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Nomenclature

List of Symbols

Symbols used in this dissertation are reported in order of appearance. Those
marked in bold fonts represent vectors, those written with multiple indexes
(i.e. εij) represent tensors (second rank or higher).

Symbol Units Description

U (r, t) m Displacement function of a resonator
n – Index of the vibrational mode
xn(t) m Time-dependent displacement function
un(r) – Mode shape function
m kg Effective mass of a resonator
Γn kg s−1 Intrinsic dissipation
kn N m−1 Spring constant
ωn Hz Angular resonance frequency
Qn – Quality factor
x̂ – Direction unit vector
EY Pa Young’s modulus of the material
Iy m4 Polar moment of inertia about ŷ
ρ kg m−3 Density of the material
A m2 Cross-sectional area of a beam
L m Length of a beam
xosc m Displacement amplitude
xrms m Root-mean-squared displacement
βn – Parameter characterizing the motion of a

resonator
w m Width of a beam with rectang. cross-sect.
d m Thickness of a beam with rectang. cross-sect.
D m Diameter of a cylindrical beam
s m Side of a beam with hexagonal cross-sect.
Upot J Potential energy
r – Generic position vector



vi Nomenclature

V m3 Volume
M kg Mass
εij – Strain tensor
Fi N Force acting on the face i of a cubic element
n – Normal unit vector
σij Pa Stress tensor
αijkl Pa Elasticity tensor
ν – Poisson’s ratio
Cijkl Pa−1 Compliance tensor
σz Pa Uniaxial stress along ẑ
ξ m In the cross-sect. of a beam, distance from the

center along x̂
ε⊥ – Strain component in the plane perpendicular to

the uniaxial stress direction
ε‖ – Strain component parallel to the uniaxial stress

direction
εiso
ij – Isotropic component of the strain
εdev
ij – Deviatoric component of the strain
η – Strain parameter
Fth N Random thermal force
x̂τ (ω) m Hz−1/2 Fourier transform of x(t) over a time τ
S̄x(ω) m2 Hz−1 Spectral density of a signal x(t)
Kx(t) m2 Autocorrelation function of a signal x(t)
Sx(ω) m2 Hz−1 Single-sided spectral density of a signal x(t)
kB J K−1 Boltzmann’s constant
T K Temperature of the environment
Sxn , Sξn m2 Hz−1 White noise spectral density
α V m−1 Transduction coefficient
p bar Pressure
Teff K Effective temperature of the resonator
EN J Eigenenergy
~ = h/2π J s Plank’s constant
N – Mode occupation number
xzpf m Root-mean-squared zero-point fluctuations

Ĥ J Hamiltonian operator

K̂ J Kinetic energy operator

Û J Potential energy operator
Nth – Average thermal occupation number
Szpf
x m2 Hz−1 Spectral density of the zero-point fluctuations

∆x m Standard deviation on the position
∆p kg m s−1 Standard deviation on the momentum
Simp
x m2 Hz−1 Quantum limited measurement sensitivity
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Sba
x m2 Hz−1 Spectral density of the back-action force noise
SSQL
x m2 Hz−1 Imprecision at the standard quantum limit
R1 – Reflectivity of the cleave-air interface
R2 – Reflectivity of the cantilever-air interface
Ei N m−1 Module of the incident electric field
l m Cavity length
λ m Laser wavelength
φ1 – Phase shift acquired by the light reflected from

the fiber’s cleaved facet
φ2 – Phase shift acquired by the light reflected from

the cantilever
Pr W Interferometer output power
Pmax W Maximum interferometer output power
Pmin W Minimum interferometer output power
Pamp W Amplitude of the interferometer output power
Pavg W Average interferometer output power
V̄ – Visibility of the interferometer
nr – Refraction index
S A W−1 Responsivity
Ishot A Average shot noise current
e C Electron charge
∆ν Hz Detection bandwidth
xnoise m Equivalent noise displacement
lφ m Coherence length
le m Mean free path
λF m Fermi wavelength
m∗ kg Electron effective mass
V0 V Electrostatic potential
ζ0 s−1 C−1/2 Strength of the lateral confinement in a QPC
kx m−1 Wave number along x
Vsd V Source-drain potential
VG V Gate potential
µs, µd J Chemical potentials of source and drain, resp.
vN m s−1 Group velocity
ρN (J m)−1 Density of states
I A Electrical current
G S Conductance
G0 S Quantum of conductance
Rb Ω Total background resistance in a QPC
Tmode K Mode effective temperature of the resonator
VL V Cantilever potential
g – Feedback gain coefficient



viii Nomenclature

xn, ξn m Measurement noise on a displacement signal
δ(t) – Dirac distribution in the time domain
B T Magnetic field
EC eV Charging energy of a confined electron system
CΣ F Self-capacitance of a confined electron system
CG F Capacitance between finger gates and QD
αG – Lever arm of the finger gates
εr F m−1 Dielectric constant of InAs
ε0 F m−1 Dielectric constant of vacuum
Aosc m Positioning stage driven oscillation amplitude
VPZT V PZT excitation amplitude
|g〉 – Ground state of a quantum two-level system
|e〉 – Excited state of a quantum two-level system
Eex eV Transition energy of a QD exciton
σ̂z – Pauli operator of a quantum two-level system
n0 s−1 Intrinsic QD photon counts per unit time
nd s−1 QD photon counts with mechanical drive
~Γ eV Intrinsic QD emission linewidth (FWHM)
a eV Isotropic deformation potential
d eV Deviatoric deformation potential induced by a

stress along 〈1 1 1〉
∆EC-HH eV Energy gap variation between conduction and

heavy-hole bands
λ Hz Opto-mechanical coupling rate
τex s Lifetime of a quantum transition
γex Hz Decoherence rate of a quantum transition
Γth Hz Mechanical heating rate

List of Acronyms

Acronym Description

QPC Quantum point contact
FEM Finite element model
NW Nanowire
SEM Scanning electron microscopy
SNR Signal-to-noise ratio
zpf Zero-point fluctuations
SQL Standard quantum limit
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MRFM Magnetic resonance force microscopy
PD Photodetector
TEC Thermoelectric cooler
PZT Piezoelectric transducer
PID Proportional-integral-derivative controller
FSR Free spectral range
SET Single electron transistor
QD Quantum dot
SGM Scanning gate microscopy
SQUID Superconducting quantum interference device
2DEG Two-dimensional electron gas
MBE Molecular-beam epitaxy
UVL Ultra violet lithography
EBL Electron-beam lithography
FPGA Field programmable gate array
AFM Atomic force microscopy
SET Single-electron transistor
CPD Critical-point drying
NV Nitrogen vacancy
NA Numerical aperture
CCD Charge-coupled device
FWHM Full width at half maximum
AOM Acousto-optic modulator
QND Quantum non-demolition
QED Quantum electrodynamics





Introduction

Since the introduction of atomic force microscopy [1], nanomechanical res-
onators constitute a key component in a wide variety of today’s most sensitive
experiments. Devices have been proved as ultra-sensitive force probes, able
to detect the tiny Casimir interaction arising from the zero-point fluctua-
tions of the electromagnetic vacuum [2], or capable of sensing the magnetic
force associated with an individual electron spin [3]. Using a single electron
transistor made of a suspended carbon nanotube, scientists were able to de-
tect small changes in the nanotube resonator mass with a resolution down
to the single proton level [4]. At the same pace with these achievements,
researchers have developed transducers of mechanical motion with resolution
approaching the standard quantum limit on position detection [5,6], i.e. the
limit set by quantum mechanics to the precision of continuously measuring
position [7]. Such exquisite resolution has implications in several precision
measurements, including investigation of deviations from Newtonian gravity
at short distances [8], or gravitational wave sensing [9]. Moreover, exploring
the quantum limit of displacement detection opens up appealing scenarios
for the investigation of quantum behavior in mechanical systems as well as
for testing the macroscopic manifestation of quantum mechanics itself [10].

Whereas quantum mechanics provides a highly accurate description of
a variety of phenomena concerning microscopic systems, its application to
macroscopic mechanical objects is still subject of theoretical discussion and
inspiration for challenging experiments [11]. Only in the last four years did
scientists manage to observe quantum effects in engineered mechanical struc-
tures. It is now feasible both to initialize the fundamental vibrational mode of
a mechanical resonator into its ground state [12–14] and even to produce non-
classical coherent states of motion [15]. The significance of these results lays
in the achieved coupling between a mechanical resonator and a controllable
quantum system (Fig. 1). Besides reaching quantum control over mechani-
cal motion, a current major challenge is, conversely, to employ mechanical
vibrations for probing quantum states, also in a quantum non-demolition
scheme [16,17].

Progress in nanotechnology allows the fabrication of mechanical resona-
tors functionalized with electrodes, magnets, or mirrors, thus transforming
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coupling 

Figure 1 Quantum hybrid system. A nanomechanical resonator is coupled to a control-
lable quantum system.

motion into the modulation of electric, magnetic, or optical fields [18]. The
ease of this process has inspired proposals to use nano-resonators for quan-
tum information processing and networking. The resonator can in fact encode
quantum information into a mechanical state and act as a quantum trans-
ducer, mediating interactions between different quantum systems [19–22].
Following this route, scientists have demonstrated the coupling of mechan-
ical resonators to a variety of quantum systems, including optical [14] and
microwave [23] cavities, superconducting devices [24], laser-cooled atoms [25],
quantum dots [26, 27], and nitrogen vacancy centers in diamond [28–30].

Quantum control over these coupled quantum systems, or hybrid systems,
requires the coupling strength to be large compared to the rates at which the
coupled systems decohere into their local environments [31]. In addition, for
quantum effects to be observable, strong coupling has to be accompanied
by the initialization of the resonator into a state of minimum entropy. This
is achieved by cooling the resonator close to its quantum ground state of
motion, either by cryogenic refrigeration [15] or with the aid of specifically
designed cooling techniques [12,32].

With this dissertation, we aim at contributing to the captivating field of
hybrid systems from different directions. First, we demonstrate the use of
an innovative quantum transducer – a quantum point contact (QPC) – to
measure and control the low-temperature thermal motion of a nearby mi-
cromechanical cantilever [33]. The QPC is included in an active feedback
loop designed to cool the cantilever’s fundamental mechanical mode down
to the level of the measurement noise. Our system represents the first ap-
plication of a mesoscopic transducer, such as a QPC, to control and cool by
feedback an off-board mechanical resonator and as such serves as an impor-
tant demonstration experiment. Advantages of our approach include versatil-
ity to force-sensing applications, due to the off-board design, applicability to
nanoscale oscillators, and the potential to achieve quantum-limited detection
and cooling to the ground state of motion.
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We further explore the field of nano-electromechanical systems by showing
the coupling of an ultra-soft cantilever to a QPC realized via local oxidation
lithography, in an ongoing attempt to improve its sensitivity to cantilever
motion. In addition, we realize innovative field effect transistors made of
nanowires suspended above local electrostatic gates. We show the confine-
ment of quantized electron charge within a nanowire, in an approach aimed
at studying the coupling of this charge to the mechanical vibrations of the
nanowire itself or to the motion of an off-board cantilever. The electron
transport in the nanowire can be localized far closer to the cantilever motion
than can the sub-surface transport through a QPC, reasonably resulting in
a better transduction efficiency.

Thereafter, we demonstrate a promising hybrid system made of fully self-
assembled core-shell nanowire cantilevers embedding optically active quan-
tum dots. The system reveals an unusually strong coupling between the
nanowire mechanical vibrations and the quantum dot light emission [34].
Such an opto-mechanical coupling mechanism resides in the oscillation-indu-
ced material strain, therefore constituting the experimental implementa-
tion after 10 years of the theoretical proposal of Wilson-Rae et al. [35].
The relevance of our demonstration is testified by the very recent ferment
in the scientific community about strain-mediated coupling in hybrid sys-
tems [27, 29, 30]. In particular, the first experiment of this kind by Yeo and
coworkers [27], nearly contemporaneous to ours, exploits a different material
system to investigate similar physics and obtain a coupling strength compa-
rable to ours. Unlike Yeo et al., we take advantage of the recent developments
in the bottom-up growth of radially heterostructured nanowires, which al-
low for band-structure engineering and positioning of quantum dots within
a nanowire structure [36]. As a result, we achieve the first realization of an
as-grown hybrid system in which multiple quantum systems are coupled to a
unique, monolithic mechanical structure. By controlling the nanowire oscil-
lations, we are able to tune the quantum dot emission energies over a broad
range exceeding 14 meV. The latter two results pave the way to mechanically
induced coupling between different quantum dots within the nanowire.

The recurring theme of the research approaches pursued in this thesis
is the preference for systems in which the coupling between the mechanical
structure and the quantum partner occurs naturally, without the need for
any sophisticated engineering. In fact, the QPC displacement transducer
is sensitive to local modifications of the nearby electric field. Since any
resonator placed in proximity to the QPC disturbs its potential landscape,
not any particular functionalization is required to activate the capacitive
coupling. Furthermore, in case of the quantum-dots-in-nanowire structure,
its built-in nature produces a hybrid system whose inherent coherence is
unspoiled by external functionalization. Most other hybrid systems, instead,
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require the application to the mechanical resonators of coupling elements or
external fields, which tend to compete with the small resonator mass and
high quality factor necessary to achieve low thermal noise and high coupling
strength [37]. Moreover, the functionalization process often adds additional
paths of dissipation and decoherence, reducing the lifetime of the coupled
quantum system.

Thesis Outline

The thesis is structured as follows.

Chapter 1 provides a concise theoretical back-
ground of the field of Nanomechanics. Start-
ing from the basic concepts of Euler-Bernoulli
beam theory, it illustrates in detail specific cases
of interest for this thesis, both analytically and

through finite element simulations. It concludes by providing the analytical
tools for describing the thermal motion of a mechanical resonator and by
considering the quantum effects emerging on it at low temperatures.
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Chapter 2 introduces the experimental tech-
niques used in this thesis to detect the displace-
ment of micro- and nanomechanical resonators
and gives an overview of the state of the art of
the other main approaches. In particular, it illus-
trates the physics underlying the working princi-
ples of a QPC.

Chapter 3 is devoted to describing the operation
of a split-gate QPC fabricated during the work of
this thesis. It discusses its performance as a dis-
placement transducer and as a means for damping
the motion of a nearby cantilever through active
feedback. It also provides a brief description of
the other cooling techniques currently in use and

an outlook on future improvements of our cantilever-QPC system.
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Chapter 4 describes some ongoing efforts to im-
prove the coupling between a cantilever and meso-
scopic displacement transducers. In particular,
it reports on measurements with a QPC defined
via local oxidation lithography and describes an
innovative electromechanical system made of a
suspended-nanowire single-electron transistor.

Chapter 5 reports on the demonstration of a
novel hybrid system made of optically active
quantum dots embedded in fully self-assembled
core-shell nanowires. It shows the experimen-
tal evidence of an opto-mechanical coupling, the
characterization of its strength, and the elabora-
tion of a model to describe its mechanism. The

chapter concludes by enlarging the view on several promising prospective
studies and applications employing this system.

Chapter 6 provides a conclusion to the thesis, by summarizing its motivation
and main results and giving an outlook on the challenges which the reported
experiments open on future research.





1 Nanomechanics

This chapter gives an overview of the fundamental concepts underlying the
study of nanomechanical resonators. After providing an analytical model of
beam vibrations, we describe in detail two cases of interest for this thesis: the
singly and the doubly clamped beam. We introduce the fundamental concept
of effective mass of a resonator and present the study of the deformations of a
resonator subject to an external load, with particular attention to the case of
flexural vibrations. Thereafter, we analyze the motion and deformation of the
structures studied in this thesis via finite element calculations. The chapter
concludes by introducing the concepts of thermal and quantum noise, and
illustrating the limitations imposed by quantum mechanics on the resonator’s
displacement detection.

1.1 Motion of a Resonator

The motion of a mechanical resonator under an external load is well de-
scribed by the Euler-Bernoulli theory of beams [38]. Entirely developed
by mathematicians from Basel, the theory relies on the early work of Ja-
cob Bernoulli and was later consistently formulated by Leonhard Euler and
Daniel Bernoulli around the year 1750 [39]. It covers the case of small deflec-
tions of a beam that is subject to lateral loads only. It results most accurate
for beams whose cross-section is much smaller than the length [40]. This is
typically the case of the nano-sized resonators used in current experiments,
due to the general requirements of a low spring constant and a high quality
factor.

Within the frame of Euler-Bernoulli beam theory, the complete, three-
dimensional motion of a resonator is described by a displacement function
U(r, t) which depends on direction (r) and time (t) and accounts for an
infinite number of independent vibrational modes. Indicating each mode
with an index n, the direction and time dependence of the displacement
function can be separated as follows:

U(r, t) =
∑
n

xn(t)un(r), (1.1)
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where xn(t) is a function describing the time dependence of the motion and
un(r) is the mode shape of the n-th mode. In the following, we adopt the
choice described in Ref. [41] to normalize un(r) so that the maximum value
of |un(r)| is unity. This choice of normalization ensures that xn(t) has units
of distance and is directly related to the resonator’s displacement measured
experimentally. However, it should be noted that such a normalization breaks
the orthonormality between the modes.

In the case of high quality factor resonators, the function xn(t) can be
determined by approximating each of the independent vibrational modes as a
damped harmonic oscillator [18,40], whose equation of motion is the following
(see Section 1.6):

mnẍn + Γnẋn + knx = 0. (1.2)

Here mn, Γn and kn are the effective mass, intrinsic dissipation, and spring
constant for the n-th mode of the resonator. The dissipation and the spring
constant can be written in terms of the effective mass, the angular resonance
frequency ωn and the quality factor Qn according to Γn = mnωn/Qn and
kn = mnω

2
n. A general expression for mn and its determination for some

cases of interest for this thesis are provided in Section 1.3.
The mode shape function un(r) can be determined analytically for many

simple models of practical interest. In the next section, we analyze the case
of a beam subject to a time-varying transverse load, giving rise to flexural
vibrations. When the resonator’s geometry or its boundary conditions are
more complicated, the analysis requires a finite element model (FEM) of
the structure. In Section 1.5 three such models are described, providing a
comparison to the simpler analytical cases.

1.2 Analytical Theory of Beams

Many nanomechanical resonators possess beam-like geometries and their
motion, generally expressed through Eq. (1.1), can be reduced to a one-
dimensional displacement function:

U(z, t) =
∑
n

xn(t)un(z), (1.3)

where the one-dimensional mode shape un(z) as a function of the position
along ẑ is normalized, as before, so that the maximum value of |un(z)| is
unity.

We study in the following the case of a long thin beam of uniform cross-
section, subject to flexural vibrations in one dimension. It is not necessary,
for the moment, to make the form of the driving load explicit. A coordinate
system is defined as in Fig. 1.1, the beam length is L and the oscillation
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U (z, t) 
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𝑦� 

𝑥� 

Figure 1.1 Reference system for the beam. A beam of length L is oriented along the ẑ
axis and displaces along x̂. The beam’s cross-section is uniform throughout the length and its
size, as well as the displacement’s amplitude, are much smaller than L.

direction is along x̂. Within this frame, the equation of motion can be written
as follows [40]:

EYIy
∂4U

∂z4
+ ρA

∂2U

∂t2
= 0. (1.4)

Here EY is the Young’s modulus of the material, Iy is the polar moment
of inertia about ŷ, ρ is the density, and A is the cross-sectional area of the
beam. From the expression of U(z, t) given in Eq. (1.3), it derives that
Eq. (1.4) can be solved separately for each of the resonator’s n modes. The
time dependence of the motion is expressed only through the function xn(t),
governed by the Eq. (1.2). For high-Q resonators, the damping term Γnẋn
can be for the moment neglected, letting xn(t) assume an oscillatory behavior
of the kind:

xn(t) = xosc, n e−iωnt, (1.5)

where xosc, n is the oscillation amplitude. Therefore, the n-th mode shape
function of the resonator must satisfy:

d4un
dz4

− β4
n

L4
un = 0, (1.6)

where βn = L (ρAω2
n/(EYIy))

1/4 is a dimensionless parameter. This differen-
tial equation has the general solution:

un(z) = An sin
βn
L
z +Bn cos

βn
L
z + Cn sinh

βn
L
z +Dn cosh

βn
L
z. (1.7)

The values of the mode-dependent parameters βn, An, Bn, Cn, and Dn are
determined (up to a normalization constant) by setting the boundary condi-
tions for the specific physical problem. Together with the determination of
the mode shape of each of the beam’s n modes, it is also possible to calculate
the corresponding eigenfrequency, using the relation

ωn =
β2
n

L2

√
EYIy
ρA

. (1.8)
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Mode βn ωn/ω0

0 1.875 1.000
1 4.694 6.267
2 7.855 17.547
3 10.996 34.386

n ≥ 3 (n+ 1/2)π [(n+ 1/2)π/β0]2

Table 1.1 Mechanical parameters of a cantilever. Values of βn and of the normalized
eigenfrequencies (to the fundamental ω0). The asymptotic values for n ≥ 3 are also given.
These can be obtained by considering that, for large n, coshβn diverges and, in order to satisfy
Eq. (1.10), cosβn has to be close to zero. The values can be found in Refs. [18, 40, 41].

In the following subsections, by solving Eq. (1.7), we determine the dy-
namic displacement for the specific cases of a singly clamped beam (can-
tilever) and a doubly clamped beam.

1.2.1 Cantilever

A beam clamped at one end and free at the other, in the so called cantilever
configuration, is subject to the following boundary conditions [40]:

un(0) =
dun
dz

(0) =
d2un
dz2

(L) =
d3un
dz3

(L) = 0. (1.9)

Inserting these conditions into Eq. (1.7), we find that βn must obey the
equation:

cos βn cosh βn + 1 = 0, (1.10)

the solutions of which are summarized in Table 1.1. The mode shape of a
cantilever is then determined to be:

un(z) =
1

Kn

[
Sn

(
cosh

βn
L
z − cos

βn
L
z

)
− Tn

(
sinh

βn
L
z − sin

βn
L
z

)]
,

(1.11)
where Kn = 2 (sin βn cosh βn − cos βn sinh βn), Sn = sinh βn + sin βn, and
Tn = cosh βn + cos βn. The constants Kn, Sn, and Tn have been chosen in
order to fulfill the normalization condition that the maximum value of |un(z)|
is unity. This is equivalent, for a cantilever, to pose un(L) = 1 [41]. The
lowest four normalized mode shape functions of a cantilever are shown in
Fig. 1.2.

The analysis illustrated so far is independent on the specific shape of the
cantilever cross-section, still maintaining the model general assumptions that
this has to be thin and uniform throughout the length. Table 1.1 reports the
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Figure 1.2 Mode shape functions of a cantilever. The normalized functions un(z) for
the lowest four modes are shown. The corresponding eigenfrequencies are given in Table 1.1.

values of the lowest four eigenfrequencies of a cantilever, calculated according
to Eq. (1.8), normalized to the fundamental frequency ω0. The table also
illustrates the asymptotic harmonic behavior for n ≥ 3 [18,41].

Now we analyze the specific cases of a few simple geometries. The most
discussed one in textbooks deals with a rectangular cross-section of width
w and thickness d. Such a geometry is characterized by polar moments of
inertia Iy = wd3/12 and Ix = dw3/12 respectively, corresponding to flexural
vibrations along the axes x̂ and ŷ. The associated eigenfrequencies are:

ωn,x = β2
n

√
EY

12ρ

d

L2
,

ωn,y = β2
n

√
EY

12ρ

w

L2
. (1.12)

To be noted is the linear dependence of the eigenfrequencies on the cross-
section dimensions and the quadratic inverse proportionality on the length.
For a squared cross-section (w = d), each mode is doubly degenerate. The
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same consideration is valid for any other regular polygonal cross-section cen-
tered around the cantilever axis. This includes the case of a cylindrical beam
of diameter D, for which Ix = Iy = πD4/64 and

ωn = β2
n

√
EY

16ρ

D

L2
, (1.13)

and, for example, the case of a cantilever of hexagonal cross-section of side
s, for which Ix = Iy = 5

√
3 s4/16 and

ωn = β2
n

√
5EY

24ρ

s

L2
. (1.14)

Such a geometry characterizes the self-assembled nanowire resonators stud-
ied in detail in Chapter 5 and modeled with a finite element analysis in
Section 1.5.

