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Summary 
Neglected tropical diseases (NTDs) are a group of communicable diseases mostly 

affecting people in developing countries. These diseases are responsible for a major part of 

the global morbidity, mortality and poverty. There is no doubt that the well-being of people 

in the developing world can only be improved if the NTDs are controlled. An important 

tool for disease control is the drug treatment. The few available drugs are unsatisfactory 

because of the limited efficacy, adverse effects and the high price. Chagas disease, 

leishmaniasis and human African trypanosomiasis belong to this group of NTDs. They are 

caused by infections with protozoa of the family Trypanosomatidae. For these three 

diseases new drugs are urgently needed. 

By definition there is no commercial market for drugs against NTDs. Drug research 

and development (R&D) for NTDs is mainly driven by the public sector, the so-called 

product development partnerships (PDPs). Drug R&D is a very long (10-15 years), risky 

and therefore expensive process. Three different series of compounds (agrochemicals, 

marketed drugs and nitro-heterocyclic compounds) were tested for their antiparasitic 

effects, with the aim to identify new lead compounds or even clinical candidates against 

leishmaniasis, sleeping sickness, and Chagas disease. 

Agrochemicals are used worldwide on a large scale in food production. They 

undergo a rigorous toxicological testing prior to launch. Over 600 compounds were 

screened for their antiparasitic activity. Agrochemicals are not optimized for use in 

mammals, yet a significant number of molecules were found with good and selective in 

vitro activity. Some of them showed also efficacy in the corresponding rodent model. These 

results indicate that agrochemicals can provide very interesting starting structures for drug 

research against parasitic diseases. 

Drugs or drug-like compounds are an ideal starting point for antiparasitic drug 

discovery, because very often pharmacokinetic and toxicological data are available. A 

number of drugs, including antibiotics, antivirals, antifungals, and anti-psychotics were 

assayed for antiparasitic activity. Some of the drugs tested showed selective antiparasitic 

activity. These compounds can be regarded as new lead structures and should be further 

investigated. 
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Nitroheterocycles belong to a well- known class of compounds with the stigma of 

being mutagenic or genotoxic. Over 700 compounds, mainly nitroimidazoles, have been 

systematically tested for their antiparasitic activity, and their pharmacokinetics and 

mutagenicity was investigated. A number of effective, non-mutagenic and non- genotoxic 

compounds was identified. So fexinidazole was rediscovered, a drug that had been in 

clinical development already in the 70’s as a broad-spectrum antimicrobial drug. 

Fexinidazole is rapidly metabolized to fexinidazole-sulfoxide and -sulfone. The parent 

compound and the two principle metabolites showed in vitro trypanocidal activity against 

all (sensitive and resistant) tested T. brucei strains (IC50 of 0.2 - 0.9 g / ml). Fexinidazole 

cured the first stage mouse model with a 4-day oral treatment of 100 mg/kg/day and the 2nd 

stage mouse model with a 5-day oral treatment of 200 mg/kg/day. The two metabolites are 

mainly responsible for the good efficacy in animal models. Both reach very high 

concentrations in blood and brain tissue. Fexinidazole has successfully completed 

preclinical development and Phase I clinical trials and is currently in a clinical phase II / III 

study. 

With the approach of phenotypic screening of compounds that have been developed 

for other purposes, new leads for drug R&D against Chagas’ disease, leishmaniasis and 

human African trypanosomiasis were identified. 

Fexinidazole is the first drug candidate in clinical Phase II / III trials since decades. 

It would be the first oral drug for the treatment of stage 1 and 2 of human African sleeping 

sickness. If fexinidazole overcomes all obstacles, this would be a major breakthrough in the 

fight against African sleeping sickness. With a well tolerated, orally active drug like 

Fexinidazole the elimination of sleeping sickness seems finally tangible. 
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Zusammenfassung 
Vernachlässigte Tropenkrankheiten („Neglected Tropical Diseases“ NTDs) sind 

eine Gruppe von übertragbaren Krankheiten, welche vor allem die Bevölkerung der 

Entwicklungsländer betreffen.  Diese Krankheiten verursachen einen großen Teil der 

weltweiten Morbidität, Mortalität und Armut. Es besteht kein Zweifel, dass das 

Wohlergehen der Menschen in Entwicklungsländern nur verbessert werden kann, wenn 

diese Krankheiten unter Kontrolle gebracht werden. Ein wichtiges Instrument dafür ist die 

medikamentöse Behandlung. Die wenigen verfügbaren Medikamente sind unbefriedigend, 

aufgrund ihrer beschränkten Wirksamkeit, Nebenwirkungen und des hohen Preises. 

