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Chapter 1 

General Introduction 

Climate change in alpine tundra 

Mountain ecosystems represent a terrestrial region characterized by high biodiversity, due 

to factors such as paleogeographical processes, spatial isolation driving migration and evolution, 

in addition to the availability of strongly heterogeneous microhabitat types, leading to a high 

degree of specialization (Körner 2003, Casazza et al. 2005, Scherrer and Körner 2010). Climate 

change, however, is expected to drive strong, pronounced environmental shifts in alpine 

ecosystems, leading to potential reductions in alpine biodiversity (e.g. Nogues-Bravo et al. 2006, 

Engler et al. 2011). Temperatures in the Swiss Alps have warmed on average by 1.5K between 

1974 and 2004 (Rebetez and Reinhard 2008). These increasing average air temperatures lead to 

less precipitation falling as snow overwinter, with lower snow accumulation and accelerating 

snowmelt in spring leading to a longer growing season (Beniston et al. 2003). Declines in 

snowpack and earlier snowmelt as a result of warming have already been observed and modelled 

in many mountain ecosystems (e.g. Pederson et al. 2011, Harpold et al. 2012), including the 

Swiss Alps (Rixen et al. 2012, Alaoui et al. 2014). 

 As a response to climate change, Thuiller et al. (2005) predicted biodiversity loss of up to 

60% in European mountain ecosystems before the end of the century, though models operating at 

broad spatial scales may over-predict plant extinction, as mountain ecosystems have highly 

heterogeneous microtopography where environmental predictors may vary on a fine spatial scale 

(Randin et al. 2009). Despite disagreements on the scale of species loss, however, many alpine 

ecosystems and associated plant communities are already showing effects of climate change. 

Multiple studies (e.g. Pauli et al. 2012, Wipf et al. 2013) have documented increasing 
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biodiversity on mountain summits in Europe, since plants migrate to higher altitudes as warming 

temperatures reduce low-temperature filters. Further, species upper distribution limits, and thus 

new source populations, are also migrating upward (e.g. Walther et al. 2005, Lenoir et al. 2008, 

Frei et al. 2010). This novel species migration has in turn been sometimes been associated with 

declines in high-alpine species (Pauli et al. 2007, Lesica 2014). Finally, Dullinger et al. (2012) 

have predicted extinction debts for many alpine species, driven by the lag between loss of 

climatically suitable habitat and species disappearance in alpine habitats. Thus, since alpine 

species diversity and biomass are generally driven by the interactions of climatic conditions and 

species interactions (Kikvidze et al. 2005), changing climatic conditions and shifting species 

interactions may lead to complex changes in alpine plant communities. Thus, it is critical to 

understand the interactions between ongoing changes in temperature, snow cover, community 

interactions and species-specific responses to climate change in order to predict the effects of 

changing climate regimes on alpine plants.  

 

Snowmelt, warming and alpine communities 

In alpine habitat, highly heterogenous microtopography leads to snowmelt patterns 

demonstrating strong spatial consistency from year to year (Körner 2003) and classical ecological 

studies have extensively examined the role in snow cover as the fundamental control over the 

distribution and structure of alpine plant communities (summarized in Körner 2003). Alpine 

communities are generally structured based on species tolerance for snow pack duration, and thus 

growing season length, with snow also having an indirect effect on soil quality and neighbor 

interactions (Galen and Stanton 1995). In addition, many alpine plant species are closely 

phenologically linked with snowmelt timing (Keller and Körner 2003, Wipf and Rixen 2010), as 
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snowmelt generally marks the beginning of the growing season for alpine species (Schöb et al. 

2009). Advances in snowmelt timing can thus represent a critical abiotic change for alpine plant 

communities, as it increases the duration of the photosynthetic period (Inouye 2008), and can 

lead to increased drought exposure, spring frost events and damage by herbivores and 

phytopathogens (Roy et al. 2004,        -Benavides et al. 2007, Inouye 2008). Warming can 

also strongly impact alpine plant communities; it may increase productivity, but can also lead to 

the loss of certain thermal habitats optimal for alpine species (Scherrer and Körner 2010), in 

addition to altering the biotic interactions that play an important role in structuring alpine plant 

communities (HilleRisLambers et al. 2013).    

 

Alpine shrub responses to a changing climate 

 Dwarf shrubs in temperate mountains represent an interesting case of alpine vegetation: 

they are woody, low-lying, often clonal, and can be very long-lived; Körner (2003) described 

so   clo al dwarf shrubs as “fu ct o ally    ortal.” Alp    shrubs ar  co  o  a d oft   a 

dominant species in alpine plant communities. Understanding how long-lived shrub species react, 

in addition to their potential to respond to changing climates, will help us project the future 

structure and functioning of alpine plant communities. 

 In both alpine and Arctic ecosystems, shrub expansion has been extensively documented 

as a result of changing climatic conditions (e.g. Myers-Smith et al. 2011, Hudson et al. 2011, 

Elmendorf et al. 2012). Shrub expansion has multiple impacts on ecosystem functioning in the 

tundra, including snow trapping, warming through albedo alteration, and alterations of soil 

temperature and moisture (Myers-Smith et al. 2011) and thus is a topic of critical ecological 

importance. However, dwarf shrubs have shown widespread reductions under climate changes 
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that have led to expansion of taller shrubs in the Arctic (Elmendorf et al. 2012). Thus, 

understanding the mechanisms of dwarf shrub responses to the warming and accelerated 

snowmelt characteristic to alpine climate change remains an important research question. 

To predict how alpine shrub communities will respond to climate change, we must 

understand the complex interplay between multiple biotic and abiotic drivers of shrub response. 

Salix herbacea, the snowbed willow, is a prostrate dwarf shrub occupying a wide range of 

microhabitat types in in arctic, subarctic and alpine ecosystems (Beerling 1998). In the Alps of 

eastern Switzerland, it covers a long elevational gradient (~800 m) and a wide range of snowmelt 

microhabitats with distinct plant communities, from early-exposure ridges with little winter snow 

cover to late-lying snowbeds with very short growing seasons. Thus, it represents an excellent 

candidate species for examining fitness and performance of alpine dwarf shrubs in response to 

microclimatic conditions, and quantifying how a common dwarf shrub will respond to 

accelerating spring snowmelt timing, warmer growing seasons, including associated shifts in 

plant-plant interactions within the alpine plant community. Further, we can examine the 

frequency and impacts of damaging phenomena like spring frosts, herbivory, and phytopathogen 

infection, and predict how these events may influence shrub performance changing climate 

conditions.   

 

This doctoral thesis 

The main objective of this doctoral thesis was to determine how the common dwarf shrub 

Salix herbacea will respond to climate change. Specifically, we posed the following questions: 
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1. Which functional traits of S. herbacea are primarily controlled by the temperatures 

during the growing season, and which are mainly affected by snowmelt timing?  

2. Which traits demonstrate plastic responses to changes in snowmelt timing, and does S. 

herbacea demonstrate any evidence of a home-site advantage which could suggest 

local adaptation to particular microhabitat conditions? 

3. How are trait responses of S. herbacea to warming and snowmelt acceleration 

mediated by neighbor interactions with the alpine plant community? 

4. Does spring frost damage represent a significant threat to S. herbacea and the alpine 

shrub community under climate change?  

 

Study sites and experimental design 

Our field study sites were established in 2011 on three mountains near Davos, in the 

eastern Swiss Alps: Jakobshorn (46°46' N, 09°50' E, 2100 to 2600 m asl), Schwarzhorn (46°44' 

N; 09°57' E, 2380 to 2780 m asl) and Wannengrat (46°48' N, 09°46' E, 2280 to 2640 m asl). At 

2090 m asl on Jakobshorn, at the Stillberg climate station, average annual air temperature and 

precipitation from 1975-2012 have been recorded as 2.06 °C and 1150 mm, respectively, with 

48% of yearly precipitation falling between June and September (Rixen et al. 2012). Snowfall 

may occur in all months, but standing snow cover usually occurs from mid-October until late in 

May (Wipf et al. 2009). During almost four decades of observation, mean air temperatures during 

the summer months (June, July and August) at Stillberg have increased at a rate of 0.58°C per 

decade, with a corresponding spring snowmelt acceleration of 3.5 days per decade (Rixen et al. 

2012). 
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In a space for time substitution study, we established three elevational transects, one on 

each mountain, where at ten elevational bands, we placed study plots (c. 3x3 m) in two early-

exposure ridge microhabitats and two late-exposure snowbed microhabitats. All microhabitat 

sites had similar primarily NE exposure and covered the main elevational range of S. herbacea. 

In each of these 120 study plots, we selected four S. herbacea patches of 10 cm diameter, for a 

total of 480 patches, and marked them for long-term monitoring. For all study patches, we 

monitored shrubs weekly from first exposure from snow until leaf senescence during spring and 

summer in 2011, 2012 and 2013. Every week, we visited patches to record leaf developmental 

status, proportion of stems flowering per patch, proportion of stems fruiting per patch and 

presence of leaf tissue damage by herbivores and fungi. Once per season, we recorded stem 

number and mean leaf area for each patch. We performed non-structural carbohydrate (NSC) 

analysis on wood tissue (stems) in 2012 to determine seasonal carbon accumulation potential. 

The results of this study are detailed in Chapter 2. 

We then established a neighbor removal experiment in 60 of the abovementioned study 

plots (20 per mountain, 10 ridges and 10 snowbeds). Sixty patches of S. herbacea were selected, 

and all neighbouring vegetation in the surrounding 40 cm was removed in 2011, in order to 

determine the effects of neighbor interactions along snowmelt and elevation gradients on S. 

herbacea in 2013. We discuss this study in Chapter 4. Further, we conducted a freezing 

resistance study within one transect in this study. On eight plots on the Jakobshorn transect in 

2012, we sampled leaf tissue from four alpine shrubs species for a laboratory study to determine 

freezing resistance and relative vulnerability to spring frost events based on elevational position, 

microhabitat of origin and species. This study is discussed in Chapter 6. 



7 
 

At the base of the Schwarzhorn transect, we established a reciprocal transplant experiment 

to examine trait plasticity and determine local adaptation in S. herbacea to home microhabitat 

conditions. On twelve paired ridge-snowbed sites, we reciprocally transplanted 336 S. herbacea 

turfs in 2011and monitored phenology, sexual reproduction, stem number, leaf size and leaf 

damage over the following two years. The details of this study are examined in Chapter 3. 

 

Specific objectives of each chapter 

Chapter 2: The snow and the willows: Accelerated spring snowmelt reduces performance in the 

alpine shrub Salix herbacea 

In this chapter, we examined the relative importance of warming (using temperature lapse 

along elevation gradients) and growing season length (using natural snowmelt range between 

microhabitats) as drivers of trait variation in S. herbacea over three consecutive years.  Current 

literature suggests that changes in shrub abundance in alpine and arctic tundra ecosystems are 

primarily driven by these environmental factors, but as warming and earlier snowmelt can be 

decoupled, we need to understand the effects of both factors on tundra plants to predict future 

vegetation change. This study used a space for time substitution along elevation and snowmelt 

gradients to determine the effect of warming and accelerated snowmelt on phenology, sexual 

reproduction, growth, carbon balance and damage probability. Specifically, we hypothesized that 

earlier snowmelt would accelerate phenological timing, but fail to increase vegetative growth or 

sexual reproduction, while low-elevation warming would benefit sexual reproduction and 

vegetative production. 
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Chapter 3: The response of the alpine dwarf shrub Salix herbacea to altered snowmelt timing: 

lessons from a multi-site transplant experiment 

This chapter represents a co-first authorship with Janosch Sedlacek (PhD candidate, 

University of Konstanz, Germany). In this study, we examined phenotypic plasticity in response 

to snowmelt change and home-site advantage in Salix herbacea. We tested how S. herbacea 

responded to shifts in snowmelt timing by reciprocally transplanting shrub turfs between early-

exposure ridge and late-exposure snowbed microhabitats, then monitoring phenological, 

morphological and fitness traits as well as leaf damage during the following seasons. This is an 

ecologically important question, as it is critical to understand whether phenotypic plasticity can 

help to adapt to changing snowmelt conditions, and whether a home-site advantage to local 

microhabitat conditions might initially slow shrub response. 

 

Chapter 4: With a little help from my friends: community facilitation for dwarf shrub Salix 

herbacea under climate change 

In this chapter, we examined the influence of community interactions relative to abiotic 

environmental conditions on phenological, functional, fitness traits and damage probability in 

Salix herbacea. We specifically hypothesized that plant-plant interactions would influence traits 

that have the potential for rapid response to changes in neighbor density, such as leaf size. 

Further, we hypothesized that neighbours reduce by sheltering the more prostrate S. herbacea. 

Last, we hypothesized that in accordance with the stress gradient hypothesis, biotic interactions 

would shift from competitive to facilitative as elevation increases and snow melts earlier, as 

environmental stress increases.  
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Chapter 5: Increased spring freezing vulnerability for alpine shrubs under early snowmelt 

 In the final chapter, we examined the role spring frost events play in structuring alpine 

shrub communities. We sampled biomass from four different shrub species at early and late snow 

exposure sites along the Jakobshorn elevational transect to investigate the effect of snowmelt 

time and elevation on shrub growth and risk of exposure to lethal spring and early summer frost 

in four alpine dwarf shrubs. We tested freezing resistance of live mature leaf tissue in the 

laboratory to determine whether shrubs growing in early snowmelt and high-elevation sites were 

more frost-resistant than the same species growing at low elevation and late snowbed sites. We 

hypothesized that despite leading to a longer growing season, earlier snowmelt would not 

enhance shrub growth because earlier snowmelt would increase potential exposure to damaging 

spring frosts. 
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Summary 

Current changes in shrub abundance in alpine and arctic tundra ecosystems are primarily 

driven by warming, changes in snow cover and growing season length. However, while taller 

shrub communities are expanding, dwarf shrubs show reductions under climate warming, and the 

mechanisms driving dwarf shrub reductions (such as warming temperatures or accelerated spring 

snowmelt) may be highly complex. To determine and disentangle the response of a widespread 

prostrate shrub to both climate warming and changes in snowmelt time, we investigated a wide 

range of phenological, growth and fitness traits in 480 patches of Salix herbacea, a common 

alpine and arctic prostrate species, along its elevational and snowmelt microhabitat range over 

three years in a space-for-time substitution. 

Earlier snowmelt was associated with longer phenological development periods, an 

increased likelihood of herbivory and fungal damage, fewer stems and no increase in end-of-

season wood reserve carbohydrates. Furthermore, while early snowmelt was associated with an 

increased proportion of flowering stems, the number of fruiting stems was not, as fruit set 

decreased significantly with earlier snowmelt. Warmer temperatures at lower elevations were 

associated with decreases in stem number and increases in proportion of stems fruiting.  

 

Synthesis 

Our study indicates that most of the measured traits of S. herbacea are influenced by 

snowmelt, and that earlier spring snowmelt mainly reduced performance in S. herbacea. The 

most likely mechanisms for many of the observed patterns are related to adverse conditions in the 

early growing season. Reductions in clonal and sexual reproduction (reduced fruit set) under 

earlier snowmelt, in addition to increasing damage probability, will likely lead to lower fitness 

and poorer performance, particularly in shrubs growing in early-exposure microhabitats. Further, 
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we saw few concurrent benefits of warming temperatures for S. herbacea, particularly as 

warming was associated with lower clonal growth. Under typical global change scenarios for 

arctic and alpine tundra, where growing seasons are both warmer and longer as a result of 

accelerated snowmelt, we conclude that early snowmelt represents an important mechanism 

reducing fitness and performance in a common and widespread dwarf shrub.  

 

Introduction  

Shrub encroachment, the expansion and increased growth of shrub communities as a 

response to climate change, is occurring at an unprecedented rate in many tundra ecosystems (e.g. 

Myers-Smith et al. 2011, Elmendorf et al. 2012). However, shrub encroachment is mainly driven 

by expansion of taller shrubs (Elmendorf et al. 2012); in contrast, dwarf shrubs (<15cm height) 

show widespread reductions as a response to warming (Elmendorf et al. 2012), with simulations 

showing up to 60% habitat loss for prostrate dwarf shrub tundra (Kaplan and New 2006). Since 

they represent such a major component of groundcover in arctic and alpine tundra, it is important 

to understand both the effects of climate change on dwarf shrubs, and their capacity to respond to 

environmental change. Due to their low stature (less than 15 cm, and often prostrate growth 

forms), many dwarf shrubs are strongly ecologically and phenologically dependent on snowmelt 

timing (Wipf et al. 2009, Wipf and Rixen 2010), so it is critical to consider responses to both 

warming and spring snowmelt time. While many recent studies have focussed on the effects of 

warming and altered snowmelt on taller deciduous dwarf shrubs (e.g. Anadon-Rosell et al. 2014, 

Gerdol et al. 2013, Rixen et al. 2012, Wipf 2010), the responses of prostrate shrubs, particularly 

deciduous species, to warming and snowmelt change have been relatively understudied (but see 

Clemmensen and Michelsen 2006, Kudo et al. 2010). 
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Predicting dwarf shrub response to warming and snowmelt change, however, can be 

difficult. Prostrate shrub forms may be strongly decoupled from the atmospheric temperatures 

(Körner 2003b), and thus may be less responsive to temperature extremes. Further, Arctic and 

alpine dwarf shrubs vary in their responses to warming and early snowmelt, and different traits 

do not respond in concert, even within species. Warming has been shown to increase growth and 

biomass production in dwarf shrub Cassiope tetragona, but not in co-occurring prostrate Salix 

arctica (Campioli et al. 2013). The low-lying alpine shrubs Arctostaphylos alpina and Vaccinium 

uliginosum have demonstrated augmented flower production under warming, but no increase in 

seedling establishment (Suzuki and Kudo 2005). Earlier snowmelt has been demonstrated to 

benefit vegetative growth in Loiseleuria procumbens but not in three other co-occurring dwarf 

shrubs (Empetrum nigrum, V. uliginosum, V. myrtillus; Wipf et al. 2009). Early snowmelt also 

accelerates phenology, but with no corresponding vegetative growth or reproductive response in 

eight tundra dwarf shrubs (Wipf 2010). In addition, potentially important traits, such as seasonal 

carbon accumulation, have been extensively studied and helpful in understanding growth 

limitation in trees at treeline (e.g. Körner 2003a, Hoch and Körner 2012) but have rarely if ever 

been examined in low alpine shrubs. Studies examining shrub responses to global change 

typically focus on a narrow range of traits (e.g. relative growth rate, flowering, but see Wipf et al. 

2009 and Wipf 2010, which examined survivorship, phenology, growth and flowering), which 

may represent an unsuitable approach to examining responses in typically long-lived and clonal 

tundra shrubs. Studies also typically examine shrub responses to either altered snowmelt time or 

warming, but not both global changes concurrently.  

Snowmelt timing and warming may also alter the multitrophic biotic interactions for the 

whole shrub community, particularly as it affects exposure to herbivores and pathogens (Roy et 

al. 2004). Again, predicting dwarf shrub responses is difficult, as later-melting snow cover may 
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shelter low-lying shrubs by acting as a barrier to these damage agents or serve to intensify later 

herbivory damage to shrub leaf tissue (Roy et al. 2004). Timing of snowmelt will also control the 

temperature regime, as accelerated snowmelt will allow shrubs to accumulate greater temperature 

sums over the course of the growing season, but also increases exposure to freezing damage 

(Inouye 2008, Wheeler et al. 2014).  

Salix herbacea L. is a widespread and often dominant prostrate dwarf shrub common in 

arctic and alpine tundra, and represents one species facing both warming climates and earlier 

snowmelt. S. herbacea is an optimal species for studying the effects of both warming and 

snowmelt timing, as it occurs along a relatively long elevational gradient and occupies a wide 

range of microsite types, from rocky, early-exposure ridges to late-season snowbeds (Beerling 

1998). Further, in our study area, we did not detect any neutral genetic differentiation between 

sub-populations of S. herbacea in early and late snowmelt microhabitats or along elevational 

gradients, suggesting rampant gene flow throughout the entire S. herbacea population (Cortés et 

al. 2014). This makes it more likely that environmental differences rather than genetic 

differentiation govern trait differences between sub-populations along snowmelt or elevational 

gradients, although genetic differentiation at loci under strong local selection cannot be ruled out 

entirely (Cortés et al. 2014). In our study site in the eastern Swiss Alps, elevation and snowmelt 

timing are generally decoupled (Wheeler et al. 2014), likely due to the highly heterogenous 

microtopography characteristic to alpine terrain (Scherrer and Körner 2011). This allows us to 

consider elevation and snowmelt as independent drivers of prostrate shrub responses to both 

warming (at lower elevation) and earlier snowmelt time.  

Our study seeks to disentangle and determine the effects of two global change drivers, 

accelerated spring snowmelt and warmer growing season temperatures, on a comprehensive 

range of S. herbacea traits, and whether both sexes respond similarly along these environmental 
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gradients. To this end, we collected a large data set over an extended time frame: we investigated 

480 S. herbacea shrubs in the field, along their elevational and snowmelt microhabitat range over 

three consecutive growing seasons in a space-for-time substitution. We used the temperature 

changes along the elevational gradient to represent shifts in mean temperature, similar to 

warming temperatures under climate change, and microhabitat differences were used to simulate 

earlier snowmelt. We investigated a wide range of functional traits along these gradients: in 

males and females, we examined phenophase timing and developmental period, vegetative 

growth, C balance (accumulation of non-structural carbohydrates during the growing season) and 

the likelihood of leaf damage by insect herbivores and fungal phytopathogens. Further, for 

females, we investigated sexual reproductive capacity.  

The objectives of this study were to determine how each set of traits responded to a) 

earlier snowmelt timing and thus an elongated growing season and b) warmer seasonal 

temperatures at lower elevations, in order to evaluate performance in a widespread prostrate 

shrub under climate change scenarios. We hypothesize earlier snowmelt will accelerate 

phenological timing, but will not benefit vegetative growth or sexual reproduction, while 

warming at lower elevations will increase sexual reproduction and vegetative production. This 

study thus represents a novel use of a space for time substitution to predict the effects of two 

global change drivers on an extensive range of phenological, reproductive, growth and carbon 

balance traits, in addition to probability of herbivory and tissue damage by phytopathogen 

elements. The results of this study will thus help disentangle the mechanisms driving trait 

differences which will help predict potential fitness responses and shifts in the low-lying shrub 

community in alpine and Arctic ecosystems. 

 

Materials and methods 
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Study species and sites 

Our study took place along three elevational transects established on mountains near 

Davos, in the eastern Swiss Alps. Jakobshorn (46°46' N, 09°50' E, 2100 to 2600 m asl), 

Schwarzhorn (46°44' N; 09°57' E, 2380 to 2780 m asl) and Wannengrat (46°48' N, 09°46' E, 

2280 to 2640 m asl) all had similar primarily NE exposure and covered the main elevational 

range of S. herbacea. At 2100 m asl at Jakobshorn, a site generally representative of the region, 

1975-2012 average annual air temperature is 2.06 °C and annual precipitation is 1150 mm, with 

snowfall occurring in all months of the year (Rixen et al. 2012). During this 37-years 

measurement period, air temperatures during the warmest months (June-August) have increased 

by 0.58°C per decade, and spring snowmelt has accelerated by 3.5 days per decade (Rixen et al. 

