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Abstract

In this thesis, we use concepts, principles, and theoretical results from Physical
Chemistry to engineer communication and networking systems. We focus on
system dynamics and exploit laws from chemical kinetics in order to govern
the dynamics of a communication network. This is achieved by orchestrating
the interactions among network nodes by means of “artificial chemistries”. We
provide a new perspective on traditional issues concerning the design, the for-
mal analysis and the deployment of distributed algorithms and communication
protocols, ultimately leading to programmable network dynamics with provable
properties.
Specifically, (i) we introduce a class of chemistry-inspired flow controllers that
can easily be customized to accommodate many requirements of network (re-
source) management, such as distributed coordination of flow aggregates, ca-
pacity allocation, access regulations and service differentiation among user flows
or flow bundles. (ii) We show the benefit of the chemical approach in designing
solutions to the “distributed consensus problem” for wireless sensor networks.
After having designed and analyzed the required interaction rules “on paper”,
we use the derived communication protocol in a hardware testbed. Salient
features of this minimalistic setup are mainly three. Nodes achieve consensus
based only on asynchronously emitted RF pulses. No media access control is
used. The protocol works in an embodied fashion by exploiting subtle timing
differences and without recurring to symbolic information. (iii) Finally, in
order to demonstrate the use of Chemistry-driven mechanisms also for high-
performance tasks (e.g., high-rate packet-pacing), we describe the implemen-
tation of artificial chemistries on an FPGA-based hardware. At the same
time, we provide an abstraction for designing runtime-programmable hardware
controllers.
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Chapter 1

Introduction

“Science is what you know. Philosophy is what
you don’t know.”

Bertrand Russell

This thesis promotes the adoption of an unconventional approach for en-
gineering communication and networking systems, which we believe can

contribute to opening new directions in the research on this wide topic. We de-
viate from traditional techniques to venture on a tour into Physical Chemistry
in search of breakthroughs on the design and the analysis of communication
and networking systems.

1.1 Context and motivations

Predicting and controlling the dynamics of communication and networking
systems are difficult but important challenges in the engineering process. While
in the early days of communication networks the researchers’ attention was
on merely functional aspects, in the last three decades, the focus has shifted
towards mastering system dynamics and designing stable solutions. The design
process has thus been enriched by theoretical studies that care about predicting
possible system’s behaviors (trajectories) induced by the adopted algorithms
and protocols.
In the past, researchers and engineers often mastered a problem by decompo-
sition – they broke a problem and its solution into parts, and analyzed and
implemented them by further iterations of decomposition. They cared about
the algorithmic functionality but rarely about analyzability. Such a modular
(layered) controllable environment was easy to maintain but difficult to opti-
mize (cross-layer optimization). Also, it made interactions among the entities
that constitute the system, or between the system and the environment, hardly
predictable and controllable. As a result, algorithms and protocols, which
worked well under nominal conditions, produced instead behaviors not fully
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understood and exhibited shortcomings in evolving scenarios and unexpected
conditions.

Today, the design of communication and networking protocols follows different
approaches that are, more or less, empirical, rigorous/formal, or mimicking
natural phenomena.

Many protocols currently in use represent mere adaptations of former solutions
Empirical

design to newly faced problems, e.g. the progression of congestion-avoidance solutions
in the Internet. Researchers and engineers have often patched and extended
existing algorithms according to empirically-gained insights and without a theo-
retical ground truth. With the rapid evolution of communication environments
and infrastructures, these solutions often deal with conditions that are different
from those they have been engineered for. As a result, they turn out to barely
work and exhibit incomprehensible behavior.

Engineers have proposed to use analytical tools such as control theory to
Analysis-based

design understand critical aspects of algorithms and calibrate/configure them ac-
cordingly. The use of control theory has been further advocated in early
stages of the design process to plan corrective actions that keep the system
stable. A central challenge in this approach is deriving a (fluid-)model that
approximates sufficiently well the algorithms dynamics and then reducing it to
an analytically tractable system. Another problem not easy to be tackled with
control-theoretical tools is the need for autonomic (self-regulating) systems –
systems must be able to automate their management and continuously self-
optimize their behavior in order to accommodate to the continuous evolution
of the operating environment. This is a feature that seems conflicting with the
need for dynamics controllability.

Looking for self-* properties of systems, most recently, researchers resort to
Nature-
inspired

design

bottom-up (nature-inspired) design approaches. Nature-inspired algorithms
are defined by simple (microscopic) interaction rules from which the behavior
and functionality of the algorithm itself (naturally) emerges at the macroscopic
level. Most of the time, these (distributed) algorithms tend to exhibit, and
induce in the systems where they are implemented, stable dynamics that are
easily predictable (at least in average terms); nature-inspired systems tend to
be more robust against perturbations and to changes of nominal conditions.
Aspiring to develop systems as Mother Nature does, proposed communication
solutions use specific models describing processes and mechanisms in living
organisms. To this end, researchers have to properly engineer the (microscopic)
implementation details that correctly embody the mimicked model, and that
let (macroscopic) functional requirements emerge from interactions within the
system and between the system and the environment. This process turns out
to be not always simple but mostly, it is not automated and requires different
ploys from case to case.

What is missing, and seems to us important for developing future communica-
tion networks, is an intuitive design framework that offers analytical tools to

Aim
understand, predict, and control network dynamics. We aim at an alternative
to the classical finite-state-machine modeling of reactive systems that should
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ease and make almost automated the design of stable interaction-systems;
systems where functionalities are not distinct from the system itself but rather
embodied in it and its environment. Communications should be organized in
a way to autonomously adapt and evolve according to the evolution of the
environment and working conditions.

1.2 Our approach

In this thesis, we propose to approach the design and the analysis of algorithms
and protocols for communications and networking by exploiting well-known
principles and laws of Chemistry. Specifically, we model interactions among
nodes in a communication network (e.g., computers, routers, single queues in
a packet-switched network such as the Internet, but also sensors in a wireless
network) as chemical reactions, and we metaphorically associate information
(e.g., data packets, radio frequency pulses) to chemical molecules. Practically,

Use of
chemical laws
and principles

we implement in each node of the network a so-called artificial chemistry [71], a
man-made system that “behaves similarly” to a chemical system and has some
constituent features in common with actual chemical reaction networks. The
implemented artificial chemistry constitutes an underlying dynamical system
that governs the behavior of the network’s node – the artificial chemistry shapes
the node’s response to external events (e.g., packet arrival, radio frequency
pulse reception, packet loss detection), orchestrates internal computations (e.g.,
computation of the next packet dequeueing time, reduction of the transmission
rate), and triggers its actions (e.g., packet drop, transmission of radio frequency
pulses, packet dequeueing). Chemical reactions occur both within the network
node (this is how the state of the node evolves in response to external events
and internal updates), and among spatially distributed entities, in the form
of information exchanges. From this perspective, Artificial Chemistry can be
used to model and perform distributed computations and processing tasks.

With the Chemistry-inspired approach, the design of algorithms and protocols
for communication networks becomes “drawing” an opportune reaction net-
work. Once the reaction network that performs the desired task is designed,
it can be compiled to a program that “executes” chemical reactions on-line.
At this micro-level, each event in the communication network contributes to a
state change of the chemical reaction network (the dynamical system governing
the behavior of the network’s node). The state of the node evolves according
to the designed reaction network and to well-defined timings, such that the
expected system trajectory emerges at the macro-level.

We focus on the dynamical aspect and thus refer specifically to the branch of
Focus on
network
dynamics

Chemistry that studies dynamics of chemical reaction systems, i.e. Physical
Chemistry. We import into communication network engineering laws and prin-
ciples that define chemical kinetics. This allows enforcing a strict relationship
between the performed functionality and the exhibited dynamics of Chemistry-
inspired mechanisms.
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Both analysis and design of algorithms/protocols for communication networks
can benefit from the Chemistry-inspired approach – researchers can take ad-

Benefits to
networking

and
communication

systems...

vantage of the chemical theory to study traditional problems (e.g., consensus
problem in wireless sensor networks [180]) or solve current open issues (e.g.,
emergent control to achieve a collective goal [135]). Two major improvements

..analysis

characterize the analysis process: (i) In the Chemistry-inspired engineering
framework, the fluid model of the system can be generated automatically from
the execution model (automaton) of the algorithm/protocol. (ii) The underly-
ing chemical metaphor enables the direct use of new (in the field of communi-
cations and networking) analytical tools (e.g., steady-state analysis, sensitivity
analysis, Chemical-Organization theorems) to study equilibrium points, the
dynamical behavior, the sensitivity, and the stability of the developed system.
Two major improvements also characterize the design process: (i) Designers

..design
can easily import chemical patterns, which are known to embody vital regula-
tory mechanisms in living complex systems, to perform traditional tasks in a
stable, robust, and self-regulatory way (e.g., adopting the chemical Enzymatic
model to control the traffic in the Internet). (ii) Thanks to the applied chem-
ical laws, Chemistry-inspired systems tend to exhibit smooth transitions and
leverage stable attractors. That is, an intrinsic feature of Chemistry-inspired
systems is the propensity to achieve equilibrium states and be robust against
perturbations.

1.3 Contributions of the thesis

We identify the dynamical aspect as the main benefit of adopting the chemical
metaphor in communication and networking engineering, and focus on pre-
dicting and controlling dynamics of communication networks by applying rules
and principles of Physical Chemistry. This approach is shown to improve the
analysis and the design of communication and networking protocols and to
originate deployable solutions.

The specific contributions of this thesis are as follows:

• We broaden part of the ideas published in [163]. We do not use the
chemical metaphor only to model some communication aspects of com-
puter networks. Rather, we design and implement mechanisms for com-
munication and networking systems, which can be actually deployed in
today’s infrastructures and do not rely on special (chemical) packets nor
require the hypothetical replacement of existing infrastructures’ layers
and elements.

• We extend Artificial Chemistry by relaxing the requirements deriving
from the will to reproduce faithfully phenomena observed in real Chem-
istry. This enhances both functionality and analyzability of the designed
mechanism, in the communication and networking context.
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• We show that applying laws and principles of (artificial) Physical Chem-
istry to the design of communication algorithms is not a mere intellectual
exercise – we implement Chemistry-inspired algorithms that improve
state-of-the-art solutions in terms of stability and predictability.

• We derive a class of rate controllers that can be easily parameterized, ex-
tended, and customized, for various purposes and in different operational
environments.

• We analyze and implement a Chemistry-inspired solution for distributed
computing in wireless sensor networks.

• We give evidence that Chemistry-inspired mechanisms can actually be de-
ployed nowadays – we provide promising results from experiments where
artificial chemistries are implemented at kernel and user space of com-
puters, on embedded microprocessors, and on hardware.

• We develop a high-level abstraction for designing hardware control mod-
ules, on Field-Programmable Gate Arrays (FPGA) technology.

1.4 Thesis outline

The thesis is structured as follows: We first introduce concepts, formal def-
initions, laws, and analytical tools related to Artificial Chemistry, and start
explaining the chemical metaphor for distributed computations and information
exchanges (Chapter 2). We then take advantage of the introduced theory to
analyze and design traffic shaping solutions for packet-switched networks, and
specifically derive a class of distributed traffic rate controllers (Chapter 3). We
adopt the Chemistry-inspired engineering approach to define a set of interaction
rules that allow achieving distributively consensus in wireless sensor networks,
and derive from them a simple communication protocol that lets nodes ex-
change their data in an asynchronous admission-free manner, with no need
for symbolically encoded information and for packet exchanges (Chapter 4).
We show how to guarantee high-speed performances of Chemistry-inspired
algorithms and build them in hardware, and at the same time, we introduce
a user-friendly high-level abstraction for the design of hardware controllers
(Chapter 5). We conclude by summarizing the main features of Chemistry-
inspired systems and our contributions in the context of communications and
networking, and discussing possible future research directions (Chapter 6).

All chapters are both theoretical and practical, with aspects concerning the
analysis and the background theory as well as details related to implementa-
tions and experimental evaluations. After all, our ultimate belief is that mod-
eling, analysis, design, and implementation of communication and networking
solutions should be one and the same thing.
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This thesis has a “self-similar” structure – it has approximatively the same
structure of its chapters (i.e., introduction, main body, conclusion), and chap-
ters’ sections are in line with this writing scheme (although not explicitly
structured in this way). Each chapter treats different topics and different
contexts. For this reason, all chapters start with a generic overview on the
covered topic, which includes a thorough discussion of related works and on
our specific contributions. All chapters end with a discussion of developed
insights/open issues and a short summary that recalls the milestones of the
treated argument. The Introduction and the Conclusion (chapters 1 and 6) are
exceptions to these general rules.



Chapter 2

Artificial Chemistry for
Networking and Communications

“Choosing which aspects of the system should be
modeled and which aspects can be ignored is an
art rather than science.”

Srinivasan Keshav

This chapter gives the reader all tools to understand the work presented in
this thesis. We provide an introduction to Artificial Chemistry and start

clarifying how one can look at communications and distributed computations
from a chemical perspective. We identify the dynamical aspect as the main
benefit of importing the chemical theory and using it in communication engi-
neering. For this reason, we focus on analytical tools and theories concerning
chemical kinetics, likely unfamiliar to most computer scientists and communica-
tion engineers. For the sake of clarity, we support the introduced concepts with
toy examples, then generalized and elaborated in the next chapters to support
interesting applications in computer networks and communication systems.
This chapter is structured as follows: We first report historical notes in the field
of Artificial Chemistry and specify the space and scope of our contribution in
Section 2.1. We introduce the basics of Artificial Chemistry in Section 2.2 and
give formal definitions. We (i) introduce a fundamental law (law of mass action)
that describes the emergent macro-behavior of chemical systems, (ii) clarify
how to study chemical kinetics on the micro-level, and (iii) illustrate an efficient
way to reproduce chemical dynamics on traditional computers. Then, we
present in Section 2.3 all important analytical tools that we will use in the
next chapters to study the equilibria of our Chemistry-inspired algorithms,
their dynamical behavior, and if and how they converge. In Section 2.4, we
show how to parametrize and extend Artificial Chemistry to realize Chemistry-
inspired systems for communication and networking, abstracting away from
requirements of actual Physics. Finally in Section 2.5, we point at some issues
that possibly arise during the engineering phase, and we hint at general design
aspects to overcome these issues.
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2.1 Introduction

Artificial Chemistry (AC) represents a tool for modeling different types of natu-
ral systems and investigating their (possibly complex) dynamics. In general, the
AC-approach is based on a chemical metaphor, with molecules that collide and
react according to certain rules (reactions). As we see later in detail, AC is used
to study the origin, the evolution, and the maintenance of organizations, as well
as a method to find solutions to optimization problems. Another interesting
application ofAC is to process information and perform computations by taking
advantage of the computational properties of chemical systems. This can be
done by using real molecules and chemical reaction systems, or rather can be
done on traditional computers and machines by using AC as a design paradigm
for new software and hardware architectures.
In the following, we give some historical notes on ACs and review a few major
works in this context. We focus mainly on the works that propose ACs as
information processing systems, and that deal with Chemistry as a mere design
paradigm for communication and networking solutions.

2.1.1 Related works

Research in the context of AC has been, and still is, characterized by a broad
application spectrum. Mainly, it has been applied to modeling, information
processing, and optimization. For a compact but complete review on the history
and works in the context of ACs, refer to [71].
ACs have been used as a modeling system in different domains, such as bio-
logical, evolutionary, social, and parallel-processing systems. Researchers have
mainly aimed at understanding the “logic” of certain natural phenomena, such
as examining the abstract problem of the emergence and organization in life.
For example, in the fifties, Turing introduced an abstract chemical system2.1

to show how spatial patterns can be generated by simple chemical processes
(e.g., he explained how “destabilization through diffusion” mechanism moti-
vates “symmetry breaking and pattern formation” phenomena) [233]. Another
famous example is the Algorithmic Chemistry “AlChemy”– refer to [90] and [91]
for further details – that showed how self-organizing sets (organizations2.2)
naturally arise in a system of interacting elements.
Artificial chemical systems can also be seen as a generalization of many evolu-
tionary algorithms. The reason lies in the ability of ACs to create evolutionary
behavior (or self-evolution [69]). For example in [134], Koza introduced self-
replicating computer programs that were self-improving and evolving. The in-

2.1 Touring’s model was made of a few chemical species interacting according to a couple
of reaction rules, and had the structure of a conventional chemical reaction model.

2.2An organization is a set of elements such that each element can be generated by the
conjunct action of the others, and such that given any two elements in the system, their
interaction will always generate only elements of the set.
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troduced environment can be regarded as an AC where molecules are computer
programs and reactions take place while programs are executed. By exploiting
the self-evolutionary feature, researchers have proposed ACs to find solutions
to “difficult”, mostly combinatorial problems. As a consequence, many AC-
based search and optimization algorithms have been introduced, such as the
catalytic search to solve simple problems and find approximations for complex
ones [258].

Most chemical processes in nature can be interpreted as processing information
and performing computations. Every living entity can formally be seen as

ACs as...
an information processing system where the basic mechanism of information
processing is Chemistry – i.e., an information processing system generates an

...information
processing
systems

output (in general, a certain behavior) as a result of processing the input

...distributed,
adaptive
computing
systems

(the current internal state and the environmental inflow). Many works have
exploited ACs both for “real chemical computing”, by the use of real molecules,
and for “artificial chemical computing”, where the chemical metaphor is ap-
plied as a design paradigm for new hardware and software architectures. For
example, artificial chemical systems have been extensively used for control
tasks in robotics – e.g., hormone systems have been used in [40] to achieve
asynchronous information flow and coherent behavior in a distributed parallel
control architecture for a humanoid robot torso; excitable lattices in [3] and
simplified enzyme-substrate kinetics in [268] were used to control real mobile
robots. Whereas in computer architectures, a relevant example of applying

γ-calculus
a chemical paradigm to perform distributed computations dates back to the
eighties when Banâtre et al. in [27] envisioned a highly abstract coordination
model that aimed at autonomous, distributed, and dynamically adapting pro-
gramming workflows. Their abstract rewriting model referred to the following
chemical metaphor: A chemical reaction model describes computation in terms
of chemical reactions; data (γ-abstractions) is represented by molecules (γ-
expressions) that remain in the multiset at the end of the program; a set
of “reaction” rules is given to combine elements in the multiset and produce
new elements. The execution of a γ-program can be seen as the evolution
of a solution of molecules, which react until the solution becomes inert. The
main feature of γ-programs is that they involve implicit parallelism – data is
processed in parallel and thus computation should be easily performed on one
as well as on multiple processors. However, the gap between a γ-program and
any real computer on which it is assumed to run is large and thus, the design
of reasonably efficient implementations of the model is a challenging task.

Since the introduction of γ-calculus, later extended in [26], many other chemical
formalisms have been proposed. The Cham [34] investigated more theoretical
aspects and added new features to the chemical programming paradigm by
considering solutions of multisets and allowing for the definition of membrane-
like encapsulation of sub-solutions. Higher-order multiset rewriting [141] en-
abled any configuration, made of multisets and a set of rewriting rules, to
handle other configurations through their program. The hmm-calculus [57]
attempted to generalize the γ-model by introducing “one-shot and first-class
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citizen” reactions. Finally, the P-system [193] interpreted as computations the
processes happening in the compartmental structure of a living cell and based
on this perspective provided an alternative and complementary approach to
classical methods such as the ones that are based upon Ordinary Differential
Equations (ODEs). All these chemical formalisms were built on the same basic
paradigm but had different properties and different expressive powers as studied
and summarized in [25].
A more recent proposal, which indirectly has inspired also the work presented
in this thesis, is the work by Tschudin [230]; he proposed a Chemistry-inspired
rewriting system that, by combining the γ-formalism and the tag-system in-
troduced by Post in [197], is able to efficiently process headers of data packets.
Originally, the Fraglet-programming language was defined as “a molecular
Biology-inspired execution model for computer communications”, as Fraglets
(small elements that represent fragments of a distributed computation, either
code or data) irreversibly interact with other Fraglets according to a few simple
rules (string substitution patterns), similarly to Chemistry where molecules
react with each other according to reaction rules.
The chemical metaphor has been strengthened by Meyer et al. in [166], where
the Fraglet system has been extended by introducing the chemical Law of Mass
Action (LoMA) as a scheduling policy for part of the string rewriting rules.
This has brought chemical kinetics into protocol programming languages and,

Chemical
Networking
Protocols...

...kinetics into
protocol

programming
languages

de-facto represents a big step toward a generic approach to characterize the
dynamics of computer networks with chemical laws and principles. Authors
of [166] made explicit how Fraglet tag-matching systems can be mapped to
an AC and can be used to design network protocols. They made use of
the LoMA-extended Fraglet system to develop a networking protocol for load
balancing, where the desired result emerges from the combination of distributed
reactions, thanks to the applied laws and kinetics principles. Further, they

...rate-encoded
information

exploited chemical kinetics as a tool to create computer network functionalities,
which rely on rate-encoded information rather than the symbolic information,
traditionally used in networking protocols.

2.1.2 Space and scope of our contribution

Our work is in line with those approaches that exploit ACs in the context of
information processing, and with those solutions that import laws, principles,
and theories form Chemistry in order to achieve distributed adaptive computing
systems.
For example, similarly to what Banâtre et al. proposed in [27] or to the P-
system [193] and other chemical formalisms such as [34, 57, 141], we adopt
the chemical metaphor to solve parallel concurrent computations. And sim-
ilarly to [28, 64, 230], we take advantage of the chemical metaphor in order
to design algorithms for communication- and networking-related applications.
We focus on the dynamics and thus refer to specific principles and laws of
Physical Chemistry. Such as in [157,163], we employ the chemical metaphor to
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build information processing systems where computation emerges out of “an
orchestrated interplay of many decentralized relatively simple components”.

Specifically, this chapter extends and broadens the scope of some ideas that
Meyer et al. proposed [163,165,166]: the use of the chemical metaphor to model
self-healing protocols for computer networks, whose dynamics are inspired by
chemical reaction networks – Chemical Networking Protocols (CNPs). Follow-
ing the CNP approach, we let algorithms “be driven” by underlying reaction
models. The direct coupling between quantity and rate, which is enforced
by the reaction law (i.e., law of mass action), permits to automatically build a
deterministic ODE model that describes the algorithm’s dynamics. By allowing
deviations from what happens in real chemistry and by sticking to the only
constraint of implementing a mass-action scheduler, we enhance controllability
and analyzability of networking and communication systems. We make use of
the chemical metaphor to enable working with rate-encoded information rather
than, as traditionally, with explicit numeric values. We recognize the dynamical

Focus on
dynamicsaspect as the main benefit of importing Chemistry into information processing

and communication engineering, and thus focus on the latter aspect only. We
do not treat active (code-oriented) networking, and self-organizational aspects
of “chemical software code”.

In general, in the context of protocol design, the idea of mimicking phenomena
and mechanisms observed in nature is not new. The literature reports many
trials (successful or not) that exploit biological models (e.g., swarm-based
systems, firstly introduced in [212]), physical fields (e.g., EM, temperature, and
other generic artificial force fields such as potentials in [31]) and bio-chemical
models (e.g., reaction diffusion for epidemic routing in [131]). However, the
majority of research takes care of the spatial distribution/diffusion of informa-
tion (e.g., routing) and often overlooks the dynamics. Additionally, solutions
usually rely on importing specific Nature-inspired models to fulfill specific tasks.
This profoundly differs from our new paradigm for the design and analysis of
algorithms which (i) focuses on achieving stable and predictable dynamics,
without directly caring about the spatial-aspect of the distribution of contents
(information), (ii) adopts a whole theory (chemical theory), and (iii) is not
confined to a specific application but rather has a wide utilization spectrum.

2.2 Basics of Artificial Chemistry

AC can be seen as a subfield of Artificial Life research that, by abstracting
from natural molecular processes, tries to investigate the behavior of complex
systems. In these systems, global properties emerge naturally from the local
interactions between their subsystems. In this section, we start to make clear
how to take advantage of this peculiarity in networking and communication
systems.

After introducing colloquially the chemical metaphor in Section 2.2.1, we give
its formal definition in Section 2.2.2. In Section 2.2.3, we introduce the law of
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mass action which describes macroscopically how reactions occur in ACs and
which represents the rule we, indirectly or directly, apply to schedule events
in networking and communication systems. In Section 2.2.4, we look at the
micro kinetics of actual chemical systems in order to grasp the reason behind
implementation choices of existing ACs. Finally, we show in Section 2.2.5 how
chemical kinetics can be reproduced on traditional CPUs.

2.2.1 The chemical metaphor for networking

Generally, we can look at networking protocols and the way how messages are
exchanged from both a microscopic and a macroscopic level. At the microscopic
level, a protocol implementation cares about the individual details: processing

Microscopic
level of data, the actions triggered when information (e.g., a packet) is received,

the scheduling of consequent actions, and so forth. Protocols are traditionally
implemented as state-machines where an asynchronous event (e.g., a packet
reception) triggers an action and a state transition. Instead at the macroscopic
level, individual events are not important, neither observable. Rather, the

Macroscopic
level macroscopic view deals with flows (e.g. packet streams), and focuses on the

large-scale dynamics of protocols.
Surprisingly, we can refer to Chemistry and the related chemical laws and
principles to obtain an alternative to design, execute, and analyze algorithms
and protocols for networking. Thanks to the Chemistry-inspired framework,
the designer does not have to care anymore about the microscopic details of
the implementation in order to satisfy requirements at the macroscopic level.
According to the chemical metaphor, we can compare information/messages to
molecules and let them “react” with each other akin to molecular reactions.
With this novel framework, the designer can program networking and com-
munication algorithms at the macro-level by “drawing” reaction networks. At

A direct
micro-macro

mapping

the same time, the chemical approach provides an executable model for these
reaction networks at the micro level, without the need for “programming”
the emergent algorithm. Once the reaction network that controls the flow is
designed, it can be compiled to a program that “executes” chemical reactions
on-line and one-by-one. At this micro level, there is a direct mapping between
events in the communication network and those in the chemical reaction net-
work, such that the expected flow trajectory emerges at the macro level.
This approach can be used to solve concurrent computations and to perform

ACs to...

...solve
concurrent

computations

...perform
simultaneous
communica-

tions

simultaneous communications in a natural way [68]. Practically, we let a
Chemistry-inspired dynamical system govern the behavior of each single entity
of the communication system: We associate events in a communication network
(e.g., packet arrivals, packet generations, reception of simple RF-pulse and
so forth) to the production or destruction of virtual molecules in a chemical
dynamical system, which represents a sort of control plane of the protocol’s
dynamics (i.e., events in the chemical dynamical system, such as the execution
of a specific reaction or the generation of a specific molecule, correspond to
specific actions, such as packet transmission, packet dropping, and so forth).
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Molecules react with other molecules and the obtained web of reactions can
be used to perform computation. When several network nodes (e.g. hosts
in a computer network, or sensors in a wireless sensor network) interact with
each other and behave according to the chemical dynamical system, the overall
system can be seen as a unique system (reaction network) that performs a
distributed computation.

2.2.2 Formal definition

Formally, we can characterize each node (entity) of the communication system
according to an Artificial Chemistry. An Artificial Chemistry is univocally
defined as a triple

AC .
= (S,R,A) (2.1)

where S = [s1, s2, . . . , s|S|] is the set of molecular species that may appear in

Artificial
Chemistry

a certain Chemistry, R = [r1, r2, . . . , r|R|] is the set of reactions that expresses
which reactant molecules can collide and which product molecules are generated
during this process, and A is the algorithm that defines which and when
reactions occur [71]. In this section, we are going to comment on the topology
of a reaction network (i.e., we explain the meaning of S and R terms). We
leave to the next sections the discussion of its dynamics (i.e., we explain the
third element A not sooner than Section 2.2.5).
A reaction rule r ∈ R operates according to a given equation whose general
form is as follows:

Reaction
equationr :

∑

s∈S
αr,ss

kr−→
∑

s∈S
βr,ss (2.2)

where kr is a constant parameter (known as reaction coefficient) that con-
tributes to regulating the average rate at which reaction r occurs, αr,s is the
number of molecules of species s consumed by reaction r (known as stoichio-
metric reactant coefficient), and βr,s is the number of molecules of species s
produced by the r-reaction (known as the stoichiometric product coefficient).
Basically, the above equation states that the r-reaction replaces an amount αr,s
of reactant molecules s (left-hand side) to produce an amount βr,s of product
molecules s (right-hand side), with an average rate controlled by coefficient kr.
The number of reactant species O(r) is called the order of the reaction.
For example, a simple unimolecular (order one) reaction (illustrated in Fig-
ure 2.1(a))

r : 1 · S 1−→ ∅
describes the process that consumes one molecule of species S each time reac-
tion r occurs. We neglect for the moment the role of the reaction coefficient,
set to one in the example. Of course, the reaction can happen only when at
least one S-molecule is present in the reactant vessel.2.3 When this condition is

2.3We call “reaction vessel” an instance of an AC as defined in (2.1). A vessel thus contains
a multiset of molecules; each molecule in it is an instance of one of the molecular species s ∈ S.
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voutS

(a) Chemical model

vout

S

(b) Corresponding queuing network

Figure 2.1: A unimolecular reaction “extracts” a molecule of chemical species S like
a server extracts a packet from a traditional queue.

satisfied the reaction is said to be ”active”, otherwise it is called ”inert”. To call
back concepts of communication system engineering (refer to Figure 2.1(b)),
we can see the molecular species S as a traditional queue that stores packets.
In this context, the execution of the simple reaction r : S → ∅ corresponds to
the action of dequeueing a packet.
As a next step, we introduce the concept of Distributed Artificial Chemistry
(DAC) by extending the formal definition of anAC to a communication network
whose interaction topology is represented by a directed graph (“digraph”)

Interaction
graph of

communication
networks

G = (V, E). (2.3)

The set V = {ν1, ν2, . . . , ν|V|} contains all graph vertexes (i.e., computers in a
computer network, sensors in a wireless sensor network, and so forth) whereas
the set E ⊆ V×V contains the edges, with the convention that (νi, νj) ∈ E if and
only if there exists a connection from node νi to node νj (i.e., the information
flows from νi to νj). The structure of a digraph can be described by the |V|×|V|
adjacency matrix ∆ whose generic entry [∆]i,j is equal to 1 if (νi, νj) ∈ E and 0
otherwise.
In a DAC, molecules can be exchanged over the network links by executing
reaction rules that generate remote actions. In particular, at each node νi ∈ V,
a reaction algorithm A (the same for all nodes) updates a local multiset of
molecules according to a set of local reaction rules. That is, each node νi

Distributed
Artificial

Chemistry

defines a local DAC as the triplet

DAC .
= (Mi,Ri,A) (2.4)

in which Mi = Si ∪ S(j)
i . The set Si defines the species of all molecules that

can possibly be found in the local multiset, whereas S(j)
i ⊆ ∪j∈NiSj is the set

of species that can possibly be found in its neighbors. Each node also defines
its own set of reaction rules Ri where a reaction ri ∈ Ri is specified as follows:

Interactions
among

spatially
distributed

nodes

ri :
∑

s∈Si
ari,ss

kri→
∑

s∈Mi

bri,ss.

Note that all reactants are local species only whereas products may also be
species located in the neighboring nodes. This is how transmission or exchange
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ν1

S2S1

ν2

(a) Chemical model

S2ν1 ν2S1

(b) Corresponding queuing network

Figure 2.2: A molecule of chemical species S1, located at node ν1, is transformed
into a molecule of chemical species S2 located at node ν2. In terms of computer
networks, a packet is extracted from queue S1, sent over the traditional communication
infrastructure, and enqueued into queue S2 at the recipient.

of information is modeled in a chemical way: by allowing a reaction to create
product molecules in nearby nodes.2.4

As an example of the chemical metaphor in the context of distributed commu-
nication systems, we can consider a simple unimolecular reaction (illustrated
in Figure 2.2(a))

r : 1 · S1
1−→ 1 · S2

that affects species located in two different, spatially separated vessels: We
can see such a reaction as the processes of dequeuing a packet from the queue
located in node ν1, sending the packet to node ν2, which correctly receives
the packet and enqueues it in its own queue. In this example, node ν1 is

characterized by DAC1 defined according to (2.4) whereM1 = S1 ∪S(2)
1 , S1 =

{S1}, S(2)
1 = {S2} and R1 = {r}. (Refer to Figure 2.2 for a graphical

representation of this example.)
In the previous example the structures of communication and chemical net-
works coincide: two entities of the communication systems (i.e., two queues in
two network nodes) correspond to two molecular species (i.e., S1 and S2); a
link that guarantees that packets travel from node ν1 to node ν2 corresponds
to the reaction r. However this does not hold true in general, and most
of the time. For example, consider the previous chemical reaction with an
additional species C that controls the extraction of molecules from species S1

in node ν1 according to the following, slightly different reaction (illustrated in
Figure 2.3(a)):2.5

r′ : 1 · S1 + 1 · C 1−→ 1 · S2.

2.4Communications among spatially distributed nodes takes place by means of traditional
network infrastructure (e.g. Internet Protocol (IP), Ethernet medium, wireless medium).

2.5The control mechanism stems from the inertness condition concerning reaction r′: at
least one molecule C must be present to authorize the consumption of a molecule S1. The
system can be seen as a queue C that contains virtual tokens and controls the dequeuing of
payload packets stored in S1. This control mechanism will be thoroughly investigated in the
next chapter.
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ν1

S2S1

ν2

C

(a) Chemical model

S2ν1 ν2

C

S1

(b) Corresponding queuing network

Figure 2.3: One molecule of chemical species S1 and one of species C, located at
node ν1, are transformed into a molecule of chemical species S2 located at node ν2.
Similarly, a special (controlled) server dequeues a packet from queue S1 and sends it
to the recipient ν2. Structures of chemical and communication networks differ.

In this case, the communication network (refer to Figure 2.3(b)) has the same
structure whereas the chemical reaction network has an additional vertex (i.e.,
species C).

The structure of the chemical reaction network is described by the stoichiomet-
ric matrix Ξ:

Ξ = [Ξs,r]|S|,|R| = [βs,r − αs,r] (2.5)

whose elements Ξs,r represent the number of molecules of chemical species s

Stoichiometric
matrix...

...the chemical
reaction

network’s
structure

that are transformed by a particular chemical reaction r. In our first example,
the chemical network composed by species S1 and S2 and reaction r is charac-
terized by a stoichiometric matrix Ξ = [1 −1]T , having two rows as the number
of species present in the network, and one column as the number of reactions
characterizing the network. On the contrary, the slightly different chemical
network composed by species S1 S2 and C and reaction r′ is characterized
by a stoichiometric matrix Ξ = [1 − 1 1]T which has an additional row that
describes the effect of species C. The communication network graph G = (V, E)
in both examples is constituted by vertex vector V = [ν1, ν2] and edge vector
E = [lν1−ν2 ].

The compact description Ξ of the structure of the chemical network assists
chemists and biologists in important tasks such as (i) the discovery of pathways
that carry out a distinct biological function of the chemical network, (ii) the
discovery of dead ends and futile cycles (i.e., dependent subsets of reactants)
(iii) the identification of optimal and suboptimal operating conditions for an
organism, and (iv) the analysis of network flexibility and robustness. In this
thesis, we will also make use of the stoichiometric matrix Ξ and refer to its
elements in the analysis and the formal description of proposed Chemistry-
inspired solutions for communication and networking systems.
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2.2.3 Law of mass action (LoMA)

After having introduced the first two elements that define an AC, we focus now
on the dynamics of the chemical system.
The dynamics of chemical reactions (when which reaction occurs) are described
on average by the well known Law of Mass Action (LoMA), which essentially
states that the average rate of occurrence of a chemical reaction is proportional
to its reactant concentrations [241]. That is, the more reactant molecules are
present, the more frequent reactions occur. Mathematically, this means that
a chemical reaction r ∈ R occurs at an average rate vr(t) proportional to the
abundance of involved reactants:

LoMA...

...the more
reactant
molecules are
present, the
more
frequently
reactions occur

vr(t) = kr
∏

s∈S
cαr,ss (t) (2.6)

where kr is the reaction coefficient mentioned before and cs(t) denotes the
molecular concentration of reactant species s at time t. This quantity is related

Concentration
∼ #molecules

to the amount (number) of molecules of s-species and to the volume of the
reaction vessel times the Avogadros constant. In our artificial chemical setting,
and thus in all subsequent discussions, we refer to a simplified notion of con-
centration, such that the concentration becomes equivalent to the quantity of
molecules, except from the fact that the concentration represents a continuous
quantity whereas the number of molecules represents a discrete one.
The empirical mass-action principle enables us to describe the time evolution
of the average species abundance as a set of |S| Ordinary Differential Equa-
tions (ODEs):2.6

∂cs(t)

∂t
=

inflow︷ ︸︸ ︷∑

r∈R
βr,svr(t)−

outflow︷ ︸︸ ︷∑

r∈R
αr,svr(t) ∀s ∈ S (2.7)

or, alternatively, in a compact vector notation

Generalized
mass-action
model

(fluid model)

ċ = Ξ · v(c(t)). (2.8)

Such a mathematical representation of a chemical system represents a deter-
ministic approximation (fluid model) of actual chemical kinetics, which leads to
very simple, low-effort solutions and, as we show later in this thesis, is accurate
enough for our purposes.

To illustrate the foregoing ideas, consider again the reaction r : S
k−→ ∅ which

simply consumes S-molecules, illustrated in Figure 2.1(a). According to the
LoMA in (2.6), the average rate of this reaction is

vr(t) = kcS(t). (2.9)

2.6The equation set in (2.7) is also referred to as differential (reaction) rate equations.
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We can thus describe this unimolecular reaction system with the following
(one) ODE: ∂cS(t)/∂t = −kcS. If we consider species S to be initialized
to cS(t0) = c0, the ODE has the solution

cS(t) = c0e
−kt (2.10)

that describes the average number of S-molecules decaying exponentially with
a speed that is proportional to coefficient k.
If we again regard species S as a packet queue and reaction r as the process of
dequeuing its head packet (see the graphical representation in Figure 2.1(b)),
the previous result implies that the chemical metaphor suggests to serve the
queue in a non-work-conserving manner (by adding an additional service delay,
and thus enabling idle phases in the server).2.7 As we will see soon in this and
the next chapter, the non-work-conserving policy improves the predictability
of the dynamics of the process itself and thus of the system, and its stability.
The LoMA is respected only if we manage to set properly the time instants

The reaction
algorithm A to
respect LoMA

when each reaction occurs. As mentioned before, such a scheduling scheme is
handled by the reaction algorithm A, which defines how the set R of rules r
is applied to a collection S of molecules s, and thus it defines the dynamical
behavior of a reaction vessel.

2.2.4 Stochastic chemical kinetics

Before introducing the third element characterizing the definition of an AC, the
reaction algorithm A, we go through the main findings of Physical Chemistry in
the context of chemical kinetics. This allows us to motivate the implementation
of the reaction algorithm A and understand the related insights.
It is convenient to define the “state” of a chemical reacting system as “the
current number of molecules of each component species” (we mentioned before
that, for us, the molecular concentration represents a continuous quantity that
approximates the number of molecules). In reality, the movement of molecules

Micro-level
random

trajectories

in a well-stirred vessel in thermal equilibrium follows a Brownian motion. This
means that when the state of a chemical reacting system is described as a set
of concentrations that evolve (in time), we lose information about the positions
and momenta of molecules, and hence we cannot predict deterministically the
future behavior of the system [99].
For example, if we consider again the simple decaying reaction depicted in
Figure 2.1(a), we observe random trajectories eventually leading to the same
steady state (where no molecules in species S are present). Figure 2.4 shows
three possible realizations of the stochastic process that characterizes the time-
evolution of the number of molecules S. As we expect, because of the mass-
action principle, all three trajectories follow on average the exponential decay
described in (2.10).

2.7Traditionally, queues are served in a work-conserving manner – serve the queue as fast
as possible, avoiding an idle state of the server.
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Figure 2.4: Three possible realizations of the stochastic process that describes the
state evolution of a unimolecular r : S→ ∅ system, which has initially 200 molecules.
Refer to Figure 2.1(a) for a graphical illustration of the concerned chemical model.

Mc Querry in [160] firstly attempted to mathematically accommodate the
stochastic nature of chemical reacting systems and proposed what today is
known as the chemical master equation.

2.2.4.1 Chemical Master Equation (CME)

The Chemical Master Equation (CME) describes, in terms of probabilities, the
time-evolution of a chemical system’s state, i.e., the possible compositions of
the reaction vessel. Its a priori validity and physical fidelity was proved by
Gillespie in [99]. In the following, we elaborate on the derivation of the CME
provided in [99], by using insights published in [247]. For convenience, we refer
to the state of a chemical reacting system as the number of molecules of each
species that evolves in time. We ignore the positions and velocities of the indi-
vidual molecules (we assume the system being well-stirred2.8) and rigorously,
we accept some randomness in the process that describes the behavior of the
system.
From this point of view, molecular populations in a chemically reacting system
are integer variables that evolve stochastically, according to a Markov process.
The changes in the species populations are a consequence of the chemical reac-
tions. From this perspective, each reaction r is characterized mathematically
by two quantities. The first is its state-change vector xr = [x1,r, . . . , x|S|,r],
where xs,r is the change in the population of species s caused by a reaction r,
such that if the system is in state n and a reaction r occurs, the system
immediately jumps to state n + xr. The other characterizing quantity for r
is its propensity function ar(t), which reflects the probability, given a certain

2.8In a well-stirred vessel, the probability that a molecule will participate in a reaction
does not depend on its position in the vessel.
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state N(t) = n, that one r reaction will occur in the next infinitesimal time
interval [t, t + dt). This definition can be seen as “the fundamental premise
of stochastic chemical kinetics” because “everything else in the theory follows
from it via the laws of probability” [96].
The propensity can be seen as the product of the so-called “stochastic rate
constant” cr and a term hr that reflects the number of distinct combinations

Propensity...

...probability
that a certain

reaction occurs
in the next

infinitesimal
time interval

of reactant molecules of reaction r [247]:

ar(N(t)) = cr · hr(N(t)). (2.11)

The term hr changes over time according to the binomial coefficient

hr(N(t)) =
∏

s∈S

(
Ns(t)
αs,r

)
.

For example, in the unimolecular reaction r : S → ∅, we would have hr = NS

possible combinations. In a higher-order reaction r : A + 2B + 3C → . . . , we
would have

hr =

(
NA

1

)(
NB

2

)(
NC

3

)
= NA ·

NB(NB − 1)

2
· NC(NC − 1)(NC − 2)

2 · 3

possible combinations of reactants (we omit the time-dependency). The stochas-
tic rate constant cr depends on physical properties of the reactant molecules and
the term crdt represents the probability that a particular selected combination
of reactant molecules of a reaction r at time t will react in the next infinitesimal
time interval dt. Thus, the definition in (2.11) agrees with the “fundamental
premise”. Indeed, if we multiply the probability crdt, which applies to a
particular selected combination of reactant molecules of a reaction r, by the
total number of distinct combinations of reactant molecules at time t, we
obtain the probability that a reaction r will occur in the next infinitesimal
time interval [t, t + dt), because reactions occur in a maximum parallel and
independent manner.
A physical derivation for cr is in general not possible and scientists often rely
on other arguments. We avoid to delve into details regarding the derivation of
this quantity; we just note that Wolkenhauer et al. have demonstrated in [247]
that cr exhibits a strong relationship with the reaction rate coefficient kr – the
constant that appears in the empirical LoMA and the related rate equation
(ODE) models. Wolkenhauer et al. offer us an alternative definition of the
propensity (rigorously correct only if a high number of molecules is present in
the vessel):

〈ar〉 = k′r
∏

s∈S
〈Ns〉αs,r (2.12)

where the symbolism 〈∗〉 identifies the expectation operator and k′r is a term

Propensity
∼ LoMA

that depends on the Avogadro number and the considered volume, on the
reaction rate constant kr, and on the reaction molecularity Kr =

∑
s∈S αs,r.



2.2 Basics of AC 21

For example, by adopting such a simplification to derive the propensity of the
unimolecular reaction r : S→ ∅ we get

〈ar〉 = k′r〈NS〉. (2.13)

We can easily observe the similarity between the above expression and the
mean reaction rate expressed in (2.9).
The stochastic nature of the given propensity definition implies that we cannot
exactly predict N(t). However we can infer the probability to be in a certain
state N(t) = n at time t given the fact that initially at time t0 the system was
in the state N(t0) = n0

P (n, t|n0, t0)
.
= Prob

{
N(t) = n, given N(t0) = n0

}

and derive a time-evolution equation for this probability by applying the laws
Chemical
Master
Equation
(CME)...

...probability
that each
species has a
molecular
population at
a future time

of probability to the “fundamental premise”. The result of this is the CME [96]:

∂P (n, t|n0, t0)

∂t
=

|R|∑

r=1

( entering state n︷ ︸︸ ︷
ar(n− xr)P (n− xr, t|n0, t0)−

leaving state n︷ ︸︸ ︷
ar(n)P (n, t|n0, t0)

)
.

(2.14)
The first term on the right-hand side describes the change to state n, while the
second term describes the changes away from state n.2.9

Again considering the simple unimolecular reaction S → ∅, when species S is
initialized to n0, the CME gives

∂P (n, t|n0, 0)

∂t
= ar(n+ 1)P (n+ 1, t|n0, 0)− ar(n)P (n, t|n0, 0).

As P (n0 + 1, t|n0, 0) ≡ 0, this equation can be solved exactly by successively
putting n = n0, n0 − 1, . . . , 0 and results in the following probability density
function:

P (n, t|n0, 0) =
n0!

n!(n0 − n)!
e−k

′nt(1− e−k′t)n0−n (n = 0, . . . , n0). (2.15)

The above probability density function describes a binomial random variable,
which has ηNS(t) = n0e

−k′t as a first moment and σNS(t) =
√
n0e−k

′t(1− e−k′t)
as a second moment. The expression of the expected number of S-molecules is
very similar to the generalized mass-action model in (2.10).
The CME represents a formal analytical tool to fully describe the dynami-
cal behavior of chemical systems, taking into account both stochasticity and
discreteness aspects. However, the CME is actually a set of coupled ODEs,
with one equation for every state, i.e. every possible combination of reactant

2.9The multiplication of propensity and probability makes sense if we consider the time-
derivative on the left; propensity times dt gives a probability.
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molecules. This implies that the CME can be solved analytically for a few
simple cases only, and numerical solutions are prohibitively difficult in other
cases. That is, for first-order reaction systems, each species adds one dimen-
sion to the problem leading to an exponential growth of the computational
complexity. For instance, if we would analyze a system of 3 species, having
each between 1 and 100 molecules, the CME will contain 1003 coupled ODEs.
Actually, one ODE per state. For higher-order reaction systems, the solution
of CME is not even possible to achieve [122].

2.2.5 Reaction algorithm A
From the same set of theorems used to formally validate the CME, Gillespie
further derived a stochastic simulation algorithm [98]. The algorithm, being
logically equivalent to the CME, simulates correctly molecular collisions and
provides a sample trajectory of the random process characterizing the state
evolution of the chemical system. Such an algorithm constitutes the third
element A of the AC-definition.
The idea behind the exact stochastic simulation is to try generating a single
sample of the state evolution of a chemical process in the stochastic framework.
Indeed, a big disadvantage of the (intractable) CME approach is that it tries to

Reaction
algorithm A...

...to produce a
realization of

the process
described by

the CME

write a system of equations and solve it simultaneously for the probability of all
possible trajectories. Exact stochastic simulation methods generate a sample
of the system’s state evolution by picking reactions and times according to the
“correct” probability distributions. The term “correct” refers to a procedure
which is able to generate a certain trajectory with exactly the same probability
as that obtained with the CME approach. As a result, one can write an algo-
rithm that generates “correct trajectories” even when it is not possible to write
the related CME explicitly [94]. For example, the Direct Method proposed by
Gillespie in [98] calculates explicitly which reaction r occurs next and when it
occurs; the reaction ri is chosen according to P (r = i) = ai/

∑
r∈R ar, and the

time τ is chosen according to P (τ)dτ =
∑
r∈R are

−τ∑r∈R ardτ .
Besides being “correct”, the algorithm A must be efficient. The literature
reports many Monte Carlo procedures for numerically generating time trajec-
tories of the molecular populations in exact accordance with the CME (refer
to [96] for an overview). In the following, we review the Next Reaction Method
as proposed by Gibson and Bruck in [94]. This stochastic simulation approach,
which is rigorously equivalent to the CME approach, is shown to be efficient,
its computational complexity is proportional to the logarithm of the number of
reactions, and it requires a single random number per simulation event. This
approach reduces the computational effort of the Direct Method and of its
improved version, First Reaction Method, proposed by Gillespie in [97].
The Next Reaction Method computes the next reaction time tr of each reaction

The Next
Reaction

Method A
rule r relying on the propensity ar and stores it in an “indexed priority queue”.
This queue consists of a tree structure of ordered pairs of the form (i, ti),
where i is the identifier of a certain reaction and ti is the putative time when
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that reaction should occur. Element pairs are stored in the structure according
to the value of the corresponding reaction time: the first stored element has
the next reaction time.
The derivation of the next reaction time follows from the definitions we gave in
Section 2.2.4: The propensity has been described as a function ar(n) such that
the product ar(n)dt represents the probability that a reaction r ∈ R will occur
in the next infinitesimal time interval [t, t+dt), given a certain state N(t) = n.
A consequence of this is the form of the next-reaction density function, which is
defined as the probability p(τ, r|n, t)dτ that, given a certain state N(t) = n, the
next reaction will occur in the infinitesimal time interval [t+τ, t+τ+dt), and will
be reaction r. After a series of reasonings (see [95,97]), the quantity p(τ, r|n, t)
is found to be

p(τ, r|n, t) = ar(n)exp

(∑

i∈R
ai(n)τ

)
(0 ≤ τ <∞; r ∈ R).

This formula provides the basis for stochastic simulation algorithms to generate
the (random) putative next reaction time tr (also referred to as inter-reaction
time):

tr = exp

(
1

ar(n)

)
(r ∈ R)

where the propensity ar, calculated according to (2.11), directly stems from
physical properties of actual reaction systems. That is, the next time of each
reaction is a random variable extracted from the exponential distribution with
mean equal to the reciprocal of the propensity.
Details on how to implement the Next Reaction Method are reported in Al-
gorithm 1. Here, we limit to observe that the Next Reaction Method, besides
being an efficient, statistically exact procedure for numerically generating time-
trajectories of the molecular populations, represents “a macroscopic mass-
action scheduler” [163]. The main aspect is that, like in mass-action models,
average reaction rates turn out to be proportional to reactants’ quantities.
Note that, by relying on Algorithm 1, one can implement/realize the chemical
metaphor shown in Figure 2.1. One can use Algorithm 1 to schedule the
service process of a traditional queue by “compiling” the algorithm with the
reaction r : S→ ∅ and associating the execution of reaction r to the dequeuing
process. This would enable predicting the time-evolution of the queue in terms
of probabilities by applying the results of the CME in (2.15) – the probability to
have a certain queue fill level nS at a generic time t given the fact that initially
the queue was filled with n0

S packets. Similar predictions could be done also
with traditional analytical tools, such as those derived from queuing theory,
when applied to queues that are served according to classic (work-conserving)
policies. However, in traditional practice of queue-theoretic modeling, a certain
model of the service process is assumed so as to factor out the complexity of
the process itself (e.g., the memory-less assumption and thus the assumption of
exponentially distributed times and of Poisson processes allow using Markov’s
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Algorithm 1 Next Reaction Method
Exact and efficient stochastic simulation algorithm as published in [94].

1) Initialize:

a) set the initial amount of molecules;

b) calculate the propensity ar according to (2.11) ∀r ∈ R;

c) set a putative reaction-execution time tr = exp{1/ar} ∀r ∈ R;

d) store values tr in an indexed priority queue (the first stored ele-
ment has the next reaction time) and store the related propensity
values ar.

2) Let ri be the reaction whose putative reaction time, ti, is least.

3) Let t be ti.

4) Change the number of molecules to reflect the execution of reaction ri.

5) Update all reactions, rj , that depend on the executed reaction ri:

a) temporarily store the old value aoldj = aj ;

b) calculate the new propensity aj , according to (2.11);

c) if rj 6= ri, scale the reaction execution time by setting it equal to
tj = (aoldj /aj)(tj − t) + t;
else if rj = ri, set the reaction execution time tj = exp{1/aj}+ t ;

d) store the calculated reaction execution time tj in the indexed priority
queue and store the related propensity value aj .

6) Go to Step 2.

Note:

(i) The variable t reflects the simulation time.



2.3 Analytical tools 25

theory). By contrast, applying Algorithm 1 as a regulator of the queue’s service
process makes the modeling of the micro-level patterns of such a process exact.
(This aspect will be investigated in detail in the next chapter.)

2.3 Analytical tools

We have already started glimpsing some benefits derived from the import
of chemical concepts into communication systems. One main advantage is
definitively the predictability of the system’s dynamics. Additionally, we can
directly import many tools from Chemistry and Biology into the analysis of
communication and networking systems. In doing this, we avoid complex
analyses and study the system from a high-level perspective.
Generally, we want to get insights on the system’s dynamics in order to optimize
the setting of its key parameters, to know its behavior in normal conditions, to
understand its trajectories consequently to unpredicted situations, and to avoid
uncontrolled responses to internal and external perturbations. Challenges in
this endeavor are commonly represented by both the size and the complexity
of the concerned networked system (e.g., consider the complex and large-
scale Internet), and the complexity of the detailed analysis at the micro-level.
For example, we cannot think of studying the dynamics of a communication
network without abstracting away from specific node interactions and single
events, such as actions on single packets. However, it is often a complex task
to find abstract models that approximate closely enough the real behavior, and
definitively, the modeling cannot be generalized and made automatic.
In this section, we demonstrate how the chemical approach assists us in this
context. We explain in details all tools that the chemical metaphor may offer
to those scientists and engineers that make use of the chemical approach to
design and analyze their systems. This section should thus give the reader the
expertise to follow the analysis related of chemical rate controllers (Chapter 3),
and chemical consensus algorithms (Chapter 4).

2.3.1 Deterministic approximation

As we have shown in the previous section, an artificial chemical system can be
implemented and run in an exact and efficient way by means of a stochastic
algorithm A, such as the Next Reaction Method (Algorithm 1). The behavior
of such a system represents a stochastic process that can be modeled as a
continuous-space Markov jump process, discrete in time. By means of the
CME, we can describe at the microscopic level the stochastic evolution in
time of molecules in the system (system’s state-variables). However, such
an approach suffers from the known curse of dimensionality: Each species
adds one dimension to the problem, leading to a combinatorial growth of the
computational complexity.
Due to the mathematical complexity of finding solutions to the CME, the
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Figure 2.5: Differential reaction-rate equation approximation (ODE-model) vs. sim-
ulated system trajectory. Blue-continuous line: actual realization of the stochastic
process describing the state evolution of a unimolecular r : S → ∅ system, which had
initially 200 molecules. Red-dashed line: average trajectory of S-species concentration
over time. Refer to Figure 2.1(a) for a graphical illustration of the concerned chemical
model.

common deterministic model of differential reaction-rate equations (i.e., the
set of ODEs in (2.7)) is often exploited. From this description, when the
parameters of the system are known and for specific initial conditions, the
average dynamics of the system can be evaluated without taking stochasticity
into account. This model approximates the exact dynamical behavior of actual
chemical systems, and extremely reduces the computational work derived from
the analysis: the dimension of the problem grows polynomially, instead of
exponentially as for the CME method.

Differential
reaction-rate

equations...

...an
automatically-

extracted
fluid-model

As far as Chemistry-inspired algorithms are concerned, the set of differential
reaction-rate equations in (2.7) represents the fluid-model of the system, a
macro-level description of its large-scale dynamical behavior. This fluid-model
directly derives from the system itself, i.e., from the underlying chemical reac-
tion network. This means that the fluid model can be generated automatically
once the related chemical reactions have been defined.

Figure 2.5 compares an actual trajectory of the unimolecular r : S → ∅
system represented in Figure 2.1(a) and the average, approximated trajectory,
calculated by applying the mass-action principle (LoMA). Respectively, the
blue-continuous line is a realization of the stochastic process, and the red-
dashed line is the solution (2.10) to the differential reaction-rate equation that
describes the time-evolution of the average concentration of species S, when
initially set to 200 molecules.

Throughout this thesis, the first step of the analysis will always be the deriva-
...the first step
in the analysis tion/extraction of the deterministic, macro-level description in terms of dif-

ferential reaction-rate equations in (2.7). As we show next, this fluid-model
description is most of the time accurate enough (we discuss in Section 2.4
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and Section 2.5 how to improve this fidelity) and allows studying steady-
state points, stability conditions, and system’s sensitivity to internal as well
as external perturbations.

2.3.2 Steady-state analysis

A steady state captures the condition in which all state variables (i.e., the
amount of all molecules) are constant in spite of ongoing reactions that strive
to change them. Steady states are states in which the system spends most of
the time, and to which it returns after being perturbed. We can easily estimate
the steady state(s) of chemical systems by means of the so called steady-state
approximation (also referred to as stationary-state approximation): First, we
have to describe the system’s average trajectory by exploiting the mass-action
principle in (2.6) and thus, by writing the set of |S| ODEs in (2.7) that describe
the time evolution of the average species abundance. Then, we can simply
impose the steady-state condition, thus set the derivatives to zero (i.e., left-
hand side of (2.7) set to zero), and study the solution c∗s such that

0 =
∑

r∈R
βr,s

vr︷ ︸︸ ︷(
kr
∏

s∈S
c∗s
αr,s

)
−
∑

r∈R
αr,s

vr︷ ︸︸ ︷(
kr
∏

s∈S
c∗s
αr,s

)
∀s ∈ S. (2.16)

When solving such a problem, we must keep in mind all other constraints that
may characterize the system such as the constraint derived from the mass-
conservation principle valid for closed system.
For example, we can study the steady state of a non-trivial chemical system
composed by three species [S1,S2,S3] that react according to the following
reactions:

S2

S3

k1

k2

k3
k4

k5

S1
r1 : S1

k1−→ S2 r4 : S3
k4−→ S2

r2 : S2
k2−→ S1 r5 : S3

k5−→ S1

r3 : S2
k3−→ S3.

(2.17)

The system is initially in the state c(t = 0) = [c01, c
0
2, c

0
3]. We solve reaction

rate equations when the steady-state condition is imposed, namely

0 ≡ ċ1 = k2c2 + k3c3 − k1c1
0 ≡ ċ2 = k1c1 + k4c3 − (k2 + k3)c2
0 ≡ ċ3 = k3c2 − (k4 + k5)c3.