Chagas-Krankheit, Leishmaniose und die menschliche afrikanische Schlafkrankheit 

gehören zu dieser Gruppe von NTDs. Sie werden durch eine Infektion mit Protozoen aus 

der Familie Trypanosomatidae verursacht. Für diese drei Krankheiten werden dringend 

neue Medikamente benötigt.  

Es gibt keinen kommerziell interessanten Markt für Medikamente gegen 

vernachlässigten Krankheiten. Die Medikamentenforschung wird hauptsächlich von der 

öffentlichen Hand, sogenannten Produktentwicklung Partnerschaften (PDPs), angetrieben. 

Die Medikamentenforschung und -entwicklung ist ein sehr langwieriger (10-15 Jahre), 

riskanter und daher teurer Prozess. Drei verschiedene Substanzserien (Agrochemikalien, 

vermarktete Medikamente und nitroheterozyklische Verbindungen) wurden auf ihre 

antiparasitäre Wirkung untersucht, mit dem Ziel, neue Leitstrukturen oder sogar klinischen 

Kandidaten gegen Leishmaniose, Schlafkrankheit und Chagas-Krankheit zu identifizieren. 

Agrochemikalien werden weltweit in großem Maßstab in der 

Nahrungsmittelproduktion eingesetzt. Sie durchlaufen vor der Markteinführung eine 

strenge toxikologische Prüfung. Über 600 Verbindungen wurden auf ihre antiparasitische 

Aktivität getestet. Agrochemikalien sind nicht für den Einsatz in Säugetieren optimiert, 

dennoch wurde eine beträchtliche Anzahl von Molekülen mit hoher und selektiver in vitro-

Aktivität gefunden. Einige davon waren auch im entsprechenden Nagetier-Modell wirksam. 

Diese Ergebnisse zeigen, dass Agrochemikalien sehr interessante Ausgangsstrukturen  für 

die Medikamenten-forschung gegen parasitäre Erkrankungen liefern können.  

Bekannte Wirkstoffe oder wirkstoffähnliche Verbindungen sind ein idealer 

Ausgangspunkt für die antiparasitäre Medikamentenforschung, weil sehr oft 
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pharmakokinetische und toxikologische Daten bereits zur Verfügung stehen. Eine Reihe 

von Arzneimittel, einschließlich Antibiotika, antivirale Wirkstoffe, Antimykotika und 

Antipsychotika wurde auf die antiparasitische Wirkung untersucht. Einige der getesteten 

Arzneimittel zeigten  eine selektive antiparasitische Aktivität. Diese Verbindungen können 

als neue Leitstrukturen betrachten werden und sollten weiter untersucht werden. 

Nitroheterozyklische Substanzen gehören zu einer bekannten Klasse von 

Verbindungen mit dem Makel, erbgutverändernd oder genotoxisch zu sein. Über 700 

Verbindungen, hauptsächlich Nitroimidazole, wurden systematisch auf antiparasitäre 

Aktivität untersucht und ihre  Pharmakokinetik und Mutagenität geprüft. Eine Anzahl 

wirksamer, weder mutagener noch genotoxischer Verbindungen konnte  identifiziert 

werden. So wurde Fexinidazol wiederentdeckt, ein Wirkstoff der bereits in den 70er Jahren 

als Breitspektrum-Antibiotikum in der klinischen Entwicklung war. Fexinidazol wird  

schnell zu Fexinidazol-sulfoxid und -sulfon metabolisiert. Die Stammverbindung und die 

zwei Metaboliten sind gegen alle (sensitive und resistente) getesteten T. brucei Stämme  

aktiv (IC50 0.2 – 0.9 mg/ml). Fexinidazol heilt das Mausmodell des ersten 

Krankheitsstadiums bei einer oralen 4-tägigen Behandlung mit 100 mg/kg/Tag und das 2. 

Stadium-Mausmodell bei einer oralen 5-tägigen Behandlung mit 200mg/kg/Tag.  

Verantwortlich für die gute Wirksamkeit in den Tiermodellen sind die beiden Metaboliten, 

welche sehr hohe Blut- und Gehirnkonzentrationen erreichen. Fexinidazol durchlief 

erfolgreich die präklinische Entwicklung und klinische Phase I und ist derzeit in einer 

klinischen Phase II / III-Studie. 

Mit dem Ansatz des phänotypischen Screenings von Verbindungen, die für andere 

Zwecke entwickelt worden waren, konnten neue Leitstrukturen für die Medikamenten-  

forschung gegen  drei parasitischen Erkrankungen identifiziert werden. 