2012). 

 

Data collection 

At 10 elevational bands along transects on each of the three mountains, we established 

study plots (c. 3x3 m) in two ridge microhabitat sites (early season exposure from snow) and two 

late snowbed microhabitat sites (late season exposure), for a total of 120 plots. In each plot, we 

selected four S. herbacea patches of 10 cm diameter, for a total of 480 patches, and marked them 

for monitoring. Of the marked patches, 65 were identified as male, 227 were female, and the 

remainder did not flower during the three seasons of this study. Sex ratios were not significantly 

different along the elevational or snowmelt gradients. All S. herbacea patches were spaced at 

least 1 m apart, to reduce the probability of sampling the same clone multiple times (Stamati et al. 

2007).  

We monitored shrubs weekly from snowmelt until leaf senescence during the 2011, 2012 

and 2013 growing seasons. We recorded snowmelt timing, leaf developmental status (bud break, 
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rolled, open), proportion of stems flowering per patch and proportion of stems fruiting (newly 

mature fruit) per patch weekly, and used these data to determine first observation date of each 

phenophase (phenological stages: leaf opening, flowering, and fruiting) and fruit set (rate of 

successful transition from flowers to fruit). We also recorded leaf tissue damage, with proportion 

of patch leaves damaged by herbivores and fungi since these two were conclusive damage agents. 

Leaf browning, potentially as a result of frost damage, was also observed, but not included in 

later analysis as the actual cause of damage could not be conclusively determined.  

For each patch, we recorded stem density (i.e. number of stems per 10-cm diameter) and 

mean leaf area (i.e. the average area per leaf of two leaves) after full leaf expansion. As 

belowground biomass calculations were impossible in S. herbacea due to complexity of the 

underground root system, the extensive overlapping of clones, and the destructive nature of such 

sampling, we used stem number as a proxy for all biomass production. To support this argument, 

a greenhouse pot experiment showed above-ground stem production correlated strongly with 

belowground biomass production (r=0.86, p<0.0001; Sedlacek unpublished data).  

We performed non-structural carbohydrate (NSC) analysis on sampled wood tissue 

(stems) at the end of the 2012 field season (sampling performed on 16-09-2012). Sampled 

material was dried at 75 °C in a drying-oven for 72 hours within a maximum of six hours after 

sampling, ground to fine powder in a ball mill, and stored dry over silica gel until analysis. NSC 

were analysed using the protocol for the enzymatic-photometric analysis detailed by Hoch et al. 

(2002). NSC were considered to be the sum of the three quantitatively most important free low 

molecular weight sugars (glucose, fructose and sucrose) plus starch, and are expressed as % dry 

wood mass.  

We recorded soil temperature (5 cm below the surface, 2 hour intervals) and snowmelt 

date for each plot using in-situ soil temperature loggers (iButton, Maxim Integrated, San Jose, 
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CA, USA). Logger data were used in conjunction with field observations to determine day of 

snowmelt (date when soil temperature rose abruptly from the near-0°C that characterizes 

continued snow cover). We calculated growing degree days (GDD) above 5°C as derived from 

the two-hour interval means; GDD accumulation was calculated from snowmelt to the end of 

August for each site, and from snowmelt to the first appearance of each phenophase.  

 

Data analysis   

L  ks b tw     l vat o  a d s ow  lt t    w r  a alys d us  g a P arso ’s corr lat o , 

with data for all years pooled. Mean soil temperatures during the growing season were analysed 

along the elevational and snowmelt gradients using a general linear mixed model. Fixed terms 

were snowmelt day and elevation, both centered to a mean of zero to allow appropriate effect 

estimation (Schielzeth 2010). Snowmelt day and elevation were chosen as the fixed terms for the 

models as mean growing season soil temperature was highly correlated with both elevation and 

snowmelt day, while elevation and snowmelt day were not strongly correlated. Thus, we selected 

elevation to act as a general proxy for growing season temperature effects.  The nested random 

factors were study plot, elevational band (an alphanumeric category indicating the proximity of 

four study plots per elevational band) and transect, with year as an additional crossed random 

effect. 

 Variation in all traits was analysed using generalised linear mixed models. For 

phenological development time (first day of leaf expansion, flowering and fruiting, and the period 

of development from snowmelt to each phenophase), proportion of stems flowering per patch, 

proportion of stems fruiting per patch, wood NSC, wood starch, wood sugar, leaf area and stem 

density, we used a normal error distribution. For fruit set, and the presence/absence of leaf 

damage (from herbivory and fungi), we used a binomial error distribution. Fixed terms were 
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snowmelt day, elevation (both centered to a mean of zero; Schielzeth 2010), and sex, for traits not 

related to reproduction. The two-way interactions of all fixed terms were included. The nested 

random factors were plant patch, study plot, elevational band and transect with year as an 

additional crossed random effect. Response variables were transformed to ensure normality of 

residuals when necessary, and standard diagnostic plots were used when appropriate to confirm 

assumptions of linearity and homoscedasticity. Models examining flowering, fruiting, and fruit 

set only included data from female plants, as the number of flowering male plants was much 

lower. All statistical analyses were carried out in R v.2.15.1, using package lme4 (Bates et al. 

2013), with p-values generated using MCMC resampling.  

 

Results  

Temperature and snowmelt along environmental gradients  

There was no significant correlation between elevation and snowmelt time in all years 

combined (r=0.051, t=1.55, p=0.12), suggesting that localized microhabitat effects are more 

important drivers of snowmelt timing compared to landscape-scale elevational gradients. Mean 

soil temperatures during both the full growing season (i.e. from date of snowmelt to the end of 

August) and in the first 30 days following snowmelt increased significantly with later snowmelt 

(t=6.97, p= p<0.0001; t= 3.554, p=0.00065; Figure 1). Along the elevational gradient, full 

growing season mean temperatures decreased significantly with higher elevation, while 

temperature in the first 30 days was not significantly affected (t=-3.715, p=0.00082; t=-1.638, 

p=0.11; Figure 1). There was a significant interaction effect between snowmelt time and 

elevation on mean soil temperature in the first 30 days after snowmelt (t=-3.050, p= 0.0034) and 

a marginally significant interaction effect of snowmelt time and elevation on mean soil 

temperature for the whole growing season (t=-1.921, p=0.058).  
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Phenology and developmental timing 

The first day of occurrence for each monitored phenological stage was controlled by 

snowmelt day, with significantly later first occurrence of each phenophase with later snowmelt 

(Table 1 and Figure 2). Elevation only affected phenology through an interaction with snowmelt 

timing. For first day of leaf expansion and flowering, there was a significant snowmelt day-by-

elevation interaction, with later leaf expansion and flowering day occurring at higher elevation 

sites with later snowmelt (Table 1). The developmental period to each phenophase (number of 

days from snowmelt day to first day of leaf expansion, flowering and fruiting) was significantly 

shorter with later snowmelt (Table 1 and Figure 2), but was not affected by elevation (Table 1). 

First day of leaf expansion and development time to leaf expansion were not significantly 

different between sexes (Table 1), and there were no significant sex-driven differences in timing 

of leaf development along the elevation or snow gradient (Table 1). 

Temperatures accumulated at the days of leaf opening and flowering (i.e., GDD from 

snowmelt to leaf open, GDD from snowmelt to flowering) were not significantly different along 

elevation or snowmelt gradients (leaf open GDD along elevation gradient: t=-1.41, p=0.16; along 

snowmelt gradient: t=-1.48, p=0.14; flowering GDD along elevation gradient: t=0.19, p=0.84; 

along snowmelt gradient: t=-1.12, p=0.26), suggesting that similar temperature-accumulation 

thresholds must be reached for phenological development along the species range, at least for the 

early phenophases. Temperature accumulated at fruiting phenophase (day of fruiting GDD) 

significantly decreased with later snowmelt but not with elevation (t=-2.22, p=0.029; t=0.22, 

p=0.82). 

 

Reproduction 
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The proportion of stems flowering decreased significantly with later snowmelt (Table 1 

and Figure 3), and tended to decrease with elevation, although this was not significant (Table 1 

and Figure 3). The proportion of stems fruiting decreased significantly with elevation (Table 1 

and Figure 3) and was not affected by snowmelt time (Table 1 and Figure 2). The difference 

between flower and fruit production along the snowmelt gradient was explained by fruit set, 

which increased significantly with later snowmelt (Table 1). Hence, the resource allocation to 

more flowers under early snowmelt did not pay off for the plant in terms of actual fruit set. There 

were no significant interaction effects between elevation and snowmelt timing for flower or fruit 

production, or for fruit set (Table 1).  

 

Vegetative growth 

The mean area per leaf was primarily controlled by sex, with females having larger leaves 

(female mean leaf size =82.11 mm
2
, male mean leaf size =76.16 mm

2
, t=2.45, p=0.015). Leaf 

area was not affected by snowmelt timing or elevation (Table 1). Shrub stem number per area did 

not differ significantly between the sexes, and increased with both elevation and later snowmelt 

(Table 1 and Figure 4; N=919, t=4.37, p<0.0001; N=919, t=2.72, p=0.0066). In addition, there 

was a significant interaction between sex and elevation, with male stem density increasing more 

rapidly with elevation (Table 1). 

 

Non-structural carbohydrate concentrations 

Late-season wood tissue NSC and starch concentrations in stem wood were relatively 

high overall (NSC mean=21.65 % dry mass, SE=0.25; starch mean=14.73 % dry mass, SE=0.23), 

demonstrating that carbon was likely not limited across the entire gradient. Neither NSC nor its 

component starch changed significantly with elevation or later snowmelt (Table 1), while 



23 
 

component low-molecular-weight sugars increased with elevation (Table 1). There were no 

significant sex differences between NSC, starch, or low molecular-weight sugars concentrations, 

nor were there significant interaction effects between sex, snowmelt time or elevation (Table 1).  

 

Leaf damage likelihood  

Herbivory and fungal damage to leaf tissue were both relatively common, with herbivory 

occurring in 43.6% of the patches, and fungal damage occurring in 40.2%. The probability of leaf 

damage from herbivores and fungi decreased significantly with later snowmelt (Table 1). There 

was no significant effect of elevation, sex, or any interaction effects on the probability of leaf 

herbivory or fungal damage (Table 1).  

 

Discussion 

In this study, variations in phenological, growth and reproductive traits, and probability of 

damage by external factors in S. herbecea were strongly associated with snowmelt timing, and to 

a much lesser extent, with elevation. Phenological development began earlier but lasted longer 

with earlier snowmelt, with a longer period required to develop to the leaf expansion, flowering 

and fruiting phenological stages. Shrubs growing on earlier exposure sites produced 

proportionately more flowers than later-exposed shrubs, but demonstrated reduced fruit set, so 

that there was no difference in fruit production along the snowmelt gradient. Further, fruit 

production decreased with increasing elevation. Clonal reproduction, as measured by stem 

number, was reduced under earlier snowmelt and at lower elevations. Non-structural carbon 

concentrations in end-of-season wood tissue were high and similar along snowmelt and elevation 

gradients. Leaf damage by insect herbivores and fungal phytopathogens was more likely to occur 
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with earlier snowmelt. Our results suggest that accelerated spring snowmelt time, as opposed to 

mean growing season temperatures, represents the most important driver of trait variation in S. 

herbacea. The poorer performance of growth and reproductive traits under earlier snowmelt, in 

addition to increasing damage probability, suggests a potential reduction of fitness in S. herbacea 

as a result of global change. 

Earlier but slower phenological development under early snowmelt 

In arctic and alpine plant species, accumulation of temperature past a certain threshold is 

often a prerequisite for phenological transitions (Kudo and Suzuki 1999, Molau et al. 2005, 

Huelber et al. 2006). This is generally supported by our data, where growing-degree days (GDD) 

accumulated at the first day of leaf open and flowering were similar along the snowmelt gradient 

and along the elevational gradient. Thus, we conclude temperature largely regulates phenological 

development within the studied environmental range of S. herbacea, as opposed to other potential 

drivers such as photoperiodism. Photoperiodism as a driver here is unlikely, as daylength at 

snowmelt is already near its annual maximum at our investigated transects, and a 15 h day-length 

threshold is generally assumed for the onset of alpine plant growth (Heide 2001). Lower 

temperatures directly after snowmelt for early exposed ridges imply that more time is required to 

reach each temperature-accumulation threshold needed for phenological development, as early-

season temperature accumulation is likely controlled by snowmelt time. This was supported by 

our results, where post-snowmelt temperatures were lower and phenological development was 

slower with earlier snowmelt. Early exposure sites are further characterized by an increasing risk 

of damaging freezing events occurring after snowmelt (Inouye 2008, Wipf et al. 2009). In our 

study sites, exposure to freezing is generally spatially and temporally restricted to earlier 

snowmelt sites, and is likely absent on later-melting snowbeds (Wheeler et al. 2014). 

Consequently, the net outcome of earlier snowmelt for S. herbacea phenology is likely negative, 
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as more time is spent in earlier phenological stages, when plant vulnerability to damage, 

particularly freezing, is higher (Lenz et al. 2013).  

 

Reduced fruit production and vegetative growth under early snowmelt 

 Localized snowmelt time and, correspondingly, growing-season length may play the most 

important role in determining the sexual reproductive response of S. herbacea to environmental 

change, as it controls fruit set. Female shrubs appear to increase flower production when exposed 

earlier from snow, but with no corresponding increase in fruit success. Montesinos et al. (2012) 

found also a strong reproductive investment in female flowers in the dioecious shrub Juniperus 

thurifera, which did not lead to a high seed set, suggesting instead that drought, or extreme 

temperatures, control investment in fruit and seed production. In our study, the decreased success 

in fruit set with earlier snowmelt led to no changes in fruit produced along the snowmelt gradient, 

which indicates a loss of flowers on earlier snowmelt sites prior to fruit maturation. This could be 

explained by a greater likelihood of critical damage to reproductive structures on earlier 

snowmelt sites. Ladinig et al. (2013) found poor freezing resistance of reproductive structures 

compared to vegetative structures in a number of alpine plants, and S. herbacea is likely exposed 

to spring temperatures cold enough to kill even leaves on early exposure sites (Wheeler et al. 

2014). Early season freezing events could explain abortion rate of flowers on ridge shrubs and 

lack of corresponding fruit increase on earlier snowmelt sites. In addition, reduced fruit set in 

earlier snowmelt sites could be related to pollen limitation, potentially caused by fewer insect 

pollinators or co-flowering males; in a pollen addition experiment, Nielsen (2014) found that 

natural pollen limitation limited seed set in S. herbacea.   

Correspondingly, the increase in fruiting with decreasing elevation suggests a positive 

response to warmer temperatures on the larger scale. In both dwarf and taller shrubs 
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Arctostaphylos alpina and Vaccinium uliginosum, enhanced warming has been shown to increase 

reproductive output (Suzuki and Kudo 2005). This suggests that warming temperatures might 

increase fruit production on earlier-exposure sites in the future, meaning that the current 

allocation for increased flowering on ridges could pay off, particularly on lower, warmer early-

exposure sites. However, this scenario might be counter-balanced, as flower-damaging spring 

freezing events are expected to become more common under earlier snowmelt (Inouye 2008, 

Wipf et al. 2009, Gerdol et al. 2013). Further, field germination rates for S. herbacea are likely 

extremely low (<0.02% on ridges, <2% on snowbeds; Wheeler, unpublished data), suggesting 

clonal growth may represent a more important reproductive pathway. 

Both the decrease in stem density and unchanged NSC concentrations with earlier 

snowmelt indicate that S. herbacea does not benefit from early snowmelt (and thus a longer 

growing season) with increased biomass production. This corresponds to Wijk (1986), who also 

found increasing stem density in S. herbacea under later snowmelt conditions. In the few alpine 

accelerated snowmelt studies available, few dwarf shrub species demonstrated any enhancement 

in vegetative growth, with only low-lying shrubs evergreen Empetrum nigrum and Loiseleuria 

procumbens, two species characteristic to exposed microhabitats, showing increased stem 

elongation in response to early snowmelt (Wipf et al. 2009, Wipf 2010). Low stem density could 

be explained by competitive exclusion by shrubs species on earlier snowmelt sites and at warmer 

lower-elevation sites, since the standing vegetation community at these microhabitats was shrub-

dominated, and taller than S. herbacea (Nussbaumer 2012). However, a concurrent neighbour 

removal study covering the same elevational transects demonstrated no evidence of competitive 

restriction of S. herbacea by the surrounding vegetative community on early snowmelt 

microhabitats or at lower elevations (Wheeler et al. unpublished). That study showed the 

presence of neighbours did not reduce vegetative growth or fecundity in S. herbacea, and even 
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suggested the presence of neighbours facilitated S. herbacea, primarily by reducing herbivory 

damage. We suggest that competitive plant-plant interactions are not the factor reducing S. 

herbacea growth in earlier snowmelt sites, and that the lower stem density observed on early-

exposure ridges may be mainly attributable to lower spring temperatures and frost events, which 

have been associated with reduced growth in many alpine shrubs. Wipf et al. (2009) found a 

general decrease in shoot growth in Empetrum nigrum, Vaccinium myrtilus and V. uliginosum 

under accelerated snowmelt which was often correlated with frost exposure. Similarly, Gerdol et 

al. 2013 found reduced leaf size and leaf number in V. myrtillus as a result of frost injury under 

early snowmelt. This suggests that poorer growth in S. herbacea under early snowmelt is a 

response to exposure to unfavourable abiotic conditions, and that growth responses to earlier 

snowmelt in prostrate shrubs may be similar to taller dwarf shrubs. 

 

Leaf damage more frequent under earlier snowmelt 

Greater likelihood of leaf damage under earlier snowmelt conditions can impact plant 

fitness in the short term by reducing growth, flowering, and fruit production (Gerdol et al.2013, 

Viana et al. 2013) and in the long term, if repeatedly hit, as stored resources become depleted 

(Molau 1997). Further, biomass damage under earlier snowmelt may have a critical effect on 

community structure; Olofsson et al. (2011) demonstrated that fungal pathogen outbreaks 

triggered by changes in snowmelt timing can alter the entire community structure in Arctic shrub 

heathland. Our results showed an increasing likelihood of leaf damage by both insect herbivores 

and fungal pathogens with earlier snowmelt at the microhabitat scale. Similarly, Roy et al. (2004) 

found increasing plant damage under earlier snowmelt for most herbivores and pathogens 

examined in an alpine meadow system, likely due to increasing periods available for herbivore 

growth and reproduction. Our results suggest that early-exposed shrubs are more likely to emerge 
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concurrently with the primary leaf-damaging agents, while shrubs emerging later may avoid the 

peak populations of these herbivorous insects and fungal pathogens, and may thus be tolerant by 

avoidance of exposure. 

 

Implications for prostrate shrubs under climate change 

The snow-shrub story represents an ongoing research question in tundra biome responses 

under global change, and our results suggest the prostrate dwarf shrub S. herbacea demonstrates 

critical reductions in performance, particularly under earlier snowmelt. Overall, warmer 

temperatures at lower elevations conferred few performance benefits, and earlier snowmelt 

reduced performance in multiple key functional and fitness traits. Our results highlight the 

importance of considering both climate warming and snowmelt timing as separate and sometimes 

interactive drivers provoking differential responses in phenological, reproductive and growth 

traits in low-lying dwarf shrubs.  Our results further suggest a detrimental impact of accelerated 

spring snowmelt on performance and fitness in S. herbacea, and these results could potentially be 

generalized to other low-lying prostrate shrub species in arctic and alpine tundra biomes, as they 

too may be closely ecologically linked with snowmelt. Acceleration in spring snowmelt timing, 

as a result of warming climates, may thus represent one of the most important mechanisms 

leading to reductions in dwarf shrub communities observed in tundra ecosystems.  
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Table 1: Responses of Salix herbacea functional and traits from general linear mixed models to elevation, snowmelt time, sex and the 

two-way interaction effects of all factors over three years on three mountains in Davos, Switzerland. Response trait transformation is 

listed as square-root (sqrt), log or NA (for untransformed data), with estimate (est), t- or z-values and p-values (bolded when 

significant) from the mixed models.   

