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Abstract

During gene expression, transcription initiation marks the first step towards synthesis of
functional proteins. Expression levels of specific types of RNA molecules in the cell de-
pend on the underlying genotype of the promoter sequence. Prediction of expression levels
from the promoter sequence alone can have important implications for the design of arti-
ficial promoters. In this work, we explored promoter determinants that cause differences
in expression levels and tracked how a certain level can be reached by a directed evolution
experiment in F.coli . Promoter sequences were evolved from a million random sequences
with selection on expression level and high mutation rate. Mapping of expression pheno-
types to the underlying promoter genotypes revealed what sequence features determine the
rate of transcription. If no differential expression is required, incorporation of ¢’ binding
sites allows expression. However, predicted affinity of ¢ to bind to a promoter sequence
in different promoter contexts is not explanatory in terms of expression levels, suggesting
that other sequence features determine the rate of transcription. Furthermore, separation
of functional promoter sequences to non-regulatory sequences is promoted by high AT con-
tent as well as preference of generally longer promoter sequences. Recovery of an essential
missing gene function can also be obtained by overexpression of other genes present in the
genome by changing the strength of 07 binding to the promoter sequence. Small changes in
the expression level were shown to have a severe impact on the fitness of the organism. The
amount of deviation away from the optimal expression level in clonal promoter populations
has been shown to depend on the promoter’s genotype. We are presenting an evolutionary
model to explain under which regulatory settings selection favors high variance in expression

levels between cells.






Chapter 1

Introduction

1.1 The importance of gene regulation in bacteria

Gene regulation is a fundamental and essential process that is present in all organisms
and allows cells to alter their endogenous RNA and protein concentrations. Variations in
the concentrations can be achieved by changes in the transcription and translation rates.
Individual promoter activities span a wide range and gene regulation allows promoters to be
active only in specific conditions, e.g. such that a metabolic enzyme will only be expressed
in the presence of a specific carbon source like lactose (Jacob & Monod, 1961). The ability
to control the expression of RNA and protein molecules that are only needed in certain

conditions saves energy.

Gene expression is as a dynamic process consisting of multiple steps, with various layers
for control. One of the keystones in molecular biology was the postulation of its central
dogma by Crick in 1958 (Crick, 1958, Crick, 1970), describing the flow of genetic informa-
tion in a cell. Before a protein gets expressed, it passes several control check points and
modification steps. The amount of protein in the cell can be quantitatively described by
a thermodynamic model, incorporating transcription and translation rates as well as RNA
and protein degradation rates (Swain et al., 2002). The main determinant of translational
efficiency and thus translation rate is the ribosomal binding site (RBS) upstream of the
translational start site (Lee et al., 2013). ‘AGGAGG’ is the consensus sequence found in
E.coli (Vimberg et al., 2007) and is known to influence ribosomal binding positively. Also,
the spacing between the RBS and translational start play a role in the translation initia-
tion rate (Vellanoweth & Rabinowitz, 1992). Secondary structure and folding of the RNA,
especially around the RBS, can lower translation rate (Salis et al., 2009), and this leads
to avoidance of nucleotides around the translation start site complementary to the RBS
(Molina & van Nimwegen, 2008). Codon usage can influence translation elongation, thereby
affecting expression level (Roymondal et al., 2009, Welch et al., 2009) and the favorite start
codon ‘ATG’ used in F.coli creates a positive effect on translation efficiency (Vellanoweth &

Rabinowitz, 1992). Rare codons are preferred at the N-terminus for highly expressed genes,
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most probably because of reduced RNA secondary structures in this area (Goodman et al.,
2013).

Besides regulation of transcription and translation rate, RNA and protein amounts are
also determined by RNA and protein half lives and protein degradation (Maurizi, 1992).
Synthesized proteins are generally stable (Goldberg & John, 1976) and have much longer
half lives than the generation time in F.coli . With generation times in favorable growth
conditions of only around 20 minutes in FE.coli (Wang et al., 2010), most proteins will be
diluted by the growth rate and not degradation of the proteins themselves. In contrast
to proteins, RNAs in FE.coli have very short half-lives with a median of only 3.7 minutes
(Bernstein et al., 2004).

The ability to control gene expression offers the possibility to respond dynamically to
changing environments. Bacteria are often faced with changing environments over time,
and for genes that are only needed in specific conditions, differential gene expression is
favorable. The ability to change the (expression) phenotype over time in response to the
environment is called ‘phenotypic plasticity’ (Price et al., 2003). In bacteria, this is helped
by the organization of genes into operons (Jacob & Monod, 1961) allowing co-regulation of
genes. In order for bacteria to change their expression profile under external stimuli, signals
have to be integrated by, for instance, a sensor kinase (Krell et al., 2010, Stock et al., 2000)
and transmitted by a response regulator to change the transcriptional program. Single cell
organisms like bacteria are especially susceptible to changes in their surrounding environment
(Boor, 2006) and are able to react upon small changes by changing their transcriptional

profile.

1.2 Mechanisms of gene regulation in bacteria

The first step in protein expression from DNA is the initiation of transcription upstream
of the translational start site. Being the first link in the expression chain, gene expression
levels in bacteria are mainly determined by the rate of transcription initiation (Lloyd et al.,
2001). Given that the number of molecules involved in the transcriptional regulation of genes
is small, molecules involved in transcriptional regulation have to be shared and correctly
distributed. Promoter sequences particularly compete for binding of the RNA polymerase
(RNAP) and do so by attracting it with binding sites for the sigma subunits of the RNAP
holoenzyme (Maeda et al., 2000). Attractiveness of the promoter sequence for RNAP binding
changes across conditions as specific transcription factors promoting or preventing RNAP
binding alter their activity profile over environments (Rolfe et al., 2012).

Transcription factors change into the active state by modifications like phosphorylation
(Re et al., 2002) or oligomerization (Myers et al., 2013). Most factors bind their target genes
with their effector molecules bound (Balderas-Martinez et al., 2013), which enables fast
switching to their active mode instead of producing transcription factors upon stimulation.

Regulatory proteins can facilitate initiation of transcription (activators) or lower the rate of
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transcription (repressors). Many factors affect in both modes of control as dual regulators,
depending on the target gene they are acting on (Balderas-Martinez et al., 2013, Salgado
et al., 2004).

Epigenetic modifications of DNA can also alter the interaction between DNA and the
binding proteins, which is mainly achieved by methylation in bacteria (Casadests & Low,
2006).

1.3 Gene expression is a stochastic process

The expression phenotype observed is determined by the promoter genotype, the environ-
ment the cell is faced with, and the internal state the cell finds itself in. Additionally,
there is a noise component introducing variation in the phenotypes observed (Raj & van
Oudenaarden, 2008). Gene expression is a stochastic process (Elowitz et al., 2002, Raser
& O’Shea, 2005, Cai et al., 2006, McAdams & Arkin, 1997, Kaern et al., 2005) due to the
randomness associated with individual reactions during gene expression, limiting its preci-
sion. This implies that a population of genetically identical cells show inter-cell variation
in the number of gene products observed in a particular environment (Elowitz et al., 2002).
The reaction kinetics of the processes of transcription and translation should be described
using a stochastic rather than a deterministic model (Munsky et al., 2012) to account for
the uncertainty involved. As molecules involved in the gene expression process are small
in number, stochastic effects can play a crucial role. For instance, each promoter sequence
has a certain probability to be transcribed in a given condition that depends, for exam-
ple, on the concentration of RNAP molecules in the cell. RNAP molecules diffuse in the
three-dimensional cell space and every now and then bind to promoter regions and initiate
transcription. Under the assumption that the variation in average protein number (p) follows
a Poisson distribution, variance af, equals (p) (Arriaga, 2009, Thattai & van Oudenaarden,
2001). Following Poisson behavior, the squared coefficient of variation % (CV?) scales with
é. Deviations from this behaviour (Bar-Even et al., 2006, Swain et al., 2002) reveal that the
stochasticity of biochemical reactions during expression are not the only sources for variation
observed, specifically for high expression (Taniguchi et al., 2010). The total noise measured

2
int

CVZ, is composed of the sum of an intrinsic component CV

Cvgxt
the number and activity of cellular components involved in gene expression (Swain et al.,
2002, Raser & O’Shea, 2004, Elowitz et al., 2002, Raser & O’Shea, 2005, Kaern et al., 2005).

Expression of each gene exhibits a certain level of total noise in a given environment

and an extrinsic component

(Swain et al., 2002). Extrinsic noise arises from the heterogeneity between cells in

(Silander et al., 2012) and is reproducibly measurable, showing that the noise associated with
each gene is a property of the sequence underlying its regulation (Newman et al., 2006, Bar-
Even et al., 2006, Silander et al., 2012, Raser & O’Shea, 2004, Blake et al., 2003, Golding
et al., 2005, Carey et al., 2013). A strong relationship between mean protein levels (p)

and their variations are observed across different taxa, including deviations from the general
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trend as well (Newman et al., 2006, Bar-Even et al., 2006, Silander et al., 2012, Taniguchi
et al., 2010, Carey et al., 2013).

Genes expressing at a similar level but showing substantially different levels of noise raise

the question as to why they differ.

One common explanation for the noise differences observed is that genes important for
growth have experienced selection for lowering their noise levels. Growth rate can depend
on expression level of genes, as overexpression of genes can be a costly enterprise (Wagner,
2005, Shachrai et al., 2010). On the other hand, underexpression of genes important for
growth can also lead to a reduction in growth rate. Growth rate and expression level are thus
directly intertwined (Babu & Aravind, 2006, Dekel & Alon, 2005, Fong et al., 2005, Rowley
et al., 1992). This makes expression level a direct target of selection: gene expression level
is a phenotypic trait that is selected upon (Rifkin et al., 2003, Lemos et al., 2005, Gilad
et al., 2006). That is why different genes exhibit a wide range of expression levels when
measured using promoter-fluorescence reporter gene fusions (Silander et al., 2012). If gene
expression level is subject to natural selection, any variation away from the optimum level
decreases the fitness of an individual cell. On the population level, fitness decreases with
the amount of variance observed away from the optimum. Selection has indeed been shown
to minimize noise levels (Lehner, 2008, Fraser et al., 2004, Wang & Zhang, 2011). Genes
essential for the growth of an organism in defined conditions have been shown to exhibit less
variation in their expression levels (Silander et al., 2012, Wang & Zhang, 2011, Dong et al.,
2011, Newman et al., 2006, Li et al., 2010). Also, noise was considerably lower for genes
that were highly conserved across taxa, as well as for genes belonging to certain functional
categories like building block biosynthesis (Silander et al., 2012) such as synthesis of amino
acids or nucleotides and genes known to be dosage-sensitive (Lehner, 2008). However, fitness
of individuals is not affected by variation in the expression of all genes. The promoter

architectures of these genes may evolve without taking into consideration their noise levels.

At the same time, there is also evidence that selection acted to increase the noise levels
of some genes. Functional categories associated with these genes are, for instance, stress re-
sponse and energy metabolism (Silander et al., 2012). In environments fluctuating over time,
noise might be considered an adaptive trait (Kaern et al., 2005, Zhang et al., 2009, Kussell &
Leibler, 2005) as sensing mechanisms are more cost intensive to maintain and have a longer
response time. The stochastic switching of the phenotype is a phenomenon known as ‘bet-
hedging’ (Beaumont et al., 2009, Haccou & Iwasa, 1995, Thattai & van Oudenaarden, 2004).
Populations that have an selective advantage by division of labor can also show elevated levels
of phenotypic noise. During infection of Salmonella Typhimurium, self-destructive cooper-
ation of a subpopulation laid the foundation for a successful infection (Ackermann et al.,
2008).

The third possible explanation is that most genes try to lower their noise levels but due
to other traits they are selected upon, selection on their noise levels becomes less important.

Genes that show a high variability in their expression levels across conditions (with high
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phenotypic plasticity) tend to have higher levels of noise associated with their expression
levels (Lehner, 2010, Baji¢ & Poyatos, 2012). Incorporation of transcription factor binding
sites into the promoter region generate dependencies between the regulating factor and its
target gene. This might constitute another unavoidable source of variation introduced in the
gene expression level (Woo & Li, 2011, Sanchez et al., 2011).

If variability in expression levels is subject to natural selection or only a side-effect of

other evolutionary forces has not been fully evaluated.

1.4 Evolution of gene regulation

The availability of thousands of sequenced bacterial genomes has sped up our understanding
of forces in the evolution of gene regulation in bacteria (McAdams et al., 2004). Evolution
of regulatory regions besides coding regions was observed early on (King & Wilson, 1975)
and has been proven to be adaptive (Blank et al., 2013, Wray et al., 2003, Wray, 2007, Gilad
et al., 2006). Genetic changes in the regulatory region of a gene can evoke changes in the
regulation that can be selected upon. These changes may allow a gene to react appropriately
on changes in organismal development (Wray, 2007, King & Wilson, 1975) or organismal
ability to respond to changes in the environment. Innovation of novel regulatory function
is important, as innovation of novel gene functionality itself and and evolves from a given
DNA sequence.

Gene and regulatory functionality may evolve from random, non-functional sequences
(Carvunis et al., 2012, Tautz & Domazet-Loso, 2011, Kaessmann, 2010, Cai et al., 2008, Tsai
et al., 2012). As new genes in bacteria are acquired via mechanisms like horizontal gene
transfer or gene duplications (Ochman et al., 2000, Serres et al., 2009), new regulation may
have to evolve de novo as well. Moreover, bacteria facing new environments may have to
evolve novel functional regulation. If the regulatory sequence of a gene evolves new binding
sites for transcription factors present in the genome, then the expression level of the gene
becomes a function of the concentration or activity of the transcription factor regulating its
expression.

Providing binding sites for transcription factors allows differential expression of the target
gene over time. In the best case scenario, transcription levels of the gene that are most
beneficial can be tracked over all environments the bacterium finds itself in. However, there
are limitations to the precision of tracking the ideal gene expression level. FEach promoter
can only evolve binding sites for transcription factors encoded in the genome, or evolve a a
new factor that is able to track the environmental needs. It has generally been observed,
that bacteria living in more complex environments tend to have more sigma factors (Kill
et al., 2005). The complexity of the environment is thus shaping the complexity of regulatory
interactions observed in an organism (McAdams et al., 2004). This is also reflected in the
number of transcription factors encoded in bacterial genomes: with increasing complexity of

the genome in terms of gene numbers, the need for transcription factors grows to the power
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of two and not linearly (van Nimwegen, 2003). Besides evolution of novel binding sites in
promoter sequences, novel transcription factors can evolve or get lost from the genome. As
only presence of both a factor and its regulated site cause changes in the phenotypic state
of the cell, these entities usually co-evolve (Hershberg & Margalit, 2006).

Evolutionary turnover of transcription factors across species gives us an idea about the
speed of evolution at the regulatory versus the coding level. Although traces of conservation
of transcription factors across genomes are present (Rajewsky et al., 2002), transcription
factors generally evolve faster than their target genes (Lozada-Chévez et al., 2006), resulting
in less conservation (Babu & Aravind, 2006, Babu et al., 2007).

1.5 Outline of the thesis

The work presented highlights several aspects of the molecular evolution of transcriptional

regulation.

Limitations in the precision of transcription rate regulation are being discussed in Chap-
ter 2 (Limited regulatory accuracy implies selection for noisy gene expression). Variation
in expression levels between cells connected with a single regulatory region are under selec-
tion. The Chapter illustrates that the two concepts of noise-minimization (Lehner, 2008)
and noise-favoritism (Kussell & Leibler, 2005) are not mutually exclusive but connected in
a continuous space depending on the actual regulatory abilities of the organism. Selection
for noise-incorporation in the promoter sequence is presented as a strategy to overcome reg-

ulatory incapacities that may be achieved by coupling to noisy transcription factors.

Chapter 3 (¢ binding is a prerequisite for expression but not predictive for transcript
levels) presents minimal requirements for a DNA sequence to be regulatory functional. Geno-
typic traits are being discussed that give rise to the expression phenotypes observed. Pre-
diction of expression levels from a diverse set of promoter sequences alone is a difficult task,

that requires more information than only the binding strength of sigma factors.

In Chapter 4 (The predictability of molecular evolution during functional innovation) it
becomes evident that mutations in regulatory regions are more frequent than expected from
their occurrence in the genome in the recovery of lost functionality. Many missing metabolic
functions can be recovered by overexpression of other genes, which is mainly achieved by

nucleotide changes in the sigma binding sites.
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2.1 Abstract

Although it is often tacitly assumed that gene regulatory interactions are finely tuned, how
accurate gene regulation could evolve from a state without regulation is unclear. Moreover,
gene expression noise would seem to impede the evolution of accurate gene regulation, and
previous investigations have provided circumstantial evidence that natural selection has acted
to lower noise levels. By evolving synthetic E.coli promoters de novo, we here show that,
contrary to expectations, promoters exhibit low noise by default. Instead, selection must
have acted to increase the noise levels of highly regulated F.coli promoters. We present
a general theory of the interplay between gene expression noise and gene regulation that
explains these observations. The theory shows that propagation of expression noise from
regulators to their targets is not an unwanted side-effect of regulation, but rather acts as a

rudimentary form of regulation that facilitates the evolution of more accurate regulation.

2.2 Introduction

Studies of gene expression noise in several different model organisms have shown that the
promoters of some genes exhibit much more transcriptional noise than others (Newman
et al., 2006, Silander et al., 2012, Carey et al., 2013). It is unclear, however, how these
differences in noise levels have been shaped by natural selection. On the one hand, it can be
argued that in each condition there is an optimal expression level for each protein, such that
variations away from this optimal level are detrimental to an organism’s fitness, implying that
selection will act to minimize noise. Indeed, many studies have used circumstantial evidence
to suggest that selection generally acts to minimize noise (Newman et al., 2006, Silander
et al., 2012, Lehner, 2010, Lehner, 2008, Barkai & Shilo, 2007). In this interpretation, genes
with lowest noise have been most strongly selected against noise, whereas high noise genes
have experienced much weaker selection against noise. On the other hand, gene expression
noise generates phenotypic diversity between organisms with identical genotypes, and there
are well-established theoretical models showing that such phenotypic diversity can be selected
for in fluctuating environments (Bull, 1987, Kussell & Leibler, 2005). In addition, there is
empirical evidence that selection has acted to increase expression noise in some cases (Blake
et al., 2006, Bishop et al., 2007, Ackermann et al., 2008, Zhang et al., 2009). It is thus
possible that some of the genes with elevated noise may have been selected for phenotypic

diversity.

2.3 Main text

In order to assess how natural selection has acted on the transcriptional noise of promoters,
it is critical to determine what default noise levels would be exhibited by promoters that
have not been selected for their noise properties. To address this, we evolved a large set

of synthetic F.coli promoters de novo in the laboratory using an experimental protocol in
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Figure 2.1: Experimental evolution of functional promoters de novo. a: We created an initial library of
approximately 10° unique synthetic promoters by cloning random nucleotide sequences, of approximately 100 — 150
base pairs (bp) in length, upstream of a strong ribosomal binding site followed by an open reading frame for GFP as
used to quantify the expression of native E. coli promoters (Zaslaver et al., 2006), and transformed this library into
a population of cells (Materials and Methods). We evolved populations of synthetic promoters by performing 5
rounds of selection and mutation on this library. In each round we used fluorescence activated cell sorting (FACS) to
select 2 * 10° cells that lie within a gate comprising the 5% of the population closest in fluorescence to a given target
level. The plasmids were isolated from the selected cells and PCR mutagenesis was used to introduce new genetic
variation into the promoter regions. We then re-cloned the mutated promoters into fresh plasmids, and transformed
them into a fresh population of cells. We performed this evolutionary scheme on three replicate populations in which
we selected for a target expression level equal to the median expression level (50th percentile) of all native E. coli
promoters, and three replicate populations in which we selected for a target expression level at the 97.5th percentile
of all native promoters (referred to here as medium and high expression levels, respectively). b: Changes in the
fluorescence distribution for one evolutionary run selecting for medium target expression (top) and one evolutionary
run selecting for high target expression (bottom). The curves show the population’s expression distributions before
selection, with the numbers above each curve indicating the selection round. The colored bars at the top indicate
the FACS gates that were used to select cells from the populations at each corresponding round. c: Examples of
fluorescence distributions for individual clones obtained after five rounds of evolution. Microscopy pictures of two
individual clonal promoter populations are shown as insets. d: For each native E. coli promoter (blue) and synthetic
promoter (red) the mean (x-axis) and variance (y-axis) of log-fluorescence intensities across cells were measured using
flow cytometry. Fluorescence values are expressed in units of number of GFP molecules. The green curve shows the
theoretically predicted minimal variance as a function of mean expression (Supplementary Text). The insets show
the log-fluorescence distributions for two example promoters (corresponding to the larger dark blue and light blue
dots). e:, Cumulative distributions of excess noise levels of native (blue) and synthetic (red) promoters.
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which promoters were selected on the basis of the mean expression level they conferred, while
experiencing virtually no selection on their noise properties (Fig. 2.1 and Supplementary
Text). Starting with an initial library of 100-150 base pair long random sequences, we
performed five rounds of mutation and selection, resulting in a genetically diverse collection of
functional promoters that conferred expression close to a pre-specified target level (Fig. 2.1A-
C and Fig. S2.1). We selected a subset of 479 synthetic promoters from the third and fifth
rounds, choosing equal numbers of promoters from each of six replicate lineages we evolved
(Fig. 2.1; Materials and Methods). We then used flow cytometry, as described previously
(Silander et al., 2012), to measure the distribution of fluorescence levels per cell for each

synthetic promoter, as well as for all native F.coli promoters (Zaslaver et al., 2006).

Observing that the fluorescence distributions across cells were well approximated by log-
normal distributions (Fig. 2.1C), we characterized each promoter’s distribution by the mean
and variance of log-fluorescence, defining the latter as the promoter’s noise level (Fig. 2.1D).
This definition of noise is equivalent to the square of the coefficient of variation whenever
fluctuations are small relative to the mean, which applies to most promoters. Using quan-
titative Western blotting and qPCR we confirmed that the mean fluorescence levels were
directly proportional to GFP molecule numbers and that protein levels were determined
primarily by mRNA levels, demonstrating that fluorescence reflected transcriptional activity
(Fig. S2.2 and Fig. S2.3 and Supplementary Text). Noise levels were reproducible across
biological replicates (Fig. S2.4), and noise levels estimated using microscopy were consistent

with those measured by flow cytometry (Fig. S2.5).

As expected (Bar-Even et al., 2006, Newman et al., 2006) we observed a strong relation-
ship between the mean and variance of expression levels of each promoter (Fig. 2.1D). In
particular, we observed a strict lower bound on variance as a function of mean expression.
This lower bound is well described (Fig. 2.1D green curve) by a simple model that incorpo-
rates background fluorescence, and intrinsic and extrinsic noise components (Taniguchi et al.,
2010) (Supplementary Text). We defined the excess noise of a promoter as its variance above
and beyond this lower bound, allowing us to compare the noise levels of promoters with differ-
ent means (Fig. S2.6). We found, surprisingly, that most of the synthetic promoters exhibited
noise levels close to the minimal level exhibited by the native promoters (Fig. 2.1D). Addi-
tionally, a substantial fraction of native promoters exhibited excess noise levels significantly
greater than the synthetic promoters (Fig. 2.1E and Fig. S2.6 and Fig. S2.7). For example,
only 26.1% of the synthetic promoters exhibited excess noise above 0.05, compared to 41.6%
of the native E.coli promoters (p < 7.7 * 107! hypergeometric test). Given that the syn-
thetic promoters were evolved from random sequence fragments, and had not been selected
on their noise properties (Supplementary Text), we concluded that constitutively expressed
FE.coli promoters exhibit low excess noise levels by default. Importantly, this implies that
the native promoters with elevated excess noise must have experienced selective pressures

that caused them to increase their noise.
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Figure 2.2: Promoters with elevated noise exhibit high expression plasticity and large numbers
of regulatory inputs. a: Native promoters were sorted by their excess noise x and, as a function of a
cut-off on z (horizontal axis), we calculated the mean and standard-error (vertical axis) of the variation in
mRNA levels across different experimental conditions (data from http://genexpdb.ou.edu/) of all promoters
with excess noise larger than x. b: Promoters were sorted by excess noise x as in panel a, and mean and
standard-error of the number of known regulatory inputs (vertical axis, data from RegulonDB (Salgado et al.,
2013)) for promoters with excess noise larger than z is shown. ¢: Cumulative distributions of excess noise
levels of synthetic promoters (red) and native promoters without known regulatory inputs (black), with one
known regulatory input (green), and with two or more known regulatory inputs (purple).

To understand how selection might have acted to increase noise, we first investigated
whether excess noise was associated with other characteristics of the promoters. Previous
studies in S. cerevisiae have shown that promoters with high noise tend to also show high ex-
pression plasticity, i.e. large changes in mean expression level across environments (Newman
et al., 2006). Although we did not clearly observe this association in data from our previous
study (Silander et al., 2012), a recent re-analysis of this data did uncover a significant asso-
ciation between expression plasticity and noise (Singh, 2013), which we confirmed using our
present data (Fig. 2.2A). In addition, we found that there is an equally strong relationship
between excess noise and the number of regulators known to target the promoter (Salgado
et al., 2013) (Fig. 2.2B). In particular, whereas the excess noise levels of promoters without
known regulatory inputs are very similar to those of our synthetic promoters, promoters
with one or more regulatory inputs have clearly elevated noise levels (Fig. 2.2C).

We next considered what the origin of this general association between noise and regula-
tion could be. It is important to recognize that, when a promoter couples to a transcription
regulator by evolving cognate binding sites, the expression of the associated gene will be
affected in two separate ways. First, the gene’s mean expression will become correlated
with the activity of the regulator in a condition-specific manner. Second, in addition to
this ‘condition-response’ effect, the noise in the expression or activity of the regulator will
be propagated to the target gene. This ‘noise-propagation’ effect will cause an increase in
expression noise of the target (Thattai & van Oudenaarden, 2001). Based on this noise-
propagation effect, and in analogy with fluctuation-dissipation theorems from physics, it
has been proposed that elevated expression noise is simply an unwanted but unavoidable
side-effect of regulation (Lehner & Kaneko, 2011).

However, there is no reason to assume that the condition-response and noise-propagation
effects must always be in selective conflict with each other. Several theoretical treatments
have shown that phenotypic variability may be selectively beneficial when environments

change in ways that cannot be accurately sensed or are too rapid for organisms to respond
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(Bull, 1987, Haccou & Iwasa, 1995, Kussell & Leibler, 2005). Although such theoretical
studies are typically less concerned with the mechanisms by which such increased noise
could be genetically encoded, the noise-propagation effect is one obvious candidate mech-
anism. It would thus seem that, at least in some situations, the condition-response and
noise-propagation effects could act in concert. To quantify how selection might act on the
combination of these two effects, we developed a general model that considers a gene whose
optimal expression levels vary across conditions, and calculated how the condition-response
and noise-propagation effects of coupling to a given regulator conspire to affect fitness (Sup-
plementary Text). Although our model applies very generally (Supplementary Text), we

illustrate it here using a simple scenario (Fig. 2.3).

The expression of an unregulated promoter is characterized by a distribution with a given
mean and variance (Fig. 2.3A, blue curve). We assume that the organism experiences differ-
ent environments and that, in each environment, cells with expression levels within a certain
range are selected. In the simple scenario of Fig. 2.3 there are 3 environments (red, gold,
and green), with the green environment requiring up-regulation of the expression and the
red environment requiring down-regulation of the expression (Fig. 2.3A). The fitness in each
environment corresponds to the fraction of cells with expression levels within the selected
range, i.e. the unregulated promoter has reasonably high fitness in the gold environment
but very low fitness in the green and red environments. Since the organisms experience all
3 environments, a poor overlap between the expression distribution and the selected range

in any one environment leads to low overall fitness.

To improve fitness, a promoter may evolve binding sites for an existing regulator, such
that its expression becomes dependent on the activity of this regulator, which will generally
vary across environments. Our modeling shows that the resulting fitness depends only on
2 effective parameters of the regulator: The correlation R between the condition-dependent
expression levels (or, more generally, activities) of the regulator and the desired levels of
the promoter, and the signal-to-noise parameter S that characterizes the accuracy of the

regulator’s expression.

As intuitively expected, the highest fitness is obtained when coupling to an accurate reg-
ulator with high signal-to-noise S, i.e. whose activities correlate precisely with the desired
expression levels (cyan dot in Fig. 2.3B and Fig. 2.3C)F). The resulting expression distri-
butions of the promoter accurately track the desired levels, with only moderately increased
noise in the promoter’s expression (Fig. 2.3F). However, regulators that track the desired
expression levels of the promoter with such high accuracy may often not be available. In-
terestingly, coupling to a noisy regulator whose activity is entirely uncorrelated with the
desired expression levels (blue dot in Fig. 2.3B and Fig. 2.3E,H) also substantially increases
fitness. In this regime, the increased fitness results exclusively from the noise-propagation
mechanism. Surprisingly, coupling to the uncorrelated noisy regulator (blue dot in Fig. 2.3B
and Fig. 2.3E,H) outperforms coupling to a moderately correlated regulator (magenta dot
in Fig. 2.3B and Fig. 2.3D,G). This is due to the fact that the magenta regulator is not
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Figure 2.3: A model of the evolution of gene expression regulation in a variable environment.
a: Expression distribution of an unregulated promoter (blue curve) and selected expression ranges in 3
different environments, i.e. the red, gold, and green dashed curves show fitness as a function of expression
level in these environments. Although our model applies more generally, for simplicity we here visualize
selection as truncation selection (i.e. a rectangular fitness function). The fitness of the promoter in the gold
environment is proportional to the shaded area. b: Contour plot of the log-fitness of a promoter that is
optimally coupled to a transcription factor (TF) with signal-to-noise ratio S and correlation R. Contours
run from —0.5 at the top right to —7.5 at the bottom right. The three colored dots correspond to the TFs
illustrated in panels c-h. The red curve shows optimal S as a function of R. c-e: Each panel shows the
expression distributions of an example TF across the 3 environments (red, gold, and green curves). The
corresponding values of correlation R and signal-to-noise S are indicated in each panel. f-h: Each panel
shows the expression distributions across the 3 environments for a promoter that is optimally coupled to the
TF indicated in the inset. The shaded areas correspond to the fitness in each environment. The total noise
levels of the regulated promoters are also indicated in each panel. The unregulated promoter has total noise
Otot = 0.1.
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noisy enough given its correlation R, i.e. lowering S for this TF would result in an increase
of the promoter’s noise, and this would lead to an increase in fitness in the green and gold
conditions (see Fig. 2.3G). This illustrates that regulators may be under selection to be-
come noisy themselves and the red curve in Fig. 2.3B shows the optimal signal-to-noise S
of a regulator as a function of its correlation R. Whereas to the right of this curve the
noise-propagation is too large, and too small to the left of it, along the curve the condition-
response and noise-propagation effects are optimally acting in concert. This clarifies how
accurate gene regulation can evolve smoothly, starting from a noisy regulator with low R
and S whose benefits come entirely from the noise-propagation, by increasing both R and
S in small steps, until reaching highly accurate regulation with high R and .S for which the
condition-response effect dominates.

Our model also predicts how the final noise of a promoter depends on the variance in its
desired expression levels (Supplementary Text). In particular, assuming the best available
regulator in the genome has a given correlation R with the desired levels, there will be a
critical variance such that below this variance the final noise will be equal to the noise of the
unregulated promoter, and above this critical variance the final noise of the promoter will
be proportional to (Fig. S2.8). That is, our model explains the observation that expression
noise increases with expression plasticity. Similarly, in our simple model the increase in
expression noise is directly due to coupling to regulators, such that our model also explains

the observed general association between expression noise and regulatory inputs.