1.2.2 Doubly Clamped Beam

The boundary conditions for a beam clamped and flat at both ends are the
following [40]:

un(0) = un(L) =
dun
dz

(0) =
dun
dz

(L) = 0. (1.15)

Inserting these conditions into Eq. (1.7), we obtain that βn must obey the
equation:

cos βn cosh βn − 1 = 0, (1.16)

the solutions of which are summarized in Table 1.2. The mode shape of a
doubly beam clamped has then the form:

un(z) =
1

Kn

[
Sn

(
cosh

βn
L
z − cos

βn
L
z

)
− Tn

(
sinh

βn
L
z − sin

βn
L
z

)]
,

(1.17)
where Kn is a normalization constant determined by the constraint that
the maximum value of |un(z)| is unity, Sn = sinh βn − sin βn, and Tn =
cosh βn − cos βn. Equations (1.16) and (1.17) for a doubly clamped beam
are then very similar to the corresponding equations (1.10) and (1.11) for
a cantilever. However, Table 1.2 shows that the values of βn for a doubly
clamped beam are higher than those of a cantilever with the same dimensions.
This is due to the fact that the former has an additional clamping that makes
the beam stiffer. Furthermore, in contrast with the case of a cantilever,
the position at which |un(z)| is maximized is not obvious, except for the
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Mode βn ωn/ω0

0 4.730 1.000
1 7.853 2.757
2 10.996 5.404
3 14.137 8.933

n ≥ 3 (n+ 3/2)π [(n+ 3/2)π/β0]2

Table 1.2 Mechanical parameters of a doubly clamped beam. Values of βn and of the
normalized eigenfrequencies (to the fundamental ω0). The asymptotic values for n ≥ 3 are
also given. They have been obtained by following the consideration given in the caption of
Table 1.1. The values can be found in Refs. [18, 40, 41].

fundamental mode, where the maximum displacement is reached at z = L/2.
Hence the parameter Kn has to be determined numerically [41]. The lowest
four normalized mode shape functions of a doubly clamped beam are shown
in Fig. 1.3.

1.3 Effective Mass

The application of an external load to a mechanical resonator entails a dis-
placement following a characteristic mode shape. As illustrated in the pre-
vious section, the mode shape depends on the mechanical and geometrical
properties of the resonator and is in general a non-linear function of position.
This means that a volume element in the resonator reacts to the load with an
inertia which depends on its specific position. For instance, in a cantilever,
volume elements located close to the clamped end react as if the local mass
would be higher than the mass around the free-end position. In order to
account for this position-dependent inertia when studying the mechanical
energy of a resonator, it is very useful to introduce the concept of effective
mass. Looking in detail, for a generic mechanical resonator, the potential
energy dUpot of a volume element dV can be written, according to Hooke’s
law, as:

dUpot =
1

2
ρ(r)ω2

n |xn(t)un(r)|2 dV. (1.18)

The total elastic energy associated to the n-th mode is then given by inte-
grating dUpot over the entire volume of the resonator V :

Upot =
1

2
ω2
n |xn(t)|2

∫
V

ρ(r) |un(r)|2 dV

=
1

2
ω2
n |xn(t)|2 |un(r0)|2 mn(r0). (1.19)
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Figure 1.3 Mode shape functions of a doubly clamped beam. The normalized functions
un(z) for the lowest four modes are shown. The corresponding eigenfrequencies are given in
Table 1.2.

The last equation contains the expression of the effective mass of a mechanical
resonator at position r0 [41]:

mn(r0) ≡
∫
V
ρ(r) |un(r)|2 dV

|un(r0)|2
(1.20)

From the definition above, it is evident that the effective mass for a given
mode is proportional to the volume of the mode squared inside the resonator.
Because of the chosen normalization condition, |un(r0)| ≤ 1, therefore, when
measuring the resonator’s motion at some position r0 other than the one of
maximum displacement, one has to take into account that the effective mass
has increased. The general definition in Eq. (1.20) can be simplified in case of
a resonator with uniform density. As mentioned in Section 1.2, the motion of
many resonators can be considered as the superposition of one-dimensional
displacements. Recalling the initial assumption of resonators with uniform
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cross-section, the expression for the effective mass becomes:

mn(z0) =
ρA

|un(z0)|2
∫ L

0

|un(z)|2 dz. (1.21)

It is worth emphasizing that the definitions (1.20) and (1.21) depend on
the resonator’s mode shape, which has been found in the form (1.7). This
last expression has been obtained without making any assumption on the
specific geometry of the resonator’s cross-section. Therefore, maintaining
the model’s general assumptions of a beam with thin, uniform cross-section,
the calculation of the effective mass is valid for a cross-section of any shape.

A useful parameter in nanomechanics is the effective mass ratio, defined
as the resonator’s effective mass mn at the position of maximum displace-
ment divided by its total mass M . The effective mass ratio is an intrinsic
quantity of a system as it is independent of size or material [41]. In the next
subsections, we calculate the effective mass ratio for a cantilever and for a
doubly clamped beam.

1.3.1 Effective Mass of a Cantilever

In Section 1.2.1, we have seen that the position of maximum displacement
of a cantilever in one dimension is at its free end. At this point, from the
normalization condition, |un(L)| = 1. From the definition of effective mass
(1.21), and recalling the expression of un(z) (1.11), it follows that, at z0 =
L [41]:

mn

M
=

1

L

∫ L

0

|un(z)|2 dz =
1

4
. (1.22)

This result, in its simple form, tells us that the effective mass of a cantilever
is constant and equal to 1/4 of its total mass, independently of the mode.

1.3.2 Effective Mass of a Doubly Clamped Beam

Similarly to the case of a cantilever, we calculate the effective mass ratio of
a doubly clamped beam at the position of maximum displacement, using the
mode shape function un(z) expressed in Eq. (1.17). In this case, however, nei-
ther the maximum displacement position, nor mn/M are mode independent.
Nevertheless, for n > 3, mn/M saturates to ≈ 0.4372 [41].

1.4 Strain and Stress

The elastic structure of a mechanical resonator implies that its displacement
under an external load causes a deformation, or strain, of the material. In
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order to describe how the material deforms with respect to its relaxed state,
the strain is defined as a second-rank tensor of the form [40]:

εij ≡
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (1.23)

where the xi, i = 1, 2, 3 are the components of the position vector r. This
definition shows that the strain is symmetric under a reversal of the indices,
i.e., εij = εji. The diagonal elements (i = j) are called normal strains, as they
are all related to linear changes in the respective dimensions of the object.
The off-diagonal elements (i 6= j) are related to angular distortions in the
object and are called shear strains.

To deform a material, external forces have to be applied, which in turn
give rise to forces inside the material. Each cubic volume element in the
material feels the force exerted on its faces by the neighboring elements. The
magnitude and direction of this force obviously depend on the location of
the element in the material and also on the extension and orientation of its
faces [18]. For each face of surface area A, a normal vector n can be defined
as the unit vector perpendicular to the surface and having orientation going
out from the surface. In condition of static equilibrium, the forces acting
on the volume element are assumed equal and opposite on opposite faces.
To fully characterize the forces acting on the element, it is then enough to
consider only three perpendicular faces, described, as before, by the index
i = 1, 2, 3. Therefore, a force Fi acting on the face i can be written as:

Fi = A
3∑
j=1

σij nj. (1.24)

This equation contains an implicit definition of the stress tensor σij, which
expresses the force per unit surface acting locally on each face of a volume
element in the material. The situation is summarized in Fig. 1.4, which
shows the role of each of the vectors introduced in this section. It follows
from Eq. (1.24) that a positive element of the tensor σij corresponds to tensile
stress, whereas a negative element corresponds to compressive stress. The
condition of static equilibrium applied to the torque requires the stress tensor
to be symmetric, i.e., σij = σji. This property implies that σij is guaranteed
to have three real eigenvalues σx, σy, and σz, known as the principal values
of the stress tensor [40].

To summarize, the strain tensor εij describes the local deformation of
the material, while the stress tensor σij expresses the forces acting inside
it. Obviously these two quantities are related to each other. For small
deformations, the stress and strain tensors are related linearly via the fourth-
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Figure 1.4 Components of the stress tensor. Adapted from Ref. [42].

rank elasticity tensor αijkl [18, 40]:

σij =
3∑

k=1

3∑
l=1

αijkl εkl. (1.25)

The tensor αijkl has in principle 34 = 81 distinct components. However,
the symmetry of both the strain and stress tensors reduces the number of
independent components to 36. In general, these components may also vary
from point to point within a solid. In this thesis, we assume for simplicity
that the studied nanomechanical resonators are made of homogeneous and
isotropic materials. Homogeneous means that the elements of αijkl are inde-
pendent of position within the material. Isotropic means that the material is
characterized by full rotational and inversion symmetry. This last assump-
tion implies that the elasticity tensor can be described in terms of only two
independent material parameters, namely the Young’s modulus EY and the
Poisson’s ratio ν [40]. The Young’s modulus has units of a pressure, while
the Poisson’s ratio is dimensionless and, as shown in the next section, ex-
presses the relative strength of the strain tensor components. The relation
(1.25) can be inverted, defining the so called compliance tensor Cijkl as the
inverse of the elasticity tensor αijkl:

εij =
3∑

k=1

3∑
l=1

Cijkl σkl. (1.26)

1.4.1 Strain and Stress from Flexural Vibrations

As mentioned earlier, a time-varying transverse load applied to a resonator
gives rise to flexural vibrations. In the following, we consider for simplicity a
cantilever arranged along ẑ and oscillating along x̂ only, as in Fig. 1.1. In the
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chosen reference system, such a displacement produces, on a long and thin
cantilever, a dominant stress component for (i, j) = (3, 3) and approximately
null for the other entries [18]. Such a configuration, corresponding to a stress
along only one axis, is called uniaxial stress. The stress tensor assumes
therefore the simple diagonal form:

σij =

 0 0 0
0 0 0
0 0 σz

 . (1.27)

Focusing on the lowest order vibrational mode, the tensor principal value
σz scales with z and with the distance ξ along x̂ from the center of the
cross-section, according to [27]:

σz(z, ξ) = −EYxoscξ
d2u0

dz2
. (1.28)

Here xosc and u0 are the oscillation amplitude and the mode shape of the can-
tilever’s fundamental mode, which obey, respectively, Eqs. (1.2) and (1.11).
Solving the derivative, it results that the largest stress is obtained at the
clamped end of the cantilever (z = 0), at the edge of the cross-section
(ξ = ξmax), where:

σmax
z = EYxoscβ

2
0

ξmax

L2
. (1.29)

For an isotropic material, the application of Eq. (1.26) in case of uniaxial
stress of the form (1.27), results in a diagonal strain tensor

εij =

 −νσz/EY 0 0
0 −νσz/EY 0
0 0 σz/EY

 . (1.30)

The first two eigenvalues in the diagonal correspond to linear deformations of
the material in the plane perpendicular to the stress direction (xy), and will
be called for notation clarity ε⊥. The third component corresponds instead
to a deformation along the stress axis (ẑ) and will be called ε‖. From the
relation (1.30), it is evident the role played by the Poisson’s ratio, expressing
the relative strength between the strain tensor components:

ν = −ε⊥
ε‖
. (1.31)

Since in most materials 0 ≤ ν ≤ 0.5 [43], this simple relation indicates that
the application of a tensile uniaxial stress produces not only an elongation
of the material in the same direction, but also a compression in the per-
pendicular plane that is ν times smaller. It is important to underline that
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a calculation of the strain tensor based on the definition (1.23) and on the
initial assumption of cantilever’s displacement only along x̂ would have not
brought to the same result (1.30). The reason is implicit in the assump-
tion, which does not take into account the deformation of the cantilever’s
cross-section.

Looking at the shape of the strain tensor (1.30) in detail, it is useful to
introduce a decomposition into a sum of two different types of deformations:
the isotropic component εiso

ij and the deviatoric component εdev
ij [44]:

εij = εiso
ij + εdev

ij . (1.32)

The component εiso
ij describes the isotropic variation of volume of the mate-

rial, preserving its symmetry. It is also known as hydrostatic component and
is proportional to the unitary second-rank tensor:

εiso
ij =

 1
1

1

 ηε‖, η ≡ 1− 2ν

3
. (1.33)

The deviatoric strain εdev
ij describes the distortion of a volume element in

the material that occurs without volume variation. It does not preserve the
symmetry and is also known as shear strain:

εdev
ij =

 −1/2
−1/2

1

 (1− η)ε‖, 1− η =
2(1 + ν)

3
. (1.34)

To conclude this analysis, it is important to highlight that to the largest
stress (1.29), corresponds, in the same point in the cantilever (z = 0, ξ =
ξmax), also the largest strain, which can be written in terms of the component
ε‖ as:

εmax
‖ = xoscβ

2
0

ξmax

L2
. (1.35)

This relation shows that, for a given displacement amplitude xosc, the value
of the maximum strain only depends on the geometry of the beam, and not
on any mechanical parameter.

1.5 Finite Element Models

The mechanics of resonators used in experiments are sometimes rather com-
plex for being described by a simple analytical model. Often the geometry
of the resonator does not entirely fulfill the general assumptions of Euler-
Bernoulli beam theory, or the motion boundary conditions can be non triv-
ial. In these cases, one can resort to a finite element model (FEM). In this
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20 µm 100 µm 

Figure 1.5 Commercial cantilever. Optical micrograph of the Si resonator used in the
experiment described in Chapter 3. The inset is a scanning electron micrograph of the cantilever
tip.

section, we go through three such models, for resonators involved in the main
experiments described in this thesis.

1.5.1 FEM of a Commercial Cantilever

The resonator described in Chapter 3 is a commercial cantilever (Arrow TL1
from NanoWorld AG) made from monolithic highly doped silicon. As shown
in Fig. 1.5, it consists of a (500 × 100 × 1)µm shaft ending with a regular
triangular tip, very sharp at the apex (radius of curvature ≈ 10 nm). The
cross-section is therefore not uniform across the entire cantilever length, so
the mechanics cannot in principle be treated analytically.

As pointed out in the next chapter, it is sometimes not practical to mea-
sure the motion of a resonator directly at the location where it matters in
the experiment. Nevertheless, it is always possible to retrieve the resonator’s
displacement at any position by calculating the mode shape function. For
this purpose, we realize a FEM of the cantilever. The model, computed on a
commercial software (Comsol Multiphisics), provides the mode shapes shown
in Fig. 1.6. The eigenfrequency calculated for the fundamental mode matches
the experimental finding ω0/(2π) = 7.9 kHz, as mentioned in Section 3.3.1.
Due to the large width of the cantilever, compared to its thickness, the mode
n = 2 is torsional, and for a proper analytical description it would require a
two-dimensional analysis. However, the mode shapes of the first two modes
overlap with those obtained analytically through Eq. (1.11) and shown in
Fig. 1.2, for a cantilever with uniform cross-section and length equal to the



1.5 Finite Element Models 15

 n = 1 

 n = 3 

 n = 0 

 n = 2 

|u
n(

z)
| 

0 

1 

�̂� 
𝑦� 

𝑥� 

Figure 1.6 FEM of the commercial cantilever mode shapes. The sub-figures display
the mode shape of each of the lowest four resonance modes. The color scale is proportional
to the amplitude of |un(z)|, normalized to unity.

total length of the commercial resonator. If the cantilever’s displacement in
the n-th mode is Un(z0, t), measured at some position z = z0, the knowledge
of the mode shape function allows the calculation of the time-dependent dis-
placement xn(t) at the free-end through the following simple equation, which
is a direct consequence of the relation (1.3):

xn(t) =
Un(z0, t)

un(z0)
. (1.36)

It is important to mention here that the previous expression is related to the
normalization choice |un(L)| = 1, already presented in Sections 1.1 and 1.3.1.

1.5.2 FEM of an Ultra-Soft Cantilever

In the experiment described in the first section of Chapter 4, we study a
single-crystal highly doped silicon cantilever, whose ultra-low spring constant
makes it ideal for precision sensing. As shown in Fig. 1.7, the cantilever is
characterized by a high aspect ratio, with a total length of 180µm, a width of
≈ 4µm and a thickness of only 100 nm. Close to its free end, the cantilever
includes a hexagonal paddle, used for focusing a laser interferometer which
measures the displacement (see Chapter 2). The cantilever’s tip is loaded
with a 1.7µm-thick mass, aimed at repelling high order resonance modes
from the fundamental. As in the case previously described, the cross-section
is not uniform across the cantilever length, therefore the mechanics are best
studied through a finite element model. The computed lowest four mode
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100 µm 10 µm 

Figure 1.7 Cantilever for precision sensing. SEM images of ultra-soft Si resonators used
in the experiment described in Section 4.1. Pictures adapted from Ref. [45].

shape functions are shown in Fig. 1.8. As before, the fundamental eigenfre-
quency from the FEM matches the experimental result ω0/(2π) = 1.9 kHz,
as described in Section 4.1.1. The corresponding mode shape allows the de-
termination of the time-dependent displacement xn(t) at the free-end from
the knowledge of the displacement Un(z0, t) measured at the paddle position,
by using Eq. (1.36).

1.5.3 FEM of a Nanowire Cantilever

In Chapter 5, the resonator is a GaAs/AlGaAs core-shell nanowire (NW),
which is tightly glued to the edge of a Si chip on a lateral facet, in cantilever
configuration. The dimensions of the NW and the length of the portion glued
to the chip are measured by scanning electron microscopy (SEM), as shown
in Fig. 1.9. While its structure is described in detail in Chapter 5, in this
section the NW is modeled as an isotropic and homogeneous hexagonal prism
of AlGaAs, 20.1µm long and with the side of the hexagon being s = 230 nm.
The density is given by the average of the densities of the different GaAs and
AlGaAs layers, each weighted according to its thickness.

The FEM provides the mode shapes of the NW flexural vibrations. As
explained in Section 1.2.1, a NW of regular hexagonal cross-section clamped
at one end possesses doubly degenerate vibrational modes. However, the
experimental situation concerns a cantilever clamped with one lateral facet in
contact with the substrate. As confirmed by our FEM, such an asymmetric
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Figure 1.8 FEM of the ultra-soft cantilever mode shapes. The sub-figures display the
mode shape of each of the lowest four resonance modes. The color scale is proportional to the
amplitude of |un(z)|, normalized to unity.

geometry has the effect of splitting each mode into a doublet of flexural
vibrations, oriented either parallel or perpendicular to the Si surface, with
the former having the lower eigenfrequency. Figure 1.10 shows the mode
shape of the lowest four non-degenerate vibrations. The spectral separation
between two non-degenerate modes in each doublet depends, aside from the
nature of the clamping, on the symmetry of the NW geometry: a dilatation
of the hexagonal cross-section by only 1% along one axis is enough to invert
the spectral positions of the two modes.

Despite the asymmetric clamping and the consequent mode splitting, the
calculation of the effective mass of the resonator for the lowest four modes,
according to the definition (1.21), leads to the same result of the simpler
symmetric case. The ratio between the effective mass and the mass of the
suspended portion of the NW calculated through the FEM is in fact ≈ 0.25,
consistent with the analytical value of 1/4 (see Section 1.3.1). In detail, it
results m = (3.5 ± 0.7) × 10−15 kg, where the error is dominated by the
measurement imprecision on the hexagon side s.

The flexural vibrations produce a time-varying material strain in the NW,
which, as shown in Section 1.4.1, translates into a dominant uniaxial stress
along the NW growth direction ([1 1̄ 1] in crystallographic notation). In or-
der to fully characterize the elastic properties of our resonator, we need to
determine the values of the Young’s modulus EY and of the Poisson’s ratio
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Figure 1.9 NW as a cantilever. SEM image of the NW used as a resonator in the
experiment described in Chapter 5. The NW is glued to the edge of a Si chip in a cantilever
configuration. The inset shows the NW’s hexagonal profile.

ν.

To our knowledge, for a GaAs/AlGaAs nanostructure grown along 〈1 1 1〉,
EY has not yet been measured. The only reference is the value along this
axis measured for bulk GaAs (141.2 GPa) [46]. However, an estimation of EY

for our experimental configuration can be provided by the FEM. Chapter 5
reports that the measured resonance frequency of the lowest perpendicular
mode is 795.4 kHz. Since we know the geometric dimensions of the NW,
we set EY as a free parameter in our FEM, while calculating the NW eigen-
frequencies. We then tune EY in the FEM until the calculated resonance
frequency of the lowest perpendicular mode matches our experimental find-
ing. The corresponding Young’s modulus is then EY = 153 GPa, which is
8% larger than the aforementioned value measured for bulk GaAs. Possible
reasons for this increase of the stiffness of our NW reside in its finite size and
in its core-shell structure, which introduces an additional intrinsic material
strain.

The Poisson’s ratio has been recently measured for Zinc-Blende GaAs/-
AlGaAs core-shell NWs grown along 〈1 1 1〉, as in our case, at a temperature
of 100 K [47]. Its value results to be ν = 0.16± 0.04.

Once these fundamental parameters have been inserted into our FEM,
we compute the strain distribution along the NW structure. Fig. 1.10 shows
in color scale ε‖ for the lowest four non-degenerate flexural vibrations, for a
NW free-end displacement xosc = 1 nm. The largest strain is obtained at the
clamped end of the NW, at the borders of its hexagonal cross-section perpen-
dicular to the oscillation direction, i.e. where z = 0 and ξ = ±s

√
3/2. The

value from the FEM for the lowest perpendicular mode is εmax
‖ /xosc = 1.73×
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Figure 1.10 FEM of the NW mechanical properties. The sub-figures show the mode
shape of each of the the lowest four non-degenerate vibrations. The color scale is proportional
to the component ε‖ of the material strain in the NW, for a 1-nm displacement of its free end.

10−6 nm−1, coinciding with the analytical result calculated from Eq. (1.35).
The value of the strain scales for higher modes as (βn/β0)2, i.e. as the cor-
responding eigenfrequencies. Therefore, as confirmed by the FEM analysis,
the mode doublet n = 2 and 3 results in a maximum strain at the NW’s
clamped end that is a factor 6 larger than the value of the lowest index dou-
blet (see Table 1.1). However, if the goal is obtaining the largest possible
strain in a resonator, one should consider that driving high order modes re-
quires quadratically increasing mechanical excitation. This is due to the fact
that the spring constant of a resonator scales as the square of its resonance
frequency.

1.6 Thermal and Quantum Noise

In the treatment of mechanical resonators made so far, we have intentionally
not mentioned the nature of the forces acting on them. Apart from externally
applied forces, ultra-soft micro- and nano-sized resonators interact with the
environment with a mutual transfer of energy. The sources of such interaction
can be several: for example, the stochastic collisions of the resonator with
the molecules of the environment, the phonons in the substrate that couple
to the resonator via the clamping points, the motion of charged defects or
ions on the surface of the resonator or in its surroundings, etc. [18,40]. Since
all these coupling processes are random and irreversible, they lead to energy
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dissipation and to fluctuations in the resonator’s vibrations, its so-called
Brownian motion. In terms of equation of motion, the force exerted by
the environment on the resonator can be separated into a dissipation term,
proportional to the resonator’s velocity, and a term due to a random force
Fth, which constitutes the thermal noise. The dynamics of the resonator can
therefore be described through the so-called Langevin equation [40]:

mẍ+ Γẋ+ kx = Fth. (1.37)

We are here focusing our attention, for simplicity of notation, on only one
vibrational mode, but the analysis can be extended to the other modes with-
out losing generality. In the following subsection, we briefly illustrate the
equations used to describe the thermal motion of a mechanical resonator. In
the next subsection, the limitations imposed by quantum mechanics on the
resonator’s displacement detection are described.

