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Abstract 
 

Detailed knowledge of the structure of bio molecules with atomic resolution is 

essential for the understanding of their function. Moreover the identification and 

quantification of their dynamic processes are important, as they are the origin of 

molecular functionalities. Different spectroscopic methods like X-ray crystallography 

(limited to structure elucidation, no dynamics), mass spectroscopy, electron spin 

resonance (EPR) and nuclear magnetic resonance (NMR) spectroscopy can deliver 

this detailed structural information. Especially NMR spectroscopy has found its 

application in the identification of dynamic processes. This thesis was focused on the 

characterization of dynamic processes, the structure elucidation of natural products 

available in nanograms and the synthesis of lanthanide chelating tags for the study of 

protein-ligand and protein-protein interactions in solution.  

 

The thesis is divided into three chapters addressing a specific task of the mentioned 

topic. 

 

A: The influences of different donors and linkers on lanthanide chelating tags were 

investigated. A 4S-Tetramethylcyclen was used as enantiomerically pure core 

molecule. The side chains were based on enantiopure lactic acid derivatives. The 

carboxylic acids of lactic acid were transformed into different functional groups like 

thiols, nitrogens, and carbonyl. These different donor groups are expected to change 

the magnetic susceptibility tensor of the lanthanide cation in complex with the 

synthesized tags. Special protection protocols for the introduction of heteroatoms are 

presented. On this basis also two new linkers were introduced. These linkers bind in 

a selective way to cysteins on a protein surface as thioethers. The α-bromoketones 

are very selective for the coupling to cysteins, nevertheless they have a tendency to 

hydrolyse under Lewis acidic conditions. Vinylsulfones require harsher tagging 

conditions but they are much more stable against hydrolysis. All new tags were 

attached to proteins and tested as PCS reagents in protein NMR spectroscopy. 

 

B: The effects of para-substituents on the rotation barrier of 2,2´-propyl and 2,2´-

butyl-bridged biphenyls were studied by dynamic NMR spectroscopy and dynamic 

HPLC measurements. Gibbs free activation energies ΔG≠(T) of the rotation about the 
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central biphenyl bond were estimated by variable temperature 1H-NMR experiments 

for the propyl bridged biphenyl. The resulting data were correlated to Hammett-

parameters σP as a measure of electron donor and acceptor strength. It was 

demonstrated that the electronic effects influence the activation barrier significantly, 

whereas sterics had only minor influence. Rate constants were calculated from line 

shape analysis and analysed by Eyring plots to calculate the entropic and enthalpic 

contributions. Thermodynamic data for the butyl-bridged biphenyls were directly 

obtained from dynamic HPLC chromatograms. DFT calculations delivered different 

transition states for the two series of biphenyls. The calculation of the activation 

parameters showed a similar trend and therefore the model is validated. The 

differences in the enthalpic and entropic contributions between HPLC, NMR and DFT 

calculations are method dependent, which was proven by changes of the solvent in 

NMR experiments that led to alteration of these contributions.  

 

C: The identification and total synthesis of a novel methylated lipid antigen (mLPA) 

was performed. The presented mLPA shows potent inhibition properties against 

human leukaemia. A combination of extraction protocols, activation essays and 

HPLC-MS measurements were used to identify the different antigen molecules from 

cell extracts. Three different candidates were identified. MS-MS experiments 

delivered structural insights, which were further confirmed by NMR spectroscopy and 

allowed the characterization of two of these structures. Total syntheses of the 

identified structures were performed in 6 linear steps. The high biological activity of 

the synthesized structures corroborated the identity of the active molecule. 
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A) Synthesis and Characterization of 
DOTA based Lanthanide shift 
reagents 

 

 

A.1 Introduction
Structural biology is a part of molecular biology, biochemistry and biophysics. 

Molecular structures, their functionality and the origin of the functionality of proteins 

and nucleic acid are investigated in this field. The exact determination of molecular 

structures is necessary for rational design of drugs and understanding of protein 

functionalities. More and more applications of proteins in catalysis are described for 

which structural information is necessary. The investigation of proteins is extremely 

complex and thus gaining structural information required a long process of technical 

development. Classical protein sequence analysis was time consuming. The 

development of ESI-MS and MALDI assisted methods allowed an automated protein 

sequencing, which is much faster. However, knowledge of the sequence does not 

deliver any information about the functionality of a protein. The functionality of a 

protein is mainly influenced by its 3D structure. Detailed 3D structural information are 

therefore unambiguously important to study their functionality. In 1958 Kendrew 

Figure A-1: Picture A shows the first protein X-ray structure (myoglobin) determined in 1958 by Kendrew 
et. al. Picture B represents the first protein NMR structure (proteinase inhibitor IIA from bull seminal 

plasma (BUSI IIA)) determined in 1982 by Wüthrich. Picture C shows the superimposed picture of the 

NMR and X-ray structures. 

A B CD 
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published the first X-ray protein structure (Figure A-1).1 This milestone in the 

characterization of proteins started a fast growing research field. In 1982 Wüthrich 

was able to determine the first 3D structure of a protein by NMR spectroscopy.2 

Protein structures determined by X-ray deliver a static picture, whereas the ones 

determined by NMR-spectroscopy deliver a more dynamic picture. 

Figure A-2 (left) shows the comparison between the total numbers of 3D structures 

determined from 1990 to 2014 (black) and the number of structures determined each 

year (red) during this period (statistics of the published structures in the protein 

database (pdb)). By dividing the data into their spectroscopic origin, it becomes 

obvious that X-ray crystallography is the method that delivers by far the highest 

number of new structures per year with permanent increase. The number of new 

NMR structures remained constant during the last years. In many cases protein 

structures solved by X-ray crystallography were also determined by the 

complementary NMR method to identify flexible regions within the protein. 

  
Figure A-2: Left graph: Statistic representation of the sum of 3D protein structures determined since 1975 

(black) and the structure elucidation per year (red) (data obtained from pdb (15.08.2014)). Right graph: 
Separation of the structures elucidated per year by their spectroscopic origins. 

Investigation of the active sites of proteins remains still challenging. Only a few 

spectroscopic methods can deliver such information. X-ray as main source of 3D 

protein structures delivers only static information even when an inhibitor is crystalized 

within a protein. Nevertheless, useful information about interactions inside a protein 

can be gained and model compounds synthesized to proof the results. For drug 

design, knowledge of the binding mode is important but in many cases not enough. It 

is also necessary to know, how the inhibitor is delivered to the active site. Monitoring 
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of the binding event or differentiation between open and closed protein conformations 

are therefore required. Limitations of crystallography are reached when dynamic 

processes play a role. Solution NMR-spectroscopy can deliver useful information 

about dynamics within a protein structure. Changes of the experimental conditions 

can also mimic the situation within a cell to some degree. With the development of 

more and more sensitive NMR equipment in-cell measurements became possible.3 

Besides the identification of dynamics within a single protein it is of great interest to 

gain information about protein-protein interactions. These interactions are 

responsible for a variety of functionalities in cellular processes. Protein-protein 

interactions can be studied by special NMR experiments using paramagnetic ions 

that deliver long-range information. Electron spin resonance (EPR)4 spectroscopy 

and especially double electron-electron resonance (DEER)4–6 are the most prominent 

methods for the measurements of distances in biomolecules so far. Other methods 

like Förster energy transfer spectroscopy (FRET)7 and Bioluminescence resonance 

energy transfer (BRET) showed their ability to determine protein-protein interactions 

recently. 

 

A.1.1 Protein NMR spectroscopy 
The fast growing amount of available proteins from different organisms and plants 

requires structural information to understand the behaviour of such proteins. Around 

one third of the total numbers of known proteins are metal binding proteins.8 NMR is 

a valid tool to study solution and solid-state structures of proteins. The determination 

of 3D NMR structures is still not a straightforward task. NOE data are the classical 

restrains for the 3D structure determination that allowed the identification of 

neighbouring amino acids that are in close contact through space. The main problem 

of NOE data is the short range of about 5 Å that can be observed as the NOE 

intensity decreases with !
!!

. It is therefore difficult to gain information about the 

distance of two strands in a protein when they are further away than 5 Å, which is 

quite usual in proteins.  

 

A.1.2 Historical background 
Experiments that deliver long-range information are required in order to resolve 

protein-protein interactions in high quality. Paramagnetic relaxation enhancement 
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(PRE), residual dipolar couplings (RDC) and pseudocontact shifts (PCS) can deliver 

such long-range information by NMR spectroscopy. The use of such experiments in 

protein NMR spectroscopy was established during the last 20 years. The theoretical 

fundamentals9,10 were investigated much earlier in the 1960´s and first experiments 

with small molecules presented. In the 1970´s several groups investigated the 

influence of paramagnetic metals in NMR spectroscopy.11,12 They showed that 

lanthanide shift reagents such as Europium complexes deliver distance dependent 

shifts allowing the resolution of complex 1D-proton spectra.13,14 The first more 

complex application was shown by Barry,15 who used paramagnetic lanthanide ions 

to determine the conformation of mononucleotides in solution. Line broadening due 

to paramagnetic relaxation enhancement was also obtained in measurement of 

metal-binding proteins containing paramagnetic metals. The paramagnetic metals 

obtained in natural metal-binding proteins are usually high-spin Fe2+, Ni2+, Cu2+ and 

Mn2+. These metals show only weak pseudocontact shift but strong PRE effects 

leading to broad signals. Strong PRE effects cause more experimental problems than 

the small PCS can deliver beneficial ones. In the end of the 1990´s the Bertini group 

showed several applications of lanthanides for the structure determination of proteins 

using PCS by changing natural occurring metals to lanthanide metals. This work was 

reviewed in a article by Bertini and Luchinat in 1999.16 The groups of Prestegard17 

and Bax18 reported that liquid crystals can be used to gain distance and angular 

information through the measurement of RDC´s. The limitation of PCS and PRE 

experiments to metal binding proteins was solved by the development of lanthanide 

chelating tags in the beginning of the century. First trials using zinc fingers19 and EF 

hands20 attached to the C- or N-terminus of the protein delivered weak PCS and 

RDC values due to motional freedom.  Lanthanide-binding peptides were prepared 

by Schwalbe21,22 and Otting23,24 with better results. Tags (even if they are rigid) 

attached to the C- or N-termini loosen their rigidity due to the flexibility of the protein 

in this region. The resulting PCS values were therefore averaged. The development 

of tags that can be attached to cysteine residues via a disulphide bridge25–29 allowed 

binding to protein regions with higher rigidity. The averaging of the PCS was mainly 

influenced by the design of the lanthanide chelating tag. An even more rigid 

attachment could be generated using tags that bind to two cysteine30–32 residues on 

the protein surface. In both cases stronger PCS and RDC values were measured. 

Nevertheless, the resulting PCS are in most cases weaker than the ones obtained for 
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metal-binding proteins. Therefore, further investigation on the optimization of 

lanthanide chelating tags is a current research topic. 

 

A.1.3 Lanthanide metals 
Lanthanide metals are most stable as their M3+-metal 

cations. The unique properties of lanthanides can be 

explained by the fact that the 4f-electrons are located 

in the inner core of the atoms and are therefore not 

accessible for reactions. The sizes of all lanthanides 

are quite similar. A slight decrease of radii along the 

series from Lanthanum (La = 188 pm; La3+ = 116 pm) 

to Lutetium (Lu = 173 pm; Lu3+ = 98 pm) due to 

lanthanoid contraction is obtained. The comparable 

size and the identical oxidation states yield similar 

chemical and physical properties over the whole series.33 Replacement of a 

lanthanide ion by another lanthanide ion within a tag does therefore not change the 

conformation of the resulting complex. In the series of lanthanides only lanthanum 

and lutetium are diamagnetic atoms all others are paramagnetic. Gadolinium has an 

isotropic χ-tensor leading to strong PRE effects but no PCS effects. These similarities 

of complexes obtained from different lanthanides are necessary to compare 

paramagnetic and diamagnetic complexes in a one to one manner. The 

paramagnetic properties of lanthanides are presented in Figure A-4. Lanthanides can 

be classified according to their PCS properties as weakly shifting: Cerium, 

Praseodymium, Neodymium, Samarium and Europium, the medium shifting: Erbium, 

Thulium, Holmium and Ytterbium and the strong shifting: Terbium and Dysprosium. 

The main advantage of paramagnetic lanthanides compared to other paramagnetic 

molecules is the fact that the unpaired electrons are located in the inner sphere of the 

atoms. Therefore contact shifts are very weak and only of importance for atoms that 

are located in the coordination sphere of the metal.  

Figure A-3: Representation of the 
elemental forms of the lanthanide 

metals. (www.elementsales.com) 
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Figure A-4: “Paramagnetic properties of lanthanides. Only paramagnetic and nonradioactive lanthanides 

are included. The radii of the yellow spheres indicate the distance from metal ion where the 1H nuclear 
magnetic resonance signals of a protein with rotational correlation time of 15 ns would be broadened by 

80 Hz on an 800 MHz NMR spectrometer due to paramagnetic relaxation enhancement. The isotropic χ 

tensors were calculated by Bleaney (1972)34 for a temperature of 25 °C. Representative isosurfaces for 
pseudocontact shifts of ± 5 ppm are plotted for Δχ tensors reported for calbindin D9k.

35 Electronic 

relaxation times expected at 18.8 T are indicated at the bottom.”28,29 

A.1.4 Paramagnetic shifts  
Paramagnetic shifts consist of two different origins namely the contact and the 

pseudocontact contribution. Contact shifts are scalar interactions between the 

electron and the nuclear spin. They are strongly angular dependent and decay 

rapidly with increasing bond distance. The contact shift is described by Equation A-1 

𝛿𝛿!" =   
𝐴𝐴
ħ

𝜒𝜒
𝜇𝜇!  ϒ!𝑔𝑔!𝜇𝜇!

 

Equation A-1: Formula for the calculation of the contact shift; A = contact coupling constant; ħ = Planck 

constant; χ = magnetic susceptibility tensor; µ0 = induced magnetic moment; ϒl = magnetogyric ratio; ge 
= electron g-factor and µB = Bohr magneton.  

where A is called the contact coupling constant. Contact couplings are strongly 

angular dependent. Contact shifts are quite difficult to determine as they are in the 

range where paramagnetic relaxation enhancement broadens the peaks. Contact 

shifts are more pronounced for paramagnetic substances having unpaired electrons 

in orbitals that can interact with the ligand. In the case of lanthanides the unpaired 

electrons are shielded and therefore these interactions can be more or less 

neglected. Indeed, all influenced atoms are located in the region where the shifts are 
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strongly broadened by PRE effects. The effects of contact shifts are usually smaller 

than PRE effects and much smaller than PCS shifts. 

 

A.1.5 The pseudocontact shift (PCS) 
One of the most useful data obtained from paramagnetic complexes are 

pseudocontact shifts. Paramagnetic atoms induce a magnetic moment due to their 

unpaired electrons. This magnetic moment orientates itself in an external magnetic 

field to yield a non-zero average, leading to an induced magnetic moment. This 

induced magnetic moment acts as a dipolar field influencing all nuclei located in this 

field. The strength of this interaction depends on the distances and angles of the 

influenced nuclei with respect to the paramagnetic ion. This induced magnetic 

moment can be averaged through rotational freedom of the paramagnetic ion. The 

magnetic moment of an electron consists of two different origins namely the spin and 

the orbital moment. Spin parts are isotropic, whereas orbit parts are anisotropic. This 

anisotropic contribution is the reason why the magnetic susceptibility tensor can 

become anisotropic within an external magnetic field. If this interaction is not 

averaged to zero, the resulting dipolar field induces a magnetic field that induces a 

chemical shift difference of the influenced nuclei, described by the following equation. 

𝛥𝛥𝛿𝛿!"# =   
1

12𝜋𝜋𝑟𝑟! 𝛥𝛥𝜒𝜒!" 3𝑐𝑐𝑐𝑐𝑐𝑐!𝛩𝛩 − 1 + 1.5  𝛥𝛥𝜒𝜒!!𝑠𝑠𝑠𝑠𝑠𝑠!𝛩𝛩𝛩𝛩𝛩𝛩𝛩𝛩2𝛷𝛷  

Equation A-2: Formula for the calculation of the pseudocontact shift ΔδPCS; r = distance between unpaired 

electron and nuclear spin; Δχ tensor components axial and rhombic; Θ, Φ = polar angles. 

This formula highlights the r-3 in contrast to r-6 for NOE experiments.  PCS deliver 

therefore long-range information. The pseudocontact shift is strongly dependent on 

the polar coordinates r, Θ and Φ of the nuclear spin with respect to the χ tensor of 

the paramagnetic metal ion. However, the pseudocontact shift does not depend on 

the total χ tensor. The influences of anisotropic parts of the χ tensor, namely the axial 

and rhombic components are required for pseudocontact shifts. “For the definition of 

the χ tensor of a lanthanide ion the protein surface eight parameters are required: 

Three parameters that describe the metal position with respect to the protein; three 

parameters describing the orientation of the χ tensor with respect to the molecular 

coordinates (Euler-angles: α, β, γ) and two parameters that describe the axial and 

the rhombic components (Δχax, Δχrh) are necessary”.36  
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It is worth to mention that the measurement of only one set of PCS cannot determine 

the position of a nucleus.37 To determine the position of the nucleus, different 

possibilities are available. The exchange of the paramagnetic ion by another will 

deliver different pseudocontact shifts, as the χ tensor is different for each ion. The 

main problem of this method is the fact that different ions are not completely linear 

independent from each other. This method is therefore mainly used for metal-binding 

proteins where only one position for the metal ion is accessible. For tags that are 

attached to the surface of the protein with a disulphide bridge the situation is 

different. Point mutations are performed on different positions of the protein and 

therefore the same tag with the same lanthanide ion can be used to deliver 

independent sets of PCS data. The resulting independent tensors led to much more 

precise results in this method. 

- “Pseudocontact shifts can be predicted when the tensor components and the 

polar coordinates of the molecule are known. 

- Tensor components can be calculated from known coordinates and 

pseudocontact shifts.

- However atomic coordinates cannot be calculated from one single set of 

pseudocontact shifts and tensor components. 

Figure A-5: Model of a protein determined by PCS NMR spectroscopy. The different positions of the 
lanthanide chelating tags are represented by the green, red, blue and yellow dots. The lines show 

schematically the interaction of unpaired electrons with the nuclear spin.37 
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- It is a valid tool to refine structures that have been determined with other 

methods.”8   

 

 

 

 

 

 

 

 

Isosurfaces38 are a quite informative representation of PCS as shown on the protein 

structure in a superimposed manner (Figure A-6). This is a good model for visualizing 

the χ tensor of the lanthanide ion. 

Pseudocontact shifts are used to refine structures that were determined before with 

classical restraints. But more important are applications for the investigation of 

protein-ligand and protein-protein interactions as these interactions are quite difficult 

to study by other methods. These interactions are the key to understand biological 

activities and are of main interest for the pharmaceutical industry. The improvement 

of this method is urgently necessary for structural biology. 

For most proteins investigated by PCS a crystal or NMR structure is already 

available. This allows the use of selectively isotope labelled proteins. This reduced 

number of resonances reduces the overlaps drastically. For the investigation of 

ligand positions or to calculate distances to a second protein only the tensors and not 

all residues have to be known. Therefore selective protein labelling allows a much 

faster assignment.36 The assignment of paramagnetic shifts is quite easy when the 

diamagnetic reference signals are assigned, as in an HSQC spectra a 45° angle 

between paramagnetic and diamagnetic reference is obtained.29 The measurement 

of a diamagnetic reference has therefore two main goals. First it allows comparison 

to the wild type protein to see if the tag (or in metal binding proteins the different ion) 

has an effect on the protein structure. But more important, it allows the calculation of 

the chemical shift difference of the two species and therefore the determination of the 

tensor parameters. 

Figure A-6: Isosurfaces representing the positions that show the same pseudocontact shift.38 
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A.1.6 Residual dipolar coupling (RDC) 
Residual dipolar coupling is obtained when dipolar couplings are not averaged due to 

rotational motion of the molecule in a magnetic field. These couplings can be 

introduced using liquid crystalline solvents for the measurements as they induce a 

partial alignment of the molecules inside the solution. The same effect can be 

obtained when a paramagnetic ion is placed on the molecular surface as it induces 

partial alignment of the unpaired electron with respect to the atomic coordinates of 

the other nucleus, similar to PCS. The formula for the calculation of RDCs is 

therefore quite similar and both effects are obtained simultaneously. 

𝐷𝐷!"# =   −
𝐵𝐵!!

15𝑘𝑘𝑘𝑘 𝛥𝛥𝜒𝜒!" 3𝑐𝑐𝑐𝑐𝑐𝑐!𝛩𝛩 − 1 +  
3
2𝛥𝛥𝜒𝜒!!𝑠𝑠𝑠𝑠𝑠𝑠

!𝛩𝛩𝛩𝛩𝛩𝛩𝛩𝛩2𝛷𝛷  

Equation A-3: Formula for the calculation of the residual couplings Dres; Δχ tensor components axial and 

rhombic; Θ, Φ = polar coordinates. 

Residual dipolar couplings are distance independent. They depend only on the 

anisotropic parts of the axial and rhombic χ tensor and on the polar coordinates with 

respect to the χ tensors. In contrast to PCS measurements protein structures have 

been exclusively calculated from RDC restraints without the use of any NOE 

constraints. 

 

A.1.7 Paramagnetic relaxation enhancement (PRE) 
In all previously presented systems paramagnetic relaxation enhancement was 

obtained simultaneously. PRE measurements deliver long-range information in the 

range of 10-25 Å. PREs decay with r-6 which is similar to the NOE decay, but the 

effect is much stronger and therefore much more long-range. The precision of PRE 

measurements is less accurate than NOE measurements due to line broadening but 

distance restraints from PRE experiments became extremely useful in structural 

biology.  

 

A.1.8 Development of lanthanide chelating tags  
Several research groups have reported a variety of lanthanide-chelating tags in the 

last 20 years. Griessinger reviewed in 200629 the most important considerations for 

the synthesis of lanthanide-chelating tags. The first trials of tagging non metal-

binding proteins used zink fingers19 to couple the lanthanide ion to the protein. In this 

approach only weak PCS and RDC values in the order of 0.05 ppm or 1 Hz could be 
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measured. EF-hands delivered stronger RDC couplings up to 8 Hz after optimization 

of the linker.20 Another approach using metal binding peptides delivered reasonable 

RDC couplings of 8 Hz but weak PCS of only 0.05 ppm.39 The main problems of 

these tags are the high molecular weight and the low affinity towards lanthanide ions. 

Schwalbe developed a 17 amino acids containing tag, which showed high lanthanide 

affinity and delivered reasonable RDC and PCS values.21 However, these tags are 

limited to the functionalization of the C- and N-terminus. Only two different datasets 

for each tag and metal can be recorded, which limits this method drastically. 

 
Figure A-7: Lanthanide chelating tags: (1) DTPA amide tag, (2) tag used by Ubbink30 with two binding 
sides, (3) tag used by Griessinger, Byrd and Gaponenko,19,26–28 (4)-(7) optimized systems from Griessinger 

that showed reduced numbers of isomers. 
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Diethylenetriamine-pentaacetate (DTPA, 1) was the first small molecular tag. It 

showed tremendously increased affinity to lanthanide binding (Kd = 10-21 M) and the 

molecular weight of the tagged protein was only increased slightly. The first DTPA 

was tagged to the N-terminus of the protein. It turned out that the resulting complex 

existed in two different diastereomeric forms with different alignment tensors.40  

Ubbink used DTPA (2) (Figure A-7) as tag to address two cysteine residues on the 

surface of a protein. Nevertheless, five different diastereoisomers with different 

alignment tensors were recorded. All diastereoisomers were in slow exchange with 

each other. As different populations of signals were obtained, an assignment for 

some of the species was possible, but in many cases where the shift differences 

were really weak overlap of all signals was observed.30 

To avoid formation of so many diastereoisomers, the Griessinger28 and Byrd26 

groups used the less stereochemically demanding EDTA based tag (3) (Figure A-7) 

for their investigations. This tag was attached to a protein surface using a single 

disulphide bridge. Nevertheless, they obtained two sets of signals, as the nitrogen 

marked in Figure A-7 became stereogenic after attachment to the protein surface. 

This demonstrates the huge importance of the formation of a single isomer on the 

protein surface in order to avoid signal multiplication.  

The first step towards this goal was presented by a series of EDTA-based tags (4-7), 

which did not introduce any new chirality during the coupling process. They showed 

an extreme high affinity towards lanthanides and were successfully attached to 

protein surfaces. The application of this tags for RDC measurements was good but 

the EDTA complex were still not rigid enough so that PCS remained weak.28,29,41 
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A.1.9 DOTA a strong lanthanide chelating tag 
DOTA-Gd3+-derivatives are used in magnetic resonance imaging (MRI) for about 30 

years.42 These gadolinium complexes were chosen due to their strong PRE effects to 

allow sufficient water suppression. Many studies have shown that DOTA complexes 

have more potential than DTPA complexes due to their higher thermodynamic and 

kinetic stability under physiological conditions.42 In MRI experiments the stability of 

gadolinium complexes is of outmost importance as free gadolinium is highly toxic.  

 
Table A-1: Examples of MRI contrast agents. 

 Macrocyclic Open chain 

Ionic 

  
Non ionic 

    
 

Table A-2: -log Kd for the different MRI contrast agents. Kd1 represents the thermodynamic dissociation 

constant, whereas Kd2 represents the stability of the complex under physiological conditions (other 
metals are present under these conditions leading to competition reactions).  

 Dotarem® ProHance® Gadovist® Magnevist® Omniscan® OptiMARK® 

Kd1 25.6 23.8 21.8 22.1 16.9 16.6 

Kd2 19.3 17.1 14.7 17.7 14.9 15.0 

 

These results inspired the NMR community to test DOTA as candidate for RDC and 

PCS measurements. Several groups used DOTA based tags successfully.  Results 

showed increased PCS properties depending on the rigidity of the DOTA backbone 

used.24,31,36,43 

The greater stability of DOTA under physiological conditions compared to DTPA is of 

huge importance, especially for applications in in-cell NMR measurements. For NMR 

measurements even higher stabilities are required as the experimental time is usually 

longer compared to MRI.  
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A.1.10  DOTA-M8: An extremely rigid, high-affinity lanthanide chelating tag 
The Häußinger group developed an extremely 

sterically demanding DOTA derivative.25 The cyclen 

core was in this case four times stereospecifically 

methylated to yield (4S)-M4-cyclen. The use of 

natural L-lactic acid yielded an (4R,4S)-DOTA-M8 

tag whereas the unnatural D-lactic acid led to a (8S)-

DOTA-M8 tag. The introduction of this steric bulk 

was performed in order to deliver one single stereoisomer. For DOTA molecules four 

different stereoisomers were obtained which were formed due to side arm rotation (Λ, 

Δ) and ring inversion (λ,δ) yielding Λλλλλ, Λδδδδ, Δλλλλ, Δδδδδ complexes. The tag was 

attached with a single disulphide bridge to a cysteine residue (single point mutation) 

located on the protein surface. This DOTA derivative contains therefore a strongly 

hydrophilic as well as a strongly hydrophobic part.  

Depending on the protein surface one of the two sides of the tag can induce stronger 

interactions and therefore binds with this specific side. This tag showed strong PCS 

and RDC values and is therefore a good starting point for further investigations. 

Nevertheless, it should be mentioned that also in this case two species with different 

populations were detected. A cis/trans isomerization of the amide linker is the most 

likely explanation for this phenomenon. 

 

  

N N
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HO O
O

HO

O OH
N
H

O S
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Figure A-8: (4R,4S)-DOTA-M8-SPy 

Figure A-9: Representation of DOTA-M8 hydrophobic side (left) and hydrophilic side (right). 
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A.2  Research Goal 
The structural analysis of proteins and their inhibitor complexes remains still 

complicated. Measurements of protein-protein complexes by X-ray give information 

about the interaction site. However, the description of cellular activity remains 

inaccurate in the absence of physiological conditions. Measurements like FRET are 

quite useful for fluorescent proteins or fluorescently labelled proteins. NMR 

spectroscopy is one of the methods that can deliver high molecular resolution under 

conditions close to the physiological ones. The elucidation of protein-protein or 

protein-ligand interactions requires long-range information. In most cases long-range 

information is the limiting factor for accurate structure determinations. NOESY44,45 

experiments deliver powerful information of distances through space, but their fast 

decay (r-6) allows only investigations up to 5 Å. In many cases this is not enough to 

determine inter-protein interactions and therefore other techniques are required. 

Pseudocontact shifts (PCS) can offer such information as their intensity decays 

slower (r-3) and distances up to 60 Å become accessible. To measure PCS a 

paramagnetic metal has to be placed on the surface of the molecule investigated in a 

rigid and specific way. DOTA frameworks especially DOTMA based metal chelating 

tags can deliver such rigid building blocks. 

For all so far reported DOTA complexes the side chain donors were oxygen atoms 

from carboxylic acids or amides. The donors are therefore quite symmetric and 

deliver similar electron density to the metal core. Changing the side chain donor 

atoms could influence the χ-tensor anisotropy, as different electron densities are 

transferred to the metal from different fixed positions. Measurements of biological 

active molecules should be performed in native conditions to avoid structural 

changes. The PCS measurements presented so far were performed in buffered 

solutions. This environment is close to the native but still differences were present. 

Under physiological conditions a strong reduction potential is obtained which would 

cleave the disulphide bridge used to attach the tag on the protein surface. Only one 

case, using click chemistry to bind the tag on the protein surface, matches this 

stability problem.46 The main problem of this technique is the use of an unnatural 

amino acid, which limits the preparation of the protein. The high affinity and the 

kinetic inertness of DOTA-M8 compared to DOTA-M0 make them better candidates 

for in vivo measurements as no metal release is expected. 
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The goal of this thesis was therefore to improve the previously reported DOTA-M825 

tag. The development of a linker suitable for measurement under physiological 

conditions without using unnatural amino acids in the protein sequence to allow the 

investigation of PCS in living cells should be developed. This would, indeed, 

represent the first possibility to use NMR spectroscopy to investigate protein-protein 

or protein-ligand interactions in vivo.  

 

A.3  Methods and Materials 
Chemicals were used as purchased and used without further purification if not stated 

differently. Technical dichloromethane was distilled prior to use. For purification of 

cyclen derivatives only HPLC grade solvents were used. 

All NMR data were acquired on Bruker NMR spectrometer using an Avance III 

console. The 250 MHz NMR data were recorded on a BBFO+ 5 mm probe head with 

Z-gradients. For carbon experiments the delay d1 was set to 2 seconds. 400 MHz 

NMR data were recorded on a BBFO+ 5 mm probe head with Z-gradients. 500 MHz 

NMR data were recorded on a BBI 5 mm probe head. 600 MHz NMR data for cyclen 

derivatives and side chains were recorded on a BBFO+ 5 mm probe head. Metal 

complexes were measured in D2O using a shigemi tube. For protein NMR 

measurements a TXI inverse 5 mm probe head was used.  

Protein samples were additionally measured on a 600 MHz Avance III HD 

spectrometer using a cryogenic QCI probe head.  

All protein samples were measured in 100 mM phosphate buffer in shigemi tubes. 

The pH was adjusted to values stated in the experimental section. The protein GB1 

(T53C) was used as test-protein for the new lanthanide chelating tags. The purified 

protein was received from Dr. François-Xavier Theillet (FMP Berlin).  

A NMR structure of GB1 was available from the SDBS-database allowing the 

chemical shift assignments by comparison.  

HCAII mutants obtained from the group of Prof. Tom Ward in Basel were also used 

for the identification of linker candidates. 

ESI-MS spectra were recorded on a Bruker Daltonics esquire 300 plus spectrometer. 

Solutions of concentration between 1-10 µg/mL in methanol, acetonitrile or 

acetonitrile/water/TFA mixtures were introduced to the spectrometer with a flow rate 

of 1µL/min.  
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Figure A-10: ESI-MS-spectrum and structure of GB1 used for the investigations of new lanthanide 
chelating tags. 
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A.4  Synthetic strategy  

A.4.1 Synthetic strategy for DOTA-M7 acetophenone (A1) 
The title compound A1 can be synthesized starting from (4S)-M4-cyclen. First 

introduction of protected lactic acid based side chains allows the selective 

introduction of the linker on the unfunctionalized M4-cyclen nitrogen. 

 
Figure A-11: Retrosynthetic analysis of DOTA-M7-acetophenone (A1). 

The introduction of the linker has to be performed as last alkylation step due to the 

two reactive sites of the linker. The remaining free nitrogen is also less reactive. This 

N N

NN

O O
O

O

O O

O

O
Br

Ln
N N

NN

O
O

O

O
Br

HO

HO

OH

O
Metalation

N N

NN

O
O

O

O
Br

O

O

O

O

Deprotection

R

R

R

N N

HNN

O
O

O

O

O

O

R

R

R

Linker

Alkylation
with standard side chain

NH HN

HNNH

A1



Synthetic strategy 19 
 

 

fact, in combination with the present steric bulk prevents side reactions like 

dimerization.  Acid deprotection is performed, allowing the introduction of the 

lanthanide ion to form complex A1. Different possibilities for the synthesis of the 

acetophenone-based linker are presented in Figure A-12. The synthetic route shown 

in black delivers the symmetric 1,1'-(1,4-phenylene)bis(2-bromoethan-1-one) as 

precursor.  

 
Figure A-12: Retrosynthetic analysis of an acetophenone based linker, on top symmetric precursor 1,1`-

(1,4.phenylene)bis(2-bromoethan-1-one) followed by two different more selective ways presented on the 

bottom. In blue, are more selective route is shown. A hydroxyl moiety is introduced followed by 
bromination on the other side allowing selective coupling to the cyclen moiety. In red, an even more 

selective way is presented which allows the use of Heck reactions before or after addition to the cyclen 

moiety. 
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The advantage of this strategy is the reduced number of steps and the easy 

preparation. The use of a statistical reaction for the coupling to the DOTA-M7 and the 

possible dimer formation leading to unwanted side products is the main disadvantage 

of this strategy. 

The strategy presented in blue shows a more selective way that allows the 

introduction of a better leaving group such as triflate, tosylate or mesylate. On the 

other hand it would also be possible to protect the hydroxyl group and therefore allow 

the selective reaction with the M4-cyclen. This strategy permits the introduction of 

this linker in the first step where the reactivity of the nitrogen is enlarged and less 

steric bulk present. The reaction sequence in red allows also selective coupling to the 

M4-cyclen moiety. All pathways can be performed in a similar way for 1,3 instead of 

1,4 di-substituted aromatic rings delivering different geometries of the linker. 

 

A.4.2 Synthetic strategy for DOTA-M7/8-thiovinylsulfone (B1, B1a) 
For the synthesis of DOTA-M7/8 the retrosynthetic analysis is presented in Figure 

A-13. In this case, the introduction of the linker side chain can be performed in the 

first step as the thiol can be introduced in a protected way preventing side reactions. 

The acid labile protecting-group allows the removal of all protecting groups in a single 

step. Alternatively, the introduction of orthogonal protecting groups on the different 

side chains leads to selective cleavages. The introduction of the vinyl sulfone is thiol 

specific and requires therefore no special considerations. 

 

Figure A-13: Retrosynthetic analysis of DOTA-M7/8-thiovinylsulfone. 
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Different synthetic pathways for the introduction of the thiol containing side chain are 

shown in Figure A-14. Simple introduction of a thiol in a statistical reaction of 

potassium thioacetate with 1,2-dibromoethane delivers the side chain precursor. 

For the synthesis of the M8-macrocycle B1a the situation is more complicated. There 

are three possible routes presented. The one shown in black presents a similar 

reaction pathway than used for the synthesis of B1. The complete side chain is 

synthesized before it is attached to the M4-cyclen core. The synthetic strategy 

presented in red is performed mainly on the macrocycle. The reaction sequence is 

quite similar to the one shown in black but less protecting groups are required. The 

number of steps is therefore drastically reduced. The synthetic strategy drawn in blue 

counts the most steps. The introduction of a protected alcohol allows the introduction 

of all other side chains before the sulphur is introduced. This is the main advantage 

to the strategy drawn in red where the alcohol has to be modified on the macrocycle 

before the other side chains can be introduced. The free alcohol can be easily 

converted into a good leaving group. Different nucleophiles can be introduced to the 

system in a late stage, leading to a highly flexible synthetic strategy. 

 

Figure A-14: Retrosynthetic analysis of side chains required for the synthesis of B1 and B1a. 
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A.4.3 Synthetic strategy for DOTA-M8-α,β-unsaturatedketone (C1) 
The synthesis towards an α,β-unsaturated side chain can be performed in two 

principle reaction pathways as shown in Figure A-15.  

Classical Weinreb chemistry is shown in black. Grignard reagents are used to 

selectively introduce the vinyl moiety. A statistical approach is drawn in blue. The 

symmetric DOTA-M8 is functionalized with one equivalent of the nucleophile in a 

statistic manner. The main advantage of the blue strategy is the reduction of 

synthetic steps.  

 

Figure A-15: Retrosynthetic analysis of DOTA-M8-α,β-unsaturated ketone. 

The formation of the Weinreb amide can be performed in one single step starting 

from commercially available L-lactic acid ethyl ester. 

 

Figure A-16: Retrosynthetic analysis of the Weinreb side chain. 

 

A.4.4 Synthetic strategy towards DOTA- M8-amino (D1) 
The strategy towards the synthesis of a side chain containing a nitrogen atom as 

donor is similar to the DOTA-M8 synthesis reported earlier with the difference that 

the amide nitrogen and not the amid oxygen forms the five membered ring by 

coordination to the lanthanide metal.  
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Figure A-17: Retrosynthetic analysis of DOTA-M8-amino. 

On the other hand an amine linker can be created instead of an amide linker by the 

reaction with an alkyl halide. The route drawn in black allows the conversion of the 

amine to the linker in a late stage of the reaction pathway. Compared to the so far 

presented macrocycles, three different side chains are required to prevent the 

formation of a charged metal complex. For this reason a ketone in place of a 

carboxylic acid is used. In Figure A-17 only the complex where the amine and ketone 

functionality are para to each other is drawn. In general, both different ortho 

complexes are possible and accessible in a similar way. 
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The amine functionality is added in a protected way in the first step (black route) 

followed from the keto-side chain. This led to the formation of the para complex as 

main product (steric and electronic effects). Another possibility is again the 

introduction of an protected alcohol functionality. The nitrogen can be introduced 

after deprotection of the alcohol using Mitsunobu coupling conditions. All other steps 

are similar to the black route. 

 

Figure A-18: Retrosynthetic analysis of the side chains required for DOTA-M8-amino.  

The different synthetic strategies towards the side chains for C1 are presented in 
Figure A-18. The black route illustrates the synthesis starting from L-lactic acid ethyl 

ester, which is an inexpensive precursor. After reduction to the alcohol a leaving 

group has to be generated. Appel reactions transforming the alcohol into bromide are 

useful in this case. Unfortunately, they are not atom efficient. An alternative would be 

the use of mesylate, tosylate or triflate as good leaving groups. They can easily react 

with different types of amine nucleophiles. The protected amine is then attached to 

the M4-cyclen moiety. The route drawn in red shows a more elegant way to 

synthesize the amine side chain starting from L-Lactamide. The reduction of reaction 

steps makes this route attractive. The route drawn in blue deals with a similar 

protocol as shown for DOTA-M8-thiovinyl. The introduction of the protected alcohol 

requires functionalization of the alcohol on the cyclen moiety. 
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A.5  Results and Discussion 
Four target molecules A1, B (B1, B1a), C1 and D1 (Figure A-19) were suggested as 

alternative to DOTA-M8.  These molecules have linkers that are stable under 

reductive conditions. All form a thioether through the reaction with a single cysteine 

on the protein surface. 

 

Figure A-19: Target molecules as candidates for PCS reagents using a reductive stable linker and 
different heteroatoms as donors. 

A.5.1 Investigation of acetophenone based linkers. 
Target molecule A1 was synthesized in two different forms, namely DOTA-M0-

acetophenone and DOTA-M7-acetophenone. The M0 version was synthesized as 

model molecule to test the linker for its ability to bind to the protein surface and to 

optimize the reaction conditions. Nevertheless, huge differences in the reactivity 

between M0 and M7 were obtained due to steric effects that made substitution 

reactions for M7 more challenging. Therefore, these reactions were not performed for 

all other target molecules, as the M0 version was not suitable for PCS measurements 

(formation of Λλλλλ, Λδδδδ, Δλλλλ, Δδδδδ complexes) as the high flexibility of the 

backbone led to averaging of the PCS. Nevertheless, the M0-analogue could be 

successfully attached to GB1-T53C as shown in Figure A-20. The resulting 15N-1H-
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HSQC-spectrum (Figure A-21) shows that some of the peaks are doubled. The origin 

of these two species is most likely the formation of a Λ- and a Δ- form of the complex. 

 
Figure A-20: ESI-MS spectra of Lu-DOTA-M0-acetophenonen with GB1-T53C. 

 
Figure A-21: 15N1H-HSQC spectra of GB1-T53C in complex with Lu-DOTA-M0-acetophenone. 

The synthesis of A1 was performed according to the retrosynthetic analysis (Figure 

A-12) in different ways. The optimized scheme is presented in Figure A-22. Molecule 

A2 can be synthesized efficiently using dichloromethane as solvent, this stopped the 

reaction after the addition of three side chains. Some of the starting material 

contained two side chains. Separation of these two macrocycles was performed 
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succesfully. Different protecting groups namely tert-butyl and benzyl were tested. As 

low yields were obtained for the deprotection of the tert-butyl protecting group, benzyl 

protection was preferred. The deprotection using palladium on carbon under 5 bar 

H2-pressure (used for DOTA-M8) removed the protecting-groups quantitatively but 

also reduced one of the keto-groups to a CH2-group.  

 

Figure A-22: Synthesis of macrocycle A1: a) K2CO3, DCM, rt, 28h (65% for R = Bn, 80 % for R = tBu); b) 

NaH (60%), MeCN, 40 °C, 3h (40% for R = Bn, 80 % for R = tBu); c) R = tBu => TFA, rt, 3h, 10-30 %; R = Bn 

=> Pd/C, EtOH, 5 bar, 2h 0%; d) TmBr3, DIPEA, H2O, rt, 1h. 
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The two reactive sites of the linker made its introduction to the macrocycle 

challenging. To prevent bridging, the three other side chains were introduced first. 

Introduction of the linker to the M0-derivative worked well using potassium carbonate 

as base. However, the attachment of the linker to DOTA-M7 using potassium 

carbonate as base delivered low yields. Therefore four different bases were tested as 

shown in Table A-3. 

 
Table A-3: Base screening for the attachment of the acetophenone linker to DOTA-M7. 

Base Reaction temperature Yield 

K2CO3 rt. - 40 °C 30% 

Cs2CO3 40 °C 32% 

NaHCO3 40 °C 65% 

NaH (60 %) 40 °C 40-90% 

 

The base screening showed clearly that sodium hydride and sodium bicarbonate 

improved the yield. Nevertheless, the reproducibility of the reaction was bad and 

therefore other reactions were tested to introduce the side chain more efficiently. The 

easiest way to get a better leaving group is to replace the bromide (a1) by an iodide 

(a2) using a simple Finkelstein reaction, which was successfully performed in 80 % 

yield. Test reactions of the di-iodo compound (a2) showed that the iodine moiety was 

not selective for the coupling to a free cysteine moiety. 

 
Figure A-23: Finkelstein reaction: a) NaI, tetrabutylammonium bromide, H2O, rt, 2h. 

Further attempts to develop an asymmetric linker were performed. For instance, a 

hydroxyl group on one side and a bromide on the other side should allow the 

formation of a better leaving group such as tosyl or triflate. The synthesis of these 

compounds was challenging. The literature reported α-hydroxylations did not work in 

our case, therefore a mono bromination was done. Microwave conditions were used 

to transform the bromide selectively into a hydroxyl group. Selective bromination on 

the other side failed in the case where the hydroxyl group was protected and without 

protection the hydroxyl group was transformed back to a bromide. The reaction of a1 
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with a hydroxyl nucleophile in a statistical reaction delivered the desired asymmetric 

compound in poor yield. Tosylation was performed in moderate yield, however, the 

reaction with the DOTA-M7 (A2) was not successfull. The steric bulk of the tosyl 

group probably blocked the reaction. The more reactive triflates were not stable. 

The steric bulk of DOTA-M7 (A2) in combination with the low reactivity of the α-

bromo ketones towards nitrogen concluded that the linker should be attached first. 

The strategy drawn in red (Figure A-12) allows the introduction of the linker in the first 

reaction step. This is favourable as the reactivity of the unfunctionalized M4-cyclen is 

much higher. Therefore different test reactions were performed to explore the 

synthesis of compounds a5 and a6. Unfortunately, no suitable reaction conditions for 

the Heck reaction could be found. 

 

Figure A-24: Synthetic trials for the introduction of an asymmetric highly reactive linker to allow selective 
coupling reactions. a) Bromine, AcOH, 95 °C, 1h; b) H2O, microwave, 125 °C (5bar) 25 min. 

The influence of the hydroxyl group in the Heck reaction was investigated by 

changing the starting material to the bromine and the unfunctionalized starting 

material. In none of the investigated molecules suitable reaction conditions could be 

found. The potential linker was also coupled to morpholine to mimic the cyclen 

moiety but also in this case the Heck coupling did not work.  

Another possible pathway is shown in Figure A-25. The introduction of the hydroxyl 

functionality was performed in a statistic reaction. The synthesis of compound a7 as 

benzoyl and acetyl protected alcohol were performed in low yields of about 15-30%. 

One way would be the introduction of this linker to the unfunctionalized cyclen, but in 

this case the hydroxyl functionality has to be exchanged to the bromine on the final 

compound, which is a quite challenging task (already unsuccessful tested for the final 

compound). On the other hand the hydroxyl functionality can be converted into a 

good leaving group. The formation of the triflate a9 was not successful. A synthesis 
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of the tosyl analogue could be performed but the reactivity was to low for 

functionalization of A2. 

 

Figure A-25: Synthetic trials for the introduction of a single hydroxyl functionality in a statistic reaction. 

Conditions are presented for the benzoyl protection protocol: a) Benzoic acid, sodium, acetone, reflux, 

5h; b) HCl (1M, aq.), ethanol, reflux, 5h. 

Therefore, these asymmetric reaction pathways were abondened and further 

reactions were performed using a1 as linker. The cleavage of the tert-butyl protecting 

group using trifluoro acetic acid (TFA) yielded A4 in 31% after HPLC purification. 
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procedure no product could be isolated. ESI-MS and HRMS indicated the formation 

of hydrolysed compound A1a and the chloro compound A1b as shown in Figure 

A-26. The Lewis acidity of the Lanthanide ion led to these side reactions. Reaction 

conditions were changed to Ln(OTf)3*6H2O in dry acetonitrile to prevent high water 

concentrations, nevertheless the hydrolysed metal complex and only traces of the 

product were obtained. The fact that LnCl3 delivered a 4:1 (A1a/A1b) ratio led us to 

the use of LnBr3*6H2O in water (LnBr3 is insoluble in acetonitrile). The reaction time 

was cut down to 1 hour and the SepPak purification was performed as fast as 

possible to remove excess metal ions in order to prevent side reactions. The 

exchange of the hydrolysed linker back the brominated species using an Apple 
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Figure A-26: Structure A1a hydrolysed linker, whereas structure A1b presents the exchange from 

bromine to chlorine. 

The synthesis of the target molecule A1 could be achieved in moderate yields. The 

standard side chain was synthesized in four linear steps (Figure A-54) as presented 

earlier.25 The linker was synthesized in one step in moderate yield. The coupling 

conditions could be optimized for the linker by variation of the base. The macrocycle 

A1 was synthesized in four linear steps using the two different side chains and 

standard deprotection procedure. The metalation was optimized to reduce hydrolysis 

side reactions. 