2.4 Discussion

Because genotype-phenotype relationships for complex phenotypic traits are poorly under-
stood, it is often difficult to assess how observable variation in a particular trait has been
affected by natural selection. Here we have shown that by comparing naturally observed
variation in a particular trait with variation observed in synthetic systems that were evolved
under well-controlled selective conditions, definite inferences can be made about the selec-
tion pressures that have acted on the natural systems. In particular, by evolving synthetic
E. coli de novo using a procedure in which promoters are strongly selected on their mean
expression and not on their expression noise, we have shown that native promoters must
have experienced selective pressures that increased their noise levels. To account for this,
we have proposed a theoretical model that provides a simple mechanistic framework for un-
derstanding how selection can act to couple transcriptional regulators and target genes, and
which quantifies the parameter regimes in which we expect promoters to exhibit high levels
of noise. This framework vastly expands the evolutionary conditions under which novel reg-
ulatory interactions will be selected for; instead of assuming that the regulators and their
targets must evolve in a tightly coordinated fashion, the model shows that genes may often
benefit from coupling to regulators whose activities do not correlate with the gene’s expres-

sion requirements at all. In particular, the condition-response and noise-propagation effects
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of coupling to a regulator, rather than being in conflict with each other, may often act in
concert. Finally, our model shows quite generally that unless regulation is very precise, reg-
ulatory interactions that act to increase noise are beneficial. Thus, high levels of expression

noise can be expected whenever the accuracy of regulation is limited.

2.5 Materials and Methods

Ab initio promoter library construction from random sequences

We obtained chemically synthesized nucleotide sequences of random nucleotides 200 bp in
length (Purimex, Germany). Each sequence had defined 5" and 3’ ends to allow PCR
amplification. Within these constant regions, restriction sites for BamHI and Xhol were
present. The intervening sequence was made up of 157 bp of random nucleotides (5-
CCTTTCGTCTTCACCTCGAG-(N157)-GGGATCCTCTGGATGTAAGAAGG-3"). How-
ever, as coupling of base pairs during oligonucleotide synthesis is not always successful
and strand breaks can frequently occur in long oligonucleotides, many oligonucleotides were
shorter than 200 bp in length. We used PCR to generate double stranded DNA from the
single stranded oligonucleotides using forward and reverse primers matching the defined 5’
and 3’ ends. We gel-purified the double-stranded PCR product and double-digested it using
BamHI and Xhol. After column-purification, sequences were ligated into a version of the low-
copy plasmid pUAG66, which contains a gfpmut2 open reading frame downstream of a strong
ribosomal binding site (Zaslaver et al., 2006). The vector was modified to remove a weak o™
binding site present 24 bp upstream of the GFP open reading frame (two point mutations,
A—G and T—G, were introduced, changing the putative ¢ binding site from TAGATT to
TGGATG, with the consensus ¢™ binding site being TATAAT). The ligation was performed
using T4 DNA ligase (NEB) at 16°C for 24 hours. The ligation product was then column
purified and electroporated into F. coli DH10B cells. This protocol resulted in extremely

high transformation yields (approximately 10° individual clones per transformation).

Selection on expression level using flow cytometry

Cultures of transformed cells were regenerated for one hour in 1 mL SOC medium (Super
Optimal Broth supplemented with 20mM glucose) and afterwards 1mL SOC containing
50pug/ml kanamycin was added for overnight growth, ensuring that only cells containing
the plasmid could grow. These cultures were then diluted 500-fold (approximately 5 * 10°
cells in total) into M9 minimal media supplemented with 0.2% glucose and grown for 2.5
hours with shaking at 200 rpm. The distribution of GFP fluorescence levels was measured
for each culture using fluorescence activated cell sorting (FACS) in a FACSAria IIIu (BD
Biosciences), with excitation at 488nm and a 513/17nm bandpass filter used for emission.
We used this distribution of fluorescence values to designate a selection gate. The position
of the gate was determined by measuring the mean fluorescence of two reference promoters

(Zaslaver et al., 2006): gyrB which exhibits a mean expression level that is at the 50th
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percentile all E. coli promoters; and rpmB, which exhibits a mean expression level that is at
the 97.5th percentile of all E. coli promoters (Silander et al., 2012). For each of these reference
genes, the mean fluorescence level was measured, and a selection gate was constructed,
centered on this mean expression level, such that 5% of all clones in the population fell within
the gate. For each round of selection, we sorted 200’000 cells contained within this gate.
Sorted cells were then transferred to 4mL Luria Broth (LB) media (containing 50ug/ml
Kanamycin) and grown overnight. These cultures were stored supplemented with 7.5%
glycerol at —80°C for subsequent analysis.

For each expression level (i.e. reference gene), we evolved three replicate populations.
We refer to these as the medium expressers (those promoters selected based on the gyrB
reference gate) and high expressers (those promoters selected based on the rpmB reference

gate).

PCR mutagenesis

Following FACS-based selection on fluorescence, we introduced novel genetic variation into
the populations using PCR mutagenesis. We first re-grew the cells overnight and used this
culture to prepare plasmid DNA. We amplified the promoter sequences from these plasmids
using the GeneMorph IT Random Mutagenesis Kit (Stratagene) with the primers referred to
previously that matched the defined regions of the promoters. We used 0.01 ng of DNA as
starting material and 35 cycles for amplification. This resulted in a mutation rate of around
0.01 per bp (such that we expect that in 200 bp, 95% of the promoters will contain between
zero and four mutations). These PCR products were then digested with Xhol and BamHI,
ligated back into the vector, and again transformed into DH10B cells. We repeated this
entire process (selection, PCR mutagenesis, and transformation) five times in total. At this
point, the plasmid libraries of synthetic promoters were isolated and transformed into E. coli

K12 MG1655 for comparison to a library of native E. coli promoters (see below).

Quantification of fluorescence

To quantify fluorescence on a single-cell level, we used flow cytometry with a FACSCanto
IT (BD Biosciences), with excitation at 488nm and a 513/17nm band-pass filter used for
emission. We collected data for at least 50’000 events. We then gated this data as out-
lined in (Silander et al., 2012), identifying approximately 5000 cells most similar in FSC
and SSC. We then calculated the mean and variance in log-fluorescence using these cells,
using a Bayesian procedure that accounts for outliers (Supplementary Text). We randomly
selected 479 promoters from the evolved set (72 medium expressers and 72 high expressers
after 3 rounds of selection; 168 medium expressers and 167 high expressers after 5 rounds
of selection) and quantified mean and variance in fluorescence. We used the same measure-
ment procedures to calculate mean and variance for all promoters contained in a library of
E. coli promoters also placed upstream of the gfpmut2 open reading frame on the pUAG66

plasmid (Zaslaver et al., 2006). We refer to the promoters from this library as native E. coli
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promoters. For 288 promoters, we quantified fluorescence in three independent cultures and
found that both mean and variance in expression were reproducible across replicate biolog-
ical experiments (Fig. S2.4). Additionally, we sequenced 378 sequences from our set of 479
promoter sequences, which showed that even after five rounds of selection, the promoters
were quite diverse (Fig. S2.1). To confirm the sensitivity and accuracy of the FACS measure-
ments, we selected ten promoters and used fluorescence microscopy to measure their mean
and variance in fluorescence. The cells were grown in the same conditions described above,
placed on 1% agarose pad, and images were obtained using a CoolSNAP HQ CCD camera
(Photometrics) connected to a DeltaVision Core microscope (Applied Precision) with a UP-
lanSApo 100X/1.40 oil objective (Olympus). Image-processing was done in soft-WoRx v3.3.6
(Applied Precision) and fluorescence values were extracted based on DIC-image mediated
cell detection in MicrobeTracker Suite (Sliusarenko et al., 2011). For each cell, we calcu-
lated fluorescence per cell volume by summing all pixel values and dividing by the volume
of the cell as estimated by MicrobeTracker. Cells undergo substantial phenotypic changes
when they are put on agar, including changes in the distribution of cell sizes. Consequently;,
it is problematic to compare absolute variance measurements directly between FACS and
microscope. We therefore compared the relative noise levels of different promoters. The 10
selected native promoters consist of 5 pairs with almost identical mean expression values
(as measured by the FACS) but with noise levels that vary by different amounts. For each
of the 5 pairs, we calculated the ratio of the noise levels of the higher and the lower noise
promoter as measured by both the FACS and the microscope. As shown in Fig. S2.5, with
the exception of one pair of promoters that showed almost equal noise levels in the FACS
but a 50% difference in noise in the microscope, all other pairs showed good correlation of
the relative noise levels in the FACS and in microscope, confirming that relative noise levels

are similar in FACS and microscope measurements.

Quantitative Western analysis

To determine the correspondence between fluorescence intensities and absolute GFP numbers
per cell, eight individual promoter clones were grown in three biological replicates using the
same media conditions as in the experimental evolution. The cells were then re-suspended in
SDS sample buffer, heated for 5 minutes at 95°C, and proteins were resolved by 12% SDS-
PAGE. Quantification was done by loading a standard curve consisting of 10, 25, 50, 75,
and 100 nanograms of GFP (Clonetech, #632373). Proteins were transferred to a Hybond
ECL membrane (GE Healthcare, Life Sciences), which was then blocked in TNT (20 mM
Tris pH 7.5, 150 mM NaCl, 0.05% Tween 20) with 1% BSA and 1% milk powder. Detection
was performed with the ECL system after incubation with rabbit anti-GFP and polyclonal
pig anti-rabbit. Western intensities for each sample were extracted using ImagelJ (Fig. 52.2).
The number of cells loaded was estimated by calculating the relationship between OD600

and CFU counts. Details of the data analysis procedures are in the Supplementary Text.
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Correlating protein and RNA levels per cell by quantitative PCR

Native and evolved single-promoter populations were grown in three biological replicates by
diluting overnight LB cultures 500-fold into M9 media supplemented with glucose. These
cultures were grown for 2.5 hours, stabilized with an equal volume of RNA Later (Sigma-
Aldrich) and RNA was extracted using the Total RNA Purification 96-Well Kit (Norgen
Biotek Corp.) with on-column DNAse I digestion. Reverse transcription was done using
random hexamers and qPCR with TagMan probes and performed by Eurofins Medigenomix
GmbH (Germany). Three technical replicates were performed. The efficiency of the primers
and probes used were validated in a dilution series. Relative RNA levels per cell were
obtained by normalizing to the reference gene ihfB using a Bayesian procedure for integrating
data from the replicates and accounting for failed measurements (Supplementary Text).
The primers and probes used were: GFP forward primer: 5-CCTGTCCTTTTACCAG-
ACAA-3’; GFP reverse primer: 5’- GTGGTCTCTCTTTTCGTTGGGAT-3’; GFP probe:
5-TACCTGTCCACACAATCTGCCCTTTCG-3’, ihfB forward primer: 5-GTTTCGGC-
AGTTTCTCTTTG -3, ihfB reverse primer: 5- ATCGCCAGTCTTCGGATTA-3’, ihfB
probe: 5-ACTACCGCGCACCACGTACCGGA-3’).

Minimal variance as a function of mean expression and excess noise

In a simple model of gene expression in which there are constant rates of transcription,
translation, mRNA decay, and protein decay, the probability distribution for the number
of proteins per cell is a negative binomial with variance proportional to the mean (n):
var(n) = (b+1)(n), where the constant b is the ratio between the mRNA translation rate and
the mRNA decay rate, which is often referred to as ‘burst size’ (Shahrezaei & Swain, 2008).
However, in general there are also cell-to-cell fluctuations in the transcription, translation,
and decay rates, which are proportional to these rates themselves. These fluctuations lead
to an additional term in the variance var(n) which is proportional to the square of the mean:
var(n) = B{n) +02,(n)?, where (3 is a renormalized burst size and o2, is the relative variance
of the product of transcription, translation, and decay rates across cells (Supplementary
Text).

The total fluorescence in a cell (measured in units equivalent to number of GEP proteins)
Nmeas can then generally be written as: Nmeas = Mg + €4/ var(n), where ny, is background
fluorescence and € is a fluctuating quantity with mean zero and variance one. Assuming that

the fluctuations are small relative to the mean, we then find for the variance of the logarithm

var (10g[Mmeas)) = 02, <1—<”bg>>2+< b (1— Mbe )

nmeas nmeas) <nmeas>

of Nypens:

We fit this functional form to the minimum variance var (log[nmeas]) as a function of the

mean, with 02, = 0.025 and 3 = 450. We defined the excess variance as the difference
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between the measured variance and this fitted minimal variance. A more detailed derivation

is given in the Supplementary Text.

The FACS selection function

By comparing the distributions of the population’s expression levels before and after rounds
of selection (without intervening mutation of the promoters), we found that the proba-
bility that a cell with expression level x is selected by the FACS is well-approximated as
f(x|ps, 7) = exp [—%}, with g, the desired expression level and 7 the width of the
selection window. For the last 3 rounds of selection for medium expression, we estimated
7~ 0.03 and p, fluctuated slightly around an average value of u, =~ 8.1.

With this selection function, a promoter genotype that exhibits a distribution of expres-

sion values with mean p and standard-deviation ¢ has a fitness (fraction of cells selected in

the FACS) of

7-2 — 2
flu,olpe, ) = T2 g7 P l—%] : (2.1)

This estimated fitness function indicated that the fitness of promoter genotypes strongly
depends on their mean p and is almost independent of their excess noise. In addition,
applying additional rounds of selection of varying strengths to the population of evolved
promoters did not systematically alter their distribution of excess noise levels. Details of the

analysis of the FACS selection are in the Supplementary Text.

Model for the evolution of gene regulation in a fluctuating environment

Although the model we present can be extended to include the evolution of gene regulation
for multiple genes, for simplicity we focused on the evolution of a single gene and its promoter.
We assumed that the population experienced a sequence of different environments and that,
in each environment, the fitness of each organism is a function of its gene expression level.
We characterized the fitness function in each environment by two parameters: the desired
level p. that maximizes the fitness and a parameter 7 that quantifies how quickly fitness
falls away from this optimum and, for simplicity and analytical tractability, we assumed a
Gaussian form: f(x|u., 7) = exp [—%} Note that this is the same form as the FACS
selection function. Consequently, the fitness f(u, 0|, 7) of a promoter with mean p and
variance o2 is given by equation (2.1) as well, with . replacing j..

The total number of offspring that a promoter will leave behind after experiencing all
environments is given by the product of its fitness in each of the environments. Equivalently,
the log-fitness of a promoter is proportional to its average log-fitness across all environments.
We then find for the log-fitness:

(1 — (pe))? + var(pee)

1 72
elflmoll ==y o T3l8 [Ma] ’
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where (p.) is the average of the desired expression levels across environments, and var(z)
is the variance in the desired expression levels across conditions. If we do not consider
gene regulation, but simply optimize the promoter’s mean expression and noise level, then
we find optimal log-fitness occurs when pu = (u.) and 0* = 0 (when var(p.) < 72) or
0? = var(yu.) — 72 otherwise. That is, when the desired expression level varies more than the
width of the selection window, noise is increased so as to ensure the distribution overlaps
the desired levels across all conditions. This result is equivalent to previous results on the
evolution of phenotypic diversity in fluctuating environments (Bull, 1987).

To increase fitness, a promoter can evolve to become regulated by one of the regulators
existing in the genome. Instead of having a constant mean expression u, the promoter’s mean
expression will then become a function of the environment e: u(e) = p+ cre, where r, is the
mean expression (or more generally regulatory activity) of the regulator in environment e,
and c is the coupling strength. Since any gene will have some variability in its expression, we
assumed that the actual expression/activity of the regulator in environment e is Gaussian
distributed with a variance 0. Consequently, when coupled to the regulator, the promoter’s

total expression variance will become o2, = 02 + 02, and the log-fitness of the promoter

(it cre —pe)?) 1 i
log [f(u 0 ¢)] = - 2(72 + 02 + c202) 3 log 72+ 02 + c2o?

becomes:

Assuming that the basal expression pu is optimized to maximize log-fitness, i.e. u = (pu.) —

c(re), this log-fitness can be rewritten as:

1Y?%(1— X2 SX—-RY)? 1
log £, Y, 5, B)] = cons. — 0= X)L D og 4 X7
where X measures the coupling strength (X? = TC;J‘:EQ), Y is the expression mismatch that

measures how much the desired expression level varies across environments (Y2 = %), S
is the signal-to-noise of the regulator (S? = %(;)), and R is the Pearson correlation between
the desired expression levels y, and the activitgf levels r, of the regulator. Additional details
on this derivation and analysis of the behavior of the fitness function as a function of its

parameters are given in the Supplementary Text.

Analysis of excess noise against gene expression variation and regulatory inputs

We re-annotated the promoter fragments of (Zaslaver et al., 2006) by mapping the published
primer pairs to the E. coli K12 MG1655 genome. Of the 1816 promoter fragments, 1718
could be unambiguously associated with a gene that was immediately downstream, and the
1718 promoter fragments were associated with 1137 different downstream genes (for some
genes, there were multiple or repeated upstream promoter fragments). We used the operon
annotations of RegulonDB (Salgado et al., 2013) to extract, for each promoter, the set
of additional downstream genes that are part of the same operon as the first downstream

gene. We obtained known regulatory interactions between transcription factors and genes
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from RegulonDB and counted, for each F. coli gene, the number of transcription factors
known to regulate the gene. We defined the number of regulatory inputs of a promoter
to equal the average of the number of inputs for all genes in the operon downstream of
the promoter. We sorted promoters by their excess noise and, as a function of a cut-off on
excess noise level, calculated the mean and standard-error of the number of regulatory inputs
for all promoters with excess noise level above the cut-off. We obtained genome-wide gene
expression measurements from the Gene Expression Database (<http://genexpdb.ou.edu/
>). For each E. coli gene, we obtained 240 log fold-change values x corresponding to the
logarithm of the expression ratio of the gene in a perturbed and a reference condition. We
defined the variance in expression of a gene as the average of 2% across the 240 experiments.
We again sorted promoters by their excess noise and, as a function of a cut-off on excess noise
level, calculated the mean and standard error of gene expression variances for all promoters

with excess noise above the cut-off.
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Figure S2.1: Genetic diversity of 378 sequenced promoters, which were extracted from randomly selected
clones from the populations that were obtained after 3 and 5 rounds of selection. Sequences were clustered
using single-linkage based on 100, 95, or 90 percent sequence identity (left, middle, and right panel) and
the bar plots show the corresponding histograms of cluster sizes. The results indicate that the promoters in
the populations at the third and fifth rounds are highly diverse, deriving from many different initial random
sequences in the initial library.
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Figure S2.2: Mean log-fluorescence intensities as measured by FACS (horizontal axis) against estimated log
GFP molecules per cell (vertical axis) as estimated from quantitative Westerns (see Supplementary Text)
for 8 selected promoters. Error-bars were estimated from 3 replicates for the FACS measurements and 6
replicates for the GFP levels. The straight line shows the fit y = = + 1.06, which is equivalent to: GFP
molecules per cell = 2.88 * mean FACS intensity.
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Figure S2.3: Relationship between log protein levels as measured by GFP intensity in FACS (vertical axis)
and log mRNA levels (horizontal axis). The mRNA levels are estimated relative to the mRNA level of
reference gene ThfB. Error bars show plus and minus one standard-deviation of the posterior probability
distribution on mRNA levels (Supplementary Text). Black data points correspond to native promoters
and red data points to synthetic promoter. The straight line shows a linear fit with slope 1, i.e. the best
fit to a model where the protein level p is directly proportional mRNA level m, log(p) = ¢ + log(m), with
¢ = 7.06 (Supplementary Text).
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Figure S2.4: Comparison of three biological replicate FACS measurements of means and excess noise of
log-fluorescence for evolved E. coli promoters. The top 3 panels compare mean log-fluorescences across
3 replicates and the bottom 3 panels compare excess noise in log-fluorescences across 3 replicates. The
Pearson squared-correlation coefficients between pairs of replicate measurements are indicated at the top of
each panel.
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Figure S2.5: Relative noise levels (variance of the log-expression distribution) of 5 pairs of native promoters
that have very similar mean expression levels. Each dot correspond to one of the pairs of promoters and
shows the ratio of the noise level of the highest noise promoter to that of the lower noise promoter as
measured by FACS (horizontal axis) and by microscope (vertical axis). The blue line shows the line y = =.
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Figure S2.6: Mean log-fluorescence (horizontal axis) and excess noise levels (vertical axis), i.e. the different
between variance of log-fluorescence levels and the minimal variance at the corresponding mean, for all native
(blue dots) and synthetic (red dots) promoters. Both axes are in units of number of GFP molecules. Note
that, in contrast to raw variances in log-fluorescence, that show a clear dependence on mean log-fluorescence,
the excess noise levels show no dependence on mean.
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Figure S2.7: Cumulative distributions of excess noise levels for the native (blue) and synthetic promoters
(red). The left panel shows the cumulative distribution of excess noise for promoters whose mean log-
expression was less than log(18000) (corresponding to the medium expressing synthetic promoters), and
the right panel for promoters with mean log-expression more than log(18000) (corresponding to the high
expressing synthetic promoters). High noise promoters are clearly enriched among native promoters for both
medium and high expressing promoters.
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Figure S2.8: Phase diagram of the total noise oo of a promoter with expression mismatch Y (horizontal
axis) that is coupled (at optimal coupling strength) to a regulator whose regulatory activities have correlation
R with the desired expression levels (vertical axis) and whose signal-to-noise ratio S has also been optimized.
The colors indicate the value of oo, running from oot equal to the noise o of the unregulated promoter
(red) to oyt = 60. A phase boundary (thick black curve) separates solutions in a ‘basal noise regime’ at the
top left, where the total noise equals the minimal noise o2, and solutions in an ‘environment-driven noise
regime’ at the bottom right, where the total noise matches the variance in desired levels that is not tracked
by the regulation, i.e. o2, = (1 — R?)var(ue) — 72. The contours show optimal signal-to-noise ratios S, as
a function of Y and R. Note that S, diverges at the phase boundary.
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2.6 Supplementary Text

Estimating the mean and variance of log-fluorescence levels from FACS data

Visual inspection of the distributions of fluorescence intensities for individual cells contain-
ing the same promoter construct shows that almost all of these distributions can be well
approximated by a log-normal distribution. We thus chose to characterize the distribution
of expression levels of each promoter by the mean and variance of log-fluorescence inten-
sities across cells. Visual inspection of the distributions also indicated that, for almost all
promoters, there is a small number of measurements with aberrantly high or low values
that are likely due to some measurement artefact, and we designed a Bayesian procedure for

automatically discounting these aberrant measurements.

For each clone we typically have around N = 5000 independent FACS intensities mea-
sured. We denote by x the log-intensity (using natural logs) of an individual cell. We first

calculate the mean and variance without taking outliers into account, i.e.

() = }V;x (22)
and N
var(r) = ;;(x (@), (2.3)

where z; is the log-intensity of cell i. We call these the ‘original’ mean and variance.

Next we take outliers into account. We assume that, of all N measurements, only a
fraction p are ‘correct’ measurements, and the other (1 — p) are ‘outliers’, meaning that
these are erroneous measurements. We assume that these ‘outliers’ derive from a uniform
distribution that spans the range of measurements R = (Zpax — Tmin). Finally, we assume
that the distribution of ‘correct” measurements is approximately Gaussian with (unknown)

2

mean p and variance ¢°. Under these assumptions, the probability of a measurement of

log-intensity x is given by

P(z|p, 0%, p) = \/2%0 exp l— (z _UM) ] + Lo P (2.4)

The probability of the entire data-set for a clone is then simply given by

P(D|M,02,p) = H P(QSZ",LL,UQ,p). (25)

i=1

We then maximize this probability with respect to u, o2

, and p. This can be easily done
using Expectation-Maximization. The resulting mean p, and variance o2 are corrected for

outliers.
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Inferring the relation between FACS intensity and GFP molecules per cell

To infer the relationship between FACS intensity per cell and GFP molecules per cell we used
quantitative Westerns. For each of 8 strains of known FACS intensities, we extracted the
protein contents from a fixed number of cells and quantified total GFP intensity. In the same
experiment the GFP intensities were measured for known amounts of GFP ranging from 10
to 100 nanograms. We performed 3 replicate experiments. In each replicate we measured
the GFP intensity of the 8 strains, as well as ‘reference’ intensities of bands loaded with 10,
25, 50, 75, and 100 nanograms of GFP. We measured intensities from these gels using both
10 second and 20 second exposure times, giving a total of 6 replicate measurements of the
reference amounts and the 8 strains.

Figure S2.9 shows the measured GFP intensities I as a function of the amount of GFP
w (weight in grams) for the reference bands, in each of the 6 replicate experiments. Note
that there are 5 points, corresponding to weights of 10, 25, 50, 75, and 100 nanograms in

each curve.

20000 -

15000 -

Intensity Western band

10000 -

. | . . . | . . . | . . . | . . . |
2.x10°8 4.x10°8 6.x10°8 8.x10°8 1.x1077
grams GFP

Figure S2.9: Measured intensities of the GFP reference bands as a function of the amount of GFP (in grams)
loaded on each band. Each curve corresponds to one replicate (shown in a separate color), and each curve
has 5 data-points.

The curves show that the measured intensities are saturating as the amount of GFP
increases. Second, the intensity scale varies significantly from replicate to replicate. The

simplest linear relationship between [ and w that includes saturation is of the form

w

[ = I (2.6)

w + wy’

and inspection of the curves shows that each of them can be reasonably well fitted to this
functional form. To infer the amount of GFP corresponding for a particular strain in a
particular replicate, we need to infer w as a function of the measured value I. We thus

invert the relationship and find the general form

1
Imax_-[‘

w = Wy

(2.7)
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In other words, our functional form assumes that for a suitably chosen value I,.,, the
weight w becomes directly proportional to the transformed variable I/(lpmax — ). As an
example, Figure S2.10 shows that for the first replicate, when plotting w as a function
of 1/(15631 — I), i.e. with a value of I, = 15631, we obtain an approximately linear
relationship. Similar approximately linear relationships are observed for the other replicates

as well.

1.x107 -

8.x10°8 -

6.x10°8 -
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I I I I I I I I
0 1 2 3 4 5 6 7
1/(Tmax~I)

Figure S2.10: For the first replicate, we inferred a saturation value I, = 15'631. Plotting w as a function
of I/(Imax — I) we obtain an approximately linear relationship that also approximately goes through the
origin (0,0) (as it should).

To fit w as a function of I for each replicate, we assume that the difference between w and
I/(Imax — I) is Gaussian distributed with unknown variance 0. That is, for each data-point

¢ in a replicate, the weight w; and its intensity I; are related through

I;

2.8
Imax - Ii’ ( )

w; = €; + Wy

with ¢; the noise, which is Gaussian distributed with unknown variance o2, i.e.

Plelo) \/21_7Taexp l—;jg] | (2.9)

Using this, the probability of the observed data in a titration curve, given parameters [y,

wo, and o is:

1 1 & I; 2
PUwH{T}, T, w0,0) o€ — exp l—w > (wi - “’011) ] L (2.10)

max ~

where n = 5 is the number of points in a titration curve, and we have ignoted factors of v/27

for convenience.
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Imagine that we augment our data-set ({w}, {I}) with a single data-point (ws, I,), where
I, is the measured intensity of strain s and ws is a hypothesized amount of GFP for this

strain. The probability of this entire data-set is given by

1

]max

(2.11)

Formally, we now need to specify a prior P(Iyayx, wo, o) and integrate over these unknown

-[max -

parameters. We will use a uniform prior over I, and wy, and a scale prior 1/o for o. That

is, formally we want to calculate

P{w}, w,|{I},1,) / d]maxdwo— ({w}, wo{T}, I, Lo, w0, 7). (2.12)

Note, if we additionally integrate over w, we obtain

PUw{T}, 1) = [ dw.P({w}w,l{1},1,) (2.13)
and dividing by this we obtain the posterior distribution of wj:

P({w}, wyl{I}, L)
P({w}{I}, 1) (2.14)

Plws{w}, {1}, L) =

To perform the integrals in (2.12), we first simplify the notation by denoting the new
data-point (ws, I5) as (wpy1, Ini1), i.e. as if it was the (n + 1)st data-point. The integrand

now takes the form

1 n+1 ]7, 2
PU{w}{T}, Tz w0, 0) = z (1w = w )l (2.15)
0—n Imax - Iz
To further simplify notation, we write y; = I;/(Inax — I;), keeping in mind that the values
of y depend on I,,,«. Further, for any quantity x that takes on values z; over the 5 titration

points and the added point, we write averages like

1 n+1

(%) = = ;(:vi)z, (2.16)

and so on. The integrand can then be rewritten as

P}, Fn 00,0) = — e (=500 [(0?) — 2unuwy) +ud?)]) . 217)

Performing the integral over wy we obtain

b e D) (0 {wy)?
P({w}l{f},lmax,a)—an\/@ p[ 53 (1 <w2><y2>>], (2.18)
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where we have again ignored prefactors that cancel in the final posterior for wy, i.e. equation

(2.14). We next integrate over o. Performing this integral we obtain

—n/2
(wy>2 ) 2\—1/2
P{wY{I}, Inax) = |1 — —555 y?) "2, 2.19
() o) = (1= 7505 ) 02 2.19
Notice that the key expression in parentheses is simply one minus the squared correlation

coefficient between the variables w and y, i.e.

2
7 Y, W) = 7<wy> . 2.20

) = ) ) 220
In other words, the values of w, and I,,,, that maximize the probability are those such that

the linear correlation between the resulting values of y and the w values is maximal.

We next need to perform the integral over I,.,. Since this integral cannot be performed
analytically, we performed the integrals over I,,,, numerically, separately for each strain s
and each of the 6 replicates. Finally, for each replicate r and strain s, we determined the
values w,; that has maximal posterior probability. These are our estimated GFP amounts

(in grams) for each strain and replicate (Fig. S2.11).
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Figure S2.11: Inferred GFP amounts (in grams, vertical axis) for the 8 strains (strain numbers shown along
the horizontal axis) using the reference data from each replicate. Each color corresponds to a replicate. The
vertical axis is shown on a logarithmic scale.

Although the inference clearly separates the high expressed from the low expressed clones,
curves from the different replicates seem to be separated by constant shifts from each other.
Since the vertical axis is shown on a logarithmic scale, this means that the curves differ
by common multiplicative factors. This difference in scale is almost certainly due to an

experimental artefact and we will thus normalize for it.
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Let w,(7) be the inferred amount of strain s in replicate i. To account for the variability
in overall scale, we normalize the inferred log-weights in each replicate by calculating the

average log-weight in the replicate, i.e.

= g D low (i), 2:21)

and a total average scale of the replicates

1 6
=g 2 i (2.22)
i=1
and then transforming the estimated shifts as follows:
ws (1) — Wws (1) = wg(i)e! H. (2.23)

In addition, dividing the weight ws(i) by the known weight of a single GFP molecule
(4.482107%° grams), we get an estimate of the number of GFP molecules in the bands for
each strain. Finally, we used OD measurements to estimate the number of cells loaded on
each band, and divided by these to obtain an estimate of the number of GFP molecules per
cell for each of the strains across each of the replicates. Figure S2.12 shows the inferred
GFP molecules per cell for each strain after normalization, which indeed show much less

variation across the replicates.
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Figure S2.12: Normalized inferred GFP amounts (molecules per cell, vertical axis) for the 8 strains (strain
numbers shown along the horizontal axis) using the reference data from each replicate. Each color corre-
sponds to a replicate. The vertical axis is shown on a logarithmic scale.

Finally, we compare the inferred GFP amounts for each strain, with the FACS intensities
measured for that strain. Observing that the variation in both estimated FACS intensities
and GFP molecules per cell increases with the mean, it is most natural to compare GFP
and FACS levels on a logarithmic scale. Let f, denote the true log-FACS intensity and g
denote the true log-GFP molecules per cell. Assuming that GFP molecules per cell and
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(background corrected) FACS intensity are directly proportional to each other, the log-levels
are related through
9s = fs ¢ (2.24)

with ¢ a constant. For each strain s, we calculated the mean log-FACS intensity (fs) and
its variance var(f;) across replicate FACS | as well as the mean log-GFP molecules per cell
(gs) and its variance var(gs) across the quantitative Westerns as described above. Assuming
Gaussian deviations between the true and observed levels, the probability of the data given

c is given by

P(D|c) o< [ exp [_2(<gs> — (o) = 0 ] : (2.25)

(var(fs) + var(gs))
We thus find for the optimal value of ¢:

5 var(fs) + var(gs) |5 Var(fs)+var(gs)] : (2.26)

c, = Z <gs> B <fs> [Z 1

Figure S2.2 shows the estimated log-FACS and log-GFP levels including their error bars,
together with the optimal fit ¢, = 1.06.