Response trait Transformation Elevation Snowmelt Sex Elevation*snow Sex*elevation Sex*snow 

Day of leaf 

expansion 

Sqrt est=0.012 

t=0.39 

p=0.69 

est=0.54 

t=20.04 

p<0.0001 

est=0.015 

t=0.50 

p=0.61 

est=-0.026 

t=-2.06 

p=0.05 

est=0.017 

t=0.59 

p=0.55 

est=-0.016 

t=-0.62 

p=0.54 

Day of flowering Sqrt est=0.016 

t=0.68 

p=0.50 

est=0.55 

t=26.44 

p<0.0001 

NA est=-0.035 

t=-2.21 

p=0.028 

NA NA 

Day of fruiting Sqrt est=0.021 

t=0.91 

p=0.36 

est=0.50 

t=20.75 

p<0.0001 

NA est=-0.0031 

t=-0.17 

p=0.87 

NA NA 

Time from 

snowmelt to leaf 

expansion 

Sqrt est=0.054    

t=0.65 

p=0.52 

est=-1.11 

t=-15.35 

p<0.0001 

est=0.042     

t=0.53 

p=0.59 

est=-0.056 

t=-1.57 

p=0.12 

est=0.015 

t=0.20 

p=0.84 

est=-0.042     

t=0.59 

p=0.56 

Time from 

snowmelt to 

flowering 

Sqrt est=0.019    

t=-0.34 

p=0.73 

est=-1.06  

t=-20.47 

p<0.0001 

NA est=-0.064  

t=-1.54 

p=0.12 

NA NA 

Time from 

snowmelt to fruiting 

Sqrt est=0.061 

t=1.25 

p=0.21 

est=-0.98 

t=-18.79 

p<0.0001 

NA est=-0.0012  

t=-0.03 

p=0.98 

NA NA 

Proportion of patch 

flowering 

Sqrt est=-0.021 

t=-1.75 

p=0.081 

est=-0.024   

t=-2.58 

p=0.01 

NA est=0.0037 

t=0.44 

p=0.66 

NA NA 

Proportion of patch 

fruiting 

Log est=-0.12 

t=-2.05 

est=0.095     

t=1.75 

 

NA 

est=0.074 

t=1.70 

NA NA 
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p=0.041 p=0.081 p=0.089 

Percent fruit set NA est=-0.12 

z=-1.14 

p=0.26 

est=0.39     

z=3.63 

p=0.0003 

NA est=-0.073 

z=-0.68 

p=0.50 

NA NA 

Mean leaf size Log est=-0.074 

t=-1.68 

p=0.094 

est=0.055 

t=1.41 

p=0.16 

est=0.11 

t=2.45 

p=0.015 

est=-0.019  

t=-1.18 

p=0.24 

est=-0.070   

t=-1.59 

p=0.11 

est=0.0099    

t=0.29 

p=0.77 

Stem density Sqrt est=0.84 

t=4.37 

p<0.0001 

est=0.29 

t=2.72 

p=0.0066 

est=0.15 

t=0.80 

p=0.42 

est=0.043 

t= 0.87 

p=0.38 

est=-0.41 

t=-2.10 

p=0.037 

est=-0.10 

t=-0.89 

p=0.37 

Wood NSC NA est=0.25 

t=0.5 

p=0.62 

est=0.94 

t=1.48 

p=0.14 

est=-0.086 

t=-0.14 

p=0.89 

est=-0.069 

t=-0.26 

p=0.79 

est=0.18 

t=0.32 

p=0.75 

est=-0.11 

t=-0.16 

p=0.88 

Wood starch NA est=-0.50 

t=-0.99 

p=0.32 

est=0.74 

t=1.18 

p=0.24 

est=-0.16     

t=-0.28 

p=0.78 

est=0.080 

t=0.31 

p=0.76 

est=0.45 

t=0.83 

p=0.41 

est=-0.34 

t=-0.49 

p=0.62 

Wood low MW 

sugar 

NA est=0.81 

t=3.19 

p=0.0017 

est=0.00023  

t=0.01 

p=0.99 

est=0.22 

t=0.84 

p=0.40 

est=-0.12 

t=-0.94 

p=0.35 

est=-0.31 

t=-1.25 

p=0.21 

est=0.37 

t=1.21 

p=0.23 

Probability of leaf 

herbivory  

NA est=-0.13 

z=-0.51 

p=0.61 

est=-0.55 

z=-2.19 

p=0.028 

est=-0.26 

z=-0.95 

p=0.34 

est=0.21 

z=1.63 

p=0.10 

est=0.31 

z=1.11 

p=0.26 

est=0.14 

z=0.54 

p=0.59 

Probability of leaf 

fungi 

NA est=-0.089 

z=-0.41 

p=0.68 

est=-0.49 

z=-2.54 

p=0.011 

est=0.064    

z=0.31 

p=0.76 

est=-0.038 

z=-0.41 

p=0.68 

est=-0.060 

z=-0.27 

p=0.78 

est=0.29 

z=1.40 

p=0.16 
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Figure 1: Mean soil temperature at a depth of 5 cm during the growing season (day of snowmelt 

until the end of August) along the A) elevation gradient and B) snowmelt gradient and mean soil 

temperature during the first 30 days after snowmelt along the C) elevation gradient and D) 

snowmelt gradient over two years on three mountains in Davos, Switzerland. Data are fitted with 

a curve when the relationship is statistically significant 

A B 

C D 
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Figure 2:  First day of leaf open, flowering and fruiting phenophase occurrence, and time required to develop to each phenophases for 

Salix herbacea averaged for both plot and year along the snowmelt gradient over three years on three mountains in Davos, 

Switzerland. Data are fitted with a curve extracted from model estimates when the relationship is statistically significant.  Note 

different y-axis values for each panel. 
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Figure 3: Proportion of stems flowering and fruiting for female Salix herbacea averaged for both 

plot and year along the elevation and snowmelt gradient over three years on three mountains in 

Davos, Switzerland. Data are fitted with a curve extracted from model estimates when the 

relationship is statistically significant.   
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Figure 4: Patch stem density for male and female Salix herbacea averaged for both plot and year 

along the elevation and snowmelt gradient over three years on three mountains in Davos, 

Switzerland. Data are fitted with a curve extracted from model estimates when the relationship is 

statistically significant.   
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Salix herbacea and the ridge shrub community, photo by Anita Nussbaumer 

 

Abstract 

Under climate change, warming and early snowmelt are currently and will continue to 

alter alpine ecosystems. This may cause a shift between positive and negative plant-plant 

interaction types, which can affect alpine plant performance and influence community 

structure. We removed neighbours around Salix herbacea, a common arctic and alpine dwarf 

shrub, in a space-for-time substitution along elevational and snowmelt gradients on three 

mountains near Davos, Switzerland. The objectives of our study were to determine the effect 

of neighbours on phenological, morphological and fitness traits of S. herbacea, and to 

determine whether neighbour interactions shift between competition and facilitation along 

environmental stress gradients.   

The majority of traits were controlled primarily by snowmelt timing. However, 

neighbour removal directly reduced the number of days required for fruit production relative 

to control shrubs; however, it also increased the likelihood of leaf tissue herbivory. Effects of 

neighbour removal also changed along the environmental gradients, with neighbour removal 
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leading to reduced leaf size on earlier snowmelt sites, and increased fungal damage with 

increasing elevation. 

 Our results indicate the majority of neighbour interactions influencing S. herbacea are 

facilitative, particularly at stressful early snowmelt and high elevation sites. We suggest 

neighbours moderate environmental conditions by offering direct protection in the cold early 

growing season while likely preventing strong radiative warming that may allow increased 

phytopathogen infection. Further, they may reduce visibility or apparency to leaf herbivores 

regardless of elevation or microhabitat. We conclude that positive neighbour interactions may 

be important for the control of multiple traits in S. herbacea, and facilitation may become 

more important under changing climatic conditions, as damage by low temperature events, 

phytopathogens and leaf herbivores may become more common under early snowmelt. 

 

 

Introduction 

The effects of climate change have been predicted to be particularly extensive for plant 

communities in alpine ecosystems (e.g. Parmesan, 2006; Lenoir, Gegout, Marquet, de Ruffray 

& Brisse 2008). Two major environmental changes, warming temperatures and accelerated 

spring snowmelt, have been both predicted and observed in alpine tundra habitats (Steger, 

Kotlarski, Jonas & Schar, 2012; Rixen, Dawes, Wipf, & Hagedorn, 2012). These shifts in 

environmental conditions can have profound effects on alpine vegetation communities, 

particularly low-stature shrubs, which are often closely phenologically linked with snowmelt 

timing (Wipf, Stoeckli & Bebi, 2009).  

Low shrubs have been demonstrated to be strongly responsive to both warming and 

changes in snowmelt timing, but often show mixed responses between species in the same 

community, or within the range of trait examined for one species. Warming increases biomass 

production in Cassiope tetragona but not in Salix arctica occurring in the same communities, 
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while early snowmelt augments vegetative growth in Loiseleuria procumbens, but not in co-

occurring Empetrum nigrum, Vaccinium uliginosum or V. myrtillus (Campioli et al., 2013, 

Wipf, Stoeckli & Bebi, 2009). On a larger community scale, Dorji et al., (2013) and Rumpf, 

Semenchuk, Dullinger & Cooper (2014) have similarly demonstrated strongly species-

specific responses to snowmelt and temperature change in both Arctic tundra and alpine 

meadows. Within species, warming has been shown to increase flowering in Arctostaphylos 

alpina and Vaccinium uliginosum without increasing vegetative growth (Suzuki & Kudo, 

2005), and early snowmelt accelerates phenology in many shrub species without a 

corresponding increase in growth (Wipf, 2010). The inconsistent response of shrubs, both 

inter-specifically and between traits of the same species, to changes in snowmelt and warming 

suggests that other local factors represent additional drivers of shrub response to 

environmental change.  

Plants interact with each other within the complex network of their communities, and 

thus, neighbour interactions may play a key role in determining shrub response to climate 

change. At the landscape scale, biotic plant-plant interactions can be important for 

determining the structure of communities, specifically through negative interactions (e.g. 

resource competition) and positive interactions (facilitation; e.g. Callaway, 2007; Wang et al., 

2012, Craine & Dybzinski, 2013). At the species level, interactions with neighbours can 

directly affect plant fitness traits, both negatively, by reducing fecundity and flower 

production (Partzsch & Bachmann, 2011), and positively, by increasing survival and growth 

(Wipf, Rixen & Mulder, 2006). Plant-plant interactions may also mediate other biotic 

interactions within the community, particularly those involving herbivores, as neighbours 

have often been shown to reduce herbivory in target species (e.g. Schöb et al., 2010, Louthan 

Louthan, Doak, Goheen, Palmer & Pringle, 2014). Finally, the stress gradient hypothesis 

(Bertness & Callaway 1994) predicts that neighbour interactions will shift from mainly 

competitive to mainly facilitative as environmental stress increases. Thus, neighbour 
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interactions may be altered or become more important under climate change as habitat stress 

increases for alpine communities: warming temperatures and earlier snowmelt may lead to 

drought stress in shallow soils near treeline (Vittoz, Rulence, Largey & Frelechoux, 2008), 

while earlier exposure from snow increases the likelihood of damaging frost events and 

herbivory (Roy, Gusewell & Harte, 2004, Inouye, 2008, Wheeler et al., 2014). 

Alpine habitats provide excellent natural observatories for environmental stress 

gradients, and elevational gradients are frequently used to examine shifts in competition and 

facilitation (e.g. Choler, Michalet, & Callaway, 2001; Jarrad, Walshe, Chee & Burgman, 

2012; Grassein, Lavorel & Till-Bottraud, 2014). In addition, alpine ecosystems have highly 

heterogeneous microtopography and snowmelt timing, and thus can also be used to examine 

neighbour interactions along snowmelt gradients. Studies examining biotic interactions along 

snowmelt gradients are rarer (but see Wipf et al., 2006; Schöb et al., 2010), and few if any 

studies examine biotic interactions along both elevational and snowmelt gradients 

simultaneously.  

Salix herbacea L., a common arctic and alpine dwarf shrub, represents an optimal 

species for studying neighbour interactions along both elevational and snowmelt gradients. In 

the eastern Swiss Alps, it occurs along a relatively long elevational gradient (~800m) and 

grows in a wide range of snowmelt microhabitats, from late-lying snowbeds to early-exposure 

ridges. Past work on S. herbacea has indicated that fitness may be reduced and exposure to 

frost, herbivory and phytopathogen damage will increase under early snowmelt scenarios 

(Wheeler et al., 2014, Wheeler et al., unpublished). Further, the species has demonstrated 

plastic responses to changes in snowmelt conditions in several traits, such as leaf size, 

phenology, and damage likelihood (Sedlacek et al., unpublished). High gene flow has led to 

low genetic differentiation between populations along elevation gradients and between 

microhabitats (Cortés et al., 2014), suggesting abiotic environment and plant-plant 

interactions may strongly contribute to trait differences. Finally, it is a prostrate species that is 
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only weakly competitive, and is generally restricted to microhabitats where disturbance 

interferes with the establishment of stronger competitors (Beerling, 1998). Thus, S. herbacea 

represents an excellent candidate to examine the importance of biotic neighbour interactions, 

and how these interactions may be altered under climate change.  

The objectives of this study were thus 1) to examine the direct and indirect effects of 

neighbour interactions on phenological, morphological and fitness traits in dwarf shrub S. 

herbacea, and when biotic interactions exhibit control over these traits, 2) to determine 

whether biotic interactions shift from competitive to facilitative along environmental stress 

gradients, from low to high elevation and from early to late snowmelt. Since S. herbacea is a 

long-lived species, we hypothesize that plant-plant interactions, as demonstrated through 

neighbour removal, will have the strongest effect on traits that have the potential to respond 

rapidly to changes in competition or facilitation, such as leaf size. We also hypothesize that 

neighbour interactions will play a role in herbivory control, and that neighbour removal will 

increase herbivory in S. herbacea. Finally, we predict that biotic interactions will shift from 

competition to facilitation with increasing elevation and with earlier snowmelt, as 

environmental stress increases.  

 

Methods 

Field sites and experimental design 

We established three study transects near Davos in the eastern Swiss Alps, on 

Jakobshorn (46°46' N, 09°50' E, 2100 to 2600 m asl), Schwarzhorn (46°44' N; 09°57' E, 2380 

to 2780 m asl) and Wannengrat (46°48' N, 09°46' E, 2280 to 2640 m asl). All transects had 

primarily NE exposure and covered the main elevational range of S. herbacea in the area. The 

Stillberg climate station, established in 1975 at 2090 m a.s.l. at the base of the Jakobshorn 

transect, has recorded an average annual air temperature of 2.1 °C and annual precipitation of 

1150 mm, with snowfall occurring in all months (Rixen et al., 2012). This climate station has 
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also documented significant climate changes since 1975, with air temperatures in June-July-

August increasing on average 0.58°C per decade, and spring snowmelt accelerating by an 

average of 3.5 days per decade (Rixen et al., 2012). 

At ten elevational bands on each of the three transects, we established one ridge 

microhabitat study plot (c. 3x3 m, early season exposure from snow) and one late snowbed 

microhabitat plot (late season exposure), for a total of 60 paired plots, relatively evenly 

spaced along the transects. In each plot after snowmelt in 2011, we selected 3-4 S. herbacea 

patches (10 cm diameter, with intact neighbouring vegetation) as controls, for a final total of 

159 patches, and marked them for monitoring. All selected S. herbacea patches were 

separated by 1-2 m, to reduce the probability of resampling the same clone (Stamati, 

Hollingsworth & Russell, 2007). Then we selected another 10-cm diameter S. herbacea patch 

and clipped all aboveground neighbours in a 40-cm diameter surrounding the patch, for a total 

of 60 neighbour removal patches. Underground biomass was not removed to minimize 

disturbance of S. herbacea stem and root structures. Neighbour removal patches were situated 

within 2 m of control patches on all study plots. Neighbour removal patches were then 

allowed to acclimate through one full growing season (2012), with periodic re-clipping of 

neighbour biomass as necessary. Due to disturbance from cattle, marmots and rock slides, we 

report data from 44 neighbour removal patches, and from 159 paired control patches.  

   

Data collection 

 In 2011, 2012 and 2013, as part of a larger study detailed in Wheeler et al., 

(unpublished), we visited all control patches weekly, from snowmelt to leaf senescence. We 

documented snowmelt day, first flowering, and percent damage by insect herbivores and 

fungal phytopathogens on all control patches. In 2013, after one full season for neighbour 

removal acclimation, we visited both control and neighbour removal patches weekly from the 

date of first snowmelt until early September, when the first major snowfall occurred. We 
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observed the first day of snowmelt, and then each week we recorded leaf status (bud break, 

expanded), proportion of stems flowering per patch and proportion of stems fruiting per patch, 

and used these data to estimate the first observation date of each phenological stage (first leaf 

expansion, flowering, and fruiting). We also recorded leaf tissue damage every week, by 

estimating the proportion of leaves per patch damaged by insect herbivores and fungi. 

Vertebrate herbivory was absent for S. herbacea in our field sites. For each patch, we 

recorded mean leaf size (i.e. calculated as an ellipse with the length x width of two 

undamaged leaves per patch) after full leaf expansion and stem number within the 10-cm 

patch diameter. We measured soil temperature (5 cm below the surface, 2 hour intervals) for 

all ridge and snowbed plots using in-situ soil temperature loggers (iButton, Maxim Integrated, 

San Jose, CA, USA), which were used along with field observations to determine day of 

snowmelt (the date when soil temperature increased rapidly from the near-0°C temperature 

that characterizes continuous snow cover). 

 

Statistical analyses 

We analysed differences in all traits between neighbour removal patches (44) and 

controls (159 patches, pooled as mean trait data per study plot) using generalised linear mixed 

models. We used a normal error distribution for models with phenological development time 

(period from snowmelt to first day of leaf open, flowering and fruiting phenophases), 

proportion of stems flowering and fruiting per patch, leaf size and stem number as response 

variables. Response variables were square-root or log-transformed to ensure normality of 

residuals when necessary, and standard diagnostic plots were used to confirm assumptions of 

linearity and homoscedasticity. We used a binomial error distributions for models with fruit 

set, and the presence/absence of leaf damage (from herbivory and fungi) as response 

variables. We used snowmelt day, elevation (continuous variables centered to a zero mean to 

allow appropriate effect estimation; Schielzeth, 2010), and neighbour removal treatment as 
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fixed terms; the two-way interactions of all fixed terms were included in the models. The 

nested random factors were study plot, elevational band and transect. Models examining 

flowering only included data from female plants, as there were too few males in the neighbour 

removal treatment for analysis.  

We analysed relative neighbour effects for each plot containing a neighbour removal 

patch (44), for all continuous variables that were significantly influenced by neighbour 

removal x snowmelt or removal x elevation interaction effect. Relative neighbour effects for 

each plot were calculated as RNE = (xt – xc) / x, where xt is the trait value on the nearest 

control patch, xc is the trait value on the paired neighbour removal treatment patch, and x is 

the greater of the two values; values are then multiplied by -1 to produce positive RNE values 

for facilitation and negative values for competition (Callaway et al., 2002). Relative 

neighbour effects were then analyzed using linear mixed effects models with snowmelt time 

and elevation as the fixed terms, with transect as the random factor. 

To determine if neighbour effects in the previous season influenced fitness (as 

determined by likelihood of female flowering) in the following year, we used data from a 

larger, three-year concurrent study, with 480 S. herbacea surrounded by intact vegetation. If 

damage likelihood was influenced by neighbour removal (as detected using the initial mixed 

models using 44 neighbour removal patches, with damage likelihood influenced either 

directly, or as an interaction effect with snowmelt time or elevation), we implemented it into a 

mixed effects model. The response factor was female flowering in the following year (binary, 

flowers present or absent), with the damage likelihood in the previous season, elevation and 

snowmelt in the following year as fixed terms, with transect, elevation band and plot as nested 

random factors. These models were repeated for two years to determine the effect of 2011 

damage on 2012 flowering likelihood, and 2012 damage on 2013 flowering likelihood. All 

statistical analyses were carried out in R v.2.15.1, using package lme4, with p-values 

generated using MCMC sampling. 
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The objectives of the study were to examine the effect of neighbour interactions on 

trait variation along the environmental gradients. Thus, we report and discuss only the direct 

effects of neighbour removal, and the interaction effects of neighbour removal with snowmelt 

timing, and with elevation. The direct effects of snowmelt time, elevation and sex on trait 

variation in S. herbacea are discussed extensively in a concurrent study (Wheeler et al., 

unpublished).  

 

Results 

Phenological development time 

 Along both elevational and snowmelt gradients, time to leaf expansion and flowering 

were not significantly affected by neighbour removal treatment (N days from snowmelt to leaf 

expansion ± SE, control mean= 19.7 ± 1.06; neighbour removal mean= 21.6 ± 2.53 and N 

days from snowmelt to flowering ± SE, control mean=22.1 ± 1.17; neighbour removal 

mean=21.1 ± 2.00). In contrast, there was a significant decrease in time required to develop 

fruit (N days from snowmelt to fruiting) with neighbour removal (Table 1). Neighbour 

removal patches produced fruit on average 4.2 days faster than control patches (N days from 

snowmelt to fruit development ± SE, control mean =35.3 ± 1.54, neighbour removal mean = 

31.8 ± 2.17). This suggests that neighbour effects on phenological development times are 

likely small, but tend to increase over time, so that by later phenophases, an effect of 

neighbour removal becomes observable. 

 

Sexual reproduction 

 The likelihood of females producing flowers and fruit were high on both treatment 

types. On the control patches, 80 out of 83 females flowered in 2013, while on neighbour 

removal treatments, all 21 females flowered. After flowering, 64 females produced fruit on 

control patches, and 17 females produced fruit on neighbour removals patches. Neighbour 
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removal had no significant effect on the proportion of flower and fruit production (proportion 

of stems flowering or fruiting per patch) in female plants neither directly nor along either 

environmental gradient (i.e. neighbour removal x elevation and neighbour removal x 

snowmelt; Table 1).  

 

Vegetative production 

 Neighbour removal had no significant effect on stem number either directly or along 

either environmental gradient (Table 1). Leaf size, however, was significantly affected by the 

interaction between neighbour removal and snowmelt time. Leaf size on neighbour removal 

patches shifted from smaller on early-exposure sites to larger with later snowmelt timing 

(Table 1, Figure 1A), while leaf size on control patches was relatively similar along the 

snowmelt gradient (Table 1, Figure 1A). This suggests a facilitative effect of neighbours on 

leaf size for S. herbacea growing on early-exposure sites, and that this interaction shifts to 

competition with later snowmelt. This was supported by the relative neighbour effects (RNE) 

on leaf size, which were significantly affected by snowmelt time, and shifted from facilitative 

(positive) to competitive (negative) with later snowmelt (t=2.48; Figure 1B).  

   

Likelihood of leaf damage  

 The likelihood of both herbivory and fungal damage was influenced by neighbour 

removal, either directly or with increasing elevation. Likelihood of herbivory damage was 

significantly higher on neighbour removal patches (over 90%) relative to controls with intact 

neighbouring vegetation (about 70%; Table 1). Fungal damage likelihood increased with 

neighbour removal with increasing elevation, whereas fungal damage likelihood on control 

patches, decreased slightly with increasing elevation (Table 1, Figure 2). These results suggest 

that neighbours may have a strong protective influence against different damage agents.  
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 Using the 480 plants from the larger, three-year study (all intact vegetation, no 

neighbour removal treatment), we found both herbivory and fungal damage influenced fitness 

proxies in female S. herbacea in the following year, by reducing flowering likelihood with 

later snowmelt. This was indicated in the models by an interaction between the previous 

y ar’s da ag  l k l hood a d th  s ow  lt day    th  curr  t flow r  g s aso . Wh   

damaged by fungi in 2011, females had a decreasing likelihood of flowering with later 

snowmelt in the following year, whereas undamaged females demonstrated the opposite trend, 

showing an increasing likelihood of flowering with later snowmelt (z=-1.97, p=0.049; Figure 

3A). When damaged by herbivory in 2012, females had a decreasing likelihood of producing 

flowers with later snowmelt in the following year, while, again, undamaged females showed 

an increasing likelihood of producing flowers with later snowmelt (z=-2.197, p=0.0280; 

Figure 3B).  

 

Discussion 

Fruiting phenology, leaf size, and leaf damage likelihood by both herbivory and fungi, 

responded directly to neighbour removal or demonstrated a varied response to neighbour 

removal along the elevation and snowmelt gradients. Phenological development time from 

snowmelt to fruiting occurred more rapidly and the likelihood of herbivory was higher with 

neighbour removal. Leaf size increased with neighbour removal with later snowmelt, 

demonstrating a shift from facilitation on earlier snowmelt to competition on later snowbeds. 

Fungal damage became more likely with neighbour removal as elevation increased. Both 

fungal damage and leaf herbivory were demonstrated to reduce flowering probability in the 

summer following leaf damage. Thus, the presence of neighbours improves performance in 

several key traits, particularly on earlier snowmelt sites. Competitive effects of neighbours 

likely lead to reduced leaf size on later snowmelt sites. While there is likely a trade-off 

between slower fruit development on one hand and less herbivory and pathogen infection on 
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the other, most of the observed biotic interactions were facilitative, and may become 

increasingly important under climate change, particularly under early snowmelt conditions.  

 

Environmental control on trait variation 

 While leaf size, fruiting phenology and leaf damage probability were shown to be 

influenced by neighbour interactions, several key traits were not, most notably sexual 

reproduction (as measured by flower and fruit production), in addition to stem number, a 

likely slow-response measure of clonal growth. Our results suggest that these fitness traits in 

S. herbacea may not be strongly influenced by neighbour interactions. Biomass and fecundity 

have shown a range of responses to neighbour interactions in other studies examining forbs, 

depending on a wide range of community and landscape factors. For example, while 

Parkinson, Zabinski and Shaw (2013) found that neighbours did not reduce biomass in a 

number of sagebrush forb species, Schöb et al. (2010) found neighbour removal increased 

fruiting and biomass production in alpine snowbed species, although they did not examine S. 

herbacea, despite its common presence in their study sites. Callaway et al. (2011) 

demonstrated neighbours reduced growth and reproduction in Centaurea stoebe within its 

native range, but that these negative effects did not occur with novel species neighbours in the 

invaded range of C. stoebe.  