1.6.1 Displacement Spectral Density

A noisy time-dependent quantity is generally described in terms of its spectral
density (or power spectrum) S(ω), which expresses the intensity of the noise
at a given frequency [7]. In case of the resonator’s displacement x(t), it is
first useful to define its Fourier transform over a finite window as follows:

x̂τ (ω) ≡ 1√
τ

∫ τ/2

−τ/2
x(t)eiωt dt, (1.38)

where τ is the sampling time. The definition of spectral density of x(t) is
then [7]:

S̄x(ω) ≡ lim
τ→∞

〈
|x̂τ (ω)|2

〉
. (1.39)

The last relation can also be inverted, expressing the signal fluctuation as a
function of the spectral density. To do so, we first introduce the autocorre-
lation function Kx(t), which describes how x(t′) is related to itself at a later
time t′ + t [41]:

Kx(t) ≡ lim
τ→∞

1

τ

∫ τ

0

x(t′)x(t′ + t) dt′. (1.40)

The spectral density is then related to Kx(t) through its Fourier transform [7,
18,40,41]:

S̄x(ω) =

∫ ∞
−∞

Kx(t)e
iωt dt. (1.41)

Note that the spectral density S̄x(ω) in the definition (1.39) and in the re-
lation above spans both positive and negative frequencies. For real-valued
signals, as it is the case in physical situations, S̄x(ω) is an even function [7].
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For this reason, we adopt in the following the convention for the single-sided
spectral density [18,41]:

Sx(ω) ≡ S̄x(ω) + S̄x(−ω). (1.42)

This definition still allows the conservation of the total power in the signal
when S(ω) is integrated only over positive frequencies. Finally, we show that
the fluctuation of a signal x(t) is connected to its autocorrelation function
Kx(t). In fact, provided that the sampling time is sufficiently long (i.e.
τ � 2π/ω0, ω0 being the angular resonance frequency), we have:〈

x2
〉
≡ 1

τ

∫ τ

0

[x(t)]2 dt = Kx(0). (1.43)

Therefore, from the inverse Fourier transform of Eq. (1.41), we get:〈
x2
〉

=
1

2π

∫ ∞
0

Sx(ω) dω. (1.44)

Such equation provides a direct connection between the root-mean-squared
thermal motion xrms and its spectral density:

xrms =
xosc√

2
=

√
1

2π

∫ ∞
0

Sx(ω) dω. (1.45)

In the following, we derive an analytical expression for Sx(ω). The Fourier
transform of both members of the equation of motion (1.37) provides the
frequency response of the resonator:

x̂(ω) =
1/m

ω2
0 − ω2 + iω0ω/Q

F̂th(ω), (1.46)

where we have replaced the dissipation Γ with the expression containing the
quality factor Q = mω0/Γ. The random nature of the thermal force Fth

implies that, on a long time scale, Fth is uncorrelated from the displace-
ment x(t). From the definition (1.39), we are then able to determine the
displacement spectral density [18,32,41]:

Sx(ω) =
1/m2

(ω2
0 − ω2)2 + ω2

0ω
2/Q2

SFth
, (1.47)

where SFth
is the spectral density of the thermal noise force, considered white

in the bandwidth of the resonator. Recurring to the relation (1.44), and
solving the integral, we are then able to directly connect the fluctuation of
the Brownian motion with SFth

[41]:〈
x2
〉

=
Q

4ω3
0m

2
SFth

. (1.48)
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In condition of equilibrium, the temperature of the resonator is equal to the
environmental temperature T . The equipartition theorem [48] establishes a
connection between the energy of the resonator (potential and kinetic) and
the equilibrium temperature:

1

2
k
〈
x2
〉

=
1

2
m
〈
ẋ2
〉

=
1

2
kBT, (1.49)

where kB is the Boltzmann’s constant. By combining this relation with
Eq. (1.48), we are then able to express the thermal force spectral density
as:

SFth
=

4kBTω0m

Q
= 4kBTΓ. (1.50)

Such a result is known as fluctuation-dissipation theorem and has a general
validity on systems governed by a Langevin equation, as the (1.37) [40]. It
shows that the thermal force spectral density can be expressed in terms of
the intrinsic properties of the resonator and the environmental temperature,
ignoring the microscopic origin of the force. Furthermore, it highlights that
the force noise determines the quality factor (or conversely the dissipation)
of the resonator [18].

Combining the result (1.50) into Eq. (1.47), we can finally express the
spectral density of the resonator’s thermal noise as:

Sx(ω) =
4kBTω0

mQ [(ω2
0 − ω2)2 + ω2

0ω
2/Q2]

, (1.51)

or, in terms of the spring constant k = mω2:

Sx(ω) =
4kBTω

3
0

kQ [(ω2
0 − ω2)2 + ω2

0ω
2/Q2]

. (1.52)

As illustrated in detail in the next chapter, experimentally the motion of a
resonator is transduced by the measurement apparatus into a time-varying
electrical signal. Generally this signal is transformed into the frequency do-
main, for example by means of a spectrum analyzer, thus providing the
spectral representation of the resonator’s motion. The response of a spec-
trum analyzer is typically the one-sided spectral density Sx(ω), combined
with other measurement noise sources. Assuming this noise to be white and
uncorrelated to the resonator’s displacement, the two signals add to each
other in quadrature [7], giving a measured voltage spectral density of the
form:

SV (ω) = α2 [Sxn + Sx(ω)] . (1.53)

Here Sxn represents a constant offset due to the white measurement noise
and α is a coupling coefficient which accounts for the transduction of the
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resonator’s motion into a voltage signal. The graph in Fig. 1.11 shows an
experimental displacement spectrum of the fundamental mode of a nanome-
chanical resonator. By means of the relations (1.51) – (1.53), the function
SV (ω) can be fit directly to physical data to extract the resonator’s mechan-
ical properties. In the figure, the role of such properties on the displacement
spectrum is highlighted. As pointed out in the next chapters, in this thesis
α is obtained directly from the detector’s properties, and not from the fit of
the spectrum. Through the relation (1.45), we are now able to determine the
displacement of the resonator on resonance. Furthermore, we can express the
displacement sensitivity of the detector, given by

√
Sxn . Such a parameter

is generally used as a figure of merit for a detection system, as it is a mea-
sure of the minimum detectable signal for that setup [41]. Note that, being
expressed in units of m/

√
Hz, the sensitivity does not depend on the specific

measurement bandwidth, nor, conversely, on the wait time. Longer measure-
ments average out the white noise, leading to a reduction of the displacement
uncertainty: this bandwidth-dependent parameter is usually referred as the
resolution of the detector [18]. The signal-to-noise ratio (SNR) is given by
the height of the resonance peak divided by the height of the noise floor (i.e.
the sensitivity squared). As shown in Fig. 1.11, in order to obtain a large
SNR, it results advantageous to have a resonator with high Q and low k.

We have seen that the equipartition theorem connects, in condition of
thermal equilibrium, the resonator’s temperature to the fluctuation of its
Brownian motion, by means of Eq. (1.49). Out of equilibrium, the fluctua-
tion-dissipation theorem no longer holds in the form (1.50) and the temper-
ature of the resonator may be different from the one of the environment [18].
It is then necessary to define an effective temperature of the resonator, as
follows:

Teff ≡
k 〈x2〉
kB

=
k

2πkB

∫ ∞
0

Sx(ω) dω. (1.54)

In the second passage, we have made use of the relation (1.44), showing
that the resonator’s effective temperature is proportional to the area under
the spectral density, or, in terms of experimental data, to the area between
SV (ω)/α2 and the noise floor Sxn , as shown in Fig. 1.11. In equilibrium
condition, Eq. (1.54) still leads to Teff = T . However, the force noise can be
larger or smaller than the equilibrium value expressed in Eq. (1.50), leading to
an effective heating or cooling of the resonator. Chapter 3 is mainly devoted
to the study of a cantilever whose fundamental mode effective temperature
is cooled below T by means of an applied feedback force.

In the analysis made so far, we have neglected the action of the detector
on the resonator’s motion. As exposed in the next subsection, the role of the
detector has to be taken into account when the measurement sensitivity is
pushed down to the limits imposed by quantum mechanics.
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Figure 1.11 Thermal noise spectral density. Plot (in black dots) of the spectrum of a
resonator’s fundamental mode, measured with a fiber-optic interferometer (see Section 2.1).
The resonator is the ultra-soft Si cantilever described in Section 1.5.2. At T = 4.2 K and
p < 10−6 mbar, it has k0 = 100µN/m and Q0 = 104, at (see Chapter 4). The gray curve
fits the experimental data according to Eqs. (1.51) – (1.53). The graph highlights the role of
the mechanical parameters of the resonator on its displacement spectrum. In particular, the
gray area included between the fit and the noise floor Sxn is proportional to the resonator’s
effective temperature.

1.6.2 The Standard Quantum Limit

When a nanomechanical resonator is cooled to very low temperatures, the
classical description fades into a quantized energy-level picture. Each vibra-
tional mode is then characterized by a quantized energy, which, according to
the model of a quantum harmonic oscillator, can be written as:

EN = ~ωn
(

1

2
+N

)
, (1.55)

where ~ = h/2π is the reduced Plank’s constant and N = 0, 1, 2, ... is the
mode occupation number. The quantum ground state (N = 0) has a non-
vanishing eigenenergy E0 = 1

2
~ωn, called the zero-point energy [18]. From

the corresponding wavefunction, it is possible to derive the amplitude of the
quantum fluctuations of the resonator’s position at the ground-state, the
so-called zero-point fluctuations [7, 18]:

xzpf ≡
√
〈0| x̂2 |0〉, (1.56)

x̂ denoting here the position operator. However, a more elegant way to
find the expression of xzpf consists in applying the virial theorem [49] to the
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Hamiltonian of the quantum harmonic oscillator. Given the Hamiltonian

Ĥ =
p̂2

2m
+
mω2

nx̂
2

2
, (1.57)

(p̂ is the momentum operator), and calling K̂ and Û the kinetic and the
potential energy operators, we can write:

〈N | K̂ |N〉 = 〈N | Û |N〉 =
1

2
〈N | Ĥ |N〉 . (1.58)

From these relations, it results:

1

2m
〈N | p̂2 |N〉 =

mω2
n

2
〈N | x̂2 |N〉 =

1

2
EN , (1.59)

and in particular, for the ground state:

xzpf =

√
~

2mωn
. (1.60)

For a quantum harmonic oscillator coupled to a thermal bath, the average
mode occupation number Nth follows the so-called Planck distribution, which
is a particular case of Bose-Einstein distribution when the total number of
particles is not fixed:

Nth =
1

e~ωn/kBT − 1
. (1.61)

The average mode energy is then expressed by:

〈E〉 = ~ωn
(

1

2
+

1

e~ωn/kBT − 1

)
= kBTeff, (1.62)

where the last passage expresses the relation with the mode effective temper-
ature of the resonator Teff. Equation (1.62) sets the temperature limit for the
emergence of quantum effects on the mechanical resonator. For high temper-
ature, i.e. kBT � ~ωn, the expression reduces to the classical equipartition of
energy, and Teff = T . The classical description breaks down for kBT ≈ ~ωn.
In such a situation, the resonator’s temperature differs from the one of the
bath and the thermal force spectral density can be written as:

SFth
= 4~ωn

(
1

2
+

1

e~ωn/kBT − 1

)
Γ, (1.63)

which is a generalization of the fluctuation-dissipation theorem (1.50). In the
low temperature limit, it becomes Nth � 1 and the resonator is mostly found
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in its ground state. Then SFth
= 2~ωnΓ and, from Eq. (1.47), the oscillator’s

displacement spectral density on resonance assumes a value:

Szpf
x =

2~
ωnΓ

. (1.64)

In other words, Eq. (1.64) expresses the peak spectral density of the res-
onator’s zero-point fluctuations.

It is known since its discovery in 1927, that the Heisenberg uncertainty
principle imposes a limit on the precision with which conjugate observables
can be measured [50]. Nevertheless, Heisenberg’s relation for position and
momentum standard deviations, ∆x ·∆p ≥ ~/2, does not forbid the determi-
nation of the position with arbitrary accuracy in a single measurement [18].
Most measurements, however, do not consist in a single read-out, but are
rather weak continuous measurements of the resonator’s position. This means
that the read-out is sufficiently weak that the position undergoes many cy-
cles of oscillation before significant information is acquired [7]. What is then
measured is not the instantaneous position, but rather the overall amplitude
and phase. In a weak continuous measurement, the read-out of the position
exerts a random force on the resonator which alters its momentum. During
the subsequent time evolution, the perturbation introduced by this random
force translates into a random fluctuation of the position. This influence
of the measurement on the resonator is called back-action. Experimentally,
back-action results in three different effects on the resonator [18]:

1. a frequency shift;

2. a variation of the dissipation;

3. a change in the resonator’s temperature.

In terms of position measurement, let us suppose to have a quantum
limited detector available, that is a detector whose measurement sensitivity
Simp
x is only limited by shot-noise. Simp

x plays the role of the white noise
imprecision Sxn in Eq. (1.53). For a certain signal power, the detector’s shot-
noise SVn = α2Simp

x is independent of the position measurement. Therefore
an increase of the coupling α between the detector and the resonator causes
a quadratic decrease of Simp

x .
As described before, an accurate position measurement results in a back-

action force noise, and vice versa. This back-action force increases linearly
with α [18], as the influence of the detector on the resonator becomes stronger.
Thus the resulting back-action imprecision Sba

x goes as α2. Since the back-
action force is not correlated to the detector’s shot-noise, the total measured
spectral density Sx includes the noise contributions of both Simp

x and Sba
x as
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a simple sum. Given their reciprocal dependence on α2, when the two noise
sources both have an equal contribution, then Sx(α

2) reaches a minimum [7].
According to the Heisenberg uncertainty principle, this happens when the
measurement imprecision and the motion resulting from the back-action force
each add a noise energy equal to ~ωn/4 [5,7]. This fundamental lower bound
for Sx is known as the standard quantum limit (SQL) of continuous position
detection.

At the SQL, the position noise added by the measurement (Simp, SQL
x +

Sba, SQL
x ) has the same energy contribution of the resonator’s zero-point fluc-

tuations (~ωn/2), and the corresponding spectral densities on resonance are
also equal:

Simp, SQL
x + Sba, SQL

x = Szpf
x . (1.65)

Although the total added noise is at a minimum, the uncertainty principle
does not forbid the measurement sensitivity Simp

x from becoming arbitrarily
small compared to that at the SQL [5].

To summarize, in the limit kBT � ~ωn, the total measured spectral
density Sx has three contributions: two are given by the measurement noise,
namely Simp

x and Sba
x , the third is the zero-point fluctuations spectrum of

the resonator Szpf
x . Sx reaches a minimum at the SQL, whose value, from

Eq. (1.64), is:

Smin
x = 2× Szpf

x =
4~
ωnΓ

. (1.66)

Figure 1.12, adapted from Ref. [5], illustrates the concepts described in this
section. In order to quantify the noise of a measurement, a natural scale is
provided by the imprecision at the SQL, SSQL

x = ~/(ωnΓ). At the oscillator’s
resonance frequency, SSQL

x corresponds to the noise energy of ~ωn/4. Note
that at finite temperature, a thermal contribution to Sx must be also taken
into account, in addition to the three contributions mentioned before.

In the next Chapter, we deal with the detection of a nanomechanical
resonator’s displacement. In particular, two different schemes employed in
the work of this thesis are described in detail, each presenting advantages or
limitations in specific applications.
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Nanomechanical motion measured with an
imprecision below that at the standard
quantum limit
J. D. Teufel 1, T. Donner 1, M. A. Castellanos-Beltran 1,2, J. W. Harlow 1,2 and K. W. Lehnert 1,2*

Nanomechanical oscillators are at the heart of ultrasensitive
detectors o� orce 1, mass 2 and motion3–7. As these detectors
progress to even better sensitivity, they will encounter
measurement limits imposed by the laws of quantum mech-
anics. If the imprecision of a measurement of the displacement
of an oscillator 8 is pushed below a scale set by the standard
quantum limit, the measurement must perturb the motion of
the oscillator by an amount larger than that scale. Here we
show a displacement measurement with an imprecision below
the standard quantum limit scale. We achieve this imprecision
by measuring the motion of a nanomechanical oscillator with a
nearly shot-noise limited microwave interferometer 9. As the
interferometer is naturally operated at cryogenic temperatures,
the thermal motion of the oscillator is minimized, yielding an
excellent force detector with a sensitivity of 0.51 aN Hz 2 1/2.
This measurement is a critical step towards observing
quantum behaviour in a mechanical object.

The Heisenberg uncertainty principle ensures that an increasingly
precise measurement of a harmonic oscillator is accompanied by an
increasingly large backaction force that acts on that oscillator. As a
consequence of this principle the total noise energy added in a
measurement of displacement is at leasthvm/2, where h is the
Planck constant divided by 2p , vm is the resonance frequency of
the oscillator, andhvm is the quantum of noise energy. A measure-
ment reaches this limit, called the standard quantum limit (SQL),
when the motion resulting from the backaction force and the
imprecision each addhvm/4 of noise energy (Fig. 1). Therefore,
the imprecision at the SQL provides a natural scale for quantifying
the noise of a measurement8. Although the total added noise has a
minimum, the imprecision spectral densitySx

imp can be arbitrarily
small compared with that at the SQL,Sx

SQL ¼ h/ (mvmgm) (ref. 10),
wherem is the mass andgm is the dissipation rate of the oscillator.
At the resonance frequency of the mechanical oscillator,SxSQL corres-
ponds to the noise energyhvm/4 (see Supplementary Information).

An interferometer can, in principle, realize the ideal displace-
ment measurement described in Fig. 1 by encoding the oscillator’s
displacement into the phase of a light field11. This phase response
to motion can be resonantly enhanced by integrating a cavity con-
taining the mechanical oscillator into the interferometer4,9,12–16.
The imprecision of such a cavity optomechanical measurement is
given by

Simp
x

SSQLx
¼

nadd þ
1
2

P=ðhv cÞ
1

ð@w=@xÞ2
mv mgm

h
ð1Þ

The first term reflects the phase sensitivity of an interferometer,
which addsnadd quanta of noise while reading out the phase at a

rate ofP/ (hv c) photons per second, whereP is the incident power,
and v c is the resonance frequency of the cavity. The second term
describes the transduction of displacementx of the mechanical
oscillator into phasew. It is proportional to (gc/g)2, wheregc is the
linewidth of the cavity andg¼@v c/@x is the coupling between the
oscillator’s motion and the cavity’s resonance frequency. The last
term puts the imprecision in units ofSx

SQL. Equation (1) demonstrates
that the absolute imprecision,Sximp, is reduced by measuring with
larger power, stronger coupling, and minimum added noise,
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Figure 1 | Ideal displacement measurement. The total displacement spectral
density Sx in units of Sx

SQL for temperatureT¼ 0. Sx (red) has three
contributions: the zero-point fluctuations of the oscillator (Sx

zpf, orange), the
imprecision (Sx

imp, blue) given by the shot-noise limit, and the backaction
(Sx

ba, green) due to quantum fluctuations of the measurement signal acting
back on the oscillator. At finite temperature there would also be a thermal
contribution. The SQL (dashed-dotted line) is reached at the optimum power
PSQL where Sx

imp and Sx
ba contribute equally such that the noise added by the

measurement (grey dashed line) is minimal. The main graph shows the
contributions toSx as a function of power; the subfigures display them as a
function o� requency for three di�erent powers (note the logarithmic
vertical axes). In the subfigures, the imprecision, or apparent motion, is
visible as the white-noise background, whereas the real motion,
composed of the zero-point and backaction motions (and the thermal
motion forT . 0), is visible as the Lorentzian peak.
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Figure 1.12 Displacement detection at the SQL. A quantum limited displacement detec-
tor at T ≈ 0 measures a spectral density Sx (red curve) given by three different contributions:
the shot-noise limited measurement imprecision S imp

x (blue), the back-action noise Sba
x (green)

and the resonator’s zero-point fluctuations Szpf
x (orange). At the optimal coupling αSQL, S imp

x

and Sba
x contribute equally to the measurement noise, each with energy ~ωn/4. In the main

graph, Sx/S
SQL
x is plotted as a function of (α/αSQL)2, showing its different contributions. In

the sub-figures, such contributions are displayed as a function of frequency for three different
values of α. Adapted from Ref. [5].



2 Displacement Detection

The previous chapter shows that the one-sided spectral density Sx(ω) is com-
monly used to express the displacement spectrum of a nanomechanical res-
onator. Experimentally, the resonator’s motion is detected by means of a
transducer, which converts it into an electrical signal. In this chapter, we
illustrate two experimental schemes used in this thesis to detect the dis-
placement of a cantilever with high sensitivity, eventually below the level of
thermal motion. Both methods involve a linear displacement detector, i.e. a
detector whose output depends linearly on the displacement of the resonator.

The first detector described is the fiber-optic interferometer. This is a
well established sensor, used and developed in the last 25 years starting from
the works of Drake and Leiner [51], and of Rugar and collaborators [52, 53].

In the second section, we analyze the theory underlying an innovative
transducer, consisting of a quantum point contact (QPC), and we compare
it to the other schemes developed for detecting motion at the nano-scale.
Conceived by Poggio and collaborators [54], the off-board QPC sensor has
been further developed and exploited with the work of this thesis. As de-
scribed in detail in Chapter 3, a QPC has been employed to measure and
control the low-temperature thermal motion of a nearby micromechanical
cantilever [33].

2.1 Fiber-Optic Interferometer

The fiber-optic interferometer is well suited to detect deflections of micro- and
nano-sized cantilevers, thanks to its high sensitivity (< 10−12 m Hz−1/2 [32]),
good low-frequency stability, and compactness [52, 53, 55]. Because of its
operability in remote environments, such as in vacuum and/or at low tem-
peratures, it has been adopted in several applications, ranging from sensi-
tive nanomechanics experiments [32,33,54,56] to magnetometry [57,58] and
scanning force microscopy [51–53], in particular magnetic resonance force
microscopy (MRFM) [59–61].

In the experiments described in this thesis, two different interferometer
setups have been employed, according to the specific needs of the measure-
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Figure 2.1 Scheme of the fiber-optic interferometer. This arrangement is optimized for
maximum displacement sensitivity and is part of the experimental setup described in Chapters
3 and 4.

ments that have been performed. The technical details of each arrangement
are specified in Chapters 3 and 5. However, the two configurations share com-
mon operation principles. The experimental setup optimized for maximum
displacement sensitivity is schematized in Fig. 2.1. Coherent light from a
laser diode is coupled into one arm of a 2×2 single-mode directional coupler.
The coupler splits the incident optical power between its two outputs with a
99/1 coupling ratio, thereby serving as an interferometric beam splitter [62].
This means that 99% of the light is directed to a power monitor photodetec-
tor, while only the remaining 1% is coupled into a sensing fiber terminated
with a perpendicular cleaved facet. The cleaved end is typically positioned
nearby the cantilever (this is not the case of the interferometer described
in Chapter 5), on which the laser beam is focused through a collimating
lens. Light reflects from both the cantilever and the cleaved facet, then
travels back up the sensing fiber, where it interferes to form a displacement-
dependent signal. 99% of this interference signal is then transmitted by the
directional coupler to a second photodetector (PD), which produces a voltage
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proportional to the signal power. In order to achieve interference, the laser’s
coherence length has to be longer than at least twice the cavity size, i.e. the
distance between the cleaved facet and the cantilever. For better stability
and sensitivity, the cavity can be designed in the sub-mm range, thus not
requiring a laser with long coherence length. In addition, the use of a short
coherence length laser improves the low-frequency stability of the sensor, by
eliminating interference effects of stray reflections [53]. Another option, used
in the experiments described in Chapters 3 and 4, is to reduce the coherence
length to the desired range by modulating the laser power with a suitable
radio-frequency signal.