Consequently, if F'is the FACS intensity of a strain (non-log), then the estimated number
of GFP molecules per cell G is equal to G = e!'%F = 2.88F. Note that, with these estimates,
the highest expressed strain, with an average FACS intensity of 37'500, would have about
108’000 molecules of GFP per cell. The lowest expressed strain (with FACS intensity 143)
would have 415 molecules per cell. From now on, we will multiply all FACS intensities by
2.88 so that a FACS intensity of I automatically corresponds to the fluorescence of I GFP

molecules, i.e. we express FACS fluorescence intensities in units of GFP molecules per cell.

Comparing mRNA and protein levels

For 94 clones, we quantified mRNA levels using qPCR. The qPCR procedure uses a standard
reference curve which allows it to infer the absolute number of molecules of the mRNA of
interest in the input sample. Each input sample is created by extracting RNA from a certain
number of cells (which we can estimate approximately), and reverse transcribing this RNA
into cDNA. Unfortunately, both the total amount of cells used, as well as the efficiency of the
reverse transcription can fluctuate significantly outside of our control, and this will make the
total number of molecules detected fluctuate as well. To control for this, we always quantify
the absolute number of molecules of two types of mRNAs in parallel for each sample; the
mRNAs of the gene of interest, and the mRNAs of a reference gene which we are confident
is constantly expressed. The reference gene we used was ihfB.

For each promoter of interest p, we obtained measured mRNA molecule numbers together
with mRNA molecule numbers for the reference gene, in 3 separate biological replicates, and
in 3 technical replicates for each biological replicate, i.e. 9 pairs of measurements in total.
We denote the log-quantity of the mRNA of promoter p in biological replicate r and technical

replicate ¢ as xp,;, and the log-quantity of the reference gene in the same replicate as yp;
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(note that this depends on the promoter p because these quantities come from a common
sample). To estimate a single log-ratio =, — y, between the expression of the gene of interest
and the reference gene, we will proceed as follows. First, we will integrate the data from the
technical replicates to obtain biological replicate expression x,, and y,,. We then combine

the differences d,, = x,, —y,» across the biological replicates, to obtain the final d, = x, —y,.

The statistical model that we use assumes that the difference between the value z,
measured in technical replicate ¢, and the true expression z,, is Gaussian distributed with
mean zero and an unknown variance o2. Note that we assume that this ‘noise’ is the same
for all promoters p, but may fluctuate between biological replicates. We similarly assume the
difference between y,,; and y,, is Gaussian distributed with variance 2. We noted that there
is a small fraction of measurements that deviate by large amounts from the measurements
in other replicates. We assume that there is a small fraction of measurements that failed
in some way, giving erroneous measurement values. To take this into account we will use
a mixture model that asssumes a small fraction of the measurements come from a uniform

distribution that spans the observed range of the data.

Let R, = max,;(%,) — min,;(z,) denote the range of observed values in biological

replicate r, and let p, denote the fraction of measurements in replicate r that are meaningful,

2

i.e. not erroneous. The probability of a single measurement z,,; given x,,, the variance o;

and fraction p, is given by

Pr 1 (xpri — xpT)Q 1— Pr
P &) /) 27 r) = A .
(pri[pr 07 r) V2ro, eXpl 2 202 TR

(2.27)

The probability of all technical replicates for all promoters is then simply given by the

product over all promoters p and technical replicates i:

P({zpit{wp ), 07, 00) = HP(IpTi|$pT7UE7PT)~ (2.28)

Dy
We next maximize this likelihood with respect to the fraction p,, the variance o2, and the
expression levels x,, for all promoters p. This optimization can be done using a straight-

forward Expectation Maximization scheme.

Expectation Maximization

Given a current estimate of x,,, of the variance o2 and the fraction p,, the posterior prob-
ability that the technical replicate with value z,,, was a meaningful measurement is given

by _Pr _ (zpri—apr)?
oxp [z

27O, 202

(il Tpris Tpry 07, pr) = (2.29)

pr _ (wpm'—fpr)q 1—pr
2wo, eXp { 202 + R,
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Using these posteriors, the updated value x;W is given by the mean of the technical replicate
measurements, weighted by their posteriors

X priP (i pris Tprs 07 pr) (2.30)

Ei p<i’$mi7 Lpr, 0-7?7 pr)

Given current values of p, and o2 we use these equations to iteratively update all . until

they converge. We then update the values of p, and o2 using the following equations

p/ — Zp,ip(?:‘xpria xpra 0'37 pr)
' Zp,i 1

: (2.31)

i.e. the updated p.. is the average of the current posteriors over all promoters and technical
replicates. The update equation for the variance is given by

52— > i (Tpri — Tpr ) *P (] Tpris Tpr, Uf,pr). (2.32)

" Zp,ip@’xprhl'pra 0—37 pr)

After each update of o2 and p, all z,, are updated until convergence again, and this is iterated

2

until the o;

and p, converge. Exactly analogous expectation-maximization equations are

used to optimize the values o,, p,, and all y,, of the reference gene measurements.

Table S2.1 shows the fitted fractions and variances for each of the replicates. We see that

replicate o2 p 52 p
1 0.0252 | 1.0 | 0.0116 | 0.934
2 0.0113 | 0.981 | 0.0118 | 0.988
3 0.0329 | 0.956 | 0.0072 | 0.955

Table S2.1: Fitted variances and fractions of meaningful measurements for the genes of interest (o2, p) as
well as for the reference gene measurements (62, ) for each of the three biological replicates.

for the majority of replicates the noise level lies around 0.01 (meaning a measurement error-
bar of about 0.1 on log-expression), but it is two and three-fold higher for measurements of
the genes of interest in two replicates. The fraction of correct measurements ranges from
about 93% to almost 100% across the replicates.

When the variances and fractions have been optimized, we obtain the final technical

replicate-averaged quantities x,, and y,, and we determine final variances er and 6; for
each of these averages. These final variances are calculated as follows. For each promoter p
and each biological replicate r, we determine the effective number of correct measurements

as
Npr = Zp(i\xm,xm,af,pr), (2.33)

and the final variance is then given by

02, = . (2.34)



Analogously, for the reference gene measurements we have

ﬁpr = Zp(i‘yprivypT7&3>ﬁT)a (235)
and the final variance y
~2 UT

— ) 2.36

UPT 'ﬁpr ( )

Combining the biological replicates

For each promoter p, we want to estimate the log-expression ratio x, — y, by combining
the estimated values z,, and y,, from each of the replicates, taking into account that these
values have different variances for different replicates. For a protein p and replicate r, the

estimated log-expression difference d,, is
dpr = Tpr — Ypr- (2.37)
The variance 7, associated with that estimated difference is

T =00+ O (2.38)

pr

Inspection of the variation in d,, across biological replicates, relative to their uncertainties
Tpr, Makes it clear that, in addition to the uncertainty in each of the estimates d,,, there is
substantial variation in d,,, across the biological replicates which is quite different for different
promoters. That is, for some promoters the biological replicates give very consistent d,,, lying
within the error-bars 7,,, whereas for other promoters the variation in d,, is much larger than

the error-bars 7,,, indicating that there must be additional variance across replicates.

We will assume that the true value d;,,, is given by the mean d, for the promoter plus a
biological replicate variation d,,
d,, = dy+ Opr, (2.39)

and we will assume that the deviation 6,, is Gaussian distributed with mean zero and

2

unknown variance 72. The probability of the estimate d,,. given its variance 72, the true

P pro
value d,, and the biological replicate variance 7'5 is given by
1 (dpy — d,)?
P(d,.|d,, 72, 72) = —————exp l—mp] . 2.40
(el Tyr- ) 2m (72 4+ 72) 2(72 +72) (240)

The probability of the data combining all biological replicates for the promoter is simply

3
P(dpl,d,,Q,dpgydp,Tj,le,T? 753):Hp(dprydp,72 72) (2.41)

p2> pro'p
r=1
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For each promoter p, we now maximize this probability with respect to both Tg and d,.

Given a fixed value of 7'5, the optimal value of d, is given by the weighted sum

Zr 7_2(3_0:_2
d, = =—5-. (2.42)
Zr 2 2
T+ Tor
Substituting this optimal d,, into the probability (2.41), the expression becomes a function
of the variance Tg only, and we numerically determine the optimal value of 7'5 for each p. In
this way we obtain a final estimate d,, for each promoter. The variance ag associated with
this final estimate is given by
-1
1 ‘|
2
o=y ——— (2.43)
P [ ST TR
Suppl. Figure S2.3 shows the relationship between protein levels (estimated by FACS)
and estimated mRNA levels for the 94 strains for which we measured mRNA levels using
qPCR. We see there is a very good correlation between protein and mRNA levels (Pearson
correlation r% & 0.82). Note that, for a given promoter, the average protein level p is related

to average mRNA level m by the ratio of the translation rate A and protein decay rate pu.

That is,
A

p= ’um. (2.44)
Since GFP is very stable compared to the duplication rate of our cells, for our system the
protein decay rate p is approximately equal to the growth rate of the cells, and thus constant
across the promoters. Consequently, the fact that 82% of the variation in protein levels is
explained by variations in mRNA levels, suggest that the translation rate A shows relatively
small variations across the strains. Below, we use this data to more rigorously estimate

variation in translation rates across the strains.

Estimating relative translation rates

As before, we denote by d, the relative (to ihfB) log-mRNA level of promoter p, and we
will denote by y, the log protein number per cell (as measured by FACS) for promoter p.
Denoting by m the absolute number of mRNAs per cell for the reference gene ihfB, by A the
average translation rate, and by p the protein decay rate (as a consequence of cell growth),
yp and d, are related through

Aed»

]
where we have written the translation rate A, of promoter p in terms of the average trans-

dp

elr = e“rm, (2.45)

lation rate A, and a promoter specific deviation 6,, i.e. A, = Ae’>. Defining e = Am/u we
have
Yp = dp + c+ 0p. (2.46)
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Using that our estimate of d, is Gaussian distributed with standard-deviation o, and as-
suming that 9, is Gaussian distributed with mean 0 and standard-deviation 7, the probability

of our data given the o, ¢, and 7 is

1 1 (y,—d,—c—135,\" &
P({dp7 Yp; 5P}|C7 {Up}77_) = 1;[ 9 exp [_2 < " pO'p p) — 2771_)2 . (247)
To estimate the variance 72 we integrate over all §, and ¢ (using a uniform prior). To simplify

the notation of the result we write w, = 1/(02 + 72), and A, =y, — d,,. We then have

1 A)?
Pl oy ) o T |3 (Swyaz - B g
\ 2p Wy 2\% 2p Wp
We numerically determine the value of 7 that maximizes this likelihood and find 7, = 0.47.

Using this maximum likelihood value of 7, the maximum likelihood value of ¢ is given by

A
e, = 22 706 (2.49)
2 p Wp
The fit y = ¢ + d is shown as the black line in Fig. S S2.3.

Finally, using 7. and c¢,, we determine the most likely values of the 4,. We find

A, —c
O = P 2.
P 1302/ (2.50)
with a standard-deviation of 12
1 1\
0,) = | —+ — . 2.51
w0) - (5+ ) @51

Figure S2.13 shows the estimated values of d,, together with their error bars o(d,), as
a function of the log protein level y,. We see that, for the large majority of promoters, the
estimated translation rate is within 2 — 3 fold of the average translation rate (i.e. |d,| < 1),
confirming that there is relatively little variation in translation rates. For the most extreme
example, the translation rate is approximate e' = 6.6 fold lower than the average translation
rate.

The figure also shows that there is no correlation between the relative translation rate 4,
and the log mRNA level d,. We also find no correlation of 9, with either log protein level

Yp, or the variance of the log protein level (data not shown).

Minimal expression noise as a function of mean expression

To model the noise distribution of our promoters we start with the simple case in which
there are constant rates of transcription, translation, mRNA decay, and protein decay. Let
Am be the rate of transcription per unit time, j,, the rate of mRNA decay (per mRNA per
unit time), A, the rate of translation (per mRNA per unit time), and p, the rate of protein

decay (per protein per unit time). Note that in our case all proteins decay at the same rate
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Figure S2.13: Estimated relative log-translation rates 6, and their error bars o(d,) (vertical axis) as a
function of the log-mRNA level relative to ihfB, dp, for each promoter p.

and, because the decay rate of GFP is relatively small compared to the dilution rate as a

consequence of cell growth, the rate p, is effectively given by the growth rate of the cells.

In (Shahrezaei & Swain, 2008) an analytical expression was derived for the distribution
P(n|Ams fom, Ap, 1) under the assumption that the rate of protein decay is small compared
the rate of mRNA decay. In E. coli the typical mRNA decay rate is on the order of 5 minutes
(Bernstein et al., 2002). In the minimal media with glucose in which our cells are grown,
the doubling time is more than half an hour, so that the protein decay is indeed smaller
than the mRNA decay rate by a factor of approximately 6. Since this is not a very large
factor, one may worry that for stable mRNAs the approximation breaks down. Fortunately,
in (Shahrezaei & Swain, 2008) it was also shown (by simulation) that as long as the mRNA
decay rate is at least as large as the protein decay rate, then the approximation still is quite

accurate. We will thus assume that we can use this approximation.

Under this approximation the stationary distribution of the number of proteins per cell

depends only on the following two ratios:

a= )\—m, (2.52)
Hp
and )
h= L. 2.53
o (253

The ratio a gives the expected number of transcripts that are produced during the life-time
of a single protein, which in our case effectively means the doubling time of the cells, i.e. a

is the expected number of transcription events per cell cycle. The ratio b gives the expected
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number of proteins that are produced from a single mRNA during its life-time. This is
sometimes referred to as the ‘burst size’. That is, typically one assumes b > 1 and given
that mRNA decay is faster than protein decay, the proteins are produced ‘fast’ from a single
mRNA in comparison to the life-time of a typical protein, i.e. in a burst.

The limit distribution P(n|a,b) is given by a negative binomial

T(a+n) bo\" b\
P(nla,b) = T(n+ DT (a) <b m 1) (1 - b+1> : (2.54)

This distribution has a mean
(n) = ab, (2.55)

and variance

var(n) = ab(1 +0b) = (n)(1 +b). (2.56)

We extend this simple model by assuming the ratios a and b fluctuate themselves (most
likely on a somewhat slower time scale). Although we will not attempt to specify the
molecular origins of these fluctuations in a and b, they likely include fluctuations in the con-
centrations of polymerases, ribosomes, and transcription factors that regulate the promoter
in question. Such fluctuations would contribute to the extrinsic noise of the promoters, since
they would equally effect two copies of the same promoter in the same cell. However, they
may also include fluctuations in the state of the promoter itself and such fluctuations would
contribute to the intrinsic noise.

We will assume that the fluctuations in these ratios of rates are multiplicative, i.e. pro-
portional to the means (a) and (b):

var(a) = (a)’c? (2.57)

a’

and
var(b) = (b)*0}. (2.58)

We then find for the total variance of n
var(n) = (n)*(o. + 0} + 0204) + (n) [1 + (b)(1 + 05)} : (2.59)

To simplify notation, we introduce the variable

02 =02+ 0} + o0, (2.60)

and the renormalized burst-size
B =1+ (b)(1+a}). (2.61)

With these definitions we have
var(n) = (n)?c?, + B(n), (2.62)
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which brings out most clearly that there is a term proportional to (n)? that results from
fluctuations in a and b, and a term proportional to (n) that results from Poisson fluctuations

in mRNA and protein production, and is proportional to the burst-size.

We now want to relate this expression to variations in log-fluorescence intensities as
measured using FACS. Here it is important to note that the log-fluorescence intensity per
cell is the result of a combination of fluorescence coming from GFP proteins and background

fluorescence of the cell.

Background fluorescence

To estimate background fluorescence, we performed 3 replicate measurements of populations
of cells without any plasmid, and 3 replicate measurements of populations of cells containing
an empty plasmid (not containing a GFP gene). Figure S2.14 shows the reverse cumulative

distributions of observed intensities in these control populations (colored lines).

Background Fluorescence
1.0= : ;

=X

Fraction Cells >

0.0
0

500 1000 1500 2000
FACS Intensity x (in equivalent protein per cell)

Figure S2.14: Reverse cumulative distributions of the FACS intensities per cell (multiplied by 2.88 so as to
correspond to the equivalent of GFP proteins per cell) for MG1655 cells without a plasmid (red, blue and
green curves) and MG1655 cells with an empty plasmid (orange, pink and cyan curves). The black line
shows a Gaussian distribution with matching mean and variance.

The curves show that each replicate shows a highly similar distribution of fluorescence
levels, and pooling the data from all replicates we find a mean background fluorescence of
npe = 582.3 with a standard-deviation of op, = 302.9. As shown by the black curve in
figure S2.14, the distribution of background fluorescences is reasonably approximated by

a Gaussian with the same mean and standard-deviation.
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Relating measured variations to the theoretical expression

Let npeas denote the measured FACS intensity of a cell. We will write this measured intensity

as the sum of an average background fluorescence ny,, the average number of proteins (n),

and a fluctuation of size e\/\m :
Nimeas = Mg + (N) + €y/var(n), (2.63)

Here € is a quantity that fluctuates from cell to cell, which has mean zero (¢) = 0, and
variance one, i.e. (€)= 1.

We will assume that the fluctuations €,/var(n) are small relative to the mean (npeas) =
npg + (n). We can then write for the logarithm of the measured FACS intensity

var(n)
log[Nmeas] & 10g[(Nmeas)] + €——. (2.64)
<nmeas>
We then find for the variance in log-scale of the measured FACS intensities
(o8 mend]) = o) (2.65)
var (log[nmeas)) = ——=- :
i (imeas)?
If we substitute the expression (2.62) for the numerator, we obtain
n 2 15} n
var (10g[Mmeas]) = 02 <1 S ) + (1 — e ) . (2.66)
b <nmeas> <nmeas> <nmeas>

The left panel of figure S2.15 shows the mean and variances of the log-FACS intensities
of all native promoters. This scatter shows that, as a function of the mean FACS intensity,
there is a sharp lower bound on the observed variances. The red curve shows that this
lower bound can be well-fitted by a function of the form (2.66), where we used parameters
o2, = 0.025 and B = 450. Note that the value of 02, determines the variance in the limit
of large means, whereas ( controls the curvature at lower means. We fitted these two
parameters by hand. Their interpretation is that, o2, corresponds to the minimal amount
of cell-to-cell variation in the product ab that is possible for any promoter architecture. The

variable 8 = 450 roughly corresponds to the burst-size.

Note that the log-fluorescence on the horizontal axis corresponds to the sum of fluorescence
resulting from GFP molecules and the background fluorescence. The estimated background
level npe = 582.3 corresponds to a log-fluorescence of 6.37. The region on the horizontal axis
between 6.37 and 7 & log(2 * 582.3), thus corresponds to cells where the fluorescence due to
GFP molecules is less than the background fluorescence. In this regime the noise distribution
results from a combination of fluctuations in background fluorescence and in protein numbers
(which may be correlated because part of these fluctuations may result from fluctuations in

cell size) and our noise model (2.66) breaks down. In the following we will focus on those
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Figure S2.15: Dependence between mean and variance of log FACS intensities. Left panel: Means and
variances of log-FACS intensities of all native promoters (blue dots) together with a fitted lower bound on
the variance as given by equation (2.66) using 02, = 0.025 and 3 = 450 (red curve). Right panel: Excess
noise (obtained by subtracting the fitted lower bound from the variance) as a function of mean log-FACS
intensity for all native promoters (blue dots). The red line shows the x-axis.

promoters with fluorescence due to GFP at least as large as the background fluorescence,

i.e. with mean log-fluorescence larger than 7.

To obtain a deviation of each promoter’s variance from the minimal variance that is

possible at its expression level, we define the excess noise n as the difference between a
2

min

promoter’s variance and its the fitted minimal variance o
with 8 = 450 and o2, = 0.025:

() as given by equation (2.66)

0= 0= 02 (). (2.67)

The right panel of figure S2.15 shows the excess noise levels of all native promoters as a
function of their means. The figure shows that, with this correction, there is no longer any
systematic dependence between mean expression levels and noise. Therefore, we can use
excess noise as a measure of transcriptional noise that allows us to compare noise levels of

promoters with different mean expression levels.

FACS Selection

As explained in the Materials and Methods, for both the medium and high expression evolu-
tionary runs, the desired expression level pu, is taken from the expression level of a reference
promoter from the library of E. coli promoters. At each selection round we measure the ex-
pression i, of the reference promoter, and set the center of the FACS’s selection window to
itx. We then set the width of the selection window such that 5% of the cells have expression

levels within the selection window.

Although, in principle, the FACS’s selection should work such that a cell with expression
level anywhere within the selection window has 100% probability to be selected, and 0%
probability to be selected if the cell’s expression is anywhere outside the selection window, it
is unrealistic to assume that the boundaries of the selection window are so precisely defined

in practice. As illustrated below, comparison of the population’s expression levels before and
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after selection shows that the probability for a cell with log-fluorescence x to be selected can

be well-approximated as

f(|ps, 7) = exp l_(a:;T/;*)Q] , (2.68)

where g, is the desired expression level and 7 corresponds to the width of the selection
window.
Note that, for a promoter with mean expression x and variance o2, the fraction P(x|u, o)

of its cells that have expression level z is given by

Plalp, o) = — (“””_’“‘)2]] | (2.69)

exp |—
V2mo p[ 202

Consequently, the ‘fitness’ of this promoter, i.e. the fraction of its cells that are selected in
the FACS, is given by

Fuolies) = [ def(elen Pl o) = | o exp [ BT | a70)
72 4 02 2(12 + 02)
To infer the values of u, and 7 that apply to our evolutionary runs, we performed a

number of experiments in which we:
1. Took a population from one of the rounds of our evolutionary runs.
2. Measured its distribution of log-fluorescence levels.

3. Set the selection window [u, — 0, i, + d] such that a percentage p of the population has

log-fluorescence levels within this selection window.

4. Performed selection and re-measured the log-fluorescence levels of the selected popula-

tion.

As shown in Fig. 2.1 of the main paper, in the evolutionary runs which are selecting for
high expression, the selection window is changing at every round of the evolutionary run. In
contrast, in the evolutionary runs selecting for medium expression, the selection window is
essentially constant from round 3 through round 5 of the run. We thus decided to focus on
inferring the precise fitness function that acted during these 3 rounds of selection.

We took the evolved populations from the third and fifth round of the evolutionary
runs selecting for medium expression, and performed another round of selection on them,
selecting 5% of the population closest to the desired log-fluorescence u,. In addition, we
also performed a round of less stringent selection on these populations, selecting 25% closest
to the desired level, and a round of more stringent selection, selecting only the 1% of the
population closest to the desired level. Besides measuring the log-fluorescence levels of the
population both before and after the round of selection, we also selected dozens of clones
from the populations before and after the selection, and measured the entire distribution of
log-fluorescence levels for these clones. Figure S2.16 shows the means and variances of the

log-fluorescence distributions of these clones.
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Figure S2.16: Means and variances of the log-fluorescence levels of clones from the third and fifth rounds
of the evolutionary runs in which we selected for medium expression (black dots), and clones obtained after
performing another round of selection on these populations, selecting either 1% (red), 5% (yellow), or 25%
of the population closest to the desired log-fluorescence p,. The blue curve shows an approximate fit of the
typical variance o2 as a function of the mean p: o?(u) = 0.02 + 384e™# — 156'915e =2+,

Intuitively, one might think that the relative fitness f(x) of each log-fluorescence level z
could be easily estimated by simply measuring the ratio of the fraction of the population
p'(x) with log-fluorescence level x after selection and the fraction p(z) with log-fluorescence
x before selection. However, the single cells that were selected in the FACS each grow into
an entire population of cells before the ‘after selection” population is measured again. Thus,
a selected cell containing a promoter with a given mean p and variance o will contribute an
entire population of cells with this distribution, even though the individual cell may itself
have had a log-fluorescence that was in one of the tails of this distribution. Thus, in general
the distribution of log-fluorescence levels in the population after selection may be much wider

than the actual selection window itself.

Before selection, the population consisted of a mixture containing (unknown) fractions
p(p, o) of cells containing promoters with mean p and variance 0. This gives rise to an

overall distribution p(x) of expression levels given by

plp,0) (z — )’
x)= [ dudo——=——=exp | ————1| . 2.71
plo) = [ duir e p[ - (271)
Unfortunately we cannot uniquely infer p(u, o) from knowing only the distribution p(z).
However, as shown in Fig. S2.16, for the clones in these populations, the large majority
of promoters have variances o? lying in a narrow band as a function of ;. We thus chose
to make the approximation that all promoters in the population have variances o2 that are

uniquely determined by their mean expression yu, and we used the fit 0?(u) shown as the
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blue curve in Fig. S2.16. This simplifies the problem from inferring a two-dimensional

distribution p(u, o) to inferring a one-dimensional distribution p(u), i.e.

p(x) = /d,u péﬂ) exp [—M} . (2.72)

Applying selection with target log-fluorescence pu, and width 7 to this distribution, we obtain

a new distribution

(M — N*)Q
b ] -

where C'is a normalization constant that ensures [ dup’(p) = 1. The population distribution

of log-fluorescence levels after selection is then

p(z) = / dpu 52(—2 exp [—W] . (2.74)

To infer the parameters of the fitness-function for each selection that we performed, we

fit the distribution p(u), and parameters p, and 7 that lead to an optimal fit to the observed
distributions p(z) and p'(z). Figure S2.17 shows the inferred and observed distributions, as

well as the inferred fitness function, for each of the 6 selection experiments that we performed.
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Figure S2.17: Inference of the fitness function from the observed log-fluorescence distribution before and after
a round of selection. Each panel corresponds to one selection experiment with the title indicating on which
population an extra round of selection was performed, i.e. a population either from the third or fifth round
of the evolutionary run for medium expression. The thin blue line indicates the observed log-fluorescence
distribution p(x) before selection, and the thin orange line the observed distribution p’(x) after selection.
The thick lines show the corresponding fitted distributions. The inferred selection window f(z|us,7), i.e.
equation (2.68), is indicated in black, and its parameters u, and 7 are indicated in each panel as well.

The figure shows that the distributions p(z) and p/(x) can be well fit by this model,
illustrating that the form of the selection window, equation (2.68), can well describe the
effects of selection in the FACS machine. Moreover, we see that the distributions p(z) and

p/(x) are typically significantly wider than the selection window f(x|u., 7). Moreover, the
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fitted values of 7 are almost perfectly proportional to the fraction of the population that
was selected, with a value of 7 &~ 0.03 corresponding to the selection of 5% of the population
that was used during the evolutionary runs. The fits also show that, although we in each
experiment determine pu, from the expression of the same reference promoter, there is some
variability in u, from one experiment to the next. From these 6 experiments, we find that
on average () = 8.115 and o(u.) = 0.133.

Thus, in each selection round the fitness of a promoter with mean p and variance o? is

given by expression (2.70), where 7 = 0.03 and p, fluctuates around (u,) = 8.115. The
effective fitness experienced by this promoter is thus given by the geometric average of

equation (2.70) with fluctuating values of u, and this is given by

2 (1= (1))* + o (pe)”

2(12 + 02)

T

72 + o2

(2.75)

£, 011, o), ) = exp [—

Figure S2.18 shows a contour plot of this fitness function with the inferred parameters

of (u«), o(ps) and 7 as a function of the mean fitness p, and the excess noise level n =

2 2 2
0" = Onin min

i, equation (2.66). Note that for these measurements the plasmids were transformed into a

(), where o2 (1) is the minimal variance as a function of mean expression level
different strain than those used to compare with the native E. coli promoters. We noticed

that the minimal noise level o2, (1) as a function of mean y is slightly different. Although

min

the background fluorescence and burst-size parameter 5 = 450 are the same, the parameter

o2, is smaller, i.e. 02, = 0.006 instead of o2, = 0.025.

Figure S2.18 clearly shows that fitness drops far more dramatically as a function of mean
i than as a function of excess variance 7, i.e. except for right at the optimal mean pu,, the
contours are running almost vertically in the plot. We do not observe promoters with high
excess noise, even though their fitness would easily allow it. For example, a promoter with
mean expression near the optimum 8.11 but excess noise as high as 0.25 (i.e. significantly
higher than observed for any of the clones) would have higher fitness than any promoter
with mean less than p = 7.76 or larger than p = 8.47 (independent of their noise), even
though we observe many promoters with means that deviate this far from the optimum. The
fact that we do not observe high excess noise promoters, even though they would not be
selected against, strongly suggests that such high noise promoters are uncommon a priori,
i.e. among all random sequences that drive expression at a medium level, the large majority
have low excess noise levels and high noise promoters are rare. Moreover, note also that for
promoters that are not near the optimum, the optimal excess noise level is typically larger
than those of the observed clones, e.g. the optimal excess noise for a promoter with mean
i ="7.51is n = 0.22. These observations all suggest that promoters have not experienced

significant selection on their noise levels.

To further support this conclusion, Figure S2.19 shows the inferred fitness values for the
observed clones both as a function of their mean expression (left panel) and as a function of

their excess noise (right) panel. The figure shows that, whereas the fitness of a clone can be
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Figure S2.18: Contour plot of the inferred fitness function (2.75) as a function of mean expression p (hor-
izontal axis) and excess noise (vertical axis), that acts on the population from rounds 3 through 5 of the
evolutionary runs for medium expression. The contours correspond to fitness values (fraction of cells se-
lected) of 0.01, 0.02, 0.03, through 0.08. Left panel: In addition to the fitness function (contours) the panel
shows the means and excess noise levels of a selection of clones from the third round of the evolutionary run
(blue dots), and clones that resulted from subjecting this population to another round of selection, selecting
either for the 1% (red dots), 5% (yellow dots), or 25% (green dots) of cells with expression closest to the
desired expression level. Right panel: As in the left panel, but with the dots corresponding to clones
from the 5th round of the evolutionary run, and clones resulting from additional rounds of selection on this
population (colors as in the left panel).
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accurately predicted from its mean pu, fitness is almost entirely uncorrelated to a promoter’s

excess noise 7.
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Figure S2.19: Fitness of the observed clones, as given by equation (2.75), as a function of their mean
expression u (left panel) and their excess noise 7 (right panel). As in figure S2.18, the blue dots correspond
to clones from the third and fifth round of the evolutionary run, the red dots result from another round of
stringent selection (top 1%), the yellow dots from another round of standard selection (top 5%), and the
green dots from a round of weaker selection (top 25%).

Finally, if there was significant selection on noise levels, then we expect noise levels to
systematically shift under selection. Figure S2.20 shows cumulative distributions of excess

noise levels for clones obtained from different populations of cells.
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Figure S2.20: Cumulative distribution functions of excess noise levels for the promoters extracted from
different populations. Left panel: Excess noise levels of promoters from the 3rd (black) and 5th (brown)
round of the evolutionary run. Middle panel: Excess noise levels of promoters from the 3rd round of the
evolutionary run (blue), and from clones that resulted from another round of either stringent (red), normal
(yellow), or weak (green) selection. Right panel: As in the middle panel but now for clones from the 5th
round and clones resulting from another round of selection on this population.

The figure shows that, surprisingly, the excess noise levels seem to increase from the third
to the fifth round in the evolutionary run. However, given the limited number of clones
involved, the change in excess noise levels is only marginally significant (p = 0.004 in a
t-test). Similarly, the effect of selection on excess noise levels seems to be opposite on the
populations of round 3 and round 5 (center and right panels in Fig. S2.20). We suspect
that there are some systematic experimental fluctuations that make measured excess noise
levels vary across days, and that the observed distributions of excess noise levels are more
a reflection of experimental variability than of true shifts in the distribution. Importantly,
excess noise levels larger than 0.1, which are observed for a substantial fraction of native

promoters, are very rare for all these populations.
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In summary, our in depth analysis of the FACS fitness function and the effects of selection
show that the noise properties of the synthetic promoters have not been significantly shaped
by selection. Already the synthetic promoters at the third round of selection are tightly con-
centrated in a low noise band, even though selection does not select against low noise, and
promoters with mean away from the optimum would benefit from having higher noise. Two
additional rounds of mutation and selection on the promoters from the third round do not
substantially change the distribution of noise levels confirming that there are no substantial
fitness differences among promoters with different noise. Similarly, performing additional
rounds of selection (be it very stringent, normal, or lenient) also do not substantially change
the observed noise levels of the selected promoters. Thus, our results show that promoters
selected from a large collection of random sequences naturally display low noise levels. Im-
portantly, this implies that the native promoters with substantially higher noise levels must

have experienced some selective pressures that caused them to increase their noise.