Since fecundity and growth responses can vary between species and environment 

types, we suggest S. herbacea may either allocate resources differently than the forbs in the 

examined studies, or alternately, that fitness traits in S. herbacea are controlled more strongly 

by environmental factors, as opposed to plant-plant interactions. In a concurrent study 

examining trait variation in S. herbacea, we examined phenological, morphological and 

fitness traits over three growing seasons and determined that both flower and fruit production, 

along with stem number, were driven primarily by snowmelt timing (Wheeler et al., 

unpublished). We suggested one likely mechanism driving the observed patterns was colder 
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temperature conditions experienced by plants growing in earlier snowmelt sites, which may 

lead to increased flower abortion and reduced allocation to stem biomass. 

 

Neighbours shelter S. herbacea against herbivores 

The most direct evidence of facilitation by neighbours was the significant reduction of 

herbivory likelihood to S. herbacea in the presence of intact neighbouring vegetation. 

Increased herbivory likelihood was observed as a direct response to neighbour removal and 

was consistent along both snowmelt and elevation gradients. This was similar to Schöb et al. 

(2010), who found neighbours increased survivorship of snowbed species by protecting them 

from insect and vertebrate grazers. We suggest three potential mechanisms at work: 1) 

warmer temperatures after neighbour removal, 2) concentration of herbivores on isolated S. 

herbacea after neighbor removal or 3) higher nutrient availability in S. herbacea forage after 

neighbor removal. First, soil and surface temperatures on neighbour removal sites were likely 

higher than on sites where neighbour vegetation remained intact, as dark bare soil would 

absorb more solar radiation than sites with an intact neighbouring canopy. Those warmer bare 

sites may have been more attractive to insect herbivores, which may prefer feeding on warmer 

sites (Strauss & Cacho, 2013). 

Associational resistance is a mechanism by which plant species may escape or reduce 

damage sustained from herbivores by growing in close association with neighbouring 

vegetation. Castagneyrol, Giffard, Pere and Jactel (2013) suggested that associational 

resistance, derived from the presence of a high-biodiversity neighbouring plant community, is 

often a function of apparency, where species growing among taller neighbours are less likely 

to be found by herbivores due to visual and chemical sheltering effects provided by the 

neighbours. We speculate that apparency may have been an important driver of the observed 

herbivory pattern, as S. herbacea generally represented the lowest vegetation layer in the 

community. Since the majority of neighbours were taller, neighbour removal likely increased 
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apparency to insect herbivores. Strauss and Cacho (2013) demonstrated that palatable plant 

species growing on bare soil sites experienced higher caterpillar herbivory than proximate 

vegetated sites, and speculated the potential mechanisms as both apparency and herbivore 

preference for warmer microsites, in addition to herbivore species-specific behaviour of 

spending more time on isolated plants. Since the primary herbivores for S. herbacea were also 

caterpillars (Zygaena sp.), these mechanisms may explain the increased likelihood of 

herbivory when neighbours are removed.  

A final possible explanation for higher herbivory on neighbour removal patches is that 

the removal of neighbouring vegetation may have increased nutrient availability to S. 

herbacea, and forage with higher nitrogen content has higher palatability (e.g. Torp, Olofsson, 

Witzell & Baxter, 2010). We have no nutrient data available for our neighbour removal 

patches, so this mechanism is speculative; however, there was no increased growth or leaf 

size on neighbour removal patches to suggest a higher nutrient availability.   

  

Facilitation under early snowmelt conditions 

Earlier snowmelt sites may represent stressful microhabitats for S. herbacea. In two 

concurrent studies, we demonstrated that frost damage, herbivory and fungal damage to leaf 

tissue are all more likely with earlier snowmelt, phenological development is slower, fewer 

stems are produced, and fruit set declines (Wheeler et al., 2014; Wheeler et al., unpublished). 

Under stressful early snowmelt conditions, the presence of neighbours facilitates leaf 

production in S. herbacea. Plants produced relatively similar-sized leaves in the presence of 

neighbours on the control plots along the snowmelt gradient; however, in the absence of 

neighbours, leaf size was significantly larger in S. herbacea growing in later snowmelt sites, 

This, in addition to the relative neighbour effect analysis, suggests that for leaf size, the 

primary interaction between S. herbacea and its neighbours is facilitative under early 

snowmelt conditions, and shifts to competition under later snowmelt. Schöb et al., (2010) 
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demonstrated similar findings, with stronger competition observable between snowbed 

species on later snowmelt sites, leading to higher biomass on control sites relative to 

neighbour removal.  

This interaction shift supports the main argument of the stress gradient hypothesis 

(Bertness & Callaway 1994), a shift between facilitative effects on early snowmelt sites, to 

competition in later snowbeds. Wipf et al. (2006) also showed generally facilitative effects of 

neighbours on Empetrum nigrum with accelerated snowmelt, and suggested the observed 

facilitation as a response to colder temperatures after exposure from snow. Similarly, 

Klanderud (2005) demonstrated reductions in Carex leaf length with removal of Dryas 

octopetala neighbours in alpine communities in Norway, and also speculated this effect was 

due to the loss of protection against low temperatures and strong winds. We suggest a similar 

mechanism at work in our study, as mean soil temperatures in both the first 4 weeks following 

snowmelt and during the whole growing season are colder for earlier snowmelt sites (Wheeler 

et al., unpublished), and spring frost events occur for S. herbacea almost exclusively on high 

elevation and early snowmelt sites (Wheeler et al., 2014). Thus in later snowmelt sites, where 

frost events do not occur, and mean temperatures are warmer, the dominant interaction shifts 

to competition, and the removal of neighbours results in larger leaves in S. herbacea.  

Temperature likely also explains the more rapid fruiting phenology on neighbour 

removal patches relative to controls. Since phenological development in alpine shrubs, 

including S. herbacea, is often driven by temperature accumulation (Wipf et al., 2009; 

Wheeler et al., unpublished), dark bare soil patches that absorb more solar radiation during the 

day likely accumulated temperature at a faster rate than vegetated control patches, leading to 

more rapid fruiting phenology on neighbour removal patches. 

  

Facilitation at high elevations 
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The high elevation distribution limits of species are likely controlled by harsh 

environmental conditions, such as colder mean season temperatures and frost events, 

including those speculated for S. herbacea (Wheeler et al., 2014). Our concurrent study 

showed plants produce fewer flowering stems and smaller leaves at higher elevations 

(Wheeler et al., unpublished). At higher elevation, we observed a facilitative effect of 

neighbours, with a lower likelihood of fungal infection in leaf tissue when S. herbacea grows 

in association with neighbours relative to neighbour removal sites. Higher temperatures have 

been associated with increased susceptibility to infection by fungal pathogens in crop species 

(Landa et al., 2006; Siebold & von Tiedemann, 2012). The removal of neighbouring 

vegetation may have warmed site conditions sufficiently to improve growing conditions for 

fungal pathogens and in the absence of extensive soil drying, increased the likelihood of 

fungal infection of leaf tissue. This effect may have been more evident at higher elevation 

because fungal infection may be more or less absent at colder, higher sites, and neighbour 

removal may have caused a shift from an absence of fungal infections to a moderate and thus 

observable fungal infection rate. At warmer, lower elevation sites, this would lead to an 

increase in an already extant fungal infection rate. An alternative explanation is that the 

probability of fungal infection may be relatively similar along the elevational gradient, but 

removal of of neighbours leads to higher stress and thus a greater likelihood of infection. In 

addition, since rust phytopathogen spore dispersal is generally wind-controlled (Helfer, 2014), 

we suggest that decreased shelter effects after neighbour removal could increase likelihood of 

fungal infection in exposed S. herbacea.  

  

Ecological implications of neighbour interactions under climate change 

Warming temperatures and accelerating spring snowmelt in alpine ecosystems have 

the potential to alter the biotic neighbour interactions experienced by S. herbacea. At higher 

elevations, temperature increases will likely lead to a more benign habitat, which suggests that 
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S. herbacea may shift to net competition with its neighbours. This may even prompt an 

upward elevation movement by S. herbacea to escape competition.  However, under 

accelerating spring snowmelt conditions, our results suggest facilitative plant interactions may 

play an important role in the performance and long-term persistence of S. herbacea. Indeed, 

many of the facilitative interactions observed in this study could take on increased importance 

under changing climatic conditions, particularly the protective influence of neighbours against 

damage agents.  

Tissue damage from herbivory has been shown to increase under warming and earlier 

snowmelt in alpine ecosystems (Roy et al., 2004; Wheeler et al., unpublished), and can impact 

plants at both the individual and population levels. Our results show that leaf damage by 

herbivory can reduce the probability of female flowering with later snowmelt in the year 

following damage, which would likely reduce potential seed set and thus fitness. Similarly, 

invertebrate herbivory on leaf tissue has been shown to impact fitness by reducing catkin and 

seed mass in Betula pubescens (Ruohomaki, Haukioja, Repka & Lehtila, 1997). Herbivores 

have also been shown to control population distributions in grass and forb species by reducing 

growth, reproduction and biomass production; however, facilitative neighbour interactions 

have been shown to reduce these herbivory controls (Cushman, Lortie & Christian, 2011; 

Axelsson & Stenberg 2014). Since low to moderate leaf tissue removal by herbivory was 

observed to be extremely common for S. herbacea, and can influence flowering in the 

following year, facilitative sheltering effects offered by neighbours throughout the elevational 

and microhabitat distribution may contribute to a significant performance advantage in 

sheltered S. herbacea. To illustrate, Axelsson and Stenberg (2014) demonstrated that net 

competition between fireweed and its neighbours represented the dominant interaction type 

when herbivores were excluded, but when herbivores were present, the dominant biotic 

interaction switched to net facilitation. We suggest herbivory represents a strong negative 

selection pressure for S. herbacea, since fitness effects were quantifiable following herbivory, 
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and facilitative effects of neighbours were observed countering herbivory likelihood along 

both environmental stress gradients in our study, outweighing potential competition.  

As a second damage agent, fungal phytopathogen infection rates may also increase in 

warming climates and under ealier snowmelt (Helfer, 2014; Wheeler et al. unpublished), and 

have been demonstrated to alter entire tundra communities. Olofsson, Ericson, Torp, Stark 

and Baxter (2011) showed that fungal pathogen outbreaks, as triggered by changes in climate, 

can decimate biomass in the dominant species Empetrum hermaphroditum and thus 

dramatically alter ecosystem gross photosynthesis and carbon exchange. Under warming 

temperature conditions, we speculate that facilitation by neighbours, through thermal control 

and wind sheltering, may reduce phytopathogen infection likelihood in S. herbacea, 

particularly at high elevations where site conditions may be relatively stressful.  

Finally, facilitative effects of neighbours may indirectly increase fitness in S. 

herbacea. Reduced herbivory and phytopathogen damage by neighbor sheltering represents 

one indirect effect, since both damage agents can reduce flowering probability in later 

snowbeds in the following season. Another indirect effect is through the production of larger 

leaves when sheltered by neighbours on early snowmelt sites. Larger leaves have been shown 

to result in greater flowering probability in S. herbacea growing in early-snowmelt sites 

(Sedlacek et al., unpublished), indicating a local selective pressure for larger leaf sizes in 

these early-exposure microhabitats. Thus, neighbours may indirectly increase flowering 

probability and thus fitness, particularly under early snowmelt conditions.  

 

Conclusions 

Our study demonstrated that plant-plant interactions can strongly affect the likelihood 

of leaf damage, may be important for control of plastic traits like leaf size, and that S. 

herbacea may respond differently to the presence of neighbours along elevational and 

snowmelt gradients. The majority of neighbour interactions experienced by S. herbacea were 
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facilitative, particularly at the more stressful extremes of their environmental gradients, 

supporting the stress gradient hypothesis. Neighbours directly reduce the proportion of 

herbivory damage and help shelter S. herbacea from fungal damage at higher elevations. By 

reducing damage, neighbours could indirectly improve plant fitness, as damage can lead to 

female flowering reductions in the following growing seasons. The presence of neighbours 

also facilitates the production of larger leaf sizes under environmentally stressful early 

snowmelt conditions. Under accelerated snowmelt conditions in alpine ecosystems, we 

speculate that shifts to facilitative interactions may become more common as early snowmelt 

can lead to stressful conditions for S. herbacea. Further, facilitative effects of neighbours may 

become more ecologically important, as they may potentially serve to increase leaf sizes and 

reduce leaf tissue loss to herbivores and phytopathogens, which may become more common 

and thus more damaging under early snowmelt conditions. 
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Table 1: Responses of Salix herbacea functional traits to neighbour removal (NR) treatment 

and the two-way interaction effects between neighbour removal x snowmelt time and 

neighbour removal x elevation two years after neighbour removal on three mountains in 

Davos, Switzerland. Model estimates, t- or z-values and p-values were generated using 

general and generalized linear mixed models. Significant p-values are bolded. 

Response 

trait 

Neighbour removal 

treatment 

Elevation* NR treatment Snowmelt* NR treatment 

 Estimate t / z 

value 

p value Estimate t / z 

value 

p value Estimate t / z 

value 

p value 

Time to leaf 

expansion 

-0.011 -0.20 0.84 0.097 1.74 0.083 -0.083 -1.53 0.13 

Time to 

flowering 

0.022 0.34 0.73 0.023 0.30 0.76 -0.022 -0.33 0.74 

Time to 

fruiting 

-0.14 -2.37 0.021 0.090 1.51 0.14 -0.038 -0.68 0.50 

Proportion 

stems 

flowering 

-0.072 -1.41 0.16 0.046 0.76 0.44 0.096 1.75 0.084 

Proportion 

stems 

fruiting 

0.0017 0.007 0.99 -0.17 -0.71 0.47 -0.14 -0.62 0.54 

Fruit set 

likelihood 

-1.28 -1.30 0.19 -0.048 -0.043 0.97 -1.94 -1.85 0.065 

Leaf size -0.37 -1.40 0.16 0.26 0.93 0.36 0.52 2.00 0.048 
Stem 

number 

-0.069 -0.22 0.83 0.047 0.15 0.88 0.22 0.70 0.49 

Herbivory 

damage 

likelihood 

1.96 2.22 0.027 -0.34 -0.50 0.62 -0.11 -0.12 0.90 

Fungal 

damage 

likelihood 

0.55 1.29 0.20 0.84 1.99 0.047 -0.44 -0.90 0.37 
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Figure 1: Effects of neighbour removal on leaf size in Salix herbacea along snowmelt timing gradients on three mountains near Davos, Switzerland in 2013. Panel A shows 

log leaf size (mm
2
) two years after neighbour removal treatment (dashed line, black points) and on control patches (solid line, white points) and Panel B shows relative 

neighbour effects (RNE) on leaf size (mm
2
) along the snowmelt gradient, where positive values indicate facilitative neighbour effect, and negative values indicate competitive 

neighbour effect.  

A B 
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Figure 2: Effects of neighbour removal on leaf damage probability in Salix herbacea with fungal damage 

likelihood on neighbour removal (Treatment=1, white points, dashed line) and on control patches (Treatment=0, 

black points, solid line) along elevational gradients on three mountains near Davos, Switzerland, in 2013 two 

years after neighbour removal treatment. 
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Figure 3: Effects of fungal damage (left panel) and herbivory damage (right panel) on flowering probability in female Salix herbacea in the following growing season along 

the snowmelt gradient on three mountains near Davos, Switzerland; black points, solid line show flowering probability of previously undamaged plants and white points, 

dashed line show flowering probability of plants damaged by A) fungi and B) herbivory in the previous season.  
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Female Salix herbacea releasing seeds, Photo by Janosch Sedlacek 

 

Abstract 

Climate change is altering spring snowmelt patterns in alpine and arctic ecosystems, 

and these changes may then alter plant phenology, growth and reproduction. To predict how 

alpine plants respond to shifts in snowmelt timing, we need to understand trait plasticity and 

its effects on growth and reproduction, and the degree to which plants experience a home-site 

advantage. We tested how the common, long-lived dwarf shrub Salix herbacea responded to 

changing spring snowmelt time by reciprocally transplanting turfs of S. herbacea between 

early-exposure ridge and late-exposure snowbed microhabitats. After the transplant, we 

monitored phenological, morphological and fitness traits, as well as leaf damage, during two 

growing seasons. 

Salix herbacea leafed out earlier, but had a longer development time and produced 

smaller leaves on ridges relative to snowbeds. Phenological changes did not influence clonal 

or sexual reproduction, but smaller leaves on ridges were associated with reduced sexual 

reproduction. Clonal and sexual reproduction showed no response to altered snowmelt time. 
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We found no home-site advantage in terms of sexual and clonal reproduction. Leaf damage 

probability depended on snowmelt and thus exposure period, but had no short-term effect on 

fitness traits. 

We conclude that the studied populations of S. herbacea can respond to shifts in 

snowmelt by plastic changes in phenology and leaf size, while maintaining levels of clonal 

and sexual reproduction. The lack of a home-site advantage suggests that S. herbacea may not 

be adapted to different microhabitats. The studied populations are thus unlikely to react to 

climate change by rapid adaptation, but their responses will also not be constrained by small-

scale local adaptation. In the short term, snowbed plants may persist due to high stem 

densities. However, in the long term, reduction in leaf size and flowering, and increased 

exposure to damage may decrease overall performance of S. herbacea under earlier snowmelt. 

 

Introduction 

Temperature, precipitation and, as a consequence, snowmelt patterns in alpine ecosystems are 

changing dramatically, with observations of snowmelt acceleration in spring [Rixen et al. 

2012]. Model simulations predicting further declines of snow-cover duration with 30-80% in 

the Alps by the end of the century [Steger et al. 2012]. Since the strongest snow-cover 

reductions are predicted for spring [Steger et al. 2012], earlier snowmelt may prolong the 

growing season above 2000 m asl by up to 60 days [Beniston et al. 2003]. A longer growing 

season could have strong impacts on plants, as it may alter the timing of phenological 

development, increase exposure to frost, change moisture availability and alter interactions 

with pollinators, herbivores and pathogens [ Beniston et al. 2003, Wheeler et al. 2014, Wipf et 

al. 2009, Inouye 2008, Roy et al. 2004, Høye et al. 2013, Little 2014]. However, potential 

impacts have been assessed for only a few alpine species. 

To respond to changing snowmelt conditions, alpine shrubs must either track their 

climate requirements by migrating to sites with suitable microclimates, or persist under the 
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new conditions through phenotypic plasticity or adaptive evolution [Bazzaz 1996, Theurillat 

and Guisan 2001, Bellard et al. 2012]. However, the potential for migration might be limited 

in species with long generation times [Aitken et al. 2008] and poor dispersal ability [Midgley 

et al. 2006], and in species growing in fragmented landscapes [Jump and Penuelas 2005]. 

Recent studies have also considered how shifts in biotic interactions limit migration potential, 

including changes in herbivory and pathogen damage [Rasmann et al. 2014, Van Grunsven et 

al. 2007, Castro et al. 2010, Defossez et al. 2011, Van der Putten et al. 2013, Sedlacek et al. 

2014].  

If migration potential is limited, the only way plants can respond to change is by 

adjusting to the new environmental conditions. In the short term this can be achieved through 

plasticity, potentially mediated by high clonal and sexual reproductive rates [Williams et al. 

2008]. In the long term, adjustment to climate change can take place through adaptive 

evolution [Bradshaw and Holzapfel 2006, Skelly et al. 2010, Franks et al. 2014]. The latter 

requires both the presence of genetic variation in relevant traits, and selection acting on these 

traits. If local adaptation is detected in spite of ongoing gene flow, this suggests strong 

selective forces [Kawecki and Ebert 2004]. Adaptive evolution, however, might be too slow 

to keep pace with environmental change, especially in long-lived alpine species [Jump and 

Penuelas 2005, Franks et al. 2014]. Phenotypic plasticity, in contrast, allows plants to rapidly 

adjust to changing environmental conditions within the lifetime of a species, and thus may 

play a key role in species responses to climate change, particularly in long-lived species. 

Phenotypic plasticity has been mainly demonstrated for phenological changes (e.g. in timing 

of bud burst) in response to warmer temperatures [Kramer 1995, Anderson et al. 2012]. 

However, phenotypic change could reflect passive plastic responses as a consequence of 

resource limitation. Such a passive plastic response may be neutral or even maladaptive [van 

Kleunen and Fischer 2005, Nicotra et al. 2010], if it does not benefit fitness [Scheepens and 

Stöcklin 2013, Kim and Donahue 2013]. It is therefore important to understand whether 
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plasticity allows a species to respond to climate change [Merilä and Hendry 2014], or whether 

adaptive responses or shorter-distance migration would be needed for regional persistence.  

In order to rigorously test how plants respond to snowmelt change through phenotypic 

plasticity, as well as whether plants experience a home-site advantage, reciprocal transplant 

experiments are necessary [Kawecki and Ebert 2004, Blanquart et al. 2013]. Many previous 

studies have used such transplant experiments to investigate phenotypic plasticity and local 

adaptation in alpine plant species across altitudinal gradients [Frei et al. 2013, Byars et al. 

2007, Gonzalo-Turpin and Hazard 2009]. However, reciprocal transplant studies explicitly 

examining the effects of altered snowmelt timing are scarce (but see [Bennington and Fetcher 

2012, Stinson 2004, Kawai and Kudo 2011]). Further, almost all previous transplant 

experiments examined short-lived perennial herbs, and experiments with long-lived woody 

species are extremely rare (but see [Bennington and Fetcher 2012]). However, it is important 

to understand how long-lived species will respond to changes in snowmelt timing, as they are 

a dominant functional type in alpine plant communities.  

The long-lived, arctic-alpine dwarf shrub Salix herbacea typically occurs in late-

snowmelt microhabitats but also on wind-exposed mountain ridges [Beerling 1998]. A 

concurrent 3-year observational study at the same mountain, which included a microhabitat 

and elevation gradient, indicated that most traits of S. herbacea were affected mainly by 

snowmelt microhabitat type (Wheeler et al., unpublished). These microhabitats are mainly 

differentiated by the duration of winter snow cover [ Schöb et al. 2008], but also by 

environmental factors closely linked to or controlled by snowmelt timing, such as 

temperature, soil moisture, and biotic interactions, which are predicted to change due to 

climate change. Therefore, this natural microhabitat setup is well-suited to test the effects of 

climate change-driven shifts in snowmelt timing in a reciprocal transplant experiment.  

In order to make predictions about the potential responses of S. herbacea to changes in 

snowmelt timing, we must understand to what degree phenotypic plasticity can help to adapt 
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to the new environmental conditions, and whether the species exhibits a home-site advantage 

in different microhabitats. To this end, we reciprocally transplanted turfs of S. herbacea 

between early-exposed ridge and late-exposed snowbed microhabitats. We investigated the 

effects of both origin and destination microhabitats on morphological, phenological and 

fitness traits of S. herbacea, assessed leaf damage, and asked the following questions: 

1. Does altered snowmelt timing lead to plastic responses in phenology, leaf size, clonal 

reproduction and sexual reproduction? 

2. Does altered snowmelt timing lead to a change in leaf-damage probability? 

3. Does S. herbacea demonstrate a home-site advantage to local microhabitat snowmelt 

conditions, suggesting local adaptation? 

4. How do phenology, leaf size and damage affect flowering and clonal reproduction in the 

different microhabitats?  