The reaction of the metal complex in 10 µM phosphate buffer at pH 7.0 with GBI was 

performed overnight in quantitative yield. Excess lanthanide chelating tag was 

removed by centrifugation using a 3 kDa cut off filter. The protein was washed with 

50 µM phosphate buffer and the pH was adjusted to 7.0 before NMR experiments 

were performed. 
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Figure A-27: GB1-T53C-Tm-M7 15N1H-HSQC spectrum. 

Figure A-27 shows the 15N1H-HSQC spectrum of GB1-DOTA-M7-Tm-acetophenone 

(GB1-A) and Figure A-28 shows the comparison of GB1-A with untagged GB1-T53C. 

Some resonances are bleached in the paramagnetic sample due to PRE effects. 

These resonances are close in space to the lanthanide chelating tag. The PCS 

obtained for the other resonances are quite weak. This means the flexibility of the tag 

is large and therefore averaging of the PCS can occur. It is possible that a linear 

linker is not flexible enough and prevents coordination of the tag with its hydrophilic 

or hydrophobic side to the protein surface.  

All peaks are separated into two different signals (Figure A-27). The difference 

between the two signals is proportional to the distance from the tag to the influenced 

nucleus. This means that there are two stable conformers of this tag in solution. 

Different origins of this phenomenon are possible. One possibility is that the length of 

the tag is so long that interactions on two different sides become possible or that the 

tag itself forms two different isomers as one methyl group is missing. Too low PCS 

data give strong evidence that the complex itself forms two different stereoisomers 

and that the linker is too long leading to averaged signal intensity. 
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Figure A-28: Superimposed representation of GB1 with Tm-tag (blue) and without tag (red). 

 

A.5.2 Using a thiol as donor atom in the linker. 
Target molecule B1 was synthesized in two different ways. The required sulphur side 

chain b1 was synthesized in one single step using 1,2-dibromoethane and potassium 

thioacetate in a statistical reaction (Figure A-29). For reactions with DOTA-M7 a 

Finkelstein reaction was performed to increase the reactivity of the side chain (b2). 

 
Figure A-29: Synthesis of sulphur side chain, a) KSAc, THF, reflux, 7h, 46%; b) NaI, acetone, rt, 2h, 80%. 

The sulphur side chain (b2) was attached to DOTA-M7 (A2) in moderate yields of 

about 50% (starting materials could be recovered). Selective removal of the thiol 

protecting group was achieved using sodium thiomethoxide in methanol. ESI-MS 
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analysis showed dimer formation and S-SMe formation. To remove the resulting 

disulphide a huge excess of TCEP (2 mL (in 350 mM KOH)) was added to afford the 

free thiol. Simply boiling B3 with divinylsulfone in ethanol delivered complex B4. 

 

Figure A-30: Synthesis towards DOTA-M7 thiovinyl; a) NaH (60% in paraffin oil), MeCN, rt, 7h; b) NaSAc, 

MeOH, rt, 1.5h, TCEP; c) divinylsulfone, EtOH, reflux, 1h. 

Full conversion was detected by ESI-MS without any side products. Nevertheless, 

purification by silica gel column chromatography using chloroform/ethanol (9:1 to 1:1) 

as eluent delivered only 5% of the desired macrocycle B4. The low yield is explained 

by the formation of macrocylce B4a (Figure A-31) where the double bond reacted 

with ethanol. This species is strong ionizing in the ESI-MS and therefore it is obvious 

that this side product was not formed during the reaction in boiling ethanol. Therefore 

the interaction with silica gel must have catalysed this reaction. Therefore, this 

purification method was avoided for further investigations of this type of molecules. 

Deprotection using TFA, degraded the macrocyclic molecule B5 completely.  

 
Figure A-31: Side product obtained after silica gel column chromatography. 
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The synthesis strategy was slightly changed to improve the yields of the reactions. 

The sulphur containing side chain was attached to M4-cylcen leading to an improved 

yield of the reaction. Addition of the standard side chain to form the fully alkylated 

macrocycle caused some problems. No full conversion was achieved under standard 

conditions. Addition of more starting material to the crude mixture was not 

successful. Intermediates that contained only two lactic acid side chains could be 

isolated and had to be reacted a second time to deliver the desired product. This 

increased the overall yield of this step up to 80%. Instead of the selective cleavage of 

the thiol protecting group all protecting groups were removed in one single step using 

boiling aqueous hydrochloric acid (1M, 1h). This deprotection worked in good yields 

of 80%. No dimer formation was obtained under these reaction conditions. 

 

Figure A-32: Synthesis of DOTA-M7-thiovinylsulfone (B1); a) NaH (60% in paraffin oil), rt, 20h; b) K2CO3, 
MeCN, rt, overnight; c) HCl (1M, aq), reflux, 60 min; d) divinylsulfone, EtOH, reflux, 1h; e) LnCl3*6H2O, pH = 

7.0 ammonium acetate buffer (100 mM, aq), H2O, 75 °C, overnight 

The reaction with divinylsulfone worked in very good yield and purification using 

preparative HPLC delivered exclusively the desired product. Metalation of complex 

B9 under standard conditions worked in quantitative yield to deliver the desired 

macrocycle B1. Contraily to macrocycle A1 no chlorination or hydroxylation of the 

double bond were observed. Reaction of the vinylsulfone, was reported in literature 

to react fast even at low pH of around 6.5. In our case no full conversion was 
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obtained at this pH. Adjusting the pH stepwise to 8.0 delivered a full conversion after 

48 hours. 

 
Figure A-33: ESI-MS spectrum of GB1-T53C-DOTA-M7-Tm-thio. 
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Figure A-34: Comparison of the TROSY-HSQC spectrum of GB1-T53C (red) and GB1-T53C-DOTA-M7-Tm-

thio (blue). 

The comparison of the two TROSY-HSQC spectra shows PRE effects of the 

resonances in close proximity to the paramagnetic ion. The obtained PRE effect is 

comparable to DOTA-M7-Tm-acetophenone. For the thiovinyl sample one single set 

of signals was observed. Nevertheless, the PCS are weak and indicate that the tag 

must be still flexible. 

Two explanations for the low PCS of DOTA-M7-divinylsulfone (B1) are predicted. 

Either the linker is too long if the oxygen in the side chain is not coordinated to the 

lanthanide allowing a greater flexibility and therefore led to PCS averaging. On the 

other hand there are no data available showing the influence of one missing 

stereospecific side chain in the backbone. Therefore, synthetic strategies towards an 

M8-version (B1a) were developed. Attachement of the stereospecific side chain has 

to be performed in a similar way as presented for standard side chains. Modifications 

of the lactic acid backbone were performed as discussed in the synthetic strategy. 
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Commercially available L-lactic acid ethyl ester was used as starting point for these 

investigations. In a first trial, a benzyl protecting group (b3) was introduced before 

reduction of the ester to the alcohol (b4). Both reactions worked in good yields. The 

free hydroxyl group was converted into a good leaving group using tosylchloride in 

pyridine (b5). The reaction of b5 with potassium thioacetate delivered b6 in moderate 

yield. Starting material could be recovered after purification. The removal of the 

benzyl-protecting group using Pd/C was not successful even under high catalyst 

loading, high pressure (20 bar) and extended reaction time (24 h). Therefore, a 

similar protocol was tested using a THP protecting group instead of the 

benzylprotecting group.  

 

Figure A-35: Functionalization of the lactic acid side chain: a) benzyl bromide, NaH, DCM, -10 °C – rt, 

overnight; b) LiAlH4, THF, 0 °C – reflux, overnight; c) p-TsCl, pyridine, rt, overnight; d) KSAc, THF, reflux, 
3h. 

The THP-protecting group was introduced in moderate yield. The product b8 was 

obtained as mixture of two diastereoisomers (S-S, S-R) because an additional 

stereogenic centre was introduced in a racemic way. The two diastereoisomers are 

only partially separated by silica gel column chromatography. All further reactions 

were performed with a mixture of these two diastereoisomers. Reduction to 

compound b9 could be achieved in quantitative yield. Extending the reaction time for 

the formation of b11 doubled the yield compared to the synthesis b6. Deprotection 

under mild conditions worked in moderate yield. Purification of compound b7 was 

challenging as the hydrolysed THP-protecting group showed similar properties as the 

free alcohol. After two silica gel column chromatographies using different eluents the 

compound could be isolated as pure product.  
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Figure A-36: Functionalization of the side chain using THP-protection: a) p-TsOH, 2H-dihydropyran, 

CHCl3, 4°C – rt, 3h; b) LiAlH4, Et2O, reflux, 2h; c) p-TsCl, pyridine, DCM, 0°C – rt, overnight; d) KSAc, THF, 

reflux, overnight; e) AcOH/THF/H2O (4:2:1), 45 °C, 4h; f) methanesulfonyl chloride, NEt3, THF, 0°C – rt, 2h. 

Formation of the triflate b13 failed under different reaction conditions as presented in 

in Table A-4. Therefore, the less reactive mesyl compound b12 was synthesized. 

 
Table A-4: Different conditions tested for the synthesis of triflate b13. 

Reagent Temperature Reaction time Workup temp. Yield 

Tf2O -10 °C 30 min rt 0-5 % not pure 

Tf2O -50 °C 30 min 0 °C Decomposition 

Tf2O -50 °C 30 min -20 °C No conversion 

TfCl -20 °C 30 min 0 °C Decomposition 

 

Compound b12 was synthesized in high yields and was much more stable than b13. 

Nevertheless, coupling reactions of b12 to the M4-cyclen failed as the reactivity of 

the mesyl compound was not high enough to allow substitution on this sterically bulky 

molecule. It was therefore obvious that only a molecule as reactive as a triflate can 

be used as candidate to attach the side chain stereospecifically. 

The introduction of an orthogonally protected alcohol should allow the attachment of 

the thiol group to the side chain on the macrocycle selectively. The strategy towards 

a benzyl protected side chain (b15) is shown in Figure A-37. 
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Figure A-37: Synthesis of the benzyl protected side chain b16: a) benzyl bromide, NaH (60% in paraffin 

oil), DMF, rt, 2h; b); AcOH/THF/H2O (4:2:1); 45 °C, 8h; c) Tf2O, pyridine, DCM, -78 °C, rt, 10 min. 

High purity of compound b15 was achieved after two purifications by silica gel 

column chromatography. The reaction of the alcohol b15 to triflate b16 worked in 

moderate yield and high purity was reached after filtration over silica gel. Mono-

alkylation using b16 to form B10 worked only in poor yields, but the starting material 

(M4-cyclen) could be recovered. 

 

Figure A-38: DOTA-M8 introduction of a sulphur side chain: a) NaH (60% in paraffin oil), DCM, rt, 48h; b) 
NaH (60% in paraffin oil), MeCN, rt – 50 °C overnight; c) liquid ammonia, Na, -78 °C, 120 min; d) MesCl, 0°C 

– rt, 2h, KSAc, reflux, 6h. 

Alkylation using sodium hydride as base was not ideal, as different side products 

were formed. Therefore, carbonate is the base of choice to obtain better yields for 
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this alkylation reactions. Selective removal of the benzyl-protecting group was much 

more challenging than expected. Standard conditions using Pd/C or Pd(OH)/C under 

different hydrogen pressures did not deliver any deprotected intermediates. 

Therefore, harsh Birch conditions were applied affording B12 in low yields. Scaling 

up of this reaction failed. The low quantities available and the high amount of 

impurities are the main reason for the low conversion of this reaction. Deprotection 

conditions used for B7 did not work similar for B13 most like due to the large number 

of impurities in this reaction mixture. The main problem of this synthetic strategy is 

the hard removal of the benzyl protecting group.  

 

Figure A-39: Preparation of different orthogonally protected side chains: a) 3,4-dihydro-2H-pyrane, p-
TsOH, CHCl3, rt, 3h; b) Pd/C, H2 (5 bar), EtOH, rt, overnight; c) TBDMSCl, 1H-imidazole, DMF, rt, overnight; 

d) Pd/C, H2 (10 bar), EtOH, rt, 2h; e) acetylchloride, THF, rt, overnight; f) Pd/C, H2 (10 bar), EtOH, rt, 

overnight; g) benzoylchloride, NEt3, DMAP, toluene, rt, 4h; h) benzoylchloride, NEt3, DMAP, toluene, rt, 3h; 
i) AcOH/THF/water (4:2:1), 45 °C, 4h. 

Other protection protocols with similar orthogonality but milder deprotection 

conditions were developed. Protection protocols using THP, Benzoyl, Acetyl and 

TBDMS were tested as shown in Figure A-39. THP, Benzoyl and TBDMS were not 

stable under the reaction conditions required for the triflate synthesis. The acetyl-
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protecting group moved in polar solvents and was obtained as mixture of 1 and 2 

protected alcohol b24 and b25. Separation of these two isomers by silica gel column 

chromatography was not possible under various conditions. Attaching such isomer 

mixtures to the M4-cyclen moiety would cause major problems. Separation after 

attachment to the M4-cyclen would be complicated, owing to similar polarity of the 

two molecules. The main surprise in this series was the fact that the benzoyl-

protecting group was removed under these conditions, as benzoyl is known to be an 

acid stable protecting group removable under basic conditions.  

Selective introduction of an orthogonally protected alcohol side chain, easily 

removable remained therefore unsolved. Another possibility would be the introduction 

of a standard side chain, which would be reduced on the macrocycle. Such a route is 

presented in Figure A-40. The free amines were protected with a benzyl protecting 

group. The benzyl protecting group was chosen, as it is stable under the reducing 

conditions necessary to form compound B16.  

The introduction of the mesyl group was difficult and hard to monitore. As a range of 

isomers were obtained on TLC, making TLC control too complicated. This 

intermediate was not ESI-MS active and therefore only consummation of starting 

material could be detected. Test reactions on small scale (4 mg) were performed, 

ESI-MS showed full conversion but after reaction with potassium thioacetate, a 

mixture containing mainly starting material and only traces of product was isolated.  

In previously presented strategies, removal of the benzyl protecting group was 

problematic when a thiol was in close proximity. Also in this case deprotection using 

Pd/C at 8 bar hydrogen pressure did not work. Birch conditions were applied but the 

products were degraded under these harsh conditions. Attempts to protect the free 

amine with TMS and THP remained unsuccessful. This opens new possibilities as 

the alcohol can probably be selective protected with THP on the macrocycle. The 

standard side chain can be attached to the M5-intermediate, the THP selective 

deprotected and the thiol introduced.  
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Figure A-40: Reduction of the side chain on the macrocycle: a) 1.) sodium hydride, dichloromethane, rt, 

3h, 2.) benzyl bromide, sodium hydride, THF/DMF (2:1), -10 °C – 50 °C, 3h; b) LiAlH4, diethylether, 0°C – 

reflux, overnight; c) 1.) methanesulfonyl chloride, THF, 0°C – rt, 5h, 2.) potassium thioacetate, THF, reflux, 
7h. 

 

A.5.3 Synthesis of the α,β-unsaturated target molecule C1 
The synthesis of target molecule C1 was developed as shown in Figure A-41. The 

formation of a Weinreb amide (c2) was obtained in moderate yields from the TBDMS 

protected lactic acid ethyl ester (c1). This approach allows selective introduction of a 

single vinyl moiety using Grignard reagents (vinylmagnesium bromide). When 

Grignard reagents are reacting with an ester a second vinyl moiety is added, as the 

ketone intermediate is even more reactive than the ester. Removal of the amine is 

performed under acidic conditions to deliver the target molecule (c3) in moderate 

yield. Molecule c3 was synthesized as test molecule. Removal of the protecting 

group followed by triflate synthesis was not performed as an alkylation reaction is 

expected to be unselective.  
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Figure A-41: Synthetic strategy towards C1: a) TBDMSCl, 1H-imidazole, DMF, 0°C, 48h; b+d) N,O-

dimethylhydroxylamine hydrochloride, isopropyl magnesium chloride, THF, -20 °C – 5°C, 3h; c) 
vinylmagnesium bromide, THF, -15 °C – rt, 5h; e) Tf2O, pyridine, -78 °C – rt, 1h; f) NaH, 0 °C – rt, overnight. 

Therefore, the stable Weinreb intermediate c5 was attached to the cyclen moiety to 

form macrocycle C2. The Grignard reaction performed from c2 to c3 did not work in a 

similar way for the transformation of C2 to C3. ESI-MS analysis showed that the 

amine and the vinyl group are located on the macrocycle. This means the reaction 

stops at the intermediate. Several attempts to remove the amine remained 

unsuccessful. 

Other reaction conditions were therefore tested as shown in Figure A-42. Introduction 

of the vinyl moiety at extremely low temperatures (-105 °C) was tested. Addition of 

vinylmagnesium bromide yielded exclusively the bis-vinyl alcohol c7. Vinyllithium 

delivered the desired vinylketone in 25% yield. Vinyllithium is unstable at 

temperatures above -78 °C and requires in situ preparation. The concentration was 

only estimated as titration experiments at rt. delivered several different 

concentrations. Using vinyllithium at mono alkylated macrocycles would require a 

special N-protection protocol. This is necessary as lithium compounds are strong 

bases. 

The symmetric macrocycle C4 was therefore synthesized. Molecule C4 can be 

transformed via statistical reaction into C5. Dilute conditions and slow addition of 

vinyllithium can help driving the reaction towards C5.  
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Figure A-42: Test reactions towards intermediate C5: a) vinylmagnesium bromide, TMSCl, THF, -105 °C, 
30min; b) Vinyllithium, TMSCl, THF, -105 °C, 30 min. 

 

A.5.4 Synthesis towards amine based macrocycle D1. 
To keep an amine based metal complex neutral, a neutral side chain has to be 

introduced. A methyl ketone was chosen instead of the carboxylic acid. The synthetic 

route is described in detail in Figure A-43. The selective introduction of the methyl 

group was performed in a similar way as for c8. Two different reaction pathways for 

the introduction of an amine side chain are presented. Starting from b9 the hydroxyl 

group was transformed to bromine (d1) in an Appel reaction. The amine was 

introduced using benzyl amine to form d2, which was further protected using benzyl 

bromide to yield the bis-benzyl protected amine. The bis benzyl-protected compound 

d3 was selectively deprotected on the hydroxyl function leading to compound d4 in 

good yield. Unfortunately, formation of the triflate was again not successful. The lone 

pair of the bis-benzyl protected amine was probably too reactive causing trouble in 

the reaction. 

Therefore, another pathway using intermediate b9 in a Mitsunobu reaction to 

introduce phtalimide is presented in Figure A-43. The reaction worked in moderate 

yield. In this case, the reactivity of the nitrogen lonepair should be tremendously 

reduced because of the partial double bond. The THP deprotection works well and 

the compound could be satisfyingly purified by silica gel column chromatography. 
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Figure A-43: Synthetic routes towards amine based side chains: a) CBr4, triphenylphosphine, 

triethylamine, dichloromethane, 0°C, 18h; b) benzyl amine, THF, rt, 2h; c) benzyl bromide, sodium hydride, 
THF/DMF (2:1), -10 °C – 50 °C, 2h; d+f) acetic acid/THF/water (4:2:1), 45 °C, 4h; e) DEAD, 

triphenylphosphine, phtalimide, THF, 0°C – rt, overnight; g) methyllithium, TMSCl, THF, -110 °C – rt, 1h; h) 

ethylene glycol, p-TsOH, toluene, reflux, 30h; i) Pd/C, hydrogen 10 bar, methanol, 3h. 
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A.5.5 Influence of different donor atoms to the anisotropy of the magnetic 
susceptibility tensor. 

The 1H-NMR spectra of DOTA-M8-Lu, DOTA-M8-Sm, DOTA-M8-SSP-Lu, DOTA-M8-

SSPy-Sm, DOTA-M7-thio-Lu and DOTA-M7-thio-Sm were compared. The symmetric 

DOTA-M8 shows only six different chemical shifts that could be easily assigned for 

the diamagnetic and paramagnetic metal ion. The sharp lines obtained for the

paramagnetic samarium sample gave strong evidence that the metal ion is fixed in 

one position inside the complex and does not show any motional freedom.    

The asymmetric DOTA-M8-SSPy delivered 32 NMR signals. The assignment of the 

lutetium sample was complicated but possible. Also some resonances could be 

assigned in the samarium sample as shown in Figure A-46. In this case the distances 

between the paramagnetic centre and side chains should be similar for all and 

comparable to DOTA-M8. If the change of donor (carboxylic acid to amide) does not 

influence the anisotropy of the magnetic susceptibility tensor then no shift dispersion 

should be observed. Figure A-46 shows nicely that small shift dispersion occured and 

therefore a measurable influence could be detected. But it was also visible that the 

PCS was slightly smaller in this case. 

Figure A-44: Space filling representation of DOTA-M8 (left), DOTA-M8-SSPy (middle), DOTA-M7-thio 

(right). 



48	
   Synthesis and Characterization of DOTA based Lanthanide shift reagents 

 

 

 
Figure A-45: 1H-NMR spectra of DOTA-M8 as Lutetium and Samarium complex. 

 
Figure A-46: 1H-NMR spectra of DOTA-M8 with standard linker as Lutetium and Samarium complex. 
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The analysis of DOTA-M7-thio shows that the lines are slightly broader than 

determined for the two DOTA-M8 complexes. This means that this complex is not as 

rigid as the others. The main question is whether this is because of the missing 

methyl group in the side chain or the S-metal binding strength. Anyway one can see 

that the chemical shift dispersion is much larger, indicating an influence on the 

anisotropy of the magnetic susceptibility factor. Also, in this case the PCS are slightly 

decreased for all chemical shifts. 

 

Figure A-47: 1H-NMR spectra of DOTA-M7-thio as Lutetium and Samarium complex. 
 

A.5.6 Further developments 
Besides the so far presented target molecules other macrocycles were investigated. 

These target molecules show strong similarities to the so far presented ones. Also 

combinations of the standard side chain and the new ones are presented. The 

synthesis of these molecules was discarded in an early stage. Problems in the 

synthetic sequence were the main reason for this. They were development to gain 

deeper insights on the influence of the geometry of the linker to the obtained PCS. 

8 7 6 0 ppm

Lutetium

Samarium

N N

NN

O O

O

O

O
O

SM



50	
   Synthesis and Characterization of DOTA based Lanthanide shift reagents 

 

 

E1, F1 and H1 are analogues of A1, all of them have a linear aromatic linker. The 

 
Figure A-48: Target molecules inspired by or as inspiration for the so far presented molecules.  
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target molecule I1. This linker is extremely short and has a fixed geometry when the 

pyridine nitrogen is coordinated to the lanthanide ion. In the following section the 

challenges and achievements towards the synthesis of these target molecules are 

discussed. Some special reactions are also presented in the experimental section. 

The synthesis of the amine precursors for E1 was much more challenging than 

predicted. Bromination procedures known from literature did not work in our case. 

We tried therefore different protection protocols to avoid bromination of the aromatic 

core. Even with the use of amine protecting groups many side products were 

generated. The amide coupling using different coupling reagents showed no 

conversion.  

 

Figure A-49: Synthesis of the activated disulphide f2: a) 2,2´-dipyridinyldisulfid, ethanol/acetic acid (20:1), 

rt., 1h. 

The precursor molecule f2 could be synthesized as para and meta version. 

Nevertheless, we could not find conditions that allowed the amide coupling. For both 

aromatic amines the main problem was the low reactivity of the nitrogen that 

prevented a successful preparation of the target molecule. Mitsunobu conditions for 

the preparation of the amine analogue instead of the amide were not tested so far. 

 

Figure A-50: Synthesis of an acetamide based side chain: a) 3,4-dihydro-2H-puran, PPTS, DCM, rt., 5h; b) 

acroylchloride, NaH, THF, rt., 3.5h; c) wasser, pH7 (phosphate buffer), HCAII, rt., overnight; d) Boc2O, 

NEt3,  DMAP, rt., overnight; e) acetic acid/THF/water, 45°C, 4h. 
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Test molecule g3 was successfully used for the coupling to GB1 under mild conditions as shown in 

 

Figure A-50. Numerous efforts towards the synthesis of G1 were therefore 

undertaken. Nevertheless, the introduction of such a side chain remains extremely 

challenging. Formation of the boc-protected amide was performed, but the triflate 

synthesis was not successful. The unsuccessful reactions performed in this case led 

to the synthesis of target molecule C1, which was presented earlier. 

 

Figure A-51: Synthesis of the side chain towards target molecule H1: a) NBS, ammonium acetate, 

diethylether, rt., overnight; b) morpholine, NaH, THF, reflux, 3h. 
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Figure A-52: Synthesis towards I2: a) HBr (48%, aq.), 125°C, 6h. 

The synthesis of I2 was developed to have an extremely short linker that should 

exclude most motion of the tag on the protein surface. The bis functionality of this 

linker led to the same problems detected for A1. The precursor i2 could be easily 

synthesized in good yields but good coupling conditions were not found and only 

conversions below 5% reached. Reaction scales in the 100 mg range (high costs of 

precursors) are useless with such low yields, when two more steps are required to 

reach the target molecule, especially when the yield of the tBu deprotection is known 

to be low as well. 

 

Figure A-53: Synthetic trials towards an imidazole based linker/side chain: a) NaBH4, ethanol, rt., 2h; b) 
HBr (33% in AcOH), 100 °C, 4h; c) Boc2O, NEt3, DMAP, rt., 2h. 

An extremely interesting target molecule is J2. Imidazole-based molecules have the 

advantage that they can be used as neutral side chain, as charged side chain and as 

linker. The synthesis of this compound was therefore investigated several times 

under different conditions. Purification by column chromatography does not work for 

these molecules. The low solubility represents a challenge for the synthesis and 

purification. The investigation of a suitable protection protocol was quite difficult. The 

formation of amides works quite well but the removal has to be performed under 

harsh conditions. The use of Boc is probably also not perfect as the resulting steric 

bulk decreases the reactivity of the bromine further. Triflate formation was not 

possible and the mesyl compound again not reactive enough. The formation of the 

iodo compound is part of on-going research.  
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A.6  Conclusion 
The successful synthesis of three different macrocycles DOTA-M0-acetophenone, 

DOTA-M7-acteophenone (A) and DOTA-M7-thiovinylsulfone (B) was achieved. 

DOTA-M0-acetophenonen showed high flexibility, which was predicted for this type 

of DOTA complexes. Special metalation conditions had to be developed as under 

standard conditions defunctionalisation of the bromo-functionality was obtained. The 

high affinity of this linker towards a single cysteine on the protein surface was proven. 

Fast uptake and a high selectivity were obtained for this complex. The moderate 

yields obtained for this reaction could not be reproduced for DOTA-M7-acetophenone 

complexes. The increased steric bulk of the core molecules decrease the reactivity of 

the 4th nitrogen tremendously. Nevertheless, with the use of sodium hydride we could 

attach the linker to the macrocycle in about 50% conversions. Recovering of the 

starting materials was possible. The optimized metalation conditions could be directly 

applied and worked similar. The weak PCS obtained from NMR experiments 

compared to DOTA-M8 limit the application of this tag in protein NMR spectroscopy. 

The fixed geometry of the linker seems to be unfavourable and therefore the tag can 

no longer interact with the protein surface with its hydrophilic and hydrophobic part. 

The resulting motion of the tag on the protein surface averages the influence of the 

paramagnetic ion with respect to the nuclear spins and leads to weak pseudocontact 

shifts.  

A synthetic route towards DOTA-M7-thiovinylsulfone (B1) was presented. The 

metalation works in this case, under standard conditions and no hydrolysed 

intermediates are obtained. The attachment to the protein surface works much 

slower for the vinylsulfone than for the disulphides and the α-bromo ketones. 

Changing to slightly basic conditions could deliver a complete tagging anyway. The 

obtained PCS are much weaker than the ones obtained for DOTA-M8 and DOTA-

M7-acetophenone (A). The linker is in this case much longer and has therefore 

increased flexibility. We further studied the influence of the sulphur atom to the 

magnetic susceptibility tensor. The comparison of the 1H-NMR spectra of the Sm-

DOTA-M8-SSPy with Sm-DOTA-M7-thio, shows that the dispersion of the shifts is 

bigger for the complex using a thiol as donor. Nevertheless the absolute shift is 

stronger for DOTA-M8. It is obvious that the line width is increased for DOTA-M7, this 

means also that the freedom of the metal ion in the complex is higher for this 

molecule. The synthesis of DOTA-M8-thiovinyl (B1) is still in progress. It is therefore 
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still unclear if the introduction of an additional methyl group can help to induce 

stronger PCS. A variety of experiments have been performed and to obtain B1 and 

this research may set the basis for further investigations. In general the performed 

reactions delivered the bases for the introduction of different heteroatoms as donors. 

The syntheses of macrocycles C and D are also not finished completely. Many trials 

have been performed and the latest experimental setup seems to be quite promising 

for the successful synthesis of these macrocycles.   

The studies of different heteroatoms showed, that the tensor can be influenced but it 

become also obvious that this 8-stereospecific methyl groups are required for an 

extremely rigid system at rt. It is therefore unambiguous that synthetic routes towards 

8 times methylated macrocycles have to be designed. With the studies of the 

different protection protocols we delivered the bases towards this synthetic 

challenges. 

 

A.7  Outlook 
The synthesis of macrocycles B1, C and D will be finished in the near future. For 

macrocyle B1 several ways are possible. The removal of the benzyl protection group 

using Pd/C has to be performed once again and catalytic amounts of Pd/C 

exchanged to stoichiometric amounts. On the other hand, it was shown that the 

amine functionalities couldn’t be protected with THP ether. Reduction of mono 

alkylated species is possible and can be followed by a selective THP protection of 

the resulting alcohol. The introduction of the missing side chains can than be 

performed and the alcohol selectively deprotected. This should allow the selective 

introduction of a thiol moiety. The comparison of Sm-M7 (B1) and Sm-M8 (B1a) will 

be performed to see if the line shape become more sharp and to see if the dispersion 

of the signal has its origin in the change of the tensor and not only in the movement 

of the metal ion. 

For macrocycle C1 the formation of the triflates has to be tested. The reduced 

reactivity of the amide nitrogen compared to the amine nitrogen should help to 

prevent side reactions. The introduction of the keto side chain is also a challenging 

task. It is so far unclear whether the acetal protection group is stable under these 

conditions. The usage of a keto-protection group is required as the unprotected 

ketone is volatile and could not be purified without loss of the molecule. The use of a 

nitrogen donor opens the way for the introduction of the linker even on the 
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methylated macrocycle as the nitrogen should be accessible for reactions. Therefore, 

also highly reactive α-bromo-ketones or α,β-unsaturated systems could be 

introduced. 

The introduction of an α,β-unsaturated ketone is one of the most challenging tasks. 

Macrocycle D1 has an extremely short linker and would deliver a thio ether which is 

stable under physiological conditions. The introduction of the vinyl moiety using vinyl-

lithium has to be tested. We hope that dilute conditions allow this introduction in a 

selective way. 

Also further investigations in J1 should be performed, as this molecule offers a huge 

variety of possibilities. Nevertheless this molecule has the main disadvantage that a 

synthesis of an M8 analogue is incredibly difficult. Experiments must show if this is a 

huge problem or not. 
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A.8  Experimental Section 

A.8.1 Preparative HPLC purification 
A Waters Prep LC 4000 system equipped with a Waters 2487 dual λ absorbance 

detector and a Waters 740 data module was used. 

The HPLC solvents were used as followed: Solvent A = water + 0.1 % TFA; Solvent 

B = 90 % acetonitrile + 10 % water + 0.085 % TFA. The HPLC method started with 2 

min 90 % A and 10 % B followed by a gradient over 20 minutes from 90:10 to 50:50. 

These conditions were kept constant for 3 minutes before changed to 100 % B over 

10 minute and flushed for additional 10 minutes. 

A.8.2 Experimental procedures 
The synthesis of the standard side chain was slightly modified. Also a one-pot 

synthesis was carried out but the overall yield was below the three-step synthesis. 

 
Figure A-54: Synthesis of the standard side chain. 

 
Figure A-55: One pot Synthesis for the tBu protected lactic acid side chain. 

 
Synthesis of (S)-2-acetoxypropionic acid  

L-lactic acid (5.0 g, 55.5 mmol, 1.0 eq) was dissolved in acetyl chloride 

(20 mL) at 0 °C. The resulting solution was stirred for 10 min at 0 °C, 

warmed to rt over 20 min before refluxed (60 °C) for 4 hours. Acetyl 

chloride was removed under reduced pressure and the crude mixture 

purified by silica gel column chromatography using chloroform/ethyl acetate (9:1) as 

eluent to yield 88 % pure product.25  

TLC: (SiO2, chloroform/ethyl acetate (9:1)): Rf = 0.27. 
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1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 7.20 (s, 1H, OH); 5.11 (q, 3JHH = 7.1 Hz, 

1H, H2); 2.14 (s, 3H, H2); 1.54 (d, 3JHH = 7.1 Hz, 1H, H3). 
13C-NMR (101 MHz, 298 K, CDCl3, δ in ppm): 16.8 (1C, C3); 20.6 (1C, C2`); 68.2 

(1C, C2); 170.6 (1C, C1`); 176.2 (1C, C1). 
 
Synthesis of (S)-tert-butyl 2-acetoxyproponte 

 S-2-acetoxyproponate (25.8 g, 196 mmol, 1.0 eq), DMAP (7.9 g, 65 

mmol, 0.33 eq) and tert-butanol (43.7 g, 589 mmol, 3.0 eq) were 

dissolved in dichloromethane (560 mL). N,N`-dicyclohexyl-

carbodiimide (60.7 g, 294 mmol, 1.5 eq) dissolved in 

dichloromethane (200 mL) was added dropwise at 0 °C. The reaction mixture was 

warmed to rt. and stirred overnight. The resulting precipitate was removed by 

filtration over celite and washed with dichloromethane. The combined organic layer 

was washed with water (3 x 250 mL), dried over sodium sulphate and the solvent 

removed under reduced pressure. The crude mixture was purified by distillation 

(45°C, 0.5 mbar) and (S)-tert-butyl 2-acetoxyproponte (27.8 g, 75%) obtained as 

colorless liquid.25 

Boiling point: 45 °C at 0.5 mbar. 
1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 4.95 (q, 3JHH=7.2 Hz, 1H, H2); 2.12 (s, 

3H, H2); 1.47 (s, 9H, H2``); 1.45 (d, 3JHH=7.2 Hz, 3H, H3). 

 

Synthesis of (S)-tert-butyl-2-hydroxyproponate 
Potassium carbonate (61.0 g, 441 mmol, 3.0 eq) was dissolved in 

water/methanol (300 mL, 3:2) and a solution of (S)-tert-butyl-2-

acetoxyproponate (27.8 g, 147 mmol, 1.0 eq) in methanol (15 mL) 

was added dropwise at 0 °C and further stirred at 0 °C for 2 hours. Dichloromethane 

(200 mL) was added, the layers separated and the aqueous layer extracted with 

dichloromethane (2 x 200 mL). The combined organic layer was dried over sodium 

sulphate and the solvent removed under reduced pressure. The crude mixture was 

purified by silica gel column chromatography (cyclohexane/ethyl acetate 8:1) to 

obtain (S)-tert-butyl-2-hydroxyproponate (13.2 g, 61 %) as white crystals.47 

TLC: (SiO2, cyclohexane/ethyl acetate (8:1)): Rf = 0.23. 
1H-NMR (250 MHz, 298 K, CDCl3, δ in ppm): 4.95 (dq, 3JHH=6.9 Hz, 3JHH=4.9 Hz, 1H, 

H2); 2.84 (d, 3JHH=4.9 Hz, OH); 1.49 (s, 9H, H2`); 1.37 (d, 3JHH=6.9 Hz, 3H, H3). 
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13C-NMR (63 MHz, 298 K, CDCl3, δ in ppm): 20.7 (1C, C3); 28.1 (3C, C2`); 67.1 (1C, 

C2); 82.4 (1C, C1`); 174.2 (1C, C1). 

 
Synthesis of tert-butyl (S)-2-(((trifluoromethyl)sulfonyl)oxy)propanoate 

Trifluoromethanesulfonic anhydride (7.18 mmol, 1.19 mL, 1.05 eq) 

was dissolved in dichloromethane (20 mL) under an atmosphere of 

argon and cooled to -78 °C. Pyridine (7.87 mmol, 0.64 mL, 1.15 eq) 

was added and a white precipitate was formed rapidly. S-tBu-lactic 

acid (1.0 g, 6.84 mmol, 1.0 eq) was dissolved in dichloromethane 

(6mL) and added dropwise to the solution. The mixture was stirred at -78 °C for 10 

minutes before warming to rt. over 10 min and stirred for additional 10 min. The 

solvent was removed under reduced pressure (water bath cooled to 0 °C). The 

resulting waxy solid was purified by silica gel column chromatography using a cooled 

column (15 – 20 °C, 1.0 cm diameter, 4-5 cm filled) and dichloromethane/hexane 

(4:1) as eluent. The product (57 %) was isolated (under cooled conditions as 

described before) as colourless oil. (The reaction was performed several times and 

yields between 40 and 90 % achieved.)25 

TLC: (SiO2, dichloromethane/hexane (4:1)): Rf = 0.9.  
1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 5.10 (q, 3JHH=7.0 Hz, 1H, H2); 1.67 (d, 
3JHH=7.0 Hz, 3H, H3); 1.51 (s, 9H, H2). 
19F-NMR (376 MHz, 298 K, CDCl3, δ in ppm): -75.4 (s, 3F, CF3). 
13C-NMR (101 MHz, 298 K, CDCl3, δ in ppm): 18.0 (1C, C3), 27.8 (1C, C2`), 80.6 

(1C, C2), 84.3 (1C, C1`); 166.4 (1C, C1). 
 

Synthesis of (S)-tert-butyl-2-hydroxyproponate 
Tert-butanol (28.8 mL, 305 mmol, 1.1 eq) was added dropwise to a 

solution of diisopropylcarbodiimide (DIC, 35 g, 43.2 mL, 277 mmol, 

1.0 eq) and CuCl (549 mg, 5.5 mmol, 0.02 eq) under inert conditions. 

The resulting mixture was stirred for 4 days in the dark to form the activated complex. 

The activated complex (3.17 mL, 11.1 mmol, 3.5 mol/L, 1.0 eq) was added dropwise 

to a suspension of L-Lactic acid (1.0 g, 11.1 mmol, 1.0 eq) in dichloromethane (20 

mL) at 0 °C over 30 min. The resulting solution was warmed to rt and stirred 

overnight. Acetic acid (1.4 mL) was added over 20 min and stirred for additional 30 

min. The resulting solid diisopropyl urea was removed by filtration and washed with 

cold dichloromethane (20 mL). Ice-cold water (20 mL) was added and the pH 
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adjusted to about 8 using solid NaHCO3 under vigorous stirring. The resulting solid 

material was removed by filtration. The mixture was extracted and the aqueous layer 

extracted with DCM (2 X 10 mL) the combined organic layers were washed with 

NaHCO3 (sat., aq, 10 mL), water (10 mL) and brine (10 mL). The organic layer was 

dried over sodium sulphate and the solvent removed under reduced pressure at 10 

°C! (The product is easily sublimated). To the resulting oil was added heptane (8 mL) 

the resulting precipitate filtered off and the filtrate stored at -20 °C overnight. The 

resulting crystalline product was filtered off and (S)-tert-butyl-2-hydroxyproponate 

(31%) obtained as white crystals.48 
1H-NMR (600 MHz, 298 K, CDCl3, δ in ppm): 4.95 (q, 3JHH=6.9 Hz, 3JHH=4.9 Hz, 1H); 

2.84 (d, 3JHH=4.9 Hz, OH); 1.49 (s, 9H); 1.37 (d, 3JHH=6.9 Hz, 3H). 
13C-NMR (63 MHz, 298 K, CDCl3, δ in ppm): 20.7 (1C, C3); 28.1 (3C, C2`); 67.1 (1C, 

C2); 82.4 (1C, C1`); 174.2 (1C, C1). 

 

Synthesis of (S)-tert-butyl-2-hydroxyproponate 
Tert-butanol (28.8 mL, 305 mmol, 1.1 eq) was added dropwise to a 

solution of dicyclohexylcarbodiimide (DCC, 57.2 g, 277 mmol, 1.0 

eq) and CuCl (549 mg, 5.5 mmol, 0.02 eq) under inert conditions. 

The resulting mixture was stirred for 4 days in the dark to form the activated complex. 

The activated complex (3.17 mL, 11.1 mmol, 3.5 mol/L, 1.0 eq) was added dropwise 

to a suspension of L-Lactic acid (1.0 g, 11.1 mmol, 1.0 eq) in dichloromethane (20 

mL) at 0 °C over 30 min. The resulting solution was warmed to rt and stirred 

overnight. Acetic acid (1.4 mL) was added over 20 min and stirred for additional 30 

min. The resulting solid diisopropyl urea was removed by filtration and washed with 

cold dichloromethane (20 mL). Ice-cold water (20 mL) was added and the pH 

adjusted to about 8 with solid NaHCO3 and stirred vigorously. The resulting solid 

material was removed by filtration. The mixture was extracted and the aqueous layer 

extracted twice with DCM (10 mL) the combined organic layers were washed with 

NaHCO3 (sat., aq, 10 mL), water (10 mL) and brine (10 mL). The organic layer was 

dried over sodium sulphate and the solvent removed under reduced pressure at 10 

°C (The product is easily sublimated). To the resulting oil was added heptane (8 mL) 

the resulting precipitate filtered off and the filtrate stored at -20 °C overnight. No 

crystals were formed, therefore the solvent removed and the crude mixture purified 

by silica gel column chromatography using cyclohexane/ethyl acetate 8:1 as eluent 
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yielding (S)-tert-butyl-2-hydroxyproponate (19 %) as white crystals.48 

TLC: (SiO2, cyclohexane/ethyl acetate (8:1)): Rf = 0.23. 
1H-NMR (600 MHz, 298 K, CDCl3, δ in ppm): 4.95 (dq, 3JHH=6.9 Hz, 3JHH=4.9 Hz, 1H, 

H2); 2.84 (d, 3JHH=4.9 Hz, OH); 1.49 (s, 9H, H2`); 1.37 (d, 3JHH=6.9 Hz, 3H, H3). 
13C-NMR (63 MHz, 298 K, CDCl3, δ in ppm): 20.7 (1C, C3); 28.1 (3C, C2`); 67.1 (1C, 

C2); 82.4 (1C, C1`); 174.2 (1C, C1). 

 
Synthesis of benzyl (S)-2-(((trifluoromethyl)sulfonyl)oxy)propanoate 

Trifluoromethanesulfonic anhydride (422 µL, 2.54 mmol, 

1.15eq) was dissolved in dichloromethane (10 mL) and 

cooled to -40 °C and pyridine (188 µL, 2.32 mmol, 1.05eq) 

was added. After a white precipitate was formed the 

addition of benzyl-2-hydroxy-propanoate (400 mg, 2.22 mmol, 1.0 eq) in 

dichloromethane (5 mL) was started. The mixture was allowed to warm to rt. and the 

solvent removed under reduced pressure at 0 °C. The mixture was purified by silica 

gel column chromatography 1.5 X 3 cm using DCM/hexane (4:1) as eluent.25  

TLC: (SiO2, dichloromethane/hexane (4:1)): Rf = 0.88. 
1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 7.34-7.41 (m, 5 H, H3`-H5`); 5.23-5.29 

(m, 3H, H2, H1`); 1.71 (d, 3JHH=7.3 Hz, 3H, H3). 
19F-NMR (376 MHz, 298 K, CDCl3, δ in ppm): -75.2 (s, 3F, CF3). 

 

Synthesis of 1,1'-(1,4-phenylene)bis(2-bromoethan-1-one) (a1) 
1,4-diacetylbenzene (324 mg, 2.0 mmol, 1.0 eq), NBS (747 

mg, 4.2 mmol, 2.05 eq) and ammonium acetate (30.8 mg, 

0.04 mmol, 0.1 eq) were stirred in diethyl ether (10 mL) 

(suspension). The resulting reaction was stirred for 2 hours 

before ethyl acetate (10 mL) was added and the resulting mixture washed with water. 

The organic layer was dried over sodium sulphate and the solvent removed under 

reduced pressure. The resulting solid was purified by silica gel column 

chromatography using cyclohexane/ethyl acetate (3:2) as eluent. The pail yellow 

solid was obtained in 40 % yield.49 

TLC: (SiO2, cyclohexane/ethyl acetate (3:2)): Rf = 0.33 
1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 8.10 (m, 4H, H2); 4.46 (s, 4H, H2`). 
13C-NMR (101 MHz, 298 K, CDCl3, δ in ppm): 30.9 (2C, C2`); 129.8 (4C, C2); 138.1 
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(2C, C1); 191.1 (2C, C1`). 

 

Synthesis of 1,1'-(1,4-phenylene)bis(2-bromoethan-1-one) (a1) 
1,4-diacetylbenzene (800 mg, 4.9 mmol, 1.0 eq) was 

dissolved in glacial acetic acid and bromine (0.5 mL, 9.8 

mmol, 2.0 eq) in glacial acetic acid (6 mL) was added 

dropwise over 20 min at rt. The resulting brownish reaction 

mixture was heated to 95 °C for 90 min. The reaction mixture was poured into ice-

cold water and the resulting precipitate was filtered. The resulting mixture of mono, di 

and tri brominated species were recrystallized from glacial acetic acid and only the 

di-brominated species crystalized. The crystallization was performed two times, but 

the crystals still were not completely white (643 mg, 40 %) (still some contaminations 

from bromine left). 50 
1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 8.10 (m, 4H, H2); 4.46 (s, 4H, H2`). 
13C-NMR (101 MHz, 298 K, CDCl3, δ in ppm): 30.9 (2C, C2`); 129.8 (4C, C2); 138.1 

(2C, C1); 191.1 (2C, C1`). 

 
Synthesis of tri-tert-butyl 2,2',2''-(10-(2-(4-(2-bromoacetyl)phenyl)-2-oxoethyl)-
1,4,7,10-tetraazacyclododecane-1,4,7-triyl)triacetate; (A3-M0) 

1,2,7-tris(tert-butyloxycarbonyl)1,4,7,10-tetraaza-

cyclodecane (50 mg, 0.1 mmol, 1.0 eq) was 

dissolved in acetonitrile and powdered potassium 

carbonate (17 mg, 0.12 mmol, 1.12 eq) was 

added. The resulting solution was heated to 60 °C 

for 20 minutes before 1,1'-(1,4-phenylene)-bis(2-

bromoethan-1-one) (160 mg, 0.5 mmol, 5.0 eq) 

was added. The resulting reaction mixture was 

heated to 90 °C for 18 hours, analysed by ESI-MS and a 1:1 mixture of starting 

material to product determined. Further heating for 24 hour did not deliver any 

progress and therefore the reaction mixture cooled to rt. and filtered. The solvent was 

removed under reduced pressure and the crude mixture was purified by silica gel 

column chromatography using methanol/chloroform (1:10) as eluent. 10 mg (0.013 

mmol, 13%) of the desired product were isolated as red solid compound. NMR 

analysis of the compound could only indicate the introduction of the linker as the 
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characteristic sharp singlets at 4.50 ppm for the CH2Br, the CH2N at 2.01 ppm and 

the aromatic multiplet between 8.05-8.09 ppm could be identified. A sharp singlet for 

the tert-butyl groups at 1.44 ppm was also identified. All other signals are broad due 

to conformational changes. The product could be validated by ESI-MS and the 

bromine pattern could be easily identified.51 
ESI-MS: calc. 753.3 (M+1), 755.3 (M+1); measured 753.5 (M+1); 755.4 (M+1); 775.5 

(M+Na), 777.4 (M+Na). 