Because the system is closed, i.e. there is no external inflow or outflow, we have
the additional constraint that imposes a constant total number of molecules:

c1(t) + c2(t) + c3(t) = const. = c01 + c02 + c03 ∀ t.
Only by knowing the initial condition, we thus obtain the steady-state vector

c∗ =



c∗1
c∗2
c∗3


 =

c01 + c02 + c03
k1k3 + (k1 + k2)k5 + (k1 + k2)k4 + k2

3

·



k2k5 + k2k4 + k2

3

k1k5 + k1k4

k1k3


 .
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Figure 2.6: Steady-state approximation is not always accurate. Both charts show
the number of molecules over time of the three species S1 (blue line), S2 (green line),
and S3 (black line) that reacted according to reaction rules (2.17) with ki = 1 ∀ i.
Figure 2.6(a) shows a state-variables realization when the process was initialized
to c01 = c02 = c03 = 200, and Figure 2.6(b) when it was initialized to c01 = c02 = c03 = 7.
Steady-state values are plotted in red dotted line.

For example, by setting all reaction coefficients to one and assuming an initial
condition where c01 = c02 = c03 = 200, we would have c∗1 = 300, c∗2 = 200, c∗3 =
100 at the steady state. Figure 2.6(a) shows the number of molecules over time
of the three species S1 (blue line), S2 (green line), and S3 (black line) when
initialized as mentioned, and plots the steady-state values (red dotted lines).
By working with reaction rate equations and steady-state approximations, we
implicitly refer to concentrations and hence, we deal with an approximation
of the actual integer state variables. Again referring to the previous example
(reaction system described in (2.17)) and considering c01 = c02 = c03 = 7 as initial
condition, we would predict a steady state of c∗1 = 10.5, c∗2 = 7, c∗3 = 3.5. Of
course, when we implement a Chemistry-inspired system and we actually run
it by means of a reaction algorithm A such as the Algorithm 1, we can have
only an integer number of molecules for each species. In such a case, we would
have the species in the chemical system continuously updated by ±1 molecule,
matching on average the approximated value c∗.
The deviations observed between the system’s actual state and its steady-
state approximation are significant when we deal with low concentrations (low
number of molecules). For example, Figure 2.6(b) shows this phenomenon

Possible
inaccuracy of

the
steady-state

approximation

occurring in the system described in (2.17) when the species are initialized to
seven molecules. The reason is twofold: (i) For a high number of molecules the
approximation of discrete quantities by continuous ones is appreciable. (ii) The
more reactant molecules there are, the lower the randomness affecting the
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system’s trajectory is. This is a consequence of having exponentially distributed
reaction intervals (time between two consecutive reaction executions), with
mean-parameter proportional to the amount of involved reactant molecules.2.10

This phenomenon and the related consequences in the design and analysis
of Chemistry-inspired communication systems are thoroughly investigated in
Section 2.4.

Differently from the chemical equilibrium where state variables do not change
due to a zero net reaction rate (i.e., reactants transform into products at the
same rate as products transform into reactants), the steady-state condition can
be reached also when no reactions occur at all. For example if we consider the
system composed by species S1 and S2 and the single unimolecular reaction
r : S1 −→ S2, we have the simple steady-state solution c∗1 = 0, c∗2 = c01 + c02,
given the initial condition c(t = 0) = [c01, c

0
2]. This state does not represent a

chemical equilibrium as, in this case, the reaction system becomes inert.

2.3.3 Transient analysis

In simple systems, state variables decrease or increase gradually until they
reach their steady-state value. In more complex systems, state variables might
fluctuate around the theoretical steady state, either forever (a limit cycle) or
gradually coming closer and closer. By looking at steady states only, we can
just imagine how the system behaves under “normal” conditions. However, we
(i) completely miss insights about the transient phase of the system, (ii) ignore
how the system responds to perturbations, and (iii) cannot estimate how long
it takes for the system to reach the predicted steady states.

One approach to predict the dynamical behavior of the system would be writing
down the differential reaction-rate equations in (2.7) and directly solving them
to find out how the concentrations evolve in time on average. However, this
direct approach, although simple in the case of trivial systems, may be imprac-
ticable for complex ones. Furthermore, the sole study in the time domain may
turn out not sufficient to capture all details of the system’s behavior.

Methods from different domains assist us in analyzing the system’s transient
behavior in order to reveal the semantics and the sensitivity of its key parame-
ters: We first describe the fluid model in terms of sensitivity to perturbations,
we then reformulate it in control-theoretic terms, and finally, we characterize
it in the frequency domain.

2.3.3.1 Sensitivity analysis

A powerful tool to analyze chemical systems is the Metabolic Control Analysis
(MCA) [119, 203]. In this (and next) section(s), we introduce the MCA with

2.10According to the Next Reaction Method by Gibson and Bruck [94] (see Algorithm 1),
the exact and efficient reproduction of chemical kinetics are obtained modeling the time as
exponentially distributed.
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formal definitions and intuitive examples that again refer to the metaphor with
a simple queueing system, further extended and analyzed in the next chapter.
Imported from Systems Biology, the MCA is based upon the macro-level fluid-
model description in (2.7) and focuses on changes of the reaction network’s
trajectory due to perturbations of the system’s parameters. The system’s
sensitivity can be formally quantified through the following function

Sensitivity
function...

...derivative of
states c with

respect to
perturbations

p

ε(t) =̇ ∂c(t)/∂p(t),

where c and p are state and parameter vectors. As usual, we refer to the state
of a chemical reaction network as the molecular concentrations. The elements
of p(t) can be formed by any variable whose influence we want to investigate.
For the sake of clarity, we consider a simple LoMA-served queue as the one
depicted in Figure 2.7, whose dequeueing process is implemented by means of
a stochastic simulation algorithm such as Algorithm 1. The related chemical
model represented in Figure 2.7(a) consists of the usual unimolecular reaction

r : S
k−→ ∅, whose rate is controlled by the coefficient k (we consider k ∼ k′) and

species S, which is fed at rate λ (we may use the symbolism ∅ λ−→ S to express
the enqueueing process in chemical terms). In MCA terms, the fill level of the
queue constitutes the single element of vector c(t). Differently, we can define
the reaction coefficient k, the queue’s fill level c, the enqueuing rate λ, and
the dequeueing rate vout as elements of the parameter vector p(t), in order to
investigate the influence of these parameters on the system.
Following the chain rule for differentiation, one can show that the sensitivity
function ε satisfies the following differential equation [201]:

ε̇(t) = Ξ · ∂v

∂c
· ε(t) + Ξ · ∂v

∂p
, (2.18)

which depends on the stoichiometric matrix Ξ (i.e. the description of the chem-
ical network’s topology) and on the reaction rate vector v (whose elements vr
are derived directly from the mass-action principle (2.6)). Terms ∂v/∂c and
∂v/∂p (so called elasticity coefficients) give a measure of how strongly each
single reaction in isolation (e.g., a queue-interaction) is affected by infinitesimal
perturbations of either system’s states (e.g., queue fill levels) or parameters
(e.g., enqueueing rates).

...a
linearization of

the fluid
model, around

steady states

We can also regard (2.18) as the linearization of the following set of ODEs

ċ(t) = Ξ · v(c(t),p(t))

and thus have an alternative representation of the fluid model in (2.8). Since
we are interested in perturbations around the nominal behavior, we first find
steady state c∗, p∗ by solving (2.8) for ċ(t) ≡ 0. Then we define an input
vector

u
.
= p− p∗

that denotes perturbations around nominal parameter values, and we define a

Input vector
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Figure 2.7: A LoMA-served queue.

vector
State-
fluctuation
vector

x
.
= c(p− p∗)− c(p∗)

that describes the resulting state fluctuations around the attractor. (For the
sake of clarity, we omitted the time-dependency in the vector definitions.) Fi-
nally we define the system’s sensitivity at steady state as the system’s response
around the fixed point (c∗,p∗) for small perturbations of the input signal [119]:

System
sensitivity at
steady state

ẋ(t) = Ξ · ∂v

∂c

∣∣∣∣
(c∗,p∗)

· x(t) + Ξ · ∂v

∂p

∣∣∣∣
(c∗,p∗)

· u(t). (2.19)

Let us for example study the sensitivity of the simple queuing network in
Figure 2.7, whose steady-state value is c∗S = λ/k. By defining the enqueueing
rate as sole parameter, p = [λ], we obtain the following description of queue-
level variations:

ẋ(t) = [−1 1] ·
[
0
k

]
x(t) + [−1 1] ·

[
1
0

]
u(t) = kx− u.

We observe that, as a consequence of the LoMA-service policy, the dequeueing
rate is sensible to perturbations/variations of the rate at which packets are
enqueued. The way how the system reacts depends on, and can be controlled
by, the coefficient k.
We conclude this section by summarizing the main features of MCA: (i) MCA
can be carried out in a linear regime, in which only small perturbations are
addressed; (ii) the analysis is always tractable and often simple, and (iii) when
the sensitivity is evaluated around the steady state, the system description
is reduced to a set of linear ODEs (2.19). For linear reaction systems, i.e.,
consisting of uni-molecular reactions only, (2.19) is independent of steady state
c∗,p∗ and thus, the description of the system’s transient behavior is valid in
general, also far away from the steady state.

2.3.3.2 Sensitivity analysis in control-theoretic terms

As a next step, we follow [201] and formulate the sensitivity analysis in control-
theoretic terms, by expressing the linearized ODEs (2.19) as a Linear Time
Invariant (LTI) system:

Linearized
fluid model as
a Linear Time
Invariant (LTI)
system
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ẋ(t) = A · x(t) + B · u(t) (2.20a)

y(t) = C · x(t) + D · u(t). (2.20b)

Although such a state-space representation is common in control theory, in the
following, we elaborate more on its components, in the context of Chemistry-
inspired algorithms for communications.

The input vector u(t) combines the signals to be perturbed, such as (i) external
inputs to which the system responds (e.g., changes of rates that feed species
= enqueueing rate changes), (ii) system’s parameters to be dimensioned (e.g.,
reaction coefficients to be calibrated = control parameters), and (iii) external
disturbances (e.g., rate fluctuations of feedback reactions = fluctuations of rates
in feedback loops).

The Jacobian state matrix A defines how a perturbation of concentrations
(=fill levels) affects their future changes, whereas the input matrix B describes
the influence of input signal variations on these concentrations. Both matrices
are evaluated at the fixed point (c∗,p∗):

Jacobian
state A and

input B
matrices

A = Ψ · ∂v

∂c

∣∣∣∣
(c∗,p∗)

B = Ψ · ∂v

∂p

∣∣∣∣
(c∗,p∗)

. (2.21)

The output vector y(t) represents the result of the sensitivity analysis. We
thereby define the output and the feedforward matrices C and D, respectively,
depending on the result we are interested in: To analyze how perturbations of
the input induce fluctuations of concentrations, we define

Output C and
feedforward D

matrices to
study...

..concentration
fluctuations C = I D = 0. (2.22a)

To look at effects of input perturbations on reaction rates, we define

C =
∂v

∂c

∣∣∣∣
(c∗,p∗)

D =
∂v

∂p

∣∣∣∣
(c∗,p∗)

. (2.22b)
...rate

fluctuations

Again referring to the LoMA-served queue depicted in Figure 2.7, we can
study the effect of run-time modifications of the reaction coefficients, i.e. by
defining p = [k], or we can look at the consequences of changing the offered
load, i.e. by defining p = [λ]. We can either define the matrices C and D
according to (2.22a) to study the effect on the fill levels of the queue S, or
alternatively, we may use (2.22b) to study the effect on the dequeueing rate vout.

By just defining input and output vectors, we have a powerful and flexible tool
at hand, with which we can understand the transient behavior of Chemistry-
inspired systems.

For linear systems, the LTI description does not depend on steady-state values –
i.e. (2.21) and (2.22) do not depend on (c∗,p∗). Thus, the LTI description is
valid also far away from the steady-state region.
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2.3.3.3 Sensitivity Analysis in the Frequency Domain

Classical sensitivity analysis focuses on the system’s asymptotic response to
step-changes of parameters [203]. To make more general observations, as
suggested in [119], we use the Laplace transform F (s)

.
=
∫∞

0
e−stf(t)dt and

transpose the LTI system in (2.20) from the time- to the frequency-domain:

s · x(s)− x0 = A · x(s) + B · u(s) (2.23a)

y(s) = C · x(s) + D · u(s) (2.23b)

where x(t = 0) = x0. By assuming that the initial conditions refer to the
steady state, i.e., that there are no initial perturbations (x0 = 0), the Transfer
Function (TF) of the LTI system results in

Transfer
Function (TF)
matrix:
perturbation
effects on
steady-state
outputs

H(s)
.
=

y(s)

u(s)
= C (s · I−A)

−1
B + D. (2.24)

Each element of the TF matrix H (so-called response coefficient) describes how
a particular steady-state output y changes after perturbations of a particular
parameter u. Response coefficients are useful to investigate the behavior of the
system to external influences. But if we are interested in designing the system’s
internal functionality, so-called control coefficients are often used. They can be
derived from (2.24) by setting B = I.
The frequency-domain view allows understanding the system’s response to
input signals that are more complex than constant perturbations. Any time-
varying signal such as steps, impulses, and periodic or near-periodic signals can
be treated in this framework. Furthermore, the TF itself is a good instrument
to get an idea of the system’s behavior.
The nature of poles (roots of the characteristic equation, namely roots of the
denominator of the TF, as well as eigenvalues of the state matrix) reveals
system’s trajectories under perturbations of initial conditions. That is, the
location of these singularities in the s-plane provides qualitative insights about
the system’s response:2.11 (i) A negative real pole pi = −γ, which falls in

TF’s poles
define the
system’s
response

the left-half of the s-plane on the x-axis, defines an exponentially decaying
component e−γt in the system’s homogeneous response. The speed of the
decay is thus determined by the pole location; poles far from the origin in
the left-half plane correspond to components that decay rapidly, whereas poles
near the origin correspond to slowly decaying components. (ii) A pole at
the origin defines a component that is constant in amplitude and defined by
the initial conditions. (iii) A real pole in the right-half plane corresponds
to an exponentially increasing component. (iv) A complex conjugate pole
pair γ ± jω in the left-half of the s-plane combines together to generate a
response component that is a decaying sinusoid Ae−γtsin(ωt + Φ) where A
and Φ are determined by the initial conditions. Thus, the real term γ of poles

2.11The complex plane on which Laplace transforms are graphed is usually named s-plane.
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specifies again the speed of decay whereas the imaginary term ω defines the
frequency of oscillation. (v) Finally, an imaginary pole pair ±jω, lying on the
imaginary axis, generates an oscillatory component with a constant amplitude
determined by the initial conditions.
For example, we may be interested in the behavior of the simple queueing
system in Figure 2.7 and thus study the sensitivity of the service rate vout with
respect to the enqueueing rate λ in the frequency domain. In this way, we
obtain the two-element vector

H(s) = [0 k]T (s+ k)
−1

(−1) + [1 0]T =

[
1

k

s+ k

]T
,

whose second element describes the relationship between dequeueing (output)
and enqueueing (input) rates: Ho-i(s) = vout(s)/λ(s) = k/(s+ k). We observe
that the LoMA-served queue behaves as a first-order low-pass filter – it has a
TF with one pole (one root in the TF denominator) and no zeros (no roots in
the numerator). The cut-off frequency can be calibrated by the reaction coef-
ficient k. That is, the dequeueing rate vout approaches the average enqueueing
rate λ, but bursts are filtered out. The lower the reaction coefficient k is,
the more the buffer smooths the enqueueing rate, but the more slowly the
buffer adapts its dequeueing rate to new values of loads. Figure 2.8 shows
the effect of k on the dequeueing rate when the enqueuing rate oscillates at
different frequencies around 60 pkt/s. The sole application of the mass-action
scheduling, with the “proper” coefficient k, ensures that “fast” variations of
the enqueueing rate do not affect the system, i.e., no/reduced burstiness of
the dequeueing rate, at the cost of a “slower” adaptation. Note that besides
controlling the burstiness of dequeueing rates, we also control the variation of
the queue fill level.
Our ultimate motivation of making use of analytical tools is understanding
the behavior of Chemistry-inspired systems and fine-tuning them. Usually, in
this context, we keep the coefficients as free variables and study the system’s
response to external perturbations of quantities such as the offered load. By
adjusting the coefficients we are able to shape the parametric transfer function
such that the system responds quickly, while remaining stable. In a network
where coefficients change by design, we may define them as input signals and
analyze the system’s sensitivity to them.
In the analysis we have proposed, we refer to the asymptotic behavior of the
system (like for standard practices in the study of linear output-input systems)

Studying the
effect of

non-constant
perturbations

and thanks to the generalized sensitivity analysis in the frequency domain,
we gain insights on time-varying perturbations of concerned parameters, not
considering constant perturbations only [119]. Tractable time-varying signals
are step variations, spikes (impulse inputs), any other periodic or near-periodic
signal, and inputs with some regularity in their frequency-content. We recall
that the impulse response of a system represents the time-domain counterpart
of the TF. Besides fully describing the relationship between inputs and outputs
of a system in the time domain, the impulse response can express small-scale
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Figure 2.8: Effect of coefficient k in a LoMA-served queue (refer to Figure 2.7):
coefficient k controls how variations of the enqueueing rate affect the dequeueing rate.
The Y-axis does not have a measurement unit as it refers generally to rates of the
chemical model as well as to rates of the respective queueing system.

effects of perturbations. By applying the impulse function to the enqueueing
rate λ of our simple system in Figure 2.7 and by evaluating the algorithm’s
response, we quantify the sensitivity of the dequeueing rate vout with respect
to the injection of a single packet into the queue: L−1 {k/(s+ k)} = ke−kt

for t ≥ 0, where L−1 {F (s)} is the inverse Laplace transform function.2.12

That is, the arrival of a packet causes a small dequeueing-rate spike with an
amplitude equal to the k-value. Thereafter, the dequeueing rate drops back to
its initial value in approximatively five times the value 1/k. On the contrary, if
we are interested in a sudden increase of the enqueueing rate, we have to study
the step response. The response of the system in the frequency domain can be
directly estimated by multiplying the TFs of the system and the input: F (s) =
1/s · k1/(s + k1). By anti-transforming the obtained result, we obtain the
system’s step response in time domain: L−1 {1/s · k1/(s+ k1)} = 1 − e−kt

for t ≥ 0. The dequeueing rate exponentially approximates the enqueueing rate
with an error < 1% in approximatively five times the value 1/k (see Figure 2.8,
where for k = 3 s−1, vout matches the value 0.99λ in less than 1.7 s).

2.3.4 Stability analysis

An important feature of a system is its stability. In particular, we may be
interested in studying the ability of the system to react to a finite, time-

2.12The inverse Laplace transform function is defined as

L−1 {F (s)} .=
1

j2π
lim
T→∞

∫ γ+jT

γ−jT
e−stF (s) dt

where γ is a real number so that the contour path of integration is in the region of convergence
of F (s).
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limited perturbation, and verify that (i) it moves back to its initial state (i.e.,
asymptotically stable state), (ii) it moves to a new steady-state point which is
different from the initial one (i.e., marginally stable state), or rather continues
to evolve in time, without reaching a steady state (i.e., instability).
The stability analysis of linear systems is based upon its deterministic ap-
proximated description and practically reduces to an inspection of the state
matrix of the system or, namely, to a characterization of the frequency-domain
description (2.24). We may define a κth-order linear system “asymptotically
stable” when all κ components of its homogeneous response decay to zero as
time increases,2.13 given a finite set of initial conditions.
We know from our previous argumentations that a pole lying in the right half
of the s-plane lets the system’s response increase without bound from any finite
initial condition, and thus indicates the instability of the system. A system is
defined to be marginally stable instead, when it has all poles with negative
real part and/or poles with zero real value that are simple roots. Finally, an
asymptotically stable system has negative real poles only. For example, the
LoMA-served queue in Figure 2.7 is characterized by a single pole p = −k.
Because reaction coefficients are positive per definition, we conclude that the

Stability of a
LoMA-served

queue

system is (asymptotically) stable. Indeed, if we apply a finite time-limited
perturbation to the enqueueing rate, the dequeuing rate will transiently change
but at last, once the perturbation ends, will return to the initial state λ = vout.
A common approach to study the stability of non-linear reaction systems (i.e.,
constituted by multi-molecular reactions) is studying the linearized ODE model
of the system around its steady state. Such a study is similar to that we
described in previous sections – we study the eigenvalues of the Jacobian state
matrix in (2.21) or equivalently, the poles of TF matrix in (2.24), evaluated
at steady state. Differently from linear systems where these two matrices are
independent of steady state c∗,p∗, for non-linear systems they depend on c∗,p∗

values. Thus, observations concerning the stability of the system hold true
around steady state, and are rigorously correct for small perturbations only.

2.3.5 Deficiency-Zero Theorem

Chemical reaction systems exhibit a tight relationship between topology and
A topological

analysis to
infer the
stability

dynamics. This allows focusing on algebraic structures and relationships, which
define the “topology” of the reaction network, to obtain general results con-
cerning its stability.
Thanks to the deficiency zero theorem, we can infer qualitative properties of
the dynamics from the network structure – the deficiency zero theorem states
that a weakly reversible reaction network (following mass-action kinetics) with
a zero deficiency value has exactly one fixed point, which is asymptotically
stable. This differs from we have done so far when we discussed system’s

2.13Each pole pi defines a component Ce−pit of the homogeneous response
∑
κ Ce

−pit of
the system.
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Figure 2.9: A chemical network with 5 complexes and 2 linkage classes defining
a weakly reversible system with zero deficiency. According to the Deficiency Zero
Theorem the system has exactly one fixed point, which is asymptotically stable.

dynamics relying on the “analytic” properties of chemical reaction networks,
i.e., the properties that relate directly to the rates of change of concentrations
(see (2.7) and the following analytical steps). The following treatment is based
on findings from Feinberg [79] and Horn [112–115].
To apply the deficiency zero theorem, we first have to rewrite the reaction
system in terms of complexes and to identify the linkage classes that constitute
it. Complexes are those multisets of species that appear on the left- and

Complexes
the right-hand side of a reaction. We thus generally define a reaction as an
interaction r : Cr → Cp of complexes Ci, which simply represent a sum of
species with integer coefficients. For example, the reaction system described
by the following set of reactions

r1 : A
k1−→ B

r2 : B
k2−→ C + D

r3 : C+ D
k3−→ A

r4 : 2A
k4−→ 2C

r5 : 2C
k5−→ 2A

and represented in Figure 2.9(a) is constituted by the five complexes A, B, C+
D, 2A, and 2C, as depicted in Figure 2.9(b). Linkage classes are the connected

Linkage classes
components of the directed graph that connects complexes. Again considering
the example in Figure 2.9, we identify two linkage classes: subgraph of com-
plexes A,B, and C+D, and subgraph of complexes 2A and 2C, see Figure 2.9(b).
We further refer to a reaction network as weakly reversible if there exists a

Weakly
reversible
systems

directed pathway from each member of a linkage class to all other members of
the linkage class. In other words, if for every reaction leading from complex Ci
to complex Cj , there is a sequence of directed reactions that connect Cj to Ci.
Finally, we define deficiency ℘ of a chemical reaction network as the positive
integer

℘
.
= |C| − `− rank(Ξ) (2.25)
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where C denotes the set of complexes, ` is the number of linkage classes (i.e.,
the number of connected subgraphs in the graph of complexes), and rank(Ξ)
denotes the rank of the stoichiometric matrix. For example, the rank of the
stoichiometric matrix characterizing the network depicted in Figure 2.9 is

rank(Ξ) = rank




−1 0 1 −2 2
1 −1 0 0 0
0 1 −1 2 −2
0 1 −1 0 0


 = 3.

It follows that the deficiency value is 5−2−3 = 0. We recognize the system in
Figure 2.9 as weakly reversible (i.e., in the subgraphs of complexes, any vertex
is reachable from any other one). Thus, if reactions are scheduled respecting the
mass-action principle (i.e., by making use of a stochastic simulation algorithm
such as Algorithm 1), we conclude that the system is complex-balanced and
exhibits locally-stable dynamics, independently of the value of the reaction
rates. Namely, we can infer conclusions on the stability of the equilibrium
point of the system from the topological description of the system in terms of
complexes and linkage classes.

Three main aspects of this theorem are important: (i) Assumptions of the
Deficiency Zero Theorem are completely related to the structure of the system
whereas the conclusions of the theorem are related to the dynamical properties
of the system. (ii) The deficiency is dependent only on the complexes and the
linkage classes of the system, and not on how the members of the linkage class
react with each other. (iii) We can see the deficiency as a measure of the linear
independence of “necessary” reactions. In a simplified system, if a reaction,
which cannot be eliminated, is a linear combination of other reactions in the
system, the deficiency will be greater than zero.

Feinberg and Horn introduced the notion of the deficiency of a chemical reaction
network as a way to characterize mass-action systems that permit complex
balanced equilibrium concentrations. Lately, their work has been expanded
and generalized to characterize the equilibrium set of systems for which the
underlying network is not weakly reversible and for which the network has a
non-zero deficiency value (see [17, 59, 60, 220]). Although, the Deficiency Zero
Theorem, as originally proposed, provides stability proofs for a certain class of
reaction networks only, it often represents a simple alternative approach that
turns out to be enough to prove the stability and the convergent behavior of
Chemistry-inspired communication systems. For example in Chapter 4, we
will resort to the Deficiency Zero Theorem to validate the stability of the
Chemistry-inspired consensus algorithm for WSNs. In this thesis, we do not
treat extensions and generalizations of the theorem – e.g., analysis of models
that admit multiple equilibria and of persistence and global stability. However,
we envision that recent findings in this context (e.g., [17, 59, 60, 220]) may be
useful for studying Chemistry-inspired communication system characterized by
complex reaction networks.
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2.3.6 Randomness in chemical systems

In the past sections, we have avoided the complexity of analyzing the system at
the micro-level and have instead used the deterministic macro-level description.
Consistently with such an approach, in the next chapters, we will focus only
on the average deterministic trajectory of chemical systems. Nevertheless, in
this last section about analytical tools, we briefly report on possible means to
account for the intrinsic stochasticity of the state of chemical reaction networks.

As we highlighted in Section 2.2.5, we may reproduce faithfully a chemical
system by making use of a stochastic simulation algorithm such as Algorithm 1.
We also pointed out in Section 2.2.4 that we are able study such a chemical
system at the micro-level, and treat it as a continuous-time, discrete-space
Markov jump process. Indeed, for simple enough systems, we can make use
of the CME to describe the evolution in time of the probability to find the
system in a certain state n at time t, given the fact that it was at state n0 at
time t0. We can thus describe in probabilistic terms (e.g. expected value and
standard deviation) the stochastic process that the dynamics of an chemical
system represent. On the contrary, the deterministic macro-level description
of the system, by means of differential rate equations, describes the average
trajectory of the chemical system. Practically, the analysis deals with the
macroscopic concentration cs of species s ∈ S which can be expressed as the
expected value of the number of molecules ns, i.e., cs(t) ∼ E[ns(t)]. And, in
fact, it does not take into account the deviations between the average trajectory
and an actual realization of the stochastic process.

There exist approaches to describe the dynamics of chemical reaction systems at
Approximated,
deterministic
trajectory
+
Analytically
tractable
“noise”

the macro-level still accounting for their randomness: Chemical Langevin Equa-
tion (CLE) [95], Linear Noise Approximation (LNA) [237], and Two Moment
Approximation (2MA) [235]. In general, the system’s dynamics are described as
a systemic, deterministic trajectory and a stochastic noise. The first describes
the average behavior of the chemical system over all possible realizations of
the stochastic process that represents the system’s state-evolution. The latter
catches the stochastic fluctuations observed in the algorithm’s real-behavior
around the average trajectory. All approaches approximate the stochastic
fluctuations to a Gaussian noise, and all approaches take for granted that
inter-reaction times are independent, exponentially distributed variables and
their accuracy relates to the quantity of molecules.

In the CLE-approach [95], Gillespie derived a hybrid description of the system
by means of a set of stochastic differential equations that separates the state
change into a deterministic and a noisy part:

ċs(t) =

deterministic︷ ︸︸ ︷∑

r∈R
Ξs,rar(c(t)) +

noisy︷ ︸︸ ︷∑

r∈R
Ξs,r

√
ar (c(t))Γr(t) (2.26)

where Γr(t) are temporally uncorrelated, statistically independent Gaussian

Chemical
Langevin
Equation
(CLE)
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(normal) variables with zero mean and unitary variance, N (0, 1). Hence, the
CLE description in (2.26) includes multiplicative Gaussian white noises.
Such a description deals with continuous variables (concentrations c) rather
than with integer numbers (number of molecules n). This description is de-
rived from the CME (2.14) and is based on approximations and assumptions:
(i) Gillespie assumed a high number of molecules such that deviations be-
tween the continuous approximation and the actual number of molecules are
negligible. (ii) Within a small time interval [t, t+ dt), the state change has to
be small such that the propensity function does not change much (upper limit
on dt): ar(c(t)) ∼ ar(c(t+dt)). This allows approximating the number of reac-
tions that occur in subsequent “macroscopically infinitesimal time intervals” dt
as “handy” random Poisson variables. (iii) Within the same macroscopically
infinitesimal time intervals dt, each reaction must be executed more than once
(lower limit on dt). This allows approximating those Poisson variables with
more tractable normal random variables.
The CLE approach describes the stochastic trajectory of the system by means
of stochastic differential equations (2.26). The main difficulty in this approach
is solving such a set of equations.
A similar method is the LNA-approach proposed by van Kampen (refer to [237]
for a complete overview on this topic), which, exploiting a perturbative-like
approach, separates the description of the chemical reaction behavior into
a deterministic macro-level trajectory, as given by the macroscopic reaction
rate equation, and the intrinsic micro-level noise, modeled as an analytically
tractable Fokker-Planck equation.
The LNA derivation starts by expressing conditional probabilities in the CME
in terms of a new two-term variable:

Linear Noise
Approximation

(LNA) ns =

deterministic︷︸︸︷
Ωcs +

fluctuations︷ ︸︸ ︷√
Ωξs

representing the deterministic systematic change plus an additional term that
accounts for fluctuations. Then, all terms of the CME are Taylor-expanded
near the macroscopic concentration c(t) using the Ω-expansion method [237].
This method expands the virtual volume Ω of the reaction vessel in powers
of 1/Ω. The lowest order returns the macroscopic rate equations as described
by the mass-action principle and the next order is a linear Fokker-Planck
equation characterizing the fluctuations. The Ω-expansion is mostly used in
its lowest order form, where the fluctuations are approximated to follow a
Gaussian distribution, and the errors in the average value, the second moment
and the variance (i.e., the fluctuations) scale at most as Ω0, Ω1, and Ω1/2.
LNA approximates the probability density function of the molecular quantities
at steady state with a multivariate Gaussian distribution, and focuses on de-
termining the covariances of the molecular quantities around the steady state,
dropping second and higher order moments of the stochastic process.
Also the third method we have mentioned, the 2MA, describes macroscopically

Two Moment
Approximation

(2MA)
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the system’s behavior by means of a systemic deterministic trajectory and
an intrinsic stochastic noise. Differently from CLE and LNA models, in the
2MA model, the noise actually influences the systemic trajectory. Indeed, the
2MA considers the second moment (covariances) of the stochastic process, and
thus takes into account the fact that, in second-order reactions (bimolecular
reactions, i.e., dependent on two reactant species), the propensity function
combines dependent random variables of molecular quantities in a non-linear
fashion. Like considering first order moments (LNA approach) leads to an exact
description of unimolecular reactions only, taking into account first and second
moments provides an exact solution for first- and second-order reactions, and it
leads to a more accurate approximation for third- and higher-order reactions.

In describing the trajectory of high-order reaction systems, 2MA provides a
better accuracy than LNA. This has the cost of a higher complexity when
evaluating the covariance matrix describing the fluctuations.

2.4 Parametrizing artificial chemistries for
communication and networking engineering

After having introduced the basics of AC in Section 2.2, we propose here some
modifications of its definition, specifically of its dynamics. We aim at enhancing
the use of AC in engineering communication and networking systems – i.e.
making the implementation of AC-based systems simpler and widening the
range of obtainable (emergent) properties of AC-based systems.

In general, ACs can be characterized according to their level of abstraction.
If there is an isomorphism between molecules or reactions of the AC and
actual molecules or reactions in Chemistry, the AC can be called analogous,
otherwise it is called abstract [71]. Analogous ACs are considered in the fields
of computational Chemistry where the goal is to model chemical processes
in the computer as closely as possible. Differently, in this thesis, we refer to
statistical and qualitative features of reaction laws and chemical principles, and
often we will stray from the rigorousness of actual Chemistry, to gain flexibility
in protocol design and predictability of the protocol’s behavior.

In this section, we first review a way of calculating the interval between con-
secutive/consequent reactions (inter-reaction time) in order to simplify the
implementation of the reaction algorithmA. Then, we argue about benefits and
disadvantages of removing the artificial randomness from system’s dynamics
(otherwise deliberately added to dynamics of ACs to model actual chemical
kinetics). We discuss the benefits of relaxing the determinism of algorithms and
protocols for communication and networking, while maintaining controllability
of the resulting randomness, and we comment specifically on the effect of
choosing normally distributed reaction rates to generate ACs’ dynamics.

We do not promote the sole use of a specific distribution for generating reaction
intervals nor of deterministic times. Rather, we want to open up the Chemistry-
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inspired approach to new possibilities,2.14 which can benefit the design and
the analysis of communication and networking systems. We briefly discuss
properties of a few types of inter-reaction times. However, we believe that such
a design choice has to be taken depending on the kind of target applications
and environments, thus at the design phase.

2.4.1 Simplified inter-reaction times

Until now, we have explained how to implement ACs to exactly simulate chem-
ical systems (Section 2.2.4 and 2.2.5). Here, we simplify the implementation of
ACs in order to make their implementation on CPUs and hardware devices an
easy task – the propensity value is approximated and its computation is made
dependent on the reaction coefficient and the reactants’ concentration only.
As we mentioned in Section 2.2.5, we make use of the Next Reaction algorithm
by Gibson and Bruck in [94], which improved the computational performance
of the stochastic simulation algorithm. This method relies on identifying a
putative next reaction r according to the corresponding next reaction time tr.
We know also that the value tr is a random variable that is generated from an
exponential distribution with mean equal to the reciprocal of the propensity:

Next reaction
time

tr = exp

(
1

ar(n)

)
(r ∈ R).

The propensity value is calculated according to (2.11), which directly stems
from physical properties of actual reaction systems.
As we aim not at reproducing real chemical reaction systems (analogous ACs)
but rather at taking advantage of abstract ACs to solve computation and
communication tasks distributively, we propose to use the variant of the Next
Reaction Method that Meyer proposed in [163]. Rather than considering the
factorial and stochastic physical terms to calculate the propensity function [247]
(as in definition (2.11)), the algorithm makes use of a simplified version of it,
calculated as follows:

Simplified
propensity

function

ar (N(t)) = kr
∏

s∈S
Nαr,s
s (r ∈ R) (2.27)

where kr represents a generic macro coefficient (or reaction rate constant) that
directly controls the speed of the concerned reaction r.
We exploit the freedom of programming both the system and the related model.
In this way, we simplify the computation of the propensity function. Moreover,
we make the relationship between the macro-trajectory (dictated by the LoMA
and described by differential rate equations) and the stochastic micro-dynamics
(actually exhibited by the chemical reaction system) stronger and more direct.

2.14In this chapter, we discuss new distributions of inter-reaction times but still assume the
LoMA as the only possible reaction law. We envision the possibility to enhance the flexibility
of Chemistry-inspired protocols by means of completely new reaction laws. Appendix A.1
introduces a possible attraction-based law that can simplify the design of some Chemistry-
inspired computational mechanisms.
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Figure 2.10: Reaction rate (blue-continuous line) of the unimolecular reaction r :
S −→ ∅, when times between two consecutive reactions were drawn from an exponential
probability distribution, with the mean-parameter dictated by the LoMA. Instantaneous
reaction rate in Figure 2.10(a), and 0.5s-average reaction rate in Figure 2.10(b). The
charts detail also the LoMA-predicted rates (red-dashed lines).

2.4.2 Deterministic inter-reaction times

Adopting deterministic reaction intervals enables us to further simplify the
implementation of ACs and, at the same time, to enforce more stable dynamics
of the system under control.

We are able to reproduce on computers rigorously correct chemical systems by
calculating next reaction times through the exponential probability distribu-
tion. However, this method does not always suit the purpose of controlling
the dynamics of communication systems. And in fact, drawing inter-reaction

Issues of
exponential
reaction times
in networking
and communi-
cations

times from an exponential distribution implies dealing with highly irregular
rates. This is not always desirable. For example, it is known that bursty traffic
reduces the performance of computer networks in terms of higher queueing
delays, more packet losses, and lower throughput [6, 9, 77].

The exponential distribution may limit the performance of algorithms in dif-
ferent aspects: (i) The variance is fixed to the square of the mean value, which
is dictated by the applied reaction law (i.e., LoMA). As we know, one of the
effects of this is a poor predictability of the dynamics of those systems that work
with low concentrations. (ii) Statistical measurements such as skewness, excess
kurtosis, and mode, suggest that exponentially distributed inter-reaction times
often (with very high probability) assume very low values and sporadically
(with very low probability) assume high values and on average only, the inter-
reaction times match the value that the reaction law (LoMA) predicts.

For example, by using exponentially distributed times to schedule reaction
events in the simple unimolecular reaction r : S −→ ∅, the instantaneous
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rate of reaction r would appear very bursty:2.15 many, almost instantaneous
consecutive reactions and few, very delayed consecutive reactions. This means
that, if we associate reaction events to the service process of a traditional
packet-queue, the dequeueing and consequent transmissions of packets will
be often instantaneous and rarely be characterized by very long delays. The
macro-effect and observable behavior is not that different from what we observe
when serving the queue with traditional work-conserving policies (serving the
queue as fast as possible): the dequeueing rate appears very bursty. Such
a phenomenon is captured in Figure 2.10, which shows the rate of the uni-
molecular reaction r : S −→ ∅ when S-species is initialized to 1000 molecules,
in the case of exponentially distributed inter-reaction times. Specifically in
Figure 2.10(a), the instantaneous reaction rate (associable to the sending rate
of a Chemistry-inspired queue) presents very high peaks and only on aver-
age, see Figure 2.10(b), it follows the LoMA-predicted value. Note that, in
Figure 2.10(a), we have plotted the instantaneous rate on logarithmic scale (y-
axis). As imagined, we observe the exponential decay of the reaction rate (linear
decaying trend in a logarithmic scale), and high deviations between the actual
experienced reaction rate and the theoretically predicted value (indeed, we use
the logarithmic scale to deal with this high variability of the instantaneous
rate).
As our ultimate goal is not to reproduce dynamics of actual chemical systems on
computers, we may implement micro-kinetics that are “less physically correct”

A
deterministic
macroscopic
mass-action

scheduler

but suit better the purpose of controlling the dynamics of communication
systems. For example, we may want to control the departure process from
a queue via the unimolecular reaction but want the pacing of this process to be
constant (i.e., to regularly space out in time the transmission of packets). In
generic terms, we desire to have the chance to attain steady trajectories, which
do not exhibit oscillations and fast, high-range-amplitude variations, and that
follow the theoretically-predicted trajectories as close as possible. That is, we
aim to let the reaction algorithm A be a “precise, deterministic” macroscopic
mass-action scheduler.2.16

To this end, we have to remove the randomness introduced in the next reaction
time calculation step and thus, use a deterministic next reaction time – in the
initial step 1.c and in the iteratively performed step 5.c in Algorithm 1, we have

Deterministic
reaction

algorithm A...

...makes
systems’

trajectories
predictable

to schedule the next reaction at the deterministic time given by the mass-action
principle (i.e., the time is equal to the reciprocal of the propensity-value rather
than being an exponentially distributed random variable that has the propen-
sity as mean-parameter). In this way, the reaction system would follow exactly
the LoMA-predicted trajectory (e.g., red-dashed lines in Figure 2.10).2.17

2.15We refer to the “instantaneous rate” of a reaction as the reciprocal of the period between
two consecutive executions of that reaction.

2.16We refer to “precision” as the degree to which repeated measurements show the same
results under unchanged conditions.

2.17The use of deterministic inter-reaction times was also mentioned in [163] as a requirement
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Making the reaction algorithm A a deterministic mass-action scheduler implies
...implies a
simpler imple-
mentation

also a simplified implementation. We further reduce the number of required
random variables from one to zero for each reaction execution!2.18

Until now, it seems that using deterministic reaction times to realize a mass-
action scheduler is the most precise and efficient method to get trajectories that
are close to the LoMA-predicted ones. However, we may experience deviations
between predicted and actual trajectories of the system. This is due to the
discreteness of the state of the chemical system: In ACs, species change as a
consequence of the consumption or the production of one or more molecules
(discrete space). However the ODE model describes the changes of the system’s
state in terms of real quantities (continuous space). This does not represent
a problem in the case of sufficiently high concentrations when the deviation
between uniform-space prediction and discrete-space measurement are negligi-
ble. Instead, in the case of low concentrations, the concerned phenomenon is
observable but still does not represent a problem most of the time. However,
particularly attention must be paid when reactions “compete” for a shared
reactant species whose number of molecules is less than or equal to the number
of molecules required to let the concerned reactions be active. To explain
the issue we look at the simple example where we have a single species S

whose molecules are injected with reaction r0 : ∅ λ→ S and consumed by two

reactions r1 : S
k1→ R1 and r2 : S

k2→ R2, as depicted in Figure 2.11(a).2.19,2.20

According to the ODE describing the dynamics of S-species concentration, at
the macroscopic level, we have different outflow rates v2 and v3: c∗S = λ/(k1+k2)
and thus v2 = (k1λ)/(k1 + k2) and v3 = (k2λ)/(k1 + k2), with the assumption

that k1 6= k2. Assuming that c
(0)
S = 0 initially, the egress reactions r1 and r2

are inactive. The ingress reaction r0 is scheduled for time t = 1/λ s. At that
time, one S-molecule is generated and r0 is rescheduled for 1/λ s later. At the
same time, both egress reactions become active and are scheduled according
to the LoMA. Let us further assume that λ < 1k2 and k2 > k1 and thus,
that the r0-reaction is not fast enough to fill the S-species and the r2-reaction
occurs earlier (with a deterministic inter-reaction time) than the r1-reaction.
At time 1/λ+ 1/k2 s, the only existing S-molecule is consumed by r2-reaction
and both egress reactions become inert again, because there is no molecule
left. At each 1/(n · λ) instant (with n ∈ N ) this cyclic trend starts again and

to enable the correct forwarding of TCP streams by a chemical link layer, working with
Fraglets in hypothetical Internet scenarios.

2.18The Next Reaction Method by Gibson and Bruck [94] already reduces significantly
the number of random variables compared to the Exact Stochastic Simulation Method by
Gillespie, i.e. only a single random number per event (reaction execution) instead of |R|
random numbers per iteration (where |R| is the number of reactions).

2.19The symbolism ∅ v−→ X signifies the generation of X-molecules at rate v, whereas

X
k−→ ∅ signifies the depletion of X-molecules with rate coefficient k.

2.20In this simple, linear chemical system, R1 and R2 species have the sole role to make
evidence of the execution of reactions r1 and r2, respectively.
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Figure 2.11: Scheduling reactions r1 and r2 at deterministic reaction times possibly
leads to unexpected dynamics: r2-reaction prevailed because of its high-valued coef-
ficient k2 (continuous lines – R1d and R2d trajectories). Exponentially distributed
random times correctly let r1 occur sporadically (dashed lines – R1e and R2e trajec-
tories). The experiment setup was λ = 102 mol/s, k1 = 102 s−1, k2 = 104 s−1.
Lines R2d and R2e overlap; line R1d does not appear because steady at 0.

thus, an S-molecule is produced with r0-reaction and then later consumed by
the r2-reaction. In other words, for low concentrations of S-species, by using a
deterministic inter-reaction time, the slower reaction never occurs because the
faster reaction always (deterministically) fires before the slower one, in this way
profiting from all present resources. Figure 2.11(b) illustrates the number of R1

and R2 molecules over time in the case of deterministic inter-reaction times
(continuous lines) and exponentially distributed inter-reaction times (dashed
lines). That is, it shows which reaction occurs and when it occurs. We observe
that the R1-species cannot grow because of reaction r2 that consumes the only
existing reactant molecule S to create R2-species, making reaction r1 inert
before its execution. Instead, thanks to the randomness derived from using

Issues of
deterministic

reaction
times...

...when
concurrent

reactions that
drain a single

reactant
species have a
low number of

molecules

exponentially distributed inter-reaction times, both reactions r1 and r2 occur
with a frequency that reflect the ratio k1/k2 and that depend on the inflow
rate λ. For deterministic and exponentially distributed times,2.21 the number
of R2 molecules reaches respectively 4999 and 4960 (at 5 s). The respective
trajectories are almost the same, i.e. lines R2d and R2e overlap. On the
contrary the number of R1-molecules is non zero for exponentially distributed
times (R1e-line) whereas it is null for deterministic ones (R1d-line overlaps the
abscissa-axis).

2.21In Figure 2.11(b), we use the index “e” for results obtained with exponentially dis-
tributed random reaction intervals, and “d” for results obtained with deterministic reaction
intervals.
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This phenomenon affects models that include (i) more than one competing,
linear, egress reactions, which have different reaction coefficients, that drain a
single species having sufficiently low number of molecules, (ii) more than one
competing, non-linear, egress reactions that, even if the reaction coefficients are
the same, do depend on reactant species having different numbers of molecules
and one of these is sufficiently low.

2.4.3 Normally distributed inter-reaction times

We have seen that deterministic inter-reaction times are suitable to obtain
stable dynamics and to simplify the implementation of ACs but, they may
lead to the incorrect, permanent inertness of some of the reactions, for certain
chemical reaction models and for specific setups. We have also seen that this
problem can simply be solved by including a (sufficient) randomness in the next
reaction time calculation. This is done automatically when exponential random
reaction intervals are used. However, the use of exponential random times
has the cost of a less regularity between the scheduled events (e.g., intervals
between packet transmissions). In this section, we discuss normally distributed
reaction times (i.e., characterized by a Gaussian/normal distribution) to gain
controllability of the “randomness level”.
In general, referring to networking and communication systems, there exist
reasons why designers could desire to relax the determinism of their algorithms
and protocols: (i) to increase their robustness – e.g. gossip-style protocols,
(ii) to help to break symmetry – e.g. leader election in anonymous networks,
(iii) to help resolving access conflicts – e.g. MAC-protocol family, (iv) to
reduce interferences – e.g. clock dithering for reducing radiated noise. Thus,
we propose to not remove randomness from the next reaction time calculation
altogether but rather to include it and maintain some sort of controllability of
the level of randomness in the algorithms’ dynamics.
More than one probability distribution may be candidate to be used to gener-
ate reaction times, depending on the underlying physical aspects, the general
observations, and the engineering requirements of communication systems. We
believe this decision can be postponed to the design phase of each Chemistry-
inspired communication system, and generally should concern basic features of
random generator functions. Here, we limit to recognize the normal distribution
as as good candidate, and briefly comment on its properties. Besides being
analytically tractable, the normal distribution guarantees controllability of the
level of randomness. That is, through the variance parameter, the designer
can control the level of fluctuations affecting the trajectories of the AC. In
the example of a packet queue whose departure rate is controlled by the uni-
molecular reaction, the use of the Gaussian distribution to generate reaction

Gaussian
reaction
times...

...to enable
randomness
control

times enables us to define the average pacing time that has to characterize
the packet-transmission process. At the same time, it enables us to enforce a
certain randomness in order to prevent side effects such as the synchronization,
and to define a tolerance range for the intervals between packet transmissions.
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Figure 2.12: Instantaneous reaction rate of the unimolecular reaction r : S −→
∅, when the interval between two consecutive reactions was drawn from a normal
distribution, with a mean dictated by the LoMA (1/ar) and a deviation of 0.05%(1/ar)
(green line) and 0.1%(1/ar) (blue line). The charts also show the LoMA-predicted
deterministic reaction rate (red-dashed lines).

Figure 2.12 shows the rate of the simple unimolecular reaction r : S −→ ∅ in
the case where inter-reaction times are drawn from a Gaussian distribution:
The instantaneous transmission rate is smooth and very close to the predicted
trajectory. Additionally, the level of the randomness can be trimmed through
the standard deviation parameter σ.2.22 In this simple example we make
the deviation be proportional to the LoMA-predicted value, i.e., a percentage
(0.05% and 0.1%) of the reciprocal of the simplified propensity.

The fact that normally distributed variables can assume negative values (not
reasonable for modeling time) can be solved through the use of its truncated,
re-normalized version. Alternatively, designers can choose values of mean and
variance such that the probability to have negative times is negligible.

The previously discussed problem concerning concurrent reactions sharing a
low-populated reactant may affect the dynamics of chemical systems also in the
case of normally distributed inter-reaction times. When the level of randomness
(quantified by standard deviation σ) is not sufficient to overcome the rate
difference (defined by the reaction coefficients of concerned reactions), the
faster reaction prevails on the slower one and fires always (with a very high
probability) before the slower one.

2.22The stochasticity characterizing the algorithm appears as a fluctuation on the reaction
rate around the average value with a controllable variance.
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Figure 2.13: Chemical system made of the unimolecular reaction r : S −→ ∅ and
species S, which is fed at rate λ.
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Figure 2.14: Results from simulating the reaction system in Figure 2.13 for λ =
64 mol/s, by using an artificial additional Gaussian noise with σ = 0.05%(nS).
(a) Reaction rate vr. (b) Estimated and theoretical PDF.

2.4.4 Normally distributed reaction rates

Eventually, we comment on ACs with enforced, normally distributed random
rates. As we show next, “generating chemical kinetics” by means of inter-
reaction rates that are normally distributed means increasing analyzability and
direct controllability of Chemistry-inspired communication systems.

In our attempt to control communication systems by means of ACs, we almost
always work with reaction rates (= en- de-queueing rate, RF pulse transmission
rate, etc.). For this reason, we suggest to enforce rate trajectories that are de-
terministically dictated by the LoMA according to (2.6), and to add an artificial
randomness in terms of an additive Gaussian noise. The mean-parameter of
the noise should be null, whereas the variance-parameter (standard deviation)
is a free variable, which constitutes a design parameter that affects directly the
behavior of the system.

For example, we can set the standard deviation to a constant value such that
the level of randomness is always the same, independently of the amount of
involved molecules. Alternatively, we can set the standard deviation to a
constant percentage of the value dictated by the LoMA. In this way, we obtain
a constant relationship between expected value and standard deviation, i.e., a
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sort of constant Signal-to-Noise Ratio (SNR). For example in Figure 2.14(a),
we report the output rate vr of the unimolecular reaction system represented
in Figure 2.13. In the concerned simulations, the system was constantly fed
at rate λ = 64 mol/s, and inter-reaction rates were extracted from a Gaussian
distribution with the mean dictated by the LoMA (i.e., the runtime amount nS

of S-molecules according to (2.27)) and standard deviation set to 0.05%(nS).
In Figure 2.14(b), we show the normalized distribution of the output reaction
rate vr for 6400 samples extracted from simulations – the estimated Probability
Density Function (PDF) of vr. Figure 2.14(b) details also the theoretical

PDF(x) = 1/(2π)e−(x−64)2/(0.05%(64))2 . The estimated PDF matches well the
theoretical Gaussian PDF.

Both analyzability and controllability are not altered for more complex sys-
tems, which include a chain (cascade) of simple unimolecular reactions (e.g.,
the chemical reaction model in Figure 2.15(a)) and non-linear reactions (e.g.,
the chemical model in Figure 2.15(b)). Figure 2.16 shows the results from
simulations for both reaction networks when using Gaussian reaction rates with
mean set equal to the propensity value ar (calculated according to (2.27)),
and standard deviation set to 0.05%(ar). To make results comparable (i.e.
same output reaction rate vr), the chain of ten unimolecular reactions was
again fed at constant rate λ = 64 mol/s, whereas all reactants of the 6-
order non-linear reaction were fed at constant rate λ = 2 mol/s. The in-
stantaneous output reaction rates experienced during the simulations of the
reaction-chain (Figure 2.16(a)) and of the non-linear reaction (Figure 2.16(c))
systems are compared with the already-discussed results concerning the simple
unimolecular reaction. Similar trajectories are observed. In Figure 2.16(b)
and Figure 2.16(d), respectively for the reaction-chain and the non-linear-
reaction systems, we compare also the theoretical PDF calculated for mean=64
and standard deviation=3.2, and the one estimated from 6400 rate samples
extracted from simulations. We finally compare these estimations with the
simulation result of the unimolecular-reaction system. The estimated rate PDF
in the case of unimolecular reaction, chain of unimolecular reactions, and non-
linear reaction matches well the theoretical Gaussian PDF.

The choice of normally distributed inter-reaction rates is not meant to be a rule.
Different design requirements may suggest different distributions for generating
chemical kinetics. For example, deterministic inter-reaction times are useful to
minimize the complexity of the reaction algorithm or to impose theoretical
deterministic dynamics (e.g., for rate control / packet pacing applications).
However, the deterministic approach should be used only in those conditions
that exclude the inertness problem of concurrent low-reactant reactions. In-
stead, exponentially distributed reaction times are convenient for enforcing
the randomness in the system’s dynamics (e.g., for media access control ap-
plication). This randomness is characterized by a fixed variance and solves
always the inertness problem of concurrent low-reactant reactions, without any
specific decision from the designer’s side. A generic solution that ranges over
these two extremes is adding a controllable Gaussian noise to the deterministic
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Figure 2.15: More complex chemical reaction network: (a) chain of ten unimolecular
reactions, and (b) a 6-order non-linear reaction. Systems are fed at constant rate λ.
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(c) Non-linear reaction: Rate
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(d) Non-linear reaction: PDF

Figure 2.16: Results from simulations of systems shown in Fig.2.15. (a) Output
rate vr, and (b) estimated and theoretical PDF(vr) of the reaction-chain system in
Fig.2.15(a). (c) Output rate vr, and (d) estimated and theoretical PDF(vr) of non-
linear-reaction system in Fig.2.15(b). The chain of 10 unimolecular reactions is fed at
λ = 64 mol/s, and the reactants of 6-order non-linear reaction are fed at λ = 2 mol/s.
Reaction rates’ randomness is enforced Gaussian with η = ar and σ = 0.05%(ar). The
results are compared with those obtained with the unimolecular reaction in Fig.2.13.
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mass-action-defined rate. This approach enables the controllability of the level
of randomness, a common practice, for example, in the Address Resolution
Protocol (ARP) [195] for randomly-paced address probing, or in clock-dithering
technique to stop undesired limit-cycle oscillations of a system, or alleviate the
resonance jump phenomenon in sliding-mode control applications [152].2.23

2.4.5 Reaction algorithm A for
communication and networking

We finally present the reaction algorithm A that we have used for the work
presented in this thesis (simulations and real-world experiments), refer to Al-
gorithm 2. This algorithm is an extension of Algorithm 1 (of the stochastic
simulation algorithm published in [94]) and of the revised version proposed by
Meyer in [163], and differs in a few aspects: (i) Algorithm 2 takes advantage
of the simplified propensity ar as defined in (2.27) (Algorithm 2, steps 1.c, 4.c,
4.d). In this way, we keep the implementation complexity low but maintain
the fidelity of the macro-behavior to the mass-action principle. (ii) Steps of
Algorithm 2 (steps 1.c and 4.c) concerning the time calculation do not impose
the generation of exponential random values but rather include the possibility
to have both deterministic and random times, and for the latter case to decide
the distribution and, possibly, the level of randomness. This enables a higher
design flexibility. (iii) Algorithm 2 includes an idle phase in which the system
“sleeps” until the next reaction time is actually elapsed (step 2). This enables
working in continuous time and keeping track of the real-world time, instead
of dealing with a sampled simulation time.

2.5 From science to engineering

In this last section, we discuss the phenomena that arise when importing AC,
a tool that natural scientists use to simulate real chemical systems, into the
engineering process of communication and networking systems. Specifically,
we comment on the implementation of Algorithm 2 on CPUs and hardware
devices, on the consequences of its modified step 2, and on how we interface
the virtual dynamical system (i.e., the underlying chemical reaction network)
to the real environment (i.e., the communication or computer network).

2.23Traditionally, dithering is a certified interference-limiting technique in EMC-compliant
management of power-supply system. Clock-dithering is used to reduce the radiated noise
at any single frequency by spreading the frequency spectrum of the main oscillator. This
small variation in the switching frequency decreases the narrow-band emissions by changing
the frequency content emitted by the device. In practice, such a technique aims at slightly
modulating the oscillator’s fundamental frequency. The effect of this is that the peak energy
is shared among multiple fundamental frequencies. In this way, while the total EM energy
remains the same, the narrowband energy is decreased [61,78,169]. (Acronym “EM” stands
for ElectroMagnetic, “EMC” for ElectroMagnetic Compatibility.) Today, clock-dithering
technique has a wide range of applications in general control systems [152].
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Algorithm 2 Reaction algorithm A for Chemistry-inspired commu-
nication and networking systems
A variant of the stochastic simulation algorithm published in [94]. The al-
gorithm uses simplified quantities and gives more flexibility in choosing the
randomness that affects the system’s trajectory.

1) Initialize:

a) set the initial amount of molecules;

b) calculate the propensity ar according to (2.27) ∀r ∈ R;

c) set a putative reaction-execution time tr = F{1/ar, (σ)} ∀r ∈ R;

d) store values tr in an indexed priority queue (the first stored element
has the next reaction time) and store the related values ar.

2) Wait as long as t < ti, where ti is the least reaction time among all
reactions ∈ R.

3) Change the number of molecules to reflect the execution of reaction ri.

4) Update all reactions, rj , that depend on the executed reaction ri:

a) temporarily store the old value aoldj = aj ;

b) calculate the new propensity aj , according to (2.27);

c) if rj 6= ri, scale the reaction execution time by setting it equal to
tj = (aoldj /aj)(tj − t) + t;
else if rj = ri, set the reaction execution time tj = F{1/aj , (σ)}+t ;

d) store the calculated reaction execution time tj in the indexed priority
queue and store the related value aj .

5) Go to Step 2.

Notes:

(i) The variable t reflects the current (virtual chemical) time.

(ii) The term F{η, (σ)} indicates any random generator function (e.g.
exponential, Gaussian, etc.) with expected value η and, if necessary,
characterized by the desired level of randomness (standard deviation) σ.
Such a function refers to the deterministic generation of times too (formally,
Gaussian generator with σ → 0).