 

Methods 

Study species 

Salix herbacea L. is a long-lived, clonal, dioecious, prostrate dwarf shrub, occurring in the 

northern and alpine regions of Eurasia and North America, and the Arctic region [Beerling 

1998]. The species produces an extensive ramifying system with branched rhizomes forming 

flat mats [Beerling 1998]. The aerial branches are woody and usually reach 2-5 cm above the 

ground surface. Salix herbacea is characteristic to a wide range of microhabitat types, from 

ridge and scree habitats with early exposure from snow in spring and relatively long growing 

seasons, to snowbeds with long snow cover duration and short growing seasons. Ridges in our 

study area were dominated by the shrubs Loiseleuria procumbens and Vaccinium uliginosum, 

in addition to the herb Phyteuma hemisphaericum. Snowbeds were characterized by the herb 

Gnaphalium supinum and the moss Polytrichastrum sexangulare. 
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Reciprocal transplant experiment 

To test for plastic responses and potential adaptation of S. herbacea to joint changes in 

snowmelt patterns and temperature, we established a reciprocal transplant experiment with six 

pairs of sites. Each pair consisted of an early-exposed ridge site and a nearby late-exposed 

snowbed site (see Figure A1 and Table A1, for site characteristics). Snowmelt on ridges 

occurred on average one month earlier than in snowbeds (mean ± SE Julian day of snowmelt; 

ridge: 157 ± 3.6, snowbed: 191 ± 3.1) across both years 2012 and 2013, and earlier in 2012 

than in 2013 (2012: 170 ± 7.2, 2013: 179 ± 4.4). As a consequence of earlier snow 

disappearance and exposure to colder spring temperatures, ridges were colder when averaged 

over the entire growing season compared to snowbeds (mean ± SE of temperature from 

snowmelt to end of growing season (Julian day 217; ridge: 10.89 ± 0.44°C, snowbed: 11.88 ± 

0.50°C). Despite differences in timing of snowmelt, the total growing degrees days per season 

(sum of growing degree days with a threshold of 5°C, between snowmelt and Julian day 217; 

GDD) were similar on ridges and in snowbeds (mean ± SE of GDD; ridge: 974.05 ± 

106.17°C, snowbed: 922.23 ± 71.35°C, Figure A2). We assessed only snowmelt timing and 

temperature in our microhabitats, because they are the most prominent aspects of climate 

change in the Alps, and are generally key regulators of other abiotic and biotic conditions, like 

soil moisture, nutrient availability, freezing events, and vegetation cover and composition 

[Wipf et al. 2009, Theurillat and Guisan 2001, Schöb et al. 2008].  

The 12 sites were located at the same altitude (2320 – 2355 m asl) on a northeast-

facing slope near Davos in the eastern Swiss Alps (Table A1). The distance between two sites 

in a pair ranged from 28 to 55 m, and the distance between pairs of sites ranged from 40 to 

190 m. Within each site, we haphazardly selected and excavated 14 S. herbacea-containing 

soil patches with a diameter of 10 cm and a soil depth of 5 cm. To reduce the probability of 

sampling the same genotype multiple times [ Häggberg 2014], we chose patches that were at 

least 1 m apart and had no visible connections. We carefully cut each patch into two halves 
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(turfs), ensuring that each turf contained a minimum of five S. herbacea stems. We then 

tra spla t d o   turf back    th  sa   s t  (“ho   s t ”), a d tra spla t d th  oth r turf    th  

oth r   crohab tat of th  s t  pa r (“away s t ”). Ov rall, w  tra spla t d 336 turfs (12 s t s × 

14 patches x 2 turfs). We minimized negative effects of the transplant on plant performance 

by maintaining large root systems for each turf and by transplanting at the end of the growing 

season (15th-16th August 2011), after terminal buds had already formed. Since the first two 

weeks after transplanting were dry, we watered all turfs twice during these two weeks. We 

used turfs in our reciprocal transplant instead of seeds or seedlings as seed germination in the 

field has been observed to be extremely low and progress from the seedling stage to sexual 

maturity is expected to be very slow, as is typical for slow-growing clonal woody shrubs. 

 

Data collection 

At each site, we recorded soil temperature every 2 hours at 5 cm soil depth using in-situ 

temperature loggers (iButton, Maxim Integrated, San Jose, CA, USA). We used this 

temperature data, in conjunction with field observations to determine the day of snowmelt for 

each site as the date when soil temperature rose abruptly from near 0°C (which is the 

characteristic soil temperature below snow cover in spring). 

We assessed a set of phenological, morphological and fitness traits, which have been 

suggested to be key plant traits for the assessment of plastic responses to climate change 

[Nicotra et al. 2010]. At transplanting, we counted the number of stems on each turf, and we 

used this number as a proxy for initial plant size. Over the two growing seasons (2012 and 

2013) following transplant, we weekly monitored phenology, proportion of flowering and 

fruiting stems, and whether any leaves were damaged by herbivores, fungi or gall-forming 

insects. The development time to each phenophase (leaf expansion, flowering, fruiting) was 

calculated as the difference from day of snowmelt until onset of the respective phenophase. 

Development times to each phenophase were strongly correlated with each other (leaf 
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expansion and flowering: r = 0.78, P <0.001, n = 278; leaf expansion and fruiting: r = 0.80, P 

<0.001, n = 123; flowering and fruiting: r = 0.81, P <0.001, n = 113), so onset of and 

phenological development time until leaf expansion are discussed as representative 

phenological variables from this point onwards (see Table A2 for results for flowering and 

fruiting). At leaf maturity, we assessed individual leaf size (i.e. π x ½ l  gth x ½ w dth tak   

from two undamaged, fully-expanded leaves per turf, that were selected haphazardly at the 

terminal point of two stems) and stem number per turf. The net relative change in stem 

number between 2012 and 2013 was calculated as the ratio of stem number in 2013 to stem 

number in 2012. So, values larger than one would indicate a net increase, while values smaller 

than one would indicate a net decrease. 

No specific permits were required for the study location and activities, and the field 

studies did not involve endangered or protected species. 

 

Statistical Analysis 

We used generalized linear models to test whether phenotypic variation was explained by the 

microhabitat where the turfs were planted (i.e. destination effect, which would indicate 

phenotypic plasticity), by their site of origin (i.e. origin effect, which would indicate genetic 

effects or environmental carry-over effects), or an interaction of both (i.e. destination x origin 

effect, which could indicate a home-site advantage or disadvantage). The model was designed 

as follows : Trait ~ Origin + Destination + Origin:Destination, random = 

(1|Turf/Patch/Site/Pair). 

The response variables leaf size, and onset of and phenological development time to 

leaf expansion were analyzed with a Normal error distribution. Leaf size was log-transformed 

to achieve normality and homoscedasticity of the residuals. For stem number, we used a 

Poisson error distribution, and for the proportion of flowering and fruiting stems and the 

presence of leaf damage, we used a binomial error distribution. For each response variable, 
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the models included microhabitat of origin (ridge vs. snowbed), microhabitat of destination 

(ridge vs. snowbed), year (2012 and 2013) and their interactions as fixed effects. We 

considered turf nested within patch, nested within destination site, nested within pair as 

random effects, to account for non-independence of measurements repeated on the same turfs 

in different years, and non-independence of patches from the same sites within pairs. 

Proportions of flowering stems were analyzed only for 2013, because flower buds in 2012 

were pre-formed in the year before the transplant. Fruit set was excluded from the analysis, 

due to the low number of fruiting plants in 2013 (N<25 turfs). In these analyses, with only a 

single measurement per turf, we excluded turf as a random effect. To test whether the 

proportion of flowering stems depended on the sex of the plant, we added sex as an additional 

fixed factor, as well as interactions between sex and microhabitat of origin and microhabitat 

of destination. To account for differences in stem number at transplant, we included initial 

stem number (from 2011) as a covariate in the model for stem number. 

To test whether phenology and leaf size were under selection in the ridge and snowbed 

sites, and to determine whether leaf damage impacted clonal and sexual reproduction, we used 

selection-gradient analyses [Lande and Arnold 1983]. The flowering probability and the net 

change in stem number between 2012 and 2013, which includes both the growth of new stems 

and stem die-off was used as a proxy for sexual and clonal reproductive fitness, respectively. 

We regressed the standardized change in stem number and flowering probability on leaf size, 

measured in the previous year, for phenological development time (duration from snow 

disappearance to leaf expansion) and damage probability, for ridge and snowbed destinations 

separately. For the change in stem number, we used a Normal error distribution, and for 

flowering probability, we used a binomial error distribution. Because flowering probability is 

influenced by stem number, we included stem number as an additional explanatory variable. 

We included site as random effect, to account for non-independence of turfs measured in the 

same site. 
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We used log-likelihood-ratio tests to determine the overall significance of main effects 

and interactions [Zuur 2009]. We also calculated marginal R
2
 (proportion of variance 

explained by the fixed effect only) and conditional R
2
 (proportion of variance explained by 

both the fixed and random factors) as a measure of goodness-of-fit of each model [Nakagawa 

and Schielzeth 2013]. All statistical analyses were performed using linear and generalized 

linear mixed models as implemented in the lmer function of the lme4 package [Bates et al. 

2013] in R version 2.15.2 [R Core Team 2013]. 

 

Results  

Clonal and sexual reproduction 

The number of stems was significantly higher for turfs originating from snowbeds than for 

those from ridges (Table 1). The difference in number of stems increased over time depending 

on turf origin (Table 1, Fig. 1a). We did not find a significant destination-by-origin 

interaction. Overall, these results indicate that initial differences in stem number between 

origins did not disappear but even became larger during the course of the study, and that 

plants from snowbeds did not see significant reductions in stem number when transplanted to 

ridges. 

Turfs originating from ridges had on average a greater proportion of flowering stems 

than turfs from snowbeds (Table 1, Fig. 2), and ridge and snowbed turfs produced a similar 

absolute number of flowering stems (ridge turfs: 2.60 ± 0.38, snowbed turfs: 2.55 ± 0.37). The 

origin effect was evident for both sexes, and present in both microhabitats (Table 1). We 

found no destination-by-origin interaction and thus no indication for a home-site advantage 

using proportion of flowering stems as fitness trait. Further, there was a marginally significant 

interaction effect between sex and destination (P = 0.061, Table 1), with female plants 

producing a greater proportion of flowering stems on ridges relative to snowbeds, whereas 

males were flowering similarly in both microhabitats. 



71 
 

 

Phenology 

Onset of leaf expansion and time from disappearance of snow to leaf expansion was 

significantly influenced by microhabitat of destination, with turfs in snowbeds expanding 

their leaves later and requiring less time for this after snowmelt relative to ridges (Table 1, 

Fig. 1c). Both onset of and phenological development time to leaf expansion were not 

influenced by origin, but onset of leaf expansion was influenced by year and a year x 

destination interaction, due to a very early snowmelt in 2012. As other phenological stages 

were strongly correlated (see Methods), this suggests that both onset of the phenophase and 

the phenological development time are controlled by the destination environment in a similar 

way for plants originating from snowbeds and ridges, and thus respond plastically to 

environmental differences between the microhabitats. Selection gradient analysis showed that 

development time to leaf expansion did not affect the change in stem number nor the 

probability of flowering in both ridge and snowbed destinations, indicating that development 

time required for leaf expansion does not affect sexual and clonal reproduction, at least in the 

short-t r  (F g. 3a,b; rat o of st    u b r: r dg : d.f. = 1, χ
2
 = 0. 017, P = 0.849; snowbed: 

d.f. = 1, χ
2
 = 0. 280, P = 0. 596; flowering probability: ridge: d.f. = 1, χ

2
 = 0. 529, P = 0.466; 

s owb d: d.f. = 1, χ
2
 = 0. 208, P = 0. 648). 

 

Leaf size 

Leaf size strongly differed between microhabitats of destination and between years. Shrubs 

produced larger leaves in snowbeds than on ridges (Table 1). This destination-site effect was 

consistent across years, but overall leaves were larger in 2013 than in 2012 (Table 1). There 

were no significant interactions among origin, destination and year. These results suggest that 

leaf size is a highly plastic trait, responding to environmental differences between the 

microhabitats and between years. Selection gradient analyses indicates that leaf size in 2012 
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did not affect the change in stem number from 2012 to 2013, neither in the ridge nor in the 

snowbed destination, indicating that a plastic response in leaf size does not affect clonal 

r product o       th r   crohab tat (F g. 3d, r dg : d.f. = 1, χ
2
 = 1.323, P = 0.249; snowbed: 

d.f. = 1, χ
2
 = 0.643, P = 0.422). However, selection gradient analysis demonstrated that 

smaller leaf s   s r sult d    a r duc d probab l ty of flow r  g o  r dg s (F g. 3c, d.f. = 1 χ
2 

= 

5.392, P = 0.020). 

 

Leaf damage 

The probability of leaf damage by herbivores and pathogens was significantly affected by 

destination, and the magnitude of this effect changed between years (i.e. there was a 

significant destination by year interaction, Table 1). Damage probability was higher on ridges 

than in snowbeds (Table 1, Fig. 1d), and while this effect was consistent across years, it was 

overall much stronger in 2012 than in 2013. Origin of turfs did not affect damage probability, 

suggesting that all shrubs were equally vulnerable when exposed to damage agents on ridges. 

Selection gradient analysis showed that damage did not affect clonal or sexual reproduction in 

neither of the microhabitats in the short-term (Fig.3 e, f). 

 

Discussion 

In our study, S. herbacea demonstrated evidence of both trait plasticity and microhabitat 

origin effects. Salix herbacea turfs that were transplanted between early and late snowmelt 

microhabitats exhibited a rapid plastic response to the change in microhabitat for both 

phenological development and leaf size. In contrast, flower production and stem number were 

only affected by the microhabitat of origin, at least during the two years of our study S. 

herbacea demonstrated no evidence of a home-site advantage for any of the measured fitness 

traits. Increasing leaf size was associated with an increase in flowering probability on ridges 

in the selection gradient analysis. Plants were more likely to incur leaf damage by herbivores 
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and pathogens on ridges than in snowbeds. This suggests that although the studied 

populations of S. herbacea can respond plastically to earlier snowmelt by adjusting 

phenological and morphological traits, exposure to leaf damage agents becomes more likely. 

Further, passive plastic reduction in leaf size with earlier snowmelt may lead to reduced 

flowering, thereby lowering fitness. 

 

Microhabitat origin and destination effects 

Phenology responded strongly to changes in snowmelt timing. Turfs on ridges started earlier 

but developed more slowly to leaf expansion, flowering and fruiting, while turfs in snowbeds 

started later but developed faster. Phenology in dwarf shrubs is often closely linked to 

snowmelt timing, with accelerated snowmelt leading to earlier phenological start in many 

arctic and alpine species [Wipf et al. 2009, Wipf 2010]. In a field survey on S. herbacea, 

Wheeler et al. (unpublished) found similar growing-degrees days (GDD) accumulation 

thresholds required for starting leaf expansion and flowering along both elevation and 

snowmelt-timing gradients. Similarly, many arctic and alpine plants must reach GDD 

temperature accumulation thresholds in order to move to the next phenophase [Galen and 

Stanton 1993, Kudo and Suzuki 1999, Huelber et al. 2006, Molau 2005]. Thus, the 

mechanism driving the starting time and progression of S. herbacea phenology is likely 

temperature, controlled by GDD accumulation beginning immediately after snowmelt. In our 

transplant sites, slower phenological development on ridges is then a response to colder 

temperatures in the early growing season. 

Leaf size was highly plastic, and responded by increasing when turfs were 

transplanted to snowbeds than when they were on ridges. Similarly, Walker et al. found larger 

leaf sizes produced under later snowmelt conditions in other alpine species [Walker et al. 

1995] (but see [Stinson 2004]). The mechanisms driving larger leaf size in snowbeds are 

potentially higher temperatures, nutrient and/or water availabilities. Hudson et al. showed that 
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leaf size increased with warming in Salix arctica, another prostrate willow, and that this effect 

remained consistent through a long-term warming experiment [Hudson et al. 2011]. In our 

study area, later snowmelt timing resulted in warmer growing season temperatures, and 

nearby alpine sites showed both more bioavailable phosphorus and higher water availability 

soon after snowmelt [Little 2014], both factors which could potentially drive larger leaf sizes 

in snowbeds. At ridge microhabitats, a reduction in leaf size could have been driven by 

competition with taller alpine shrubs; however, a concurrent neighbor removal study 

examining interactions between S. herbacea and the surrounding vegetation community in the 

same research area showed that S. herbacea produced larger leaves on ridge microhabitats 

when growing in association with taller neighbours (Wheeler et al. unpublished). The rapid 

increase in leaf size under later snowmelt conditions means that shrubs can maximize photo-

assimilation during the shorter growing seasons [Walker et al. 1995]. However, we could not 

detect an increase in clonal and sexual reproduction with bigger leaf size under later snowmelt 

conditions. In contrast, selection acted on leaf size with earlier snowmelt, since there was a 

decrease in flowering with smaller leaves on ridges; the fitness costs of these results are 

discussed below. 

The proportion of flowering stems and stem number generally did not change in 

response to the destination microhabitat, but demonstrated strong effects of the origin 

microhabitat, despite corrections for initial stem number. Although these origin effects on 

flowering and stem numbers could indicate genetic differentiation, we must interpret them 

cautiously as there are several alternative explanations. The observed origin effects may be 

explained by an experimental period too short to detect differences in slow-responding S. 

herbacea traits (e.g. clonal growth), and might thus reflect maternal carry-over effects 

[Schwaegerle et al. 2000]. We accounted for potential carry-over effects due to differences in 

plant size by including the number of stems before as a covariate in the analyses. However, 

these effects might also have been influenced by a correlation with the age of the plant, which 
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is impossible to determine in the field. Another confounding factor could be that the 

transplanted soil might have contained soil biota and nutrients. However, transplanting with 

soil and soil biota might have also reduced the number of factors confounded with the shift in 

snowmelt timing, our main variable of interest. However, at minimum, we speculate that these 

slow responses in clonal and sexual reproduction might provide a buffer when snowmelt 

conditions change. Snowbed shrubs, with their high stem density, may prove particularly 

resistant, due to their potentially high flower production capacity and resource storage. 

 

No evidence for home site advantage 

Highly structured alpine landscapes with steep environmental gradients pose divergent 

selection pressures on, and lead to restricted gene flow between plant populations, which can 

promote local adaptation. A home-site advantage or other evidence for local adaptation has 

been found in many arctic and alpine plants [Kim and Donohue 2013, Byars et al. 2007, 

Gonzalo-Turpin and Hazard 2009, Bennington and Fetcher 2012], but see [Frei et al. 2013, 

Stanton and Galen 1997]. For our study species, ridge and snowbed microhabitats are often 

extensively temporally isolated by snowmelt timing [Wheeler et al. 2014, Cortés et al. 2014], 

which results in significant temporal separation in flowering times [Cortés et al. 2014]. 

Despite this phenological isolation between early and late snowbed sites, we did not find any 

indications for a home-site advantage to microhabitats, characterized by snowmelt timing, 

using either a sexual reproductive trait (proportion of flowering stems) and a clonal 

reproductive trait (the change in stem number) as fitness traits. This lack of a home-site 

advantage could have arisen through either carry-over effects or a lack of local adaptation, 

possibly due to high gene flow [Cortés et al. 2014], and particularly through the mechanism of 

high seed deposition in snowbed microhabitats, leading to little differentiation between ridge 

and snowbed plants [Cortés et al. 2014]. In a greenhouse experiment, where we used S. 

herbacea seeds and soil from the same study area, we found no indication for local adaptation 



76 
 

to soil biota in ridge and snowbed microhabitats[Sedlacek et al. 2014]. The lack of a home-

site advantage suggests that there is no evidence for small-scale adaptive divergence within S. 

herbacea populations. This might be beneficial, if climate change leads to an advance in 

snowmelt timing and/or forces the dwarf shrub to migrate to new snowmelt microhabitats 

within the current range. However, a lack of small-scale adaptive divergence could also 

suggest limitations in the evolutionary potential of S. herbacea. 

 

Fitness consequences under an early snowmelt scenario 

In alpine regions climate change is predicted to drastically advance snowmelt timing and 

increase temperatures, together with changes in other abiotic and biotic factors, like soil 

moisture, nutrient availability and biotic interactions [Beniston et al. 2003]. These combined 

effects may strongly affect plant phenology, morphology and consequently fitness. In our 

study, we found no link between phenological development time and flowering probability, 

and thus no direct selection on phenological development time. However we were not able to 

disentangle potential positive and negative effects of a longer development time, which might 

have cancelled out each other. Under accelerated spring snowmelt conditions, a longer 

phenological development time might increase exposure to episodic freezing damage early in 

the season, when tissues are in the active growing stages and thus more vulnerable to damage. 

Since flower buds and flowers are especially vulnerable to freezing this might consequently 

lead to a reduction in sexual reproductive fitness [Inouye 2008, Ladinig et al. 2013]. 

Furthermore, Stinson showed negative selection on longer flowering development time, likely 

because of late-season declines of soil moisture in early snowmelt sites [Stinson 2004]. In 

contrast plant fitness might also benefit from a longer snow-free period, as there is more time 

for growth and resource allocation [Arft et al. 1999, Galen and Stanton 1991] though many 

dwarf shrubs show no link between advanced phenology and increased sexual reproduction 

[Wipf et al. 2009]. Finally, consequences of phenological development time on fitness may be 
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difficult to detect in a short time-frame, since spring freezing damage is episodic and may 

require repeated years of damage to deplete storage reserves [Wheeler et al. 2014, Molau 

1997]. Further, in S. herbacea, flower buds are already preformed [Jones et al. 1997], and 

plants flower only once during the season; thus an advance of flowering would not extend the 

reproductive season or increase flower production in the short term. 

Plant fitness is often demonstrated to benefit from relatively large leaves, by maximizing 

photosynthetic gains under cool, moist and shaded conditions [Givnish 1979]. In contrast, 

there might be a trade-off, selecting smaller leaves under hot, dry, high light and low nutrient 

conditions [Smith and Geller 1979]. Indeed, we found S. herbacea produced smaller leaves 

when they were on the drier, more exposed ridges than when they were in snowbeds. 

Nevertheless, we found positive selection on leaf size of plants on ridges (i.e. plants with 

bigger leaves were more likely to produce flowers). This suggests that the observed plastic 

reduction in leaf size under early snowmelt is actually not adaptive [van Kleunen and Fischer 

2005]. Since, as previously discussed, competition does not appear to reduce leaf sizes on 

early snowmelt sites, the reduction in leaf size most likely reflects a passive plastic reduction 

as a consequence of lower resource availability on ridges. This passive reduction in leaf size 

might potentially lead to a reduction in flowering under early snowmelt conditions. 

Under early snowmelt, the damage probability increased significantly. Although 

studies examining the frequency and severity of insect herbivore damage under earlier 

snowmelt are uncommon, increasing damage by herbivores and pathogens has been found in 

a long term warming experiment of alpine meadow plants by [Roy et al. 2004]. This trend is 

likely driven by a higher abundance of herbivores and pathogens and the prolonged exposure 

time of early snowmelt sites, which allow for greater developmental periods for growth and 

reproduction of the herbivore. Gerdol et al. demonstrated that leaf damage led to a decrease in 

plant fitness under earlier snowmelt conditions [Gerdol et al. 2013]. In this study, we found 

no evidence that higher damage resulted in a lower flowering probability or a decline in stem 



78 
 

numbers. However, a larger multi-year study showed reductions on female flowering 

probability of S. herbacea in the year following herbivory and fungal damage (Wheeler et al. 

unpublished). Thus, future studies should investigate male and female reproductive success in 

more detail, and assess changes in stem numbers over more years. 

