, 247, 272, 274, 301, 303, 304, 351 
T0706 25, 27, 99, 101, 129, 130 
T0720 32, 34, 35, 62, 99, 113, 114, 115, 182, 188, 191, 194, 197, 200 
T0721 10, 12, 13, 14, 33, 34, 35, 36, 37, 38, 39, 42, 45, 46, 60, 78, 79, 80, 109, 110, 111, 

114, 126, 136, 235, 237, 268, 269, 277, 278, 281 
T0726 273, 277, 307 
T0737 37, 40, 41, 42, 44, 45, 49, 78, 83, 114, 117, 118, 120, 121, 123, 124, 128, 130, 135, 

138, 174, 237 
T0744 22, 23, 24, 26, 58, 61, 120, 121, 122, 124, 196, 214, 216, 270, 271, 272, 273, 314, 

316 

A residue in the target structure was defined as binding if it had at least one heavy atom of a biologically 
relevant ligand within 0.5 Å distance of the sum of the Van der Waals radii of the involved atoms. 

Target T0652 (PDB: 4HG0) 

The magnesium and cobalt efflux protein CorC contains two CBS (cystathionine-beta-synthase) 

domains, which bind an Adenosine monophosphate (AMP) [Fig. 1(A)], next to a transporter 

associated domain (CorC_HlyC) at the C terminus of the protein. CBS is a small intracellular 

module, mostly found in two or four copies next to a wide range of protein domains in bacteria, 

archaea, and eukaryotes [30] [31]. Pairs of CBS domains can bind adenosyl groups such as 

AMP, ATP or SAM, thus they could regulate the activity of the attached domains [32] and they 

may act as sensors of intracellular metabolites [33]. The CorC_HlyC transporter associated 

domain is found in a family of proteins of unknown function with CBS domain and also in CorC 
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involved in magnesium and cobalt efflux; it is hypothesized that it could modulate the transport of 

ion substrates. 

Target T0657 (PDB: 2LUL) 

The tyrosine-protein kinase Tec is composed by a PH (Pleckstrin homology) domain and a BTK 

(Btk-type zinc finger) domain that binds a Zn2+ cation [Fig. 7(A)]. The first occurs in many 

proteins involved in intracellular signaling or as part of the cytoskeleton [34], such as the 

beta/gamma subunits of heterotrimeric G proteins [35]. This domain has specificities for different 

membrane phosphoinositides phosphorylated at different sites within the inositol ring, so the 

function of PH-containing proteins is modulated by enzymes that dephosphorylate such rings. 

PH recruits proteins to different cellular compartments or it allows them to be involved in signal 

transduction pathways. The structure of this domain consists of two perpendicular antiparallel 

beta sheets followed by an amphiphatic helix; the loop between the beta strands has a very 

variable length. The BTK domain contains a conserved zinc-binding motif of one histidine and 

three cysteine residues, it is very close to the PH domain and it consists in a long loop held 

together by a zinc ion. 

Target T0659 (PDB: 4ESN) 

There are no sequence annotations on this target, a homo-dimer that binds a Zn2+ ion in both 

chains at the same position [Fig. 7(B)]. A DELTA-BLAST [36] search revealed a conserved 

domain of unknown function homologous to Listeria innocua Lin0431, a protein similar to the N-

utilization substance G (NusG) N terminal (NGN) insert (domain II, DII). Lin0431 has a similar 

structure and charged surface distribution to Aquifex aeolicus NusG DII, indicating a possible 

role in transcription or translation regulating functions. 

Target T0675 (PDB: 2LV2) 

The insulinoma-associated protein 1 contains two Zinc finger domains [Fig. 1(B)], which are 

stable structural motifs that bind DNA, RNA, protein, or lipid substrates [37] [38] [39] [40] [41]. 

Some types of this domain use zinc, others use iron or form salt-bridges to create the correct 

fold, which often does not change conformation upon binding the target. Zinc fingers are usually 

found in groups and they have different binding specificities depending on their amino acid 

sequence and on the overall structure of the protein containing them. The domains in this target 

are of the C2H2 type, where two conserved cysteines and histidines coordinate a zinc ion inside 
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of two short beta strands followed by an alpha helix; this ―finger‖ binds the major groove of the 

DNA. 

Target T0686 (PDB: 4HQO) 

The sporozoite surface protein 2 is the ectodomain of a thrombospondin repeat anonymous 

protein (TRAP), a mediator in the infection of mosquito and vertebrate cells and in the gliding 

motility of sporozoites, which is an important target of pre-erythrocytic malaria vaccines. TRAP 

passes through the plasma membrane and is attached to the actin cytoskeleton by aldolase [42]. 

This structure has a Von Willebrand factor type A (VWA) domain, binding a Mg2+ ion [Fig. 1(C)] 

which is additionally coordinated by three water molecules, and a thrombospondins (TSP) 

domain. The first is found in various plasma proteins, for example, complement factors or 

integrins, and is often involved in protein complexes which participate in various biological 

process (e.g., signal transduction, cell adhesion, pattern formation, and migration) [43]; it 

contains a metal ion site at the surface that could represent a general metal ion-dependent 

adhesion site (MIDAS) for binding protein ligands [44]. This site binds magnesium in the I-

domain of integrins CD11b [44] and manganese in CD11a [45] by slightly different coordination 

of the same conserved residues [45]. TSP is a multimeric multidomain glycoprotein functioning 

in the extracellular matrix and it regulates cell interactions. 

Target T0696 (PDB: n.a.) 

A DELTA-BLAST search relates this target with a conserved domain superfamily called 

―Glyoxalase/fosfomycin resistance/dioxygenase domain,‖ which is found in a variety of 

structurally related, but functionally diverse metallo-proteins, including glyoxalase I, type I 

extradiol dioxygenases and some antibiotic resistance proteins. They use different metal cations 

for their catalytic activity (e.g., Fe2+, Mn2+, Zn2+, Ni2+, or Mg2+). In this target the binding site is 

occupied by a Na+ [Fig. 1(D)], which substitutes one of mentioned metal ions. 

Target T0697 (PDB: n.a.) 

It belongs to the pyridoxal phosphate (PLP)-dependent decarboxylase family (EC number 4.1.1) 

group 2, which includes glutamate, histidine, tyrosine, and aromatic-l-amino-acid 

decarboxylases. This family is involved in the biosynthesis of amino acids, their derived 

metabolites, amino sugars and in the synthesis or catabolism of neurotransmitters. The PLP 

cofactor [Fig. 1(E)] forms a Schiff base with a conserved lysine in the active site, which is 
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temporarily displaced by the substrate; the resulting aldimine is the common central intermediate 

for PLP-catalyzed reactions[46]. 

Target T0706 (PDB: n.a.) 

A DELTA-BLAST search indicates that the target belongs to the Von Willebrand factor type A 

domain family, which contains a metal ion-dependent adhesion site (MIDAS) for binding protein 

ligands (for details, see also target T0686). In this target, a Mg2+ ion is bound to the adhesion 

site [Fig. 1(F)]. 

Target T0720 (PDB: 4IC1) 

The CRISPR-associated exonuclease Cas4 (EC = 3.1.-.-) protein is involved in the mobile 

genetic elements immunity of the CRISPR (clustered regularly interspaced short palindromic 

repeat) system in most bacteria and archea [47]. Short DNA sequences from viruses, the 

―spacers,‖ are flanked by CRISPR repeats in the host genome and transcribed into CRISPR 

RNAs (crRNAs), which are used by Cas (CRISPR-associated) proteins to recognize and 

degrade viral cognate sequences. This target in particular belongs to the Cas4 family of proteins, 

which resembles the RecB family [48] and contains a cysteine-rich motif similar to the AddB 

family [49]. It is a 5' ssDNA metal-dependent (magnesium or manganese) exonuclease that 

needs an iron–sulfur cluster for structural stability [Fig. 1(G,H)] [50]. 

Target T0721 (PDB: 4FK1) 

The putative Thioredoxin reductase TrxB contains a FAD-dependent pyridine nucleotide-

disulfide oxidoreductase domain with a FAD bound [Fig. 1(I)]. 

Target T0726 (PDB: 4FGM) 

It contains an M61 glycyl aminopeptidase and a PDZ domain. Metalloproteases containing the 

first domain bind a divalent cation, through His, Glu, Asp, or Lys amino acids, that activates the 

water molecule; usually a zinc ion is bound by three residues which often can be described by 

an HEXXH motif (X can be any amino acid) [51]. The target binds a Zn2+ ion with the motif's 

histidines and a different glutamate [Fig. 1(J)]. The second domain is found in eukaryotes [52] 

and it binds the target protein by extending its beta-sheet with a strand from the partner C-

terminus, so acting as a bridge between transmembrane proteins and the cytoskeleton in 

signaling pathways [53]. 
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Target T0737 (PDB: 3TD7) 

It is the probable FAD-linked sulfhydryl oxidase R596 from the Acanthamoeba polyphaga 

mimivirus. Its sequence contains a ERV/ALR sulfydryl oxidase domain which catalyzes disulfide 

bond formations. This module has a CXXC motif next to a FAD cofactor [in Fig. 1(K)] which is 

used to transfer electrons from the thiol substrates to the (non-thiol) acceptor. A structure with 

bound FAD (PDB code: 3GWN) was available at the time of prediction for this target. 

Target T0744 (PDB: 2YMV) 

It is a homologue of Mycobacterium tuberculosis Acg (Rv2032) in the reduced form from 

Mycobacterium smegmatis. The proteins in the Acg family are monomers that resemble the 

nitroreductase homodimer fold, with a single flavin mononucleotide binding site [Fig. 1(L)] closed 

by a lid, instead of two open binding sites as in homodimeric nitroreductases. The structure and 

the lack of reduction by NADPH suggest that this proteins has lost the nitroreductase function 

and instead they may act as inhibitor of another nitroreductase by storing the flavin cofactor 

during the dormancy state of the bacteria [54]. 

 

Figure 1 Binding sites and ligands of the assessed targets. Biologically relevant ligands are colored in 
green and the residues included in the binding site are colored in blue. Targets and ligands included here: 
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(A) T0652: AMP, (B) T0675: ZN, (C) T0686: MG, (D) T0696: NA, (E) T0697: LLP, (F) T0706: MG, (G,H) 
T0720: SF4 and MN, (I) T0721: FAD, (J) T0726: ZN, (K) T0737: FAD, (L) T0744: FNR. Targets T0657 
and T0659 are in Figure 7. 

Overall performance 

As in previous years, the evaluation of the binding site prediction accuracy was based on the 

Matthew Correlation Coefficient. A total of 1817 submissions by 19 groups for the FN category 

were received by the Prediction Center. In CASP10 only 13 target proteins contained relevant 

ligands, that is, only a small subset of all submissions could be used for the assessment (Fig. 2). 

Of the 17 groups4 in the assessment, most of them submitted predictions for all 13 targets. 

Missing predictions were assigned a MCC score of zero, corresponding to a random prediction. 

Figure 3 shows a box plot representing the MCC distributions for each target, which gives a first 

estimate of the prediction difficulty. On most targets the predictors achieved on average a good 

performance around an MCC of 0.6, except in three cases, where in two (T0657 and T0659) the 

median scores were around zero and in one (T0720) was around 0.2.  

 

Figure 2. Number of predictions per group. Because only a small number of all CASP10 targets contained 
relevant ligands, only a few predictions could be used for the assessment (dark blue and dark green), 
while the majority of the predictions could not be evaluated (blue and green). 

                                                
4
 Predictions by two groups were excluded from the assessment by the CASP organizers. 
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Figure 3 Target difficulty. Distribution of the predictor's MCC for each target shown as Box plot (1st 
quartile, median and 3rd quartile), indicating the difficulty in the prediction of the various binding sites. 

For comparison of the method's overall performance, groups were ranked according to the 

average value of their MCCs normalized on all prediction targets (Fig. 4; Supporting Information 

Table SI). Within the first ten groups, there were more ―servers‖ at CASP10 than in CASP9, six 

instead of two, with an average MCC of 0.62. Their performance was indistinguishable from the 

―human‖ predictors, which is an improvement with respect to the results obtained in CASP9. The 

main differences between ―human‖ and ―server‖ methods is that the former could access human-

only readable data (e.g., literature or databases) to identify relevant ligands, and have access to 

the pool of 3D structure predictions by servers due to the late submission deadline. While there 

was only a difference of 0.15 between the top ten groups based on average MCC, group FN119 

(Firestar [10]) and FN326 (SP-ALIGN [11]) achieved the best scores of 0.715 and 0.707, 

respectively. These two methods had an overall different behaviour: Firestar was one of the two 

predictors, together with HHPredA, with the highest number of top scores; it had the best MCC 

in three targets (T0696, T0726, T0744) while SP-ALIGN only for T0659, which was the most 

difficult target. 
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Figure 4 Groups ranking by MCC. The predictors are ranked in decreasing order by the average value of 
the MCC, calculated on all the evaluated targets. Human predictors are shown in blue and server 
predictors in yellow. 

We also evaluated the predictors‘ performances based on the distance-based BDT measure 

(Supporting Information Table SIII), which gave a ranking very similar to the MCC averages that 

was within deviations expected from the robustness test described below. To better understand 

to which extend these methods were useful in practice, we compared their performance with a 

baseline predictor that inferred the target's binding sites using the first ten templates with ligands 

found by DELTA-BLAST and collecting all the residues in contact with them. The resulting 

average MCC was 0.339, which is only half of the performance obtained by the top predictors, 

and only two methods in the experiment performed worse than this baseline. This result 

indicates that most of the methods assessed in CASP10 give advantages in the ligand binding 

site prediction compared to a naïve homology search approach and could positively support the 

characterization of a protein's function. 

Assessment robustness 

Because the number of prediction targets was extremely small, we assessed the robustness of 

the ranking by calculating MCC distributions with 100 cycles of random sampling using 70% of 

the targets (Fig. 5). Although, the median values confirm the order of the top groups ranked by 

MCC, the rank spread is rather large and fluctuations by 10 positions are not unusual, that is, the 

ranking is strongly influenced by the composition of the data set and does therefore not 

necessarily correctly reflect the differences in prediction accuracy of the individual methods. 

When calculating the statistical significance of the overall ranking by applying Student's t test 

(data not shown) and Wilcoxon signed-rank test (Supporting Information Table SII), the results 
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indicated that the ranking was not robust and the differences between the top ten groups were 

not statistically significant. Both results are not surprising, considering the fact that the 

assessment had to be based on a very small number of target structures. 

 

Figure 5 Groups ranking robustness. Methods were ranked using the median value of the MCC 
distributions after 100 cycles of random sampling using 70% of the targets. Bars indicate best, median and 
worst ranking for each group. 