Fexinidazol ist der erste Wirkstoff in klinischen Phase II / III-Studien seit 

Jahrzehnten. Es wäre das erste orale Medikament zur Behandlung des ersten und zweiten 

Stadiums der menschlichen afrikanischen Schlafkrankheit. Sollte Fexinidazol alle 

Hindernisse überwinden, wäre dies ein großer Durchbruch im Kampf gegen die 

menschliche Afrikanische Schlafkrankheit und könnte einen essentiellen Beitrag zur 

Eliminierung der Krankheit leisten.  
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General introduction 
Neglected tropical diseases (NTDs) such as human African trypanosomiasis (HAT), 

Chagas’ disease and Leishmaniasis affect the poorest people. NTDs are responsible for 

substantial global morbidity, mortality, and economic adversity [1]. 1-2 billion people are 

at risk and hundred thousands of people die by an NTD every year. NTDs have a huge 

social and economic impact due to loss of education potential and reduced productivity. 

The human toll is measured in disability-adjusted life year (DALY). The estimate of 

DALYs caused by NTDs is 20 million [1].   

For successful combating these neglected diseases, all aspects must be considered 

such as treatment, diagnosis, transmission and distribution. Transmission and distribution 

of NTDs could be reduced and controlled by specific vector control tools, e.g. mosquito 

nets, fly traps, insecticide spraying. Accurate diagnostic tools are required in order to detect 

the disease early, to treat as early as possible and further transmission can be prevented.  As 

example there are highly sensitive serological tests available for T. b. gambiense HAT, but 

the parasitological confirmatory tests are insufficient and needs to be improved. The 

diagnosis for T. b. rhodesiense HAT still relies on microscopy; there is no serological field 

test [2]. In general for NTDs there is a lack of effective medications. All recent used drugs 

have their drawbacks, often hospitalization is necessary, or the treatment is logistically very 

complicated or takes a long time. Most medications have significant side effects. There is 

an urgent need for new drugs that are safe to use, easy to administer and inexpensive.  

 

Human African trypanosomiasis (HAT) 

Human African trypanosomiasis (HAT) also known as African sleeping sickness, is 

caused by two protozoan parasites, Trypanosoma brucei gambiense and T .b. rhodesiense 

[3]. T. b. rhodesiense is prevalent in East Africa and causes an acute infection; it lasts only 

few months until death [4]. T. b. gambiense is prevalent in central and West Africa causing 

a chronic infection and takes up to 4 years until death [5]. Trypanosomes elude the adaptive 

CHAPTER 1 
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immune response by continuous variation of the surface glycoproteins [6].  Antigenic 

variation is the main reason for the lack of success of developing a vaccine. 

HAT is transmitted by tsetse flies (Glossina sp).  The disease course is divided into 

two stages. In the first stage, the trypanosomes are localized mainly in the hemolymphatic 

system, and causing rather unspecific symptoms such as headache, fever and 

lymphadenopathy [3]. In the second stage of the disease, the parasites have overcome the 

blood-brain barrier and have invaded the brain tissues and cerebrospinal fluid (CSF) [7, 8]. 

The trypanosomes in the brain provoke neurological dysfunctions [9, 10].  The 

neuropathological changes include also the disruptions of sleep/wake patterns, which has 

led to the common name of ‘sleeping sickness’ being used for the disease [11].  

Primary diagnosis is done serologically by use of the card agglutination test for 

trypanosomiasis (CATT) [12], detecting antibodies produced against the variant surface 

glycoproteins (VSGs). CATT is very sensitive but may produce false positives. Therefore 

the microscopical identification of the parasites in lymph or blood is required. The stage of 

the disease is determined by lumbar puncture, necessary because stage specific drugs are 

used. The presence of parasites or white blood cells (≥ 5 cell per microliter) in the CSF are 

indicative of stage 2 of the disease [13,14].  

HAT occurs only in sub-Saharan Africa (14° North and 29° South) and is correlated 

with the distribution of the vector. According to the World Health Organization (WHO), 

the disease is endemic in 36 countries [15,16]. But HAT is a significant public health 

problem in only 20 countries [17]. Over 95% of all reported cases are from the countries in 

West and Central Africa, the distribution area of T. b. gambiense [16,18]. Since the 

discovery of trypanosomes as the causative agent of sleeping sickness by Bruce, three 

major epidemics occurred [19]. The last major epidemic was at the end of the 20
th

 century 

with an estimated 300’000 cases [16].  

Human African trypanosomiasis is transmitted by tsetse flies and the disease 

threatens millions of people in 36 countries in sub-Saharan Africa. Due to reinforced 

surveillance and vector control the number of reported cases decreased in the last 10 years 

from approximately 30’000 to <10’000 cases [18]. 
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Table 1. Available chemotherapy for the treatment of acute and chronic stage of human 

African trypanosomiasis, problems and main adverse effects. 