Assuming the reflectivities of the cleave-air interface R1 and of the cantile-
ver-air interface R2 to be small (R1, R2 � 1), we can ignore the effects of
multiple reflections in the cavity (low-finesse). The interferometer response
can thus be modeled simply as the two component interference between re-
flections from the fiber end and the cantilever [52]. In terms of the electric
field Ei incident on the fiber end, the detected optical power Pr can be written
as:

Pr =
∣∣∣(Ei√R1eiφ1 + Ei

√
1−R1

√
R2

√
1−R1eiφ2)

∣∣∣2
= E2

iR1 + E2
iR2(1−R1)2 + E2

i

√
R1R2(1−R1)

[
ei(φ1−φ2) + ei(φ2−φ1)

]
= E2

iR1 + E2
iR2(1−R1)2 + 2E2

i

√
R1R2(1−R1) cos (φ1 − φ2)

= E2
iR1 + E2

iR2(1−R1)2 + 2E2
i

√
R1R2(1−R1) cos

4πl

λ

≈ E2
i

(
R1 +R2 + 2

√
R1R2 cos

4πl

λ

)
, (2.1)

where l is the cavity length, λ is the laser wavelength, φ1 and φ2 are the phase
shifts acquired by the light reflected respectively from the fiber end and from
the cantilever. In the last passage we have neglected the terms proportional to
the reflectivity squared, consistently with the initial hypothesis of R1, R2 �
1. In the subsequent analysis, we make use of the following definitions for the
maximum and minimum output powers due to constructive and destructive
interference, and to the amplitude and average values of the interference
fringe:

Pmax = E2
i (R1 +R2 + 2

√
R1R2),

Pmin = E2
i (R1 +R2 − 2

√
R1R2),

Pamp =
Pmax − Pmin

2
= 2E2

i

√
R1R2,
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Pavg =
Pmax + Pmin

2
= E2

i (R1 +R2),

V̄ ≡ Pamp

Pavg

=
2
√
R1R2

R1 +R2

. (2.2)

The last relation is the definition of the visibility of the interferometer V̄ ,
a parameter related, as we clarify later, to the transduction efficiency and
hence to the sensitivity of the interferometer. With the previous definitions,
we finally obtain that Pr varies with the average output power Pavg as:

Pr = Pavg

(
1 + V̄ cos

4πl

λ

)
. (2.3)

The cavity length l varies in time with the cantilever’s displacement. It
can be written as the sum of the equilibrium position x0 and a sinusoidal
oscillation x(t), assumed to have an amplitude much smaller than λ. The
relation (2.3) then becomes:

Pr = Pavg

{
1 + V̄ cos

4π

λ
[x0 + x(t)]

}
= Pavg

{
1 + V̄

[
cos

4π

λ
x0 cos

4π

λ
x(t)− sin

4π

λ
x0 sin

4π

λ
x(t)

]}
≈ Pavg

{
1 + V̄

[
cos

4π

λ
x0 −

4π

λ
x(t) sin

4π

λ
x0

]}
. (2.4)

For maximum sensitivity, we choose x0 so that cos 4π
λ
x0 = 0, which is verified

when x0 = λ
8
+k λ

4
, k ∈ Z. Consequently we obtain a linearized interferometer

output of the form:

Pr = Pavg

[
1− V̄ 4π

λ
x(t)

]
. (2.5)

The last expression shows that the maximum output swing as a response to
the cantilever displacement x(t) is obtained for optimal visibility V̄ . This
is achieved when R1 = R2, resulting in V̄max = 1. In order to optimize the
interferometer sensitivity, it is then important to match the two reflectivities.
One can estimate R2 from the material and thickness of the cantilever, and
adjust R1 by depositing a thin film of reflective material on the fiber cleave.
For the interferometer employed in the experiments described in Chapters 3
and 4, we have deposited a layer of Si by thermal evaporation on the fiber
cleaved end. Its reflectivity was monitored in remote during the deposition
with a power meter, coupled to the fiber through the directional coupler.
In order to match the estimated cantilever reflectivity R2 ≈ 30% [62], the
deposited Si film reached a nominal thickness of 25 nm.
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Adjusting the detector for maximum sensitivity involves either mechan-
ically tuning the fiber-cantilever spacing, or, more simply, varying the laser
wavelength. In the experiments described in this thesis, we have chosen
the second approach, therefore employing wavelength-tunable laser sources.
This technique eliminates the need for a mechanical actuator (PZT) to adjust
the cavity length, resulting in enhanced stability and compact size [55]. A
laser wavelength shift sufficient to center the interferometer fringe has been
produced by either controlling the laser temperature with a thermoelectric
cooler (TEC) (Chapters 3 and 4), or by fine tuning the laser cavity length
(Chapter 5). This is achieved through a piezoelectrically actuated mirror,
built in the laser commercial setup. In both cases, the interferometer is cal-
ibrated at the maximum sensitivity through the following procedure. From
Eq. (2.5), it results that the interferometer response oscillates with a period
λ/2. Therefore, in order to explore the full fringe swing, the laser wave-
length is modulated at low frequency to a peak-to-peak amplitude slightly
larger than λ/4. Then the wavelength is tuned in order to center the operat-
ing point of the interferometer, until the PD response shows a symmetrical
behavior similar to that of Fig. 2.2. Note that the figure results slightly asym-
metric because the operating point is not perfectly centered. This is due to a
time drift of the laser wavelength or of the cavity size (or both). Such a drift,
whatever the origin is, can be suppressed by stabilizing the interferometer
operating point around Pavg, by means of a proportional-integral-derivative
(PID) feedback loop controlling the laser wavelength.

The PD converts the interference signal into a voltage Vr proportional to
Pr. Recalling the expression (2.5) for Pr and differentiating in x, we obtain
the linearized interferometer gain∣∣∣∣dVrdx

∣∣∣∣ =
4π

λ
VavgV̄ =

2π

λ
(Vmax − Vmin) , (2.6)

where Vavg, Vmax and Vmin are voltage signals proportional to the correspond-
ing optical powers. Note that this relation is valid only for a low-finesse
cavity (R1, R2 � 1), for a centered interferometer operating point and for
small deflections of the cantilever, corresponding to small oscillations of Vr
compared to the interference fringe amplitude. Therefore, we would like to
emphasize once more the importance of locking the operating point with the
PID controller to Pavg. In this way, during a displacement measurement,
the cantilever modulates the interferometer response at the mechanical reso-
nance frequency in a small range around the fringe average, where, by virtue
of Eq. (2.6), the response is linear. Such an interferometer gain is equivalent
to the transduction coefficient α introduced in Chapter 1. For an interferom-
eter, α can thus be expressed in terms of the visibility V̄ , which is measurable
directly from the interference fringe. Consequently, it is not necessary to re-
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Figure 2.2 Interferometer’s time trace. PD response to a low-frequency laser wavelength
modulation (dashed gray curve). The wavelength has been tuned in order to roughly center the
operating point of the interferometer for maximum sensitivity and linearity. The data have been
recorded in the experimental setup described in Chapter 5, which involves an interferometer
with poor visibility and relatively high signal noise. Nevertheless, the graph represents an
example of a typical interferometer time response.

trieve α as an additional parameter from the fit to the experimental data, of
the voltage spectral density SV (ω), expressed in Eq. (1.53). Furthermore, the
accuracy of a displacement measurement is only limited by the determination
of the laser wavelength and of the fringe extremes Vmax and Vmin, and by the
stability of the calibration set-point. In the measurements performed during
the work of this thesis, the uncertainties on λ and on the set-point position
were overtaken by the fluctuations of the PD signal δV . The uncertainty on
α can then be written as:

δα =
2π

λ
(2× δV ) =

α

Vamp

δV. (2.7)

The PD signal V (t) translates into a displacement x(t) = V (t)/α, from which
we can finally derive the uncertainty

δx =
δV

α
+
|V |
α2

δα

=
δV

α

(
1 +

|V |
Vamp

)
≈ δV

α
, (2.8)

the last passage relying on the hypothesis of small signal oscillations. This
relation acquires particular importance for the interferometer described in



2.1 Fiber-Optic Interferometer 35

Chapter 5, characterized by a relatively high signal noise δV , which directly
affects the uncertainty on the resonator’s position δx.

Since the fiber-optic interferometer is a Fabry-Pérot cavity, its response
is an oscillating signal not only as a function of the cavity length l, but also
as a function of λ, with a period called the free spectral range (FSR) of the
cavity. From a measurement of the FSR, it is possible to precisely obtain the
cavity length, through the following relation [63]:

l =
λ2

2nrFSR
, (2.9)

where nr is the refraction index of the medium in the cavity.
To conclude this section, we would like to remark an important experi-

mental aspect, anticipated in Chapter 1. For practical reasons, it is often not
possible to focus the interferometer laser directly on the position of maxi-
mum displacement of the cantilever, i.e. at its free end. This is the situation
described in Chapters 3 and 4. Therefore, the oscillation amplitude xosc, n

cannot be measured directly, but can be retrieved from the knowledge of
the cantilever mode shape function un(z), through the previously described
equation (1.36).

2.1.1 Limits to the Interferometer Sensitivity

The sensitivity of the fiber-optic interferometer as a displacement transducer
is ultimately limited by the PD shot noise [52]. The photo-current is propor-
tional to the power Pr incident on the PD through the responsivity S, which
is in our case equal to 0.8 A/W. The average shot noise current is then given
by:

Ishot =
√

2eSPavg∆ν, (2.10)

where e is the electron charge and ∆ν is the detection bandwidth. The
SNR – between average photo-current and shot noise – thus improves as
the square root of the laser power. The root-mean-squared equivalent noise
displacement corresponding to a SNR equal to one is

xnoise√
∆ν

=
λ

2π

√
e

2SV̄ Pavg

. (2.11)

Assuming optimal visibility (V̄ = 1) and a laser power Pavg = 20 nW at λ =
1550 nm, the equivalent noise displacement is of the order 10−12 m Hz−1/2.
This value expresses the sensitivity reached by the interferometer realized
for the work of this thesis, as shown in Fig. 1.11. A limitation to the max-
imum power – and then to the sensitivity – comes from the low temper-
atures often required in ultra-sensitive force microscopy. In fact, for tem-
peratures below 1 K, the interferometer laser has been observed to heat Si
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cantilevers through light absorption, presumably due to crystal impurities,
even for incident power below 100 nW [64, 65]. Interferometers compatible
with ultra-low temperatures have been developed using microwave radiation.
In particular, using this approach, Teufel and co-workers have demonstrated
a sensitivity below that at the standard quantum limit, in their case of the
order 10−15 m Hz−1/2 [5, 12]. Thereafter, Anetsberger et al. have coupled
in the near-field an infra-red laser homodyne interferometer to a nanome-
chanical resonator, achieving sub-SQL imprecision even at room temperature
(< 10−15 m Hz−1/2) [6].

Different interferometric techniques, employing high-finesse cavities, have
been able to push the sensitivity down to the impressive value of 10−20

m Hz−1/2, achieving nearly quantum-limited displacement detection [66, 67].
However, their application to micro- and nanomechanical resonators results
challenging [54]. In fact, a fundamental obstacle to interferometric detec-
tion is imposed by the optical diffraction limit, which sets a lower bound
on the size of the measured resonator to the scale of the used wavelength.
In this context, enhanced reflectivity from Si NW cantilevers has been ob-
tained when the incident light is polarized along the NW axis [68]. In addi-
tion, a high-finesse cavity requires highly reflective mirrors, typically involv-
ing thick substrates and stiff multilayer stacks. Such characteristics com-
pete with the usual requirement of low spring constant of micro- and nano-
electromechanical systems. Another limitation to these approaches comes
from the aforementioned resonator heating encountered at low temperatures
and high laser power.

2.2 Quantum Point Contact

The perspective of observing the zero-point motion of a resonator and testing
quantum laws on a mechanical object has motivated the search for ultra-
sensitive displacement detectors, possibly overcoming the limitations of in-
terferometry or offering other advantages in technological applications. Al-
ternative approaches consist in transducers relying on the mechanical mod-
ulation of charge flow, through a single electron transistor (SET) [69–71]
or an atomic point contact [72]. These devices have reached sensitivities
around 10−15 m Hz−1/2, approaching, in the experiment of LaHaye et al., the
SQL [71]. However, all these detectors are integrated into a single unit with
the resonator they measure. This aspect strongly limits their versatility for
some force-sensing applications.

An innovative scheme was introduced by Poggio and collaborators, where
a charge flow sensor and the mechanical resonator modulating this charge are
placed off-board [54]. Such an approach is advantageous because it is in prin-
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ciple compatible with an arbitrary nano-sized resonator, even smaller than
the optical diffraction limit. For instance, this detector could be used in con-
junction with sensitive cantilevers in a variety of force-sensing applications,
including MRFM.

The detector used by Poggio et al. is a quantum point contact [73,74], a
device widely used for high-resolution charge sensing. For example, a QPC
had already been used to detect single electrons in gate-defined quantum dots
(QDs) [75] and to detect charge motion and controllably introduce quantum
decoherence in a which-path electron interferometer [76,77]. A QPC has also
been demonstrated as a scanning charge-imaging sensor, enabling the direct
observation of coherent electron flow through the QPC. This is convention-
ally known as scanning gate microscopy (SGM) [78,79]. Taking advantage of
the piezoelectric effect, a QPC has been used to probe vibrational modes of
the host substrate, a macroscopic three-dimensional GaAs crystal [80]. Fi-
nally, Cleland et al. have applied a QPC to measure mechanical motion at
the nano-scale, demonstrating a sensitivity of the order 10−12 m Hz−1/2 [81].
The resonator is a doubly-clamped beam made out of a single-crystal GaAs
heterostructure, with a resonance frequency of 1.5 MHz. The coupling mech-
anism relies again on the piezoelectric effect in GaAs, which translates into
a modulation of the current flowing into a QPC integrated within the res-
onator. This method therefore requires a built-in approach, like the other
charge-flow detectors mentioned before. The fabrication of a QPC integrated
with a piezoelectric resonator can degrade both the electron mobility in the
heterostructure and the quality factor of the resonator. Furthermore, the
stiff doubly clamped geometry and the requirement that the resonator has
to be made from a single-crystal GaAs heterostructure limit its application
as a sensitive force detector.

Another technique to measure the displacement of a nano-resonator with
an off-board detector involves the use of a superconducting quantum inter-
ference device (SQUID). The SQUID is widely known as a sensitive magnetic
field sensor. In this context, a magnetic particle attached to a cantilever in
close proximity to the SQUID modulates the magnetic flux in the device as
a consequence to the cantilever’s vibration. This SQUID-mediated magneto-
mechanical coupling allowed Vinante et al. to demonstrate a displacement
sensitivity of the order 10−13 m Hz−1/2 [82]. In the same experiment, the cou-
pling mechanism was used to cool the resonator’s effective temperature from
a bath below 100 mK, down to 160µK. Limitations of this approach include
the need of a cantilever functionalized with a magnet, thus competing with
the requirements of low spring constant and high quality factor necessary to
achieve quantum limited displacement resolution and ground state cooling.

In the next subsections, we define and develop the key concepts underlying
the operation of a QPC and introduce its application to the detection and
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control of mechanical motion. The latter is the main topic of Chapters 3 and
4.

2.2.1 Conductance Quantization

A QPC is a mesoscopic electronic device formed by a short one-dimensional
channel connected adiabatically to large source and drain reservoirs. The
device is realized in the form of a narrow constriction in a two-dimensional
electron gas (2DEG), whose width can be adjusted by the application of
electrostatic potentials. The QPC represents the first experimental demon-
stration of conductance quantization in one-dimensional electron transport at
zero magnetic field, thanks to the contemporary 1988 works of van Wees and
collaborators [73] and Wharam and collaborators [74]. In fact, the source-
drain conductance in a QPC is a stepwise function of the constriction width,
quantized in units of 2e2/h, as shown in Fig. 2.3. Conductance quantiza-
tion requires ballistic quantum transport, which is realized when the width
W and the length L of the QPC constriction are much smaller than both
the electron coherence length lφ and mean free-path le in the 2DEG, and at
the same time comparable or a few times larger than the Fermi wavelength
λF [83]:

λF ≤ W,L� lφ, le. (2.12)

The condition W,L � lφ, le ensures that the motion of the electrons in
the QPC is completely determined by the electrostatic potential applied to
the constriction, and no scattering occurs with phonons or impurities [84].
Modern lithographic techniques, together with measurements at cryogenic
temperatures and advances in the growth of high-mobility 2DEGs (le >
100µm [85]) have made this regime easily accessible. On the other hand, the
long Fermi wavelength in a 2DEG (λF ≈ 40 nm [85]), compared to the one
in a metal (order of Å), allows the observation of quantum behavior [83,84].

Considering a reference system xyz with energy confinement in the z di-
rection (due to the 2DEG), the quantization of conductance can be explained
assuming the electrons in the QPC being governed by a model Hamiltonian
of the kind:

Ĥ =
p̂2
x

2m∗
+

p̂2
y

2m∗
+ e

[
V0 + V̂ (y)

]
, (2.13)

where p̂x and p̂y are the electron momentum operators along x and y, m∗

is the electron effective mass in the 2DEG, V0 is the electrostatic potential
in the QPC, and V̂ (y) is the operator of the lateral confining potential of
the constriction as a function of the direction y perpendicular to the trans-
port. We do not include in the Hamiltonian the longitudinal potential V̂ (x),
describing the transition from the wide 2DEG reservoirs to the QPC. The
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Figure 2.3 Quantized conductance in a QPC. The conductance in a QPC, as a function of
the electrostatic potential VG controlling the constriction width, exhibits a quantized behavior,
in steps of 2e2/h. The finite temperature T = 4.2 K is responsible for the smoothing of the
steps. A background series resistance Rb = 2.7 kΩ has been subtracted from the raw data,
following the procedure described in the text. The data have been recorded from a twin of the
device described in Chapter 3.

reason is that V̂ (x) can be decoupled from V̂ (y) for a smooth (adiabatic)
transition, on the scale of λF, into the wide 2DEG regions [86, 87]. We con-
sider for the lateral direction a parabolic potential V̂ (y) = 1

2
m∗ζ2

0 ŷ
2, where ζ0

indicates the strength of the lateral confinement [84]. This potential leads to
the quantization of the lateral motion, and the formation of one-dimensional
sub-bands, each corresponding to a different transport channel. In fact, the
Hamiltonian (2.13) assumes the form of a harmonic oscillator, with eigenen-
ergies [84]:

EN(kx) =
~2k2

x

2m∗
+ ~ζ0

(
N − 1

2

)
+ eV0. (2.14)

Here N = 1, 2, 3, ... is the index of the one-dimensional channels and kx
is the wave number for the propagation across the QPC. Such a dispersion
relation is illustrated in Fig. 2.4. In equilibrium and at low temperature,
the electron states are occupied up to the bulk Fermi energy EF. The effect
of an electrostatic potential VG controlling the constriction width is twofold:
it raises V0 and increases the confinement ζ0 and thus the sub-band energy
separation ~ζ0. Both effects result in a reduction of the number of occupied
sub-bands, i.e. those with energy below EF [84].

The application of a weak source-drain potential Vsd (below kBT/e to
prevent electron heating) lifts the number of occupied states in the source
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Figure 2.4 Energy dispersion of one-dimensional sub-bands in a QPC. In equilibrium
and at low temperature, the sub-bands are occupied up to the bulk Fermi energy EF. An applied
source-drain voltage creates a difference eVsd = µs − µd between the chemical potentials of
the reservoirs. This causes a net current, from the states in the shaded area in the figure, to
flow across the QPC.

and drain reservoirs up to their respective chemical potentials µs and µd,
so that µs − µd = eVsd. We assume that the electron states in the source
have positive group velocity vN = (1/~)dEN/dkx, while those in the drain
have negative group velocity −vN . This is equivalent to assuming that no
reflection occurs at both ends of the channel [84]. The source-drain potential
causes a net current I to flow across the QPC, carried by the uncompensated
states in the energy interval µs − µd:

I = e

Nc∑
n=1

∫ µs

µd

1

2
ρN(E)vN(E) dE. (2.15)

In this formula, the sum runs over the Nc occupied sub-bands, ρN is the
density of states of a one-dimensional system, and the factor 1/2 in front of
it accounts for considering states propagating in one direction only. Including
spin degeneracy, the density of states is ρN = 2π (dEN/dkx)

−1. The product
of ρN and vN is thus independent of both energy and sub-band index N ,
and equal to 4/h. This constitutes the key of conductance quantization in
one-dimensional transport. In fact, the conductance G = I/Vsd reads:

G =
2e2

h
Nc. (2.16)

In conclusion, this relation means that each occupied sub-band contributes
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G0 ≡ 2e2/h ≈ (12.9 kΩ)−1 to the conductance of a one-dimensional system.
Finite temperature has the effect of smearing the conductance steps, because
of the Fermi-Dirac distribution of the sub-band occupancy indexN [88]. Note
that, although Eq. (2.16) has been obtained for the special case of a parabolic
lateral confinement V̂ (y), its validity holds for any shape of the potential [88].
The reason lies in the fundamental cancellation of the energy dependence of
the one-dimensional density of states ρN with that of the group velocity vN ,
regardless of the form of the dispersion relation (2.14).

In the beginning of this sub-section, we have assumed ballistic quantum
transport in a QPC device. This would imply that all the electrons injected
into a QPC get transmitted with no resistance. Instead, most of them are
scattered back from the QPC potential barrier, giving rise to the observed
non-zero resistance 1/G0. In a real device, however, this is not the only source
of resistance. The 2DEG is electrically contacted by means of ohmic con-
tacts [89]. These are metallic contacts which are annealed during fabrication
in order to diffuse into the heterostructure forming the 2DEG. This has the
effect of reducing the Schottky barrier arising from the metal/semiconductor
interface, resulting in an ohmic behavior for the contact resistance, even
at low temperatures. Such a resistance adds in series to the QPC internal
resistance and can be measured directly from the device when the QPC con-
striction is completely open (VG = 0), or can be excluded in case of a 4-wire
measurement [90]. Other sources of resistance depending on the geometry of
the QPC are also present, as explained in detail in Ref. [88]. However, these
additional series resistances are difficult to isolate and cannot be excluded by
a 4-wire measurement. Therefore, a general estimation procedure consists in
subtracting from the measured device resistance RQPC(VG) the total back-
ground resistance Rb, treated as an adjustable parameter [88]. Rb is chosen
so that for one constant value, the conductance G(VG) = [RQPC(VG)−Rb]−1

matches the quantized plateaus (2.16), as in Fig. 2.3.

The application of an external magnetic field to a QPC does not turn
off the quantization. The main effect is to reduce the number of plateaus
in a given interval of VG. This happens because the magnetic field increases
the lateral confinement, causing a depopulation of the one-dimensional sub-
bands [88]. In addition, the quantization becomes steeper, because the mag-
netic field spatially separates the electron channels with opposite wave num-
ber at opposite edges of the constriction, thus reducing the probability of
backscattering. Finally, a strong magnetic field lifts the spin degeneracy of
the sub-bands, resulting in additional plateaus at odd multiples of e2/h (as
shown, for example, in Fig. 4.2). Even the formation of Hall states at high
field does not alter the quantization, but the resulting oscillations of the lon-
gitudinal resistance entail a variation of the background resistance Rb, with
respect to the zero-field situation.
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2.2.2 QPC as Displacement Transducer

The quantum origin of the non-linear conductance makes a QPC particularly
suitable for sensing applications. In fact, when the QPC is biased at the tran-
sition between two conductance plateaus, it becomes very sensitive to small
perturbations of the local electrostatic potential. If the potential landscape
around the QPC is modulated by mechanical vibrations of a nearby res-
onator, then the QPC can be used as a displacement detector. The current
flowing through it will carry a spectral signature of the resonator’s vibra-
tional modes. Such a current is proportional to the displacement through
the coupling coefficient α, this time expressed in terms of A/m. α follows
the derivative of the conductance G with respect to VG, therefore exhibiting
an oscillatory behavior as a function of VG, with maxima aligned to the steps
in G [54]. Although the performance of QPC transducers is in practice lim-
ited by device imperfections, its optimization should fulfill the conditions for
reaching quantum limited resolution [91,92].

In Chapters 3 and 4, we describe the electrical characterization of QPC
devices fabricated with two different techniques, and we report on their per-
formance as displacement transducers. Furthermore, the high sensitivity
of the QPC in Chapter 3 has been employed to control the motion of an
off-board cantilever, achieving a cooling of its fundamental mode effective
temperature, several times below the temperature of the bath.



3 Feedback Cooling of
Cantilever Motion Using a
Quantum Point Contact
Transducer

As reported in the previous chapter, the displacement of a nanomechani-
cal resonator can be measured with an imprecision down to the standard
quantum limit of continuous position detection. Such exquisite resolution
enables the observation of quantum effects on the resonator [12–15] and the
fine control of its motion, by both tuning its linear dynamic range [93] and
manipulating its time response [32].

The prospect of quantum control over a mechanical resonator involves
its preparation near its quantum ground state. In this chapter, we inves-
tigate an innovative displacement detection technique, which makes use of
a QPC transducer included in an active feedback loop. Such a loop is de-
signed to cool the fundamental mechanical mode of an off-board micro-sized
cantilever. We show that the minimum achieved effective mode tempera-
ture of 0.2 K and the displacement sensitivity of 10−11 m Hz−1/2 are limited
by the performance of the QPC as a one-dimensional conductor and by the
cantilever-QPC capacitive coupling. The experimental results described in
this chapter have been published as:

[33] Montinaro, M., Mehlin, A., Solanki, H. S., Peddibhotla, P., Mack,
S., Awschalom, D. D., and Poggio, M. Applied Physics Letters 101,
133104 (2012).

3.1 Cooling a Nanomechanical Resonator

The most direct approach for reaching the quantum ground state of motion
consists in cooling a high-frequency resonator (ω0/(2π) > 1 GHz) with a dilu-
tion refrigerator (T ≈ 25 mK) [15]. In this way, the mode thermal occupancy

http://dx.doi.org/10.1063/1.4754606
http://dx.doi.org/10.1063/1.4754606
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Nmode ≈ kBT/~ωn is reduced below unity, which means that the resonator
is mostly found in its ground state. In fact, using this approach, O’Connell
and coworkers have been able to cool a 6-GHz resonator to Nmode < 0.07 and
to controllably create single phonons in the resonator [15]. Alternatively, in
case of a lower-frequency resonator, or higher bath temperature, a cooling
technique has to be applied in order to reduce the resonator’s effective tem-
perature Teff below the one of the bath, or to just control the temperature
Tmode of a single mode. In this context, experimentalists have developed
three different approaches, namely back-action, sideband, and active feedback
cooling.