(iii) Molecular species represent mere counters. Step 3 implies to decrement
all counters related to the reactant-species (species appearing in (2.2) on
the left-hand side of the arrow) and to increment all counters related to the
product-species (species appearing in (2.2) on the right-hand side of the arrow).
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We start by observing that we make use of the algorithm A to schedule and
control events in communication networks. This differs from what the majority
of the works in the AC-context propose – making use of a reaction algorithm
A to simulate chemical reaction systems in the shortest possible time. Once
a reaction has been scheduled to fire at the next reaction instant tr = t + τr
and no other events that affect the concerned timer happen, we actually have
to wait τr s until the reaction is executed (i.e., update dependent species and
recalculate the next reaction time tr). We observe further that events in the

Physical and
virtual time communication system occur at a physical time whereas events characterizing

the dynamics of the underlying chemical reaction system occur at a “virtual
time”. This conceptual difference is captured by the difference between step 2
and step 3 in Algorithm 1 and step 2 in Algorithm 2.

The mapping (ratio) between virtual and physical time represents another
parameter to be defined when designing Chemistry-inspired algorithms and

Virtual-to-
physical-time

ratio...

...a design
parameter

protocols for communications. In theory, the virtual-to-physical time ratio can
be any value (but, for consistency, it should be the same in all nodes participat-
ing in the considered reaction network). In practice, it must accommodate some
requirements imposed by the application-scenario and the implementation-
environment. The reaction algorithm A has to be implemented on CPUs,
or more generally on hardware. This means that, if virtual and physical times
are coupled by a constant ratio, the reaction intervals in actually-implemented
chemical systems exhibit a lower limit. This limit is determined by the specs of
the hardware where A is implemented, i.e., the minimum physical time required
by the hardware to perform the concerned computations. We experience de-

Limited
(minimum)

computational
time

viations between actual and theoretically predicted trajectories as soon as the
system works with too big reactant concentrations and reaction coefficients.
“Big” means being sufficient to make the reaction interval smaller than the
minimum time required to compute the interval itself. Figure 2.17 shows the

saturation-like effect of scheduling a simple unimolecular reaction r : S
100−−→ ∅

given the initial condition cS(t = 0) = 105. The system was implemented
on a simulated hardware that exhibited a minimum computational time of
10µs and the virtual-to-physical time ratio was set to one. As we can see,
the number of S-molecules initially decays linearly and proportionally to the
minimum computational time rather than exponentially; the reaction rate is
initially constant and equals the reciprocal of the minimum computational time.

Deviations between actual and theoretically predicted trajectories are possibly
Timer

granularity observable also due the granularity that an actual timer exhibits: We can-
not schedule exactly a timer at 1/ar seconds but rather we have to round
it to (1/ar)gt seconds, where gt represents the minimum possible time step.
Figure 2.18 shows the effect on the number of S-molecules and on the rate in
the case the time granularity the hardware allows is 1µs. These side-effects
must be considered in the design phase, and be avoided by a correct design of
aspects concerning the AC-system itself (e.g., reaction rates and upper bounds
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Figure 2.17: Saturation-like phenomenon affecting the time-evolution of the number

of S-molecules and of the reaction rate of the reaction system r : S
100−−→ ∅, for

cS(t = 0) = 105, when the minimum achievable reaction interval was 10µs (minimum
hardware computational time).

to the number of molecules) and of implementation details (e.g. virtual-to-
physical time ratio).

Another phenomenon we may observe when not carefully implementing AC-
Quantity-to-
molecule
ratio...

...a design
parameter

based communication and networking systems is the discreteness derived from
mapping external quantities, discrete or continuous, into an integer number of
virtual molecules. To be more concrete, let us refer again to the example where
a simple unimolecular reaction is used as a “controller” for the service process of
a traditional queue. For fix-sized packets, we can decide to map one packet to a
single virtual molecule. However, when applying to actual queues in computer
networks (e.g., traffic control of linux kernel queue), we deal with variable
sized packets. To this end, we can decide to map each bit to a single virtual
molecule. However, for (realistic) rates of Gbits per second, such a strategy is
not feasible due to constraints in terms of computational costs (e.g., how fast
the hardware has to, and can, process the required chemical computations) or
communications (e.g., how many interactions among controller and controlled
modules occur). In fact, Gbps-rates would require the hardware to perform the
AC-related computations in nano seconds. Instead, to keep the computational
cost confined, we map a certain amount of bits into a certain (smaller) amount
of molecules (e.g., by mapping 1000 bits into a single molecule, we can deal
with Gbps-rates by requiring the hardware to perform computations in micro
seconds), at the price of a more noticeable effect of the discretization. That
is, how the external “physical” quantity is mapped into a certain amount of
molecules represents a parameter to be defined in the design process. This
design choice must take into account the available computational resources and
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Figure 2.18: Low-resolution phenomenon affecting the time-evolution of the number

of S-molecules and of the reaction rate of the unimolecular reaction system r : S
100−−→ ∅,

for cS(t = 0) = 105. The time resolution of the hardware was set to 1µs.

the nature of the input quantity itself. Dually, designers have also to define
how the AC interacts with the communication system – e.g., how many bytes
the execution of a single reaction authorizes.

Generally, the aforementioned phenomena do not represent a problem, neither
in the design nor in the analysis phase. However, their effect might be visible
in the system’s dynamics. For this reason, designers should take into account
the granularity of timers, the computational performance of the used hardware,
and the discreteness derived from mapping external quantities (e.g., variable-
sized packets, measured temperatures) into a number of virtual molecules. We
cannot give here a precise “recipe”, which is valid generically for all applications
and contexts. We limit to observe that a safe solution must be characterized
by design parameters, e.g. virtual-to-physical-time and quantity-to-molecule
ratios, such that the discussed phenomena turn out to be negligible. As we
will see in the next chapters, the correct calibration of the discussed design
parameters is simple and actually represents for designers an “added value”
rather than a problem to face (e.g., designers can calibrate these parameters
to preserve resources and control the computational cost of running the AC).

2.6 Conclusion

In this chapter, we have introduced and formalized Artificial Chemistry (AC),
and have started to understand how AC can be applied in both the analysis
and the design of communication and networking systems.

Traditionally, once the networking algorithm has been designed, the state-of-
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the-art method to analyze it is building an abstract fluid model, which focuses
on the system’s average trajectory. However, choosing which aspects of the
system can be ignored for the sake of analyzability and which ones should
instead be modeled is one of the most critical tasks in the engineering process.
The benefit of the Chemistry-inspired engineering framework is that a fluid
model of the executable system can be generated automatically in the form of
Ordinary Differential Equations (ODEs). This desirable property stems from
the direct coupling between quantity and rate, which is enforced by the reaction
law, i.e., the law of mass action.
Once we have the fluid model, we can adopt classical queueing- and control-
theory tools and/or exploit novel analytical tools borrowed from Chemistry.
Relying on the ODE-approximation, we are able to study steady and transient
states, stability, convergence, and stochasticity of systems. In this way, we
obtain a description of the system that is very close to that used in control
theory and engineering. At the same time, we gain also completely new
analytical tools such as the Deficiency Zero Theorem, which enables us to infer
the dynamical properties of the system from observations on its structure.
AC can also represent an automated procedure to implement desired require-
ments and achieve a predefined behavior at the macroscopic level. Indeed, with
this framework, we can design a macro behavior by drawing reaction networks;
we do not have to care each time about how to implement the required micro-
scopic actions but rather the implementation process is automated: Once the
reaction network that specifies the behavior of the AC (thus the behavior of the
linked communication system) is defined, it can be compiled to a program that
executes reactions (thus events in the system) online, thanks to the reaction
algorithm A. For the sake of controllability, analyzability, and implementation-
simplicity in the context of networking and communications, we propose to
deviate from reproducing faithfully what happens in real chemistry and to
stick only to the constraint of implementing a mass-action scheduler.
In this chapter, we have introduced all the tools we are going to use in the rest
of the thesis, where more complex networking and communication mechanisms
are treated. For the sake of clarity, we have frequently explained concepts
by means of a simple example – the mapping of a traditional packet queue
with a (unimolecular) chemical reaction – without taking into account more
complex/realistic scenarios. However, all introduced concepts and tools can
be generalized to analyze and control arbitrary interaction-based systems (e.g.,
complex packet-queueing systems).





Chapter 3

Artificial Chemistry to
Shape the Traffic
in Computer Networks

“Complexity must be grown from simple systems
that already work.”

Kevin Kelly

In this chapter, we show how to use artificial Physical Chemistry in design-
ing traffic shaping algorithms for computer networks, and demonstrate the

advantages of such a design approach in the context of traffic control. We
introduce simple principles and chemical motifs that help the design process
and the analysis phase of traffic controllers. By using the introduced motifs,
we construct and study distributed adaptive mechanisms. At the end of this
chapter, we will have presented a family of distributed rate controllers that can
be easily customized, and have predictable performance and dynamics.
This chapter is structured as follows: In Section 3.1, we first give an overview
about where flow-control and generic traffic-shaping processes are useful in
today’s computer networks. In Section 3.2, we discuss in detail the use of the
chemical mass-action principle in the context of packet-switched networks and
queueing systems. In Section 3.3, we introduce a commonly used mechanism,
the token-bucket, model it in AC-terms, and finally introduce an analogous
chemical motif, the Enzymatic model, with interesting properties stemming
from the underlying mass-action principle. For such an Enzymatic traffic rate
controller, we provide an in-depth analysis and present results from simulations
and real-world experiments. Starting from the Enzymatic model, in Section 3.4,
we develop a class of adaptive and distributed traffic shaping algorithms that
implement emergent-control strategies; we study their stability and sensitivity,
and present experimental results in both OMNeT-simulator and real-world
environments. Eventually in Section 3.5, we discuss the insights developed
throughout this chapter.
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3.1 Introduction

In packet-switched networks, such as the Internet, information is divided into
Packet-

switching sized packets, which are sent individually through the network and are then
reassembled in the original order at the receiver. Packet-switching enables
flow multiplexing among senders as well as flow distribution across multiple
simultaneous communication routes between each sender and receiver. In this
way, communication systems become (more) robust and guarantee an efficient
sharing of the available channel capacities. The data flows (data streams,
sequences of packets) have therefore a variable rate, delay, and throughput,
depending on the network’s capacity and the traffic load on the network. Rate,
delay, and throughput are directly affected by the experienced buffering and
queueing along the traverse router/switches (which are introduced to enable
statistical multiplexing of flows, and mitigate effects of rate burstiness).3.1

In the context of packet-switching, dynamic capacity-allocation techniques and
rate control mechanisms play a crucial role in the resource allocation and the
statistical multiplexing of flows. The related literature consists of studies, which
vary in (i) the application context they target (more or less specific), (ii) how
they are derived (empirically or formally), and (iii) the problems they try to
solve at different points of the communication stack and at different locations
in the network.

Interestingly, a few key concepts and mechanisms recur and interlace: rate
(and congestion) control, packet pacing, flow interaction and multiplexing,
rate smoothing and burst absorption. Before revisiting these aspects with
the chemical approach, we summarize the main methods and mechanisms that
have been introduced until today to enable fair and efficient access to network
resources.

3.1.1 Related works

Three network-dynamics-control paradigms (have) contribute(d) significantly
to shaping the traffic in packet-switched networks: (i) end-to-end transport
control, with transport-layer protocols such as Transmission Control Protocol
(TCP) and its many versions of congestion-control algorithms, (ii) in-network
queueing/scheduling with algorithms for Active Queue Management (AQM)
and scheduling, and (iii) local rate-control mechanisms such as packet pacing
and rate control/limiting. To narrow the focus and limit the length of this
section, we briefly review only works in the context of local traffic control.
However, as in the chapter we will refer often to versions, mechanisms, and
features of TCP and AQM, we mention in Appendix A.2 the different means

3.1This differs from what happens in the circuit-switching paradigm, the other methodol-
ogy of implementing communication networks, which sets up a finite number of dedicated
connections of constant bit rate and upper-bounded delay between nodes, exclusively for each
communication session.
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of traffic management and explain basics of TCP’s congestion control, AQM,
and scheduling algorithms.

From a microscopic perspective, control of network dynamics takes place funda-
mentally by means of three mechanisms: packet pacing, rate limiting (capping),
and rate control. These mechanisms work on a local scale and, although strictly
coupled, differ semantically on the action performed: Packet pacing is the act
of adding a certain delay between consecutive transmissions. Rate limiting is
the act of capping the rate at which transmissions of packets occur. Finally,
rate controlling is the act of continuously adapting the rate at which events
occur in order to match specific targets (e.g., the respect of a rate limit or
the avoidance of congestion). However, the difference between rate limiting
and control becomes blurred in the literature when applying control to the
collective access rate of a group to a shared resource (e.g., distributed access
from multiple entry points to a cloud). As this is our focus, in the rest of the
chapter, we also consider these two terms interchangeably.

Packet pacing has been repeatedly proposed to limit traffic burstiness and
thereby improve network utilization. The idea is to allow enough time be-

Packet pacing
tween the transmission of packets, at network edges or end-hosts, so that
high-frequency components are removed from the queue arrival process when
two or more flows merge, alleviating the need for deep buffers. Pacing in the
context of TCP was suggested in [265] for alleviating burstiness due to ACK
compression, and then proposed in [188] to avoid falling back to slow start
after a packet loss, or when resuming activity after an idle period. A major
concern has often been fairness among coexisting paced and non-paced flows [6].
However, Cai et al. demonstrated in [45] after exhaustive experimentations that
pacing (i) can significantly improve the performance of a moderately loaded
small-buffer network, (ii) brings little negative impact on short-lived flows in
a nearly drop-free environment, and (iii) is able to maintain the same fairness
as achieved on the current Internet, among paced and non-paced flows. In [47],
Cai et al. have used adaptive pacing to proactively shape the traffic based
on the level of single queues, in order to bound delay and to achieve higher
throughput than that obtained with pacing at end-systems (e.g., like in [76]
instead). A similar approach has also been presented by Alizadeh et al. in [9].

Pacing solutions have used different ways to calculate the (intentionally) added
delay: In [12, 45–48], a more or less complex non-linear function of the queue
fill-level was used. In [6], the delay was calculated according to the ratio of the
current round-trip time and the congestion window size (see Appendix A.2
for details on these quantities). And in [219], the pace was based on the
combination of the packet arrival curve and the packet deadline curve within
the same pacing interval. Pacing solutions have varied also in terms of proposed
deployment and technology – e.g., software-based [46] and hardware-based
(at the Network-Interface-Controller level) [9]. Finally, pacing solutions have
differed in the context or objective for which they have been proposed: Content
Delivery Networks (CDNs) [51], traffic control [106], queue management [262],
data centers [9], and others.
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Interestingly, packet pacing also simplifies the analysis, especially in the case
of multiplexed/interacting traffic flows. Intuitively, pacing makes packet flows
“more fluid”. Beside smoothing packet rates, this makes dynamics models
(based on fluid abstractions) more accurate.

The dual mechanism to pacing in traffic management is rate control. The
Rate control

simplest application scenario is regulating the access of a single user to a certain
resource in order to impose an upper limit on the access rate. Probably, the sim-
plest, most known way of doing this is to use a Token-Bucket policer [120,234]
in order to limit the maximum average rate together with the maxim burst size
allowed to pass through (we explain the Token-Bucket mechanism in detail in
Section 3.3.1). Alizadeh et al. have proposed in [9] a High-bandwidth Ultra-
Low Latency (HULL) architecture for Data Centers, where rate capping at less
than link capacity, based on a Token-Bucket mechanism, is used to leave “band-
width headroom” for latency sensitive traffic and gain a significant reduction
in latency. In [200], Raghavan et al. proposed a distributed rate-limiter for
regulating access to cloud resources. In their Flow Proportional Sharing (FPS)
approach, distributed collaborating instances of token-bucket rate-allocators
exchange statistics and “shift” capacity slices between congestion-aware flows.

Another way to control the traffic is to use a sliding-window-based mechanism
in order to limit the number of packets (or bytes) that can be transmitted at
a time. This is the kind of mechanism used in TCP’s congestion control (see
Appendix A.2 for a short review on TCP’s control mechanisms). Window-based
mechanisms are used in different contexts, for example to distributively limit
the access rate to data centers. Abu-Libdeh et al. proposed in [2] window-based
rate-control policies (AJIL) in order to control the sharing and virtualization of
resources within the cloud. They enabled traffic differentiation across multicast
channels by means of rate-controlling reactors that enforce slowdown policies
when aggregate traffic rates reach a predefined critical threshold.

Rate controllers are used in combination with other measures to attain more
controlled or predictable latencies between Virtual Machines (VMs) and their
resources (e.g., storage). These proposals aim at coping with the shared na-
ture of the network in today’s multi-tenant data-centers, and want to enable
current cloud providers to offer network guarantees within capacity alloca-
tions (e.g., Amazon EC2 cannot provide performance guarantees of network
resources) [16]. The proposals try to counteract the burstiness of network load
between VMs and storage in an oversubscribed data center, which can cause
VM outages, unpredictable application performance within the cloud, and
uncontrolled costs, too. Recent solutions propose programmable rate limiters
between pairs of communicating VMs to provide rate guarantees to tenant
VMs. For example, Gatekeeper [204] uses rate limiters and guarantees capacity
to VMs by implementing a weighted packet scheduler on data senders, and
according to the minimum and maximum rates on data receivers. EyeQ [123]
proposes an end-to-end rate control mechanism by implementing rate limiters
on the data sender and congestion detectors on the data receiver. Oktopus [23]
solves the distributed-rate-limiting problem at end-host hypervisors with a
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reservation-based strategy in order to allocate capacity to each VM, without
explicit bandwidth reservations at datacenter switches. Hadrian [24] uses a
weighted-sharing strategy (extended version of RCP [74]) to control intra-
tenant traffic and to improve the system efficiency by allowing tenants to occupy
unused capacity. Finally, in IOFlow [228] rate control is applied to enforce end-
to-end policies (thus dictate performance) of traffic related to an IO request
from a VM to a storage back-end.
Rate control is an important means for allocating capacities and providing
weighted (statistical) fair sharing. Rate control mechanisms are usually de-
ployed as standalone policers in combination with other measures, or they
are intrinsic parts of protocols, like TCP, that try to occupy shared resources.
They are much more popular than pacers because operating on average per-flow
behavior rather than on individual per-packet behavior. On the other hand,
pacers make flows much more “well behaving” and, as we explain further on,
in our opinion deserve more attention and deployment opportunities.

3.1.2 Space and scope of our contribution

In this chapter, we present a Chemistry-inspired framework to design and
analyze mechanisms to shape traffic in packet-switched networks, and thereby
keep their dynamics controlled and predictable. Interestingly, the chemical
framework includes by definition all key aspects we have introduced so far:
rate control, (adaptive) packet pacing, flow interaction and multiplexing, rate
smoothing and burst absorption.
We adopt Chemistry-inspired adaptive packet pacing (affected adaptively

LoMA
scheduling...

...to make
explicit and
programmable
packet-flow
interactions

through the LoMA) in order to avoid implicit and uncontrolled packet-flow
interactions. LoMA-scheduling is a non-work-conserving discipline and, unlike
traditional work-conserving scheduling, binds mathematically the queue’s fill-
level with the packet forwarding process. One one hand, this enables us to
describe complex systems without extrinsic modeling. On the other hand,
it allows us to design and describe (complex) dynamical systems by means of
explicit and predictable interactions (reactions) among packet flows and queues.
We actually employ ACs to shape the Internet traffic. We do not require

Chemical
traffic
controllers

to transform standard packets into chemical packets (Fraglets [230]), nor to
work with actual chemical networking protocols, nor to replace existing layers
or elements in today’s networking infrastructures. Rather, we advocate ACs
as modules to control packet-departure processes, enabling in this way the
controlled coexistence and the mathematically-tractable interaction of traffic
flows, as well as the cooperation/competition of Internet participants. We
propose to integrate the chemical execution engine into a traditional traffic-
control framework (e.g., Linux kernel tc module), where species concentrations
are mere counters of packets or bytes and reactions formalize how these counters
interact.
By introducing and motivating step-by-step the various design patterns (i.e.,
chemical pacing policy, chemical rate limiter) and principles (i.e., mass-action,
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mass-conservation, flow-conservation principles), we derive a class of distributed
rate controllers that can be easily parametrized, extended, and customized,
for various purposes and in different operational environments, for example
(i) at the client side to enable service differentiation among user’s flows (e.g.,

Customizable
distributed

rate controllers

management of DSL users’ traffic), (ii) among clients for a distributed coor-
dination between aggregate flows, (iii) in an intra-domain network to manage
the allocation of capacities to admitted flows (e.g., distributed rate control for
a cloud environment), and (iv) at the server end to regulate the shared access
to a resource (e.g., differentiation of user- from control- traffic in a data center).

The distributed chemical rate controller can be used to provide a similar
behavior as FPS [200]. However, it is not confined to specific settings and
applications and is agnostic to intra-protocol features. It shares also some
concepts of building blocks of AJIL [2] although it relies on a different control
mechanism: pacing instead of window-based.

In general, Chemistry-inspired controllers for packet-switched networks and,
in particular, the distributed chemical rate controller have some ingredients of
the recent HULL proposal [9]: They involve queue-length proportional pac-
ing (=LoMA-scheduling), they resort to phantom/virtual queues (=chemical
species), and they enforce a rate cap by means of a token-bucket-like scheme.
However, what we propose here is a general purpose framework that targets
a wide application- and problem-spectrum, not a customized solution for a
specific problem. This brings to three key differences: (i) Only one simple
law defines the relationship between fill-level and rate. By applying LoMA-
scheduling, we enforce a linear proportionality among queue fill-level and ser-
vice rate. We thus have a single parameter, i.e. the reaction coefficient defining
the speed of the reaction, rather than having many parameters which define the
shape of a non-linear function that relates delays and queue fill-level. (ii) We
broaden the way how (real and virtual) queues can interact. Although we
adopt a very simple law that gathers predictability and stability (LoMA), we
enable complex interactions among virtual queues (chemical species) by means
of a reaction network, while maintaining predictability and stability of the
overall emergent control system. (iii) We apply generic principles (mass-action
and mass-conservation principles) and use natural schemes (Enzymatic-based
systems) to let rate caps emerge on traffic.

Other nature-inspired approaches for flow-control have been proposed in the
literature: e.g., the Lotka-Volterra competition model has been used in [107] to
update the congestion window of TCP and in [18] as a hop-by-hop rate control
mechanism for wireless sensor networks. By contrast to them, we do not borrow
a specific model and shape the traffic flow by numerically approximating the
equations (ODEs) that describe such a model. Rather, we adopt the chemical
metaphor and the whole underlying theory (i.e., dynamics and kinetics of
reaction networks), which allow us to design, implement, analyze, and execute
computational systems.

What we achieve in the end is to combine analysis and execution model in
one single consistent framework for algorithm design. We design networking
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algorithms and analyze their dynamics at the macroscopic flow level, by using
continuous-time continuous-value signals. In some respects, our work is concep-

Analytical and
execution
model: one
and the same
thing

tually close to what proposed in [130]: we avoid to use queueing network mod-
els (cumbersome or impossible) and rely on a deterministic control-theoretic
description of the average of an algorithm’s trajectory. We use a state-space
description of the algorithm and make observations on the algorithm’s stability
against small perturbations around fixed stable points. Other recent works
have used such an approach for TCP-like flow-control schemes (e.g., [260])
and AQM controllers (e.g., [53, 110, 111, 256]). However, these works apply
control theory to algorithms that were written and executed in another de-
scription/programming language. Our approach goes a step further: there is no
need for the derivation of a fluid model that is able to approximate sufficiently
well the empirical observed dynamics. Instead, because the execution model
(state machine, automaton) is the state-space expression of the fluid model, a
designer can start with a desired dynamic behavior (fluid model) and end up
with the algorithm that computes this model.
The Chemistry-inspired design approach of traffic controllers is very close to the

“Emergent
controllers”strategy suggested by Kreyssig and Dittrich in [135] to control complex systems.

In emergent control, the behavior of the controlled system emerges at a global
scale (macro-level) from a set of (usually simple) local rules that are executed
by the different components of the whole system. The control function is not
based on global features/parameters of the system and enforced at a single
module. Rather, it emerges as asymptotically stable equilibrium state of the
whole system [135,231]. In the proposed distributed rate controller, there is no
explicit feedback at the macro level (key feature of traditional feedback control).
There are instead a micro-level feedback and micro-rules that, thanks to the
underlying mass-action kinetics, are mapped to a controlled macro-behavior of
the system.
Emergent control appears already in today’s packet-switched networks. For ex-
ample, we can see TCP’s congestion-avoidance algorithm as a manifestation of
emergent control – in a congested network where multiple packet flows coexist,
efficiency and fairness emerge at the macroscopic (flow) level as a consequence
of ACK-based decisions at the microscopic (state-machine) level. The evolution
history of TCP’s algorithms includes all approaches cited in [135] to construct a
“macro-micro feed-forward controller” to compute the microscopic parameters
from the macroscopic requirements: (i) first deducing local rules manually [85]
and then proving mathematically the macro behavior [242], (ii) first designing
the model describing the desired behavior [130] and then extrapolating micro
rules that approximate well the model [153], (iii) extrapolating the micro-
macro relationship by performing experiments [121, 125], (iv) mimicking so-
lutions in Nature [107], or (v) through evolution and optimization [246].3.2

We propose what we think is a more systematic and complete methodology
to design, execute, and analyze macro-micro feed-forward control (emergent

3.2We have cited a few works just to have examples of mentioned points.
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control) algorithms, which incorporates the aforementioned methodologies in
one single abstraction.

3.2 Flow interactions in queueing systems

The Internet is a global system of interconnected facilities, to which users
access simultaneously (“access-sharing”). Access sharing implies the statistical
multiplexing of flows. In the following, we show how the Chemistry-inspired
approach (LoMA-scheduling) can assist us in the design and study of interacting
queues and thereby, in the design of networking systems.

3.2.1 Law of Mass Action (LoMA)
and classic work-conserving packet scheduling

We have already introduced the basics of AC and explained how it can be used
in communications and computer networks. We have discussed principles, laws,
and theories by means of the unimolecular reaction and, right from the start,
we have established the connection to a traditional packet queue. We now
examine in more depth this connection and identify differences between LoMA
and traditional scheduling.
Queueing systems can be studied in more traditional terms by means of

Arrival rate,
occupancy, and

delay...

...the 3 specs
of queueing

systems

queueing theory, which gives some basic understanding of queue-interaction
phenomena. Generally, a queuing system can be defined as a network of queues
where packets arrive, wait in various queues, receive service at various time-
points, and finally exit after some time. In general, we can identify three
components for each queue: (i) the arrival rate λ, i.e., the long-term number
of arrivals per unit time, (ii) the occupancy L, i.e., the number of packets in
the system (averaged over a long time), (iii) the delay d, i.e., the time from
packet entry to exit (averaged over many packets).
In queueing theory a model is constructed so that queue lengths (occupancies)
and waiting times (delays) can be predicted. The simplest (and most tractable)
of queueing models is the M/M/1 model.3.3 According to the M/M/1 model,
the arrival process is a Poisson process with rate λ pkt/s, a reasonable assump-
tion when the accumulated traffic consists of many independent sources. With
this assumption, we can take advantage of the memoryless property of exponen-
tially distributed inter-arrival times, and ignore when the last packet arrived
and when the last packet was dequeued; we gain a very simple description of the
system state, i.e., the amount of packets awaiting in the queue. Perhaps more

3.3We use Kendall’s notation [128], which is a standard approach used to describe and
classify a queueing node. The first term indicates the time between arrivals to the queue (in
this case “M” = Markovian, i.e., Poisson arrival process or namely, exponentially distributed
inter-arrival times), the second term gives the distribution of service time (in this case “M”
= Markovian, i.e., exponentially distributed service time). The last term denotes the number
of servers at the node (in this case “1” = one single server).
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debatably, the M/M/1 model assumes also that packet transmission (service)
times are exponentially distributed with mean 1/µ, and therefore assumes their
independency. The M/M/1 model further considers a single server which serves
packets one at a time from the front of the queue, according to FIFO (First-In-
First-Out) discipline. Finally, the queue is considered to have an infinite size
such as to exclude the drop of packets.

Already this simple queueing model (one of the simplest, interesting models)
leads to a difficult expression of the time-dependent behavior of its state prob-
abilities. The model can be described as a continuous time Markov chain, and
its transient behavior can be described as a time-dependent probability mass
function, i.e., the probability that the M/M/1 queue is in a particular state at
a given time, knowing the queue being initially in a certain state. The solution
includes an infinite sum of modified Bessel functions.

Reducing further the accuracy of the model in favor of tractability, we assume
sufficiently large timescales such that we can study directly the stationary

Queueing-
theory...

...a practicable
steady-state
study of
tractable
models

(steady-state) behavior of the system (much easier to analyze than transients).
Assuming that arrivals occur slower than service completions in the queue
(λ < µ), or in other words if the utilization factor ρ = λ/µ is less than one, then
the amount of awaiting packets does not grow without limit, i.e. the system is
stable. Applying Markov analysis, in such a condition, the average number of
packets in the system turns out to be L = ρ/(1 − ρ) and the variance of the
number of customers in the system is ρ/(1− ρ)2.3.4 The average response time
(total time a customer spends in the system) does not depend on the scheduling
discipline and can be computed using Little’s law as 1/(µ − λ). The average
time spent awaiting in the queue turns out to be 1/(µ−λ)−1/µ = ρ/(µ−λ) and
the distribution of response times to be independent of scheduling discipline.

By contrast, when applying the LoMA-scheduling, we do not need to model
(make simplifying assumptions on) arrival and departure processes in order
to preserve the analyzability of the system. Indeed, the LoMA-scheduling

Exponential
reaction
times...

...a design
choice, not an
assumption to
make the
analysis
tractable!

imposes specific dynamics to the departure processes, and it makes the model-
ing and the implementation of the scheduling policy one and the same thing.
For example, to get closer to traditional M/M/1 modeling, we can choose to
use exponentially distributed inter-reaction times. This choice represents a
mere scheduling policy and not an assumption to model the departures as a
Poisson process. Furthermore, LoMA-scheduling decouples the micro-patterns
characterizing arrivals from that of departures (only the average trajectory of
the departure process is coupled with the average arrival rate).3.5 That is, the
results concerning the average departure process are valid for any distribution
of the arrival process (e.g., Poisson, Gaussian, etc.).

The direct coupling of fill-levels and rates, dictated by LoMA, leads to an

3.4This result holds for any work conserving service regime [102].

3.5As we have discussed in the previous chapter, the programmable filtering behavior of
LoMA-served queues enables controlling the level with which micro patterns in the arrival
process affect the micro-dynamics of the departure process.
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Property of Queue M/M/1 LoMA

Server action work-conserving non-work-conserving
Service rate µ (model) λ (actual)
Expected fill-level L = λ/(µ− λ) cS = λ/k
Expected waiting time d 1/(µ− λ) 1/k

Table 3.1: Comparison between M/M/1-modeled queue and LoMA-served queue.
Results are valid at steady state only and refer to mean values.

accurate mathematical representation in terms of ODEs, which enables the
study of both steady state and transient behavior in a methodical way. By

LoMA binds
analytical and

executable
models

summarizing the results of the analysis of a LoMA-served queue in Section 2.3
(see examples on unimolecular reaction system), we provide in Table 3.1 a side-
by-side list of main stationary properties of the M/M/1-queue and the LoMA-
served queue. An interesting aspect of LoMA-scheduling is that, by adding a
controlled artificial delay to each packet transmission (higher delay when the
fill-level is lower), it makes the expected waiting time constant, independently
of arrival and departure processes, and inversely proportional to the design
coefficient k. Another interesting feature is the more direct, and generally valid,
relationship among the three main components λ, d, and L, which enables an
easy dimensioning of network resources (i.e., buffers and CPU performances)
for a given target waiting time d.3.6

The LoMA-policy enhances the controllability and the predictability of inter-
acting queues. In a traditional work-conserving approach, packet interference
often leads to unpredictability of dynamics, burstiness of rates, and thus ac-
cumulation of delays, as soon as packet arrivals are not regular or sufficiently
spaced apart. To show this, we consider a system of three interacting queues
(see Figure 3.1) and evaluate, through simulations (see Figure 3.2), the emerg-
ing traffic dynamics when applying (a) work-conserving and (b) LoMA schedul-
ing policies. The Poisson-generated traffics traverse the first two queues S1

and S2 and merge at the third queue S3, where packets interact with irregular
patterns. The chemical approach enforces micro-delays for each packet (directly
related to the mass action principle), which guarantees regularly paced arrivals,
and thus enables us to attain controllability of the system and to describe its
average trajectory with ODEs.

We can easily generalize the analysis and extract main properties of more com-
plex queuing networks by studying them as chains and multiplexing systems
made of simple LoMA-served queues (refer to Figure 3.3 for schemes of these
systems). In Table 3.2, we report the stationary average features of a chain
and a multiplexing of simple LoMA-served queues (see [168] for details about
their steady state and transient analysis). For the chain of queues (the scheme

3.6We evaluate the expected waiting time d by applying Little’s law, which is valid also for
LoMA-served queues [163].



3.2 Flow interactions in queueing systems 69

λ1 k1S1

k2λ2 S2

S3

vout

(a) Chemical model

λ1

λ2

vout,1

vout,2

vout

S1

S2

S3

(b) Equivalent queuing network

Figure 3.1: Network of three interconnecting queues. Traffics through the first two
queues S1 and S2 merge, in this way letting packets interact at the third queue S3.
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(a) Work-conserving scheduling
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(b) LoMA-scheduling

Figure 3.2: Simulation results when the Poisson-generated traffics enqueued at
queues S1 and S2 had average rate λ1 = 3770 Bps and λ2 = 4200 Bps (refer to
network in Figure 3.1(b)).
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Figure 3.3: Generalized interacting LoMA-served queues. (a) Queues on the same
path. (b) Load balancing traffic flows over many different links.

Property of Interacting Queues Chain Multiplexing
Service rate λ

∑
i λi

Expected fill-level
∑
i λ/ki λ/ki + λ/kM ∀ bi

Expected waiting time
∑
i di di = 1/ki + 1/kM ∀ bi

Table 3.2: Stationary average features of interacting LoMA-served queues, chain
and multiplexing. Refer to Figure 3.3(a) and Figure 3.3(b). (bi stems for branch i.)
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Figure 3.4: A bimolecular reaction extracts an instance (=packet) from two chemical
species (=packet queues), X and Y. At the same time, queue Y is drained by a second
server (=reaction). The forwarding rate vout,1 is controlled by the abundance cY of
available forwarding tokens Y. Pictures taken from the original figure in [165].

in Figure 3.3(a)), we report fill-level and delay for the whole system, made of
all queues, where the contribution of each queue Si is identifiable by the term
with subscript i. For the merging of many flows λi into a single queue SM (the
“multiplexing” system in Figure 3.3(b)), we report fill-level and delay related
to a specific branch bi, where again contributions of the “branch-queue” Si and
“multiplexing-queue” SM are identifiable.

From the design point of view, the Chemistry-inspired approach gives the
possibility to design by queues’ interactions. To illustrate this, take the ex-
ample presented in [165] and shown here in Figure 3.4 (closely related to what
already introduced in Section 2.2.2). The related chemical model, shown in
Figure 3.4(a), consists of two chemical reactions r1 and r2 having two reac-
tants X and Y and two products Z and W. Reaction r1 is a bimolecular

reaction X + Y
k1−→ Z that needs a molecule X and a molecule Y to occur. The

competing reaction r2 simply turns a Y-molecule into a W-molecule, based on
the amount of molecules Y only. Again, by analogy between Chemistry and

Design by
queues’

interactions

networking, we have two packet queues X and Y served by two servers, see
Figure 3.4(b). The upper server is special in that it extracts a packet from two
queues at the same time. We can further refer to queue X as the place where
actual data-packets with payload are stored, whereas to queue Y as a virtual
(“phantom”) queue that contains mere control-tokens. This concept, and the
related mechanism, are extensively studied in the next sections to design traffic
shaping algorithms. Here, we limit to remark that the service process of both
queues is non-work-conserving (application of the mass action principle); the
service of queue X is further delayed as soon as Y-tokens vanish. Namely,
we can control the forwarding rate vout,1 with the abundance cY of available
forwarding tokens Y.
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3.3 Traffic rate control

To setup and maintain a shared access facility, such as the Internet, one needs
to put in place functions for regulating the relative resource utilization by the
admitted flows and for guaranteeing admissibility of all flows that demand ac-
cess. Rate-control is a prominent mechanism for regulating capacity allocations
and resource reservation as well as for congestion control and avoidance, DoS
mitigation, service differentiation, and traffic shaping. Thus, embedded rate
control functions serve as a common means to different ends.
In the following sections, we show how to develop a simple Chemistry-inspired
rate controller. We start in Section 3.3.1 by first constructing the well-known
token-bucket mechanism with AC-tools. Then in Section 3.3.2, we discuss a
Chemistry-inspired scheme to rate control, which exhibits enhanced features.
We provide a complete analysis of both steady state and transient behaviors of
the enhanced chemical controller in Section 3.3.3. Finally in Section 3.3.4, we
report on experiment results on shaping Internet traffic via this chemical rate
controller.

3.3.1 Token-Bucket

A Token Bucket (TB) or leaky bucket scheme (Figure 3.5(a)) has been one of
the most common building blocks in the design of more or less sophisticated
(and protocol-independent) rate policers and controllers for various purposes,
both in reservation-based and reservation-less networks.3.7

In the simplest case (rate limiter), a TB scheme is used to regulate the departure
process of packets from a queue; tokens essentially authorize the consumption
of a respective number of packets or bytes. The bucket is filled with tokens at a
constant rate, up to a maximum limit (bucket size) above which excess tokens
are tail-dropped. In this arrangement, at any moment in time, the output
of packets from the queue cannot exceed a burst size equal to the size of the
bucket, and cannot sustain a constant rate higher than the refill rate of tokens.
In a more dynamic arrangement (rate controller), the rate limit imposed by
the TB scheme may vary in time. This can be achieved by adapting the bucket
size and the refill rate of tokens in response to feedback from the network,
or in response to the differentiation between departure processes of two or
more regulated queues. To analyze the behavior of such a system, without
loss of generality one may regard the token bucket as an additional virtual
(phantom) queue. The most interesting aspect of such an arrangement is that
the departure process depends on the state of both queues: The process blocks
if either the packet queue or the token queue is empty.3.8

3.7The leaky bucket scheme we refer to is the one proposed in [234], or similarly the generic
cell rate algorithm in [120], which are both directly comparable to the TB scheme and differ
from it in mere implementation details.

3.8One can regard the token bucket as yet another queue whose departure process is on
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Figure 3.5: Token-Bucket scheme and simple equivalent chemical reaction network.

The TB-scheme is very simple, at least from a functional perspective. On
the other hand, the introduction of control loops and automations (e.g., non-
linearities) complicates substantially the analyzability of the system when as-
sessing its (in-)stability conditions.

An intuitive chemical pattern that captures exactly the typical transient be-
havior of the classic TB scheme is shown in Figure 3.5(b). This chemical
scheme comprises two species S and E, which represent respectively packets

with data and tokens, and the bimolecular reaction S + E
k1−→ ES. An S-

molecule reacts with an E-molecule to produce an ES-molecule. If one of the
two reactant species is depleted, the reaction becomes inert. This condition
essentially captures the dependency between token and packet availability for
scheduling transmissions out of a token-bucket regulated queue.

The reaction between the reactant species takes place at an average rate v. If we
choose the inter-reaction times to be drawn from an exponential distribution,
then this representation models the interaction of a ·/M/1 queue with the
token bucket (subject to token availability). Practically in this model, the
reaction merely defines a rule (dependency) that relates the departure process
of two (or more) queues. Also, the rate of the reaction describes the probability
distribution of this rule being successfully applied.

The intuitive chemical pattern captures exactly the typical transient behavior
of the classic TB scheme. Both mechanisms suffer from overshooting-problems

Traffic bursts
with Token

Bucket (TB)...

in the transient phase. After a low-load period, in which tokens accumulate
in the phantom queue, bursts can pass through unaltered, temporarily vio-
lating the predefined cap on the output rate vout.

3.9 Frequent bursts imply

average dictated by the departure process of one or more other queues. The special difference
of the token bucket from a “normal” queue is that its blocking condition is met when it is
empty and not when it is full. This is because (unlike a “typical” queue) its instantaneous
behavior is dominated by its departure process and not by its arrival process, which has much
slower dynamic variations.

3.9There exists a variant of the leaky bucket scheme (refer to [225]) that enforces a fixed
value on output rate (as soon the bucket is guaranteed to be not completely empty), guar-
anteeing in this way steady output rates. It consists in simply queueing packets for enough
queue space, and sending head packets at a constant predefined rate, independently of the
inflow pattern. Due to the latter aspect however, this scheme has efficiency problems and
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unpredictable traffic, and thus difficulties in engineering and provisioning the
network capacity [6, 9, 77]. Bursts may imply also a temporary congestion of
the link, and at the same time the need for large buffers in the network. Indeed,

...harmful for
network
performance

without sufficiently large buffers, some of the packets that arrive in bursts are
dropped, leading in this way to a poor efficiency (i.e., the utilization of the link
is lower than the predefined limit), poor flow mixing, and often flow lockout.
At the same time, large buffers potentially lead to higher latency and jitter,
and bufferbloat [173,178].

3.3.2 Enzymatic reaction model: an elegant alternative

We can take advantage of an elegant motif imported from Chemistry to limit
(adaptively control) the traffic rate without encountering burstiness and at-
taining smooth traffic dynamics. The derived limiting mechanism is thus
more suitable to operate in non-steady traffic conditions, such as the common
Internet traffic’s conditions. The mechanism has also the benefit of being easily
analyzable, tunable, and parameterizable.

We can start to design such a mechanism by considering the chemical equiva-
lence of the TB-mechanism, previously shown Figure 3.5(b). As a first step, we
have to determine the rate at which the token bucket is filled in the chemical
model. If we assume that the concentration of E-molecules is the one that
represents the number of tokens in the bucket, we care that this concentration
is refreshed at a fixed rate until a maximum size. A simple possibility is to
externally inject new E-molecules at a certain rate, and constantly monitor
the concentration size such that it does not exceed the set limit (which equals
the bucket length). An alternative, elegant design pattern comes directly from
Chemistry to capture this situation with a “control loop” instead.3.10 It is the
Enzymatic reaction network.

The kinetics of the Enzymatic reaction model exhibits a maximum reaction
rate, i.e. a rate cap.3.11 This cap emerges progressively and is the result
of applying the LoMA-scheduling in a system where the sum of available
and used resources remains constant, as free-form enzymes (E) and enzyme-
substrate complexes (ES). In the following, E-molecules represent available
tokens and ES-molecules used tokens. The simplified Van Slyke-Cullen model
of the Enzymatic reaction network, proposed in [238], is shown in Figure 3.6(a)

leads to the full resource utilization also for low-load periods. In the next section, it will be
clear why such a simple scheme cannot be utilized for designing an adaptive rate controller.

3.10This pattern has also appeared in [163] as “rate limitation motif” for CNPs.

3.11Kinetics of Enzymatic reaction model was discovered by Michaelis and Menten in 1913
and published in [167] (see the English translation [226]) and formalized by Briggs and
Haldane in [39], 1925.
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Figure 3.6: The Enzymatic reaction model can be seen as a token bucket scheme
with ”feedback-control”; the maximum dequeueing rate vmax is defined by the number
of enzymes e0 = cE + cES, the aggressiveness by the ratio k2/k1.

and consists of the following set of two reactions:3.12

r1 : S + E
k1−→ ES (3.1a)

r2 : ES
k2−→ E + P. (3.1b)

Emergent rate
control from...

...mass-action

...mass-
conservation

The limiting mechanism is based upon the simple mass-conservation principle:
“The total sum of molecule concentrations along a loop remains constant, if
(i) the total number of molecules consumed by reactions along the loop is equal
to the total number of molecules produced, and if (ii) all concentrations along
the loop are altered only by reactions involved in this or another loop”.
We can describe the Enzymatic system directly by considering, in combination,
(i) the mass action principle (LoMA), (ii) the mass-conservation principle and
(iii) the fact that, at equilibrium, the total production rate equals the total

...flow-
conservation consumption rate, for each molecular concentration (flow conservation princi-

ple). Indeed, based on these principles, we can derive the equation that relates
the output rate to the control parameters (k coefficients and total number of
enzymes/tokens) and to the fill-level of the input queue (cS concentration):

vout = k2e0
cS

cS + k2/k1
. (3.2)

According to the mass-conservation law, the total number of enzymes e0 re-
k2e0 to set the

rate cap

k2/k1 to define
the

aggressiveness

mains constant over time i.e., enzymes are present in either free form or in sub-
strate complex but never consumed or produced: cE + cES = const. = e0. The
product k2e0 defines the upper rate limit vmax that can be achieved, whereas
the ratio of coefficients k2/k1 specifies how aggressive the rate regulation is.
Figure 3.6(b) outlines what formally expressed in (3.2), namely it shows the
hyperbolic saturation curve of the output rate over the quantity of S molecules.
We observe two limit behaviors: for a low number of packets (cS → 0), the

3.12The Van Slyke-Cullen model differs from the Michaelis-Menten one in the fact that it is
a non-reversible mechanism (the substrate-binding reaction is non-reversible).
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Enzymatic reaction behaves like the unimolecular reaction; for a high number
of enqueued packets (cS →∞), the transmission rate asymptotically converges
to the maximum rate vmax.
Note that the simple Enzymatic motif in Figure 3.6(a) limits the transmission
rate based on the fact that the number of tokens in the loop are limited and
that each reaction ri imposes to each packet a small delay di = 1/ki, which
is inversely proportional to its coefficient ki. This motif is similar to a token
bucket algorithm, but differs in the fact that the tokens are re-used and rotate
in a loop. Such a token loop is only feasible thanks to the LoMA-scheduling
algorithm that we use to drive the virtual queues. A work-conserving discipline
would cause the tokens to loop infinitely fast, and the reaction network would
not limit the traffic.
The Enzymatic model can be used as a traffic controller that, in addition to
guarantee that the sending rate always respects a certain predefined thresh-
old, decouples the generation (or arrival) rate of packets from their departure
(dequeueing/sending) rate, while preserving the efficiency of the system. That
is, it filters out fast variations and oscillations that characterize the arrival
process and maintains the average arrival-to-departure-rate correspondence,
for low-load scenarios.

3.3.3 Analysis of an Enzymatic traffic controller

By applying step by step the analysis methodology we introduced in Section 2.3,
we formalize the discussed features of the Enzymatic traffic controller. We
report in this section the final description of its steady and transient behavior;
for details on analytical steps, refer to Appendix A.3.

3.3.3.1 Enzymatic traffic controller: Fluid model

We can describe the dynamics of the Enzymatic model in Figure 3.6(a) (de-
scribed by reactions (3.1a) and (3.1b)) by the following set of coupled ODEs:3.13

Enzymatic
controller:
fluid model

ċS = λ− k1cScE (3.3a)

˙cE = k2cES − k1cScE (3.3b)

˙cES = k1cScE − k2cES. (3.3c)

As we know, this ODE set directly stems from the mass-action principle.
From (3.3), we observe that tokens (enzymes in free form E) are consumed
with a rate that is proportional to the amount of data packets (cS) times the
amount of available tokens (cE) (k1 as a proportionality coefficient). However,
data packets are not sent at this rate as the sending process is not related to
substrate-binding reaction r1 in (3.1a). Rather, the actual dequeueing/sending

3.13ODEs are coupled because they describe a non-linear system made of non-unimolecular
reactions.



76 AC to shape the traffic in computer networks

process has a rate that is proportional to the amount of ES-molecules (k2

as a proportionality coefficient) as this process is bound to the execution of
the catalytic reaction r2 in (3.1b), which controls the dequeueing from the
additional phantom queue ES and the regeneration of available tokens (free-
form enzymes E). As we prove in the following, this is the essential process
whereby the Enzymatic traffic controller is able to decouple the arrival rate of
packets from their dequeueing/sending rate.

3.3.3.2 Enzymatic traffic controller: Steady state

To study the system at steady-state, we solve (3.3) with respect to species
concentrations, when the left-hand side is equal to 0:

cS
∗ =

λ

k2e0 − λ
k2

k1
(3.4a)

cE
∗ =

k2e0 − λ
k2

(3.4b)

cES
∗ =

λ

k2
(3.4c)

where λ is the average steady-state arrival rate. However, we have to consider

Enzymatic
controller:

steady state

the mass-conservation principle in the moiety E-ES, i.e. a closed loop where
the sum of the concentrations of involved species is constant over time. By

Rate-limiting
for λ > k2e0

considering the equality cES + cE = const. = e0 and further realizing that
molecular concentrations (amount of either packets or tokens) can only be
positive quantities, we observe that the validity of (3.4) is limited to the
following region:

λ < k2e0. (3.5)

The obtained result suggests that, if the generation rate at the data source is
sufficiently low, i.e., in an unsaturated regime according to (3.5), the source
does not experience any rate-limitation and can transmit with an average rate
that equals the average arrival rate: vout = k2cES

∗ = λ. On the contrary, when
the substrate-binding reaction r1 in (3.1a) does not drain S-species at a high-
enough rate, i.e. (3.5) is not respected (saturated regime), the amount of S
molecules increases without limit and the mass of enzymes (tokens) conserved
in the moiety lies mainly in ES-species, i.e. cES = e0, cE = 0. The absence
of molecules (tokens) E and its automated refill process (parametrized by k2)
control the transmission rate in the saturated regime.
Table 3.3 summarizes the characteristic stationary quantities of the Enzymatic
traffic controller. We calculate the expected delay for low-load periods by
applying Little’s law to the two phantom queues S and ES that packets virtually
have to pass through, namely as the sum cS

∗/λ + cES
∗/λ.3.14 We can further

characterize interacting flows out of Enzymatic traffic controllers. Specifically

3.14At steady state, for λ < k2e0, inflow and outflow rates must be equal, according to the
flow balance principle. Thus, inflow and outflow of both species are equal to λ on average.
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Property Low Load High Load
λ < vmax λ > vmax

Arrival rate, λ λ λ

Expected # packets, c∗S
k2
k1

λ
vmax−λ max. q. size (theory ∞)

Constant # tokens, e0 c∗E + c∗ES = const. c∗E + c∗ES = const.

Expected # free tokens, c∗E
vmax−λ
k2

0

Expected # busy tokens, c∗ES
λ
k2

e0

Expected sending rate, vout λ vmax = k2e0

Expected waiting time, d k2
k1

1
vmax−λ + 1

k2
–

Table 3.3: Stationary average features of the Enzymatic traffic controller. Refer to
Figure 3.6(a) for the respective scheme.

in Table 3.4, we give results for a chain of Enzymatic controllers, i.e., the
original flow of packets characterized by average arrival rate λ pass through
a cascade of Enzymatic traffic controllers (see Figure 3.7), each defined by
parameters k1,i, k2,i, e0,i. Finally, in Table 3.5, we show how these characteristic
quantities would vary when Enzymatic controlled flows (each originated from
an arrival process with average rate λi and regulated according to parame-
ters k1,i, k2,i, e0,i) merge at a downstream Enzymatic-controlled queue. For
example, we could refer to such a scenario (illustrated in Figure 3.8) when
trying to load balance traffic flows over many different links.

3.3.3.3 Enzymatic traffic controller: Sensitivity and stability

We have already established that, as soon as the average arrival rate exceeds
the predefined limit e0k2, the dequeueing/sending rate becomes insensitive to
variation of the arrival rate, i.e. capped at e0k2 value. But how are arrival and
sending processes related in “low-load” periods (i.e., before saturation)? By
carrying out the sensitivity analysis, we can characterize the effect of variations
of arrival rate around its average value λ on the dequeueing/sending rate vout,
when condition (3.5) is respected. We achieve the formal description of the
system response around its steady state (3.4) in the Laplace domain, in terms
of the following transfer function H(s):

H(s)|(λ<k2e0) =
vout(s)

λ(s)
=

k1k2cE
∗

s2 + s (k2 + k1(cS∗ + cE∗)) + k1k2cE∗
=

=
k1(k2e0 − λ)

s2 + s
(
k2 + k1

(
k2e0−λ
k2

+ k2λ
k1(k2e0−λ)

))
+ k1(k2e0 − λ)

.

(3.6)
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Figure 3.7: Chain of many Enzymatic-controlled flows.

Property Low Load High Load
λ < mini(vmax,i) λ > mini(vmax,i)

Arrival rate, λ λ λ

Local arrival rate, λi λ α = min(λ, vmax,0, .., vmax,i−1)

Expected #
k2,i
k1,i

λ
vmax,i−λ max.q.size (theory ∞)(note1)

packets, c∗S,i
k2,i
k1,i

α
vmax,i−α

(note2)

Expected # free
vmax,i−λ
k2,i

0(note1)

tokens, c∗E,i
vmax,i−α
k2,i

(note2)

Expected # busy λ
k2,i

e0,i
(note1)

tokens, c∗ES,i
α
k2,i

(note2)

Expected sending λ mini(vmax,i)
rate, vout

Expected local λ min(λi, vmax,i)
sending rate, vout,i

Expected waiting
k2,i
k1,i

1
vmax,i−λ + 1

k2,i
– (note1)

time, di
k2,i
k1,i

1
vmax,i−λ + 1

k2,i
(note2)

Expected delay, d
∑
i di –

Table 3.4: Stationary average features for a chain of Enzymatic traffic controllers
(Figure 3.7). Values marked with (note1) refer to the congested module j, i.e.
where λj > vmax,j. Values marked with (note2) refer to the non-congested module j,
i.e. where λj < vmax,j.
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Figure 3.8: Load balance of many Enzymatic-controlled flows.

Property Low Load High Load
λi =< min(vmax,i, vmax,M ) λi > min(vmax,i, vmax,M )

Arrival rate λi λi
per branch, λi

Expected #
k2,j
k1,j

λ
vmax,j−λ max.q.size (theory ∞)(note1)

packets, c∗S,j
k2,j
k1,j

λj
vmax,j−λj

(note2)

Expected # free
vmax,j−λ
k2,j

0(note1)

tokens, c∗E,j
vmax,j−λj

k2,j
(note2)

Expected # busy λ
k2,j

e0,j
(note1)

tokens, c∗ES,j
λj
k2,j

(note2)

Expected sending rate λi min(λi, vmax,i, vmax,M )
per branch, vout,i−M

Expected sending
∑
i λi min(

∑
i vout,i−M , vmax,M )

rate, vout

Expected waiting
k2,j
k1,j

1
vmax,j−λ + 1

k2,j
– (note1)

time, dj
k2,j
k1,j

1
vmax,j−λ + 1

k2,j
(note2)

Exp. delay per di + dM –
branch, di−M

Table 3.5: Stationary average features when merging Enzymatic-controlled flows
(Figure 3.8). Values with subscript j refer to a generic module j in the system;
values with subscript i refer to the module i at the beginning of a branch (path).
Values marked with (note1) refer to the congested module j, i.e. where λj > vmax,j.
Values marked with (note2) refer to the non-congested module j, i.e. where λj < vmax,j.
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In this seemingly complex result, we can observe several interesting components
(valid when the generation rate respects the predefined threshold e0k2): (i) The
rate-controller dampens all sharp variations on the arrival rate in a way that
reduces their effect on the sending rate. This is represented by the second-
order low-pass filtering-behavior expressed in (3.6). (ii) The cut-off frequency
of the low pass filter is adjustable through e0, k1, and k2 parameters. (iii) The
module lets the sending rate match the average arrival rate. This is represented
by the fact that the low-pass filter has a unity Continuous Wave (CW) gain.
(iv) The exact shape of the TF depends on the arrival rate itself, as we observe
by the λ-dependency in (3.6). This is due to the non-linearity of the reaction
network. (v) The adaptation of the system to bounded variations of the arrival
rate always produces a limited variation on the transmission rate. Namely, the
system can be defined Bounded-Input Bounded-Output (BIBO) stable as the
TF always exhibits negative real-part poles.3.15

Having the TF, we can characterize the system’s behavior in the time domain
and study (i) how closely the sending rate follows a sudden increase of the
arrival rate and (ii) the effect of an enqueued packet on the dequeueing/sending
rate. In other words, we can quantify the stability (convergence) and sensitivity
of the system by means of step and impulse responses, respectively. Through
this process, we can reliably select sets of configuration parameters that match
our needs.

To validate the presented analytical results, we compare the analytically pre-
dicted response of the Enzymatic rate controller and the measurements ob-
tained in simulations (we have implemented an Enzymatic controlled queue,
refer to Figure 3.9(a), in OMNeT++ [240] and generated input packets ac-
cording to a Poisson process in order to reproduce the randomness that a
real queue/server system possibly experiences in its input.) In Figure 3.9(b),
we plot the rate measurements obtained from two tests and the analytically
predicted step responses, for two different parameter pairs (e0, k2). We focus on
the low-pass filtering effect of the Enzymatic controller when (3.5) is respected.
Specifically, the graph illustrates the normalized average over 0.5s-period of the
arrival rate (λN ), the normalized instantaneous sending rate (viout,N ), and the

theoretical predicted sending rate (viout,I) calculated as a step response to the

TF in (3.6), for two configurations; v1
out,I : k1 = 1 (mol·s)−1

, k2 = 0.5 s−1, e0 =

2000 mol and v2
out,I : k1 = 1 (mol·s)−1

, k2 = 1 s−1, e0 = 1000 mol. As the
λ-curve in the graph shows, the step-perturbation on λ was a sudden increase
at time t = 10 s of the average arrival rate from 250 pkt/s to 500 pkt/s. From
this comparison we can observe that the transient analysis predicts the actual
behavior of the queue/server system. Figure 3.9(b) attests the decoupling of
the arrival process from the sending process. The deviations between measured
and theoretical sending rate (vout,N and vout,I curves) are the effect of the
stochasticity of the arrival process. The oscillations in the transmission rate

3.15Refer to Appendix A.3 for further details.
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Figure 3.9: Low-pass filtering effect of the Enzymatic traffic controller and compar-
ison between the transient analysis results and the normalized transmission rate mea-
sured in a simulation run: The initial average arrival rate (Poisson process) was λ =
250pkt/s and the applied perturbations brought it to 500 pkt/s at time t = 10s. λN -
curve is the normalized 0.5s-averaged arrival rate, v1out,N -curve is the normalized

instantaneous sending rate for k1 = 1 (mol·s)−1, k2 = 0.5 s−1, e0 = 2000 mol, v1out,I-
curve is the corresponding theoretically predicted sending rate, v2out,N -curve is the nor-

malized instantaneous sending rate for k1 = 1 (mol·s)−1, k2 = 1 s−1, e0 = 1000 mol,
and v2out,I-curve is the corresponding theoretically predicted sending rate.