First stage of human African trypanosomiasis 

Drug Route of application 

& dosage 

Problems & main adverse effects 

Pentamidine (1940) 

 

Intramuscular;  

4 mg/kg/day for 7-10 

days 

Only efficacious for T.b.gambiense;  

hypoglycaemia, injection site pain, 

diarrhea, nausea, vomiting  

Suramin (1920s) 

 

Intravenous; 

20mg/kg once per 

week over 5 weeks 

(maximum dose 1g 

per injection) 

For T.b. rhodesiense;  

hypersensitivity reactions, 

haematuria, albuminuria, cylinduria, 

peripheral neuropathy. Due to the 

risk of a severe anaphylactic 

reaction, a test dose of 4-5 mg/kg/ 

the first day is recommended. 

Second stage of human African trypanosomiasis 

Melarsoprol (1949) 

 

Intravenous; 

T.b.gambiense: 

2.2mg/kg/day for 10 

days T.b.rhodesiense: 

3 series of 3.6 mg/kg 

for 3 days, spaced by 

intervals of  7 days. 

10 painful daily injections  

Increasing number of treatment 

failures (up to 30% in some regions) 

~5% treatment-related mortality due 

to encephalopathic syndromes, skin 

reactions, neuropathies, 

gastrointestinal upset 

Eflornithine (1981) 

 

Intravenous infusion  

100 mg/kg at 6 h 

intervals for 

14 days 

Only efficacious for T.b.gambiense; 

administration difficult, diarrhoea, 

nausea, vomiting, convulsions, 

anaemia, leucopenia, 

thrombocytopenia;  

Nifurtimox (1970s) 

 

Oral 

5mg/kg three times 

per day for 14 days 

Oral drug developed for Chagas 

disease, not registered for HAT; 

sometimes used after melarsoprol 

relapse; probably ~70% efficacy; 

anorexia and neurological alterations 

Nifurtimox-eflornithine 

combination 

(2009) 

Eflornithine: 200 

mg/kg intravenous 

infusion 2 times per 

day for 7 days  

Nifurtimox: 5 mg/kg 3 

times per day oral for 

10 days 

Only efficacious for T.b.gambiense, 

Simplified stage 2 treatment  

Included in WHO's List of Essential 

Medicines (EML) in May 2009 
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Chemotherapy depends on a limited number of available drugs [3,20,21]. All 

current used drugs have their drawbacks such as toxicity, problems of efficacy, poor oral 

bioavailability (Tab1). For the treatment of the first stage of the disease two drugs are used, 

pentamidine  

for T.b.gambiense and suramin for T.b.rhodesiense infections. Melarsoprol was for a long 

time the first-line drug to treat T.b.gambiense second stage infection and is the only option 

for T.b.rhodesiense second stage disease. Today, eflornithine (DFMO) is used for second 

stage gambiense disease. Since few years the nifurtimox-eflornithine combination therapy 

(NECT) is recommended by WHO as first-line treatment [22]. The introduction of NECT is 

the only progress in the chemotherapy of HAT in the last 25 years.  

 

Leishmaniasis 

Leishmaniasis is caused by more than 20 species of the kinetoplastid protozoan 

parasites belonging to the genus Leishmania. The disease is prevalent worldwide in 

southern Europe and in the subtropic and tropic belt. Leishmaniasis is classified in three 

major clinical forms, visceral (VL), cutaneous (CL) and mucocutaneous leishmaniasis 

(MCL) [23]. The forms differ in immunopathologies, in degree of morbidity and mortality. 

Leishmania parasites are transmitted by the bite of an infected phlebotomine 

sandfly, about 30 sandfly species can transmit the disease [24]. Promastigote forms of the 

parasite are ingested by macrophages and transform into amastigotes [25]. The amastigotes 

multiply and survive in the phagolysosomes of macrophages until the cell eventually bursts, 

then new phagocytic cells are infected. There are two main forms of leishmaniasis with a 

broad range of severe clinical manifestations. Cutaneous leishmaniasis (CL) is the most 

common form causing skin lesions and skin ulcers on exposed areas as face, arms and legs. 

After healing often remains scarring and serious disability. Chronic skin lesions similar to 

those of lepromatous leprosy are the characteristics of diffuse cutaneous leishmaniasis. 