 
Synthesis of 2,2',2''-(10-(2-(4-(2-bromoacetyl)phenyl)-2-oxoethyl)-1,4,7,10-
tetraazacyclododecane-1,4,7-triyl)triacetic acid; 
(DOTA-M0-bromoacetophenone, A4-M0) 

 Tri-tert-butyl-2,2',2''-(10-(2-(4-(2-bromoacetyl)-

phenyl)-2-oxoethyl)-1,4,7,10-tetraazacyclododecane-

1,4,7-triyl)triacetate (10 mg, 0.01 mmol, 1.0 eq) was 

dissolved in the deprotection mixture containing 

TFA/thioanisol/water (9.2:0.6:0.2 v/v, 10 mL) and 

stirred at rt. The reaction was monitored by ESI-MS. 

A steady state between mono and di protected 

species was determined and an increase of the product. After about 4.5 hours the 

reaction was finished and the reaction mixture extracted with dichloromethane. The 

crude mixture was redissolved in acetonitrile/water (1:1, 8 mL) and purified by 

preparative HPLC under standard HPLC conditions. The desired product (2 mg, 

0.003 mmol, 30 %) was obtained as waxy solid.25  

ESI-MS: calc. 585.1 (M+1), 587.1 (M+1); measured 585.2 (M+1); 587.2 (M+1). 

Retention time: 19.6-20.8 min (A to B, 63:37-62:38) 
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Synthesis of DOTA-M0-Lutetium-bromoacetophenone; (A1-M0) 
DOTA-M0-bromoacetophenone (A4-M0) (4 mg, 

0.007 mmol, 1.0 eq) was dissolved in water (2 mL) 

and LuCl3*6H2O (10.6 mg, 0.028 mmol, 4.0 eq) in 

water (2mL) was added. To keep the pH slightly 

basic 3.0 eq of DIPEA were added and the solution 

was heated to 40 °C for 8 hours. A ESI spectra 

was measured and in negative mode the desired 

product 755-, 757-, the hydroxyl-compound 693- and the chloro-compound 711- were 

obtained. Therefore the access of lutetium was removed by a sepag C18 column. 

The resulting metal complexes were isolated in the MeOH/H2O phase. The pH of the 

hydroxyl-compound was adjusted to about 12 to crash out the metall. After an 

additional sepag column no more hydroxyl-compound was obtained.25 

 

Synthesis of DOTA-M0-Lutetium-GBI 
GB1-T53C (240 µM, in phosphate pH=7, 2 mM 

DTT). Removal of DTT is needed to react GB1 

with the TAG. A exchange column PD MiniTrap 

G-25 (GE-Healthcare) was used for the removal 

of DTT. For the elution the Gravity protocol was 

used.  

1.) Open the top and bottom cap to remove the 

column storage solution.  

2.) Fill up the column with equilibration buffer and allow the equilibration buffer to 

enter the packed bed completely (Phosphate buffer pH = 7.001) A total volume of 8 

mL were used for equilibration. 

3.) Add 0.5 mL of the sample to the column if less sample is available fill it up to 0,5 

mL with buffer. 

4.) Elute the sample with exact 1 mL buffer. 

After removing most DTT the protein was labelled with DOTA-M0-Lutetium (chloro- 

and bromo-compound). Therefore 250 µL (100 µM) GB1 was mixed with 30 µL 

(1mg/300µL) of DOTA-M0-Lutetium solution. The mixture was stirred for 1 hour until 

a full conversion to the protein-tag complex was obtained by ESI-MS. 
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The protein was purified with an Amicon Ultra Centrifugal Filter (Ultracel - 3K). The 

Membrane was equilibrated with 3.5 mL phosphate buffer (PO4
3-, 10 mM) (7490 rpm, 

15 min). The protein was added and the volume enlarged to 3.5 mL with phosphate 

buffer and centrifuged. This process was repeated 4 times. Finally the centrifugal 

time was enlarged to result in a volume of about 200 µL. The protein was taken of the 

membrane and the membrane washed with 2x35 µL phosphate buffer. The pH was 

adjusted to 7.002 and 5% D2O was added. The resulting about 300 µL were 

transferred to a shigemi tube and NMR spectra measured on a Bruker® Ascend 

NMR-700 equipped with cryo probe head. 

2 Species were obtained in the 15N-1H-HSQC-NMR spectra. 

ESI-MS data are presented in the Result section. 

 

Synthesis of tribenzyl 2,2',2''-((2S,5S,8S,11S)-2,5,8,11-tetramethyl-1,4,7,10-
tetraazacyclododecane-1,4,7-triyl)(2R,2'R,2''R)-tripropionate; (M7-Bn3-(3R,4S)-, 

A3Bn) 
M4-cyclen (100 mg, 0.44 mmol, 1.0 eq) was dissolved in 

dichloromethane (20 mL, dry) under inert conditions and 

freshly powdered potassium carbonate (220 mg, 2.19 mmol, 

5.0 eq) was added. (L)-Bn-lactate triflate (400 mg, 1.23 mmol, 

2.9 eq) in dichloromethane (6 mL, dry) was added dropwise 

over 1.5 hours. The reaction was stirred overnight and quenched with triethylamine 

(3 mL). The crude mixture was filtered and washed with dichloromethane before the 

solvent was removed under reduced pressure and purified by silica gel column 

chromatography using chloroform/ethanol/triethylamine (3:1:0.15) as eluent. 

Fractions were analysed by ESI-MS and the product isolated as brownish oil in 65 % 

yield.25 

ESI-MS: calc. 715.4 (M+1); measured 715.5 (M+1). 
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Synthesis of tribenzyl 2,2',2''-((2S,5S,8S,11S)-10-(2-(4-(2-bromoacetyl)phenyl)-2-
oxoethyl)-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)(2R,2'R,2''R)-tripropionate; (M7-Bn3-(3R,4S)-bromoacetophenone, A4Bn) 

M7-Bn3 (A3Bn) (90 mg, 0.13 mmol, 1.0 eq) was 

dissolved in acetonitrile (5 mL, dry) under inert 

conditions and freshly powdered potassium 

carbonate (20 mg, 0.15 mmol, 1.2 eq) was added 

and heated to 60 °C for 20 min. 1,1'-(1,4-

phenylene)bis(2-bromoethan-1-one) (200 mg, 0.63 

mmol, 5.0 eq) in acetonitrile (2 mL, dry) was added 

and stirred for additional 8 hours at 60 °C. The reaction mixture was cooled to rt., 

filtered and the solvent removed under reduced pressure. The reaction mixture was 

purified by silica gel column chromatography using chloroform/ethanol/triethylamine 

(3:1:0.15) as eluent. The product was obtained as waxy yellowish solid in 40 % 

yield.51 (Benzyl deprotection using Pd/C, 1 bar H2 pressure delivered no conversion 

and with an pressure increase to 4 bar also one of the keto groups was reduced to a 

CH2-group). 

ESI-MS: calc. 953.4 (M+1); 955.4 (M+1); measured 953.4 (M+1); 955.4 (M+1). 

 
Synthesis of di-tert-butyl 2,2'-((2S,5S,8S,11S)-4-(1-(tert-butoxy)-1-oxopropan-2-
yl)-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecane-1,7-diyl)(2R,2'R)-
dipropionate  
(M7-tri-tertbutyl, A2tBu) 

M4-cyclen (100 mg, 0.438 mmol, 1.0 eq) was dissolved in dry 

dichloromethane (20 mL) under an atmosphere of argon and 

tert-butyl (S)-2-(((trifluoromethyl)sulfonyl)oxy)propanoate (380 

mg, 1.37 mmol, 2.85 mmol) in dichloromethane (6 mL) was 

added over 10 minutes. The solution was stirred at rt. ESI-MS 

showed formation of mono and bis alkylated species after 1 

hour. ESI-MS after 14 hours showed major bis alkylated, some mono and some tri 

alkylated species. Therefore K2CO3 (100 mg) was added to push the equilibrium to 

the tri alkylated species. Additional two hours of stirring later another 80 mg of tert-

butyl (S)-2-(((trifluoromethyl)sulfonyl)oxy)propanoate was added. Even after 28 hours 

no full conversion was obtained therefore acetonitrile (5 mL, 20 %) was added. After 
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60 hour reaction time the desired product was formed as mayor product. The 

reaction was quenched wit triethylamine (300 µL) and stirred for 30 minutes. The 

reaction mixture was filtered over celite and the solvent removed under reduced 

pressure. The crude mixture was purified by silica gel column chromatography using 

chloroform/ethanol/triethylamine (95:5:1 -> 80:20:1) to yield 80 % oft the desired 

product.25 

ESI-MS: calc. 613.5 (M+1); measured 613.5 (M+1). 

 

Synthesis of di-tert-butyl 2,2'-((2S,5S,8S,11S)-4-(2-(4-(2-bromoacetyl)phenyl)-2-
oxoethyl)-10-(1-(tert-butoxy)-1-oxopropan-2-yl)-2,5,8,11-tetramethyl-1,4,7,10-
tetraazacyclododecane-1,7-diyl)(2R,2'R)-dipropionate  
(M7-tri-tertbutyl-bromoacetophenone, A3tBu) 

M7-tri-tertbutyl (A2tBu) (40 mg, 0.065 mmol, 1.0 eq) 

was dissolved in acetonitrile (7 mL) and K2CO3 (4.5 

mg, powdered) was added. The mixture was heated 

to 60 °C and 1,1'-(1,4-phenylene)bis(2-bromoethan-

1-one) (a1) (83 mg, 0.26 mmol, 4.0 eq) in acetonitrile 

(5 mL) was added in one shot. The reaction was 

monitored by ESI-MS, every 30 minutes. After 3 

hours the reaction mixture was filtered and the solvent removed under reduced 

pressure. The crude reaction mixture was purified by silica gel column 

chromatography using chloroform/ethanol (9:1 -> 9:2 -> ethanol with 1 % 

triethylamine). Starting materials could be recovered and 30% of the desired product 

was isolated.51 
ESI-MS: calc. 851.5 (M+1); 853.5 (M+1) measured 851.5 (M+1); 853.5 (M+1). 
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Synthesis of di-tert-butyl 2,2'-((2S,5S,8S,11S)-4-(2-(4-(2-bromoacetyl)phenyl)-2-
oxoethyl)-10-(1-(tert-butoxy)-1-oxopropan-2-yl)-2,5,8,11-tetramethyl-1,4,7,10-
tetraazacyclododecane-1,7-diyl)(2R,2'R)-dipropionate  
(M7-tri-tertbutyl-bromoacetophenone, A3tBu) 

M7-tri-tertbutyl (40 mg, 0.065 mmol, 1.0 eq) was 

dissolved in acetonitrile (7 mL) and Cs2CO3 (43 mg, 

powdered, 4.0 eq) was added. The mixture was 

heated to 40 °C and 1,1'-(1,4-phenylene)bis(2-

bromoethan-1-one) (a1) (83 mg, 0.26 mmol, 4.0 eq) 

in acetonitrile (5 mL) was added in one shot. The 

reaction was monitored by ESI-MS, every 30 

minutes. After 3 hours the reaction mixture was filtered and the solvent removed 

under reduced pressure. The crude reaction mixture was purified by silica gel column 

chromatography using chloroform/ethanol (9:1 -> 9:2 -> ethanol with 1 % 

triethylamine). Starting materials could be recovered and 32% of the desired product 

was isolated.51 
ESI-MS: calc. 851.5 (M+1); 853.5 (M+1) measured 851.5 (M+1); 853.5 (M+1). 

 
Synthesis of di-tert-butyl 2,2'-((2S,5S,8S,11S)-4-(2-(4-(2-bromoacetyl)phenyl)-2-
oxoethyl)-10-(1-(tert-butoxy)-1-oxopropan-2-yl)-2,5,8,11-tetramethyl-1,4,7,10-
tetraazacyclododecane-1,7-diyl)(2R,2'R)-dipropionate  

(M7-tri-tertbutyl-bromoacetophenone, A3tBu) 
M7-tri-tertbutyl (40 mg, 0.065 mmol, 1.0 eq) was 

dissolved in acetonitrile (7 mL) and NaHCO3 (166 

mg, powdered, 8.0 eq) was added. The mixture was 

heated to 40 °C and 1,1'-(1,4-phenylene)bis(2-

bromoethan-1-one) (a1) (83 mg, 0.26 mmol, 4.0 eq)  

in acetonitrile (5 mL) was added in one shot. The 

reaction was monitored by ESI-MS, every 30 minutes. After 3 hours the reaction 

mixture was filtered and the solvent removed under reduced pressure. A conversion 

of 65% was determined from ESI-MS analysis.51 
ESI-MS: calc. 851.5 (M+1); 853.5 (M+1) measured 851.5 (M+1); 853.5 (M+1). 
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Synthesis of di-tert-butyl 2,2'-((2S,5S,8S,11S)-4-(2-(4-(2-bromoacetyl)phenyl)-2-
oxoethyl)-10-(1-(tert-butoxy)-1-oxopropan-2-yl)-2,5,8,11-tetramethyl-1,4,7,10-
tetraazacyclododecane-1,7-diyl)(2R,2'R)-dipropionate  
(M7-tri-tertbutyl-bromoacetophenone, A3tBu) 

M7-tri-tertbutyl (50 mg, 0.082 mmol, 1.0 eq) was 

dissolved in acetonitrile (7 mL) and NaH (4.8 mg, 0.2 

mmol, 2.5 eq, 60%) was added. The mixture was 

heated to 40 °C for 40 min before 1,1'-(1,4-

phenylene)bis(2-bromoethan-1-one) (104 mg, 0.33 

mmol, 4.0 eq) in acetonitrile (5 mL) was added in one 

shot. The reaction was monitored by ESI-MS, every 

30 minutes. After 3 hours the reaction mixture was filtered and the solvent removed 

under reduced pressure. A conversion of 80-90% was determined from ESI-MS 

analysis. No purification was performed.51  
ESI-MS: calc. 851.5 (M+1); 853.5 (M+1) measured 851.5 (M+1); 853.5 (M+1). 

 

Synthesis of (2R,2'R)-2,2'-((2S,5S,8S,11S)-4-(2-(4-(2-bromoacetyl)phenyl)-2-
oxoethyl)-10-(1-carboxyethyl)-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclo-
dodecane-1,7-diyl)dipropionic acid 
(M7-tri-acid-bromoacetophenone, A4) 

M8-tri-tertbutyl-bromoacetophenone (60 mg, 0.07 

mmol, 1.0 eq) was dissolved in trifluoroacetic acid. 

The resulting reaction mixture was stirred at rt. for 

3 hours. Trifluoroacetic acid was removed under 

reduced pressure. The resulting mixture was 

redissolved in water and the pH adjusted to 7 using 

ammonium acetate. The resulting neutral 

compound was purified by prep HPLC under 

standard conditions to yield 15 mg (31%) of the desired product.52 
Retention time: 16.3-18.1 min (45 – 47% B). 
ESI-MS: calc. 683.3 (M+1); 685.3 (M+1) measured 683.3 (M+1); 685.3 (M+1). 

 

N N

NN

HO O

O OH
O

OH
O

O

Br

N N

NN

tBuO O

O OtBu
O

OtBu
O

O

Br



70	
   Synthesis and Characterization of DOTA based Lanthanide shift reagents 

 

 

Synthesis of DOTA-M7-Thulium-bromoacetophenone (TmA1) 
M7-tri-acid-bromoacetophenone (2.0 mg, 0.003 

mmol, 1.0 eq) was dissolved in water (2 mL) and 

TmBr3 (4.8 mg, 0.012 mmol, 4.0 eq) was added. 

The pH was adjusted with DIPEA to 8 and the 

solution was stirred at rt. for 1 hour (Short reaction 

time to avoid strong defunctionalisation). The crude 

mixture was purified by SepPak column 

chromatography (Elution with water removes excess Tm salt, whereas a mixture of 

water/methanol 2:8 elutes the metal complex). The solvent mixture was removed 

under reduced pressure and the title compound obtained as a 2:1 mixture of bromo 

to hydrolysed metal complex.25 

ESI-MS: calc. 849.2 (M+1); 851.2 (M+1) measured 849.2 (M+1); 851.2 (M+1); 871.2 

(M+Na); 8.73.2 (M+Na); 787.3 (OH, M+1); 809.3 (OH, M+Na). 

 
Synthesis of DOTA-M7-Thulium-acetophenone-GBI 

DOTA-M7-Thulium-bromoacetophenone (2.5 

mg) was dissolved in 100 µL phosphate buffer 

(PO4
3-, 10 mM) and GBI (124 µL, 10µM) in 

phosphate buffer was added. The reaction was 

performed over night. The protein was purified 

with a Amicon Ultra Centrifugal Filter (Ultracel -

3K). The Membrane was equilibrated with 3.5 

mL phosphate buffer (PO4
3-,10 mM) (7490 rpm, 15 min). The protein was added and 

the volume enlarged to 3.5 mL with phosphate buffer and centrifuged. This process 

was repeated 4 times. Finally the centrifugal time was enlarged to result in a volume 

of about 200 µL. The protein was taken of the membrane and the membrane washed 

with 2*35 µL phosphate buffer. The pH was adjusted to 7.002 and 5% D2O was 

added. The resulting about 300 µL were transferred to a shigemi tube and the NMR 

measurements were performed on a Bruker Ultra Shield 600 MHz NMR-

spectrometer using a TXI-probehead. The correct mass-pattern was obtained by ESI-

MS analysis. 
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Synthesis of 1,1'-(1,4-phenylene)bis(2-iodoethan-1-one) (a2) 
1,1'-(1,4-phenylene)bis(2-bromoethan-1-one) (20 mg, 1.0 eq) 

dissolved in acetone (3mL) and sodium iodide (120 mg, 3.0 eq) 

in acetone (2 mL) was added over 5 min. The resulting reaction 

mixture was stirred for 5 hours and the resulting precipitate was 

filtered off. The solvent was removed under reduced pressure. The desired product 

was obtained in quantitative yield as reddish solid. 
1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 8.09 (m, 4H, H2); 4.39 (s, 4H, H2`). 

 
Synthesis of 2-bromo-1-(4-bromophenyl)ethan-1-one (a3) 

4-bromoacetophenone (1.0 g, 5.0 mmol, 1.0 eq) was dissolved in 

water (2.5 mL) and hydrobromic acid (0.29 mL, 2.5 mmol, 0.5 eq) 

was added. The resulting mixture was stirred at rt. in the dark for 

5 min before hydrogen peroxide (0.26 mL, 2.5 mmol, 0.5 eq) was 

added ad stirred for additional 2 hours. Another 0.5 eq of hydrobromic acid and 

hydrogen peroxide were added and stirred for another 2 hours before the procedure 

was repeated once again and the resulting mixture stirred overnight at rt.. The 

reaction was quenched with hexane/ethyl acetate (10:1; 10 mL) and Na2SO3 (2g). 

The reaction mixture was filtered over sodium sulphate and washed with 20 mL 

dichloromethane. The solvent was removed under reduced pressure and the crude 

mixture purified by silica gel column chromatography using 

cyclohexane/dichloromethane (1:1) as eluent. Nice white crystalline product (700 mg, 

2.5 mmol, 50 %) was obtained.53 

TLC: (SiO2, cyclohexane/dichloromethane (1:1)): Rf = 0.46. 
1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 7.84-7.87 (m, 2H, H2); 7.64-7.66 (m, 

2H, H3); 4.40 (s, 2H, H2`). 
13C-NMR (63 MHz, 298 K, CDCl3, δ in ppm): 30.4 (1C, C2`); 129.5 (1C, C1); 130.6 

(2C, C3); 132.4 (2C, C2); 132.8 (1C, C4); 190.6 (1C, C1`). 

 

Synthesis of 2-bromo-1-(4-bromophenyl)ethan-1-one (a4) 
 2-bromo-1-(4-bromophenyl)ethan-1-one (500 mg, 2.3 mmol, 1.0 

eq) was dissolved in water (3 mL) irradiated with microwave in a 

sealed tube to 125 °C (5 bar) for 25 minutes. Diethylether (30 

mL) was added and the phases separated. The organic layer 
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was washed with sodium thiosulphate (2 X 2 mL) and brine (2 X 2 mL) and finally 

water (2 X 2 mL). The organic layer was dried over sodium sulphate and the solvent 

removed under reduced pressure. The crude mixture was purified by silca gel column 

chromatography using cyclohexane/ethyl acetate (4:1) as eluent yielding the desired 

product as yellow solid (90-95 %).54 

TLC: (SiO2, cyclohexane/ethyl acetate (4:1)): Rf = 0.13. 
1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 7.78-7.80 (m, 2H, H2); 7.65-7.67 (m, 

2H, H3); 4.84 (d, 3JHH=4.0 Hz, 2H, H2`); 3.43 (t, 3JHH=4.0 Hz, 1H, OH). 

 

Synthesis of 2-(4-(2-bromoacetyl)phenyl)-2-oxoethyl benzoate a7 
Benzoic acid (135 mg, 0.938 mmol, 1.0 eq) was 

dissolved in acetone (20 mL) and sodium (1.0 eq) was 

added. The solution was stirred until all sodium had 

reacted. 1,1'-(1,4-phenylene)bis(2-bromoethan-1-one) 

(300 mg, 0.938 mmol, 1.0 eq) was dissolved in 

acetone (20 mL) and added at rt. The reaction was 

stirred at rt. overnight. The mixture was heated to 

reflux for further 5 hours. The reaction was checked by TLC cyclohexane/ethyl 

acetate (7:3). Heating did not deliver any progress. The solvent was removed under 

reduced pressure and the crude mixture redissolved in dichloromethane. The organic 

layer was washed with water three times and dried over sodium sulphate. The 

solvent was removed and the mixture was purified by silica gel column 

chromatography cyclohexane/ethyl acetate (9:1 -> 8:2) to yield 100 mg (29 %) of the 

title compound.55  

TLC: (SiO2, cyclohexane/ethyl acetate (9:1)): Rf = 0.07. 
1H NMR  (400 MHz, 298 K, CDCl3, δ in ppm):  8.07-8.15 (m, 6H, H2, H3, H5``); 7.60-

7.64 (m, 1H, H7``); 7.46-7.50 (m, 2H, H6``); 5.58 (s, 2H, H2``); 4.47 (s, 2H, H2`). 
13C NMR  (101 MHz, 298 K, CDCl3, δ in ppm): 30.6 (1C, 2`); 66.7 (1C, C2``); 128.43 

(2C, C3); 128.67 (2C, C2); 129.27 (1C, C7``); 129.6 (2C, C5``); 130.1 (2C, C6``); 

133.7 (1C, C4``); 137.8 (1C, C4); 138.2 (1C, C1); 166.1 (1C, C3``); 190.8 (1C, C1`); 

191.8 (1C, C1``). 
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Synthesis of 2-bromo-1-(4-(2-hydroxyacetyl)phenyl)ethan-1-one a8 
2-(4-(2-bromoacetyl)phenyl)-2-oxoethyl acetate (crude mixture 

containing (25%) mono and di protected species) (500 mg, 

1.94 mmol, 1.0 eq) were dissolved in ethanol (10 mL) and HCl 

(1M aq, 5mL) was added. The yellowish mixture was heated to 

reflux and the reaction progress was monitored by TLC 

cyclohexane/ethyl acetate (7:3). The pure product (80%) was obtained after silica gel 

column chromatography using cyclohexane/ethyl acetate (7:3) as eluent.52 

TLC: (SiO2, cyclohexane/ethyl acetate (7:3)): Rf = 0.19. 
1H NMR  (400 MHz, 298 K, CDCl3, δ in ppm): 8.02-8.13 (m, 4H, H2, H3); 4.92 (d, 
3JHH = 4.6 Hz, H2``); 4.71 (s, 2H, H2`); 3.39 (t, 3JHH = 4.6 Hz, OH). 

 

Synthesis of 1-bromo-2-thioacetate-ethane (b1) 
1,2-dibromomethane (3 mL, 35.0 mmol, 2.0 eq) and potassium 

thioacetate (2.0 g, 17.5 mmol, 1.0 eq) were dissolved in THF (dry, 

40 mL) and heated to reflux for 7 hours. KBr was removed by 

filtration and the solvent of the filtrate was removed under reduced pressure. The 

crude mixture was pre-purified by silica gel column chromatography using ethyl 

acetate/cyclohexane (1:10) as eluent, followed by a second silica gel column using 

cyclohexane/dichloromethane (9:1) as eluent. The title compound (1.48 g, 8.1 mmol, 

46%) was obtained as colourless oil.56 

TLC: (SiO2, cyclohexane/dichloromethane (9:1)): Rf = 0.29 
1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 3.42 – 3.47 (m, 2H, H1); 3.28 – 3.32 

(m, 2H, H2); 2.35 (s, 3H, H2`). 
13C-NMR (101 MHz, 298 K, CDCl3, δ in ppm): 30.1 (1C, C2`); 30.7 (1C, C1); 31.4 

(1C, C2); 194.7 (1C, C1`). 

 
Synthesis of 1-iodo-2-thioacetate-ethane (b2) 

1-bromo-2-thioacetate-ethane (180 mg, 0.98 mmol, 1.0 eq) was 

dissolved in acetone (5 mL, dry) and sodium iodide (1.18 mmol, 177 

mg, 1.2 eq) was added. The resulting reaction mixture was stirred at 

rt. for 2 hours, filtered and the precipitate washed with ethyl acetate. The solvent was 

removed under reduced pressure and the crude mixture containing 80% iodo and 

20% bromo was used without further purification.56 
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1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 3.30-3.37 (m, 2H, H1); 3.21-3.29 (m, 

2H, H1); 2.35 (s, 3H, H2`). 
13C-NMR (101 MHz, 298 K, CDCl3, δ in ppm): 2.2 (1C, C2); 30.7 (1C, C2`); 32.2 (1C, 

C1); 194.6 (1C, C1`). 

 

Synthesis of tri-tert-butyl 2,2',2''-((2S,5S,8S,11S)-10-(2-(acetylthio)ethyl)-
2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)(2R,2'R,2''R)-

tripropionate; (DOTA-M7-(3R,4S)-thioacetate, (B2)) 
DOTA-M7-(3R,4S) (A2) (50 mg, 0.08 mmol, 1.0 eq) was 

dissolved in acetonitrile (10 mL, dry) under inert 

conditions and sodium hydride (60 % in mineral oil, 15 

mg, excess) was added. 1-iodo-2-thioacetate-ethane (56 

mg, 0.25 mmol, 3.0 eq) was added. The reaction was 

stirred at rt. for 7 hours. A maximum of about 50 % conversion was achieved even 

after reflux overnight. 

ESI-MS: calc. 715.5 (M+1); measured 715.5 (M+1) + starting material 613.5 (M+1). 

 

Synthesis of tri-tert-butyl 2,2',2''-((2S,5S,8S,11S)-10-(2-mercaptoethyl)-2,5,8,11-
tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)(2R,2'R,2''R)-
tripropionate; (DOTA-M7-(3R,4S)-thio, (B3)) 

To a solution of (DOTA-M7-(3R,4S)-thioacetate) (12 mg, 

0.02 mmol, 1.0 eq) in methanol (1 mL) under inert 

conditions was added sodium thiomethoxide (1.0 eq, 1M, in 

MeOH). The reaction mixture was stirred for 1.5 hours. The 

reaction was quenched using hydrochloric acid (2mL, 0.1 M) 

and extracted with dichloromethane (2 X 5 mL). The 

combined organic layer was washed with brine, dried over sodium sulphate and the 

solvent removed under reduced pressure. ESI-MS showed dimer and RS-SMe 

formation therefore an excess of TCEP (2 mL (in 350 mM KOH)) was added and 

stirred overnight. A full conversion to free thiol was determined by ESI-MS.52 

ESI-MS: calc. 673.5 (M+1); measured 673.5 (M+1). 
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Synthesis of tri-tert-butyl 2,2',2''-((2S,5S,8S,11S)-2,5,8,11-tetramethyl-10-(2-((2-
(vinylsulfonyl)ethyl)thio)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)(2R,2'R,2''R)-tripropionate; (DOTA-M7-(3R,4S)-thiovinylsulfone, (B4)) 

(DOTA-M7-(3R,4S)-thio) (10 mg, 0.015 mmol, 1.0 

eq) and divinyl sulfone (7.0 mg, 0.06 mmol, 4.0 eq) 

were dissolved in ethanol (5 mL, dry) and heated to 

reflux for 60 minutes. Full conversion was obtained 

by ESI. Unfortunately purification with silica gel 

column chromatography using chloroform/ethanol 

9:1 -> 1:1 led to by-product formation where ethanol was attached to the vinyl group. 

This fact was quite strange as formation of the divinyl sulfone to the thiol was 

performed in boiling ethanol without formation of any by-products. A yield from about 

5% was therefore determined out of the mixture.57,58 

ESI-MS: calc. 791.5 (M+1); measured 791.6 (M+1). 

 
Synthesis of S-(2-((2S,5S,8S,11S)-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclo-
dodecan-1-yl)ethyl) ethanethioate; (DOTA-M4-(4S)-thioacetate (B6)) 

Cyclen-M4 (300 mg, 1.31 mmol, 1.0 eq) was dissolved in 

dichloromethane (20 mL, dry) under inert conditions and 

sodium hydride (63 mg, 1.58 mmol, 1.2 eq, 60% in mineral 

oil) was added and stirred for 20 min at rt. 1-bromo-2-

thioacetate-ethane (240 mg, 1.31 mmol, 1.0 eq) was added 

and stirred at rt. for 20 hours. The statistical reaction delivered 20 % startingmaterial, 

60 % product and 20 % of the bis-alkylated species. The crude mixture was used 

without further purification. 

ESI-MS: calc. 331.3 (M+1); measured 331.2 (M+1).  

(ESI-MS: bis alkylated calc. 433.3 (M+1); measured 433.2 (M+1).) 
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Synthesis of tri-tert-butyl 2,2',2''-((2S,5S,8S,11S)-10-(2-(acetylthio)ethyl)-
2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)(2R,2'R,2''R)-
tripropionate; (DOTA-M7-(3R,4S)-thioacetate, (B7)) 

 (DOTA-M4-(4S)-thioacetate) (433 mg crude mixture, 1.0 

eq) was dissolved in acetonitrile (20 mL) and potassium 

carbonate (724 mg, 5.24 mmol, 4.0 eq) was added under 

inert conditions. A solution of tert-butyl (S)-2-

(((trifluoromethyl)sulfonyl)oxy)propanoate in acetonitrile 

was added slowly and the resulting reaction mixture was 

stirred at rt. overnight. The crude mixture was purified by silica gel column 

chromatography using chloroform/ethanol/triethylamine (9:1:0.01) as eluent and the 

desired product (250mg, 26%) was obtained as yellowish waxy oil.25 

ESI-MS: calc. 715.5 (M+1); measured 715.5 (M+1).  

 

Synthesis of (2R,2'R,2''R)-2,2',2''-((2S,5S,8S,11S)-10-(2-mercaptoethyl)-2,5,8,11-
tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)tripropionic acid; (DOTA-

M7-(4S,3R)-OH-thiol, (B8)) 
(DOTA-M7-(3R,4S)-thioacetate) (50 mg, 0.07 mmol, 1.0 eq) 

was dissolved in hydrochloric acid (1M, 20 mL) and heated to 

reflux for 60 minutes. The pH was adjusted to 7.0 using 

potassium hydroxide. The volume was reduced to 10 mL and 

the crude mixture purified by preparative HPLC under 

standard conditions. The product was obtained as colourless waxy solid in 80% 

yield.52 

Retention time: 13.2-14 min. 

ESI-MS: calc. 505.3 (M+1); measured 505.3 (M+1).  
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Synthesis of (2R,2'R,2''R)-2,2',2''-((2R,5R,8R,11R)-2,5,8,11-tetramethyl-10-(2-((2-
(vinylsulfonyl)ethyl)thio)ethyl)-1,4,7,10-tetraazacyclododecane-1,4,7-
triyl)tripropionic acid; (DOTA-M7-(4S,3R)-OH-thiovinylsulfone, (B9)) 

DOTA-M7-(4S,3R)-OH-thiol (20 mg, 0.04 mmol, 1.0 

eq) was dissolved in ethanol (10 mL) and divinyl 

sulfone (0.16 mL, 0.16 mmol, 4.0 eq) added. The 

resulting reaction mixture was refluxed for 60 min. 

The solvent was removed under reduced pressure 

and the crude mixture purified by preparative HPLC 

under standard conditions.57,58 

Retention time: 16.3-17.4 min. 

ESI-MS: calc. 623.3 (M+1); measured 623.4 (M+1). 

 
Synthesis of DOTA-M7-(4S,3R)-metal-thiovinylsulfone, (B1) 

 DOTA-M7-(4S,3R)-OH-thiovinylsulfone (4.0 mg, 0.006 

mmol, 1.0 eq) and metal chloride hexahydrate (4.0 eq) 

were dissolved in aqueous ammonium acetate (100 

mM, aq) and the pH adhusted to 7.0. The resulting 

reaction mixture was heated to 75 °C overnight and 

excess metal was removed by a single use SepPak 

C18 column on an peristaltic pump using water to water/methanol (2:8) as eluent. 

The complex was further purified by preparative HPLC under standard conditions.25 

Retention time: 11.8-12.2 min. 

ESI-MS: Lutetium: calc. 795.2 (M+1); measured 795.2 (M+1). 

ESI-MS: Samarium: calc. 772.2 (M+1); measured 772.2 (M+1) (Samarium pattern 

identified). 

ESI-MS: Thulium: calc. 789.2 (M+1); measured 789.6 (M+1); 811.6 (M+Na); 827.6 

(M+K). 

HRMS: Thulium: calc. 788.2177 (M); measured 789.2250 (M+H) C27H48N4O8S2Tm; 

811.2070 (M+Na) C27H48N4NaO8S2Tm 
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Synthesis of DOTA-M7-(4S,3R)-thulium-GBI 
GBI was treated with TCEP (10.0 eq, in 10 mM 

phosphate buffer pH = 6.5) to break the 

disulphide bridges of the dimer. The protein was 

purified using an Amicon Ultra Centrifugal Filter 

(Ultracel -3K). The membrane was equilibrated 

with 3.5 mL phosphate buffer (PO4
3-, 10 mM) 

(7490 rpm, 15 min). The protein was added and the volume enlarged to 3.5 mL with 

TCEP in phosphate buffer and centrifuged. This process was repeated 4 times. The 

protein was taken of the membrane and the membrane washed with phosphate 

buffer to a total volume of 1mL. The protein was further purified on a Pd 10 cartridge. 

The resulting solution with a pH of 6.5 was added to DOTA-M7-(4S,3R)-metal-

thiovinylsulfone (2 mg, in 100 µL (10 mM phosphate buffer)) and shaked at 25 °C 

overnight. No full conversion was obtained therefore the pH was stepwise enlarged 

to 8, which speeded up the reaction and delivered after 48 hours a full conversion. 

NMR data and ESI-MS spectra are shown in the results section. 

 
Synthesis of ethyl (S)-2-(benzyloxy)propanoate (b3) 

L-lactate ethyl ester (20.0 g, 169 mmol, 1.0 eq) was added 

dropwise to a suspension of benzyl bromide (31.9 g, 186 mmol, 

1.1 eq), sodium hydride (6.8 g, 169 mmol, 60 %) in dry 

THF/DMF (2:1, 160/80 mL) at -10 °C. The reaction mixture was 

stirred for 1 hour before warmed to rt. and stirred for additional 

30 min before heated to 50 °C  for 2 hours. The resulting 

mixture was poured into a mixture of water (250 mL) and petrol ether (150 mL). The 

organic layer was separated and the aqueous layer extracted with ether (2 X 50 mL). 

The combined organic layer was washed with water, brine and dried over sodium 

sulphate. The solvent was removed under reduced pressure and the crude mixture 

purified by silica gel column chromatography pentane/tert-butyl methyl ether (9:1) as 

eluent yielding the title product (30.0 g, 144 mmol, 85%) as colourless oil.59 

TLC: (SiO2, pentane/TBME (9:1.5)): Rf = 0.73. 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.23 - 7.41 (m, 5H, H3``-H5``); 4.70 (d, 
2JHH = 11.6 Hz, 1H, H1``); 4.47 (d, 2JHH = 11.6 Hz, 1H, H1``); 4.22 (m, 2H, H1`); 4.05 
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(q, 3JHH = 6.9 Hz, 1H, H2); 1.44 (d, 3JHH = 6.9 Hz, 3H, H3); 1.29 (t, 3JHH = 7.1 Hz, 3H, 

H2`).  
13C-NMR (151 MHz, CDCl3, TMS, δ in ppm): 14.4 (1C, C2`); 18.9 (1C, C3); 61.0 (1C, 

C1`); 72.2 (1C, C1``); 74.3 (1C, C2); 128.0 (1 C, C5``); 128.2 (2C, C3``); 128.6 (2C, 

C4``); 137.8 (1C, C2``); 173.5 (1C, C1). 

 
Synthesis of (S)-2-(benzyloxy)propanoic acid (b4) 

Ethyl (S)-2-(benzyloxy)propanoate (b3) (32.0 g, 154 mmol, 1.0 eq) 

in diethylether (30 mL, dry) was added dropwise to a suspension of 

lithium aluminium hydride (5.83 g, 154 mmol, 1.0 eq) in diethylether 

(300 mL) at 0 °C. The resulting suspension was warmed slowly to rt. 

before heated to reflux overnight. The reaction mixture was 

quenched under cooling with water, sodium hydroxide (15 %, aq) 

and a second portion of water. The precipitate was filtered over HYFLO and washed 

with ether. The combined organic layer was dried over sodium sulphate and the 

solvent removed under reduced pressure. The crude mixture was purified by silica 

gel column chromatography using pentane/tert-butyl methyl ether (4:1) as eluent. 

The title compound was obtained in (80-95%) yield as colourless oil. 

TLC: (SiO2, pentane/TBME (4:1)): Rf = 0.31 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.26-7.39 (m, 5H, H3`-H5`); 4.66 (d, 2JHH 

= 11.6 Hz, 1H, H1`); 4.49 (d, 2JHH = 11.6 Hz, 1H, H1`); 3.66-3.73 (m, 1H, H2); 3.62 

(ddd, 2JHH = 11.4 Hz, 3JHH = 8.0 Hz, 3JHH = 3.4 Hz, 1H, H1); 3.51 (ddd, 2JHH = 11.4 

Hz, 3JHH = 7.1 Hz, 3JHH = 4.4 Hz, 1H, H1); 2.05 (dd, 3JHH = 8.0 Hz, 3JHH = 4.4 Hz, 1H, 

OH); 1.19 (d, 3JHH = 6.2 Hz, 3H, H3). 
13C-NMR (63 MHz, 298 K, CDCl3, δ in ppm): 16.0 (1C, C3); 66.6 (1C, C1); 71.0 (1C, 

C1`); 75.7 (1C, C2); 127.9 (3C, C3`, C5`); 128.6 (2C, C4`); 138.6 (1C, C2`). 

 

Synthesis of (S)-2-(benzyloxy)propyl 4-methylbenzenesulfonate (b5) 
(S)-2-(benzyloxy)propanol (900 mg, 5.41 mmol, 1.0 eq) 

was dissolved in pyridine (8 mL) and p-TsCl (para-

toluenesulfonyl chloride) (2.06 g, 10.8 mmol, 2.0 eq) 

was added. The resulting mixture was stirred overnight. 

After addition of water and extraction with 

dichloromethane the combined organic layers were 
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washed with 18% HCl aq. twice and brine, dried over sodium sulphate and the 

solvent removed under reduced pressure. The desired product (1.49 g, 4.65 mmol, 

86%) was obtained as colourless oil without further purification. 

TLC: (SiO2, pentane/TBME (2:1)): Rf = 0.73 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.68-7.90 (m, 2H, H2`); 7.22-7.38 (m, 

7H, H3`, H3``-H5``); 4.53 (d, 2JHH = 11.7 Hz, 1H, H1``); 4.48 (d, 2JHH = 11.7 Hz, 1H, 

H1``); 3.94-4.05 (m, 2H, H1); 3.76 (m, 1H, H2); 2.43 (s, 3H, H5`); 1.16 (d, 3JHH = 6.3 

Hz, 3H, H3). 
13C-NMR (101 MHz, CDCl3, TMS, δ in ppm): 16.8 (1C, C3); 21.7 (1C, C5`); 71.3 (1C, 

C1``); 72.4 (1C, C1); 72.7 (1C, C2); 127.6 (2C, C3``); 127.7 (1C, C5``); 128.0 (2C, 

C2`); 128.4 (2C, C4``); 129.8 (2C, C3`); 133.0 (1C, C2``); 138.1 (1C, C4`); 144.8 (1C, 

C1`).  

 
Synthesis of (S)-S-(2-(benzyloxy)propyl) ethanethioate (b6) 

(S)-2-(benzyloxy)propyl 4-methylbenzenesulfonate (b5) (500 

mg, 1.56 mmol, 1.0 eq) was dissolved in tetrahydrofuran (20 

mL) and potassium thioacetate (364 mg, 3.12 mmol, 2.0 eq) 

was added. The resulting reaction mixture was refluxed for 3 

hours. The precipitate was filtered off and washed with 

additional 20 mL THF. The solvent was removed under reduced 

pressure and the crude mixture purified by silica gel column chromatography using 

pentane/tertbutyl methyl ether (9:1) as eluent to yield the title compound (35%) as 

colourless oil.56 

TLC: (SiO2, pentane/TBME (9:1)): Rf = 0.34 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.26-7.35 (m, 5H, H3``-H5``); 5.58 (dd, 
2JHH = 14.5 Hz, 4JHH = 4.9 Hz, 1H, H1``); 5.54 (dd, 2JHH = 14.5 Hz, 4JHH = 2.5 Hz, 1H, 

H1``); 3.65 (ddq, 3JHH = 6.2 Hz, 3JHH = 5.7 Hz, 3JHH = 5.2 Hz, 1H, H2); 3.11 (dd, 2JHH = 

14.0 Hz, 3JHH = 5.7 Hz, 1H, H1); 3.05 (dd, 2JHH = 14.0 Hz, 3JHH = 5.2 Hz, 1H, H1); 

2.34 (s, 3H, H2`), 1.25 (d, 3JHH = 6.2 Hz, 3H, H3). 
13C-NMR (101 MHz, CDCl3, TMS, δ in ppm): 19.5 (1C, C3); 30.7 (1C, C2`); 35.0 (1C, 

C1); 71.0 (1C, C1``); 73.9 (1C, C2); 127.7 (1C, C5``); 127.8 (2C, C3``); 130.0 (2C, 

C4``); 138.6 (1C, C2``); 195.8 (1C, C1`).  
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Synthesis of ethyl (2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propanoate (b8) 
L-Lactic acid ethyl ester (10.0 g, 84.7 mmol, 1.0 eq) was 

dissolved in chloroform (90 mL) and p-TsOH (288 mg, 1.7 

mmol, 0.02 eq) was added. The resulting suspension was 

cooled to 4 °C and 2H-dihydropyran (10.8 mL, 119 mmol, 1.4 

eq) was added dropwise. After completion of the addition the 

reaction was stirred for another 5 min before warmed to rt. for 3 hours. The resulting 

reaction mixture was extracted with 0.2N KOH (2*150 mL). The organic phase was 

dried over sodium sulphate and the crude mixture purified by silica gel column 

chromatography using pentane/tertbutyl methyl ether (95:5 -> 8:1) as eluent yielding 

the title compound (13.5 g, 66.7 mmol, 78%) as colourless oil as a mixture of two 

diastereoisomers.60 

TLC: (SiO2, pentane/TBME (9:1)): Rf = 0.58; 0.69. 

Diastereoisomer 1: 1H-NMR (500 MHz, CDCl3, TMS, δ in ppm): 4.69 (t, 3JHH = 3.7 

Hz, 1H, H1``); 4.40 (qd, 3JHH = 7.0 Hz, 4JHH = 1.4 Hz, 1H, H2); 4.12-4.24 (m, 2H, 

H1`); 3.80-3.88 (m, 1H, H5``); 3.47-3.54 (m, 1H, H5``); 1.82-1.90 (m, 1H, H4``); 1.72-

1.80 (m, 2H, H2``); 1.63-1.71 (m, 2H, H3``); 1.49-1.62 (m, 1H, H4``); 1.44 (dd, 3JHH = 

7.0 Hz, 5JHH = 0.5 Hz, 3H, H3); 1.24-1.30 (m, 3H, H2`). 

Diastereoisomer 2: 1H-NMR (500 MHz, CDCl3, TMS, δ in ppm): 4.71 (t, 3JHH = 3.6 

Hz, 1H, H1``); 4.12-4.24 (m, 3H, H2, H1`); 3.88-3.96 (m, 1H, H5``); 3.42-3.47 (m, 1H, 

H5``); 1.82-1.90 (m, 1H, H4``); 1.72-1.80 (m, 2H, H2``); 1.63-1.71 (m, 2H, H3``); 

1.49-1.62 (m, 1H, H4``); 1.39 (dd, 3JHH = 7.0 Hz, 5JHH = 0.5 Hz, 3H, H3); 1.24-1.30 

(m, 3H, H2`). 

Diastereoisomer 1: 13C-NMR (126 MHz, CDCl3, TMS, δ in ppm): 14.35 (1C, C1`); 

18.9 (1C, C3); 19.3 (1C, C4``); 25.6 (1C, C3``); 30.6 (1C, C2``); 60.94 (1C, C1`); 62.6 

(1C, C5``); 70.1 (1C, C2); 97.4 (1C, C1``); 173.5 (1C, C1). 

Diastereoisomer 2: 13C-NMR (126 MHz, CDCl3, TMS, δ in ppm): 14.29 (1C, C1`); 

18.2 (1C, C3); 19.25 (1C, C4``); 25.4 (1C, C3``); 30.8 (1C, C2``); 60.86 (1C, C1`); 

62.4 (1C, C5``); 72.6 (1C, C2); 98.4 (1C, C1``); 173.4 (1C, C1). 
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Synthesis of (2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propan-1-ol (b9) 
(2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propanoate (b8) (10.0 g, 

49.4 mmol, 1.0 eq) in diethylether (30 mL, dry) was added 

dropwise to LiAlH4 (1.88 g, 49.4 mmol, 1.0 eq) in diethylether 

(100 mL) at 0 °C. The resulting reaction mixture was warmed to 

rt. before refluxed for 2 hours. The reaction was quenched under 

cooling with water (2 mL), NaOH (15%, aq, 2 mL) and again water (6 mL). The 

precipitate was filtered over HYFLO and washed with ether. The combined organic 

layer was dried over sodium sulphate and the solvent removed under reduced 

pressure.  

Diastereoisomer 1: 1H-NMR (500 MHz, CDCl3, TMS, δ in ppm): 4.72 (dd, 3JHH = 5.2 

Hz, 3JHH = 2.8 Hz, 1H, H1`); 3.90-3.96 (m, 1H, H5`); 3.87 (ddq, 3JHH = 10.0 Hz, 3JHH = 

6.6 Hz, 3JHH = 3.3 Hz, 1H, H2); 3.55-3.61 (m, 1H, H1); 3.47-3.54 (m, 1H, H5`); 3.42-

3.49 (m, 1H, H1); 2.20 (dd, 3JHH = 7.4 Hz, 3JHH = 5.1 Hz, 1H, OH); 1.79-1.88 (m, 1H, 

H3`); 1.69-1.82 (m, 1H, H2`); 1.52-1.62 (m, 1H, H2`); 1.50-1.52 (m, 2H, H4`); 1.48-

1.57 (m, 1H, H3`); 1.21 (d, 3JHH = 6.6 Hz, 3H, H3). 