(and thus also the deviations between real behavior and predicted one) can be
smoothed by reducing the cutoff frequency of the implemented low pass filter.

3.3.4 Enzymatic control of traffic in real-world systems

We additionally evaluated the Enzymatic rate controller through real-world ex-
periments by employing the controller directly in the Linux kernel and carrying
out tests with TCP and UDP traffic. The objective was to test that (i) the
Enzymatic controller effectively shapes transport-protocol traffic adhering to
the requested dynamics, (ii) the calibration of the Enzymatic controller is suf-
ficiently simple, and (iii) the Enzymatic controller adheres to the theoretically
derived design rules, such that the calibration process can be automated.

We implemented a custom queueing discipline for the Linux kernel (tc-framework).3.16

The chemical reaction network acted as an external manager module that
controlled the service process of the egress queue for a certain class of traffic. In
order to deal with variable-sized packets, the system worked on byte-basis, i.e.,

3.16We explicitly thank T. Meyer for providing us his original source code, which has
represented the backbone of our kernel implementation.
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(integer) concentrations were mere byte counters. By means of the Enzymatic
controller, we shaped iperf-generated UDP and TCP traffic. The experiment
involved two computers – one computer generated and sent the packets to the
recipient one, which acknowledged the correct reception of a packet in case of
TCP-protocol. We used default TCP-configuration as provided by iperf-tool in
the (sender) Linux machine (TCP Cubic with window size 22.9 KB), and sent
the traffic to a (recipient) Mac OS X 10.6.8 (TCP New Reno with window size
of 256 KB). Both computers were connected via wire (Ethernet 1000baseT) to
the university network as depicted in Figure 3.10. The Enzymatic controller
was deployed at the egress device queue at the (sender) Linux machine.
In the first experiment (see results in Figure 3.11) we controlled UDP steady

traffic. We used the configuration set k1 = 1 (mol·s)−1
, k2 = 5 s−1, e0 =

500 mol and set the bytes-per-molecule ratio to 1000 BpMol,3.17 in order to
have a predefined rate limit of vmax = 1 MBps. We differentiated the traffic
features: In a first phase (t < 15 s), the rate of the traffic (λ = 2 MBps)
exceeded the predefined value (vmax = 1 MBps). In a second phase (t > 15 s),
the rate of generated traffic was sufficiently low (λ = 0.5 MBps) to avoid
the limiting mechanism. The figure validates empirically (i) the burst-free,
limiting effect of the Enzymatic controller in a saturated regime, when the
load exceeds the predefined rate limit (similar behavior as the leaky bucket
scheme introduced in [225]), and (ii) the responsiveness of the controller in non-
saturated regimes (for sufficiently low loads), where the dequeueing/sending
rate follows the arrival process, more or less strictly, depending on the filtering
level (similar behavior as the traditional TB scheme).
In a second set of experiments (see results in Figure 3.12) we controlled bursty
UDP traffic. We generated the bursty traffic by alternating 1.5 s of traffic
followed by 0.5 s of silence. Again, first (t < 15 s), the rate of this traffic (λ =
2 MBps) exceeded the predefined value (vmax = 1 MBps) and consequently, in
this period the Enzymatic controller served to cap the rate. Then (t > 15 s), the
rate of generated traffic was sufficiently low (λ < 1 MBps) and consequently,
in this period the Enzymatic controller served to decouple patterns of arrival
and departure processes. We did two tests for two different settings of the
Enzymatic controller, both to cap the rate to the value vmax = 1 MBps by
using a byte-per-molecule ratio of 1000 BpMol. For the first test reported in
Figure 3.12(a), we kept fixed k1 and set first k2 = 1 s−1 and e0 = 1000 mol
in order to obtain again vmax = 1 MBps. Such a setting was sufficient to
smooth the 1.5s-on/0.5s-off traffic – the sending rate did not attain the same
level of burstiness that the arrival rate had. For the second test reported in
Figure 3.12(b), we enforced a lower filtering effect by increasing coefficient k2

to 5. To have again 1 MBps rate limit, we thus adjusted e0 to 200. This

3.17The byte-per-molecule [BpMol] ratio specifies the mapping between communication and
chemical systems. 1000 BpMol means creating a molecule S each time 1000 bytes arrive,
and allowing the dequeueing of 1000 bytes each time reaction r2 in (3.1b) fires. Note that in
order to dequeue, for example, a 2500-byte packet and then a 1500-byte packet, reaction r2
must occur three times, and then one time only.
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Figure 3.10: The setup of the real-world experiment included two computers –
one computer sent through the university network (attached via Ethernet 1000baseT)
iperf-generated UDP or TCP traffic to the recipient one, which, in the case of TCP,
acknowledged the correctly received packets. The service of the sender’s egress queue
(iperf-traffic only) was controlled by the Enzymatic-tc kernel module. We used
default TCP-configuration as provided by iperf-tool in the (sender) Linux machine
(TCP Cubic with window size 22.9 KB), and sent the traffic to a (recipient) Mac OS
X 10.6.8 (TCP New Reno with window size of 256 KB). The Enzymatic controller
was deployed at the egress device queue at the (sender) Linux machine.
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Figure 3.11: Real-world experiments: Controlling UDP traffic by means of the
Enzymatic controller. The iperf-generated UDP traffic had average rate λ so that,
in the first phase (t < 15 s), λ > vmax, where vmax is the predefined rate cap, and
in the second phase (t > 15 s), λ < vmax. The parametrization of the Enzymatic
controller was k1 = 1 (mol·s)−1, k2 = 5 s−1, e0 = 500 mol, and the byte-per-molecule
ratio was 1000 bytes/mol.



84 AC to shape the traffic in computer networks

0 5 10 15 20 25 30
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0
R

at
e

[M
B

ps
]

λ
vout
vmax

(a) Higher Filtering

0 5 10 15 20 25 30
Time [s]

0.0

0.5

1.0

1.5

2.0

2.5

3.0

3.5

4.0

R
at

e
[M

B
ps

]

λ
vout
vmax

(b) Lower Filtering

Figure 3.12: Real-world experiments: Controlling UDP traffic by means of the
Enzymatic controller. The iperf-generated traffic was bursty and had average rate λ
so that, in the first phase (t < 15 s), λ > vmax, where vmax is the predefined rate
cap (1 MBps), and in the second phase (t > 15 s), λ < vmax. The parametrization
of the Enzymatic controller related to Figure 3.12(a) was k1 = 1 (mol·s)−1, k2 =
1 s−1, e0 = 1000 mol to impose a higher low-pass filtering effect, and that related to
Figure 3.12(b) was k1 = 1 (mol·s)−1, k2 = 5 s−1, e0 = 200 mol to impose a lower
low-pass filtering effect. In both cases, we set 1000 byte ≡ 1 molecule.
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Figure 3.13: Real-world experiments: Controlling TCP traffic by means of the
Enzymatic controller. We had initially (t < 24 s) one TCP flow only, and later
(at times t = 24 s and t = 36 s) two additional TCP flows, competing in the
controlled environment (iperf-generated traffic). The black curve represents the rate
at the output of the chemical system vchemout = 10vr2 . The parametrization of the
Enzymatic controller was k1 = 1 (mol·s)−1, k2 = 5 s−1, e0 = 500 mol, and the byte-
per-molecule ratio was 1000 bytes/mol.

setting sped up the controller response so as to allow tracking almost exactly
the arrival rate and to let the input bursty pattern pass through.3.18

In the last test (see results in Figure 3.13), we controlled TCP traffic. Initially
(t < 24 s), one TCP flow only was admitted. Afterwards (at times t = 24 s
and t = 36 s), two additional TCP connections followed, competing in the
controlled environment. Each time a new TCP connection was admitted, the
system needed some time to stabilize to the predefined rate limit. After a few
seconds, the flows reached the optimum rate value, efficiently occupying the
available resource, no matter how many they were (one, two, three connections).
Furthermore, we observed a good mixing of the three flows and a fair sharing
of the available resource.3.19

In these results, especially those on TCP traffic, we can observe a jitter affecting
the instantaneous rates, including the controlled output rate vout. This is
a consequence of mapping a molecule to a certain amount of bytes – each
time reaction r2 fires, a certain (fixed) amount of bytes is authorized to be
dequeued and sent. For example, by using 1000 BpMol, each time reaction r2

occurs, 1000-bytes are “authorized” to be dispatched altogether. However, if
the amount of authorized bytes is not sufficient to cover the size of the next
packet, the transmission of the packet is further postponed until enough bytes
will be authorized by subsequent r2-reaction executions. The effect of dealing

3.18Refer to Appendix A.3 for an exact and formal quantification of effects of k-coefficients.

3.19When all three flows competed, we observed that, at any moment in time, the instan-
taneous throughput of each flow was approximatively the same.
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with packets (chunks of byte) rather than continuous quantities (or at least,
small-sized packets) is appreciable by comparing the rate at the output of the
chemical rate (r2-reaction rate) with the dequeueing rate (the actual rate vout

at which packets are sent). In Figure 3.13, we plot the magnified (×1000)
output rate vchem

out of the chemical system. Differently from the actual de-
queueing rate vout, the “authorized-byte rate” vchem

out turns out to be (i) steady,
(ii) burst-free, and (iii) exactly equal to the predefined limit value – i.e., free
from the discussed phenomenon. We can dampen such an effect by choosing a
smaller bytes-per-molecules ratio. The cost is working with a higher number
of molecules, and thus a higher computational effort required to implement the
AC constituting the controller. (This aspect will be revisited in Chapter 5.)
Unlike traditional token-bucket mechanisms, the Enzymatic controller does not
have a critical configuration such as the bucket size. The bucket size represents
an important parameter to choose when controlling TCP flows with traditional
token bucket schemes. This has effect on the performance of TB-controlled flow:
generally, bigger bucket sizes lead to better TCP performance, in terms of how
close the actual TCP-controlled flow matches the predefined rate value (refer
to [236] and references therein for experiments on the impact of TB-schemes
on TCP flows). However, large buckets means large data bursts into the
network and thus difficulties in provisioning the network capacity, temporary
congestion or increased drops/latency. In other words, the bucket size is a
trade-off between goodput (i.e., a percentage of the predefined value vmax) and
accepted burstiness and latency.

3.4 Distributed Traffic Rate Controller
(DTRC)

Until now, we have designed and analyzed a chemical rate controller that
can enforce its policy independently at each network location. However, we
typically have to cope with the far more difficult problem of controlling the
aggregate network utilization and guaranteeing admissibility to all flows that
demand access to the shared facility from multiple network locations.
We aim at designing and analyzing a class of Distributed Traffic Rate Con-
trollers (DTRCs) that collaborate to enforce a single, aggregate global limit
to the network traffic they collectively police. Specifically, the goal of DTRCs
is to dynamically and distributively throttle the transmission rate in order to
limit the cumulative load on a shared resource, as schematically represented
in Figure 3.14. Typical use cases where such a solution is necessary in today’s
Internet include the traffic of a particular cloud-based service, specific DSL
users’ traffic, user- and control-traffic in data center management. The key
difficulty in distributed rate controlling is to allow individual flows to compete
dynamically for capacity, not only with flows traversing the same controller,
but with flows traversing other controllers as well.
We opt for a fully distributed solution, where the aggregate rate cap emerges as

Fully
distributed
solution...

...emerging
from LoMA
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Figure 3.14: We aim at dynamically and distributively throttling the transmission
rate vout,i of each participating host i in order to limit the cumulative load vout,tot on
a shared resource, in a fair and efficient manner.

a result of the collaboration among AC-controllers. Every controller estimates
the instantaneous aggregate load by exploiting the direct mapping of packet
quantity to rate, derived from the LoMA-scheduling environment. At the same
time, every controller allocates capacity in proportion to the local load and the
measured available capacity. The result is a system that

• guarantees flow admissibility per flow or controlled class of traffic: each
host is guaranteed to access the shared resource,

• is efficient (in capacity): if the virtual cumulative load (sum of local
load, λtot =

∑
i λi) is less than the aggregate rate cap (low-traffic: λtot <

vmax) then, at each host i, the local rate must be equal to the local
load (vout,i = λi); if the cumulative load is equal to or higher than the
aggregate rate cap (overload: λtot ≥ vmax), then the actual aggregate rate
must be equal to the aggregate rate cap (vout,tot = vmax),

• is fair (in throughput): in case of overload (λtot ≥ vmax), each host’s rate
converges to a share vmax,i in response to its local load; the host i that
does not overload the network (λi < vmax,i) is not limited (vout,i = λi);
the host j that overloads the network (λj > vmax,j) is limited (vout,j =
vmax,j).

In Section 3.4.1, we introduce and explain the design of a chemical reaction
network that implements the desired macro-behavior of the DTRC. In Sec-
tion 3.4.2, we provide an in-depth analysis of the DTRC, concerning both
steady-state and transient behavior, prove its stability, and give guidelines for
its calibration. We validate our proposal in Section 3.4.3 and Section 3.4.4,
by means of simulations and real world experiments. Finally, we discuss the
derived insights in Section 3.4.5.
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3.4.1 Design of DTRCs

The complete structure of the DTRC (in Figure 3.15) is an extension of the En-
zymatic model we have discussed in the previous sections (refer to Figure 3.6(a)
for the exact reaction model), with a series of simple chemical design motifs.
In such a control scheme, S-molecules are generated at the rate λ at which
packets are enqueued at the controlled queue. The dequeueing and consequent
transmission of packets is instead authorized at rate vout, which is controlled
by the rest of the reaction network.

In the reaction network, we identify two inter-weaved reaction loops, one of
which is encapsulated in (part of) the other. This pattern is highlighted in
Figure 3.16(a). We denote the sum of concentrations along the smaller loop
as e0 = cE + cET, and the sum of concentrations along the larger loop

E0 = cES + cE + cET = const. . (3.7)

The sum of concentrations along the larger loop (E0) remains constant because
of the mass-conservation principle. On the contrary, the sum of concentrations

Reaction loop
ES-ET-E...

...an
Enzymatic-like

process

along the smaller loop (e0) changes over time because molecules E are consumed
by the two reactions r1 and r3 (r1 is not part of that loop) and produced only
by one (r4). Similarly, molecules ET are consumed by only one reaction (r4)
but produced by two (r2 and r3, where again r2 is not part of that loop).
The difference of the two concentrations can be expressed as a function of the
ratio v′3/v

′
1 of the reaction rates consuming E-molecules, where v′3 = k3cE

and v′1 = k1cE . The difference of quantities along the two loops E0 − e0 =
cES, eventually transformed in F-molecules, determines the number of tokens
available for dispatching packets from the input queue S. Thus, by replacing

Adaptive-rate-
control

motif

the single conservation loop of Figure 3.6(a) with the extended two-loop pattern
of Figure 3.16(a) (and replacing e0 with E0 − e0 in (3.2)), the output rate vout

becomes dependent on the ratio of outflow rates from E-species. By adjusting
this ratio we can adapt the maximum rate limit vmax,i ≤ vmax, where vmax ∝ E0

and vmax,i ∝ (E0 − e0).

What is left to be designed is an extension that takes into account the trans-
mission rates of the other hosts and throttles the own rate accordingly, such
that vout,tot =

∑N
i=1 vout,i ≤ vmax. To achieve this, we condition reaction r3

(which regulates the mass e0 in the small loop) by the species S (which repre-
sents the fill-level of the controlled queue) and the species T which represents
the “sensed” transmissions (output process) from other controllers. The rela-
tive contributions of S and T species to the r3-reaction dynamically adjust the
local cap for each controller according to the total aggregate cap all controllers
are expected to respect. That is, the S-dependency of reaction r3 enables
achieving fairness among flows – i.e., the throttling of the local transmission
rate is proportional to the related enqueueing rate. The T-dependency of
reaction r3 enables respecting the total rate cap – i.e., until the estimated
aggregate rate is higher than the predefined limit, the local rate is further
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Figure 3.15: An adaptive Distributed Traffic Rate Controller (DTRC). Complete
AC = {{S,E,ES,ET,T,F}, {rint, rext, r1, r2, r3, r4, r5, rout}, A} implementing the
DTRC functionality. The symbolism ∅ v−→ X signifies the generation of X-molecules

at rate v, whereas X
k−→ ∅ signifies the depletion of X-molecules with rate coefficient k.
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Figure 3.16: Chemical motifs that compose the reaction network implementing the
adaptive DTRC.

throttled.3.20 More in detail, concentration cS participates in reaction r3 as
described by the pattern shown in Figure 3.16(b), the so-called quantity-to-rate
pattern [163]. The looping arrow implies that for every molecule consumed from

Quantity-to-
rate
motif

species S, a new S-molecule is produced. Thus reaction r3 does not affect S-
species concentration cS but, at the same time, because of LoMA, its reaction
rate is directly proportional to cS. The effect of this pattern is that when the
arrival rate λ at S is in flow-balance with rate v1 of reaction r1, the input
queue is drained fast enough and there is no increasing backlog of S-molecules
to “fuel” reaction r3. The small loop is blocked and the system behaves like a
fixed-rate token-bucket. As soon as the enqueuing rate λ increases too much
and there are other flows claiming part of the network capacity, there will be an
increasing backlog of S-molecules created, which activate reaction r3 with a rate
proportional to the backlog. As there are contributor species to reaction r3,
the rate increase will be further regulated according to the utilization of the

3.20How the sensing function is implemented is beyond the scope of this design. Depending
on the application environment different solutions may be used – e.g., carrier sensing, multi-
cast, gossip, explicit out-of-band signaling, and others. For example, we used an out-of-band
UDP channel in the experimented later discussed in Section 3.4.4.



90 AC to shape the traffic in computer networks

network by other users through the concentration cT. The result will be an
adaptive drop in the maximum allowed rate vmax,i.

The last component of the design is the F-species (Figure 3.16(c)), whichFiltering motif
(1st-order
LP-filter)

implements a linear low-pass output filter. When the system is in equilibrium,
the instantaneous variation of cF will follow the variations of the influx rate v2,
and because of the LoMA, the average transmission rate will be: vout = kF cF.
This means that kF determines the cut-off frequency for smoothing (dampen-
ing) the oscillations of the transmission rate acceleration. This is important
because (i) it reduces the burstiness of transmissions and their effects on the
sensing function of other rate controllers, (ii) in case of long delay networks,
it “smoothens” the traffic variations over time so as to prevent fast oscillating
responses.

3.4.2 Analysis of DTRCs

Having logically designed the behavior of this chemical flow controller, we
have to assert its dynamics mathematically and find out how the reaction
coefficients have to be tuned. In the following, we thus apply step by step
the analysis methodology introduced in Section 2.3, and formally study the
sensitivity/stability and calculate the calibrating parameters. For a detailed
progression of analytical steps, refer to Appendix A.4.

3.4.2.1 DTRC: Fluid model

The following set of ODEs (directly extracted from the reaction set in Fig-
ure 3.15) connect the reaction rates with the changes of molecular concentra-
tions (virtual queues’ fill-levels) over time:

DTRC:
fluid model

ċF = k2cES −
vout︷ ︸︸ ︷
kF cF ˙cES = k1cScE − k2cES (3.8)

˙cT = vsen − k3cScEcT ˙cET = k3cScEcT + k2cES − k4cET

ċS = λ− k1cScE ˙cE = k4cET − k3cScEcT − k1cScE

where the concentrations (queue fill-levels) cET, cES, and cE are subject to the
mass (token) -conservation constraint (3.7).

Reaction r5 does not play a role in the principal operation of the rate controller.
Rather, its role is to ensure that the system does not end up with stale state
(more details at the end of Section 3.4.2.5).3.21 For this reason and in order to
keep the analysis uncluttered, we ignore it for now.

3.21It is important that r5 is calibrated in the same way at each hosts i, i.e. k5,i = k5.
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3.4.2.2 DTRC: Steady state

At steady state, the fill-levels of all virtual queues (concentrations) in the
network do not change anymore. As usual, we set the derivatives of (3.8)
to zero and solve the equations with respect to the fill-level variables ci to
obtain the following steady state:

DTRC:
steady state
(unsaturated
regime only)

cF
∗ =

λ

kF
cET
∗ =

vsen + λ

k4
(3.9)

cES
∗ =

λ

k2
cS
∗ =

λk2k4

(E0k2k4 − λ(k2 + k4)− vsenk2) k1

cT
∗ =

vsen

λ

k1

k3
cE
∗ =

E0k2k4 − (vsen + λ)k2 − λk4

k2k4
.

We intuitively expect a change in the behavior of each local controller when
the aggregate transmission rate reaches the predefined rate limit. That is, we
expect two regimes: unsaturated and saturated regime.

Unsaturated Regime When the aggregate transmission rate vout,tot is less
than the predefined rate limit vout,max (in the unsaturated regime), we ob-
serve a stable fixed point for all species (virtual queues). Above vout,tot (in
the saturated regime), the concentration of species (fill-level of queue) S is
likely to grow unbounded. This formally corresponds to a bifurcation point
in the system trajectory. Such a bifurcation point can be extracted from our
equations in (3.9) by enforcing (i) the mass-conservation expressed in (3.7), and
(ii) concentrations (fill-levels) ci to be positive values only. These constraints
require the cumulative (offered) load to be below a certain value. Only in this
case, the reaction network exhibits a steady state that is valid for all queues:

λ <
E0k2k4 − vsenk2

k2 + k4
. (3.10)

We simplify (3.10) by assuming that k2 � k4 and by setting k4E0 = vmax.
Thus, in the region

Unsaturated
regime...

...(average)
load and
transmission
rate match

λ < vmax − vsen, (3.11)

the transmission rate is not throttled and, at steady state, equals the cumulative
(offered) load: vout = kF cF

∗ = λ. This equality of offered and sent rate is only
valid at steady state. The transient analysis will later reveal that in this region,
the reaction network acts as a low-pass filter, which means that the transmission
rate lags behind the cumulative load.

At the boundary condition where the input rate is λ = 0, there is no backlog
(cS = 0) and consequently the output rate is vout = kFcF

∗ = 0, too. In this
case the host will not occupy any capacity, and the other participating hosts
can benefit from its unused share too.
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Saturated Regime As soon as the condition (3.11) is not respected (i.e. the
local load becomes higher than the admissible share), the backlog of S-molecules
increases, in this way speeding up reaction r3. The concentration of available
E-molecules drops, forcing reaction r1 to slow down. Unless the sender backs-
off, the increasing reaction speed of r3 will absorb more molecules in e0 and
tend to blocking transmissions.

However, a complete block is unlikely (subject to suitable selection of ki param-
eters) because, as the reaction speed of r3 accelerates, the concentration of T-

Saturated
regime...

...fill-levels
steady at a
finite value

molecules starts reducing faster, counter-balancing in this way the acceleration
rate of r3.

This gradual reduction of the acceleration will continue as the number of
molecules T approaches the limit value

cT
l =

k1(k2 + k4)

k3k2(k4E0/vsen − 1)
. (3.12)

Thereafter, reaction r3 will start decelerating and, as long as the system remains
under “pressure” (condition (3.11) not respected), the transmission rate will
be limited and will never exceed the maximum rate reinforced by the E0 loop.

Furthermore, we can express the steady-state concentrations of all other molecule

...stationary
transmission

rate as kF cF
l

species in terms of input concentrations cS and cT. Of particular interest is the
limit concentration cF

l, which is directly proportional to the controlled output
rate:

cF
l =

k1k2k4E0cS
(k2k4 + cS(k1(k2 + k4) + cTlk2k3))kF

. (3.13)

We can observe that, if the local data generation rate λ is extremely high and cS
theoretically increases without bounds, the rate capping takes place. Indeed,
in this limit case the output rate cannot exceed an asymptotic upper bound,
which depends on the current average utilization of the resource by all other
transmitters:

vlout = kFcF
l (3.13), (3.12)

=
k4E0 − vsen

1 + k4/k2
. (3.14)

If we further assume that the local controller is sending alone, i.e., vsen = 0,
k4E0 = vmax

+
k2 � k4...

...efficiency
guarantee

then from (3.14) we can infer a set of parameters that allow exploiting the
(asymptotic) maximum available capacity of the resource: k2 � k4 and k4E0 =
vmax. This setting guarantees the efficiency of the system (and complies with
our previous assumption to get the simplified condition (3.11)).

The blocking case of k4E0 = vsen is theoretically possible only if there are
non-cooperative controllers, or if there is an infinite number of cooperative
controllers. That is, admissibility of all flows is guaranteed.

In Table 3.6, we summarize the average stationary features of the DTRC. For
the amount of queued packets (concentration cS

∗) and the expected waiting
time, we have considered the setting k2 � k4 and k4E0 = vmax.
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Property Low Load High Load
vout = λ+ vsen < vmax vout = λ+ vsen > vmax

Arrival rate, λ λ λ

Expected # ∼ λk4/k1
vmax−λ−vsen max.q.size (th. ∞)

packets, c∗S
Constant # c∗E + c∗ES + c∗ET = const. c∗E + c∗ES + c∗ET = c.
tokens, E0

Exp. # E0k2k4−(vsen+λ)k2−λk4
k2k4

0
free tokens, c∗E

Exp. # busy (vsen+λ)k2+λk4
k2k4

E0

token, c∗ES + c∗ET

Exp. sending λ k4E0−vsen
1+k4/k2

rate, vout

Exp. waiting ∼ k4/k1
vmax−λ−vsen + 1

k2
+ 1

kF
–

time, d

Table 3.6: Stationary average features of the DTRC. Refer to Figure 3.15 for the
respective scheme.

3.4.2.3 DTRC: Sensitivity

Through sensitivity analysis, we characterize how the transmission rate vout

adapts to changes of the local cumulative (offered) load λ and the sensed
traffic vsen. As we know, the derived results are valid for small perturbations
that do not let the system cross the aforementioned bifurcation point. In the
following analysis, we assume that the capacity vmax and all reaction coefficients
remain constant.

Unsaturated Regime If the link capacity is not fully exploited, i.e. for a small
rate λ, the TF is (refer to Appendix A.4 for details on how to derive the TF)

DTRC:
transient
behavior
(unsaturated
regime)

Ho-i(s)|(3.11) =
λ

cS∗
·
k2kF(s+ k3

k1
λ)(s+ k4)

(s+ kF) · σ(s)
(3.15a)

Ho-e(s)|(3.11) =
vsenλ

cE∗cT∗
· k2kF s

(s+ kF) · σ(s)
(3.15b)

where

σ(s) = s4 +
(
k2 + k4 + β + k3(λ+ cT

∗)
)
s3+

+
(
β(k4 + k2 + k3λ) + k2k3(λ/k1 + cT

∗)
)
s2+



94 AC to shape the traffic in computer networks

+
(k2k4

k1
(cE
∗ + k3λ) + βk2λ(k3 + k4)

)
s+

+ k2k3k4λcE
∗

β =
(k2 + k4)2k1c

∗
S

k2k4
+
k2k4

c∗S
.

We derive the following interesting facts from this TF: First, it exhibits low-pass
characteristics for perturbations of the cumulative (offered) load. With a unity
gain for low frequencies, the transmission rate will adapt to the cumulative
load on the long run. On the other hand, the algorithm behaves as a band-
pass filter for changes of the sensed competing traffic. However, the band-pass
filter has a very high attenuation, which means that the controller does not
respond significantly to changes of the other hosts’ transmission rates in the
unsaturated regime.

Second, although the TF shows a dependency on the steady-state values of
the inputs, the sensitivity of the algorithm does not change significantly for
different inflow rates (as the TF’s shape variation is only significant for very
low magnitudes of the TF; low TF magnitudes announce an insensitivity to
input perturbations anyway).

Third, the effect of the queue F is easy to isolate in the TF: This “LoMA-
scheduled virtual queue” simply increases the order of the low-pass filter.
Figure 3.17(a) depicts the magnitude and phase of the two TFs for an ag-
gregate rate below the predefined rate limit; the contribution of kF = 1 s−1

is clearly visible as a pole at 1 rad/s. The other poles are defined by the
coefficients (k2, k4) and (k1, k3), respectively. Thus, as we could expect, the
reaction coefficients not only place the attractor of our algorithm in state space
(i.e., define regions of the state-space, which “attract” the trajectories that the
system takes through its state-space), but also define the algorithm’s transient
behavior.

Saturated Regime Beyond the bifurcation point, i.e., if the cumulative load
is too large, the rate-limiting mechanism starts to work. For the limit cS →∞
we obtain a simple TF:

Ho-i(s)|λ+vsen>vmax

∼= 0 (3.16a)

Ho-e(s)|λ+vsen>vmax

∼= −k2kF
(kF + s)(k2 + k4 + s)

. (3.16b)

In this regime, a node’s transmission rate is insensitive to variations of the

DTRC:
transient
behavior

(saturated
regime)

local offered load and responds only to changes of sensed traffic vsen; the local
controller adapts its state according to changes of the global state of the entire
system. In this regime, the algorithm behaves as a second-order low-pass filter
with poles at −kf and −(k2 + k4) and negative unity gain at low frequencies
(attenuation).
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(b) Saturated Regime

Figure 3.17: Transfer Function (TF) of the controller in Figure 3.15, parameterized
according to Table 3.7.
(a) vsen +λ < vmax: Practically, only perturbations on λ cause the DTRC’s response.
(b) vsen + λ > vmax: Only perturbations on vsen cause the DTRC’s response.

Figure 3.17(b) shows the magnitude and phase plots of the TF in the saturated
regime. The desired effect of the low-pass filter is that sudden variations of the
input rate do not pass through to the transmission rate such that the algorithm
reacts smoothly to new load distributions.

3.4.2.4 DTRC: Stability

From the structure of the reaction network and its sensitivity we can prove
that the DTRC exhibits a single stable attractor.
There is only one basin of attraction,3.22 because the initial conditions (i.e.,

One basin of
attractionthe queue fill-levels at time t = 0 s) have no influence on the long-term state

of the system. Formally, we can explore the attractors of a chemical reaction
network through two theorems: the Deficiency Zero Theorem [79,115] and the
Chemical Organization Theory [70]. Intuitively, we can observe that after a
period of inactivity, when removing the external stimuli λ and vsen, the reaction
network always resets itself to cS = cF = cT = cES = cET = 0 and cE = E0.
The remaining molecules in species S (=remaining packets or bytes in queue
S) are drained by reactions r1 and r3. The produced molecules in species ES
are moved to species F, from where they are then sent away. All molecules
(tokens) in ET sooner or later move to E.
From the TF, we are able to derive a simple proof that the algorithm’s attractor
is stable. On either side of the bifurcation point, the TF exhibits negative
real-part poles, which signifies BIBO stability of the linearized model. That

3.22A basin of attraction is the set of all states whose trajectories lead to the same attractor.
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is, the adaptation of our algorithm to bounded variations of the offered local
load and/or the sensed rate will always produce a limited variation of the
output rate vout. The fact that input variations must be bounded is not a
problem, because (i) if all participating controllers implement the presented
reaction network (DTRC-scheme in Figure 3.15), the sensed rate respects the
predefined rate limit vmax, and (ii) even if the offered load increases without
bounds, variations of the transmission rate remain bounded. Even though
the actual reaction network is non-linear, this stability proof is sufficient and
prevents us from needing more complex analytical tools.

3.4.2.5 DTRC: Derived guidelines for the calibration

From the analytical findings we have so far, we are able to identify the key
parameters of the DTRC and derive some guidelines on how to chose the
reaction coefficients. The coefficients k2, k4, and the total number of molecules
(tokens) in the Enzymatic loop, E0, together define the upper rate limit vmax.
We previously restricted k2 � k4, such that vmax ' k4E0. The freedom in
distributing the target rate to k4 and E0 and in choosing k2 is limited by
the fact that coefficients k2 and k4 also define one of the low-pass poles and
therefore influence the stability and reactiveness of the DTRC, as we discussed
before.

The coefficients k1 and k3 have no evident effects on the location of the system’s
attractor, but they affect its transient behavior when the DTRC operates in the
unsaturated regime, where λ+ vsen < vmax. By increasing either k1 or k3 with
respect to the other coefficient, the response time of the algorithm becomes
shorter.

The coefficient kF defines the cutoff frequency of the output-stage low-pass
filter of queue F, which smoothes out bursty load changes and reduces fast
oscillations of the transmission rate and of the overall emergent behavior. This
is the most direct and effective tuning tool from a stability/reactiveness per-
spective, since kF is independent of all other coefficients. However, choosing kF

is not so simple, because we have to find a tradeoff between reaction speed and
stability. In general, its reciprocal 1/kF should be higher than the maximum
expected path delay of the feedback channel.

As we argued in Section 3.4.2.4, initial conditions (i.e., species concentrations
at time t = 0 s) do not influence the behavior of the system, except of course
for the total number of molecules (tokens) we decide to put in the Enzymatic
loop, E0. To guarantee that the system does not remember and respond to
stale state after a period of inactivity, we want to avoid infinitely accumulating
molecules in cT in a non-active host, which still senses active transmissions in
the network. This is done by the draining reaction r5. Coefficient k5 defines how
fast this process occurs; its calibration does not have to follow any particular
rule (apart from the local policy, see Section 3.4.5).
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Figure 3.18: We dynamically and distributively throttled the transmission rate vout,i
of each participating host i in order to limit the aggregate load vout,tot on a shared
resource with limited capacity vmax. This was done by controlling locally the de-
queueing/transmission rate vout,i of each host i. The control mechanism worked by
regulating the service process of the host’s egress queue based on dynamics of the
embedded (virtual) chemical system. The chemical system was configured according
to the DTRC reaction model (Figure 3.15). Each host i generated and enqueued traffic
at average rate λi pkt/s, and sensed the load (vsen,i) of the shared resource.

cS(0) = 0 mol cE(0) = E0 mol k1 = 1 (mol·s)−1 k4 = 1 s−1 E0 = 103 mol
cT(0) = 0 mol cET(0) = 0 mol k2 = 100 s−1 k5 = 1 s−1

cES(0) = 0 mol cF(0) = 0 mol k3 = 1 (mol2·s)−1
kF = 1 s−1

Table 3.7: Theoretically-derived parametrization of the DTRC for experiments.

3.4.3 DTRC: Simulations in OMNeT++

We evaluated the chemical rate controller in the OMNeT++ simulation en-
vironment. We have deployed a chemical controller at each node’s output
queue, where operations were on packet-basis (i.e., molecule concentrations
were packet counters), refer to Figure 3.18. We have used the system settings
shown in Table 3.7 (chosen according to findings of the previous section). The
total aggregate rate limit vout was set through the E0 mass at 1000 pkt/s.

In the first set of experiments, we aimed at demonstrating that the theoretical
predictions are in line with measurements during simulations, in ideal and non-
ideal conditions. In the second set of experiments, we tested efficiency, fairness,
and flow-admissibility-guarantees in a network of eleven hosts. We tested the
performance with continuous traffic as well as in more critical conditions when
connections were in fits and starts, creating severe burstiness of the traffic.

3.4.3.1 DTRC: Analytical prediction vs. simulation measurements

We claimed in the introduction that our chemical approach helps to bridge the
gap between microscopic packet interaction during execution on one hand, and
macroscopic design and analysis of traffic-shaping algorithms on the other hand.



98 AC to shape the traffic in computer networks

10 15
Time [s]

500

525

550
Tr

an
sm

is
si

on
ra

te
v o

ut
[p

kt
/s

]

simulation
analysis

(a) Unsaturated regime

10 15 20
Time [s]

350

375

400

Tr
an

sm
is

si
on

ra
te

v o
ut

[p
kt

/s
]

(b) Saturated regime

Figure 3.19: Empirical validation of the step response of a single DTRC for a
predefined capacity limit of vmax =1000 pkt/s.
(a) In λ + vsen < vmax region: t = 0 s: λ = 500 pkt/s, vsen = 300 pkt/s; t = 10 s:
λ→550 pkt/s; t=15 s: vsen→350 pkt/s.
(b) In λ + vsen > vmax region: t = 0 s: λ = 1400 pkt/s, vsen = 600 pkt/s; t = 15 s:
vsen→650 pkt/s.

To demonstrate this, we compare the analytically-predicted time response of
the DTRC to its empirical behavior in the OMNeT++ simulator. Specifically,
we configured a single DTRC-controlled host with the setting in Table 3.7,
stimulated its inputs (λ, vsen), and observed the effects at its output vout in
two separate tests. We plotted these results against those obtained analytically.

Figure 3.19(a) shows the step response of the DTRC when operating in the
unsaturated regime: Starting from steady state in the unsaturated regime, we
suddenly increased the local load at time t=10 s. As a consequence, the output
rate smoothly increased to the new attractor in conformance to our analytical
prediction. We then let the sensed rate vsen decrease at time t= 15 s, which
showed no visible effect on the output rate, since the total rate of all nodes
was still below the total limit. In Figure 3.19(b), we plot the step response
when the system operated in the saturated regime, i.e., the generated load was
higher than the predefined cap. As predicted, an increase of the sensed total
rate vsen at time t= 15 s let the reaction network adjust its transmission rate
in order to respect the predefined rate limit again.

To validate the usefulness of the analysis and the derived guidelines also for
more realistic scenarios, we tested several network topologies and with variable
feedback delays. Here we report on a scenario where eleven hosts generated
Poisson-generated traffic at different continuous rates. All virtual hosts had to
share a maximum link capacity of vmax = 1000 pkt/s, and each host i sensed
the utilization of the shared link vsen,i with a variable feedback delay. The out-
of-band feedback was implemented by notifying hosts of packet transmissions.
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We performed trials for feedback delays ranging from no delay to uniform delay
distributions up to U(0, 1000) ms.

We verified our capability of configuring the total transmission rate by setting
the number of tokens E0 and the reaction coefficient k4 accordingly (E0k4 =
vmax). Additionally, we verified that higher values of k4 reduced the settling
time. However for high feedback delays, this caused dampened oscillations in
the cumulative load. As expected, we were able to mitigate these fluctuations
by reducing kF at the cost of a slower adaptation speed.

Figure 3.20 shows that the analysis guided us correctly in tuning the algorithm.
It plots the emergent aggregate rate vout measured in a scenario with a high
feedback delay for three different values of kF : Reducing kF to a value lower
than the reciprocal feedback delay made oscillations no longer significant.

3.4.3.2 DTRC: fairness, efficiency, and flow-admissibility

Having validated the theory-based calibration of the DTRC, we investigated
fairness, efficiency, and flow-admissibility. Here, we report on results obtained
in an eleven-host network, affected by variable sensing delays in the range
U(0, 1000) ms, where DTRCs were calibrated according to Table 3.7.

Figure 3.21 shows that the capacity allocation is efficient : It depicts the cu-
mulative input and resulting output of the system, i.e., the cumulative of-
fered load λtot =

∑
i λi and the total utilization of the capacity vout,tot =∑

i vout,i. We observe that on average the total utilization respected the set
limit: vout,tot ≤ vmax (although instantaneous rates may assume any value).
In an unsaturated regime, i.e., λtot < vmax, the aggregate transmission rate
matched the cumulative load, i.e., vout,tot = λtot. This was true with continuous
traffic (Figure 3.21(a)) as well as with bursty traffic (Figure 3.21(b)).

Figure 3.22 shows that the capacity allocation is fair : The transmission rate
of each node vout,i converged to a fair share over the cumulative offered load.
For a certain condition, which was defined by the number N of participating
hosts, their average local load λi, and the predefined rate limit vmax, all hosts
converged to the same fair share value vS , unless their average local load value
was lower than the share value (λi < vS). Namely, vmax,j = vS ∀λj ≥
vS . For the sake of clarity in Figure 3.22(b), we show in more detail the
relations between transmission rate and system load for a few individual nodes
in the continuous-traffic tests: Host 3, who was not overloaded (as it generated
packets at a very low rate), did not experience rate limitation. Host 4, who
generated data slightly above its permissible transmission rate, experienced a
slight rate regulation. Host 10, who was significantly overloaded, experienced
major rate regulation (its transmission rate was significantly lower than its
packet generation rate on admission to the network, vout,10 < 0.2λ10). Those
hosts that experienced rate regulation (hosts 4 and 10) converged to the same
rate share value vS ∼ 110 pkt/s. Based on these results, we can claim that,
in a scenario where the transmission rates of competing hosts are regulated by
DTRCs, each host is guaranteed to have access to the shared resource.
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Figure 3.20: OMNeT++ simulation of 11 DTRC-controlled hosts, parameterized
according to Table 3.7. The rate limit was configured at vmax =1000 pkt/s, the feedback
delay was taken from a uniform distribution U(0, 1000) ms.
A blue line: Aggregate transmission rate (vout,tot) for kF = 2 s−1

B red line: vout,tot for kF = 1 s−1

C black line: vout,tot for kF = 0.5 s−1

D green line: Cumulative offered load λtot =
∑
i λi (only in chart (a)).
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Figure 3.21: Cumulative offered load λtot of 11 nodes and total network utilization
vout,tot. The predefined rate limit was set to vmax =1000 pkt/s.
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Figure 3.22: Individual transmission rates vout,i of the 11 nodes responding to each
other’s transmission rates. (a) Steady/continuous traffic. (b) Offered load per node λi
(in pale colors) and effective transmission rate vout,i (in solid colors) for continuous-
traffic tests: Node n3 starts at t=60 s, n4 at t=80 s, and n10 at t=200 s. (c) Bursty
traffic (in fits and starts – 5s-on/10s-off traffic).
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Figure 3.23: The setup of the real-world experiment included four hosts, one
attached to an Ethernet segment (1000baseT) and the other three on the same
WLAN (802.11 n). The feedback was provided via out-of-band UDP channel. Each
of the four machines generated traffic of the tc-controlled class by copying a large file
to an Internet server via secure copy (scp over TCP/IP).

3.4.4 DTRC: Experiments in a real environment

We moved our experiments from simulation to real/native deployment, and
integrated the chemical control network in the traffic-control framework of
Linux and controlled with it a queue that isolates a certain class of traffic (Fig-
ure 3.14). As in the experiments with the Enzymatic controller (Section 3.3.4),
we worked with the existing queues in the Linux kernel. Our implementation
operated on byte rates to account for packets of different lengths, by mapping
each molecule to each kbyte: A packet entering the egress queue of the network
device triggered the generation of an S-molecule in the chemical control plane
for each kbyte. Similarly, each output molecule authorized the dequeueing of
1 kbyte from the queue.

Our network setup (see Figure 3.23) consisted of four hosts, one attached to
an Ethernet segment (1000baseT) and the other three on a Wireless LAN
(WLAN 802.11 n). The feedback channel between the hosts was provided by
an out-of-band UDP channel. Each of the four nodes generated traffic of the
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Figure 3.24: Transmission rates vout,i of four nodes in a real deployment. The chem-
ical rate controller triggered the egress device queue in the Linux traffic control system
of the corresponding nodes. Traffic was generated by TCP ssh/scp sessions. The
aggregate rate limit for all rate-controlled traffic was set to vmax = 2 MBps (via E0),
the filter coefficient to kF = 100 s−1, and the feedback channel delay was ∼ 10 ms.

tc-controlled class by copying a large file to an Internet server via secure copy
(scp over TCP/IP), starting at different times and for various time durations.
We calibrated the DTRC reaction network according to the guidelines of the
previous section, summarized in Table 3.7, with two exceptions: (i) We set the
aggregate rate limit to vmax = 2 MBps (via E0) and (ii) we set the low-pass-
filter coefficient to kF = 100 s−1, because the feedback delay was shorter in this
scenario (in the order of ms).

Figure 3.24 illustrates the results that confirm the predicted behavior of the
system. Every time a new flow accessed the service, the total capacity was
divided equally among the nodes under a rate-fairness regime: 1 flow at 2 MBps,
2 flows at 1 MBps each, 3 flows at 0.65 MBps each, and 4 flows at 0.5 MBps
each. This was also validated by transfer rates reported at the end of each scp

session.

One observation is that as the number of nodes accessing the service increased,
the stochasticity did so too (although on average it converged to the per-node
share). This came from how the TCP exited from the fast-recovery phase
when the rate limit was lowered (i.e., whether it succeeded to stay in conges-
tion avoidance or if it dropped to slow start and then re-entered congestion
avoidance).

A second observation is that the allocated aggregate capacity was asymptot-
ically matched but never 100 % utilized, even when there was only one flow
admitted (single node). This was related to small variances of the feedback
signals (expressed through cT) and of concentration cS, which kept reaction r3

always active even at a very low speed.
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3.4.5 Insights on Distributed Traffic Rate Control

DTRCs collaborate to regulate in a distributed setting a predefined, global rate
Soft limit on
the aggregate
access rate

limit. The reinforcement of this limit is soft : the controllers do not synchronize
the transmissions (i.e., the instantaneous aggregate rate can assume any value).
Instead, they cooperate to converge to an average aggregate rate that respects
the limit. This is much more suitable for the admissibility of flows like TCP-
flows, than a hard reinforced cap.
Each controller actively monitors and infers its fair share from the current

Implicit load
estimation
(LoMA-based)

network load (the aggregate transmission rate), without requiring knowledge
of the number (or identity) of other transmitters. Moreover, the inference is
a continuous process that does not need any explicit or sophisticated discrete
calculation: LoMA-scheduling effectively bridges workloads and rates through a
simple predictable relationship that underpins the reaction network’s operation.
The node’s instantaneous transmission rate never exceeds the predefined thresh-

Hard limit on
the local access
rate

old. This capability stems from the properties of the Enzymatic pattern. Note
that, in contrast to the traditional token-bucket with feedback-control, the basic
scheme we used (Enzymatic pattern) has smoother transient characteristics and
is free from overshooting-problems. As a result, it is suitable to operate also in
bursty-traffic conditions, more common in Internet traffic.
The core design we have presented is modular and extendable with chemical

Modular and
extendable
core design...

reaction components, e.g., for refining the sensing inputs (total utilization,
partial utilization), for alternative allocation of rates (equally, proportionally to
traffic class, etc.), or for utilizing different feedback channel (the concentration
cT can be associated to ECN marks, out of band signals as in the studied case,
or mere carrier sensing in a CSMA medium). This extensibility alongside the
parameterizability of the core design can lead to a family of rate controllers
suitable for different applications and environments. For example, the DTRC-

...MAC
mechanismmechanism can be used directly as a random Media Access Control (MAC)

algorithm that guarantees the same maximum throughput of the traditional
Pure ALOHA protocol but exhibits better performances in terms of stability.
Appendix A.5 treats in detail such an enzymatic MAC protocol and gives an
analytical comparison with the ALOHA protocol. As another example of new
facilities via core-design parameterization, we can use DTRCs as a DiffServ-

...service-class
differentiationlike mechanism [223]. By simply regulating a single reaction coefficient (k5),

we can enforce different forwarding regimes for the different traffic classes,
while still satisfying the aggregate rate limit, and guaranteeing the efficiency
of the system. Indeed, besides avoiding system stale states, the k5-coefficient
controls the speed of the linear reaction draining T-species and thus affects the
accounting of others’ transmissions. Thus, by differentiating k5-values among
the different DTRCs, we can enable service class weighting.3.23 We performed
further experiments on service-class differentiation, whose results are reported
in Appendix A.6.

3.23The differentiation of k5-value has impact also on the speed at which inactive nodes
(flows) return to the initial state. However, this effect is not appreciable in the output rates.
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3.5 Conclusion

We have started the chapter by advocating the advantages of Law of Mass
Action (LoMA) scheduling in the context of packet switching and queueing
networks. LoMA-scheduling induces a pace between dequeued packets, propor-
tional to the instantaneous state of the queue. The derived inherent packet-
pacing enables a better statistical multiplexing of packet flows in networking
environments. LoMA-scheduling also improves the stability and robustness
of the system as it leverages stable attractors. Intuitively, LoMA-triggered
services lead to smooth transitions as a consequence of the little effect that
single packets have on state space. More formally, a LoMA-system is a dy-
namical system that exhibits smooth and large basins of attraction, and thus
perturbations, which move the system a small distance from the original state,
have little effect (see [221] for a detailed discussion on the topic).
Using therefore concepts from chemical kinetics, we proposed a novel method
to design, implement, and analyze traffic-shaping algorithms. The proposed
approach is not yet another tool for modeling existing algorithms. Rather, it
provides an engineering framework (i) in which traffic-shaping algorithms and
their operations can be represented and programmed as reaction networks,
(ii) which generates an executable model based on interacting queues and
LoMA-scheduling, and (iii) which provides sound analytical tools to study
and tune the algorithm’s behavior.
Such a chemical engineering framework bridges the micro-level implementation
of the discrete event system and the satisfaction of requirements at the macro-
level, hard to overcome with traditional methods. Algorithm design follows
intuition at the macroscopic level and complex behavior can be obtained from
simple nature-inspired reaction-network motifs. Then, our compiler translates
these macroscopic properties to an executable network of virtual queues, which
can be attached to and regulate real queues on nodes so as to orchestrate the
forwarding of packets.
At the same time, we have a formal mathematical description that allows us
to make/verify design choices and to understand/predict the behavior of the
algorithm. We can adopt control theory and LTI analysis, which are common-
ground in the design of networking algorithms, to analyze the system behavior
and leverage the design process. Further, the sensitivity analysis proposed in
this section can be applied to systems where the controller is distributed and
embedded in the whole network (like in biological systems). In contrast to
the traditional analysis of LTI systems where the input and output signals are
given, the sensitivity analysis allows us to use any flow, state, or coefficient as
input or output, to study its influence on the stability and sensitivity of the
overall system.
At the micro-level, we can describe a “Chemistry-inspired queueing network”
as well as a traditional queueing network by stochastic processes. At the
same time, there is a subtle difference between the two approaches in the
design of network systems. Using queuing theory, one starts by engineering
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the interaction of independent arrival and departure processes of a queue, and
observes the resulting effects when queues interact. In the Chemistry-inspired
design, the departure process is directly linked to the queue’s fill-level and thus,
we can directly focus on engineering the interactions (reactions) among queues
(species) to build a system that has the behavior (outputs) we want.





Chapter 4

Artificial Chemistry to
Solve the Consensus Problem
in Wireless Sensor Networks

“We cannot solve our problems with the same
thinking we used when we created them.”

Albert Einstein

In this chapter, we look at the consensus problem through the eyes of a
chemist. This provides an alternative interpretation of the problem itself

and new tools that possibly lead to benefits in terms of analysis and/or im-
plementation: We gain in analyzability as we can make use of the underlying
chemical theory to study for example convergence, stability, and speed. At the
same time, we have at hand an approach to design and implement (with very
simple communication techniques) possible solutions that can be directly and
successfully used in wireless sensor networks.
This chapter is structured as follows: We first introduce in Section 4.1 the
“consensus” problem, by briefly summarizing the most relevant solutions and
clarifying our scope and contributions. We formalize the system model and the
problem in Section 4.2. In Section 4.3, we start looking at the consensus from
a chemical point of view, by first considering pairwise-communication-based
systems and then wireless sensor networks with broadcast communications.
We study in Section 4.4 the performance of the proposed solution by looking
at convergence, stability, and speed. In Section 4.5, we report on simulation
results and on comparisons with two known classes of consensus algorithms.
We then extend the basic chemical consensus model and illustrate in Section 4.6
how Artificial Chemistry can be beneficial to overcome some practical issues
such as measurement and communication errors. We report on the results
from real-world experiments with a four-node hardware testbed in Section 4.7.
Finally, in Section 4.8, we discuss the insights developed through out this
chapter and some open issues.
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4.1 Introduction

The implementation of Wireless Sensor Networks (WSNs) poses several techni-
cal challenges. One of primary importance is conjugating the relative unreliabil-
ity of a single sensor (due to its limited complexity and energy availability) with
the high reliability required by certain applications (surveillance, healthcare,
factory-automation, in-vehicle sensing and so forth). For this reason, an intense
research activity has been devoted to design algorithms whereby clusters of

Consensus
problem sensors may reach an agreement on certain quantities of interest in a distributed

manner, increasing in this way the system reliability.
This problem is known in the literature as the consensus problem and has
received great attention from many different research communities (in computer
science, control and information theory, wireless communications and signal
processing). The research area ranges from the design of small, reliable hard-
ware to low-complexity algorithms and energy saving communication protocols.
In general, researchers have approached the consensus problem mimicking self-
organizing complex systems, such as the human society; gossip algorithms
represent a simple and robust approach for distributed data-dissemination and
computation in WSNs, by metaphorical reference to the epidemic spreading
of gossip in a social network. The general mechanism relies on nodes that
iteratively exchange information with their neighbors until the entire network
reaches a consensus on the value being computed. Average computation rep-
resents the simplest and most general application, where sensors deployed in a
network, each having an initial value (e.g., a measurement of a temperature),
aim to distributively calculate the average of all these values (e.g., average
temperature).
In the following, we summarize the most relevant solutions to the consensus
problem, and discuss the chemical principles introduced in [163,165] to achieve
consensus by means of a chemical gossip-style model. Then, we clarify what
our contributions in this context are.

4.1.1 Related works

The consensus problem has received great attention from many different re-
search communities. Good treatments of the results obtained in this field can
be found in [22,66,92,180] and references therein. Most of the works are inspired
by different mechanisms, such as biological interactions [30, 52], formation
control [248], spreading of gossip in social networks [36], synchronization of
coupled oscillators [217], and belief propagation [58].
Generally, the proposed solutions rely on different communication infrastruc-

Synchronous
vs.

asynchronous

tures: In the literature, we find algorithms that require synchronized [20, 250]
or non-synchronized [22, 33, 36, 63, 175] communications, where nodes update
their state at the same time instant or on the contrary, they update their
state at different time instants, in a randomized fashion. For example, Boyd
et al. proposed in [36] two time models with comparable performance: In the
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synchronous time model, where all nodes communicate simultaneously, time
is assumed to be slotted commonly across nodes. In each time slot, each

Randomized
gossip
algorithm

node contacts one of the nodes within its connectivity radius (i.e., neighbors)
independently and randomly, and exchanges a state variable to produce a
computation update. By contrast, in the asynchronous model, only one node
communicates at a given time. In this approach, each node has a clock which
ticks according to a Poisson process. At every tick, each node contacts one
of its neighbors and exchanges a state variable. If each update results in
a pairwise average of the two nodes’ state values, the operation preserves
both the total sum, and hence also the mean, of nodes’ state initial values.
This algorithm has proven to converge to consensus if the graph is strongly
connected.4.1 However, this scheme is vulnerable to packet collisions and yields
a communication complexity in the order of the square of the number of sensor
nodes, in random geometric graphs. A common feature to both approaches is
that each node contacts only one other node at a time and the communication
is sequential and pairwise, and thus bidirectional communications are assumed.

Aysal et al. showed in [21, 22] that the convergence speed is extremely im-
proved by exploiting the broadcast nature of the wireless medium. Nodes

Broadcast
gossip
algorithms

asynchronously transmit a scalar-valued message, and each time a node receives
a message from its neighbors, it performs an update by forming a convex
combination of the received value with its own previous value. Then, when
it is a given node’s turn to broadcast next (as determined by a random timer,
according to the asynchronous model [35,232]), the node broadcasts its current
value. Such an approach simplifies the implementation aspect too, by removing
the need for addressed information exchanges. However, the algorithms provide
biased estimations depending on the type and connectivity of the network
graph (e.g., for large highly connected graphs); the average is not preserved
from iteration to iteration and consequently, for any particular sample path
the consensus value is not precisely equal to the average.

Broadcast and wireless communications inherently imply the issue of interfer-
ence among simultaneous communications. To this end, works such as [179,218]
have considered forms of admission control into consensus and gossip algo-
rithms. Alternatively, Nazer et al. in [176] have proposed “computation cod-
ing”, a new channel coding technique to compute sums reliably over the wireless
medium.

To improve the convergence speed and/or to avoid biased estimations, solutions
have exploited special features of the underlying communication graph. For
example, the algorithm proposed in [100] exploits the natural superposition
property of wireless multiple-access channels by letting nodes in a cluster
transmit simultaneously their pre-processed initial states to a designated cluster
head. Avrachenkov et al. in [20] assumed the local knowledge at nodes about
the network topology. Their solution improves the convergence speed but

4.1A graph is said to be strongly connected if every vertex is reachable from every other
vertex.
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(i) for each modification of the network topology, nodes need to learn the
local structure of the environment where they operate, and (ii) the perfor-
mance of the local average consensus algorithm is strongly dependent on the
type of network and turns out to be satisfying only for clustered networks.
Dimakis et al. in [67] assumed an underlying infrastructure enabling the nodes
to know their geographical location and those of its neighbors. They show
that the performance can improve by geographically routing the exchange of
information.
Common to most of the proposed solutions, the state variable is symbolically
encoded into packets that are exchanged based on preexisting infrastructures
that convey data; communication protocols and the low layers of the system
have to guarantee a minimum communication service. These intermediate
elements often play an important role in the energy budget and also in the
definition of the overall system dynamics and stability.

4.1.2 Space and scope of our contribution

In this chapter, we focus on WSNs characterized by balanced directed graphs
Consensus in

balanced
directed graph

(WSNs)

(i.e., graphs in which in-degree and out-degree of each node are the same) and
propose to look at the consensus problem through the eyes of a chemist. To
this end, we first introduce a very simple chemical model that makes clear
how key concepts of Distribute Artificial Chemistry (DAC) can assist us in
the context of distributed average computation to (i) formalize interactions
among distributed nodes in a chemical manner, (ii) model the dynamics of in-
teraction systems/networks in the form of ODEs, and (iii) predict the system’s
equilibrium points.
As we will see, the use of DAC leads to a consensus model in the same
form of that proposed in [180], on which implementation-oriented works such
as [129, 136, 137, 249] rely in order to realize distributed computation systems.
In these works, the engineering process of required communication and net-
working protocols focusses on finding the interaction mechanisms that well-
approximate the underlying model. By contrast with the chemical approach,
the intuitively derived DAC represents both an abstract description model and
a precise communication technique to let sensors converge on the value being
computed. Furthermore, as we have already mentioned in the thesis, the use of
chemical theory enables using new analytical tools; we prove the convergence
and stability of consensus models by using the Deficiency Zero Theorem.
The first attempt to use DACs for achieving consensus can be found in [163–
165], in the context of packet-oriented communication networks. Meyer mod-
eled the pairwise exchange of information in terms of chemical reactions and
offered an implementation model, the “Disperser”, that encodes the node’s
state variable into an amount of molecules present at the node, in a sort of
representation-free information encoding. It has been shown via simulations
that this model improves the robustness exhibited by other epidemic models
such as the one in [127], at the cost of a higher message complexity (i.e., a higher
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number of iteration required for converging). Differently from [163–165], we
implement and study Chemistry-inspired mechanisms for achieving consensus
in WSNs. Specifically, our major contributions are the following:

• We use Chemistry to (i) construct a consensus model for WSNs char-
acterized by balanced directed graphs, and (ii) prove convergence and
stability in the derived system.