Visceral leishmaniasis (VL) also known as kala azar is another form of the disease. It is 

caused by an infection of the lymphatic system and leads to fever, weight loss, swelling of 

liver and spleen and anaemia. This most severe form of the disease is fatal if untreated. A 

third disease form is the mucocutaneous leishmaniasis (MCL) which affects the naso-

oropharyngeal mucosa. 
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Table 2. Available chemotherapy for the treatment of Leishmaniasis, problems and main 

adverse effects. 

Leishmaniasis 

Drug Route of application 

& dosage 

Problems & main adverse effects 

Pentavalent Antimonials: 

Sodium stibogluconate (Pentostam, 

SSG) 

 
and meglumine antimoniate 

(Glucantime) 

 

Intravenous and 

intramuscular 

20 mg/kg daily for 

20-30 days (depends 

on geographic area) 

For VL and CL.  

Organo-metal complexes on 

polymeric forms. 

Length of treatment  

Painful injection  

Resistance in India 

Cardiac toxicity, pancreatitis, 

nephrotoxicity hepatotoxicity 

Amphotericin B 

 

 
Liposomal amphotericin B 

 

Intravenous 

1 mg/kg every other 

day  for up to 30 

days (15mg/kg total 

dose) 

 

 

Intravenous 

Unilamellar 

liposome 

For VL, CL and MCL. 

Polyene antibiotic. First line drug for 

VL in areas of India where 

antimonial resistence occurs. Need 

for slow iv infusion; Dose-limiting, 

nephrotoxicity, hypokalaemia, fever, 

chills, hypotension 

Most effective formulation for VL, 

also used for complex forms (PKDL, 

MCL) 

Miltefosine 

 

Oral 

2.5mg/kg/day for 28 

days 

First oral drug for VL. 

Hexadecylphosphocholine 

Anorexia, nausea, vomiting, 

diarrhoea, potentially teratogenic 

Paromomycin 

 

Intramuscularly 

(VL), topical (CL) 

15mg/kg/day for 28 

days  

 

 
 

CL topical one daily 

for 20 days 

For VL and CL 

aminoglycoside antibiotic as sulfate 

salt,  

Mild pain at the injection site, 

Reversible ototoxicity 
 

Topical formulation (12%) with 

methyl benzylmethonium chloride. 

Topical formulation with gentamicin 

and surfactants in Phase III trial. 

Pentamidine (1940) 

 

Intramuscular;  

4mg/kg/alternate 

days or 3 times/week 

for 15-30 dosage (IV 

or IM) 

Only for specific forms of CL in 

South America;  

hypoglycaemia, injection site pain, 

diarrhea, nausea, vomiting, 

hypotension  
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Leishmaniasis is transmitted in 98 countries of the tropical and subtropical belt but 

also in Southern Europe [24]. 350 million people life at risk and 12 million people 

worldwide are affected by the disease, with an estimated 1.5-2 million new cases per year 

[24].  

Leishmaniasis is a poverty related disease but it is also linked to environmental 

changes [26]. Deforestation, urbanization, and migration of non-immune people to endemic 

areas are manmade risk factors [23].  

It is widely acknowledged that the reported case figures represent an underestimate 

of the true burden. For VL 0.2 to 0.4 million cases per year are estimated, but only 60,000 

cases are reported. 90% of reported VL cases occur in Bangladesh, Brazil, India, Nepal and 

Sudan [27]. VL interacts with HIV infection; it is one of the major threats to control of the 

disease. A co-infection with HIV increases the risk of developing active VL over 100 times 

[28].  

210000 CL cases per year are reported, but it is estimated that there are 0.7 to 1.2 

Mio cutaneous Leishmaniasis cases per year [27]. CL occurs mainly in the Middle East 

(Afghanistan, Iran, Saudi Arabia and Syria) and Latin America (Brazil and Peru), about 

90% of cases are found in those countries. MCL occur mainly in Latin America; Bolivia, 

Brazil and Peru are most affected. 

The current situation of treatment options for leishmaniasis are similar to the other 

neglected protozoan diseases. Only a limited number of drugs are available and they show 

severe side effects and lack of efficacy [29] (Tab.2). Each drug has its drawback, such as 

difficulty in administration, length of treatment, toxicity, cost, and increasing parasitic 

resistance. Pentavalent antimonials, meglumine antimoniate and sodium stibogluconate 

were introduced in the 1940s and are still the first-line treatment in most part of the world. 