Diastereoisomer 2: 1H-NMR (500 MHz, CDCl3, TMS, δ in ppm): 4.51-5.56 (m, 1H, 

H1`); 3.99-4.02 (m, 1H, H5`); 3.78.3.83 (m, 1H, H2); 3.50-3.57 (m, 1H, H5`); 3.44-

3.54 (m, 2H, H1); 2.13-2.17 (m, 1H, OH); 1.79-1.88 (m, 1H, H3`); 1.69-1.82 (m, 1H, 

H2`); 1.52-1.62 (m, 1H, H2`); 1.50-1.52 (m, 2H, H4`); 1.48-1.57 (m, 1H, H3`); 1.12 (d, 
3JHH = 6.5 Hz, 3H, H3). 

Diastereoisomer 1: 13C-NMR (126 MHz, CDCl3, TMS, δ in ppm): 17.8 (1C, C3); 20.2 

(1C, C3`); 25.5 (1C, C4`); 31.2 (1C, C2`); 63.3 (1C, C5`); 66.3 (1C, C1); 75.1 (1C, 

C2); 99.2 (1C, C1`). 

Diastereoisomer 2: 13C-NMR (126 MHz, CDCl3, TMS, δ in ppm): 17.4 (1C, C3); 21.1 

(1C, C3`); 25.2 (1C, C4`); 31.7 (1C, C2`); 64.7 (1C, C5`); 67.4 (1C, C1); 77.9 (1C, 

C2); 100.1 (1C, C1`). 
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Synthesis of (2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl 4-methylbenzene-
sulfonate (b10) 

To a solution p-TsCl (9.5 g, 50.0 mmol, 2.0 eq) in 

dichloromethane (100 mL, dry) was added (2S)-2-

((tetrahydro-2H-pyran-2-yl)oxy)propan-1-ol (b9) (4.0 g, 

25.0 mmol, 1.0 eq) and pyridine (6.5 mL, 79.9 mmol, 

3.2 eq) at 0 °C. The resulting reaction mixture was 

stirred at rt. overnight before quenched with HCl (2M, aq., 100 mL) and extracted 

with dichloromethane (3 X 50 mL). The crude reaction mixture was purified with silica 

gel column chromatography using pentane/tert-butylmethylether (9:1 -> 1:1) as 

eluent to yield the title compound (5.05 g, 16.1mmol, 64%) as colourless oil (mixture 

of two diastereoisomers). 

TLC: (SiO2, pentane /TBME (9:1)): Rf = 0.15. 

Diastereoisomer 1: 1H-NMR (500 MHz, CDCl3, TMS, δ in ppm): 7.76-7.82 (m, 2H, 

H2`); 7.33-7.36 (m, 2H, H3`); 4.63 (t, 3JHH = 3.9 Hz, 1H, H1``); 3.95-4.03 (m, 1H, H2); 

3.90-3.98 (m, 2H, H1); 3.82-3.87 (m, 1H, H5``); 3.44-3.50 (m, 1H, H5``); 2.45 (s, 3H, 

H5`); 1.68-1.79 (m, 1H, H3``); 1.58-1.69 (m, 1H, H2``); 1.45-1.57 (m, 2H, H4``); 1.44-

1.52 (m, 1H, H3``); 1.42-1.52 (m, 1H, H2``); 1.18 (d, 3JHH = 5.1 Hz, 3H, H3). 

Diastereoisomer 2: 1H-NMR (500 MHz, CDCl3, TMS, δ in ppm): 7.76-7.82 (m, 2H, 

H2`); 7.33-7.36 (m, 2H, H3`); 4.67 (t, 3JHH = 3.5 Hz, 1H, H1``); 4.07-4.11 (m, 1H, H1); 

3.95-3.99 (m, 1H, H2); 3.92-3.95 (m, 1H, H1); 3.75-3.82 (m, 1H, H5``); 3.39-3.49 (m, 

1H, H5``); 2.45 (s, 3H, H5`); 1.68-1.79 (m, 1H, H3``); 1.58-1.69 (m, 1H, H2``); 1.45-

1.57 (m, 2H, H4``); 1.44-1.52 (m, 1H, H3``); 1.42-1.52 (m, 1H, H2``); 1.12 (d, 3JHH = 

6.2 Hz, 3H, H3). 

Diastereoisomer 1: 13C-NMR (126 MHz, CDCl3, TMS, δ in ppm): 18.3 (1C, C3); 19.75 

(1C, C3``); 21.8 (1C, C5`); 25.4 (1C, C4``); 30.8 (1C, C2``); 62.9 (1C, C5``); 70.7 (1C, 

C2); 72.9 (1C, C1); 99.1 (1C, C1``); 128.1 (2C, C2`); 130.0 (2C, C3`); 133.1 (1C, 

C4`); 149.0 (1C, C1`). 

Diastereoisomer 2: 13C-NMR (126 MHz, CDCl3, TMS, δ in ppm): 16.3 (1C, C3); 19.73 

(1C, C3``); 21.75 (1C, C5`); 27.1 (1C, C4``); 30.78 (1C, C2``); 62.1 (1C, C5``); 69.2 

(1C, C2); 73.3 (1C, C1); 96.3 (1C, C1``); 128.1 (2C, C2`); 130.0 (2C, C3`); 133.1 (1C, 

C4`); 149.0 (1C, C1`). 
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Synthesis of S-((2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl) ethanethioate 
(b11) 

(2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl 4-methyl-

benzene-sulfonate (b10) (4.0 g, 12.7 mmol, 1.0 eq) was 

dissolved in THF (dry, 100mL), potassium carbonate (5.3 g, 

38.2 mmol, 3.0 eq) and potassium thioacetate (2.2 g, 19.1 

mmol, 1.5 eq) were added. The reaction mixture was heated 

to reflux overnight. The resulting precipitate was filtered off over HYFLO, washed 

with THF and solvent removed under reduced pressure. The crude mixture purified 

by silica gel column chromatography using pentane/tertbutyl methyl ether (9:1) as 

eluent yielding the title compound (1.8 g, 8.24 mmol, 65%) as colourless oil.56 

TLC: (SiO2, pentane/TBME (9:1)): Rf = 0.5. 

The product was obtained as a 9:1 mixture of two diastereoisomers. The shifts of the 

two diastereoisomers are only separated for H3 and therefore not presented as 

separate spectra. 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 4.70-4.77 (m, 1H, H1``); 3.83-3.97 (m, 

2H, H2, H5``); 3.46-3.52 (m, 1H, H5``); 2.96-3.11 (m, 2H, H1); 2.33 (b”s”, 3H, H2`); 

1.75-1.87 (m, 1H, H3``); 1.65-1.75 (m, 1H, H2``); 1.45-1.59 (m, 4H, H2``, H3``, H4``); 

1.26 (1.17) (d, 3JHH = 6.3 Hz, 3H, H3). 

 
Synthesis of (S)-S-(2-hydroxypropyl) ethanethioate (b7) 

 S-((2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl) ethanethioate (b11) 

(1.0 g, 4.58 mmol, 1.0 eq) was dissolved in deprotection mixture 

acetic acid/THF/water (28 mL, 4:2:1). The resulting solution was 

heated to 45 °C for 4 hours. The solvent were removed at 20 °C under reduced 

pressure. The resulting product was purified by silica gel column chromatography 

using pentane/TBME (95:5) as eluent. The title compound (400 mg, 2.98 mmol, 65%) 

was obtained as colourless oil in mixture with THP deprotection product.52 

TLC: (SiO2, pentane/TBME (95:5)): Rf = 0.19. 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 3.90-3.99 (m, 1H, H2); 3.11 (dd, 2JHH = 

14.0 Hz, 3JHH = 4.1 Hz, 1H, H1); 2.90 (dd, 2JHH = 14.0 Hz, 3JHH = 7.1 Hz, 1H, H1); 

2.38 (s, 3H, H2`); 1.26 (d, 3JHH = 6.2 Hz, 3H, H3). 
13C-NMR (101 MHz, 298 K, CDCl3, δ in ppm): 22.4 (1C, C3); 30.7 (1C, C2`); 37.8 

(1C, C1); 67.2 (1C, C2); 196.4 (1C, C1`). 
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Synthesis of (R)-S-(2-hydroxypropyl) ethanethioate (b7-R) 
R-Propylene oxide (2.5 mL, 35.7 mmol, 1.0 eq) and thioacetic acid 

(2.8 mL, 39.3 mmol, 1.1 eq) were dissolved in water (30 mL) and 

stirred at rt. for 10 hours. The resulting mixture was extracted with 

EtOAc and washed with sodium carbonate (2M aq). The solvent was removed under 

reduced pressure and the crude mixture purified by silica gel column chromatography 

using pentane/TBME (95:5) as eluent. The title compound (2100 mg, 15.6 mmol, 

43%) was obtained as colourless oil.61 

TLC: (SiO2, pentane/TBME (95:5)): Rf = 0.19. 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 3.90-3.99 (m, 1H, H2); 3.11 (d, 2JHH = 

14.0 Hz, 3JHH = 4.1 Hz, 1H, H1); 2.90 (d, 2JHH = 14.0 Hz, 3JHH = 7.1 Hz, 1H, H1); 2.38 

(s, 3H, H2`); 1.26 (d, 3JHH = 6.2 Hz, 3H, H3). 
13C-NMR (101 MHz, 298 K, CDCl3, δ in ppm): 22.4 (1C, C3); 30.7 (1C, C2`); 37.8 

(1C, C1); 67.2 (1C, C2); 196.4 (1C, C1`). 

 

 

Synthesis of (R)-S-(2-((methylsulfonyl)oxy)propyl) ethanethioate (b12-R) 
(R)-S-(2-hydroxypropyl) ethanethioate (b7-R) (500 mg, 3.73 

mmol, 1.0 eq) was dissolved in THF (15 mL) and triethylamine 

(1.57 mL, 11.2 mmol, 3.0 eq) was added, cooled to 0 °C. 

Methanesulfonyl chloride (0.43 mL, 5.59 mmol, 1.5 eq) was 

added dropwise over 5 minutes and stirred for additional 10 min at 0 °C before 

warmed to rt. for 2 hours. The reaction mixture was filtered over HyFlo and the 

solvent removed under reduced pressure. The crude mixture showed purity higher 

than 90% and was therefore used without further purification. 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 4.81 (pd, 3JHH = 6.3 Hz, 3JHH = 5.5 Hz, 

1H, H2); 3.09-3.21 (m, 2H, H1); 3.05 (s, 3H, H1``); 2.33 (s, 3H, H2`); 1.26 (d, 3JHH = 

6.3 Hz, 3H, H3). 
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Synthesis of 2-(((S)-1-(benzyloxy)propan-2-yl)oxy)tetrahydro-2H-pyran (b14) 
(2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propan-1-ol (b9) 

(3.0 g, 18.7 mmol, 1.0 eq) was added to a suspension 

of sodium hydride (899 mg, 22.5 mmol, 1.2 eq, 60% in 

mineral oil) in DMF (10 mL). The resulting reaction 

mixture was stirred at rt. for 2 h before benzyl bromide 

(2.7 mL, 22.5 mmol, 1.2 eq) was added slowly and stirred for additional 15 hours. 

Ammonium chloride (sat., aq.) was added and the mixture extracted with diethylether 

two times. The combined organic layers were washed with brine, dried over sodium 

sulphate and the solvent removed under reduced pressure. The crude reaction 

mixture was purified with silica gel column chromatography using pentane/tert 

butylmethylether (4:1) as eluent to yield the title compound (2.8 g, 11.2 mmol, 60%) 

as colourless oil.56 

TLC: (SiO2, pentane/TBME (4:1)): Rf = 0.74 

Diastereoisomer 1: 1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.27-7.38 (m, 5H, 

H3`-H5`); 4.80 (dd, 3JHH = 4.8 Hz, 3JHH = 2.8 Hz, 1H, H1``); 4.55 (s, 2H, H1`); 3.98-

4.06 (m, 1H, H2); 3.88-3.96 (m, 1H, H5``); 3.47-3.55 (m, 1H, H5``); 3.40-3.47 (m, 2H, 

H1); 1.78-1.91 (m, 1H, H3``); 1.68-1.77 (m, 1H, H2``); 1.47-1.64 (m, 4H, H2``, H3``, 

H4``); 1.23 (d, 3JHH = 6.5 Hz, 3H, H3). 

Diastereoisomer 2: 1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.27-7.38 (m, 5H, 

H3`-H5`); 4.95 (dd, 3JHH = 5.0 Hz, 3JHH = 2.8 Hz, 1H, H1``); 4.59 (s, 2H, H1`); 3.98-

4.06 (m, 1H, H2); 3.85-3.89 (m, 1H, H5``); 3.58 (dd, 2JHH = 9.9 Hz, 3JHH = 5.6 Hz, 1H, 

H1); 3.47-3.55 (m, 1H, H5``); 3.40-3.47 (m, 1H, H1); 1.78-1.91 (m, 1H, H3``); 1.68-

1.77 (m, 1H, H2``); 1.47-1.64 (m, 4H, H2``, H3``, H4``); 1.17 (d, 3JHH = 6.3 Hz, 3H, 

H3). 

Diastereoisomer 1: 13C-NMR (101 MHz, CDCl3, TMS, δ in ppm): 18.8 (1C, C3); 20.1 

(1C, C3``); 25.66 (1C, C4``); 31.21 (1C, C2``); 62.9 (1C, C5``); 72.0 (1C, C2); 73.36 

(1C, C1`); 74.5 (1C, C1); 98.8 (1C, C1``); 127.63 (2C, C3`); 127.66 (1C, C5`); 128.49 

(2C, C4`); 138.6 (1C, C2`). 

Diastereoisomer 2: 13C-NMR (101 MHz, CDCl3, TMS, δ in ppm): 16.6 (1C, C3); 19.9 

(1C, C3``); 25.61 (1C, C4``); 31.16 (1C, C2``); 62.4 (1C, C5``); 70.5 (1C, C2); 73.32 

(1C, C1`); 74.4 (1C, C1); 96.2 (1C, C1``); 127.59 (1C, C5`); 127.73 (2C, C3`); 128.44 

(2C, C4`); 138.8 (1C, C2`). 
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Synthesis of (S)-1-(benzyloxy)propan-2-ol (b15) 
2-(((S)-1-(benzyloxy)propan-2-yl)oxy)tetrahydro-2H-pyran(b14) 

(2.8 g, 11.3 mmol, 1.0 eq) was dissolved in acetic 

acid/THF/water (4:2:1, 35 mL) and heated to 45 °C for 8 hours. 

The solvents were removed under reduced pressure (20 °C) and purified by silica gel 

column chromatography using cyclohexane/ethyl acetate (4:1) as eluent.52 

TLC: (SiO2, pentane/TBME (9:1)): Rf = 0.13. 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.27-7.40 (m, 5H, H3`-H5`); 4.56 (s, 2H, 

H1`); 4.01 (dqd, 3JHH = 8.1 Hz, 3JHH = 6.4 Hz, 3JHH = 3.1 Hz, 1H, H2); 3.48 (dd, 2JHH = 

9.4 Hz, 3JHH = 3.1 Hz, 1H, H1); 3.29 (dd, 2JHH = 9.4 Hz, 3JHH = 8.1 Hz, 1H, H1); 1.15 

(d, 3JHH = 6.4 Hz, 3H, H3). 
13C-NMR (63 MHz, 298 K, CDCl3, δ in ppm): 18.8 (1C, C3); 66.7 (1C, C1`); 73.5 (1C, 

C1); 76.0 1C, C2); 127.88 (2C, C3`); 127.93 (1C, C5`); 128.6 (2C, C4`); 138.1 (1C, 

C2`). 

 
Synthesis of (S)-1-(benzyloxy)propan-2-yl trifluoromethanesulfonate (b16) 

Triflic anhydride (0.25 mL, 1.51 mmol, 1.01 eq) was dissolved 

in dichloromethane (10 mL) and the resulting solution was 

cooled to -78 °C. Pyridine (0.12 mL, 1.49 mmol, 1.00 eq) was 

added and a white precipitate was formed rapidly. (S)-1-

(benzyloxy)propan-2-ol (b15) (248 mg, 1.49 mmol, 1.00 eq) in dichloromethane (21 

mL) was added slowly and the reaction mixture was allowed to warm to room 

temperature and stirred for another 10 min. The solvent was removed under reduced 

pressure at 0 °C and the crude mixture purified by filtration over silica gel (5X1.5 cm) 

(dichlormethan/hexane, 4:1). The title compound (120 mg, 0.4 mmol, 27%) was 

obtained as colourless oil and stored at -20 °C in solution with dichloromethane.25 

TLC: (SiO2, dichloromethane/hexane (4:1)): Rf = 0.9. 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.27-7.40 (m, 5H, H3`-H5`); 5.17 (pd, 
3JHH = 6.4 Hz, 3JHH = 4.0 Hz, 1H, H2); 4.61 (d, 2JHH = 13.8 Hz, 1H, H1`); 4.57 (d, 2JHH 

= 13.8 Hz, 1H, H1`); 3.61-3.66 (m, 2H, H1); 1.50 (d, 3JHH = 6.4 Hz, 3H, H3). 
19F-NMR (376 MHz, CDCl3, TMS, δ in ppm): -75.5 (s, 3F, CF3). 
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Synthesis of (2S,5S,8S,11S)-1-((R)-1-(benzyloxy)propan-2-yl)-2,5,8,11-
tetramethyl-1,4,7,10-tetraazacyclododecane (B10) 

Cyclen (200 mg, 0.87 mmol, 1.0 eq) was dissolved in 

dichloromethane (20 mL) and sodium hydride (45.5 mg, 

1.14 mmol, 1.3 eq, 60% in oil) was added under inert 

conditions. The resulting suspension was stirred for 5 min 

before (S)-1-(benzyloxy)propan-2-yl trifluoromethane-

sulfonate (235 mg, 0.96 mmol, 1.1 eq) in dichloromethane (10 mL) was added 

dropwise. The resulting reaction mixture was stirred at rt. over the weekend. The 

reaction was quenched with water (5 mL), extracted and reextracted twice with 

dichloromethane. The crude reaction mixture was purified by preparative HPLC to 

deliver the pure compound (42 mg, 0.11 mmol, 13%) as white waxy solid.25 

Retention time: 20-22 min (A/B = 54:46 -> 50:50) 

ESI-MS: calc. 377.3 (M+1); measured 377.4 (M+1). 

HRMS: 377.3275 (C22H41N4O, 1+); 189.1674 (C22H41N4O, 2+). 

 

Synthesis of tri-tert-butyl 2,2',2''-((2S,5S,8S,11S)-10-((R)-1-(benzyloxy)propan-2-
yl)-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)(2R,2'R,2''R)-
tripropionate (B11) 

B10 (2S,5S,8S,11S)-1-((R)-1-(benzyloxy)propan-2-yl) 

-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecane 

(42 mg, 0.11 mmol, 1.0 eq) was dissolved in 

acetonitrile (10 mL) and sodium hydride (17.8 mg, 

0.44 mmol, 4.0 eq, 60% in mineral oil) was 

added  under inert conditions. The resulting 

suspension was stirred for 5 min before tert-butyl (S)-2-

(((trifluoromethyl)sulfonyl)oxy)propanoate (b16) (124 mg, 0.44 mmol, 4.0 eq) in 

acetonitrile (10 mL) was added dropwise. The resulting reaction mixture was stirred 

at rt. overnight. No full conversion was obtained, therefore the reaction was warmed 

to 50 °C and additional triflate (2.0 eq) was added. The reaction was stirred for 

another 6 hours but no full conversion was obtained and a mixture of tri and tetra 

alkylated species obtained. The reaction was cooled to rt and quenched with water (5 

mL), extracted and reextracted twice with dichloromethane. The crude reaction 
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mixture was purified by preparative HPLC to deliver the pure compound as white 

waxy solid.25 

ESI-MS: calc. 761.6 (M+1); measured 761.9 (M+1). 

HRMS: 761.5787 (C43H77N4O7, 1+). 

 
Synthesis of tri-tert-butyl 2,2',2''-((2S,5S,8S,11S)-10-((R)-1-hydroxypropan-2-yl)-
2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)(2R,2'R,2''R)-
tripropionate (M8-tri-tertbutyl-OH, B12) 

Ammoniak (30 mL) was condensed at -78 °C into a 2-

necked flask. Sodium (106 mg, 4.59 mmol, 20 eq) was 

added and the resulting blue mixture was stirres for 10 min 

before B11 (175 mg, 0.23 mmol, 1.0 eq) in THF (1mL) was 

added and the reaction stirred for additional 120 min at -78 

°C.  NH4Cl (50 mg) was added until the blue colour 

disappeared. Ammoniak was removed with nitrogen and the resulting gas washed in 

20% AcOH. The pure product (25 mg, 0.037, 16%) was obtained as white waxy 

solid.52 

ESI-MS: calc. 671.5 (M+1); measured 671.8 (M+1). 

 
Synthesis of tri-tert-butyl 2,2',2''-((2S,5S,8S,11S)-10-((R)-1-(acetylthio)propan-2-
yl)-2,5,8,11-tetramethyl-1,4,7,10-tetraazacyclododecane-1,4,7-triyl)(2R,2'R,2''R)-
tripropionate (M8-tri-tertbutyl-Sac, B13) 

M8-tri-tertbutyl-OH (B12) (25 mg, 0.037 mmol, 1.0 eq) was 

dissolved in dry THF (2 mL) and cooled to 0 °C. 

Methanesulfonylchloride (8 µL, 0.11 mmol, 3.0 eq) and 

triethylamine (31 µL, 0.224 mmol, 6.0 eq) were added and 

stirred for additional 10 min at 0 °C before warmed to rt 

and stirred until no more starting material was detected by 

ESI-MS. Potassium thioacetate (21.7 mg, 0.19 mmol, 5.0 eq) was added and heated 

to reflux for 6 hours. The reaction mixture was filtered and the solvent removed under 

reduced pressure. The crude reaction mixture was purified by preparative HPLC to 

yield the title compound (4 mg, 0.005 mmol, 13.5%) as yellowish waxy solid. 

ESI-MS: calc. 729.5 (M+1); measured 729.9 (M+1). 
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Synthesis of 2-((S)-2-(benzyloxy)propoxy)tetrahydro-2H-pyran (b17) 
(S)-2-(benzyloxy)propan-1-ol (b4) (10g, 60.2, 1.0 eq) was 

dissolved in chloroform (30 mL) and p-TsOH (229 mg, 1.2 

mmol, 0.02 eq) was added. The resulting suspension was 

cooled below 4 °C and 3,4-dihydro-2H-pyrane (7.7 mL, 84.2 

mmol, 1.4 eq) was added dropwise and stirred for additional 

5 min before warmed to rt. and stirred for additional 3 hours. 

The crude mixture was purified by silica gel column 

chromatography to yield the title compound (80%) as colourless oil (one to one 

mixture of two diastereoisomers).60 

TLC: (SiO2, pentane/TBME (9:1)): Rf = 0.37; 0.27. 

Diastereoisomer 1: 1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.22-7.40 (m, 5H, 

H3``-H5``); 4.64 (s, 2H, H1``); 4.63-4.65 (m, 1H, H1`); 3.85-3.90 (m, 1H, H5`); 3.72-

3.77 (m, 1H, H2); 3.70 (dd, 2JHH = 10.4 Hz, 3JHH = 4.4 Hz, 1H, H1); 3.50 (dd, 2JHH = 

10.4 Hz, 3JHH = 6.7 Hz, 1H, H1); 3.48-3.55 (m, 1H, H5`); 1.80-1.93 (m, 1H, H4`); 

1.69-1.76 (m, 1H, H2`); 1.57-1.65 (m, 2H, H2`, H3`); 149-1.56 (m, 2H, H3`, H4`); 1.19 

(d, 3JHH = 6.3 Hz, 3H, H3). 

Diastereoisomer 2: 1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.22-7.40 (m, 5H, 

H3``-H5``); 4.64 (s, 2H, H1``); 4.62-4.64 (m, 1H, H1`); 3.85-3.90 (m, 1H, H5`); 3.80 

(dd, 2JHH = 10.3 Hz, 3JHH = 5.8 Hz, 1H, H1); 3.72-3.77 (m, 1H, H2); 3.48-3.55 (m, 1H, 

H5`); 3.41 (dd, 2JHH = 10.3 Hz, 3JHH = 4.5 Hz, 1H, H1); 1.80-1.93 (m, 1H, H4`); 1.69-

1.76 (m, 1H, H2`); 1.57-1.65 (m, 2H, H2`, H3`); 149-1.56 (m, 2H, H3`, H4`); 1.22 (d, 
3JHH = 6.3 Hz, 3H, H3). 

Diastereoisomer 1: 13C-NMR (101 MHz, CDCl3, TMS, δ in ppm): 17.46 (1C, C3); 

19.61 (1C, C3`); 27.13 (1C, C4`); 30.79 (1C, C2`); 62.35 (1C, C5`); 71.17 (1C, C1``); 

71.74 (1C, C1); 73.82 (1C, C2); 99.34 (1C, C1`); 127.52 (1C, C5``); 127.72 (2C, 

C3``); 128.43 (2C, C4``); 139.15 (1C, C2``). 

Diastereoisomer 2: 13C-NMR (101 MHz, CDCl3, TMS, δ in ppm): 17.54 (1C, C3); 

19.42 (1C, C3`); 25.63 (1C, C4`); 30.69 (1C, C2`); 62.06 (1C, C5`); 71.05 (1C, C1); 

71.33 (1C, C1``); 74.45 (1C, C2); 98.68 (1C, C1`); 127.54 (1C, C5``); 127.74 (2C, 

C3``); 128.43 (2C, C4``); 139.17 (1C, C2``). 
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Synthesis of (2S)-1-((tetrahydro-2H-pyran-2-yl)oxy)propan-2-ol (b18) 
2-((S)-2-(benzyloxy)propoxy)tetrahydro-2H-pyran (b17) (1.0 g, 

3.99 mmol, 1.0 eq) was dissolved in EtOH (5 mL, dry) and Pd/C 

(56.1 mg, 0.0399 mmol, 0.01 eq) was added. 5bar hydrogen 

pressure was applied and the reaction mixture stirred vigorously 

overnight in an autoclave. The crude mixture was filtered over HyFlo and washed 

with EtOH. The solvent was removed under reduced pressure and the crude mixture 

purified by silica gel column chromatography using pentane/tertbutyl methyl ether 

(9:1 ->1:1) as eluent to yield (390 mg, 2.43 mmol, 61%) as colourless oil.52 

TLC: (SiO2, pentane/TBME (9:1)): Rf = 0.27. 

Diastereoisomer 1: 1H-NMR (600 MHz, CDCl3, TMS, δ in ppm): 4.56-4.59 (m, 1H, 

H1`); 3.85-4.02 (m, 2H, H2, H5`); 3.61 (dd, 2JHH = 10.9 Hz, 3JHH = 2.6 Hz, 1H, H1); 

3.50-3.58 (m, 1H, H5`); 3.47 (dd, 2JHH = 10.9 Hz, 3JHH = 8.3 Hz, 1H, H1); 1.71-1.90 

(m, 2H, H2`, H4`); 1.49-1.65 (m, 4H, H2`, H3`, H4`), 1.14 (d, 3JHH = 6.5 Hz, 3H, H3).  

Diastereoisomer 2: 1H-NMR (600 MHz, CDCl3, TMS, δ in ppm): 4.56-4.59 (m, 1H, 

H1`); 3.85-4.02 (m, 2H, H2, H5`); 3.73 (dd, 2JHH = 10.2 Hz, 3JHH = 2.9 Hz, 1H, H1); 

3.50-3.58 (m, 1H, H5`); 3.29 (dd, 2JHH = 10.2 Hz, 3JHH = 7.9 Hz, 1H, H1); 1.71-1.90 

(m, 2H, H2`, H4`); 1.49-1.65 (m, 4H, H2`, H3`, H4`), 1.16 (d, 3JHH = 6.4 Hz, 3H, H3).  

Diastereoisomer 1: 13C-NMR (151 MHz, CDCl3, TMS, δ in ppm): 18.9 (1C, C3); 20.1 

(1C, C3`); 25.5 (1C, C4`); 30.9 (1C, C2`); 63.2 (1C, C5`); 66.87 (1C, C2); 74.3 (1C, 

C1); 100.29 (1C, C1`). 

Diastereoisomer 2: 13C-NMR (151 MHz, CDCl3, TMS, δ in ppm): 18.9 (1C, C3); 20.1 

(1C, C3`); 25.5 (1C, C4`); 30.9 (1C, C2`); 63.2 (1C, C5`); 66.87 (1C, C2); 74.3 (1C, 

C1); 100.32 (1C, C1`). 
 
Synthesis of (S)-(2-(benzyloxy)propoxy)(tert-butyl)dimethylsilane (b20) 

A solution of (S)-2-(benzyloxy)propan-1-ol (b4) (1.0 g, 6.02 

mmol, 1.0 eq), 1H-imidazole (2.7 g, 39.7 mmol, 6.6 eq) and 

TBDMSCl ( 2.9 g, 19.3 mmol, 3.2 eq) in anhydrous DMF (8 

mL) was stirred at rt. overnight. The reaction was quenched 

with MeOH (2 mL) and the solvent removed under reduced 

pressure. The crude mixture was purified by silica gel column 

chromatography using pentane/tertbutyl methyl ether (1:1) as eluent to yield the title 

compound (570 mg, 2.03 mmol, 34%) as colourless oil.52 
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TLC: (SiO2, pentane/TBME (1:1)): Rf = 0.95. 
1H-NMR (400 MHz, CDCl3, TMS, δ in ppm): 7.30 - 7.37 (m, 4H, H3``, H4``); 7.24-7.29 

(m, 1H, H5``); 4.62 (“s”, 2H, H1``); 3.70 (dd, 2JHH = 10 Hz, 3JHH = 5.7 Hz, 1H, H1); 

3.60 (ddq, 3JHH = 6.2 Hz, 3JHH = 5.7 Hz, 3JHH = 5.3 Hz, 1H, H2); 3.52 (dd, 2JHH = 10 

Hz, 3JHH = 5.3 Hz, 1H, H1); 1.17 (d, 3JHH = 6.2 Hz, 3H, H3); 0.90 (s, 9H, H4`); 0.06 

(broad s, 6 H, H1`, H2`). 
13C-NMR (101 MHz, CDCl3, TMS, δ in ppm): -5.23 (1C, C1`), -5.15 (1C, C2`), 17.7 

(1C, C3), 18.5 (1C, C3`), 26.1 (3C, C4`), 67.4 (1C, C1), 71.4 (1C, C1``), 75.9 (1C, 

C2), 127.5 (1C, C5``), 127.7 (2C, C3``), 128.4 (2C, C4``), 139.2 (1C, C2``). 

 
Synthesis of (S)-1-((tert-butyldimethylsilyl)oxy)propan-2-ol (b21) 

(S)-(2-(benzyloxy)propoxy)(tert-butyl)dimethylsilane (500 mg, 1.78 

mmol, 1.0 eq) was dissolved in EtOH and Pd/C (13 mg, 0.009 

mmol, 0.005 eq, 10%) was added. Hydrogenation was performed 

in an autoclave with 10 bar H2 pressure and stirred for 2 hours. The crude mixture 

was filtered over HYFLO and washed with ethanol and the solvent removed under 

reduced pressure.52 
1H-NMR (400 MHz, 298 K, δ in ppm): 3.90 - 3.79 (m, 1H, H2); 3.61 (dd, 2JH,H = 9.9 

Hz, 3JH,H = 3.4 Hz, 1H, H1); 3.36 (dd, 2JH,H = 9.9 Hz, 3JH,H = 7.8 Hz, 1H, H1); 2.48 (bs, 

1H, OH); 1.13 (d, 3JH,H = 6.3 Hz, 3H, H3); 0.93 (s, 9H, H4`); 0.095 (s, 3H, H1`); 0.093 

(s, 3H, H2`).  
13C-NMR (63 MHz, 298 K, CDCl3, δ in ppm): -5.22 (2C, C1`, C2`); 18.33 (1C, C3); 

25.8 (1C, C3`); 26.0 (3C, C4`); 68.06 (1C, C1); 68.67 (1C, C2). 

 
Synthesis of (S)-2-(benzyloxy)propyl acetate (b23) 

(S)-2-(benzyloxy)propan-1-ol (b4) (2.0 g, 12 mmol, 1.0 eq) was 

dissolved in THF (10 mL) and acetyl chloride (0.95 mL) 13.2 

mmol, 1.1 eq) was added. The resulting reaction mixture was 

stirred overnight. The solvent was removed under reduced 

pressure and pure product (2.45 g, 11.8 mmol, 98%) was 

obtained without further purification.52 
1H-NMR (400 MHz, 298 K, δ in ppm): 7.25 - 7.37 (m, 5H, H3``-H5``); 4.62 (d, 2JH,H = 

12.0 Hz, 1H, H1``); 4.57 (d, 2JH,H = 12.0 Hz, 1H, H1``); 4.12 (dd, 2JH,H = 11.6 Hz, 3JH,H 
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= 4.4 Hz, 1H, H1); 4.08 (dd, 2JH,H = 11.6 Hz, 3JH,H = 6.0 Hz, 1H, H1); 3.72 - 3.79 (m, 

1H, H2); 2.07 (s, 3H, H2`); 1.22 (d, 3JH,H = 6.4 Hz, 3H, H3).  
13C-NMR (101 MHz, CDCl3, TMS, δ in ppm): 17.0 (1C, C3); 21.1 (1C, C2`); 67.5 (1C, 

C1); 71.1 (1C, C1``); 72.7 (1C, C2); 127.75 (1C, C5``); 127.77 (2C, C3``); 128.51 

(2C, C4``); 138.6 (1C, C2``); 171.1 (1C, C1`). 

 
Synthesis of (S)-2-hydroxypropyl acetate (b24) 

(S)-2-(benzyloxy)propyl acetate (b23) (1.0 g, 4.8 mmol, 3.4 eq) was 

dissolved in EtOH (5 mL) and Pd/C (20 mg, 0.14 mmol, 0.1 eq) was 

added. Hydrogen (10 bar) was applied and stirred at rt. overnight. 

The reaction mixture was filtered over HYFLO and washed with ethanol (40 mL). The 

crude mixture was purified by silica gel column chromatography using pentane/tBME 

2:1 as eluent. The product was obtained as 90:1 mixture of 1 and 2 protected 

product! Ethanol causes travelling of the acetyl group (about 10%), which cannot be 

removed by column chromatography.52 

TLC: (SiO2, pentane/TBME (2:1)): Rf = 0.2. 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 4.11 (dd, 2JH,H = 11.1 Hz, 3JH,H = 3.0 Hz, 

1H, H1); 4.02-4.06 (m, 1H, H2); 3.92 (dd, 2JH,H = 11.1 Hz, 3JH,H = 7.3 Hz, 1H, H1); 

2.10 (s, 3H, H2); 1.21 (d, 3JH,H = 6.4 Hz, 3H, H3).  
13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 19.1 (1C, C3); 20.9 (1C, C2`); 66.1 

(1C, C2); 69.7 (1C, C1); 171.1 (1C, C1`). 

 
Synthesis of (S)-2-(benzyloxy)propyl benzoate (b26) 

(S)-2-(benzyloxy)propan-1-ol (b4) (4.0 g, 24.1 mmol, 1.0 

eq) was dissolved in toluene (180 mL), benzoyl chloride 

(4.2 mL, 36.1 mmol, 1.5 eq), triethylamine (3.4 mL, 24.1 

eq, 1.0 eq) and N,N-dimethylaminopyridine (294 mg, 2.41 

mmol, 0.1 eq) were added and the resulting reaction 

mixture was stirred at rt. Rapidly a white precipitate was 

formed. TLC (pentane/TBME 9:1) indicated full conversion after 4 hours. The 

precipitate was filtered off and the solvent removed under reduced pressure. 

Filtration over silica (pentane/TBME 9:1) delivered pure product as pale yellow oil.62 

TLC: (SiO2, pentane/TBME (9:1)): Rf = 0.76. 
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1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 8.02-8.08 (m, 2H, H3`); 7.64-7.71 (m, 

1H, H5`); 7.41-7.47 (m, 2H, H4`); 7.23-7.39 (m, 5H, H3``-H5``); 4.67 (d, 2JH,H = 12.0 

Hz, 1H, H1``), 4.63 (d, 2JH,H = 12.0 Hz, 1H, H1``), 4.29-4.40 (m, 2H, H1); 3.91 (pd, 

3JH,H = 6.3 Hz, 3JH,H = 4.5 Hz, 1H, H2); 1.31 (d, 3JH,H = 6.3 Hz, 3H, H3). 

13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 17.2 (1C, C3); 68.0 (1C, C1); 71.2 (1C, 

C1``); 72.8 (1C, C2); 127.73 (1C, C5``); 127.78 (2C, C3``); 128.5 (4C, C4`, C4``); 

129.1 (1C, C2`); 129.8 (2C, C3`); 133.1 (1C, C5`); 135.4 (1C, C2``); 166.6 (1C, C1`). 

 
Synthesis of (2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl benzoate (b28) 

(2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propan-1-ol (b9) 

(3.1 g, 19.3 mmol, 1.0 eq) was dissolved in toluene 

(120 mL), benzoyl chloride (3.4 mL, 29.0 mmol, 1.5 

eq), triethylamine (2.7 mL, 19.3 mmol, 1.0 eq) and N,N-

dimethylaminopyridine (236 mg, 1.9 mmol, 0.1 eq) 

were added and the resulting reaction mixture was stirred at rt. Rapidly a white 

precipitate was formed. After 3 hours the precipitate was filtered off and washed with 

toluene. The solvent was removed under reduced pressure and purified by silica gel 

column chromatography pentane/TBME (9:1) followed by a second column using 

cyclohexane/ethyl acetate (95:5 -> 9:1) as eluent. The titel compound (2.02 g, 7.64 

mmol, 40%) was obtained as colourless oil.62 

TLC: (SiO2, cyclohexane/ethyl acetate (95:5)): Rf = 0.28; 0.09. 

Diastereoisomer 1: 1H-NMR (600 MHz, CDCl3, TMS, δ in ppm): 8.02-8.05 (m, 2H, 

H3`); 7.53-7.59 (m, 1H, H5`); 7.41-7.47 (m, 2H, H4`); 4.83 (dd, 3JHH = 4.7 Hz, 3JHH = 

2.9 Hz, 1H, H1``); 4.34 (dd, 2JHH = 11.4 Hz, 3JHH = 4.2 Hz, 1H, H1); 4.25 (dd, 2JHH = 

11.4 Hz, 3JHH = 6.5 Hz, 1H, H1); 4.12-4.20 (m, 1H, H2); 3.85-3.96 (m, 1H, H5``); 3.49-

3.55 (m, 1H, H5``); 1.78-1.88 (m, 1H, H3``); 1.67-1.80 (m, 1H, H2``); 1.53-1.64 (m, 

1H, H2``); 1.49-1.55(m, 1H, H3``); 1.43-1.60 (m, 2H, H4``); 1.34 (d, 3JHH = 6.4 Hz, 

3H, H3). 

Diastereoisomer 2: 1H-NMR (600 MHz, CDCl3, TMS, δ in ppm): 8.05-8.09 (m, 2H, 

H3`); 7.53-7.59 (m, 1H, H5`); 7.41-7.47 (m, 2H, H4`); 4.80 (t, 3JHH = 3.4 Hz, 1H, 

H1``); 4.40 (dd, 2JHH = 11.2 Hz, 3JHH = 6.4 Hz, 1H, H1); 4.30 (dd, 2JHH = 11.2 Hz, 3JHH 

= 4.6 Hz, 1H, H1); 4.12-4.20 (m, 1H, H2); 3.85-3.96 (m, 1H, H5``); 3.44-3.49 (m, 1H, 

H5``); 1.78-1.88 (m, 1H, H3``); 1.67-1.80 (m, 1H, H2``); 1.53-1.64 (m, 1H, H2``); 

1.49-1.55(m, 1H, H3``); 1.43-1.60 (m, 2H, H4``); 1.24 (d, 3JHH = 6.3 Hz, 3H, H3). 

O
O

1 2 3

1``
2`` 3``

4``
5``

O

1`
2`3`4`

5` O



Experimental Section 95 
 

 

Diastereoisomer 1: 13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 18.5 (1C, C3); 19.6 

(1C, C3``); 25.40 (1C, C4``); 30.8 (1C, C2``); 62.8 (1C, C5``); 67.8 (1C, C1); 70.9 

(1C, C2); 98.8 (1C, C1``); 128.3 (2C, C4`); 129.53 (2C, C3`); 130.2 (1C, C2`); 133.0 

(1C, C5`); 166.4 (1C, C1`). 
Diastereoisomer 2: 13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 16.4 (1C, C3); 19.6 

(1C, C3``); 25.40 (1C, C4``); 30.8 (1C, C2``); 61.9 (1C, C5``); 68.3 (1C, C1); 69.5 

(1C, C2); 96.0 (1C, C1``); 128.3 (2C, C4`); 129.64 (2C, C3`); 130.2 (1C, C2`); 133.0 

(1C, C5`); 166.4 (1C, C1`). 
 
Synthesis of (S)-2-hydroxypropyl benzoate (b29) 

(2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl benzoate (b28) 

(1.0 g, 3.78 mmol, 1.0 eq) was dissolved in acetic 

acid/THF/water (4:2:1, 55 mL) and heated to 45 °C for 4 hours. 

The solvents were removed under reduced pressure (20 °C) and purified by silica gel 

column chromatography using pentane/tert-butylmethylether (4:1) followed by a 

second column using dichloromethane/ethyl acetate (9:1) as eluent to yield the title 

compound (500 mg, 2.77 mmol, 73%) as colourless oil.52 

TLC: (SiO2, dichloromethane/ethyl acetate (9:1)): Rf = 0.33. 

ESI-MS: calc. 203.1 (M+Na); measured 203.1 (M+Na). 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 8.02-8.10 (m, 2H, H3`); 7.52-7.62 (m, 

1H, H5`); 7.41-7.50 (m, 2H, H4`); 4.30-4.40 (m, 1H, H1); 4.15-4.25 (m, 2H, H1, H2); 

2.17 (d, 3JH,H = 3.8 Hz, 1H, OH); 1.30 (d, 3JH,H = 6.1 Hz, 3H, H3). 
13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 19.4 (1C, C3); 66.4 (1C, C2); 70.2 (1C, 

C3); 128.6 (2C, C4`); 129.8 (2C, C3`); 130.0 (1C, C2`); 133.3 (1C, C5`); 166.8 (1C, 

C1`).  

 
Synthesis of ethyl (S)-2-(((trifluoromethyl)sulfonyl)oxy)propanoate 

Triflic anhydride (1.42 mL, 8.55 mmol, 1.01 eq) was dissolved in 

anhydrous dichloromethane (20 mL) and cooled (ispropanol/dry ice). 

L-lacticacid ethyl ester (1.0 g, 0.97 mL, 8.47 mmol, 1.0 eq) and 

Pyridine (0.69 mL, 8.47 mmol, 1.0 eq) were dissolved in 

dichloromethane (10 mL) and added dropwise. The resulting reaction mixture was 

stirred for 10 min before warmed to rt. over 10 min. The solvent was removed under 

reduced pressure at 0 °C. The crude reaction mixture was filtered over silica gel (4 
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cm, water cooled column) using dichoromethane/hexane (4:1) as eluent. The solvent 

was removed under reduced pressure and the resulting product (60 %) stored at -20 

°C in dichloromethane.25 

TLC: (SiO2, dichloromethane/hexane (4:1)): Rf = 0.85. 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 5.22 (q, 3JH,H = 7.0 Hz, 1H, H2); 4.30 

(qd, 3JH,H = 7.2 Hz, 2JH,H = 2.0 Hz, 2H, H1`); 1.71 (d, 3JH,H = 7.0 Hz, 3H, H3); 1.33 (t, 
3JH,H = 7.2 Hz, 3H, H2`). 
19F-NMR (376 MHz, CDCl3, 298 K, δ in ppm): -75.2 (3F, CF3).  

 

Synthesis of ethyl (R)-2-((2S,5S,8S,11S)-4,7,10-tribenzyl-2,5,8,11-tetramethyl-
1,4,7,10-tetraazacyclododecan-1-yl)propanoate (B15) 

Cyclen (150 mg, 0.66 mmol, 1.0 eq) was dissolved in 

dichloromethane (20 mL) and sodium hydride (34 mg, 

0.85 mmol, 1.3 eq, 60% in oil) was added and stirred for 

5 min before ethyl (S)-2-(((trifluoromethyl)sulfonyl)-

oxy)propanoate (164 mg, 0.66 mmol, 1.0 eq) in 

dichloromethane (10 mL) was added dropwise. The 

resulting mixture of mono-, bis-functionalized cyclone and 

starting material was quenched with water, extracted with dichloromethane, dried 

over sodium sulphate and the solvent removed under reduced pressure. The crude 

mixture was redissolved in dichloromethane (2 mL) and added dropwise to a 

suspension of benzyl bromide (291 µL, 2.4 mmol, 4.0 eq) and sodium hydride (97 mg 

(60%), 2.4 mmol, 4.0 eq) in dry THF/DMF (2:1, 12 mL) at -10 °C. The reaction 

mixture was stirred for 1 hour before warmed to rt. (30 min) and finally heated to 50 

°C for 2 hours. The reaction mixture was poured into a mixture of water/pentane 

(2.5:1.5 (8 mL)). The organic layer was separated, washed with water, brine before 

dried over sodium sulphate. The solvent was removed under reduced pressure and 

the crude mixture purified by silica gel column chromatography using 

chloroform/ethanol (9:1) as eluent. Further purification was performed with 

preparative HPLC chromatography. The title compound was obtained as one to one 

mixture with the 4 times benzyl protected cyclen.  

ESI-MS: calc. 599.4 (M+1); measured 599.7 (M+1). 
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Synthesis of (R)-2-((2S,5S,8S,11S)-4,7,10-tribenzyl-2,5,8,11-tetramethyl-1,4,7,10-
tetraazacyclododecan-1-yl)propan-1-ol (B16) 

B15 (300 mg, 0.5 mmol, 1.0 eq) in diethylether (2 mL) 

was added dropwise to LiAlH4 (28.5 mg, 0.751 mmol, 1.5 

eq) in diethylether (10 mL) at 0 °C. The reaction mixture 

was warmed to rt. before heated to reflux overnight. The 

reaction was quenched with water, NaOH (15%). The 

precipitate was filtered off, washed with ether. The 

combined organic layer was dried over sodium sulphate and the solvent was 

removed under reduced pressure. The title compound was used without further 

purification. 

ESI-MS: calc. 557.4 (M+1); measured 557.7 (M+1). 

 
Synthesis of S-((R)-2-((2S,5S,8S,11S)-4,7,10-tribenzyl-2,5,8,11-tetramethyl-
1,4,7,10-tetraazacyclododecan-1-yl)propyl) ethanethioate (B17) 

The crude mixture of B16 (100 mg, 018 mmol, 1.0 eq) 

was dissolved in dry THF (4 mL) and  cooled to 0 °C. 

Methanesulfonyl chloride (41 µL, 0.54 mmol, 3.0 eq) and 

triethylamine (151 µL, 1.08 mmol, 6.0 eq) were added 

slowly and stirred for additional 10 min at 0 °C before 

warmed to rt. and stirred until a high conversion was 

indicated by ESI-MS (disappearance of the starting 

material peak). The reaction mixture was neutralized with 0.1 N HCl and extracted 

with chloroform. The combined organic layer was dried over sodium sulphate and the 

solvent removed under reduced pressure. 

The crude reaction mixture was redissolved in THF (10 mL) and potassium 

thioacetate (92 mg, 0.79 mmol, 5.0 eq) was added and heated to reflux for 7 hours. 

The reaction mixture was quenched with water and extracted with chloroform, dried 

over sodium sulphate and the solvent removed under reduced pressure. Only traces 

of the desired product were obtained by ESI-MS.  