The back-action cooling technique exploits the force noise due to the in-
fluence of the detector on the resonator (see Section 1.6.2). The latter is
usually included in a resonant optical cavity, where it is subject to radia-
tion pressure, able to damp its motion. In Section 1.6.1, we show that the
resonator’s temperature is proportional to its Brownian motion. Therefore,
reducing that motion is equivalent to cooling the resonator. In a back-action
cooling scheme, the cooling efficiency depends on the strength of the coupling
between the mechanical object and the optical field in the cavity. This is in
turn related to the intensity of the field. Using this method, Arcizet et al.
have been able to cool a doubly-clamped beam from room temperature down
to 10 K [94].

The sideband-cooling scheme also involves an oscillator in a resonant
cavity. The oscillator’s motion modulates the cavity length, thus mixing its
resonance frequency with the optical frequency of the light in the cavity.
The spectrum of the transmitted light results then affected by two sidebands
centered around the cavity resonance and spaced from it by the oscillator’s
mechanical resonance. The process is analogous to the generation of Stokes
and anti-Stokes sidebands in Raman scattering. A drive field red-detuned
below the cavity resonance is able to remove energy from the motion. The
mechanical oscillator is then damped and cooled by way of this radiation-
pressure force. Using this scheme, Teufel et al. have reached Nth = 0.34
and have achieved coherent coupling between the microwave photons in the
cavity and the phonons in the resonator [12].

Active feedback cooling relies on the fine measurement of the resonator’s
displacement, realizing a transduced signal which is fed back to the resonator
via an external loop. By controlling the phase and amplitude of this signal,
the resonator’s motion can be amplified or suppressed. Unlike back-action
and sideband cooling, feedback cooling is particularly well-suited to the ultra-
soft low-frequency cantilevers typically used in sensitive force measurements.
The minimum phonon occupation number achieved by this method depends
only on the transducer’s displacement imprecision and the resonator’s ther-
mal noise [32]. As a result, a widely applicable transduction scheme with low
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displacement imprecision has the potential to prepare resonators in quantum
states of mechanical motion. In addition, feedback cooling allows the regula-
tion of the time response of soft cantilevers [32], and can be used to modify
or suppress the non-linearity of resonator’s motion [95].

3.2 The QPC Transducer

Fine control of resonator’s motion requires sensitive displacement detection.
Here we investigate one such technique: the use of a QPC as a detector of
cantilever motion and its application to reduce the effective temperature of
the cantilever’s fundamental mode. As illustrated in Section 2.2, the QPC
transducer works by virtue of the strong dependence of its conductance on
disturbances of the nearby electric field by an object’s motion. In particular,
a QPC is advantageous due to its versatility as an off-board detector, its
applicability to nanoscale oscillators, and its potential to achieve quantum-
limited detection [91,92]. Most other displacement detection schemes require
the functionalization of mechanical resonators with electrodes, magnets, or
mirrors [18]. These requirements tend to compete with the small resonator
mass and high quality factor necessary to achieve low thermal noise and high
coupling strength to the detector. Since all resonators disturb the nearby
electric field, the QPC transducer, in principle, requires no particular func-
tionalization. The coupling of a mechanical resonator to a QPC device is also
interesting as one of a series of new hybrid systems coupling mechanical res-
onators with microscopic quantum systems, as illustrated also in Chapters
4 and 5. In particular, such a system may be the first step towards cou-
pling a resonator with an off-board quantum dot, in an approach aimed at
the quantum control of mechanical objects, precision sensing, and quantum
information processing [37].

3.2.1 QPC Fabrication

The QPC employed in this experiment has been fabricated within the work of
this thesis. It is made from a GaAs/AlGaAs heterostructure, which has been
designed for obtaining a two-dimensional electron gas (2DEG) very close to
the wafer surface, still maintaining a high electron mobility. The use of a
shallow 2DEG is aimed at achieving a stronger capacitive coupling between
the QPC and the cantilever.

The heterostructure has been grown by molecular-beam epitaxy (MBE)
on a (001) GaAs substrate; the structure consists of a 600-nm GaAs layer
grown on top of the substrate, followed by 20-nm Al0.25Ga0.75As, a Si delta-
doped layer, 40-nm Al0.25Ga0.75As and finally a 5-nm GaAs cap. The 2DEG
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Figure 3.1 QPC displacement detector. (a) Optical micrograph of a sample containing
three QPCs in different orientations with respect to the oscillation direction of the cantilever.
The sample has been processed in order to obtain devices within 100µm of the sample edge.
(b) Optical micrograph showing two QPCs and the markers in binary code used for the align-
ment of the cantilever. (c) Scanning electron micrograph of the active region of a QPC,
showing the split gates separated by a 300-nm gap.

forms at the GaAs/AlGaAs interface, situated only 65 nm below the surface.
It is characterized by a carrier density n = 2.5 × 1011 cm−2 and mobility
µ = 105 cm2V−1s−1 at T = 4.2 K.

The fabrication of the QPC consists of several lithographic steps, which
have been designed in order to obtain a device close to an edge of the sample,
as shown in Fig. 3.1(a). The reason is that the cantilever motion is also inde-
pendently detected via a fiber-optic interferometer, as described later. The
cantilever is aligned above the QPC and the interferometer laser is focused
through a collimating lens on an area close to the cantilever’s tip. Therefore,
a QPC close enough to the edge avoids laser light scattering from the sample
corner, which would degrade the interferometer visibility.

The detailed fabrication protocol of the QPC is schematized in Appen-
dix A. It is articulated in a succession of process stages summarized in the
following.

Mesa. In a first stage, a mesa pattern is defined on the sample via ultra
violet lithography (UVL). Thereafter, the material outside the mesa pattern
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is etched away, thus isolating different devices.

Ohmic Contacts. A second UVL process defines ohmic contacts, which
establish an electrical interface between the 2DEG and the measurement
apparatus. The contacts are made through the thermal deposition of several
metallic layers. The deposition follows a careful removal of organic residuals
from the sample surface, by means of oxygen plasma etching, and of the
GaAs native oxide, by means of HCl wet etching. Then the contacts are
deposited, in the sequence Ni/Ge/Au/Ni, with thickness 2/26/54/15 nm.
The first Ni thin film has been demonstrated to improve the consistency and
uniformity of the contacts [89]. It reacts with the GaAs of the substrate
to form clusters of NiGa and NiAs. These compounds act as a diffusion
barrier, preventing the spiking into the sample of excessive Au from the
upper layer [96]. The deposition of Au and Ge in this specific thickness ratio
allows the formation of an eutectic alloy which melts at lower temperature
with respect to other alloy compositions. As mentioned in Section 2.2.1, in
fact, a successive annealing stage allows the diffusion of the AuGe alloy into
the 2DEG and the formation of the ohmic contacts. The topmost Ni film
acts as a wetting layer, facilitating the penetration of AuGe into the sample.
Its thickness has to be chosen in a specific ratio with respect to the Ge and
Au layers, for lower contact resistance. Optimal results have been obtained
with a ratio of 0.25 or lower [97,98], with a contact resistance below 200 Ω at
4.2 K, realized during the work of this thesis [99]. The total contact thickness
of 97 nm is chosen for being larger than the 2DEG distance from the surface.

Split Gates. In the next stage, electron-beam lithography is used to define
split gates, which are the basis for the formation of the QPC constriction
within the 2DEG. Thermal deposition of Ti/Au (5/15 nm) and lift-off define
a gap between the gates about 300 nm wide. The application of a negative
electrostatic potential VG between the gates and the underlying 2DEG forms
a variable-width channel through which electrons flow. An SEM image of
this active region of the QPC is shown in Fig. 3.1(c).

Leads. A last UVL stage and thermal deposition are used to pattern Ti/Au
(10/130 nm) leads, which electrically connect the split gates to the ohmic
contacts.

Cleaving and Bonding. Finally, the sample is carefully cleaved in order to
obtain devices within 100µm of the sample edge, as in Fig. 3.1(a). There-
after, the sample is glued to a customized chip-carrier (produced by CMR-
Direct), which ensures easy optical access and positioning of the cantilever.
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Figure 3.2 Schematic diagram of the experimental setup. In the red loop, the motion
of the cantilever is transduced by a QPC and amplified by an optimal controller, before being
sent to a piezoelectric element mechanically coupled to the cantilever. The motion is also
independently detected by an out-of-loop fiber-optic interferometer, shown in blue.

Au-bonding of the sample contacts to the chip-carrier completes the process-
ing.

3.3 Experimental Setup

The experimental setup designed for this work is shown schematically in
Fig. 3.2: the QPC transducer generates an electrical signal proportional to
the cantilever displacement; such a signal is then amplified by a digital opti-
mal controller [100,101] and sent to a piezoelectric element mechanically cou-
pled to the cantilever. We choose the phase of the optimal control feedback
such that the cantilever oscillation is damped. We demonstrate the possibil-
ity of damping the thermal noise spectrum of the resonator below the QPC
measurement noise floor, which is close to the shot noise level. Such an effect
has already been demonstrated for an opto-electronic loop [32,102–104] and
is known as intensity noise squashing. In such a regime, the effect on the
motion of the resonator can be further validated using a second transducer
outside the feedback loop. In this work, such an out-of-loop measurement
has been carried out by means of a low-power laser interferometer, of the
kind described in Section 2.1.

The complete experimental setup is shown in Fig. 3.3. While the QPC
is described in detail in Section 3.2.1, in the following subsections the other
components of the setup are presented. A scheme of the control and acqui-
sition electronics is provided in Appendix B.
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Figure 3.3 Experimental setup. The picture shows part of the interferometer cavity formed
between the cleaved facet of an optical fiber and the cantilever. The latter is aligned above a
QPC device, fabricated in proximity to the sample edge.

3.3.1 Cantilever

We use a micro-sized cantilever as a mechanical resonator coupled to the
QPC detector. It is produced by NanoWorld AG (model Arrow TL1) from
monolithic silicon, which is highly doped to make it conductive. The detailed
geometry of the cantilever is described in Section 1.5.1, which provides a finite
element model of its lowest four mode shape functions. For this experiment,
the cantilever tip has been metallized with Ti/Au (10/30 nm), in order to
reduce the non-contact friction produced by the interaction with the QPC
sample surface [105]. Due to the cantilever conductivity, a voltage VL can be
applied to its tip by contacting the base of the cantilever chip.

At T = 4.2 K, the cantilever has a fundamental resonance frequency
ω0/(2π) = 7.9 kHz. The corresponding quality factor Q0 has been measured
through a ring-down technique, which consists in mechanically exciting the
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cantilever with a coupled piezoelectric transducer, and measuring the natu-
ral decay of its oscillation amplitude. Such a decay follows an exponential
behavior, whose argument is inversely proportional to the quality factor. By
fitting the data, we find Q0 = 2.0×105. In order to determine the cantilever’s
spring constant k0, its thermal noise spectrum is measured at several differ-
ent bath temperatures. Assuming the resonator’s effective temperature to
be in equilibrium with the bath, k0 is calculated by inverting Eq. 1.54. The
result is k0 = 2× 10−3 N/m.

3.3.2 Cryostat and Magnetic Field

The cantilever and QPC are mounted in a vacuum chamber with pressure
below 10−6 mbar at the bottom of a 4He cryostat (T = 4.2 K). To en-
sure isolation from environmental vibrations, the cryostat is attached to a
compressed-air suspended table and the sample stage is suspended on springs
(as shown in Fig. 3.3). A three-dimensional positioning stage with nanometer
precision and stability (Attocube) moves the QPC relative to the cantilever.

A 2-T magnetic field, perpendicular to the QPC surface, is applied from a
superconducting magnet, in order to suppress the backscattering of electrons
in the conductance channel. As explained in Section 2.2.1, this precaution
provides a steeper conductance quantization, thus improving the sensitivity
of the QPC to the cantilever’s vibrations.

3.3.3 Interferometer

As mentioned before, the cantilever displacement is detected also outside the
QPC feedback loop, by means of a low-power fiber-optic interferometer. The
interferometer setup is of the kind described in Section 2.1 and schematized in
Fig. 2.1. It essentially consists of a temperature-tuned 1,550-nm distributed
feedback laser diode, emitting 20 nW of light, which is focused onto a region
at ≈ 90µm from the cantilever tip and then reflected back onto the cleaved
end of an optical fiber. For matching the cantilever’s reflectivity, the fiber
end is coated with 25 nm of Si, through the procedure described in Section
2.1.

3.3.4 Optimal Controller

A digital optimal controller amplifies and delays the transduced signal in
the feedback loop. Optimal cantilever control has been modeled and devel-
oped by the group of J. A. Sidles for improving the time response of force
microscopy cantilevers, for application in particular to MRFM [100,101].
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300 nm 

Figure 3.4 Scanning probe micrograph of the QPC. The image shows the QPC split
gates and is obtained by using the cantilever as a non-contact AFM probe, situated z = 80 nm
above the sample surface. Data were processed with WSXM software [106].

In this work, optimal control is used for damping the cantilever motion
without affecting its intrinsic properties. The controller is implemented on a
field programmable gate array (FPGA), which generates a transfer function
based on the measured cantilever characteristics (ω0, Q0, k0, thermal force
noise, measurement noise). It offers optimal performance especially at large
damping, when the cantilever displacement spectrum gets pushed down to
the level of the measurement noise [62].

3.4 Operation

In order to find the optimal operating position, the QPC sample is moved
close to the cantilever tip, by controlling the positioning stage. We are able
to gently move the sample against the cantilever until touching: thanks to
its softness, in fact, the cantilever does not suffer of any damage. Thereafter,
retracting the sample, we are able to measure directly its distance from the
cantilever tip. The proximity to the sample enables the cantilever to probe
the electrostatic force arising from its interaction with the surface, in a simi-
lar way to non-contact atomic force microscopy (AFM). This force produces
a variation of the cantilever resonance frequency. By recording this frequency
shift as a function of position, while scanning the cantilever relative to the
sample, we detect the sample topography, as shown in Fig. 3.4. The can-
tilever is then positioned with its tip about 80 nm above the QPC, as shown
schematically in Fig. 3.5. This distance is chosen in order to minimize the
electrostatic interaction, which gives rise to non-contact friction [105].
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Figure 3.5 Schematic picture of the experimental setup. The inset is a zoom-in of the
QPC active region, showing the close proximity to the cantilever’s tip. A source-drain voltage,
applied to ohmic contacts on either side of the split gates, drives a current I through the QPC.

3.4.1 Measurement of Cantilever Thermal Motion

Owing to the proximity of the cantilever to the QPC, the cantilever’s tip
and the QPC are capacitively coupled. The tip acts as a movable third gate
above the device surface, able to affect the potential landscape of the QPC
channel and thereby to alter its conductance G. A voltage VG applied to the
split gates patterned on the surface modifies G in the same manner.

Figure 3.6 shows the effect on the QPC conductance by the gate voltage
VG or by a potential VL applied to the cantilever. In both cases, the cantilever
is located in the same position above the QPC and a DC source-drain voltage
Vsd = 5.0 mV is applied to ohmic contacts on either side of the QPC gates.
As either VG or VL are made more negative, both act to deplete the electron
gas in the QPC, decreasing G in steps of 2e2/h, until the conduction channel
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Figure 3.6 Conductance quantization as a function of gate and cantilever voltage.
At zero magnetic field, the cantilever is positioned above the QPC, while (a) VG sweeps down
until conduction pinch-off, at VL = 0, and (b) VL sweeps, while VG = −1.03 V. The small
conductance oscillation at ≈ 0.3G0 is probably due to a charged defect in proximity to the
QPC, as shown also in Fig. 3.7.

pinches off. Comparing Figs. 3.6(a) and (b), we find that G is about 9
times more sensitive to the variation of VG with respect to VL. This factor
corresponds to the ratio between the two capacitances to the QPC, which,
due to the high dielectric constant of GaAs, strongly depends on the relative
separation between the QPC and the cantilever tip.

The QPC sensitivity to cantilever motion also depends on the relative
orientation between the direction along which the cantilever oscillates and
the one followed by the current flow. For studying this behavior, different
QPCs have been defined on the same chip (Fig. 3.1), with the split gates
patterned such that a current flows either along the cantilever’s oscillation
direction (x axis in Fig. 3.5), or perpendicular to it. For geometrical reasons,
G is most sensitive to cantilever motion when the cantilever is positioned just
in front or just behind the QPC along x. Since the split gates partially shield
the cantilever’s effect on the QPC, the most favorable configuration is with
these gates oriented such that the current flows along x. In order to map the
effect on the conductance of the cantilever’s position above the QPC device,
G has been recorded while scanning the cantilever at fixed distance z, with a
potential VL applied. In such a conductance map, the position corresponding
to the highest sensitivity is where the absolute value of the spatial derivative
along the oscillation direction is maximum, as shown in Fig. 3.7.

With the tip of the cantilever so positioned, the QPC acts as a transducer
of cantilever motion. Applying a gate voltage VG = −0.837 V and a cantilever
voltage VL = −1.280 V, the QPC conductance is tuned to one half the value
of the first conductance quantum. The QPC transduces the cantilever’s ther-
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Figure 3.7 Conductance map. (a) G and (b) its spatial derivative ∂G/∂x plotted as
a function of the cantilever’s position over the QPC, at a fixed distance z = 80 nm. The
red shaded areas outline the position of the QPC gates. A 2-T magnetic field is applied
perpendicular to the sample, VG = −0.837 V, VL = −1.280 V. The spot in the lower left
corner of both figures might be due to a charged defect close to the QPC constriction. Data
were processed with WSXM software [106].

mal motion into a current signal, as shown in Fig. 3.8(a). Under the same
conditions, we also measure the cantilever displacement with the interfer-
ometer, which is used as an out-of-loop independent detector; the result is
shown in Fig. 3.8(b). The resonances represent the cantilever’s fundamental
mode and match in both frequency and quality factor. In order to express
the QPC current response (left axis in Fig. 3.8) in terms of cantilever motion
(right axis), we normalize the peak QPC current spectral density to the peak
of the displacement response measured by the interferometer, obtaining a
conductance response up to 0.002 (2e2/h) nm−1 of cantilever motion. Note
that, since the interferometer laser cannot be focused directly onto the can-
tilever tip, the displacement amplitude has to be retrieved from the relation
(1.36), knowing the distance of the focus point from the tip (≈ 90µm) and
the cantilever’s mode shape function (see Section 1.5.1).

We verify that the QPC response at the cantilever resonance frequency is
not an effect of electrical feedthrough, due, for example, to stray capacitive
coupling between measurement lines. To do so, we drive the QPC with an
AC source-drain voltage Vsd = 2.0 mVrms at 113 Hz. In this situation, the
QPC current spectrum, shown in Fig. 3.9, reveals a response centered on
the cantilever’s fundamental resonance and split between two peaks spaced
by twice the source-drain drive frequency. The QPC is therefore mixing
the cantilever thermal noise with its electrical AC excitation, confirming the
mechanical origin of its response [54]. Further evidence comes from exciting
cantilever oscillations using the mechanically coupled piezoelectric element:
the height of the two side peaks increases with excitation amplitude.
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Figure 3.8 Cantilever’s fundamental mode spectrum. The spectrum is detected at a
base temperature T = 4.2 K by (a, c) a QPC transducer, (b, d) a fiber-optic interferometer.
The QPC response is expressed in terms of both A2 Hz−1 (left axis) and m2 Hz−1 (right axis).
(a) and (b) represent the cantilever thermal noise, (c) and (d) are the results of feedback
damping. In the measurements shown here, the QPC gives a conductance response of 2 ×
10−4 (2e2/h) nm−1 of cantilever motion.

3.4.2 Cantilever Feedback Cooling

Chapter 1 is devoted to describing the mechanics of a micro- or nano-sized
resonator. It explains that, for frequencies in the vicinity of the fundamental
mode, and for high quality factor, the motion of a cantilever is well approx-
imated by the equation of a damped harmonic oscillator, driven by thermal
force. Here we are studying the case of a closed-loop system, aimed at re-
ducing the cantilever’s fundamental mode temperature. Therefore also a
driving feedback force has to be considered in the equation of motion. We
approximate the optimal control operated in the feedback loop as a force
proportional to the cantilever displacement with a π/2 phase lag. In the ex-
periment, the phase of the feedback signal is affected by the delay introduced
by stray capacitances in the loop and it has been tuned in order to achieve
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Figure 3.9 Cantilever thermal noise mixed with AC QPC excitation. The fundamental
mode spectrum is detected at a base temperature T = 4.2 K by a QPC transducer (red plot)
and a fiber-optic interferometer (blue plot). The QPC response is expressed in terms of both
A2 Hz−1 (left axis) and m2 Hz−1 (right axis). The QPC is driven by a 2.0 mVrms sinusoidal
signal at 113 Hz.

the desired value π/2 for optimal damping [18]. The equation of motion of
the cantilever can thus be written as:

mẍ+ Γ0ẋ+ k0x = Fth − gΓ0ω0 δ(t− π/(2ω0))⊗ (x+ xn), (3.1)

where g is the feedback gain coefficient, xn(t) is the measurement noise on the
displacement signal, δ is the Dirac distribution, and the symbol ⊗ denotes
convolution.

Considering in (3.1) frequency components of the form F̂th(ω) eiωt and
x̂n(ω) eiωt, it is possible to determine the resonator’s displacement spectral
density as measured in-loop (Sil

x) and out-of-loop (Sol
x ). To do so, we follow

the procedure described in Refs. [18,32] and detailed in Section 1.6.1. Apply-
ing the fluctuation-dissipation theorem (1.50), we express the white spectral
density of the thermal force Fth in terms of the cantilever’s mechanical pa-
rameters ω0, k, and Q0, and of the bath temperature T . The out-of-loop
response is simply the sum of the cantilever’s actual displacement Sx(ω) and
the white spectral density of the interferometer’s measurement noise Sξn . On
the other hand, in the case of the in-loop response, feedback produces anti-
correlations between the transduction noise and the mechanical motion of
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the cantilever. The resulting equations are the following:

Sil
x(ω) =

4ω3
0kBT

Q0k0
+

[
(ω2

0 − ω2)
2

+
(
ω0ω
Q0

)2
]
Sxn

(ω2
0 − ω2)

2
+
[
ω0

Q0
(ω + gω0)

]2 , (3.2)

Sol
x (ω) = Sx(ω) + Sξn =

4ω3
0kBT

Q0k0
+
(
gω2

0

Q0

)2

Sxn

(ω2
0 − ω2)

2
+
[
ω0

Q0
(ω + gω0)

]2 + Sξn . (3.3)

We fit the undamped out-of-loop and in-loop spectra in Figs. 3.8(a), (b)
with feedback gain g = 0. We first fit the out-of-loop spectrum through
the Eq. (3.3) with three free parameters: ω0, Q0 and Sξn . Setting these
parameters as constants, we then fit the in-loop spectrum with Sxn as the
only free parameter. Both spectra are well described by the fit functions.
The value of Q0 extracted from this procedure is equal to 8.0 × 104 and is
lower than that measured with the cantilever far from the QPC surface, due
to unavoidable non-contact friction. Sxn and Sξn express the level of the
noise floors for the in-loop and the out-of-loop measurements, respectively.
They set the sensitivity of the QPC and the interferometer as displacement
transducers, which is roughly the same for both: below 10−11 m Hz−1/2.

The effective temperature of the fundamental mode Tmode does not depend
on the measurement imprecision. It is proportional to the area under the
curve Sx(ω), as defined in Eq. 1.54, considering only frequencies close to ω0.
For the data in Figs. 3.8(a) and (b), using the expression of Sx(ω) obtained
from the fit, it results Tmode = 5 K, which is close to the bath temperature
T of liquid helium.

We now describe the feedback cooling of the cantilever’s fundamental
mode using the QPC transducer. Optimal control of the resonator motion in
the feedback loop allows the damping of its fundamental mode oscillations
and therefore the reduction of Tmode. Such an effect can be described with the
application of a non-zero gain g to the equation of motion (3.1). Increasing
the value of g has the effect of lowering the displacement spectrum, as shown
in Fig. 3.10. For high g, the feedback loop produces anticorrelations between
the in-loop transduction noise and the oscillator’s motion [32,103,104]. As a
consequence, the displacement spectral density detected inside the feedback
loop can even exhibit a dip below the noise floor near the oscillator’s resonant
frequency, as shown by the green plots in Fig. 3.10 and by Fig. 3.8(c). This
spectrum represents the first evidence of noise squashing for a transduction
scheme limited by electron, rather than photon, shot-noise. The solid line
plotted along with this in-loop spectrum in Fig. 3.8(c) is a fit computed using
Eq. (3.2), with the value of Q0 extracted previously and with g as the free
parameter.
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Figure 3.10 Feedback cooling of cantilever thermal noise. The motion of the funda-
mental mode at a base temperature T = 4.2 K is damped by the application of a feedback
force. Increasing the feedback gain g, the displacement spectrum detected in-loop is pushed
down to the measurement noise level (red to yellow plots) and even below (green plots). The
latter is the manifestation of noise squashing.