New drugs and new formulation of old drugs led to some improvement in the treatment of 

VL [30]. These new treatments include liposomal amphotericin B, paromomycin (both 

antibiotics) and the oral anticancer drug miltefosine. For the treatment of CL the same 

drugs are used as for VL. But the treatments are all unsatisfactory due to high failure rates 

and toxicity. Species variation,15 Leishmania species can cause CL, and pharmacokinetics 

are the major problems in the development of new drugs [31].  
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Chagas disease 

The hemoflagellate parasite Trypanosoma cruzi is the causative agent of Chagas 

disease also called American trypanosomiasis [32]. The disease is found mainly in Latin 

America and was discovered 1909 by the Brazilian physician Carlos Chagas.  

T.cruzi parasites are mainly transmitted by the infected feces of blood-sucking 

triatomine bugs [32]. The night active bugs feed on human blood and defecate close to the 

bite. The parasite can enter the body when a person instinctively lubricates the feces into 

the bite, the mouth, or the eyes. Chagas disease cans also be transmitted by other routes 

[33,34,35,36]. such as: i) food or drink contaminated with T.cruzi, ii) blood transfusion and 

organ transplants if the donor is infected, iii) congenital, iv) laboratory accidents. The initial 

acute phase lasts few weeks or months with parasites circulating in the blood. In the acute 

phase symptoms are absent or mild but can include skin lesion, swelling of the eyelid 

(Romaña’s sign) fever, enlarged lymph nodes, headache and pain [37]. The chronic phase 

of the disease is asymptomatic and the parasites hide mainly in the heart and digestive 

muscle. Most people are unaware of their infection and many of them do not develop any 

disease related symptoms.  Up to 30% of the infected people will develop problems as 

cardiac disorders (heart rhythm abnormalities, dilated heart), enlargement of the esophagus 

or colon [38,39]. The progressive destruction of the heart muscle can lead to sudden death. 

HIV infection or any immunosuppression may reactivate the chronic disease; the 

consequences are parasites in the blood and a severe disease [49].  

The acute stage of Chagas disease can be diagnosed microscopically by blood smear 

examination. Congenital infection is best identified with microhaematocrit, due to the small 

amount of blood needed. At least two different serological tests are needed for the 

diagnosis of the chronic disease [41]. The direct detection in the blood is not possible 

because of the very low parasitemia.  

Chagas disease is endemic in 21 countries of Central and South America [42]. Due 

to the population mobility and less frequently due to blood transfusion, organ donation and 

congenital transmission, Chagas disease is increasingly detected in North America, Europe 

and some Western Pacific countries. It is estimated that 8 million people are infected and 

that in 2008 over 10’000 people died from the disease [32]. People living under poor 
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housing conditions in rural areas of Latin America, are most at risk to acquire the disease. 

Prevention and control of the disease in Latin America is mainly focused on vector control. 

Triatomine bugs typically live in the cracks of poorly-constructed homes in rural or 

suburban areas. Therefore, improved housing and spraying insecticides inside houses are 

the most effective ways to combat the disease [43]. 

 

Table 3. Available chemotherapy for the treatment of Chagas disease, problems and main 

adverse effects. 

Chagas disease 

Drug Route of application & 

dosage 

Problems & main adverse effects 

Benznidazole (1972) 

 

Oral;  

5-7 mg/kg in two divided 

doses daily for 60 days. 

  

Children (up to 12 years): 

10 mg/kg in two divided 

doses daily for 60 days. 

- limited effectiveness (60 – 80%) in 

the acute phase of the disease 

- regional variations in efficacy due 

to naturally resistant T.cruzi strains 

low effectiveness (10 – 20%) in the 

chronic phase of the disease 

- long period of treatment, and dose-

dependent toxicity 

-no paediatric strengths 

-contraindicated during pregnancy 

- need for monitoring under 

specialized medical supervision  

- rash and gastrointestinal symptoms 

such as nausea. Rarely, peripheral 

neuropathy 

leukopenia, agranulocytosis 

Nifurtimox (1967) 

 

Oral 

Adults: 8-10 mg/kg in 

three divided daily doses 

for 90 days. 

Children: 15-20 mg/kg in 

four divided daily doses 

for 90 days. 

Safety in pregnancy has not been 

established  

high number of side effects: 

digestive disturbances (epigastric and 

abdominal pain, nausea and 

vomiting, anorexia, weight loss) 

 

There are only two drug available (Tab. 3), benznidazole and nifurtimox, for 

chemotherapy of Chagas disease [44]. Both medicines can cure infected people. Nifurtimox 

and benznidazole show the highest efficacy in early infection but low effectiveness in the 

chronic stage of the disease. Both drugs show a number of side effects, a dose dependent 

toxicity and a long duration of treatment is necessary to successfully combat an infection. 

Another problem for the efficacy of the drugs is the genetical heterogeneity of T.cruzi. The 
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parasite strains were grouped into six phylogenetic lineages with different drug sensitivities 

[45].   