• We use simulation results, obtained with the network simulator OM-
NeT++ [240], to validate the analysis under different network topologies
and number of sensor nodes; we also provide comparisons with other
traditional gossip-inspired mathematical models.

• We take advantage of the underlying chemical theory to account for
practical issues, i.e., we enable self-configuration and self-stabilization.

• We validate the performance of the proposed approach by means of a
four-node hardware implementation, which relies on an emergent and
simple communication protocol where nodes exchange their data in an
asynchronous manner with no need for admission control. To the best of
our knowledge, this is the first time that a Chemistry-inspired algorithm
for communication is built in a hardware testbed and validated under
real-world conditions.

Like in other broadcast-based approaches (e.g., [21,22,44,72,92]), our algorithm
Broadcast-
based

Asynchronous

Topology-
agnostic

exploits the broadcast nature of the wireless medium and lets nodes broadcast
their information. The algorithm does not require a synchronism between
nodes, hence, it is suitable for WSN applications where synchronization itself
can be a challenging task. Our approach differs from approaches that presup-
pose the local knowledge of the network topology. Furthermore, keeping the
main distinctive characteristics of the Disperser, the algorithm we proposed
does not encode state information into symbols and does not resort to exchange
of packets, rather, it continuously modulates the rate at which nodes emit, for
example, Radio Frequency (RF) pulses. This allow us (i) to keep small the
energy consumption and (ii) to refer to a continuous-time analysis of an exact,
easy-to-extract fluid-model. From the analysis point of view, we do not adopt
analytical techniques traditionally applied in the consensus context, such as
Markov chain theory, optimization and percolation, and graph theory (refer
to [213] for a brief summary). Rather, we exploit the new analytical tools
available thanks to the chemical metaphor.4.2

We validate the performance of the chemical interaction mechanisms by means
of simulations under different operating conditions and settings. For example,
in many scenarios, networks can possess a dynamic topology (these networks
are also referred to as “switching networks” [180]), which changes in time due

4.2The adjective “new” refers to the consensus-context. We have already introduced these
analytical tools in Chapter 2 and used in Chapter 3.
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to failures and creations of links and nodes. This can be related to formation
reconfiguration [183], evolution [29], packet-loss [104], asynchronous consen-

Experiments
in...

...switching
networks

sus [108], state-dependence [162], or flocking-based motion [182]. In simulations
and real-world scenarios, we have experimented with networks that have a
dynamic topology and a varying number of participating sensors.
We make comparisons with existing benchmark solutions that rely on gossip
protocols: the randomized gossip algorithm [36], which requires many iterations
to converge to the exact average value, and the broadcast gossip algorithm [22],
which leads to fast convergence on a value that may differ from the aver-
age. We then take advantage of the underlying chemical theory to include, in
the dynamical system, mechanisms to account for some practical issues, such
as the estimation of the number of neighboring nodes (self-configuration) as
well as perturbations to the communication and measurement processes (self-
stabilization).
To validate the proposed solution and to demonstrate that the chemical paradigm
is not relegated to pure theory, we also present some real measurements ob-
tained from a four-node hardware testbed. In our simple implementation, the

...a hardware
testbed information exchange among the spatially distributed sensors takes place by

means of the transmission of a pulse whose rate is proportional to the state of
each node. The experimental results are in line with analytical and simulation
results, and show that the proposed solution performs reasonably well even un-
der real-world conditions. For the first time, chemically-engineered algorithms
lie directly at the physical layer and control the basic hardware transmission
technologies of communication systems in a protocol-less environment.

4.2 Problem statement:
the average consensus problem

We consider a cluster of |V| low-mobility sensors, WSNs organized in hierarchi-
cal levels, where the lower-level nodes cooperate to achieve local consensus with
a reliability greater than the one obtained with a single node, and intermediate
nodes convey the information gathered by the lower-level nodes to the control
centers. Sensors are connected by wireless links and composed of the following
basic components: (i) a continuous-time dynamical system (i.e., the local AC)
whose state evolves in time according to local measurements and to the states of
nearby sensors, (ii) a radio transceiver operating in a half-duplex manner that
is used to transmit to and receive from nearby sensors, and (iii) a transducer
that is used to monitor the physical parameter of interest and the related local
detector that processes the measurements taken by the sensor. Figure 4.1
summarizes graphically the described system.
By using the terminology introduced in Chapter 2, we model the interaction

Communication
network graph

topology of the WSN as a directed graph (digraph) G = (V, E) in which V =
{ν1, ν2, . . . , ν|V|} is the set of all sensors with |V| being the number of sensors,
while E ⊆ V×V is the set of edges, with the convention that εij ∈ E if and only if
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Tx

Tr/Det νi

Dynamical
systemRx

(AC)

Figure 4.1: A sensor node νi is composed by a continuous-time dynamical system
(i.e., AC), a radio transmitter (Tx-module), a radio receiver (Rx-module), and a
transducer (Tr-module) and a detector (Det-module).

there exists an edge from νi to νj (i.e., the information flows from νi to νj). We
consider network topologies where there is a directed path connecting any two
arbitrary nodes of the graph.4.3 The structure of a digraph can be described
by the |V| × |V| adjacency matrix ∆ whose generic entry [∆]i,j is equal to 1
if εij ∈ E and 0 otherwise. As mentioned in Section 4.1.2, we concentrate on
balanced digraphs for which the number of edges entering and leaving a node
is the same for all nodes, i.e.,

∑

j 6=i
[∆]i,j =

∑

j 6=i
[∆]j,i ∀νi ∈ V. (4.1)

For notational convenience, we denote by Ni the neighbor set within the
transmitting and receiving range of sensor νi, i.e.,

NeighborsNi = {νj ∈ V | εij ∈ E} . (4.2)

The goal of this work is to design, analyze and implement a dynamical system
to distributively calculate at each node in the network the average of measured
values. By denoting as zi the discretized measurement of sensor νi, we can

Goal

formalize this goal as follows:

zavg =
1

|V|

|V|∑

i=1

zi. (4.3)

Average computation represents the simplest and most general case of consen-
sus problem. Indeed, it represents a prototype for a variety of distributed tasks.
Averaging can easily be adapted to the distributed computation of arbitrary
linear projections, and it can even be extended to detection and filtering over
networks [49, 208]. Efficient averaging algorithms are therefore of considerable
interest.

4.3The notion of “strong connectivity” applies to digraphs; for undirected graphs we have
simply “connectivity”.
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4.3 A Chemistry-inspired consensus algorithm

Average computation can naturally emerge in a system where mass-action,
mass-conservation, and flow-conservation are valid principles. To show this,
we first consider in Section 4.3.1 a simple example that helps to understand
how more complex chemical reaction networks can be used for distributed
computation. We then generalize such a model in Section 4.3.2 to achieve
consensus in pairwise-communication systems (the “Disperser”). Finally, we
introduce in Section 4.3.3 a general consensus model for WSNs, assuming
broadcast communications.

4.3.1 Chemical reversible model

Consider a vessel in which two molecular species S1 and S2 are present and
interact with each other according to mass-action kinetics and the following
simple reaction rule: consuming a molecule S1 produces a molecule S2 and
vice-versa.4.4 It can easily be proven that, following the above interaction,
such a system reaches an equilibrium in which molecules S1 and S2 are present
in the same quantities. This is achieved for any initial concentration of S1

and S2 and without being explicitly programmed.
Let us formalize the above “chemical reversible” model in terms of DAC and
consider the reaction network whose graphical illustration is given in Fig-
ure 4.2(a). The network graph is G = (V, E) with V = (ν1, ν2) and E =
{ε12, ε21}. Each node νi defines only a molecular species Si so that S1 = {S1}
and S2 = {S2}. This means that S(2)

1 = {S2} and S(1)
2 = {S1} whereas M1 =

M2 = {S1,S2}. Additionally, each node defines a single reaction rule that
consumes one instance of local S-molecules to produce one instance of remote S-
molecules. This leads to the following “spatially distributed” reactions:

Chemical
reversible

model

r1 : S1−→S2 (4.4a)

r2 : S2−→S1. (4.4b)

Collecting the above facts together yields DAC = {{S1, S2}, {r1, r2}, A}. By
applying the mass-action principle (2.6) to the distributed system (4.4), we get
that concentrations change over time according to the following set of ODEs:

Chemical
reversible

model:
Fluid-model

ċS,1(t) = cS,2(t)− cS,1(t) (4.5a)

ċS,2(t) = cS,1(t)− cS,2(t) (4.5b)

where we have considered stoichiometric and reaction coefficients of reactions r1

and r2 all equal to one.
When reaching equilibrium at time instant t = t?, the abundance of molecules
does not change (i.e., ċS,1(t?) = ċS,2(t?) = 0) and the two molecular species are

4.4Such a chemical system models the simple “mate-and-spread game” [163].
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(b) Simulation measurements

Figure 4.2: Chemical reversible model - The chemical reaction system exhibits
an equilibrium point wherein concentrations (blue-continuous line in Figure 4.2(b))
converge to the arithmetic mean (red-dashed line in Figure 4.2(b)) of their initial
concentration values (cS,1(t = 0) = 300 and cS,2(t = 0) = 500).

present in the same amount i.e., c∗S,1 = c∗S,2. Therefore, by denoting the initial
amount of molecules of species S at node νi as cS,i(0) and studying (4.5) at
equilibrium, we obtain

Emergent
average
computation

c∗S,1 = c∗S,2 =
cS,1(0) + cS,2(0)

2
. (4.6)

This proves that the simple chemical interaction mechanisms, defined by the
DAC, enable to balance the number of molecules between the two nodes.
Namely, in this simple model, the goal (4.3) of the average consensus is achieved
by encoding the node’s state into the amount of molecules present in the node,
and exchanging molecules among nodes according to mass-action kinetics.
In Figure 4.2(b), we report the time-evolution of molecular concentrations
cS,1(t) and cS,2(t) when they are initialized as cS,1(0) = 500 and cS,2(0) = 300.
The results are obtained in the network simulator OMNeT++ by letting two
nodes operate according to the artificial chemistries AC1 and AC2. As we can
observe, the concentrations of the two species converge to the arithmetic mean
of the initial values (red-dashed line).4.5

The fact that in the chemical reversible model, concentrations of species have
the same value at equilibrium, which is equal to the arithmetic mean of the
initial amounts of molecules, stems from three principles we already know:

4.5In this simulation, as well as in other experiments whose results are reported in this
chapter, we use deterministic inter-reaction times. The presented results are still valid, in
average terms, for random inter-reaction times such as those drawn from exponential and
gaussian distributions. Of course the randomness (noise) affecting the trajectories changes
according to the used distribution.
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(i) According to the mass-conservation principle, the total amount of molecules
within the system does not change over time. (ii) According to mass-action
principle (2.6), the following single unimolecular reaction r1 : X → X is
characterized by the rate v1 = cX. This means that such a simple reaction
is sufficient to convert the concentration of species X to a reaction rate v1.
In the above pattern, we observe further that, being X both reactant and
product species, it is possible to map its concentration to a rate without
altering the amount of X-molecules. Although not concerning the chemical
reversible model, this design aspect plays an important role in the chemical
consensus algorithm for WSNs that we propose and explain at the end of this
section. (iii) According to the flow-conservation principle, a reaction rate can
be converted back to a concentration value. Indeed, if a molecule Y is produced
at a certain rate v1 and consumed by a unimolecular reaction r2 with unitary
rate coefficient (k2 = 1), the average rates of the two reactions must have the
same value at equilibrium, and thus according to the LoMA, the draining rate
value of r2-reaction must match the species concentration cY. Mathematically,

we have that if r1 : ∅ v1−→ Y and r2 : Y
1−→ ∅ then, at equilibrium, v∗1 = v∗2 .

From the LoMA, we have that v∗2 = c∗Y from which it follows that c∗Y = v∗1 .
Although simple, this example is instrumental to understand what mentioned
in Section 4.1: modeling network interactions as a DAC provides (i) the
microscopic mechanisms (the reactions and their time intervals of execution
through reaction algorithm A) to achieve a specific macroscopic requirement
(the average) as well as (ii) the ODEs that are needed to describe the network
dynamics and to eventually compute its equilibrium points.

4.3.2 A chemical gossip-style model: The “Disperser”

The chemical reversible model represents the simplest DAC to achieve con-
sensus. This model has been generalized to achieve average consensus for
an arbitrary number of nodes that communicate over a fully-connected graph
and through bidirectional links [163–165]. Similar to gossip or epidemic-based

Rate-based
gossip-like

model

protocols such as Push-Sum [127], the so-called “Disperser protocol” dissemi-
nates information to randomly selected neighbors. Differently from [127], this
is achieved by exploiting the rate-based information exchange, which results
naturally from a reaction-centric view of communications.
The Disperser basically extends the chemical reversible model to a network
with more than two nodes. This is easily achieved by letting each node νi
contain a molecular species Si whose concentration cS,i represents the com-
puted average.4.6 For each link εij connecting the νi-node to the νj-node,
there is a spatial distributed reaction rij that consumes an Si-molecule of
the set located at node νi, and remotely produces an Sj-molecule of the set

4.6The concentration of Si-species is initially set to the local value cS,i(t = 0) = c0S,i. For

example in a sensor network, the initial concentration c0S,i should match the initially-sensed
quantity zi.
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located at the neighbor node νj . This can be mathematically formulated
in DAC-terms as DACi = {{Si, [S]j}, [ri]j ,A} for all values j satisfying the
neighboring-condition in (4.2). The set of species Mi is constituted by the

union of Si = {Si} and S(j)
i = {[S]j} = {Sj | j ∈ Ni}. Whereas, the |Ni|

reactions are in the following form
Generalized
chemical
reversible
model

rij : Si → Sj | νj ∈ Ni

stating that the execution of the single rij-reaction serves to trigger the trans-
mission of a chemical-packet (i.e., Fraglet) from node νi to node νj . Thanks
to the LoMA, like for the simple two-node network of the chemical reversible
model, the network is composed by nodes that send packets (or molecules) to
neighbors with a rate proportional to their state (i.e., the local average esti-
mate), according to the quantity-to-rate motif. At the same time, this incoming
rate affects/updates the node’s state, according to the rate-to-quantity motif.
The Disperser model does not exploit the broadcast nature of wireless com-
munications and it basically requires each reaction to be associated with a
mono-directional link. This calls for the addressed exchange of packets, which
basically gives each node the possibility to discern the transmission to and the
reception from its neighbors.

4.3.3 A Chemistry-inspired consensus algorithm
for Wireless Sensor Networks (WSNs)

WSNs usually impose communication protocols that are simple in terms of
routing and address-managing computation, due to the limited complexity and
energy availability of sensors. Moreover, as demonstrated by works such as [20–
22,72,92,100,145,176,179,267], the convergence speed of consensus algorithms is
extremely improved by exploiting the broadcast nature of the wireless medium.
To avoid tasks such as routing and address-managing computation, we need
to extend the chemical paradigm illustrated previously (as eventually shown in
Figure 4.3).
We start setting cS,i(0) = zi and defining the following “broadcast” reaction

Output
broadcast
reaction

rB,i : Si
1−→

∑

j ∈Ni
Sj (4.7)

from which it follows that the consumption of a single molecule Si at node νi
produces one instance of S-molecules at all of its |Ni| neighbors. This is how
broadcast transmission can be modeled in a chemical way. According to the
LoMA (2.6), the above reaction occurs at a rate equal to the concentration of
the local state, i.e.,

vB,i(t) = cS,i(t).

Reaction rB,i represents the output of node νi that creates molecules in its
neighboring nodes νj ∈ Ni, according to mass-action dynamics. Dually, we
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∅
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input





rB,j1 : Sj1
1−→ Si +

∑
ι∈Nj1
ι 6=i

Sι

rB,j2 : Sj2
1−→ Si +

∑
ι∈Nj2
ι 6=i

Sι

...
rB,j|Ni|

: Sj|Ni|
1−→ Si +

∑
ι∈Nj|Ni|

ι 6=i

Sι

output

{
rB,i : Si

1−→
∑

j ∈Ni
Sj

internal
{

rD,i : Si
|Ni|−1−→ ∅.

(b) Reaction Equations

Figure 4.3: Chemical model for broadcast-based consensus. The broadcast reac-
tion rB,i produces a molecule S in all neighbors νj ∈ Ni of node νi. The |Ni|
reactions rB,j in its neighbors create a single molecule S in node νi. The draining
reaction rD,i controls the diffusion phenomenon created by broadcast communications.

have |Ni| reactions rB,j in its neighbors that create a single molecule S in
node νi. This represents the input of node νi, which is made of reactions of the
following form:

rB,j : Sj
1−→

∑
l∈Nj Sl

︷ ︸︸ ︷
Si +

∑

ι∈Nj
ι6=i

Sι for j = 1, . . . , |Ni|. (4.8)

The rate at which molecules are created at node νi is given by the sum of the

Input reaction
set

state values of neighbors νj ∈ Ni:

Reception rate vrec,i(t) =
∑

j ∈Ni
cS,j(t). (4.9)

The execution of reaction rB at each node increases the total number of molecules
in the network, thereby violating the mass-conservation principle. To overcome
this “diffusion phenomenon”, we need to further define a reaction that drains
the abundance of S-molecules at each node on the basis of the number of its
neighbors. This means locally performing at each node the following “draining”
reaction:

Draining
reaction

rD,i : Si
|Ni|−1−→ ∅, (4.10)

whose rate of occurrence is given by

vD,i(t) = (|Ni| − 1) cS,i(t)
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as it follows by applying the LoMA. By collecting the above facts together, the
dynamical system of node νi is defined as

DACi = {Mi,Ri,A} (4.11)

with the set Mi given by the union of Si = {Si} and S(j)
i = {Sj | j ∈ Ni},

Chemical
broadcast
consensus
model

whereas the reaction set is Ri = {[rB ]j , rB,i, rD,i}. Figure 4.3 shows the
graphical illustration of such a DAC and summarizes the reaction equations.

4.4 Convergence and performance
of chemical consensus algorithms

We prove the convergence of the proposed chemical consensus model through
traditional tools and through new analytical tools directly derived from the
chemical perspective (Section 4.4.1). We also estimate the performance of the
chemical consensus model in terms of convergence speed (Section 4.4.2).

4.4.1 Steady state and convergence

Thanks to the chemical metaphor, we directly extract the fluid model of the
algorithm from its executable model, and describe the system dynamics in
terms of a set of |Ni| ODEs, having the following form:

ċSi(t) =
∑

j∈Ni
cSj (t)− |Ni|cSi(t), cS,i(0) = zi. (4.12)

We observe that the implementation of the DACi in (4.11) at each sensor

Fluid model

node νi ∈ V leads to dynamics equivalent to those obtained by deploying the
reactions of the generalized reversible model (Disperser) at each node νi:

Si −→ Sj | νj ∈ Ni. (4.13)

4.4.1.1 Steady-state and linear-stability analysis approach

Following the approach pursued in [163], the convergence proof comes from
the analysis of steady states (when concentrations do not change over time,
i.e. ci(t) = const.) and from linear stability analysis.
Steady state c∗Si of a node νi (which is found by setting the left hand side of the

Convergence
proofODE to zero) is a unique solution as the system is described by a first-order,

linear differential equation:

c∗S,i =

∑
j∈Ni c

∗
S,j

|Ni|
. (4.14)

We observe that if νi knows the actual number |Ni| of neighbors, the system is
closed; the total amount of S-molecules reflects the sum of initial measurements



122 AC to solve the consensus problem in WSNs

in all nodes:
∑
i∈V cS,i(t) =

∑
i∈V cS,i(0) = cT . We now assume that molecules

are evenly distributed among all nodes at equilibrium and use the ansatz c∗S,i =
cI (∀ νi ∈ V) in (4.14). In this way, we obtain c∗S,i = (

∑
j∈Ni cI)/|Ni| = cI ,

which confirms our hypothesis and validates the ansatz. Finally, by collecting
the above facts together, we obtain

cI = c∗S,i =
cT
|V| =

∑
i∈V cS,i(0)

|V| ,

which describes exactly the goal (4.3) of our distributed algorithm: each node
converges to the average of the initial values.
The equilibrium point is stable as the Jacobian matrix J, which reflects the
linearization of the system, evaluated at the equilibrium point, has all negative
eigenvalues:

J(c)|c∗ =

[
∂ċS,i
∂cS,k

]∣∣∣∣
c∗

= −L(G), (4.15)

where L is the Laplacian matrix of the graph G, which represents the difference

Stability proof

of the diagonal matrix of vertex degree and the adjacency matrix ∆. As
the graph is supposed symmetric, the Laplacian matrix L has all positive
eigenvalues [206].
On the other hand, by recalling that [∆]i,j = 1 for any j ∈ Ni and observing
that

|Ni| =
∑

j∈Ni
[∆]i,j , (4.16)

we may rewrite (4.12) as ċSi(t) =
∑
j∈Ni

[∆]i,j (cS,j(t)−cS,i(t)) or, equivalently,

in matrix form

ċS(t) = −L(G)cS(t).

The latter is exactly in the same form as the mathematical model proposed
in [184], where Olfati and Murray proved the convergence towards the aver-
age of the initial measurements as formulated in (4.3), when G is a strongly
connected and balanced digraph. Differently from [184], in which the above
fluid model tries to approximate the algorithm dynamics, the set of ODEs
in (4.12) is automatically extracted from the reaction network that defines the
interactions among sensors. Mimicking sensor interactions in WSNs through
DACs has given us the tools to derive a mathematical model whose convergence
to the average is guaranteed in the investigated scenario.

4.4.1.2 Deficiency Zero Theorem

We can prove the convergence and stability of the model by just considering
the chemical network topology. To do this, we take advantage of the Deficiency
Zero Theorem, already introduced in Section 2.3.5.
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The (whole) reaction network arising from (4.13) is weakly reversible: Accord-
ing to the definition given previously in Section 2.3.5, there exists a directed
pathway from each member of a linkage class to all other members of the
linkage class. To see how this comes about, observe that all species of the
reaction network are complexes. Moreover, they do also correspond to the
graph vertices of the communication network. This means that in strongly
connected graphs for every reaction leading from complex Ci to complex Cj
there exists a chain of reactions leading from Cj to Ci. In addition, in the
emergent reaction network, the amount of molecules within the system remains
constant. From (4.13), it follows that the number of complexes and of network
vertices is the same, i.e. |C| = |V|, and it can easily be proven that the number
of linkage classes is ` = 1 since each complex is connected directly or indirectly
to any other complex constituting the whole digraph. Moreover, a strongly
connected chemical reaction network, where every chemical species appears in
precisely one complex, has a stoichiometric matrix with rank(U) = |V|−1 (refer
to [144] for further details). Collecting the above facts together, we have that
the deficiency of the reaction network associated to (4.13) is ℘ = 0. According
to the Deficiency Zero Theorem [80], if the reaction network is weakly reversible
and has a null deficiency value then it has a single, asymptotically stable fixed
point. As we have shown, by setting ċSi(t) = 0 and studying the equilibrium
solution, it follows that the fixed point is defined by the right-hand side of (4.3).
This is yet another prove that the proposed chemical algorithm converges to the
average of initial measurements. To our knowledge, this is the first time that
Deficiency Zero Theorem is used for proving the convergence of the Disperser
model as well as of consensus algorithms, in general.

4.4.2 Sensitivity analysis and performance

We still do not know how (fast) nodes converge to the average value. To this
end, we first study the response of a single sensor node through its sensitivity
to internal and external perturbations. Then, we describe the dynamics of the
whole network. Finally, we give the closed-form description for two significant
network topologies: complete and ring networks.

As a first step, we have to identify the inputs of the sensor and rewrite (4.12)
in a notation that is convenient to the sensitivity analysis. To do that, we
have to better clarify how the dynamical system (AC) is interfaced with the
outside: The amount of S-molecules is changed proportionally to the variation

Sensitivity
analysis inputsof the measured-quantity. Namely, from the quantity zi[nTs], locally measured

every Ts seconds, we derive the quantity δz,i := zi[nTs] − zi[(n − 1)Ts]; every
Ts seconds, we increase or decrease cS,i by the amount δz,i. As another input

to νi, the execution of the |Ni| remote reactions rB,j : Sj
1−→ Si+

∑
ι∈Nj ,ι6=i Sι

in its neighbors νj ∈ Ni produces molecules Si in node νi at a rate we have
previously defined in (4.9) as vrec,i.

At this point, if we consider sensors initialized to zero, we can re-describe the
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time evolution of S-concentration in node νi in the Laplace domain as

s · CS,i(s)− 0 = vrec,i(s)− |Ni|CS,i(s) + δz,i(s) (4.17)

where we denote as δz,i(s) the input signal in the Laplace-domain. From (4.17)
we derive the TF of a sensor νi that describes its sensitivity to variations of
the reception rate vrec,i and to variations of the locally sensed value δz,i:

4.7

Node’s
sensitivity

Hrec,i(s) = Hsen,i(s) =
1

s+ |Ni|
. (4.18)

Observe that the sensitivity of node νi to a variation of the locally-measured
quantity zi must be studied as an impulse response to (4.18).
The time the system needs to adapt depends on the network topology and its
size. In case we would like to study the system response (i.e., sensitivity)
to variations of |Ni| within the convergence period, the analytical method
still remains the same: According to the sensitivity analysis introduced in
Chapter 2, we would just have to define |Ni| as analysis input and study the
node’s sensitivity to this additional input.
Next, we use the above result to characterize the transient behavior of nodes
in complete and ring networks (see Figure 4.4). The former provides the best
scenario in terms of convergence time whereas the latter provides the worst
one [213]. The transient behavior for any networks can be derived still following
the same approach.

4.4.2.1 Complete topology

A complete topology describes a network where all nodes can communicate
with each other; Figure 4.4(a) shows the topology of such a network. This kind
of network represents the best scenario where nodes exponentially adapt their
rates, and thus their average estimates, with the shortest convergence time.
The whole system can be described by using (4.18). We first write for each
node νi its sensitivity to variations (i) of the locally-sensed value zi, and (ii) of
the reception rate vrec,i that reflects the sum of the variation of the data δz,j
sensed by its neighbors νj ∈ V|νj 6= νi:

CS,i(s) = Hsen,i(s) · δz,i(s) + Hrec,i(s) ·
∑

j∈Ni
δz,j(s). (4.19)

By solving the equation set in (4.19) we get the sensitivity of a node, showing
us how a node νi exactly reaches consensus in a complete network:

CS,i(s) =
1

s(s+ |V|)


(s+ 1)δz,i(s) +

∑

j∈V,j 6=i
δz,j(s)


 . (4.20)

Again, the sensitivity of node νi to a variation of the locally-measured quan-

Node’s
sensitivity in a
complete net.

4.7Quantities vrec and δz represent inputs. Thus, the two TFs are defined as Hrec,i(s) =
CS,i(s)

vrec,i(s)
and Hsen,i(s) =

CS,i(s)

δz,i(s)
.
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Figure 4.4: Two network topologies representing (a) the best-case scenario and
(b) the worst-case scenario.

tity zi must be studied as an impulse response to H(s) = s+1
s(s+|V|) , whereas the

sensitivity of node νi to a variation of quantity zk measured at a generic node
νk ∈ V | νk 6= νi must be studied as an impulse response to H(s) = 1

s(s+|V|) .

Two things are remarkable: (i) No matter which neighbor experiences a vari-
ation of the sensed data, the sensitivity of the node is the same (same con-
vergence time too). (ii) The difference between the new sensed value and the
current estimated average does not influence the time response of the sensor (as
a direct consequence of the LoMA, the time the sensor needs to reach consensus
is independent of the magnitude of sensed data variation).

4.4.2.2 Ring topology

A ring network is constituted by nodes that can transmit to and receive from
one neighbor only; Figure 4.4(b) shows the topology of such a network. This
kind of network represents the worst scenario where nodes are poorly connected
and thus, the required convergence time becomes very high as soon as the
number of participating nodes increases.
To describe the system, again, we first write for each node νi its sensitivity to
variations of the locally-sensed value zi, and of the reception rate vrec,i, which
reflects the variation of the data sensed by its neighbor:

CS,i(s) = Hsen,i(s) · δz,i(s) + Hrec,i(s) · δz,(i−1)(s). (4.21)

We then solve the set of |V| equations generalized in (4.21) and formalize the
sensitivity of a single node νi to variations of the locally sensed data zi and of

Node’s
sensitivity in a
ring network

the data zj sensed by all the other nodes νj = 1, . . . , |V| − 1, 6= i:

CS,i(s) =
(s+ 1)(|V|−1)

(s+ 1)|V| − 1


δz,i(s) +

∑

j∈V,j 6=i

1

(s+ 1)(|V|−|i−j|) δz,j(s)


 . (4.22)
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As expected, (4.22) indicates that the node’s response depends on how far, in
terms of hops to neighbors, the variation of sensed data is. Differently from
a complete network where the distance is always one hop, in a ring network
the distance may range from 1 to |V| − 1 hops. In addition, (4.22) reveals that
the sensitivity of each sensor in a ring network highly depends on the total
number of sensors. Local estimates of the average follow an under-dampened
trajectory which results in (i) a fast exponential adaptation to a new sensed
value to which is added (ii) a dampened oscillation around the actual average
whose amplitude reduces to a negligible value in a finite time.
From the analytical description of the sensors’ response/sensitivity in ring and
complete networks, we can extract the convergence time characterizing these
boundary cases. We use (4.20) and (4.22) to validate the convergence time
experienced in simulations (later reported in Table 4.1).
We can generalize the above findings concerning the transient response of

Generalized
sensitivity sensors and define H(s) as the transfer function in the Laplace domain given

by H(s) = (sIV + L(G))
−1

with IV being the identity matrix of order |V|.
The graph-related matrix L(G) (Laplacian of the graph, already introduced
in (4.15)) plays a crucial role in the performance of consensus algorithms.
Olfati-Saber and Murray proved in [184] that the second smallest eigenvalue
λ2 of graph Laplacians, called “algebraic connectivity” and also referred to
as “Fiedler eigenvalue”, quantifies the speed of convergence of consensus algo-
rithms. For dense graphs, where λ2 is relatively large, the consensus problem is
solved faster than for sparse graphs, where λ2 is instead relatively small. (We
investigate this aspect through simulations in Section 4.5.2.)

4.5 Simulating in OMNeT++
the chemical consensus algorithm

We validated the derived chemical consensus model and related findings via
simulations. We compare in Section 4.5.1 the trajectory experienced in simula-
tions in OMNeT-environment and that analytically predicted with findings of
the previous section. We report results obtained by simulating the consensus
model in Figure 4.3 under different operating conditions, such as different
network topologies, number |V| of sensors (Section 4.5.2), and time-varying
measurements (Section 4.5.3). Finally, we compare in Section 4.5.4 the chemical
model with two known classes of consensus-algorithms: randomized [36] and
broadcast [22] gossip algorithms.

4.5.1 Simulation measurements vs. analytical predictions

One of the benefits of the chemical approach is the simplicity in deriving a
correct fluid model that describes the macro-behavior of the node and conse-
quently of the whole networked system. To demonstrate this, we have compared
the analytically-predicted time response with its execution behavior in the
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Figure 4.5: Comparison between simulation measurements (blue-continuous line)
and analytical predictions (red-dashed line) for 4-node networks.

OMNeT++ simulator (we are still in an ideal scenario without communication
delays and interferences). Specifically, we applied a variation on the value
sensed by one of the sensors in a four-node network (for both complete and
ring networks) and we sampled every 100 ms the state of each sensor. We then
plot these results together with the impulse response to δz-input, calculated
using (4.20) and (4.22) for complete and ring networks, respectively.

Figure 4.5(a) shows the response in a complete network: Starting from steady
state, we suddenly changed the locally sensed quantity of one of the four sensors.
As a consequence, all sensors smoothly adapted their estimates to the new
attractor, exactly conforming to our analytical prediction (red-dashed line) –
the “perturbed” sensor node exponentially decreased its state, whereas the
other three non-perturbed sensors exponentially increased their state to reach
the new average value.

Figure 4.5(b) shows the response in a ring network: This time, as a consequence
of the stimuli of the locally sensed quantity of one of the four sensors, all sensors
adapted their state following an “under-dampened trend”. Also in this case,
our transient analysis exactly describes the behavior of the whole network –
an under-dampened trajectory made of a fast exponential adaptation to the
new sensed value to which is added a dampened oscillation around the actual
average.

4.5.2 Simulations for different topologies and sizes
of the communication network

We tested the convergence of the sensor’s state towards the arithmetic mean
for different network topologies. In the first set of experiments, we studied
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(a) Regular-lattice network (b) Small-world network

Figure 4.6: Two network topologies having the same number of nodes (|V| = 25)
and links (|E| = 75) but different algebraic connectivity, (a) λ2 ∼ 0.85 and (b) λ2 ∼ 2.

relatively small networks made of |V| = 25 nodes. Each node had a different
initial state, equal to zi = i for i = 1, 2, . . . , |V|.
We studied a complete (Figure 4.4(a)) and a ring (Figure 4.4(b)) network,
which we know represent the best and worst scenarios in terms of convergence
speed; results are reported in Figure 4.7(a) and Figure 4.7(b), respectively.
We also studied a regular lattice network with interconnections to K = 3
nearest neighbors (Figure 4.6(a)), and a small-world network with 3|V| = 75
links (Figure 4.6(b)). These two topologies are very interesting in terms of
convergence speed and network connectivity.
Indeed, Olfati-Saber demonstrated in [181] that it is possible to greatly in-
crease the algebraic connectivity in regular complex networks, without adding
new links or nodes, rather by using the random rewiring scheme proposed by
Watts and Strogatz. In [244], Watts and Strogatz showed the small-world
phenomenon (popularly known as six degrees of separation) by starting with
regular ring lattice networks with |V| vertices and K edges per vertex (equal
for all vertices νi ∈ V) and then rewiring each edge with probability p. Olfati-
Saber showed that the consensus problem can be solved more quickly on certain
“small-world networks”.4.8 The results of the performance in the regular lattice
and the small-world network are reported in Figure 4.7(c) and Figure 4.7(d),
respectively. The results in Figure 4.7 are in line with those in [180]: compared
to the other networks, small-world networks exhibit shorter convergence times,

4.8In [181], Olfati-Saber also stated that a network with relatively high algebraic connec-
tivity is necessarily robust against both node-failures and edge-failures. However, in [43],
Byrne et al. showed that this holds true only for systems where nodes are redundant. On the
contrary, in systems where nodes can be indispensable, a higher algebraic connectivity does
not necessarily mean more robustness. Instead, concepts like node- and edge-connectivity
are important parameters for assessing the robustness.
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Figure 4.7: Sensors’ state evolution obtained when |V| = 25 sensors were connected
through (a) a complete network, (b) a ring network, (c) a regular lattice network
topology with interconnections to K = 3 nearest neighbors, and (d) a small-world
network topology with 3|V| links (see [180] and references therein for more details on
such networks). The initial state was set to zi = i for i = 1, 2, . . . , |V|.
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Figure 4.8: Sensors’ state evolution obtained when |V| = 100 sensors were connected
through (a) a regular lattice network topology with interconnections to K = 3 nearest
neighbors and (b) a small-world network topology with 3|V| links. The initial state
was set to zi = i for i = 1, 2, . . . , |V|.

while still keeping the number of links reasonably low. This occurs thanks
to the high algebraic connectivity of the associated digraph G. The second
smallest eigenvalue λ2 for the used complete, ring, regular lattice, and small-
world networks was 25, 0.0314, 0.8523, and 2.0269, respectively.
To ease the comparison of the chemical algorithm’s dynamics with those of the

Same
dynamics as

the traditional
model

traditional theoretical model in [180], we also report in Figure 4.8 how |V| = 100
sensors converge to the average value, when they are connected through a reg-
ular lattice and a small-world network (similar wiring procedure as previously
described). These charts are directly comparable with the ones in Figure 4
in the paper [180], and the results fully comply with those obtained through
numerical integration of the traditional ODE-model. Figure 4.8 demonstrates
the convergence in the same operating conditions of those used to obtain
the chart in Figure 4.7 for a network with |V| = 100 nodes. As before, the
convergence time of a regular lattice network is shown to be significantly larger
than that of a small-world.
Differently from works such as the one in [180], we do not refer to “simulations”
as the numerical integration/solution of ODEs in (4.12). Rather, in the here-
presented simulations, we let the dynamical system of each node νi operate
according to the DAC defined in (4.11) and exchange messages (molecules)
accordingly.
In order to get a wider view on the effects that the size and the topology of the
network have on the speed of the chemical consensus algorithm, we did many
further experiments. Here, we limit to report in Table 4.1 on the convergence
times required to reach a normalized mean squared error equal to 0.01 for
some noteworthy tests. Differently from previous experiments, the initial state
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Network with |V| = 25 50 100 250 1000

Ring 80 s 230 s 450 s 900 s 1250 s
Regular lattice, K = 3 4 s 12 s 35 s 90 s 180 s
Small-world, 3M links 1 s 1 s 1 s 1 s 1 s
Complete 0.26 s 0.09 s 0.04 s 0.012 s 0.005 s

Table 4.1: Convergence times for achieving a normalized mean squared error less
than 0.01 in different network topologies. The initial state was set to z1 = 60 and zi =
30 with i = 2, 3, . . . , |V|.

of nodes was set to z1 = 60 and zi = 30 with i = 2, 3, . . . , |V|. From the results
reported in Table 4.1, we can see that the convergence time of a complete

Scalability for
different
network
topologies

network decreases substantially as |V| becomes larger due to the exponential
increase of the number of connected links. The opposite happens for a ring
network as, in this case, the information is exchanged in a serial manner and
thus, the time required to exchange information among all nodes highly grows
with increasing number of nodes. On the other hand, the convergence time
remains constant for small-world networks.

4.5.3 Simulations for time-varying measurements

We experimented in a more dynamical scenario, where nodes measure time-
varying quantities. We report here on the ability of the chemical consensus
model to track quantities that vary also with shorter times than the period
required for the convergence. We focus on complete and ring networks only
(further experiment results are reported in Section A.7).

Figure 4.9 illustrates sensors’ state evolution when the network was composed
of |V| = 30 nodes and was characterized either by a complete or a ring topol-
ogy. To validate the convergence of the algorithm in presence of measurement
changes, the quantities zi were randomly generated (at certain time instants)
according to a uniform distribution with given intervals: at time t = 0, 20,
and 60 (in seconds) the sensor measured independent random variables chosen
uniformly within the intervals [5, 75], [50, 60] and [25, 35], respectively; during
the time interval between [25, 40] seconds, each sensor independently chose a
time instant to change its measurement, which was a uniform random variable
within the interval [75, 77] (zi-dynamics are summarized in Table 4.2).

From the experimental results in Figure 4.9, it follows that the convergence to
each new value of the arithmetic mean is guaranteed for both network topolo-
gies, although this holds true only if the measured quantities vary sufficiently
slow compared to the convergence time. Due to the different algebraic con-
nectivity, the convergence is achieved almost instantaneously in the complete
network, whereas a longer time interval is required in the ring network.



132 AC to solve the consensus problem in WSNs

Time instant t [seconds] 0 20 U [25, 40] 60
Value of zi U [5, 75] U [50, 60] U [75, 77] U [25, 35]

Table 4.2: Local data zi detected by node νi at time t during the experiment whose
results are plotted in Figure 4.9.
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Figure 4.9: Sensors’ state evolution when |V| = 30 sensors were connected through
(a) a complete and (b) a ring network topology. Sensors’ measurements varied as
described in Table 4.2. The analytical mean is reported as a red-dashed line.

4.5.4 Comparisons with randomized and broadcast gossip

We made comparisons with the two following consensus gossip-based algo-
rithms: the randomized (RN) solution proposed in [36] and the broadcast
(BR) one illustrated in [22]. Both algorithms were simulated according to the
asynchronous model described in [36] and [22], whereby each node is assumed
to have a clock that ticks independently according to a Poisson process’s rate γ.
This corresponds to a single global clock whose ticking times form a Poisson
process of rate |V| · γ [22]. In all subsequent simulations, we set an average
of γ = 2 ticks per second in each node. When RN is used, at each tick, node νi
randomly interacts with a single nearby sensor. On the other hand, when BR
is applied, node νi wirelessly broadcasts its current state value.

Comparisons are made in terms of the normalized deviation of sensors’ states
from their average and in terms of the mean squared error with respect to the
average of their initial states (measured quantities zi). For this purpose, we
considered the same operating conditions of those used to obtain the chart in
Figure 4.8(b): a small world network with |V| = 100 nodes and 3|V| = 300
links in which the initial states were set to zi(0) = i for i = 1, 2, . . . , |V|. This
means that, on average in the network, 2 · |V| · γ = 400 packets per second
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Figure 4.10: Performance comparison among the chemical (CH) consensus algo-
rithm, the broadcast (BR) and randomized (RN) gossip algorithms. Initial state and
network setup were like those related to Figure 4.8(b).

are exchanged when RN is used, and |V| · γ = 200 packets per second are
transmitted when BR is used.
The results of Figure 4.10(a) show that the convergence time of the proposed
chemical (CH) algorithm is similar to that experienced with the BR algorithm.
As seen, both largely outperform RN, which does not take advantage of the
broadcast nature of the wireless medium. On the other hand, Figure 4.10(b)
shows that the estimation accuracy of the CH algorithm is higher than that of
the BR algorithm. This difference is due to the bias term that the BR algorithm
introduces in the average estimation. Refer to [214] for further detail and for a
specific solution to improve the estimation accuracy based on the knowledge of
the number of neighbors. The higher accuracy of the solution proposed in [214]
is achieved at the price of a higher convergence time and a more complex
communication model that requires the transmission and the processing of a
“companion” variable, in addition to the node’s state.
In summary, the results of Figure 4.10 show that the proposed CH algorithm
allows one to achieve a good trade-off between convergence time and estimation
accuracy.

4.6 A chemical approach to practical issues

The basic chemical consensus model can be extended to overcome some prac-
tical issues. We derive a consensus algorithm that exhibits self-configuration
(Section 4.6.1) and self-stabilization (Section 4.6.2) properties, and then again
validate the derived algorithm and compare it with existing solutions in Sec-
tion 4.6.3.
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4.6.1 Self-configuration: Estimating the neighborhood size

The execution of the draining reaction rD,i in (4.10) requires the knowledge
about the number of neighbors |Ni|. However, this knowledge is hardly avail-
able at each node, especially in those applications in which nodes appear and
disappear over time (switching networks). To address this issue, we start
rewriting (4.7) and (4.10) as follows:

rB′,i : Si
1−→

∑

j ∈Ni
Sj + Si (4.23)

rD′,i : Si
|Ni|−→ ∅. (4.24)

The above operation has no effect on the dynamics of the DACi (equal set of
ODEs as in (4.12)) and it is only used to make the system depend on |Ni| rather
than |Ni| − 1.4.9 To proceed further, we let each node νi define two molecular
species Xi and Yi, with Xi characterized by a constant concentration equal
to α, i.e., cXi(t) ≡ α. Then, we define the following reactions:

rX,i : Xi
1−→
∑

j∈Ni
Yj + Xi (4.25a)

rY,i : Yi
1−→ ∅. (4.25b)

Applying the mass-action principle according to (2.7) and recalling that cXi(t) =

Estimation of
the runtime

number of
neighbors

α yields
ċYi(t) = α|Ni| − cYi(t)

from which it follows that at the equilibrium (i.e., ċ∗Yi = 0) the abundance
of Y-molecules at each node is α|Ni|:

c∗Yi = α|Ni|. (4.26)

Then, replacing the draining reaction rD′,i with

rD′′,i : Si + Yi
1/α−→ Yi (4.27)

yields the following ODEs

ċSi(t) =
∑

j∈Ni
cSj (t)−

1

α
cYi(t)cS,i(t), cS,i(0) = zi. (4.28)

By assuming that the convergence time of the subsystem defined by (4.25a)
and (4.25b) is smaller than that concerning by (4.23) and (4.27) and thus by

4.9This allows overcoming some implementation issues. First, computing the differ-
ence |Ni|−1 would require an additional set of reactions (see for example the motif proposed
in [163] and reported in Appendix A.1.1). Second, using (4.23) and (4.24) allows maintaining
the sensor state also in a single-node network.
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(b) Reaction Equations

Figure 4.11: Chemical model for estimating the runtime number of neighbors.
Species X is initialized to a value α, the same for all nodes ν ∈ V. Coefficient of
reaction rY is set to kY = 1/α.

substituting (4.26) in (4.28), we get the following result

ċSi(t) =
∑

j∈Ni
cSj (t)− |Ni|cS,i(t), cS,i(0) = zi. (4.29)

Equation (4.29) is in the same form as (4.12) but has been obtained without
knowing |Ni|, simply by using the reactions (4.25) and modifying the draining
reaction to (4.27). Figure 4.11 summarizes the extended DAC which guarantees
each node to converge to the average consensus value when estimating the
runtime number of neighbors. The above results hold true only if (4.25a)
and (4.25b) reach the equilibrium before (4.23) and (4.27). This is reasonable
for low-mobility applications but can be achieved in general by properly setting
the design parameter α, which dictates the rate of execution of (4.25a). The
higher the α-coefficient is, the faster the convergence is.
In those applications where |Ni| remains constant for a long time interval,
its value can easily be estimated through the DACi defined in (4.11) (with
no need for additional reactions): During an initialization phase, the sensors’
state should be forced to a constant pre-defined value α (i.e., cS,i(t) ≡ α). The
execution of rB,i would induce the production of S-molecules in nearby sensors
with an average rate |Ni| times bigger than the pre-defined value α (this easily
follows recalling the broadcast nature of reaction rB,i). Therefore, an estimate
of the number of neighbors |Ni| could easily be obtained by comparing the
measured reception rate and the predefined one.

4.6.2 Self-stabilization: Recovering from erroneous states

Self-stabilization, introduced by Dijkstra in his seminal paper [65], is a concept
of fault-tolerance in distributed computing. Fault-tolerance aims to guarantee
that the system always remains in a correct state, under certain state transi-
tions. However, this cannot always be achieved, such as for example when the
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system starts from an incorrect state or is corrupted by errors. On the contrary,
self-stabilization relaxes fault-tolerance, and identifies all systems that end up
in a correct state, independently of their initialization, after a finite time or
number of iterations. Namely, self-stabilization is the ability to cope with faults
that were not foreseen in the design of the algorithm.
In a closed system, such as in the Disperser, molecules do not leave the re-
action vessel; there is no “dilution flow”; reaction rules must be balanced.
Furthermore, in a closed system, a stable solution is a set of molecules, which
do not react further. One could believe that such a system is more stable
than an open system where instead, mass and energy can be exchanged with
its environment. Additionally, in a closed system there are no concerns that
information gets lost via dilution flows and on how to regenerate molecules.
On the contrary, with an open system approach, we arrive at more robust
and flexible organic systems, where a stable solution is a self-regenerating set
of molecules [68]. Open reaction systems are especially suitable in unreliable
and highly dynamic scenarios – in environments that are under constant change
(nodes are added and removed at runtime). For example, if a node in a WSN is
switched off, the molecules residing in it vanish too, causing in this way the so-
called non-selective dilution flow. Thus, robust/stable structures must consist
of molecules that constantly reproduce themselves as a whole; according to the
theory of chemical organization [70], they must encompass a self-maintaining
set of molecules. By introducing a selective dilution flow, we can move gradually
from an open to a closed system and can capture aspects from both.
In our context, a WSN must be robust against possible perturbations, such as
measurement errors or sensors leaving (entering) the network in advance (at a
later stage). To this end, we have to further extend the DAC in (4.11). We
let each node define a molecular species Zi whose concentration is maintained
constant and equal to the local measurement value, i.e., cZi(t) = zi. Then, we
introduce the two following reactions:

Self-
stabilization

rZ,i : Zi
β−→ Si + Zi (4.30a)

rA,i : Si
β−→ ∅ (4.30b)

with β being a design parameter. The execution of rZ,i continuously feeds Si-
species at a rate β-proportional to the local measurement zi. At the same
time, Si-species is drained with the same proportionality coefficient β through
reaction rA,i. As a result, the sensors’ state (the concentration of molecules Si)
is continuously refreshed and if an error occurs, after a transient time, the
sensor’s state goes back to the correct value. The higher the β-coefficient is, the
faster the recovering is. However, as shown next by means of simulation results,
this is achieved at the price of a reduced estimation accuracy. Figure 4.12
summarizes the extended DAC which guarantees each node to converge to the
average consensus value, even in the presence of transient communication and
measurements errors.
The effect of the control parameter β can be formalized following the same
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Figure 4.12: Self-stable chemical model which allows nodes to recover from erroneous
states. Species Z is maintained equal to the local measurement value, i.e., cZi(t) = zi.
The coefficient of reaction rY is set to kY = 1/α. Coefficients of reactions rZ and rA
are set to kZ = kA = β.

steps shown in the sensitivity analysis in Section 4.4. The dynamics of the
introduced DAC are described by the following ODE:

ċSi(t) =
∑

j∈Ni
cSj (t)− |Ni|cSi(t) + β (cZ,i − cSi(t)) (4.31)

whose matrix form is given by

ċS(t) = −LcS(t) + β (cZ − cS(t)) . (4.32)

Again, by rewriting (4.32) after taking the Laplace transform of both sides at
a certain reference time t′, we get

CS(s) = H(s)
(
cS(t′) + βcZ

)
(4.33)

where H(s) is the Laplacian transfer function given by

H(s) = (sIV + L + βIV)
−1
, (4.34)

with IV being the identity matrix of order |V|. One can use H(s) to analytically
evaluate how the β-coefficient must be chosen: a trade-off between convergence
time and estimation accuracy – each node tends to converge slower or faster
to a value that is less or more weighted by the local measurement.

We can explicitly characterize the behavior of the sensor νi to variations δz,i of
the locally measured value and to variations δz,ι on the value measured from



138 AC to solve the consensus problem in WSNs

the other sensor nodes νι ∈ V that constitute the network:

Hrec(s) =
1

s+ β + |Ni|
+

β

s(s+ β + |Ni|)
(4.35a)

Hsen(s) =
1

s+ β + |Ni|
. (4.35b)

From the above functions, we can see that the β-coefficient effectively regulates

Higher
β-values...

...stronger
robustness

+
faster recovery

the effect of the correcting action: higher β-values announce a stronger robust-
ness to errors and a faster recovery from erroneous state. Again, the number
of neighbors |Ni| mainly affects how fast the node adapts to new sensed values.
We can look once more at the two boundary scenarios. In a complete network,
the Laplace transform of each node νi with respect to variations of the locally-
sensed value δz,i, and of the values δz,j sensed by neighboring nodes is

CS,i(s) =
Hsen,i(s)

1 +Hrec,i(s)

(
1− (|Ni| − 1)Hrec,i(s)

1− (|V| − 1)Hrec,i(s)
δz,i(s)+

+
Hrec,i(s)

1− (|V| − 1)Hrec,i(s)

|V|−1∑

j=0,j 6=i
δz,j(s)

)
. (4.36)

For a ring network instead we have

Node’s
sensitivity in

complete net.

Node’s
sensitivity in

ring networks
CS,i(s) =

Hsen,i(s)

1−Hrec,i(s)|V|

(
δz,i +

|V|−1∑

j=0,j 6=i
Hrec,i(s)

(|V|−|j−i|)δz,j

)
. (4.37)

In the above analysis, we have again assumed that the average number of
neighbors |Ni| does not change significantly over the time required by the
algorithm to converge. In case we would like to study the system response
(i.e., sensitivity) to variations of |Ni| (= cY,i ) within the convergence period,
we would have to define also cY,i as analysis input and study the node’s response
to this additional input.
The DAC we have derived in this section has been used for experiments in
simulations and real-world scenarios where conditions were not ideal (results
reported in the following sections). The analytical results presented here were
used to calibrate the DAC in such scenarios and are used in the following to
compare the analytically predicted response and the actual measured trajec-
tory.

4.6.3 Simulations and comparisons in non-ideal scenarios

We implemented the extend DAC in Figure 4.12 (illustrated in the previous
section) and tested it in perturbed, dynamic scenarios. The dynamical system
of each node was simply modified such as to operate according to the following
formal definition:

DAC′i = {M′i,R′i,A} (4.38)
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Figure 4.13: The effect of β-parameter on the recovery from perturbations in a small
world network with |V| = 10 nodes, 3|V| = 30 links. The initial state was zi = i for
i = 1, 2, . . . , |V|. At t = 5 s, node ν1 introduced an error of 50% for 2 seconds. At
t = 15 s, node ν4 introduced an error of 30% for 1 second. As usual, the analytical
mean is reported as a red-dashed line.

with M′i = S ′i ∪ S
(j)′

i , S ′i = {Si,Xi,Yi,Zi}, S(j)′

i = {Sj ,Yj | j ∈ Ni} and

R′i = {[r′B ]j , rB′,i, rD′′,i, rX,i, rY,i, [rX ]j , rZ,i, rA,i}. (4.39)

Final DAC for
broadcast
consensus

We first assess the impact of control parameter β. As argued before, the
dimensioning of β represents a trade-off between robustness to perturbations
and estimation accuracy. Figure 4.13 illustrates sensors’ state evolution and
mean squared error of CH algorithm when β was either 0.1 or 0.5 (we recall
that kZ = kA = β s−1). The investigated setting was a small world network
with |V| = 10 nodes, 3|V| = 30 links and initial values equal to zi = i for
i = 1, 2, . . . , |V|. The number of sensors was fixed to 10 since errors are expected
to have a high influence in networks with a relatively small number of nodes.
In this experiment, certain nodes were forced to exhibit transient problems
in sensing or transmitting, and thus to introduce some perturbations in the
chemical network: at time instant t = 5 s, node ν1 introduced a measurement
error of 50% for 2 seconds; at t = 15 s, node ν4 introduced an error of 30% for 1
second. The results in Figure 4.13 show that a higher value of β allowed a faster
recovery from perturbations at the expense of a lower estimation accuracy. As
shown in Figure 4.13(b), the mean squared error during the first five seconds
was less than 10−3 for β = 0.1 whereas it was higher than 10−3 for β = 0.5.
Further simulations showed that β = 0.1 allows achieving a good tradeoff
between the two conflicting requirements. For this reason, we set β = 0.1 in all
simulations subsequently discussed. Nevertheless, different values of parameter
β may be required in scenarios exhibiting different features (e.g., affected by
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perturbations of different intensity) or for different application constraints (e.g.,
different constraints in terms of estimation accuracy).
Figure 4.14 illustrates performance comparisons among CH, BR, and RN algo-
rithms, in the same perturbed scenario as before. The CH algorithm resulted

Improved error
resiliency to be resilient to measurement errors (perturbations) while RN and BR did not

guarantee the achievement of average consensus. A simple (but inefficient) so-
lution to make RN and BR recover from errors would be to include a mechanism
that automatically switches off all sensors whenever a perturbation occurs, and
lets them run again with the new measurements.
Figure 4.15 illustrates the performance of CH, RN, and BR in the operating

Improved
accuracy in

switching
networks

conditions similar to those of previous tests (results in Figure 4.13 and Fig-
ure 4.14). This time, node ν1 suddenly disappeared at time t = 5 s whereas
node ν10 only appears at t = 20 s. As we can see, the correction mechanism
introduced in CH lets nodes track the variations induced in the average value
by the intermitting communications, while RN and BR algorithms fail.
In this section, we have not discussed all experiments done. We have tested
the performance of the chemical consensus model in other network topologies,
which were taken into account by few publications in the consensus/gossip con-
text. We experimented in a clustered network, where sensors formed groups of

Clustered
networks star-connected nodes. The central node of each cluster, assumed to have higher

performance in terms of reception and transmission, was able to communicate
with the next cluster-head node. Further, we considered inline networks, and

Inline networks
positioned nodes on a virtual line; middle nodes communicated with the two
neighbors whereas edge-nodes communicated with only one neighbor. And, we
generated random topologies by placing sensors at a random uniform distance

Random
networks between each other and allowing the communication between sensors within a

certain distance. The result was that, in all topologies, nodes converged to the
average value and recovered from erroneous states, with a speed related to the
network connectivity.
We tested also communications affected by “high” delays, i.e. U [1,100] ms.4.10

Delayed
networks In a consensus mechanism relying on the DACi defined in (4.11), the effect of

(highly) delayed links is the consequent underestimation of the average value
by nodes. Indeed, as soon as the delay is higher than the reciprocal of the rate
at which nodes transmit, a certain amount of molecules is “captured within”
the link and do not appear in any node. As a consequence, when the delay is
much higher than such a threshold, an important underestimation occurs. We
found that the β-controlled correcting mechanism, which we have introduced to
guarantee self-stabilization, also helps to correct the underestimation derived
from delayed links.

4.10A delay U [0, 100] ms is even excessive if we consider that nodes do not need to exchange
formatted packets. Instead, the information is encoded in the rate at which, for example,
RF pulses are transmitted (broadcasted to all neighboring nodes). The experienced delay is
thus directly linked to the radio propagation delay.
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Figure 4.14: Performance comparison among the chemical consensus (CH) algo-
rithm and the broadcast (BR) and randomized (RN) gossip algorithms in presence
of perturbations. At t = 5 s, node ν1 introduced an error of 50% for 2 seconds. At
t = 15 s, node ν4 introduced an error of 30% for 1 second. Coefficient β was set to
0.1, and initial state and network setup were like those related to Figure 4.13. The
analytical mean is reported as a red-dashed line.
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Figure 4.15: Performance comparison among the chemical consensus (CH) algo-
rithm and the broadcast (BR) and randomized (RN) gossip algorithms in switching
networks – at t = 5, node ν1 disappeared whereas node ν10 switched on at t = 20. The
initial state was zi = 10i for i = 1, 2, . . . , |V|. Coefficient β was set to 0.1 and the
network setup was like that related to Figure 4.13. The analytical mean is reported as
a red-dashed line.
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4.7 Testing the chemical consensus algorithm
under real conditions

Chemically-engineered algorithms can lie directly at the physical layer and can
be successfully used to control the basic hardware transmission technologies.
We describe in Section 4.7.1 how we have implemented the DAC (4.38) on
embedded microprocessors, and we report in Section 4.7.2 on results of real-
world experiments of a four-node testbed (photograph in Figure 4.16), in which
nodes exchanged data in an asynchronous manner with no need for packets and
admission control.