ESI-MS: calc. 615.4 (M+1); measured 615.7 (M+1). 
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Synthesis of ethyl (S)-2-((tert-butyldimethylsilyl)oxy)propanoate (c1) 
To a mixture of L-lactic acid ethyl ester (5.0 g, 42.3 mmol, 1.0 

eq) and imidazole (3.46 g, 50.8 mmol, 1.2 eq) in DMF (20 mL) 

was added TBDMSCl (7.66 g, 50.8 mmol, 1.2 eq) at 0 °C. The 

reaction was warmed to rt. and stirred over the weekend. The 

reaction was quenched with water and the aqueous layer extracted with ether. The 

combined organic layer was washed with brine, dried over sodium sulphate and the 

solvent removed under reduced pressure. The crude mixture was purified with 

pentane/dichloromethane (2:1) to yield the title compound (9.01 g, 38.8 mmol, 92 %) 

as colourless oil.63  

TLC: (SiO2, pentane/dichloromethane (2:1)): Rf = 0.93. 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 4.31 (q, 3JH,H = 6.7 Hz, 1H, H2); 4.06-

4.25 (m, 2H, H1`); 1.39 (d, 3JH,H = 6.7 Hz, 3H, H3); 1.27 (t, 3JH,H = 7.1 Hz, 3H, H2`); 

0.90 (s, 9H, H4``); 0.10 (s, 3H, H1``); 0.07 (s, 3H, H2``). 
13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): -5.1 (1C, C2``); -4.8 (1C, C1``); 14.3 

(1C, C2`); 18.5 (1C, C3``); 21.5 (1C, C3); 25.9 (3C, C4``); 60.9 (1C, C1`); 68.6 (1C, 

C2); 174.3 (1C, C1). 

 
Synthesis of (S)-2-((tert-butyldimethylsilyl)oxy)-N-methoxy-N-methyl-propan-
amide (c2) 

To a mixture of (S)-2-((tert-butyldimethylsilyl)oxy)propanoate 

(c1) (2.0 g, 8.61 mmol, 1.0 eq) and N,O-

dimethylhydroxylamine hydrochloride (1.3 g, 13.3 mmol, 1.55 

eq) in THF (60 mL) at -20 °C (the temperature was kept 

constant with a cryostate) under inert conditions was added 

isopropyl magnesium chloride (2M in THF, 12.9 mL, 25.8 mmol, 3.0 eq) over 1h 

under vigorous stirring. After 2h reaction the mixture was warmed to up to 5 °C over 

1h. The cooling bath was removed and the slurry turned into a homogeneous 

solution. The reaction was quenched with saturated ammonium chloride solution and 

the aqueous layer extracted with diethylether. The combined organic layer was dried 

over sodium sulphate and the solvent removed under reduced pressure. The crude 

mixture was purified by silica gel column chromatography using pentane/tertbutyl 

methyl ether (9:1 -> 1:1 -> 1:2) as eluent to yield the title compound (1.0 g, 4.04 

mmol, 47%) as colourless oil.63 
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TLC: (SiO2, pentane/TBME (9:1)): Rf = 0.26 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 4.68 (q, 3JH,H = 6.6 Hz, 1H, H2); 3.70 (s, 

3H, H2`); 3.21 (s, 3H, H1`); 1.36 (d, 3JH,H = 6.6 Hz, 3H, H3); 0.90 (s, 9H, H4``); 0.10 

(s, 3H, H1``); 0.07 (s, 3H, H2``). 

 
Synthesis of (S)-4-((tert-butyldimethylsilyl)oxy)pent-1-en-3-one (c3) 

To a solution of (S)-2-((tert-butyldimethylsilyl)oxy)-N-methoxy-

N-methyl-propan-amide (500 mg, 2.02 mmol, 0.5 eq) in THF 

(19 mL) was added vinylmagnesium bromide solution (1M in 

THF, 12 mmol, 12 mL, 3.2 eq) at - 15 °C and the mixture was 

warmed to  rt. over 5 hours. The reaction was quenched with NH4Cl aq. and the 

resulting mixture was extracted with TBME. The combined organic layer was dried 

over sodium sulphate and the solvent removed under reduced pressure. The crude 

mixture was purified by silica gel column chromatography using pentane/tert-butyl 

methyl ether (9:1) as eluent and the title compound (220 mg, 1.03 mmol, 51%) was 

isolated as yellow oil.63 

TLC: (SiO2, pentane/TBME (9:1)): Rf =  0.91. 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 6.86 (dd, 2JH,H = 17.4 Hz, 3JH,H = 10.6 

Hz, 1H, H2`trans); 6.40 (dd, 2JH,H = 17.4 Hz, 3JH,H = 1.9 Hz, 1H, H2`cis); 5.76 (dd, 3JH,H = 

10.6 Hz, 3JH,H = 1.9 Hz, 1H, H1`); 4.30 (q, 3JH,H = 6.8 Hz, 1H, H2); 1.31 (d, 3JH,H = 6.8 

Hz, 3H, H3); 0.91 (s, 9H, H4``); 0.07 (s, 3H, H1``); 0.06 (s, 3H, H2``). 
13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): -4.83 (1C, C2``); -4.67 (1C, C1``); 21.1 

(1C, C3); 25.9 (3C, C4``); 30.5 (1C, C3``); 74.4 (1C, C2); 129.6 (1C, C2`); 130.7 (1C, 

C1`); 202.0 (1C, C1). 

 
Synthesis of (S)-2-hydroxy-N-methoxy-N-methylpropanamide (c4) 

To a mixture of L-Lactic acid ethylester  (2.95 g, 2.86 mL, 25 mmol, 

1.5 eq) and N,O-dimethylhydroxylamine hydrochloride (4.06 g, 41.7 

mmol, 2.50 eq) in THF (30 mL) at -20 °C (the temperature was kept 

constant with a cryostate) under inert conditions was added isopropyl 

magnesium chloride (2M in THF, 25 mL, 50 mmol, 3.0 eq) over 1h under vigorous 

stirring. After 2h reaction the mixture was warmed to up to 5 °C over 1h. The cooling 

bath was removed and the slurry turned into a homogeneous solution. The reaction 

was quenched with saturated ammonium chloride solution and the aqueous layer 

extracted with diethylether. The combined organic layer was dried over sodium 
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sulphate and the solvent removed under reduced pressure. The crude mixture was 

purified by silica gel column chromatography pentane/tert-butyl methyl ether (1:1 -> 

0:1) to yield the title compound (1.98 g, 14.9 mmol, 60%) as colourless oil.63 

TLC: (SiO2, pentane/TBME (1:1)): Rf = 0.09. 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 4.49 (p, 3JH,H = 6.9 Hz, 1H, H2); 3.72 (s, 

3H, H2`); 3.34 (d, 3JH,H = 6.9 Hz, 1H, OH); 3.25 (s, 3H, H1`); 1.37 (d, 3JH,H = 6.9 Hz, 

3H, H3). 

 
Synthesis of (S)-1-(methoxy(methyl)amino)-1-oxopropan-2-yl trifluoromethane-
sulfonate (c5) 

 Triflic anhydride (312 µL, 1.88 mmol, 1.01 eq) was dissolved in 

dichloromethane (10 mL) and cooled to -78 °C. (S)-2-hydroxy-N-

methoxy-N-methylpropanamide (c4) (250 mg, 1.88 mmol, 1.01 eq) 

and pyridine (150 µL, 1.86 mmol, 1.0 eq) were dissolved in 

dichloromethane (5 mL) and added dropwise. The resulting mixture was stirred at -78 

°C for 10 min, warmed to rt. over 45 min, filtered over cooled silica using 

dichlormethane/hexane (4:1) as eluent to yield the title compound (400 mg, 1.51 

mmol, 80%) as yellowish oil.25 

TLC: (SiO2, dichloromethane/hexane (4:1)): Rf = 0.85. 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 5.58 (q, 3JH,H = 6.8 Hz, 1H, H2); 3.76 (s, 

3H, H2`); 3.25 (s, 3H, H1`); 1.66 (d, 3JH,H = 6.8 Hz, 3H, H3). 
19F-NMR (376 MHz, CDCl3, 298 K, δ in ppm): -75.28 (3F, CF3). 

 

Synthesis of (R)-N-methoxy-N-methyl-2-((2S,5S,8S,11S)-2,5,8,11-tetramethyl-
1,4,7,10-tetraazacyclododecan-1-yl)propanamide (C2) 

Cyclen (100 mg, 0.438 mmol, 1.0 eq) was dissolved in 

dichloromethane (10 mL) and sodium hydride (19.3 mg, 0.482 

mmol, 1.1 eq) added. The resulting mixture was stirred for 5 min, 

cooled to 0 °C before c5 (116 mg, 0.438 mmol, 1.0 eq) was added 

dropwise. After the addition the reaction mixture was warmed to rt. 

and stirred overnight. The solvent was removed under reduced 

pressure and the crude mixture purified by preparative HPLC. The pH of the resulting 

HPLC-fractions was adjusted to 7 with ammonium acetate and extracted with 

chloroform.  
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Retention time: 11-14 min. 

ESI-MS: calc. 344.3 (M+1); measured 344.5 (M+1). 

 
Synthesis of bromoethene 

Potassium hydroxide (9.38 g, 167 mmol, 1.57 eq) in ethanol (80 mL) was 

heated to reflux and 1,2-dibromoethane was added dropwise over 1 hour. 

The resulting vinyl bromide was distilled over N2 stream (nitrogen is required to push 

the vinyl bromide to the condenser) and condensed in -70 °C cooling trap. The 

resulting mixture was washed with ice-cold water and dried over K2CO3. The 

resulting mixture was purified by distillation (50 °C) to yield a colourless oil, the 

slightly higher boiling substances contained ethanol as by-product.64 

Bp.: 50 °C (1bar) 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 6.38 (dd, 2JH,H = 15.0 Hz, 3JH,H = 7.2 Hz, 

1H, H2trans); 5.93 (dd, 3JH,H = 7.2 Hz, 3JH,H = 1.9 Hz, 1H, H1); 5.80 (dd, 2JH,H = 15.0 

Hz, 3JH,H = 1.9 Hz, 1H, H2cis). 
13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 114.1 (1C, C1); 122.1 (1C, C2). 

 
Synthesis of 2-(((S)-1-bromopropan-2-yl)oxy)tetrahydro-2H-pyran (d1) 

(2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propan-1-ol (6.0 g, 37.5 

mmol, 1.0 eq) was  dissolved in dichloromethane (160 mL), 

cooled to 0 °C and triphenylphosphine (29.5 g, 112 mmol, 3.0 eq), 

carbon tetrabromide (18.6 g, 56.2 mmol, 1,5 eq) and triethylamine 

(36.8 mL, 262 mmol, 7.0 eq) were added. The resulting reaction 

mixture was stirred at 0 °C for 18 hours before water (240 mL) were added. The 

phases were separated and the aqueous layer was reextracted with dichloromethane 

three times. The combined organic layer was dried over sodium sulphate and the 

solvent removed under reduced pressure. The crude mixture was purified by silica 

gel column chromatography using pentane/TBME (9:1 -> 1:1) as eluent to yield the 

title compound as colourless oil.65 

TLC: (SiO2, pentane/TBME (9:1)): Rf = 0.58. 

Diastereoisomer 1: 1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 4.75 (dd, 3JH,H = 4.6 

Hz, 3JH,H = 2.9 Hz, 1H, H1`); 3.94-4.03 (m, 1H, H2); 3.86-3.93 (m, 1H, H5`); 3.47-3.56 

(m, 1H, H1); 3.33-3.41 (m, 2H, H1, H5`); 1.78-1.88 (m, 1H, H3``); 1.67-1.80 (m, 1H, 
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H2`); 1.53-1.64 (m, 1H, H2`); 1.49-1.55(m, 1H, H3`); 1.48-1.64 (m, 2H, H4`); 1.34 (d, 
3JH,H = 6.4 Hz, 3H, H3). 

Diastereoisomer 2: 1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 4.71-4.74 (m, 1H, 

H1`); 3.94-4.03 (m, 2H, H2, H5); 3.47-3.56 (m, 2H, H1, H5`); 3.33-3.41 (m, 1H, H1); 

1.78-1.88 (m, 1H, H3``); 1.67-1.80 (m, 1H, H2`); 1.53-1.64 (m, 1H, H2`); 1.49-1.55 

(m, 1H, H3`); 1.48-1.64 (m, 2H, H4`); 1.27 (d, 3JH,H = 6.2 Hz, 3H, H3). 

Diastereoisomer 1: 13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 19.64 (1C, C3`); 

20.4 (1C, C3); 25.41 (1C, C4`); 30.71 (1C, C2`); 36.6 (1C, C1); 62.71 (1C, C5`); 72.3 

(1C, C2); 98.4 (1C, C1`). 
Diastereoisomer 2: 13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 18.4 (1C, C3); 

19.45 (1C, C3`); 25.42 (1C, C4`); 30.96 (1C, C2`); 37.5 (1C, C1); 62.52 (1C, C5`); 

72.9 (1C, C2); 97.2 (1C, C1`). 
 
Synthesis of (2S)-N-benzyl-2-((tetrahydro-2H-pyran-2-yl)oxy)propan-1-amine 
(d2) 

Compound d1 (3.5g, 15.7 mmol) in THF (10 mL) was 

added dropwise to benzylamine (3.8 mL, 34.5 mmol, 

2.2 eq) in THF (25 mL) and stirred at rt. for 2 hours. 

The solvent was removed under reduced pressure and 

the crude mixture purified by silica gel column 

chromatography to yield the title compound (1.0 g, 4.01 mmol, 26%) as colourless oil. 

TLC: (SiO2, pentane:TBME (9:1)): Rf = 0.12; 0.04. 

Diastereoisomer 1: 1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 7.29-7.36 (m, 4H, 

H3`, H4`); 7.23-7.28 (1H, H5`); 4.68 (t, 3JH,H = 2.6 Hz, 1H, H1``); 3.85-3.97 (m, 2H, 

H5``); 3.77-3.83 (m, 2H, H1`); 3.43-3.55 (m, 1H, H2); 2.67 (dd, 2JH,H = 12.2 Hz, 3JH,H 

= 4.3 Hz, 1H, H1); 2.61 (dd, 2JH,H = 12.2 Hz, 3JH,H = 4.3 Hz, 1H, H1); 1.78-1.88 (m, 

1H, H3``); 1.67-1.80 (m, 1H, H2`); 1.53-1.64 (m, 1H, H2`); 1.49-1.55 (m, 1H, H3`); 

1.48-1.64 (m, 2H, H4`); 1.25 (d, 3JH,H = 6.3 Hz, 3H, H3). 

Diastereoisomer 2: 1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 7.29-7.36 (m, 4H, 

H3`, H4`); 7.23-7.28 (1H, H5`); 4.64-4.67 (m, 1H, H1``); 3.97-4.05 (m, 2H, H5``); 

3.77-3.83 (m, 2H, H1`); 3.43-3.55 (m, 1H, H2); 2.62-2.74 (m, 2H, H1); 1.78-1.88 (m, 

1H, H3``); 1.67-1.80 (m, 1H, H2`); 1.53-1.64 (m, 1H, H2`); 1.49-1.55 (m, 1H, H3`); 

1.48-1.64 (m, 2H, H4`); 1.13 (d, 3JH,H = 6.2 Hz, 3H, H3). 

Diastereoisomer 1: 13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 20.19 (1C, C3); 

20.28 (1C, C3``); 25.58 (1C, C4``); 31.38 (1C, C2``); 54.06 (1C, C1); 54.92 (1C, C1`); 
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63.2 (1C, C5``); 74.5 (1C, C2); 99.9 (1C, C1``); 127.0 (1C, C5`); 128.18 (2C, C3`); 

128.52 (2C, C4`); 140.60 (1C, C2`). 

Diastereoisomer 2: 13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 18.01 (1C, C3); 

20.44 (1C, C3``); 25.54 (1C, C4``); 31.50 (1C, C2``); 53.9 (1C, C1); 55.4 (1C, C1`); 

63.4 (1C, C5``); 71.6 (1C, C2); 97.0 (1C, C1``); 126.89 (1C, C5`); 128.22 (2C, C3`); 

128.45 (2C, C4`); 140.69 (1C, C2`). 

 
Synthesis of (2S)-N,N-dibenzyl-2-((tetrahydro-2H-pyran-2-yl)oxy)propan-1-
amine (d3) 

 (2S)-N-benzyl-2-((tetrahydro-2H-pyran-2-yl)oxy)propan-1-

amine (d2) (950 mg, 3.81 mmol, 1.0 eq) in dichloromethane 

(10 mL) was added dropwise to a suspension of benzyl 

bromide (592 µL, 4.95 mmol, 1.3 eq) and sodium hydride 

(198 mg, 4.95 mmol, 1.3 eq) in dry THF/DMF (2:1, 60 mL) 

at -10 °C. The reaction mixture was stirred for 1 hour before 

warmed to rt. (30 min) and finally heated to 50 °C for 2 

hours. The reaction mixture was poured into a mixture of water and pentane (2.5:1.5 

(40 mL)). The organic layer was separated, washed with water and brine before dried 

over sodium sulphate. The crude reaction mixture was purified by silica gel column 

chromatography.56 

TLC: (SiO2, pentane/TBME (60:1)): Rf = 0.25 
Diastereoisomer 1: 1H-NMR (600MHz, CDCl3, 298 K, δ in ppm): 7.34-7.32 (m, 4H, 

H4`); 7.29-7.32 (m, 4H, H3`); 7.21-7.24 (m, 2H, H5`); 3.95 (“sextett”, 3JH,H = 6.2 Hz, 

1H, H2); 3.87-3.92 (m, 1H, H5``); 3.61 (d, 2JH,H = 13.7 Hz, 1H, H1`); 3.58 (d, 2JH,H = 

13.7 Hz, 1H, H1`); 3.45-3.49 (m, 1H, H5``); 2.57 (dd, 2JH,H = 13.2 Hz, 3JH,H = 6.2 Hz, 

1H, H1); 2.39 (dd, 2JH,H = 13.2 Hz, 3JH,H = 5.9 Hz, 1H, H1); 1.76-1.83 (m, 1H, H3``); 

165-1.71 (m, 1H, H2``); 149-1.55 (m, 1H, H2``); 1.47-1.60 (m, 2H, H4``); 1.47-1.54 

(m, 1H, H4`); 1.19 (d, 3JH,H = 6.3 Hz, 3H, H3). 

Diastereoisomer 2: 1H-NMR (600MHz, CDCl3, 298 K, δ in ppm): 7.34-7.32 (m, 4H, 

H4`); 7.29-7.32 (m, 4H, H3`); 7.21-7.24 (m, 2H, H5`); 3.97-4.03 (m, 1H, H2); 3.92-

3.98 (m, 1H, H5``); 3.72 (d, 2JH,H = 13.7 Hz, 1H, H1`); 3.53 (d, 2JH,H = 13.7 Hz, 1H, 

H1`); 3.45-3.49 (m, 1H, H5``); 2.63 (dd, 2JH,H = 12.9 Hz, 3JH,H = 5.3 Hz, 1H, H1); 2.47 

(dd, 2JH,H = 12.9 Hz, 3JH,H = 7.3 Hz, 1H, H1); 1.76-1.83 (m, 1H, H3``); 165-1.71 (m, 

1H, H2``); 149-1.55 (m, 1H, H2``); 1.47-1.60 (m, 2H, H4``); 1.47-1.54 (m, 1H, H4`); 

1.11 (d, 3JH,H = 6.1 Hz, 3H, H3). 
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Diastereoisomer 1: 13C-NMR (151 MHz, CDCl3, 298 K, δ in ppm): 20.5 (1C, C3); 20.1 

(1C, C3``); 25.7 (1C, C4``); 31.2 (1C, C2``); 59.40 (2C, C1`); 59.73 (1C, C1); 62.84 

(1C, 5``); 72.0 (1C, C2); 98.9 (1C, C1``); 126.97 (2C, C5`); 128.3 (4C, C3`); 129.0 

(4C, C4`); 139.74 (2C, C2`). 

Diastereoisomer 2: 13C-NMR (151 MHz, CDCl3, 298 K, δ in ppm): 17.91 (1C, C3); 

19.71 (1C, C3``); 27.13 (1C, C4``); 31.19 (1C, C2``); 59.33 (1C, C1`); 59.58 (2C, C1); 

62.47 (1C, 5``); 70.0 (1C, C2); 96.0 (1C, C1``); 126.89 (2C, C5`); 128.28 (4C, C3`); 

129.05 (4C, C4`); 139.86 (2C, C2`). 
 
Synthesis of (S)-1-(dibenzylamino)propan-2-ol (d4) 

 (2S)-N,N-dibenzyl-2-((tetrahydro-2H-pyran-2-yl)oxy)propan-1-

amine (d3) (1.1 g, 3.24 mmol, 1.0 eq) was dissolved in acetic 

acid/THF/water (4:2:1, 55 mL) and heated to 45 °C for 4 hours. 

Water (10 mL) was added and extracted with DCM. The crude 

mixture was purified by silica gel column chromatography 

pentane/TBME 4:1 followed by a second column using DCM/EtOAc 

(9:1) as eluent. 

Rf.: dichloromethane/ethyl acetate (9:1) = 0.2.52 
1H-NMR (250 MHz, CDCl3, 298 K, δ in ppm): 7.18-7.40 (m, 10H, H3`-H5`); 4.29 (d, 
3JH,H = 4.2 Hz, 1H, OH); 3.74-3.86 (m, 1H, H2); 3.61 (d, 2JH,H = 13.8 Hz, 2H, H1`); 

3.48 (d, 2JH,H = 13.8 Hz, 2H, H1`); 2.36 (dd, 2JH,H = 12.6 Hz, 3JH,H = 6.1 Hz, 1H, H1); 

2.24, (dd, 2JH,H = 12.6 Hz, 3JH,H = 6.4 Hz, 1H, H1); 0.99 (d, 3JH,H = 6.1 Hz, 3H, H3). 
13C-NMR (63 MHz, CDCl3, 298 K, δ in ppm): 20.1 (1C, C3); 58.6 (2C, C1`); 61.6 (1C, 

C1); 63.3 (1C, C2); 127.4 (2C, C5`); 128.6 (4C, C3`); 129.2 (4C, C4`); 138.7 (2C, 

C2`). 

 
Synthesis of 2-((2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl)isoindoline-1,3-
dione (d6) 

To a solution of triphenylphosphine (3.3 g, 12.5 mmol, 

2.0 eq) in tetrahydrofuran (50 mL, degassed) was added 

diethylazodicarboxylate (2.29 mL, 12.5 mmol, 2.0 eq, 

40% in touluene). The resulting solution was stirred for 

30 min, before (2S)-2-((tetrahydro-2H-pyran-2-

yl)oxy)propan-1-ol (1000 mg, 6.24 mmol, 1.0 eq) and phtalimide (1.86 g, 12.5 mmol, 
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2.0 eq) in THF (20 mL, degassed) were added simultaneously and the reaction was 

stirred for another 10 min at 0 °C, overnight at rt. and concentrated under reduced 

pressure before purified by silica gel column chromatography using pentane/tert-

butylmethylether (4:1) as eluent to yield the title compound (900 mg, 3.11 mmol, 

50%) as white crystals in mixture with phtalimide.  No further purification was 

performed, directly deprotected as the purification of the alcohol has shown to be 

easier.66 Assignment of the carbon frequencies for the minor isomer was not 

possible. 

Rf: pentane/TBME (4:1) = 0.28. 

Diastereoisomer 1: 1H-NMR (500 MHz, CDCl3, 298 K, δ in ppm): 7.83-7.90 (m, 2H, 

H4`, H5`); 7.71-7.78 (m, 2H, H3`, H6`); 4.72 (t, 3JH,H = 3.9 Hz, 1H, H1``); 4.08-4.14 

(m, 1H, H2); 3.81-3.92 (m, 1H, H5``); 3.75 (d, 3JH,H = 5.5 Hz, 2H, H1); 3.48 (dt, 2JH,H = 

10.7 Hz, 3JH,H = 4.9 Hz, 1H, H5``); 1.76-1.80 (m, 1H, H3``); 1.61-1.67 (m, 1H, H2``); 

1.41-1.56 (m, 4H, H2``, H3``, H4``); 1.28 (d, 3JH,H = 6.4 Hz, 3H, H3). 

Diastereoisomer 2: 1H-NMR (500 MHz, CDCl3, 298 K, δ in ppm): 7.83-7.90 (m, 2H, 

H4`, H5`); 7.71-7.78 (m, 2H, H3`, H6`); 4.60 (dd, 3JH,H = 4.7 Hz, 3JH,H = 2.5 Hz, 1H, 

H1``); 4.14-4.19 (m, 1H, H2); 3.81-3.92 (m, 1H, H5``); 3.64 (dd, 2JH,H = 13.8 Hz, 3JH,H 

= 4.5 Hz, 2H, H1); 3.37 (ddd, 2JH,H = 11.2 Hz, 3JH,H = 7.8 Hz, 3JH,H = 3.5 Hz, 1H, H5``); 

3.18-3.28 (m, 1, H1); 1.76-1.80 (m, 1H, H3``); 1.61-1.67 (m, 1H, H2``); 1.41-1.56 (m, 

4H, H2``, H3``, H4``); 1.20 (d, 3JH,H = 6.3 Hz, 3H, H3). 

Diastereoisomer 1: 13C-NMR (126 MHz, CDCl3, 298 K, δ in ppm): 19.7 (1C, C3); 19.8 

(1C, C3``); 25.4 (1C, C4``); 30.5 (1C, C2``); 42.3 (1C, C1); 62.5 (1C, C5``); 71.0 (1C, 

C2); 98.6 (1C, C1``); 123.5 (2C, C3`, C6`); 132.6 (2C, C2`, C7`); 134.3 (2C, C4`, 

C5`); 168.5 (2C, C1`).  

 

 

Synthesis of (S)-2-(2-hydroxypropyl)isoindoline-1,3-dione (d7) 
2-((2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl)isoindoline-1,3-

dione (d6) (0.9 g, 3.1 mmol, 1.0 eq) was dissolved in acetic 

acid/THF/water (4:2:1, 35 mL) and heated to 45 °C for 6 hours. 

The solvent was removed under reduced pressure (30 °C) and purified by silica gel 

column chromatography using cyclohexane/ethyl acetate (4:1 -> 0:1) as eluent.52 

Rf.: cyclohexane/ethyl acetate (4:1) = 0.02. 
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1H-NMR (250 MHz, CDCl3, 298 K, δ in ppm): 7.82-7.90 (m, 2H, H4); 7.69-7.77 (m, 

2H, H3`); 4.04-4.19 (m, 1H, H2); 3.65-3.83 (m, 2H, H1); 2.36 (b”s”, 1H, OH); 1.26 (d, 
3JH,H = 6.3 Hz, 3H, H3). 
13C-NMR (63 MHz, CDCl3, 298 K, δ in ppm): 21.2 (1C, C3); 45.7 (1C, C1); 67.0 (1C, 

C2); 123.6 (2C, C3`); 132.1 (2C, C2`); 134.3 (2C, C4`); 169.1 (2C, C1`). 

 

Synthesis of (S)-3-(benzyloxy)butan-2-one (d9) 
(S)-2-(benzyloxy)propan-1-ol (b3) (5.0 g, 24.0 mmol, 1.0 eq) was 

dissolved in THF and cooled to -110 °C (internal temp) 

(ethanol/liquid nitrogen mixture) and methyllithium (16.5 mL, 1.6 M in 

diethylether, 26.4 mmol, 1.1 eq) was added dropwise over 30 min 

and the temperature kept below -98 °C. The reaction mixture was 

stirred for additional 25 min before TMSCl was added dropwise. The 

resulting mixture was stirred for 2 min before warmed to rt. and stirred for another 25 

min. The reaction was quenched with HCl (1 M, aq, 70 mL) and stirred for 60 min. 

The reaction mixture was neutralized with solid sodium carbonate. The resulting 

reaction mixture was extracted with dichloromethane, the organic phase was dried 

over sodium sulphate and the solvent removed under reduced pressure. The title 

compound (90%) was obtained in 90% purity and used without further purification.67 

Rf.: pentane/TBME (1:1) = 0.83. 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 7.27-7.42 (m, 5H, H3``-H5``); 4.57 (d, 
2JH,H = 11.7 Hz, 1H, H1``); 4.50 (d, 2JH,H = 11.7 Hz, 1H, H1``); 3.91 (q, 3JH,H = 6.9 Hz, 

1H, H2); 2.20 (s, 3H, H1`); 1.35 (d, 3JH,H = 6.9 Hz, 3H, H3). 
13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 17.5 (1C, C3); 25.2 (1C, C1`); 72.0 

(1C, C1``); 81.0 (1C, C2); 127.9 (2C, C3``); 128.1 (1C, C5``); 128.7 (2C, C4``); 137.7 

(1C, C2``). 

 

Synthesis of (S)-2-(1-(benzyloxy)ethyl)-2-methyl-1,3-dioxolane (d10) 
To (S)-3-(benzyloxy)butan-2-one (d9) (1.0g, 5.61 mmol, 1.0eq) in 

toluene (20 mL) was added ethylene glycol (3.1 mL, 56.1 mmol, 10.0 

eq) and p-TsOH (107 mg, 0.561 mmol, 0.1 eq) and heated to reflux 

in a dean stark apparatus for 30 hours. The reaction mixture was 

cooled to rt. and quenched with sodium carbonate (aq. sat, 10 mL) 

and extracted with ethyl acetate. The combined organic layer was 
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dried over sodium sulphate and the solvent removed under reduced pressure, before 

purified by silica gel column chromatography using pentane/tertbutyl methyl 

ether  (2:1) as eluent to yield the title compound (520 mg, 2.34 mmol, 42%) as 

colourless oil.52 

TLC: (SiO2, pentane/TBME 2:1)): Rf = 0.91 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 7.23-7.39 (m, 5H, H3``-H5``); 4.68 d, 
2JH,H = 12.1 Hz, 1H, H1``); 4.64 (d, 2JH,H = 12.1 Hz, 1H, H1``); 3.92-4.03 (m, 4H, H1```, 

H2```); 3.48 (q, 3JH,H = 6.4 Hz, 1H, H2); 1.34 (s, 3H, H1`); 1.19 (d, 3JH,H = 6.4 Hz, 3H, 

H3). 
13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 15.6 (1C, C3); 20.2 (1C, C1`); 65.1 

(1C, C1); 65.3 (1C, C2``); 72.2 (1C, C1``); 78.2 (1C, C2); 111.2 (1C, C3); 127.5 (1C, 

C5``); 127.8 (2C, C3``); 128.4 (2C, C4``); 139.1 (1C2``). 

 
Synthesis of (S)-1-(2-methyl-1,3-dioxolan-2-yl)ethan-1-ol (d11) 

(S)-2-(1-(benzyloxy)ethyl)-2-methyl-1,3-dioxolane (d10) (862 mg, 3.88 

mmol, 1.0 eq) was dissolved in methanol (5 mL) and palladium on 

activated charcoal (41.3 mg, 0.388 mmol, 0.1 eq, 10%) add. A hydrogen 

pressure of 10 bar was applied and the resulting suspension was stirred 

for 3 hours, filtered over celite and the solvent removed under reduced pressure. The 

crude mixture was purified by silica gel column chromatography using pentane/tert-

butylmethylether (2:1 -> 0:1) as eluent to yield the title compound (90 mg, 0.68 mmol, 

18 %) as colourless oil. 500 mg of the starting material could be recovered.52 

Rf.: pentane/tert-butyl methyl ether  (1:1) = 0.27. 
1H-NMR (400 MHz, CDCl3, 298 K, δ in ppm): 3.99-4.03 (m, 4H, H1``, H2``); 3.73 (q, 
3JHH = 6.5 Hz, 1H, H2); 1.63 (bs, 1H, OH); 1.31 (s, 3H, H1`); 1.21 (d, 3JHH = 6.5 Hz, 

3H, H3). 
13C-NMR (101 MHz, CDCl3, 298 K, δ in ppm): 16.8 (1C, C3); 19.1 (1C, C1`); 65.3 

(2C, C1``, C2``); 71.1 (1C, C2); 110.7 (1C, C3). 
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Synthesis of DOTA-M7-3R,4S-thiol-Metal (Lutetium + Samarium) 
DOTA-M7-(3R,4S)-thiol (10 mg, 0.02 mmol, 1.0 eq) was 

dissolved in ammonium acetate (100 mM, aq., 5 mL) and 

metal chloride hexa hydrate (3.0 eq) added. The pH was 

adjusted to 5.5 and the resulting solution heated to 75 °C for 

18 hours. A full conversion was obtained by ESI-MS and the 

excess metal removed by a single use SepPak C18 column on 

an peristaltic pump using water to water/methanol (2:8) as eluent.25 

ESI-MS: Lutetium complex calc. 676.2 (M+1); measured 698.2 (M+Na).  

ESI-MS: Samarium complex calc. 100% peaks 653.2 (M+1); measured 653.2 (M+1) 

the characteristic samarium pattern was detected. 

 
Synthesis of (2R,2'R,2''R,2'''R)-2,2',2'',2'''-((2S,5S,8S,11S)-2,5,8,11-tetramethyl-
1,4,7,10-tetraazacyclododecane-1,4,7,10-tetrayl)tetrapropionic acid 

(DOTA-M8-(4R,4S)-tertbutyl) (100 mg, 0.07 mmol, 1.0 eq) 

was dissolved in hydrochloric acid (1M, 20 mL) and heated to 

reflux for 60 minutes. The pH was adjusted to 7.0 using 

potassium hydroxide. The volume was reduced to 10 mL and 

the crude mixture purified by preparative HPLC under the 

standard conditions. The product was obtained as colourless 

waxy solid in 80% yield.52 

ESI-MS: calc. 517.3 (M+1); measured 517.4 (M+1); 539.3 (M + Na); 555.3 (M+K).  

 
Synthesis of DOTA-M8-4R,4S-Lutetium 

DOTA-M8-(4R,4S) (25 mg, 0.05 mmol, 1.0 eq) was dissolved 

in ammonium acetate (100 mM, aq., 5 mL) and Lutetium 

chloride hexa hydrate (56 mg, 0.15 mmol, 3.0 eq) the pH was 

adjusted to 5.5 and the resulting solution heated to 75 °C for 

18 hours. A full conversion was obtained by ESI-MS and the 

excess metal removed by a single use SepPak C18 column on 

an peristaltic pump using water to water/methanol (2:8) as eluent.25 

ESI-MS (negative mode): calc. 687.2 (M-1); measured 687.2 (M-1). 
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Synthesis of 2-bromo-1-(4-(methylthio)phenyl)ethan-1-one 
4`-(Methylthio)acetophenone (320 g, 1.92 mmol, 1.0 eq) was 

added to diethylether (20 mL) and a suspension was formed. 

NBS (356 mg, 2.0 mmol, 1.014 mmol) was added followed by 

catalytic amounts of ammonium acetate (30.8 mg, 0.4 mmol, 0.2 

eq), which rapidly induced the bromine formation. The reaction mixture was stirred at 

rt. overnight. The reaction mixture was filtered and the resulting precipitate was 

washed with ethyl acetate (about 20 mL). The resulting organic phase was extracted 

with water (3 times 10 mL), dried over sodium sulphate and the solvent removed 

under reduced pressure. The crude mixture was purified by silica gel column 

chromatography using cyclohexane/ethyl acetate (4:1) as eluent. The desired 

product (220 mg, 46.7 %)was obtained as white crystals.49 

TLC: (SiO2, cyclohexane/ethyl acetate (4:1)): Rf = 0.45. 
1H-NMR (400 MHz, 298 K, CDCl3, δ in ppm): 7.89-7.91 (m, 2H, H2); 7.28-7.30 (m, 

2H, H3); 4.40 (s, 2H, H2`); 2.54 (s, 3H, H1``). 
13C-NMR (101 MHz, 298 K, CDCl3, δ in ppm): 14.7 (1C, C1``); 30.6 (1C, C2`); 125.0 

(2C, C3); 129.3 (2C, C2); 130.1 (1C, C1); 147.4 (1C, C4); 190.4 (1C, C1`). 

 

Synthesis of 4-(pyridin-2-yldisulfanyl)aniline 

To a solution of 2,2`-dipyridyl disulphide (1.75 g, 7.99 

mmol, 1.0 eq) in ethanol/acetic acid (20:1, 53 mL) was 

added 4-aminothiophenol and stirred for 1 hour at rt.. 

The solvent was removed under reduced pressure and 

the remaining solid was redissolved in dichloromethane (70 mL). The mixture was 

extracted with sodium carbonate (aq. sat., 5 times), dried over sodium sulphate and 

the solvent removed under reduced pressure. The crude mixture was purified by 

silica gel column chromatography using chloroform/acetic acid/tetrahydrofuran 

(95:3:2) as eluent followed by a second column using cyclohexane/acetone 4:1 as 

eluent. Pure product (40 %) was obtained after recrystallization from hexane.25 
1H NMR  (400 MHz, 298 K, CDCl3, δ in ppm):  8.46 (ddd, 3JHH = 4.8, 4JHH = 1.8, 5JHH 

= 1 Hz, 1H, H5`), 7.76 (dt, 3JHH = 8.1, 4JHH = 1.1 Hz, 1H, H2`), 7.63 (ddd, 3JHH = 8.1, 
3JHH = 7.4, 4JHH = 1.8 Hz, 1H, H3`), 7.38 (m, 2H, H3), 7.07 (ddd, 3JHH = 7.4, 3JHH 4.8, 
4JHH 1.1 Hz, 1H, H4`), 6.62 – 6.56 (m, 2H, H2), 3.76 (s, 2H, NH2). 
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Synthesis of benzyl (R)-2-((2S,5S,8S,11S)-2,5,8,11-tetramethyl-1,4,7,10-
tetraazacyclododecan-1-yl)propanoate  
(M5-cyclen-(R)-Bn-lactate) 

M4-cyclen (416 mg, 1.28 mmol, 1.0 eq) was dissolved in 

dichloromethane (30 mL) and (S)-Bn-lactic acid-OTf  (398 mg, 

1.28 mmol, 0.7 eq) in dichloromethane (5 mL) was added over 

60 min via a dropping funnel. The reaction mixture was stirred 

for 3 hours before it was quenched with triethylamine (1 mL). 

(ESI-MS indicated a high conversion.) The solvent was removed under reduced 

pressure and the crude mixture purified by silica gel column chromatography 

chloroform/ethanol/triethylamine 12:4:0.05 to yield 270 mg (54 %) of the title 

compound as white waxy solid. M4-cyclen and 2 times alkylated by products were 

isolated.25 

ESI-MS: calc. 391.3 (M+1); measured 391.3 (M+1). 

 

Synthesis of di-tert-butyl 2,2'-((2S,5S,8S,11S)-4-((R)-1-(benzyloxy)-1-oxopropan-
2-yl)-10-(1-(tert-butoxy)-1-oxopropan-2-yl)-2,5,8,11-tetramethyl-1,4,7,10-
tetraazacyclododecane-1,7-diyl)(2R,2'R)-dipropionate  
(M8-benzyl-tri-tertbutyl) 

M4-cyclen-(R)-Bn-lactate (270mg, 0.691 mmol, 1.0 eq.) was 

dissolved in acetonitrile (20 mL), (S)-tBu-lactic acid-OTf (24) 

(827 mg, 2.83 mmol, 4.1 eq.) in acetonitrile (6 mL) and 

freshly powdered potassium carbonate (459 mg, 3.32 mmol, 

4.8 eq.) was added and the resulting mixture was stirred for 

15 hours, until completion of the reaction was indicated by 

ESI-MS. After the reaction was finished triethylamine (400 µL) was added to quench 

excess reagent. Stirring was continued for additional 10 min before filtered over 

celite. Removal of volatile materials under reduced pressure yielded a waxy solid that 

was purified by silica gel column chromatography (chloroform/ethanol, 9:1) and 

yielded the title compound (300 mg, 56%) as yellowish waxy solid.25 

ESI-MS: calc. 775.6 (M+1); measured 775.6 (M+1); 797.6 (M+Na). 
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Synthesis of (2R)-2-((2S,5S,8S,11S)-4,10-bis((R)-1-(tert-butoxy)-1-oxopropan-2-
yl)-7-(1-(tert-butoxy)-1-oxopropan-2-yl)-2,5,8,11-tetramethyl-1,4,7,10-
tetraazacyclododecan-1-yl)propanoic acid 

(M8-benzyl-tri-tertbutyl) (100 mg, 0.129 mmol, 1.0 eq) was 

dissolved in methanol (5mL) and Pd/C (18 mg) as 

hydrogenation catalyst was added. The reaction mixture 

was stirred under 8 bars H2-pressure in an autoclave for 2 

hours. The mixture was filtered over celite and volatile 

material was removed under reduced pressure. The title 

compound was obtained as waxy yellow solid in 80 % yield.25 

ESI-MS: calc. 685.5 (M+1); measured 685.5 (M+1). 

 
 
Synthesis of (2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propanamide g2 

Lactamide (1.0 g, 11.2 mmol, 1.0 eq) was dissolved in 

dichloromethane (20 mL). pyridinium para toluene sulfonate (PPTS, 

282mg 1.12 mmol, 0.1 eq) and 3,4-dihydro-2H-puran (1.13 mL, 12.3 

mmol, 1.1 eq) were added and stirred for 5 hours at rt. The solvent 

was removed under reduced pressure and the crude mixture purified 

by silica gel column chromatography using cyclohexane/ethyl acetate (2:10 -> 0:1). 

The title compound was obtained as colourless oil in 74% (1.45 g) yield as mixture of 

the two diastereoisomers. After a few days’ parts of the oil crystalized. After isolation 

the NMR of one single isomer could be recorded.68 

TLC: (SiO2, cyclohexane/ethyl acetate (1:5)): Rf = 0.21 and 0.14 for the two 

diastereoisomers. 

NMR data of the crystalized diastereoisomer: 
1H NMR  (400 MHz, 298 K, CDCl3, δ in ppm): 6.74 (“b”s, 1H, NH); 5.40 (“b”s, 1H, NH, 

4.62-4.70 (m, 1H, H1`); 4.23 (q, 3JHH = 6.9 Hz, 1H, H2); 3.82-3.91 (m, 1H, H5`); 3.45-

3.58 (m, 1H, H5`); 1.77-1.87 (m, 2H, H2`); 1.51-1.62 (m, 4H, H3`,H4`); 1.41 (d, 3JHH = 

6.9 Hz, 3H, H3). 
13C NMR  (101 MHz, 298 K, CDCl3, δ in ppm): 17.7 (1C, C3); 20.4 (1C, C3`); 25.3 

(1C, C4`); 31.1 (1C, C2`); 64.0 (1C, C5`); 73.1 (1C, C2); 98.3 (1C, C3); 176.2 (1C, 

C1). 
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Synthesis of N-((2S)-2-((tetrahydro-2H-pyran-2-yl)oxy)propanoyl)acrylamide g3 
To a stirring suspension of NaH (98 mg, 2.44 mmol, 1.3 eq, 

60% in mineral oil) in THF (25 mL) at rt. was added (2S)-2-

((tetrahydro-2H-pyran-2-yl)oxy)propanamide (325 mg, 1.88 

mmol, 1.0 eq) in THF (5 mL). Vigorous bubbling began near the 

end of the addition, and the reaction mixture became thick and 

opaque. After stirring for 1 h, a solution of acryloyl chloride (175 µL, 2.06 mmol, 1.1 

eq) and THF (5 mL) was added over 2 min. The reaction mixture was stirred at rt. for 

3.5 h, then H2O (50 mL) was added and the layers were separated. The aqueous 

layer was extracted with EtOAc (3 x 20 mL). The organic layers were combined, 

washed with brine (25 mL), dried over Na2SO4, filtered and concentrated under 

reduced pressure. Purification was performed by silica gel column chromatography 

using cyclohexane/ethyl acetate (4:1) as eluent to yield an yellowish oil (50mg, 12%). 

(The desired product was used for a tagging test using HCAII as protein. The desired 

linker could be attached to the protein overnight in about 90%.) 

TLC: (SiO2, cyclohexane/ethyl acetate (4:1)): Rf = 0.35; 0.17. 

ESI-MS: calc. 228.1 (M+1); measured 250.1 (M+Na) 

Diasteromer 1: 1H NMR  (600 MHz, 298 K, DMSO-d6, δ in ppm): 10.75 (“b”s, 1H, 

NH); 6.67 (dd, 2JHH = 17.0 Hz, 3JHH = 10.3 Hz, 1H, H3``); 6.33 (dd, 2JHH = 17.0, 3JHH = 

1.5 Hz, 1H, H3``); 5.89 (dd, 3JHH = 10.3 Hz, 3JHH = 1.5 Hz, 1H, H2``); 4.62 (q, 3JHH = 

6.9 Hz, 1H, H2); 4.4.52-4.56 (m, 1H, H1`); 3.71-3.76 (m, 1H, H5`); 3.43-3.47 (m, 1H, 

H5`); 1.68-1.75 (m, 1H, H3`); 1.61-1.68 (m, 1H, H2`); 1.46-1.55 (m, 1H, H2`); 1.43-

1.52 (m, 1H,H3`); 1.40-1.50 (m, 2H, H4`); 1.31 (d, 3JHH = 6.9 Hz, 3H, H3). 

Diasteromer 2: 1H NMR  (600 MHz, 298 K, DMSO-d6, δ in ppm): 10.51 (“b”s, 1H, 

NH); 6.25 (dd, 2JHH = 17.2 Hz, 3JHH = 1.7 Hz, 1H, H3``); 6.08 (dd, 3JHH = 10.6, 3JHH = 

1.7 Hz, 1H, H2``); 5.87 (dd, 2JHH = 17.2 Hz, 3JHH = 10.6 Hz, 1H, H3``); 4.65-4.69 (m, 

1H, H1`); 4.42 (q, 3JHH = 6.5 Hz, 1H, H2); 3.72-3.78 (m, 1H, H5`); 3.33-3.37 (m, 1H, 

H5`); 1.68-1.75 (m, 1H, H3`); 1.61-1.68 (m, 1H, H2`); 1.46-1.55 (m, 1H, H2`); 1.43-

1.52 (m, 1H,H3`); 1.40-1.50 (m, 2H, H4`); 1.28 (d, 3JHH = 6.5 Hz, 3H, H3). 

Diasteromer 1: 13C NMR  (151 MHz, 298 K, DMSO-d6, δ in ppm): 18.25 (1C, C3); 

18.77 (1C, C3`); 24.8 (1C, C4`); 30.1 (1C, C2`); 61.5 (1C, C5`); 71.1 (1C, C2); 130.3 

(2C, C2``, C3``); 164.4 (1C, C1``); 173.7 (1C, C1). 
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Diasteromer 2: 13C NMR  (151 MHz, 298 K, DMSO-d6, δ in ppm): 17.85 (1C, C3); 

18.77 (1C, C3`); 24.8 (1C, C4`); 30.1 (1C, C2`); 62.0 (1C, C5`); 73.7 (1C, C2); 129.3 

(1C, C2``); 130.4 (1C, C3``); 166.7 (1C, C1``); 173.44 (1C, C1).  
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B) Thermodynamic studies of 4,4´ 
substituted torsion angle restricted 
2,2´ alkyl-bridged biphenyl 
cyclophanes 

 

B.1  Research goal 
A series of 4 and 4´ di substituted 2,2´-alkyl bridged biphenyl cyclophanes was 

systematically analysed. The atropisomerization of such molecules is of high interest 

in many different fields of material sciences and more and more also in catalysis.1–3 

Applications in OLEDS,4 nonlinear optics,5 molecular motors6 and many more have 

been presented recently. Therefore, different analytical methods were used to gain 

insights into the thermodynamics of such biphenyls. Propyl-bridged biphenyls were 

investigated using dynamic NMR spectroscopy (dNMR) whereas butyl-bridged 

biphenyls were analysed with dynamic high pressure liquid chromatography (dhplc) 

on a chiral column. Theoretical calculations for both classes were performed to get 

information about the transition state of such atropisomerization processes as 

different mechanisms were published earlier. The results of this work are published7,8 

and will be discussed in detail in the following section. The main focus will be on the 

dynamic NMR measurements.  