 

Drug discovery and development 

Drug discovery and development is an expensive and lengthy process taking 

approximately 10-15 years. The costs for preclinical development are estimated to be up to 

500 Mio USD and for the full development to bring a new drug on the market 500-1800 

Mio USD [46].   

Drug discovery and development is a complex process which starts from basic 

research (target identification, validation) and processes to lead identification, preclinical 

and clinical development until registration and marketing and ends with the access of the 

drug [47,48] (Figure 1). All aspects are important and have their own complexity and 

difficulties. The risk of failure is very high. Due to the length and cost of the drug 

developing process, the risk of failure should be minimized during this process. In an 

optimal drug development process the attrition rate is high at the beginning and decreases 

with duration [49].   

 

Antiparasitic drug discovery and development 

There is no doubt, for neglected tropical disease (NTD) new drugs are urgently 

needed. The current drugs have their drawbacks, they are old, expensive, not easy to 

administer and often toxic. New candidates have to fulfill some pre-defined criteria, so 

called target product profile (TPP). Drug discovery is an iterative and integrated process; a 

TPP can guide selection of candidate molecules [50].   

 

Figure 1. Drug discovery and development process 
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There are several strategies to develop new drugs against NTDs. De novo drug 

discovery and drug development is a very rational approach but it is a lengthy and 

expensive process. Frearson et al [51] introduced the “traffic light” system for target 

assessment as a prioritization and management tool. The goal of the target based drug 

discovery is to produce a specific acting new medicine. This process as mentioned above is 

very long and high risky. Drugs that act on a specific enzyme have the advantage that the 

mechanism of action is known. However, such drugs may have the disadvantage that 

resistance can easily result from mutation. The knowledge of the mode of action of a drug 

can be helpful in the drug discovery process but it is not mandatory.  

There are other drug discovery strategies. The in vitro screening against whole 

parasites is a very valuable strategy for anti-parasitic drug discovery [52]. Large compound 

libraries should be screened against living parasites and whenever possible using the human 

infectious form. This strategy of phenotypic screening was also used for establishing the” 

malaria box” [53,54,55,56].   

 

Figure 2 Flow diagram of drug screening 

 
 

Another good approach for drug discovery is to follow the advice of the Nobel prize 

winner Sir James Black ‘the most fruitful basis for the discovery of a new drug is to start 

with an old drug’ [57]. Using the piggyback approach has its merit [58]. It is a low risk and 

low cost approach by looking for new indications of existing human, veterinarian drugs and 
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agrochemicals. This opportunistic approach includes whole libraries of compounds coming 

from any drug discovery projects including cancer research. 

We follow the strategy of phenotypic screening since our screening center was 

established in the 90’s. Additionaly we use the approach of an integrated in vitro drug 

screening (Fig. 2). This means the compounds are tested whenever possible against 4 

protozoan parasites, T.b.rhodesiense, T.cruzi, L. donovani, P.falciparum, and for 

cytotoxicity assessment against a mammalian cell line. 

 

 

Goal 

The first goal of this thesis is the use of phenotypic screening to re-investigate the 

old compound class of nitroimidazoles in order to identify a clinical drug candidate for the 

treatment of human African trypanosomiasis. A second aim is the identification of 

nitroimidazoles as preclinical candidates to treat Chagas disease and Leishmaniasis.  A 

third goal is the use of the piggy-back approach to evaluate a library of agrochemicals and a 

series of approved drugs in order to identify preclinical/clinical candidates against the 

trypanosomatid parasites. 

 

Objectives 

The study’s specific objectives were: 

- To evaluate the in vitro efficacy of a collection of nitroimidazoles against 

T.b.rhodesiense, T.cruzi. L. donovani. 

- To evaluate the most in vitro active nitroimidazole in both, the first and second 

stage, HAT rodent model 

- To characterize the in vitro efficacy of the most active nitroimidazoles 

- To evaluate the in vitro and in vivo efficacy of a collection of agrochemical 

- To evaluate in vitro a collection of approved drugs 
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Abstract 

Background: Human African trypanosomiasis (HAT), also known as sleeping sickness, is 

a fatal parasitic disease caused by trypanosomes. Current treatment options for HAT are 

scarce, toxic, no longer effective, or very difficult to administer, in particular for the 

advanced, fatal stage of the disease (stage 2). New safe, effective and easy-to-use 

treatments are urgently needed. Here it is shown that fexinidazole, a 2-substituted 5-

nitroimidazole rediscovered by the Drugs for Neglected Diseases initiative (DNDi) after 

extensive compound mining efforts of more than 700 new and existing nitroheterocycles, 

could be a short-course, safe and effective oral treatment curing both acute and chronic 

HAT that could be implemented at the primary health care level. In order to complete the 

regulatory requirements for demonstrating efficacy and safety before initiating human 

trials, the anti-parasitic properties and the pharmacokinetic, metabolic and toxicological 

profile of fexinidazole have been assessed.  