Top predictors’ methods are based on homology transfer 

Let's take a closer look at the groups ranked highest by MCC: Firestar (FN119), SP-ALIGN 

(FN326), CNIO (FN475), and Cofactor_human (FN208); the first two were registered to CASP10 

as ―server,‖ while the last two as ―human‖ predictor groups. Firestar [10] bases its predictions on 

homology transfer of functionally important residues, found by local evolutionary sequence 

conservation; SP-ALIGN, an update to FINDSITE [11], is a threading based method to detect 

ligand binding sites by the employment of remote template identification and superimposition, 

structure-pocket alignment and binding site clustering guided by the template ligands; CNIO 

combines predictions from Firestar and 3DLigandSite [12], which clusters superimposed ligands 

from homologous structures to identify the binding residues; Cofactor_human requires human 

assistance to validate the binding residues found by the Cofactor algorithm [55], which employs 
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a local superimposition of conserved residues taken from the target's templates. The common 

theme among these methods is that they are all based on the analysis of the ligands bound to 

homologous structures. Firestar and CNIO use FireDB [56], Cofactor employs structures from 

BioLip [57], while SP-ALIGN uses an ad hoc template library. As a consequence, the 

performance of these methods is tied to the availability of annotated protein structures and the 

ability of finding homologue templates. Nevertheless, it has to be noted that the protocol to 

transfer the information on binding residues is different among those methods. 

In recent years, homology based methods for structure prediction have started to reach a 

substantial coverage for proteins of interest: today some form of structural information—either 

experimental or computational—is available for the majority of amino acids encoded by common 

model organism genomes[58]. For almost all known protein-protein interactions for which the 

individual components are structurally characterized, structures of complexes can be identified in 

the PDB which can be used for template-based prediction approaches[59-61]. The overall good 

performances of methods such as Firestar and SP-ALIGN in CASP10, and their ability to identify 

ligand binding sites in different families of proteins in the absence of close homologue targets 

indicates that the field of ligand binding site prediction shows a similar trend. 

It should be noted that in previous editions of CASP, almost all FN targets were classified as 

―template based modeling‖ (TBM) and only very few as ―free modeling‖ (FM). In this round of 

CASP10, none of the relevant ligand binding sites were located in FM targets. Although target 

T0737 is classified as ―free modeling,‖ the part of the protein to which the ligand FAD is bound 

has experimental structure information (Fig. 6). This directly implies that the CASP assessment 

is mainly suitable to evaluate methods based on homology transfer to predict binding residues, 

but unable to measure the performance on harder targets, for which template structure 

information is not a useful source of information. 
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Figure 6 FAD binding site in target T0737. Residues 176–292 (D1, blue) have been classified as ―free 
modeling.‖ However, the N-terminal domain (grey) where the ligand FAD is bound, is covered by 
experimental structures. (Image generated with OpenStructure). 

Prediction examples 

Two targets, T0657 and T0659, appeared to be most challenging as predictors obtained on 

average the lowest scores. The first (PDB: 2LUL) was a solution NMR structure of the PH 

domain from the ―Tyrosine-protein kinase Tec,‖ bound to a Zn2+ ion in a Btk-type zinc finger [Fig. 

7(A)]. On a first view, this appears to be a simple template-based modeling target, since at least 

one template with the correct ion bound (e.g., PDB:1B55) is easily detectable with BLAST. 

However, the median MCC achieved for this target was −0.05, where the best predictor 

(―Binding_Kihara‖, FN231) achieved an MMC of 1 (Supporting Information Table SI). Other 

predictors achieved a lower MCC of about 0.3, mainly because they predicted more binding 

residues than were present in the reference structure, some of which have been assigned to 

other ligands than Zinc as indicated in the comments field. This example illustrates one of the 

limitations of the current binary prediction format. 

The second target, T0659 (PDB: 4ESN), was a crystal structure of a hypothetical protein that 

bound a Zn2+ ion by three conserved Cysteines [Fig. 7(B)]. The median MCC was zero, while the 

best score, an MCC of 0.69 (Supporting Information Table SI), was obtained for a prediction by 

SP-ALIGN (FN326), which is shown in Figure 7(B). Easily detectable homologous structures of 

this protein did not contain any ligand, which explains the overall weak performance on this 
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target. Interestingly, SP-ALIGN predicted an iron ion bound at this position; potentially, this could 

be due to the employment of its threading based method that detected a remote homologue 

bound to that ion. 

 

Figure 7 Binding site prediction examples. Residues are colored as ―correctly predicted‖ (true positive, 
green) and ―wrongly predicted‖ (false positive, violet). (A) The Zn

2+
 binding site in a Btk-type zinc finger in 

the PH domain from the Tyrosine-protein kinase Tec (T0657) is formed by His 121, Cys 132, Cys 133, and 
Cys 143. Coloring according to prediction by group ―Binding_Kihara‖ (FN231). (B) Structure of a 
hypothetical protein T0659 with a Zn

2+
 ion bound by three conserved Cysteine residues (Cys 43,48,63). 

Coloring according to predictions by group ―SP-ALIGN‖ (FN326). 

Conclusions 

Predicting a protein's binding site is an important step toward understanding its function, and has 

implications for gene product characterization, drug design and enzyme engineering. The 13 

targets evaluated in the assessment include proteins with interesting functions. For example 

T0686, which contains a metal ion-dependent adhesion site (MIDAS) which mediates the 

invasion of vertebrate cells by malaria Sporozoites; or T0720—a CRISPR-associated (Cas) 

protein involved in the genetic mobile elements defense and it contains a catalytic magnesium 

ion plus a structural iron–sulfur cluster. As in previous years, homology transfer approaches, in 

which the target binding residues are inferred from homologous proteins, have scored best with 

an average MCC of 0.71. 

As in previous rounds of the CASP experiment, only a very limited number of targets with 

biologically relevant ligands (13 out of 97 targets) were available. Consequently, the assessment 
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did not lead to a stable ranking of the participating methods, and it was not possible to 

differentiate methods by their performance on different types of targets or ligands. Another 

limitation originates from the current binary prediction format (―binding‖ or ―not binding‖), which 

does not include any information on the type of compounds or a level of confidence for the 

prediction. For a more detailed discussion, see assessment of ligand binding predictions in 

CASP9 [22]. 

During the CASP10 predictors meeting in Gaeta, it was recognized that the current procedure is 

not appropriate to assess the state of the art in ligand binding site predictions, and therefore 

does not stimulate the development of new approaches. To overcome these limitations, the 

following improvements should be implemented: (a) Binary predictions should be replaced by 

predicting continuous probability values. (b) The prediction format should include the 

specification of ligand type/ligand identity. (c) The number of prediction targets, specifically those 

without trivial templates, needs to be increased substantially. 

Based on these considerations, prediction methods in the FN category in future editions of 

CASP will no longer be evaluated based on the regular set of CASP target proteins. Instead, 

ligand binding site prediction servers will be evaluated continuously using an automated system 

called continuous automated model evaluation (CAMEO, http://www.cameo3d.org/), which is 

based on weekly pre-released sequences from the PDB. Continuous evaluation allows 

developers to constantly monitor the performance of new developments. Thanks to the larger 

number of targets, continuous evaluation also provides statistically robust assessment of ligand 

binding site predictions and allows for a more detailed assessment of methods, for example, by 

ligand type or target difficulty. We hope that these new developments will stimulate new methods 

and approaches in this important area of structural bioinformatics. 
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Supporting information 

Table S1 Raw scores. Raw scores for each group that provided a prediction for a FN target. TP: True 
Positive, FP: False Positive, FN: False Negative, TN: True Negative, MCC: Matthews Correlation 
Coefficient. 

Target Group TP FP FN TN MCC MCC Z-score 

T0652 CONPRED-UCL 11 7 2 212 0.7 0.010 

T0652 FIRESTAR 12 4 1 215 0.821 0.447 

T0652 3DLIGANDSITE2 12 4 1 215 0.821 0.447 

T0652 COFACTOR_HUMAN 11 4 2 215 0.774 0.277 

T0652 ATOME2_CBS 13 5 0 214 0.84 0.516 

T0652 COFACTOR 11 4 2 215 0.774 0.277 

T0652 BINDING_KIHARA 8 6 5 213 0.568 -0.468 

T0652 SEOK-SERVER 11 0 2 219 0.916 0.791 

T0652 INTFOLD2 12 3 1 216 0.85 0.552 

T0652 MCGUFFIN 12 3 1 216 0.85 0.552 

T0652 SP-ALIGN 11 3 2 216 0.804 0.386 

T0652 HHPREDA 12 4 1 215 0.821 0.447 

T0652 CHUO-BINDING-SITES 9 4 4 215 0.674 -0.084 

T0652 SEOK 11 0 2 219 0.916 0.791 

T0652 CNIO 12 8 1 211 0.726 0.104 

T0657 CONPRED-UCL 0 17 4 133 -0.058 -0.744 

T0657 FNGUSHAK 0 13 4 137 -0.05 -0.721 

T0657 FIRESTAR 4 16 0 134 0.423 0.636 

T0657 3DLIGANDSITE2 0 9 4 141 -0.041 -0.696 

T0657 COFACTOR_HUMAN 4 15 0 135 0.435 0.670 

T0657 ATOME2_CBS 0 14 4 136 -0.052 -0.727 

T0657 COFACTOR 4 15 0 135 0.435 0.670 

T0657 BINDING_KIHARA 4 0 0 150 1 2.292 

T0657 3DLIGANDSITE 0 9 4 141 -0.041 -0.696 

T0657 SEOK-SERVER 0 7 4 143 -0.036 -0.681 

T0657 INTFOLD2 0 9 4 141 -0.041 -0.696 

T0657 MCGUFFIN 0 9 4 141 -0.041 -0.696 

T0657 SP-ALIGN 4 1 0 149 0.891 1.979 

T0657 HHPREDA 0 15 4 135 -0.054 -0.733 

T0657 CHUO-BINDING-SITES 4 44 0 106 0.243 0.119 

T0657 SEOK 0 8 4 142 -0.038 -0.687 

T0657 CNIO 4 14 0 136 0.449 0.710 

T0659 CONPRED-UCL 0 0 3 71 0 -0.383 

T0659 FNGUSHAK 1 6 2 65 0.168 0.364 

T0659 FIRESTAR 0 0 3 71 0 -0.383 

T0659 COFACTOR 0 4 3 67 -0.049 -0.601 
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T0659 BINDING_KIHARA 0 0 3 71 0 -0.383 

T0659 INTFOLD2 0 0 3 71 0 -0.383 

T0659 MCGUFFIN 0 0 3 71 0 -0.383 

T0659 SP-ALIGN 3 3 0 68 0.692 2.693 

T0659 HHPREDA 2 1 1 70 0.653 2.520 

T0659 CHUO-BINDING-SITES 0 0 3 71 0 -0.383 

T0675 CONPRED-UCL 6 4 2 63 0.627 0.169 

T0675 FNGUSHAK 3 1 5 66 0.495 -0.179 

T0675 FIRESTAR 7 0 1 67 0.929 0.964 

T0675 COFACTOR_HUMAN 8 0 0 67 1 1.151 

T0675 ATOME2_CBS 0 0 8 67 0 -1.482 

T0675 COFACTOR 5 6 3 61 0.467 -0.252 

T0675 BINDING_KIHARA 8 1 0 66 0.936 0.982 

T0675 SEOK-SERVER 6 1 2 66 0.78 0.572 

T0675 INTFOLD2 4 0 4 67 0.687 0.327 

T0675 MCGUFFIN 4 0 4 67 0.687 0.327 

T0675 SP-ALIGN 4 0 4 67 0.687 0.327 

T0675 CHUO-BINDING-SITES 7 29 1 38 0.273 -0.763 

T0675 SEOK 8 0 0 67 1 1.151 

T0675 CNIO 8 0 0 67 1 1.151 

T0686 CONPRED-UCL 3 1 0 250 0.864 1.032 

T0686 FNGUSHAK 3 6 0 245 0.57 -0.111 

T0686 FIRESTAR 3 2 0 249 0.772 0.674 

T0686 3DLIGANDSITE2 2 1 1 250 0.663 0.250 

T0686 COFACTOR_HUMAN 3 2 0 249 0.772 0.674 

T0686 ATOME2_CBS 0 0 3 251 0 -2.328 

T0686 COFACTOR 3 14 0 237 0.408 -0.741 

T0686 BINDING_KIHARA 1 5 2 246 0.223 -1.461 

T0686 3DLIGANDSITE 3 1 0 250 0.864 1.032 

T0686 SEOK-SERVER 2 2 1 249 0.572 -0.104 

T0686 INTFOLD2 3 2 0 249 0.772 0.674 

T0686 MCGUFFIN 3 1 0 250 0.864 1.032 

T0686 SP-ALIGN 2 1 1 250 0.663 0.250 

T0686 HHPREDA 3 4 0 247 0.649 0.196 

T0686 CHUO-BINDING-SITES 3 67 0 184 0.177 -1.640 

T0686 SEOK 3 2 0 249 0.772 0.674 

T0686 CNIO 2 2 1 249 0.572 -0.104 

T0696 CONPRED-UCL 3 6 0 91 0.559 0.099 

T0696 FNGUSHAK 3 3 0 94 0.696 0.549 

T0696 FIRESTAR 3 0 0 97 1 1.547 

T0696 COFACTOR_HUMAN 2 1 1 96 0.656 0.418 

T0696 ATOME2_CBS 0 0 3 97 0 -1.736 

T0696 COFACTOR 2 1 1 96 0.656 0.418 
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T0696 BINDING_KIHARA 3 0 0 97 1 1.547 