A simple model for the evolution of gene regulation and expression noise

Given a particular environment, the fitness, e.g. growth-rate or survival probability of a
cell, depends on the expression level of its genes. Note that the fact that gene regulatory
mechanisms have evolved already demonstrates that different environments require different
gene expression patterns, i.e. expressing a gene at the ‘wrong’ level for a given environment
has negative effects on fitness/growth-rate. For simplicity, we will focus on a single gene.
We assume that, in a given environment, there is an optimal expression u, level. Given
that, as we have seen, expression levels are roughly log-normally distributed, we will express
expression levels in log-space, i.e. the logarithm of the number of proteins per cell. We
define that fitness at the optimal expression level p, as f,. Fitness will fall as the expression
level  moves away from this optimum. In this simple conceptual model, we will assume
that, like in our FACS selection, the fitness f(x) falls approximately Gaussian away from

the optimum, i.e.

f@|p ) = foexp l—; (x — M*)T , (2.76)

T

where 7 is again a parameter that determines how fast the fitness falls when the expression

x moves away from the optimum pu,.

To justify the Gaussian form of the fitness function, assume that the fitness is determined
by the growth of the population over some characteristic time t. That is, if cells grow at
rate p, then the fitness is f = e?*. The growth rate p is optimal at x = p,, and to second
order in the difference between x and p,, we can write

1 2

p=po— 5T —p)

o
da?

(2.77)

T=[lx

Defining f, = e/ and 1/7%2 =t Hg%@ B

, we obtain the fitness function defined above.
o
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In complete analogy with the FACS selection case, the fitness f(u, 0|, 7) of a promoter
with mean p and variance o2 in an environment with optimal expression level u1, and width
7 is given by the integral of the product of the fitness function (2.76) and the Gaussian

distribution of expression levels, giving

7 1(p— pa)?
W T) = exp | —=——5| - 2.78

fw.olp; 7) 72 + 0 Xp[ 2 72+ 02 (2.78)
Note that this functional form is a reasonable approximation to the fitness function as
long as expression levels are roughly log-normally distributed, and as long as the integral
of expression levels and fitness function can be approximated using the standard Laplace

approximation, i.e. expanding the logarithm of fitness to second order around its maximum.

We now extent this simple situation in two respects. First, instead of assuming that the
optimal level pu, is fixed, we imagine that the population of cells has gone through several
different ‘environments’, where in each environment e there was an optimal expression level

lte. For simplicity we assume 7 is the same in each environment.

Let’s first consider what this situation implies for the fitness of a promoter expressing
at mean level p with variance o?. The number of offspring that a strain with mean p and
variance o2 produces (or leaves behind) after experiencing environment e is proportional
to f(u,o|pe, 7). Consequently, the final number of offspring produced after experiencing
all environments is given by the product [], f(u, olie, 7). We define the overall log-fitness

log[f (1, 0)] as the average of the log-fitness across all environments:

log[f(p, )] = (log[f (11, o|pe; T))e, (2.79)

where the subscript e indicates that we are averaging over all environments e (which we drop

for convenience from here on). Using the expression (2.78) we obtain

_Var<,ue) + ((:ue> - :u)2
2(02 + 72)

log[f (i, 0)] = (2.80)

n 1 | 72

2 %8| 52 + 72
where (u.) is the average ‘desired’ expression level, and var(gu.) is the variance in desired
expression levels across the environments. It is immediately clear from equation (2.80)
that, as a function of the mean expression p, optimal fitness is obtained when u = (u.).

Substituting this optimal mean level, we find that optimal variance is given by

o? = var(u,) — 7%, (2.81)
when var(y.) > 72, and o = 0 otherwise. That is, when the variance in desired expression
levels is larger than the width of the selection window 7, then a strain can increase its fitness
by raising the noise-level o of the promoter. This result is equivalent to results on selection for
phenotypic variance obtained previously, e.g. (Bull, 1987, Haccou & Iwasa, 1995). However,

in these previous models that more abstractly considered ‘phenotypic traits’, it was assumed
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that both the mean and variance of the phenotypic trait were not only directly encoded by
the genotype, but could also be independently altered through mutations, without explicitly
considering how mean and variance would be encoded in the genotype. In our case, where
the ‘trait’ under study is the transcription rate of a promoter, it is a priori quite clear how
mutations may alter mean levels, e.g. through changes in the affinity of the sigma-factor
binding site, but much less clear how the variance is encoded in the genotype. Moreover,
rather than simply increasing its noise, we would naturally expect that promoters would
evolve gene requlation in order to deal with different required expression levels across different

environments.

Including gene regulation

We now further extend the model by considering that there are various transcriptional regu-
lators in the cell whose activities may vary across the different environments e. By evolving
binding sites for a transcription factor, the promoter becomes regulated by it and, conse-

quently, the mean expression p becomes a function p(e) of the environment e.

For simplicity we consider the case of a single regulator whose mean activity (i.e. concen-
tration of the DNA-binding version of the regulator) r, is a function of the environment e.
Since the transcriptional regulator’s expression will itself also be subject to gene expression
noise, the activity of the regulator varies from cell to cell. We will assume that, in each envi-
ronment, the activity of the regulator varies from cell-to-cell in a roughly Gaussian manner,

with variance o2, i.e. the probability to find a cell in environment e with regulator level r is

_ \/%Uexp l—“;:;y] . (2.82)

We characterize the regulation of the promoter by the regulator through a single coupling

P(T’Te,af)

constant ¢ such that, in cells with regulator level r, the distribution of expression levels is a

Gaussian with mean p + cr and variance o2, i.e.

P(z|p, 0%, 1) = (x—u—cr)j : (2.83)

1
V2mo P [ 202
Integrating over the distribution of regulator levels P(r|r.,c?), the final distribution of ex-
pression levels is given by a Gaussian with mean u(e) = p + cr. and variance o2 + %02,

i.e.

1 (x — p— cre)?
P(z|u, 0% c) = exp [— . (2.84)
2m(0? + ?02) 2(0? + c*07)

In environment e, with desired level p., the fitness of a promoter with coupling c is then

given by

[l o,clpe, 7) = J T exp [—2@ *ere — ) ] : (2.85)

0%+ 202 + 72 (0% 4 202 + 72)
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The log-fitness, averaged over all environments e, is given by

log[f (i, 0,¢)] =

72 4+ 02 4 %02

L{(p+cre — pe)?y 1 72
—— . 2.86
2 124 0%+ %o? +2 o8 ( )

It is again easy to see that, with respect to the mean expression p, fitness is optimized
when 1 = () — ¢(r.). In the following we will assume that the mean expression p matches

this optimal value.

We can rewrite the expression for the average log-fitness in a simpler form by introducing

the following set of effective parameters. First, the variable

var(p,)

V= "¢
(72 +02)’

(2.87)
measures the variance in desired expression levels p. relative to the sum of the variances
associated with the width of selection 72 and the noise of the unregulated promoter 0. The
variable Y quantifies the ‘expression mismatch’ between the promoters average expression p

and the (varying) desired expression levels p.. The second effective parameter

2 2
cco;

Xt=__—"T _
(72 4+ 0?)

(2.88)

measures the strength of the regulator coupling constant c¢. More precisely, it quantifies the
contribution ¢?c? to the promoter’s variance in gene expression, again relative to (o2 + 72).

We will refer to X as the coupling constant. Third, the parameter

_ var(r,)

S? (2.89)

2

O”I"
measures the ‘signal-to-noise’ ratio of the regulator, i.e. the variance var(r.) of its mean level
across conditions, relative to its variance o within each condition. A regulator with large S
varies a lot in activity across environments and has relatively little noise in each, whereas a
regulator with small .S varies little across environments relative to its noise level. Finally, we

have the correlation R between the desired expression levels p. and the regulator’s activities

Te, 1.€.
R — </’L€T€> — <IU/6’><T€> ) (290)
var(re)var(fie)
In terms of these parameters we have for the average log-fitness
1Y?(1 - R*)+ (SX —RY)? 1 1 72
log[f(X,Y. =—= — = log[l+ X7+ = log[ ———]. (2.91

The last term is a constant that does not depend on our effective parameters and we will

ignore it from now on.
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We intuitively expect that the promoter’s fitness would benefit most from coupling to a
regulator that is perfectly correlated with the environment’s requirements, i.e. at R = 1.
Indeed we find that the derivative log[f(X)] with respect to R is given by

dlog[f(X,Y,S,R)] _ SXY

dR Tl X2 (2.92)

which is positive as long as the desired levels vary (Y > 0), the regulator has some variation
across environments (S > 0) and there is positive coupling (X > 0). Thus, in general, if we
keep all other variables fixed, an increase in the regulator’s correlation R is always beneficial.

We now consider the case in which a regulator with a given correlation R and signal-
to-noise rate S is given, and we want to determine the optimal coupling X, that max-
imizes log[f(X,Y,S, R)| as a function of the expression mismatch Y. The derivative of
log[f(X,Y, S, R)] with respect to X is given by

dlog[f(X,Y,S,R)] XY?—X(1+ X%+ 5%+ SR(1 - X?)
dX B (1+ X?2)2 ‘

(2.93)

At X = 0, this derivative equals SR. Thus, whenever R > 0, the derivative is positive at
X = 0. Because, as can be easily seen from equation (2.93), the derivative is guaranteed to
be negative for large X, this implies that, whenever R > 0, there is an optimal coupling X,
that is positive, i.e. X, > 0. Thus, whenever R > 0, the promoter is guaranteed to increase
its fitness by evolving a nonzero coupling to the regulator.

The optimal coupling X, is given by the positive solution of the third order polynomial

in the numerator of (2.93). In general we find that, when Y is small, the optimal coupling

is given by
SR
X, =Y = ——Y, 2.94
R S (2:94)
and that when Y is very large X, obeys
2
s = () -5 299

That is, both for very small and very large Y, the optimal coupling X, is directly proportional
to Y, with proportionality constants g and a.., respectively. Moreover, a,, > «g. The
behavior of X, as a function of Y, for different values of R and S is illustrated in Fig.
S2.21.

The figure shows that, as Y increases the ratio X,/Y switches from the lower g to the
higher ai,,. Whenever both the correlation R and the signal-to-noise S are high (the orange
and red curves in the top two panels), there is only a small difference between o and .
That is, X, increases roughly linearly with Y when there is a well-correlated regulator with
high signal-to-noise.

In contrast, when the correlation R is low or the regulator is noisy, there is a large

difference between a., and . Moreover, the optimal coupling shows a sharp transition
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Figure S2.21: The ratio X./Y between optimal coupling X, and expression mismatch Y as a function of
Y for different values of the regulator’s signal to noise ratio S and the correlation between regulator and
environment R. Each panel corresponds to a different signal to noise ratio S, from a high signal regulator in
the top left, to a noisy regulator at the bottom right. In each panel, the different colored lines correspond
to different correlations R, i.e. R =0.01 (blue), R = 0.1 (green), R = 0.5 (orange), and R = 0.99 (red).
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from low values to much higher values at a ‘critical’ value of Y. This critical value of Y
occurs at Y = /1 4+ S2 when R is low (the blue and green curves), and slightly earlier when
R increases (orange and red curves). When the regulator is very noisy (bottom right panel of
Fig. S2.21) the behavior of X, becomes almost independent of the correlation R, showing
a sharp transition from almost no coupling to strong coupling when Y ~ 1. This behavior
even extends to the case where there is no correlation whatsoever between the regulator and

the environment, i.e. R = 0.

Coupling to an uncorrelated regulator

When R = 0 the optimal coupling is given by

X2 =max [0,Y? —1- 2] (2.96)

. —

That is, at the critical value Y = /1 + 52 the coupling goes from zero to a positive value.
For large Y the optimal coupling is simply Y. The behavior of optimal coupling X, as a
function of Y is shown in figure S2.22.

Optimal Coupling to an uncorrelated regulator (R=0)
1.0 ,

Ratio (X+/Y)
o o o
~ > %

o
(S

0.0

0 2 4 6 8 10
Expression mismatch Y

Figure S2.22: Optimal coupling X, as a function of the expression mismatch Y for different values of the
signal-to-noise ratio S, i.e. S =0 (black), S =1 (green), S =2 (blue), and S = 3 (red).

Log-fitness at optimal coupling X,

We next consider the case in which the promoter has a certain expression mismatch Y, and
we calculate the log-fitness that it can obtain by optimally coupling to a regulator that has
a certain signal-to-noise S and correlation R. Figure S2.23 shows the resulting log-fitness
values as a function of S and R for 4 different values of the expression mismatch Y: Y =1
in the top-left panel, Y = 2 in the top-right panel, Y = 4 in the bottom left panel, and
Y = 8 in the bottom right panel.

When the expression mismatch is small, i.e. ¥ = 1 corresponding to a variance in

that matches o2 + 72, then fitness generally increases with increasing R and S. However, the
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absolute value of the fitness increase is small. That is, for small Y promoters already have
reasonably high fitness without regulation. As the value of Y increases, the log-fitness values
start varying more dramatically as a function of R and S. Independent of the value of Y,
the optimal fitness is always obtained for very high R and high S. However, when Y is large,
an almost equally high fitness can be obtained by coupling to a ‘noisy’ regulator with low S
and R = 0. In particular, when Y is large only regulators with very high correlation R and
large signal-to-noise S can outcompete coupling to an entirely noisy regulator with R = 0
and small S. That is, in any situation where the desired expression levels vary significantly
more than the width o of the expression distribution, i.e. when Y > 1, promoters can
substantially increase their fitness by coupling to a regulator that only acts to increase
their noise. Moreover, to improve on this coupling to a ‘random’ regulator, a regulator
has to be available with very high correlation R and large signal-to-noise. In other words,
unless a regulator is available that very precisely regulates the promoter to attain its desired
expression levels, best fitness can often be obtained by increasing the noise in the promoter’s

expression.

Note also that, whenever Y is larger than 1 and the correlation R is not very high,
fitness generally decreases rapidly with the signal-to-noise of the regulator. That is, when
a regulator has only moderate correlation with the desired expression levels of its target,
low signal-to-noise is preferred. This suggests that regulators that are regulating targets
whose desired expression levels correlate only moderately with the regulator’s activity may

be under selection for lowering their signal to noise ratios.

These considerations suggest different possible scenarios for the joint evolution of promot-
ers and their regulators. On the one hand, when a regulator is coupled to a single promoter,
or a set of promoters whose desired expression levels are perfectly correlated across environ-
ments, then a regulator can increase overall fitness by increasing the correlation R between
the regulator’s activities and the desired expression levels of its targets. In this way, regula-
tion may evolve to become more precise over time. On the other hand, promoters often have
an incentive to couple to regulators who only moderately correlate with their desired levels.
Once a regulator is coupled to multiple promoters that have different desired expression
levels, there is no way that the regulator can adapt its activities to correlate highly with the
desired levels of all its targets, and such regulators will experience selection to become more

noisy.

Final noise levels under optimal coupling and signal-to-noise

We next consider what final noise levels o2, = 02 + c?0? result when a promoter, with a cer-
tain expression mismatch Y, couples optimally to a regulator which has a certain correlation

R, and whose signal-to-noise level has been optimized as well.
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To this end we need to determine the jointly optimal coupling X, and signal-to-noise S,
given a certain expression mismatch Y and correlation R. From equation (2.91) it is easy to

see that fitness is maximized with respect to the signal-to-noise level S when

_ Ry

S e

(2.97)

If we substitute this value back into the equation (2.91), we find that the optimal coupling
X, is now given by
X? =max [0,(1- R)Y? - 1] (2.98)

Note that, Y2 is the variation in desired expression levels, and R2Y? is the amount of this
variation that the promoter manages to ‘track’ when it is regulated by the regulator. Thus,
(1— R?*)Y? is precisely the remaining variance in desired expression levels that the promoter
is unable to track. To bring this out more clearly, we substitute back our original parameters.
We then find that when (1 — R?)Y? < 1:

O_t?ot = 027 (299)

and when (1 — R?)Y? > 1
ol = (1 — R*)var(u,) — 7°. (2.100)

This brings out most clearly that, when the regulation is imprecise ((1—R?)Y? > 1), the final
noise level that is evolved matches the fraction of the variance in desired expression levels
var(p.) that is not tracked by the regulation. In other words, the evolved transcriptional
noise level of a promoter precisely reflects to what extent the promoter’s regulation is not

able to track the expression levels desired by the environment.

Fig. S2.8 shows the total noise level oy as a function of Y and R when the promoter
is optimally coupled to a regulator with optimal signal-to-noise. The figure illustrates that
there are two regimes of solutions (‘phases’) separated by a phase boundary (thick black
curve) that occurs at (1 — R?)Y? = 1. On one side of this boundary, in the top-left of the
figure, the final noise level o is essentially not different from the original noise level o.
This occurs either when Y < 1, i.e. when no regulation is necessary, or when very accurate
regulation is available. Note that, similarly to what we saw in the last section, very high
correlations R are necessary to realize this regime at larger values of Y. We call this the

‘basal noise regime’.

The largest part of the parameter space occurs on the other side of the phase boundary,
which we call the ‘environment-driven noise regime’. Here the final noise level o, becomes
independent of the original noise o, but is instead determined by the fraction of variation in
desired expression levels var(p,) that is not tracked by the regulation, i.e. by (1— R?)var(u.).
The figure also indicates the optimal values of S, as a function of Y and R. The optimal
signal-to-noise S, diverges at the phase boundary. That is, in the ‘basal noise regime’

regulators are preferred with signal-to-noise that is as high as possible. In contrast, for
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the majority of the parameter space in the environment driven noise regime signal-to-noise
levels of 1 or less are preferred. That is, unless regulation is very precise, noisy regulators
are typically preferred over precise regulators.

The figure also demonstrates that, unless R is close to one, the final noise increases
with the variance in desired expression levels var(u.) . Thus, unless there is a systematic
correlation between the expression mismatch Y of a promoter, and the correlation of the
regulator with highest available correlation, noise levels are expected to increase with the
‘plasticity’ var(p.) that the environment requires of the promoters.

Similarly, the larger Y, the larger the remaining variance Y’ = (1 — R*)Y? tends to
be after coupling to the regulator with the highest available correlation R. Whenever this
remaining expression mismatch is Y’ large, the promoter will have an incentive to couple
to further regulators. That is, the theory also generally predicts that promoters with high
var(p.) tend to couple to more regulators.

Finally, we note that this theoretical model can easily be extended to the case of multiple
promoters and regulators. In particular, because in our model the promoter’s expression is
a linear function of the regulatory inputs, the theory extends easily to promoters coupling
to multiple regulators with different coupling constants. However, the regulatory network
structure that will evolve in this general case will depend crucially on the correlation structure
of the desired expression levels across all the promoters. Moreover, there might be many
environmental changes that affect the optimal expression levels, but that cannot be sensed
by any of the regulators, and this will constrain the extent to which regulators can optimize

their activities to match the desired levels of their targets.
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Chapter 3

g binding is a prerequisite for
expression but not predictive for

transcript levels

The previous Chapter 2 described the evolution of expression levels towards predefined ex-
pression levels on the phenotypic level. In this Chapter, we are zooming into the sequence

features that give rise to the expression levels observed.

3.1 Introduction

A very fundamental question in molecular biology is what sequence properties separate
regulatory sequences from coding regions. Here we investigate the minimal requirements for
a sequence to function as a promoter sequence.

A gene can only be of benefit for an organism if it can be expressed and thus be seen by
selection. New genes integrate into the genome by different mechanisms, mainly gene du-
plications (Serres et al., 2009) and horizontal gene transfer (Ochman et al., 2000, Treangen
& Rocha, 2011) across species borders. In both cases, genes may be transferred including
regulatory sequences upstream of the genes or not. If a gene is not transcribed at all, regu-
lation has to evolve from the non-functional sequence upstream in order to be of benefit for
the organism. If a gene is transcribed, but protein levels have to be adjusted, transcriptional
regulation has to evolve so as to reach the correct protein amounts in the cell.

What are the outstanding sequence features that characterize a promoter sequence? Func-
tional promoter sequences have the ability to recruit the RNA polymerase to their sequence.
This marks the first step in transcription initiation, which takes place upstream of the cod-
ing region of the regulated gene. In bacteria, promoter sequences provide binding sites for
a particular subunit of the RNA polymerase, the sigma factor (Helmann & Chamberlin,
1988, Burgess & Anthony, 2001). Each bacterial species encodes a set of sigma factors,
where each sigma factor recognises a subset of all promoter sequences in the genome (Hel-

mann & Chamberlin, 1988). Each subset contains a sequence in the regulatory region of the
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gene that allows interactions between the sigma factor and its target gene (Gruber & Gross,
2003).

The affinity of the RNA polymerase to a promoter sequence is thus a function of the
activity of the sigma factors in the cell and their binding sites. Strength of ¢™ binding
is indeed a well-known predictor for transcript level (Blank et al., 2013, Brewster et al.,
2012, Kiryu et al., 2005, Szoke et al., 1987) and has also been shown to correlate for o*
(Rhodius & Mutalik, 2010). Small sequence changes in the -10 or -35 region of the o™ site
have predictable changes on the expression level when keeping the surrounding sequence
constant (Brewster et al., 2012). Other sequence features around the -10 and -35 region
in the bacterial promoter region can also impact expression levels, like the spacer length
between those regions (McLean et al., 1997). Nucleotides upstream of the -10 region, called
extended -10 region, impact promoter strength (Burr et al., 2000, Voskuil & Chambliss,
1998, Voskuil & Chambliss, 2002) as well as the so-called UP element upstream of the -35
region (Ross et al., 2001, Espinosa et al., 2005, McCracken et al., 2000, Rhodius et al., 2012).

Besides sigma factors, bacterial promoter sequences also provide binding sites for more
specific transcription factors. The combinatorial design of promoters in terms of transcription
factor binding sites allows differential gene expression in varying conditions. Selection favors
incorporating binding sites for specific transcription factors whose activities are in accordance
with the desired expression levels in the environments selected. Each bacterial cell has a set of
transcription factors it can make use of. In FE.coli , there are 271 transcription factors known
(Babu & Teichmann, 2003) that may show differential activities over varying conditions. By
altering the binding affinity for a factor active in a certain environment, expression levels for

a particular gene can be changed on the transcriptional level already (Lloyd et al., 2001).

After binding of the RNA polymerase holoenzyme complex to the promoter sequence, the
DNA around the -10 region has to be melted in order to form the open complex. The rate
of open complex formation theoretically depends on the melting temperature of the DNA
double-strand (Djordjevic & Bundschuh, 2008) and is helped by region 1.2 in the sigma
factor (Bochkareva & Zenkin, 2013, Revyakin et al., 2004, Haugen et al., 2008). Native
promoter sequences in FE.coli (Escherichia coli) are over 10% more AT rich than coding
regions (Blank et al., 2013), facilitating possibly unwinding of the DNA duplex. To what
extent unwinding influences transcription levels is poorly understood, similar as the last step
during transcription initiation which involves the release of the RNA polymerase holoenzyme
from its binding site (Revyakin et al., 2004).

Prediction and modification of expression levels from regulatory sequences has been at-
tempted on various control levels. Translation rates can be tuned by changes in the ribosomal
binding sites (Lee et al., 2013) and their surrounding sequence affecting secondary structure
of the RNA molecule (Salis et al., 2009). RNA stability is also influenced by the sequence
itself (Carrier & Keasling, 1997, Carrier & Keasling, 1999). Transcription rates of individ-
ual genes differ over two orders in magnitude, with many genes showing similar expression

levels in a given environment as shown in Chapter 2. The differences in expression levels

64



are only explained by the variable transcriptional activities and these phenotypic differences
are encoded in the promoter sequences. Prediction of expression levels based on o™ binding
strength is possible in otherwise constant promoter sequences (Brewster et al., 2012). Na-
tive promoter sequences harbor many binding sites for transcription factors, and different
combinations of these factors do not always allow reliable prediction of the expression level
(Kosuri et al., 2013).

Evolution of a functional promoter sequence, starting from a random sequence has already
been shown in a directed evolution experiment, where ¢’ did indeed evolve after only few
rounds of selection (Liu & Libchaber, 2006). Here, we extend this experiment by starting
artificial selection on the expression level from around a million of random sequences. Phe-
notyping expression levels in combination with genotyping gives us insights into the sequence

features that determine whether a sequence is a functional regulatory sequence.

3.2 Main part

Genotypic characterization of promoter pools obtained after each round of selection or mu-
tation and selection was done by deep sequencing. This allows tracking of evolutionary
fates of individual promoter sequences over rounds and furthermore enables classification of
expression levels in later rounds. The latter can be refined with single sequence sequenc-
ing in combination with phenotypic characterization of expression levels of cells in clonal
populations. Those obtained expression distributions are characterized by their means and

variances and can be readily compared to promoter genotypes of native genes in FE.coli .

3.2.1 Characterization of the initial library

For comparison of the initial promoter library to functional promoter sequences, we first
characterized the initial sequence pool.

The starting pool of promoter sequences consisted of random oligonucleotides with flank-
ing restriction sites, PCR-~-doublestranded and cloned in front of GFP on the low-copy plasmid
pUAG66 (Zaslaver et al., 2006) as described in Chapter 2. The distribution of expression levels
found in cells with these random promoter sequences was close to the expression levels found
in cells without the plasmid (wildtype strain DH10B) or cells without promoter sequence
but empty plasmid (Fig. 3.1A). As cellular background fluorescence in wildtype cells was
comparable to cells with vector but without promoter sequence, we concluded that the plas-
mid itself did not contribute to the fluorescence detected. The initial library pool already
contains functional promoter sequences (Fig. 3.1A) with measurable transcriptional activity
above background indicated by a tail in the single cell expression distribution towards higher
expression levels.

Initially, the planned size of promoter sequences should have spanned 157 bp but was
shortened in most promoter sequences due to inefficient nucleotide coupling and strand

breaks during primer synthesis. Promoter sequences were deep sequenced from one end,
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Figure 3.1: The initial promoter library. (A) Measured distributions of GFP fluorescence from single
cells. Background fluorescence from wildtype cells (orange), wildtype cells with modified vector pUAG6
(green) and fluorescence of wildtype cells with the initial library of promoter sequences upstream of GFP
(black). (B) Histogram of lengths of random promoter sequences in the initial library. (C) Nucleotide
frequencies upstream of the fixed promoter region, taken from unique sequence reads. Bases A, C, G and T
are colored in green, blue, black and red respectively.
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including promoter sequences spanning a size-range of 30-141 bp (Fig. 3.1B, Methods Sec-
tion 3.4.2). In total, 890’019 sequences were sequenced from the initial library, of which
472’160 sequences were unique sequences (100% sequence identity). From the overall trans-
formation efficiency we concluded that around 1 million unique promoter sequences were
present in the initial library pool. A biased nucleotide distribution was observed for the
unique sequences of the initial library, containing 18% A, 256% T, 30% G, and 27% C. Ad-
ditionally, there are nucleotide biases observed in the unique promoter sequences showing

increasing GC content with increasing distance from the translational start site (Fig. 3.1C).

3.2.2 Similar sequences exhibit similar expression

If sequence information is predictive for expression level and variations within, similar se-
quences should exhibit comparable expression levels. To address this, single promoter se-
quences were clustered based on their genotypes and phenotyped based on their expression

levels.

Out of 479 individual promoter sequences after 3 and 5 rounds of selection that were
phenotyped, 378 sequences were Sanger sequenced individually. 316 of these sequences were
unique promoter sequences, that could be mapped to 166 clusters based on sequence identity
(see Methods section 3.4.5)). Sequences that were mapped to the same cluster were consid-
ered to be derived from a common ancestor sequence. For a sequence of length 157 bp, 457
possible sequences could had been synthesized; but with only 1 million sequences success-
fully transformed, chances that a sequence derived from a few-bp neighbor were negligible.
Mapping of the similar genotypes to their respective phenotypes (Fig. 3.2) shows that the

phenotype depends strongly on the genotype.

Most sequences within clusters show very similar expression, indicating that small changes
in the genotype do not impact the phenotype dramatically in many cases. Generally, pro-
moter sequences are mutationally robust, meaning that many mutations do not impact
expression levels. However, some of the clusters show outliers that do not follow this general
trend. These can be separated into clusters containing sequences that were selected for both
medium and high expression or were only selected for one expression level but containing
outliers. Some particular mutations can have severe impact on the expression levels, which al-
lows selection of new phenotypes in the case of changing environments. Besides introduction
of novel binding sites for transcription factors to bind to and allow differential expression
in varying environments, populations can also undergo changes in the promoter sequence
that alter their expression levels possibly independent of specific factors. The mean levels of
expression can be better separated than the variance in expression levels across cells (excess
noise, see Chapter 2), where only two clusters that were selected for medium expression show

clearly elevated levels of excess noise.
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Figure 3.2: Expression characteristics of promoter sequences with high sequence similarity.
Phenotype measures for similar sequences in clusters with cluster size bigger than four. Sequences that
were selected for medium expression levels are plotted in light green, sequences selected for high expression
levels are in dark green. Cluster sizes indicated at the top. The box in the boxplots represents the first and
third quartiles with the band in the box representing the second quartile (the median). The lower end of
the whiskers represent the lowest datum found within 1.5 IQR (interquartile range) distance from the first
quartile and the upper end of the whiskers represent the highest datum found within 1.5 IQR from the third
quartile. (A) Mean number of GFP molecules per cell as inferred from the FACS measurement for each
sequence cluster. (B) The excess noise associated with members in each cluster.
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3.2.3 Evolution of transcription factor binding sites

Recruitment of the RNA polymerase to the promoter sequence is supported by transcription
factors, that bind in the promoter region or close by. To test if a certain fraction of promoter
sequences has evolved transcription factor binding after three and five rounds of selection,
transcription factor binding sites were predicted (Chapter 3.4.6) for native E.coli promoter
sequences with known experimentally validated binding sites (Salgado et al., 2013) using se-
quence motifs from these sites. The same prediction was performed on the evolved sequences
which were Sanger sequenced (1 representative sequence from each of the 166 clusters). Se-
quence composition biases that could lead to predicted binding sites were excluded by testing
the predictions on the synthetic sequences that were shuffled, maintaining ATGC content
and sequence length. For the 39 transcription factors where we obtained sequence motifs
and promoter sequences with predicted sites in native sequences (Fig. 3.3), some synthetic
promoter sequences reached the predicted binding strength of the strongest predicted TFBS
that had been observed in native promoters. However, binding strengths between the orig-
inal synthetic and shuffled synthetic sequences were comparable, not showing statistically
significant differences (the lowest two-sample Kolmogorov-Smirnov test p-value observed was
0.03 for factor CpxR).

These results suggest that for the specific transcription factors we analyzed, strong tran-
scription factor binding sites have not been evolved. For the sigma factors, that are thought
to be essential for binding of the RNA polymerase to the promoter sequence, binding sites
were predicted especially for the housekeeping sigma factor o™ (Fig. 3.4). The difference
between the maximum weight matrix scores predicted in native and synthetic promoter se-
quences was not significant, while the distributions of scores between synthetic and synthetic
shuffled sequences were statistically significant dissimilar (two-sample Kolmogorov-Smirnov
test, p = 6.5 % 107! and p = 3.8 * 10~"). Binding strengths of o3 and ¢3? in synthetic se-
quences were also closer to native sites (two-sample Kolmogorov-Smirnov test, p = 1.3%x1073
and p = 1.7 % 1072) than synthetic shuffled sequences, but the clear separation between
original synthetic promoter sequences and the shuffled versions was less strong (two-sample
Kolmogorov-Smirnov test, p = 1.9 % 1072 and p = 4.2 % 1073).