Despite responding to a change in snowmelt timing through plastic adjustment, plants 

might also be able to tolerate the new conditions through traits that increase their resistance. 

Our study suggests that plants from snowbeds can maintain a large size (stem numbers) in the 

short term (2 years) following a significant change in snowmelt timing. We suggest that this 

resistance is provided by increased resource storage due to high initial stem numbers. 

However, over the long term many alpine species have shown lagging population dynamics 

with currently occupied habitats becoming unsuitable, which leads to an extinction debt 

[Dullinger et al. 2012]. We speculate that many microhabitats may become unsuitable for 

S.herbacea due to earlier snowmelt conditions.  

 

Conclusions 

In the studied populations of the alpine dwarf shrub S. herbacea, phenology and leaf size were 

strongly responsive to environmental changes triggered by shifts in snowmelt timing, but only 

changes in leaf size had a significant influence on plant fitness traits. Leaf damage probability 

was controlled by the environment, but appeared to have no fitness consequences in the short 

term. None of the S. herbacea individuals from early- or late snowmelt microhabitats 

demonstrated a home-site advantage, suggesting that the potential of S. herbacea to adapt to 

new snowmelt conditions might be limited. Sexual and clonal reproduction did not respond 

rapidly to snowmelt change, thus under early snowmelt conditions snowbed plants may still 

perform well in the short term, due to their high stem density relative to individuals from 

ridges. However, with accelerated spring snowmelt in the long term, exposure to damages and 
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reductions in leaf size could lead to reduced flowering and consequently fitness reductions in 

the studied populations of S. herbacea.  
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Table 1. The effects of destination, origin, year and sex respectively, and their interactions, on the leaf size, stem number, phenology (duration 

from snowmelt to leaf expansion phenophase), leaf damage, ratio of flowering and ratio of fruiting stems of reciprocally transplanted Salix 

herbacea turfs. Ratio of flowering and fruiting stems was measured only in 2013, so year was excluded from these models. Ratio of initial stem 

number of 2011 was used as a covariate in the model for stem number (see Methods for details). Log-likelihood ratio tests were used to obtain χ
2 

test statistic.  

 
Leaf size Stem number 

Onset of leaf 

expansion 

Development time 

to leaf expansion 
Leaf damage 

Flowering stem 

ratio 

Source of Variation χ
2
 P χ

2
 P χ

2
 P χ

2
 P χ

2
 P χ

2
 P 

Stem number 2011 - - 212.72 <0.001 - - - - - - - - 

Year 14.16 <0.001 0.09 0.767 41.30 <0.001 51.30 0.602 17.20 <0.001 - - 

Sex - - - - - - - - - - 1.29 0.257 

Destination 4.70 0.030 0.40 0.526 25.33 <0.001 9.748 0.001 5.47 0.019 2.94 0.087 

Origin 0.00 0.966 13.90 <0.001 2.13 0.144 0.168 0.681 2.37 0.123 6.35 0.012 

Destination : Year 1.33 0.250 0.45 0.502 101.98 <0.001 9.33 0.002 4.27 0.039 - - 

Destination : Sex - - - - - - - - - - 3.52 0.061 

Origin : Year 0.00 0.966 4.35 0.037 2.60 0.575 0.06 0.793 0.65 0.421 - - 

Origin : Sex - - - - - - - - - - 3.01 0.083 

Origin : Destination 1.62 0.203 0.84 0.359 0.31 0.575 0.13 0.714 0.02 0.882 1.96 0.162 

Origin : Destination : Year 0.09 0.763 0.04 0.852 0.39 0.531 0.03 0.849 0.30 0.584 - - 

Origin : Destination : Sex - - - - - - - - - - 0.62 0.433 

Random effects Var SD Var SD Var SD Var SD Var SD Var SD 

Turf/Patch/Plot/Site 0.004 0.066 0.243 1.557 <0.001 <0.001 <0.001 <0.001 <0.001 0.002 2.709 0.520 

Patch/Plot/Site 0.054 0.234 1.118 3.344 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 0.673 0.259 

Plot/Site 0.008 0.089 0.008 0.029 0.188 4.342 16.012 4.001 0.109 1.046 <0.001 0.003 

Site <0.001 <0.001 <0.001 <0.001 1.808 1.344 <0.001 <0.001 <0.001 <0.001 <0.001 0.003 

Residual 0.078 0.280 - - 25.000 5.000 50.221 7.087 -  - - 

marginal R
2
; conditional 

R
2
 

0.050 0.489 0.524 0.835 0.779 0.879 0.314 0.480 0.175 0.177 0.080 0.166 
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Figure 1: Leaf size (a), stem number (b), phenological development time (time from 

snowmelt to leaf expansion) (c), and leaf damage probability (d) of Salix herbacea turfs, 

reciprocally transplanted in 2011 between late exposed snowbed and early exposed ridge 

microhabitat sites in an alpine tundra site near Flüelapass, Switzerland. Turfs originating from 

ridges (R) are marked with solid lines and filled circles, turfs originating from snowbeds (S) 

with dashed lines and open circles. Error bars show standard errors.
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Figure 2: Proportion of flowering female and male stems of Salix herbacea turfs, reciprocally 

transplanted in 2011 between late exposed snowbed and early exposed ridge microhabitat 

sites in an alpine tundra site near Flüelapass, Switzerland. Turfs originating from ridges (R) 

are marked with solid lines and filled circles, turfs originating from snowbeds (S) with dashed 

lines and open circles. Error bars show standard errors. 
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Figure 3: Selection gradients of Salix herbacea turfs growing in ridge and snowbed 

microhabitat sites. Turfs originating from ridges (R) are marked with solid lines and filled 

circles, turfs originating from snowbeds (S) with dashed lines and open circles. Lines are only 

shown when th r  was a s g  f ca t (α = 0.05) s l ct o  co ff c   t. Errorbars show 95% CIs 

for flower probability (e) and standard errors for stem ratio (f).
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Appendix A. Supplemental Material 

Table A1. Geographical coordinates, mean snowmelt date, mean growing season soil temperature and accumulated GDD over the growing 

season of the 6 ridge and 6 snowbed microhabitat sites used in a reciprocal transplant study established in 2011 in an alpine site near Flüelapass, 

Switzerland. 

Site Latitude (°) Longitude (°) Snowmelt 

day 2012 

Snowmelt 

day2013 

Growing 

season soil 

Temp [°C] 

2012 

Growing 

season soil 

Temp [°C] 

2013 

GDD 2012 GDD 2013 

1-Ridge 46.74016667 9.96690556 135 163 8.5 11.5 1405 1226 

2-Ridge 46.74026944 9.96581667 167 167 10.7 12.4 848 526 

3-Ridge 46.74131389 9.96495000 136 164 11.2 12.3 1084 1189 

4-Ridge 46.74095833 9.96466389 163 170 9.6 12.9 943 811 

5-Ridge 46.74200000 9.96375833 154 164 10.4 9.8 1414 1330 

6-Ridge 46.74340278 9.96161667 141 166 12.8 8.5 654 257 

1-Snowbed 46.74008333 9.96637500 178 187 11.0 10.3 1234 1193 

2-Snowbed 46.74068889 9.96563611 170 180 12.7 14.1 908 643 

3-Snowbed 46.74110833 9.96565833 198 190 11.5 9.8 1117 715 

4-Snowbed 46.74081111 9.96515000 198 195 12.8 13.4 1167 606 

5-Snowbed 46.74218056 9.96396389 197 198 9.9 9.4 1074 1039 

6-Snowbed 46.74323611 9.96196944 202 205 14.2 13.4 815 555 
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Table A2. 

The effects of destination, origin, year and sex respectively, and their interactions, on phenology (day of year of flowering, duration from 

snowmelt to flowering, day of year of fruiting, duration from snowmelt to fruiting) of reciprocally transplanted Salix herbacea turfs. Log-

likelihood ratio tests were used to obtain χ
2 

test statistic.  

  Onset of leaf expansion Onset of flowering Development time to flowering Onset of fruiting Development time to fruiting 

Source of Variation χ
2
 P χ

2
 P χ

2
 P χ

2
 P χ

2
 P 

Year 41.30 <0.001 59.09 <0.001 0.27 0.602 8.94 <0.002 7.284 0.006 

Destination 25.33 <0.001 19.99 <0.001 9.53 0.002 23.35 <0.001 3.671 0.055 

Origin 2.13 0.144 1.31 0.252 0.12 0.728 1.07 0.299 0.734 0.391 

Destination : Year 101.98 <0.001 76.17 <0.001 0.53 0.468 13.79 <0.001 2.205 0.137 

Origin : Year 2.60 0.106 0.01 0.917 1.51 0.219 0.24 0.624 0.002 0.96 

Origin : Destination 0.31 0.575 <0.01 0.986 <0.01 0.984 0.21 0.641 0.165 0.683 

Origin : Destination : Year 0.39 0.531 0.31 0.576 0.81 0.369 <0.01 0.937 0.975 0.754 

Random effects Var SD Var SD Var SD Var SD Var SD 

Turf/Patch/Plot/Site <0.001 <0.001 7.019 2.649 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Patch/Plot/Site <0.001 <0.001 7.151 2.674 <0.001 <0.001 <0.001 <0.001 <0.001 <0.001 

Plot/Site 18.85 4.342 42.85 6.546 8.864 2.977 21.42 4.628 74.4 8.626 

Site 1.808 1.344 <0.001 <0.001 6.946 2.636 <0.001 <0.001 <0.001 <0.001 

Residual 25 5 24.21 4.92 44.7 6.686 61.55 7.845 53.52 7.316 

marginal R
2
; conditional R

2
 0.779 0.879 0.743 0.923 0.343 0.613 0.717 0.79 0.247 0.685 
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Figure A1. Map of the study area near Davos (Switzerland), and locations of the six pairs of study sites (1-6), each consisting of one early 

exposed ridge microhabitat (filled circle) and one late exposed snowbed microhabitat (open circle). 
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Figure A2. Accumulated growing degree days on ridge- (blue) and snowbed sites (red) in 2012 

and 2013. The data were collected on six ridge and six snowbed microhabitat sites used in a 

reciprocal transplant study established in 2011 in an alpine site near Flüelapass, Switzerland. 
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Salix herbacea after budbreak during a spring snowfall, photo by Christian Rixen 
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Abstract 

Alpine dwarf shrub communities are phenologically linked with snowmelt timing, so 

early spring exposure may increase risk of freezing damage during early development, and 

consequently reduce seasonal growth. We examined whether environmental factors (duration of 

snowcover, elevation) influenced size, and the vulnerability of shrubs to spring freezing along 

elevational gradients and snow microhabitats by modelling the past frequency of spring freezing 

events.  

We sampled biomass and measured size from Salix herbacea, Vaccinium myrtillus, V. 

uliginosum and Loiseleuria procumbens in late spring. Leaves were exposed to freezing 

temperatures to determine LT-50 (temperature at which 50% of specimens are killed) for each 

species and sampling site. By linking site snowmelt and temperatures to long-term climate 

measurements, we extrapolated the frequency of spring freezing events at each elevation, snow 

microhabitat and per species over 37 years. 

Snowmelt timing was significantly driven by microhabitat effects, but independent of 

elevation. Shrub growth was neither enhanced nor reduced by earlier snowmelt, but decreased 

with elevation. Freezing resistance was strongly species-dependent, and did not differ along the 

elevation or snowmelt gradient. Microclimate extrapolation suggested that potentially lethal 

freezing events (May and June) occurred for three of the four species examined. Freezing events 

never occurred on late snowbeds, and increased in frequency with earlier snowmelt and higher 

elevation. Extrapolated freezing events showed a slight, non-significant increase over the 37-year 

record.  

We suggest that earlier snowmelt does not enhance growth in four dominant alpine 

shrubs, but increases the risk of lethal spring freezing exposure for less freezing-resistant species. 
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Introduction 

Warming air temperatures due to climate change have been documented in many alpine 

systems, triggering reduced snowfall and earlier snowmelt (IPCC 2007, Pagter and Arora 2012, 

Rixen et al. 2012). Early snowmelt potentially represents a radical environmental change for 

many alpine plant communities, the phenology of which may be strongly linked with snowmelt 

timing in the spring (Keller and Körner 2003, Wipf and Rixen 2010). Dwarf shrubs represent a 

dominant vegetation type in the alpine zone above treeline, but despite increasing evidence for 

earlier snowmelt in alpine systems, the response of these communities to climate-induced 

changes in snowmelt timing has rarely been studied (Wipf and Rixen 2010, but see Wipf et al. 

2009). 

 

In alpine environments, a longer, warmer growing season might be associated with 

enhanced plant growth. This has been observed in Arctic shrub species, which have shown 

vegetative size and productivity increases with warming (e.g. Hudson et al. 2011, Elmendorf et 

al. 2012), indicating that vegetative size is a practical field measure for plant response to 

environmental change. However, accelerated alpine spring snowmelt is a critical ecosystem 

change: it can increase the length of photosynthetic period, increase drought exposure, alter 

timing of early-season phenology and, perhaps most importantly, increase exposure to spring 

freezing events (Inouye 2008). The few studies available examining alpine shrub response to 

accelerated snowmelt suggest growth is typically not enhanced under early snowmelt in 

temperate alpine habitats (Wipf et al. 2009, Rixen et al. 2010, Gerdol et al. 2013). Increased 

exposure to freezing events, as driven by earlier snowmelt timing, has also been shown to 

increase bud damage in alpine wildflowers (Inouye 2008), damage leaves and apical buds of 

alpine shrubs Vaccinium spp. and Empetrum hermaphroditum (Rixen et al. 2012), and reduce leaf 
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expansion, flowering and fruiting in Vaccinium myrtillus (Bokhorst et al. 2008, Gerdol et al. 

2013).  

 

Naturally-occurring spring and summer freezing events are episodic in alpine zones, and 

can reduce growth through the decrease of available metabolic energy, the reduction of 

water/nutrient uptake, and the damage/die-off of leaf tissue (Larcher 2003, Rixen et al. 2012). 

Spring freezing rarely kills alpine plants, but these cold events have been shown to significantly 

reduce both above-ground biomass and reproductive output, and can potentially reduce the 

abundance and competitive ability of the species at the population level (Molau 1997, Bokhorst et 

al. 2008). Some alpine plants may delay spring phenology until the risk of freezing damage to 

sensitive new tissue has passed (Körner 2003), but since this strategy is most likely controlled by 

photoperiodism, it probably does not occur in alpine sites, as daylength at time of snowmelt is 

already near its annual maximum (a 15 h day-length threshold has been suggested for the onset of 

alpine plant growth, Heide 2001). Freezing resistance differs strongly between species and 

functional groups, and has been extensively studied previously, with many studies also including 

alpine shrubs (e.g. Sakai and Larcher 1987, Taschler and Neuner 2004, Martin et al. 2010). 

However, while studies have examined freezing resistance along elevational gradients (Taschler 

and Neuner 2004, Sierra-Almeida et al. 2009), soil warming gradients (Martin et al. 2010), and 

between snow microhabitats (Bannister et al. 2005), to our knowledge no one has examined the 

same species along elevation and snowmelt gradients within a single study. Wipf et al. (2009) 

examined the impacts of accelerated snowmelt on growth and phenology in alpine shrubs and 

speculated about the role of spring frosts in alpine shrub failure to respond positively to longer 

seasons, but did not quantify shrub freezing resistance, or examine the long-term frequency of 

spring freezing events or community response along the elevational gradient. In complex alpine 
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ecosystems, it is critical to understand the interplay between ongoing changes in elevational 

temperature gradients, snowmelt effects as controlled by microtopography, and species-specific 

freezing resistance responses in order to predict the effects of earlier spring snowmelt on alpine 

shrubs.  

 

In this study, we investigated the impact of growing season length (triggered by natural 

snowmelt timing) and elevation on shrub growth and risk of exposure to potentially lethal spring 

and early summer freezing events in four alpine dwarf shrubs. We hypothesized that earlier 

snowmelt does not enhance shrub performance because earlier snowmelt increases the risk of 

exposure to damaging spring freezing events, thus failing to enhance or even reducing seasonal 

growth. We sampled shrub biomass with mature leaf tissue along an elevational and snowmelt 

gradient and exposed it to simulated freezing conditions in order to: i) assess environmental 

factors (duration of snow cover, elevation) influencing functional growth traits (leaf area, annual 

shoot increment, stem length);  ii) compare interspecific and intraspecific freezing resistance 

(measured as LT-50, temperature at which 50% of specimens are killed) along the elevational and 

snowmelt gradients and iii) determine the potential vulnerability of mature leaf tissue in shrubs to 

post-snowmelt freezing along the elevational and snowmelt gradients through the frequency of 

species-specific spring lethal freezing events by using long-term meteorological data. The results 

of this experiment will add to our understanding of alpine shrub responses to accelerated 

snowmelt, and aid in predicting potential changes in the shrub community driven by climate 

warming.    

 

 

Methods 
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Study site and sampling design 

Our study transect is located on the northeast-exposed face of the Jakobshorn peak (2590 

m asl), above the Stillberg Long-Term Afforestat o  R s arch Ar a (9°52’E, 46°46’N)    th  

central Alps, Switzerland. The transect covers an elevational gradient of 2100 to 2500 m asl, 

from just above the natural climatic treeline to the peak. The climate record at 2100 m asl (1975 

to present) shows annual mean precipitation at 1150 mm, with 48% falling between June-

September. Snowfall can occur in all months, with continuous snow cover occurring usually from 

mid-October to late May (Wipf et al. 2009). Mean spring air temperatures (May=4.5°C, 

June=7.2°C) gradually warm to summer mean temperature peaks (July=10.0°C, August=9.8°C), 

with only episodic freezing events between May and September. The 37-year climatic record at 

this site indicates that mean June-July-August air temperatures have warmed significantly, and 

that snow is melting significantly earlier in the spring, at a rate of 3.5 days per decade (Rixen et 

al. 2012).    

 

Sites were established at four elevations along the 400m gradient, at an early-exposure 

ridge and a late snowbed microhabitat, for a total of eight sites (Table 1). Relatively early-melting 

snowbed sites were paired with very early-exposure ridges in order to ensure that sampled shrubs 

would have developed to similar leaf phenophases. In-situ soil temperature loggers (iButton, 

Maxim Integrated, San Jose USA) recorded 2012 soil temperatures (2 hour intervals) at each site 

at 5 cm soil depth and were used in conjunction with field observation to determine day of 

snowmelt (date in spring when soil temperature rose abruptly from the near-0°C characteristic of 

snow cover). Growing degree days (GDD; sum of daily mean temperatures above 5°C) were 

calculated from snowmelt to the end of August for each site. Total season length for each site was 

calculated from snowmelt day to first day in autumn when mean air temperatures fell below 0°C.  
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Four common and dominant alpine dwarf shrub species (2-3 specimens per site) were 

sampled at each site for this study: evergreen Loiseleuria procumbens (L.) Desv., Family 

Ericaceae, and deciduous shrubs Vaccinium myrtillus L., Family Ericaceae, Vaccinium 

uliginosum L. ssp. gaultherioides, Family Ericaceae and Salix herbacea L., Family Salicaceae. 

Shrub stem and leaf biomass were sampled during a one-day period on 23-June-2012 at similar 

phenological stages (mature, newly opened leaves) to minimize potential intraspecies differences 

in LT-50. The one-day-sampling can only be considered a snapshot in LT-50 because cold 

hardiness continuously changes through plant life stages (Sakai and Larcher 1987). However, our 

sampling period was ideal for our purposes because leaves were already fully developed but 

without signs of damage like herbivory or senescence yet; such conditions were necessary to 

cover our research design including the gradients in elevation and snowmelt. Furthermore, air 

temperatures in the 7 days prior to sampling (Table 1) were never below 0°C, making it unlikely 

that the sampled shrubs were unusually cold-hardened. Functional growth traits (mean leaf area 

calculated from leaf length x leaf width, mean stem length) were measured and used as the 

primary growth variables. 

 

Freezing resistance (LT-50) determination 

Live shrub biomass (stems and leaves) was immediately placed in cooling boxes after 

sampling and transported to the freezing lab facility at the University of Basel (Basel, 

Switzerland) within a day. Specimen biomass samples (6-8 branches with intact, healthy leaves) 

were separated into nine subsamples, wrapped in paper and aluminum foil to buffer temperature 

fluctuations (effective to 0.1K; Larcher et al. 2010) and to prevent water loss and mechanical 

damage. Each subsample was exposed to minimum temperature treatments (4°C, -2°C,-4°C ,-
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7°C,-11°C, -14 °C, -16°C ,-19°C,-20°C) in a computer-controlled freezing system, where 

temperature was started at 4°C, decreased to the minimum temperature at 3 K per hour, 

maintained for 4 hours, and then returned to 4°C at 3 K per hour. Damage to leaf tissue was 

visually quantified on a 10% scale (0 to 100% damage) to determine the lethal kill temperature 

for mature leaf tissue in each specimen, with damage to greater than 70% of the leaves classified 

as a ‘k ll’. V sual qua t f cat o  of da ag  (surfac  dark    g a d l  p  ss fro  loss of turgor 

pressure) for these species is strongly correlated with leaf tissue electrolyte leakage associated 

with freezing damage (Martin et al. 2010). LT-50 for each specimen was determined by fitting a 

sigmoid curve to the eight points on the temperature-percent damage plot and calculating the 

inflection point (Martin et al. 2010). If the sigmoid curve lacked a defined inflection point, the 

LT-50 for that specimen was not included in the analysis; however, this was relatively infrequent 

(less than 10% of the data points). Data were pooled by species for each site, and LT-50 was then 

calculated for each species at each sampling site. 

 

Spring lethal cold events 

Lethal spring freezing events were defined as spring (May and June) daily air temperature 

minima either at or below the mean LT-50 for a shrub species occurring a minimum of 5 days 

after projected site snowmelt at 40 microsites (20 ridges, 20 snowbeds) along the elevational 

gradient (sites separated by a mean elevational distance of approximately 50 m). The minimum 

five day threshold after projected snowmelt date was implemented in order to maximize the 

probability of shrubs having undergone budbreak prior to a freezing event occurring. The in-situ 

climate station at 2100 m asl recorded hourly air temperature (2 m) and annual date of snowmelt 

from 1975 to 2012. Snowmelt dates measured at each of the 20 sites in 2012 were used to relate 

snowmelt date at a given site to the date recorded at the climate station. Snowmelt dates in 2012 
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were representative of the long-term mean in the region (1 day later than the 37-year mean). 

Nearby snow depth accumulations have been shown to be similar from year to year (Schirmer et 

al. 2011), and the order of site emergence from snow has been relatively consistent over two 

years (2011-2012) of monitoring (Wheeler, unpublished data). This relative snowmelt date for 

each site was then used to estimate date of snowmelt for all transect sites between 1975 and 2012. 