T0696 3DLIGANDSITE 1 2 2 95 0.313 -0.708 

T0696 SEOK-SERVER 2 1 1 96 0.656 0.418 

T0696 INTFOLD2 1 2 2 95 0.313 -0.708 

T0696 MCGUFFIN 1 2 2 95 0.313 -0.708 

T0696 SP-ALIGN 2 0 1 97 0.812 0.930 

T0696 HHPREDA 3 11 0 86 0.436 -0.304 

T0696 CHUO-BINDING-SITES 3 22 0 75 0.305 -0.734 

T0696 SEOK 2 5 1 92 0.411 -0.386 

T0696 CNIO 3 1 0 96 0.862 1.094 

T0697 CONPRED-UCL 1 2 13 446 0.143 -2.477 

T0697 FNGUSHAK 13 4 1 444 0.837 0.374 

T0697 FIRESTAR 12 3 2 445 0.823 0.316 

T0697 3DLIGANDSITE2 12 3 2 445 0.823 0.316 

T0697 COFACTOR_HUMAN 13 1 1 447 0.926 0.739 

T0697 ATOME2_CBS 12 1 2 447 0.886 0.575 

T0697 COFACTOR 13 1 1 447 0.926 0.739 

T0697 BINDING_KIHARA 2 6 12 442 0.17 -2.366 

T0697 3DLIGANDSITE 12 3 2 445 0.823 0.316 

T0697 SEOK-SERVER 11 0 3 448 0.883 0.562 

T0697 INTFOLD2 12 2 2 446 0.853 0.439 

T0697 MCGUFFIN 12 2 2 446 0.853 0.439 

T0697 SP-ALIGN 12 4 2 444 0.795 0.201 

T0697 HHPREDA 11 1 3 447 0.844 0.402 

T0697 CHUO-BINDING-SITES 14 44 0 404 0.467 -1.146 

T0697 SEOK 10 0 4 448 0.841 0.390 

T0697 CNIO 13 6 1 442 0.79 0.180 

T0706 CONPRED-UCL 4 1 2 197 0.723 0.592 

T0706 FNGUSHAK 3 1 3 197 0.603 0.222 

T0706 FIRESTAR 4 1 2 197 0.723 0.592 

T0706 COFACTOR_HUMAN 5 3 1 195 0.712 0.558 

T0706 ATOME2_CBS 0 0 6 198 0 -1.637 

T0706 COFACTOR 4 0 2 198 0.812 0.866 

T0706 BINDING_KIHARA 0 3 6 195 -0.021 -1.702 

T0706 SEOK-SERVER 4 1 2 197 0.723 0.592 

T0706 INTFOLD2 4 2 2 196 0.657 0.389 

T0706 MCGUFFIN 4 2 2 196 0.657 0.389 

T0706 SP-ALIGN 4 0 2 198 0.812 0.866 

T0706 HHPREDA 5 1 1 197 0.828 0.916 

T0706 CHUO-BINDING-SITES 5 23 1 175 0.352 -0.552 

T0706 SEOK 4 1 2 197 0.723 0.592 

T0706 CNIO 4 1 2 197 0.723 0.592 

T0720 CONPRED-UCL 0 0 16 186 0 -1.371 
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T0720 FNGUSHAK 4 7 12 179 0.253 -0.184 

T0720 FIRESTAR 4 0 12 186 0.485 0.904 

T0720 3DLIGANDSITE2 2 2 14 184 0.221 -0.334 

T0720 COFACTOR_HUMAN 2 2 14 184 0.221 -0.334 

T0720 ATOME2_CBS 0 0 16 186 0 -1.371 

T0720 COFACTOR 2 2 14 184 0.221 -0.334 

T0720 BINDING_KIHARA 2 1 14 185 0.267 -0.118 

T0720 SEOK-SERVER 2 2 14 184 0.221 -0.334 

T0720 INTFOLD2 3 5 13 181 0.222 -0.330 

T0720 MCGUFFIN 3 3 13 183 0.273 -0.090 

T0720 SP-ALIGN 5 0 11 186 0.543 1.177 

T0720 HHPREDA 9 1 7 185 0.694 1.885 

T0720 CHUO-BINDING-SITES 5 13 11 173 0.23 -0.292 

T0720 SEOK 4 1 12 185 0.425 0.623 

T0720 CNIO 8 0 8 186 0.692 1.876 

T0721 CONPRED-UCL 20 11 11 257 0.604 -0.894 

T0721 FNGUSHAK 26 7 5 261 0.791 0.679 

T0721 FIRESTAR 23 7 8 261 0.726 0.132 

T0721 3DLIGANDSITE2 26 16 5 252 0.683 -0.230 

T0721 COFACTOR_HUMAN 23 5 8 263 0.757 0.393 

T0721 ATOME2_CBS 22 8 9 260 0.69 -0.171 

T0721 COFACTOR 23 5 8 263 0.757 0.393 

T0721 BINDING_KIHARA 6 2 25 266 0.352 -3.015 

T0721 3DLIGANDSITE 29 16 2 252 0.747 0.309 

T0721 SEOK-SERVER 21 7 10 261 0.681 -0.246 

T0721 INTFOLD2 25 4 6 264 0.815 0.881 

T0721 MCGUFFIN 21 3 10 265 0.747 0.309 

T0721 SP-ALIGN 28 11 3 257 0.78 0.587 

T0721 HHPREDA 29 5 2 263 0.88 1.428 

T0721 CHUO-BINDING-SITES 31 46 0 222 0.577 -1.122 

T0721 SEOK 22 8 9 260 0.69 -0.171 

T0721 CNIO 27 8 4 260 0.798 0.738 

T0726 CONPRED-UCL 3 5 0 579 0.61 0.089 

T0726 FNGUSHAK 3 10 0 574 0.476 -0.389 

T0726 FIRESTAR 3 0 0 584 1 1.479 

T0726 3DLIGANDSITE2 3 5 0 579 0.61 0.089 

T0726 COFACTOR_HUMAN 3 7 0 577 0.544 -0.146 

T0726 ATOME2_CBS 3 21 0 563 0.347 -0.848 

T0726 COFACTOR 3 7 0 577 0.544 -0.146 

T0726 BINDING_KIHARA 0 3 3 581 -0.005 -2.103 

T0726 3DLIGANDSITE 3 3 0 581 0.705 0.428 

T0726 SEOK-SERVER 3 0 0 584 1 1.479 

T0726 INTFOLD2 3 2 0 582 0.773 0.670 
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T0726 MCGUFFIN 3 0 0 584 1 1.479 

T0726 SP-ALIGN 3 18 0 566 0.372 -0.759 

T0726 HHPREDA 3 8 0 576 0.519 -0.235 

T0726 CHUO-BINDING-SITES 3 97 0 487 0.158 -1.522 

T0726 SEOK 3 2 0 582 0.773 0.670 

T0726 CNIO 3 8 0 576 0.519 -0.235 

T0737 CONPRED-UCL 18 14 4 217 0.642 -0.803 

T0737 FNGUSHAK 18 9 4 222 0.711 -0.251 

T0737 FIRESTAR 16 3 6 228 0.764 0.173 

T0737 3DLIGANDSITE2 17 4 5 227 0.772 0.237 

T0737 COFACTOR_HUMAN 17 4 5 227 0.772 0.237 

T0737 ATOME2_CBS 20 10 2 221 0.755 0.101 

T0737 COFACTOR 17 4 5 227 0.772 0.237 

T0737 BINDING_KIHARA 5 0 17 231 0.46 -2.260 

T0737 3DLIGANDSITE 20 2 2 229 0.9 1.262 

T0737 SEOK-SERVER 16 1 6 230 0.814 0.573 

T0737 INTFOLD2 18 2 4 229 0.845 0.822 

T0737 MCGUFFIN 18 1 4 230 0.87 1.022 

T0737 SP-ALIGN 16 7 6 224 0.683 -0.475 

T0737 HHPREDA 16 4 6 227 0.741 -0.011 

T0737 CHUO-BINDING-SITES 19 40 3 191 0.46 -2.260 

T0737 SEOK 16 1 6 230 0.814 0.573 

T0737 CNIO 18 2 4 229 0.845 0.822 

T0744 CONPRED-UCL 13 15 6 293 0.531 -0.287 

T0744 FNGUSHAK 16 6 3 302 0.768 1.213 

T0744 FIRESTAR 15 2 4 306 0.825 1.573 

T0744 3DLIGANDSITE2 16 9 3 299 0.716 0.884 

T0744 COFACTOR_HUMAN 12 7 7 301 0.609 0.207 

T0744 ATOME2_CBS 9 10 10 298 0.441 -0.856 

T0744 COFACTOR 12 7 7 301 0.609 0.207 

T0744 BINDING_KIHARA 3 2 16 306 0.289 -1.818 

T0744 3DLIGANDSITE 10 3 9 305 0.619 0.270 

T0744 SEOK-SERVER 7 13 12 295 0.318 -1.635 

T0744 INTFOLD2 10 2 9 306 0.647 0.447 

T0744 MCGUFFIN 9 1 10 307 0.639 0.396 

T0744 SP-ALIGN 16 13 3 295 0.658 0.517 

T0744 HHPREDA 9 8 10 300 0.472 -0.660 

T0744 CHUO-BINDING-SITES 14 38 5 270 0.392 -1.166 

T0744 SEOK 9 7 10 301 0.489 -0.553 

T0744 CNIO 15 4 4 304 0.776 1.263 
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Figure S1: Cumulative confusion matrices for the top 6 groups as pie charts.  
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4. CAMEO Ligand binding 

Introduction 

The recent developments of high-throughput sequencing techniques and the setup of structural 

genomic initiatives have increased the number of available protein sequences and structures, 

however mostly without functional characterization. To investigate the role of these proteins, 

several computational methods have been developed (for some examples, see [1-3]); in 

particular, the annotation of protein binding sites and of their ligands provided a fundamental 

step in the discovery of protein functional details at the molecular level. This piece of information 

is, in fact, essential for important applications such as drug design and enzyme engineering. For 

this reason, computational methods for ligand binding prediction were assessed each two years 

starting from the 7th edition of CASP in 2007 [4]. These evaluations provided a valuable tool for 

comparing the performances of different methods, but two major limitations in the assessment 

emerged during the last CASP editions (see [5] in chapter 2 and [6] in chapter 3). Essentially, 

these drawbacks consisted in the low number of target structures bound to biologically relevant 

ligands and the classification of the target residues in either ―binding‖ or ―non-binding‖, without 

taking into account the affinities for different potential ligands.  

The Continuous Automated Model EvaluatiOn (CAMEO) Ligand Binding framework was 

developed to solve these issues and to provide a constant assessment of the state-of-the-art 

prediction methods. More in detail, participants are evaluated on the weekly PDB releases, in 

order to assess their server performances, in the long term, on a larger number of targets than in 

CASP. Additionally, the binary classification has been substituted by a continuous score that 

reflects the binding likelihood. Finally, the predictions are evaluated in a separate way for each 

chemical type of ligand. 

Methods 

Targets 

To each registered server, every week CAMEO sends a group of pre-released PDB sequences 

with a minimum length of 30 amino acids. All the received predictions are collected by CAMEO 
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until the PDB publishes the structures of the pre-released sequences. Then, the Ligand Binding 

section of CAMEO selects all the assembly units of only those structures with biologically 

relevant ligands and evaluates the performances of each participant on the selected targets.  

Ligands 

All the small molecules present in the PDB target structures are categorized in four classes – Ion 

(I), Organic(O), poly-Nucleotide(N), poly-Peptide(P) (as described in 

http://www.cameo3d.org/cameong_help/lb/) – which are derived from the scheme adopted in the 

chemical component dictionary of the PDB. Then, each ligand is classified as ―biologically 

relevant‖, ―irrelevant‖ or ―covalently bound‖ according to the following different criteria: (i) the 

distances between the ligand atoms and the protein, (ii) the annotation of the ligand as a 

commonly observed buffer or crystallization molecule, (iii) the presence/absence of covalent 

bonds between the ligand and the protein. Additionally, a web-based annotation platform allows 

users to manually change these classifications for any ligand bound to a CAMEO target (a 

tutorial page is available at http://www.cameo3d.org/annotation/support). 

Prediction Format 

We developed a new format for the binding site prediction that overcomes the limitations 

observed in the last CASP assessments [5, 6]; however, servers still formatting the predictions in 

the CASP style are allowed to send them to CAMEO, which will automatically perform the 

conversion to the new format. In the CAMEO format, a probability can be assigned either to 

each atom, to each residue or to a mixture of both, for every target chain. In the prediction, each 

entry contains two mandatory and one optional blocks of data, separated by the symbol ―|‖, that 

contain a set of key-value pairs. In the following description of the block structure, the names 

within the symbols ―<‖ and ―>‖ indicate a value, while the data between the symbols ―[‖ and ―]‖ is 

optional. The first section uniquely indicates a residue or an atom; it is mandatory to specify the 

residue name and number, while it is optional to indicate the chain name or the atom name. The 

syntax is: 

―r=<residue name>; n=<residue number>; [c=<chain name>;] [a=<atom name>;] |‖ 

The second section contains the probabilities assigned to each ligand category, which reflect the 

likelihood of a ligand to be in contact with the residue, or with the atom, of the entry; the data 

consists of: 
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―I=<score>; O=<score>; N=<score>; P=<score>; |‖ 

In the third section it is possible to indicate a score for each predicted compound using the three-

letter code of the PDB: 

[<compound i name>=<score>;]. 

Moreover, it is also possible to skip residue or atom entries for which all the probabilities were 

predicted to be zero.  

Baseline homology predictor server 

We implemented three servers to use as baseline methods for the comparison to the participant 

servers. Each one of the three reference server uses a different approach, which is based on 

sequence conservation, geometric binding pocket identification and homology transfer, 

respectively.  

In particular, the server employing the latter approach collects the small molecules present in the 

protein template and places them within the target model. More in detail, the server 

superimposes the template onto the model built by SWISS-MODEL and identifies as members 

of the binding site all those residues that are within 3 Angstroms from a ligand. Finally, the 

server transfers to the model only those ligands which are included in a list of biologically 

relevant molecules (see Table 1 in the Supplementary information chapter) and which fulfil 

different criteria: (i) the ligand must bind at least 3 residues, (ii) the model binding residues must 

be completely conserved, (iii) none of the ligand atoms should be within 1.5 Angstroms from any 

of the protein atoms, and (iv) the RMSD of the binding residues between the template and the 

model must be less than 2 Angstroms. These strict rules allow a high confidence in the 

correctness of the predicted ligands and of their pose within the model. 

The server calculates a score that represents the likelihood of each atom to bind a ligand, using 

a linear function that depends on the distance 𝑑 between the protein‘s atom and the nearest 

ligand atom. The score 𝑠(𝑑) is calculated for each ligand category as: 

𝑠 𝑑 =  

1, 𝑑 < 3

2 −
1

3
𝑑, 3 ≤ 𝑑 ≤ 6

0, 𝑑 > 6

  

and its value is 0.5 with a distance d of 4 Angstroms. 
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Assessment 

A reference probability for each atom is calculated for all the chains in a biological assembly of a 

given target using a sigmoid function, defined as: 

𝑝 𝑑 =
1

1 + 𝑒 1.5𝑑−7.5 
 

where 𝑑 is the distance between a protein atom and a ligand atom. The function parameters 

were optimized to result in a probability of: 

 p(d) = 1 for distances less or equal than 3 Angstroms 

 p(d) = 0 for distances greater or equal than 7 Angstroms 

 p(d) = 0.5 at a distance of 5 Angstroms. 

This probability is calculated for each ligand category. Additionally, if a compound is specified in 

either the organic or ion category, the probability is also computed for that particular compound. 