In order to provide a validation of the observed phenomenon and an
independent measurement of Tmode, the cantilever motion is also detected
through the out-of-loop interferometer. This spectrum, shown in Fig. 3.8(d),
exhibits a peak above the uncorrelated measurement noise Sξn . In order to
compare our model with the measured data, we plot the curve defined by
Eq. (3.3) as a solid line in Fig. 3.8(d), using Q0, Sxn , and Sξn extracted from
the previous fits and g extracted from the fit to the damped in-loop QPC
spectrum of Fig. 3.8(c). The plot of the out-of-loop spectrum highlights the
agreement between our theoretical model and the experimental data.

To calculate the mode temperature, a general relation can be derived
from Eq. (1.54), using the expression of Sx(ω) given in Eq. (3.3). We find
for Tmode the same result obtained in Ref. [32], valid for high quality factor:

Tmode =
T

1 + g
+

k0ω0

4kBQ0

(
g2

1 + g

)
Sxn . (3.4)

The values of Tmode resulting either from direct integration of the spectrum
as in Eq. (1.54), or by extracting the parameters from the fit and then sub-
stituting them into Eg. (3.4), are equal within our precision: 0.2 K, twenty
times less than the bath temperature. While such a cooling factor is smaller
than what is obtained in other experiments (see Ref. [18], Table 6), this
result represents an initial demonstration of feedback cooling employing a
mesoscopic electronic transducer.
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Equation (3.4) implies that, in the limit g � 1, the minimum achievable
temperature is:

Tmin
mode =

√
mω3

0T

kBQ0

Sxn . (3.5)

In our case, the minimum temperature results 0.21± 0.05 K, which is equal
within the error to the observed value of Tmode in the noise squashing regime.

3.5 Conclusion and Outlook

The minimum achievable temperature in Eq. (3.5) expresses the efficiency of
a cooling scheme based on active feedback. In fact, minimizing Tmode implies
approaching a state with low phonon occupation number

Nmin
mode =

kBT
min
mode

~ω0

=
1

2~
√
SFth

Sxn . (3.6)

In order to access this regime, future experiments should minimize both the
force noise and the measurement imprecision. The former involves employing
cantilevers with low mass, low resonance frequency, and high quality factor.
The base temperature should also be lowered, by means of a 3He or a dilu-
tion refrigerator. In this case, care should be taken to isolate the cantilever
from external vibrations, coming particularly from the cooling system, which
could hinder the achievement of the lowest Tmode. Furthermore, Tmode can
be influenced by measurement back-action effects, emerging on the resonator
by accessing a regime of strong coupling with the transducer. As described
in Section 1.6.2, back-action force has a rising contribution on Sx when ap-
proaching the quantum ground state of motion. In particular, when the force
noise SFth

is dominated by the detector back-action and the detector itself is
quantum limited, it results

√
SFth

Sxn ≈ ~ and the lowest phonon occupancy
is reached [7, 82].

A crucial improvement towards reaching the lowest Tmode is represented
by a reduction of Sxn , which involves both a decrease in the QPC current noise
and an increase in the sensitivity of the QPC to the cantilever’s displacement.
In the experiment presented here, the QPC current noise floor is within a
factor 10 above its shot-noise limit; an improvement of the measurement
setup should allow us approaching this limit. On the other hand, a better
sensitivity could be achieved in two ways:

1. improving the performance of the QPC as a one-dimensional conductor;

2. increasing the cantilever-QPC capacitive coupling.
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The former implies optimizing the geometry of the split gates and reducing
the bath temperature so as to have sharper QPC conductance quantization.
As a result, the device should be more sensitive to local electrostatic fields.
The latter requires us to optimize the shape of the cantilever tip for a higher
influence on the QPC potential landscape and to bring the conductance chan-
nel closer to the tip. This task could be accomplished by using a QPC defined
on a shallower 2DEG, as investigated in Chapter 4, and, more importantly
– due to the high dielectric constant of GaAs – by reducing the gap between
the cantilever tip and the QPC sample surface. Both solutions come at a
cost: shallower 2DEGs are closer to the fluctuating charged defects on the
wafer surface, raising the measurement imprecision; bringing the cantilever
closer to the surface and to the split gates increases the non-contact friction.
Reducing the density of charged defects on the surface remains a crucial
challenge for future devices.



4 Transduction of
Nanomechanical Motion
using Mesoscopic Transport

The previous chapter shows the performance of a split-gate QPC as a dis-
placement transducer and as a means for feedback cooling the fundamental
mode temperature of a nearby micro-sized cantilever. The minimum effec-
tive temperature and the sensitivity achieved by the QPC detector depend on
its performance as a one-dimensional conductor and on the cantilever-QPC
capacitive coupling.

In this chapter we report on some ongoing experiments, started within
the work of this thesis, aimed at obtaining a stronger coupling between me-
chanical modes and quantized electronic states. The first section deals with
the coupling of an ultra-soft cantilever to a QPC defined on a shallow 2DEG
by local oxidation lithography. The close proximity of the 2DEG to the sam-
ple surface (only 35 nm) and the ability to tune the QPC width avoiding
charged surface gates should in principle improve the cantilever-QPC capac-
itive coupling, by reducing their relative separation.

In the second section, we present an innovative electromechanical system
made of a suspended-nanowire single-electron transistor (SET). Similar de-
vices have been demonstrated to couple NW motion in a doubly-clamped
geometry to single-electron tunneling events through the device [107]. The
contribution of this thesis consists in the design and development of a fab-
rication protocol for defining a single or multiple quantum dots within a
suspended NW via local electrostatic gates. This approach should allow a
better control of the tunneling through the dots in the few-electron regime,
through the application of relatively low electrostatic potentials. Besides
studying the electromechanical interaction in the NW, such a device can be
also coupled to the motion of an off-board cantilever, reasonably offering a
better transduction efficiency with respect to a QPC.
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4.1 QPC Sensor Defined by Local Oxidation

Local oxidation of semiconductor heterostructures has revealed a powerful
patterning technique, able to define several high-quality mesoscopic devices,
such as QPCs, QDs, and antidot superlattices [108]. The general procedure
consists in using an atomic force microscope (AFM) to locally oxidize the
heterostructure surface, through the application of an electrostatic potential
between the conductive AFM tip and the substrate. The AFM and the
sample reside in a sealed chamber with nitrogen atmosphere of controlled
humidity (typically 40− 50%) and the tip is negatively biased (between −15
and −20 V) while scanning across the sample in tapping mode. As a result,
the sample surface oxidizes in correspondence to the AFM tip, yielding oxide
lines typically 100 nm wide and 8-20 nm high, depending on the applied
voltage and the damping set-point of the AFM during the process [108]. For
high-quality 2DEGs located close enough to the sample surface, the electrons
get depleted below the oxidized regions. This way the plane of a 2DEG can
be separated into various conductive areas which are laterally insulated from
each other.

Developing this technique, our collaborators S. Hellmüller and K. Ensslin
from ETH Zurich have designed and fabricated a QPC on a GaAs/AlGaAs
heterostructure forming a 2DEG at only 35 nm from the surface. After pre-
patterning the sample with a mesa and ohmic contacts via optical lithogra-
phy (see Section 3.2.1), they have defined via local oxidation a narrow con-
striction in the 2DEG, about 100 nm wide. The oxide lines cut the 2DEG
into four regions, out of which two are used as source and drain contacts and
the other two as lateral in-plane gates for controlling the width of the QPC
channel. The QPC is defined at less than 20µm from the sample edge for the
subsequent alignment to the fiber-optic interferometer part of the displace-
ment measurement setup (see Sections 2.1 and 3.3.3). After the lithography,
the same AFM setup is used to verify the process by scanning the sample at
zero bias, obtaining a micrograph like the one shown in Fig. 4.1.

After mounting the sample on a custom chip carrier (CMR-Direct) and
Au-bonding its contacts, we proceed to the QPC electrical characterization
at T = 4.2 K. An AC voltage Vsd = 100µVrms at 177 Hz is drawn across the
source and drain contacts and the conductance G is measured while sweeping
symmetrically a voltage VG applied to the side gates. In case of a split-gate
QPC, as the one described in Chapter 3, a negative potential has to be applied
to the top gates for depleting the electron gas beneath. In a QPC defined via
local oxidation, instead, at zero bias the conduction channel results pinched
off, because of the intrinsic potential of the surface states in the oxide lines.
Therefore a positive gate voltage is required to allow electron transport,
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Figure 4.1 Atomic force micrograph of a QPC defined by local oxidation. The struc-
ture’s active area is patterned within 20µm of the sample edge. The blue and red shaded areas
in the figure outline the two portions of the 2DEG used as side gates for controlling the QPC.
The inset is a zoom-in of the QPC constriction, obtained using the cantilever of the measure-
ment setup as a non-contact AFM probe. Data were processed with WSXM software [106].

as shown in Fig. 4.2. The graph visualizes the first conductance plateau,
after subtraction from the raw data of a contact resistance Rb = 8 kΩ. We
do not open the channel even further to avoid current leakage through the
oxide barriers. The shoulder visible in the conductance graph at 0.7G0 likely
corresponds to an effect known in the literature as 0.7 anomaly, whose origin
is still subject to debate [109]. This assumption is confirmed by measuring
G in the presence of a strong magnetic field, since it has been observed that
the 0.7 anomaly is sensitive to magnetism. In fact, increasing the field from
0 to 6 T (blue to red curves in Fig. 4.2), the 0.7 shoulder transforms into the
first half-integer plateau, which is due to the removal of spin degeneracy in
the QPC one-dimensional sub-bands (see Section 2.2.1).

4.1.1 Operation

The QPC is used to measure the low-temperature thermal motion of an off-
board single-crystal silicon cantilever, of the kind described in Section 1.5.2,
which provides a finite element model of its mode shape functions. The can-
tilever tip has been metallized with Ti/Au (10/30 nm), in order to reduce the
non-contact friction due to the interaction with the QPC sample surface [105].
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Figure 4.2 Conductance quantization in a magnetic field. At T = 4.2 K, an AC voltage
Vsd = 100µVrms at 177 Hz is applied between source and drain. At zero magnetic field, the
QPC conductance exhibits a shoulder at 0.7G0 (blue curve). This effect gradually vanishes
with the application of a strong magnetic field B, transforming into the first half-integer
conductance plateau. The field is applied perpendicular to the sample.

The cantilever material is highly doped to make it conductive, therefore a
voltage VL can be applied by contacting the base of the chip. At T = 4.2 K,
the cantilever has a fundamental resonance frequency ω0/(2π) = 1.9 kHz.
The corresponding quality factor, measured in vacuum (p < 10−6 mbar)
through a ring-down technique (see Section 3.3.1), is Q0 = 104. By measur-
ing the cantilever thermal noise spectrum at several different bath temper-
atures, we find an ultra-low spring constant k0 = 100µN/m, which makes
such a resonator ideal for force sensing applications.

The experimental setup is the same described in Chapter 3. It ensures
cryogenic operation at T = 4.2 K, good vibration isolation, and measurement
with a low-power laser interferometer. The latter is used to independently
calibrate the QPC displacement measurements in terms of cantilever motion.

After positioning the cantilever above the QPC, we optimize the align-
ment by imaging the sample using the cantilever as a non-contact AFM
probe. In doing this, we follow the procedure described in Section 3.4,
obtaining a micrograph of the QPC’s active area shown in the inset of
Fig. 4.1. Thereafter, we open the conduction channel by applying a volt-
age VG = 0.63 V to the side gates. We negatively polarize the cantilever
with VL = −1 V and use it as a scanning gate, mapping its effect on the
QPC conductance as a function of the scanning position, at fixed height
z ≈ 150 nm. The resulting image is reported in Fig. 4.3. It shows the de-
pletion of the electron gas induced by the cantilever when it is positioned
just above the QPC. The ring of higher conductance surrounding the de-
pletion area is probably due to local defects which are charged up by the
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Figure 4.3 Conductance map. (a) G is plotted as a function of the cantilever’s position
over the QPC, at a fixed distance z ≈ 150 nm. The blue and red shaded areas outline the
portions of 2DEG used as lateral gates. VG = 0.63 V, VL = −1 V. (b) Three-dimensional plot
of the same graph as in (a). Data were processed with WSXM software [106].

cantilever. Its shape resembles the geometry of the oxide lines defining the
QPC, suggesting that the charged defects are likely due to the oxide itself.
Because of the presence of this charge on the sample surface, the cantilever is
subject to a high non-contact friction, which restrains the attempts to mini-
mize the cantilever-QPC separation. This fact sets a strong limitation to the
capacitive coupling that we are able to established between the two objects.

Positioning the cantilever tip just beyond the higher conductance ring in
Fig. 4.3, we characterize the QPC as a transducer of the cantilever thermal
motion. We apply a DC source-drain voltage Vsd = 6 mV and measure the
spectral density of the QPC current. The result is plotted in Fig. 4.4, along
with the displacement spectrum measured with the fiber-optic interferome-
ter. The two spectra are a signature of the cantilever’s fundamental mode
and match in both frequency and quality factor. Since the interferometer
laser cannot be focused directly onto the cantilever tip, we retrieve the dis-
placement amplitude at the tip position by following the procedure described
in Chapter 3, knowing the distance of the focus point from the tip (≈ 24µm)
and the cantilever’s mode shape function (computed in Section 1.5.2).

The level of the noise floors for the QPC and interferometer measurements
sets their sensitivity as displacement transducers. In case of the QPC, this
is approximately 10−11 m Hz−1/2, of the same order of the sensitivity reached
by the split-gate QPC treated in Chapter 3.

4.1.2 Conclusion

We demonstrate that the performance of the QPC defined by local oxidation
lithography as a sensor of cantilever motion is comparable to what we report
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Figure 4.4 Cantilever’s thermal noise spectrum. The spectrum is detected at a base
temperature T = 4.2 K by a QPC transducer (red dots) and by a fiber-optic interferometer
(blue dots). The QPC response is expressed in terms of both A2 Hz−1 (left axis) and m2 Hz−1

(right axis).

for a QPC defined with top gates. Nevertheless, a strong limitation for the
former device is the high non-contact friction between the cantilever and
the sample surface. This unwanted electrostatic interaction arises from a
high concentration of charged defects in correspondence to the QPC oxide
lines. By limiting the minimum cantilever-QPC separation, this interaction
restrains the capacitive coupling between the two objects.

Future experiments could attempt to reduce the friction by removing the
semiconductor oxide via HCl or developer wet etching. In fact, it has been
demonstrated that when the oxide is removed by dip etch, trenches remain in
the locations previously occupied by the oxide, still preserving the structure’s
performance [108].

Following the same research direction, we have also studied a displace-
ment detector made of a QPC defined via a shallow-etch technique [110,111].
Such a fabrication scheme consists in defining a one-dimensional conduction
channel in a 2DEG by etching the heterostructure with large grooves deep
enough to confine the electron gas in one dimension. Also in this experiment,
we have experienced a high cantilever non-contact friction, due to the surface
states enhanced by the etching process. Reducing the friction, perhaps by
surface treatment of the QPC sample [105], still constitutes an interesting
perspective for further experiments.
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Figure 4.5 NW positioned above finger gates. Optical micrograph of a sample patterned
with Ti/Au markers and narrow electrodes in the shape of fingers. After coating the sample
with a first layer of electron-beam resist, InAs NWs are positioned individually above the finger
contacts by means of a micro-manipulator. The NWs are then sandwiched in a second resist
layer and the sample is cleaved for obtaining devices close to the sample edge, within 60µm
for the sample shown here.

4.2 Suspended-NW SET

We fabricate SETs made of single semiconducting NWs suspended above
local electrostatic gates, in a doubly clamped geometry. The NWs are made
of InAs and are grown via metal-organic vapor phase epitaxy. They are
oriented in the 〈111〉 direction and are 100-150 nm in diameter with a typical
length of several micrometers. The devices are realized on a degenerately
doped Si substrate coated with a 300-nm layer of SiO2. Such a conductive
substrate can be used as a global back gate controlling the carrier density in
the SET. The fabrication process is articulated in several stages summarized
in the following. The detailed protocol is schematized in Appendix C.

Finger Gates and Markers. In a first stage, the substrate is patterned
via electron-beam lithography with markers and narrow electrodes in the
shape of fingers, as shown in Fig. 4.5. These finger leads are later used for
locally gating the SET and eventually defining single or multiple QDs by
tuning the carrier density in the NW and forming tunnel barriers. By e-
beam evaporation and lift-off, finger gates and markers are metallized with
Ti/Au, 5/15 nm thick.
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Figure 4.6 Suspended-NW SET. Scanning electron micrograph of a device, with a NW
suspended ≈ 80 nm above the finger gates. Source and drain contacts defined by sputtering
deposition serve also as mechanical supports for the NW, in a doubly clamped geometry. The
SEM stage has been tilted to highlight the narrow gap between the NW and the finger gates.

NW Transfer. Several NWs are transferred from their growth substrate
and positioned one-by-one above the finger gates with a micro-manipulator,
as in Fig. 4.5. In order to obtain suspended devices, the NWs are sandwiched
between two layers of electron-beam resist. The first layer is spin-coated on
the substrate prior to the NW transfer: its thickness determines the distance
of the NWs from the substrate. The process has been optimized for ob-
taining 2µm-long devices suspended without collapsing at 100 nm from the
substrate. The tip of the micro-manipulator used for positioning the NWs is
a custom tapered glass rod, whose high flexibility ensures careful alignment
above the finger gates minimizing the risk of breaking the NWs.

Electrodes. The NWs are embedded into a second layer of resist, which
serves for defining via EBL source and drain electrodes and contacts to the
finger gates. After the resist deposition, the sample is carefully cleaved in
order to obtain devices within 150µm of the sample edge. Thereafter, we
record the positions of the NWs with respect to the marker pattern and
design a suitable EBL mask. Following resist exposure and development, the
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sample undergoes a quick succession of etching and passivation stages aimed
at improving the quality of the source and drain ohmic contacts. A first stage
of oxygen-plasma etching removes the organic residuals from the contact
areas. Then the NW surface within the contact areas is subject to sulfur
passivation through a solution of ammonium polysulphide, (NH4)2Sx [112].
Finally, the sample is loaded into a sputtering unit where it is subject to
argon-plasma etching for removing the InAs native oxide. Without breaking
the vacuum, we deposit Ti/Au contacts thick enough to fill the gap between
the suspended NWs and the substrate and to completely cover the NW ends.
While thermal deposition of metallic films in ultra-high vacuum is highly
directional, sputtering deposition at higher pressure allows the contacts to
wrap around the NW ends. Such metalizations serve therefore not only as
source and drain ohmic contacts, but also as stiff mechanical supports for the
NW. After lift-off, the process is completed by a phase of critical-point drying
(CPD), which enables drying narrow-gap devices avoiding their collapse to
the substrate because of surface tension. An SEM picture of a final device,
with a NW suspended ≈ 80 nm above the finger gates, is shown in Fig. 4.6.

Bonding. The sample is glued to a customized chip-carrier (CMR-Direct)
with silver paint, which enables electrical contact to the doped Si back gate.
Au-bonding of the electrodes to the chip-carrier completes the fabrication.

4.2.1 Single-Electron Transport

At low temperature (T = 4.2 K), our NW transistor enters the Coulomb
blockade regime. By depleting the charge carriers in the NW through the
finger gates, we are able to confine quantized electron charge within the NW,
thus forming a quantum dot. In such a regime, the quantum mechanical
level spectrum of the QD can be studied by transport measurements. Charge
confinement implies that the tunnel barriers isolating the QD are sufficiently
high, or, in other words, that the tunnel resistance RT is higher than the
quantum of resistance: RT � h/e2 [113]. We can define a charging energy
of the system, i.e. the energy required to add an electron to the QD, EC =
e2/CΣ, where CΣ is the QD self-capacitance. When the charging energy is
the dominant energy scale of the system, i.e. kBT � EC, single electron
tunneling events through the dot can be observed [114].

We apply a small AC signal between source and drain, V AC
sd = 100µVrms

at 277 Hz, so that V AC
sd � EC/e. Then we record a so-called charge stability

diagram, which is a plot of the conductance through the device as a function
of both gate voltage and source-drain DC voltage. Sweeping the voltage on
all the finger gates to negative values, the electrons in the NW are depleted.
Approaching pinch-off, electrons enter the SET one at a time, and another
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Figure 4.7 Charge stability diagram of the NW SET. The conductance of the SET at
T = 4.2 K is plotted as a function of the voltage VG applied to all the finger gates and of the
DC component of the voltage Vsd between source and drain. The device is fed with an AC
source-drain signal V AC

sd = 100µVrms at 277 Hz.

electron cannot tunnel into the device, until the first one tunnels out. In
particular, electrons are able to tunnel if their energy contribution to the
QD is higher than EC. Either tuning the QD energy levels through the
gates, or the electron injection energy through the source-drain potential,
both are able to accomplish the condition for single electron tunneling. As a
consequence, the conductance through the SET can be tuned by controlling
either Vsd or VG. The resulting stability diagram is shown in Fig. 4.7. The plot
exhibits a diamond structure, clear signature of Coulomb blockade. Within
each diamond, the current through the NW is inhibited due to the absence
of available transport channels for that specific voltage range. Hopping from
one diamond to the next consecutive one, the charge occupancy on the QD
increases by one electron. These considerations allow us to estimate the self-
capacitance of the QD and consequently its size. In fact, CΣ is determined
by the width of the Coulomb diamonds:

∆Vsd =
EC

e
=

e

CΣ

, (4.1)

∆VG =
e

CG

=
e

αGCΣ

, (4.2)

where CG is the capacitance between the finger gates and the QD and αG ≡
CG/CΣ is the finger gates lever arm. From Eq. (4.1), we estimate the QD
self-capacitance CΣ = 50 aF, while from Eq. (4.2), we calculate the gate
capacitance CG = 1.5 aF and the corresponding lever arm αG = 0.03.

The QD likely corresponds to an impurity in the NW, which allows charge
localization. Assuming the charge distribution to have a spherical symmetry,
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we can write:

CΣ = 2πεrε0D, (4.3)

where εr and ε0 are the dielectric constants of InAs and of vacuum, and D
is the diameter of the charge distribution. Inverting this relation, we find
D = 60 nm, compatible with a QD formed within the NW diameter.

4.2.2 Conclusion

The finger gates defined below the NW SET serve different functions. We
have demonstrated their primary role in controlling the electron density in the
NW, enabling to access the single-electron transport regime. In the prospect
of electromechanical characterization of the device, they could also adjust the
mechanical tension in the NW and actuate its motion [107]. Compared to a
global back gate used for the same purposes, the finger gates present several
advantages. By applying different voltages to each finger, they should allow
defining a single or multiple QDs within the NW, opening up the possibility
to have QDs in prefixed locations, with tunable barrier and energy levels,
and not due to random impurities within the NW. Usually NW SETs with
finger gates are made by depositing a thin insulating layer above the NW and
then depositing the metallic gates on top. The insulator, usually HfO2 [113],
enhances the gate capacitance, due to its high permittivity, and inhibits
current leaking. However, the direct contact of the NW with the insulating
layer degrades the transport quality, due to the high concentration of charged
defects at the interface. The suspended NW design, instead, should provide
a solution to this issue, at the cost of a lower gate capacitance. Finally,
attempting to couple a suspended-NW SET to the motion of an off-board
cantilever could take advantage of the lower voltage required to pinch-off the
NW with the finger gates, with respect to the back gate, which, due to a lower
capacitance, typically needs several tens of volts. Lower voltage is directly
related to lower non-contact friction, and then to the possibility to reduce
the cantilever-SET separation for achieving a larger coupling strength. Such
a system is promising compared to coupling to a QPC because the electron
transport in the NW can be localized far closer to the cantilever motion
than can the sub-surface transport through a QPC, reasonably resulting in
a better transduction efficiency.

Further work is required for improving the control over the SET trans-
port. The main current issue is the need for high voltage (below −20 V) for
depleting the NW with a single finger gate. Using NWs with a more narrow
diameter or of different material should reduce the carrier concentration and
therefore allow a pinch-off at lower absolute voltage. On the other hand,
the same goal can be accomplished by further reducing the NW separation
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from the finger gates. Attempts in these directions are still ongoing in our
laboratory.