Site air temperatures after predicted snowmelt were extrapolated for each site using a lapse rate 

of 0.52 K 100m
-1

 (averaged from long-term May-June data at n=15 climate stations in Swiss 

Alps; Kollas et al. 2012).This lapse rate value is generally similar to those calculated for long-

term daily temperature minima under a range of alpine atmospheric conditions in spring months 

(Kirchner et al. 2013). Frequency and yearly recurrence of lethal spring freezing events were then 

calculated for each species at each site for the past 37 years in order to extrapolate relative spring 

freezing event frequency along the elevational and snowmelt gradients, and over multiple 

decades.  Since snowmelt day for each site over the long-term record is extrapolated from the 

2012 record and not determined from site observation, this is meant as an indicator of relative 

changes of freezing frequency along the gradients, and not a direct prediction of the actual 

(absolute) freezing frequency.  

 

Statistical analyses 

To quantify environmental differences along the elevational gradient and between snow 

microhabitats, we used general linear models to analyze both snowmelt timing and soil 

temperatures (response variables) along the elevational gradient and between microhabitat types 

(explanatory variables). Growing season soil temperature was significantly negatively correlated 

with elevation and with earlier snowmelt day, and demonstrated similar trends as the results for 

elevation in the individual linear regressions; as elevational trends were slightly stronger, 
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elevation was chosen as the explanatory variable and soil temperature was dropped from the 

analysis. We used general linear models (Type 3 error) to analyze growth traits (mean leaf area, 

mean stem length) for each species individually, with elevation and snowmelt day as explanatory 

variables.  We analyzed freezing resistance (LT-50) also with general linear models but with 

species, elevation and snowmelt day as explanatory variables. Because species was highly 

significant, we also analyzed freezing resistance on a species basis similar to the growth traits. 

Mean leaf area and mean stem length were log-transformed to ensure normality. Assumptions of 

linearity and homoscedasticity were confirmed using standard diagnostic plots. We used 

generalized linear models (quasipoisson distribution) to analyse the frequency of spring freezing 

events for each species over the 37-year record, with centered elevation and centered snowmelt 

day as explanatory variables. However, results are only shown for V. myrtillus, since it was the 

only species exposed to relatively frequent spring freezing events all along the elevational 

gradient. All analyses were carried out in R v.2.15.1.  

 

Results 

Snowmelt and elevation  

 

Snowmelt timing (Table 1) was typical for the long-term average in 2012, occurring 1 day 

later than the long-term mean (data not shown). Snowmelt occurred significantly earlier on ridges 

(N=4) relative to snowbed microhabitats (N=4; mean ridge snowmelt day of year (DOY)= 142, 

mean snowbed snowmelt DOY= 159, F=20.1, p<0.0001); however, elevation had no significant 

effect on snowmelt timing (F=0.24, p=0.62); this indicates that local microhabitat effects are the 

primary driver of snowmelt timing. These strong local effects may be characteristic at the 
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landscape scale, as two similar transects on other mountains nearby also failed to demonstrate 

consistent elevational-snowmelt effects over multiple years (data not shown). We assumed that 

growing season ended on September 14 for all sites, when daily mean air temperature fell to -

1.36°C at 2090m asl. Hence, the mean ridge growing season length was 116 days, while mean 

snowbed growing season length was 99 days. The 17-day difference between ridge and snowbed 

meltout timing represents about 17% of the mean growing season length at snowbed sites. 

Ridge and snowbed microhabitats significantly differed in soil temperature after 

snowmelt in June, but these differences disappeared over the course of the growing season; June 

GDD significantly increased with earlier snowmelt day (mean ridge June GDD=278, mean 

snowbed June GDD=214; F=17.8, p=0.0002), but this difference between microhabitat types was 

not present over the course of the entire summer, as growing season GDD (snowmelt to the end 

of August) was not significantly different (mean ridge GDD=1202, mean snowbed GDD=1077; 

F=1.2, p=0.26). Mean June temperatures were not significantly different (mean ridge June 

=10.0°C, mean snowbed June =9.85°C; F=1.7, p=0.20), while mean soil temperatures over the 

entire growing season were significantly higher at later snowmelt sites (mean ridge =10.0°C, 

mean snowbed =10.4°C; F=13.2, p=0.001).  

June GDD and growing season GDD decreased with marginal significance along the 

elevational gradient (t=-1.96, r= -0.34, p=0.059 for June GDD; t=-1.84, r= -0.32, p=0.075 for 

season GDD) while mean June and mean growing season temperature both decreased 

significantly elevationally (t=-5.17, r=-0.69, p<0.0001 for mean June temperature; t=-2.49, r=-

0.41, p=0.018 for mean season temperature). 

  

Growth performance along environmental gradients 
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The prostrate shrubs S. herbacea and L. procumbens showed no elevational growth 

response (Fig. 1, Fig. 2). However, the higher-statured V. myrtillus and V. uliginosum both 

demonstrated a significant negative growth response to elevation, with a significant decrease in 

mature leaf area with increasing elevation (Figure 1; DF=1, F= 22.42, p=0.0032; DF= 1 F=12.74, 

p=.012). V. uliginosum, the tallest shrub in this study, further demonstrated a significant decrease 

in mean stem length with elevation (Figure 2; DF=1, F= 14.82, p=0.0085).  No shrub species 

demonstrated a significant growth response to snowmelt timing. This suggests that differences in 

snowmelt and growing season length in the observed range have a much weaker effect on shrub 

growth performance than other environmental drivers (e.g. elevation).  

 

Vulnerability to spring freezing damage 

Pooled spring freezing resistance (LT-50) of leaves was significantly different between 

species (DF=3, F=22.34, p<0.0001), with low-stature evergreen L. procumbens having the 

highest freezing resistance (N=8, -11.0°C), followed by V. uliginosum (N=8, -9.0°C), S. herbacea 

(N=8, -7.0°C) and V. myrtillus (N=8, -5.1°C). Spring freezing resistance was not found to be 

significantly different along the elevational and snowmelt gradients in any shrub species 

(elevation gradient L. procumbens DF=1, F=1.11, p=0.33; S. herbacea DF=1, F=0.92, p= 0.38;V. 

uliginosum DF=1, F=0.17, p=0.70; V. myrtillus DF=1, F=1.62, p=0.25; snowmelt gradient L. 

procumbens DF=1, F=0.066, p=0.81; S. herbacea DF=1, F=1.31, p=0.30; V. uliginosum DF=1, 

F=0.0024, p=0.96; V. myrtillus DF=1, F=1.21, p=0.32). This may indicate species-specific (i.e. 

genotypic) freezing resistance, as opposed to an environmentally driven effect (i.e. phenotypic), 

specifically in mature leaf tissue. 

Based on our extrapolations, no lethal cold events occurred in July between 1975 and 

2012 for any species, indicating leaf-damaging cold events are primarily a spring (May-June) 
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phenomenon. Figure 4 demonstrates spring (May-June) temperature minima over 37 years, which 

we used to extrapolate the frequency of lethal spring cold events after snowmelt occurring at or 

below species LT-50 thresholds.  Lethal spring events did not occur on snowbeds and thus lethal 

event frequency analyses were restricted to ridge microhabitats. No lethal spring cold events were 

documented on the exposed ridges for L. procumbens in the 37-year temperature record. Spring 

lethal cold events for V. uliginosum were extremely rare and were only detected in 2012 (the last 

year on record). Lethal cold events for S. herbacea occurred at a significantly lower frequency 

than for V. myrtillus on the 20 exposed ridges over the 37-year temperature record (V. myrtillus 

total N events=375, S. herbacea total N events = 75, DF=1, F=40.08, p<0.0001). S. herbacea 

lethal freezing events were also generally restricted to the highest elevational sites, while V. 

myrtillus experienced lethal freezing at all elevations. Because damaging spring freezing events 

were relatively abundant for V. myrtillus only, we restricted the statistical analyses of temporal 

and spatial occurrences of freezing events to this species. 

 

Lethal spring cold events in V. myrtillus on the spatial and temporal scale 

The frequency of lethal spring cold events on exposed ridges was stable over the 37-year 

record, and even demonstrated a slight increase, although the increase was not significant (Figure 

4a; t=-0.60, p=0.55). Thus, considering the significant increase in local air temperature over the 

same period of time (0.58°C summer warming per decade since 1975; Rixen et al. 2012), our 

study counter-intuitively suggests that warming spring air temperatures are not reducing the 

number of damaging spring freezing events. When lethal spring cold events are pooled across all 

years, V. myrtillus is at significantly increased risk of exposure with both increasing elevation 

(Figure 4b; t=6.89, p<0.0001) and earlier snowmelt (Figure 4c; t=-7.16, p<0.0001), coupled with 
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significant interactive effects (t=3.58, p=0.00038), with high-elevation early-exposed ridge 

habitats being the most vulnerable to freezing exposure. 

 

 Supplemental Table 1 lists all model variables, F, t and p values (Online Resource 1). 

 

Discussion 

In our alpine system, localized microhabitat effects were the primary drivers of snowmelt. 

Alpine dwarf shrub growth was not enhanced by natural early snowmelt, and different species at 

leaf maturity demonstrated significant differences in vulnerability to spring freezing exposure 

along the snowmelt and elevational gradient. Because freezing resistance at leaf maturity within a 

species did not change with elevation or microhabitat, both higher elevation and earlier snowmelt 

microhabitats had a significantly higher risk of spring freezing exposure. Spring freezing events 

increased slightly, although not significantly, over 37 years despite local warming spring air 

temperatures.  

 

Growth performance along environmental gradients 

Non-prostrate shrubs (V. myrtillus and V. uliginosum) demonstrated a significant 

elevational growth response in this study. This represents either a true growth response or 

different resource allocation patterns along the environmental gradient (Sakai et al. 2003). True 

growth including below-ground biomass production can often not be accurately determined in 

clonal alpine shrubs (Körner 2003). However, numerous studies have shown that vegetative 

above-ground structure size, such as shrub height, leaf size or stem length, is a practical variable 

for plant and community levels responses (Hudson et al. 2011, Elmendorf et al. 2012). In our set 
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of species, it is likely that shrub stature plays a major role in this observed growth response to 

elevation. Taller shrubs, like V. myrtillus and V. uliginosum, are more closely coupled to 

elevationally-lapsed atmospheric temperatures (similar to arborescent species), whereas prostrate 

shrubs may be largely decoupled from free atmospheric conditions, and are likely more strongly 

exposed to and controlled by microclimatic conditions (Körner 2012). Consequently, fluctuations 

in air temperature are also more pronounced for taller shrubs, as prostrate species likely profit 

from delayed night heat loss due to the heat retention capacity of the soil and litter layers (Sakai 

and Larcher 1987, Körner 2003).  

We found no evidence of enhanced shrub growth as a response to earlier snowmelt timing 

and thus a longer growing season, and there is increasing evidence in the literature that suggests a 

longer growing season does not necessarily benefit alpine plant growth. Although Mallik et al. 

(2011) demonstrated reduced growth in Arctic shrub Cassiope tetragona under delayed snowmelt 

conditions,  and S. herbacea has demonstrated natural increased growth under longer growing 

seasons (Wijk 1986), a review by Wipf and Rixen (2010) examining growth responses in snow 

manipulation experiments indicated no clear plant growth response pattern to delayed snowmelt. 

They suggested instead that responses depended on functional group, studied microhabitat type, 

and the magnitude of snowmelt timing change. The same review concluded that alpine plant 

growth responses to earlier snowmelt have been understudied (Wipf and Rixen 2010). Conifer 

tree species at and above treeline do not demonstrate strong growth responses to snowmelt timing 

(Barbeito et al. 2012), and in the few experimentally-accelerated snowmelt studies, very few 

species demonstrated enhanced growth, with only Empetrum nigrum and L. procumbens, two 

species characteristic to snow-poor microsites, showing increased stem elongation in response to 

earlier snowmelt (Wipf et al. 2009, Wipf 2010).  Gerdol et al. (2013) even demonstrated size 

reductions in V. myrtillus under advanced snowmelt conditions.  This prevailing lack of enhanced 
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shrub growth, in both this and other studies, may be explained by the nature of temperature 

accumulation on ridge and snowbed microhabitat sites. Ridge sites emerge from snow earlier, and 

thus begin accumulating temperature earlier, but have lower season-long temperature means than 

late snowmelt microsites. As such, shrub communities growing on early snow-free sites have 

longer growing seasons with greater early-season temperature sums, but colder mean 

temperatures and greater likelihood of exposure to spring cold events (Inouye 2008, Wipf et al. 

2009, Gerdol et al. 2013). These spring cold events, occurring during active growth phases (i.e. 

development and maturation of leaf tissue) have the potential to severely damage plant biomass 

and can potentially limit new growth (Wipf et al. 2009, Sierra-Almeida and Cavieres 2012). 

 

Spring freezing resistance 

Freezing resistance was found to be species-specific and consistent with the existing 

literature for the shrub species examined (Taschler and Neuner 2004, Martin et al. 2010), 

although LT-50 dependence on phenophase makes comparisons across studies difficult (Sakai 

and Larcher 1987, Lenz et al. 2013). Measured freezing resistance also corresponded roughly to 

ecological niche for each species, with prostrate, ridge specialist evergreen L. procumbens having 

a higher freezing resistance than prostrate deciduous snowbed specialist S. herbacea or taller-

growing, ubiquitous V. myrtillus. This corresponds with Bannister et al. (2005), who linked 

freezing resistance to microhabitat type, with snowbed and sheltered species having poorer frost 

resistance than early-exposed ridge species. V. uliginosum fell outside this trend, but its higher 

freezing resistance compared to V. myrtillus was consistent with the literature (Taschler and 

Neuner 2004, Martin et al. 2010). Prostrate shrubs did not necessarily have greater freezing 

resistance than taller species in our study, corresponding to previous findings that found no 
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correlation between species height and freezing resistance in temperate alpine and Ecuadorian 

páramo species (Taschler and Neuner 2004, Sklenar et al. 2010). 

 At time of sampling, freezing resistance was likely at a low point for each species in the 

spring period, as mature xylem and adult leaves have a lower freezing resistance than post-winter 

buds (Sakai and Larcher 1987). In the current study, we only sampled newly mature leaves along 

the entire gradient in order to minimize bias on LT-50 by different leaf-developmental stages 

between sites. Thus, we are drawing conclusions about the freezing vulnerability of mature 

leaves.  Freezing resistance likely changed strongly earlier in the growing season, but after leaf 

maturity, freezing resistance will to change to a much lesser extent, unless in response to an 

unusual freezing event; Venn et al. (2013) and Ladinig et al. (2013) demonstrated that foliar 

tissue and vegetative shoots generally maintain a relatively consistent frost resistance through the 

growing season. We did not find any significant differences in LT-50 of mature leaves between 

snow microhabitats or along the elevational gradient. Similarly, Bannister et al. (2005) also found 

no consistent difference in freezing resistance in alpine species exposed early in spring compared 

to the same species growing in later snowbeds. While Taschler and Neuner (2004) found that, in 

species with similar growth forms, the ones with higher distribution limits had higher freezing 

resistance, others reported no strong or consistent evidence for elevational decrease in LT-50 in 

mature leaves of Swiss broadleaf trees, grasses, or other alpine species (Márquez et al. 2007, 

Sierra-Almeida et al. 2009,Lenz unpublished data). This suggests that shrub freezing resistance at 

leaf maturity is not closely tied to environmental conditions. In temperate broadleaf trees, it has 

been suggested that some species delay flushing and development until late enough that freezing 

events are highly unlikely (Lenz et al. 2013). This is less likely to be the case in alpine shrubs, 

however, since bud-beak in these species is closely linked to snowmelt timing and not controlled 

by photoperiod or air temperatures before flushing (Sakai and Larcher 1987, Rixen et al. 2012). 
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Cold hardening may act as mechanism for increasing plant resistance to freezing. Extreme 

cold hardening has been shown to occur in grass species primed at subzero temperatures for four 

or more days (Bykova and Sage 2012). This hardening, however, occurred under winter 

conditions, which may not accurately reflect the episodic nature of spring freezing events, which 

are unlikely to be preceded by a long period of subzero temperatures (Rixen et al. 2012). In 

spring, when alpine shrub R. ferrugineum was exposed to in-situ freezing under field conditions 

at treeline, some cold hardening occurred after three days. However, hardening in this shrub was 

demonstrated to be slowed by a combination of warm daytime temperatures (+19°C) followed by 

night freezing (Neuner et al. 1999). This multi-day lag period prior to cold hardening, 

exacerbated by strong diurnal temperature differences and coupled with the episodic nature of 

spring freezing, suggests that shrubs in this study were not cold-hardened at the time of sampling. 

It also suggests that in the absence of prolonged cold spring temperatures, spring cold hardening 

is unlikely to function as a mechanism of mature leaf tissue freezing resistance in alpine shrubs. 

Indeed, Venn et al. (2013) found no consistent evidence for cold hardening in leaf tissue of alpine 

plants during the growing season. In the current study, we did not find differences in freezing 

resistance along the elevational gradient or among microhabitats within a species, suggesting 

only a limited potential to change LT50 in mature leaves in late spring, in the absence of a 

prolonged freezing event. 

 The similarity in mature leaf freezing resistance for each species along the snowmelt and 

elevational gradient greatly s  pl f  s assu pt o s about th  shrub co  u  ty’s vul  rab l ty to 

spring freezing events. Since mature leaf tissue LT-50 was linked to species, and not microsite 

conditions, it can be assumed that, after emergence from snow cover, mature leaves of a given 

species are more or less equally vulnerable to spring freezing across the local species distribution 

range. Our results suggest that the upper distribution limits for these alpine shrub species may be 
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at least partially determined by spring cold temperature tolerances. Low-statured tree seedlings 

are known to establish above their elevational limit in microhabitats that regulate favourable 

growing temperatures (Sundqvist et al. 2008, Wheeler et al. 2011), and lower-elevation shrubs 

have been shown to track summer and winter warming into higher elevation snowbed sites in 

Sweden (Kullman 2002), suggesting colder temperatures limit upper distributions. Since episodic 

cold events are common after snowmelt (Körner 2003) and tend to strike shrubs during 

vulnerable active growth stages (Sierra-Almeida and Cavieres 2009), these are possibly one of 

the limiting factors that reduce shrub performance (Wipf et al. 2009) and could thus control 

higher shrub distribution. 

 

Risk of spring freezing events 

V. myrtillus faces a far greater risk of spring freezing than the rest of the dominant shrub 

community. This is determined by both its poor freezing resistance and ubiquitous presence in 

early-exposure microsites. Since resistance to freezing after dehardening is considered a strong 

filter for alpine plant distribution (Körner 2003), this suggests that V. myrtillus opportunistically 

responds to the episodic nature of spring freezing in both its microhabitat selection and its ability 

to thrive in non-optimal microsites where freezing risk is high. This shrub has been observed 

germinating successfully at high elevation sites and in other microhabitats where adults do not 

thrive (Auffret et al. 2010). As an argument towards its opportunism, V. myrtillus is known to be 

relatively responsive to environmental change: germination occurs significantly earlier with 

summer warming, budbreak is significantly earlier and growth ring width increases with 

warming, particularly in hot summers (Milbau et al. 2009, Prieto et al. 2009, Rixen et al. 2010). 

As a result, however, it is also known to be negatively impacted by certain site selection: leaf 

expansion and flowering is reduced by freezing events, and freezing resistance is decreased under 
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soil warming (Martin et al. 2010, Gerdol et al. 2013). Its plasticity and successful establishment 

on early-exposure microsites, despite its poor resistance and thus high likelihood of exposure to 

leaf-lethal spring freezing, suggests V. myrtillus establishment and growth represents an 

opportunistic response to periodic favourable conditions. Spring freezing causes aboveground 

damage, especially to leaf tissue, but is generally thought not to kill the species or control its 

survival at the population level (Körner and Larcher 1988, Taschler and Neuner 2004); V. 

myrtillus has been shown to regenerate leaf tissue lost to spring freezing damage (Wipf et al. 

2009). However, repeated freezing events, especially after leaf maturity, when shrubs have 

already invested significant resources in leaf development, could potentially irreparably damage 

the leaf crop. Repeated seasons of freezing could then fatally deplete stored resources (Molau 

1997). 

Spring freezing damage has been shown to occur in wood and leaf tissue of V. myrtillus 

and V. uliginosum at treeline below our elevation gradient (Anadon-Rosell unpublished data, 

Rixen et al. 2012). It is thus very likely a factor at higher elevations, especially since 

microhabitat-driven snowmelt patterns expose many high-elevation ridges from snow at similar 

times or earlier than lower elevation sites. The temporal and spatial restriction of episodic cold 

events (only occur in May and June on ridge microhabitats) is relevant, as it indicates that only 

certain shrub communities risk damage. This trend has been observed in alpine wildflowers and 

dwarf shrubs growing in early snowmelt sites: earlier snowmelt leads to greater frequency of 

spring freezing events and significant damage to buds and leaf tissues, damage that is not 

sustained by plants growing in later snowmelt microsites (Inouye 2008, Wipf et al. 2009). This is 

a critical point, as snowmelt timing is significantly advancing in this and many other alpine 

communities (e.g. Inouye 2000, Inouye 2008,Rixen et al. 2012), and despite local warming air 

temperatures over the multi-decadal record (Rixen et al. 2012), there is no evidence that lethal 
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freezing events are in decline. Indeed, our extrapolation of spring cold event frequency may even 

be conservative, since it is determined from ambient air temperature, when radiative cooling is 

known to lower leaf surface temperatures by as much as 5K on clear nights (Jordan and Smith 

1995). Ultimately, however, this extrapolation illustrates the increasing risk of leaf damage with 

elevation, with earlier snowmelt, and, to a lesser extent, through time. Wipf et al. (2009) referred 

to the paradox of a cold spring in a warmer world, which our results support: spring freezing 

events are not becoming rarer, and they may have a strong influence on individual shrub 

performance and thus community structure at high elevation and early exposure sites. We can 

also speculate that ridge communities may continue to remain more vulnerable than snowbed 

communities, as there is evidence that climate warming accelerates snowmelt on ridge microsites, 

while late snowbeds may remain relatively static (Kudo and Hirao 2006). 

 

Conclusion 

Earlier snowmelt is predicted in many alpine ecosystems, and this abiotic change has 

critical implications for shrub community performance. In this and other studies cited, a longer 

growing season, driven by accelerated snowmelt, both fails to enhance growth, and increases risk 

of exposure to damaging spring freezing events at leaf maturity. This suggests that the 

detrimental effects associated with an extended growing season may outweigh the benefits for 

some alpine shrub species. As snowmelt timing accelerates, spring freezing events, which are not 

in decline despite warming in this system, are likely to become more common, especially in high-

elevation and early-snowmelt communities.  
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Table 1:  Elevation and snowmelt day of paired ridge (R, N=4) and snowbed (S, N=4) sampling sites and 

average daily minimum, maximum, and mean air temperatures (°C at 2 m) during the 7-day period prior to 

biomass sampling (June 16-June 23 2012) 

 

 

Low Low-intermediate High-intermediate High 

Elevation (m) 2109 2260 2372 2510 

Snowmelt (day of year) R=148 

S=162 

R=132 

S=145 

R=158 

S=170 

R=130 

S=159 

Minimum Temp (°C) 8.71 7.74 7.04 6.14 

Maximum  Temp (°C) 18.23 17.26 16.56 15.66 

Mean Temp (°C) 13.10 12.13 11.43 10.53 
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Figure 1:  Mean leaf area along elevational gradient in L. procumbens, S. herbacea, V. uliginosum and V. 

myrtillus. Squares represent ridges and circles represent snowbed microhabitats. F- and p-values refer to 

the linear regressions for each species (black line). Note log scale used on y-axis and different y-axes for 

the different species. 
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Figure 2:  Mean stem length along elevational gradient in S. herbeacea, V. uliginosum and V. myrtillus. 