Each week CAMEO assigns a set of scores to every server using four different methods: the 

Area Under the Curve (AUC), the Pearson‘s correlation coefficient, Spearman‘s rank correlation 

coefficient and Matthew‘s correlation coefficient. The first score can be interpreted as the 

probability that the server assigns a higher score to a binding residue than to a non-binding 

residue. CAMEO defines this score as follows: if an atom has a probability above 0.5, the atom 

is defined as ―binding‖; otherwise, if the probability is below 0.5, it is defined as ―non-binding‖. 

The second score measures the linear correlation between the prediction and the reference 

probabilities, while the third measures the monotonic relationship between the same two sets of 

probabilities. The last score is a correlation coefficient between the predicted and the reference 

classifications of the residues and is used for comparing the server performances with the CASP 

sessions.  

In case multiple chains are present in the reference, in the prediction or in both, the overall score 

assigned to the server is the average over all the best scores calculated for each chain in the 

prediction. Moreover, if the prediction contains all the correct ligands belonging to a certain 

category, the comparison will be based on the probabilities of these single compounds, rather 

than on the value assigned to the whole category. 
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Results and discussions 

The main limitations in CASP ligand binding assessments were the prediction of the binding 

residues without considering the type of the bound ligand and the small number of target 

structures binding biologically relevant compounds. Moreover, only a subset of these proteins 

was considered to be ―difficult targets‖, that is, proteins for which there were no structures or 

ligand annotations associated to close homologs. CAMEO was developed to overcome these 

issues by evaluating the registered servers on the weekly released PDB structures. To date 

(2014-04-11), the number of targets evaluated by CAMEO reached 5260 proteins, containing 

2473 ions, 3877 organics, 351 poly-nucleotides and 119 poly-peptides. An overview of the 

performances obtained over the last 3 months (from 2014-01-10 to 2014-04-11) in the ion and 

organic categories by the registered servers is shown in Figure 4.1.  

 

Figure 4.1 The performances over the last 3 months (from 2014-01-10 to 2014-04-11) of the registered 
servers in CAMEO Ligand Binding within the Ion (left) and Organic (right) categories. Our baseline 
homology predictor server is indicated as ―Naive homology‖ by the light yellow dot. The x axis represents 
the percentage of targets for which a prediction was calculated, while the y axis represents the average 
accuracy calculated on the predicted targets. 

The plots in Figure 4.1 show that our baseline predictor is very good at predicting binding sites 

for ions, but only for about half of the targets received; on the other hand, in the organic category 

our predictor had an average accuracy, but on a low number of targets.  

These results indicate that our baseline method can be used as a first choice for predicting ion 

binding sites, since it showed the best performance in finding the correct residues. However, the 

performances of this server are limited by the small number of templates that bind biologically 

relevant ligands. Therefore, the first improvement to be made would be the analysis of more 
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homologs for a given target, in order to enlarge the available pool of ligands for predicting the 

correct model binding sites. To improve the functional prediction of a model by modelling ligands 

in the predicted binding sites, we developed a new method that takes into account ligands and 

binding sites from the multiple homologs of a target (see chapter 6). 

Supplementary information 

Table 1 Ligands evaluated by SWISS-MODEL. 

Type PDB codes 

Ions CA, CO, CU, CU2, FE, FE2, MG, MN, MO, NA, NI, ZN 

Organic 
molecules 

ADP, AMP, ATP, BTN, COA, BGC, GLC, GDP, GMP, GTP, GSH, FAD, FMN, HEM, 
HEA,HEB, NAD, NAP, NDP, NAI, PLP, SAM, THG, TPP, UDP, CDP, SF4, FES 
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5. SWISS-MODEL: modelling protein tertiary and 

quaternary structure using evolutionary information 

This chapter has been accepted for publication as: 

“SWISS-MODEL: modelling protein tertiary and quaternary structure using evolutionary 

information”, Marco Biasini1,2, Stefan Bienert1,2, Andrew Waterhouse1,2, Konstantin Arnold1,2, 

Gabriel Studer1,2, Tobias Schmidt1,2, Florian Kiefer1,2, Tiziano Gallo Cassarino1,2, Martino 

Bertoni1,2, Lorenza Bordoli1,2 and Torsten Schwede1,2,*. Nucleic Acids Research. 

1 Biozentrum, University of Basel, Basel, 4056, Switzerland 

2 SIB Swiss Institute of Bioinformatics, Basel, 4056, Switzerland 

Contribution: I developed and implemented the part of the SWISS-MODEL pipeline that models 

ligands into the protein model structures. 

Abstract 

Protein structure homology modelling has become a routine technique to generate three-

dimensional models for proteins when experimental structures are not available. Fully automated 

servers such as SWISS-MODEL with user-friendly web interfaces generate reliable models 

without the need for complex software packages or downloading large databases. Here, we 

describe the latest version of the SWISS-MODEL expert system for protein structure modelling. 

The SWISS-MODEL template library provides annotation of quaternary structure and essential 

ligands and co-factors to allow for building of complete structural models, including their 

oligomeric structure. The improved SWISSMODEL pipeline makes extensive use of model 

quality estimation for selection of the most suitable templates and provides estimates of the 

expected accuracy of the resulting models. The accuracy of the models generated by SWISS-

MODEL is continuously evaluated by the CAMEO system. The new web site allows users to 

interactively search for templates, cluster them by sequence similarity, structurally compare 

alternative templates, and select the ones to be used for model building. In cases where multiple 

alternative template structures are available for a protein of interest, a user-guided template 
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selection step allows building models in different functional states. SWISS-MODEL is available 

at http://swissmodel.expasy.org/. 

Intoduction 

SWISS-MODEL (http://swissmodel.expasy.org/) is an automated system for modelling the three-

dimensional structure of a protein from its amino acid sequence using homology modelling 

techniques. SWISS-MODEL has been established 20 years ago as the first fully automated 

server for protein structure homology modelling, and has been continuously developed and 

improved since then [1, 2] [3] [4]. The server features a user-friendly web interface, which allows 

also non-specialists to generate three-dimensional models for their protein of interests from a 

simple web-browser without the need to install and learn complex molecular modelling software, 

or to download large databases [5]. Today, SWISS-MODEL is one of the most widely used 

structure modelling web servers world-wide, with more than 0.9 million requests for protein 

models annually (i.e. approximately one model per minute). Recently, its functionality has been 

greatly extended: SWISS-MODEL now models oligomeric structures of target proteins, and 

includes evolutionary conserved ligands such as essential cofactors or metal ions in the model. 

A newly developed interactive web interface allows users to conveniently search for suitable 

templates using sensitive HMM searches against the SWISS-MODEL Template Library (SMTL), 

analyse alternative templates and alignments, perform structural superposition and comparison, 

explore ligands and cofactors in templates, and compare the resulting models using mean force 

potential based model quality estimation tools. Model quality estimation is an essential 

component of protein structure predictions, as the accuracy of a model determines its usefulness 

for practical applications. SWISS-MODEL provides model quality estimates (visually in the web 

page and numerically for download) based on a QMEAN potential [6] [7] specifically re-

parameterized for models build by SWISS-MODEL. The accuracy of the SWISS-MODEL server 

is independently evaluated in comparison with other state-of-the-art methods by the CAMEO 

project (http://cameo3d.org/; Continuous Automated Model EvaluatiOn) [8] based on target 

sequences weekly pre-released by the PDB [9]. 

Materials and Methods 

Overview 
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Homology modelling (or comparative modelling) relies on evolutionarily related structures 

(templates) to generate a structural model of a protein of interest (target). The process typically 

comprises the following steps: (I) Template identification; (II) Template selection; (III) Model 

building; and (IV) Model quality estimation [10] [11]. In brief, a library of experimentally 

determined protein structures is searched with sensitive sequence search tools to identify 

proteins which are evolutionary related to the target protein. If one or more templates are 

identified, the information of the alignment of the target and the template sequences together 

with the 3-dimensional coordinates of the template(s), are used to build a structural model for the 

protein of interest. Finally the quality of the computed model is estimated to indicate the 

expected quality and suggest possible application of the obtained model.  

The SWISS-MODEL Template Library (SMTL) 

Comparative modelling methods make use of information from experimentally determined 

protein structures to generate models for a target protein. A well-curated and annotated template 

library which supports efficient queries is therefore a crucial component of a modelling server. 

The SMTL aggregates information of experimental structures from the PDB (9) and augments it 

with derived information. When a new structure is released by the PDB, the coordinates and 

accompanying information are processed and imported into the template library. SMTL entries 

are organized by likely quaternary structure assemblies, termed ―bio units‖, which are created 

according to the author- and software annotated oligomeric states listed in the PDB deposition. 

Template amino acid sequences are indexed in a searchable databases for BLAST [12], and 

added to a HMM library that can be searched by HHblits [13]. Sequence Profiles, predicted 

secondary structure (SSpro [14], PSIPRED [15]), predicted solvent accessibility (ACCpro [14]), 

per-residue solvent accessibility, (NACCESS (S. Hubbard and J. Thornton)), secondary 

structure (DSSP [16]) are calculated and stored alongside the structure. In addition, protein 

purification tags, such as HIS or TAP tags are detected in the sequences and marked as such. 

The implementation of computational routines in SMTL is based on OpenStructure [17]. 

Annotation of Ligands in SMTL 

In most crystal structures low molecular weight ligands are observed, but only some of those are 

functionally or structurally relevant for the protein. Instead of their natural ligands, some 

structures contain synthetic analogues or inhibitors which occupy competitively the same binding 

site. Often, buffer or precipitant molecules are encountered, which are added by 

experimentalists to facilitate crystallization. SMTL implements a two-stage process to annotate 
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biologically relevant ligands and synthetic analogues. The first stage uses a list of rules to 

automatically categorize the ligands based on their chemical identity. For example, all potassium 

ions are classified as solvent at this stage. In a second stage, the SMTL web interface provides 

a way to change the ligand classification manually. For example, in case of a potassium channel 

structure some of the before-mentioned potassium ions may be re-annotated as biologically 

relevant. While re-annotations can be suggested by any SWISSMODEL user, before taking 

effect in SMTL, the annotations are reviewed by a curator to guarantee high quality of 

annotations. 

Template Search and Selection 

The SWISS-MODEL Template Library is searched in parallel both with BLAST and HHblits to 

identify templates and to obtain target-template alignments. The combined usage of these two 

methods guarantees good alignments at high and low sequence identity levels [18]. In order to 

select the most suitable templates, the procedure implemented in SWISS-MODEL uses 

properties of the target-template alignment (sequence identity, sequence similarity, HHblits 

score, agreement between predicted secondary structure of target and template, agreement 

between predicted solvent accessibility between target and template; all normalized by 

alignment length) to predict the expected quality of the resulting model (Biasini, M., et al, 

manuscript in preparation). In brief, each of the alignment properties is modelled as probability 

density function (PDF) of the estimate for a resulting model having a certain structural similarity 

to the target. The use of PDFs has the advantage of at once including the expectation value as 

well as the accuracy of the estimate for each property. It also takes into account, that some 

properties are better (more accurate) at predicting the quality at high levels of sequence identity, 

whereas others are more accurate in the twilight zone of sequence alignments. For each 

property the most likely structural similarity of the template to the target is the value at which the 

PDF is maximal. Properties are combined based on their relevance, which has been determined 

from large sets of target/template alignments with known target structures. When combining the 

estimates of each property, the most likely structural similarity is the value at which the joint 

distribution is maximized, termed the global quality estimation score (GMQE). 

Model Building and Scoring 

After templates are selected for model building, either by using the automated or manual 

selection mode, the target/template alignment is used as input for generating an all-atom model 

for the target sequence using ProMod-II [19]. In case loop modelling with ProMod-II does not 
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give satisfactory results, an alternative model is built with MODELLER [10]. By default, models 

are built using the homo-oligomeric structure of the template as annotated in SMTL, provided the 

oligomeric structure is predicted as conserved (see Oligomeric Structure Prediction below). An 

indispensable part of every modelling procedure is the estimation of a protein model‘s accuracy, 

directly providing the user with information regarding the range of its possible applications [11, 

20, 21]. Here, model quality is assessed with the local composite scoring function QMEAN, 

which uses several statistical descriptors expressed as potentials of mean force: geometrical 

features of the model (pairwise atomic distances, torsion angles, solvent accessibility) are 

compared to statistical distributions obtained from experimental structures and scored. Each 

residue is assigned a reliability score between 0 and 1, describing the expected similarity to the 

native structure. Higher numbers indicate higher reliability of the residues. The weights of 

QMEAN have been specifically retrained for SWISS-MODEL, leading to more accurate local 

quality predictions for single models (Studer, G., et al., manuscript in preparation). In addition, 

global QMEAN scores are calculated as indicators for the overall model quality. Global QMEAN 

estimates are provided as a Z-score which relates the obtained values to scores calculated from 

a set of high-resolution X-ray structures [7]. Additionally, a combined quality estimate is 

provided, which combines the QMEAN estimate with the GMQE obtained from the target-

template alignment as described before. The resulting GMQE is again expressed as a number 

between zero and one, where higher numbers indicate higher reliability. 

Oligomeric Structure Prediction 

The majority of proteins in a living cell exist as part of complexes and quaternary structure 

assemblies, monomeric proteins being the exception rather than the rule [22]. Frequently, ligand 

binding sites and enzyme active sites are located at protein chain interfaces, and modelling of 

the oligomeric structure of a protein is therefore essential to build models which are useful in 

biomedical applications [23]. Here, the homo-oligomeric structure of a target protein is modelled 

based on the hypothesis that the quaternary structure is conserved in one of the templates. To 

test this hypothesis, conservation of the oligomeric structure is predicted by analysing properties 

of interfaces between polypeptide chains such as sequence identity, sequence similarity, 

interface hydrophobicity, and consensus occurrence of the same interface in the set of identified 

templates. A random forest is generated using these features as input parameters to predict the 

probability of conservation for each interface. When the size-weighted average of interface 

conservation is higher than a defined threshold, the oligomeric structure of the target is predicted 

to be the same as in the template. 
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Modelling of Ligands 

For predicting essential ligands and cofactors for a given target protein, we apply a conservative 

homology transfer approach to small molecules which are observed in the templates identified in 

the SMTL. Ligands in SMTL are annotated either as: a) relevant, non-covalently bound ligand, b) 

covalent modifications, or c) non-functional binders (e.g. buffer or solvent). A non-covalently 

bound ligand is considered for the model if the coordinating residues are conserved in the target-

template alignment. The relative coordinates of the ligand are transferred from the template, if 

the resulting atomic interactions in the model are within the expected range for van der Waals 

interactions and water mediated contacts. 