 
Structure B-1: 4,4´-disubstituted 2,2´-alkyl bridged biphenyls7,8 with n =2,3,4.  

The above-mentioned tasks of the project were investigated in collaboration of three 

different research groups. Dr. J. Rotzler and Prof. Dr. M. Mayor initiated the project. 

Dr. J. Rotzler, M. Gantenbein and Dr. D. Vonlanthen synthesized all molecules in the 

group of Prof. Dr. M. Mayor. Angela Bihlmeier performed theoretical calculations in 

n
X Y
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the group of Prof. Dr. W. Klopper at Karlsruhe Institute of Technology (KIT). NMR 

measurements and line shape analysis were performed in the group of PD. Dr. D. 

Häußinger by myself. 

 

B.2  Introduction 

B.2.1 Dynamic NMR Spectroscopy (dNMR) 
Most processes in biology and chemistry take place in solution state. Many of these 

molecules have a specific functionality. The origin of the functionality is in many 

cases a dynamic process. To understand the function of such molecules, special 

spectroscopic methods that can deal with dynamics are necessary. Spectroscopic 

methods like X-ray crystallography or mass spectrometry miss such dynamic 

processes as they deliver a static picture of the molecules. Investigation of such 

processes is in most cases challenging. Only a few spectroscopic methods like react 

IR, UV-Vis9,10, HPLC11–14, Polarimetry15–17 and NMR18,18–29 are suitable for this 

investigation. Each method is limited to a different range of rate constants. For NMR 

spectroscopy the range of rate constants is dependent on the chemical shift 

difference of the interchanging spins and the temperature range. A standard 

equipped system has a temperature range of -80 °C to +150 °C, with special 

equipment even lower or higher temperatures can be reached (in this cases often the 

solvent is the limiting factor). This permits the investigation of a wide variety of 

exchange processes in different solvents. The chemical shift difference (Δν in Hz) 

delivers in general the life time (τ) (according to Equation B-1) of the two different 

spin states20 directly. 

 

𝜏𝜏 =    !
!!"#

 [s] 

Equation B-1: Calculation of the life time. τ = life time, Δν = chemical shift difference. 

The chemical shift difference is a result of different chemical environments and/or 

different magnetic shielding. The lifetime is directly correlated to the rate constant 

𝑟𝑟 = !
!
 [Hz]. From these two equations it becomes obvious that, if the exchange is 

much faster than the chemical shift difference, then a averaged signal is measured 

on the other hand if the exchange is much slower two individual signals are obtained. 

Between this two extreme the line shape of the signal becomes broad. At the point 
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where the signal shows a plateau, the coalescence is reached (Figure B-1).  It is 

important to mention that, if the two states are populated equally, the resulting 

chemical shift in the fast exchange is centred in the middle of the two original peaks, 

and if the two states are populated differently, the resulting chemical shift in the fast 

exchange is a weighted average. 

 
Figure B-1: Temperature dependent NMR spectra of equally populated uncoupled interchanging spins.30  

The activation energy (ΔG♯) can be estimated from the coalescence temperature Tc 

and the chemical shift difference in the slow exchange using Equation B-2. 

𝛥𝛥𝛥𝛥! = 𝑅𝑅𝑅𝑅!𝑙𝑙𝑙𝑙
𝑅𝑅𝑇𝑇! 2!

𝜋𝜋𝑁𝑁!ℎ 𝜈𝜈! − 𝜈𝜈!
 

𝛥𝛥𝛥𝛥! = 0.0191 ∗ 𝑇𝑇!(9.97 + log
!!
!"

)  

Equation B-2: Calculation of the free activation energy from 1H-NMR spectra. ΔG≠ = Gibbs free activation 

energy, Tc = coalescence temperature, Δν = chemical shift difference of the two spins in slow exchange. 
7,8,19,31,32 

The calculation of the Gibbs free activation energy from Tc and Δν delivers only 

thermodynamic activation data. Besides the thermodynamic data also kinetic data 

are required in order to study dynamic processes in detail. To gain further insights, 

line shape analysis is necessary. For equally populated and uncoupled systems the 

Equation B-3 can estimate the rate constant at the coalescence temperature.33 
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𝑘𝑘𝑐𝑐 =
𝜋𝜋
2
𝛥𝛥𝛥𝛥𝑐𝑐 

Equation B-3: Approximation of the rate constant for equally populated and uncoupled systems. kc = rate 

constant at the coalescence point,  Δνc = half width of the signal at the coalescence temperature. 

For calculation of equally populated and coupled systems the approximation is given 

by Equation B-4. 

𝑘𝑘𝑐𝑐 =
!
!
(𝛥𝛥𝜈𝜈! + 6𝐽𝐽!)! !  

Equation B-4: Approximation of the rate constant for equally populated but coupled systems.  . kc = rate 

constant at the coalescence point,  Δν = chemical shift difference in the slow exchange and J = coupling 

constant in the slow exchange. 26,33–35 

A general approximation for the calculation of rate constants is given by the following 

expression in Equation B-5. 26,34,35  

𝑘𝑘 =
𝜋𝜋𝜋𝜋𝜋𝜋!

2(𝜔𝜔 − 𝜔𝜔!)
 

Equation B-5: General approximation for the rate constant determined by NMR. k = rate constant at a 

given temperature,  Δν = chemical shift difference at this specific temperature, ω = line width at this 

temperature, ω0 = linewidth  in the fast exchange (k = ∞). 

More precise rate constants are available when computer based programs can be 

used to determine rate constants. An example for such a program is dNMR from 

Bruker®, where the spin systems can be fitted to the original spectra and coupling 

constants can be included. Eyring plots can then convert the rate constants in 

combination with the measured temperatures to deliver the thermodynamic data for 

activation enthalpy ΔH≠ and the activation entropy ΔS≠ using Equation B-6.  

𝛥𝛥𝐻𝐻! =   −𝑚𝑚  𝑅𝑅 

𝑦𝑦 𝑥𝑥 = 0 = ln
𝑘𝑘!
ℎ +

𝛥𝛥𝛥𝛥
𝑅𝑅  

Equation B-6:  ΔH≠ = activation enthalphy, m = slope of the Eyring plot, R = universal Gas constant = 

8.3144 [kJ/(mol K)], y(x = 0) = intercept of the Eyring plot, kB = Boltzmann constant = 1.38 * 10-23 [J/K], h = 
Plank constant = 6.626 *10-23  [J s]. 

 

B.2.2 Historical development of dNMR 
First investigations were performed on dimethylformamide22–25,36,37 (DMF) where the 

two methyl groups are diastereotopic at ambient temperature due to the partial 

double bond.  
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Figure B-2: Isomerization of N,N-dimethylformamide. 

The advantage of this system compared to others is the fact that a 1:1 ratio of the 

two states was obtained. Heating the sample led to a signal broadening and finally 

one averaged signal was obtained at higher temperatures. With the development of 

new mathematical methods the investigation of unequally populated amides became 

possible and systems like N-Methylformamide or N-Phenylformamide (Structure B-2) 

could be investigated.38  

 
Structure B-2: Isomerization of N-methylformamide and N-phenylformamide  

The limit of the method is reached when the chemical shift difference of the two 

states is too small to be resolved or the exchange rates of the system are too fast to 

reach the coalescence. On the other hand systems with high activation energy reach 

the upper limit when no further heating of the NMR-system is possible. To overcome 

the low temperature limit, lanthanide shift reagents (LSR) can be used to enlarge the 

chemical shift difference of the exchanging spins.39–43 Titration experiments are 

required to allow the calculation of the activation parameters at zero concentration. 

The activation energies ΔG≠ have to be calculated for each concentration of LSR. 

The resulting pairs of concentrations and activation energies are plotted and a 

regression towards zero concentration performed. It is worth to mention that a fast 

exchange in the substrate/LSR complex is necessary. A slow exchange would lead 

to two independent species. The resulting LSR-substrate complex will deliver one set 

of activation parameters, independent of the concentration. To increase the high 

temperature range high pressures can be applied, to lower the coalescence 

temperature. Also in this case titration experiments with different pressures are 

required to allow back calculation. High-pressure experiments are limited to 

substances with a negative volume of activation. High pressure favours in this case 

the transition state leading to decreased activation energies. 
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B.2.3 Biphenyls in dynamic NMR 
The atropisomerization process of different biphenyl systems has been studied by 

dNMR during the past 50 years. Atropisomerization is a special case of isomerization 

of axial chiral molecules. Hindered rotation around a single bond leads to two stable 

isomers. In 1964 Kurland et al.20 investigated 2,7-dihydrodibenz[c,e]oxepin L1a and 

2,7-dihydrodibenz[c,e]thiepin L2c. They showed that the activation energy for the 

atropisomerization of oxepins is much lower than for thiepins (Table B-1, Table B-2).  

 
Structure B-3: The first bridged biphenyls investigated by dNMR, Oxepin 1a (left structure) and Thiepin 2c 

(right structure).20 

Oki21 studied a series of oxepins and ethyl bridged biphenyls to investigate the steric 

effect of ortho substituents of biphenyl molecules in detail. Measurements of the 

unfunctionalized oxepin were in good agreement with data presented by Kurland20 

earlier. They demonstrated that methyl substituents have more or less the same 

effect on the rotation barrier, as a second methyl-O-methyl bridge. Whereas an ethyl 

bridge only slightly increases the activation energy compared to the unfunctionalized 

oxepin. An ortho-nitro substituent also increased the activation barrier. It was 

suggested that the steric effect was affected by hydrogen bonding (Figure B-3) which 

was investigated for other molecules in more detail.34,35 

 
Figure B-3: Hydrogen bonding obtained in different biphenyl systems. 

The chemical shift difference of the resulting two atropisomers of ethyl-bridged 

biphenyls was rather small as long as no other ortho substituent was introduced. The 

activation barrier of this class of biphenyls was therefore not suitable for dNMR 

experiments. Surprisingly the ethyl-bridged-6,6´-Me,Me substituted molecules 

showed an even higher activation barrier than their oxepin analogues. Sutherland et 

al.23 published a series of CH2XCH2 bridged molecules where X = SO2, S, C=NOH, 

C(CO2Et)2, NMe2Br, CO, NH and CH2 (L2c, L2e, L3a, L3b, L3c, L3d). The results 
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for the thiepin was comparable to earlier published data. For the CO and NH bridged 

biphenyls no coalescence was reached. The activation energy calculated for SO2 

bridged biphenyl was higher than for thiepins whereas the sterically demanding 

molecules L3c and L3d showed decreased activation energies. They showed that 

fine-tuning of the activation parameters was possible by the variation of the 

heteroatom in the middle of the bridge. The sterically demanding structure L1d 

showed an increased activation barrier whereas for the ester L1j no coalescence 

could be determined. For L3e and L3f the activation energy was higher due to the 

enlarged conjugation, leading to a more hindered rotation. In 1968 Oki et al.34 

demonstrated that hydrogen bonding could stabilize oxepin biphenyls by about 4 

kJ/mol (L1f). To confirm this finding also the methoxy compound (L1g) was 

measured in chloroform and DMSO and the activation parameters calculated. In this 

case a much smaller effect was obtained. The same effect was also measured for 

ortho substituted biphenyls L5l-L5p.35 It became obvious that electron-withdrawing 

groups (EWG) can increase the stability of the hydrogen bonding when resonance 

stabilization is present. Nevertheless, the effect was quite small and close to the 

experimental error but a systematic shift for all compounds is obtained. Oki33 et al. 

extended the series of thiepins to 4,4´di-substituted ones. The di-fluorine L2d 
showed similar properties as the di-hydrogen L2c, which is in good agreement with 

the small electronic effect suggested for fluorine. The push-pull system L2a and the 

push-push system L2b showed decreased activation energy compared to the di-

hydrogen L2c. This effect can be easily understood for the push-pull system where a 

planar transition state seems to be favoured due to conjugation. For the push-push 

system resonance seems to be possible but also an out of plane bending was 

suggested. Oki26 et al. were able to show that 4,4´ di-substitution can be used to fine-

tune the activation parameters of a variety of biphenyls L5a-L5k.  
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Table B-1: Series of Oxepin molecules investigated by dynamic NMR spectroscopy showing the influence 

of substituents on the activation barrier. 

Compound Structure Tc/K ΔG≠ (kJ/mol) Solvent 

L1a20,21 

 

189 

 

38.5 ± 4.2 

40.2 ± 2.9 

Carbon disulfide 

 

     

L1d23 

 

282 

 

55.7 

 

pyridine 

 

L1e21 

 

--- 

 

69.1 ± 2.9 

  

L1f34 

 

321 

293 

70.8 ± 4.2 

66.6 ± 5.0 

chloroform 

dimethylsulfoxide 

L1g34 

 

319 

321 

70.8 ± 4.2 

72.0 ± 5.9 

chloroform 

dimethylsulfoxide 

L1h21 

 

--- 

 

83.7 

  

L1i21 

 

--- 

 

84.6 

  

L1j23 

 

--- 

 

--- 

 

too fast 

 

 

Table B-2: Series of thiepin molecules showing the influence of para substituents on the activation barrier 
of rotation about the c-c single bond. 

Compound Structure Tc/K ΔG≠ (kJ/mol) Solvent 

L2a33 

 

293 ± 5 

 

61.1 ± 1.3 

  

L2b33 

 

297 ± 2 

 

63.6 ± 1.3 

  

L2c20,23,34 

 

315 

 

67.4 ± 1.3 

67  

64.9 

 

chloroform 

pyridine 

L2d 

 

311 ± 2 

 

67.4 ± 1.3  

  

O

O

O

NO2

O

OH

O

OMe

O

O

O

O

S

NO2MeO

S

OMeMeO
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Compound Structure Tc/K ΔG≠ (kJ/mol) solvent 

L2e23 

 

360.5 

 

76.2 

  

 

Table B-3: Series of propyl bridged molecules showing the influence of hybridisation on the activation 
barrier. 

Compound Structure Tc/K ΔG≠ (kJ/mol) solvent 

L3a23 

 

--- 

 

54.4 

  

L3b23 

 

syn 283.5 

anti 264.5 

57.4 

55.3  

L3c23 

 

272 

 

56.1 

  

L3d23 

 

282 

 

58.6 

  

L3e23 

 

351.5 

 

74.9 

 

Pyridine 

 

L3f23 

 

375 

 

78.8 

 

Pentachloroethane 

 

 

Table B-4: Series of ethyl bridged biphenyls showing the low limits of dynamic NMR as the coalescence 
for 4a and 4b were not reachable as either the chemical shift difference was too small or the coalescence 

temperature was too low. 

Compound Structure Tc/K ΔG≠ (kJ/mol) solvent 

L4a21 

 

--- 

 

<37.7 

  

L4b21 

 

--- 

 

<37.7 

  

L4c21 

 

--- 

 

96.7 

  

 
 
 
 

S
OO

NHO

N Br

CO2EtEtO2C

NC
NH2
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Table B-5: The series of unbridged biphenyls shows clearly that the activation energy of these systems 

was higher due to larger torsion angles resulting from steric repulsion. 

Compound Structure Tc/K ΔG≠ (kJ/mol) solvent 

L5a26 

 

331 

 

73.7 

  

L5c26 

 

338 

 

75.4 

  

L5d26 

 

343 

 

76.6 

  

L5e35 

 

342 

 

77 

 

tetrachloroethane 

 

L5f26,35 

 

347 

 

77.5 

  

L5g35 

 

343 

 

78.3 

 

tetrachloroethane 

 

L5h26,35 

 

352 

 

78.7 

 

tetrachloroethane 

 

L5i26 

 

355 

 

79.5 

  

L5j26,35 

 

359 

 

80.4 

 

tetrachloroethane 

 

L5k26 

 

359 

 

80.4 

 

tetrachloroethane 

 

L5l35 

 

315 

328 

69.9 

73.7 

dimethylsulfoxide 

tetrachloroethane 

L5m35 

 

322 

338 

73.7 

78.3 

dimethylsulfoxide 

tetrachloroethane 

L5n35 

 

331 

349 

73.7 

80.0 

dimethylsulfoxide 

tetrachloroethane 

L5o35 

 

333 

330 

74.5 

74.1 

dimethylsulfoxide 

tetrachloroethane 

L5p35 

 

331 ± 2 

350 

75.5 ± 0.8 

80.8 

dimethylsulfoxide 

tetrachloroethane 

MeO

O2N OMe

MeO

MeO NO2

MeO

MeO

MeOO2N

MeO

OMe

MeO

NO2

MeO

O2N

MeO

O2N NO2

MeO

MeO

NO2

HOO2N

HO

NO2

HO

NO2

HO

O2N
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B.2.4 Dynamic High Pressure Liquid Chromatography (DHPLC) 
Dynamic chromatography can be used as extension for dynamic NMR spectroscopy 

for molecules with an activation energy above 80 kJ/mol.11–13 The only requirement is 

that the two enantiomers can be at least partial separated during a HPLC run. As 

enantiomers show the same properties in achiral environment the two enantiomers 

cannot be separated in achiral media. However, if the achiral solid phase is doped 

with a chiral dopant, the two enantiomers will form different diastereoisomers in 

complex with the solid phase. Diastereoisomers can be separated from each other, 

as their physical properties are different. If the two enantiomers isomerize during the 

HPLC run then a plateau between the two peaks can be observed. This plateau 

formation is required to study the dynamic processes. Calculations of activation 

parameters are complicated but nowadays with the help of specific computer 

software, they are easier to handle. The calculations include the different rate 

constants km (rate constant in the mobile phase) and ks (rate constant in the 

stationary phase) and the equilibrium constants Km and Ks.  

 
Figure B-4: Equilibrium in a chromatographic theoretical plate model. A is the first eluted compound and 
B the second eluted one. The values k1 for the forward reaction and k-1 for the back reaction represent the 

rate constants in the mobile and stationary phase. K describes the distribution constant. The figure is 

reprinted from Trapp.44 

To calculate the activation parameters, the same molecule has to be measured at 

different temperatures on the same column under the same elution method (typical 

temperature ranges for HPLC runs are in the range of -80 to +120°C).12 To solve 

these equations also pressure variations can be performed. This is usually done 

when temperature variations are not possible.13  A reasons could be the instability of 

the investigated molecule at high temperatures. For a deeper understanding of the 

different k values the separation has to be performed on different chiral column to 

keep the km constant while ks is changed. Usually molecules with activation energy in 

a range of 80-120 kJ/mol can form such a plateau. The reason for this small range is 

Amob Bmob

Astat Bstat

k1
mob

k-1mob

k1
stat

k-1stat

KA KB mobile phase

stationary phase
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the fact that molecules with lower activation energy are racemizing too fast to allow 

separation and compounds with higher activation energies are racemizing so slow 

that an extreme long column would be required to detect a plateau formation. The 

second case can be useful anyway as the properties of the two enantiomers could be 

analysed or the racemization monitored by polarimetry. The main advantage of 

dHPLC over dNMR is the low substrate loadings required for a single run. The same 

procedure can be performed by Gas chromatography (GC) using a chiral column for 

separation14. 

 

B.2.5 Applications of biphenyls 
Biphenyls are one of the most investigated molecular building blocks. The hindered 

rotation around a single C-C bond leads to unique chemical and physical properties 

as the degree of π-conjugation can be varied.5,20,26,33,34,45–50 Many different systems 

have been studied to develop molecules with fixed or flexible torsion angles to induce 

a defined range of π-conjugation. This intensive research afforded a wide range of 

applications for substituted biphenyls. Applications are found in a variety of materials 

such as organic light emitting device (OLEDS),4 Non linear optics (NLO)5 or 

molecular electronics47,49 to name just a few of them.  

 
Figure B-5: Representation of molecular electronic device created from bridged biphenyls.51 

A fixed torsion angle in combination with separation of the two enantiomers allowed 

also applications in catalytic processes providing products in high enantiomeric 

excess. Biphenyls also found there application in medicinal chemistry as flexible 

building block in inhibitors for example as inhibitor for angiotensin II AT1 receptor.52 

In most cases the fine-tuning of the torsion angle is performed using different 2,2´-

sterically demanding substituents or 2,2´-bridges with different chain length.50 A quite 

important feature of biphenyls is the fact that ortho-substituents mainly influence the 

torsion angle without elongation of the carbon backbone. Therefore, a variety of 2,2´-

ethyl, -propyl, and –butyl bridged biphenyls with variable substituents in 4 and 4´ 
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position were systematically investigated by dNMR, dHPLC and theoretical 

calculations.  

 

B.3  Methods and Materials 
The studies of Oki21 showed that the rotation of ethyl bridged biphenyl is too fast to 

be investigated by dNMR, this result was also observed in our work for 4,4´-

disubstituted-2,2´-ethylbridged biphenyls.8 Trials using Eu(fod)3, Eu(hfc)3 and Pr(hfc)3  

as lanthanide shift reagents (LSR) did not allow investigations of the thermodynamic 

data by NMR. The 4,4´-disubstituted-2,2´-propylbridged biphenyls showed a fast 

exchange at rt. but cooling of the system sufficient, delivering molecules in the slow 

exchange regime. Therefore, thermodynamic studies could be performed for this 

class of molecules by dNMR. The activation energy of 4,4´-disubstituted-2,2´-

pentylbridged biphenyls is about 40 - 50 kJ/mol7 higher and therefore above the limit 

of dNMR. This means that even at 150 °C slow exchange was observed and the 

coalescence temperature of about 170 - 210 °C was suggested from the results 

obtained by dynamic HPLC measurements. 

 
1a: X = NO2  1b: X = CN   1c: X = NC; 

1d: X = SAc  1e: X = Br     1f: X = Cl; 

1g: X = F       1h: X = H   1i: X = piperidinyl, NO2; 

1j: X = OMe  1k: X = NH2;  1l: X = piperidinyl 
 

 

B.3.1 Dynamic NMR measurements and analysis 
All samples were prepared in deuterated solvents (<99.8% D, Cambridge Isotope 

Laboratories, Burgdorf, CH). The NMR experiments were performed on a Bruker 

Ultra Shield Avance III – 600 MHz NMR spectrometer, equipped with a self shielded 

z-axis pulsed field gradient dual channel broadband inverse probe head (BBI)7. 

Referencing was done on residual solvent peaks and the temperature unit of the 

spectrometer was calibrated using a 4% methanol in 96% methanol-d4 sample53. 

The temperature calibration was performed in the range between 200 and 265 K 

using Equation B-7 

Figure B-6: Biphenyls investigated by dynamic NMR and theoretical calculations. 



132	
   Thermodynamic studies of 4,4´ substituted torsion angle restricted 2,2´ alkyl-bridged biphenyl cyclophanes 

 

 

𝑇𝑇 =
3.92 −   𝛥𝛥𝛥𝛥
0.008  

Equation B-7: Temperature calibration, T = corrected temperature Δδ = chemical shift difference between 

CH3 and OH resonance in MeOH. 

and for higher temperatures in the range of 265 to 300 K by Equation B-8. 

𝑇𝑇 =
4.109 −   𝛥𝛥𝛥𝛥
0.008708  

Equation B-8: Temperature calibration, T = corrected temperature Δδ = chemical shift difference between 

CH3 and OH resonance in MeOH. 

A detailed description of the temperature calibration is shown in the experimental 

section. The graphical representation is seen in Figure B-7. 

 
Figure B-7: Temperature calibration curve 4% MeOH in 96% MeOD-d4 

The thermal equilibrium was ensured by at least 15 min equilibration time for each 

temperature step. Experimental activation energies (ΔG≠
exp) were calculated using 

Equation B-2. Theoretical activation energies were calculated from the data obtained 

by line shape analysis using Equation B-9. 

𝛥𝛥𝐺𝐺!!!"! =   𝛥𝛥𝛥𝛥 − 𝑇𝑇  𝛥𝛥𝛥𝛥  
𝑘𝑘𝑘𝑘
𝑚𝑚𝑚𝑚𝑚𝑚  

Equation B-9: Calculation of the Gibbs free activation energy ΔG≠ from line shape analysis. 

The computer software dNMR (Bruker Bio Spin AG®) was used to perform the line 

shape analysis. To perform the line shape analysis successfully, several 

experimental parameters had to be added to the software. The chemical shift of the 

two different spins in the slow exchange regime in ppm, the coupling constant of the 
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spins in the slow exchange. Additionally the range for the simulation has to be set as 

not the whole molecule was fitted. For analysis of the biphenyl systems only the 

propyl bridge spin system was investigated. Experimental impurities were not fitted 

and decreased in some cases the accuracy of the fitted spectra. The confidence 

interval was set to 95 % as the impurities were not fitted but in most cases values of 

98 - 99% accuracy were calculated. The resulting rate constants were further 

analysed using Eyring plots and the rate constants at the coalescence temperature 

were compared to values calculated by the approximation method. The experimental 

coalescence temperature were estimated between two measured spectra and have 

an accuracy of about ±1 °K, the theoretical coalescence temperature was calculated 

from the line width of the signals followed by lorentzian fitting as shown for the di-

cyano-biphenyl 1b in Figure B-8. For all other compounds the results are shown in 

the experimental section. 

 
Figure B-8: Calculation of the coalescence temperature from the line width of the peak at different 
temperature. 

All compounds were fully assigned using 1H, 13C, HMQC, HMBC and NOESY NMR-

experiments. 
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B.3.2 Dynamic HPLC measurements and fitting 
All samples were prepared in a concentration of about 1 mg/mL in iPrOH. For the 

separation of the resulting atropisomers a chiralpak AD-H column (0.46 x 25 cm; 

Daicel Chemical Industries Ltd.®) was used and the temperature was adjusted with 

an oven (CTO-10AS VP oven from Shimadzu®). A sample volume of 3 µL and a 

mixture of n-hexane/iPrOH (97:3) were used for all compounds except for the di-SAc-

substituted molecule, which was eluted with n-hexane/iPrOH (95:5). An SCL-10A VP 

HPLC from Shimadzu® with a flow rate of 0.5 mL/min was used for the experiments. 

The solvents were prepared as a 94:6 or 90:10 mixture of n-hexane and n-hexane/ 

iPrOH (1:1) to allow perfect mixing of the solvents. The HPLC run were detected with 

SPD-M10A VP UV/Vis detector from Shimadzu®. A fixed wavelength of λ = 254 nm 

was used corresponding the absorption maximum of the compounds. The column 

was equilibrated for 2 hours before the experiments were performed and conditioned 

for 30 min after each run. Experiments were performed in a temperature range 

between 15 and 35 °C in 5 °C steps. All compounds were measured twice over the 

whole temperature cycle. The rate constants were determined with the unified 

equation,44 allowing the calculation of first order rate constants by direct integration of 

the elution profile with the program DCXplorer. The thermodynamic parameters were 

determined in a similar way as for the dNMR case using Eyring plots for the analysis 

of the rate constants. 

 

B.3.3 Theoretical calculations 
The computational work was performed with the TURBOMOLE program package.54 

Density functional theory (DFT) was used to optimize the framework for equilibrium 

and transition state structures of symmetrically di-substituted biphenyls, which are 

involved in the atropisomerization process.  

 
Figure B-9: CS-symmetric first order transition state for the propyl-bridged biphenyl (di-H) and the CS-
symmetric second order transition state of butyl-bridged biphenyl (di-H). 
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In order to assess the performance of different types of density functionals, the 

generalized gradient approximation (GGA) functional BP86,55,56 the meta-GGA 

functional TPSS57 and the hybrid functional B3LYP58 were chosen. Each functional 

was used in combination with a def2-TZVP basis set,59 tight convergence criteria 

(SCF energy: 10-8 Eh, energy gradient: 10-4 Eh/a0 or less, inclusion of derivatives of 

quadrature weight), and fine grids (m5),60 For non-hybrid functional, the effect of 

resolution of the identity (RI) approximation for two electron Coulomb integrals was 

employed. The nature of the obtained stationary points (minimum or first order saddle 

point) was confirmed through analysis of the force constants and vibrational 

frequencies. 

The coalescence temperatures Tc obtained by dNMR were used as temperatures for 

the calculation of the Gibbs free activation energy (ΔG≠) at a pressure of 0.1 MPa. 

For calculations of the partition functions, the vibrational frequencies were scaled by 

a factor of 0.9914 (BP86 and TSS) and 0.9614 (B3LYP).61  

For biphenyls with substituents that allowed rotations within the substituent like NH2, 

OMe, SAc and piperidinyl several isomers (not only the rotation about the c-c axis) 

were obtained. In this case all structures with an energetically low-lying equilibrium 

structure with C2-symmetry in combination with their transition states were taken into 

account. The reported values for these substituents were obtained from the 

Boltzmann average of the respective conformers. 

 

B.3.4 Synthesis 
Most compounds were previously used for single molecular conductance 

measurements. The synthesis of all compounds was therefore reported previously in 

different publications5,7,8,47,49,50. 
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B.4  Results  
The di-CN ethyl bridged biphenyl (Structure B-4) was investigated by variable 

temperature NMR measurements. A fast exchange was observed even at 233 K as 

shown in Figure B-10. 

 
Figure B-10: Variable temperature NMR spectra of the ethyl protons of 4,4´-dicyano-2,2´-ethylbridged 

biphenyl. Showing a small increase of the line width from 298 K to 233 K.  

This result was predicted from measurements performed by Oki21 for ethyl-bridged 

biphenyls. Therefore variable temperature NMR titration experiments using Eu(fod)3 

(Structure B-4) as paramagnetic achiral lanthanide shift reagent were done. The 

induced pseudo contact shift was too small to reach the coalescence temperature 

even when high concentrations of the LSR were used. The resulting NMR spectra 

are shown in the experimental section. From these data it can be concluded that the 

effect of the LSR is small on the bridging ethyl group. Therefore, chiral lanthanide 

shift reagents were used for the variable temperature titration experiments. A chiral 

shift reagent should deliver stronger geometrical differences on the two different sites 

of the molecule.  
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Structure B-4: 4,4´-dicyano-2,2´-ethylbridged biphenyl investigated by variable temperature NMR,  

europium(III)-tris(1,1,1,2,2,3,3-heptafluoro-7,7-dimethyl-4,6-octanedionate) (Eu(fod)3  used as  achiral 

paramagnetic shift reagent,  tris[3-(heptafluoropropylhydroxymethylene)-d-camphorato]metal(III)  (with M 

= Eu, Pr, Tm) used as chiral shift reagent. 

Thus, a bigger shift difference of the two protons in a slow exchange regime was 

predicted. This is an important fact, as an increased chemical shift difference would 

also increase the coalescence temperatures. 

A series of tris[3-(heptafluoropropylhydroxymethylene)-d-camphorato]metal(III)  

complexes namely Eu(hfc)3, Pr(hfc)3, and Tm(hfc)3 (Structure B-4) were used for 

these investigations. In this series we gradually increased the anisotropy of the 

magnetic susceptibility tensor to induce stronger pseudo contact shifts in a stepwise 

manner. 

Nevertheless, the coalescence temperature was not accessible with any of these 

metal complexes. This means that the chemical environment of the two sides could 

not be changed in a way that the chemical shift difference of the two protons in the 

slow exchange became huge to make the coalescence temperature accessible for 

variable temperature NMR measurements. For the strongest paramagnetic metal 

Thulium (Tm) measurements in toluene were performed to allow temperature 

measurements down to 188.5 K. Only weak broadening, which has its main origin in 

the reduced shim quality at low temperatures was detected. The experimental 

spectra of the paramagnetic samples measured at different concentrations of LSR 

are shown in the experimental section for all different complexes. For the Tm 

samples strong paramagnetic relaxation enhancement (PRE) at low temperatures 

and higher Tm concentrations was visible. The high viscosity of toluene at low 

temperatures in combination with the PRE effects led to signal broadening. These 

effects limited therefore the investigation of the rotation process.  
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For all propyl-bridged biphenyls 1a-1l (Figure B-6) NMR coalescence measurements 

were successfully performed. For all molecules, the three necessary states were 

reached by variable temperature (VT) NMR experiments to allowing thermodynamic 

investigations of the molecules.  

 
Figure B-11: Variable temperature NMR experiments of compounds 1a-1c in CDCl3, showing the three 

different states fast exchange, coalescence and the slow exchange. 

The slow exchange regime corresponds to a spectrum where the resulting NMR 

signals are obtained as well defined separated resonances. The coalescence is the 

point where the signal reaches a plateau and finally the fast exchange regime where 

an averaged signal is obtained. A representation of such spectra is shown in Figure 

B-11 for compounds 1a-1c, all other spectra can be found in the experimental 

section. For the determination of the experimental Gibbs free activation energy 

(ΔG≠), the coalescence temperature Tc and the chemical shift difference Δν (in Hz) 

were determined from the spectra and used for the modified form of the Eyring 

equation (Equation B-2). Coalescence temperatures were estimated with an 

accuracy of about 1 K. In Table B-6 the results of the calculation are shown. The 

activation energies are in a range of 44 to 55 kJ/mol for all propyl-bridged 

compounds 1a-1l.  

2.42.52.62.72.8 ppm 2.42.52.62.7 ppm 2.32.42.52.6 ppm

251.0 K

286.5 K

292.6 K

299.1 K

257.8 K

251.0 K
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Table B-6: Experimentally determined Gibbs free activation energies ΔG≠
exp for compounds 1a-1l 

determined by dynamic NMR measurements 

Compound Tc / K ∆ν / Hz ∆G‡
exp / kJ/mol 

1a 281.4 ± 1 218.0 54.2 ± 0.5 

1b 275.1 ± 1 181.0 53.3 ± 0.5 

1c 270.1 ± 1 161.0 52.6 ± 0.5 

1d 259.6 ± 1 111.0 51.3 ± 0.5 

1e 260.2 ± 1 113.0 51.3 ± 0.5 

1f 260.7 ± 1 118.0 51.4 ± 0.5 

1g 265.0 ± 1 109.0 52.4 ± 0.5 

1h 263.3 ± 1 95.0 52.4 ± 0.5 

1i 245.0 ± 1 132.0 47.9 ± 0.5 

1j 242.1 ± 1 79.0 48.4 ± 0.5 

1k 224.2 ± 1 31.0 46.4 ± 0.5 

1l 218.9 ± 1 44.0 44.6 ± 0.5 

 

For compound 1b, 1e, 1i and 1j the influence of different solvents (Table B-7) was 

studied. Thereby, it was shown that the influence of the solvents with different 

polarities on ∆G‡
exp was in a range of 1 to 2 kJ/mol. For compound 1i it was found 

that the acidic solvent TFA led to an increase of the activation barrier by about 4 

kJ/mol. This fact can be easily understood as a protonation of the push-pull system 

led to a push-push system. Compound 1i was measured in several solvents to get 

detailed information about the influence of the solvent to the activation barrier. 

Viscosity and polarity of the solvent could not explain the obtained trend. 

 
Table B-7: Solvent effect of compounds 1b, 1e, 1I and 1j on the free Gibbs activation energy ΔG≠

exp. (* 

Chemical shift difference of the central CH2-group) 

Compound Solvent Tc / K ∆ν / Hz ∆G‡
exp / kJ/mol 

1b CDCl3-d1 275.1 ± 1 181 53.3 ± 0.5 

1b toluene-d8 257 ± 1 61 52.0 ± 0.5 

1b MeOH-d4 274 ±1 247 52.4 ± 0.5 
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Compound Solvent Tc / K ∆ν / Hz ∆G‡
exp / kJ/mol 

1e CDCl3-d1 260.2 ± 1 113 51.3 ± 0.5 

1e toluene-d8 263.4 ± 1 181 51.0 ± 0.5 

1e MeOH-d4 242.0 ± 1 49 49.3 ± 0.5 

1i CDCl3-d1 245.0 ± 1 132 47.9 ± 0.5 

1i MeOH-d4 249.9 ± 1 174 48.3 ± 0.5 

1i toluene-d8 239.6 ± 1 

233.3 

102 

60* 

47.3 ± 0.5 

47.1 ± 0.5 

1i DMF-d7 240.8 ± 1 144 46.9 ± 0.5 

1i TFA-d1 274.7 ± 1 180 53.3 ± 0.5 

1i C2D2Cl4-d2 242 ± 1 108 47.7 ± 0.5 

1j CDCl3-d1 242.1 ± 1 79.0 48.4 ± 0.5 

1j toluene-d8 250 ± 1 132 48.9 ± 0.5 

1j MeOH-d4 247.3 ±1 125 48.5 ± 0.5 

 

For all compounds a line shape analysis was performed to gain insights into the 

kinetics of the rotation around the C1-C1´ bond.31,62,63 The rate constants were 

determined with dNMR Bruker® for all compounds 1a-1l in all measured solvents and 

the rate constants were further analysed with Eyring plots, establishing the 

connection between kinetics and thermodynamics. Equation B-6 was used for the 

calculation of the activation enthalpy and entropy. To calculate the Gibbs free 

activation energy of this data, the coalescence temperature Tc had to be calculated 

as well. The line width of the experimental spectra was therefore plotted against the 

temperature and a lorentzian fitting was performed to determine the maximum 

linewidth corresponding to Tc. The coalescence temperatures are in high agreement 

to the experimental ones except for those with a low Tc close to the freezing point of 

the solvent. Only a few spectra below Tc limit the accuracy of the fit tremndously. The 

resulting thermodynamic values are summarized in Table B-8. 
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Table B-8:  Overview of the thermodynamic data calculated from line shape analysis. The coalescence 

temperatures Tc were determined from the line width of the signals followed by a Lorentzian fitting. 
Activation entropy ΔH≠ and activation Entropy ΔS≠ were calculated from Eyring plots using equation 6.  

The Gibbs free activation energy ΔG≠ was calculated using equation 9. 

Compound Tc-line shape / K ∆GEyring
‡ / kJ/mol ∆HEyring

‡ / kJ/mol SEyring
‡ / J/(mol K) 

1a 280.4 ± 1.1 54.2 ± 0.1 50.7 ± 1.6 −12.6 ± 5.6 

1b 274.1 ± 1.3 53.3 ± 0.1 52.7 ± 2.0 −1.9 ± 7.3 

1c 269.1 ± 1.1 52.6 ± 0.1 49.9 ± 1.3 −10.0 ± 4.6 

1d 261.6 ± 1.7 52.0 ± 0.1 45.9 ± 1.0 −21.8 ± 3.6 

1e 263.2 ± 1.3 51.7 ± 0.1 50.0 ± 2.7 −6.4 ± 10.4 

1f 259.7 ± 1.3 51.5 ± 0.1 46.0 ± 1.0 −21.0 ± 3.7 

1g 263.0 ± 1.6 52.6 ± 0.1 47.8 ± 1.3 −18.5 ± 4.7 

1h 262.3 ± 1.4 52.4 ± 0.1 47.4 ± 1.2 −19.1 ± 4.6 

1i 244.0 ± 1.2 47.8 ± 0.1 37.4 ± 0.8 −42.6 ± 3.0 

1j 241.1 ± 1.3 48.8 ± 0.1 43.4 ± 1.5 −22.5 ± 6.2 

1k 221.6 ± 2.1 46.8 ± 0.1 39.3 ± 1.5 −33.8 ± 6.6 

1l 217.9 ± 1.4 45.4 ± 0.2 28.3 ± 1.7 −78.4 ± 7.3 

 

The calculation of the coalescence temperature of the di-CN-substituted biphenyl is 

shown in Figure B-8. The determined rate constants for this molecule are shown in 

Table B-9 and the corresponding Eyring plot is shown in Figure B-12. A comparison 

of the experimental and the fitted NMR spectra are shown in the experimental section 

for all molecules. For all other compounds the detailed results of our calculations is 

shown in the experimental section. 
Table B-9: Rate constant determined by line shape analysis of compound 1b with dNMR Bruker®. 

Temperature in K Rate constant k in Hz 

299.1 3050 

286.5 1200 

280.6 720 

274.7 410 

269.2 260 

257.8 90 
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Figure B-12: Eyring plot for the di-CN-compound 1b. 

The comparison of the Gibbs free activation energies obtained by line shape analysis 

and experimental spectra are necessary to validate the two-side model. It was shown 

that the differences between the experimental approximation (Equation B-2) and the 

line shape analysis (Equation B-9) are below 1 kJ/mol, which is for almost all 

compounds within the experimental error (Table B-10) (except for l). This result 

validates the two state model for each molecule. For other models with more states 

the fit and experiment should show stronger deviations, as then more than one 

coalescence phenomena should be detectable. Therefore differences in ΔG≠(T), 

which are larger than 1 kJ/mol are statistically significant. The main distinction 

between approximation and line shape analysis results from differences in Tc. For 

molecules like 1k and 1i the coalescence temperature was close to the freezing point 

of the solvent. For Lorentzian fitting to generate calculated coalescence temperatures 

it is necessary to have enough data points in the slow and fast exchange regime. 

Therefore the temperature accuracy for compounds with low Tc is less precise. 
 
Table B-10: Comparison of experimental and calculated Gibbs free activation energies (ΔG≠

exp vs. ΔG≠
Eyr). 

Compound ∆G≠
exp / kJ/mol ∆GEyring

≠ / kJ/mol ΔΔG /kJ/mol 

1a 54.2 ± 0.5 54.2 ± 0.1 0 

1b 53.3 ± 0.5 53.3 ± 0.1 0 

1c 52.6 ± 0.5 52.6 ± 0.1 0 

1d 51.3 ± 0.5 52.0 ± 0.1 0.7 

� diCN (1b) 

   y = 6290.4*X + 23.3 
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Compound ∆G≠
exp / kJ/mol ∆GEyring

≠ / kJ/mol ΔΔG /kJ/mol 

1e 51.3 ± 0.5 51.7 ± 0.1 0.4 

1f 51.4 ± 0.5 51.5 ± 0.1 0.1 

1g 52.4 ± 0.5 52.6 ± 0.1 0.2 

1h 52.4 ± 0.5 52.4 ± 0.1 0 

1i 47.9 ± 0.5 47.8 ± 0.1 0.2 

1j 48.4 ± 0.5 48.8 ± 0.1 0.4 

1k 46.4 ± 0.5 46.8 ± 0.1 0.4 

1l 44.6 ± 0.5 45.4 ± 0.2 0.8 

 

Simulations of compound 1j and 1l were inaccurate because of their low coalescence 

temperature. The increased viscosity of the samples led to a loss of shim quality, 

which enlarged the rate constants as a result of line broadening. To overcome this 

problem the error of the k values for our calculations were increased and a simulation 

of the solvent signal was performed to get an idea of the error of the k values induced 

from the loss of shim quality. Therefore the rate constants were recalculated at low 

temperatures as shim correction. Temperature errors (T = ±1 K) and rate constant 

errors (k ± 5 % and for 1l (k = ± 20 %)) were used to calculate the errors stated in the 

different tables. For the data calculated from Eyring plots the regression coefficients 

were additionally included. 

A variety of mechanisms were suggested for the atropisomerization process of 

bridged biphenyls. A detailed investigation was therefore necessary to get a more 

detailed idea of the mechanism present in our system. Theoretical calculations are a 

valid tool for such investigations. The comparison between experimentally 

determined and calculated activation energies can be used to validate the predicted 

mechanism. Theoretical calculations were successfully performed for all 

symmetrically substituted biphenyls. The calculation of the push-pull system 1i failed 

and is therefore not further mentioned. The symmetrically substituted biphenyls 

showed a C2-symmetry after optimization and a quite similar torsion angle of about 

47° was calculated. This is in good agreement with literature values for propyl-

bridged biphenyls. The different ground state structures are shown in Figure B-13. 
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Figure B-13: Different ground state conformations of the investigated propyl-bridged biphenyls. 

An example of the transition pathway is shown for the di-hydrogen substituted 

compound 1h in Figure B-14.  

 
Figure B-14: Calculated reaction mechanism for propyl-bridged biphenyls. 

This presented transition state shows nicely the two coplanar biphenyls with a torsion 

angle of about 0°, which is reached after rotation of the ortho methylene group. The 

central methylene group is still out of plane and a slight bent of the C-C bond 

between C1 and C1´ is obtained leading to a non perfect linear structure. This model 

was used to calculate the Gibbs free activation energy for all compounds (Table 

B-11) with three different density functionals (BP86, TPSS, B3LYP). For all different 

functionals a similar trend in the activation energy was determined. But the absolute 

values show an offset for the different functionals in all cases. The obtained trend of 

the activation energies was similar to the experimental measured values. 
The high agreement of the Gibbs free activation energy between DFT calculations 

and experimentally measured values gave strong evidence, that the calculated 

transition state is the correct one.  
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Table B-11: Gibbs free activation energy (ΔG≠ in kJ/mol) of the series of propyl-bridged biphenyls 

obtained by three different density functionals and the experimental values as reference. 

Compound ∆GBP86‡
 ∆GTPSS ‡

 ∆GB3LYP ‡
 ∆G‡

exp  

1a 48.4 49.7 52.0 54.2 ± 0.5 

1b 47.6 48.7 51.2 53.3 ± 0.5 

1c 47.2 48.2 50.6 52.6 ± 0.5 

1d 48.0 48.9 52.4 51.3 ± 0.5 

1e 47.0 48.0 50.4 51.3 ± 0.5 

1f 47.0 48.0 50.3 51.4 ± 0.5 

1g 48.4 49.4 51.6 52.4 ± 0.5 

1h 48.4 49.3 51.7 52.4 ± 0.5 

1j 45.7 46.5 48.9 48.4 ± 0.5 

1k 44.0 44.8 47.3 46.4 ± 0.5 

1l 42.5 43.3 46.2 44.6 ± 0.5 

 
Table B-12: Calculated activation enthalpy (ΔH≠ in kJ/mol) and the activation entropy (ΔS≠ in J/(mol*K)) for 

the three different density functionals 

Compound ΔHBP86‡
 ΔSBP86‡

 ΔHTPSS ‡
 ΔSTPSS ‡

 ΔHB3LYP ‡
 ΔSB3LYP ‡

 ∆HEyring
‡ ∆SEyring

‡ 

1a 49.1 2.5 50.1 1.4 52.5 1.8 50.7  −12.6 

1b 48.1 1.9 48.8 0.6 51.7 1.6 52.7 −1.9 

1c 47.6 1.5 48.3 0.5 50.9 1.2 49.9 −10.0 

1d 47.8 −0.9 48.5 −1.5 51.5 −3.7 45.9 −21.8 

1e 47.3 0.9 48.0 −0.1 50.6 0.8 50.0  −6.4 

1f 47.2 0.8 47.9 −0.2 50.5 0.7 46.0 −21.0 

1g 48.6 0.6 49.3 −0.3 51.8 0.5 47.8  −18.5 

1h 48.8 1.2 49.4 0.3 52.0 1.2 47.4 −19.1 

1j 45.9 0.9 46.5 0.0 49.0 0.8 43.4  −22.5  

1k 44.2 0.7 44.8 −0.1 47.5 0.5 39.3  −33.8 

1l 43.1 2.8 43.7 1.9 46.7 2.3 28.3  −78.4 
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The activation enthalpy ΔH≠ and the activation entropy ΔS≠ were calculated for all 

compounds and density functionals (Table B-12). The activation entropy was small 

for all functionals and close to the experimental error. A strong deviation between 

experimental and DFT calculated vales was therefore obtained. DFT calculations are 

performed for isolated molecules (vacuum conditions) this means there are no 

interactions either with similar or solvent molecules. NMR-measurements in different 

solvent were performed and the activation parameters calculated. It was shown 

before that the solvent effect on the Gibbs free activation energy is rather small but 

line shape analysis was not performed in this case. The Gibbs free activation energy 

is in general way independent, which should deliver similar activation energies as 

obtained, but the origin can vary strongly. The influence of the solvent on ΔH≠ and 

ΔS≠ was therefore investigated in more detail for the electron withdrawing di-cyano 

compound 1b, for the neutral di-bromo compound 1e and the electron donating 

compound 1j. Polar protic methanol and π-donating toluene were chosen as solvent 

and compared to the previously measured polar chloroform. It can be seen that the 

di-cyano and the di-bromo compound showed the same trend in this three solvents. 