4.7.1 Artificial chemistries on a hardware testbed

The dynamical system, operating according to theDAC in Figure 4.12, has been
implemented into the embedded processor TI-MSP430F5438A, which served
also for data acquirement and conversion. The radio interface (transceiver)
has been developed with a simple low-cost circuit by using the TXM-433-LR

DAC imple-
mentation integrated chip for transmitting to and the RXM-433-LR integrated chip for

receiving from nearby nodes. To limit the complexity of each node, we let
the sensor interactions occur in a simple manner. Specifically, a pulse gτ (t)
of duration τ was sent over the channel whenever the remote reaction rB′,i
in (4.39) was executed (in the dynamical system). On the other hand, the
production of an S-molecule was induced whenever a pulse gτ (t) was received
from nearby sensors. According to the LoMA in (2.6), the average rate of
occurrence of reaction rB′,i turned out to be proportional to the concentration
of S-molecules (sensor’s state) at node νi. This means that the spatially dis-
tributed nodes interacted by means of pulses whose transmission rate encoded
the nodes’ state. Following the same line of reasoning, we let a pulse gτ̃ (t) of
duration τ̃ 6= τ be sent whenever the remote reaction rX,i was executed, and a
Y-molecule be produced whenever gτ̃ (t) was received.

To ease understanding, consider a simple network only composed by |V| = 2
nodes. Without loss of generality, we concentrate on the first node and explain
how sensor interactions occur. As a consequence of reaction r1,B′ in (4.39), the
node starts transmitting pulses gτ (t) at a rate equal to the initial concentration
of its local species (value equal to the measured quantity, i.e., cS1(0) = z1). At
the same time, cS1(t) is continuously modified on the basis of the number of
gτ (t)-pulses that are received from node ν2 (as a consequence of reaction rB,2).
This happens at a rate equal to cS2

(t). Internally, the current state cS1
(t) is also

continuously decreased at a rate cS1
(t), according to reaction r1,D′′ in (4.27),

and modified proportionally to the β-parameter, according to the reactions in
(4.30). To continuously estimate the number of neighbors, node ν1 has also
to transmit gτ̃ (t)-pulses at a constant rate α and to increase cY1

(t) whenever
a pulse gτ̃ (t) is received from node ν2. All these interactions are managed at
run time by the simple execution of DAC in Figure 4.12, according to chemical
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Figure 4.16: Experiment testbed consisting of four sensors where the dynamical
system (AC) has been implemented in the embedded processor TI-MSP430F5438A,
and the radio transceiver through transmitter TXM-433-LR, receiver RXM-433-LR,
and comparator MAX-921. Sensors have been implemented on TI-CC1120 evaluation
board, having also an LCD display for a practical setup and tracking of run-time
computation (RF-module provided with TI-CC1120 has been replaced by the self-
developed RF transceiver).

kinetics (running the reaction Algorithm 2).

The pulse rate depends on the sensor’s state. However, this does not mean
Quantity-to-
molecule ratio
to control...

...number of
transmissions

...accuracy

...representable
range

that if zi = 109 then 109 pulses gτ (t) per second must be transmitted by node
νi. Instead, it is important to decide how the values are encoded or, in other
words, how a certain amount of molecules has to be interpreted. For example,
assume that the system has to measure the average temperature in a sensor
network. Then, in order to limit the pulse rate, one has to properly associate
the right quantity (e.g., degrees celsius, Kelvin, Fahrenheit) to a single molecule
instance. This enables controlling the maximum transmission rate at the price
of a reduced accuracy of the computation (accuracy in the average estimation).

We have used the free Industrial Scientific Medical (ISM) radio band 433.05÷
434.79 MHz. Pulses gτ (t) and gτ̃ (t) had durations of τ = 100 µs and τ̃ =
200 µs, respectively. To obtain better performance in terms of on/off tran-
sition time of the transceiver, we have not used directly the output signal of
RXM-433-LR but rather its RSSI-signal as input to the MAX-921 comparator,
and extracted from there the demodulated pulse. Transmitter and receiver
have been equipped with 1/4-wave antennas. In such a configuration, the
whole sensor was characterized roughly by a total consumption of ∼ 36 mW
distributed in ∼ 13 mW consumed by the embedded processor, ∼ 17 mW by
the receiver, and ∼ 6 mW by the transmitter. The receiver’s typical sensitivity
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was −120 dBm and its dynamic range 80 dB, whereas the transmitter’s typical
output power was 3 dBm.
WSNs require simple, low-energy solutions since sensors undergo power-supply
constraints and should be low-cost and robust. Motivated by the above reasons,
we have adopted a time-division solution where sensors used the same frequency
carrier (433.92 MHz) and “shared” a common period Tmax = 10 ms: we have
encoded the transmission of each S-molecule into a 100 µs-long pulse (gτ (t)
with τ = 100 µs) every time the broadcast reaction rB fired. Additionally,
each sensor had a local 10 ms-clock and for each time-tick, it transmitted a
200 µs-long pulse (gτ̃ (t) with τ̃ = 200 µs) if the remote reaction had not fired
in the last 10 ms. From the reception point of view, each sensor produced
an S-molecule for each received pulse gτ (t) but produced also a Y-molecule
for each received long gτ̃ (t) or short gτ (t) pulse. This allowed saving part of
the transmission power. However, the side effect was a fixed maximum rate
at which sensors could transmit, i.e. 1/Tmax, thus a fixed ratio “range-of-
representable-quantity to estimation-accuracy”.
A possible drawback of the above implementation is that no countermeasures
are taken against interferences that might arise in WSNs, when the signals
transmitted by multiple nodes collide at a given receiving node. Although a
judicious design of the system parameters (maximum value of concentrations,
duration of the pulse and so forth) could reduce the occurrence of collisions,
more advanced multiple access protocols are required to effectively counteract
the above issue, thus increasing the complexity of each sensor. For this reason,
we have decided not to take countermeasures against interferences. This choice
has also been motivated by the observation that chemical systems usually
exhibit strong robustness to perturbations thanks to the mass-action kinetics
governing their interaction mechanisms (refer to [215] for a recent work in
the context of sensitivity and robustness of chemical reaction systems). The
robustness is a direct consequence of the fact that the information exchange is
encoded into a rate rather than in one or few information packets, and thus any
corruption of one or few of these transmissions does not significantly affect the
system. Another reason for the inherent robustness is that mass-action kinetics
often induces low-pass filtering behaviors and transfer functions exhibiting
negative real-part poles. Such a robustness has indeed been confirmed in our
experiments, although only four-node WSNs were tested.

4.7.2 Experiments on a four-node testbed

We experimented on our four-node hardware testbed (see Figure 4.16), oper-
ating according to the DAC defined in Figure 4.12. To our knowledge, this
was the first time that a Chemistry-inspired algorithm was built in a hardware
testbed and validated under real-world conditions.
In the experiment, we directly controlled the quantities z characterizing the
sensors. In Table 4.3, we report how the value zi in each sensor νi changed at
time tj . The experiment was divided into five phases: Initially (t = 0 s), when
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all sensors sensed 0, ν1 suddenly changed the local quantity z1 from 0 to 50.
Similarly, at time t ∼ 9.8 s, ν2 suddenly changed z2 from 0 to 50, whereas at
time t ∼ 19.9 s, ν3 suddenly changed z3 from 0 to 20. At t ∼ 57 s, ν2 started
decreasing z2, reaching z2 = 0 at t ∼ 57 s. Finally, ν2 left the network at
t ∼ 63 s. The nodes moved in an area of 50 m2, in an indoor environment.
Figure 4.17(a) illustrates the sensors’ state evolution of each node νi (the
amount of molecules Si sampled 100 times per second) under the aforemen-
tioned operating conditions. Sensor nodes adapted their state in response to
variations of the local quantities z and converged quickly (less than 5 s) to
the arithmetic mean (red-dashed line), a-posteriori calculated as column-sum
of values in Table 4.3 divided by the number |V| of participating nodes.
Sensor nodes were able to recover from erroneous states induced by external
interferences: An interfering signal (created on purpose from t = 22 s to t =
33 s) made the sensors temporarily underestimate the average. Once removed,
each sensor converged to the desired value in approximately 20 seconds.
The chemical consensus algorithm induced perfectly predictable dynamics of
sensors: In Figure 4.17(b), red-dashed lines represent the trajectories predicted
through (4.36) when δz,k(s) = δz,k reflects the impulse measurement variation
(e.g. in time-domain, δz,1(t = 0) = 50, and δz,1(t = 0−) = δz,1(t = 0+) = 0).
The time-zoomed trajectories measured during the first nine seconds of the
experiment are closed to that analytically predicted.

4.8 Further insights on
the Chemistry-inspired consensus

This chapter was basically divided into two parts: we have shown how Artificial
Chemistry can be beneficial to extract a model for achieving consensus in WSNs
and how to exploit the derived analytical tools, and we have presented an
implementation for this model to prove the realizability and the validity of our
findings. In the following, we separately comment on these two specific parts,
highlighting open issues and possible future research topics.

4.8.1 Artificial Chemistry for consensus in WSNs

We have first shown analytically and by means of simulations that simple
interaction mechanisms inspired by chemical systems can provide basic tools
for achieving consensus in WSNs. However, some issues are still open.
In this work, we do not cover in detail the discretization aspect (studied for

Discretization
example in [50] and summarized in [66]), which may affect the final nodes’
average-estimate. We limit to observe here that, by calibrating the amount of
molecules that are produced per measured-quantity unit, designers can regulate
the precision of the nodes’ estimates and decide the amount of transmissions.4.11

4.11In the experiments, we have thus coped anyway with the effect of discretization: we
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Time instant t [seconds] 0 9.8 19.9 53 → 57 63
Value of z1 50 50 50 50 50
Value of z2 0 50 50 → 0 /
Value of z3 0 0 20 20 0
Value of z4 0 0 0 0 0

Table 4.3: Local data zi detected by node νi at time t during the experiment with a
four-node hardware testbed. The results are plotted in Figure 4.17(a).
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Figure 4.17: (a) Experiment results (4 colored, continuous lines) and arithmetic
mean (red-dashed line) showing the sensors’ state evolution over time. The β coeffi-
cient was set to 0.1. An interference was created on purpose from t = 22 s to t = 33 s.
Refer to Table 4.3 for the related dynamics of the measured values z. (b) time-zoomed
trajectories of the sensors’ state, measured in the experiments (colored-continuous
lines) and predicted by means of (4.36) (red-dashed line).
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Another way to reduce computations/transmissions, and thus the resource
consumption, consists in slowing down the virtual time characterizing the
chemical model: transmissions decrease in number, this time at the cost of
a proportionally-slower adaptation. Note that, in our simple implementation,
lower rates mean also lower probability of collisions/interferences.

In this work, we considered a very simple communication model and did not
refer to specific channel models and communication technologies. However, by
means of simulations, we have tested the ability of a Chemistry-based system
to recover from perturbations. Such perturbations may represent the gener-
alized effect of fading (transient under-valued state of one or more sensors),
multipath (transient over-valued state of one or more sensors), or non-reliable
links (variation of the number of nodes and different participation times).

This work has focused on balanced digraphs only. In the presence of unbalanced
graphs, the theoretical and experimental results illustrated in this chapter are
no longer valid. Indeed in this case, sensors converge to a common value
that differs from the average of the local measurements.4.12 This result occurs

Unconstrained
consensus
problems
are always
solvable

because, at the equilibrium, molecules are still evenly distributed among all
participating sensors but are “diffused” with different proportions, depending
on the ratios between the number of receiving and transmitting neighbors.
Future work could focus on the development of solutions able to take into
account such different weights while still using chemical mechanisms of similar
complexity to those adopted in this chapter.

4.8.2 An implementation of Artificial Chemistry in WSNs

The second part of the chapter has shown that the AC can work under real-
world conditions, and that the above framework can directly be used to develop
a hardware implementation.

Although the experimental results are quite promising even under real-world
conditions, the work presented in this chapter should not be seen as a final-
ized, ready-to-use commercial product for nowadays markets. We believe that
further research in the implementation context may bring significant improve-
ments in terms of robustness and speed.

For example, as already mentioned, the simple implementation we proposed
does not consider the admission to the shared wireless medium. The conse-
quence is the higher or lower likelihood to experience communication collisions
and the consecutive underestimation of the average by nodes. We can “quan-
tify” this phenomenon in terms of collision probability and possibly overcome
it by letting the chemical reactor compensate the unwanted outflow created by

have had to use a number of molecules per unit quantity such as to obtain an acceptable
estimation accuracy.

4.12For unbalanced graphs, the presented model does not represent a solution to constrained
consensus problems but it still is a solution to unconstrained consensus problems, according
to definitions in [180].
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collisions. Refer to Appendix A.8 for further details on this topic. Here, we limit
to observe that such a compensation corresponds in practice to complementing
the DAC in (4.12) with a reaction that generates lost S-molecules at the speed
at which collisions theoretically occur on average. The latter depends on a
quantity each node knows, the number |Ni| of neighboring nodes.

A different implementation may use a frequency-division approach rather than
the time-division one we have proposed in this chapter. By assigning to
each node a specific reserved frequency-channel, we can ensure the absence
of collisions, at least due to node-cross-interferences. However, this approach
requires a more complex technology than that used for the presented testbed.
Furthermore, we have to consider that, as the number of nodes increases, the
required bandwidth does too. We could increase the frequency resolution of
the transceiver in order to reduce the bandwidth associated to each channel.
However, this inevitably increases the minimum physical time required for the
acquisition of a sufficient amount of samples and thus, it is related to the max-
imum speed with which we can turn on-off the carrier. Refer to Appendix A.9
for further details.

4.9 Conclusion

In this chapter, we have demonstrated that the use of Chemistry to design
and study solutions for the consensus problem represents a valid alternative
to traditional methods. This work represents a first comprehensive treatment,
ranging from “applied theory” to implementation.

We have introduced a set of simple interaction rules that, directly derived
from intuitive patterns, allows achieving consensus in WSNs in a distributed
manner, with no need for any synchronism and admission control mechanism.
We have focused on balanced digraphs and only for this kind of networks, the
proposed interaction rules solve constrained consensus problems, although they
still always solve unconstrained consensus problems. From these interaction
rules, we automatically extracted a fluid model which is the same as the one well
established in the literature. The proposed final solution has been validated and
compared with other solutions by means of experimental results, and further
tested under real-world conditions by means of a four-node hardware testbed.
Sensor nodes exhibited state-trajectories that closely match the analytically
predicted ones. The numerical and experimental results show that the use of
Artificial Chemistry for deriving, analyzing, and implementing communication
protocols is not merely an intellectual exercise but an alternative approach,
which may pave the way for the development of robust solutions, able to cope
with the uncertainties of WSNs.

This chapter represents a first step towards the utilization of hardware to run
artificial chemistries in the context of networking and communication. For the
first time, data-exchange through artificial chemistries do not rely on complex
layered communication infrastructures, where the main means to communicate
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are packets. Instead, artificial chemistries are implemented on embedded mi-
croprocessors and lie at the lowest layer of the communication stack; chemical
reactions in the dynamical system are directly linked to the RF-transceiver
module. Although applying Chemistry to the consensus context may require
further investigations, we hope this work serves as an incentive for the research
community for further explorations in this context.





Chapter 5

Artificial Chemistry to
Enable Programmable Control
in Hardware

“When you first start off trying to solve a problem,
the first solutions you come up with are very com-
plex, and most people stop there. But if you keep
going, and live with the problem and peel more
layers of the onion off, you can often arrive at
some very elegant and simple solutions.”

Steve Jobs

In this chapter, we investigate the realizability of Chemistry-inspired mecha-
nisms in hardware and propose a first implementation for this novel class of

algorithms on Field-Programmable Gate Arrays. The introduced framework,
or design-abstraction, can be used to build any (Chemistry-driven) hardware
controllers, and it is promising to enable a high programmability of network-
dynamics-related tasks. The user can define/modify at runtime the behavior
of hardware controllers by simply configuring a few of memories (which define
the driving chemical model). In this way, the programmability by the user is
preserved both pre- and post-deployment.

This chapter is structured as follows: We first motivate this work in Section 5.1.
Then, we explain in Section 5.2 the main components (“cores”) we have created
to build an Artificial Chemistry in hardware, and we complete the explanation
by illustrating in Section 5.3 how these components are connected to realize a
programmable Artificial Chemistry on a small FPGA-device. We show in Sec-
tion 5.4 how such a platform can be configured to implement a rate controller for
Internet traffic, and to realize a system of hardware devices that distributively
compute the average function. We finally discuss obtained performances, open
issues, and possible impact of this work in Section 5.5.
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5.1 Introduction

Until now, in this thesis, we have proposed to control communication and
networking systems by means ofACs, by letting a virtual dynamical system (the
AC) evolve over time according to chemical kinetics, and by driving accordingly
the behavior of nodes in computer and wireless sensor networks. This means
each node has to be equipped with a “chemical engine” that, once configured
with a certain chemical reaction network, implements and runs the reaction
algorithm A so that the desired macro-behavior emerges. As we know from
Chapter 2, the calculation of propensities and next-reaction times as well as
the update of molecular concentrations entails priority computations to be per-
formed at run-time. This may require a computational power that, according
to which CPU the AC is implemented in and to the speed at which events have
to be processed, turns out to be unaffordable. For example, the performance
attained in Chapter 3, although satisfactory for end-systems, would be very
costly when executed on the CPU of a network router with multiple network
interfaces that are served at line speeds.
In fields like traffic management, there is often the need for processing at high
speeds events such as packet arrivals and departures. For this reason, tradi-
tional traffic management solutions often need to include a hardware accelerator
with a tailored internal structure for the specific task it has to perform. In
general, a hardware accelerator is a co-processor that is capable of performing
a certain task faster (performance), cheaper (power), and/or more precisely
(computational accuracy) than a standard CPU does. Although hardware
accelerators offer a reasonable performance improvement, a customized logic
hardware is however required when aiming at speed and accuracy optimiza-
tion [83, 259]. Without any sort of operating system and any software-based
description, decision- and action-mechanisms that are implemented on raw
hardware must be simple [138,211].
In this final chapter, we show how to build complex systems while still main-
taining their implementation simple enough to be built in hardware. This
allows achieving ultimately fast processing in AC-based communication and
networking systems. We propose a hardware implementation of ACs, and
validate it on Field-Programmable Gate Arrays (FPGAs), taking advantage
of the reliability of dedicated hardware circuitry, of the parallel execution, and
of the lightning-fast performance.
An FPGA is a device that contains a matrix of reconfigurable gate array logic
circuitry, surrounded by a periphery of I/O blocks. Once it is configured, the

Field-
Programmable

Gate Arrays
(FPGAs)

internal circuitry is connected in a way that creates a hardware implementation
of the desired task (FPGA-technology is explained in details at the beginning
of Section 5.2). Thus, FPGAs enable using dedicated hardware for processing
logic and deter relying on an operating system or on a sequential representation
of actions. Rather, FPGAs enable true computation parallelism by nature;
different processing operations do not have to compete for the same resources.
As a result, the performance of one part of the application is not affected
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when additional processing is added, as opposed to what happens in software
applications. Unlike Application Specific Integrated Circuits (ASICs), which
are integrated circuits customized for a particular use with fixed hardware
resources, FPGA-based systems can literally rewire their internal circuitry to
allow reconfiguration after the system is deployed. Thus, FPGA-technology
allows us to “program” (Chemistry-inspired) controllers on the fly. Besides
the possibility to update the functionality and to re-configure a portion of the
design, the FPGA-technology has also the advantage of substantially lower
engineering costs. Nevertheless, for huge production volumes, the framework
we propose here can be used to produce customized integrated circuits, with
benefits in terms of speed and energy consumption. We do not use Complex
Programmable Logic Devices (CPLDs) because of the limited logic resources,
not sufficient to implement complex ACs, and again because of the reduced
flexibility of post-deployment configuration.
Before introducing how we have implemented AC on FPGA-technology, we
comment on a few interesting works that propose hardware implementations in
contexts that relate to our work, and we explain the space of our contributions.

5.1.1 Related works

In networking and communication systems, there is often the need for pro-
cessing and computing at high rates. This is attested by the effort spent by
the research community (e.g., [9, 42, 139]), as well as leading companies on
the hardware market (e.g., [15, 196]), in finding solutions that can be fitted
in efficient, tailored processors, or that can even be implemented in hardware.
For example, the traditional forwarding and routing of packets are problems
that often imply hardware implementations, where required decision and action
mechanisms are accomplished at high speeds (line rates) by taking advantage
of hardware technology such as FPGAs.
FPGAs have extensively been used for networking tasks due to benefits such
as fast time-to-market, ability to fully exploit computational parallelism, and
high processing speed. Nevertheless, networking functions on hardware remain
neither easy to program nor fast to modify (particularly post-deployment). Al-
though Hardware Description Languages (HDLs), such as VHDL [118] and Ver-
ilog [117], allow modeling, verification and automated synthesis of the digital
designs, the process of hardware designing takes a long time, is laborious [138],
and inhibits the implementation of complex control functions [7].
Motivated by the mentioned difficulties, soft-processors (processors composed
of programmable logic on the FPGA) have frequently been proposed in the last
years, see for example [139, 170, 202, 229]. These solutions still rely on FPGA-

Software-based
sequentialized
descriptions of
the system

technology but use a software-based description, by means of CPUs embedded
on FPGAs. Soft-processors are popular because they (i) are easy to program
(e.g., by means of C-Language), (ii) are flexible (i.e., can be customized), and
(iii) enable solutions which include complex decisions and actions. For exam-
ple, the authors of [73] implemented Rate Control Protocol (RCP) routers in
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hardware but still performed the periodic control computations (e.g., equation-
based bandwidth allocation and moving average of round-trip times) in soft-
ware, and left to actual hardware implementations only simple tasks such as
the time-stamping and the identification of packets (i.e., identifying whether
an incoming packet is an RCP packet). Another motivation for the success of
soft-processors is the fact that most networking researchers are used to high-
level software descriptions and not trained in hardware design [211]. Even for
those that are, packet processing and traffic-control designing in a hardware-
description language is time consuming and error prone [138]. In spite of these
attractive advantages, software-based approaches renounce however to much of
the benefits (in terms of accuracy and speed) derived from running solutions
on hardware. An advance in terms of speed has been done with OpenCL [13], a
standardized C-language description for programming parallel tasks on proces-
sors embedded in FPGAs. Still this approach requires a strained transposition
from the high-level software-based description to the actual low-level hardware
implementation. Somehow, software-based approaches renounce to an elegant
and simple solution that is actually close to the hardware representation.

5.1.1.1 Hardware solutions for traffic shaping

Few research works (e.g., [9, 106]) focus on full hardware implementation and
deviate from software-based design. An outstanding project (from an aca-
demic perspective) for experimentation with hardware is NetFPGA [147,177].
NetFPGA is a line-rate, flexible, and open platform for research experimen-

NetFPGA
tation, which uses an FPGA-based approach to prototype networking devices,
and allows users to develop solutions with capabilities (e.g., line-rate packet
processing) that generally are not achievable with software-based approaches.5.1

Most of the seminal works concerning hardware-based traffic shaping solutions
have used the NetFPGA platform. Although the majority of them still perform
update equations on the software layer of NetFPGA (e.g., [73,151]), a few works
actually build complete control mechanisms in hardware. For example in [9],
NetFPGA hardware is used to implement (i) a packet pacer that works at
the NIC layer and (ii) phantom-queue modules that are used for Active Queue
Management (AQM) purposes. As another example, authors of [106] presented
the design and prototype of a hardware implementation of a packet pacer on the
NetFPGA platform, with the aim of showing the benefit of actively smoothing
traffic in small-buffer networks such as optical packet switching networks.
From a more commercial perspective, Xilinx Inc. offers a common, unified

Traffic-
Management

IP-Cores

FPGA architecture that enables “next-generation traffic management” and
packet-processing applications with a broad feature set [196, 255] – i.e., the
possibility to have many hierarchical scheduling levels, hundreds of queues,
burst equalization, Random Early Detection (RED) option, per-flow scheduling

5.1NetFPGA is a Gigabit Ethernet open platform for networking research which has been
developed at Stanford University, consisting of a PCI card with a Xilinx Virtex 2Pro and
Spartan 3 FPGAs, SRAM, DRAM and 4 Gigabit Ethernet ports.
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logic5.2, per-flow token bucket shaper, and throughput of GBps. Similarly, In-
tellectual Property cores (IP) from Altera Corp. assist designers in implement-
ing traffic management FPGA-based solutions [14, 15]. Their IP incorporates
five levels of scheduling to enable the implementation of hierarchical QoS and
flexible queue configuration and mapping. It offers the possibility to work with
more than one queue, with different shaping algorithms5.3 and with different
scheduling algorithms. Finally, Lattice Semiconductors Corp. produces low
cost, low power FPGA-technology with a Traffic-Management-specific IP [140].

5.1.1.2 Hardware for Nature-inspired systems

In the context of Natural Sciences5.4 (e.g., simulation of observed phenomena,
solution to complex problems, or distributed computation via Nature-inspired
mechanisms), research activity has mainly relied on software-based solutions.
There exist only few Nature-inspired hardware-based solutions, although Nature-
inspired approaches (which encompass usually basic subsystems interconnected
via simple rules and actions) exhibit features such as the inherent processing
parallelism that resemble hardware systems. One example is Artificial Neural
Networks (ANNs) implemented on FPGAs, e.g., [82, 150, 161]. ANN are mas-

Artificial
Neural
Networks

sively parallel computation systems that are based on simplified models of the
human brain. Their complex classification capabilities, combined with prop-
erties such as generalization, fault-tolerance and learning make them attrac-
tive for a range of applications not possible with conventional computational
approaches (e.g., video motion detection, hand-written character recognition
and complex control tasks). In this context, FPGAs combine programmability
(although this results in an intrinsic overhead and thus a limited logic density of
FPGAs) with the increased speed of operations associated with parallel hard-
ware solutions. Other examples of Bio-inspired systems on FPGAs can be found
in [132, 171, 172], where Cellular Automata systems are implemented on FP-

Cellular
AutomataGAs. Cellular Automata are a noteworthy candidate among parallel processing

alternatives (e.g., for public-key cryptography, error-correction coding, image
processing) and for simulating natural phenomena (e.g., moving wave patterns
on living organisms’ skin, gas and fluid dynamics, complex behaviors such as
recognition and learning); they are characterized by simplicity, parallelism and
distributiveness.
There exist also works that propose to speed up simulations of chemical and
biological systems by delegating computations to FPGA technology [126, 148,
209,239,261]. Motivated by the clear need for high-speed processing in “next-
generation” communication networks, we have also developed a hardware plat-
form where ACs can be easily implemented and then used to control networking

5.2E.g., Round Robin, Weighted Round Robin, or Weighted Fair Queuing.

5.3Token bucket or leaky bucket.

5.4With “Natural Sciences” we mean branches of science dealing with the physical world,
i.e., Physics, Chemistry, Geology, and Biology.
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and communication systems’ dynamics. In the following, we summarize specif-
ically our contributions in this regard.

5.1.2 Space and scope of our contribution

In this chapter, we investigate the realizability of Chemistry-inspired algorithms
in hardware, and propose a first hardware-implementation. We describe a
very flexible platform for building ACs in FPGAs and hence hardware mech-
anisms for communication and networking. Engineers can realize solutions

AC-based
high-level

abstraction
for designing

hardware
controllers

for applications ranging from traffic management (e.g., a plug-and-play rate
controller for Internet traffic) to distributed computation (e.g., distributed
average computation in sensor networks), by simply changing the configuration
of a few memories that defines the underlying chemical model.
We enable processing parallelism in control-mechanism design while maintain-
ing analyzability and predictability of dependent-conditions and actions, but
avoiding traditional sequential-description. We do not resort to any sort of
software-based approaches, in favor of a parallelized solution that processes
events at high speed and with high time-granularity. At the same time, we still
guarantee a flexible and simple way to design hardware-controllers – designers
only have to draw an appropriate reaction network that accommodates the
(macro-) requirements of their project. By parallelizing most computations
required from the reaction algorithm A, computational performance is drasti-
cally improved – no matter the complexity of the chemical model, processing
times can be limited to nanoseconds.
We implement chemical-like systems (i.e., ACs) in silicon – via basic logic
gates and flip-flops, we realize networks of molecular species that interact
continuously and in parallel, according to predefined reaction rules and external
events. AC is not bound to a single chip only but rather it can be easily

ACs and DACs
with

chemical-like
kinetics

embedded in multiple FPGA-devices to perform tasks in less time or with
the need for less powerful (in terms of logic) devices – a DAC running on
multiple FPGAs. The dynamics of developed systems follow chemical laws and
principles. This allows obtaining trajectories that are easily analyzable, while
maintaining enough implementation simplicity.
To validate our work, we provide results obtained from experiments with Xil-
inx Spartan-6 XC6SLX9 FPGA. The used implementation optimizes the logic

Plug-and-play
rate controller

for Internet
traffic

density rather than the computational speed. In this way, we were able to
implement within a small FPGA complete ACs that can process/control exter-
nal events at high speed. The complexity of configurable chemical models (in

Distributed
average

computation in
wired networks

terms of number of species, reactions, reactants, and products) is sufficient to
create a wide spectrum of solutions. With this platform, we realize (i) a plug-
and-play module to control the egress traffic of a linux machine (the hardware-
implementation of the traffic rate controller introduced in Chapter 3), and (ii) a
three-node wired-network, where nodes converge in a short time to the average
of their initial value (the hardware-implementation of the chemical consensus
algorithm explained in Chapter 4). While, no works have been published in
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the context of hardware-implementation of consensus algorithms,5.5 hardware
rate control has been treated for example in [109,138,139,170,202]. In contrast
with these studies, we do not try to directly solve complex traffic management
tasks, and we can thus avoid implementation approaches that rely on software-
description and merely reproduce processors on FPGA. At the same time,
we offer the possibility to design within the same platform arbitrary runtime-
programable controllers (as opposed to works, such as [9,106], that reduce the
control mechanism to a fixed basic rule) – designers can define control mech-
anisms consisting of almost arbitrary (virtual and real) queues that interact
with each other according to almost arbitrary rules.

This work can enable the programmability of high-efficiency tasks pertaining
network dynamics in future network interface cards, routers, switches, and
sensors. This may represent a significant contribution also to the research
in Software Defined Networking (SDN) [185], where today’s technologies like
OpenFlow [159] and OpenStack [187] can access/modify parts of a router/node
that pertain to topology creation and configuration, but have no means to con-
trol and configure the network dynamics. Dynamics-control operations are gen-
erally challenging because they (i) require a more frequent control/management
intervention than the one required to setup a topology, and (ii) imply a deeper
algorithmic complexity (from a programmatic point of view) than the one
required to update lookup-tables and set-up flow filters. What we provide in the
end is an abstraction/middleware to build run-time programmable hardware
modules for dynamics-control operations.

5.2 Artificial chemistries on FPGA

We aim at a middleware/abstraction that enables configuring AC-based net-
working mechanisms and control functions, which are implemented on FPGAs.
Conceptually, FPGAs can be considered as an array of Configurable Logic

FPGA-
technologyBlocks (CLBs) – also referred to as “slices” or “logic cells” – that can be

connected together through a vast interconnection matrix to form complex
digital circuits. The two basic components of CLBs are Flip-Flops (FFs) and
Look-Up Tables (LUTs). FFs are binary registers used to synchronize logic
and save logical states between clock cycles within an FPGA circuit – on every
clock edge, a FF latches the 1 or 0 (true or false) value on its input and holds
that value constant until the next clock edge. LUT-memories allow registering
the combinatorial output of the CLB – any combinatorial logic (ANDs, ORs,
NANDs, XORs, etc.) is implemented as truth tables5.6 within LUT memory.
Other main components of FPGAs are the I/O blocks, which allow the circuit

5.5Apparently, there is no need for FPGA-technology in the context of consensus. This is
because at the moment, consensus solutions are applied mainly in wireless sensor networks
where the power consumption that FPGA-devices may require can be a concern.

5.6A truth table is a predefined list of outputs for every combination of inputs.
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Figure 5.1: Main components of the FPGA-technology (Figure inspired to a picture
in [174]).

to access to and be accessed from the outside world. Figure 5.1 outlines the
main components of the FPGA-technology.

The function of the FPGA is defined by the user; the design is either pro-
grammed semi-permanently as part of a board assembly process, or it is loaded
from an external device each time the FPGA is powered up. A user’s design
is implemented by specifying the simple logic function for each CLB and selec-
tively closing the switches in the interconnect matrix. Each CLB combines a
few binary inputs (typically between 3 and 10) to one or two outputs, according
to a boolean logic function specified by the user.

The actual hardware design is defined via a textual hardware description lan-
guage code (or by drawing schematic diagrams) which is then translated in
places and routes. The design process is simplified by the use of libraries
of more complex functionality-macros, made of arrays of CLBs (e.g., adders,
multipliers), which provide common circuits, optimized for speed or logic uti-
lization.

The programmability by the user of Chemistry-inspired mechanisms stems
from the configuration of part of the FPGA. This simply means configuring
memories that store values of (i) molecular concentrations, (ii) stoichiometric
coefficients, and (iii) reaction-rate coefficients. The rest of the logic resources
is instead semi-permanently programmed and used to (i) perform arithmetic
operations in order to quantify the propensity a of reactions, (ii) realize timers
in order to “materialize” chemical kinetics (i.e., let each reaction occur at the
right time according to the LoMA), and (iii) realize the automated update of
molecular concentrations, at instants defined by chemical kinetics (by reaction-
rate coefficients) and according to reactions (to stoichiometric coefficients).

We have directly used the basic building blocks as provided by FPGA manufac-
turers (i.e., Xilinx’s logic cores [251, 252]). We thus focus only on the missing



5.2 ACs on FPGA 159

basic components to realize an AC-platform, without explaining in detail the
implementation of adders, multipliers, and other basic operator logic cores we
have used (e.g., ripple carry array, row adder tree, carry save array, LUT, etc.).
Still, we discuss their features that are relevant to our design choices.

According to the definition in Chapter 2, three main components define an AC:
species S, reactions R, and algorithm A. We first describe the structure of the
chemical model (i.e., we introduce S and R) in Section 5.2.1, and then describe
how chemical dynamics are imposed on the model (i.e., how the mass-action
scheduler A is described via combinatorial logic) in Section 5.2.2.

5.2.1 Defining the structure of the chemical model

To run an AC we need to monitor its state, i.e., the species’ state (the amount of
virtual molecules of each species). Thus, we need registers (one for each species)

Concentration
memory
(c-RAM)

that, once initialized, keep track of the run time number of corresponding
molecules. To this end, we require a Random Access Memory (RAM) that has
as many entries as the number |S| of species in the AC, each of them having a
reasonable number of bits to store a sufficient (limited) amount of molecules.
For example, if we want to keep track of 8 species with a limited concentration
range (possible number of molecules) between 0 and 255 molecules, we should
use 8 times 8 FFs connected in cascade. Alternatively, we could take advantage
of a part of the block RAM embedded in most of available FPGAs.

Reactions define via the stoichiometric matrix how species interact, i.e., how the
RAM latching concentrations (c-RAM) is updated. This matrix is specified by

Stoichiometry
the user and remains unchanged during the runtime evolution of the AC, unless
the user configures it differently. For example, the stoichiometric reactant coef-
ficient αr,s represents the amount of molecules of a certain species s consumed
by a reaction r.5.7 In the implementation of an AC in hardware, we simplify the
meaning of this coefficient by allowing it to assume 1 (the species s is a reactant
of reaction r) and 0 (the species s is not a reactant of reaction r) values only. In
this way, we can implement the stoichiometric reactant coefficient as a simple
1-bit signal that enables or disables the subtraction of “1” from the register
of the concerned species (i.e., the bank of FFs, representing a single location
of the c-RAM). Figure 5.2(a) outlines such a scheme for a single reaction r
and a single species s, whose concentration (amount of molecules) can be any
integer value in the range [0, 15]. The 4 FFs constitute the cascaded 4-bit
register for latching the species concentration value (highlighted by the gray
area at the bottom of Figure 5.2(a)). The state of this register is modified by the
subtracter-module, which decrements the species concentration by one molecule
each time it is enabled via en-port. The subtracter’s inputs are (i) the species
concentration (a3 . . . a0), which is read from the 4-bit register, and (ii) the

5.7In the following, we refer to reactants only. The same argumentations, and thus
implementation-schemes, are valid for implementing stoichiometric product coefficients βr,s
too – the subtraction is simply replaced by an addition.
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Figure 5.2: How to implement the stoichiometric reactant coefficient in hardware –
species concentration update only. These are simplistic schemes where one reaction r
and one species s (maximum number of molecules =15) are considered. (a) Scheme
that allows a species to represent a 1st-order reactant (αr,s = 1). (b) Scheme that
allows a species to represent a 2nd-order reactant (αr,s = 2↔ αr,s′ = αr,s′′ = 1).

fixed value “0001” (=b3 . . . b0) representing the one molecule to subtract. As
we have mentioned, the operation of the subtracter is triggered by a non-zero
signal on the en-input. This happens only when the stoichiometric reactant
coefficient αr,s is set to one (in the scheme, the switch is set to Vcc-position,
as depicted in Figure 5.2(a)), because of the AND-gate. The actual triggering
signal is the other input of the AND-gate – the single-bit signal exeReact flags
the execution of the reaction r by staying at high level for a clock-cycle (see
the signal clk) as soon as reaction r is executed. In that case, the output of
the subtracter is then o3 . . . o0 = a3 . . . a0 − b3 . . . b0.

For a reaction r that consumes n molecules of the same species s at once
(species s is an nth-order reactant of reaction r), we have multiple (n) simplified
stoichiometric reactant coefficients concerning the same species. Again, each of
these stoichiometric reactant coefficients enables the subtracter-module, which
subtracts one from the register (i.e., a specific location of the c-RAM) of the
concerned species. Figure 5.2(b) outlines the scheme for a single reaction r
and a single species s, which can be at most a 2nd-order reactant. Differently
from the previous scheme, in Figure 5.2(b) there are two switches for the two
stoichiometric reactant coefficients αr,s′ and αr,s′′ , both related to reaction r
and species s. The enabling of the subtraction is dependent on the position of
these two switches: when both are set to Gnd, the input of the OR-gate is zero,
and thus its output is zero too, disabling in this way the subtracter-module.
On the contrary, when one of the two switches is set to Vcc, the subtracter is
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enabled (the OR-gate has at least one high-valued input). The triggering of
the subtraction-operation again relies on the exeReact-signal. In this scheme
however, the subtraction can be triggered twice when αr,s′ and αr,s′′ are both
set to one (as depicted in Figure 5.2(b)): The delay-module (D-module) delays
pulses on exeReact-signal by x clock’s cycles. This means that, as soon as
reaction r occurs, the signal on the subtracter’s en-input is high for one clk-
cycle, low for x clk-cycles, and then again high for one clk-cycle. This makes
the subtracter remove twice the value “0001” from the concentration register
of species s, each time the reaction r occurs.

The x clk-cycles delay must be sufficient to cover the latency of the subtracter-
module, which depends on the way the subtracter is implemented. The sub-
tracter module embeds a whole logic to perform a subtraction (addition). For
this reason, a certain time elapses from when the en-signal is applied to when
a valid output is available. For example, the latency introduced by a simple
n-bit “ripple carry adder” is 2n times the gate delay, or n times the gate delay
in the case of carry-propagation optimization as proposed in [146] (see also [41]
for further details). The adder’s latency can be reduced to one clk-cycle by
parallelizing the logic at the cost of a higher utilization of CLBs and thus of the
FPGA (this represents a design choice during the placing and routing phase).

We can extend the explained mechanism to enable updating many species.
For example, the scheme in Figure 5.3 implements the update of multiple
species concentrations – it includes a reaction r and a set of three species
S = {S1,S2,S3}, and gives the user the chance to define three reactants. The
concentration of the three species is stored as a 4-bit number in three registers
(the c-RAM is made of 3 locations of 4 bits each). Depending on stoichiometric
reactant coefficients, these concentrations are possibly updated by subtracters
once the reaction r occurs – these subtracters are enabled by the triggering
exeReact-signal and by the stoichiometric reactant coefficients. For example
in Figure 5.3, S3-species represents a 2nd-order reactant of the reaction r and
S2-species a 1st-order reactant, whereas species S1 is not a reactant. Once
the reaction r occurs, the 2-bit down-counter enables sequentially the three
“stoichiometric decoders” (the decoders in the top-right gray area). Because
the inputs of two out of the three stoichiometric decoders are “11” and of the
remaining decoder are “10”, the S3-related subtracter is enabled twice and the
S2-related subtracter is enabled once. Differently, the subtracter related to
species S1 is never enabled (because no stoichiometric decoder has inputs “01”
and thus outputs “0010”, which instead would enable the subtraction of “0001”
from S1-register). Once the 2-bit counter has reached the stable state “00”,
the directly-connected decoder produces “0000” as output until the reaction
r fires again and thus disables all subtracters for the whole reaction interval.
Subtracters are also disabled when stoichiometric coefficients are set to “00”.

In the example in Figure 5.3, we have assumed that the subtracters have unitary
latency and thus that no delay between updates of the same species is needed.
In reality, the 2-bit counter is replaced by a n-bit counter. Then, by taking
LSB and MSB bits of the counter, we enable an arbitrary interval between
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Figure 5.3: How to generally implement the stoichiometric reactant coefficients in
hardware – species concentration update only. The scheme includes one reaction r
and three species S1, S2, S3 (maximum number of molecules =15), and it allows three
reactants (or fewer higher-order reactants) – with the shown configuration of αr,s we
have r : 2S3 + S2 → . . . .

subtractions in the same species. Furthermore, in the example we have assumed
a maximum of three reactants. Instead, by having y as a maximum possible
number of reactants, we have a (log2 y)-bit counter instead of the 2-bit counter.

For the sake of clarity, the scheme reproduces a mechanism where stoichiometric
coefficients enable sequentially the concentrations’ update. However, we have
to perform sequentially only multiple updates of the same species (because we
need to access the same register). Instead, we can update in parallel multiple
species at the same time (because we access different registers). That is, we
can improve the scheme in order to make the update of 1st-order reactants
parallel. To this end, the scheme should include also “stoichiometric decoders”
that are directly enabled once the reaction occurs (i.e., the exeReact-signal
feeds directly the AND-gates at decoders’ outputs, without passing through
the down-counter). Differently from the ones represented in the scheme, these
decoders must be configured with different coefficients as inputs. For example,
a reaction r : 2·S3+S2 → . . . can be configured via two “delayed stoichiometric
decoders” both set to “11”, and another “direct stoichiometric decoder” set to
“10”. In this way, we can reduce by one third the time required to update
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r-dependent species.
We can interpret the stoichiometric matrix as a memory. Reactant and product
coefficients are stored in pseudo Read-Only Memories (ROMs) – memories that
are not written during the normal execution of the AC but that can be modified
by the users in the configuration phase (even at run-time). Each location

Stoichiometric
coefficient
memories
(α- β-ROM)

contains the address of the concentration register for the species in question, i.e.,
the right location of the c-RAM. Each reaction with n reactants (or products)
calls for n locations in the ROM. As a results, the two stoichiometric reactant
and product memories (α- and β-ROM) must have n times |R| locations, where
|R| is the total number of reactions. For example, referring again to Figure 5.3,
we have that the stoichiometric reactant ROM is made of 1 times 3 locations
(=1 reaction with the possibility to have 3 reactants) of 2 bits each (=possibility
to address 4 species).

5.2.2 Defining the dynamics of the chemical model

After having looked at the structure of theAC, we have to focus on its dynamics.
We have to realize a distributed/parallel mass-action scheduler that, like the
reaction algorithm A for CPUs, enforces on the system the typical dynamics
of a chemical reaction network.
According to the mass-action principle – see (2.6) – the scheduling time for
each reaction (next reaction time) is given by the reciprocal of the reaction
propensity ar, namely the product between reactants’ concentration and reac-
tion coefficient:5.8

tr = 1/ar = 1/
(
kr
∏

s∈S
cαr,ss (t)

)
.

We thus require another bank of registers to store the |R| reaction coefficients,
Reaction
coefficient
memory
(k-ROM)

i.e. a pseudo ROM-memory5.9 with contents defined by the user during the
configuration of the AC.
What is also still missing is part of the functionality that the stoichiometric
reactant ROM has: selecting which species influence the scheduling of a certain
reaction r. The implementation of this is similar to what we have shown
previously for updating the species’ concentration. The scheme in Figure 5.4
completes the one in Figure 5.3 – each stoichiometric decoder drives the select-
inputs of a multiplexer. Based on that, the multiplexer forwards the related

Stoichiometric
reactant
coefficients

4-bit concentration (for inputs s3 . . . s0 = 1000 it forwards the value of the s2-
register, for s3 . . . s0 = 0100 the value of the s1-register, and for s3 . . . s0 = 0010

the value of the s0-register) or the fixed value “0001” (for inputs s3 . . . s0 =
0000). In the example, we have that S3-concentration is carried by two out
of the three output-busses, and S2-concentration is carried by the remaining
output-bus (S1-concentration is not read from s0-register at all).

5.8We implement in hardware the deterministic mass-action scheduler, see Section 5.5.1 for
a discussion in this regard, based on the simplified propensity as introduced in Section 2.4.1.

5.9“Pseudo ROM” has the same meaning previously explained for α- and β-ROMs.
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Figure 5.4: How to generally implement the stoichiometric reactant coefficients
in hardware – species-concentration selection for reaction-time computations. The
scheme includes one reaction r and three species S1, S2, S3 (maximum number of
molecules =15), and it allows three reactants (or fewer higher-order reactants) – with
the shown configuration of αr,s we have r : 2S3 + S2 → . . . .

It is possible to define fewer stoichiometric reactant coefficients than the max-
imum provided for. If a αr,s-coefficient is set to “00”, the related multiplexer
selects and forwards the fixed value “0001”, which is the identity element of
the multiplication required to calculate the propensity. If none of the αr,s-
coefficients is set (αr,s = 00∀ s) then all the three output busses carry “0000”,
thus the calculated propensity will be zero too (because of the conjunct action
of the NAND-gate and the “output AND-gates”).

Implementing timers in hardware is a very simple, economic task. Timers are
registers (n-bit register = bank of n FFs) that, once initialized to a certain
(integer) value, are decremented by one at either each clock-edge, each clock-

Reaction
timers
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cycle, or each multiple of the clock-cycle. In hardware, we can obtain a very fine
granularity of timers, with minimum times being as small as the clock’s period
(or even as half-period of the clock) – e.g., working at the frequency of 40 MHz
(which represents a low value for a frequency in FPGA-technology!), we already
obtain a granularity of 25 ns. The timer-accuracy does not represent a problem
as it depends on the accuracy of the clock generator – e.g., working with an
economic quartz (< 0.10 $) we already have an accuracy of ±50 ppm, which
is much better than what is actually required in our applications and what
is obtained relying on operating systems’ interrupts in PCs. Timer-registers
must be completed with comparator-modules that give indication about their
expiration. Comparators are simple modules that produces a high-level on
their 1-bit output when a certain relationship among its n-bit inputs exists.
In this regard, we recall that equality is much less expensive than majority or
minority conditions, and thus it represents the first design choice. For example,
to implement the logic function A = B, for A and B being 4-bit signals, we
need 4 XOR and one NOR gates (5 gates in total). Differently, implementing
the logic functions A < B and A > B requires a much more complex circuitry
made of 4 NAND, 23 AND, and 4 NOR gates (31 gates in total – see for
example data-sheet [227]).

The calculation of reaction times represents a critical task that calls for mul-
Reaction-time
computation...tiplications and divisions. These operations, besides being expensive in terms

of logic utilization and computational speed, lead to deal with high-dynamic
values and signals. The challenge is multiplying low or high concentration-

...floating-
point
representation

values and then dividing intermediate results in order to obtain times from
propensities, without needing too many bits and without getting into significant
truncation errors. Although not the most efficient solution, we opt for the
floating-point representation. In this way, (i) we work with fixed sized variables
and signals, e.g., for a single-precision floating-point representation we have
to bring signals via 32-wire busses and store variables in 32-bit registers (see
IEEE-754 Standard [116]), and (ii) we obtain a wide dynamic range and a good
resolution of variables during the time computation (e.g., in the single-precision
floating-point representation, we can represent numbers in the range ∼ ±2127

with a resolution of ∼ 2−23 the number represented [116]). The timer computa-
tion for a reaction r of at most xth-order requires (x−1) multiplications among
the reactant concentrations, another multiplication to account for the reaction

...need for mul-
tiplications,
divisions, and
conversions

coefficient, and a division (reciprocal) to calculate the time from the propensity
value. To resize the remaining times of those reactions that are still pending for
execution, we further need a division to scale the old propensity value by the
new one, and a final multiplication. Eventually, we have to interface the integer
concentrations and times,5.10 and the floating-point intermediate signals of the
time computation.

Most of the described operations can either be parallelized and performed by

5.10The realization of timers that work in floating-point representation would be a (pointless)
effort. It is much more convenient to resort to conversions.
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many modules, to achieve fast computations at the expense of a high logic
utilization, or they can be performed in pipeline by exploiting one or few
modules only. For example, the calculation of the propensity can be performed
(i) sequentially by one multiplier, (ii) in parallel by using as many multipliers...some

operations can
be parallel

others require
sequentiality

as the number of multiplications required, or (iii) by any intermediate solution
that represents a tradeoff between efficiency and logic density / routing require-
ment. Other operations must be sequential and have to wait the worth of the
latency of the upstream module providing them the inputs, e.g. the time-scaling
must be subsequent to the remaining-time conversion and the new-propensity
calculation.
The computation of reaction-times represents the most costly operation: it can
either be performed independently for each reaction, in order to benefit the
speed, or be computed sequentially by a single “time-Calculator”-module
(in pipeline), in order to benefit the logic utilization.

5.3 Artificial chemistries on
Xilinx Spartan-6 XC6SLX9 FPGA

By following the pipelining approach, we have implemented the whole AC
on a relatively small, low-cost device: the Xilinx Spartan-6 XC6SLX9 FPGA
(see [254] for a general overview of its features) mounted on the Avnet Spartan-
6 LX9 MicroBoard [19]. Specifically, we comment on the schematics of the
three main parts (modules) that constitute the AC-platform: the main-module
that manages the clock and connects the AC-module to the external peripherals
(Section 5.3.1), the AC-module that implements the AC (Section 5.3.2), and
the time-Calculator-module that serves to calculate the inter-reaction times
(Section 5.3.3). Figure 5.5 illustrates the main components of the implemented
middleware platform for programming chemical algorithms on hardware.
This section is meant to provide an in-depth treatment concerning the hardware
platform we developed. In order to make the explanation understandable,
we have had to simplify and/or omit some parts. Nonetheless, this section
contains sufficient information such that system architects are able to reproduce
their own AC-platform in hardware. Our platform can be used to implement
“arbitrary” ACs without such a thorough knowledge. To this end, the first part
of Section 5.3.2 is sufficient.
All presented schematics have been obtained/simplified relying on the output
produced through Xilinx-ISE RTL-schematic tool [253], which translates the
VHDL code into a graphical representation of what is synthesized in hardware.
For the sake of clarity, although the implementation includes only logic primi-
tives (e.g., logic gates, flip-flops, etc.), the figures shown in the next sections ad-
ditionally include macro-blocks (modules) that represent logical functionalities
(e.g., coding/decoding, managing of RAM memories, etc.). These macro-blocks
are indicated with a square symbol whose apices are marked with triangles.
Busses of wires are represented as double lines and modules’ ports are identified
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Figure 5.5: Block diagram illustrating the main components of the middleware
platform for programming chemical algorithms on Xilinx Spartan-6 XC6SLX9 FPGA.

by name and size.

5.3.1 main-module

The main-module serves to connect the AC-module to the external peripherals
(e.g., serial output via UART, input and output ports) and to manage the
clock.
The external clock is synthesized through a device-primitive by Xilinx, named

Working-
frequency
selection

“clk-Synt” in the schematic in Figure 5.6. This makes possible to select at
run-time via an external switch (the SW(3)-switch that drives the bufgmux-
multiplexer) between two frequencies at which the AC works (this directly
affects the performance in terms of speed and power consumption).
Any external event on port EXT EVENT, such as a button being pressed or
a specific triggering signal, is passed to the AC-module. Module plot-out

Input and
output
peripherals

includes the logic to send two 16-bit integer values via UART interface (which
we use to send out and plot at run time on an external device – e.g, PC’s
monitor – a couple of selectable molecular concentrations). Note that the men-
tioned frequency selection does not affect plot-out-module, which is designed
to constantly send data at a rate of 9600 bps.

5.3.2 AC-module

This module represents the principal part concerning the implementation of
AC in hardware.
For the sake of clarity, we do not show the clock-inputs of modules and present
a simplified schematic which consists of two reactions only. The schematic
includes macro blocks whose functionality is explained without details of their
implementation. Additionally, we do not show in the schematic how concen-
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tration values are sent out to output ports DATAOUT1 and DATAOUT2, and we
remove the ports that are not necessary for the AC-module’s main functioning.
Note further that all operations are synchronous (at clock’s edge), and all
multiplexing operations are followed by a latch that makes the output stable,
although not represented in the schematic.
The definition/configuration of the chemical model takes places through the
configuration of the memory c-RAM, which stores 16-bit values of all molecular
concentrations, and memories α-ROM and β-ROM, which store the stoichiometric
reactant and product coefficients. Specifically, the stoichiometric memories

AC
configuration

(controller
configuration)

contain for each reaction the address to access the concentration of dependent
species, whose value is stored in the c-RAM (refer back to Figure 5.3 and
Figure 5.4 for an explanation of the implemented addressing-mechanism). As
represented in Figure 5.7, the stoichiometric memories have log2(|S|+1)-bit
width and (|Ξ| · |R|)-location depth, where |S| is the maximum allowed
number of molecular species that can constitute a chemical model, |Ξ| (by
abusing the notation) is the maximum number of reactants and of products per
each reaction, and |R| is the maximum number of reactions that can define a
chemical model. Molecular concentrations of chemical species are stored in the
c-RAM as 16-bit integer values. Memory c-RAM has 16-bit width and (|S|+1)-
location depth, where the first 16-bit location is reserved and set to “0. . . 01”,
whereas the remaining |S| locations are initialized to zero unless configured
otherwise. The α- and β- memories are also initialized to zero so as to point to
the first (reserved) location of the c-RAM (i.e., with the address x0..0), unless
configured otherwise according to the definition of the chemical model.
To illustrate how to define and configure anAC, we consider the simple chemical
model represented in Figure 5.7(a), which is composed by the species set S =

{A,B,C}, and the reaction set R = {r1, r2} with r1 : 2A + B
k1−→ C and

r2 : C
k2−→ A + B, where k1 = 1 (mol2·s)−1 and k2 = 4 s−1, and the initial

concentration of species A is cA = 100 whereas species B and C are initially
set to 0 molecules. All locations of the c-RAM have to be set to zero, except for
c-RAM(0), which is reserved and set to x0001, and c-RAM(1), which contains
the concentration value cA of the A-species, i.e., x0064. Locations c-RAM(2)

and c-RAM(3) are thought to contain the other two species concentrations cB
and cC, as depicted in Figure 5.7(b).5.11 Stoichiometric reactant coefficients
(αr1,A = 2, αr1,B = 1, αr1,C = 0, and αr2,A = 0, αr2,B = 0 and αr2,C = 1)
are stored in the α-ROM that, by assuming |S| = 255, contains x01, x01, x02,
in the first three locations, and x03 in the (1·|Ξ|)-th location, as depicted in
Figure 5.7(c). Similarly, stoichiometric product coefficients (βr1,A = 0, βr1,B =
0, βr1,C = 1, and βr2,A = 1, βr2,B = 1 and βr2,C = 0) are stored in the β-ROM
that thus contains x03 in the first location, x01 in the (1·|Ξ|)-th location, and
x02 in the (1·|Ξ|+1)-th location, as depicted in Figure 5.7(d).
Reaction coefficients are stored in the k-ROM. To reduce the complexity of

5.11In this example, we have arbitrary decided to assign locations of the c-RAM in alphabetical
order of species’ names. Other schemes can be followed.
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(d) β-ROM

Figure 5.7: Example of an AC configuration (configuration of memories). The AC
whose model is depicted in Figure 5.7(a) is implemented on an FPGA by configuration
of the c-RAM (Figure 5.7(a)), which keeps also track of the run-time state of the
AC, and by configuration of stoichiometric reactant and product coefficients stored
respectively in α-ROM and β-ROM (Figure 5.7(c) and Figure 5.7(d)) and of reaction
coefficients stored in k-ROM (Figure 5.7(e)).
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module time-Calculator, the k-ROM stores the |R| 32-bit single-precision
floating-point values of the reciprocal of the reaction coefficient of each reaction.
Referring back to the example in Figure 5.7, the k-ROM has the first location
k-ROM(0) initialized to x3F800000, which represents the value 1/k1 = 1 in float
notation, and k-ROM(1) initialized to x3E800000, which represents the value
1/k2 = 0.25 in float notation, as depicted in Figure 5.7(e).
Via the STROBE-port, an external event is signaled to the AC (refer to the AC-
module’s scheme in Figure 5.8). There, the macro-block c-Updater is respon-
sible for updating the concentrations. This updating is performed whenever an
external event occurs or a reaction fires. In the case of an external event, the

AC-module
functioningconcerned species is (are) updated according to the value passed via the DATAIN-

port. In the case of a firing reaction, the r-Decoder identifies the corresponding
index ri. Based on that, the c-Updater decreases/increases by one (decreases
in the case of a reactant species, or increases in the case of a product species)
those concentrations that are addressed by contents of stoichiometric memories’
locations in the range [i, i+|Ξ|). This update is sequential.5.12

Once the c-Updater has updated all concentrations, it triggers the module
time-Processor through the output port rdy. The time-Processor-module
contains a counter that goes through all reactions, reads from the c-RAM and
passes to the time-Calculator the values of reactants’ concentrations (those
addressed by contents of the α-ROM only) and schedules the calculation of the
next-reaction-time, for all reactions. The next section explains in detail the
implementation of the time-Calculator.
The calculations of the reaction times are performed by a single module. This
means that these calculations must be performed sequentially, making in this
way the performances of the system (the maximum speed at which the chemical
system can operate and interact with external events) dependent upon the
maximum number of reactions. The use of as many time-Calculator as the
number |R| of reactions reduces the total computational time to the time
required to calculate one reaction only (and it simplifies the implementation
too), at the cost of a higher logic utilization.
Via the startTimer-Decoder, the reactions’ timers r1-Timer and r2-Timer

are triggered. These modules are mere down counters, which are set to the value
calculated by the time-Calculator (the 32-bit signal on the input expTime-
port of timers represents the integer value of the next-reaction time) and
decremented every clock (e.g., every 25 ns @ 40 MHz). The expiration of
the reaction timer is captured by a 32-bit equality-comparator whose output
– the normally-low level signal exeReact – rises to high level as soon as the
timer reaches the value “00...0”, and it remains constant for a clock duration.
r-Timer-modules are activated by one-clock-long high level on its strobe-port,
which triggers the count-down.