Performance of the Method (CAMEO) 

The performance and reliability of the SWISS-MODEL server is continuously evaluated by the 

CAMEO project (Continuous Automated Model EvaluatiOn) [8]. Modelling servers are blindly 

assessed based on sequences pre-released by the PDB for proteins which structure will be 

published in the next release. Servers have four days to predict the 3-dimensional structure of 

the target proteins before models are evaluated against the protein structure coordinates 

released by the PDB using superposition-independent scoring methods such as CAD score [24] 

and lDDT [25]. The current CAMEO evaluation for this version of SWISS-MODEL consist of 

6424 predictions for 599 target proteins collected over 52 weeks (i.e. from 2013-03-01 to 2014-

02-28; data available at http://cameo3d.org). SWISS-MODEL accuracy is compared to other 

state-of-the-art protein structure prediction servers [26-32] and to previous version of the server 

[5]. 

Webserver Implementation 

The web frontend to SWISS-MODEL follows the typical design of modern websites where 

business logic is implemented in JavaScript and executed directly in the browser. For improved 

user-interaction, data is fetched asynchronously from the server, without the need to reload the 

complete page. The front-end uses jQuery (jquery.com) to guarantee cross-browser 

compatibility. For 3D structure visualization, the user can chose between a modified version of 

OpenAstexViewer (openastexviewer.net) Java plugin, and the WebGL-based PV 

(https://biasmv.github.io/pv). The frontend communicates with a Django 

(www.djangoproject.com) backend that handles all incoming requests. Computationally 

demanding calculations, e.g. template search and modelling, are submitted via a queuing 

system to a dedicated compute cluster. 
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SWISS-MODEL web interface 

Input. Model building with SWISS-MODEL can be initiated from different starting information: In 

the simplest case, a protein amino acid sequence can be specified directly (raw one letter 

sequence or FASTA format) or by referring to its UniProt accession code, in which case SWISS-

MODEL will automatically retrieve the corresponding entry from UniProt [33]. Alternatively, a 

target-template sequence alignment can be specified in the form of a multiple sequence 

alignment containing the target, the template, and eventually other homologous sequences, or in 

the form of a DeepView project file [3, 19]. At this point, the user can initiate the template 

selection step, which allows to manually select specific templates, or directly invoke the fully 

automated modelling pipeline.  

Output template search results and manual template selection. Thanks to tremendous technical 

advances in experimental structure determination, for an increasing number of protein families 

there is not only one template, but multiple alternative template structures available. For some 

well-studied protein families, finding hundreds of possible templates for a target protein is not 

unusual. Often, these represent different functional states or structures in complex with different 

ligands. Depending on the intended application of a model, selecting a different template than 

the top-ranked one might be necessary, e.g. to build a model of a protein in complex with a 

ligand – rather than its apo form – for applications in drug design when induced fit movements 

are expected [34]. We have therefore developed a manual template selection mode to make 

template selection available to a larger user base. All the steps of manual template selection can 

be performed directly in the web-interface without the need to leave the browser environment 

(Figure 1). 

Suitable templates identified for the target sequence are listed in a tabular form, sorted by their 

predicted global quality estimation score (GMQE). Each template lists biologically relevant 

ligands, the predicted oligomeric structure conservation and the target-template alignment. The 

tabular view allows quickly gaining an overview on the identified templates. The user can directly 

select one or more templates and initiate model building. Apart from comparing template 

properties in tabular form, two graphical comparison views help to better understand the 

landscape of available templates. An interactive 3D view of superposed templates shows the 

aligned part of selected template structures (Figure 1C), at the user's choice using a WebGL-

based (PV), or Java-based (OpenAstex) viewer. The second view shows the evolutionary 

distance between templates on 2D plot (Figure 1A).  
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Figure 1. Templates Selection and Visualization. (A) An interactive chart shows the relationship of 
detected templates in sequence-similarity space. The target protein is represented as filled red circle. 
Each template is displayed as a blue circle, where the thick blue arc indicates target coverage (the N-
terminus of the target protein starts at the top of the circle, and ends in clockwise direction with the C-
terminus to close the circle). The distance between different templates is proportional to the pairwise 
sequence similarity, i.e. evolutionarily closely related templates will clustered together. (B) Clicking on a 
circle will display template-specific information. A group of similar templates can be also visualized and 
selected by hovering over a cluster of templates. (C) The superposed structures of the selected templates 
will be instantaneously displayed in 3D to visually inspect structural differences.  

Groups of high-sequence identity templates cluster together, whereas more distant proteins are 

separated. The interactive graph allows marking groups of templates for structural superposition 

by selecting them with the cursor. The sequence similarity cluster view in combination with 

template superposition allows identifying functionally relevant states of the templates (―open / 

closed‖). It also supports defining structurally conserved cores in the identified template 



89 
 

structures, and such regions where template which are not closely related share common 

structural features, are most likely well modelled in the target, while segments of structural 

variation in templates typically correlate with errors in the model [30, 35].  

Output modelling. For each model generated based on the selected templates (either by the fully 

automated pipeline or interactively by the user), SWISS-MODEL provides the model coordinates 

along with relevant information to assess the modelling process and expected accuracy of the 

model (Figure 2): the target-template alignment, a step-by-step modelling log, information about 

the oligomeric state, ligands and cofactors in the model, as well as QMEAN model quality 

estimation. Models can be displayed interactively, initially coloured by model quality estimates 

assigned by QMEAN to highlight regions of the model which are well or poorly modelled. If 

several alternative models have been built for a target sequence, these can be interactively 

superposed and visualized. Model coordinates and information displayed on the website can be 

downloaded for later reference. 
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Figure 2. Modelling Results. (A) For each model, coordinates, target-template alignment, modelling log, 
and quality estimation information are provided. Information about the oligomeric structure, ligands and 
cofactors is also provided. (B) The colouring of the target-template sequence alignment can be changed to 
another scheme by clicking on the option button (adjustable spanner icon). Changes are simultaneously 
reflected in the structural representation of the model. (C) Models displayed in the interactive viewer are 
initially coloured by model quality estimates assigned by QMEAN. This allows instantly discriminating 
regions of the model which are well or poorly modelled. Local estimates of the model quality based on the 
QMEAN scoring function are shown as per-reside plot (A) and global score (GMQE) in relation to a set of 
high-resolution PDB structures (Z-score) (D). 
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Discussion and conclusions 

Protein structure homology modelling has become a routine method to provide structural models 

on life science research in cases where no experimental structures are available. However, in 

order to support the understanding a protein‘s function in its biological context, realistic structural 

models should not only correctly represent the overall fold of a single protein chain, but also its 

quaternary structure, as well as the atomic details of interactions with essential cofactors and 

ligands. Modelling and assessment procedures must also be able to account for structural 

flexibility since proteins are not static entities, but may exist in structurally distinct functional 

states. With the new version of SWISS-MODEL presented here, we aimed to address these 

aspects by introducing a new augmented SWISS-MODEL Template Library, which includes 

information on quaternary structures and the role of ligands bound to the template. At the same 

time, we have significantly improved the accuracy of the fully automated SWISS-MODEL 

pipeline, aiming to reliably provide accurate models which are useful for applications in 

biomedical research. The expected accuracy of each specific model is communicated to the 

user in the form of QMEAN score, and the overall accuracy of SWISS-MODEL is continuously 

monitored in CAMEO. The implementation of the new web interface allows users to interactively 

compare alternative templates and select those which are more suitable for the intended 

application of the model (e.g. based on the presence / absence of specific ligands or structurally 

different functional states). The interactivity of the new web site required the usage of innovative 

programming techniques for the web front end, as well as speed optimization and hardware 

upgrades of the backend in order to provide a satisfying user experience. 
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Abstract 

Recent developments in the field of ligand binding site prediction, assessed during the last 

CASP editions, indicate that the currently best performing methods make use of the close 

homologs of a target protein to infer its binding residues. Our aim is to extend this approach to 

the modelling of ligands, in particular ions and organic cofactors, in homology modelled protein 

structures. By comparing the target with a set of its homologous templates, we analyse several 

properties of their binding sites and find the best similarity descriptor to identify the most likely 

ligands that should be placed in the target model. To verify the quality of this approach, we 

assessed the performances of our method against the two leading prediction servers, COACH 

and RaptorX-Binding, from the CAMEO Ligand Binding category. Using a blind-test approach on 

a dataset consisting of several hundreds of protein structures, we show that our method 

performs clearly better than the other two servers, with the best precision-recall for ions and the 

highest sensitivity for organic cofactors. 

Introduction 

One of the biggest challenges in Biology is to reduce the gap between the ever-growing number 

of protein sequences deposited in public databases and, on the other hand, the relatively small 

fraction of these for which a biological function is known. A fundamental help in understanding 

protein functions is provided both by their 3D structure and by the interactions they are involved 

in with other molecules. To this purpose, it is necessary to identify which protein residues 



96 
 

participate in these interactions and, most interestingly, which molecules can serve as ligands 

within a protein binding pocket. Moreover, a deeper knowledge of protein binding preferences 

has proved to be essential to identify novel therapeutic targets [1], but also to discover natural 

ligands by structure-based drug design [2]. Current methods providing functional annotation at 

the residue level can be classified according to the main approach they adopt, which can be 

based either on the protein sequence [3-5] or on its structure [6-11]. 

Methods belonging to the first group usually measure each residue's conservation within 

homologous proteins and define as "binding residues" the most conserved amino acids in the 

sequence. However, although a clear advantage of this approach is that it can be used even 

when the protein structure is unknown, the main drawback is that some residues considered to 

be functional might have actually been evolutionarily conserved for other reasons (for instance, 

they might be involved in protein-protein interfaces or in maintaining protein stability). 

On the other hand, the methods belonging to the second group, which adopt protein structure to 

identify binding residues, can be further distinguished in those that recognize protein surface 

cavities (for an example, see [8]) and those that infer the target binding residues from its 

homologous proteins (for an example, see [9]). Although pocket detection algorithms can be 

more successful in case the target has only distant homologs, these methods are outperformed 

in the opposite scenario - that is, when close homologs are available - as shown in the last 

edition of the community-wide Critical Assessment of protein Structure Prediction (CASP) 

competition under the "FN category" [12] and, more recently, in the Ligand Binding category of 

the Continuous Automated Model Evaluation (CAMEO) server (http://cameo3d.org/lb/). 

Overall, the main objective of the above mentioned approaches is focussed on the identification 

of the specific residues which might be in contact with a ligand. However, so far only few 

attempts have been done to predict, in addition, the precise ligand conformation in the model (for 

an example, see [13]) and, thus, to provide a complete functional annotation for the protein of 

interest. 

In this study, we contribute to improve the knowledge about a target protein by inferring its 

natural, i.e. biologically relevant, small molecule ligands and by placing these in the most likely 

conformation within the modelled structure. Our method analyses the similarities between the 

target structure and the ligand binding sites of its homologous proteins; a range of features are 

tested and compared, the best of which is used in the final implementation of the ligand 

modelling method. Moreover, we also extract and integrate the annotations from UniProt [14] 
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and from the SWISS-MODEL Template Library (SMTL) (see chapter 5), regarding all ligands 

interacting with the target's homologous proteins. Finally, the model binding site(s) are identified 

and filled (when possible) with the small molecules they are most compatible with. In a blind test 

using 364 targets provided by CAMEO, we compare the performances of our method to two 

state-of-the-art ligand binding predictors and we demonstrate that our method performs 

significantly better than the other two. 

Methods 

Datasets 

To create a training dataset containing as many correctly bound ligands as possible, we built a 

non-redundant training set of high quality PDB protein chains that are experimentally annotated 

as binding ions (Cobalt, Calcium, Copper, Iron, Magnesium, Manganese, Nickel, Zinc) or organic 

cofactors, like S-adenosyl-L-methionine, Biotin or Flavin adenine dinucleotide (the full list can be 

found at CoFactor database: http://www.ebi.ac.uk/thornton-srv/databases/CoFactor/). 

We used the EMBOSS suite 6.2.0 [15] to fetch all those UniProt-SwissProt (UniProt release 

2013_05) entries which are annotated to bind one of the above mentioned molecules in the 

Sequence annotation (Features) field. Next, we retrieved the associated PDB code by using the 

SIFTS service [16]. From this pool of proteins, we only kept the high quality chains (X-Ray 

resolution <= 2Angstrom and R-Free <=0.25) bound to a ligand which was not located in an 

interface and which was in contact with the residues indicated by SwissProt. Following previous 

indications in the literature, for example in [17], this filtering step ensured that: (i) the ion-protein 

distances were in agreement with the Cambridge Structural Database (CSD) [18] statistics and 

(ii) the ion in the PDB structure was reliably identified. 

For each small molecule, we obtained a non-redundant set of protein domains by clustering all 

protein chains bound to the selected ligand on the basis of the PFAM classification [19] (as of 

2013-06-25) and by keeping only one member of each cluster as representative of the whole 

protein family domain. The resulting set was composed by 434 monomers bound to 495 small 

molecules, of which 352 are ions and 143 are organic cofactors. Afterwards, we built a model of 

each protein using the SWISS-MODEL server and we filtered out the templates belonging to our 

training set.  
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A large scale blind-test was used to assess the performances of our approach in comparison to 

other two state-of-the-art methods. The testing set used to this purpose was built by collecting 

the target proteins sent weekly by CAMEO to our and to the other two participants with the best 

performances, RaptorX-Binding (http://raptorx.uchicago.edu/BindingSite/) and COACH [11], in 

the Ligand Binding category of the Continuous Automated Model EvaluatiOn server (CAMEO). 

The models produced by these two participants were retrieved through the data sent by each 

participant to CAMEO Ligand Binding. For COACH, we considered the representative ligand of 

the best scoring cluster, while for RaptorX-Binding we used the compound indicated for each 

pocket. 

CAMEO tries to validate the biologically relevance of ligands with a crowd-sourcing approach 

through an annotation platform; therefore, CAMEO targets could contain both biologically and 

non-biologically relevant compounds. To exclude irrelevant small molecules that have not been 

manually curated, we kept in the structures only those ligands included in a list of known natural 

occurring, or "cognate", compounds (as in Table 2 within the Supplementary information 

chapter), that we retrieved from the FireDB database [20]. Moreover, we excluded those 

―cognate‖ ligands that could be irrelevant for a specific target structure by removing all the 

molecules not bound to at least three protein residues, or present more than 15 times. All the 

targets that did not bind at least one relevant molecule were removed from the testing set. 