5 Quantum Dot
Opto-Mechanics in a Fully
Self-Assembled Nanowire

Coupling a nanomechanical resonator to a quantum limited displacement
detector enables the readout of motion with ultra-high resolution. Besides
applications to precise force and mass sensing, research in this field is now
addressing what were once purely theoretical questions: the initialization
and control of non-classical states of mechanical motion. In addition, a res-
onator can be coupled to another quantum system, providing a probe and
readout device of its quantum state. Exploiting a mechanical resonator as a
quantum probe opens interesting scenarios to quantum information process-
ing and networking. For instance, the resonator could serve as a quantum
transducer, mediating interactions between different quantum systems and
therefore combining the advantages of distinct physical properties into one
architecture.

In this chapter, we report on the coupling of a nanomechanical oscillator
with controllable quantum states, in which both the coupling interaction and
the quantum states themselves are intrinsic to the oscillator’s structure. The
quantum states are due to optically active quantum dots, embedded in MBE-
grown GaAs/AlGaAs core-shell nanowires. Since a NW is also a nanome-
chanical resonator and the embedded QDs are naturally located close to its
surface, the QDs are coupled to the NW motion. Oscillations of the NW
produce a time-varying strain field, which modulates the QD emission en-
ergy in a broad range exceeding 14 meV. Furthermore, this opto-mechanical
interaction enables the dynamical tuning of two neighboring QDs into reso-
nance, possibly allowing for emitter-emitter coupling. Our approach opens
up the prospect of using QDs to probe and control the mechanical state of
a NW, or conversely of making a quantum non-demolition readout of a QD
state through a position measurement. The results presented in this chapter
have been published as:

[34] Montinaro, M., Wüst, G., Munsch, M., Fontana, Y., Russo-Averchi,



74 QD Opto-Mechanics in a Fully Self-Assembled NW

E., Heiss, M., Fontcuberta i Morral, A., Warburton, R. J., and Poggio,
M. Nano Letters 14, 4454 (2014).

5.1 Hybrid QD-in-NW System

Progress in nanotechnology allows the fabrication of a wide assortment of
systems in which a mechanical resonator is coupled to a microscopic quan-
tum system. These so called hybrid systems include optical [14] and mi-
crowave [23] cavities, superconducting devices [15,24], laser-cooled atoms [25],
quantum dots [26,27], and nitrogen vacancy (NV) centers in diamond [20,28–
30]. These coupling schemes usually rely on mechanical structures engineered
by the application of electrodes, magnets, or mirrors, in order to translate mo-
tion into the modulation of electric, magnetic, or optical fields. In most cases,
however, such a functionalization competes with the requirement of a small
resonator mass, necessary to achieve a high coupling strength [37]. Moreover,
the functionalization process often adds additional paths of dissipation and
decoherence, reducing the lifetime of the coupled quantum system.

The coupling mechanism we present here is not only unusually strong,
but its built-in nature produces a hybrid system whose inherent coherence
is unspoiled by any functionalization or external field and whose fabrica-
tion is simpler than top-down techniques. The specific nano-resonator that
we study is a bottom-up GaAs/AlGaAs core-shell NW containing optically-
active QDs [36]. These QDs have been shown to emit narrow optical line-
width (down to 29 µeV) single photons with high brightness (count rates in
the MHz range) [36]. Here we show that their energy levels are coupled to
the mechanical vibrations of the NW through intrinsic material strain. We
demonstrate that mechanical motion allows a reversible tuning of the QD
optical frequency with no measurable influence on its photoluminescence in-
tensity.

5.2 Experimental Setup

In this section, we describe the growth details of the QD-in-NW system
and its configuration in cantilever geometry. The experimental setup used
for the mechanical and optical characterization of our hybrid system is also
presented.

5.2.1 QD-in-NW Structure

Our QD-in-NW structures are fully self-assembled by molecular beam epi-
taxy. There is strong evidence that the QDs form at the apex of the GaAs/-

http://dx.doi.org/10.1021/nl501413t
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Figure 5.1 QD-in-NW structure. The schematic picture shows a NW glued to the edge
of a Si chip, and the laser beam used for optical and mechanical readout. The inset is a sketch
of the NW cross-section, showing the composition of the core-shell structure and the close
proximity of the embedded QDs to the surface of the NW. The purple regions are rich in Al
content and surround an Al-poor region (yellow), defining a QD [36, 115].

AlGaAs interface, in Al-poor regions embedded in the Al-rich corners of the
NW hexagonal cross-section [36, 115], as shown schematically in Fig. 5.1.
Additional analysis supporting this explanation is reported in Appendix D.
Note, however, that Weiß et al. offer an alternative interpretation, argu-
ing that QD-like emission centers observed in similar core-shell NWs arise
from randomly distributed alloy fluctuations or defects within the AlGaAs
shell [116]. In either case, by controlling the overall diameter of core and shell
during growth, it is possible to position the QDs within a few nanometers of
the NW surface. This proximity to the surface allows for the optimal cou-
pling of the QDs to the strain field in the NW, as shown in the finite element
model in Section 1.5.3. Despite their position near the surface, these QDs
retain their high optical quality, making them ideal for sensing applications.
The NWs studied here have a predominantly Zinc-Blende crystalline struc-
ture and display a regular hexagonal cross-section. The synthesis starts with
a 290-nm thick NW core, grown along [1 1̄ 1] on a Si substrate by the Ga-
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assisted method detailed in Refs. 117, 118. Once the NWs are about 25µm
long, the axial growth is stopped by temporarily blocking the Ga flux and
reducing the substrate temperature from 630 down to 465 ◦C. Then a 50-nm
thick Al0.51Ga0.49As shell capped by a 5-nm GaAs layer is grown, as detailed
in Ref. 119.

5.2.2 NW Cantilever

In order to study the opto-mechanical coupling, individual NWs are detached
from their growth substrate with micro-manipulators (Narishige) and glued
in a cantilever configuration to the edge of a silicon chip. Silicon has been cho-
sen because not emitting in the same spectral range of the QD fluorescence.
In a previous step, the Si chip is patterned with lithographically defined
markers (Ti/Au, 10/30 nm thick), used for the optical alignment of the mea-
surement setup. Particular care is necessary while manipulating and aligning
the NWs. During the work of this thesis, this process has been optimized for
high yield. The precautions include the use of sharp tungsten micro-chisels
(Eppendorf) for detaching single NWs and of a low viscosity glue (Norland)
to ensure a slow drying. For final adhesion, the glue requires an ultra-violet
curing stage, which enables long working time for sample preparation. While
a glue with very high fluidity would also allow a long preparation process,
its use is not recommended because it can soak the entire NW, making its
positioning problematic. The NWs are positioned with one hexagonal facet
in contact with the Si chip and so that the length of the suspended portion
amounts to about 20 µm.

5.2.3 Piezoelectric Transducer and Sample Stage

The sample containing several NWs aligned on one edge is rigidly fixed to
a commercial piezoelectric transducer (PZT) from PI GmbH. Having a me-
chanical cutoff frequency in the MHz range, this PZT enables to efficiently
drive mechanical oscillations of the NW.

As shown in Fig. 5.2, the chip and PZT are mounted to a three-dimensio-
nal positioning stage which has nanometer precision and stability (Attocube),
in a low-pressure 4He chamber (p = 0.35 mbar) at the bottom of a 4He
cryostat (T = 4.2 K).

5.2.4 Scanning Confocal Microscope

By controlling the positioning stage, we align individual QDs within each
NW with the 400-nm collection spot of a confocal optical microscope [120].
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Figure 5.2 Schematic diagram of the experimental setup.

The microscope serves for non-resonant laser excitation of the QDs and ef-
ficient collection of their fluorescence. The confocal configuration is ensured
by a single-mode optical fiber used for light collection, which serves as a pin-
hole [120]. Besides diffraction-limited optical performance, the microscope
combines precise and reliable sample alignment, high mechanical stability
with negligible drift over many days of operation, and elevated light collec-
tion efficiency, due to a high numerical aperture (NA = 0.82). As shown
schematically in Fig. 5.2, the setup consists of a low-power HeNe excita-
tion laser at 632.8 nm, a CCD camera for imaging the sample, and a high-
resolution spectrometer for analyzing the emitted photoluminescence (PL).
The spectrometer is essentially made of a monochromator and a nitrogen-
cooled CCD, and provides a resolution of 60µeV at the QD emission energy.

5.2.5 Laser Interferometer

We detect the mechanical oscillation of each NW via laser interferometry,
through the technique described in Section 2.1. 80µW of laser light from a
wavelength-tunable, highly coherent 780-nm laser diode are focused onto the
NW free end and the reflected light is collected by a fast photodetector. As
shown in Fig. 5.2, the interferometer setup shares the optics of the confocal
microscope. A low-finesse Fabry-Pérot cavity forms between the NW and
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Figure 5.3 Interferometer test. Amplitude of the positioning stage displacement oscilla-
tion at 117 Hz as a function of the amplitude of the drive voltage, measured at a temperature
of 4.2 K. The error bars correspond to the peak-to-peak amplitude of the interferometric noise.
The red line is a linear fit, from which we extract a conversion factor of 11.6± 0.1 nm/V.

a low-reflective window at the entrance of the 4He chamber. This fact is
confirmed by a measurement of the cavity free spectral range, (2.6± 0.1)×
10−13 m, from which, by means of Eq. (2.9), we derive a cavity length of
118± 5 cm.

As discussed in Section 2.1, interferometer displacement measurements
are calibrated by an accurate determination of the laser wavelength. In or-
der to double-check this calibration, we measure the displacement amplitude
Aosc of the positioning stage along the interferometer optical axis x̂, while
the stage is driven by a low-frequency oscillation (117 Hz). As shown in
Fig. 5.3, the measurement is repeated for several drive voltages in order to
extract, through a linear fit, a conversion factor for the piezoelectric position-
ing stage equal to 11.6 ± 0.1 nm/V. The entire procedure is repeated with
the interferometer aligned to a variety of different positions on the yz plane,
including the position of the NW free end. The values measured using our
interferometer are close to the specifications of the positioning stage, which
provide a rough conversion factor of 8 nm/V.

5.3 NW Displacement Detection

Using the PZT, we excite the fundamental mechanical mode of a NW and
detect the resulting oscillations with the interferometer. The photodetector
signal is filtered at the frequency and phase of the PZT excitation through
a lock-in amplifier. Fig. 5.4(a) shows the spectral response of the free-end
displacement x of the NW. A main resonance and a smaller peak at lower fre-
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Figure 5.4 NW mechanical characterization. (a) Spectrum of the NW free-end oscilla-
tion amplitude xosc corresponding to its lowest order flexural vibrations at T = 4.2 K, driven
by the PZT at VPZT = 40 mVpk. The red line is a model fit (see main text), highlighting
two resonances split by 350 Hz, corresponding to polarized, non-degenerate vibrational modes.
The green curve represents the vibration parallel to the NW substrate, while the blue curve
represents the perpendicular one (both are shifted for clarity). The mechanical quality factors
of the two modes, extracted from the fit, are Q‖ = 7600 and Q⊥ = 5800. (b) NW free-end os-
cillation amplitude xosc as a function of the amplitude of the PZT excitation voltage VPZT. The
error bars correspond to the peak-to-peak amplitude of the interferometric noise. The red line
is a linear fit, from which we extract the conversion factor ∂x/∂VPZT = 0.53± 0.01 nm/mV.

quency are clearly observable, separated by 350 Hz. The asymmetric clamp-
ing of the NW to the Si chip, realized by gluing the NW with one hexagonal
facet in contact with the Si surface (see Fig. 5.1), splits the fundamental
mode into a doublet of flexural modes, oriented either perpendicular or par-
allel to the Si surface. This interpretation is confirmed by the finite element
model of the system illustrated in Section 1.5.3. The mode oscillating per-
pendicular to the surface is preferentially driven by the PZT, because its
oscillation direction x̂ coincides with the axis along which the PZT moves.
This mode is also more easily detected by the interferometer, since its direc-
tion of oscillation coincides with the interferometer optical axis. For these
reasons, we interpret the main resonance in Fig. 5.4(a) as corresponding to
the perpendicular mode. The asymmetry visible in this resonance is due to
the onset of a weak mechanical non-linearity of the NW [56,95]. In the same
way as described in Chapter 1, when excited in the linear regime, each of
these mechanical resonances can be modeled as a damped harmonic oscil-
lator with a resonant driving force. Following the procedure described in
Section 1.6.1, we fit the NW response using this model, extracting for the
perpendicular mode a resonant frequency ω0/(2π) = 795.4 kHz and a me-
chanical quality factor Q⊥ = 5800 and for the parallel mode Q‖ = 7600.
Furthermore, by driving the main resonance as a function of the excitation
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Figure 5.5 Scanning confocal micrograph. The light reflected from the sample is plotted
as a function of the laser beam position. The NW oscillation direction in the prominent mode
is marked at its free end.

amplitude VPZT, we explore the linear regime of the NW’s free-end displace-
ment, as shown in Fig. 5.4(b). With a linear fit, we extract a conversion
factor, ∂x/∂VPZT = 0.53 ± 0.01 nm/mV, between the PZT drive amplitude
and the amplitude of the free-end displacement.

5.4 Opto-Mechanics

We study the opto-mechanical coupling by collecting PL from individual QDs
within a single NW. In a first step, we use the scanning confocal microscope
for imaging the sample and finding a NW. The approximate position is found
by using directly the CCD camera part of the setup. Afterward, for fine
alignment, we collect the light reflected from the sample as a function of
the scanning position. The resulting confocal micrograph for the NW under
investigation is plotted in Fig. 5.5.

Sections 1.4.1 and 1.5.3 respectively report an analytical model and a
FEM of the strain field in a long and thin cantilever with uniform cross-
section throughout its length, like our NW structures. They show that the
oscillation-induced material strain is highest at the clamped end of the NW.
For this reason we search for QDs in proximity to this area, for obtaining
the largest energy modulation. Using the scanning confocal microscope, a
number of suitable QDs are identified near the clamped NW end, having
bright, narrow, and spectrally isolated exciton emission lines. Figure 5.6
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Figure 5.6 Spectrally filtered scanning confocal micrograph. As a function of the
excitation laser position, we plot the light intensity detected from the sample (logarithmic
color scale), spectrally filtered at the peak PL energy E0

ex = 1.867 eV, corresponding to
exciton emission of QD 1. The inset shows the corresponding PL spectrum (white dots),
together with a Lorentzian fit (red line). The linewidth (FWHM) is ~Γ = 140µeV.

shows a spatial map of the PL at 1.867 eV (664 nm) under non-resonant
laser excitation of the sample. The plot also includes a weak component of
reflected light at the filtered energy, which reveals the position of the NW
and the Si substrate with its alignment markers, similarly to the confocal
micrograph in Fig. 5.5. The map highlights a conveniently located QD, which
we label QD 1, whose PL spectral signature includes an exciton emission peak
shown in the inset.

In the next step, the laser beam is maintained in alignment with QD 1’s
position and its PL spectrum is recorded as a function of the PZT excitation
frequency ω/(2π), while holding the amplitude VPZT constant. As shown in
Fig. 5.7(a), several emission peaks are detected within the same laser detec-
tion spot. As ω is swept through the NW resonance ω0, the exciton emission
peaks are broadened and deformed as a consequence of the time-integrated
sinusoidal motion of the NW [27]. The envelope of the PL spectra as a func-
tion of ω resembles the NW displacement spectrum shown in Fig. 5.4(a). In
particular, the low-frequency shoulder of the broadened envelope corresponds
to the oscillation mode parallel to the substrate surface.

We explore the range of the exciton energy modulation by recording PL
spectra as a function of the excitation amplitude VPZT, while driving the NW
on resonance with the dominant perpendicular mode (ω = ω0). As shown
in Fig. 5.7(b), each spectral line exhibits a different broadening, as a con-
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Figure 5.7 Effect of the NW excitation on the QD photoluminescence. PL spectra of
some neighboring QDs (labeled QD 1 and QD 2) acquired while sweeping (a) the frequency
of the PZT excitation, with VPZT = 1 Vpk, and (b) the amplitude of the excitation, with
the frequency set to the resonance of the NW’s perpendicular flexural oscillation (ω = ω0 =
2π × 795.4 kHz).

sequence of its specific sensitivity to the local strain. For high excitation
voltages, we observe an asymmetric energy broadening, due to the different
response of the QD band structure under compressive or tensile stress in
the NW [47, 121]. Note that a further increase of the excitation amplitude
leads to a saturation of the peak-to-peak exciton modulation width just be-
yond 14 meV. It is currently not known whether this modulation is limited
merely by how hard we are able to drive the NW motion, or whether a more
fundamental saturation eventually limits the range.

5.4.1 Coupling Strength

While the mechanical motion of the NW in this experiment is best described
in classical terms, individual PL peaks from an embedded QD can be approx-
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Figure 5.8 Strength of the opto-mechanical coupling. (a) PL spectrum of QD 1 (black
dots) under NW excitation on resonance with the perpendicular flexural mode (ω = ω0,
VPZT = 250 mVpk). The red line is a fit according to the model equation (5.2), from which
the exciton energy shift amplitude δEex is extracted. (b) δEex of QD 2 versus the NW free-
end displacement amplitude xosc. The red line is a linear fit, from which we extract the
opto-mechanical coupling parameter (∂Eex/∂x)|x=0 = 9.9 ± 0.7µeV/nm. The error bars on
xosc are the same as mentioned in Fig. 5.4(b); those on δEex are the standard deviations
extracted from the fits of the mechanically excited PL spectra, as in (a).

imated as resulting from a quantum two-level system with an exciton tran-
sition energy Eex(x) between ground and excited states |g〉 and |e〉 [36,115].
The coupling between the NW motion and the QD can then be introduced as
a shift in the exciton energy that depends on the displacement x of the NW’s
free end. Considering only the prominent perpendicular flexural vibration
and neglecting non-linear terms in x [37], the time-dependent Hamiltonian
of our hybrid system can be written as

Ĥ(t) =
1

2
mẋ2 +

1

2
mω2

0x
2 + E0

ex

σ̂z
2

+
∂Eex

∂x

∣∣∣∣
x=0

x
σ̂z
2
, (5.1)

where the first two terms describe the mechanical energy of the unperturbed
NW, the third term describes the emission energy of the unperturbed QD,
and the last one describes the opto-mechanical interaction. In the equation,
m is the NW effective mass, E0

ex is the transition energy of a QD exciton
for the NW at its rest position, σ̂z = |e〉 〈e| − |g〉 〈g| is the Pauli operator
of the two-level system, and (∂Eex/∂x)|x=0 is the opto-mechanical coupling
parameter at the NW rest position. The NW motion produces a time-varying
deformation of the NW’s crystalline structure, in turn altering the energy
levels of the embedded QDs via a deformation potential, and resulting in
a time-varying shift in the QD exciton emission energies. The sign and
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magnitude of this shift under compressive or tensile strain depend on the
localization of the QD within the NW cross section and possibly on intrinsic
properties of each QD [122].

To evaluate the strength of the opto-mechanical coupling, we extract the
PL profiles of the exciton lines for various values of the drive VPZT, e.g.
Fig. 5.8(a). The profiles are then fit with a Lorentzian whose central energy
E0

ex is modulated by a sinusoid of amplitude δEex [28]. In fact, during half
an oscillation period of the NW, the QD luminescence feels a succession of
blue- and red-shift, whose time-integrated emission can be modeled as:

nd(Eex, ω0) = n0
ω0

π

∫ π/ω0

0

~2Γ2

(Eex − E0
ex − δEex cosω0t)2 + ~2Γ2

dt. (5.2)

Here nd indicates the photon counts per unit time, while n0 and ~Γ are the
intrinsic QD photon counts and emission linewidth (FWHM), which can be
measured from the QD PL spectrum in absence of mechanical excitation
(inset of Fig. 5.6). Using our interferometer measurements (Fig. 5.4(b)), we
then relate the displacement amplitude xosc of the NW free end with the
amplitude δEex extracted from the fit. The result, displayed in Fig. 5.8(b)
for QD 2 (which resides in the same optical spot as QD 1), shows that in
the linear regime of mechanical excitation, δEex is also linear in xosc. A fit to
this data provides an opto-mechanical coupling parameter (∂Eex/∂x)|x=0 =
9.9± 0.7µeV/nm, which is one of the largest observed in our measurements.

5.4.2 Deformation Potential Model

The application of mechanical strain to the NW alters the lattice constant
and the symmetry of the solid. These effects, in turn, cause significant
changes in the electronic band structure that manifest themselves in the
optical properties. The isotropic and deviatoric components of the strain
(see Section 1.4.1) both contribute to such opto-mechanical coupling, with a
weight given by their respective deformation potential, conventionally indi-
cated as a for the isotropic deformation and d for the deviatoric component
induced by a stress along 〈1 1 1〉 [123,124].

In a recent work, Signorello and collaborators have measured the de-
formation potentials and the Poisson’s ratio for Zinc-Blende GaAs/AlGaAs
core-shell NWs – without embedded QDs – grown along 〈1 1 1〉, as in our
case, at a temperature of 100 K [47]. The measured values are reported in
Table 5.1.

The brightest exciton transition in our QDs concerns the conduction and
the heavy-hole bands, each responding in a different way to the applied strain.
The variation of the energy gap between these bands (∆EC-HH) under me-
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Parameter Value Unit

ν 0.16± 0.04
a −8.6± 0.7 eV
d −5.2± 0.7 eV

Table 5.1 Electro-mechanical material parameters. The values have been measured for
Zinc-Blende GaAs/AlGaAs core-shell NWs grown along 〈1 1 1〉, at a temperature of 100 K.
Taken from Ref. [47].

chanical excitation can be connected to the axial strain ε‖ through the fol-
lowing model [44, 123]:

∆EC-HH =

[
(1− 2ν) a+

1√
3

(1 + ν) d

]
ε‖. (5.3)

From the FEM of the NW strain tensor, reported in Section 1.5.3, we extract
the profile of ε‖ along ẑ corresponding to the lowest perpendicular mode, for
a given displacement of the NW free end. The graph in Fig. 5.9 shows such
a plot for ε‖ at 10 nm below the NW surface, a distance where the QDs
best coupled to strain are located. The red spot, in particular, marks the
position where the QDs analyzed in this chapter are placed, 2.0 ± 0.3µm
away from the clamped edge of the NW. Inserting the value of ε‖ at the
QD position into the Eq. (5.3), we obtain a displacement-dependent energy
shift of 13 ± 2µeV/nm. Though this estimation does not take into account
the detailed QD band structure, the value we have found is close to our
experimental result (9.9 ± 0.7µeV/nm), therefore corroborating the strain-
dependence of the band structure as the dominant coupling mechanism.

5.4.3 QD Stroboscopy

We study the time evolution of the QD exciton energy shift by acquiring
stroboscopic PL spectra [27, 116]. As shown schematically in Fig. 5.10, two
synchronized and isochronous signals drive the NW on resonance through
the PZT and, using an acousto-optic modulator (AOM), chop the laser ex-
citation with a 5% duty-cycle. The QDs are therefore excited only for 5%
of the mechanical oscillation period of the NW. By recording PL spectra as
a function of the phase between the two modulation signals, as shown in
Fig. 5.11, we explore the temporal evolution of the QD exciton lines during
a NW oscillation period.

This experiment reveals exciton lines, such as those of QD 1 and QD
2 in Fig. 5.11, that respond to the mechanical oscillation of the NW with
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Figure 5.9 Strain profile along ẑ. The strain component ε‖ at 10 nm below the NW
surface is plotted for the NW free-end displaced by 1 nm along x̂, for the lowest perpendicular
mode. The shaded area from z = 0 to z = 5µm marks the region of the NW which is clamped
to the substrate. The red spot at z = 2.0±0.3µm from the edge of the clamped region marks
the position where the QDs analyzed in this chapter are located. The upper inset shows the
mode shape in consideration, with the strain amplitude in color scale as in Fig. 1.10.

opposite shifts in emission energy. The shifts in energy induced by strain
are a consequence of the change in the fundamental bands resulting from
the compression or extension of the lattice constant. Therefore, for a given
strain, exciton transitions from the same QD should show energy shifts of
the same sign and similar magnitude. Conversely, emission lines showing
drastically different shift amplitudes or even shifts with different signs cor-
respond to QDs located at different positions within the NW cross-section.
In particular, two identical QDs within the same optical collection spot, lo-
cated on opposite sides of the NW neutral axis, result in opposing strains
produced for the same cantilever free-end displacement. On the other hand,
differences in the extension and composition of each QD may also account
for the varying responses to NW motion [122]. Alternatively, randomly dis-
tributed QDs in the shell of the NW, as postulated by Weiß et al., may also
produce such variations [116]. In any case, when two spatially and spectrally
close QD excitons display strong opto-mechanical couplings of opposite sign,
their energies may become degenerate for a particular time in the oscillation
period (or equivalently for a particular position of the NW free end), as for
the spectral lines outlined by the dashed circle in Fig. 5.11. In the future,
exploiting this mechanically mediated tuning may allow us to couple two
nearby QDs within a single NW. In addition, the sinusoidal time evolution
of the PL spectral lines emerging from the measurement provides a confir-
mation of the mechanical origin of the QD emission broadening. Note also
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Figure 5.10 Scheme of the setup for QD stroboscopy. Two synchronized and
isochronous signals from a function generator are used to drive the NW on resonance and
to modulate the QD excitation with a 5% duty-cycle, by means of an AOM.

that the modulation of the QD energy has no measurable influence on the
corresponding PL intensity.