5.12For each reaction ri, the addresses of the species to update are extracted from the
locations of α- and β-ROMs in the range [i, i+|Ξ|). Each address is used to read the
concentration-value from the c-RAM, update it, and store again it in the RAM. For details
on the updating mechanism, refer back to Section 5.2.1.
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The normally-high level signal reactDone remains high until a new reaction is
scheduled. Each bit bi of the corresponding reactDoneVect-signal gives infor-
mation about the state of the corresponding reaction ri: executed (i.e., high
level) or still pending for execution (i.e., low level). Similarly, the exeReactVect-
signal consists of |R| bits. Each high level of a certain bit bi of this signal
triggers all that processes that constitute the execution of the corresponding
reaction ri (i.e., concentration update and timer computation).
Although not represented in the schematic, r-Timer-modules are “frozen” once
an event occurs (i.e., r-Timer-modules’ clocks are suspended at the rising edge
either of the extEvent-signal or of any exeReact-signal, and enabled again
at the rising edge of any strobe-signal). This enables to correctly deal with
almost concurrent events.
Finally, the r-State-decoder extracts the state of each reaction from the
|R|-bit reactDoneVect-signal. The a-Module stores the reciprocal values of
propensities of all reactions as 32-bit (single-precision) floating-point values
(the memory has therefore 32-bit width and (|R|)-location depth), at each
computation of reaction-times.5.13 The left-time-Decoder extracts the inte-
ger value representing the remaining time of a selected reaction, and passes it
to the time-Calculator.

5.3.3 time-Calculator-module

The last principal module is the time-Calculator, which computes the propen-
sity of a reaction and produces on its output port timeOUT the 32-bit signal
that represents the (integer) value of the time at which the reaction should
be executed. Again, for the sake of clarity, in the schematic in Figure 5.9, we
remove all ports and signals related to the clock of modules.
We have taken advantage of the Xilinx floating-point operator logic-core [251]
to implement the modules constituting the time-Calculator. As mentioned,
we have adopted the standard single-precision floating-point representation
described in [251] (32 bits, with a 23-bit fraction and 8-bit exponent), which
complies with the IEEE-754 Standard [116].
The inputs to this time-Calculator-module are (i) the 32-bit oldProp-signal
that contains the floating-point value of the reciprocal propensity stored at the

Input signals
last time-computation, (ii) the 32-bit invReactCoeff-signal that represents the
floating-point value of the reciprocal of the reaction coefficient, (iii) the 16-bit
concentrationIN-signal that contains the integer value of reactants’ concentra-
tion, (iv) the 32-bit timeLeft-signal that represents the integer value of the re-
maining time since the triggering event has occurred until the planned reaction
execution, (v) the 1-bit flag opNd that triggers the whole time-Calculator,
and finally (vi) the 1-bit flag reactDone that indicates if the next-reaction-
time must be completely recalculated (in the case of a just-executed reaction)

5.13We indicate a-Module as a module and not as a RAM because it contains also an
input multiplexer, an output demultiplexer, and the inputs for enabling writing and reading
operations. We remove these details from the scheme to make it better readable.
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or instead, it must be rescaled based on oldProp- and timeLeft- signals (in
the case of a reaction still pending for execution).
Module time-Calculator performs all computations in floating-point. Thus,

Interfacing
float- and

integer-world

it requires (i) an integer to float converter, named “int16Tof”, that transforms
the 16-bit integer signal from the concentrationIN-input into a 32-bit floating-
point signal, (ii) another integer to float converter, “intTof”, that transforms
the 32-bit integer signal from the timeLeft-input into a 32-bit floating-point
signal, and on the output side, (iii) a float to integer converter, “floatToInt”,
that transforms the 32-bit floating-point time signal into a 32-bit integer time
signal.
The time-computation process starts with the multiplication of reactants’ con-

Propensity
calculation centrations. To reduce the logic utilization (at the cost of a lower computational

speed), we iteratively use one floating-point multiplier module, “fMult1”, to
perform this calculation. For this reason, the schematic includes the Cnt-
counter, which increments its output by one after the latency period required
to (i) obtain the 16-bit concentrationIN-value once addressed through signal
on rdADDR-output, (ii) convert that 16-bit integer signal to a 32-bit floating-
point signal, and (iii) multiply the last fMult1-module’s result by the con-
verted version of the concentrationIN-input. At the first iteration, when
the time-Calculator is triggered on the opNd-port, the input of the fMult1-
module is fixed to one (see mux1-multiplexer).5.14 The value (constant) |Ξ|

defines the counting end.
Once the multiplication of all |Ξ| reactants’ concentrations has been per-
formed, the new reciprocal propensity is calculated through the floating-point
divisor module fDiv1. This operation accounts for the reaction coefficient,
whose reciprocal value constitutes the dividend. The output result of the
fDiv1-module is passed via port newProp to the AC-module (where it is stored).
According to the reactDone-flag (which is high in the case of an executed
reaction), the result of module fDiv1 is either (i) used directly as the floating-
point value representing the next-reaction-time, or (ii) rescaled according to the
values of the old propensity and the remaining time. The rescaling operation
requires further (i) a floating-point divisor module fDiv2, which divides the

Time rescaling
new-propensity’s reciprocal value (fDiv1-module’s result) by the old propensity
reciprocal value (oldProp), and (ii) a floating-point multiplier module fMul2,
which scales this propensity ratio (fDiv2-module’s result) by the value of the
remaining time (timeLeft). Finally, the floating-point value of the reaction-
time, either calculated from scratch or rescaled based on previous values, is
converted to the 32-bit integer timeOUT-signal and passed to the AC-module
illustrated in the previous section. Both calculation-from-scratch and rescaling
operations lead to the same computational latency as the final conversion is
triggered by the rdy-signal from module fMul2.

5.14This is done to avoid the first iteration of the fMult1-module to depend on its last
(unknown) result.
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5.4 Experimenting with
Chemistry-inspired hardware controllers

The following experiments were performed by implementing the AC-platform
on Xilinx Spartan-6 XC6SLX9 FPGA, mounted on Avnet Spartan-6 LX9 Mi-
croBoard. The supported AC had up to |S| = 256 -1 species and |R| = 8
reactions, each of them characterized by |Ξ| = 8 reactants and products.

5.4.1 Enzymatic control of Internet traffic with FPGAs

We configured the AC according to the Enzymatic model (see Section 3.3) and
realized a runtime-programmable plug-and-play module to control the rate of
a certain class of traffic in a real-world network.

Generally, the main bottlenecks for developing high-speed traffic management
solutions are the following: (i) The need for external memory bandwidth in
order to buffer data packets. (ii) The need for processing real-time complex
scheduling algorithms in hardware. We left out the first aspect. Rather, we
exploited the FPGA-platform described in Section 5.3 and configured it in order
to realize a traffic controller. The key challenges of designing such a controller,
especially on a hardware module, are (i) deciding the flows that require pacing,
and (ii) determining the appropriate pacing rate [9]. We did not cover the
aspects of packet inspection and identification. Rather, we realized in hardware
a fast-processing controller able to implement concurrent actions and decisions.
To this end, we simply needed to configure the introduced hardware-platform
for ACs, with the settings related to the Enzymatic rate controller introduced
in Section 3.3.

In this experiment, whose setup is outlined in Figure 5.10, we have used the
Enzymatic dynamics to control the outgoing traffic of a standard computer
(Linux, Kernel 3.8.6). Practically, the chemical reaction network on the FPGA
constitutes an external manager module that controls the service process of the
egress link queue or a certain class of traffic. The scheduling policy of such a
queue is non-work-conserving (i.e., the queue is not served as soon as possible).
Rather, the reaction system (implemented on the FPGA) triggers the service of
the computer’s queue. Each time a packet, and thus a certain amount of bytes,
arrives at the egress queue, the packet is enqueued waiting to be transmitted,
and the reaction system on the FPGA is notified. As soon as a specific reaction
(the output reaction) of the chemical system fires, a fixed amount of bytes is
allowed to be dequeued in the Linux computer. When this amount is enough
to cover the size of the packet at the head of the queue, that packet is dequeued
and transmitted (FIFO-policy).

In the system that we have implemented, the communication between computer
and FPGA exploits the parallel port, on the computer’s side, and one of the
external connectors, on the LX9-board’s side. To this end, we have extended
and used the Parapin kernel module [75] in order to use the PC’s parallel port
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Receiver

University Network
UDP

Parallel portSender

FPGA

Figure 5.10: Setup of the experiment on hardware traffic rate control: The outgoing
traffic of a standard computer was controlled via an Enzymatic rate controller im-
plemented on FPGA. The communication between computer and FPGA exploited the
parallel port on the computer’s side (as a connector only, and not as a communication
standard), and one of the external connectors on the LX9-board’s side.

as a generic digital I/O interface: (i) handling the interrupts of specific parallel-
port’s pins, and (ii) writing directly to the parallel port registers. Each state
transition of a specific pin of the parallel port generates an interrupt, which
then activates the functionalities in the kernel-space to account for the new
amount of bytes authorized to be sent, and to possibly dequeue and send the
queue-head packet. Vice-versa, a state-change of a specific pin of the LX9-
board’s connector (which is induced by the state transition of the connected
parallel port pin) triggers the update of a concentration (input concentration)
in the reaction system. As we let every 1 KByte of enqueued traffic be notified
and we had 100 ns as a minimum time between two consecutive transitions,
the maximum manageable load was 10 GBps.
We configured the Enzymatic rate controller according to the AC presented in
Section 3.3 and summarized in Figure 5.11. We had four species only, to be
initialized as c0S = c0ES = c0P = 0, c0E = e0.5.15 We decided to fix the rate limit
to 0.5 GBps and to create an S-molecule for each KByte of data, and dually to
allow the transmission of 1 KByte for each produced P-molecule. Thus, we set
e0 = 25 Kmol. To this end, we set the third element of the c-RAM to x61A8, and
left the other fields equal to x0000, except for the first (reserved) field which
was equal to x0001.5.16 According to Figure 5.11(a), the stoichiometric matrix
is

Ξ =




−1 0
−1 1
1 −1
0 1


 .

5.15It does not really matter how we initialized species S and P, and how we distributed
the mass e0 among species E and ES. The stable state depends on the e0-value only (and
reaction coefficients k1 and k2). It is important that c0E + c0ES = e0.

5.16We arbitrary decided to assign the c-RAM-locations according to the species’ order we
used in the definition in Figure 5.11(a).
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AC =
{
{S,E,ES,P}, {r1, r2}, A

}

r1 : S + E
1−→ ES r2 : ES

20−→ E + P

c0E = e0 = 25000 c0S = c0ES = c0P = 0

(a) Chemical Model

x3F8000000

x00000000

1

32 bits

x3D4CCCCD

7

......

(b) k-ROM

16 bits

255

x0001

x0000
...

0

x61A8

x0000

(c) c-RAM

x010

64

...

...
x00

...

...

8

8 bits

x02

x03

(d) α-ROM

x030

64

...

...

x02

x00

...

...

8

8 bits

x04

(e) β-ROM

Figure 5.11: FPGA-configuration for traffic rate control (configuration of the mem-
ories for an Enzymatic rate controller). The AC whose model is formalized in
Figure 5.11(a) was configured on an FPGA through reaction coefficients stored in
k-ROM (Figure 5.11(b)), and stoichiometric reactant and product coefficients stored
respectively in α-ROM and β-ROM (Figure 5.11(d) and Figure 5.11(e)); it was initialized
through the c-RAM (Figure 5.11(c)).

Thus, by considering the reactions in the order we have presented in Fig-
ure 5.11(a), we set the stoichiometric reaction coefficients as α-ROM(0)= x01,
α-ROM(1)= x02 and α-ROM(8)= x03, whereas the stoichiometric product co-
efficients as β-ROM(0)= x03, β-ROM(8)= x02 and β-ROM(9)= x04.

The results shown in Figure 5.12 refer to a scenario where the UPD traffic was
bursty (the traffic was generated via “Iperf” tool). In a first phase (in the first
10 s), the load (green-continuous line) was enough to exceed the predefined
threshold (red-dashed line). In this phase, we can recognize the effect of the
control mechanism of the Enzymatic rate controller that guaranteed the egress
rate (blue-continuous line) to respect the threshold. In a second phase (∼ 14-
21 s), the load was still bursty but this time, it was on average lower than the
predefined rate limit. In this case, the Enzymatic rate controller allowed the
output rate to follow on average the load but filtered out its spikes, contributing
in this way to have a more “stable” output.

We were able to configure the behavior of the controller post deployment. We
modified the rate limit to different values by changing the e0 value loaded
in the third location of the c-RAM, e.g., xC350 instead of x61A8 to fix the
maximum rate to 1 GBps. We changed also the filtering effect of the traf-
fic controller by modifying the coefficient k2 and accordingly e0 amount as
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Figure 5.12: Results of the experiment on UDP-traffic control via the hardware
Enzymatic-controller formalized in Figure 5.11. vmax represents the limit we prede-
fined by means of parameters e0 = 25 Kmol and k2 = 20 s−1 (1 KByte was mapped
to 1 molecule and vice-versa), λ is the load presented at the network layer, vout is the
actual traffic that the Enzymatic reaction allowed, and vthout is the theoretical trajectory
derived from analysis in Section 3.3.3.3.

vmax/k2. Figure 5.13 shows two output trajectories vout(t) experienced in the
latter experiment, when we halved the coefficient k2 (set the second location
of k-ROM to 0x3DCCCCCD), and accordingly doubled e0 in order to maintain the
rate limit to 0.5 GBps by setting the third location of the c-RAM to x61A8.

As we have seen in Section 3.3, the same experiment could be repeated also
by implementing a configurable chemical reaction network as a Linux-kernel
module that controls the service process of the egress queue. For the experi-
ments presented in Section 3.3, we used a manager Linux-kernel module that
controls the service process of the egress link queue or a certain class of traffic.
In this way, the computational effort due to implementing the AC falls on
kernel itself. This has two disadvantages: (i) With high reaction rates (e.g.,

Higher
processing
rates

already working with an Enzymatic rate controller with 200 MBps as a limit
and concentration update every received KByte, in an Intel(R) Core(TM)2
CPU 6600@2.40GHz, 1024MByte 667MHz DDR2 RAM), the computer suffers
from the computational cost derived from running the AC. That is, CPU-
resources move away from application processing, and the traffic controller
itself risks to represent a performance bottleneck. Instead, performing all
mechanisms and computations for running the AC on an FPGA brings about
remarkable advantages: The implementation of an AC on FPGA completely
frees the kernel from Chemistry-related computations. TheAC-based controller
is able to process events much faster thanks to the computational parallelism
and to the high clock rate at which AC-related operations are performed; in the
discussed experiment, the controller worked properly with rates > 200 MBps.
(ii) The other disadvantage is that the computational effort varies according
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Figure 5.13: Results of the experiment on the programmability of the hard-
ware Enzymatic-controller formalized in Figure 5.11: vout is the actual Enzymatic-
controlled traffic for two cases: k2 = 10 and k2 = 20 s−1. vmax represents the limit
we predefined by means of parameter e0 = 500/k2 Kmol, (1 KByte is mapped to 1
molecule and vice-versa), λ is the load presented at the network layer.

to the complexity of the reaction network, i.e., the number of species and of
reactions, and their order. In our experiment, the performance still depended
on the complexity of the reaction network. As already mentioned, this was due
to the way we had to implement the platform on the small Xilinx Spartan-6
XC6SLX9 FPGA. To fully decouple the reaction model complexity from the
computational cost, we need the parallel computation of reaction times (which
represents the most time consuming process). This is possible with slightly
more advanced FPGA technologies (see Section 5.5.1).

5.4.2 Distributed computation with multiple FPGAs

We configured multiple hardware devices according to the chemical consensus
algorithm described in Chapter 4, and let the devices interact such that they
constituted a unique reaction network (DAC), and computed distributively,
and in parallel, a specific task (i.e., distributed computation of the average-
function).

We experimented with a network of |V| = 3 nodes, connected according to a
complete topology, where each node νi communicates with both its neighbors
νj ∈ Ni (see Figure 4.4(a) for a graphical illustration).5.17 Each node νi was
an Avnet Spartan-6 LX9 MicroBoard, which was configured according to the
chemical consensus model formalized in Figure 5.14. For the sake of clarity, in
Figure 5.14(a) in the definition of reactions rB′,j and rX,j , we have neglected
the term concerning product-molecules in neighbors νι of node νj that are not
node νi (νι ∈ Nj |νι 6= νi with νj ∈ Ni). We recall that input reactions rB′,j

5.17In this section, we use the symbolism introduced in Chapter 4.
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AC =
{
{S,X,Y,Z}, {r′B , r′′D, rX , rY , rZ , rA}, A

}

rB′,i : Si
1−→ Si +

∑
j∈Ni

Sj rD′′,i : Si + Yi
0.01−→ Yi

rX,i : Xi
1−→ Xi +

∑
j∈Ni

Yj rY,i : Yi
1−→ ∅

rZ,i : Zi
0.001−→ Si + Zi rA,i : Si

0.001−→ ∅
rB′,j : Sj

1−→ Sj + Si rX,j : Xj
1−→ Xj + Xi

c0X = 100 c0S = c0Y = c0Z = 0

(a) Chemical Model
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Figure 5.14: FPGA-configuration (configuration of memories) for distributed av-
erage computation. The AC whose model is formalized in Figure 5.14(a) was con-
figured on an FPGA through reaction coefficients stored in k-ROM (Figure 5.14(b)),
and stoichiometric reactant and product coefficients stored respectively in α-ROM and
β-ROM (Figure 5.14(d) and Figure 5.7(e)); it was initialized through the c-RAM (Fig-
ure 5.14(c)).

and rX,j are executed at the neighbor node νj and produce molecules Si and
Xi in the node νi (as well as in other neighbors νι).

Communications occurred via wires, and nodes exchanged virtual molecules via
their I/O ports (see Figure 5.15 for the experiment setup). Specifically each
time reaction rB′,i fired at node νi, an output pin of the LX9-board was kept
at high level for a clock cycle (25 ns @ 40 MHz), and that level was carried via

A simple wired
infrastructurewire to the input pin of its neighboring LX9-boards νj ∈ Ni. The 25ns-long

high level on the configured input port induced the immediate creation of an
Sj-molecule in the neighbor. Dually, the firing of reaction rB′,j in one of the
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neighbors νj ∈ Ni induced the creation of an Si-molecule in the node νi. The
same mechanism was used for the rX -reactions and the Y-species, by using of
different I/O pins.
In order to configure the FPGA with the AC defined in Figure 5.14(a), we
configure the platform according to the settings in Figure 5.14(b-e). Each node
νi was forced to measure a local quantity zi at a specific time, i.e., each time
the local quantity zi changed by a δz,i-amount, δz,i molecules of species S were
injected or removed, accordingly. The experiment’s target was seeing nodes
that distributively calculate the average of z-quantities:

zavg(t) =
1

|V|

|V|∑

i=1

zi(t). (5.1)

Figure 5.16 shows the results for the described experiment setup: continuous
colored lines are the (run-time) states of nodes whereas the red-dashed line
is the arithmetic mean (ideal value zavg, a-posterieri calculated according to
(5.1)). All nodes converged to the arithmetic mean of the local quantities.
The convergence time is independent of the technology used to implement the
AC. Rather, the convergence time depends on how the virtual time, which
characterizes the chemical dynamical system, is mapped to the physical time at
which events actually occur. However, the implementation in hardware enables

Wider
computational

speed range

a much wider range for such a mapping – by accepting a higher number of
transmissions, we can reduce the convergence time by orders of magnitude. Of
course, keeping the design parameters fixed, the convergence time is determined
by the algebraic connectivity of the network graph (see Chapter 4).
By comparing the result from the wireless testbed shown in Section 4.7 with
those here reported, we observe a great improvement in the accuracy of the
average-values estimated by nodes. The difference between the outcome of
these two real-world experiments is due to how communications among network
nodes take place. The wired setup, here explained, enables more stable, error-
free communications than that experienced in the wireless testbed.
With the performed experiment we have shown that, even when having only
small-sized FPGAs available, it is possible to implement arbitrary reaction
models by interconnecting multiple FPGAs.

5.5 Further insights on
hardware artificial chemistries

In this final section, we first discuss the features of the realized platform in
terms of logic utilization and computational speed, and we indicate how to
improve the speed by using bigger (on-the-market) devices. Then, we comment
on possible improvements and how future works could address these aspects.
Finally, we discuss the impact that the Chemistry-inspired approach may have
as a high-level abstraction to synthesize hardware controllers.



5.5 Further insights on hardware artificial chemistries 183

FPGA

FPGA

FPGA
USB/UART

common wire

Computer

FPGA FPGA FPGA

Common wire

USB USB USB

Laptop

Figure 5.15: Setup of the experiment on distributed computation on hardware: A
network of |V| = 3 nodes, connected according to a complete topology, where each node
was an Avnet Spartan-6 LX9 MicroBoard, which was configured according to the AC
formalized in Figure 5.14 and communicated with both its neighbors. The computer
had the sole role of monitoring the run-time state of designed species.
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Figure 5.16: Results of the experiment on distributed computation on hardware:
Each node (FPGA-board) of a complete 3-node network was configured according to
the AC formalized in Figure 5.14 – the chemical consensus model. Continuous lines
represent the nodes’ state whereas the red-dashed line represents the (ideal) arithmetic
mean.

5.5.1 Which logic device fits our need?

The AC-platform has been implemented on Xilinx Spartan-6 XC6SLX9 FPGA.
The used FPGA is the second smallest device of Spartan-6 family. With the
current implementation, we get around 70% utilization of slice LUTs (most
critical feature we had to take into account for syntheses, mapping and routing).
As suggested by Xilinx, mapping and routing process succeed only when the
utilized logic is less than ∼ 75% of what available. Even with this small FPGA,
we were able to setup a chemical model made of up to |S| = 255 species and
|R| = 8 reactions, each of them characterized by |Ξ| = 8 reactants and
products.

We have used the 40 MHz-clock produced by CDCE913 chip on LX9 Mi-
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croBoard, and made two working frequencies available: 40 MHz and 80 MHz,
although higher frequencies could be used (directly 160 MHz and, by optimizing
circuitry choices in this respect, up to 320 MHz). With the current imple-
mentation, which overlooks the computational efficiency to benefit the logic
utilization, these two working frequencies allow us to correctly process external
events (e.g. packet reception) as fast as ∼ 10 µs and ∼ 5 µs, respectively. At
these speeds, the system is still able to process correctly two sporadic events
that differ in time of less than 50 ns, with the constraint that events must last
at least ∼ 5 ns.
Computational performances can drastically be improved by parallelizing the
computation: The ability to process events as fast as tens of nanoseconds
can be obtained by associating a time-Calculator-module to each reaction
and further parallelizing the multiplication process among reactants’ concen-
trations. This would have the cost of a higher logic utilization: An AC-

Parallelization...

...orders of
magnitude of
improvement

...implementable
on available

chips!

platform, which has similar capabilities to that we implemented on XC6SLX9
FPGA in terms of maximum number of species (255), reactions (8), reactants
(8), and products (8), would require around four times the logic utilization we
currently require. Although not fitting in a XC6SLX9 FPGA, such a high-
performance AC-platform can be implemented in on-the-market devices such
as the XC6SLX45 FPGA (still Spartan-6 family). Further, it is possible with
today’s technology to have a high-performance AC-platform with 32 reactions
each with 32 reactants and products (a complete AC that would definitively sat-
isfy requirements and needs for any known application in the field of Chemistry-
inspired algorithms), for example by using Spartan-6 XC6SLX150 FPGA (also
a device which is already available on the market since a few years).

5.5.2 Possible improvements and future works

The configurable platform we have introduced offers already an advanced tool
to easily build control mechanisms in hardware. However, as we have argued,
the realized system cannot fully exploit the computational parallelism. A
straightforward step to improve the platform is parallelizing the calculation of
reaction times. This requires the mere application of guidelines we have given
in Section 5.2, simplifying the schemes illustrated in Section 5.3, and finally
implementing the whole system in a bigger FPGA-device (e.g., XC6SLX45,
XC6SLX150).
We believe we can enhance the platform (e.g., reduce the logic utilization) by
avoiding working with the floating-point representation. The implementation

Towards
fixed-point

representation

may rely on fixed-point representation and integer arithmetic only. To this end,
the time-related computations must carefully be mapped into a limited dynamic
range, and scaled through each function in the path, by paying attention to
the rounding and saturation steps.
To the best of our knowledge, this is the first framework for complete ACs

Random
dynamics on hardware. However, our platform may be improved to support random

dynamics – so far, the scheduling of the reactions can be deterministic only.
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Future versions may include the possibility to enforce random trajectories by
means of reaction intervals that are, for example, exponentially distributed,
as required to simulate actual chemical systems, or normally distributed, as
required to control the level of randomness characterizing the system’s dynam-
ics. Including stochasticity may be simple as there exists a research branch
that studies methods and proposes solutions to generate random variables on
FPGAs (e.g., [142, 143]). But of course, this would have the cost of a higher
logic utilization (e.g., ∼ 5 to 10 % of the utilization of a device such as the
Xilinx XC6SLX9 FPGA).

5.5.3 Chemistry-inspired high-level abstraction
for the design of hardware controllers

Although there are vendors that advertise C-to-VHDL compilers, one can
General-
purpose
programming
languages...

...not suitable
for hardware
design

actually not compile to hardware any equation-based control-mechanism writ-
ten in a general-purpose programming language. This would raise the level of
abstraction and, as a result, the design would get bulky and slow. The reason
behind this is the considerable engineering effort that is necessary to convert
the software into something that will run at a reasonable speed in FPGA-
technology. In fact, VHDL-based logic synthesis is an efficient method for
designing complex hardware that does not suit well the purpose of describing
regular structures like finite-state machines [207]. The design of hardware
modules should instead match closer the features of hardware technologies.
The AC-platform can be seen as an abstraction/middleware for generating
VHDL-synthesizable code, thus for synthesizing a gate-level description for
FPGA-technology. Designers are able to build hardware controllers that are
based on more or less complex equations, by keeping under control the possible
intricate web of dependencies that arises. Such a high-level design abstraction
(i) reduces the design time, (ii) includes a graphical as well as a rule-based
description, (iii) facilitates describing any sort of proportional, derivative,
linear and non-linear functionality, and (iv) enables importing directly prin-
ciples, laws, and models from the surrounding nature. The analyzability and
the predictability of implemented modules improve too: a quick validation of
the controller can be performed empirically by simulating the chemical model
on simulators, and formally by means of the analytical tools borrowed from
Chemistry.
There exist tools that exploit a high-level abstraction to describe a system by
means of a model-based description rather than a complex, low-level VHDL
or Verilog description (see for example the system generator born from the
collaboration of Xilinx Inc. and Mathworks Inc.). Model-based approaches for
hardware design require a translation step to convert complex functionalities
into a HDL-representation. The obvious challenges and issues concern length,
quality, and readability of the generated code. Furthermore, these tools provide
solutions to specific tasks and cannot (easily) be adapted to realize arbitrary
control systems [32], much less once the controller has already deployed. With
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our approach, any distributed or centralized controller is realized by means of
simple rules (reactions) to update registers (species) according to analyzable
dynamics (dictated by the mass-action principle). In this way, the user is able
to implement hardware controllers by configuring a few memories (which can
be done at runtime), without the need for an actual translation of algebraic
functions into logic gates and their interconnections (which are instead pro-
grammed semi-permanently as part of the assembly process).

5.6 Conclusion

In this chapter, we have pushed the implementation of Artificial Chemistry
down to hardware – an in-silicon chemical-like system, made of virtual molecules
that react with each other following chemical-like trajectories. Besides the mere
scientific curiosity, this is interesting and beneficial in the context of Chemistry-
inspired networking and communication systems.

We propose a full-hardware implementation where the complexity derived from
control mechanisms, interactions, and feedback loops is approached with, and
kept under control thanks to, the chemical metaphor. With the proposed
approach, control systems are built in hardware by drawing interaction graphs
(chemical reaction networks). Designers can let hardware perform complex
equations rather than basic, fixed rules only. They define equation-based
mechanisms by simply modifying the configuration of a few memories.

Our approach challenges the conventional belief that identifies the software-
based approach as the only way of handling the complexity derived from
abundant, dependent, conditional statements in control-applications. We do
not define control algorithms by means of general programming languages
although, apparently, doing this would be much faster and require less effort
than directly resorting to hardware descriptions. Our main motivation is that
software descriptions require anyway a transposition into hardware. This gener-
ally leads to complex sub-optimal implementations that make the system bulky
and slow. We adopt instead a model-based approach that describes directly
a system by simple, analyzable rules and registers. The adopted Chemistry-
inspired description is close to the software-representation, thus it makes the
algorithm description an easy task. At the same time it is close to the hardware-
representation, so that the described algorithm can be built directly in silicon.

This chapter should reassure engineers that are concerned about the compu-
tational cost derived from running artificial chemistries. One can safely take
advantage of Chemistry-inspired algorithms for high-speed networking tasks,
such as traffic shaping in next-generation networks. Costs of Chemistry-related
computations are kept negligible thanks to the possibility to build complete
artificial chemistries in hardware – chemical controllers are bounded to inde-
pendent chips that can afford high-speed processing, and do not require any
computational resource from the main processors.

In this chapter, we should have appeased also the concerns about the logic
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resources required to implement more or less complex artificial chemistries
on FPGAs. Indeed, we have demonstrated that simple reaction networks,
sufficient for most networking tasks, still fit in small FPGAs that are available
today on the market. Furthermore, we have shown that more complex reaction
networks can still be run on multiple FPGAs – there is no practical difference
between chemical reaction networks that are confined into one device and those
that span across multiple devices. That is, we can configure a distributed
artificial chemistry that takes advantage of multiple devices at the same time,
to gain in (logic-)capacity and/or speed.





Chapter 6

Conclusion

“In literature and in life we ultimately pursue, not
conclusions, but beginnings.”

Sam Tanenhaus

With this chapter, we conclude our treatment of Artificial Physical Chem-
istry applied to the design and the analysis of networking and commu-

nication systems. Nevertheless, we would like this chapter, and in general this
thesis, to represent a starting point for a research line that devotes time and
effort to applying the Chemistry-inspired approach, in all its flavors, to different
areas of communication engineering.

This closing chapter is structured as follows: We first recall generic features
of Chemistry-inspired algorithms/systems in Section 6.1. We summarize our
main contributions in Section 6.2. Finally, we comment on possible directions
of future works in Section 6.3.

6.1 Chemistry-inspired engineering
of communication and networking systems

The most important feature of Chemistry-inspired systems is the strict relation-
ship between their functional and dynamical aspect. In general terms, systems
can be described/defined by their state space and by the rule that determines
the transitions in that state space. In the classical approach, this rule is given
explicitly by the computer program in order to accomplish specific functional
tasks, without paying attention to emergent dynamics exhibited by the system.
On the contrary, in the Chemistry-inspired approach the rule emerges from the
combination of distributed interactions governed by an underlying law (i.e.,
the law of mass action). That is, with the Chemistry-inspired approach, we
program the dynamics in order to achieve, at equilibrium, predefined functional
tasks.
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With the Chemistry-inspired approach, designers adopt a flow-based perspec-
tive on communication processes, and they design algorithms by defining algo-
rithms’ macro behavior (e.g., how a rate control algorithm should react in face
of an imminent congestion of the shared resource). This is done by describing
the system’s dynamics in terms of (distributed) chemical reaction networks. At
the same time, designers do not have to handle directly micro-states’ changes
(e.g., the effect of receiving/enqueueing a single packet) and event timing (e.g.,
when to transmit the next packet so as to comply with the maximum aggregate
rate limit). Once the reaction network is designed, the reaction algorithm

Emergence
schedules correctly (according to the underlying law – law of mass action) the
program that spans the designed reaction network. This differs from the full
control of each micro-state’s change that is required by traditional protocols,
where the control of the dynamic behavior is explicitly enforced by handling
event timers and race conditions in the protocols’ state machine.

With the Chemistry-inspired approach, designers can implement emergent-
control strategies, in which the controlled behavior emerges at a global scale
(macro-level) from a set of (usually simple) local rules that are executed by the
different components of the whole system/network; the control function is not
enforced by a single module but rather emerges as asymptotically stable equi-
librium state of the whole system. Emergent-control strategies can fulfill the
seemingly paradoxical need of today’s and future communication environments
for combining self-organization (e.g., automation of network management and
resource allocation in the Internet) and dynamics control (e.g., traffic control
to provide reliable and predictable services for exchanging/storing users’ data).
Like in the distributed rate control and in the consensus achievement, a global
coordination arises out of the local interactions between the system’s compo-
nents. This process is spontaneous and not governed/controlled by any internal
or external module but is rather completely distributed. Some key features
of traditional (feedback) control, such as global state and feedback loop, do
not appear explicitly at the macro level. Instead, thanks to the underlying
mass-action kinetics, local micro-level feedbacks and micro-rules give rise to a
controlled macro-behavior of the system.

Besides emergence, the Chemistry-inspired approach enables/facilitates system
robustness, i.e. the ability of the system to maintain its functionalities in the

Robustness
presence of perturbations, stress, or errors. Like actual biological systems,
Chemistry-inspired algorithms can well tolerate violations of their nominal
inputs and variations of their operating environment (and even when they
are not, they “fail gracefully”). More formally, from the point of view of
dynamics, robustness is the ability of the system to find the attractor (a region
of the state space which attracts trajectories of the system, i.e. a steady state)
when perturbed from the current trajectory. This happens if the perturbation
maintains the basin of attraction (the set of all states whose trajectories lead
to that attractor/steady state). Therefore, robustness calls for large basins of
attraction. Traditional computational systems instead exhibit usually small
basins of attraction, such that any perturbation is likely to move the system to
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a different basin, hence to a different attractor, resulting in a different (wrong
or, at least, not predicted) computation/result. For example, in gossip and con-
sensus algorithms, the reception of a single corrupted packet can compromise
the correct computation of the target function. On the contrary, (macroscopic)
solutions of Chemistry-inspired algorithms are steady states with larger basins
of attraction. Perturbations move the system only a small distance in its state
thanks to stoichiometric rules that force the system to move by “small steps”
only. Hence, perturbations likely maintain the basin of attraction and thus,
they do not lead to a completely different behavior/result than that expected
in nominal conditions. This holds true also for small perturbations of the
system’s parameters, given that the parameter’s variation does not lead to
crossing bifurcation points (i.e., does not induce a change in the system’s
behavior). For example, the effect of one or a few missed/corrupted receptions
by sensors that implement the Chemistry-inspired consensus algorithm is not
even appreciable in the final result of the distributed computation.

The mass-action principle allows Chemistry-inspired systems and algorithms to
convey information by rate modulation. In traditional computer networking,

Rate-encoded
informationa piece of information is encoded and processed symbolically: information is

encoded as a sequence of binary numbers and stored in packets, which are
then transmitted to convey the information to the recipient. In mass-action
driven systems, the information, which reflects also (part of) the state of the
system, is conveyed by the rates of distributed reactions and thus by the
rates of transmissions among spatially distributed nodes of the communication
network. This information can represent data-messages, as in the example of
the chemical consensus algorithm (that indeed can be implemented directly
as a communication protocol), or control-messages that are exchanged for free
orthogonally to the symbolic payload, as in the case of the distributed traffic
rate controller.

Thanks to the mass-action principle, the analysis of Chemistry-inspired systems
is simple and accurate. On one hand, the law of mass action enforces a direct

Simplified
analysis
process

mapping between the state and the state’s variation of the system. This enables
extracting automatically the fluid model description (i.e., a set of ordinary
differential equations) of the system from its execution model (i.e., the reaction
network that defines it). One the other hand, the law of mass action makes the
system’s dynamics more fluid. For example, thanks to the mass-action-based
scheduling of packets in packet-switched networks, packets transmissions are
paced such that their interactions at queues are explicit and predictable. In
this way, the fluid model approximates accurately the system’s dynamics. The
analysis process of networking and communication systems is also simplified
thanks to the direct use of chemical theory, which provides new analytical
tools to complement traditional methods of control and queueing theory. For
example, we have demonstrated the stability of the chemical consensus algo-
rithm by means of the Deficiency Zero theorem, which is a novel, unusual tool
in the field of networking and communication engineering.



192 Conclusion

6.2 Contributions and findings

In the thesis, we have focussed on system dynamics and have investigated
computation and processing from a “Physical Chemistry perspective”. We
have revisited some of the definitions and principles of Chemistry and have
adapted the way of reproducing artificial chemistries on traditional computers
so as to have at hand powerful tools to engineer communication and networking
systems. We have shown some potentialities and benefits of Chemistry-inspired
engineering in different domains, which range from rate control to distributed
computation, from software-based mechanisms to hardware controllers. We
have illustrated how it simplifies essential development-stages of communica-
tion and networking systems, such as the analysis of system’s stability, system’s
sensitivity, and system’s equilibrium points, as well as the design of control
systems that are distributed and embedded in the environment. For the first
time, we have demonstrated that the chemical approach is not relegated to pure
theoretical modeling exercises or to fuzzy hypothetical systems far away from
the actual deployment. On the contrary, it can be applied, today, to realize
(i) algorithms for controlling the access to shared resources, (ii) linux-kernel
and hardware modules for controlling the Internet traffic, and (iii) mechanisms
for distributive computing in wireless sensor networks. Furthermore, the un-
derlying chemical theory can be used to account for practical issues related
to the actual deployment of algorithms, by taking advantage of the intrinsic
robustness and self-organization of Chemistry-inspired mechanisms.

We have shown how the Chemistry-inspired approach can be beneficial in man-
aging traffic in packet-switched networks. Mass-action-served queues guarantee

Distributed
traffic rate
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packet-
switched
networks

predictable and controllable interactions among packet flows. This stems from
the strict relationship between the system’s state and dynamics, between queue-
fill levels and scheduling rates. We have formalized the stationary features
of mass-action-based queueing systems, based on steady-state analysis. The
chemical approach also provides us with an intuitive pattern that embodies one
of the most used techniques in traffic shaping: rate limit/control. In this regard,
we have investigated (analytically, by simulations, and by experiments with real
traffic) the use of a well-known chemical model (the Enzymatic reaction model)
as a local traffic controller to limit the traffic rate up to a maximum value and to
control the level of potential traffic bursts. Starting then from this simple but
effective mechanism, we developed a class of distributed rate controllers that
can be easily parametrized, extended, and customized, for various purposes and
in different operational environments, such as to enable service differentiation
among user’s flows at the client side, to distributively coordinate aggregate
flows, to allocate capacities to admitted flows in an intra-domain network, and
to regulate the access to a resource at the server end. For such a class of
distributed rate controllers, we have provided an in-depth analysis and theory-
based guidelines for tuning a possible implementation, and a first evaluation in
a small network of wire- and wireless-connected computers.
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We have shown that the Chemistry-inspired approach can be used to develop
communication protocols in the context of distributed computation in Wireless
Sensor Networks (WSNs). Our contributions in this field are mainly four:

Communication
protocol for
distributed
computation
in WSNs

(i) We have revisited known theoretical results in the consensus context by
means of new tools directly imported from Chemistry. (ii) We have shown
that the same tools can be used to derive a set of interaction rules that allow
achieving consensus in WSNs, in a distributed manner. At the same time, we
have used these tools to formally assess the qualities (convergence and stability)
of the derived system. (iii) We have validated the performance of the proposed
model by means of simulations and a four-node hardware testbed. (iv) In doing
this, we have demonstrated that Chemistry-inspired protocols can lie at the
lowest layer of the communication stack; chemical reactions control directly
Radio-Frequency (RF) modules. The emergent and simple communication
protocol lets nodes exchange their data in an asynchronous admission-free
manner, with no need for symbolically encoded information and for packet
exchanges.

We have demonstrated that Chemistry-inspired algorithms can be built in
hardware. This represents a remarkable step towards the adoption of this
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class of algorithms in real communication and networking environments, where
high-speed computation and processing capabilities are required more and more
frequently. We have given guidelines on how to decouple the computational
time related to running the underlying chemical model from the complexity of
the chemical model itself. Covering the opposite side of the design spectrum,
we have shown how to “fit” artificial chemistries to relative small hardware
devices, advantaging logic density over computational speed.

The investigation on the hardware implementation of Chemistry-inspired sys-
tems has brought to another important contribution: a user-friendly high-level
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abstraction for the design of hardware controllers. The developed platform can
be used as a facility to generate a logic-gate-level description, synthesizable
on FPGA-technology (Field-Programmable Gate Array). With this platform,
more or less complex equation-based control-mechanisms can be built in hard-
ware. Designers are able to realize distributed or centralized control modules
by simply defining chemical species and reaction rules. These modules exploit
the processing parallelism of hardware, and thus achieve high-speed processing
and high time-granularity capabilities. At the same time, the analyzability
and the programmability of dependent-conditions and actions are preserved.
This contrasts with most of the existing control solutions that have to rely
on software-based sequentialized descriptions because of the difficulty to pro-
gram dependent-conditions and actions through a hardware-based parallelized
description.
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6.3 Future works

We would like this doctoral work to be an incentive to tackle open issues of
current and future communications by means of the Chemistry-inspired ap-
proach – an approach that, from the earliest stages of the development process
of algorithms, protocols, or mechanisms, (i) promotes dynamics awareness, be-
sides traditional concerns on functional aspects, (ii) supports the development
of systems with a-priori defined and well predictable dynamics, (iii) provides
analytical and formal tools, and at the same time (iv) is simple and intuitive
thanks to a direct use (sometimes combined) of elementary motifs and well
understood patterns. We are convinced that, in this thesis, we have identified
only some of the possible research areas (e.g., distributed computation in wire-
less sensor networks, traffic shaping in packet-switched networks) where this
novel, unconventional approach can successfully and beneficially be applied.
However, we hope that other researchers and scientists recognize in the here-
proposed framework a valuable means for progressing in their specific fields of
interest and knowledge. In addition, we just have embarked on pursuable paths
to an actual usage of Chemistry-inspired solutions, and further investigations
are required to actually influence and define future industrial R&D topics.
An interesting project would be for example developing a Chemistry-inspired
hardware design environment, which supports the graphical as well as the rule-
based design, offers a fast validation prior deployment, and provides a theory-
based facility for tuning the module under construction. Such a project is no
more than the natural evolution of what we have proposed in this thesis in
the context of hardware implementation of Artificial Chemistry. In fact, we
believe that it is possible to develop a product, ready for today’s market, for
the realization of runtime-programmable hardware controllers. Users would
be assisted in the design process by (i) a graphical environment, where it
is possible to design/define the behavior of the future hardware module by
drawing chemical reaction networks, and (ii) a rule-based environment, where
it is possible to design/define the hardware module’s behavior by writing a
set of chemical reactions. The platform should include analytical tools of
Chemistry and control theory in order to offer to the user information about
the dynamics of the module under construction (based on the automatically
extracted fluid model). This analysis-based tool should assist the user in finding
a setting/tuning (or even suggest the user a possible optimized setting/tuning)
in order to accommodate specific demands on the module’s behavior. Fi-
nally, the platform should offer the possibility to verify through simulations
the (dynamical) behavior of the module under construction. Note that with
“simulating the behavior”, we mean the reproduction of the chemical model
(system of species interconnected according to reaction rules) by means of a
reaction algorithm. The simulation of the actual hardware implementation of
the chemical model is not needed instead. This is because the building process
is standardized and does not involve each time the translation from chemical
description language to hardware description language. That is, the behavior
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of the hardware module is guaranteed to faithfully reflect the dynamics of the
underlying chemical model.
A decisive step towards large-scale use of Chemistry-inspired engineering could

Transparent
engineering
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be the development of an environment in which the designer can define specific
features of the dynamic behavior that the system should exhibit, and get, as
output, a chemical model that meets these specifics. For example, the designer
might define a specific mask for the frequency-domain features of the future
system and get a specific chemical reaction network as output. The position
of each singularity of the defined frequency response would contribute to the
definition of the output (linear) chemical model. Such a facility would reduce
the effort required, at the first stage of the Chemistry-inspired engineering
process, to design a chemical model that meets the project specifics. It would
even make the underlying chemical metaphor transparent to designers – kinetics
and interaction laws could be used to realize systems exhibiting the specified
dynamical behavior, by designers with no related expertise.
Another wide noteworthy field of research is the in-network control of traffic
in packet-switched networks by means of chemical kinetics and principles.
The mere adoption of the mass-action principle for scheduling dequeueing/
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transmission of packets in routers leads to an exact and strict relationship
between (i) the queue fill level, (ii) the queue latency, and (iii) the dequeue-
ing/transmission rate of packets. Interestingly, these three elements, on which
any queueing-theory-based description of systems relies, represent also the key
points of past and recent research on queue management. We believe that the
import of laws and concepts from Physical Chemistry into this field may be suc-
cessful and give rise to remarkable solutions from a design/implementation per-
spective and, mostly, in terms of analysis/predictability. We also believe that
the exploration of Chemistry-inspired in-network traffic control can bring im-
portant contributions to the creation of programmable, manageable, and adapt-
able networking infrastructure, a hot topic addressed by the Software-Defined
Networking (SDN) community. The Chemistry-inspired approach would com-
plete SDN by broadening the programmability of routers and switches to
enable programmable network dynamics. And, although there may soon be
software-based solutions for the “programmable control” of traffic dynamics,
the Chemistry-inspired approach still represents a means of high programma-
bility in both software and hardware environments, which is worthwhile to
research on.
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Supplementary material

This additional chapter contains supplementary material. Although its
contents are related to the main part of the thesis, they are not essential

for the understanding of the manuscript, would have risked to break the logical
writing thread if included in the main body, or need a deep investigation. For
this reason we postpone them to this very closing part.
This chapter is structured as follows: We introduce in Section A.1 a new
attraction-based law that can simplify patterns for designing networking mech-
anisms. We provide the step-by-step analysis of the Enzymatic rate con-
troller in Section A.3 and that of the Distributed Traffic Rate Control (DTRC)
mechanism in Section A.4. In Section A.5, we study the use of the DTRC-
mechanism as a random media access algorithm and compare it with the
traditional ALOHA protocol. We discuss in Section A.6 how to enable service-
class differentiation within the DTRC-mechanism and report early experiments’
results. In the context of Chemistry-inspired distributed computation, we give
results about simulations of the chemical consensus model in clustered and
inline networks in Section A.7, introduce a possible approach to account for the
runtime communication collisions in Section A.8, and an alternative frequency-
division implementation of the chemical consensus algorithm in Section A.9.

A.1 A novel attraction-based law: LoPA

We have already extended the potentiality of the chemical paradigm for the
design of communication/networking algorithms by enabling deviating from
laws and models that describe phenomena in real Chemistry. In Section 2.4,
we have introduced the possibility to choose different distributions to generate
random inter-reaction times (deterministic times are possible too), with benefits
that range from scenario to scenario and from application to application (e.g.,
deterministic reaction times are useful to obtain network dynamics that are
theoretically free from oscillations and that match exactly analytical predic-
tions).
Here, we further extend the chemical paradigm through the introduction of
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a new reaction law: Law of Pseudo Attraction (LoPA). LoPA states that the

Attraction-
based reaction

law...

reaction rate is proportional to the concentration (quantity) c of all product
molecules. LoPA essentially relates the reaction rates with the product con-
centrations through the following propensity function

...propensity vr = kr ×
|S|∏

s=1

cβsrs , (A.1)

where kr is the reaction coefficient, |S| is the size of the set S of all the present
species, cs is the concentration of the s-species, and βsr is the stoichiometric
reaction coefficient related to s-species and reaction r, i.e. the amount of s-
molecules produced by the r-reaction.
LoPA can simplify design patterns for Chemistry-inspired algorithms and def-
initely broadens capabilities of engineers and designers. This novel law, which
does not have meaning in the context of actual Physical Chemistry, forces
reaction kinetics to depend on the amount of molecules of product species, and
not on the amount of reactant molecules as instead dictated by the discussed
LoMA. The cost for such an attraction-based law is the need for information
that can be not available locally. When the product species lies in a different
node (possibly reflecting also another physical location – distributed reactions),
the rate of the reaction depends on a value (propensity) that is not known
locally. This is not a problem when the state of product is available at the node
where the reaction occurs. It requires instead the exchange of state information
when the product species lies in a physical location, which is away from the
node where the reaction occurs and when the (chemical) state information of
that neighbor is not available locally.
To evaluate possible benefits for the introduced law, in the next section, we
compare two motifs to compute the difference between any two quantities, one
model is obtained relying on the LoMA (the “difference motif” proposed by
Meyer in [163]), the other is obtained relying on the LoPA.

A.1.1 Difference motif: LoPA vs. LoMA

In [163], Meyer introduced the difference motif, a chemical model to compute
the difference between two quantities. Figure A.1 shows the related reaction
network and reaction equations. The two input quantities are encoded into the
molecular concentrations cA and cB of species A and B; after a transient time,
the species Y contains a number of molecules equals to cY = cA − cB.
By applying the attraction law LoPA, we can simplify such a scheme and make
its dynamics reducible to a linear model. In Figure A.2, we have three reactions
(r1, r3, and r4) that are governed by the LoMA, and one reaction (r2) that
is governed by the LoPA. Like in the previous chemical model, the network of
reactions subtracts the number of B-molecules from the number of A-molecules
and presents the result in the number of Y-molecules, when condition cA > cB
is satisfied.
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(a) Reaction Network

r1 : A + Y
1−→ A + 2Y

r2 : Y + B
1−→ B

r3 : 2Y
1−→ Y

(b) Reaction Equations

Figure A.1: The network of LoMA-reactions subtracts the number of B-molecules
from the number of A-molecules and presents the result in the number of Y-molecules.
If cB > cA, the presented quantity is cY = 0.
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(a) Reaction Network

r1 : A
1−→ A + Y

r2 : Y
1→→ B

r3 : B
1−→ ∅

r4 : Y
1−→ ∅

(b) Reaction Equations

Figure A.2: Reactions r1, r3, and r4 are governed by the usual LoMA, whereas
reaction r2 is governed by the new Law of Pseudo Attraction (LoPA). The network of
reactions subtracts the number of B-molecules from the number of A-molecules and
presents the result in the number of Y-molecules. If cB > cA, the presented quantity
is cY = 0.

To look how this computational result can be achieved, let look at the fluid
model of both reaction systems and study their behaviors at steady states. For
the traditional LoMA-model in Figure A.1, the following set of ODEs is valid

˙cA = 0 (A.2a)

˙cB = 0 (A.2b)

˙cY = −cAcY + 2cAcY − cBcY − 2c2Y + c2Y. (A.2c)

From (A.2c), by collecting cY and then simplifying with respect to cY, we get
that c∗Y = c∗A − c∗B. The set of ODEs for the attraction/repulsion model is
instead

˙cA = 0 (A.3a)

˙cB = cB − cB (A.3b)

˙cY = cA − cB − cY. (A.3c)

Again we get that at steady state, c∗Y = c∗A − c∗B. By looking at the models
as well as the fluid model describing their behaviors, it is visible that the
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complexity of the difference motif when applying an attraction law next to the
repulsive LoMAis reduced.

We envision the possibility to extend the chemical paradigm for designing net-
working and communication algorithms with any macroscopic law (e.g. LoMA,
LoPA) and any microscopic distribution (e.g. exponential, normal). However,
we believe a fixed feature that any sort of extension must preserve is the direct
coupling between states and rates (that is enforced by reaction laws), which
must permit to automatically build a deterministic ODE model that describes
the algorithm’s dynamics.

A.2 Further related works on traffic shaping

In this section, we extend the discussion started in Section 3.1 on the various
building blocks that (have) contribute(d) significantly to shaping the traffic in
packet-switched networks. We summarize the mechanisms that are used today
in the Internet to keep network dynamics under control and obtain an efficient
and fair use of network resources. In the following, we briefly comment on
end-to-end (Section A.2.1) and in-network mechanisms (Section A.2.2).

A.2.1 End-to-end transport control

Today, in the Internet, there are many mechanisms that contribute to managing
the traffic and keep network dynamics under control. A prominent role is played

Transport-
layer

protocols

by transport-layer protocols that provide end-to-end communication services
for applications, such as capacity sharing and flow multiplexing. Among them,
the Transmission Control Protocol (TCP) [199] is the mostly used. TCP
abstracts away the application’s communication from the underlying network’s
conditions (it detects lost, duplicated, or out-of-order packets, it requests re-
transmission of lost data, rearranges out-of-order data, and tries to minimize
network congestion while maximizing the goodput) and provides a reliable, bi-
directional virtual channel between any two hosts over the Internet. There exist
a few other alternative transport-layer protocols, albeit much less in use today.
The Stream Control Transmission Protocol (SCTP) (see [186] for a sound
introduction to its features) is a session-orientedA.1 protocol that was born to
accomplish the requirements of telephony signaling transport. Like TCP, it is
rate adaptive and provides an in-order, error-free, and reliable transport service.

A.1In a session-oriented mechanism, the relationship between the communication endpoints
is created prior to data being transmitted, and this relationship is maintained until all data
transmission has been successfully completed.
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Moreover, it supports functions for multi-streamingA.2 and multi-homingA.3. A
less sophisticated protocol is the User Datagram Protocol (UDP) [198], which
provides a simple messaging service that is fast but can offer only an unreliable
best-effort delivery, without dynamics-aware mechanisms. More recently, the
Datagram Congestion Control Protocol (DCCP) [133] has been introduced to
merge, in a single protocol, congestion-control (like TCP) and timeliness (like
UDP) by renouncing requirements of reliability and in-order-delivery, so as to
meet the needs of applications with timing constraints on data-delivery (e.g.,
streaming media, multiplayer online games and Internet telephony).

Most traffic of today’s Internet however is carried by TCP. One of the main
Transmission
Control
Protocol
(TCP)

elements of TCP is its congestion-control algorithm, which governs the dy-
namics of the communication between endpoints. TCP tries to maximize the
capacity utilization while avoiding to congest the end-to-end path. To this end,
it continuously probes the network for spare capacity and controls the rate
of packet flows at the source, with a window-based mechanism. Packets are
sent at a rate that is periodically regulated relying on a dynamically-adapted
window, such that roughly one window’s worth of packets is transmitted every
Round-Trip Time (RTT) [149].A.4 Over the last thirty years, the congestion-
control mechanism has been at the core, or in any case an important aspect,
of TCP variants, and in fact is what differentiates them. TCP variants differ
in the type of feedback signal used to detect congestion (e.g., delays, packet
losses), how this feedback is interpreted in various operational environments
(e.g., wireless networks, high-speed long-delay networks, data-centers, mobile
ad hoc networks), and how they are optimized for specific applications (e.g.,
low-priority data-transfer service for background traffic, web-traffic).

Modern congestion control emerged from the need for overcoming the “con-
Algorithms of
transport-layer
congestion-
control

gestion collapse” phenomenon.A.5 By having a network-aware rate limiting
mechanism, a TCP sender estimates the number of data packets the net-
work can accept for delivery without becoming congested. TCP Tahoe in-
troduced the first set of algorithms to address the challenges of congestion
control [37,121,199]: “Slow Start” and “Congestion Avoidance” constitute two
distinct main operational phases of TCP Tahoe to detect available network

A.2Multi-streaming function allows data to be partitioned into multiple streams that can
be independently-sequenced delivered, so that a message loss in any stream will only initially
affect delivery within that stream, and not delivery in other streams. Compared to strict
sequence-preservation (like in TCP), this reduces the delay when a message loss or a sequence
error occurs within the network.

A.3Multi-homing function enables a single SCTP endpoint to support multiple IP addresses,
thus it increases the potential survival of the session in case of network failures – i.e.,
enhancing the network’s robustness.

A.4The Round-Trip Time (RTT) is the time elapsed since a packet is sent until the related
acknowledgment (ACK) is received at the source.

A.5According to the “congestion collapse” phenomenon [93], if the offered load in an
uncontrolled distributed sharing-system exceeds the total system capacity, the successful
traffic will go to zero as load increases.
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resources and adjust the transmission rate of the TCP flow to the detected
limits respectively. In the Slow Start phase, the reception of an acknowledgment
(ACK packet) is considered as an invitation to send double the amount of data
that has been acknowledged (multiplicative increase policy). In Congestion
Avoidance phase, a much more conservative policy is followed in response to
received ACK packets and to the detection of packet losses – the congestion
window increases by one only if all data packets have been successfully de-
livered during the last RTT (additive increase policy), and it is halved after
a loss (multiplicative decrease policy). Fast Retransmit algorithm [222] was
introduced to reduce the loss-detection time by requiring that TCP receivers
accept and reply to all out-of-order data packets with reports of the last in-
order packet (a duplicate ACK [37]), so as to report the packet-loss to the
sender within the RTT interval.A.6

Later, TCP variants (mostly) have varied in how the algorithms react to the
detection of losses. For example, TCP-Reno [11] introduced the conceptual
difference between major (a loss detection through RTO) and minor (a loss
detection through duplicate ACKs) congestion events, and the Fast Recovery
phase; the sender retransmits the missing packet that has been signaled by
three duplicate ACKs, and waits for an ACK of the entire transmit window
before returning to congestion avoidance or, on timeout, enters the slow-start
state. The shorter recovery period and the possibility to transfer data within
the recovery period make the use of the network more efficient. TCP New-
Reno [85, 86] further improves the efficiency in heavy-load environments (for
multiple loss events) by taking into account the dependency of sequentially
detected loss and avoiding accordingly to reduce excessively the rate. Further
incremental improvements include extensions of reporting capabilities of the
receiver (such as Selective ACK [156], to notify blocks of successfully delivered
data packets, and Duplicate-SACK (DSACK) [88], to notify the reception of
duplicate packets for the same sequence number) in order to make the recovery
from errors much faster (Forward Acknowledgment [155]) or to correctly deal
with the phenomenon of packet reordering (Reordering-Robust TCP [266]).A.7

New solutions further exploit enhanced reporting capabilities of the network it-
self; DCTCP [8], a TCP version for data-center environments, take advantage of
in-network ECN-marking (see later) to throttle flows by reducing the congestion
window in proportion to the extent of congestion. To successfully work in high-
speed long-delay networks (i.e. networks with large Bandwidth-Delay Prod-
uct), TCP has been adapted to rapidly discover the right congestion window
size. For example, Binary Increase Congestion (BIC) control algorithm [257]
introduces an additional operational phase, “Rapid Convergence”, to induce,

A.6Otherwise, the packet loss is detected at the end of the Retransmission TimeOut (RTO).