Native F.coli promoters evolve binding sites for specific transcription factors, allowing
them to express their genes at different levels in changing conditions. However, the synthetic
promoter sequences have been selected for one defined expression level in only one given
condition. In this condition, only a subset of the 271 specific transcription factors (Babu
& Teichmann, 2003) will show activity that might be favorable for their expression levels.
Generally, a sequence that has no activity will evolve sites only for transcription factors that
positively impact their expression levels, i.e. activating transcription initiation. Second, if
sigma factor binding in the RNA polymerase complex is a pre-requisite for transcriptional
activity at a promoter sequence, than there are additional size restrictions, that would maybe
not allow the promoter sequences to evolve additional sites for transcription factors on such

a short promoter sequence in synthetic promoters. Evolution of two functional sites, namely

69



MHUL il Aw i AMAAhﬂI CA sl 1w Bl b

g@ﬂﬁj
ol &t
AgaR AraC ArcA ArgR CpxR CsgD CytR

T e e

-10

o—
%

o

”ALCAC il 1 .CAQ e m&lﬁﬁé AIMLILIQAL il il

o

EHMMWMMM.W.
M M I AITA Iﬂs%”c“ j,LI TCIT l&

-10
GalR Gals GIpR GntR IscR

PRI T
T i M B
WQF uﬁc i @HM EJA ﬂ " ﬁh asll 1 by

l
MalT MarA MelR MetJ NagC NarL NtrC OmpR

T L

ﬁé CéAAﬂIAL

A
Il

|
il

QECLLMC

TCA THTC

CRGuAThG

QQI IL\IA L

Maximum Weight Matrix Score

sl L { bl Im@zﬁfﬁ AJAA@C THCT sl Wﬁjﬁﬁh a@ JMCA
[ TRETON RIS SRRSTRL TR

Figure 3.3: Strength of the strongest predicted transcription factor binding site for 39 tran-
scription factors in FE.coli. For each transcription factor, native promoter sequences with known sites
are compared to synthetic evolved promoter sequences and their shuffled derivatives. Weight matrices used
for prediction are shown above each factor, the height of the letters representing the information content in
bits.
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for a sigma factor and another specific transcription factor, at the same time over a short
evolutionary timescale seems to be a much harder task than evolution of only a sigma site.
Small changes in the promoter sequence apart from transcription factor sites are able to
change expression level.

The activity of sigma factors in the cell is known to be regulated on multiple levels and
changes dependent on the state of the cell (Lange & Hengge-Aronis, 1994). Having evolved
mainly the sigma housekeeping factor o™ indicates that this was the predominant sigma
factor present in the conditions selected in. Weak signals could also be obtained for o3
involved in the stress response in E.coli (Battesti et al., 2011), or the prediction is simply a
side-effect of the closeness of the consensus sequences for ¢’ and ¢3® binding, especially in

the -10 region.

3.2.4 Evolutionary dynamics of sequence features during promoter sequence

evolution

Promoter sequences that give rise to expression levels close to the selected level have a higher
chance to be maintained during experimental evolution. Tracking sequence features from
the initial library to medium expression reveals important sequence features in the transition
of random to functional promoter sequences. Underlying genotypes from medium to high
expression levels give insight into sequence properties important for high transcriptional

activities.

Some sequence clusters take over during evolution

Successful promoter sequences should contribute more copies of their sequences and se-
quences deriving therefrom after several rounds of selection. We tested if only a few sequences
took over during the selection process or if a large number of sequences were similarly fit.
Random promoter sequences were selected based on their expression level, resulting in ex-
pression distributions after only five rounds of selection that are close to the target level
(Fig. S3.1). Going through multiple rounds of selection provides a bottleneck which se-
quences make it to the next rounds or not. On the other hand, mutation steps introduce
greater variability of the sequences present, expanding sequence diversity. The sequences
that are not the same, but vary by only a few base pairs can be considered as arising from
the same ancestor. These sequence clusters can be tracked from round-to-round, allowing a
picture of what sequences were preferred and to which degree the mutations were allowed
during evolution. Deep sequencing allowed an insight into the sequence variability observed
after each step of selection or selection and mutation. As expected, the number of clusters
observed was biggest in in the initial library with 426’092 clusters, with a downtrend up to
round 5 which ended up with 2’974 clusters for the high expression line and 1’994 cluster
for the medium expression line. Interestingly, 876 sequence clusters were shared between
medium and high expressors, although most sequences observed in those clusters belonged

to either medium or high expression. Small differences in the sequences can thus have a big
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impact on the expression level, but in the main expression levels stayed at a similar level
(Fig. 3.2A). The phenomenon that many clusters between medium and high expression were
shared was due to the fact that both populations derived from the same pool of sequences
and the expression levels of the populations after five rounds were still partly overlapping
(Fig. S3.1). Selection in combination with mutation removed most of the clusters observed
in early rounds of evolution, but allowed some successful clusters to expand dramatically in

the promoter population (Fig. 3.5).
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Figure 3.5: Evolution of cluster contributions after each round of selection or selection/mutation
over evolutionary rounds. Cluster contributions are binned (up to the number plotted). Colors represent
the different libraries sequenced, the initial library in grey and proceeding libraries as depicted in the legend
for both medium (left panel) and high expression (right panel).

In the initial library, most clusters apart from few exceptions contribute very little to the
entire library. This fraction does only marginally decreases over evolutionary time, but some
clusters expand and contribute more in terms of sequence numbers to the libraries in later
rounds. In medium expression lines (Fig. 3.5A), this trend seems to be saturated after 4
rounds of evolution. Evolution of promoter sequences to high expression (Fig. 3.5B) follows
a similar trend, with two clusters that contribute more than 34% to the fifth round.

The contribution of the sequence cluster reflects the fitness of the sequences within that
cluster. Thus, taking into consideration all sequences that were found within each library

shows which genotypes were favored during sequence evolution.

Selection on expression level favors longer promoter sequences

Promoter lengths found in the initial library were quite diverse (Fig. 3.1). The longer a
sequence gets, the higher the probability that functional sites that enable expression are
present. On the other hand, functional sites may have to be within a certain distance to
the start of transcription or start of translation. That is why the length distribution of later

rounds in evolution give an idea about what optimal lengths may be given to drive tran-
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scription in the space of sequence lengths available. During the first two rounds of selection,
longer sequences were generally preferred in medium and high expressing lines (Fig. 3.6).

Selection for high expression favors even longer sequences than medium expression.
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Figure 3.6: Evolution of promoter sequence lengths (the variable part) over evolutionary rounds.
Cumulative distributions of lengths in bp content found in each of the libraries for medium (left side) and
high (right side) expression. Libraries are colored as depicted in the legend and the mean lengths are given.

Selection on expression level favors AT-rich sequences

Given that the initial promoter region library started with a biased nucleotide composition
towards GC richness over all positions, the nucleotide composition was tracked over all
rounds of evolution. As native promoter sequences are generally rich in AT, we wanted to
investigate the importance of nucleotide frequencies in the synthetic promoter sequences.
It appeared that the frequency of bases observed was similar between medium and high
expression lines, although small differences emerged. The general trend was lowering of C
content while increasing A and T content (Fig. 3.7). In particular, A content increased
for two rounds of selection with high expressing promoters on top elevated their A content
further in later rounds. For the C content, the exact opposite trend was found. Although
G was the dominant nucleotide observed in the initial library (Fig. 3.1C), high C content
was selected against stronger than high G content, especially in the high expression lines.
Percentage of T’s raised until the second round while % G was reduced.

The differences in nucleotide content selected between medium and high expression lines
might be an indicator for expression levels. As high expression lines in the last two rounds
are dominated by a few clusters, expression differences might also be explained by other
features, and the nucleotide distribution might be a by-product of those features. Generally,
evolution of higher AT content from the initial library to later rounds of selection support

the trend observed in native FE.coli promoters, which are shown to have higher AT content
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than coding regions (Blank et al., 2013). Strongest selection for elevated AT content takes
place in the first few rounds, suggesting that a raised AT content gives a higher probability

of hitting a functional sequence from a random distribution.

Low free energies of 0’ binding as a recognition feature for functional promoter sequences

We tested the hypothesis that 0™ binding strength can be used as a predictor for expression
levels. Upon binding of the sigma factor to its binding site, energy is released. The greater
the difference in energy between the bound and the unbound state, the more likely the sigma
factor remains bound to the particular site. Free binding energies were calculated for each
sequence (Chapter 3.4.7) that appears in each evolutionary round and the distribution of
o™ free binding energies observed are shown in Figure 3.8 along with the shifts in expression
distributions. Before and after the first step of selection, promoters with higher expression
levels are selected, shifting the overall fluorescence distribution. A similar trend is observed
for more negative free binding energies of ¢ binding, selecting for promoter sequences
that have more negative free binding energies for ¢ binding predicted. This confirms that
expression levels of promoters with o™ binding sites is believed to increase with stronger
binding (Brewster et al., 2012). From evolutionary rounds two to three, increase in expression
levels was correlated with more negative free binding energies in both medium and high
expression. From round three to five, expression levels stay the same for medium expressors,
as free binding energies do. High expressors deviate from round three to five from this
general behavior, showing elevated expression with unchanged free binding energies. This
suggests that in a regime ranging from low or no expression to medium expression, better
binding of ¢™ is required. In the rounds where free binding increased with expression level,
also shuffled versions would increase their binding energies, but not as strong. Sequences
in those round transitions were also selected for longer sequences (Fig. 3.6) and higher AT
content (Fig. 3.7). In the transition from medium to high expression, binding strength
cannot account any more for the expression differences observed. Changes must have arisen

from other sequence features.

Smaller entropy in binding energies are favored

Promoter sequences may achieve one strong site for ’° binding, resulting in one main tran-
scriptional start site from which transcription is initiated. However, multiple weak binding
sites may also be present for recruitment of the RNA polymerase to the promoter region.
We calculated the entropy of ¢ binding predicted and found that entropy of promoter se-
quences is smaller in comparison to their shuffled relatives. Entropies for medium (Fig. 3.9A)
and high (Fig. 3.9C) expression lines decline up to round three and then do not change any
more. The shuffled versions of the sequences (Fig. 3.9B and D) change in the other direction
towards higher entropy, more strongly for the high expressors. Although shuffled sequences
increase the number of potential ¢’ binding sites in their promoters, real sequences focus

on providing few binding sites.
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Figure 3.8: Evolution of expression distributions and free binding energies for ¢’ binding over
evolutionary rounds. Kernel density distributions of log-fluorescence (in arbitrary units, left side) are
shown along with predicted cumulative density functions of free binding energies (in KgT units, right side)
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Evolution of the initial library to medium expression includes preference of promoter
sequences that show smaller entropies in their 0™ binding, meaning that few strong sites are
selected over a large number of weak sites. Differences in expression levels between medium
and high expression do not go along with a decrease in binding entropy, as entropies of

binding do not decline any more from round three to five.

Short 5’UTRs are more successful

Positioning of o™ binding sets the start of transcription and thus defines the length of the 5’
untranslated region (UTR) that is transcribed. We wanted to test if the length of the 5’'UTR
may have an effect on the expression level. Based on the 0™ strengths predicted, the average
position of the o™ binding site was calculated (Chapter 3.4.7). Length of the 5’UTR is the
average position plus 39 bp. Generally, the average length of the 5’UTR (Fig. 3.10A and C)
increases from the initial library to later rounds for both medium and high expression, but
less strongly as expected from the length and nucleotide distribution (Fig. 3.10B and D).
Importantly, the length of the 5’UTR seems to be under selection towards smaller sequence
lengths in comparison to their shuffled variants. As differences in expression levels are
explained by transcriptional activity changes and the 5’'UTR of the construct provides a
strong ribosomal binding site, small 5’"UTRs may help initiation of transcription, at least at

the transition from low to medium expression.

3.3 Discussion

Our work illustrates sequence features that separate a random from a functional promoter
sequence. Chances for a random sequence to provide functionality are quite significant.

As the initial library was sequenced with only two times coverage and the number of
individual promoter sequences transformed was estimated from cell counting, we expect that
the initial library contained at least one million individual sequences. Given that around
4’000 sequence clusters were present after five rounds of selection for medium and high
expression, the chance of hitting a functional sequence under the given length and ATGC
distribution was around 1:250. Hitting a functional coding sequence that gives rise to a
particular function seems much more unlikely than hitting the right expression level in a
given condition.

There are many ways for promoters to encode for a certain expression level in a given
condition. The ability to change expression levels across conditions may limit the combina-
tions possible to encode for all the different levels. Most changes in the promoter sequences
did not impact the expression levels in the majority of cases. Exceptions from this general
pattern are important- they allow expression modifications even after small changes enabling
fast adaptation to changing environments. Variations associated with the expression levels

of single promoter sequences were also dependent on the sequence, but absolute differences
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Figure 3.10: Evolution of the average position of ¢’ binding over evolutionary rounds. Cumulative
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observed between promoters do span only a small range. Few basepair mutations did not

impact the noise levels fundamentally.

Sequence composition that goes along with sequence functionality are AT richness, and
in particular avoidance of C nucleotides. Why there is a imbalance between incorporation
of G’s and C’s remains not understood. High AT content in the region of 0™ decreases
the melting temperature required for unwinding the doublestranded DNA. As the binding
motif of 0™ is rich in % AT, promoters with higher AT content might also provide better
binding of the sigma factor. The second feature, namely the length of the inserted promoter
region, shows that longer promoter sequences have a higher chance of showing transcriptional
activity. Both features give hints on what distinguishes a functional from a non-functional

promoter sequernce.

Another minimal requirement for a promoter sequence seems to be a sigma binding site,
in the conditions synthetic promoters were evolved, 0’ appear as the main active sigma
factor present in the cell. Thus, synthetic promoters exhibit similar binding strengths for

0™ as native promoter sequences that are known to be bound by o™

. Expression levels
towards higher levels cannot be explained by the binding strength. Besides ¢ binding
strength, synthetic promoter sequences show characteristic features of the binding sites in
terms of position relative to the translation start site as well as the entropy of binding
strengths observed. Closeness of the binding site to the translation start and generally
smaller entropies are observed in the transition from low to medium expression, but are not
clear indicators for high expression levels. As we have shown in previous studies (Chapter 2),

the expression activity measured reflects the transcriptional activity quite well.

In the transcription initiation process, besides binding of the RNA polymerase with its
sigma subunit, two other processes play an important role. These involve unwinding as
well as clearance of the promoter region (Revyakin et al., 2004). Unwinding is helped by
interaction of the 1.2 ¢ region, but the interaction itself is unspecific around 4 bp upstream
of the transcription start site (Bochkareva & Zenkin, 2013). Prediction of the unwinding
capabilities of our promoters is not solved, but selection for low GC content might be a hint
towards better unwinding for low melting temperatures. Promoter clearance is the last step of
the transcription initiation process, allowing the RNA polymerase to transit from the bound
into the unbound state, elongating the transcript until it’s 3’end. This last step is known to
fail from time to time, releasing unfinished RNA transcripts and at the same time occupying
the region around the transcription start site (Hsu, 2002). As the competence depends on
the promoter sequence, differences in expression levels between promoter sequences might
well be explained by promoter clearance properties. Given that the strength of sigma binding
correlates negatively with promoter clearance (Hsu, 2002), failing in prediction of expression
levels based on sigma binding affinity may not be surprising. Strong binding may even be
counterproductive, leading to many abortive transcripts. Closeness of the sigma binding site

to the RBS and translation start site are also indicators that a short untranslated region at
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the 5’end facilitates transcription initiation or that it stabilizes the RNA in a way that helps
translation initiation.

In previous studies (Liu & Libchaber, 2006, Brewster et al., 2012), expression levels
were predicted based on the closeness to the o™ consensus sequence. Here we reported
binding affinities for a large number of sequences, but comparison of ¢’ binding strength
across different promoter backgrounds seems to represent a much more difficult and complex
problem. Context of the binding site may have more far-reaching consequences on expression

levels than the binding sites themselves.

3.4 Methods

3.4.1 Library preparation of promoter sequences for deep sequencing

Libraries from each generation after selection were sequenced on an Illumina HiSeq2000.
Custom design of adapter Sequences allowed usage of restriction cut sites for ligation of the
adapters. Adapter sequences were ordered as HPLC-purified oligonucleotides (Microsynth,
Switzerland) with Phosphothioate Oligonucleotide bonds marked by "*’, phosphorylated by
T4-Polynucleotide Kinase (NEB, MA, USA) and annealed by a slow temperature decrease.
10° mol of each primer P5.1 (5-A*C*A*C*TCTTTCCCTACACGACGCTCTTCCG*A*-
T*C*T-3%) and P5.2 (5-T*C*G*A*GATCGGAAGAGCGTCGTGTAGGGAAA*G*A*G*-
T*G*T-3’) were incubated for 30 min at 37°C in 1x T4 DNA Ligase ligation buffer (NEB)
with 12.5 units of T4-Polynucleotide Kinase. After a heat-inactivation step for 2 minutes
at 95°C, the temperature was slowly ramped down to 12°C at a rate of 0.05°C/second.
The same annealing procedure was applied to the other adapter pair P7.1 (5-G*T*G*A*-
CTGGAGTTCAGACGTGTGCTCTTCCG*A*T*C*T-3’) and P7.1 (5-G*A*T*C*G*A*-
TCGGAAGAGCACACGTCTGAACTCCAG*T*C*A*(C-3’), both primer pairs were mixed
and adjusted to a concentration of 80 uM each. Plasmids from each library were pre-
pared from overnight cultures and 300 ng of plasmids were amplified in a 20 cycle PCR
reaction for enrichment of promoter sequences with oligonucleotides LigpUA66Pro-F1 (5-
CCTTTCGTCTTCACCTCGAG-3") and LigpUAG66Pro-R1 (5-CCTTCTTACATCCAGA-
GGATCCC-3"). Afterwards PCR products between 100-300 bp were gel size-selected from
a 2.5% agarose gel. After purification from the gel, PCR products were double-digested
for 3 hours with Xhol and BamHI and then column-purified. Adapters with overhangs for
the cut sites were added in a ligation reaction to the digested PCR products. The ligation
reaction was performed at 20°C for 45 minutes in 1x Quick ligase buffer with 1.25 ul of
Quick T4 DNA Ligase (NEB) with equimolar ratios of adapters and digested PCR product.
Ligation products were again gel-purified and sizes selected between 100-350 bp. From 25 ul
column-purified eluate, 10 ul were used in the Index PCR step. A 50 ul PCR reaction with
Phusion™ High-Fidelity DNA Polymerase (NEB) was used to amplify ligation products
with both adapters attached and to add specific barcodes to each library. Each reaction was
supplemented with 1 ul primer 1S4 (5-AATGATACGGCGACCACCGAGATCTACACT-
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CTTTCCCTACACGACGCTCTT-3’) and the primer with the specific barcode. Barcode
combinations were chosen based on considerations made in (Meyer & Kircher, 2010) like
equal usage of lasers at each position. Python code for choosing those barcode sets could
be found under https://bioinf.eva.mpg.de/multiplex/. The set of barcodes used with
moderate secondary structure formation can be found in section 3.6. The program for the
Indexing PCR consisted of an initial denaturation step at 98°C for 30 seconds, followed by
18 cycles with 10 seconds denaturation at 98°C, 20 seconds primer annealing at 60°C and
1 minute elongation at 72°C. The final elongation step was performed at 72°C for 10 min-
utes. A last gel-purification step with size-selection between 100-350 bp on a 3% agarose gel
and column-purification were conducted. Each library was quality checked on a NanoDrop
2000 Spectrophotometer (Thermo Scientific, Switzerland) and libraries were pooled to a final
concentration of 10 nM according to their individual concentrations estimated with a Qubit
T™MFluorometer (Invitrogen, CA, USA). 150 cycles with a modified version of the Sequenc-
ing Primer (5-ACACTCTTTCCCTACACGACGCTCTTCCGATCTTCGAG-3’) masking
the Xhol cut side were used on the Illumina HiSeq 2000 Sequencer to obtain the promoter

sequemnces.

3.4.2 Pre-processing of Sequencing reads

Raw Sequencing reads were quality-checked and only sequences where all nucleotides had
Phred Quality Scores of at least 20 (99% Base Call Accuracy) were considered in further
analyses. Different evolutionary rounds were separated by their assigned barcode. Sequences
flanked by both restriction sites were considered, yielding a set of promoter sequences with

lengths ranging from 30-141 bp.

3.4.3 Genotyping individual sequences by Sanger Sequencing

From the population of promoter constructs after round 3 and 5 of selection, single pro-
moters were isolated by colony-picking. 479 of those colonies were collected into 96 well
plates and their promoters were PCR-amplified and sequenced using Sanger-Sequencing
(Sanger et al., 1977) with primers (5-CCTTCTTACATCCAGAGGATCCC-3’) and (5'-
GGCTTCCCAACCTTACCAGAGG-3’). 378 of the clones sequenced were unique.

3.4.4 Phenotyping individual sequences by flow cytometry

For all clones that were sequenced, expression of each promoter population was measured
using FACS (fluorescence activated cell Sorting) as described in the Methods section of
Chapter 2.

3.4.5 Unification and clustering of sequences based on similarity

First, all promoter sequences obtained by deep sequencing where made unique (based on

100% similarity over the entire sequence length) with keeping the number of occurrences.
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The second step involved clustering of all unique sequences based on their similarity. CD-
HIT, a greedy incremental clustering algorithm (Fu et al., 2012, Li & Godzik, 2006) clustered
all sequences. Parameters that were used to control similarity were -¢ 0.8 -n 5 -s 0.9 -al. 0.9

-aS 0.9, clustering sequences with at least 80% identity over the entire alignment length.

3.4.6 Prediction of binding sites for transcription factors in FE.col:

Retrieval of Weight Matrices Weight matrices were calculated from sequences with exper-
imentally supported binding sites in E.coli using the RegulonDB (Salgado et al., 2013).
Potential transcription factor binding regions were extended by 5 bp and putative binding
sites for each factor were calculated using Phylogibbs (Siddharthan et al., 2005). Obtained
matrices were refined based on the input sequences using MotEvo (Arnold et al., 2012). This
yielded 41 weight matrices for specific transcription factors in E.coli as well as binding site
predictions for six sigma factors, with spacer lengths of 17 bp for all of them except o**

which deviates from this common pattern.

Ab-initio TFBS prediction Putative binding sites for TFs were predicted using MotEvo
(Arnold et al., 2012), an algorithm that calculates the probability of a particular factor
given its weight matrix to bind at a certain position in the sequence under a competition
required for unbinding of the factor. Considering only the highest weight matrix score
allows to compare sequences of varying lengths. All sites with a minimum posterior of 0

were included for extraction of the maximum weight matrix score.

3.4.7 Prediction of 0" free binding energies

Free binding energies for binding of ¢ to individual sequences were calculated as described
in (Blank et al., 2013), making use of annotated ¢™ binding sites (Djordjevic, 2011) to infer
a position weight matrix (Schneider, 1997). The total binding energy for each sequence was
calculated by sliding the weight matrix in kgT units over the entire sequence, summing up
the weight matrix scores over all possible windows. The probability for each sequence window
to be bound exp(—S;) = >, exp(—S; ;) was calculated as the summed probability over all
spacer lengths considered (15-19 base pairs). The sum of the individual window probabilities
exp(—S5;) = Y;exp(—S;) is the probability for the sequence to be bound by a o™ factor.
The free binding energy for each sequence is S = —log Y ; exp(—S;). The probability for
each sequence to be bound at position i in the sequence is P; = exp(—(S; — S)). On average,
the 0™ factor is bound at position (i) = > ;i x P, = >;i * exp(—(S; — S)). The entropy
H=—-%,log(P,) * P, =>,(S; — 5) xexp(—(S; — 5)) describes if a promoter provides few

strong binding sites (small entropy) or many weak binding sites (large entropy).
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3.6 Supplementary information

3.6.1 Supplementary figures

Initial Library

1 round of selection

2 rounds of selection

3 rounds of selection

Kernel Density

4 rounds of selection

5 rounds of selection

log fluorescence (A.U.)

Figure S3.1: Evolution of target expression values over rounds of evolution is highly replicable.
Target expression values are depicted with green dotted lines, based on the expression of the native E.coli
reference genes gyrB for medium and rpmB for high expression. The fluorescence distribution of cells from
the initial library is drawn in black, with grey lines in later rounds from populations that were not selected
based on their expression, but subject to mutation. The three biological replicate lines for medium expression

are drawn in red colors, for high expression in blue colors.
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3.6.2 Set of barcodes for multiplexed deep sequencing

Table S3.1: Set of barcode sequences chosen for deep sequencing

Index Name Oligonucleotide
AACCAG | index 6nt_1 | CAAGCAGAAGACGGCATACGAGATctggttGTGACTGGAGTTCAGACGTGT
AAGACT | index 6nt 2 | CAAGCAGAAGACGGCATACGAGATagtcttGTGACTGGAGTTCAGACGTGT
AAGGAC | index 6nt.3 | CAAGCAGAAGACGGCATACGAGATgtccttGTGACTGGAGTTCAGACGTGT
AATGCG | index 6nt4 | CAAGCAGAAGACGGCATACGAGATcgcattGTGACTGGAGTTCAGACGTGT
ACCGAT | index 6nt.5 | CAAGCAGAAGACGGCATACGAGATatcggtGTGACTGGAGTTCAGACGTGT
ACGCGT | index 6nt.7 | CAAGCAGAAGACGGCATACGAGATacgcgtGTGACTGGAGTTCAGACGTGT
ACTCTC | index-6nt.9 | CAAGCAGAAGACGGCATACGAGATgagagt GTGACTGGAGTTCAGACGTGT
ACTTCA | index_6nt_10 | CAAGCAGAAGACGGCATACGAGATtgaagt GTGACTGGAGTTCAGACGTGT
AGACCG | index_6nt_11 | CAAGCAGAAGACGGCATACGAGATcggtct GTGACTGGAGTTCAGACGTGT
AGAGTT | index_6nt_12 | CAAGCAGAAGACGGCATACGAGATaactctGTGACTGGAGTTCAGACGTGT
AGATAC | index_6nt-13 | CAAGCAGAAGACGGCATACGAGATgtatctGTGACTGGAGTTCAGACGTGT
AGCATA | index_6nt_-14 | CAAGCAGAAGACGGCATACGAGATtatgctGTGACTGGAGTTCAGACGTGT
AGGTTG | index_6nt_-17 | CAAGCAGAAGACGGCATACGAGATcaacct GTGACTGGAGTTCAGACGTGT
AGTACC | index_6nt_18 | CAAGCAGAAGACGGCATACGAGATggtact GTGACTGGAGTTCAGACGTGT
ATAATG | index 6nt_19 | CAAGCAGAAGACGGCATACGAGATcattatGTGACTGGAGTTCAGACGTGT
ATACGC | index_6nt 20 | CAAGCAGAAGACGGCATACGAGATgcgtatGTGACTGGAGTTCAGACGTGT
ATATCT | index 6nt_21 | CAAGCAGAAGACGGCATACGAGATagatatGTGACTGGAGTTCAGACGTGT
ATCAGT | index 6nt.22 | CAAGCAGAAGACGGCATACGAGATactgatGTGACTGGAGTTCAGACGTGT
ATTCAT | index 6nt_23 | CAAGCAGAAGACGGCATACGAGATatgaatGTGACTGGAGTTCAGACGTGT
ATTGGA | index_6nt24 | CAAGCAGAAGACGGCATACGAGATtccaat GTGACTGGAGTTCAGACGTGT
CAACCT | index_6nt_25 | CAAGCAGAAGACGGCATACGAGATaggttgGTGACTGGAGTTCAGACGTGT
CAAGTA | index_6nt_26 | CAAGCAGAAGACGGCATACGAGATtacttgGTGACTGGAGTTCAGACGTGT
CAATAG | index_6nt27 | CAAGCAGAAGACGGCATACGAGATctattgGTGACTGGAGTTCAGACGTGT
CAGATG | index_6nt_28 | CAAGCAGAAGACGGCATACGAGATcatctgGTGACTGGAGTTCAGACGTGT
CAGCGC | index_6nt-29 | CAAGCAGAAGACGGCATACGAGATgcgctgGTGACTGGAGTTCAGACGTGT
CATTCC | index_6nt-30 | CAAGCAGAAGACGGCATACGAGATggaatgGTGACTGGAGTTCAGACGTGT
CCAACG | index_6nt_31 | CAAGCAGAAGACGGCATACGAGATcgttggGTGACTGGAGTTCAGACGTGT
CCAGAC | index 6nt_32 | CAAGCAGAAGACGGCATACGAGATgtctggGTGACTGGAGTTCAGACGTGT
CCATGA | index 6nt_33 | CAAGCAGAAGACGGCATACGAGATtcatggGTGACTGGAGTTCAGACGTGT
CCGAAT | index 6nt.34 | CAAGCAGAAGACGGCATACGAGATattcggGTGACTGGAGTTCAGACGTGT
CCGCCA | index 6nt_-35 | CAAGCAGAAGACGGCATACGAGATtggcggGTGACTGGAGTTCAGACGTGT
CCGTTC | index 6nt-36 | CAAGCAGAAGACGGCATACGAGATgaacggGTGACTGGAGTTCAGACGTGT
CCTAGC | index_6nt_37 | CAAGCAGAAGACGGCATACGAGATgctaggGTGACTGGAGTTCAGACGTGT
CCTCAG | index_6nt_38 | CAAGCAGAAGACGGCATACGAGATctgaggeGTGACTGGAGTTCAGACGTGT
CCTGCT | index_6nt_39 | CAAGCAGAAGACGGCATACGAGATagcaggGTGACTGGAGTTCAGACGTGT
CGACTC | index_6nt_40 | CAAGCAGAAGACGGCATACGAGATgagtcgGTGACTGGAGTTCAGACGTGT
CGCAAC | index_6nt_41 | CAAGCAGAAGACGGCATACGAGATgttgcgGTGACTGGAGTTCAGACGTGT
CGCCGT | index_6nt-42 | CAAGCAGAAGACGGCATACGAGATacggcgGTGACTGGAGTTCAGACGTGT
CGCTCG | index_6nt-43 | CAAGCAGAAGACGGCATACGAGATcgagcgGTGACTGGAGTTCAGACGTGT
CGTATT | index_6nt 45 | CAAGCAGAAGACGGCATACGAGATaatacgGTGACTGGAGTTCAGACGTGT
CTAGGT | index_6nt_46 | CAAGCAGAAGACGGCATACGAGATacctagGTGACTGGAGTTCAGACGTGT
CTCCTG | index_6nt_47 | CAAGCAGAAGACGGCATACGAGATcaggagGTGACTGGAGTTCAGACGTGT
CTCGAA | index 6nt_ 48 | CAAGCAGAAGACGGCATACGAGATttcgagGTGACTGGAGTTCAGACGTGT
CTCTGC | index 6nt.49 | CAAGCAGAAGACGGCATACGAGATgcagagGTGACTGGAGTTCAGACGTGT
CTGACC | index_6nt_.50 | CAAGCAGAAGACGGCATACGAGATggtcagGTGACTGGAGTTCAGACGTGT
GAAGCC | index_6nt_52 | CAAGCAGAAGACGGCATACGAGATggcttcGTGACTGGAGTTCAGACGTGT

Continued on next page

86




Table S3.1 — Continued from previous page

Index Name Oligonucleotide
GACCTT | index_6nt_-53 | CAAGCAGAAGACGGCATACGAGATaaggtcGTGACTGGAGTTCAGACGTGT
GATAAC | index_6nt_55 | CAAGCAGAAGACGGCATACGAGATgttatcGTGACTGGAGTTCAGACGTGT
GCAATC | index_6nt_-56 | CAAGCAGAAGACGGCATACGAGATgattgcGTGACTGGAGTTCAGACGTGT
GCCTCT | index_6nt 57 | CAAGCAGAAGACGGCATACGAGATagagecGTGACTGGAGTTCAGACGTGT
GCGCTG | index_6nt_58 | CAAGCAGAAGACGGCATACGAGATcagecgcGTGACTGGAGTTCAGACGTGT
GCTGAA | index_6nt_59 | CAAGCAGAAGACGGCATACGAGATttcagcGTGACTGGAGTTCAGACGTGT
GTCGCG | index_6nt_64 | CAAGCAGAAGACGGCATACGAGATcgcgacGTGACTGGAGTTCAGACGTGT
TAAGAT | index_6nt_ 65 | CAAGCAGAAGACGGCATACGAGATatcttaGTGACTGGAGTTCAGACGTGT
TATCGT | index_6nt 66 | CAAGCAGAAGACGGCATACGAGATacgataGTGACTGGAGTTCAGACGTGT
TCATTG | index_6nt_ 67 | CAAGCAGAAGACGGCATACGAGATcaatgaGTGACTGGAGTTCAGACGTGT
TCCTAC | index_6nt_68 | CAAGCAGAAGACGGCATACGAGATgtaggaGTGACTGGAGTTCAGACGTGT
TCTATA | index_6nt_70 | CAAGCAGAAGACGGCATACGAGATtatagaGTGACTGGAGTTCAGACGTGT
TTACTT | index-6nt-74 | CAAGCAGAAGACGGCATACGAGATaagtaaGTGACTGGAGTTCAGACGTGT
TTCCGA | index_6nt_-75 | CAAGCAGAAGACGGCATACGAGATtcggaaGTGACTGGAGTTCAGACGTGT
TTCGTC | index_6nt_-76 | CAAGCAGAAGACGGCATACGAGATgacgaaGTGACTGGAGTTCAGACGTGT
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4.1 Abstract

Determining the molecular changes that give rise to functional innovations is a major un-
resolved problem in biology. The paucity of examples has served as a significant hindrance
in furthering our understanding of this process. Here we used experimental evolution with
the bacterium FEscherichia coli to quantify the molecular changes underlying functional in-
novation in 68 independent instances ranging over 22 different metabolic functions. Using
whole-genome sequencing, we show that the relative contribution of regulatory and struc-
tural mutations depends on the cellular context of the metabolic function. In addition,
we find that regulatory mutations affect genes that act in pathways relevant to the novel
function, whereas structural mutations affect genes that act in unrelated pathways. Finally,
we use population genetic modeling to show that the relative contributions of regulatory
and structural mutations during functional innovation may be affected by population size.
These results provide a predictive framework for the molecular basis of evolutionary innova-
tion, which is essential for anticipating future evolutionary trajectories in the face of rapid

environmental change.