For the di-methoxy compound the inverse trend (Table B-13) was observed. 

 
Table B-13: Activation entropy ΔS≠, activation enthalpy ΔH≠ and the Gibbs free activation energy ΔG≠ of 

selected molecules in three different solvents. 

Compound Solvent ΔSEyring
≠ / J/(molK) ΔHEyring

≠ / kJ/mol ΔGEyring
≠ / kJ/mol 

1b CDCl3-d1 -1.9 ± 7.3 52.7 ± 2.0 53.2 ± 0.1 

1b MeOD-d4 -8.3 ± 4.2 50.1 ± 1.2 52.3 ± 0.1 

1b Toluene-d8 -39.9 ± 3.5 41.7 ± 0.9 51.9 ± 0.1 

1e CDCl3-d1 -6.4 ± 10.4 50.0 ± 2.7 51.7 ± 0.1 

1e MeOD-d4 -8.0 ± 4.2 49.0 ± 1.3 51.1 ± 0.1 

1e Toluene-d8 -18.0 ± 5.5 45.9 ± 1.4 50.4 ± 0.1 

1j CDCl3-d1 -22.5 ± 6.2 43.4 ± 1.5 48.8 ± 0.1 

1j MeOD-d4 -12.8 ± 4.0 45.6 ± 1.0 48.7 ± 0.1 

1j Toluene-d8 -5.0 ± 4.9 47.9 ± 1.3 49.1 ± 0.1 

 

The strong variations obtained in this limited series of solvents show clearly that a 

solvent effect is present. It is therefore clear that changing from solution to vacuum 

conditions would have an influence on activation parameters. This means that the 
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number of molecules that can interact with each other play an role in the 

atropisomerization process as the solvent can interact with the biphenyl in a specific 

way. 

 

2a: X = NO2  

2b: X = CN 

2c: X = SAc  

2d: X = piperidinyl, NO2  

2e: X = OMe  

2f: X = piperidinyl 

2g: X = Br 

 

The influence of an additional CH2 group in the bridge of the biphenyl was 

investigated leading to butyl-bridged compounds. 1H-NMR experiments were 

performed at rt. to determine the exchange regime. Two distinct signals for each 

proton were observed, leading to the conclusion that a slow exchange is present at 

rt.. The chemical shift differences at rt. were quite large as summarized in Table B-14 
therefore high temperature experiments were performed.  

 
Table B-14: Chemical shift difference of the butyl bridged biphenyls at 298K. 

 

 

 

 

 

 

 

The high boiling solvent 1,1,2,2-tetrachloroethane-d2 was used and experiments up 

to 410 K measured.  Nevertheless, no significant changes in the line shape of the 

signals were observed as shown in Figure B-16. Only little temperature shifts of the 

bridging protons were obtained. 

Compound Solvent Δν at slow exchange 

2g CDCl3 362 Hz 

2b CDCl3 418 Hz 

2c CDCl3 356 Hz 

2e CDCl3 321 Hz 

2e C2D2Cl4 328 Hz 

Figure B-15: Investigated butyl-bridged biphenyls 2a-2f. 
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Figure B-16: High temperature NMR of 4,4´-dimethoxy-2,2´-butyl bridged biphenyl (Structure B-5) in 

tetrachloroethane-d2 showing the signals of the butyl bridge. 

 
Structure B-5:  4,4´-dimethoxy-2,2´-butyl bridged biphenyl  

Due to the high activation barrier observed, a separation of the two atropisomers 

should be possible, as described in literature11. To be able to separate such isomers 

a rotation barrier in a range of 80 – 120 kJ/mol at 300 K is required.11–13 For this 

system dynamic HPLC turned out to be the method of choice. A plateau was 

obtained for all compounds during the dynamic HPLC experiments using a Chiralpak 

AD-H column (Figure B-17). The temperature dependent experiments were 

performed in a range of 283 - 308 K in 5 K steps using iPrOH/n-hexane mixtures of 

97:3 for 2a, 2b, 2d-2f and 95:5 for 2c. The different elution profiles are shown in 

Figure B-17.  
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Figure B-17: Dynamic HPLC elution profiles of the A = 2a, B = 2b, C = 2c, D = 2e, E = 2f, on an amylose 
coated Chiralpak-ADH column at different temperature starting at 288 K (left) ending at 308 K (right) in 5 K 

steps. 

For determination of the thermodynamic data the software DCXplorer was used and 

the rate constants calculated. Three different processes are taking place during the 

separation 1.) Equilibrium between of the two atropisomers between the mobile and 

stationary phases in the presence of a chiral column, 2.) Reversible first order 

enantiomerization on the chiral surface, 3.) Shifting of the mobile phase to the next 

plate. These three processes allow the direct relation between rate constants and the 

peak heights. The experimental details are described in the thesis of Jürgen 

Rotzler.50 The thermodynamic data obtained by dHPLC are summarized in Table 

B-15. 
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Table B-15: Thermodynamic data obtained from dynamic HPLC measurements. All experiments were 

performed four times and the averaged value are presented. 

Compound ΔG≠ / kJ/mol ΔH≠ / kJ/mol ΔS≠ / J/(molK) 

2a 96.75 ± 0.12 47.11 ± 6.2 -166 ± 21 

2b 96.29 ± 0.04 51.42 ± 0.8 -150 ± 3 

2c 94.31 ± 0.05 49.30 ± 1.2 -151 ± 4 

2d 90.30 ± 0.20 54.50 ± 4.0 -120 ± 14 

2e 92.22 ± 0.04 45.50 ± 0.4 -157 ± 2 

2f 89.52 ± 0.03 42.48 ± 0.4 -158 ± 2 

 

Theoretical calculations were performed in the same way as described before for the 

propyl-bridged biphenyls to gain deeper insights into the mechanism of the 

isomerization. Valid data for all measured compounds except for the push pull 

system 2d could be generated. The calculated thermodynamic data are shown in  

Table B-16.  

 
 Table B-16: Computationally calculated Gibbs free activation energy ΔG≠

theo (kJ/mol), ΔH≠
theo(kJ/mol), and 

ΔS≠theo, (J/(mol*K)) for the series of experimentally measured butyl bridged biphenyls except the push-

pull system. 

Compound ΔG≠ 
TPSS ΔH≠ 

TPSS ΔS≠ 
TPSS ΔG≠ 

B3LYP ΔH≠ 
B3LYP ΔS≠ 

B3LYP 

2a 92.8 90.4 -7.9 101.9 99.9 -6.7 

2b 91.0 88.7 -7.6 100.5 98.7 -6.1 

2c 93.1 90.4 -9.0 101.7 100.4 -4.0 

2e 88.6 86.2 -7.7 97.8 95.9 -6.3 

2f 84.0 82.5 -5.3 94.5 93.2 -4.4 

 

The DFT calculated Gibbs free activation energies were again close to the 

experimental values (same trend, little offsets), which validates the transition states 

and the reaction mechanism. On the other hand the differences in the activation 

enthalpy and activation entropy are even stronger than for the propyl bridged 

biphenyls.  

These discrepancies could be explained by the different experimental set ups. 

Indded, DFT calculations are performed for molecules in the gas phase, NMR 

experiments are performed in solution whereas dHPLC experiments were performed 
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in a mixture of mobile and stationary phase. To get an idea of the effect of the 

different media it would be great to investigate at least one sample with all three 

methods. As mentioned before it is not possible to perform dHPLC for molecules with 

an activation barrier below 80 kJ/mol. The only way to compare the theoretical 

calculations with two experimental methods on the same molecule would be high 

temperature NMR. To get an idea of the temperatures required, the coalescence 

temperatures were recalculated from the thermodynamic data obtained by dHPLC 

and the chemical shift difference at rt. of the corresponding NMR spectra (Table 

B-17). 

 
Table B-17: Calculation of the Coalescence Temperatures for the molecules measured by dynamic HPLC. 

Compound ΔG≠
dHPLC

 / kJ/mol Δνexp Tc-predicted 

2a 96.75 ± 0.12 431 Hz 505 K 

2b 96.29 ± 0.04 418 Hz 502 K 

2c 94.31 ± 0.05 356 Hz 489 K 

2d 90.30 ± 0.20 - - - - - - 

2e 92.22 ± 0.04 328 Hz 477 K 

2f 89.52 ± 0.03 297 Hz 462 K 

 

From Table B-17 it is obvious that the coalescence temperatures for donor and 

acceptor substituted molecules are extremely high and special high-temperature 

NMR equipment would be required.  For compound 2e, high temperature NMR 

experiments up to 410 K were performed without destroying the molecule. Special 

equipment for high temperature experiments up to 500 K was not available. For 

detailed NMR analysis at least 500 K would be necessary for line shape analysis with 

high accuracy, as also the fast exchange regime has to be covered.  

Therefore we focused on 3,9-dimethoxy-5,5,7,7-tetremethyl-5,7-dihydrodibenzo-

(c,e)oxepine as candidate for both analytical methods as an Gibbs free activation 

energy between the propyl- and butyl-bridged biphenyls was predicted.  
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Figure B-18: Schematic representation of the two atropisomers of dihydrodibenzo(c,e)oxepine. 

High temperature NMR experiments were performed and a coalescence temperature 

of 314 K determined. The resulting Gibbs free activation energy ΔG≠ = 59.5 kJ/mol 

was higher than for the propyl bridged compounds but unfortunately far too small to 

allow separation on a HPLC column. 

 

B.5  Discussion 
In the presented work three different types of 2,2´-bridged-4,4´-substituted biphenyls 

were investigated by dNMR spectroscopy, dHPLC chromatography and DFT 

calculations. The two experimental methods were used to validate the output of the 

DFT calculations. 

Oki et al.21 demonstrated that the rotation of ethyl bridged biphenyls is quite fast and 

only 5- or 5,5´- substituted ones showed an increased activation barrier suitable for 

NMR measurements. We tried to extend this series to 2,2´-ethyl-4,4´-substituted 

biphenyls by the usage of lanthanide shift reagents. We could show that an 

increasing amount of shift reagent leads to stronger pseudo contact shifts but 

unfortunately the coalescence could not be reached for any of the measured 

concentrations. The main problem is most likely the distance and the geometry 

between the coordination group and the ethyl bridge. The influence on all protons of 

the ethyl bridge is quite similar as the distances from the lanthanide to the two 

protons are similar. Additionally, coordination from both sides of the molecule is 

possible leading to average and similar PCS on both sides. Variable temperature 

experiments in toluene demonstrated, that at lower temperatures a strong shift of up 

to 180 Hz for all four protons was induced. On the other hand it remarkable that 

increasing concentrations at constant temperature led to weak shift differences. This 



Discussion 153 
 

 

means that the influence of the lanthanide shift reagent to the chemical shift 

difference on the two sides is rather small and only the increased paramagnetic 

strength at lower temperatures leads to stronger shifts. A successful study of 2,2´-

ethyl-bridged-4,4´-disubstituted biphenyls was therefore not possible with dNMR 

spectroscopy.  

 

In contrast to the ethyl-bridged biphenyls, the atropisomerization process of 2,2´-

propyl-bridged-4,4´-disubstituted biphenyls was successfully monitored by dynamic 

NMR spectroscopy and theoretical calculations. The results obtained for the 

unfunctionalized compound 1h fit quite nicely to results obtained by Sutherland et 

al.23 L3a and the difference is within the experimental error. For the series of oxepins 

(Table B-1) it was shown as the activation energy is lower (L1a) and reaches 

comparable values to the propyl bridged molecules if steric demand on the bridge is 

introduced (L1d). The introduction of an additional substituent in the 5 position led to 

a tremendously increased activation energy of about 70-85 kJ/mol. In the series of 

measured thiepins the activation energy is in a range of 70-77 kJ/mol and therefore 

higher than for propyl bridged biphenyls. The di-H compound (L2c) and the di-F 

compound (L2d) showed more or less the same activation energies, this is also true 

for our analogues 1g and 1h. The series of sterically demanding molecules L5a-p 

showed activation energies between 70 and 80 kJ/mol. In this case they found that 

the push-push substituted molecules show much lower activation energy than the 

pull-pull substituted. The same effect was observed for propyl- and butyl-bridged 

biphenyls. It was demonstrated that substituents in 4 and 4´-position can be used for 

fine-tuning of the activation barrier whereas the change of the substituents in 2,2´-

position led to changes of the activation energy in the order of 20-40 kJ/mol. We 

further showed by dHPLC that the butyl-bridged biphenyl 2a-e have larger activation 

energies than 2,2´-di substituted biphenyls L5a-p. 
 

The main objective of this project was to investigate the influence of substituents with 

different strength on the activation energy of the atropisomerization of bridged 

biphenyls with different chain length. Therefore, the resulting Gibbs free activation 

energies were plotted against the Hammett-parameter σp (Figure B-19). The Hammet 

σ-parameter represents the resonance and inductive effect in such a system and is 

therefore a good measure of the total electronic effects. This means that the σ-



154	
   Thermodynamic studies of 4,4´ substituted torsion angle restricted 2,2´ alkyl-bridged biphenyl cyclophanes 

 

 

parameter shows the ability of the substituents to donate or to accept electrons to the 

C1-C1´-bond of the biphenyl. To gain accurate parameters for 4,4´-di substituted 

biphenyls, the σ-parameters of each of the two substituents were summed up as 

demonstrated earlier by Hart64 and Wirz65. Influences of the different bridges were 

not investigated, as they are constant all over the series. It was possible to directly 

correlate the Hammett parameters to the Gibbs free activation energy ΔG≠ as the 

ΔG≠ is correlated with its logarithm to the rate constant. The Hammett diagram 

delivers insights into the effect of the substituents on the transition state. A linear 

relationship allows the assumption that all molecules isomerize with the same 

mechanism. The di-H compound 1h was used as internal reference and therefore no 

normalization required. A Hammett diagram for the propyl bridged biphenyl 1a-l is 

shown in Figure B-19. 

 
Figure B-19: Hammett diagram (Correlation of the σ-parameter vs. Gibbs free activation enthalpy ΔG≠) of 
the propyl-bridged biphenyls 1a-l. 

The Hammett correlation diagram shows clearly a linear dependence between the 

Gibbs free activation energy and the σ-parameter. This result indicates that the 

atropisomerization process is depending on the electron density at the central C1-

C1´- bond. This linear relation ship allows now the prediction of the rotation barrier of 

other substituents as a high electron density leads to lower activation energies and 

reduction of the electron density leads to an increase of the activation energy. The 

slope of the Hammett diagram is a measure for the sensitivity of the system to the 
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electronic effects. In our case the slope (ρ = 2.99) is quite steep, that means that the 

rotation process is strongly influenced by the electronic configuration. The almost 

linear relationship between all compounds gives strong evidence that all compounds 

follow the same rotation mechanism. A deeper insight into the origin of the electronic 

effects can be gained by splitting the σ-parameter into two separate effects, namely 

the field/inductive effect (F) and the resonance effect (R) as it was shown by Swain 

and Lupton.66 The inductive effect gives information about the polarisation of the σ-

bond in the substituent and is strongly distance dependent whereas the resonance 

effect gives a description of the π-interactions. 

 
Figure B-20: Representation of the Hammett-plot of propyl-bridged biphenyl separated in their field effect 

(F) (left diagram) and their resonance effect (R) (right diagram). 

The field parameters and the resonance parameters can be correlated to the Gibbs 

free activation energy in a similar way. The result of these correlations are presented 

in Figure B-20. It is obvious that the data fit much better to the resonance parameter 

than to field parameter. This correlation demonstrates that the substituents mainly 

influence the π-system. This finding is in contrast to the mechanisms published 

earlier where a partial rehybridization of the central C1-C1´-bond was postulated, 

which should deliver a high agreement with the field parameter (F).26 

Line shape analysis delivered insights into the thermodynamics of the system. 

Therefore the calculated rate constants were correlated in Eyring plots to the 

temperatures delivering directly the enthalpy and entropy of this process (Table B-8). 

Table B-8 indicates that the enthalpy mainly influences the rotation process. It was 

observed that the influence of the enthalpy is decreased as stronger the electron 

donating ability of the substituents in 4,4´-position are (push-push-system). The 

enthalpy is the energy required to reach the transition state. The generated enthalpy 
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values can be correlated in a same way as the Gibbs free activation energies to the 

Hammett-parameter. 

 
Figure B-21:  Hammett-diagramms, correlation of the enthalpy ΔH≠ vs Hammett-parameter σ (top), the 

resonance parameter R (bottom left) and the field effect parameter F (bottom left). 

A similar trend is observed for the σ-parameter and the R-parameter for the 

activation enthalpy (Figure B-21) but the deviations from linearity are stronger 

compared to the results obtained the Gibbs free activation energy. Exactly the same 

situation is present for the activation entropy ΔS as shown in Figure B-22. The results 

of the shown Hammett correlations deliver some insights on the inversion 

mechanism. The linear relationship between the Gibbs free activation energy and the 

resonance parameter R indicates that the main influence on the activation energy of 

4,4´-di substituted biphenyls for the rotation around the C1-C1´-bond is dominated by 

the π-distortion of the system. This gives strong evidence of a planar transition state. 

This means on the other hand that the activation energy of the system is mainly 

influenced from the electron density around the C1-C1´-bond. As conclusion from the 
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trend observed for substituents, a partial negative charge at C1 seems to be most 

likely for strong donors, whereas a positive charge is possible for strong acceptors.  

 
Figure B-22: Hammett-diagramms, correlation of the entropy ΔS≠ vs Hammett-parameter σ (top), the 
resonance parameter R (bottom left) and the field effect parameter F (bottom left). 

As shown before, the experimentally determined Gibbs free activation energies are in

good agreement with the theoretical determined ones (Table B-11). A graphical 

representation is shown in Figure B-23. A linear relation ship was obtained for all, but 

for the different density functions an offset can be observed. The calculated energies 

for the donor substituted fit best for the TPSS functional whereas the best fit for the 

acceptors is obtained by the B3LYP functional. The BP86 functional delivers overall 

energies lying slightly below the experimental ones. The high agreement between 

experiment and calculation validates the calculated rotation mechanism. The 

calculated mechanism shows only one transition state  (Figure B-24) where the two 

phenyl rings are planar, the CH2-group in the middle of the bridge is out of plane but 

the molecule is no longer linear. The equilibrium state of the molecules shows C2 

symmetry. Therefore, the two ortho CH2-groups of the bridge have to pass by each 
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other to overcome the transition state, this seems to be the crucial factor dictating the 

inversion energy.  

 
Figure B-23: Comparison of the Gibbs free activation energies ΔG≠ for the propyl-bridged biphenyls 
obtained by dynamic NMR spectroscopy and DFT calculations. 

The bond between the C1-C1´ is elongated in the transition state (151-152 pm) 

compared to the ground state (148 pm), whereas the distance between H6-H6´ is 

decreased as a bending of the two phenyl rings occurs. The elongation in the 

transition state is depending on the Gibbs free activation energy calculated for the 

different molecules. Therefore, the distance is dependent on the substituents.  

 
Figure B-24: Calculated atropisomerization mechanism of propyl-bridged biphenyls. 
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The changes of the bond distance are small for electron donors and stronger for 

electron acceptors (Figure B-25). This means that lower activation energies also 

correspond to shorter distances of the two phenyl rings in the transition state. The 

length of a chemical bond is strongly related to the electron density of this bond. The 

elongations are represented in the Gibbs free activation energy, which are in good 

agreement with the measured experimental data.  

 
Figure B-25: Calculated Gibbs free activation energies ΔG≠ correlated to the transition state distances of 
the different propyl-bridged biphenyls. 

This elongation of the central C1-C1´-bond gives further evidence for the postulated 

mechanism and forces the conclusion that the dominating factor for the rotation is the 

electron density at this bond. The elongation facilitates the rotation of the two phenyl 

rings as it additionally enlarges the space for the two sterically demanding CH2-

groups to pass by each other as it leads to stronger bending of the molecules. The 

push-pull system 1i showed experimentally an extreme low activation energy. It can 

be postulated that partial positive and negative charges are located on each side of 

the bond. This would lead to a partial double bond with shorter distance between the 

two phenyl rings explaining the low activation energy. 

The consistency of the experimental and theoretical values for the activation 

Enthalpy ΔH≠ and Entropy ΔS≠ are low compared to the Gibbs free activation energy 

ΔG≠. Especially for electron donating substituents a large deviation is obtained.  
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The main difference between the calculation and the experiment is the different 

surrounding of the molecules, whereas the calculations are single molecule 

calculations, the NMR measurements were performed as an ensemble in solution. 

On the other hand interactions with other biphenyls are also possible in the NMR 

experiment, which is excluded in the calculation of single molecules by DFT 

calculations. The interaction of different biphenyls was proven by NMR titration 

experiments of different concentrations and showed that no interactions are present. 

Therefore, the solvent effect was investigated for three different biphenyls in three 

different solvents. From Table B-13 it can be seen that changes in the Gibbs free 

activation energy are small whereas strong deviations for the activation enthalpy and 

entropy are present. 

 
Figure B-26: Variable Temperature NMR of the neutral biphenyl 1e in different solvents. 

For electron accepting molecules, electron rich solvents like toluene show the 

strongest negative activation entropy values whereas for electron-donating molecules 

chloroform delivered the strongest negative activation entropy showing an opposite 

trend. This can be explained by the different electronic properties of the transition 

states. The electron donating molecules have an electron rich transition state with a 

partial negative charge on the C1-C1´-bond, which is stabilized by a protic solvent 
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leading to lowered activation enthalpy. For electron accepting molecules the situation 

is reversed, the transition state is partially positively charged. Electron rich solvents 

like toluene can stabilize this transition state more efficiently leading to a lowered 

activation enthalpy. This effect is changed in both cases for the activation entropy, as 

the Gibbs free activation energy remains constant. The resulting spectra of the 

variable temperature NMR are presented in Figure B-26, the coalescence 

temperatures vary tremendously but also the chemical shift difference in the slow 

exchange regime. The different combinations of chemical shift difference and 

coalescence temperature led to the same Gibbs free activation energy as shown for 

several molecules. This means that also a change of the solvent can help to make 

molecules accessible for dynamic NMR measurements. 

 

The results of the butyl-bridged biphenyls 2a-f are quite similar to those of the propyl-

bridged ones. The introduction of one more CH2-group in the bridge has a stronger 

effect on the activation barrier than the substituents in 4,4´-position. Indeed, the 

measured Gibbs free activation energies are in a range of 89 to 97 kJ/mol for the 

butyl-bridged ones whereas the energy for the propyl-bridged ones were in a range 

of 45 to 55 kJ/mol. The rotation barrier follows the same trend within the series of 

propyl-bridged so that the donor-substituted biphenyls show lower activation energy 

than the acceptors.  

 
Figure B-27: Hammett-correlation of the atropisomerization energies of butyl-bridged biphenyls 2a-f 
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The high degree of linearity obtained for acceptors and donors (Figure B-27) gives 

again strong evidence for a similar transition state throughout the series. Only the 

push-pull system 2d shows a stronger deviation from linearity in the butyl case. The 

reasons for this are so far unknown, but a slightly different transition state seems to 

be possible for this molecule. If again a partial double bond can be assumed for this 

transition, then a more linear transition state could to be favoured explaining the 

difference to the other molecules. For the butyl-bridged system the slope of the 

resulting linear curve fitting is less steep (ρ = 2.27) compared to the propyl bridged 

molecules. This indicates that the electronic effect of para-substituents is less 

pronounced for butyl-bridged biphenyls but still significant. Again the σ-parameter 

was separated into the resonance parameter (R) and the Field effect (F) according to 

Lupton and Swain66 to deliver insights on the origins of the electronic effects. 

 
Figure B-28: Correlation of the Gibbs free activation energy ΔG≠ of butyl-bridged biphenlys to the 

resonance parameter (left) and the field effect (right). The push-pull system was excluded for linear 

regression, as the reason for the strong deviation is not clear. 

For the linear regression the push-pull system was excluded as from the σ-parameter 

a different transition state seems to be possible. For all others an almost linear 

correlation to the resonance parameter was obtained (R2 = 0.96) and therefore again 

a strong influence from the π-skeleton suggested. This means that electronic effects 

again dominate the inversion process. In this limited series also a quite strong 

correlation to the field effect (R2 = 0.84) was obtained. This suggests that in this case 

also the σ-skeleton is distorted in the transition state.  

Comparison of the relationship between Gibbs free activation energy and its origin 

activation enthalpy and entropy indicated that for the butyl-bridged case the influence 

of the activation enthalpy (Figure B-29) is less pronounced than for the propyl-
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bridged case. There are two possible reasons for the strong influence of the 

activation entropy to the transition state. Either the molecular structure has to be 

reorganized to reach the transition state or the separation technique itself is the 

reason. A strong interaction between the stationary phase of the column used and 

the eluted molecule can induce an orientation of the system leading to a strong 

entropy effect when the atropisomerization process takes place. The σ-parameter 

was again correlated to the activation enthalpy ΔH≠ and the activation entropy ΔS≠.  

 
Figure B-29: Hammett diagram for the activation enthalpy ΔH≠ and entropy ΔS≠ for the series butyl-

bridged biphenyls. 

The Hammett correlation (Figure B-29) indicates that the activation enthalpy is 

dependent on the nature of the substituent in 4,4´-position, whereas the activation 

entropy remains mostly constant. This indicates that the electronic effect seems to be 

small for the entropy, and further supports the hypothesis that the high entropy 

values have their origin in the separation technique and not in the reorganization of 

the molecule for the transition state. Comparison of the experimentally obtained 

Gibbs free activation energies of the two different sets of biphenyls show the same 

trend for the different substituents (Figure B-30). 
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Figure B-30: Comparison of the Gibbs activation energies ΔG≠ for the propyl- and butyl-bridged 

biphenyls. 

To gain further insights into the atropisomerization process theoretical calculations 

were performed.  The trends of the calculated Gibbs free activation energies are in 

good agreement to the experimental ones (Figure B-31). Nevertheless, they have a 

slight offset of the absolute values. The situation is slightly different when moving to 

the activation enthalpy and activation entropy. Whereas the activation enthalpy is the 

dominating factor in the calculations, it is only a minor factor in the experiments, 

which leads to strong deviations. Also the trend is different for the electron acceptors. 

As both methods deliver the same Gibbs free activation energies the differences in 

the activation entropy has to be strong as well.  

The differences in the activation enthalpy and entropy between experiments and DFT 

calculation are most likely due to the different environments. The calculations are 

performed in vacuum where no interactions are taken into account. In the case of 

dHPLC the separation of the peaks and therefore the parameters for the evaluation 

of the thermodynamic data is due to interactions between the molecules, the 

stationary and the mobile phase. Some differences had already been observed 

between the NMR experiments and the DFT calculations for the propyl-bridged 

molecules. In that case the presence of interactions was confirmed by a study of the 

solvent dependence of the values. High temperature NMR experiments were not 

successful and therefore no data available for comparison. The similar results for the 

Gibbs free activation energies for donor and acceptor substituted molecules give 

strong evidence that the calculated transition state (Figure B-32) is valid for the whole 

series of butyl-bridged biphenyls. 

 



Discussion 165 
 

 

 
Figure B-31:  Comparison of the experimental and calculated thermodynamic data for butyl-bridged 

biphenyls. The red coloured dots are for the TPSS and the black one for the B3LYP functionals. The 

comparison of the Gibbs free activation energy ΔG≠ is shown on top, the comparison of the activation 
enthalpy ΔH≠ is shown on the left hand site whereas the activation entropy ΔS≠ is shown on the right 

hand site. 
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Figure B-32: Energy profile of the isomerization process of butyl-bridged biphenyls. The enantiomer A is 

converted to the intermediate B in a preequilibrium. Intermediate B is then able to reach the transition 
state C to undergo the inversion to intermediate D.  D is then converted to the second isomer E. 

The mechanism shows two transition states. Starting from the isomer A/E a first 

transition state is reached where the butyl bridge is distorted and intermediate B is 

formed. This preorganized state B/D is then able to undergo atropisomerization when 

the transition state C is reached. The transition state C is quite similar to the one 

obtained for the propyl bridged molecules. The two phenyl rings are in a plane and 

two CH2-groups are pointing out of this plane. The energies required for the 

interconversion of A/E to B/D are comparable for all molecules of the investigated 

series of butyl-bridged biphenyls whereas a strong deviation from B/D to C is 

observed. This means that the substituents are influencing mainly the second 

transition state C where the two phenyl rings are in one plane. This is again in high 

agreement with the Hammett correlations. 

 



Conclusions 167 
 

 

B.6  Conclusions 
It was possible to study two different sets of 4,4´-disubstituted-2,2´-bridged biphenyls 

by different methods. The investigation of ethyl-bridged biphenyls by dynamic NMR 

measurements was not possible due to the small chemical shift differences and the 

low activation energies and therefore the predicted rotation barriers from Oki could 

not be confirmed.  

In contrast to the ethyl-bridged biphenyls, the propyl bridged biphenyls 1a-1l were 

investigated by dynamic NMR experiments at variable temperatures. Hammett 

correlations of the Gibbs free activation energy ΔG≠ to the σ-parameter showed that 

the rotation process is strongly dependent on the electron density on the C-C bond. 

Separating the σ-parameter into its Resonance Parameter R and field effect F gave 

more insight. This allowed the conclusion that the π-electron density mainly 

influences the rotation barrier. The linear dependence of the whole series of propyl-

bridged biphenyls indicated that the rotation processes have the same reaction 

mechanism. Density functional theory calculations delivered a planar and almost 

linear transition state. The resulting Gibbs free activation energies are in excellent 

agreement with the experiment supporting the reaction mechanism strongly. It was 

further shown that an elongation of the C1-C1´-bond is obtained in the transition state 

varying strongly with the nature of the para-substituents. Solvent dependent NMR 

experiments showed that a partial-negative charged transition state could be 

stabilized with protic solvents whereas electron rich solvents stabilized the partial-

positive transition state. 

The butyl-bridged biphenyls 2a-2f were investigated by dynamic HPLC 

measurements. Hammett correlations of the Gibbs free activation energy ΔG≠ to the 

σ-parameter showed that the rotation process is less dependent on the electron 

density on the C-C bond than the propyl-bridged ones. Separating the σ-parameter 

into its resonance parameter R and the field effect F showed that rotation barrier is 

influenced by the π-electron density as well as distortion of the σ-skeleton. For 

acceptors and donors the same reaction mechanism is predicted whereas a slightly 

different one for the push-pull system seems to be possible. DFT calculations 

delivered a reaction mechanism with two transition states. The second transition 

state shows higher activation energy and is therefore the rate limiting one. In this 

transition state the phenyl rings are in one plane and the two middle CH2-groups are 
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pointing out of the plane. Large differences of the activation enthalpy and entropy are 

most likely explained by the different methods used for the calculation.  

Comparison of the propyl-bridged and butyl-bridged biphenyls indicates that the 

para-substituents deliver energy changes in a range of 10 kJ/mol whereas the 

additional CH2-group contributes about 45 kJ/mol. The para-substituents are 

therefore a valid tool for fine-tuning the activation energy. 

 

B.7  Outlook 
The influence of lanthanide shift reagents LSR will be investigated for the propyl-

bridged biphenyls to get an idea how much the rotation barrier could by influenced. 

To access the rotation barrier of butyl-bridged biphenyls high-temperature 

experiments on specially equipped NMR spectrometers and high-pressure NMR 

experiments should be performed. These measurements are of special interest as 

the differences of activation enthalpy and entropy are extremely different for all three 

methods used in this investigation. 
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B.8  Experimental 

B.8.1 Temperature Calibration 
The temperature calibration was performed in a range from 298 to 223 K using a 4% 

MeOH in 96 % MeOD sample. Each temperature was measured three times and the 

average value was used as the new temperature. The experimental measured 

samples are shown in Figure B-33. The chemical shift differences of all 

measurements and the new temperature are shown in Table B-18. The corrected 

temperatures were calculated using Equation B-7 and Equation B-8. 

 
Table B-18: Temperature calibration for temperatures between 298 and 223 K in 5 K steps. 

Tspectrometer  Δν in ppm Tcorrected Taverage 

298 1.5046 299.08  

298 1.05045 299.09  

298 1.5052 299.01 299.1 

293 1.5603 292.68  

293 1.5606 292.65  

293 1.5610 292.60 292.6 

288 1.6138 286.54  

288 1.6140 286.52  

288 1.6144 286.47 286.5 

283 1.6651 280.65  

283 1.6653 280.63  

283 1.6657 280.58 280.6 

278 1.7162 274.78  

278 1.7165 274.74  

278 1.7168 274.71 274.7 

273 1.7645 269.24  

273 1.7650 269.18  

273 1.7652 269.15 269.2 
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Tspectrometer  Δν in ppm Tcorrected Taverage 

268 1.8123 263.46  

268 1.8127 263.41  

268 1.8131 263.36 263.4 

263 1.8571 257.86  

263 1.8574 257.83  

263 1.8578 257.78 257.8 

258 1.9123 250.96  

258 1.9123 250.96  

258 1.9123 250.96 251.0 

253 1.9581 245.24  

253 1.9574 245.33  

253 1.9572 245.35 245.3 

248 2.0033 239.59  

248 2.0031 239.61  

248 2.0027 239.66 239.6 

243 2.0480 234.00  

243 2.0477 234.04  

243 2.0473 234.09 234.0 

238 2.0888 228.90  

238 2.0884 228.95  

238 2.0880 229.00 229.0 

233 2.1265 224.19  

233 2.1301 223.74  

233 2.1256 224.30 224.1 

228 2.1665 219.19  

228 2.1662 219.23  

228 2.1659 219.26 219.2 

223 2.2073 214.09  

223 2.2059 214.26  

223 2.2057 214.29 214.2 
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Figure B-33: Variable temperature NMR spectra of 4% MeOH in 96 % MeOD-d4 for calibration of the 

internal temperature. 

 

B.8.2 Lanthanide shift reagents 

 
Figure B-34: NMR assignment of 4,4´-dicyano-2,2´-ethylbridged biphenyl in toluene-d8 at 298 K. 
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The LSR Eu(fod)3, Eu(hfc)3 and Pr(hfc)3 were purchased from Fluka and used 

without further purification. All samples were measured in CDCl3 (99.9% D) 

purchased from Cambridge Isotopes. All samples were referenced to the residual 

solvent peak. The shim quality at temperatures below 250 K decreased due to 

paramagnetic relaxation enhancement. 

 
Figure B-35: Variable temperature NMR titration experiments of 4,4´-dicyano-2,2´-ethylbridged biphenyl  

with Eu(fod)3 as achiral lanthanide shift reagent 

 
Figure B-36: Variable temperature NMR titration experiments of 4,4´-dicyano-2,2´-ethylbridged biphenyl  
with Eu(fod)3 as achiral lanthanide shift reagent. 
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Figure B-37: Variable temperature NMR titration experiments of 4,4´-dicyano-2,2´-ethylbridged biphenyl  
with Eu(hfc)3 as chiral lanthanide shift reagent. 

 
Figure B-38: Variable temperature NMR titration experiments of 4,4´-dicyano-2,2´-ethylbridged biphenyl  

with Eu(hfc)3 as chiral lanthanide shift reagent. 

The effect of both Europium samples was low even at concentrations of 50%. 

Therefore, no further experiments at higher concentrations were performed, as a 

recalculation of the activation energy is impossible even if the coalescence could be 

reached at higher concentrations. 

 

The NMR spectra of 4,4´-dicyano-2,2´-ethylbridged biphenyl containg 10% Pr(hfc)3 

show clearly that the pseudo contact shift increases at lower temperatures and that 

the main influence of the LSR is on the phenyl rings, what indicates that probably the 

distance between the LSR and ethyl-bridge is too long for Praseodym. As 

Praseodym induces stronger pseudocontact shifts than Europium higher 

concentrations were measured to see if one can influence the shift of the ethyl 
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protons in a stronger way. Nevertheless, also at concentrations of 200 % (1.0 eq per 

coordination group) no strong effects were obtained. 

 

 
Figure B-39: Variable temperature NMR titration experiments of 4,4´-dicyano-2,2´-ethylbridged biphenyl  

with Pr(hfc)3 as chiral lanthanide shift reagent. 
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Figure B-40: Variable temperature NMR titration experiments of 4,4´-dicyano-2,2´-ethylbridged biphenyl  

with Pr(hfc)3 as chiral lanthanide shift reagent. 
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Figure B-41: Variable temperature NMR titration experiments of 4,4´-dicyano-2,2´-ethylbridged biphenyl  

with PrEu(hfc)3 as chiral lanthanide shift reagent. 

 

Synthesis of Tris[3-(heptafluoropropylhydroxymethylene)-d-campherato]Tm(III) 

 
Structure B-6: Synthesis scheme of Tm(hfc)3. 

To a suspension of NaH (14.6 mg 60% in mineral oil, 0.34 mmol, 1.2 eq) in 

toluene (2 ml) hfc (82 µl, 0.29 mmol, 1.0 eq) was added slowly. The mixture 

was stirred for 30 min. The solution was filtered and the solvent was removed 

under reduced pressure to yield the sodium salt of hfc. The resulting salt was 

re dissolved in methanol (2 ml) and a solution of TmBr3 (53.7 mg, 0.12 mmol, 

0.4 eq) in methanol (2 ml) was added. The mixture was stirred for 2 h at room 
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temperature and additional 30 min at 64 ◦C. The solvent was removed and the 

product was redissolved in n-hexane (4 ml), filtered over celite, washed with 

water (3 x 10 ml) and dried over Na2SO4 to yield Tris[3-

(heptafluoropropylhydroxymethylene)-d-camphorato]Tm(III) 3 as pail orange 

crystals. 

Thullium is known as one of the metals that can induce the strongest pseudo 

contact shifts, therefore titration experiments were performed up to 70 % in 10 

% steps. The effect was again small at high temperatures but increased at 

lower temperatures. The coalescence could again not be reached as the PRE 

effect at low temperatures became dominant leading to signal broadening. At 

NMR measurements at 188.5 K the melting point of toluene was almost 

reached so that these two problems stopped the experiments.  

 
Figure B-42: Variable temperature NMR titration experiments of 4,4´-dicyano-2,2´-ethylbridged biphenyl  
with Tm(hfc)3 as chiral lanthanide shift reagent in toluene-d8. 
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Figure B-43: Variable temperature NMR titration experiments of 4,4´-dicyano-2,2´-ethylbridged biphenyl  
with Tm(hfc)3 as chiral lanthanide shift reagent in toluene-d8. 

 

B.8.3 Line shape analysis 
All experimental spectra were fitted with dNMR Bruker® to determine the rate 

constants at different temperatures. The procedure for all spectra was the following. 

The spin system containing 6 different protons was generated. The coupling 

constants at slow exchange regime were determined and added to the corresponding 

spin. Afterwards the position of the spins in the slow exchange was added. The rate 

constant was then varied to generate a fit with accuracy above 95%, which was set 

as confidence interval. The position of the nucleus was kept constant and only varied 

if a temperature dependent shift in the experimental spectra was obtained. These 

definitions were used to fit the spectra from the slow exchange regime to the 

coalescence temperature. From the coalescence to the fast exchange regime the 

coupling constants were exchanged to the ones obtained in the fast exchange 

regime to allow more precise calculations. The determined spectra with their 

corresponding accuracy values are shown in the following section. Problems were 

ppm

299.1 K

274.7 K

251.0 K

229.0 K

209.1 K

188.5 K

40 % Tm(hfc)3
50 % Tm(hfc)3

70 % Tm(hfc)3

2.0 1.8 1.6 ppm2.0 1.8 1.6 ppm2.0 1.8 1.6



Experimental 179 
 

 

obtained if the coalescence temperature was close to the melting point of the solvent 

or the separation of the two signals was small. Additional problems were detected for 

non-pure samples, solvent peaks close to the reaction centre or overlaps of the 

bridging CH2. For samples with a low coalescence temperatures the rate constants at 

higher temperatures are too small as the resolution of the signals was not good 

enough. 

The coalescence temperatures were determined from line width analysis of the 

experimental spectra. The line width was measured at each temperature. The line 

width was then correlated to the temperature and a lorentzian fitting performed. This 

calculation allowed a quite precise calculation of the coalescence temperature. For 

compounds with a low coalescence point this method is less suitable as not many 

data points below the coalescence could be determined. The graphical 

representation for each compound is shown below the measured NMR spectra. 

The obtained rate constants were further analysed using Eyring plots. Therefore, the 

logarithm of the rate constant over the temperature was correlated to inverse 

temperature. The data points are then fitted in a linear regression. Figure B-80 shows 

the graphical outcome of the calculations. The resulting linear equation is then used 

to calculate the activation enthalpy, the activation entropy and finally the Gibbs free 

activation energy. 
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Figure B-44: Comparison of experimental and dNMR fitted spectra of compound 1a in CDCl3. 

 
Figure B-45: Calculation of the theoretical coalescence temperature of compound 1a from the 

experimental line width in CDCl3. 
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Figure B-46: Comparison of experimental and dNMR fitted spectra of compound 1b in CDCl3. 

 
Figure B-47: Calculation of the theoretical coalescence temperature of compound 1b from the 

experimental line width in CDCl3. 
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Figure B-48: Comparison of experimental and dNMR fitted spectra of compound 1b in MeOD-d4. The 
lowered accuracy of the spectra below 280 K is due to signal overlaps. 

 
Figure B-49: Calculation of the theoretical coalescence temperature of compound 1b from the 

experimental line width in MeOD-d4. 
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Figure B-50: Comparison of experimental and dNMR fitted spectra of compound 1b in toluene-d8. 

 
Figure B-51: Calculation of the theoretical coalescence temperature of compound 1b from the 
experimental line width in toluene-d8. 
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Figure B-52: Comparison of experimental and dNMR fitted spectra of compound 1b in CDCl3. 

 

Figure B-53: Calculation of the theoretical coalescence temperature of compound 1c from the 
experimental line width. 
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Figure B-54: Comparison of experimental and dNMR fitted spectra of compound 1d in CDCL3. The high 

impurity of the compound lead to low overall accuracy but the accuracy of the isolated signals was above 
0.95 for all temperatures. 

 

 
Figure B-55: Calculation of the theoretical coalescence temperature of compound 1d from the 

experimental line width in CDCl3. 

2.352.402.452.502.552.60 ppm 2.402.452.502.552.60 ppm

di-SAc experiment di-SAc fit
299.1 K

286.5 K

274.7 K

269.2 K

263.4 K

257.8 K

251.0 K

239.6 K

229.0 K

0.718

0.719

0.726

0.731

0.733

0.677

0.681

0.682

0.677

230 240 250 260 270 280 290 300

10

20

30

40

50

60

70

80

T
c

261.6 K ± 0.6 K

L
in

e
w

id
th

 i
n
 H

z

Temperature in K

 4,4`-disulfuracteyl-2,2`-propylbridged biphenyl



186	
   Thermodynamic studies of 4,4´ substituted torsion angle restricted 2,2´ alkyl-bridged biphenyl cyclophanes 

 

 

 
Figure B-56: Comparison of experimental and dNMR fitted spectra of compound 1e in CDCL3. 

 

 
Figure B-57: Calculation of the theoretical coalescence temperature of compound 1e from the 

experimental line width in CDCl3. 
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Figure B-58: Comparison of experimental and dNMR fitted spectra of compound 1e in MeOD-d4. 

 

 
Figure B-59: Calculation of the theoretical coalescence temperature of compound 1e from the 
experimental line width in MeOD-d4. 
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Figure B-60: Comparison of experimental and dNMR fitted spectra of compound 1e in toluene-d8. The low 

accuracy of all spectra is due to second species lying on the left hand side of the signal resulting in an 
strong tailing on the left side of the signal. 

 

 
Figure B-61: Calculation of the theoretical coalescence temperature of compound 1e from the 

experimental line width in toluene-d8. 
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Figure B-62: Comparison of experimental and dNMR fitted spectra of compound 1f in CDCL3. 

 

 
Figure B-63: Calculation of the theoretical coalescence temperature of compound 1f from the 

experimental line width in CDCl3. 
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Figure B-64: Comparison of experimental and dNMR fitted spectra of compound 1g in CDCL3. 

 

 
Figure B-65: Calculation of the theoretical coalescence temperature of compound 1g from the 

experimental line width in CDCl3. 
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Figure B-66: Comparison of experimental and dNMR fitted spectra of compound 1h in CDCL3. 

 

 
Figure B-67: Calculation of the theoretical coalescence temperature of compound 1h from the 

experimental line width in CDCl3. 
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Figure B-68: Comparison of experimental and dNMR fitted spectra of compound 1i in CDCL3. 

 

 
Figure B-69: Calculation of the theoretical coalescence temperature of compound 1i from the 
experimental line width in CDCl3. 
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Figure B-70: Comparison of experimental and dNMR fitted spectra of compound 1j in CDCL3. 

 

 
Figure B-71: Calculation of the theoretical coalescence temperature of compound 1k from the 

experimental line width in CDCl3. 
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Figure B-72: Comparison of experimental and dNMR fitted spectra of compound 1j in MeOD-d4. 

 

 
Figure B-73: Comparison of experimental and dNMR fitted spectra of compound 1j in MeOD-d4. 
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Figure B-74: Comparison of experimental and dNMR fitted spectra of compound 1j in toluene-d8. 

 

 
Figure B-75: Comparison of experimental and dNMR fitted spectra of compound 1j in toluene-d8. 
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Figure B-76: Comparison of experimental and dNMR fitted spectra of compound 1k in CDCL3. The low 

accuracy of the spectra is mainly due to the low coalescence temperature and the low shim quality of the 
spectra at lower temperatures. The simulation of roof effects as it is obtained in the first spectra is also 

difficult for the simulation. 

 

 
Figure B-77: Calculation of the theoretical coalescence temperature of compound 1k from the 

experimental line width in CDCl3. 
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Figure B-78: Comparison of experimental and dNMR fitted spectra of compound 1l in CDCL3. 

 

 
Figure B-79: Calculation of the theoretical coalescence temperature of compound 1l from the 

experimental line width in CDCl3. 
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Table B-19: Rate constants determined by dNMR for propyl bridged biphenyls. 

1a fitted 1b fitted 1c fitted 

T k T k T k 

299.1 2000 299.1 3050 299.1 3800 

292.6 1200 286.5 1200 286.5 1450 

286.5 760 280.6 705 280.6 900 

280.6 450 274.7 415 274.7 560 

274.7 290 269.2 260 269.2 340 

263.4 97 257.8 90 263.4 200 

251.0 35   251.0 65 

    239.6 21 

 

Table B-20: Rate constants determined by dNMR for propyl bridged biphenyls. 

1d fitted 1e fitted 1f fitted 

T k T k T k 

299.1 4200 274.7 850 299.1 4800 

286.5 1900 269.2 515 286.6 2050 

274.7 820 263.4 295 274.7 810 

269.2 500 257.8 172 269.2 500 

263.4 320 245.3 55 263.4 325 

257.8 180   257.8 185 

251.0 105   251.0 105 

239.6 35   239.6 38 

    229.0 13 
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Table B-21: Rate constants determined by dNMR for propyl bridged biphenyls. 

1g fitted 1h fitted 1i fitted 

T k T k T k 

299.1 3100 299.1 3200 299.1 10200 

280.6 840 280.6 1000 281.6 4200 

274.7 530 269.2 395 257.8 820 

269.2 315 263.4 195 245.3 345 

263.4 186 257.8 128 234.0 130 

251.0 63 251.0 72 224.1 50 

239.6 22 239.6 25   

 
 
Table B-22: Rate constants determined by dNMR for propyl bridged biphenyls. 