A total of 614 target structures, and the corresponding server models, were collected between 

2014-01-10 and 2014-04-04; among these, there were 364 proteins bound to 1004 biologically 

relevant ligands, of which 555 were ions, 436 organic, 7 nucleotides and 6 polypeptides, 

according to the CAMEO classification of hetero-compounds. The complete list of ligands and of 

their frequencies can be found in Table 1 within the Supplementary information chapter. The 614 

targets correspond to about 300 different protein domains, which are homogeneously distributed 

(Fig. 6.1). 
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Figure 6.1 Distribution of the small molecules within the CAMEO targets used in the testing set. In cyan 
are indicated ions, in magenta organic ligands and in yellow the category of polynucleotides. FAD 
indicates Flavin-adenine dinucleotide and GLY is Glycine. For clarity, only the ligands representing at least 
1% of the dataset are shown. 

Training 

During the training step, we predicted ligands by using seven different scores based on various 

properties of template and target proteins. In addition, we implemented an annotation score that 

takes into account UniProt annotations, in order to assign a higher weight to those ligands for 

which there is an experimental evidence of binding. This score, described in the previous section 

as the fraction 10 𝑢 𝑏 , was summed to the following seven scores: 

(i) the fraction score, named freq, which is the ratio between the number of ligands of a 

given type and the total number of ligands in the cluster; 

(ii) the sequence conservation score, named cons, of a ligand binding site; cons is the 

normalized average entropy of the ligand binding residues and is calculated using the 

Jensen-Shannon Divergence (JSD) implemented in [13]; 

(iii) the functional specificity score of a binding site, named sdp_bres, defined as the 

average score obtained by implementing a modified version of the method described 

in [14]. In that study, the aim was to identify subgroups in protein families through the 

Specificity Determinant Positions (SDP) and each residue's score ranged from 0 for 
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conserved residues to minus infinite for a very specific position. In our case, both 

conserved and specific residues are considered relevant, such that the score 

assigned to a ligand is the average of the standardized absolute SDP values of the 

binding residues; 

(iv) the local structural similarity score, named rmsd, derived from the RMSD between 

the template ligand site and the aligned model site, using a logistic function: 

𝑝 = 1 +
−1

1 + 𝑒−3(𝑅𝑀𝑆𝐷−2)
 

where a RMSD of 2 Angstroms results in a probability of 0.5. The RMSD is calculated 

by TMAlign [15] in the superimposition between the template binding site – defined 

as all the residues within 10 Angstroms from the ligand – and the corresponding 

model residues; 

(v) the structural sequence identity, named str_seqid, considers the fraction of annotated 

binding residues and the sequence identity between a template binding sites and a 

model pocket, as described in the following Algorithm section; 

(vi) the sequence identity, named seqid, calculated performing a local alignment between 

the subset of the template residues which are in contact with the ligand and the 

corresponding model residues found in the target-template alignment from SWISS-

MODEL; 

(vii) the aggregated score, named rank, defined as the sum of the annotation score, the 

RMSD-based probability, the structural sequence identity and, only for ions, the 

fraction score. 

Algorithm 

Overall, our algorithm collects and assigns a score to all the small molecules present in the 

homologous structures (the "templates") found by SWISS-MODEL for a target sequence; then, 

the ligands with the best scores are transferred to the model structure and a report for the 

SWISS-MODEL website is provided. 

More in detail, the initial step consists in the identification of candidate ligands, which should be: 

(i) bound to the template structure and (ii) considered as "biologically relevant". To satisfy the 

first criterion, a molecule must have at least 3 protein residues within 4 Angstroms (3.2 in case of 

ions and Fe-S clusters). From now on, the ligand binding site will be composed by the residues 

within this distance. Regarding the second criterion, we give priority to molecules that are listed 

in the SWISS-MODEL Template Library (SMTL) Ligand Annotation system (see chapter 5), 
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which is a semi-manually curated database of ligand ontologies. In case the molecule is not 

annotated in SMTL or it is annotated as "Non-covalent", the algorithm checks whether it is 

contained in: (i) a list of known natural compounds or (ii) a list of biological molecules that can be 

used as buffer or solvent (for example sulfate ions) and, at the same time, among the UniProt 

ligands. These two manually curated lists are adapted from the FireDB [20] "Cognate" (see 

Table 2 in the Supplementary information) and "Ambiguous" ligands (see Table 3 in the 

Supplementary information), respectively. 

Ligands defined as "biologically relevant" are subsequently clustered and scored. Any two 

ligands belonging to different templates are considered to be in the same group when at least 

one third of the ligand binding residues for one of them (or simply two residues, for ions), are 

aligned in the merged pair-wise alignment produced by SWISS-MODEL for the target and its 

homologous protein sequences.  

After the clustering step, each ligand receives a score corresponding to the sum of two terms: 

the first is the weighted fraction of the template binding residues annotated in UniProt; the 

second is the sequence identity, calculated from the structural alignment between the ligand 

binding residues and the corresponding residues in the model. These residues are found by a 

sequence independent superimposition – calculated by TMAlign [21] – of the full structure of the 

template containing the ligand on the model structure. A second superimposition of only the 

binding residues is performed to produce a refined local structural alignment, allowing a refined 

placement of the ligand into the model. The score 𝑠 assigned to a ligand is finally calculated as: 

𝑠 = 10
𝑢

𝑏
+

𝑚

𝑏
 , 

where 𝑢 is the number of binding residues annotated in UniProt, 𝑚 is the number of matching 

residues (i.e. with the same one letter code) between the template and the model binding site, 

while 𝑏 is the number of ligand binding residues. In order to rank the ligands primarily on the 

UniProt annotation, the fraction of annotated binding residues (that is, the term 𝑢 𝑏  ) is 

multiplied by 10.  

After a close inspection of the training set, we decided to set the binding site sequence identity 

(𝑚 𝑏 ) cutoff to 0.25; in this way, we avoid to transfer ligands into a model binding site which is 

unrelated to the template ligand binding site. For each cluster where at least one ligand has a 

score s greater than zero, the best scoring ligand that fits the model pocket is transferred into it. 
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Assessment 

To assess the accuracy of our method, we need to identify which modelled ions and cofactors 

correspond to the molecules bound to the target structure. The first step is to superimpose the 

model to the target; then, for each of ligand in the target, we look for small molecules in the 

model within 3 Angstroms of the ligand centre. The similarity between the found molecules and 

the target ligand is compared using the Tanimoto score (calculated using the SMSD software 

[22]) in case of organic ligands; instead, in case of ions, the similarity is measured only using the 

atom‘s element, without considering the oxidation state. A model ligand is evaluated as wrong if 

it belongs to a category (ions or organics) different from the target ligand, while it is considered 

correct either if it has a chemical similarity greater than 0.77, or, for ions, if it has the same 

element as the target ligand. The ability of our predictor to place the correct ligands into the 

model is assessed using the recall versus the precision plot. The precision, also called Positive 

Predicted Value (PPV), and the recall, i.e. the sensitivity or True Positive Rate (TPR), are 

calculated as: 

𝑝𝑟𝑒𝑐𝑖𝑠𝑖𝑜𝑛 =
𝑇𝑃

𝑇𝑃 + 𝐹𝑃
 , 𝑟𝑒𝑐𝑎𝑙𝑙 =

𝑇𝑃

𝑇𝑃 + 𝐹𝑁
 

where TP is the number of correct ligands that are placed in the right binding site of the model, 

FP is the number of ligands in the models that are not present in the target structures or that are 

in the wrong binding site and FN is the number of target ligands that were not placed in the 

models. A high precision means that most of the ligands placed in the models are correct, while 

a high recall indicates that most of the target ligands are included in the models. These 

measures are employed first in the training and later in the testing phase to compare our method 

with the performances of COACH and RaptorX-Binding.  

Whenever a ligand is correctly predicted, we measure how much the ligand conformation is 

similar to the corresponding molecule present in the target structure by superimposing their 

binding sites. In case of organic ligands we use the RMSD between the ligand atoms 

coordinates in the target structure and the corresponding ligand within the model. In case of 

ions, we measure the distance between the atom in the target structure and the corresponding 

ion atom in the model. As we are interested only in the ligand conformations and positions 

respect to the target, we do not exclude correct ligands that overlap badly modelled binding 

sites. 
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Results 

In order to check which of the seven scores used by our algorithm was best performing on ions 

and organic ligands, we measured their precision-recall values on the training set, as shown in 

the Figures 6.2 and 6.3. Overall, for each scoring method, the recall was higher for the ion 

category than for the organic ligands, while the precision had the opposite trend, being greater 

for organics than for the ions. Two clusters can be identified in the precision-recall plots: the first 

group, on the left side of the plot, composed by scores (cons and sdp_b-res) based on the 

evaluation of the merged pairwise alignment between the target and all the templates; the 

second group, on the right side of the plot, including the remaining scores, which take into 

account the similarity between each single pair of target-template binding site. A special case is 

constituted by the fraction score freq, which considers all the ligands in all the templates and, 

thus, is more similar to the first than to the second group. The structural sequence identity score, 

str_seqid, achieved the best precision both for the prediction of ions (0.67) and of organic 

ligands (0.83), while the recall was similar to that of the other features (0.88), meaning that this 

type of score allows the identification of more correct than incorrect ligands with respect to the 

other measures. 

 

Figure 6.2 Precision-recall plot of the performances for ion predictions achieved by using different scores. 
Str_seqid is the structural sequence identity score, seqid is the sequence identity measure, rmsd is the 
local structural similarity, rank is the rank score, freq is the fraction score, cons is the conservation score 
and sdp_b-res is the specificity score. 
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Figure 6.3 Precision-recall plot of the performances for organic ligand predictions achieved by using 
different scores. Str_seqid is the structural sequence identity score, seqid is the sequence identity 
measure, rmsd is the local structural similarity, rank is the rank score, freq is the fraction score, cons is the 
conservation score and sdp_b-res is the specificity score. 

From the point of view of the ligand conformation accuracy, shown in Figures 6.4 and 6.5, a first 

observation is that, in each plot, the distribution of the RMSDs was very similar across all the 

different types of scores. For ions prediction, the median was around 0.2 Angstroms and the 

upper quartile was below 0.5 Angstroms, while for the organics prediction the median was less 

than 0.7 Angstroms and the upper quartile around 1 Angstrom. Only in the organic category, we 

noticed that the cons and sdp_bres scores showed a broader distribution than the other scoring 

methods.  
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Figure 6.4 Distributions of the distances, for each ion, between its position within the model and the 
target, achieved by using different scores. Red lines indicate medians; blue boxes show the upper (75%) 
and lower (25%) quartile; whiskers are 1.5 times the upper and lower quartile; blue crosses correspond to 
the outliers. Str_seqid is the structural sequence identity score, seqid is the sequence identity measure, 
rmsd is the local structural similarity, rank is the rank score, freq is the fraction score, cons is the 
conservation score and sdp_bres is the specificity score. 

Since the score str_seqid achieved the best precision, while maintaining recall and RMSD 

distributions with very similar values to the other approaches, we decided to employ it for the 

testing phase. To assess the performances of our method against COACH and RaptorX-Binding 

servers, we compared the precision-recall values and the RMSD distributions between the target 

and the subset of ligands which were correctly predicted. Table 6.1 shows the values of True 

Positives (TP), False Positives (FP) and False Negatives (FN) together with precision and recall, 

grouped by the ligand category and the server. 
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Figure 6.5 Distributions of the RMSDs, for each organic cofactor, between its position within the model 
and the target, achieved by using different scores. Red lines indicate medians; blue boxes show the upper 
(75%) and lower (25%) quartile; whiskers are 1.5 times the upper and lower quartile; blue crosses 
correspond to the outliers. Str_seqid is the structural sequence identity score, seqid is the sequence 
identity measure, rmsd is the local structural similarity, rank is the rank score, freq is the fraction score, 
cons is the conservation score and sdp_bres is the specificity score. 

 
Table 6.1 Counts of FN, FP, TP with precision and recall values in the ions and organics category 
obtained by our method, using the str_seqid score, COACH and RaptorX-Binding. 

Ions str_seqid COACH RaptorX 
 

Organics str_seqid COACH RaptorX 

FN 191 400 302 
 

FN 214 287 230 

FP 172 73 160 
 

FP 208 89 179 

TP 237 29 83 
 

TP 167 88 90 

precision 0.580 0.284 0.342 
 

precision 0.445 0.497 0.335 

recall 0.554 0.068 0.216 
 

recall 0.438 0.235 0.281 

 

In Figure 6.6 and Figure 6.7 we show the precision-recall values, while Figure 6.8 and 6.9 

display the RMSD distributions of COACH, RaptorX-Binding and our method. In the prediction of 

ions, our method performed clearly better than the other two servers, with a precision of 0.58 

and a recall of 0.55. In the organics category, our method showed a slightly lower precision 

(0.45) than COACH (0.50), although it reached the best recall (0.44). 
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Figure 6.6. Precision-Recall achieved by our method (using the score str_seqid), COACH and RaptorX-
Binding in the ion predictions. 

 

 

Figure 6.7. Precision-Recall achieved by our method (using the score str_seqid), COACH and RaptorX-
Binding in the organic ligand predictions. 
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Figure 6.8. Distance distributions of the correctly predicted ligand conformations produced by our method 
(str_seqid), COACH and RaptorX-Binding. 

 

 

Figure 6.9. RMSD distributions of the correctly predicted ligand conformations produced by our method 
(str_seqid), COACH and RaptorX-Binding. 

The distributions of the distances calculated between the coordinates of target and model 

ligands shows that, in most of the cases, our method placed ions in the models within a distance 

of only 0.5 Angstroms from the corresponding ion positions in the target. For organic ligands, the 
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difference between target and model cofactor conformation was usually below 0.8 Angstroms. 

Both for ions and for organics, the other two methods showed wider distributions, higher 

medians and higher upper quartiles. In particular, COACH had a median conformation difference 

of 0.7 Angstroms for ions and an upper quartile above 1 Angstrom for organics, while RaptorX-

Binding had the upper quartile above 1 Angstrom for ions and around 1.5 Angstroms for 

organics. 

Considering the fact that it might be difficult to identify the exact ion element from the density 

map of the protein crystal, we also assessed the three methods by ignoring the precise type of 

the target ion(s), as shown in Figure 6.10. By comparing the performances displayed in Figures 

6.6 and 6.10, we noticed that COACH gained more precision than before, while the ranking was 

not significantly affected.  

 

Figure 6.10. Precision-Recall achieved by our method, COACH and RaptorX-Binding in the ion ligand 
predictions without considering the ion atom element. 

Two examples of the accuracy of our method are shown in Figure 6.11 and Figure 6.12. In the 

first case we transferred the correct ions, two Mn2+, in the target 4BMU_1, a ribonucleotide 

reductase di-manganese(II), while COACH and RaptorX-Binding predicted only a single iron ion. 