4.2 Significance

Understanding the genetic changes that underlie phenotypic functional innovations is a fun-
damental goal in evolutionary biology, giving insight into species’ past, present, and future
evolutionary trajectories. One important unresolved question is whether such genetic changes
typically affect protein expression or protein structure. Here we use large-scale laboratory
evolution with bacteria to quantify the types of genetic changes that occur during functional
innovation. We show that whether these changes affect protein expression or protein struc-
ture depends on which cellular functions are being selected upon. We then show that changes
affecting protein expression occur in qualitatively different sets of genes from changes affect-
ing protein structure. These results show that using functional knowledge it is possible to

predict the course of evolution.

4.3 Introduction

One of the most important questions in evolutionary biology concerns the molecular mech-
anisms that underlie functional innovations. These changes are often polarized into two
classes: those that affect protein structure and those that affect protein expression level.
Both of these classes have been shown to play important roles across a wide range of taxa,
from vertebrates (Jones et al., 2012, Zhang et al., 2002) to bacteria (Ando et al., 2013, Lieber-
man et al., 2011), and their relative importance has been the topic of considerable discussion
(Wray, 2007, Hoekstra & Coyne, 2007, Stern & Orgogozo, 2008, Jacob, 1977, Mutero et al.,
1994, Hoekstra et al., 2006, Shapiro et al., 2004, Stern & Orgogozo, 2009). Significantly,

many previous studies have addressed these questions by focusing on single instances of
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functional innovation (Kasak et al., 1997, Dabizzi et al., 2001, Brilli & Fani, 2004, Lin &
Hacking, 1976) or selective regimes (Blount et al., 2012, Meyer et al., 2012, Beaumont et al.,
2009, Lindsey et al., 2013, Barrick et al., 2009, Tenaillon et al., 2012). However, to identify
general principles, it is necessary to study evolutionary innovation for a large number of
different functions in parallel. Indeed, the fact that only a small number of examples exist
has resulted in few hypotheses being put forth that identify general characteristics of the
molecular changes underlying functional innovation. One prominent hypothesis states that
if the development of a novel trait is spatially or temporally limited, then innovation fre-
quently occurs through changes in regulation (Haag & Lenski, 2011, Stern, 2000). Whether

there are general patterns beyond this is not well-established.

Here we used an experimental system that allows the analysis of a large number of inde-
pendent cases of evolutionary innovation and investigation of the underlying genetic changes.
We worked with a collection of 87 strains of Escherichia coli that each had a deletion of one
gene encoding a different metabolic function (SI Appendix, Table S4.1). Each of these dele-
tions resulted in an inability to grow in minimal glucose media. Then, for each of these 87
deleted metabolic functions, we used experimental evolution to select for novel functionality
that could replace the functionality that was lost through gene deletion. As an example, one
of the deleted genes was serB, a phosphoserine phosphatase that catalyzes the final step in
serine biosynthesis. Regaining the ability to grow in the absence of this gene requires the
evolution of a new function that allows sufficient amounts of serine to be made to support
cell growth. Although this experimental system does not necessarily recapitulate natural
evolutionary scenarios, many aspects of this design are reflective of ecological and evolution-
ary features found in more natural circumstances. For example, the loss of specific genes or
functions may occur through drift in small populations or through selection in the face of
antagonistic pleiotropy (Elena & Lenski, 2003). One well-established example of this in E.
coli is that many natural isolates have null alleles at the locus for the stress response sigma
factor rpoS; this is thought to be due to tradeoff between stress resistance and growth rate
(Ferenci, 2003). Similarly, the experimental design here provides an evolutionary scenario
very similar to that experienced by microbes during the evolution of abilities that allow the
degradation of nonnatural compounds, such as organic chlorides (Bosma et al., 2002) (SI

Appendix).

Our experimental design provides two significant advantages that cannot easily be real-
ized in settings outside of the laboratory. First, we can study how a large number of different
types of metabolic functions arise, and thus gain general insights into the process of evo-
lutionary innovation. Second, we have information on the cellular context of the evolved
novel metabolic functionality, and can thus analyze whether the mechanisms of evolutionary
innovation depend in a predictable manner on the specific characteristics of the pathway or

interaction networks in which the function acts (Stern & Orgogozo, 2009).
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4.4 Results and Discussion

We began the experimental evolution by establishing five replicate cultures of each of the 87
deletion genotypes, yielding a total of 435 independent cultures. We grew large populations
of cells in rich media, and used serial transfer in glucose minimal media to evolve these
populations for 28 transfers, or approximately 145 generations (Materials and Methods).
To ensure the transfer of cells that evolved even low levels of novel metabolic activity, we
severely limited the rate of serial dilution, imposing only 5-fold dilutions for the first 10
transfers and 100-fold dilutions for the following 18 transfers. We allowed 48 h of growth

in-between transfers.

At the end of this period, 68 out of the 435 populations recovered the ability to grow
in glucose minimal media. These 68 populations encompassed 22 out of the 87 different
deletion genotypes, and the functions encoded by these 22 deleted genes were distributed
throughout the E. coli metabolic network (SI Appendix, Fig. S4.1). For a small number of
deletion genotypes, all five replicate populations regained the ability to grow. However, for
the majority of deletion genotypes in which growth recovered, between one and four replicate
populations regained growth ability (Fig. 4.1A). The pattern of recovery that we observed
was consistent with a scenario in which a small number of functions are easy to recover,
whereas a much larger number of functions are difficult or perhaps impossible to evolve.
Under such a scenario, it is possible that increases in the population size or mutation rate

might result in more functions being recovered.

We found, furthermore, that the probability of growth recovery depended on the metabolic
function that had been deleted. We classified the 87 deleted genes as acting in one or more
of four metabolic functional categories (Serres & Riley, 2000): carbon compound utilization,
energy metabolism, central intermediary metabolism, and building block biosynthesis. The
functions of proteins that acted in building block biosynthesis were much less likely to be
replaced than the other types of metabolic functions (Fisher’s exact test, P = 0.0002, odds
ratio 0.09; Fig. 4.1B), indicating that new functionality in building block biosynthesis was

more difficult to evolve than other types of new functionality.

We selected one clone from each of the 68 populations in which growth recovered and
determined its maximum growth rate. Fifty-seven of these clones exhibited detectable growth
as assayed by changes in optical density (Fig. 4.2 and SI Appendix, Materials and Methods);
in the remaining 11 populations, growth could be detected only as changes in colony-forming
units over time. Although many clones exhibited growth rates similar to that of the wild type,
lag times were considerably longer (ST Appendix, Fig. S4.2), suggesting that in most cases the
functionality of the deleted gene had not been fully replaced. Notably, we found a striking
level of parallelism in growth rates, with clones from replicate populations evolving similar
growth rates (Fig. 4.2). This set of 68 clones comprises a large set of independent instances
in which functional innovation has evolved to confer novel growth abilities. We propose that

this provides a model system for investigating the molecular mechanisms underlying the
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Figure 4.1: Sixty-eight out of 435 populations evolved the ability to compensate for the function
of the deleted gene. (A) Growth recovery was not deterministic. For some deletion genotypes, five out of
five replicates recovered growth; for the majority, between one and four replicates recovered growth. Three
hundred sixty-seven populations went extinct during the evolutionary process; these are not shown. (B)
Novel functions that were related to building block biosynthesis were more difficult to evolve. The white
bars indicate those deletion genotypes in which novel functionality evolved; in gray are those for which no
novel function was evolved. For all categories except building block biosynthesis, novel functions evolved
that compensated for the majority of deleted functions.
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evolution of new functionality and for identifying whether the genetic changes are predictably

regulatory or structural in their nature.
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Figure 4.2: Growth rates of recovered clones were more similar for lineages derived from the
same deletion genotypes. Each point shows the mean estimated doublings per hour for each clone (+
SEM); clones are grouped by genotype (x axis) and colored gray and white to emphasize the groupings.
The black solid line indicates the growth rate of the ancestral BW25113 strain. Six recovered clones did
not exhibit detectable growth as assayed by ODggo and are indicated as having growth rates of 0. For four
deletion genotypes, no clones exhibit detectable growth as assayed by ODggg; these deletion genotypes are
not shown here. The number below each genotype indicates the probability of observing a set of clones with
growth rates at least as clustered as those that we observe (SI Appendix). Cases in which only one lineage
recovered for a genotype are indicated with NA, as no clustering probability could be calculated. Each point
is based on three biological replicates, except for 11 cases in which one replicate was excluded due to no
growth being observed (SI Appendix).

We determined the genetic changes that occurred during experimental evolution using
whole-genome sequencing. Using the same set of 68 clones used in the quantification of
growth rates, we identified 238 genomic changes in total (SI Appendix and Dataset S1).
We focus here on those mutations that are most likely to provide phenotype-specific novel
functionality. For this reason, we excluded from all subsequent analyses those mutations
that have been observed in other laboratory evolution studies or in the ancestral deletion
genotypes (these are likely to be general laboratory adaptations; SI Appendix, Tables S4.2
and S4.3). Excluding this class yielded a total of 210 mutations (Fig. 4.3A and 4.3B)
that may have specifically been responsible for novel functionality, compensating for the
role of the deleted genes. We term the genes affected by these mutations the “recruited”
genes (Dataset S1), and propose that by changing protein expression or structure they
confer crucial functional innovations that are necessary for growth recovery on minimal
media. Notably, we found that clones isolated from populations in which a large number of
replicate lineages recovered contained fewer mutations (Spearman’s rho = —0.38, P = 0.001;
Fig. 4.3C). One interpretation of this observation is that novel functions that required fewer
mutational steps evolved with higher probability. Alternatively, it is possible that certain
types of deletions lead to increased mutation rates, and as a consequence to a higher number

of fixed mutations.
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Figure 4.3: Mutational events that occurred during the evolution of novel functionality affected
both protein structure and expression level. (A) Mutations classified by type. The overwhelming
majority of changes were point mutations (Left), followed by insertions sequence (IS) element-mediated
changes, small indels, large amplifications (larger than 200 bp), and large deletions (larger than 200 bp). (B)
Mutations classified by functional effect (SI Appendix). We inferred that the majority of changes affected
protein structure, although more than a fifth of these resulted in altered reading frames or the incorporation
of premature stop codons. Almost 40% of changes were inferred to be regulatory, that is, as directly affecting
protein expression (in contrast to indirect effects, which may occur via structural changes in transcription
factors or other mechanisms). (C) Deletion genotypes in which few replicates recovered tended to contain
clones with more mutations. Each box shows the numbers of mutations found within clones, classified by
the number of replicate lineages that recovered (e.g., for three deletion genotypes, four replicate lineages
recovered; the number of mutations in each of the 12 sequenced clones is shown). The boxplots indicate
the median, first and third quartiles, and the extreme values within the category. (D) Mutations in evolved
clones often increased predicted transcriptional output due to changes in ¢”° binding. For each unique
intergenic mutation, we predicted the transcriptional output for the ancestral sequence and the evolved
sequence (SI Appendix, Materials and Methods). The dotted black line indicates unchanged transcriptional
output. The annotated black points are the promoters shown in E. (E) Random mutations that result in
increased transcriptional output are rare. We predicted transcription (07 binding) for all point mutations
and 1-bp indels in the promoter region surrounding the intergenic mutations plotted in D. Four examples
are shown here. The predicted transcriptional output of the ancestor is shown as a red line; that of the same
promoter region with the evolved mutation is shown as a green line. Most random mutations have little effect
on transcription; however, in several of the evolved clones, the observed mutation was among those mutations
with the largest possible predicted effect on transcription (SI Appendix, Fig. S4.4). Clockwise from the top
left, the deletion genotypes and recruited genes are AargC and proB; AglyA and cycA; ApabA and pabB; and
Aptsl and glk. The numbers in the top left of each panel indicate the fraction of all one-mutant neighboring
promoters that have a predicted transcriptional output that is equal to or lower than the observed mutant.
Note that both the x and y axes are on a log scale. (F) Mutations that affect translation both increase
and decrease the predicted translation initiation rate. Translation initiation rates were predicted using a
biophysical model (Salis et al., 2009) for the ancestral and derived alleles for all intergenic mutations, with
the black dotted line indicating no change.
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The relative numbers of mutational types that we observed suggested that the vast major-
ity were positively selected. Within coding regions, the ratio of nonsynonymous mutations
per nonsynonymous site to synonymous mutations per synonymous site (Ka/Ks) was 6.0
( 4.3A and ST Appendix, Materials and Methods); the analogous ratio for intergenic sites
(Ki/Ks) was 11.8 (Fig. 4.3A). In both cases, if the two classes of sites had evolved neutrally,
the expected ratio is 1. This suggested that there was pervasive strong positive selection for
point mutations that caused amino acid changes, which likely lead to structural changes in
proteins (SI Appendix, S4.6). Furthermore, this provides evidence that positive selection
for point mutations at intergenic sites was even more prevalent; such mutations are likely to
lead to regulatory changes. We also found evidence for positive selection on other types of
mutations that likely affect protein levels through regulatory changes, including a 3.5-fold
enrichment of indels in intergenic regions compared with coding regions, four mutations in
RNA molecules (two small RNAs, and two in the tRNA-processing rnpB), amplifications,
and transposon insertions (Aronson et al., 1989) (Fig. 4.3A and 4.3B and SI Appendix,
Fig. S4.7, and Table S4.4). Finally, we found that parallel changes were common. Certain
amplifications occurred in all clones that recovered for certain deletion genotypes (SI Ap-
pendix, Fig. S4.3). In some cases, these amplifications increased the genome size by more
than 106 bp (approximately 25% of the genome), a change that is likely to be deleterious
unless mitigated by considerable beneficial effects. Such extensive parallelism was also ob-
served for point mutations. For example, all four lineages that recovered functionality for a
deletion of carA contained a mutation 16 bp upstream of the start codon of carB, a mutation

that is likely to increase protein expression level by affecting translation initiation (Fig. 4.4).
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Figure 4.4: (Continued on the following page.)
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Figure 4.4: Intergenic mutations confer only moderate changes in protein expression. Mean
fluorescence levels (= SEM) conferred by chromosomal copies of intergenic regions containing the ancestral
(gray points) and evolved alleles (white points). Each pair of alleles is annotated with the mutational
change that occurred, with the number indicating the position, in base pairs, from the first base pair of the
downstream ORF. The x axis is annotated with the recruited genes whose promoters were affected by the
mutation (first row) and the deletion genotype in which the mutation arose (second row). The ORFs of both
metJ and metB are downstream of a single intergenic region (in opposite directions). Thus, the sequence
contained in these constructs is identical, but GFP expression is driven by promoters on opposite strands.
The arrows emphasize the direction of expression change. We predicted significant expression changes in
carB, panD A-12G, avtA, and ginL of 12.4-, 2.7-, 2.4-, and 0.64-fold, respectively. For all other genotypes,
we predicted no significant changes based on changes in ¢”° binding or changes in ribosome binding. Note
that the sensitivity of the assay means that very low expression levels (i.e., the avtA and ginL alleles) cannot
be accurately measured. Thus, the fold change in expression, particularly for these strains, is likely larger

than what we measured.

These genomic analyses yielded the following insights into the relative contribution of
structural and regulatory changes during the early stages of functional innovation in bacteria:
We found that during the early stages of functional innovation, structural mutations are
more common. Sixty-one percent of all observed point mutations led to amino acid changes,
and thus likely to structural change (Fig. 4.3B). Although regulatory mutations were less
common, they were strongly overrepresented. Whereas only 12.2% of the genome of E. coli
is intergenic, 25% of the point mutations and 43% of all indels were located in intergenic
sites. This means that mutations that occurred in intergenic regions, and which potentially
change protein expression levels, were approximately three times more likely to increase in
frequency compared with mutations in coding regions. To further test the adaptive nature
of these potential regulatory mutations and to understand their molecular consequences, we
examined how they affected transcriptional and posttranscriptional processes.

Computational analyses showed that many of these potential regulatory mutations in-
creased transcriptional output or translation initiation rates. First, we analyzed changes in
transcription using an approach based on information theory (Schneider, 1997, Berg & von
Hippel, 1987, Shultzaberger et al., 2010) to predict how the regulatory mutations (point
mutations and indels) affected binding of the housekeeping sigma factor o™ (SI Appendix,
Materials and Methods). In 11 out of 35 cases (30.5%), we found that the mutation increased
0™ binding strength, by 1.1- to 6.5-fold (Fig. 4.3D and 4.3E and Materials and Methods).
This fraction is much higher than what is expected by chance: Only 3.6% of all random
mutations are predicted to increase binding by more than 10% (Fig. 4.3E and SI Appendix,
Fig. S4.4 and Table S4.6)). As binding is directly proportional to transcriptional output
(Brewster et al., 2012), this supports the hypothesis that many of the intergenic mutations
resulted in increased protein expression levels. We next used a biophysical model to predict
changes in translation initiation rates. Of the eight mutations that occurred within 35 bp
upstream of the start codon, and which may have affected translation (Salis et al., 2009), four
were predicted to increase translation initiation, whereas three were predicted to decrease it

(Fig. 4.3E). This suggests that mutations affecting protein expression often incurred their
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beneficial effects through increasing transcriptional output, and less often through increasing

the rate of translation initiation.

We then experimentally quantified the effects of these mutations on protein expression.
We placed single copies of the intergenic region containing the ancestral and evolved alleles as
translational fusions with GFP in a neutral location in the chromosome (McKenzie & Craig,
2006) (Materials and Methods). In the four cases for which we also computationally predicted
a change in protein level, expression changed in the direction anticipated. Surprisingly, we
found that in many cases, expression levels increased by only moderate levels (Fig. 4.4).
Despite these weak effects on protein expression level, as pointed out above, there was strong
evidence that many of these mutations were adaptive. Together, these data suggested that
the regulatory mutations that occurred during the evolution of novel functionality often
conferred adaptive benefits through the creation of novel regulatory elements, but that these

elements frequently effected only moderate changes in protein expression level.

To test whether changes in protein expression alone could provide novel functionality that
rescues the lethal phenotypes and to understand the extent of expression change needed, we
selected eight deletion genotypes (SI Appendix, Materials and Methods) in which several
evolved clones appeared to have single large-effect regulatory mutations, suggesting that
the lethal phenotypes could be rescued by increased expression of a single ORF; this crite-
rion largely excluded evolved clones with structural changes that were highly paralleled in
other lineages and evolved clones that contained two or more regulatory changes. We then
transformed the eight ancestral deletion genotypes with plasmids containing the ORFs of
the recruited gene under an Isopropyl 8 — D — 1—thiogalactopyranoside (IPTG)—regulated
promoter (Kitagawa et al., 2005) (Materials and Methods) and observed growth for 72 h.
In four out of the eight cases, high growth rates were observed when expression of the ORF
was induced using 100uM IPTG (SI Appendix, Fig. S4.5), showing that increased expression
of this single ORF was sufficient to provide the new functionality. In three cases, growth
rates displayed threshold behavior, with high growth rates occurring at one concentration of
IPTG and small decreases in [IPTG level resulting in little or no growth at all. This suggests
that subtle changes in protein expression level can have profound effects on growth (Ando
et al., 2013), a result that provides an interesting corollary to previous data showing that
small changes in protein structure can exert large effects on cell growth (Walkiewicz et al.,
2012).

Our results indicate that structural and regulatory changes are both important for the
evolution of new functions, but show that regulatory mutations are consistently more likely
to be positively selected. We next sought to develop a more refined predictive framework
to understand how the genetic changes that occur during evolutionary innovation depend
on functional or demographic parameters. First, we asked whether the relative importance
of structural and regulatory mutations depends on cellular contexts or pathways. Using
the same categorical metabolic functional classifications outlined above (carbon compound

utilization, energy metabolism, central intermediary metabolism, and building block biosyn-
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thesis), we found that deletion genotypes involved in building block biosynthesis were more
likely to be compensated for by regulatory mutations (Fisher’s exact test, P = 0.006, odds
ratio 2.5; Fig. 4.5A). Thus, we found that the enrichment of regulatory mutations described
above was dependent on cellular context, revealing our first predictive pattern in the path

of molecular evolution during functional innovation.
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Figure 4.5: (Continued on the following page.)

Figure 4.5: Mechanisms promoting novel functionality are dependent on cellular context. (A) The
relative enrichment of regulatory and structural mutations is dependent on cellular function. Mutations that
contribute toward novel functionality related to building block biosynthesis are more enriched for regulatory
mutations, with 48% of all mutations being regulatory. In contrast, in other pathways, only 17-23% are
regulatory. Green bars indicate regulatory mutations; gray bars indicate structural mutations. The numbers
above the bars indicate the number of deletion genotypes within the category. (B) Regulatory mutations
recruit proteins that act in functions related to the missing function. We calculated the shortest network
distance between pairs of genes from high-confidence links in the STRING database (Jensen et al., 2009).
Green points indicate the network distances between the deleted gene and the genes recruited for functional
compensation. Black points indicate the expected network distance between the set of deleted genes and a
randomly selected recruited gene based on 5,000 randomizations of protein pairs. The last bin includes all
gene pairs with a distance of nine or more, or which are not connected in the network. Genes recruited via
regulatory mutations are on average more than three network links closer than expected by chance (Wilcoxon
rank-sum test between observed and randomized network distances; n = 34; P = 2.5e-15). (C) Structural
mutations recruit proteins that act in functions unrelated to the missing function. Gray points indicate the
network distances between the deleted gene and the genes recruited for functional compensation. Black points
indicate the expected network distance between the set of deleted genes and a randomly selected recruited
gene based on 5,000 randomizations of protein pairs; genes recruited via structural change mutations are on

average only 0.6 network links closer than expected by chance (Wilcoxon rank-sum test; n = 85; P = 4.0e-5).

Having established that the types of mutations that occur are affected by the nature of the
novel metabolic function that is required, we asked whether these mutations themselves affect

predictable cellular functions. We measured the shortest physical and functional proximity
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[network distances (Jensen et al., 2009)] between a deleted gene and the genes recruited to
compensate for its function (Materials and Methods), and found that genes recruited via
regulatory changes were, on average, more than 3 network links closer to the deleted genes
than would be expected in a randomized network (Fig. 4.5B; P = 2.5e-15, n = 34, Wilcoxon
rank-sum test). In contrast, genes recruited through structural changes were, on average,
only 0.6 links closer to the deleted genes than in a randomized network (Fig. 4.5C; P =
4.0e-5, n = 85, Wilcoxon rank-sum test). Thus, proteins that confer novel functionality
through regulatory change tended to affect proteins that function within the pathways that
are most relevant to the missing (deleted) function, whereas proteins that are affected by
structural mutations tended to be located in unrelated pathways.

Finally, we asked how demographic parameters might influence the relative contribution
of regulatory and structural mutations. We have shown that structural mutations were
more frequently selected for during functional innovation but regulatory mutations were
more strongly enriched than expected on the basis that intergenic regions provide a rela-
tively small mutational target. This differential enrichment yields a general insight into the
nature of regulatory and structural mutations: Either regulatory mutations have a higher
probability of being beneficial than structural mutations, or regulatory mutations have larger
beneficial effects. A simple population genetic model suggests that it should be possible to
disentangle these two hypotheses by testing how changes in population size affect the frac-
tion of regulatory mutations that are observed (Fig. 4.6). If regulatory mutations have a
higher probability of being beneficial, then their relative numbers will be enriched relative
to structural mutations (compare Fig. 4.6A and Fig. 4.6B), and this enrichment will be
independent of population size (Fig. 4.6B). In contrast, if regulatory mutations have larger
beneficial effects than coding mutations, the level of enrichment will be dependent on popula-
tion size: Larger populations will fix a greater fraction of regulatory mutations (Fig. 4.6C).
These results show that population size can impact the relative contribution of regulatory
and structural mutations, and emphasize that a predictive framework of the molecular basis

of evolutionary innovation should take into account demographic parameters.

Figure 4.6: Population genetic modeling (SI Appendix, Materials and Methods) shows that
the relative numbers of regulatory (green points) and structural mutations (gray points) that
contribute to novel function can depend on demographic parameters. (A) When the proportion of
structural and regulatory mutations is 0.85 and 0.15, respectively (similar to the ratio of nonsynonymous to
intergenic sites in the E. coli genome), and the distribution of selective effect sizes is identical, the ratio of the
average number of structural and regulatory mutations within an individual is approximately independent
of population size (white points; Lower). (B) If the number of structural sites at which structural mutations
are beneficial is halved, the ratio again remains independent of population size, but the fraction of regulatory
mutations approximately doubles. (C) If the mean and variance of the effects of structural mutations on
fitness are half that of regulatory mutations, the ratio is dependent on population size, with individuals in
larger populations containing larger relative numbers of regulatory mutations. (Insets) The shape of the
distribution of mutational effects for structural (black) and regulatory (green) mutations. In A, the two
distributions are identical. The results shown here correspond to 150 generations of evolution. All points

shown are the means of at least 50 independent simulations.
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Figure 4.6: (Continued on the following page.)

By using a large number of independent instances of functional innovation and compre-
hensively characterizing their molecular effects, we have been able to develop a predictive
framework for the genetic basis of evolutionary innovation. This framework provides insight
into both when and via what mechanisms functional innovation will occur. We have shown
that coding mutations tend to be numerically dominant overall, but regulatory mutations
are much more common than expected based on the small fraction of the genome that does
not encode proteins. One possible explanation for this observation is that coding mutations
are more likely to incur antagonistic pleiotropic effects. For example, several of the regula-
tory mutations we observed affected genes that are essential for growth in minimal glucose
media [e.g., proB (a glutamyl kinase), pabB (an aminodeoxychorismate synthase), and metE
(a homocysteine transmethylase)]. Changes in the coding regions of these proteins may
have detrimental effects on these genes’ native functions, whereas regulatory mutations may
tend to have less of a deleterious effect. The regulatory mutations we observed frequently
resulted in the creation of new transcriptional control elements. They were particularly fre-
quent in novel functions related to building block biosynthesis—functions which were hard
to evolve—and generally affected genes that act in cellular contexts closely related to the
novel function that was evolved.

It has previously been proposed that gene duplications play a critical role in functional
innovation (Bergthorsson et al., 2007, Ohno, 1970); more recently, this phenomenon has been
observed in a laboratory setting (Nésvall et al., 2012). However, we found that gene ampli-

fications did not dominate during the early stages of the evolution of functional innovation.
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This is perhaps due to deleterious pleiotropic effects that manifest when large parts of the
genome are amplified, and the rarity with which smaller and less deleterious duplications
occur (e.g., (Blount et al., 2012)). At the same time, our results suggest that during the
early stages of functional innovation, some genes may take on dual roles in the cell (Carroll,
2008), and these dual roles may be facilitated by overexpression. Later, rare duplication of
these loci may allow their specific enzymatic activities to diverge (Nésvall et al., 2012).
The predictive framework we present here contributes to our fundamental understanding
of the evolutionary process, and at the same time provides insights into how populations can

respond to rapid environmental change.

4.5 Materials and Methods

4.5.1 Gene deletion strains

All deletion strains (SI Appendix, Table S4.1) were taken from the Keio collection (Baba
et al., 2006). Growth phenotypes were confirmed through liquid culture (SI Appendix,
Materials and Methods).

4.5.2 Experimental evolution

We evolved five replicate 1—mL cultures of 0.2% glucose minimal media (M9) for each
deletion line for 28 transfers (SI Appendix, Materials and Methods).

4.5.3 Sequence analysis

Sequencing was performed on an Illumina HiSeq to a median of at least 50x depth per

genome. All mutation data are available in Dataset S1.

4.5.4 Assaying the effects of intergenic mutations on protein expression

We used a transposon-mediated method (McKenzie & Craig, 2006) to integrate translational
fusions consisting of the promoter with either the evolved or ancestral alleles, 20 amino acids
of the upstream and downstream ORFs, and GFP into the chromosome at a defined neutral
locus (SI Appendix, Materials and Methods).

4.5.5 Plasmid rescue of deletion genotypes

We transformed the original deletion genotypes from the Keio library with the respective
complementary IPTG-inducible plasmids from the ASKA+ library (Kitagawa et al., 2005).
See SI Appendix, Materials and Methods for deletion genotype—ORF pairs.
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4.5.6 Analysis of network distances

We used the STRING database (Jensen et al., 2009) to find network distances between

proteins and used a randomization test to calculate a null distribution.

4.5.7 Statistics

All statistical analyses were performed in R 3.0.1 (Team, 2007).
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4.7 SI Appendix

4.7.1 SI Appendix, Materials and Methods

Confirmation of conditional lethal growth phenotypes

Some of the deletion genotypes (Table S4.1) that we used have been variably classified as
exhibiting conditionally lethal phenotypes in glucose minimal media or not (Baba et al.,
2006, Patrick et al., 2007, Feist et al., 2007). This may be due to different methodologies
or to the ability of these strains to grow for a short period of time after dilution from rich
media into minimal media due to low-levels of residual nutrients present in the cell. Thus,
we confirmed the conditional lethal growth phenotypes in the following manner: we grew
deletion mutants overnight in 200 ul of LB media and then seeded wells containing 1mL of
0.2% glucose minimal media with approximately 100 cells. We allowed these cultures to grow
for 48 hours, diluted 1:1000 into minimal media, allowed these cultures to grow for another
48 hours, again diluted 1:1000, and again allowed the cultures to grow for 48 hours. A small
number of the deletion lines exhibited visible growth after the first dilution into minimal
media (visible growth at this point would require on the order of 16 doublings); diluting less
at the first step resulted in visible growth from more cultures. However, after the additional
second and third serial dilutions, the vast majority of genotypes no longer exhibited growth,
having no measurable OD nor exhibiting any viable colonies after plating on rich media.
Using this above dilution protocol, we divided the deletion mutants into two classes:
strains in which we observed no sustained growth (fewer than 5% 10" cells per mL after serial
dilution and regrowth) and those that exhibited prolonged growth (greater than 5* 10° cells
per mL after serial dilution and regrowth). The vast majority of deletion strains that we

examined were in the first class, with a small number in the second class (AcysC, AcysD,
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AcysG, AcysH, Acysl, AcysJ, and AcysN); we did not examine these latter strains further.
In these cases, growth may have been due to the non-lethality of the deletion, to low levels
of contaminating nutrients in our media, or to rapid evolution of suppressor mutations. Two
strains exhibited an intermediate number of viable cells after these three dilutions. These
were argC' and argB, for which the ancestral strains exhibited between 5 * 10! and 10% per
mL after the above transfer regime. However, for these strains, only two and one lineages,
respectively, recovered function, indicating either that prolonged growth could not occur, or
that this growth was too slow for the cultures to maintain viability. We thus included the

evolved lineages descending from these deletion strains in all our analyses.