5.5 Conclusion and Outlook

In order to compare our results with other hybrid quantum systems [27,37],
the opto-mechanical interaction described in Eq. (5.1) can also be expressed
in terms of the coupling rate

λ ≡ 1

2~
∂Eex

∂x

∣∣∣∣
x=0

xzpf, (5.4)

which is the exciton frequency shift per vibrational quantum. Using the FEM
of the NW, we calculate its effective mass m = (3.5± 0.7)× 10−15 kg, where
the error is dominated by the measurement imprecision of the NW thickness
(see Section 1.5.3). This result, combined with knowledge of ω0, allows us
to calculate xzpf = (5.5± 0.6)× 10−14 m. Therefore, for QD 2, the coupling
rate λ/(2π) = 66± 12 kHz. This opto-mechanical coupling rate is similar to
that recently measured by Yeo et al. [27] for etched nano-pillars containing
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Figure 5.11 Time-resolved PL evolution. Stroboscopic PL spectra of several neighboring
QDs as a function of the phase (left axis) and the time delay (right axis) between the excitation-
laser modulation and the PZT drive (ω = ω0, VPZT = 250 mVpk). The dashed circle outlines
two exciton spectral lines dynamically tuned to the same energy.

self-assembled QDs, where λ/(2π) = 230 ± 50 kHz (note that in Ref. [27]
g0 = 2λ).

Both here and in Yeo et al., the ratio λ/ω0 is not far from unity, which
makes these kinds of systems particularly promising for the quantum non-
demolition (QND) readout of a QD state through a precise measurement
of the NW displacement [27]. In particular, using Eqs. (5.1) and (5.4), we
find that the displacement between the rest positions of the NW free end
in the QD states |g〉 and |e〉 is 4xzpfλ/ω0. In order to be observable, this
displacement must be larger than xzpf; in fact, at a finite temperature T ,
the displacement must be larger than the NW’s thermal fluctuations xth. In
Section 1.6.2, we have found through the virial theorem the relation (1.59),
which connects the fluctuations of the position operator x̂ to the average
phonon occupation number N . In terms of thermal fluctuations, we can
then write, for the fundamental mode:

x2
th = 〈N | x̂2 |N〉 =

~
mω0

(
1

2
+N

)
= x2

zpf(1 + 2N). (5.5)

Therefore, a determination of the QD state can be made through a displace-
ment measurement, if λ/ω0 > (1/4)

√
1 + 2N . In the high temperature limit

kBT � ~ω0, the requirement is that λ/ω0 >
√
kBT/(8~ω0). However, for

our experimental parameters, the ratio λ/ω0 is still 103 times too small for
such effects to be observed.

Auffèves and Richard [17] have recently proposed an alternative approach
to such a non-demolition measurement, which takes advantage of the high
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Q of the NW oscillator. In their scheme, the QD is optically excited by a
continuous-wave laser modulated at the NW resonance frequency. This pro-
cess builds up, through constructive interference, a large coherent mechanical
excitation of the NW. On resonance with a QD transition, the amplitude of
the excitation is roughly Q times larger than the displacement difference cal-
culated in the aforementioned static case. For our experimental parameters,
this amplitude would be 6 times larger than the NW thermal fluctuations,
making it detectable by a high-sensitivity interferometer [68]. It should be
noted that a QND measurement also requires the time necessary to build up
such a coherent phonon field (Tr) to be smaller than the quantum transition
lifetime (τex), which is not the case here (Tr ≈ 18 ms, while τex ≈ 1 ns)
nor in the experiment of Yeo et al. [27]. The use of a longer-lived QD state
such as a dark exciton (1µs [125]) or a spin state (0.5 s [126]) could bring
the system closer to the required lifetime. In addition, given a detection of
the NW displacement with a large enough signal-to-noise ratio, Tr could be
reduced using feedback damping, which can modify a mechanical oscillator’s
response time without affecting its intrinsic properties [32].

Our QD-in-NW system is a good candidate for investigating a possible
interaction between the mechanics and a spin state. In presence of a mag-
netic field, the spin degeneracy of a QD exciton is removed. It has been
demonstrated that the resulting Zeeman splitting can be tuned by an ex-
ternal electric field, which modifies the g-factor [127]. We expect a similar
control over the splitting via the deformation potential induced by the NW
vibration. Given the possibility of preparing a QD state in a specific spin
polarization, for instance by resonant excitation [128], such a control would
result in a spin-oscillator coupling, similar to what was recently demonstrated
in NV centers in diamond resonators [29,30].

We note that prospects of quantum control over a mechanical resonator,
or proposals for using a mechanical resonator as a transducer for quan-
tum information, require the hybrid interaction to be large compared to
the rates at which the coupled systems decohere into their local environ-
ments [14, 31]. Some proposals require the condition of large cooperativ-
ity [129,130]: λ/

√
γexΓth > 1, where γex is the decoherence rate of the quan-

tum transition, in our case associated to a QD exciton (> 1 GHz [36]) and
Γth = kBT/(~Q) is the mechanical heating rate. Using the values from this
experiment, the cooperativity is 10−3. Nevertheless, the QD-in-NW system
is particularly promising, given that λ could be improved by working with a
higher flexural mode of the NW. In fact, as demonstrated analytically in Sec-
tion 1.4.1, and confirmed by the FEM in Section 1.5.3, the maximum strain
in the NW scales for higher modes as the eigenfrequency. Improvements in
the detection of higher modes should therefore provide an opto-mechanical
coupling parameter increased as the strain. However, the coupling rate λ
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also depends on the NW’s zero-point motion xzpf =
√

~/ (2mnωn). While
the mode effective mass mn does not depend in our geometry on n, the mode
resonance frequency ωn increases with n, by a factor 6 for the second order
mode doublet with respect to the first one. This dependence implies an in-
crease of λ by a factor 2 (or bigger) for the second order (or higher) flexural
modes of the NW. Moreover, as pointed out also by Yeo et al., realistic im-
provements of the size and shape of the NW should also lead to a significant
increase of λ. In fact, from the relation (1.35) and from the expression of
xzpf, it results that λ scales with the NW diameter D, length L and volume
V according to [27]:

λ ∝ βn
√
D

L
√
V
. (5.6)

Increasing the coupling thus requires decreasing the volume and the aspect
ratio of the NW. By suitably modifying the NW dimensions and using a
conical geometry, able to concentrate the elastic energy close to the clamped
end, Yeo et al. estimate a coupling rate improved by a factor 40 [27]. Fur-
thermore, the use of a doubly-clamped and short NW should combine the
advantages of a lower aspect ratio with a significant increase of the parameter
βn (see Table 1.2). On the other hand, in the prospect of achieving a large
cooperativity, the experiment could be carried out in a dilution refrigerator
at T = 10 mK and the mechanical quality factor could be improved up to
a few times 106, perhaps by surface treatment, as was demonstrated in Si
cantilevers with similar aspect ratios [131], and by studying NWs directly
clamped to their growth substrate [56].

Our monolithic opto-mechanical system constitutes a good candidate for
recent proposals of a hybrid quantum system integrating an optical cavity,
a quantum two-level system and a mechanical resonator [132–135]. Cav-
ity quantum electrodynamics (QED) experiments have revealed successful
in exploring the light-matter interaction at the quantum level in atomic
physics [136]. A growing interest is now emerging for hybrid systems estab-
lishing a bridge between QED and opto-mechanics, in a platform interfacing
photons, phonons, and artificial atoms. Our QD-in-NW system could for
instance be included in a high finesse miniaturized optical cavity, as those
demonstrated by Favero et al. [137] and Flowers-Jacobs et al. [138]. Such
a system would take advantage of a series of factors, like our intrinsically
strong QD-oscillator interaction, the high opto-mechanical coupling offered
by the cavity, and its compactness, stability, and compatibility with cryogenic
operation. The resulting tripartite quantum system would offer enhanced ef-
fective interactions between the mechanics and the cavity field, leading for
instance to efficient cooling of the mechanical resonator to the ground state,
even in a regime in which standard radiation pressure cooling would be in-
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efficient [134], like in the unresolved sideband regime (see Section 3.1). In
addition, the emergence of both phonon bunching and anti-bunching has
been prospected in such a coupled system [132].

The sensitivity of the QDs in our system to the resonant vibration of the
NW could also be used to reveal displacement variations due to the appli-
cation of electrical or magnetic forces or to a change of the NW mass. This
fact opens the perspective of using our QD-in-NW system as an integrated
force probe or as a nanomechanical mass sensor. By measuring the QD PL,
one could monitor the NW motion in a technically simpler way than optical
interferometry [68,137–140] or other schemes [141–143].

We estimate the sensitivity of our apparatus as a displacement transducer
and as a force or strain detector. For this purpose, we first measure, for
a QD emission line, the intrinsic fluctuation in time of the photon count
in a narrow spectral bin around the transition energy E0

ex. The amplitude
of such fluctuation depends on the bin size and on the integration time τ .
An external force applied to the NW produces, through the deformation
potential coupling, a variation of the QD photon count in a given spectral
interval. For such a force to be detectable, the induced photon count variation
has to be bigger than the intrinsic fluctuation. This count variation is in turn
a direct consequence of the emission energy modulation, whose amplitude
δEex can be calculated through the model described in Eq. (5.2). From the
opto-mechanical coupling parameter (∂Eex/∂x)|x=0 measured for QD 2, we
are then able to convert the emission energy modulation into a root-mean-
squared displacement xrms of the NW free-end. Finally, by multiplying such
displacement to the square root of τ , we obtain a displacement sensitivity ≈
3 nm Hz−1/2. Note that this result is limited, in particular, by the resolution
of our spectrometer, equal to 60µeV. On the other hand, the sensitivity
could be improved by 4 orders of magnitude by means of resonant laser
spectroscopy [128]. The applied force is proportional to the NW displacement
xrms through the spring constant k = mω2

0 = 90 ± 20 mN/m. Therefore we
are able to estimate a force sensitivity ≈ 300 pN Hz−1/2. Our setup is also
sensitive to strain variations in the NW. Through the FEM of the NW,
relating the strain to the NW free-end displacement, it is possible to express
a strain sensitivity of our setup, ≈ 5 × 10−6 strain Hz−1/2. This result is
of the same order of the sensitivity recently estimated for strain-mediated
coupling of a diamond cantilever to the spin of an embedded NV center [30].

In summary, in this Chapter we demonstrate an as-grown opto-mecha-
nical system produced entirely by bottom-up self-assembly. The structure’s
intrinsic properties couple multiple QDs to the same NW mechanical os-
cillator. This interaction enables the tuning of QD energies over a broad
range exceeding 14 meV, opening the way for mechanically induced coupling
between different QDs in the NW. Our approach opens up the prospect of us-
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ing QDs to probe and control the mechanical state of a NW, or conversely of
making a quantum non-demolition readout of a QD state through a position
measurement.



6 Conclusion

The coupling of nanomechanical resonators to controllable quantum systems
represents a growing and promising area of research. Recent advances in
this field have brought to astonishing results, such as the initialization of
a mechanical resonator into its quantum ground state [12–14] and even the
preparation of non-classical coherent states of motion [15]. These achieve-
ments open up appealing scenarios to quantum information technologies and
to the exploration of the quantum-classical boundary [27]. From an applica-
tion perspective, such quantum-mechanical hybrid systems provide a versatile
and attractive tool for a variety of precision measurements, like ultra-sensitive
detection of force [3], mass [4], and displacement [5, 6].

Quantum control over a mechanical resonator, or, conversely, the prospect
of using resonator’s motion for probing quantum states, both involve some
tight requirements. First of all, the interaction between the mechanics and
its quantum partner has to be large on the scale of the decoherence rates
of the coupled systems. In most cases, the coupling mechanism has to be
activated by engineering the resonator with electrodes, magnets, or mirrors,
or by using tailored laser fields. For this reason, the search for a strong
coupling typically competes with the requirement of overcoming decoherence
effects. In addition, for quantum effects to be observable, strong coupling
has to be accompanied by the preparation of zero entropy initial states, for
instance by cooling the resonator into its ground state of motion.

The motivation pursued by this thesis is to contribute to the inspiring
field of hybrid systems by walking through each of the aforementioned di-
rections. We in fact demonstrate a promising system in which optically
active quantum dots, embedded in fully self-assembled core-shell nanowires,
are coupled to the nanowire motion. Mechanical vibrations of the nanowire
modulate the quantum dot emission energy over a broad range exceeding
14 meV, by means of deformation potential coupling. In our system, there-
fore, both the coupling mechanism and the quantum states themselves are
intrinsic to the resonator’s structure. Besides revealing unusually strong,
such a built-in opto-mechanical interaction produces a hybrid system whose
inherent coherence is unspoiled by any functionalization or external field and
whose fabrication is simpler than top-down techniques.
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We further demonstrate the use of a quantum point contact as a displace-
ment transducer to measure and control the low-temperature thermal motion
of a nearby micromechanical cantilever. We show that by including the QPC
in a suitable feedback loop, we are able to cool the cantilever’s fundamental
mechanical mode down to the level of the measurement noise, achieving a
squashing of the QPC noise at high gain. Due to its off-board design, our sys-
tem is particularly versatile and suitable to force-sensing applications. Since
the QPC transducer is sensitive to local modifications of the nearby electric
field, our approach is in principle compatible with any nanoscale resonator,
without requiring any functionalization to activate the coupling. By improv-
ing the performance of the QPC as a one-dimensional conductor and the
cantilever-QPC capacitive coupling, our system has the potential to achieve
quantum-limited displacement resolution and ground state cooling. We then
report on some ongoing attempts to overcome the current limitations and
couple mechanical motion to different mesoscopic transport devices.

We remark that our demonstration of an as-grown quantum-dot-in-na-
nowire hybrid system opens up bright prospects on future experiments, as
also testified by the very recent ferment of the scientific community around
this topic [27, 29, 30]. We find that the opto-mechanical coupling rate is not
far from the nanowire mechanical frequency. This fact makes our system
particularly promising for the quantum non-demolition readout of a quan-
tum dot state through a measurement of the nanowire position [17]. On the
other hand, we show that the coupling can be further optimized, and the
nanowire mechanical heating rate reduced, thus disclosing the captivating
perspective of using quantum dots to probe and control the mechanical state
of a nanowire. In this context, it would be important to investigate a pos-
sible spin-oscillator coupling in our system, given the long coherence time
offered by a spin state in a quantum dot. The wide range of control over
the quantum dots emission energy and the ability to tune two neighboring
dots into resonance pave the way to mechanically induced emitter-emitter
coupling. In addition, our monolithic opto-mechanical system constitutes
a good candidate for recent proposals of a tripartite hybrid system, which
would integrate an optical cavity, a quantum two-level system and a mechan-
ical resonator [132–135]. The intrinsically strong coupling between the quan-
tum dots and the nanowire motion would enhance the interaction between
the mechanics and the cavity field, leading for instance to efficient cooling of
the resonator to the ground state. Finally, the quantum dot sensitivity to the
nanowire resonant vibration could also support the use of our system as an
integrated force probe or as a nanomechanical mass sensor. In other words,
the results reported here constitute not only a relevant proof-of-principle,
moreover they open up intriguing challenges in future research.



A QPC Fabrication Protocol

CLEANING TCE, Acetone, Methanol, 5’ each in US 

U
VL

: M
ES

A 

PRE-BAKE 120°C, 5’ 

SPIN-COATING Resist: ma-N415, spin at 6000 rpm, 45’’, ramp = 6’’ 

BAKING 93°C, 90’’ 

EXPOSURE Hard contact for 6‘‘, lamp on CH1, 14‘‘ (CH2, 7‘‘) 

DEVELOPING Ma-D 332 S, 2‘ + rinse in H2O, 20‘‘ 

PROFILOMETER Measure resist thickness 

ETCHING H2SO4 : H2O2 : H2O = 1 : 8 : 240, 20‘‘ for 80 nm 

REMOVE RESIST NMP at 50°, 5’ in US 

CLEANING TCE, Acetone, Methanol, 5’ each in US 

U
VL

: O
HM

IC
 C

O
N

TA
CT

S 

PRE-BAKE 120°C, 5’ 

SPIN-COATING Resist: ma-N415, spin at 6000 rpm, 45’’, ramp = 6’’ 

BAKING 93°C, 90’’ 

EXPOSURE Hard contact for 6‘‘, lamp on CH1, 14‘‘ (CH2, 7‘‘) 

DEVELOPING Ma-D 332 S, 2‘ + rinse in H2O, 20‘‘ 

PLASMA ETCHING Base p = 5x10-5 mbar, 16% O2 at 250 mbar, 30 W, for 1’ 

ETCHING HCl 37%, 5’’ + rinse in H2O, 15‘‘ 

EVAPORATION Ni / Ge / Au / Ni = 2 / 26 / 54 / 15 nm, for totally 97 nm 

LIFT-OFF NMP at 50°C (eventually US at low power, i.e. 20%) 

CLEANING TCE, Acetone, Methanol, 5’ each, no US 

ANNEALING 350°C, 120’’ + 420°C, 50’’ 

OHMICS CHECK-UP Check the linearity and the resistance of the contacts with 
needle probes 
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SPIN-COATING Resist: custom PMMA for a 130-nm film, 
spin at 4000 rpm, 40’’, ramp = 4’’ 

EB
L:

 G
AT

ES
 

BAKING 180°C, 7’ 

EXPOSURE 
Aperture = 10 µm, e-gun potential = 20 kV, field size = 250 
µm, step size = 8 nm, dose = 240/130/160 µAs/cm2 
(QPC/leads/markers) 

DEVELOPING MIBK : IPA : MEK = 1 : 3 : 1,3%, 75‘‘ + rinse in IPA, 15‘‘ 

EVAPORATION Ti/Au  = 5/15 nm 

LIFT-OFF NMP at 50°C, no US 

CLEANING TCE, Acetone, Methanol, 5’ each, no US 

U
VL

: L
EA

DS
 

PRE-BAKE 120°C, 5’ 

SPIN-COATING Resist: ma-N415, spin at 6000 rpm, 45’’, ramp = 6’’ 

BAKING 93°C, 90’’ 

EXPOSURE Hard contact for 6‘‘, lamp on CH1, 14‘‘ (CH2, 7‘‘) 

DEVELOPING Ma-D 332 S, 2‘ + rinse in H2O, 20‘‘ 

EVAPORATION Ti/Au  = 10 / 130 nm  

LIFT-OFF NMP at 50°C (eventually US at low power, i.e. 20%) 

CLEAVING The QPC must be within 150 µm of the edge of the sample 

Au-BONDING Glue the sample on the chip carrier with PMMA and bake it at 50°C 
for 20’. Avoid static discharge! 

 



B QPC Control and Acquisition
Electronics
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C Suspended-NW SET
Fabrication Protocol

CLEANING TCE, Acetone, Methanol, 5’ each in US 

EB
L:

 F
IN

G
ER

 G
AT

ES
 &

 M
AR

KE
RS

 

PRE-BAKE 120°, 5’ 

SPIN-COATING Resist: custom PMMA for a 100-nm film, 
spin at 6000 rpm, 40’‘,ramp = 6‘ 

BAKING 180°C, 7’ 

EXPOSURE 
Gates/markers: aperture = 7.5 µm, e-gun potential = 30 kV, 
field size = 50/400 µm , step size = 1/6 nm, dose = 600/360 
µAs/cm2 

DEVELOPING MIBK : IPA : MEK = 1 : 3 : 1,3%, 75’’ + rinse in IPA, 15’’ 

EVAPORATION Ti/Au = 5/15 nm 

LIFT-OFF Acetone 

CLEANING IPA 
N

W
 T

RA
N

SF
ER

 

SPIN-COATING 
Resist: EL-9, 6000 rpm, 60‘‘, ramp = 6, for gap = 260 nm; 
EL-9:EL [1:1], 4000 rpm, 60‘‘, ramp = 6, for gap = 100 nm; 
EL-9:EL [5:7], 4000 rpm, 60‘‘, ramp = 6, for gap = 70 nm 

BAKING 175°C, 7’ 

MICRO-
MANIPULATION 

Make a glass needle: all four weights, distance: 6(3), 
T1=~65°C, T2=~69°C. 
Transfer and place the NWs above the finger gates 
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SPIN-COATING & 
BAKING 

Resist: EL-9, 3200 rpm, 45‘‘, ramp = 3; 175°C, 7’; 
PMMA 495, 4000 rpm, 45’’, ramp = 4; 180°C, 45’’; 
PMMA 950, 4000 rpm, 45’’, ramp = 4; 180°C, 45’ 

EB
L:

 E
LE

CT
RO

DE
S 

CLEAVING The SETs must be within 150 µm of the sample edge 

CLEANING IPA, 5’’ in US 

CAD Take pictures of the NW position, prepare the CAD 

EXPOSURE 
Small/big features: aperture = 10/120 µm, e-gun potential = 
20 kV, field size = 500/2000 µm, step size = 32/64 nm, dose = 
220 µAs/cm2 

DEVELOPING MIBK : IPA : MEK = 1 : 3 : 1,3%, 90‘‘ + rinse in IPA, 60‘‘ 

O2 PLASMA ETCHING Base p = 5x10-5 mbar, 16% O2 at 25 mbar, 30 W, for 45’’ 

SULFUR PASSIVATION 0.5 ml of 1.56 M (NH4)2Sx solution in 20 ml H2O, 50°C water 
bath for 5’ (position the chip upside-down) 

Ar PLASMA ETCHING Load the sample into the sputtering unit. Ar plasma for 3’ 

SPUTTERING Gas flow: 30 sccm, p = 7. 5x10-5 mbar, current = 0.15 A, Ti/Au 
= 5’/2’30’’ for 100 nm gap 

LIFT-OFF Acetone, 10’ 

CLEANING IPA, Ethanol, keep in liquid! 

CPD 8 cycles to exchange Ethanol with liquid CO2 

ANNEALING 150°C, 1’ + 250°C, 5’ 

Au-BONDING Glue the sample on the chip carrier with silver paint (for back-
gating). Avoid static discharge! 

 



D Distribution of QD Exciton
Energy Shifts

We analyze the distribution of energy shifts of PL lines from QDs located
in the same position along the NW length (within the laser detection spot),
and emitting in a spectral range of 30 meV, centered around 1.860 eV. This
relatively narrow energy window restricts our analysis to QDs with similar
size and composition. We consider the energy shift induced in the QDs by a
resonant mechanical excitation of the NW. In order to exclude the effect of
asymmetric energy modulation, due to the different response of the QD band
structure under compressive or tensile stress [47, 121], we consider energy
shifts only towards higher energies. The distribution of the data is plotted
in Fig. D.1(a).

The experimental result is compared to two different models for the spa-
tial distribution of the QDs in the shell of the NW. The first model, illustrated
in Fig. D.1(b), assumes QDs located at the apexes of the NW hexagonal
cross-section. The histogram in Fig. D.1(c), instead, results from a model of
QDs uniformly distributed along the shell perimeter.

The experimental distribution conforms more closely to the model of QDs
located at the apexes of the cross-section. Though not conclusive, this anal-
ysis lends support to the interpretation of the QD spatial distribution in our
NW structures originally given by Heiss et al. [36] and recently confirmed
by Fontana et al. [115]. The observed deviations from such a model can
be explained as weak fluctuations of size and composition of the analyzed
QDs [122], and to different distances from the center of the cross-section.
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Figure D.1 Distributions of energy shifts. (a) Experimental distribution of energy shifts
for QDs emitting within a 30-meV spectral range and located at the same position along
the NW length. (b) Model distribution for QDs located at the apexes of the NW shell. (c)
Model distribution for QDs uniformly distributed along the shell perimeter. The two model
distributions are normalized to the total exciton count of the experimental analysis.
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D., Fontcuberta i Morral, A. and Poggio, M. Nonlinear motion and me-
chanical mixing in as-grown GaAs nanowires. arXiv:1406.5961 (2014).
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Abstreiter, G., Peiró, F., Morante, J. R. and Fontcuberta i Morral,
A. Long range epitaxial growth of prismatic heterostructures on the
facets of catalyst-free GaAs nanowires. Journal of Material Chemistry
19, 840 (2009).
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