In the second example we modelled the correct substrate, a triiodothyronine, on a thyroid 

hormone receptor alpha protein, while COACH predicted a drug-like ligand and RaptorX-Binding 

placed a different thyroid hormone. 
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Figure 6.11 Comparison of the position of ions (depicted as spheres) modelled for target 4BMU_1 (red). 
Method str_seqid (in blue) models both manganese ions, while RaptorX-Binding (in violet) and COACH (in 
green) model only a single iron ion. The binding site residues of the target and the modelled proteins are 
displayed in lighter colours. 

 

 

Figure 6.12 Comparison of the cofactors conformations (rendered in sticks) modelled for the target 
4LNW_1 (in red). Our method str_seqid models the exact target ligand (in blue), while RaptorX-Binding (in 
violet) models an analogous hormone and COACH (in green) a wrong molecule. The binding site residues 
of the target and the modelled proteins are displayed in lighter colours. 

The precision of our method in identifying a specific cofactor can be seen in Figure 6.13, where 

we correctly transferred a Nicotinamide Adenine Dinucleotide (NAD) while COACH predicted a 
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Nicotinamide Adenine Dinucleotide Phosphate (NADP) for the target 4O1M_1, an Enoyl acyl-

carrier (ENR) enzyme, which uses NAD+/NADH as cofactor. 

 

Figure 6.13 Comparison of the cofactors (rendered in sticks) modelled for the target 4O1M_1, which binds 
a NAD (in red). Our method str_seqid correctly modelled a NAD (in blue) while COACH wrongly modelled 
a NADP (in green), which has an additional phosphate group highlighted by the yellow circle. 

Discussion 

The work presented herein describes a new method for the identification and modelling of ions 

and organic cofactors within homology models, in this case created by SWISS-MODEL. As 

shown in the last CASP assessments [12, 23], the most successful methods for ligand binding 

site prediction apply a homology transfer approach. Moreover, this strategy is already 

successfully applied within the field of the protein structure prediction; therefore, we decided to 

further investigate this method and to employ it for the additional step of modelling ligands in 

their binding sites. We compared a set of models against their homologous proteins using 

different properties based on their binding site sequences and structures. We found that the best 

performances in terms of precision, recall and ligand conformation could be obtained using the 

structural sequence identity, combined to the fraction of ligand binding residues annotated in 

UniProt. In this approach, we used TM-Align to superimpose the model to the template in order 

to identify the binding site within the model; afterwards, we repeated the same step only using 

the binding site region (i.e. all the residues within 10 Angstroms from a ligand), to obtain an 

optimal local structural alignment between the model and the binding residues. The distance of 

10 Angstroms was chosen to include enough residues for the superimposition step, in case a 
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ligand was in a relatively flat site. Moreover, as TM-Align utilizes only the C-alpha atoms, the 

superimposition is not affected by the atom coordinates accuracy of the model binding side-

chains. Finally, a ligand is transferred (i.e. the atom coordinates are copied) to the model if it 

does not overlap, within a distance of 1.6 Angstrom, with any atom of the model. This constrain 

avoids creating unreliable model-ligand complexes. We decided to not apply a local docking 

procedure for the optimization of a candidate ligand conformation because it has been shown 

that the best pose in a model can be achieved by preserving the ligand native conformation [24]. 

Employing the local structural alignment allows to take into account the effects of the structural 

variability between two sites. Moreover, the evaluation of the resulting sequence identity allows 

accounting for the chemical similarity between the model and the target binding residues. In 

addition to these aspects, the use of the UniProt sequence features enhances the reliability of a 

ligand to be biologically relevant and of its corresponding templates binding residues to be the 

correct pocket site. We decided to use UniProt as a source of annotation because it contains 

information about all known protein sequences and is updated every 4 weeks; in contrast, the 

Catalytic Site Atlas database [25], which is used by other predicting methods [5, 26], only stores 

the catalytic residues of enzymes reported in literature and is updated every few years. In 

addition, the score we selected for the comparison against other methods (str_seqid) only 

depends on one parameter, that is, the minimum sequence identity for which a binding site is 

considered enough similar to the one in the model. The results of the training step indicate that 

the correct ligand for a target should be selected, in most of the cases, from the template having 

the highest binding site similarity, independently from the remaining residues of the template 

structure.  

To assess the performances of our method, we carried out a blind test on a large set of proteins 

representing a real scenario. We chose targets and models provided by the CAMEO Ligand 

Binding server. Our approach was compared with two state-of-the-art methods in the ligand 

binding predictions that place ligands in their model: COACH [11] and RaptorX-Binding 

(http://raptorx.uchicago.edu/BindingSite/). Briefly, COACH adopts a support vector machine to 

score binding sites predictions made by different methods that use sequence and structural 

information. RaptorX-Binding infers the likelihood of a pocket, and of the bound ligand, to be 

correct using the number of occurrences in the templates of the target.  

As clearly shown by the results of the precision and recall, our method was the best performing 

in the prediction of ions and had the highest recall among the three tested methods for the 

prediction of organic ligands. In this latter category, COACH showed the best precision, slightly 
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higher than our method. The higher recall obtained by our method in the organic category is due 

to the fact that we focus on biologically relevant ions and cofactors, both in the clustering and in 

the scoring step; moreover, the evaluation of the structural local sequence identity, which was 

used to select the most similar template binding site to the model, resulted in a gain in 

sensitivity. Additionally, our method is able to model ligands even in structures composed by 

multiple chains. On the other hand, although we obtained the highest recall of the three 

methods, the number of false negatives (FN) is still quite high (191 for ions and 214 for organic 

cofactors). The main reason for that is the lack of biologically relevant ions and cofactors in the 

evaluated targets. Likewise, the higher false positives (FP) number of our method with respect to 

COACH, within the organic category, is due to the extra amount of ligands that were not present 

in the target structures, but were wrongly transferred into the models. 

Despite our method showed the best performances on the testing set, there are still a few 

limitations that remain to be addressed. First of all, since we infer the target ligands by a 

homology transfer approach, we are not able to model ligands when there are no cofactors in 

any of the protein template structures. Secondly, if the model was not correctly built or the 

binding site was modelled using a template which did not have any ligand, it might happen that 

the binding site cannot accommodate the selected ligand. Finally, the templates of a target may 

not be annotated yet in UniProt and, thus, the relevance of their cofactors would remain 

uncertain. 

In the future developments of our method, we will try to address these issues using several 

strategies. For example, if there are no ligands in the templates, a pocket detection algorithm 

could be used to predict binding sites in the target, which would be later compared to a set of 

protein sites binding experimentally annotated compounds. Otherwise, a Potential of Mean 

Force approach could be used to create a set of statistics for ligand-binding site complexes, from 

which the conformation of the candidate ligand in the model could be inferred. In the case of a 

model with a bad quality binding site, one solution (alternative to ligand docking) would be to 

rebuild the model using the template from which the candidate ligand was selected by our 

scoring function. Finally, if the experimental annotation of a protein cofactor is not included in 

UniProt, it could be retrieved from additional sources, like the Kyoto Encyclopedia of Genes and 

Genomes (KEGG) COMPOUND database (http://www.kegg.jp/kegg/compound/). However, this 

type of databases includes only the ligand interacting with a protein and does not indicate the 

binding site, which should be validated by an additional source of annotations. 
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Supplementary information 

Table 1 Complete list of ligands and their frequency within the CAMEO targets composing testing set. The 
percentage column indicates the fraction of relevant ligand instances over the total number of relevant 
compounds. 

Ligand name or PDB code CAMEO category relevant not_relevant percentage 

CA I 178 55 17.72908367 

ZN I 163 28 16.23505976 

MG I 111 116 11.05577689 

Fe-S clusters O 75 28 7.470119522 

NAD(P) O 58 2 5.77689243 

FE ions I 58 2 5.77689243 

A/G-phosp. O 57 1 5.677290837 

Heme O 56 0 5.577689243 

MN ions I 32 3 3.187250996 

Biopterin O 28 0 2.788844622 

FAD O 14 0 1.394422311 

Glucose-like O 12 1 1.195219124 

U/T-phosp. O 11 0 1.09561753 

CU ions I 10 11 0.996015936 

S-AdenosylMeth. O 10 0 0.996015936 

Glutathione O 9 0 0.896414343 

Flavins O 9 0 0.896414343 

GLY O 9 0 0.896414343 

Cholesterol O 7 0 0.697211155 

polynucleotides N 7 5 0.697211155 

Molybdopterin O 6 0 0.597609562 

polypeptides P 6 9 0.597609562 

ASP O 6 0 0.597609562 

Triiodothyronine O 5 1 0.498007968 

OXY O 4 1 0.398406375 

IMD O 4 5 0.398406375 

Pyridoxal-phosp. O 4 0 0.398406375 

Coenzyme A O 3 0 0.298804781 

Sugar alcohols O 3 0 0.298804781 

ARG O 3 0 0.298804781 

LBT O 3 0 0.298804781 

22B O 3 0 0.298804781 

NI I 3 5 0.298804781 

CAA O 3 0 0.298804781 

HIS O 2 0 0.199203187 

ADE O 2 0 0.199203187 

TRP O 2 0 0.199203187 
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UPG O 2 0 0.199203187 

BET O 2 0 0.199203187 

MO ions O 2 0 0.199203187 

FOL O 2 0 0.199203187 

PAU O 2 0 0.199203187 

ICS O 2 0 0.199203187 

POP O 1 0 0.099601594 

BG6 O 1 0 0.099601594 

ILE O 1 0 0.099601594 

3PG O 1 0 0.099601594 

STR O 1 0 0.099601594 

TES O 1 0 0.099601594 

BXP O 1 0 0.099601594 

ORO O 1 0 0.099601594 

STL O 1 0 0.099601594 

LEU O 1 0 0.099601594 

CE6 O 1 0 0.099601594 

CE5 O 1 0 0.099601594 

CYS O 1 0 0.099601594 

CTR O 1 0 0.099601594 

Arabinofunarose O 1 0 0.099601594 

ASD O 1 0 0.099601594 

 

 

Table 2 PDB codes of the ―cognate‖, or biologically relevant, small molecules taken from FireDB. 

00A, 00C, 01A, 01B, 03F, 03W, 045, 06C, 13P, 149, 152, 15L, 16G, 17Z, 188, 191, 1AL, 1CA, 1CL, 1CP, 

1CU, 1GN, 1GP, 22B, 2AM, 2DG, 2FP, 2GP, 2HA, 2HP, 2MC, 2MO, 2MR, 2OB, 2OM, 35G, 3CO, 3CP, 

3GC, 3GP, 3H9, 3HC, 3ML, 3PG, 46D, 46M, 488, 4IP, 4ML, 4MO, 4PS, 5GP, 5RP, 6MO, 8OG, A, A3P, 

A4D, A5P, A8S, ABF, ABU, ACD, ACH, ACO, AD0, ADA, ADE, ADP, ADQ, ADX, AFP, AG2, AGC, AHR, 

AIR, AKG, ALA, ALE, ALL, ALO, AMP, AMZ, AND, ANE, ANR, AOR, AOS, ARA, ARB, ARG, AS1, AS4, 

ASD, ASN, ASP, ATP, B12, B1M, B1Z, B2G, B4G, BAL, BCA, BCL, BCO, BCR, BCT, BDP, BEM, BET, 

BG6, BGC, BGP, BIO, BLA, BLD, BMA, BPB, BPD, BPH, BT5, BTN, BXP, BYC, BZX, C, C0R, C1O, C2F, 

C5P, CA, CAA, CAO, CAP, CAQ, CBI, CBU, CBY, CCQ, CDL, CDN, CDP, CE5, CE6, CE8, CEG, CFM, 

CFN, CFO, CGL, CH, CHL, CIR, CIS, CL1, CL7, CLA, CLF, CLL, CLP, CLR, CM1, CM2, CMO, CMP, 

CN1, CNB, CNC, CNF, CO2, CO6, CO8, COA, COB, COD, COH, COJ, COO, COS, COW, COZ, CP2, 

CP3, CRN, CSE, CTP, CTR, CU, CU1, CU3, CUA, CUB, CUK, CUM, CUN, CUO, CXR, CYC, CYS, CYT, 

CZL, D2V, DA, DA2, DAC, DAK, DAL, DC, DCC, DEF, DFL, DFV, DG, DGL, DHB, DHC, DHE, DHT, DI, 

DLZ, DN, DNO, DOC, DPM, DPN, DQR, DT, DTP, DU, DXC, E2P, EA2, EB4, ECH, EDC, EFE, EIC, 

EMU, F3S, F42, F43, F4S, F6P, F6R, FA, FAD, FAQ, FBP, FCA, FCB, FCI, FCO, FDA, FDC, FDP, FE, 
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FE2, FEL, FEO, FER, FES, FMN, FOC, FOL, FPC, FPP, FRE, FRU, FS1, FS2, FS3, FS4, FSF, FSO, 

FUB, FUC, FUD, FUM, G16, G1P, G1R, G2Q, G2R, G3H, G3P, G4P, G6P, G6Q, GA3, GA4, GAE, GAL, 

GAR, GCD, GCS, GCU, GCV, GDC, GDD, GDP, GDR, GDU, GLA, GLC, GLN, GLO, GLP, GLU, GLV, 

GLY, GMP, GNP, GP5, GRA, GRG, GSH, GTP, GTR, GTS, GTT, GUD, GUN, GZL, H35, H4B, H4M, 

HAM, HAS, HBI, HC4, HCB, HCC, HCN, HCO, HDC, HDD, HDE, HEA, HEB, HEC, HEG, HEM, HEQ, 

HGS, HIF, HIS, HMG, HPA, HSC, HSE, HSM, HSO, HTL, HXC, I0P, I2A, I2P, I3P, I3S, I4P, I5P, I6P, IAC, 

ICA, ICS, ICT, IDR, IGP, IHP, ILE, IMD, IMI, IMP, IND, INS, IP1, IP2, IPL, IPR, ISC, ISD, ITM, ITT, JB2, 

JB3, JN3, KDG, KDP, KOJ, LAI, LAN, LAT, LBT, LBV, LDP, LEU, LFC, LFR, LGU, LMG, LNL, LNR, LPA, 

LUM, LYS, M1P, M2P, M43, M6P, MAB, MAN, MAX, MC4, MCA, MCN, MDO, MET, MEV, MG, MH2, 

ML1, MLC, MLR, MM4, MMP, MN, MN3, MNH, MO, MOM, MOO, MOS, MOW, MP1, MQ7, MQ8, MQ9, 

MRR, MRS, MSS, MTA, MTL, MTQ, MTT, MTV, MXY, MXZ, MYA, MYR, NAD, NAI, NAP, NBC, NCA, 

NDP, NFC, NFE, NFO, NFR, NFS, NFV, NG1, NGA, NI, NIO, NLG, NMN, NO, NOS, NTM, NTN, OAA, 

OC1, OC2, OC3, OC4, OC5, OC6, OC7, OC8, OCR, OFE, OMO, OMP, OPC, ORN, ORO, OXK, OXS, 

OXY, P5P, P7I, PAB, PAU, PC, PCA, PCD, PCG, PDP, PEB, PEE, PEP, PG2, PGP, PHE, PIE, PLP, 

PNS, POP, POR, PP9, PPR, PQN, PQQ, PRO, PTE, PTR, PTT, PUB, PVL, PVN, PXL, PXM, PXP, PYG, 

PYH, PYM, PYQ, PYR, QDK, QUE, R1P, R5P, RAF, RB5, RBF, RCC, REA, RED, RET, RG1, RIB, RIP, 

RNS, RNT, ROA, ROM, RTL, RUB, RUT, S0N, S3P, S6P, SAC, SAH, SAM, SAR, SCA, SCG, SER, SF3, 

SF4, SFT, SMO, SOR, SPF, SPH, SPN, SPO, SRM, SRO, ST9, STE, STL, STR, SUG, SUO, SUP, T1G, 

T3, T3P, T6P, TC6, TCH, TDP, TDR, TES, TGC, TH3, THG, THM, THP, THR, TMP, TP7, TPO, TPP, 

TPQ, TPS, TRA, TRP, TRQ, TS5, TSS, TTP, TTQ, TYD, TYR, U, U10, U5P, UAG, UD1, UD2, UDP, 

UMA, UMP, UP2, UP3, UPG, UQ, UQ1, UQ2, UQ7, UQ8, URA, URC, URI, UTP, VAL, VBN, VD3, VDX, 

VDY, VER, VIB, VIT, VIV, VK3, WCC, XAN, XCC, XMP, XX2, XX3, XXP, XYL, XYP, XYQ, XYS, ZEA, 

ZIR, ZN, ZNH. 