Experimental Evolution

Five replicate 200 pl LB cultures were grown overnight for each deletion line. Each culture
was then used to inoculate an 800 ul culture of 0.2% glucose minimal media (M9) with 50
pg/ml kanamycin. These were grown for 48 hours and diluted five-fold into 800 pl of fresh
M9 and grown for 48 hours. This process was repeated ten times, after which the cultures
were diluted 1:100 into 990 pl M9 and allowed to grow for 48 hours. This was repeated 18
times. During evolution, all wells contained a single glass bead for turbulent mixing. Plates
were incubated at 37°C, shaken at 600 rpm and were covered with plastic foil to prevent

evaporation.

Measurement of growth rates of evolved clones

All evolved clones were stored in LB glycerol stocks to ensure that sufficient numbers of
cells were frozen. In order to ensure that no residual nutrients from LB were present during
growth rate measurements, cultures from frozen stocks were passaged by growing overnight
in LB, and diluting 107—fold and 10*—fold in M9, allowing 48 hours of growth after each
dilution. These cultures were then diluted 10*—fold into M9 and ODg00 was measured every
40 minutes for 48 hours. We used an oil overlay to prevent evaporation. This oil overlay had
no measurable effect on the growth rates. Maximum growth rates were calculated using an
exponential fit over a sliding window of six time points (approximately 200 minutes), with
the requirement that the fit have an r? greater than 0.98. All measurements were performed
in triplicate. Occasionally no growth was observed in one well. This was most likely due to
the large variability in lag times (see SI Appendix), which sometimes resulted in very few
or no cells being transferred between cultures. We excluded these cases in which no growth
was observed from the calculations of the means and standard deviations in growth rates.
To test if growth rates of clones with the same deletion genotype were more similar than
expected, we used a randomization test. For each deletion genotype in which n lineages
recovered, we selected n growth rates without replacement from the set of all measured
growth rates and quantified the standard deviation of these growth rates. We repeated this
selection process 10,000 times, and then compared the standard deviation of the observed

standard growth rates for each genotype to the set of randomized growth rates to calculate
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the probability of observing a standard deviation in growth rates as small or smaller than

the observed standard deviation.

Sequencing

Genomic DNA was prepped using the GenElute Bacterial Genomic DNA Kit (Sigma). Sam-
ples were sonicated, and size restricted to isolate fragments between 300 bp and 500 bp in
size. A PCR step was used to index the fragments. Single-end 50 bp reads were obtained us-
ing an [llumina HiSeq, with between eight and 24 libraries per lane. All lines were sequenced
to a median depth of at least 50—fold. Mutations were identified using Breseq 0.21 (Barrick
et al., 2009). We confirmed a subset of the identified mutations using Sanger sequencing and
in all cases confirmed the mutations. Due to variation in read coverage across the genome,
deletions and amplification were identified by calculating average coverage within a sliding
window of 25 bp across the genome and looking for decreases (greater than four-fold) in
coverage between neighboring windows. In all cases in which amplifications were identified,
we further examined these genomic regions for polymorphisms using SAMtools 0.1.18 (Li

et al., 2009). In no cases were any polymorphisms identified.

Exclusion of ancestral and previously observed mutations

For any mutations that were shared across all evolved lineages of a single deletion strain, the
ancestral deletion strain was Sanger sequenced at this locus to check whether the mutation
was independently evolved in these lineages, or whether it was present in the ancestor. In the
majority of cases, these shared mutations were present in the ancestral strains (Table S4.2).
These mutations were excluded from all analyses that we present. As noted in the main text,
we also excluded any mutations that have been observed previously in other experimental
evolution studies (Schneider et al., 2000, Notley-McRobb et al., 2002, Charusanti et al.,
2011, Jensen, 1993, Conrad et al., 2009, Rath & Jawali, 2006) (Table S4.3).

Derivation of K,, K, and K;

We used data from Hershberg and Petrov (Hershberg & Petrov, 2010) on synonymous muta-
tions to estimate mutational biases in E. coli, approximating mutation rates as 66% GC:AT;
17% AT:GC; 10% GC:TA; 4% AT:CG; 2% AT:TA; and 1% GC:CG. Thus, mutations at
GC sites comprise 77% of all mutations, while mutations at AT sites comprise only 23%.
Intergenic regions in E. coli are 41.9% GC, while coding regions are 52.0% GC, excluding
RNA genes. The E. coli genome is 12.2% intergenic (again, excluding RNA genes). We then
use these numbers to calculate the fractions of mutations that we expect to be synonymous,
nonsysnonymous, and intergenic. With the above data, we then expect that 11.1% of all
point mutations will occur in intergenic regions, 60.7% will be nonsynonymous, and 28.1%
will be synonymous. However, we found that 25.2% of all point mutations were intergenic,

69.4% were nonsynonymous, and 5.4% were synonymous.
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Calculation of ¢’° binding and transcription initiation rates

We used alignments of annotated o™ sites (Djordjevic, 2011) to infer a weight matrix (Schnei-
der, 1997) including the -35 and an extended -10 (Djordjevic, 2011) (SI Appendix).

The 35 mutations investigated here were all the unique point mutations (26 in total),
unique small insertions (four insertions of 1 bp), and unique small deletions (one 5 bp dele-
tion, one 4 bp deletion, one 3 bp deletion, and two 1 bp deletions). Other larger deletions
almost certainly affected terminator structures or the binding of multiple transcription fac-
tors (SI Appendix and Table S4.6). We did not consider IS element changes or amplifications

0 or translation initiation rates.

in calculating changes in o

We calculated promoter binding energy as the summed weight matrix scores over all
possible windows and all possible spacers in a window running from 150 bp upstream of
the mutation to either 150 bp downstream of the evolved mutation or to 10 bp before the
first codon of the downstream open reading frame (to account for the 5" UTR required
for ribosomal binding), whichever was shorter. In two cases, intergenic mutations occurred
directly downstream of the deleted gene. In these cases, the upstream region was substituted
with that of the Kanamycin resistance locus and FRT site that was present in the genome,
and the weight matrix score was calculated from this sequence.

We calculated the binding energy of a promoter as:

B, = (;) x log (Z exp(f * E(S)))

In which E,, is the energy of the promoter; 5 is a scaling factor (set to one in this case as
we express energies in kgT units); and E(S) is the energy of site S (or weight matrix score),
defined as (Brewster et al., 2012):

E(S) =) Eyi* Sy

bi
In which E is a 4 x 7 matrix with element E, ; specifying the energy contributed by base
b at position 7, and S is a 4 x textiti matrix in which element b,7 is 1 if the observed base at

position 7 in site S is b, and 0 otherwise.

Energy matrix elements E; ; were derived as (Kinney et al., 2010):

Ey; = —log (p(b) ) , fi(b) = N4

In which ci(b) is the number of sites with base b at position ¢, N is the total number of

sites, and p(b) is the frequency of base b in the intergenic DNA of E. coli (e.g. for guanine
and cytosine, 41.9%, as indicated above). We used an annotated set of o™ binding sites
(Djordjevic, 2011) to infer the energy matrix elements.

The probability that a promoter is bound by a sigma factor is (assuming that the con-

centration of sigma factor is not saturating) (Brewster et al., 2012):
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C xexp(f * E,y)

In which C is a constant specifying the transcription expected from non-specific binding,
and which we interpret to be similar for the ancestral and evolved strain. Finally, we assume
that this probability is proportional to the level of gene expression (Brewster et al., 2012),
which is what we plot in Fig. 4.3D and E and Fig. S4.4 (expressed in arbitrary units).

These calculations were performed for both the ancestral and derived promoter regions.
We also calculated changes in the binding energy for all possible mutations in this region,
weighted by the probabilities of each type of point mutation as approximated above (66%
GC:AT; 17% AT:GC; 10% GC:TA; 4% AT:CG; 2% AT:TA; and 1% GC:CG), and with the
weight of 1 bp insertions and deletions equal to each other and consisting of 10% of all
mutations.

We used the online RBS calculator (Salis, 2010) to calculate translation initiation rates
for the ancestral and derived alleles.

We list the predicted transcriptional and translational effects for all intergenic point mu-
tations and small indels in Table S4.6.

Assaying the effects of intergenic mutation on protein expression

Transposon-mediated integration of translational fusions was performed in the following
manner: the region between AttR1 and AttR2 from plasmid pNDL1 (Bollenbach & Kishony,
2011) was replaced with GFPmut2 (Zaslaver et al., 2006) using the Apal and Xhol sites. At
the same time, Xmal and Sacll cut sites were added between the GFP start codon and the
Xhol site. This resulted in an MCS consisting of Xhol, Sacll, and Xmal followed immediately
by the start codon of GFP. This plasmid was then used to clone the translational fusions.
In the case of the mutation upstream of carB, which was observed in a carA deletion line,
the entire region encompassing the 20AA from the gene upstream of carA (dapB) to the
first 20AA of carB was cloned, such that the promoter of carA as well as the Kanamycin
resistance gene, was present in the construct.

The region between the attR1 and attR2 sites in these plasmids was then integrated
into the chromosome at the attTn7 site of the evolved strain (McKenzie & Craig, 2006),
resulting in two strains for each intergenic region, one with the ancestral intergenic allele in
the evolved strain background, and a second with the evolved intergenic allele in the evolved
strain background. All integrated alleles were sequenced to confirm the expected mutations.

We grew these strains overnight in glucose minimal media, diluted 1:100 in minimal
media, and grew for four hours (such that early exponential phase was reached). We assayed
expression level using flow cytometry, with excitation at 488nm and an emission filter of
513/17. We collected data for at least 50,000 cells, gated on a subset of approximately
5,000 cells having similar FSC and SSC values (Silander et al., 2012), and calculated the

median fluorescence level of these cells. We also calculated the median fluorescence of cells
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without the integrated construct, and used this as the background fluorescence level (caused

by cellular autofluorescence). Each construct was measured in triplicate.

Quantifying growth during plasmid rescue of deletion genotypes

We selected eight deletion genotypes for which evolved clones contained mutations that
appeared to possibly contain large effect regulatory mutations allowing rescue. These eight
deletion genotypes and open reading frames were: AmetR and metE; AthrA and metlL;
AcarA and carB; AilvE and avtA; Aleul and leuA; AcayB and cysP; AilvE and ydeM; and
AgltA and yebY.

The latter two deletion genotypes contained large deletions, which we hypothesized might
result in novel promoter-open reading frame combinations. All deletion genotypes were
also transformed with a randomly selected open reading frame from this same set, but
which we did not expect to allow rescue. As expected, none of these resulted in rescue.
Growth curves were performed by growing strains overnight in LB containing kanamycin and
chloramphenicol, diluting 10°-fold into M9 minimal media containing 0.2% glucose, 50ug/mL
kanamycin, and 34 pg/mL chloramphenicol, and monitoring ODg00 every 20 minutes for 72
hours (although see below). As above, an oil overlay was used. Over this period of time,
no non-complementary plasmid resulted in growth. We note that two of these reading
frames (carB and avtA) have been shown previously to complement carA and ilvE deletion
genotype, respectively (Patrick et al., 2007). In one case (Aleul and leuA), we observed
robust growth (approximately one hour doubling time) in one well of one replicate at 50uM
IPTG, but in no others. This growth occurred after an approximately 65 hour lag phase.
We thus continued to monitor all wells for another 24 hours. After this period, we observed
growth in one additional well of this deletion genotype - open reading frame combination
(at 100uM IPTG). We are not sure whether this growth, which occurred after an extremely
long lag phase, was due to rescue via the plasmid, or to the appearance of compensatory
mutations in these replicates. We thus did not include these in Fig. S4.5. In addition, none
of the latter three deletion genotype-open reading frame combinations listed above (AcysB
and cysP; AilvE and ydeM; and AgltA and yebY') resulted in rescue, and thus are also not
included in Fig. S4.5.

Analysis of network distances

We used the STRING database to find network distances between proteins, including only
those interactions with a score of 0.800 or above. To calculate a null distribution of shortest
distances, we randomized the set of recruited genes among the set of deleted genes and
recalculated the shortest distance. We repeated this randomization 5’000 times, doing this
separately for the pairs of deleted genes and recruited genes that affected protein structure,

and the pairs that affected protein expression.
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Modelling

We modeled an asexual population of N individuals that divide by binary fission. Generations
were discrete. During each generation, N/2 individuals were selected to divide based on their
relative fitness. These individuals produced two offspring; each offspring had a probability
U,eg of gaining a mutation at a regulatory site, and a probability Ugtr of mutating at a
structural site. The size of both regulatory and structural mutational effects was gamma
distributed and mutations were multiplicative in their effects on fitness. This scheme we
use is somewhat similar to that outlined in (Fogle et al., 2008), and, as noted there, ignores
deleterious mutations, which are not thought to play an important role in large populations
in which beneficial mutations are relatively common (Desai & Fisher, 2007), which is the
regime in which we are most likely to be operating, as is evidenced by the large number of
adaptive mutations that we have observed.

The beneficial mutation rate at regulatory sites was 1.5¢~¢ for all simulations and 8.5¢~°
at structural sites except those presented in Fig. 4.6B, in which structural mutations have

a 2—fold lower probability of being beneficial, decreasing the rate to 4.25¢76.

For all sim-
ulations, for both regulatory and structural mutations, the scale parameter of the gamma
distribution was 0.5. In Fig. 4.6A the shape parameter was 0.4 for both structural and mu-
tations; in Fig. 4.6B, 0.8 for both; and in Fig. 4.6C, 0.4 for structural mutations and 0.8 for
regulatory mutations. Each simulation consisted of 150 generations of evolution, after which
the mean numbers and ratios of regulatory and structural mutations were enumerated for

each individual in the population.

4.7.2 SI Discussion

Laboratory evolution as a method to understand functional innovation

Here we have utilized a laboratory evolution scheme, as it is a tractable method that allows
systematic investigation of the molecular mechanisms underlying functional innovation. We
briefly discuss the applicability of such a method to understand functional innovation. We
begin by discussing the notion of the evolution of functional innovation.

It is difficult to establish a simple and objective definition of functional innovation. Pigli-
ucci (2008) describes it as “a necessarily fuzzy concept.” (Pigliucci, 2008). The most com-
monly used definition that we are aware is: the development of an ability that allow the
colonization of novel ecological niches, originally put forward by Ernst Mayr in 1963 (Mayr,
1963). This definition has been utilized in other laboratory evolution experiments (Meyer
et al., 2012, Blount et al., 2012). The traits that we investigate here satisfy this definition
in that they enable the bacterial strains that we used to grow in an environment they were
not previously capable of growing in — specifically, minimal media. From a genetic stand-
point, we can divide phenotypic changes into two types: “loss of function” alleles - molecular
changes that result in phenotypes that are equivalent to those when the relevant locus is

deleted, and “gain of function,” which are all other phenotypes that differ from the ancestral
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phenotype. By this definition, many “loss of function” alleles would include evolutionary
changes frequently considered evolutionary innovations (e.g. coat color changes (Hoekstra
et al., 2006)), suggesting that it is less appealing. Despite this caveat, many of the changes
that we observe here (such as increased sigma factor binding) fall clearly into the category
of “gain of function.”

Thus, from both an evolutionary and mechanistic (genetic) point of view, laboratory
evolution provides a valid method to investigate the process of functional innovation. A
possible critique is that in the experimental design we have used here, we have relied on a set
of deletion mutants to create the initial conditions under which we select for novel function.
There is one notable limitation to such an approach: the mechanisms involved in re-evolution
of a lost function may not be similar to those found during functional innovation in more
natural circumstances. However, as mentioned in the main text, there are many reasons to
expect that gene inactivation is a common occurrence in natural systems. This may occur
through point mutations or deletions; such inactivations might often require re-evolution of
this function when ecological circumstances change. Even for cases in which novel functions
evolve that are not compensating for previously lost functions, there are many similarities
to the circumstances of the experimental design we present here. For example, many trait
innovations, ranging from toxin and antibiotic resistance to changes in the light wavelength
absorbance of photoreceptors to changes in oxygen affinity of globins, involve single amino
acid changes that affect binding, many of which are similar to those we have observed here.
Finally, as mentioned in the main text, the changes we have observed here, and the novel
functions that we select for, are very similar, both mechanistically and evolutionarily, to the
changes that occur when bacteria evolve the ability to degrade novel compounds, such as
organic chlorides. This often occurs through changing both the expression level and binding
specificity of genes already present that have low-level activity toward the novel substrate
(Bosma et al., 2002).

Evidence for adaptive evolution: parallel substitutions across lineages

In a large number of cases, we found precisely paralleled changes, both regulatory and
structural. The full list of mutations is contained in the supplementary dataset. We highlight
two here.

(1) In all five recovered lineages that were deleted for ppc (phosphoenolpyruvate carboxy-
lase), a single mutation occurred in icd (isocitrate dehydrogenase), showing strong parallelism
at the genic level. In addition, two lineages shared identical changes at position 302 (Met -;
Ile).

(2) In all five recovered lineages that were deleted for thrA (aspartate kinase), a single
regulatory mutation affected the metBL operon (metB is also an aspartate kinase). One of
these occurred in the repressor, metJ; the other four occurred upstream of metL, and two
were precisely convergent (a 1 bp deletion 77 bp upstream of the metBL operon). Again,

this emphasizes the strong parallelism at both the genic and molecular level.
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Evidence for adaptive evolution: changes in substrate binding

In more than one case, mutations occurred that affected genes that have been observed
previously to provide compensatory function. For example, overexpression of hisB has been
shown to compensate for a serB deletion. We found three cases in which hisB was mutated
in a serB deletion line. Two of these were identical changes (D57N), with the third affecting
a different amino acid (Q23K). Notably, both of these fall close to the active site of the
protein, and provide evidence for adaptation not only because of the molecular parallelism,
but also because of their hypothetical functional effects (Fig. S4.6). One of these (D57N)
has recently been shown to provide novel functionality to HisB allowing it to function in
place of SerB (Yip & Matsumura, 2013).

Evidence for adaptive evolution: amplifications and IS element-mediated changes

The variability in copy number of the 11 large-scale amplifications that we observed (Fig. S4.3)
suggests that they exert their beneficial effects through changing protein levels; in addition,
the location of hypothetical compensating genes suggests that this occurred through increas-
ing copy number and not through promoter capture (Blount et al., 2012). If such amplifi-
cations were advantageous solely because of their effect on protein structure, we would not

expect that more than a single rearrangement would be necessary.

The functional effects (i.e. regulatory or structural) of the IS element-mediated changes
are more difficult to infer. However, in almost one third of all cases, these insertions occurred
outside of reading frames, implying that they have a regulatory effect; this appears to be
particularly true for those that exhibit strong adaptive signatures (i.e. identical substitutions
across lineages; Fig. S4.7, Table S4.4).

Inferring ambiguous recruited genes and functional consequences

The majority of coding mutations could be unambiguously inferred as affecting the structure
of a single gene.

Inferring which mutations affected protein level was more difficult. We included all large-
scale amplifications and all intergenic mutations in the class of mutations affecting protein
level (Fig. S4.3B), although this former class was excluded from all functional analyses we

present.

Many of the intergenic mutations we observed had ambiguous effects, as they occurred
upstream of two reading frames (in only one case did a mutation occur downstream of two
reading frames, and this mutation was the removal of a REP element, a high frequency
mutational event). We resolved such ambiguous mutations on a case-by-case basis using
evidence from the literature, computational predictions (e.g. effects on sigma factor binding),

and experimental measurements (Table S4.5).
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Evidence for regulatory effects of mutations in coding regions

Based on circumstantial evidence, in the functional analyses we included three mutations
that occurred in coding regions as affecting protein levels.

In the first case, a region upstream of pabB contained two mutations: one intergenic
mutation 19 bp upstream of the start codon, and a second within the reading frame of the
upstream gene (yoaH, a gene of unknown function), causing a nonsynonymous change. This
change was 83 bp upstream of the pabB start codon. We surmised that this change was
selectively advantageous through its affect on pabB expression. Further supporting this is
that these two changes occurred in a pabA deletion line, and overexpression of pabB is known
to rescue pabA mutants (Patrick et al., 2007). Finally, computational inference suggested
that the nonsynonymous change in the yoaH reading frame would strongly increase the
binding energy of ¢’ to the promoter region (Fig. 4.3E and Fig. S4.4).

In the second case, a strain deleted for pts/ contained a mutation in yfeO (a predicted ion
channel protein), which lies upstream of glk. Overexpression of both Glk and GalP are known
to increase growth in PTS mutants (Hernandez-Montalvo et al., 2003); this mutation also
increased ¢ binding (Fig. S4.4). Three other mutations occurred in galR or upstream of
galP in other Aptsl lineages, suggesting that this PTS mutant could indeed increase growth
by changing galP expression; in addition, a second mutation upstream of glk also occurred in
one of these lineages. The occurrence of these other mutations strongly suggested that the
nonsynonymous mutation in yfeO exerted a beneficial effect through changing the protein
level of glk.

In the final case, a strain deleted for thrA contained a synonymous mutation in metB,
which is contained in the metBL operon and is upstream of metL; this was the only mutation
that we found in this line. In all four other AthrA deletion lines we also found only a single
mutation, and these mutations occurred in either the intergenic region upstream of the
metBL operon, or in the transcriptional repressor of the metBL operon, metJ. As in the
above instances, the mutation increased ¢’ binding energy, although only marginally. In
addition, metL is an extremely close homologue of thrA, suggesting a specific functional
connection. Finally, IPTG-mediated expression of the metl, ORF rescues the lethal AthrA
phenotype. We surmised, then, that the synonymous mutation in metB most likely affected
the expression of metL through an unknown mechanism.

Besides the above synonymous mutation we could not infer with any certainty functional
effects for the other five synonymous mutations (Fig. 4.3B). These may have been neutral in
their phenotypic effect, although in at least one case, there is a suggestion of a functional con-
nection. In one glyA deletion line, a synonymous mutation occurred in pepN. The STRING
database (Jensen et al., 2009) has very high confidence in the interaction between these
two proteins (0.8; glyA is in the top ten most likely interacting proteins for pepN) due to
the pathways of these two genes being closely connected (cyanoamino acid metabolism and
glutathione metabolism). This suggests a functional link between these two genes. However,

this evidence is not strong.
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Four changes occurred in genes encoding RNA molecules. Although we did not include
these in any of our functional analyses, one almost certainly conferred a beneficial effect
through changing protein levels. In a fes deletion line, a mutation occurred in ryhB. fes is
essential for the release of iron from siderophores (Pettis et al., 1988); ryhB acts to reduce
iron consumption by reducing the expression of mRNAs that encode proteins that utilize iron
(Massé et al., 2005) and by increasing the expression of shiA, which is involved in siderophore
production; this mutation alters a hairpin structure, perhaps allowing for increased binding
to shiA or the target genes that it down-regulates (see (Frohlich & Vogel, 2009, Prévost
et al., 2007)).

Five of the mutations we observed were mid-sized indels (between 20 and 100 bp). The
majority of these acted through incurring clear losses-of-function: Three removed terminator
structures; one removed several activator sites from a promoter; and one removed a REP

element.
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Figure S4.1: Metabolic network context of the 22 deleted functions for which one or more lineage evolved
novel functionality (Keseler et al., 2011). Reactions are color-coded according to the number of lineages that
evolved a new function that compensated for the deleted function. Reactions that are catalyzed by more than
one enzyme are colored if at least one of the enzymes was deleted and the function was recovered. Reactions
colored in grey are not essential in minimal glucose media, and thus were not investigated; reactions colored
in black are essential in rich media (and minimal glucose media) and thus could not be investigated in the
manner used in this study. Reactions colored in light blue are essential in minimal glucose media (Patrick
2007), but were not investigated in this study. The figure was created using Cytoscape (Shannon

et al.,
et al., 2003).
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Figure S4.2: The lag times in recovered clones were substantially longer than in the wildtype, even for those
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Figure S4.3: Large-scale genomic amplifications occurred frequently. Coverage for uniquely mapping reads
is plotted. Each point represents the coverage at one base pair; only one in 200 base pairs are plotted.
The coverage is shown relative to the coverage for a genome lacking any amplifications, and is scaled such
that the median coverage is one. All amplifications observed in the AgltA lineages occurred between base
pairs 270,987 and 370,982, a 100 Kbp amplification. In one case (AgltA line D) a greater than 10- fold
amplification occurred, increasing the genome size by more than 106 base pairs (on the order of 25% of
the genome). All amplifications observed in the AhisH lines occurred between base pairs 2,064,329 and
2,100,935, a 36.6 Kbp amplification. The amplifications in the ilvE and serB deletion genotypes were 27
Kbp and 220 Kbp, respectively.
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Figure S4.4: Many of the intergenic mutations we observe are among those that have the largest effect on
predicted expression levels. Above: Predicted expression levels for all possible mutations in each promoter
region for all of the unique intergenic point mutations and small indels. The orange vertical line indicates
the predicted expression of the ancestor; the green vertical line indicates the predicted expression level of
the evolved promoter. The deletion genotype and the recruited gene, respectively, are indicated above each
plot, with the specific mutation listed when multiple different mutations were observed within the same pairs
of genes. In many cases, the predicted expression levels do not change, such that the green line completely
obscures the orange line. Following page: The same data shown in the above set of plots, but as reverse
cumulatives. The orange points indicate the predicted expression of the ancestor; the green points indicate
the predicted expression level of the evolved promoter. Note that both the x- and y-axes are on log scales.
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Figure S4.5: Changes in protein expression level alone can rescue the lethal effects of the deletion genotypes.
We induced expression of a single open reading frame using IPTG. Each point shows the mean estimated
doubling time (£ s.e.m). In three cases, growth exhibits a threshold-like behavior, with strains growing
robustly at one expression level, but failing to grow at slightly lower expression levels, suggesting that small
changes in expression can have profound effects on growth. The deletion genotypes and open reading frames
are: AmetR and metE (grey); AthrA and metL (black); AcarA and carB (white); AilwE and avtA (black
with a dashed line).
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Figure S4.6: Changes in HisB (Rangarajan et al., 2006) were paralleled across several serB deletion lineages.
In each of these cases, the mutations affected sites proximate to the binding site in the protein (changes are
shown in orange above). These are likely to cause increased binding for the substrate of SerB; overexpression
of hisB has been proposed previously to allow compensation for serB deletion (Patrick et al., 2007); D57N
has recently been shown to provide specific compensatory activity for serB deletion (Yip & Matsumura,

2013). )

1.83 Mb 1.84 Mb 1.85 Mb

3.78 Mb 3.79 Mb 3.80 Mb

Figure S4.7: Examples of IS element insertions that are likely to be adaptive. The insertion locations are
indicated with an arrow. Top: an IS2 insertion occurred in one of four AcarA clones, upstream of gdhA.
carA hydrolyzes glutamine to glutamate; gdhA acts in the glutamate biosynthesis pathway. Bottom: an
1S3 insertion occurred in three of five AglyA clones. It appeared upstream of kbl. glyA converts serine to
glycine; kbl acts in the threonine to glycine pathway.
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Deletion | Recovered Replicates | Deletion | Recovered Replicates | Deletion | Recovered Replicates
AargA 0 AhisH 5 ApheA 0
AargB 1 Ahisl 0 Appc 5
AargC 2 AslvA 1 AproA 0
AargE 0 AilvC 0 AproB 4
AargG 0 AilvE 2 AproC 0
AargH 0 AiscS 0 Apts] 5
AaroA 0 AleuA 0 ApurC 0
AaroC 0 AleuB 0 ApurD 0
AaroD 0 AleuC 0 ApurE 0
AaroE 0 AleuD 0 ApurF 0
AbioA 0 AleuL 5 ApurK 0
AbioB 0 AlipA 0 ApyrB 0
AbioC 0 Alpd 1 ApyrC 0
AbioF 0 AlysA 0 ApyrD 0
AbioH 0 AmetB 0 ApyrE 0
AcarA 4 AmetE 0 ApyrF 0
AcarB 0 AmetF 0 AserA 0
AcysB 2 AmetL 5 AserB 5
AcysE 0 AmetR 2 AserC 0

Afes 1 AnadA 0 AthrA 5
AgltA 4 AnadB 0 AthrB 0
AglyA 5 AnadC 0 AthrC 0
AguaB 0 ApabA 1 AtrpA 0
AhisA 0 ApabB 0 AtrpB 0
AhisB 0 ApanB 0 AtrpC 0
AhisC 0 ApanC 0 AtrpD 0
AhisD 0 ApdzA 0 AtrpE 0
AhisF 0 ApdzH 0 AtyrA 1
AhisG 0 ApdzJ 0 AyhhK 2

Table S4.1: The 87 deletion genotypes used for experimental evolution. The first column indicates the
deletion genotype; the second column indicates the number of population replicates that were recovered, out

of five.
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Deletion strain Gene Location Mutation

AglyA aceE 125,336 R774C CGC—TGC
Appc hemL 174,831 G18C GGT—-TGT
AyhhK hemB 388,339 R205S CGT—AGT
AmetR cyoE 446,083 F283L TTT—CTT
AhisH cyoE 446,680 A10 bp (241 250/891 coding)
AproB cyoB 449,021 A1l bp (845/1992 coding)
Anptsl trpL/yciV 1,321,160 A—G (54/ 84)
AleuL mrp/metG | 2,192,197 T—G (1 7/ 125)
AmetR mqo 2,304,371 A1 bp (406/1647 coding)
Aptsl Irh A 2,404,225 Q147* CAG—TAG
AglyA IrhA 2,404,563 A9 bp (93 101/939 coding)
AyhhK IrhA 2,404,563 A9 bp (93 101/939 coding)
AleuL Irh A 2,404,630 6 bp x 2 coding
AcysB eutB 2,556,085 L206S TTG—TCG
AyhhK ung 2,715,066 E97D GAA—-GAC

AgltA/AmetR/Appc kgtP/rrfG 2,724,089 T—C (-321/42)
AhisH ygcW /yqcE | 2,898,328 A1l bp ( 33/ 286)
AargC ubiH 3,050,678 A288E GCG—GAG
AilvE Y 3,955,330 A1728 GCG—=TCG
Apts] cyaA 3,990,603 | AT bp (1428 1434/2547 coding)
AmetR yigM 4,009,898 A2 bp (800 801/900 coding)
AmetL metB 4,127,836 Al bp (1142/1161 coding)

Table S4.2: List of 22 mutations present in ancestral deletion clones and which were excluded from all

molecular and functional analyses.
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Gene Number of | Location Mutation Explanation
clones

cyoB 1 448,997 L290Q cyoB inactivation ancestral in AproB ancestor
(Table S4.2)

cyoB 1 449,376 E164* See Above

cyoB 449,574 H98N See Above

el4 phage 2 1,195,432 15,214bp deletion Large deletion; observed previously (Charu-
santi et al., 2010)

fadR - dadA 1 1,234,354 2,811 bp deletion Large deletion

ydeN 1 1,579,737 789 bp deletion Large deletion

pykF 1 1,754,478 7bp duplication pykF inactivation observed previously (Schnei-
der et al., 2000)

pykF 1 1,754,852 1bp deletion See Above

cspC 1 1,905,451 1bp deletion Observed previously; known growth advantage
(Rath & Jawali, 2006, Tenaillon et al., 2012)

yebZ 1 1,921,844 303 bp deletion Large deletion

fIhE - flhD 1 1,960,762 16,555 bp deletion Large deletion

cheW - flhD 1 1,970,924 5,578 bp deletion Large deletion

Irh A 1 2,404,563 9bp deletion Probable Irh A inactivation in several ancestral
lines (Table S4.2)

kgtP/rrfG 1 2,724,089 T—C -321/+2 rrfG mutation in AgltA, Appc, and AmetR
ancestors; observed previously(Shiomi & Niki,
2011)

rp0oS 1 2,864,823 Q251%* Inactivation observed previously (Notley-
McRobb et al., 2002, Tenaillon et al., 2012)

rposS 1 2,864,858 8bp deletion See above

rposS 1 2,865,080 1bp insertion See above

rpoS 1 2,865,131 W148* See above

rposS 1 2,865,192 1bp deletion See above

rposS 1 2,865,389 1bp deletion See above

pyrE/rph 1 3,813,830 2bp deletion Observed previously; known mis-regulation
(Jensen, 1993, Conrad et al., 2009)

pyrE/rph 1 3,813,831 1bp deletion See above

pyrE/rph 1 3,813,833 1bp deletion See above

pyrE /rph 1 3,813,834 C—T -43/452 See above

pyrE/rph 1 3,813,848 C—T -57/438 See above

rph 4 3,813,882 82 bp deletion See above

Table S4.3: List of non-specific laboratory mutations and large deletions that occurred in evolved clones and

were excluded from all molecular and functional analyses.