A.7In real networks, packets are reordered due to different reasons, ranging from simple
erroneous software or hardware behavior (bugs, misconfigurations, or malfunctions) to in-
network mechanisms (diverse packets handling services, internal rescheduling at routers) and
packet processing parallelism. Packet reordering makes a simple loss detection mechanism
not feasible (out-of-order delivery 6= packet loss).
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through a binary search manner, a very fast (logarithmic) convergence time
of the optimal congestion window size.A.8 The enhanced version of BIC, and
probably most popular version today, is CUBIC [105], which maintains the
scalability and intra-fairness properties of its predecessor but also guarantees
(i) RTT-fairness through RTT-independent congestion-window growth func-
tions, and (ii) at least the same performance of the standard (Reno) congestion
control through a dedicated mechanism.
There have been TCP extensions that have enhanced the loss-based congestion
assessment. In wireless networks, where packet losses are not only related to
congestion, the Westwood algorithm [154] enables the sender-side to distinguish
between a congestion-related and an unrelated (random) loss without any sup-
port from the network, by estimating the last relevant flow rate and using this
as a baseline to distinguish the loss type. There have also been variants that
introduced completely new alternative mechanisms to loss-based congestion
assessment for estimating the network’s state. TCP Vegas [38] modifies the
original TCP behavior implementation to proactively detect congestion from
the estimated amount of enqueued packets at the bottleneck router. Like in
the older attempt DUAL [243], Vegas uses RTT measurements to infer the
bottleneck queue’s length, and mitigates extremely the oscillatory patterns in
network dynamics.A.9

A.2.2 In-network queueing/scheduling

TCP congestion control mechanisms [10] govern network dynamics from the
edges of the network. Traffic management, service differentiation, and queue
management [55] are the other aspect of controlling network dynamics, inside
the network. Mechanisms are used within the network (in the routers) (i) to
leverage the endpoints’ congestion avoidance mechanisms, (ii) to enhance the
congestion-feedback signal, (iii) to address issues of burstiness, synchroniza-
tion, or unfairness, and (iv) to simply differentiate and prioritize traffic classes.
It is useful to distinguish between two kinds of router algorithms (related
to traffic control), which are closely related but address different objectives:
“queue management policies” versus “scheduling algorithms”. To a rough ap-
proximation, the first ones aim at addressing issues related with the (optimized)
performance and utilization of router queues. The second ones determine which
packet to send next and are used primarily aiming to manage the allocation

A.8Like other algorithms for high-bandwidth-delay-product networks (HS-TCP), BIC has
also Limited Slow Start to avoid a large number of packets being lost when the congestion
window is increased too fast. Similarly, BIC had up- and down-limited binary convergence
to avoid the search range to be too wide or too narrow.

A.9We have cited only a few works in the context of TCP’s congestion avoidance that
(i) have contributed (conceptually, with standardized solutions, with significant implemen-
tation enhancements, etc.) to the current use of the Internet, (ii) apply complete end-to-end
mechanism and do not rely on active participation of other elements within the network, and
(iii) are cited throughout the thesis in experiments or discussions. For a wider but still very
compact overview on the topic, refer to [5].
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of bandwidth among flows. Scheduling algorithms and queue management are
complementary.

A.2.2.1 (Active) queue management

“Tail-drop” is the simplest way for controlling the queue length. It consists
in setting a maximum length (in terms of packets or bytes) for each queue,
accepting packets for the queue until the maximum length is reached, and
rejecting (drop) subsequent incoming packets until the queue decreases when a
packet from the queue has been transmitted. Although this method had served
the Internet well for years [205], it has two main drawbacks: (i) The “lock-
out” phenomenon, often resulting from synchronization or other timing effects,
makes one or few flows (connections) monopolize the queue space, preventing
other flows from accessing it. (ii) Queues can remain (almost) full for long
periods of time, a condition that eventually contributes to the reduction of
the overall throughput.A.10 In contrast with these two phenomena, ideally the
sizing of queues should reflect the size of expected traffic bursts, and their
steady-state fill level should be maintained low to achieve higher throughput,
flow admissibility, and lower end-to-end delay [55].

The solution to the “full-queue” problem is dropping packets at routers before
a queue becomes full, so that endpoints can respond to imminent congestion
before buffers overflow – Active Queue Management (AQM). With AQM, the
links play an active role in congestion control and avoidance. This brings
various important benefits [55]: (i) reducing the number of packets dropped
in routers (i.e., by working with full queues, there is no room left to absorb
packet bursts, which are an intrinsic feature of traffic in packet networks [245]),
(ii) reducing the delays experienced by flows, (iii) preventing lock-out behav-
iors by ensuring place in the buffers for incoming packets, and (iv) alleviating
the recently identified bufferbloat conditionA.11.

Traditionally, AQM mechanisms rely on the queue level to proactively signal
congestion before buffers overflow – e.g., Random Early Detection (RED) [87]

Active Queue
Management

(AQM)

and its variants GRED [84], CHOKe [190], and DRED [192]. This is done
probabilistically by dropping packets with a probability that increases as the es-
timated average queue size grows. Other proposals adjust the dropping proba-
bility based on packet-losses/marking (e.g., BLUE [81]), or on the arrival packet
rate and on a predefined bandwidth allocations (e.g., SFED [124]). SHRED [56]
uses instead an estimated average congestion window and the congestion win-
dow extracted from the arriving packet, whereas RED-Worcester [194] tries to
reflect the average nature of the traffic and respectively targets a correct queue

A.10A burst of packets arriving in a full queue causes multiple packets to be dropped,
which can make in turn flows to throttle back in a globally-synchronized fashion, inducing a
subsequent period of lowered link utilization – i.e., global synchronization problem.

A.11Bufferbloat refers to having “excessively” large and frequently full buffers in the network
that causes high latency and packet delay variation, leading to a reduced overall throughput.
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length (small queues for delay-sensitive and bigger queues for throughput-
sensitive traffic).A.12 Recently, a second generation of AQM algorithms has
appeared, which aim particularly at addressing the bufferbloat issue. They
rely on queue delays for their operation instead of queue lengths: CoDel [178]
relies on the direct monitoring of the buffer latency via time-stamping each
packet on ingress, PIE [189] relies on the queue length and the dequeueing rate
and infers the latency by exploiting Little’s law.
Finally, next to AQM mechanisms, the introduction of Explicit Congestion
Notification (ECN) [89] lets each link participate in congestion control by
notifying explicitly users (i.e., packet “marking”) when it detects congestion,
as opposed to implicit signaling by dropping the packet.A.13 ECN marking
provides faster feedback and reduces the number of packets dropped by a TCP
connection thereby retransmissions by TCP senders, latency, and jitter.

A.2.2.2 Scheduling algorithms

Scheduling algorithms affect the way in which packets from different sources
interact with each other and, in turn, they influence the collective behavior of
flow control algorithms. The simplest algorithms is the First Come First Served
(FCFS), which is a single queue scheduler and in which the order of arrival of
packets also determines the order in which they are forwarded over the output
link. However, a packet scheduler should (i) provide some measure of isolation
between, and fairness among, the competing flows, (ii) bound the total delay
experienced by a packet in transit, and (iii) have a low operational complexity
that guarantees high working speed. For this reason, multiple queue schedulers
have been proposed. A first attempt in this direction was the Fair Queueing
(FQ) algorithm [173], which maintains separate round-robin-served queuesA.14

for packets from each individual source, avoiding in this way a source from arbi-
trarily increasing its bandwidth share or the delay experienced by other sources.
Pure round-robin scheduling however fails to guarantee a fair allocation in the
case of packets with variable size. Instead, the Generalized Processor Sharing
(GPS) [191] (an ideal, but not directly implementable, scheduling discipline),
assumes fluid flows (i.e., infinitely divisible) and achieves perfect fairness and
isolation among competing flows with variable sized packets.
A big category of scheduling algorithms includes time-stamp based algorithms.
These scheduling algorithms try to emulate a GPS-system by computing a
timestamp for each packet and then transmitting them in increasing order

A.12We have cited a few of the many proposals in the context of AQM. We refer the reader
to [4] for a survey on works until 2011.

A.13With ECN-extension to IP/TCP, upon detecting incipient congestion, an ECN router
set a bit in the packet header to one so as to notify the user that a link on its route is
congested. The user then reacts to the mark as if a packet has been lost. Thus, the link
avoids dropping the packet and still manages to convey congestion information to the user.

A.14A Round-Robin service rotationally selects packets to send out from all flows that have
queued packets, ignoring empty queues.
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of their timestamps. For example, the Weighted Fair Queuing (WFQ) [62]
algorithm computes the timestamp of a packet as the time it would finish
being serviced under a reference GPS server. Self-Clocked Fair Queuing [101],
Virtual Clock [264], Leap Forward Virtual Clock [224] improve the timestamp
computational efficiency by avoiding maintaining a reference GPS server and
computing coarser timestamps. Time-stamp-based scheduling algorithms have
good delay and fairness properties but generally need to sort packets by their
deadlines, and therefore suffer from complexity logarithmic in the number of
flows.

A much simpler algorithm to implement is Deficit Round Robin (DRR) [216].
DDR algorithm assigns to each flow (i) a quantum size proportionally to the
weight of the flow and (ii) a deficit counter that measures the current unused
portion of the allocated bandwidth. Packets of backlogged flows are transmitted
in rounds, and in each round, each backlogged flow can transmit up to an
amount of data equal to the sum of its quantum and deficit counter. The
unused portion of this amount is carried over to the next round as the value
of the deficit counter. As a result, DRR has a very simple implementation
that requires low processing effort but has poor delay and output burstiness
properties. Evolutions to the DRR-scheduling have been proposed. For ex-
ample, to improve the burstiness problem, the Smoothed Round Robin [103]
spreads the quantum allocated to a flow over an entire round by using a Weight
Spread Sequence. Targeting better delay bounds, Bin Sort Fair Queuing [54]
integrates notions of timestamp scheduling and uses an approximate bin-sorting
mechanism to schedule packets.

An important issue with multiple-queue algorithms is performance and memory
consumption as the maximum possible number of flows increases. Stochastic
Fairness Queueing (SFQ) [158] scheduler is an evolution of FQ, which has been
designed to be CPU- and flow- friendly. It employs a (constantly changing)
hashing algorithm that statistically divides traffic over a limited number of
queues, which are served in a round-robin style.

All discussed scheduling algorithms operate under a work-conserving discipline.
Work-

conserving This means the server of a queue is never idle until there is a packet to be sent
in the queue. The benefit of adopting work-conserving disciplines is the low av-
erage packet delay. The scheduling tries to exploit the maximum path capacity
by letting the upper transmission rate be inherently limited by the network’s
bottleneck features (e.g., bottleneck link’s capacity). The downside, which up
until recently was not seriously considered,A.15 is the uncontrollability of the
performance exhibited by the overall communication system. Flow interactions

Non-work-
conserving at shared network elements (e.g., switches and routers) are “left to chance”.

By contrast, non-work conserving disciplines delay the transmission of packets
to eligible times. This makes the traffic out of switches more predictable and,
at the same time, reduces the delay jitter experienced by a connection and the

A.15Non-work-conserving scheduling was already proposed in the nineties by Zhang et al.
[262,263].
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burstiness of traffic, allowing in this way smaller buffers at output queues.

A.3 Step by step analysis of
the Enzymatic traffic controller

This section provides details about the analysis of the Enzymatic traffic con-
troller introduced in Section 3.3. The procedure follows exactly the one we
explained in Section 2.3.
The dynamics of the chemistry-inspired rate controller graphically represented
in Figure A.3 are described by a system of coupled ODEs, which can be easily
extracted from the reaction sets:

Fluid model

ċS = λ− k1cScE (A.4a)

˙cES = k1cScE − k2cES (A.4b)

˙cE = k2cES − k1cScE. (A.4c)

By solving (A.4) with respect to species concentrations, when the left-hand
side is equal to 0, we find steady-state concentrations:

Steady state

cS
∗ =

λ

k2e0 − λ
k2

k1
(A.5)

cE
∗ =

k2e0 − λ
k2

(A.6)

cES
∗ =

λ

k2
. (A.7)

Since there exists a conserved moiety E-ES (i.e. a closed loop where the sum of
the concentrations of involved species is constant: cES + cE = const. = e0), if
we impose that molecular concentrations must be positive quantities, we limit
the validity of (A.5) to the following region:

Steady-state
results validity

λ < k2e0. (A.8)

The next step is the definition of the rate vector as v = [k1cScE k2cES λ] and

Reaction
network
structure

of the stoichiometric matrix (reaction network topology) as

Ξ =



−1 0 1
1 −1 0
−1 1 0




whose rows represent the species s = [S ES E] and columns represent the
reactions r = [r1 r2 rλ].A.16 For example, the first column expresses the fact
that reaction r1 consumes an S-molecule and an E-molecule and produces an

A.16We abuse the notation and represent the arrival process as a reaction rλ : ∅ λ−→ S.
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E

ES
k1 k2

vout
S

λ
P

transmit 
data-packets

r1 : S + E
k1−→ ES (A.9)

r2 : ES
k2−→ E + P (A.10)

Figure A.3: The Enzymatic traffic controller: graphical reaction network and reac-
tion set.

ES-molecule. Each structural conservation, e.g. the moiety E-ES, corresponds
to linearly dependent rows in the stoichiometric matrix. As suggested in [201],
we avoid redundant terms and proceed taking into account the reduced stoichio-
metric matrix ΞR that can be obtained removing the row related to E-species
from Ξ, i.e. the last row:

ΞR =

[
−1 0 1
1 −1 0

]
.

As it is indicated in [210], the relationship between Ξ and ΞR is formalized by
the link matrix L (such that Ξ = ΞRL), which makes explicit how dependent
species’ concentrations, cd = [cE], can be derived from independent species’
concentrations, ci = [cS cES] :

L =




1 0
0 1
0 −1


 .

The link matrix is composed by the identity matrix whose size equals the num-
ber of independent species (rank(Ξ)), and an additional row vector describing
the relationship between dependent and independent species. In this case, there
is one moiety only and the additional row vector expresses that the dependent
species E can be derived by subtracting ES-species’ concentration cES from
the initial amount that characterizes the moiety (e0). Namely, species can be
represented in terms of independent species only as c = Lci + T where T is an
appropriate constant vector – i.e. referring to our rate-controller example we

have [cS cES cE]T =




1 0
0 1
0 −1



[
cS
cES

]
+




0
0
e0


 .

In order to represent the Enzymatic reaction model shown in Figure A.3 as a
LTI system, we must evaluate the behavior of the model around steady states
(nominal states) and input signal values. Namely, we calculate the Jacobians
of the rate vector with respect to state vector c and perturbation vector p
respectively. The state vector c includes independent species’ concentrations
ci and dependent species’ concentrations cd, and, assuming we want to study
the Enzymatic controller’s response to variations on packet arrival rate, we fix



A.3 Step by step analysis of the Enzymatic traffic controller 209

the parameter vector to p = [λ]:

∂v

∂c
=



k1cE 0 k1cS

0 k2 0
0 0 0




∂v

∂p
=
[
0 0 1

]T
.

Elasticity
coefficients

We know that the state matrix A defines how a perturbation on the concentra-
tions affects their future changes and the input matrix B indicates how external
perturbations cause fluctuations of the system state. By using the reduced form
of the stoichiometric matrix ΞR, we define A and B as follows:A.17

Control
matrixes

A = ΞR ·
∂v

∂c

∣∣∣∣
(c∗,p∗)

· L

B = ΞR ·
∂v

∂p

∣∣∣∣
(c∗,p∗)

.

The output matrix C and the feedforward matrix D must be chosen according
to the response we want to analyze. Since we look at the fluctuations of the
reaction rates with respect to a perturbation of the input (the output vector
reports variations on reaction rates),A.18 we define

C =
∂v

∂c

∣∣∣∣
(c∗,p∗)

· L D =
∂v

∂p

∣∣∣∣
(c∗,p∗)

.

Again, the output matrix C includes the relationship between dependent and
independent species, which is formalized by the link matrix L.
We can now calculate the TF H(s) in the Laplace domain, which describes the
transient behavior of output deviations y from the nominal state with respect
to perturbations on the chosen input u = [λ], namely the system sensitivity.
Since the triggering rate for packet transmissions is the rate of r2-reaction
vout = v2(= k2cES), we can focus on the last row of the TF matrix, the row

Transfer
functions in
Laplace
domain

vector that describes how v2 deviates from steady state:

H(s) =

{
k1k2cE

∗

s2+s(k2+k1(cS∗+cE∗))+k1k2cE∗
(λ < k2e0 = R)

0 (λ ≥ k2e0 = R, cS →∞)

A.17This definition is a direct consequence of describing the state-evolution as

ẋ(t) = ΞR · ∂v/∂c|(c∗,p∗) · L · x(t) + ΞR · ∂v/∂p|(c∗,p∗) · u(t).

A.18The output vector is

y(t) = ∂v/∂c|(c∗,p∗) · L · x(t) + ∂v/∂p|(c∗,p∗) · u(t).



210 Supplementary material

H(s) =

{ k1(k2e0−λ)

s2+s
(
k2+k1

(
k2e0−λ
k2

+
k2λ

k1(k2e0−λ)

))
+k1(k2e0−λ)

(λ < k2e0 = R)

0 (λ ≥ k2e0 = R, cS →∞)

The roots of the denominator of H(s) (poles) are

s = 1/2(−
√

(k1(cE∗ + cS∗) + k2)2 − 4cE∗k1k2 − k1(cE
∗ + cS

∗)− k2)

s = 1/2(
√

(k1(cE∗ + cS∗) + k2)2 − 4cE∗k1k2 − k1(cE
∗ + cS

∗)− k2).

Note that being k-coefficients and molecular concentrations positive quantities,
we have that

√
(k1(cE∗ + cS∗) + k2)2 − 4cE∗k1k2 < k1(cE

∗ + cS
∗) + k2 for all

values. Thus, we further assert that poles have always negative real parts.

A.4 Step by step analysis of
the distributed traffic rate controller

This section gives details about the transient (sensitivity) analysis of the Dis-
tributed Traffic Rate Controller (DTRC) introduced in Section 3.4.1. The
procedure follows exactly the one we explained in Section 2.3 and the obtained
results are those used in the analysis of the DTRC Section 3.4.2.
We start from the structure of the reaction network implementing DTRC’s

Reaction
network

structure

functionalities; the stoichiometric matrix of the chemical model shown in Fig-
ure A.4 is

Ξ =




0 1 1 −1 0 0 0
−1 0 0 0 1 0 0
0 0 −1 0 0 1 0
0 1 0 0 0 0 −1
1 −1 0 0 0 0 0
−1 0 −1 1 0 0 0




whose rows are related to the species vector s = [ET S T F ES E] and columns
are related to the reaction vector r = [r1 r2 r3 r4 rint rext rout].
We know that the mass conservation principle applies to the reaction loop
ES-ET-E and imposes the following constraint:

E0 = cES + cE + cET = const. (A.11)

Each structural conservation (e.g. conserved moiety expressed in (A.11)) in the
network, correspond to linearly dependent rows in the stoichiometric matrix.
We can thus proceed taking into account the reduced stoichiometric matrix ΞR

that, for instance, can be obtained removing the row related to E-species from
Ξ, i.e. the last row:

ΞR =




0 1 1 −1 0 0 0
−1 0 0 0 1 0 0
0 0 −1 0 0 1 0
0 1 0 0 0 0 −1
1 −1 0 0 0 0 0



.
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rint : ∅ λ−→ S
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r3 : T + E + S
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r4 : ET
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rout : F
kF−→ ∅

Figure A.4: Adaptive Distributed Traffic Rate Controller (DTRC): graphical reac-
tion network and reaction set.

As it is suggested in [210], the relationship between Ξ and ΞR is formalized
by the link matrix L, which makes explicit how dependent species’ concen-
trations, cd = [cE], can be derived form independent species’ concentrations,
ci = [cET cS cT cF cES]T :

L =




1 0 0 0 0
0 1 0 0 0
0 0 1 0 0
0 0 0 1 0
0 0 0 0 1
−1 0 0 0 −1



.

The link matrix is composed by the identity matrix whose size equals the
number of independent species, and, in this case since there is one moiety only,
a row vector expressing that the dependent species’ concentration cE can be
derived by subtracting the concentration of species ET and ES from the initial
amount that characterizes the moiety (e0).

Since we are interested in how the protocol responds to a certain internal
demand (i.e. λ) and external inflow (i.e. vsen), the vector of perturbations is
defined as p = [λ vsen]. As a next step, by following [201], we approximate
the behavior of the model to linear model whose input vector u(t) = p(t)−p∗

denotes the deviations from input signal values and whose state vector x(t) =
c(t)− c∗ denotes the deviations from nominal state:

ẋ(t) = ΞR ·
∂v

∂c

∣∣∣∣
(c∗,p∗)

· L · x(t) + ΞR ·
∂v

∂p

∣∣∣∣
(c∗,p∗)

· u(t). (A.12)

The terms ∂v
∂c and ∂v

∂p are the Jacobians of the vector of reaction rates (namely,

v = [k1cScE k2cES k3cTcEcS k4cET λ vsen kF cF]) with respect to state vector c
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and perturbation vector p, respectively:

∂v

∂c
=




1 k1cE 0 0 0 k1cS 0 0
0 0 0 0 k2 0 0 0
0 k3cEcT k3cEcS 0 0 k3cScT 0 0
k4 0 0 0 0 0 0 0
0 0 0 0 0 0 1 0
0 0 0 0 0 0 0 1
0 0 0 kF 0 0 0 0




∂v

∂p
=




0 0
0 0
0 0
0 0
1 0
0 1
0 0




.

Elasticity
coefficients

Since we have linearized the model, we can make use of the well-known state-
space description of Linear Time Invariant (LTI) systems:

ẋ(t) = A · x(t) + B · u(t) (A.13a)

y(t) = C · x(t) + D · u(t). (A.13b)

The definitions of the state matrix A and the input matrix B slightly differ
from the ones given in Section 2.3.3.2 as we have to use the reduced form of
the stoichiometric matrix ΞR:

A = ΞR ·
∂v

∂c

∣∣∣∣
(c∗,p∗)

· L and B = ΞR ·
∂v

∂p

∣∣∣∣
(c∗,p∗)

.

Being interested in the fluctuations of reaction rates with respect to changes of
input signals, we define output and feedforward matrixes as follows:

C =
∂v

∂c

∣∣∣∣
(c∗,p∗)

· L and D =
∂v

∂p

∣∣∣∣
(c∗,p∗)

.

(C must include the relationship between dependent and independent queues,
i.e the link matrix L.)
By assuming that the initial conditions are set to steady state (i.e. there are
no initial perturbation: x0 = 0), the TF of the LTI system results in

H(s) =
y(s)

u(s)
= C (s · I−A)

−1
B + D.

The TF matrix H has 14 response coefficients, describing the transient behavior
of all (seven) output deviations y from the nominal state to perturbations on
all (two) input signals u. Since the trigger for the transmission is rout-reaction,
i.e., vout = vout(= kF cF), we focus on the last row of the TF-matrix, a vector
[Ho-i Ho-e] reporting the transient behavior of steady-state output deviations

Relationships
λ-vout and
vsen-vout:

Ho-i and Ho-e

of rout-reaction’s rate with respect to perturbations on inputs λ and vsen.
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A.5 Enzymatic Media Access Control: E-MAC

In this section, we investigate the use of the distributed Enzymatic-controller
model (already introduced in Section 3.4 in the context of distributed traffic
shaping algorithms) to build a Media Access Control (MAC) protocol. We
exploit the key-ability of the Enzymatic model to limit the media access rate
in order to optimize the system in terms of “stability”. Our Enzymatic Media
Access Control protocol (E-MAC) guarantees the same maximum throughput
of the Pure ALOHA protocol but improves the performances in terms of stabil-
ity. Like current Media Access Control (MAC) protocols, the E-MAC requires
collision detection to be able to retransmit colliding packets. Differently from
the Pure ALOHA protocol, the E-MAC requires also a mechanism to detect
the amount of transmissions performed by the other participants. The delivery
of such an information does not have particular constraints in terms of time.
Indeed, differently from the Carrier Sense Multiple Access (CSMA) family, it
is not important to know when exactly the media is busy but it is sufficient an
average estimate of its use.
Our approach belongs to the contention-type or random transmission protocols
in which the success of a transmission is not guaranteed in advance. The
reason is that whenever two or more users are transmitting on the shared
channel simultaneously, a collision occurs and the data cannot be received
correctly. In this case, packets may have to be transmitted and retransmitted
until eventually they are correctly received. The E-MAC is very close to the
concepts of the pure ALOHA protocol, and it is motived by the instability
exhibited by the pure ALOHA protocol. For these reasons, in the next, we
first summarize the main features of ALOHA (via analysis) (Section A.5.1).
We then show how these features can be preserved/enhanced by applying the
distributed Enzymatic-controller model (Section A.5.2).

A.5.1 The ALOHA protocol

The ALOHA family of protocols is probably the richest family of multiple
access protocols. Its popularity is due first to its seniority, and second to its
simplicity. Many local area networks of today implement some sophisticated
variants of this family’s protocols.
The pure ALOHA protocol is very simple [1]: A newly generated packet is
transmitted immediately hoping for no interference by others. If two or more
packet transmissions overlap in time, a collision is caused and none of the
colliding packets is received correctly and they have to be retransmitted. The
users whose packets collide with one another are called the colliding users. At
the end of every transmission, each user knows whether its transmission was
successful or a collision took place and, in case of an unsuccessful transmission,
every colliding user schedules its retransmission to a random time in the future,
independently of what other users do. This randomness is required to ensure
that the same set of packets does not continue to collide indefinitely.
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In the pure ALOHA, the channel is error-free without capture: whenever a
transmission of a packet does not interfere with any other packet transmission,
the transmitted packet is received correctly. Moreover, the model considers a
single-hop system with an infinite population that generates packets of equal
length according to a Poisson process with rate λ pkt/s.A.19 Since the popu-
lation is infinite, each packet can be considered as if it belongs to a different
user. Hence, each newly arrived packet can be assigned to an idle user (i.e.
one that does not have a packet to retransmit). This assumption enables to
interchange the roles of users and packets and to consider only the points in
time when packet transmission attempts are made. By observing the channel
over time, we define a point process consisting of scheduling points, i.e., the
points in which packets are scheduled for transmission. The scheduling points
include both the generation times of new packets and the retransmission times
of previously collided packets. Let the rate of the scheduling points be g
pkt/s. The parameter g is referred to as the offered load to the channel or
the transmission rate. Clearly, since not all packets are successful on their first
attempted transmission, g > λ.

The exact characterization of the scheduling points process is extremely compli-
cated, but can be overcome by assuming that this process is a Poisson process
(with rate g, of course). Note that a Poisson process implies independence
between events in non-overlapping intervals, which cannot be the case here
because of the dependence between the interval containing the original trans-
mission and the interval containing a retransmission of the same packet. It can
be shown, however, that if the retransmission schedule is chosen uniformly from
an arbitrarily large interval then the number of scheduling points in any interval
approaches a Poisson distribution. As we anticipated, the Poisson assumption
is used because it makes the analysis of ALOHA-type systems tractable and
predicts successfully their maximal throughput.

We assume that all packets stay on the media for T seconds. Namely, we
assume that the channel has limited capacity of R = 1/T pkt/s. Let consider
a packet (new or old) scheduled for transmission at some time t. This packet
will be successful if no other packet is scheduled for transmission in the interval
(t − T, t + T ), so-called vulnerable period. Thus, the probability of successful
transmission is the probability of no scheduled packet in an interval of length
2T is Psucc = e−2gT . A.20 Thus, the rate of successfully transmitted packets
is simply gPsucc. The throughput µ, which is the fraction of time that carries
useful information, turns out to be µ = Tge−2gT . We can further normalize
the transmission rate g with respect to the capacity limitation R pkt/s of the
transmission and obtain the well-known equation of the throughput in terms

A.19In this, section we refer to rates as average values.

A.20The transmission is modeled as Poisson process with parameter g, thus the probability

that k packets are being transmitted in the period 2T is P (k) = (g)k

k!
e−g·2T .
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Figure A.5: Pure ALOHA: Throughput vs. offered load.

of normalized channel load G = g/R:

µ = Ge−2G. (A.14)

The relation between µ andG is depicted in Figure A.5, which is typical to many

ALOHA
throughput

ALOHA type protocols. We can observe that the maximal throughputA.21,
µmax = 0.5/e ∼ 0.18, is obtained at G = 1/2.
By referring to Figure A.5, we can also argue about the “stability” performance
of the Pure ALOHA protocol: forG < 1/2 the protocol is (conditionally) stable,
while for G > 1/2 it is conditionally unstable, meaning that if the offered load
g increases beyond the point R/2, the system will continue to drift towards
lower throughputs, eventually reaching zero.

A.5.2 The E-MAC protocol

We propose to adopt a stochastic protocol similar to the ALOHA protocol,
which has an improved stability thanks to an upper-limited media access rate.
The scenario is very similar to that described in Section 3.4: we have N nodes
that want to access a shared resource. The latter has a limited capacity of
maximum R pkt/s. To guarantee the maximum throughput of µmax ∼ 0.18,
we limit the aggregate access rate to G = 1/2. By extracting inter-reaction
times from the exponential distribution (a design choice and not a modeling
assumption), we can safely consider the transmission process of one or more
users as a Poisson process (for the ALOHA protocol, we can just assume
independent exponentially-distributed scheduling times in order to make the
analysis tractable). We can thus reuse the previously found results regarding
the throughput in the ALOHA case, and those found in Section 3.4.2 that
are related to the distributed Enzymatic model (DTRC model). To proceed

A.21The maximal value of the throughput is also referred to as the capacity of the pure
ALOHA channel.
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Figure A.6: Reaction network model to control the access of N nodes to a shared
media. (a) The reaction network describes the whole system in detail. (b) The
equivalent chemical model has as input the aggregated load λ =

∑
i λi and as output the

aggregated access rate g =
∑
i g. The sensing rate is null by assuming no measurement

errors: vsen = g −
∑
i gi = 0.
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throughput.
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further, we rewrite the whole system made of N controlled nodes (shown in
Figure A.6(a)) as a unique reaction system with rates λ and g (or G = Rg
in the normalized version) made of the sum of local rates, as depicted in
Figure A.6(b). Note that, in this equivalent global model, the “sensed rate”
is zero, i.e., vsen = 0. Indeed, the vsen-quantity is taken as the difference
between the measured rate accounting for all nodes’ transmission and the actual
aggregated rate of nodes’ transmission, which have the same value if we assume
no sensing errors. The throughput µ as a function of “load” concentration cS
turns out to be

E-MAC
throughput µ = Ge−2G

∣∣
k2 � k4
k4E0 = 1/2

=
0.5k2k1cS

k2k4 + (k2 + k4)k1cS
e
− k2k1cS
k2k4+(k2+k4)k1cS . (A.15)

We recall that the concentration cS increases without bound as soon as the load
rate λ is too high, i.e., λ > vmax = R/2. Otherwise, the amount of S-molecules
is finite and equal to the following value (for vsen = 0):

cS =
λk2k4

E0k2k4 − λ(k2 + k4)

∣∣∣∣
k2�k4

=
λk4

E0k4 − λ
(
λ < vmax = R/2

)
. (A.16)

Figure A.7 shows the meaning of equations (A.15) and (A.16): The normal-
ized throughput of a system of N Enzymatic-controlled nodes has the same
maximum value of a system of ALOHA nodes (i.e., µ ∼ 0.184). However, by
limiting the aggregated access rate to half the media capacity R by means of
DTRCs, we can stabilize the throughput to this maximum value and avoid the
throughput to drop to zero for high loads (in contrast with the ALOHA case,
where the throughput drops to zero when the load increases above the “sweet”
spot G = 0.5). By trying to exploit the maximum capacity and setting the
DTRCs to have vmax = R, the normalized throughput for high loads decreases
to 1/e2 ∼ 0.135. As we knew from the analysis in Section 3.4.2, we can make
the system more sensible to the load, and thus obtain higher throughput values
for lower load values, by increasing the k1-coefficient. This however can bring
to oscillatory behavior when the sensing of the media is affected by high delay.

A.6 Service-class differentiation with DTRCs

The Distributed Traffic Rate Controller (DTRC) enables a DiffServ-like mech-
anism [223]. We can still refer to the introduced reaction model (see Figure A.4)
and weight each traffic class by differentiating the value of reaction coefficient
k5 from flow to flow. In this section, we first explain the reasons behind this
choice and then report early experiment’s results.
We want that a prioritized (having higher weight) flow is advantaged over
other flows having lower weights. Intuitively, in order to do this, we cannot
simply alter the input rate at which enqueued bytes are notified to the chemical
model (i.e., differ the mapping byte-to-molecule from node to node). Indeed,
the control mechanism has been designed to act fairly and limit the output
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k5,4 = 1(no prio) k5,4 = 30 k5,4 = 50 k5,4 = 100

λ1 = 100 vout,1 = 100 vout,1 = 100 vout,1 = 100 vout,1 = 100
λ2 = 300 vout,2 = 266 vout,2 = 230 vout,2 = 180 vout,2 = 100
λ3 = 100 vout,3 = 100 vout,3 = 100 vout,3 = 100 vout,3 = 100
λ4 = 600 vout,4 = 267 vout,4 = 340 vout,4 = 440 vout,4 = 600
λ5 = 400 vout,5 = 266 vout,5 = 230 vout,5 = 180 vout,5 = 100

Table A.1: Traffic class prioritization at host 4 via k4,4-setting, with k4,i = 1 at all
other hosts (i 6= 4), in a 5-host network. All local average loads λi and transmission
rate vout,i are in pkt/s. Rate values have been averaged over 20s-period and rounded.

rate vout proportionally to the difference of input rate λ and the fair sharing
value. Thus, thanks to r3 reaction, an increase of λi to prioritize a certain flow i,
would not have any appreciable effect on vout,i. We can neither differentiate
the amount of concentrations characterizing the conservation loop as it would
results in a modification of the predefined limit on the aggregate rate, thus
against our ultimate goal of limiting the aggregate rate to the predefined value.
The flow prioritization stems from the parametrization of the reaction model
in Figure A.4, by calibrating opportunely the reaction coefficients. However,
we must keep in mind that these coefficients impact on static and dynamical
features of the controller: kF -coefficient affects the cutoff frequency, k4 modifies
the predefined limit on the aggregate rate, k1, k2 and k3 affect the response
speed in the unsaturated regime. The only left coefficient that allows weighting
traffic flows without altering the other features of the controller is the k5-
coefficient. Indeed, besides avoiding system stale states, the k5-coefficient
controls the speed of the linear reaction draining T-species and thus affects the
accounting of others’ transmissions. Thus, by differentiating k5-values among
the different DTRCs, we are able to enforce different forwarding regimes for
the different traffic classes, while still satisfying the aggregate rate limit and
guaranteeing the efficiency of the system.A.22

In simulations, we were able to advantage limited flows by increasing k5 from
1 up to 100 s−1 , without affecting performances of non-limited flows (i.e.,
with output transmission rate lower than the rate share). How much we in-
creased k5 determined how much the prioritized host increased its transmission
rate, depending also on its local load. We simulated five hosts competing for a
shared resource. We set the aggregate rate limit to 1000 pkt/s and used the set-
tings previously reported in Table 3.7. We prioritized flows via differentiation
of k5-value and studied the effectiveness of the this prioritization-mechanism
in saturated as well as unsaturated regime. We considered the situation where
hosts had stable generation rate λ and transmission rate vout. In Table A.1,
we compare the measured average values of generation rate λi at host i, and
achieved transmission rate vout,i for the corresponding k5,i-value. The average
rate values have been calculated over a period of 20 s.

A.22The differentiation of k5-value has impact also on the speed at which inactive nodes
(flows) return to the initial state. However, this effect is not appreciable in the output rates.
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Figure A.8: Two network topologies – (a) m clusters made of 1 cluster head and
n satellite node, and (b) |V| aligned nodes.

A.7 Chemical consensus
in clustered and inline networks

This section describes results from a few further experiments that aimed to
test the chemical consensus algorithm introduced in Chapter 4.

We compare results about experiments in ring and complete networks, already
shown in Chapter 4, with those obtained in clustered and inline networks. In
clustered networks (Figure A.8(a)), sensors formed groups of star-connected
nodes. The central node of each cluster, assumed to have higher performance
in terms of reception and transmission, was able to communicate with the next
cluster-head node. For inline networks (Figure A.8(b)), we positioned nodes
on a virtual line, middle nodes communicated with the two neighbors whereas
the edge-nodes communicated with the only neighbor.

Figure A.9 shows the results obtained in a dynamic scenario where nodes sensed
a value that changed four times during the experiment. The inline topology



A.7 Chemical consensus in clustered and inline networks 221

0 30 60 90
Time [s]

0

20

40

60

80

Se
ns

or
L

oc
al

St
at

e

(a) Complete 30-node network

0 30 60 90
Time [s]

0

20

40

60

80

Se
ns

or
L

oc
al

St
at

e

(b) Ring 30-node network

0 30 60 90
Time [s]

0

20

40

60

80

Se
ns

or
L

oc
al

St
at

e

(c) Cluster (4+1)x6-node net.

0 30 60 90
Time [s]

0

20

40

60

80

Se
ns

or
L

oc
al

St
at

e
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Figure A.9: Simulation measurements (10 out of 30 nodes): Computed averages
(blue-continuous line) and arithmetic mean (red-dashed line) over time. The results
are related to simulations where sensed quantity changed four times:
t: 0s 20 s ∈ U [25s, 40s] 60s
zi: ∈ U [5, 30] ∈ U [50, 60] ∈ U [75, 77] ∈ U [25, 35].
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induced very poor convergence speed due to the oscillatory trajectory each
node’s state followed. The cause is the sort of reflection that the spreading of
state variation experienced when arrived at the boundary of the network. We
found that it is important where and how many measurement changes occur –
depending on which node changed the measurement, the oscillation damping
was faster or slower (but always experienced).

A.8 Chemical consensus algorithm:
collision estimation

In this section, we estimate the probability of collisions that affect the de-
scribed implementation of the chemical consensus model for WSNs (explained
Chapter 4). The theoretically predicted rate at which collisions likely occur
may constitute the input of a correcting mechanism that compensates the un-
derestimation due to interferences among nodes. For the sake of analyzability,
in this section, we make assumptions about the distributions of nodes’ access
instants. We remind the reader that the quality of these assumptions may be
affected by the design choice concerning the inter-reaction times.

We can assume the starting time of sensors as independent from each other and
being a random variables uniform in the interval [0, Tmax]. We further assume
that the transmission time of each node is still a uniform random variable in
the the same interval [0, Tmax]. To make the analysis simpler, we will calculate
the probability of non collision PNC from which the probability of collision PC
can be derived as PC = 1 − PNC. Additionally we will refer to τ as the pulse
duration, under the assumption τ ∼ τ̃ << Tmax (both pulses, representing
molecules S and X, have approximatively the same time-length).

In the case of a single node, the probability of non collision is unitary since the
node is the only one that can occupy the channel and multiple transmissions
are not possible. In the case of two nodes, they have to share the resource
and thus, once one of the two has occupied a certain period τ from t′1 to t′′1 ,
the other has not the whole Tmax available but rather it should avoid to start
transmitting within the period [t′1, t

′′
1 ]. The vulnerability period is 2τ and thus

the probability of non collision is PNC

(
|V| = 2

)
= 1 − 2τ

Tmax
= Tmax−2τ

Tmax
. In

the case of three nodes, we also have to keep in mind that the first two nodes
occupying the channel could use two periods for their transmission that are
close in time but not adjacent: node ν1 transmits in the interval [t′1, t

′′
1 ] and

node ν2 in the interval [t′2, t
′′
2 ], where 0 < t′2 − t′′1 < τ . The worst case is when

the first two nodes occupy two periods that are spaced by an amount slightly
less than the pulse duration τ . In 3-node case, the probability of non-collision
is PNC

(
|V| = 3

)
= Tmax−2τ

Tmax
· Tmax−4τ

Tmax
. By following a similar argumentation we

can write the general equation that quantify the probability of non-collision in
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a system with |V| sensor nodes:

PNC

(
|V| = M

)
=
Tmax − 2τ

Tmax
· Tmax − 4τ

Tmax
· . . . · Tmax − (M − 1)2τ

Tmax

and thus the final probability to have a collision in a |V|-sensor system:

PC

(
|V| = M

)
= 1−

M−1∏

i=0

(
Tmax − 2iτ

Tmax

)
. (A.17) Collision

probability

It is not important how many nodes the network counts but rather how the
sensor nodes are connected. In a random network or in any other network where
the node’s connectivity changes from node to node, the collision probability of
a node is dependent on the number of neighbors the node counts:

PC,i

(
|Ni| = Ni

)
= 1−

Ni−1∏

i=0

(
Tmax − 2iτ

Tmax

)
. (A.18)

In a ring network, where the interference is related to the communication

Dependency on
the number of
neighbors

between adjacent nodes only, the collision probability is PC = 1− Tmax−2τ
Tmax

.
The collision probability, and thus the related underestimation of the average,
can be reduced by increasing the minimum transmission period Tmax or by using
shorter pulses. The first approach makes the working range smaller or the con-
vergence time bigger. The second approach increases the required bandwidth.
A third possible approach is to slow down the virtual time that characterizes
the chemical model, keeping τ -value fix. In this way, (i) the collision probability
is reduced while the range of representable values does not change, and (ii) the
number of transmissions (as well as the energy consumption) is reduced. The
counterpart is a slower adaptation of a node as the dynamical system (AC)
works at a virtual time that is slower than the experienced physical time at
which events actually occur.
The fact that collisions may occur does not represent a problem: Even though

Collision
compensationcollisions make the system open (i.e., collisions represent a non-selective dilu-

tion flow that removes molecules from the system), we can let the chemical
reactor compensate this unwanted outflow. Practically, this can be imple-
mented by adding a reaction to the chemical model described in Figure 4.12 –
a reaction rC,i that generates lost molecules at the speed at which collisions of
pulses g(τ) occur on average:

rC,i : ∅
PC,i−→ Si. (A.19)

Note that PC,i depends (always) on quantities (information) the node knows
anyway. Thus, the deployment of the additional correcting mechanism through
reaction (A.19) is handy.
The use of two predefined lengths of pulses that are extremely short compared
to ones used for traditional packet-based communications makes our system
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robust against external interferences. Pulses that have a duration different
from the prefixed τ and τ̃ values are easily identifiable as external interference
and thus can be filtered out without affecting the chemical reactor’s state.
Another problem we face to is the eventuality to have adjacent pulses that have
an overall duration that is multiple of a valid value τ and τ̃ (e.g., two adjacent
τ -pulses, which keep the signal high for exactly τ̃ us).

A.9 Chemical consensus algorithm:
frequency-division implementation

In this final section, we discuss a different implementation of the chemical
consensus algorithm than the time-division one proposed in Section 4.7.1. In a
frequency-division approach, the chemical dynamical system of a node νi con-
tinuously adapts the output rate vB,i in order to reflect the local estimates cS,i
and, with this rate, its transmitter modulates with OOK-scheme the signal
that is transmitted on a reserved narrow-band channel centered on fi, related
to that node νi. The channel can be assigned basing on a predefined or a
random frequency allocation. An I-Q receiver filters out the out-of-band signals
and brings the signal to a lower intermediate frequency. An Analog-to-Digital
Converter (ADC) brings the signal in the digital world, where the spectrum
of the received signal is obtained through the Fast Fourier Transform (FFT).
This spectrum will contain as many (non-sporadic) components as the number
|Ni| of neighboring nodes, and the aggregate rate vrec,i will be the sum of the
rates characterizing each component.
The quality of the RF front-end and of the ADC defines the performance of the
system in terms of maximum number of participating nodes and total required
bandwidth. The frequency resolution of the receiver-transmitter sub-system
defines the number of channels for a certain required bandwidth. However, also
in the case we assume no limitations of the receiver-transmitter sub-system, we
still have to take into account that the frequency resolution is also related to
the minimum physical time required for the acquisition of a sufficient amount
of samples and thus it is related to the maximum speed with which we can turn
on-off the carrier.
Both time- and frequency-division approaches differ in how the nodes share
the common resource and the way how the information about the execution of
broadcast reaction rB is encoded. From the technology point of view, the two
approaches are roughly similar (both need a superheterodyne receiver in order
to obtain sufficient sensibility) but differ in the complexity required to process
the received signal (different methods to encode and extract the information
about the number |Ni| of neighbors and the aggregate reception rate vrec).
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tation of the average consensus algorithm,” in Proc. of the European
Sustainable Wireless Technologies (European Wireless), Vienna, Austria,
Apr 2011, pp. 139–146.

[130] S. Keshav, “A control-theoretic approach to flow control,” in Proc. of the
ACM SIGCOMM, Zurich, Switzerland, Sep 1991, pp. 3–15.

[131] D. Klein, J. Hespanha, and U. Madhow, “A reaction-diffusion model for
epidemic routing in sparsely connected MANETs,” in Proc. of the IEEE
INFOCOM, San Diego (CA), USA, Mar 2010, pp. 1–9.

[132] T. Kobori, T. Maruyama, and T. Hoshino, “A Cellular Automata sys-
tem with FPGA,” in Proc. of the IEEE Annual Symposium on Field-
Programmable Custom Computing Machines (FCCM), Rohnert Park
(CA), USA, Apr 2001, pp. 120–129.

[133] E. Kohler, M. Handley, and S. Floyd, “Datagram Congestion Control
Protocol (DCCP),” Standard RFC 4340, Internet Engineering Task Force
(IETF), Mar 2006.

[134] J. R. Koza, “Spontaneous emergence of self-replicating and evolutionarily
self-improving computer programs,” in Artificial Life III – SFI Studies
in the Sciences of Complexity, vol. VII, 1994, pp. 225–262.

[135] P. Kreyssig and P. Dittrich, “Emergent control,” in Organic Comput-
ing – A Paradigm Shift for Complex Systems, Ser. Autonomic Systems,
Springer Ed., vol. 1, 2011, pp. 67–78.

[136] M. Kriegleder, R. Oung, and R. D’Andrea, “Asynchronous implemen-
tation of a distributed average consensus algorithm,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Tokyo, Japan, Nov 2013, pp. 1836–1841.

[137] M. Kriegleder, R. Oung, and R. D’Andrea, “Distributed altitude and
attitude estimation from multiple distance measurements,” in Proc. of the
IEEE/RSJ International Conference on Intelligent Robots and Systems
(IROS), Vilamoura, Portugal, Oct 2012, pp. 3626–3632.

[138] M. Labrecque, “Overlay architectures for FPGA-based software packet
processing,” Ph.D. Dissertation, Graduate Department of Electrical and
Computer Engineering University of Toronto, Toronto (ON), Canada,
2011.

[139] M. Labrecque, G. J. Steffan, G. Salmon, M. Ghobadi, and Y. Ganjali,
“NetThreads routing edition: Programming NetFPGA with threaded
software,” in Proc. of the NetFPGA Developers Workshop, Stanford
University (CA), USA, Aug 2010, pp. 1–6.



BIBLIOGRAPHY 237

[140] Lattice Semiconductor Corp., “Lattice announces low cost programmable
SPI-4.2 solution,” http://ir.latticesemi.com/phoenix.zhtml?c=117422&p
=irol-newsArticle&ID=1472678&highlight, ret. Jan 2014.

[141] D. Le Métayer, “Higher-order multiset programming,” in Proc. of the
AMS DIMACS Workshop on Specifications of Parallel Algorithms, DI-
MACS series in Discrete Mathematics, Princeton (NJ), USA, May 1994,
pp. 179–200.

[142] D. U. Lee, W. Luk, J. D. Villasenor, G. Zhang, and P. H. W. Leong, “A
hardware Gaussian noise generator using the Wallace method,” in IEEE
Transactions on Very Large Scale Integration (VLSI) Systems, vol. 13,
no. 8, Aug 2005, pp. 911–920.

[143] D. U. Lee, J. D. Villasenor, W. Luk, and P. H. W. Leong, “A hardware
Gaussian noise generator using the Box-Muller method and its error
analysis,” in IEEE Transactions on Computers, vol. 55, no. 6, Jun 2006,
pp. 569–671.

[144] P. D. Leenheer and D. Angeli, “Monotonicity and convergence in chemical
reaction networks,” in Proc. of the IEEE Conference on Decision and
Control, and European Control Conference (CDC–ECC), Seville, Spain,
Dec 2005, pp. 2362–2367.

[145] W. Li and H. Dai, “Cluster-based fast distributed consensus,” in Proc. of
the IEEE Acoustics, Speech and Signal Processing (ICASSP), Honolulu
(HI), USA, Apr 2007, pp. 185–188.

[146] H. Ling, “High-speed binary adder,” in IBM Journal of Research and
Development, vol. 25, no. 3, Mar 1981, pp. 156–166.

[147] J. W. Lockwood, N. McKeown, G. Watson, G. Gibb, P. Hartke, J. Naous,
R. Raghuraman, and J. Luo, “NetFPGA – an open platform for gigabit-
rate network switching and routing,” in Proc. of the IEEE International
Conference on Microelectronic Systems Education (MSE), San Diego
(CA), USA, Jun 2007, pp. 160–161.

[148] L. Lok, “The need for speed in stochastic simulation,” in Nature Biotech-
nology, vol. 22, 2004, pp. 964–965.

[149] S. H. Low, F. Paganini, and J. C. Doyle, “Internet congestion control,”
in IEEE Control Systems Magazine, Feb 2002, pp. 28–43.

[150] P. Lysaght, J. Stockwood, J. Law, and D. Girma, “Artificial neural
network implementation on a fine-grained FPGA,” in Lecture Notes in
Computer Science – Field-Programmable Logic Architectures, Synthesis
and Applications (Springer Ed.), vol. 849, 1994, pp. 421–431.



238 BIBLIOGRAPHY

[151] N. Malangadan and G. Raina, “Rate based feedback: some experimental
evaluation with NetFPGA,” in Proc. of the IEEE International Confer-
ence on Communication (ICC), Kyoto, Japan, Jun 2011, pp. 1–6.

[152] F. A. Malekzadeh, R. Mahmoudi, and A. H. van Roermund, “Dithering,”
in Analog Circuits and Signal Processing – Analog Dithering Techniques
for Wireless Transmitters, vol. 3, 2013, pp. 9–23.

[153] S. Mascolo, “Classical control theory for congestion avoidance in high-
speed Internet,” in Proc. of the IEEE Conference on Decision and Control
(CDC), vol. 3, Phoenix (AZ), USA, Dec 1999, pp. 2709–2714.

[154] S. Mascolo, C. Casetti, M. Gerla, M. Y. Sanadidi, and R. Wang, “TCP
Westwood: Bandwidth estimation for enhanced transport over wireless
links,” in Proc.of the ACM Annual International Conference on Mobile
Computing and Networking (MobiCom), Rome, Italy, Jul 2001, pp. 287–
297.

[155] M. Mathis and J. Mahdavi, “Forward acknowledgement: refining TCP
congestion control,” in ACM Computer Communication Review, vol. 26,
no. 4, Oct 1996, pp. 281–291.

[156] M. Mathis, J. Mahdavi, S. Floyd, and A. Romanov, “TCP selective ac-
knowledgment options,” Standard RFC 2018, Internet Engineering Task
Force (IETF), Oct 1996.

[157] N. Matsumaru and P. Dittrich, “Organization-oriented chemical pro-
gramming for the organic design of distributed computing systems,” in
Proc. of the International Conference on Bio-Inspired mOdels of NEt-
work, Information and Computing systems (BIONETICS), Cavalese,
Italy, Dec 2006, pp. 1–6.

[158] P. E. McKenney, “Stochastic fairness queuing,” in Proc. of the IEEE
INFOCOM, San Francisco (CA), USA, Jun 1990, pp. 733–740.

[159] N. McKeown, G. Parulkar, T. Anderson, L. Peterson, H. Balakrishnan,
J. Rexford, S. Shenker, and J. Turner, “Openflow: Enabling innovation
in campus networks,” ONF White Paper, Mar 2008.

[160] D. A. McQuerry, “Stochastic approach to chemical kinetics,” in Journal
of Applied Probability, vol. 4, 1967, pp. 413–478.

[161] S. G. Merchant and G. D. Peterson, “Evolvable block-based neural net-
work design for applications in dynamic environments,” in Journal VLSI
Design - Special issue on selected papers from the midwest symposium on
circuits and systems, Jan 2010, pp. 1–24.

[162] M. Mesbahi, “On state-dependent dynamic graphs and their controlla-
bility properties,” in IEEE Transactions on Automatic Control, vol. 50,
no. 3, Mar 2005, pp. 387–392.



BIBLIOGRAPHY 239

[163] T. Meyer, “On chemical and self-healing networking protocols,” Ph.D.
Dissertation, Faculty of Computer Science, University of Basel, Switzer-
land, 2011.

[164] T. Meyer and C. F. Tschudin, “Chemical networking protocols,” in Proc.
of the ACM Workshop on Hot Topics in Networks (HotNets), New York
(NY), USA, Oct 2009, pp. 1–6.

[165] T. Meyer and C. F. Tschudin, “A theory of packet flows based on law-of-
mass-action scheduling,” in Proc. of the IEEE International Symposium
on Reliable Distributed Systems (SRDS), Irvine (CA), USA, Oct 2012,
pp. 341–351.

[166] T. Meyer, L. Yamamoto, and C. Tschudin, “An artificial chemistry for
networking,” in Bio-Inspired Computing and Communication, vol. 5151,
2008, pp. 45–57.

[167] L. Michaelis and M. L. Menten, “The kinetics of invertase action (die
Kinetik der Invertinwirkung),” in Biochemische Zeitschrift, vol. 49, Jan
1913, pp. 333–369.

[168] M. Monti, “A signal processing approach to the analysis of chemical
networking protocols,” M.Sc. Thesis, Department of Information Engi-
neering, University of Pisa, Italy, Jul 2010.

[169] Y. Moon, D. Jeong, and G. Kim, “Clock dithering for electromagnetic
compliance using spread spectrum phase modulation,” in Proc. of the
IEEE International Solid-State Circuits Conference (ISSCC), San Fran-
cisco (CA), USA, Feb 1999, pp. 186–187.

[170] B. Moyer, “Packet subsystem on a chip,” in Xcell Journal, vol. 56, First
Quarter 2006, pp. 10–13.

[171] S. Murtaza, A. G. Hoekstra, and P. M. A. Sloot, “Performance modeling
of 2D Cellular Automata on FPGA,” in Proc. of the International Confer-
ence on Field Programmable Logic and Applications (FPL), Amsterdam,
The Netherlands, Aug 2007, pp. 4–78.

[172] S. Murtaza, A. G. Hoekstra, and P. M. A. Sloot, “Cellular automata
simulations on a FPGA cluster,” in International Journal of High Per-
formance Computing Applications, vol. 25, no. 2, May 2011, pp. 193–204.

[173] J. Nagle, “On packet switches with infinite storage,” Informational RFC
970, Internet Engineering Task Force (IETF), Dec 1985.

[174] National Instruments corporation, “FPGA fundamentals,” Technical Re-
port Nr.6983, May 2012.



240 BIBLIOGRAPHY

[175] B. Nazer, A. G. Dimakis, and M. Gastpar, “Neighborhood gossip: Con-
current averaging through local interference,” in Proc. of the IEEE Acous-
tics, Speech and Signal Processing (ICASSP), Taipei, Taiwan, Apr 2009,
pp. 3657–3660.

[176] B. Nazer, A. G. Dimakis, and M. Gastpar, “Local interference can accel-
erate gossip algorithms,” in IEEE Journal on Selected Topics in Signal
Processing, vol. 5, no. 4, Aug 2011, pp. 876–887.

[177] NetFPGA Working Group, “The NetFPGA project,” http://netfpga.org,
ret. Jan 2014.

[178] K. Nichols and V. Jacobson, “Controlling queue delay,” in Magazine
Communications of the ACM, vol. 55, no. 7, May 2012, pp. 42–50.

[179] M. Nokleby, W. U. Bajwa, R. Calderbank, and B. Aazhang, “Gossiping
in groups: Distributed averaging over the wireless medium,” in Proc.
of the Annual Allerton Conference on Communication, Control, and
Computing, Monticello (IL), USA, Sep 2011, pp. 1242–1249.

[180] R. Olfati-Saber, J. A. Fax, and R. Murray, “Consensus and cooperation
in networked multi-agent systems,” in Proceedings of the IEEE, vol. 95,
no. 1, Jan 2007, pp. 215–233.

[181] R. Olfati-Saber, “Ultrafast consensus in small-world networks,” in Proc.
of the American Control Conference, vol. 4, Portland (OR), USA, Jun
2005, pp. 2371–2378.

[182] R. Olfati-Saber, “Flocking for multi-agent dynamic systems: algorithms
and theory,” in IEEE Transactions on Automatic Control, vol. 51, no. 3,
Mar 2006, pp. 401–420.

[183] R. Olfati-Saber and R. M. Murray, “Graph rigidity and distributed
formation stabilization of multivehicle systems,” in Proc. of the IEEE
Conference on Decision and Control (CDC), Las Vegas (NE), USA, Dec
2002, pp. 2965–2971.

[184] R. Olfati-Saber and R. M. Murray, “Consensus problems in networks of
agents with switching topology and time-delays,” in IEEE Transactions
on Automatic Control, vol. 49, no. 9, Sep 2004, pp. 1520–1533.

[185] ONF Project Group, “Open Networking Foundation (ONF),”
https://www.opennetworking.org/, ret. Feb 2014.

[186] L. Ong and J. Yoakum, “An introduction to the Stream Control Trans-
mission Protocol (SCTP),” Informational RFC 3286, Internet Engineer-
ing Task Force (IETF), May 2002.

[187] OpenStack Project Group, “OpenStack,” http://www.openstack.org/,
ret. Jan 2014.



BIBLIOGRAPHY 241

[188] V. N. Padmanabhan and R. H. Katz, “TCP fast start: A technique
for speeding up web transfers,” in Proc. of the IEEE Globecom Internet
Mini-Conference, Sydney, Australia, Oct 1998, pp. 41–46.

[189] R. Pan, P. Natarajan, C. Piglione, M. S. Prabhu, V. Subramanian,
F. Baker, and B. V. Steeg, “PIE: A lightweight control scheme to address
the bufferbloat problem,” Draft Standard 00 draft-pan-aqm-pie, Internet
Engineering Task Force (IETF), Dec 2012.

[190] R. Pan, B. Prabhakar, and K. Psounis, “CHOKe - a stateless active queue
management scheme for approximating fair bandwidth allocation,” in
Proc. of the IEEE INFOCOM, Tel Aviv, Israel, Mar 2000, pp. 942–951.

[191] A. K. Parekh and R. G. Gallager, “A generalized processor sharing ap-
proach to flow control in integrated services networks: the single-node
case,” in IEEE/ACM Transactions on Networking, vol. 1, no. 3, Jun
1993, pp. 344–357.

[192] E. Park, H. Lim, K. Park, and C. Choi, “Analysis and design of the
virtual rate control algorithm for stabilizing queues in TCP networks,”
in Computer Networks, vol. 44, no. 1, Jan 2004, pp. 17–41.
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