Squares represent ridges and circles represent snowbed microhabitats.  Stem length excluded for L. 

procumbens due to uncertainty in determining total stem length in samples. F- and p-values refer to the 

linear regressions for each species (black line). Note log scale used on y-axis and the different y-axes for 

the different species. 
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Figure 3: LT-50 along elevational gradient in L. procumbens, S. herbacea, V. uliginosum and V. myrtillus. 

Squares represent ridges and circles represent snowbed microhabitats. F- and p-values refer to the linear 

regressions for each species (black line).  Note the different y-axes for the different species. 
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Figure 4:  Modelled frequency of potentially lethal spring freezing events between 1975 and 2012 (37 

years) for V. myrtillus in dependency of year (panel A), elevation (panel B) and snowmelt day (panel C). 
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Supplemental Information  

Supplemental Table 1:  General linear models results for snowmelt timing, June and season soil 

temperature, shrub growth traits, freezing resistance and extrapolated spring freezing events along the 

elevational and snowmelt timing gradients 

Response variable Explanatory 

variable 1 

F / t value  

+ p-value 

Explanatory variable 2 F / t value  

+ p-value 

Snowmelt timing (day 

of year) 

Elevation  

(m) 

F=0.24 

p=0.62 

Microhabitat type (ridge/snowbed) F=20.1 

p<0.0001 

June growing degree 

days (GDD) 

Elevation  

(m) 

t=-1.96 

p=0.059 

Microhabitat type (ridge/snowbed) F=17.8 

p=0.0002 

Growing season 

growing degree days 

(GDD) 

Elevation  

(m) 

t=-1.84 

p=0.075 

Microhabitat type (ridge/snowbed) F=1.2 

p=0.26 

Mean June 

temperature (°C) 

Elevation  

(m) 

t=-5.17 

p<0.0001 

Microhabitat type (ridge/snowbed) F=1.7 

p=0.20 

Mean growing season 

temperature (°C) 

Elevation  

(m) 

t=-2.49 

p=0.018 

Microhabitat type (ridge/snowbed) F=13.2 

p=0.001 

Mature leaf area, 

V. myrtillus 

Elevation  

(m) 

F=12.74 

p=0.012  

Snowmelt timing (day of year) F=0.18 

p=0.69 

Mature leaf area,  

V. uliginosum 

Elevation (m) F= 22.42 

p=0.0032 

Snowmelt timing (day of year) F=0.38 

p=0.56 

Mature leaf area,  

S. herbacea 

Elevation (m) F=1.79 

p=0.23 

Snowmelt timing (day of year) F=0.19 

p=0.68 

Mature leaf area,  

L. procumbens 

Elevation (m) F=0.8456 

p=0.39 

Snowmelt timing (day of year) F=0.016 

p=0.90 

Mean stem length,  

V. uliginosum 

Elevation (m) F= 14.82 

p=0.0085 

Snowmelt timing (day of year) F=0.018 

p=0.89 

Mean stem length,  

V. myrtillus 

Elevation (m) F=2.49 

p=0.17 

Snowmelt timing (day of year) F=0.075 

p=0.79 

Mean stem length,  

S. herbacea 

Elevation (m) F=0.049 

p=0.83 

Snowmelt timing (day of year) F=0.054 

p=0.82 

Freezing resistance 

(LT-50) 

 L. procumbens 

Elevation (m) F=1.11 

p=0.33 

Snowmelt timing (day of year) F=0.066 

p=0.81 

Freezing resistance 

(LT-50) 

S. herbacea 

Elevation (m) F=0.92 p= 

0.38 

Snowmelt timing (day of year) F=1.31 

p=0.30 

Freezing resistance 

(LT-50) 

 V. uliginosum 

Elevation (m) F=0.17 

p=0.70 

Snowmelt timing (day of year) F=0.0024 

p=0.96 

Freezing resistance 

(LT-50) 

 V. myrtillus 

Elevation (m) F=1.62 

p=0.25 

Snowmelt timing (day of year) F=1.21 

p=0.32 

Spring freezing events  

V. myrtillus 

Elevation (m) t=6.89 

p<0.0001 

Snowmelt timing (day of year) t=-7.16 

p<0.0001 
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Supplemental Figure 1: Spring (May-June) air temperature minima after snowmelt at 

Jakobshorn climate station (2090 m asl) between 1975 to 2012. 
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 Chapter 6 

Some further publications 

This project was carried out in extensive collaboration with two other PhD students, 

Janosch Sedlacek (University of Konstanz, Germany) and Andrés Cortés (University of Uppsala, 

Sweden), who both co-authored all the manuscripts in this doctoral thesis.  Below I list the 

abstracts for their published manuscripts for which I was involved as a co-author. 

 

Sedlacek, JF, Bossdorf, O, Cortés, AJ, Wheeler, JA, van Kleunen, M. 2014. What role do plant-

soil interactions play in the habitat suitability and potential range expansion of the alpine 

dwarf shrub Salix herbacea? Basic and Applied Ecology, 15: 305-315 

Mountain plants may respond to warming climates by migrating along altitudinal 

gradients or, because climatic conditions on mountain slopes can be extremely locally 

heterogeneous, by migrating to different microhabitats at the same altitude. However, in new 

environments, plants may also encounter novel soil microbial communities, which might affect 

their establishment success. Thus, biotic interactions could be a key factor in plant responses to 

climate change. Here, we investigated the role of plant-soil feedback for the establishment 

success of the alpine dwarf shrub Salix herbacea L. across altitudes and late- and early snowmelt 

microhabitats. We collected S. herbacea seeds and soil from nine plots on three mountain-slope 

transects near Davos, Switzerland, and we transplanted seeds and seedlings to substrate 

inoculated with soil from the same plot or with soils from different microhabitats, altitudes and 

mountains under greenhouse conditions. We found that, on average, seeds from higher altitudes 

(2400-2700 m) and late-exposed snowbeds germinated better than seeds from lower altitudes 

(2200-2300m) and early-exposed ridges. However, despite these differences in germination, 
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growth was generally higher for plants from low altitudes, and there were no indications for a an 

home-soil advantage within the current range of S. herbacea. Interestingly, seedlings growing on 

soil from above the current altitudinal distribution of S. herbacea grew on average less well than 

on their own soil. Thus, although the lack of a home-soil advantage might be beneficial for S. 

herbacea in a changing environment, migration to habitats beyond the current altitudinal range 

might be limited, probably due to missing positive soil-feedback. 

 

Cortés, AJ, Waeber, S, Lexer, C, Sedlacek, J, Wheeler, JA, van Kleunen, M, Bossdorf, O, Hoch, 

G,  Rixen, C, Wipf, S, Karrenberg, S. 2014. Small-scale patterns in snowmelt timing affect 

genetic diversity and gene flow in the alpine dwarf shrub Salix herbacea. Heredity, 113: 233-

239. 

 

Current threats to biodiversity, such as climate change, are thought to alter the within-

species genetic diversity among microhabitats in highly heterogeneous alpine environments. 

Assessing the spatial organization and dynamics of genetic diversity within species can help to 

predict the responses of organisms to environmental change. In this study, we evaluated whether 

small-scale heterogeneity in snowmelt timing restricts gene flow between microhabitats in the 

common long-lived dwarf shrub Salix herbacea L. We surveyed 273 genets across 12 early- and 

late-snowmelt sites (i.e. ridges and snowbeds) in the Swiss Alps for phenological variation over 

two years and for genetic variation using seven SSR markers. Surprisingly, phenological 

differentiation triggered by differences in snowmelt timing did not correlate with genetic 

differentiation between microhabitats. On the contrary, extensive gene flow appeared to occur 

between microhabitats, and slightly less extensively among adjacent mountains. However, ridges 
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exhibited significantly lower levels of genetic diversity than snowbeds and patterns of effective 

population size (Ne) and migration (Nem) between microhabitats were strongly asymmetric, with 

ridges acting as sources and snowbeds as sinks. Since no recent genetic bottlenecks were detected 

in the studied sites, this asymmetry is likely to reflect current meta-population dynamics of the 

species dominated by gene flow via seeds rather than ancient re-colonization after the last glacial 

period. Overall, our results indicate that seed dispersal prevents snowmelt-driven genetic 

isolation and snowbeds act as sinks of genetic diversity. Disentangling the consequences of this 

asymmetric gene flow and diversity levels is essential for understanding community responses to 

climate change. 
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Chapter 7 

Summary and conclusions 

Chapter 2: Fitness and performance under early snowmelt and warming 

In our space-for-time substitution study, snowmelt timing, with its colder temperatures at 

earlier snowmelt and warmer late-melting sites, represented the primary driver of trait variation 

in Salix herbacea. Early snowmelt generally led to a reduction in performance in functional and 

fitness traits. We found that under early snowmelt conditions, phenological development began 

earlier but lasted longer, that flowering increased but fruit set declined, that stem density 

decreased, C-supply remained unchanged (as derived from non-structural carbohydrate stores in 

end-of-season wood tissue), and that the probability of leaf damage by herbivores and 

phytopathogens increased significantly. Lower elevation microsites, with their warmer 

temperatures, were associated with increased fruiting but lower stem density. 

Salix herbacea was not able to translate a longer growing season into enhanced growth 

(higher stem density) or increased C assimilation (higher non-structural carbohydrate 

accumulations). Our results suggest that under the accelerated spring snowmelt projected for the 

Swiss Alps, we will likely see reduced fitness (lower sexual and clonal production) and greater 

damage in S. herbacea and potentially in other low-lying dwarf shrubs as well. We suggest that 

low temperature events in the early growing season, more common as snowmelt shifts earlier in 

the season, may be the primary mechanism driving reductions in fitness traits. In addition, 

increased probability of exposure to leaf damage agents under earlier snowmelt also has likely 

fitness implications. Warming temperatures led to increased fruiting but lower clonal production, 

suggesting that the potential benefits of warming may not outweigh the detrimental effects of 
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earlier snowmelt for this species. We conclude that earlier snowmelt timing likely represents a 

critical ecosystem shift for this species, with negative implications for performance, fitness and 

potentially even persistence. These results may also have strong implications for other prostrate 

shrub species in both arctic and alpine tundra ecosystems, which are low-lying and may also be 

tightly ecologically synchronized with snowmelt timing. Reduced snowpacks and earlier spring 

melt-out, as a result of global warming, may represent one of the principal mechanisms driving 

the general reductions in dwarf shrub communities observed throughout the tundra biome.  

 

Chapter 3: Trait plasticity and changes in snowmelt timing 

The results from the reciprocal transplant experiment were broadly consistent with the 

larger-scale space-for-time substitution, indicating that snowmelt timing, with its associated 

environmental conditions, is an important driver of functional response for multiple traits in S. 

herbacea. In our reciprocal transplant experiment, phenological timing, leaf size and leaf damage 

probability were all strongly influenced by the destination microhabitats when Salix herbacea 

turfs were transplanted.  Earlier snowmelt at the destination microhabitat led to earlier but slower 

leaf expansion, smaller leaf size and increased probability of leaf damage. Flowering and stem 

density remained relatively fixed two years after transplant, consistently demonstrating only 

origin microhabitat effects, with lower stem density and higher flowering proportion in S. 

herbacea turfs originating from early snowmelt sites. Selection gradient analysis indicated that 

neither development time to leaf expansion or leaf damage probability influenced fitness (change 

in stem number or flowering probability) in the short term. However, the same analysis suggested 

that smaller leaf size was associated with reduced flowering probability on early-exposure sites.  
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Finally, S. herbacea did not demonstrate a home-site advantage to local snowmelt conditions, 

likely as a result of strong gene flow between microhabitats. 

Salix herbacea responded to new micro-environmental conditions under altered snowmelt 

timing through plastic adjustment of leaf size, and changes in phenological timing as driven by 

new temperature conditions. We found a positive selection for larger leaf size on early exposure 

microhabitats, in that larger leaves were associated with higher flowering probability. However, 

the environmentally-driven plastic shift to smaller leaf sizes on early snowmelt sites suggests that 

this could lead to flowering reductions under accelerated spring snowmelt conditions. Under 

early snowmelt, the damage probability increased, but in this study, a selection gradient analysis 

showed no evidence that leaf damage caused flowering reductions. However, this may have been 

an effect of a smaller sample size with lower flowering, as the larger S. herbacea data set 

generally demonstrated reduced female flowering in the season following damage.  

There was no evidence of a home site advantage to snowmelt timing, potentially as a 

result of high gene flow via seeds between subpopulations in phenologically disparate 

microhabitats.  As it not strongly adapted to current snow conditions, we speculate that S. 

herbacea may be able to maintain itself under changing spring snowmelt conditions, but the lack 

of small-scale adaptive divergence between subpopulations could possibly mean S. herbacea may 

not have the potential to adapt to new extremes in snowmelt timing.  

 

Chapter 4: Community facilitation under climate change 

In our neighbour removal experiment, fruiting phenology and herbivory probability in 

Salix herbacea were directly impacted by neighbor removal, with more rapid development of 

fruit and higher herbivory when neighbouring vegetation was removed. Further, with neighbor 
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removal, leaf size was reduced on earlier snowmelt microhabitats, as indicated by the shift from 

competitive to facilitative relative neighbor effects, and phytopathogen damage probability 

increased with elevation. Finally, neighbours may have indirectly improved fitness in S. 

herbacea, as leaf damage in the previous seasons generally reduced flowering probability in 

females in the following growing seasons.  

Plant-plant interactions between S. herbacea and their neighbours were generally in line 

with the predictions of the stress gradient hypothesis, as most neighbour interactions were 

facilitative at the more stressful extremes of their distributions at high elevations and early 

exposure sites. Neighbours never directly reduced sexual or clonal production in S. herbacea, 

may have indirectly increased flowering probability through damage sheltering, and only 

appeared to compete directly with this species in by reducing leaf size in late-lying snowbeds. 

We suggest that under accelerating snowmelt conditions, community facilitation may play an 

increasingly important role in mediating the functional response of S. herbacea to climate 

change. Under the likely more stressful early-snowmelt conditions, facilitative neighbor 

interactions may even act to buffer the declining fitness and performance that we predict for S. 

herbacea under early snowmelt and changing climates. While competition for light from a taller 

shrub canopy is discussed as a mechanism reducing dwarf shrub communities in arctic and alpine 

tundra, facilitative interactions from taller neighbours must also be considered as a potential 

positive interaction ameliorating performance in low-lying shrub species. These facilitative 

interactions may become particularly important as global climate change may drive significant 

increases in local environmental stress.       

 

Chapter 5: Spring frost vulnerability under climate change  
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The examination of freezing resistance in four alpine shrub species revealed that LT-50 

for mature leaf tissue was species-specific, but did not vary for any species along the elevation or 

snowmelt gradients. Vaccinium myrtillus had the highest vulnerability to spring frost events, with 

leaf tissue death occurring at -5.1°C. Further, this species grew in microhabitats that were 

characterized by relatively frequent spring frost events. Spring frost events were extrapolated 

from the long-term temperature record. For V. myrtillus and to a lesser extent for S. herbacea, but 

not for the other investigated species, potentially lethal spring frost events occurred more 

frequently with early snowmelt and with increasing elevation. Despite warming air temperatures, 

spring frost events did not decrease, and even increased slightly over the 37-year climate record.    

All four alpine shrub species examined in this study failed to capitalize on a longer 

growing season with enhanced growth, a result consistent with the results from both the space for 

time substitution and the reciprocal transplant for S. herbacea. We speculate that early-season 

frost events leading to leaf death are at least partially responsible for this failure, since the early 

snowmelt that characterizes a longer growing season led to increasing exposure to spring freezing 

events for V. myrtillus and to a lesser extent, S. herbacea. Spring frosts may become an 

increasingly important damage agent under early snowmelt in arctic and alpine tundra 

communities, and, in the long term, will likely reduce performance and may even remove some 

shrub species from early-exposure microhabitats.  
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Main conclusions 

1. Early snowmelt as a consequence of climate change in alpine ecosystems represents a 

significant and detrimental environmental change for prostrate shrub Salix herbacea due 

to exposure to increasing environmental stress factors such as spring frost events, 

herbivory, and phytopathogens. In addition to reducing the current leaf crop, herbivory 

and phytopathogen damage can lead to reductions in flowering probability in the 

following summers. Thus, accelerated spring snowmelt potentially represents a critical 

mechanism reducing growth and performance for alpine and arctic dwarf shrubs, due to 

their close ecological synchronization with snowmelt timing.  

2. Salix herbacea traits may be strongly responsive to changing climatic conditions. While 

climate warming may be associated with enhanced fruit production, under early snowmelt 

S. herbacea demonstrate reduced fruit set, have lower stem numbers, show slower 

phenological development and are more likely to suffer biotic and abiotic damage. 

3.  Plastic adjustments in response to changes in snowmelt timing, such as smaller leaf size 

on early-exposure microhabitats may be potentially maladaptive, since larger leaves are 

associated with higher fitness under early snowmelt conditions. 

4. A lack of home-site advantage to local snowmelt conditions, however, suggests S. 

herbacea may not be strongly specialized, and may thus be able to maintain their 

population under novel snowmelt conditions. 

5. The detrimental effects of early snowmelt for S. herbacea may be mediated to some 

extent by facilitative interactions by the surrounding plant community, through enhanced 

leaf size and protection from herbivores and phytopathogens. Increasing environmental 

stress may also increase the importance of neighbour facilitation for S. herbacea and other 

arctic and alpine dwarf shrubs. 
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shrub Salix herbacea: lessons from a three-year space for time substitution. Annual Meeting of the 

Ecological Society of Germany, Austria and Switzerland, Hildesheim, GER. 

Wheeler JA, Hoch G, Wipf S, Rixen C. 2014. The snow and the willows: accelerated spring snowmelt 

reduces performance and fitness in the common dwarf shrub Salix herbacea.  Ecological Society of 

America Annual General Meeting, Sacramento, USA.  

 

Wheeler JA, Hoch G, Wipf S, Rixen C. 2013. Increased spring freezing vulnerability for alpine shrubs 

under early snowmelt. International Tundra Experiment ITEX - More than 20 years of tundra vegetation 

change research, Bergün, CH 

Winner, Best Student Talk, 2
nd

 prize 

 

Wheeler JA, Hoch G, Wipf S, Rixen C. 2013. Longer, warmer, less productive: early snowmelt reduces 

performance of alpine shrub Salix herbacea. Swiss Geosciences Meeting 2013, Lausanne, CH 

 

Wheeler JA, Hoch G, Wipf S, Rixen C. 2013. The effects of early snowmelt and warming on alpine shrub 

S. herbacea. Faster, Higher, More? Past, Present and Future Dynamics of Alpine and Arctic Flora under 

Climate Change, Bergün, CH 

 

Wheeler JA Hermanutz L, Marino PM. 2009.  How does seedbed affect black spruce success at the 

Labrador tr  l   ?  B ology  raduat  Stud  t Sy pos u , M  or al U  v rs ty, St. Joh ’s CAN 

Winner, Best Student Presentation  

 

 

Posters  
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Wheeler JA, Hoch G, Wipf S, Rixen C. 2014. Accelerated spring snowmelt slows phenological 

development in dwarf shrub Salix herbacea. In European Geoscience Union General Assembly 2014, 

Vienna, AUS 

 

Wheeler JA, Hoch G, Wipf S, Rixen C. Reduced alpine shrub performance and freezing risk under early 

snowmelt. In Mountains Under Watch 2013, Aosta, ITA 

 

Cortes, AJ, Sedlacek,
 
JF, Wheeler, JA, Bossdorf, O, Hoch, G, Karrenberg, S, van Kleunen, M, Lexer, C, 

Rixen, C, Wipf, S. 2011. Predicting ecological and evolutionary responses of Salix herbacea to climate 

change. In Ecochange 2011, Zurich CH. 

 

Rieder, R, Wheeler, JA, Sutton, E, Kravchenko, D, Osmond, M, Jacobs, J, Hermanutz, L, Mallik, A.  

2010.  Nutrient bioavailability for black spruce establishment as influenced by elevation and post-fire 

disturbance.  In ASA-CSSA-SSSA 2010 International Meeting, Long Beach, USA. 

 

Trant, A, Bell, T, Hermanutz, L, Jacobs, J, Laroque, C., Lewis, K, Simms, A, Simms, E, Bartlett, Z, Chan, 

S, Cranston, B, Jameson, J, Morrison, H, Sutton, E, Trindade M and Wheeler, JA.  2010.  A (complicated) 

story of treeline dynamics in the Mealy Mountains, Canada.  In International Polar Year Oslo Science 

Conference, Oslo, NOR. Winner, Best Poster, Polar Ecosystems and Diversity 

 

Wheeler, JA, Cranston, B, Hermanutz, L, Simms, A.  2009.  Is there evidence of facilitation in Arctic 

tundra?  In Canadian Botanical Association 45
th
 Annual Meeting:  Plants on the Periphery, Wolfville, 

CAN. 

 

Wheeler, JA, Hermanutz, L, Marino, P.  2009.  Seedbed facilitation in the forest-tundra ecotone, Mealy 

Mountains, Labrador, Canada.  In Canadian Society for Ecology and Evolution, Halifax, CAN. 

 

Cranston, B, Koncz, P, Wheeler, JA, Hermanutz, L, Marino, P, Upshall, M, Simms, A, Chan, S, Jacobs, J. 

2008.  Impacts of climate change on the tundra ecosystem of the Torngat Mountain National Park 

Reserve, Labrador. In CiCAT Annual General Meeting: Canadian Arctic Tundra Ecosystems in a 

Changing Climate, Ottawa, CAN. 

 

Wheeler, JA, Cranston, B. 2008.  Black spruce (Picea mariana) growth above the Mealy Mountain 

treeline. In PPSA Annual General Meeting, St. John's, CAN. 

 

 

Volunteer Work 

 

Swiss Federal Institute for Snow and Avalanche Research, Davos CH  

September 2012-August 2014 

Public Tour Guide 

- worked with student and adult tour groups to publicize scientific research at the institute in an accessible 

and friendly manner    

 

B ology  raduat  Stud  ts Assoc at o , St. Joh ’s CAN        

December 2007-June 2009 

Professional Development Coordinator 

- organized new graduate student orientations, academic development seminars, and assisted planning 

social events 

- liaised between graduate students and Biology Department to assist with resolving academic and 

financial issues  

-served on Graduate Studies Committee as student representative 
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B ology  raduat  Stud  t Sy pos u , St. Joh ’s CAN          

January 2009-April 2009 

Organizing Committee Chairperson 

- responsible for organizing schedule, recruiting outside keynote speaker, designing advertising posters 

and print media, securing financing and sponsorship, and general logistics for a University-level outreach 

event 

 

L t’s Talk Sc   c  Ca ada, St. Joh ’s CAN       

September 2008-April 2009 

Student Outreach Volunteer 

- worked with grade-school students to demonstrate basic principles of science in a fun and interactive 

environment 
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