Table S4.4: List of IS element mediated changes found in the evolved lineages. The first column contains the IS element;

the second column the location; in the third column are the deletion lines(s) that contained the mutation; in the fourth

column is the genic location(s) of the mutation; in the fifth column are the genes that are affected; in the last column we

list_ hypothetical functional and adaptive connections between the location of the IS insertion and the deleted gene.

IS Location Deletion line | Genic loca- | Affected Hypothetical functional connection or
ele- (number of | tion gene(s) adaptive effect
ment lineages)
1S150 | 606,988 AmetL (1/5) 5.536231884 ybdK / hokE Unknown
1S5 611,151 Afes (1/1) 535 / 882 bp | fepA disrupts fepE; 1840 bp upstream of entD and
887 bp upstream of fes-ybdZ-entF operon
152 1,220,286 AcarA (1/4) 1463 / 2648 | yegH Unknown
bp
152 1,234,293 Alpd (1/1) 133 / 720 bp | fadR Unknown
181 1,651,251 AmetR (2/2) 681 / 1020 | rspB Unknown
bp
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Table S4.4 — Continued from previous page

IS Location Deletion line | Genic loca- | Affected Hypothetical functional connection or
ele- (number of | tion gene(s) adaptive effect
ment lineages)
1S2 1,840,348 AcarA (1/4) 4.395348837 ynjH /gdhA carA hydrolyzes glutamine to glutamate;
gdhA acts in glutamate biosynthesis
IS1 1,868,139 AmetR (1/2) 1161 / 1284 | yeaH Unknown
bp
15186 | 1,877,853 Alpd (1/1) 115 / 360 bp | yeaR Unknown
1S1 1,976,183 Appe (1/5) 31/ 351 bp fAAhD 10AA after start codon of flhD; probable ef-
fect on expression of flhDC, most likely due
to selection on motility (Barker et al., 2004)
or on starvation (Zhong et al., 2009)
1S2 1,976,527 AmetL (2/5)/ | 776 bp IS el- | insA / insB Probable effect on expression of flhDC, most
AthrA (1/5) / | ement dele- likely due to selection on motility or on star-
AgltA (1/4) / | tion vation (Zhong et al., 2009)
AserB (1/5)
IS1 1,977,402 AhisH (1/5) 0.444141689 insA | uspC See above
IS5 | 1,977,510 | AmetL (1/5) | 1.026515152 | insA / uspC | See above
1S30 1,977,533 AthrA (1/5) 1.209876543 insA | uspC See above
1S5 2,404,462 AmetR (1/2) 199 / 939 bp | IrhA Probable lhrA inactivation; observed in sev-
eral ancestral clones, most likely due to selec-
tion on motility
181 2,434,496 AserB (1/5) 169 / 1014 | usg Unknown
bp
1S186 | 2,534,334 AptsI (4/5) 479 / 510 bp | crr Occurs 10AA before stop codon of crr and
upstream of a terminator; ptsl effects phos-
photransfer cascade; crr transports glucose
for phosphotransfer
152 2,770,075 AserB (4/5)/ | 98 / 153 bp yfiu Unknown
AgltA (1/4)
1S3 3,174,745 AptsI (1/5) 109 / 828 bp | cpdA Unknown
IS1 3,725,837 AilvE (1/2) -0.694736842 | yiaB / zylB Unknown
1S3 3,790,617 AglyA (3/5) -0.186956522 | kbl / yibB glyA converts serine to glycine; kbl acts in
threonine to glycine pathway
1S5 3,936,748 AptsI (1/5) 499 / 993 bp | rbsR Unknown
IS1 4,127,837 AmetL (1/5) 1143 / 1161 | metB 7 AA before stop codon of metB; ~ 350bp
bp upstream of metF
1S2 4,540,110 AilvE (2/2) 51 / 597 bp fimE Probable fimE inactivation; observed in sev-
eral ancestral clones, most likely due to selec-
tion on motility
1S5 4,540,184 AgltA  (1/4) | 125 /597 bp | fimE See above
serB (1/5)
1S5 | 4,540,331 | Appe (1/5) 272 / 597 bp | fimE See above
1S186 | 4,541,631 AserB(1/5) 494 / 549 bp | fimA See above
leuL (1/5)
1S5 4,584,845 AgltA (2/4) 0.491935484 hsdR | mrr Unknown
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Table S4.5: List of mutations with ambiguous phenotypic effects (amplifications, mutations located upstream or downstream

of two reading frames, and exceptional mutations in coding regions).

Deletion

lineage

Location

Mutation

Effect

Affected
gene(s)

Inferred functional effect

conferring innovation

AyhhK

146,706

T—C

0.045801527

panD/yadD

Changes panD protein level:
additional coding mutation in
panD; experimental confirma-

tion of expression change

AyhhK

146,769

C—A

0.376884422

panD/yadD

See above

AgltA

270,987

amplification

0.271-0.371 Mb

100 Kbp ampl.

Changes prpC protein level:
highly homologous to gltA;
prpR likely mutated to con-
stitutive activity (Palacios &

Escalante-Semerena, 2004)

AyhhK

765,187

C—A

4.45

mngR/mngA

Changes mngA protein level:
mngR affects only mngA
(Sampaio et al., 2004)

AproB

1,078,422

C—T

2.990566038

putA/putP

Changes putP protein level:
increases promoter binding
energy; putA affects putP

level

ApabA

1,892,746

C—T

G4S/-83

yoaH / pabB

Changes pabB protein level:
direct functional connection
to pabA; changes promoter

binding energy

ApabA

1,892,810

G—A

2.894736842

yoaH /pabB

See above

AhisH

2,066,000

amplification

2.066 -2.102 Mb

46 Kbp ampl.

Changes hisF protein level:
previous observation of AhisH
rescue (Patrick et al., 2007);
experimental complementa-

tion

AserB

2,069,000

amplification

2.069 -2.285 Mb

216 Kbp ampl.

Changes hisB protein level:
second line contains a
coding mutation in hisB;
hisB overexpression rescues

AserB(Patrick et al., 2007)

Aptsl

2,507,513

C—A

0.467625899

glk/yfeO

Changes g¢glk protein level:
glk is known to compensate
for pts] mutant (Herndndez-
Montalvo et al., 2003)

Aptsl

2,507,513

C—A

-607/G135V

glk/yfeO

See above; increases promoter

binding energy for glk

AproB

3,201,180

A91 bp

0.467741935

cca/bacA

Affects REP element down-
stream of two reading frames;
unknown phenotypic effect;
excluded from functional anal-

yses

AilvE

3,724,000

amplification

3.724 -3.751 Mb

27 Kbp ampl.

Changes avtA protein level:
additional coding mutation in
avtA; avtA overexpression res-
cues AilvE

AmetR

4,010,897

A—T

0.324022346

metR/metE

Changes metE protein level:
metR is deleted; functional

connection
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Table S4.5 — Continued from previous page

Deletion

lineage

Location

Mutation

Effect

Affected
gene(s)

Inferred functional effect

conferring innovation

AglyA

4,126,613

T—A

2.37804878

metJ/metB

Changes both metBL protein
(operon) level and metJ; metJ
metBL(Keseler

experimental

represses
2011);

confirmation of

et al.,
expression

change in both

AthrA

4,126,616

A5 bp

2.64

metJ/metB

See above

AthrA

4,126,618

Al bp

2.597402597

metJ/metB

See above

AglyA

4,126,628

G—A

3.134328358

metJ /metB

See above

AthrA

4,127,273

G—A

L193L/-585

metB/metL

Changes metL protein level:
metl is close paralogue of
thrA; all thrA
clones contained a single mu-
tation affecting the metBL

increases promoter

four other

operon;

binding energy

Aptsl

4,447,815

C—A

0.823529412

ppa/ytfQ

Changes  ytfQ

transport) protein level: three

(galactose

other mutations affect galac-

tose transport in ptsl deletion

lines

Table S4.6: Predicted (using ¢’° promoter binding energies and RBS calculator) and measured changes in expression,

together with predicted functional effects caused by mutations. For cases in which there is no predicted change in o

70

binding or translation initiation, we list the nearest annotated functional element (e.g. the transcription start site (TSS) or

repressor binding site (Gama-Castro et al., 2008)). A.U.: arbitrary units. NA: not applicable because change in expression

was not quantified.

Deletion | Recruited Location | Predicted Predicted Predicted Predicted Predicted Measured Primary
gene ances- evolved ances- evolved fold- fold- func-
tral ¢70 | ¢70 tral trans- change change tional
binding binding trans- lation in pro- | in ex- | effect
energy energy lation initi- tein pres-
(A.U.) (A.U.) initi- ation level sion
ation rate
rate
(Salis
et al.,
2009)
AargC proB -45 1662 10880 45 45 6.55 ~ 4| o™
(McLough-
lin &
Copley,
2008)
ApabA pabB -83 915 2869 462 462 3.14 NA o0
Afes fiu -142 430 758 328 328 1.76 NA o0
Aptsl glk -607 1033 1640 437 437 1.59 NA o0
AmetR metE -58 1189 1766 5619 5619 1.49 NA o0
AproB putP -106 1713 2045 447 447 1.19 NA o0
AtyrA tas -44 707 814 1800 1800 1.15 ~ 2.7 | 670
(Johnson
et al.,
2001)
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Deletion | Recruited Location | Predicted Predicted Predicted Predicted Predicted Measured Primary
gene ances- evolved ances- evolved fold- fold- func-
tral ¢70 | 70 tral trans- change change tional
binding binding trans- lation in pro- | in ex- | effect
energy energy lation initi- tein pres-
(AU (A.U) initi- ation level sion
ation rate
rate
(Salis
et al.,
2009)
AglyA cycA -87 1085 1435 889 889 1.32 NA o0
Apts] galP -161 1988 2275 1374 1374 1.14 NA o0
AthrA metL -585 753 867 8313 8313 1.15 NA o0
AcysB cysP -46 379 839 1887 1887 2.22 NA o0
AcarA carB -16 251 252 3309 41138 12.44 ~ 1.8 - | RBS
2.3
AyhhK panD -12 484 430 474 1459 2.74 ~21 RBS
AilvE avtA -9 987 986 1515 3660 2.41 >1.1 RBS
AcarA ydalL -1 1626 1626 5342 6690 1.25 NA RBS
AproB glnL -9 1145 1203 274 175 0.67 <0.9 RBS
ApabA pabB -19 890 892 462 246 0.53 NA RBS
AproB glnL -11 1148 1180 274 11 0.04 NA RBS
AleulL leuA -52 157 156 918 918 0.99 NA Disrupts
termina-
tor
AleuL leuA -66 252 256 918 918 1.02 NA Disrupts
termina-
tor
AleuL leuA -67 252 253 918 918 1.01 NA Disrupts
termina-
tor
AleuL leuA -67 252 254 918 918 1.01 NA Disrupts
termina-
tor
AyhhK mngA -20 586 625 70 70 1.07 NA Unknown
(e7)
AilvA filnD -261 958 943 246 246 0.98 NA Disrupts
Crp ac-
tivator
site
ApabA argD =776 338 337 359 359 1 NA 2bp up-
stream
of TSS
of pabA
(deleted)
AserB argX -19 827 827 NA NA 1 NA 6bp up-
stream of
TSS
AserB argX -14 802 802 NA NA 1 NA 1bp up-
stream of
TSS
AglyA metB -82 1589 1595 2619 2619 1 NA Disrupts
MetJ
repressor
site
Continued on next page
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Deletion | Recruited Location | Predicted Predicted Predicted Predicted Predicted Measured Primary
gene ances- evolved ances- evolved fold- fold- func-

tral ¢70 | 70 tral trans- change change tional
binding binding trans- lation in pro- | in ex- | effect
energy energy lation initi- tein pres-
(AU, (A.U)) initi- ation level sion

ation rate

rate

(Salis

et al.,

2009)

AthrA metB -75 1583 1631 2619 2619 1.03 NA Disrupts
MetJ
repressor
site

AthrA metB =77 1587 1596 2619 2619 1.01 NA Disrupts
MetJ
repressor
site

Aptsl ytfQ -140 1310 1330 584 584 1.02 NA 5bp
down-
stream of
TSS

Aptsl glk -65 563 543 437 437 0.97 NA unknown

AargC carA -42 1632 1564 2014 2014 0.96 NA unknown

AglyA metB -67 1548 1687 2619 2619 1.09 NA Disrupts
MetJ
repressor
site

AyhhK panD =75 546 552 474 474 1.01 ~ 1.4 24bp up-
stream of
TSS
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Dataset S1

The tab-delimited file contains information on all the mutations that we observed excluding
general lab adaptation, IS element changes, and large deletions (see Tables S4.3 and S4.4).
The file contains 13 columns in which the following data are indicated, for each mutation
that we observed:

(1) The name of the deletion genotype in which the mutation was observed

(2) The replicate lineage in which the mutation was observed

(3) The Blattner number of the deleted gene

(4) The genomic location, in MG1655, of the mutation

(5) The ancestral allele

(6) The evolved allele

(7) TThe genic location, in MG1655, of the mutation (e.g. the position within the ORF and
the amino acid affected, when applicable)

(8) The codon affected, in relevant cases

(9) The recruited gene(s)

(10) The resolved recruited gene, in ambiguous instances
(11) The Blattner number of the resolved recruited gene
(12) The strand of the recruited gene

(

13) TThe inferred effect of the mutation (structural, regulatory, synonymous, RNA, or un-
classified)
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SR
### READ ME

### The tab-delimited file contains information on all the mutations that we observed that are

### likely to confer effects that are relevant to the specific functions that are being

### compensated e.g. they are unlikely to be general lab adaptations.

### The file contains 13 columns in which the following data are indicated, for each mutation

### that we observed:

### 1 The the deletion genotype in which the mutation was observed
### 2 The replicate lineage in which the mutation vas observed
### 3 The Blattner number of the deletion gene

### 4 The genomic lacation, in MG1655, of the mutation

### 5 The ancestral allele

### 6 The evolved allele

Supportingdat:

### 7 The genic location, in MG1655, of the mutation e.g. the position within the ORF and the amino acid affected

### 8 The codon affected, in relevant cases

### 9 The recruited genes

### 10 The resolved recruited gene, in ambiguous instances

### 11 The Blattner number of the resolved recruited gene

### 12 The strand of the recruited gene

### 13 The inferred effect of the mutation structural, regulatory,
BB

synonymous, or RNA

deletion lineage bnun genomic_location ancestral_allele derived_allele genic_location
argB c 3959 1990832 T c N4D AATAGAT pgsh pgsh b1912
argC A 3958 29606 nA -4 +411/-42 NA dapB/carh carh 50032
argC A 3958 259567 c T -243/-45 NA phoE/proB proB 0242
argC I 3958 261874 A c E3834 GAA383GCA proA proA 0243
argC B b3958 259567 c T -243/-45 NA phoE/proB proB 50242
argC B 3958 261874 A c E3834 GAA383GCA proA proA 0243
carh B 50032 30801 c A +2/-16 NA carh/carB carB 0033
carh B 50032 3990075 T I D300E GAT300GAA cyah cyah 3806
carh c 50032 30801 c A +2/-16 NA carA/carB carB 0033
carh c 50032 888013 c A D344y GAT344TAT ybiL ybiL 0847
carh c 50032 1404002 c A +329/-1 nA abgR/ydaL ydaL b1340
carh c 50032 3991043 NA +A 1868/2547 nA cyah cyah 3806
carh D 0032 30801 c A +2/-16 NA carh/carB carB 0033
carh D 50032 2001617 NA +TAG 14/1497 nA £1iC £14C b1923
carh E 50032 30801 c A +2/-16 NA carh/carB carB 0033
carh E 50032 3484742 G c G201R GGT201CGT crp crp 3357
cysB B b1275 457431 G c R261P CGT261CCT clpX clpx 0438
cysB B b1275 1157361 NA -1 270/1434 nA PptsG ptsG b1101
cysB B b1275 1911452 NA -1 1389/2049 nA pre pre 1830
cysB B b1275 2541596 NA -1 -46/+258 nA cysP/ucph cysP 2425
cysB D b1275 1718557 G T P9ST CCG98ACG s1yA slyA b1642
cysB D b1275 2541596 NA 1 -46/+258 NA cysP/ucph cysP 2425
fes D 0585 625494 c T Q68fes D 0585 839664 G I
fes D 0585 840896 T A -142/+123 NA fiu/mcbA fiu 0805
fes D b0585 3176378 4 T G81v GGCB1GTC tolC tolC 3035

fes D 0585 3578954 G T 86/90 NA ryhB TyhB b4451 -1
fes D 0585 4020699 T A A1534 GCT153GCA tatB tath 3838
glth B 0720 125514 A G D833G GAC833GGC aceE aceE b0114
glth B 50720 270987 NA 99995bp x 12 NA NA NA PprpcC 50333
glth c 0720 270987 nA 99995bp x 3 NA nA nA prpc 0333
glth c 50720 1236407 A T W20R TGG20AGG yegB yegB b1188
glth c 0720 3849010 c A V36F GTT36TTT 11N iluN 3670
glth c b1497 1921844 NA -303 NA nA yebY yebY b1839 -1
glth D 50720 270987 NA 99995bp x 12 NA NA NA PprpcC 0333
glth D 0720 347465 G T A68D GCT68GAT PrpR PprpR 0330
glth D 50720 1142579 c T D338N GAC338AAC rne rne b1084
glth D 0720 4083074 NA -1 772/3051 nA £doG £doG b3894
gltA E 50720 87447 G A E31K GAA31AAA ilvH ilvH 0078

glth E 0720 270987 NA 99995bp x 3 NA NA N Pprpc 0333
glth E 50720 347193 c T A159T GCA159ACA PrpR PrpR 50330
gleh E 50720 3350180 T G T290L ATC290CTC arcB arcB 3210
glth E 0720 4083074 NA -1 772/3051 nA £doG £doG b3894
glyA A 2551 254 NA -49 NA thrA thrA 50002 1
glyh A b2551 2449421 A c D62E GAT62GAG yicR yEcR 2335
glyA B b2551 125659 A T Y848F TAT848TTT aceE aceE b0114
glyh B b2551 1510856 4 c E6Q GAG6CAG ydeT ydeT b1441

glyh B b2551 4126628 G A -210/-67 NA netJ/metB metB 3939
glyh c 2551 992106 c A A754A GCCT54GCA pepl pepl 50932
glyh c b2551 4427800 NA +T +222/-87 nA £K1B/cych cych 4208
glyA D b2551 281 NA -39 +26/-18 nA thrL/thrA thrA 50002
glyh D b2551 4126613 T A -195/-82 NA metJ/netB metB 3939
glyA E b2551 123617 G A 62015 GGT201AGT aceE aceE b0114
hisH A 2023 2064329 NA 36606bp x 3 NA NA nA hisF 2025
hisH B 2023 2064329 NA 36606bp x 3 NA NA nA hisF 2025
hisH c 2023 2064329 NA 36606bp x 3 NA NA NA hisF 2025
hisH c 2023 3275289 NA Tbp x 2 nA NA sohA sohA 3129
hisH D 2023 1446887 c T R449C CGC449TGC feaB feaB b1385
hisH D 52023 2064329 NA 36606bp x 8 NA NA nA hisF 2025
hisH D 2023 3231852 NA -1 315/417 A high high /A

hisH E 2023 2064329 NA 36606bp x & NA NA NA hisF 2025
hisH E 52023 3275289 NA Tbp x 2 nA NA sohA sohA 3129

ilvA c 3772 221760 NA -3 884-886/1032 NA netN netN 50199
ilvA c 3772 1332145 G A W9ilvA c 3772 1976482 G T
ilvA c b3772 4083054 NA 3bp x 2 A NA £doG £doG 3894
ilvA c 3772 4126827 4 c DasH GAT45CAT netB netB 3939
ilvE D 3770 713143 T A P121P CCT121CCA pen pen 0688
ilvE D 3770 3737719 T G +169/-9 NA nals/avtA avth 3572
ilvE E 3770 669058 T 4 T25P Acc2scee cobC cobC 0638

ilvE E 3770 3724467 NA 26992bp x 10 NA NA NA avtA b3572
i1VE E 3770 1579737 NA -789 NA nA ydeM ydeM b1497 -1
leul A 50075 83567 nA -27 -38/+55 NA leud/leul leud 50074

130

gene_s

REG

REG

ACG364ATG

-261/+60 NA

REG

aff_gene

fiu

£1hD/insB

bnum

£1hD

strand

11892

struct_reg

REG



leul
leul

leul

yhhK
yhhK
yhhK

yhhK

]
m o a =

® w

O oo m>mMmMmoU oao0ow® W= =

mmmo o ww =

O 600 wwwwo oo oomMoOoweE®MBM®MOOOOOO®®w®>MOoOOO®®wwWw®>>®=MmMOoUaoaooaoan o

b0075
b0075
b0075
b0075
b0116
b0116
b0116
03940
03940
03940
03940
03940
03940
03940
03940
03940
03940
03940
03940
03828
03828
3360
3360
b3360
03956
13956
03956
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00242
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02416
02416
02416
02416
b2416
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b4388
b4388
10002
0002
10002
00002
00002
2600
2600
b2600
2600
2600
b3459
03459
b3459
b3459
b3459
b3459
03459
b3459

3990977
83596
83581
83595
457101
756738
1268473
3057931
3990703
1748359
3057971
3484772
1058164
2387297
3057883
3990611
3991450
2387297
3484574
4010897
4010897
1892746
1892810
3488876
1195251
1195325
1234354
1194823
1195251
1156938
1195316
1327731
1236374
4054371
4055598
2015065
2866139
4054373
4055405
4398617
1699063
3383022
3487423
4055615
1861498
2507513
3086145
3820302
2966703
2974640
3456256
4245227
2924606
2974707
3331430
4447815
2508055
2091660
2091558
2706482
3268394
2091660
3813934
3980379
104121
2064329
3268473
2094128
3625116
3980384
4126616
4126618
4126618
4126249
4127273
1476839
1959225
2969575
2970547
2970560
146680
146769
179876
4375123
146706
765187
1920939
3157314

I S6011eul. B 0075 83596 G T -67/+26 NA
c -67/+26 NA leuA/leul leud b0074 -1 REG
G -52/+41 NA leuA/leul leuh b0074 -1 REG
T -66/+27 NA leuA/leul leuh 0074 -1 REG
A A151D GCC151GAC clpX clpX b0438 1 STR
T RS37C CGT537TGT sdhA sdhA 0723 1 STR
G 19T ATT9ACT ldrA ldrA b4419 -1 STR
T R53C CGT53TGT argp argp 2916 1 STR
T K510metL B 3940 1550192 nA -178 NA NA
c QSR CAASCGA ydhU ydhU b1670 -1 STR
G L66R CTG66CGG argP argP 2916 1 STR
G metL c b3940 305121 c A P307P CCG307CCT
c K286N AAA286AAC torC torC 50996 1 STR
T P558 CCTS5TCT yibP yibP b2275 1 STR
-1 109/894 NA argp argp 2916 1 STR
Top x 2 NA NA cyah cyah 3806 1 STR
-3 2275-2277/2547 NA cyah cyah b3806 1 STR
T P55S CCTSSTCT yibp yibP 2275 1 STR
c A145P GCA145CCA crp crp b3357 1 STR
T -58/-179 NA netR/metE netE 3829 1 REG
T -58/-179 NA metR/metE metE b3829 1 REG
T G4s/-83 GGT4AGT pabB/yoaH pabB b1812 1 REG
A -55/-19 NA yoaH/pabB pabB b1812 1 REG
-3 -25/+5 NA pabA/fic argD 13359 -1 REG
c M3021 ATG302ATC icd icd 1136 1 STR
G N3278 AAC327AGC icd icd b1136 1 STR
-2811 nA nA NA A NA nA UNK
G Y160D TAT160GAT icd icd b1136 1 STR
A M3021 ATG302ATA ied icd b1136 1 STR
-64 +141/-155 NA ye£H/ptsG PptsG b1101 1 REG
T P324L CCT324CTT icd icd b1136 1 STR
A A126T GCT126ACT sohB sohB b1272 1 STR
A E31proB B b0242 3201180 NA -91 +29/+62 NA
A -9/+277 nA glnL/glnA glnL b3869 -1 REG
T D154N GAT154AAT glnA glnA 3870 -1 STR
c V163A GTG163GCG 14T f1iT b1941 1 STR
-12 626-637/1140 NA nlpD nlpD 2742 - STR
[4 -11/+275 NA glnL/glnA glnL 03869 -1 REG
G 62184 GGT218GCT glnA glnA 3870 -1 STR
G proB D 0242 1078422 c T -317/-106 NA
T A28V GCT28GTT maly maly 1622 1 STR
c T100P Acc100ccC argh argh 3237 1 STR
-3 778-780/1221 NA argD argD b3359 -1 STR
A S148F TCC148TTC glnA glnA 3870 -1 STR
T T2351 ACC235ATC gaphA gaph b1779 1 STR
A -65/-139 NA glk/yte0 glk 2388 REG
+T +263/-161 NA metK/galP galP b2943 1 REG
-1 174/276 NA rpoZ rpoZ 3649 1 STR
I W99C TGGIITGT rppH rppH 2830 -1 STR
c V7A GTA7GCA galR galR 2837 1 STR
T D620Y GAC620TAC gspD gspD 3325 1 STR
A R1418 CGT141AGT malk malk b4035 1 STR
c L93L TTGI3CTG ygdi ygdH 2795 1 SYN
A S29R AGC29AGA galR galkR b2837 1 STR
9bp x 2 NA NA rplU rplU 13186 -1 STR
A -140/-170 NA ppa/ytiq yeQ 4226 -1 REG
T -607/G135V GGC135GTC glk/yfe0 glk b2388 -1 REG
A D57N GATS7AAT hisB hisB 2022 1 STR
A Q23K CAG23AAG hisB hisB b2022 1 STR
+G 295/957 NA rseB rseB 2571 -1 STR
I 221/377 NA TnpB TnpB 3123 -1 RNA
A DS7N GATS7AAT hisB hisB 2022 1 STR
-16 624-639/687 NA rph rph 3643 -1 STR
+T +84/-19 NA yifK/argk argX 3796 1 REG
G D476 GAT47GGT ftsh ftsh 50094 1 STR
223774bp x 2 NA NA hisB hisB b2022 1 REG
A 142/377 nA rnpB rnpB b3123 -1 RNA
6bp x 2 NA NA hisF hisF 2025 1 STR
G I816L ATC816CTC TbbA TbbA b3486 -1 STR
+C +89/-14 NA yifK/argk argk 3796 1 REG
-5 -198/-75 NA metJ/metB metB b3939 1 REG
-1 -200/-77 NA netJ/metB metB 3939 1 REG
-1 -200/-77 NA metJ/metB metB b3939 1 REG
c LS7R CTG57CGG metJ netJ 3939 1 STR
A L193L/-585 TTG193TTA netB/metL metL 3940 1 REG
c V197A GTC197GCC ynbB ynbB b1409 1 STR
A F380L TTC380TTA args args b1876 1 STR
T +64/-44 NA ygdR/tas tas b2834 1 REG
A T310N ACC310AAC tas tas 2834 1 STR
T Q314H CAG314CAT tas tas b2834 1 STR
A M5 ATGSATT panD panD 0131 -1 STR
A -75/-199 NA panD/yadD panD 0131 -1 REG
A R2148 CGT214AGT dgt dgt b0160 1 STR
c V76L GTG76CTG sugk sugk b4148 1 STR
c -12/-262 NA panD/yadD panD b0131 -1 REG
A -89/-20 nA nngR/mngA nngh 0731 1 REG
I T19F ATC19TTC pphA pphA 1838 -1 STR
T A619T GCG619ACG yeiq yeiq b4469 -1 STR
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Chapter 5
Summary and future perspectives

In the chapters presented, questions concerning the evolution of transcriptional regulation
in E.coli were addressed. The work allows a better understanding of (i) why and (ii) how
transcriptional control evolves.

(i) Transcriptional regulation is important to allow different genes in the genome to be
expressed at different levels and, moreover, provides the possibility for differential gene
expression of single genes in varying conditions. If a promoter sequence is able to establish
the most beneficial quantitative transcriptional output, it will most likely not be subject to
changes modifying the expression level.

However, if a gene is not expressed at the right level, changes in the genotype of the
promoter will be selected upon that give raise to the desired protein amounts in the cell.
Subtle changes in the promoter sequence with small effects on the RNA expression level can
have a severe impact on the fitness level of the organism, as shown in Chapter 4. Due to the
exponential growth of bacterial populations, beneficial mutations can spread easily and take
over in the population. To further quantitatively elucidate the fitness effect of expression
level of certain genes on a single cell, expression level and growth rate could be directly
tracked in a microfluidic device.

Fluctuating environments may ask for diversification of desired expression levels for a
single gene, and this information can be encoded in the promoter sequence as well. The
activity of a gene upon a stimuli can only be changed, if the environment or internal state of
the cell can be sensed and passed on to the gene required in this situation. If either sensory
mechanisms are not able to track the changes or transcription factor activity cannot account
for the desired levels, a gene can at least broaden its expression distribution across cells.
One way of achieving this is the incorporation of binding sites for transcription factors in
the promoter sequence, preferentially for factors that have a broad expression distribution
themselves as highlighted in detail in Chapter 2. Synthetic promoter sequences did not show
as high variation in their expression levels across cells and sites for specific transcription
factors were not predicted. To evolve promoter sequences with variations in expression levels
comparable to native promoters, promoters may be selected on a selection scheme, where the

desired expression level varied from round to round. Phenotypes of those promoters could
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be determined by flow cytometry, and their sequenced genotype could reveal features in the
sequence that explain these variations. Those features may be, for instance, binding sites
for transcription factors.

(ii) Transcriptional regulation can evolve in many ways, resulting in multiple outcomes,
which is already depicted in the diversity of promoter sequences present in the genome of
E.coli .

In Chapter 2 and 3, evolution of expression levels selected was possible in short time-scale
with high mutation rates and flow cytometry based selection. Starting from a population of
random sequences, expression level distributions as observed for native promoter sequences
were obtained. Evolution of a functional promoter sequence was possible from a million
random sequences, illustrating that regulatory sequences were evolvable de novo.

In a step-wise approach, the desired expression level could be reached by changing expres-
sion levels of already functional sequences by point mutations. Changing expression levels
from medium expression to high expression was possible within only two rounds of evolution.
Modifications in the genotype where shown to impact expression levels also in synthetically
evolved promoter sequences and that many different sequences resulted in similar expression
levels. Some mutations were shown to have a greater impact on the transcription rate than
others. Promoter sequence features that were tackled during the artificial selection were the
inclusion of o™ binding sites and an increase in AT content. The evolutionary dynamics di-
rected towards the integration of only a few ¢ binding sites per promoter sequence. These
features can possibly explain what are the minimal requirements for a functional promoter
sequence, but not the exact rate of transcription in the cell. The prediction of transcriptional
activity for a given promoter sequence does not solely depend on the strength of o™ sites
present in the promoter as presented in Chapter 3. Sequence properties that impact other
mechanisms during for transcription initiation, like the unwinding of the double strand and
clearance of the promoter sequence prior to elongation of the final transcript might have a
profound impact on the transcription rate as well. A more detailed analysis of the promoters
obtained after five rounds of evolution could be provided by grouping those sequences into
more fine grained expression classes than medium and high expression. By experimental
examination of the transcription start sites for each promoter, the exact position(s) of sigma
site(s) could be identified and not only predicted.

The importance of regulatory changes on the fitness of organisms was reassured in Chap-
ter 4. In addition, changes in the transcription rate were more common than changes in
the translation rate, when changes in protein levels accounted for fitness effects. Marginal
upregulation of some genes were shown to have a large effect on the growth rates. In some
cases, regulatory modifications were obtained by single point mutations, and some of those
mutations were affecting the strength of the o™ binding site. Tuning transcription rate by
the strength of sigma binding is possible in otherwise fixed sequence backgrounds. However,
other mutations can also have large effects on the expression strength as depicted in Chapter
3.
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