 

Table 3 PDB codes of the ―ambiguous‖ ligands adapted from FireDB. 

1BO, 3GR, ABA, ADN, AG, AME, APR, ASC, ASE, BES, BR, CAC, CD, CFF, CIT, CL, CLM, CO, CO3, 

CYN, DCE, DSN, FLC, FUL, IOD, K, LAC, MAL, MLA, MLI, MLT, NA, NH2, NH4, NO3, OLA, OXL, PAM, 

PLM, PO4, RAM, SCN, SEP, SIA, SIN, SMX, SO4, SPD, SPM, SUC, TLA, TRE, URE, XD2, V, W, WO4, 

WO5, VO4. 
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7. Moment invariants for binding sites description 

Introduction 

The shape of any distribution can be mathematically described by a set of quantitative measures 

called ―moments‖. The moments which are most commonly used to characterize a given 

distribution are mean, variance, skewness and kurtosis. Additional types of moments, those 

beyond the 4th-order, involve non-linear combinations of the data and are useful to describe or 

estimate further shape parameters; however, since these moments are harder to estimate and 

subtle to interpret, they are in general less used.  

Moments can be further distinguished in ―central‖, when they are computed in terms of the 

deviations from the mean, and ―ordinary‖, in case the reference point is the zero; the former type 

of moments is usually preferred, as it is only dependent on the spread and shape of the 

distribution, rather than on its location.  

The first moment is the mean, which is the average value of a distribution. The second moment 

is the variance, which is a non-negative quantity defined as the square mean of the distances of 

the values from their mean and represents the spread of the data. The third moment is the 

skewness, which measures how much the distribution is asymmetrical; it equals zero if the 

distribution is perfectly symmetrical. The fourth moment is the kurtosis, which describes whether 

the distribution is peaked and narrow or flat and wide, with respect to a Gaussian distribution 

having the same variance. Any central moment can be normalized and is independent on the 

scale if divided by the variance elevated to the order of the moment.  

The ―moment invariants‖ are functions of the moments such that they do not change their value 

when the distribution is transformed. Moment invariants can be used to describe the shape of a 

three-dimensional distribution of points, independently from their position and orientation. 

Although they are mostly employed in image analysis, these shape descriptors have been also 

used in the structural biology field as feature vectors to efficiently represent and compare 

protein-protein interfaces [1].  

Our aim is to adopt moment invariants as protein pocket descriptors in the context of the de 

novo ion binding site prediction. 
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Methods 

We collected from the PDB database [2] a set of about 13000 X-ray protein structures that had a 

minimum resolution of 2.5 Angstroms, a R-value ≤ 0.25 and that were bound to divalent cations 

(Calcium, Copper, Iron, Magnesium, Manganese, Zinc). Next, we only kept those structures 

whose bound ion was annotated in UniProt/SwissProt [3] in order to create a set of proteins 

which had experimental evidence of the interaction with a cation. This filtering step produced 

1675  proteins, in which 325 were bound to Calcium, 65 to Copper, 82 to Iron, 119 to 

Manganese, 274 to Magnesium and 435 to Zinc. Ignoring the ions that were bound to less than 

3 protein residues resulted in a total number of 1187 binding sites. 

In each binding site, we divided the residues in clusters according to the type of atom that was in 

contact with the ion. For simplicity, every atom was mathematically represented by a Gaussian 

density function in the three dimensions. For each cluster, the first three moment invariants 

(mean, variance, skewness) were calculated using three different approaches: (i) considering 

only the atoms in direct contact with the ion, (ii) using all the atoms belonging to the whole 

residues and (iii) utilizing only the C-alpha carbons. Accordingly, each cluster of residues was 

represented by 9 values, corresponding to the sum of the residue moments (1st, 2nd and 3rd) 

along each axis (x, y and z).  

In particular, the first moment was calculated as: 

𝜇1,𝑋 =   𝑎𝑘 − 𝑥  

𝑘

 

𝜇1,𝑌 =   𝑎𝑘 − 𝑥  

𝑘

 

𝜇1,𝑍 =   𝑎𝑘 − 𝑥  

𝑘

 

the second moment was calculated as: 

𝜇2,𝑋 =    𝑎𝑘 − 𝑥  2 + 𝜎2 

𝑘

 

𝜇2,𝑌 =    𝑎𝑘 − 𝑥  2 + 𝜎2 

𝑘
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𝜇2,𝑍 =    𝑎𝑘 − 𝑥  2 + 𝜎2 

𝑘

 

and the third moment was calculated as: 

𝜇3,𝑋 =    𝑎𝑘 − 𝑥  3 + 3 𝑎𝑘 − 𝑥  𝜎2 

𝑘

 

𝜇3,𝑌 =    𝑎𝑘 − 𝑥  3 + 3 𝑎𝑘 − 𝑥  𝜎2 

𝑘

 

𝜇3,𝑍 =    𝑎𝑘 − 𝑥  3 + 3 𝑎𝑘 − 𝑥  𝜎2 

𝑘

 

where 𝑎 indicates the position of the 𝑘th atom and 𝑥  the centre of mass of the residue cluster, 

which is used as origin, or central point, for the shape density of the residue cluster. These 

moments were subsequently normalized and transformed in order to make them ―invariant‖ to 

their position and orientation in the three-dimensional space, as described in [1]. The moment 

invariants were finally grouped in a feature vector to represent the binding site; in this way, the 

binding sites could be compared to each other by their distance in the Euclidean space. To verify 

that the moment invariants could be sufficiently accurate in describing the binding sites of our 

dataset and, more importantly, in classifying them according to the bound ion, we used a two-

step procedure: first, we employed the R implementation of the Partition Around Medoid (PAM) 

algorithm [4] to cluster the moment invariants; secondly, we measured the level of correct 

clusters partitioning through the ―silhouette‖, a graphical aid for the interpretation and validation 

of cluster analysis [5]. The PAM method, which belongs to the k-means family of algorithms, 

divides a dataset in an a priori defined number of groups and clusters the points in the dataset 

by minimizing the sum of their pairwise dissimilarities. This approach is more robust against 

outliers and noise with respect to the other k-means methods, which employ the sum of squared 

Euclidean distances to create the clusters. In our case, the PAM method provides a useful way 

to group the moment invariants, particularly because we already know the expected number of 

clusters, which corresponds to the number of different ions in the dataset. The main advantage 

of the silhouette is to provide a graphical evaluation of the clustering validity, that is, to estimate 

whether the points in a dataset were correctly clustered in the appropriate group. An average 

value close to 1 indicates that the number of clusters accurately reproduced the classification of 

the underling members, while an average value close to -1 means that most of the data points 

(in our case, the binding sites) were assigned to the wrong cluster. 
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Results and discussion 

The aim of this project was to investigate whether the moment invariants could be used to 

efficiently describe the geometry of ion binding sites, and therefore, for the de novo identification 

of ion binding sites in a protein model. To verify the ability of moment invariants in representing 

binding sites, we clustered them and evaluated whether the resulting number of groups was 

coherent with the expected number of clusters, corresponding to the 6 different types of ions 

which were present in our dataset. Accordingly, the maximum average silhouette value should 

have been measured when dividing the moment invariants in exactly 6 groups. We clustered the 

moment invariants with a variable number of groups, ranging from 2 to 10, and for each round 

we calculated the silhouette. Figure 7.1 shows the silhouettes measured with 2 clusters, while 

Figure 7.2 illustrates the silhouettes obtained using 6 clusters. In both cases all the atoms of the 

binding residues were used to calculate the moment invariants.  

 

Figure 7.1 Silhouette plot of the moment invariants clustered in 2 groups. On the top left corner, ―n‖ 
indicates the number of binding sites; at the right side of each silhouette, it is indicated the number of 
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points in the cluster and the silhouette width; at the bottom of the figure, it is shown the average silhouette 
width of the 2 clusters.  

 

Figure 7.2 Silhouette plot of the moment invariants clustered in 6 groups. On the top left corner, ―n‖ 
indicates the number of binding sites; at the right side of each silhouette, it is indicated the number of 
points in the cluster and the silhouette width; at the bottom of the figure, it is shown the average silhouette 
width of the 6 clusters.  

The maximum average silhouette was 0.63 and was obtained by setting to 2 the number of 

clusters; using different numbers of clusters, the maximum average silhouette was always lower 

than this value. For example, as shown in Figure 7.2, using 6 clusters produced a value of 0.54. 

The highest average silhouette was found using 2 clusters also when we calculated the moment 

invariants by selecting only the atoms in contact with the ions, as well as when we selected only 

the C-alpha carbons of the binding residues. 

Since the expected number of clusters with the best silhouette was 6 instead of 2 (as shown by 

the silhouette), these results suggest that the moment invariants, even when calculated 

separately for each type of residue in contact with the ion, are not a suitable method to 

accurately describe in detail the ion binding sites. We performed the same analysis for the 
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comparison of the different coordination geometries created by each ion. The silhouette values 

of the clustered sites followed the same behaviour as in the comparison of all ion sites, meaning 

that the binding sites of each ion were optimally clustered in two groups, independently of the 

actual number of coordination geometries. These outcomes can be better understood by taking 

into account the fact that the distributions of the ionic distances and of the coordination numbers 

– i.e. the number of atoms making a bond with the ion – are very similar among the ions found in 

proteins [6]. Moreover, protein ion binding sites can be arranged in a distorted shape that makes 

its classification into a well defined geometry more difficult. Hence, these features are not 

enough different from one ion binding site to another and, therefore, moment invariants cannot 

be efficiently used to distinguish ion binding sites. 

However, organic ligand binding sites are more diverse in shape with respect to ion binding 

sites; therefore, an interesting development for future studies would be to investigate whether 

the moment invariants could be successfully applied for their identification and classification. 
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8. Conclusion 

In this thesis we presented the assessment of the current methods for the prediction of ligand 

binding sites in protein models, during the last two rounds of the CASP experiment. In addition, 

we described the development of a pipeline for modelling small molecules in homology models 
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and the prediction of their binding sites. Finally, we tested a novel approach for the description 

of ion binding sites. 

In the recent CASP9 and CASP10 editions, the evaluation of the ligand binding site predictors 

for proteins without a known structure indicated the strengths and weakness of the current 

state-of-the-art prediction methods. The results showed that the most successful participants 

employed approaches based on the transfer of binding residue annotations from the target 

homologous proteins to the model. The main limitation of these methods resides in the variable 

availability of binding information, either retrieved from the protein sequences or from the 

structures with bound ligands. Both in CASP9 and CASP10, the assessment method showed 

some limitations. The first was the low number of targets bound to relevant ligands; the second 

consisted in the binary classification of the target residues in either ―binding‖ or ―non-binding‖, 

without any measure of confidence; the third limitation was the absence of any information 

regarding the type of bound ligand. The CAMEO server was developed to address these 

weaknesses, in order to provide a fast and accurate assessment of the current methods and to 

guide the development of the binding site prediction field towards new directions. 

We implemented a baseline homology transfer predictor in SWISS-MODEL to provide a 

reference performing method of ligand binding site prediction for comparison with more 

advanced methods within CAMEO. The method consisted in the transfer of the template ligands 

into the model and in the identification of the conserved residues that were in contact with small 

molecules. Despite being a baseline approach, our method achieved a very good performance, 

especially in the ion category. However, since these good results were obtained only for a 

limited number of targets, this prompted us to develop an improved version for the new SWISS-

MODEL server, based on a multi-template approach and focussed on the modelling of 

biologically relevant ligands. We compared, in a blind test, our new method with the two best 

public servers that provided models with bound ligands in the CAMEO Ligand Binding section. 

We showed that our performances, in the ion and organic categories, were overall more 

accurate with respect to the other two servers, both in terms of ligand type and of conformation 

within the model. These results indicate that the identification of biologically relevant ligands in 

templates plays an important role in the prediction of the correct ligand for a given target and, 

moreover, suggest that the ligand conformation found in the template is enough precise to not 

require an additional refinement step. Furthermore, these results indicate that while the binding 

prediction field is mature enough to produce accurate results, new methods should focus on the 

precise modelling of the ligand itself and of its binding residues. A further improvement in the 
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direction of ligand and binding site modelling could be the selection of the template based on 

the best candidate ligands for the target. This approach should allow building models with better 

quality in the binding site region and a more precise ligand annotation than current homology 

methods, although the quality in other parts of the models may become worse. This 

consideration would promote the development of modelling pipelines that employ a template for 

the binding site and another for the rest of the target. On the other hand, the limitation imposed 

by available ligands in protein structures suggested that the development of de novo ligand 

modelling methods might represent a valuable alternative. 

Finally, we tested the moment invariants as a new approach for an efficient description and 

comparison of ligand binding sites in a de novo predictor; however, we concluded that this 

representation of ion binding sites was not a suitable option, mostly because it was not enough 

accurate in discriminating different binding sites. In the future steps of the analysis, it will be 

interesting to verify whether these descriptors could be successfully used to represent and 

identify the binding sites of organic ligands. 
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