1j fitted 1k fitted 1l fitted 

T k T k T k 

274.7 1500 251.0 550 274.7 1500 

263.4 950 239.6 230 263.4 900 

251.0 380 234.0 160 251.0 600 

245.3 180 229.0 100 239.6 400 

239.6 104 224.0 50 229.0 175 

229.0 37 219.2 32 224.1 120 

219.2 16 214.2 20 219.2 54 

    209.2 21 
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Figure B-80: Overview of Eyring plots from popyl-bridged biphenyls 1a – 1l determined from dNMR data 

 

B.8.4 Determination of the Standard Deviation for ΔΔHEyring
‡, ΔΔSEyring

‡, ΔΔGEyring
‡ 

The standard deviations σ for the enthalpy, entropy, and Gibbs free energy values 

given in Table B-8 of the main paper were obtained from the following procedure: 

firstly, the experimental reaction rate constants ln(k/T) were plotted against 1/T in a 

single Eyring plot and fitted by linear regression. From this fit, the values ΔHEyring
‡, 

ΔSEyring
‡, and ΔGEyring

‡ given in Table B-8 of the main paper were obtained. Secondly, 

at the experimental temperatures Ti, i = 1, …, n, the corresponding reaction rate 

constants ki were computed from the equation 

ki = kBTi exp{−(ΔHEyring
‡ − TiΔSEyring

‡)/(RTi)} / h ,   i = 1, …, n . 
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Obviously, these computed points lie on a perfect straight line. Thirdly, a total number 

of j = 1, …, 2500 individual simulations were performed. In each of these simulations, 

n data points (Ti+δT, ki+δk) were generated using a random number generator, taking 

random numbers δT and δk from a Gaussian distribution about the temperature Ti and 

about the reaction rate constant ki. The Gaussian distributions were chosen 

according to the standard deviations of σT = 1 K and σk = 5%, respectively. An Eyring 

plot for these n data points yielded ΔHEyring
‡(j), ΔSEyring

‡(j), and ΔGEyring
‡(j). Finally, the 

standard deviations σ for the enthalpy, entropy, and Gibbs free energy values given 

in Table B-8 were obtained from the distribution of the 2500 values obtained in the 

simulations. As an illustration, Figure B-81 shows all of the 2500 data points used in 

the above procedure for 1b, which involved 2 × 6 × 2500 = 30000 random numbers in 

total. 

 

Figure B-81: Data points for 1b from 2500 simulations (n = 6). 
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C) Structure elucidation and Synthesis 
of a novel leukaemia-associated T 
cell lipid antigen 

 

C.1  Research Goal 
The discovery and the characterization of tumour-associated antigens recognized by 

specific T cells opened novel and promising therapeutic opportunities for treatment of 

cancer. The tumour-associated antigens identified so far consist of peptides derived 

from proteins accumulated in cancer cells and presented to T cells by major 

histocompatibility complex I (MHC-I) antigen-presenting molecules.1 Research from 

the group of Prof. Dr. Gennaro De Libero revealed that T cells can also recognize 

lipid antigens expressed in tumour cells, particularly in leukaemia cells,2,3 and 

suggested that these T cells may be involved in anti-leukaemia immune response. 

Aim of the present study, developed in collaboration with the group of Prof. Dr. De 

Libero, has been the structural elucidation of a novel leukaemia-associated T cell 

lipid antigen and the synthesis of the natural occurring molecules. 

 

C.2  Introduction 
CD1 proteins are antigen-presenting molecules specialized in presenting lipids to 

specific T cells. In humans, they are present in five different isoforms identified as 

CD1a, CD1b, CD1c, CD1d and CD1e. CD1 molecules form stable T cell stimulatory 

complexes with a large variety of structurally different lipids antigens derived from 

microbes or synthesized inside the antigen presenting cells (APC). T lymphocytes, 

able to recognize lipid antigens bound to CD1 molecules, are known as CD1-

restricted T cells and are involved in anti-microbial immunity4 as well as in anti-tumor 

immune response.5,6  

In a recent study,3 the group of Prof. Gennaro De Libero identified from healthy 

individuals particular T cells capable of specifically recognizing and killing leukaemia 
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cells in CD1c-dependent manner and without addition of exogenous antigens. These 

data suggested that the lipid molecule(s) recognized by T cells were synthesized 

inside the leukaemic cells. As tumour cells display a marked alteration in different 

metabolic pathways,7 including those related to the biosynthesis and degradation of 

lipids, it was hypothesized that the observed CD1c-restricted and lipid-specific T cell 

reactivity against leukaemia cells could be due to accumulation of unique lipids.

To investigate this issue, biochemical fractionation of lipids extracted from leukaemic 

cells was coupled with functional in vitro T cell activation assays and structural 

analysis of active lipid fractions, in order to identify and characterize the stimulatory 

lipids3. 
 

 

 

 

 

 

 

 

 

 

The big limitation of these types of studies, aimed to identify a bioactive molecule out 

of a complex mixture of different molecules extracted from cells, is the small recovery 

of active compounds. The multiple steps required for their purification and the need 

of testing their biological activity in vitro significantly impact on the amounts of 

material remaining for further structural analyses. In our study, lipids were extracted 

from very high number of leukaemia cells and fractionated according to their polarity. 

Several protocols were exploited in order to set up a method suitable to obtain 

acceptable yield and satisfying purity.  The purified lipids were then tested for their T 

cell stimulatory potential. The fractions that showed activity were purified by HPLC 

chromatography and the resulting sub-fractions were again tested in T cell activation 

assays. The active sub-fractions were further analysed by spectroscopic methods to 

gain knowledge about their identity. 

Mass spectrometry (MS) can detect small quantities of a compound, in the range of 

nanograms and provides information about the purity of a sample and the identity of 

Figure C-1: Schematic representation of a T-cell receptor interaction. 8 
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a molecule. MS is therefore widely used for the identification of compounds 

accessible only in small quantities. In particular LC-MS, where a HPLC system is 

coupled to a mass spectrometer, is the most efficient system for such studies. The 

combination of LC and MS allows precise analysis of complex mixtures and provides 

important information about single molecules, namely the retention time and the 

mass. Furthermore, special MS techniques allow fragmentation of a molecule to give 

insights about its functional groups. Therefore, LC-MS analysis provides a variety of 

important indications for the assignment of the final structure. Nevertheless, in many 

cases the structure elucidation remains incomplete, as the substitution pattern might 

be unclear. In these situations, a further structural proof is needed. The proof is 

usually achieved by X-ray crystallography or NMR spectroscopy. Both methods have 

advantages and disadvantages. X-ray analysis delivers an accurate structure of the 

investigated molecule. However, for X-ray measurements a single crystal is required, 

which is not easy to grow when only small quantities of a purified molecule are 

available (crystal growth out of complex mixtures is in most cases impossible).  NMR 

spectroscopy is a good complement to MS spectrometry for structure elucidation. 

NMR has a mass limitation in the range of milligrams for standard (5 mm probe 

heads) equipped spectrometers. Nevertheless, the availability of special NMR-tubes 

like shigemi-tubes, decreased the required mass by a factor of about two and the 

following development of 1.0 and 1.7 mm micro-probeheads, allowed also 

investigation of submilligram quantities. The new generation of cryogenic micro-

probeheads further increased the sensitivity and allows investigation of samples with 

quantities in the nanogram region. NMR analysis can therefore be used, on the basis 

of LC-MS data, to confirm the MS fragmentation patterns and to define the final 

three-dimensional structure of a molecule also when it is available in small amounts. 

This identification process requires a series of one and more dimensional 

experiments. These techniques were applied for the elucidation of the final structure 

of the leukaemia-associated T cell stimulatory antigen identified in our study.  

The identification of such active compounds leads in many cases to the development 

of a total synthesis. Total synthesis can deliver the active compound in higher 

quantities. These higher quantities are unambiguously necessary to investigate the 

active compounds in more detail. Depending on the identified molecule different 

functions should be investigated. For therapeutic active compounds, the uptake 

mechanisms and the IC 50 values are quite important. Therefore, a total synthesis of 
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the identified active compounds was achieved to have larger quantities for 

investigations in hand. 

 

C.3  Methods and Materials 
 

C.3.1 Cell extraction 
The cell extraction protocol used for the presented methyl-lysophosphatidic acid 

(mLPA) is presented elsewhere.3 

 

C.3.2 LC-MS purification 
“Pre purification of the lipid using HPLC was performed on a reverse phase C18 

polar endcapped column (3 µm particle size, 3 mm ID, 125 mm length, Marcherey 

Nagel). LC-MS-MS was performed using Rheos Allegro pump (Flux instruments) and 

HTC PAL injector with a 20 µL loop (LTC Analytics AG). Msn were acquired using an 

LXQ ion trap mass spectrometer equipped with a heated electrospray ionisation 

(ESI) source (Thermo Fischer Scientific). Source conditions: spray voltage 5 kV; 

capillary voltage 12 V; capillary temperature 265 °C. tube lens offset voltage 100 V. 

CID spectra were acquired on an API 4000 LC-MS-MS system with a triple 

quadropole analyser (Applied Biosystems / MDS Scicx). Exact mass measurements 

were performed on a LTQ-MS (Thermo Fischer Scientific). All lipid standards were 

purchased from Avanti Polar Lipids, Inc..”3 

 

C.3.3 NMR studies 
The mLPA samples obtained from cell extracts were recorded on an Avance III 600 

MHz spectrometer (Bruker®) operating at 14.1 Tesla and 298 K. The spectrometer 

was equipped with a triple resonance (1H, 13C, 31P), 1.7 mm micro probe head with a 

self-shielded z-gradient coil. All mLPA experiments were performed in sodium 

formate buffered deuterated methanol d-4 (99.96 % D; Cambridge Isotope 

Laboratories, Burgdorf CH). All synthetic samples were prepared in deuterated 

solvents (>99.8 % D; Cambridge Isotope Laboratories, Burgdorf CH). The NMR 

experiments performed on synthetic samples were recorded using a DRX-600 MHz / 

Avance III 600 MHz NMR spectrometer equipped with a self shielded z-axis pulsed 
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field gradient dual-channel broadband inverse 5 mm probe head (BBI) (Bruker®). 

Chemical shifts were referenced to residual solvent peaks. 

The mLPA was dissolved in 30 µL, solvent, syringe-transferred to a 1.7 mm diameter 

NMR sample tube. The two dimensional experiments were recorded with 2048 data 

points in the direct dimension and increments in the indirect dimension numbering 

1024 (COSY and HSQC) or 256 (31P-HMBC), resulting in acquisition times of 285 

(F2) and 142 ms (F1) for the COSY, 142 and 20.5 ms for the HSQC, 142 and 10.5 

ms for the 31P-HMBC. The COSY was performed with 8 scans per increment, leading 

to a total experimental time of 3 h 21 min; the HSQC (144 scans, 64 h 17 min) and 

the 31P-HMBC (8 scans, 59 min). A 31P decoupling 180 ° pulse was applied during 

the 13C evolution period of the sensitivity-enhanced Echo-Antiecho HSQC experiment 

and during 1H acquisition. The long range delay in the 31P-HMBC was set to 62.5 ms. 

All other NMR experiments were routine experiments.3 

 

C.3.4 Synthesis 
All chemicals used were obtained in reaction grade (> 98 %) and used without further 

purification. Solvents (technical grade) for column chromatography were redistilled 

prior to use. The reactions were performed in standard glassware. Chloroform for 

reactions was stabilized with amylenes (amylenes are hydrocarbons with a molecular 

formula C5H10, the double bond makes them to good stabilizers) instead of ethanol to 

prevent side reactions. Reaction control was performed with thin layer 

chromatography (Merck) if not stated otherwise.  

 

C.4  Retrosynthetic analysis and synthetic strategy 

 
Figure C-2: Retrosynthetic analysis of mLPA (A). 
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The synthesis of mLPA (A) can be performed in different ways. The glycerine 

backbone is a well known starting point for many lipid syntheses described earlier. 

For the synthesis of mLPA it is possible to introduce the phosphate in a last step, as 

shown in the red strategy. In this strategy the alkyl chain is introduced in the first 

step. After the introduction of the alkyl chain the protection group is removed and a 

special protection protocol is applied to allow the introduction of a phosphate at the 

3´-position in a selective way.  

The main advantage of the strategy depicted in red is the higher stability and the 

easier purification of the synthetic intermediates. 

 An alternative synthetic route is shown in blue. In this case the phosphate is 

introduced in the first reaction step and the alkyl chain has to be introduced in a 

selective way in a later stage of the synthesis.  

Both routes allow an enantioselective synthesis by choosing an appropriated 

protection protocol. The starting material can be purchased enantiopure or as 

racemic mixture.  
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C.5  Results 
To identify CD1c-presented T cell stimulatory leukaemia antigens, lipids were 

extracted form THP1 cells, a cell line representative of acute myeloid leukaemia and 

efficiently recognized by specific CD1c-restricted T cells. The lipids were fractionated 

by amino cartridge according to their different polarity. One active fraction was 

identified, which was further sub-fractionated by HPLC. Three resulting sub-fractions 

with a retention time of 17, 18 and 19.5 min showed high T cell stimulatory capacity. 

The corresponding chromatogram, mass spectra and T cell activation profile is 

shown in Figure C-3 and Figure C-4. 

 
Figure C-3: HPLC profile (on top) and the corresponding T-cell activation tests (bottom). 
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Figure C-4: ESI-MS-spectra (negative measurement mode) of the cell extracts on top the non purified 

mixture followed by the active fractions resulting from a retention time of 17, 18 and 19.5 min. 

To gain structural insights and to identify the functional groups of the molecule with 

masses 409-, 437- and 906-, eluted at 17, 18 and 19.5 min respectively MS2 (MS-MS) 

fragmentation experiments were performed.  

In a study performed by Kertscher,9 an ether lipid with a mass of 409- was described 

as a synthetic analogue of platelet-activating factor. The corresponding structure A is 

shown in Figure C-5. No NMR and MS fragmentation data for this compound were 

presented in Kertscher’s work, thus no comparison between our identified molecules 

and those described in this paper could be performed.  

 
Figure C-5: Suggested isomers of the isolated mLPA with a m/z = 409- after MS-analysis.  

 

Figure C-6: Suggested isomers of the isolated mLPA with a m/z = 437- after MS-analysis. 
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The fragmentation of the compound with a mass of 409- will be described in detail 

(Figure C-8, Figure C-9) and a similar fragmentation pattern was obtained for the 

molecule with a mass of 437.3 Fragmentation experiments delivered m/z = 377- that 

corresponds to the loss of OCH3 (m/z = 32) group. Triple stage mass spectrometry 

(MS3) was performed in negative mode to deliver further insights. In this case the 

peak with an m/z = 377- is fragmented a second time delivering a mass of 239- 

indicating an -OC16H33 group. The fragmentation pathway is shown in Figure C-8. 

The same experiments were performed in the positive mode to prove the results 

obtained in the negative mode. Identification of the product mass 411+ was 

complicated and only a weak peak could be obtained, as the natural product was 

unlikely to be protonated. The fragmentation delivered a ion with a m/z = 299+ 

corresponding to the loss of a O=PO(OH)(OMe)-  group. In the positive mode a m/z = 

225+ was obtained corresponding to +C16H33 cation (Figure C-9). The glycerine 

backbone can be assumed from the identification of all other fragments and as 

standard structural element of lipids. The identified structural elements are therefore: 

a glycerine backbone, a methylated phosphate and a OC16H33 side chain. The main 

differences to lipids identified in this research field so far are an ether bridged side 

chain and a methylated phosphate moiety. High-resolution mass spectroscopy 

(HRMS) confirmed the resulting formula (C20H43PO6). Several isomers can be 

predicted as shown in Figure C-5. Structure A shows the most similarities to already 

known lipids and was assumed as most probable structure after MS-analysis.  

 
Figure C-7: On top left: HPLC trace of the purified natural mLPA sample. On top right: ESI-MS spectra of 

the mLPA sample measured in the negative mode. On bottom left: ESI-MS2 of the mass 409-. On bottom 

right: ESI-MS3 of the mass 377-. 
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Figure C-8: Fragmentation pathway for structure A in MS-MS experiments recorded in the negative mode. 

MS analysis was performed in a similar way for two other highly active compounds. 

For the mass of 437- similar fragmentation pattern were detected. The only difference 

for this molecule was the larger alkyl chain that contains two more CH2-groups. Also 

in this case an ether side chain instead of a ester side chain was predicted. Similar 

isomers can therefore be expected as shown in Figure C-6 with structure D being the 

most likely one. Unfortunately no structure could be assigned or proposed yet for the 

molecule with mass of 906- eluted at 19.5 min. 
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Figure C-9:MS-fragmentation pathway for structure A in MS-MS experiments recorded in the positive 

mode. 

Because of the unusual features of the identified lipids, determined by LC-MS-MS, 

and considering that such molecules were never described before, further analysis to 

univocally characterize, define and confirm their structure was required. NMR 

experiments were indeed performed on the HPLC purified natural product. A lot of 

impurities (not detected by ESI-MS) were observed, which made structure elucidation 

with standard equipment impossible as only a few micrograms of the sample 

contained really the molecule of interest. Overlaps in the proton spectrum were 

detected, which could be resolved by 2D measurements. The selective 31P 

decoupled proton (1H{31P}) experiment showed that the doublet of the methoxy group 

collapses to a singlet (Figure C-10) (The complete spectra are shown in the 

experimental section). Therefore a 3JHP = 12 Hz coupling constant could be identified 

which fits quite nicely to literature values. Two more signals that contained a 
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phosphorous coupling were identified in a range from 3.8 to 3.9 ppm. This finding 

indicates strongly structure A as a 3JHP is much more likely than a 4JHP as also 

coupling constants in a range of about 12 Hz could be measured.  

 
Figure C-10: Comparison of 1H{31P} decoupled and 1H NMR spectra. It is nicely shown, that the duplet at 

3.58 ppm collapses to a singlet (red label) and the multiplet between 3.8 and 3.9 ppm (blue label) is 
influenced by the decoupling. 

The 2D-heteronuclear experiments with standard equipment could not confirm the 

suggested structure, as carbons that contained a phosphorous coupling could not be 

detected. A good explanation for this finding is the carbon-phosphorous coupling 

(2JCP = 5-20 Hz) that decreases the intensity by a factor of two due to the coupling. 

The use of a triple resonance 1.7 mm (TXI (1H, 13C, 31P), 600 MHz) probe allowed the 

full characterization of the natural sample. With this special probe head 2D-

heteronuclear experiments could be performed with additional phosphorous 

decoupling. This phosphorous decoupling increased the intensity of carbon signals 

that showed a phosphorous coupling by a factor of two. The usage of 1.7 mm NMR 

tubes compared to 5.0 mm NMR tubes (Standard NMR equipment) lead to a 
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reduction from 500 µL to 30 µL solvents. This decreased amount of solvent enlarged 

the concentration by a factor of 16. The higher concentrations reached with a 1.7 mm 

NMR tube allowed the measurement of 2D-experiments of only a few micrograms of 

substance. A HSQC experiment with carbon and phosphorous broadband decoupling 

(Figure C-11) as well as a HMBC spectrum with phosphorous decoupling could be 

recorded. The HSQC spectra allowed the identification of the carbon corresponding 

to the OMe group as well as the CH2-group of the glycerine backbone that is coupled 

to the phosphorous. The combination of COSY, HMBC and HMQC allowed the 

identification of the alkyl-chain in position 1 and suggested the phosphate moiety in 3 

position.  

 
Figure C-11: The presented 13C1H-HSQC{31P13C} spectrum allowed the identification of 1`` and 3, which 

could not be detected without phosphorous decoupling. 

 

The so far presented spectra could show that the CH2-group 3 and OMe-group 1`` 

have a coupling to a 31P, but it remained unclear whether they were located on the 

same phosphorous or on a different. A one to one mixture of two compounds could 

also explain the so far presented spectra. It was therefore necessary to measure a 
31P-HMBC spectrum. The recorded spectrum could unambiguously confirm that both 

groups are attached to the same phosphorous as shown in Figure C-12.  
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Figure C-12: 1H31P-HMBC spectra confirming that the CH2-group from the glycerine backbone and the 

OMe-group are connected to the same phosphorous. 

With these additional experiment the structure of the extracted lipid could be 

confirmed as being structure A. The complete proton, carbon and phosphorous 

assignment can therefore be shown. 

 

 

 
1H-NMR (600 MHz, MeOD-d4, δ/ppm): 0.88 (t, 3JHH = 8 Hz, 3H, H16`); 1.21-1.35 (m, 

26H, H3`-H15`); 1.57 (q, 3JHH = 8 Hz, 2H, H2`); 3.41 (m, 1H, H1); 3.46 (m, 2H, H1`); 
3.47 (m, 1H, H1); 3.51 (m, 1H, H3); 3.58 (d, 3JHP = 12 Hz, 3H, OMe); 3.58 (m, 1H, 

H3); 3.72 (m, 1H, H2). 
13C-NMR (151 MHz, MeOD-d4, δ/ppm): 14.4 (1C, C16`); 26.4 (1C, C15`); 27.2 (1C, 

C14`); {29.4 – 30.5, C3`-C13`}; 30.6 (1C, C2`); 52.8 (1C, OMe); 64.9 (1C, C3); 72.2 

(1C, C2); 72.5 (1C, C1`); 73.1 (1C, C1). 
31P-NMR(243 MHz, MeOD-d4, δ/ppm): 2.2 (1P). 

Additional NMR spectra are shown in the experimental section. 

 

Total synthesis of the identified lipid was performed. The higher compound quantities 

were used to confirm unambiguously the identification of lipid A as active species. 

The synthetic strategy is presented in Figure C-13. 
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Figure C-13: Synthetic strategy towards mLPA (A): a) sodium, 1-chlorohexadecane, 18h, reflux, 40 %; b) 
AcOH, rt, overnight, 99%; c) benzoylchloride, triethylamine, DMAP in toluene, rt, 66 %; d) 3,4-dihydro-2-H-

pyrane, 10 % PPTS in dichloromethane, 4h, rt, 95%; e) NaOMe in MeOH, 0 °C, 15-30 min., 92 %; f) POCl3, 

triethylamine, chloroform (stabilized with amylenes), -10 °C, 30 min., rt, 30 min., MeOH, pyridine, rt, 16 h, 
water, rt, 60 min.  

Starting from commercially available racemic-isopropylidene glycerol, the C16 side 

chain was introduced to yield 40% of intermediate 2 after purification. The acetal-

protecting group was removed under acidic conditions in quantitative yield. Selective 

protection of the primary alcohol using benzoyl chloride delivered compound 4 in 

moderate yield. Orthogonal protection in 2-position with a THP protecting group 

worked in excellent yield. The following basic deprotection of the benzoyl group 

delivered intermediate 6, which is stable over several months at ambient 

temperature. The final product could be generated in a one-pot synthesis; the in situ 

generation of HCl cleaved the THP ether. All intermediates were characterized with 

ESI-MS and 2D NMR experiments. The detailed synthesis and characterization of 

the compounds is shown in the experimental section. Purification of the final product 

remained challenging. However, purification with silica column chromatography did 

not work due to strong interactions with the stationary phase. Changing to alox as 

stationary phase led to decomposition of the product. Crystallization of the lipid was 

also not successful. Preparative thin layer chromatography yielded in higher purity 

but only HPLC purification under the same conditions used for the natural sample 

delivered a highly pure sample. Due to the purification of only analytical quantities the 

yield for the last reaction step could not be determined.  
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The synthesis of the mLPA was performed in six linear steps. The protection protocol 

was chosen in a way that the stereochemistry of the 2-position of the glycerine 

backbone was not affected in any step. This allows the preparation of the 

corresponding enantioselective mLPA molecule. 

The synthetic mLPA A could be fully characterized by two-dimensional NMR 

spectroscopy. Buffering of the synthetic sample with sodium formate delivered the 

identical proton (Figure C-14), carbon and phosphorus NMR spectra.  

 
Figure C-14: Comparison of biological and synthetic sample recorded under the same conditions. The 

synthetic analogue was measured in higher concentrations. 

The same 31P-1H coupling constants could be measured. All recorded NMR spectra 

are shown in the experimental section. In both cases the same degradation products 

where the phosphate was moved to the 2 position were obtained. Under basic 

conditions this movement was more pronounced than in slightly acidic conditions. 

The isomer A could be confirmed as the correct structure by comparison of the NMR 

spectra, ESI-profiles and HPLC retention time of the synthetic and natural compound.  

The comparison of the two HPLC profiles is presented in Figure C-15. Both samples 

were eluted at the same day under the same conditions. Both samples show the 

product A (19.4 min) and the side product B (17.7 min). The isomerization reaction is 

favoured under basic conditions. 
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Figure C-15: HPLC profiles of the synthetic sample (left) and the natural sample (right). At 19.4 min the 
mLPA isomer A is eluted. The retention time of 17.7 belongs to isomerized side products (B) where the 

phosphate moiety is bound to the two position.  

The presented synthetic route can be used also for the preparation of C18-mLPA, 

which was synthesized as well and confirmed the structure D as the right one. 

Experimental procedures were similar to the C16-analogue with identical yields. The 

experimental details of these compounds are therefore not presented. 

 

C.6  Discussion 
The MS-analysis gained deep insights into the different functional groups of the 

target molecule. The identification of a phosphate group, a glycerine backbone, a 

methoxy group and an alkyl side-chain was possible. A substitution pattern in 

analogy to known compounds was predicted (structure A, structure D). The mass 

limitation of a few micrograms of the natural product made structure elucidation with 

the insensitive NMR method challenging. Additionally the NMR active phosphorous 

nucleus with a natural abundance of 100% and strong couplings to protons and 

carbons lowered the intensity of affected resonances by a factor of two. On the other 

hand the NMR activity of the spin ½ nucleus 31P allowed the measurements of a 

variety of NMR experiments that were essential for the assignment. The use of new 

hardware that can deal with lower concentrations and contained three pulsing 

channels instead of two was therefore really helpful. The substitution pattern could be 

solved with special NMR equipment (triple resonance 1.7 mm probe head), that 

allowed the measurement of a HSQC spectra with phosphorous and carbon 

decoupling during the acquisition period. 1.7 mm NMR tubes require an amount of 30 

µL solvents whereas 5 mm shigemi tube require 250 µL and standard 5 mm NMR 

tubes need at least 450-500 µL. The sensitivity gain due to the lowered solvent 

content was great. The additional phosphorous decoupling was the required step to 

reach a signal to noise level allowing the identification of the carbon chemical shift for 

17.7

19.4

17.7

19.4

4 8 12 16 20 24 28

100

50

0 0

100

50

Time (min)

A
bu

nd
an

ce
  (

re
la

tiv
e)

A
bu

nd
an

ce
  (

re
la

tiv
e)

4 8 12 16 20 24 28
Time (min)



Discussion 225 
 

 

the CH2-group (3) and the OMe group that showed coupling to the phosphorous. The 

key step to the structure elucidation was the measurement of the 31P-HMBC spectra 

that confirmed that both carbons are located on the same phosphorous. Additionally 

we could show the strong pH dependence of the OMe group that showed an 

increased pH dependent chemical shift compared to the CH2-group of the glycerine 

backbone, which is also located on the phosphorous. It was therefore essential to 

adjust the pH of the synthetic sample using sodium formate to deliver the same 

proton, carbon and phosphorus NMR-shifts as the natural sample. 

The total synthesis of mLPA was achieved in moderate to good yields. The target 

compound showed enormous T cell activation (Figure C-16) properties and 

confirmed therefore the activity of the lipid. A direct comparison of the biological 

activity of the natural sample and the synthetic sample could not be performed. A 

quantification of the natural sample was not performed due to the small amounts 

accessible. Concentration dependent experiments could therefore not be done. 

Nevertheless, one has to mention that the shown activity is from a racemic mixture of 

R and S configured glycerines. Phospholipids have in general an R-configuration of 

the glycerine backbone. It remains so far unclear whether the S-form can act also as 

a potential antigen or if it the blocks T cells. The obtained good activation profiles 

obtained by the activation tests are probably changed if the two enantipure molecules 

are applied separately to activation assays. 

 
Figure C-16: T cell clones DN 4.99 were stimulated with synthetic C16-mLPA presented by purified 

primary B-cells. 
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The synthetic route was therefore developed in a modular way so that it would be 

easy to adapt to enantiopure starting material without interconversions. The main 

challenge of the synthesis was the adjustment of the protection protocol for the 2 and 

3 position of the glycerine backbone. The two protecting groups had to be orthogonal 

and the protecting group in 2 position has to be cleaved easily when the phosphate is 

attached in 3 position. We realized that only an acidic cleavage should be performed 

in order to avoid movement of the phosphate group to the more stable 2 position. 

Different protection protocols were tested as shown in Figure C-13 and Figure C-17. 

An elegant pathway is shown in green, with a selective ring opening of the acetal 

protecting group, that allowed the direct phosphorylation reaction. Unfortunately, no 

reaction conditions that deprotected the molecule without destroying the phosphate 

moiety could be found. 

 
Figure C-17: Different protection protocols tested. 

The brown pathway delivered the first synthetic mLPA sample. However the low 

selectivity of Fmoc to the primary alcohol, with only up to 10% of the mono protected 

species made this synthetic route unfavourable. The protection protocol shown in 

pink allowed no selective deprotection of the primary alcohol. The protection protocol 

shown in Figure C-13, where the acetal protection group is cleaved in high yields by 

acetic acid, followed by selective protection of the C1 by a benzoyl protection group 

and orthogonal protection with a THP protection group at C2 delivered high 

selectivity and good yields. This protocol is therefore the method of choice. Indeed, 

THP protection and deprotection of the C2 is performed without changing the 

stereochemistry of the stereogenic centre, which is required for the enantioselective 

route.  
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The remaining challenge in the synthetic strategy was the purification of the final 

product. The stability of the mLPA under basic conditions is quite low and the 

phosphate end-group tends to move to the C2 position. This is also obtained under 

neutral conditions after two days in methanol solution. Storage at low temperatures 

and slightly acidic conditions was therefore essential.  

The synthetic mLPA could be used for investigations of the activity of the compound. 

The positive results confirmed the active compound and excluded that the impurities 

observed by NMR spectroscopy are the origin for the high T cell activation.  

 

C.7  Conclusion 
The characterization and identification of C16- and C18-mLPA was successfully 

performed using the combination of MS, NMR. In addition a total synthesis of 

racemic mLPA was successfully developed for the first time. Biological activity, MS 

and NMR data unambiguously proved the identity of the compound of biological 

origin and the chemically synthesized sample. The increased sensitivity of the 1.7 

mm probe head allowed the full characterization of a few micrograms of the natural 

sample. The synthesis could be achieved in moderate to good yields and high purity 

of the products. Optimization of the purification protocol for the final product is 

required for the synthesis of large quantities. An easy way to the synthesis of 

enatiomerically pure compounds is presented. 
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C.8  Experimental 

C.8.1 NMR spectra of the biological sample 

 
Figure C-18: Comparison of 1H{31P} decoupled and 1H NMR spectra in MeOD-d4 at 298 K recorded on a 

micro-TXI probe head. 
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Figure C-19: COSY-experiment for the biological sample in MeOD-d4 at 298 K recorded on a micro-TXI 

probe head. 

 

 

 

C.8.2 Synthesis 
4-((hexadecycloxy)methyl)-2,2.dimethyl-1,3-dioxolane (2) 

(2,2-dimethyl-1,3-dioxolan-4-yl)methanol (1) (4.45 g, 33.7 mmol, 

1.2 eq) and sodium (0.161 g, 7.0 mmol, 0.25 eq) were heated to 

80 °C and stirred until all sodium had reacted. 1-

chlorohexadecane (1.46 g, 5.61 mmol, 0.2 eq) was added and 

heated to 100°C for 14 hours. The reaction mixture was quenched with water and the 

combined organic layers were dried over magnesium sulphate and purified by silica 

gel column chromatography (hexane:diethylether 9:1). 4-((hexadecycloxy)methyl)-

2,2.dimethyl-1,3-dioxolane (2) (0.687 g, 1.9 mmol, 34.3 %) was obtained as 

colourless oil.10 

Rf.: Hexane/diethylether (9:1) = 0.68 
1H-NMR (600 MHz, CDCl3, δ/ppm): 0.87 (t, 3JHH = 8 Hz, 3H, H16``); 1.21-1.33 (m, 

28H, H15`` - H3``); 1.36 (s, 3H, H3`); 1.42 (s, 3H, H1`); 1.57 (q, 3JHH = 8 Hz, 2H, 

ppm
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H2``); 3.39-3.53 (m, 4H, H1``, H1); 3.73 (dd, 3JHH = 8 Hz,  3JHH = 12 Hz, 1H, H3); 4.05 

(dd, 3JHH = 8 Hz, 3JHH = 12 Hz, 1H, H3); 4.26 (q, 3JHH = 8 Hz, 1H, H1). 
13C-NMR (151 MHz, CDCl3, δ/ppm):14.3 (1C, C16``); 22.9 (1C, C15``); 25.6 (1C, 

C3`); 26.3 (1C, C2``); 27.0 (1C, C1`); 29.6 - 29.9 (C, C13`` - C3``); 32.1 (1C, C14``); 
67.2 (1C, C3); 72.0 (1C, C1); 72.1 (1C, C1``); 75.0 (1C, C2); 109.6 (1C, C2`).  
ESI-MS (C22H44O53: Calc’d 379.3 [M + Na+], Found 379.4; Calc’d 735.7 [2M + Na+], 

Found 735.7. 

 

3-(hexadecyloxy)propane-1,2-diol (3) 

4-((hexadecycloxy)methyl)-2,2.dimethyl-1,3-dioxolane (2) (0.687 

g, 1.9 mmol, 1.0eq) was dissolved in AcOH (80 %aq., 10 mL) 

and stirred overnight at rt. The solvent was removed and 

analytical pure 3-(hexadecyloxy)propane-1,2-diol (3) (0.601 g, 1.89 mmol, 99 %) was 

obtained as white solid.11 
1H-NMR (600 MHz, CDCl3, δ/ppm): 0.88 (t, 3JHH = 8 Hz, 3H, H16`); 1.20-1.38 (m, 

26H, H3``-H16``); 1.58 (q, 3JHH = 8 Hz, 2H, H2``); 2.24 (sb, OH), 2.64 (sb, OH); 3.43-

3.55 (m, 4H, H3, H1``); 3.65 (dd, 3JHH = 8 Hz, 3JHH = 12 Hz, 1H, H1); 3.72 (dd, 3JHH = 

8 Hz, 3JHH = 12 Hz, 1H, H1); 3.85 (q, 3JHH = 8 Hz, 1H, H2). 
13C-NMR (151 MHz, CDCl3, δ/ppm): 14.3 (1C, C16``); 22.9 (1C, C15``); 26.3 (1C, 

C14``); {29.6 (1C); 29.7 (1C); 29.8 (4C); 29.9 (5C), C2``, C4`` - C13``}; 32.2 (1C, 

C3``); 64.4 (1C, C3); 70.6 (1C, C2); 72.1 (1C, C1``); 72.8 (1C, C1). 

 

3-(hexadecyloxy)-2-hydroxypropyl benzoate (4) 

3-(hexadecyloxy)propane-1,2-diol (371 mg, 1.2 mmol, 

1.0 eq) was dissolved in toluene and benzoyl chloride 

(165 mg, 0.14 mL, 1.2 mmol, 1.0 eq) was added and 

stirred at rt for 15 hours. Triethylamine (0.16 mL, 1.2 mmol, 1.0 eq) and DMAP (cat. 5 

mol%) were added and stirred for additional 5 hours. The resulting precipitate was 

filtered and washed with diethyl ether. The combined organic layers were evaporated 

and purified by silica gel column chromatography (cyclohexane to 

cyclohexane:ethylacetate 60:40). 3-(hexadecyloxy)-2-hydroxypropyl benzoate was 

obtained as yellowish oily solid (325 mg, 0.77 mmol, 64 %).12 
For further reactions NEt3 and DMAP were added at the beginning. 

RF.: Cyclohexane/ethylacetate (1:1) = 0.86 
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1H-NMR (600 MHz, CDCl3, δ/ppm): 0.88 (t, 3JHH = 8 Hz, 3H, H16``); 1.22-1.34 (m, 

26H, H3``-H15``); 1.53-1.59 (m, 2H, H2``); 2.59 (d, 3JHH = 4 Hz, 1H, OH); 3.44-3.60 

(m, 4H, H1``, H3`); 4.12-4.15 (m, 1H, H2`); 4.36-4.44 (m, 2H, H1`);  7.43-7.46 (m, 2H, 

H2); 7.55-7.59 (m, 1H, H3); 8.04-8.06 (m, 2H, H1). 
13C-NMR (151 MHz, CDCl3, δ/ppm):14.3 (1C, C16``); 18.3(1C, C15``); 21.4 (1C, 

C14``); 22.9 (1C, C13``); 29.8 (1C, C2``); 28.3-31.8 (8C, C12``-C4``); 66.3 (1C, C3`); 
69.2 (1C, C2`); 71.6 (1C, C1`); 72.0 (1C, C1``); 128.6 (2C, C2); 129.9 (2C, C1); 

133.3 (1C, C3). 

ESI-MS (C26H44O4): Calc’d 443.3 [M + Na+], Found 443.3 ;Calc’d 863.6 [2M+Na+], 

Found 863.8. 

 
3-(hexadecyloxy)-2-((tetrahydro-2H-pyran-2-yl)oxy)propyl benzoate (5) 

3-(hexadecyloxy)-2-hydroxypropyl benzoate (325 mg, 0.77 

mmol, 1.0 eq) was dissolved in 10 mL dichloromethane. 

PPTS (19 mg, 0.077 mmol, 0.1 eq) and 3,4-dihydro-2H-

pyran (97.5 mg, 1.2 mmol, 1.5 eq) was added and stirred 

at rt for 4 hours. The solvent was removed and the resulting oily solid was purified by 

silica gel column chromatography Cyclohexane:Ethylacetate (95:5) to obtain the title 

compound (369 mg, 0.73 mmol, 95 %, yellowish oil) as a 1:1 mixture of two 

diastereoisomers. The separate assignment of the two diastereoismers was 

impossible due to small differences in carbon and proton frequency. The ones which 

show differences are therefore stated twice in the assignment.13  

Rf.: Cyclohexane/ethylacetate (95:5) = 0.27 
1H-NMR (600 MHz, CD2Cl2, δ/ppm): 0.88 (t, 3JHH = 8 Hz, 3H, H16``); 1.22-1.34 (m, 

26H, H3``-H15``); 1.49-1.61 (m, 6H, H2``, H2```, H3```, H4```); 1.64-1.76 (m, 1H, 

H2```); 1.78-1.88 (m, 1H, H4```); 3.42-3.55 (m, 3H, H1``, H5```); 3.56-3.70 (m, 2H, 

H1`); 3.85 – 4.02 (m, 1H, H5```); 4.14-4.23 (m, 1H, H2); 4.34 (dd, 3JHH = 11.6 Hz, 3JHH 

= 6.1 Hz, 0.5H, H3); 4.46 (d, 3JHH = 5.3 Hz, 1H, H3); 4.58 (dd, 3JHH = 11.6 Hz, 3JHH = 

6.1 Hz, 0.5H, H3); 4.85-4.87 (m, 1H, H1```); 4.87-4.89 (m, 1H, H1```); 7.43-7.46 (m, 

2H, H4`); 7.55-7.59 (m, 1H, H5`); 8.04-8.06 (m, 2H, H3`). 
13C-NMR (151 MHz, CDCl3, δ/ppm): 14.3 (1C, C16``); 19.3 (1C, C4```); 22.9 (1C, 

C15`); 25.5 (1C, C3```); 26.2 (1C, C14``); 29.7-31.0 (9C, C12``-C4``, C2``); 30.8 (1C, 

C2```); 32.1 (1C, C3``); 62.0 (1C, C5```); 62.4 (1C, C5```); 64.7 (1C, C3); 65,4 (1C, 

C3); 70.5 (1C, C1); 70.8 (1C, C1); 71.8 (1C, C1``); 73.3 (1C, C2); 98.0 (1C, C1```); 
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98.3 (1C, C1```); 128.5 (2C, C4`); 129.7 (2C, C3`); 130.2 (1C, C2`); 133.1 (1C, C5`); 
166.35 (1C, C1`). 

ESI-MS (C31H52O5): Calc’d 527.4 [M + Na+], Found 527.4 ;Calc’d 1031.8 [2M+Na+], 

Found 1032. 

 

3-(hexadecyloxy)-2-((tetrahydro-2H-pyran-2-yl)oxy)propan-1-ol (6) 

Freshly prepared sodium methanolate (2 mL) in methanol (3 mL) 

was added to 3-(hexadecyloxy)-2-((tetrahydro-2H-pyran-2-

yl)oxy)propyl benzoate at 0 °C and stirred for 10 minutes. The 

solution was than allowed to warm to rt and stirred for additional 

20 minutes. The solvent was removed and the resulting oily solid was purified by 

silica gel column chromatography cyclohexane/ethyl acetate 9:1 to obtain HG-31 

(269 mg, 0.67 mmol, 92 %) as yellowish oil.14  

There are two sets of NMR signals resulting from the two stereo centers, which are 

both racemic. The two diastereotopic forms, which vary a lot in the geometry, deliver 

therefore different shifts in the carbon and proton frequencies on the THP-ether and 

on the glycerine backbone. The alkyl chain is not influenced. 

Rf.: Cyclohexane/ethyl acetate (95:5) = 0.06 

Diastereoisomer 1: 1H-NMR (600 MHz, CD2Cl2, δ/ppm): 0.88 (t, 3JHH = 8 Hz, 3H, 

H16``); 1.22-1.34 (m, 26H, H3``-H15``); 1.49-1.61 (m, 5H, H2``, H2, H3, H4); 1.64-

1.84 (m, 3H, H2, H3, H4); 3.42-3.55 (m, 4H, H1``, H5, H1`); 3.56-3.70 (m, 2H, H1`, 
H3`); 3.85-4.02 (m, 2H, H5, H2`); 4.52-4.53 (m, 1H, H1).  

Diastereoisomer 2: 1H-NMR (600 MHz, CD2Cl2, δ/ppm): 0.88 (t, 3JHH = 8 Hz, 3H, 

H16``); 1.22-1.34 (m, 26H, H3``-H15``); 1.49-1.61 (m, 6H, H2``, H3, H4); 1.64-1.84 

(m, 2H, H2); 3.42-3.55 (m, 4H, H1``, H5, H1`); 3.56-3.70 (m, 2H, H3`); 3.85-4.02 (m, 

2H, H5, H2`); 4.55-4.62 (m, 1H, H1). 

Diastereoisomer 1: 13C-NMR (151 MHz, CDCl3, δ/ppm):14.2 (1C, C16``); 19.9 (1C, 

C4); 21.0 (1C, C3); 22.7 (1C, C15``); 26.1 (1C, C14``); 29.7-31.0 (10C, C13``-C4``, 
C2``);  30.9 (1C, C2); 31.9 (1C, C3``); 63.2 (1C, C3`); 71.7 (1C, C1`); 71.9 (1C, C1``); 
75.6 (1C, C2`); 98.5 (1C, C1). 

Diastereoisomer 2: 13C-NMR (151 MHz, CDCl3, δ/ppm):14.2 (1C, C16``);  22.7 (1C, 

C15``); 25.3 (1C, C4); 26.1 (1C, C14``); 29.7-31.0 (10C, C13``-C4``, C2``);  31.4 (2C, 

C2, C3); 31.9 (1C, C3``); 63.8 (1C, C3`); 70.9 (1C, C1`); 71.9 (1C, C1``); 80.3 (1C, 

C2`); 101.0 (1C, C1). 
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ESI-MS (C24H48O4): Calc’d 423.4 [M + Na+], Found 423.4 ;Calc’d 823.8 [2M+Na+], 

Found 823.9. 

 

3-(hexadecyloxy)-2-hydroxypropyl methyl hydrogen phosphate (A) 

To a solution of POCl3 (0.02 mL, 0.25 mmol, 1.0 eq) and NEt3 

(0.04 mL, 0.25 mmol, 1.0 eq) in CHCl3 (1 mL) was added a 

solution of 3-(hexadecyloxy)-2-((tetrahydro-2H-pyran-2-

yl)oxy)propan-1-ol (0.501g, 1.6 mmol, 0.8 eq) in CHCl3 (8 mL) at -10 °C over a period 

of 30 minutes. The mixtures was warmed to rt and stirred for additional 16 h.  

Pyridine (1.1 mL, 13.8 mmol, 7.0 eq) and MeOH (0.09 mL, 2.4 mmol, 1.2 eq) were 

added and stirred for 30 min at rt. The solvent was removed und the resulting 

precipitate was redissolved in DCM:Toluene (1:1, 10 mL) and filtered. The solvent 

was removed and dried at high vacuum.15  

The resulting solid was tried to purify by silica gel column chromatography 

(chloroform/methanol/water 65:35:4). In this case the product stacked on the column. 

An effort to tune the pH to 2 and further purification with preparative TLC 

(chloroform/methanol 99:1) failed because most of the product was already 

destroyed during the acidic workup. The purification strategy was than changed to 

preparative TLC under basic condition (without acidifying of the compound) with 

chloroform/methanol (8:2) as eluent. This purification was done twice to obtain a 

more pure sample of HG-22. Purification with alox (aluminium oxide) column 

chromatography failed. The change to preparative HPTLC (reversed phase 

preparative TLC) allowed the removal of different by-products. Basic, acidic and 

neutral extraction failed as well as the salt formation. The most pure sample could be 

obtained after purification with HPLC using the same conditions as for the purification 

of the natural sample. 
1H-NMR (600 MHz, CD2Cl2, δ/ppm): 0.88 (t, 3JHH = 8 Hz, 3H, H16`); 1.21-1.35 (m, 

26H, H3`-H15`); 1.57 (q, 3JHH = 8 Hz, 2H, H2`); 3.41 (m, 1H, H1); 3.46 (m, 2H, H1`); 
3.47 (m, 1H, H1); 3.51 (m, 1H, H3); 3.55 (m, 3H, OMe); 3.58 (m, 1H, H3); 3.72 (m, 

1H, H2). 
13C-NMR (151 MHz, CDCl3, δ/ppm): 14.4 (1C, C16`); 26.4 (1C, C15`); 27.2 (1C, 

C14`); {29.4 – 30.5, C3`-C13`}; 30.6 (1C, C2`); 52.8 (1C, OMe); 64.9 (1C, C1); 72.2 

(1C, C2); 72.5 (1C, C1`); 73.1 (1C, C3). 

ESI-MS (C20H43O6P): Calc’d 409.5 [M -1], Found 409.5. 
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C.8.3 NMR spectra of synthetic mLPA 

 
Figure C-20: Comparison of 1H{31P} decoupled and 1H NMR spectra in MeOD-d4 at 298 K recorded on a 
micro-TXI probe head. 

 
Figure C-21: 13C1H-HSQC{31P} spectrum showing the 1JCH-correlations. 
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Figure C-22: 13C1H-HMBC{31P} spectrum for the synthetic mLPA sample. 

 
Figure C-23: Selection of the 13C1H-HMBC{31P} spectrum delivering the connection between the aliphatic 
side chain and the glycerine backbone.   
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Figure C-24: 1H31P-HMBC spectra confirming that the CH2-group from the glycerine backbone and the 

OMe-group are connected to the same phosphorous. 

 

C.8.4 LC-MS-data for the natural C-18 sample eluting at 19.9 min. 

 
Figure C-25: On top left: HPLC trace of the purified natural mLPA sample. On top right: ESI-MS spectra of 
the mLPA sample measured in the negative mode. On bottom left: ESI-MS2 of the mass 437-. On bottom 

right: ESI-MS3 of the mass 405-. 
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