Methods and Findings: Standard in vitro and in vivo anti-parasitic activity assays were 

conducted to assess drug efficacy in experimental models for HAT. In parallel, a full range 

of preclinical pharmacology and safety studies, as required by international regulatory 

guidelines before initiating human studies, have been conducted. 

Fexinidazole is moderately active in vitro against African trypanosomes (IC50 against 

laboratory strains and recent clinical isolates ranged between 0.16 and 0.93 μg/mL) and 

oral administration of fexinidazole at doses of 100 mg/kg/day for 4 days or 200 mg/kg/day 

for 5 days cured mice with acute and chronic infection respectively, the latter being a model 

for the advanced and fatal form of the disease when parasites have disseminated into the 

brain. In laboratory animals, fexinidazole is well absorbed after oral administration and 

readily distributes throughout the body, including the brain. The absolute bioavailability of 

oral fexinidazole was 41% in mice, 30% in rats, and 10% in dogs. Furthermore, 

fexinidazole is rapidly metabolised in vivo to at least two biologically active metabolites (a 

sulfoxide and a sulfone derivative) that likely account for a significant portion of the 

therapeutic effect. Key pharmacokinetic parameter after oral absorption in mice for 

fexinidazole and its sulfoxide and sulfone metabolites are a Cmax of 500, 14171 and 13651 

ng/mL respectively, and an AUC0-24 of 424, 45031 and 96286  h.ng/mL  respectively. 

Essentially similar PK profiles were observed in rats and dogs. Toxicology studies 
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(including safety pharmacology and 4-weeks repeated-dose toxicokinetics in rat and dog) 

have shown that fexinidazole is well tolerated. The No Observed Adverse Effect Levels in 

the 4-weeks repeated dose toxicity studies in rats and dogs was was 200 mg/kg/day in both 

species, with no issues of concern identified for doses up to 800 mg/kg/day. While 

fexinidazole, like many nitroheterocycles, is mutagenic in the Ames test due to bacterial 

specific metabolism, it is not genotoxic to mammalian cells in vitro or in vivo as assessed in 

an in vitro micronucleus test on human lymphocytes, an in vivo mouse bone marrow 

micronucleus test, and an ex vivo unscheduled DNA synthesis test in rats. 

Conclusions: The results of the preclinical pharmacological and safety studies indicate that 

fexinidazole is a safe and effective oral drug candidate with no untoward effects that would 

preclude evaluation in man. The drug has entered first in-human studies in September, 

2009. Fexinidazole is the first new clinical drug candidate with the potential for treating 

advanced-stage sleeping sickness in thirty years. 
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Introduction 

A major challenge for new drug development is the identification of pharmacologically 

active compounds with a favourable activity and toxicity profile that can be turned into new 

drug candidates. The contemporary approach to identifying such compounds is high-

throughput screening of large and chemically diverse compound libraries to identify novel 

pharmacophores, followed by lead optimisation [1,2]. Sometimes, this screening effort is 

narrowed down by using more targeted libraries that are thought to be enriched in 

compounds with a desired type of activity (e.g. kinase inhibitors [3]). However, promising 

candidates can also be found by revisiting the wealth of past drug discovery research, 

during which promising lines of research were sometimes not pursued for commercial or 

other strategic reasons.  

In this paper, we report the successful result of a proactive compound mining approach into 

a well-known class of anti-infectives, the nitroimidazoles, to rediscover fexinidazole, a long 

forgotten anti-parasitic drug candidate. Fexinidazole turned out to be an excellent candidate 

to cure human African trypanosomiasis (HAT), including the advanced and fatal stage of 

the disease. 

An estimated sixty million people in 36 sub-Saharan African countries are at risk for HAT, 

especially poor and neglected populations living in remote rural areas [4,5]. While the 

number of reported HAT cases has decreased in recent years due to intensified control 

activities, 50,000 to 70,000 people are estimated to be infected [6. In west and central 

Africa, Trypanosoma brucei gambiense causes a chronic form of sleeping sickness, 

whereas in eastern and southern Africa T. b. rhodesiense causes an acute form of the 

disease [7,8]. Both forms of HAT occur in two stages: stage 1 (early, hemolymphatic) is 

characterized by non-specific clinical symptoms such as malaise, headache, fever, and 

peripheral oedema, whereas stage 2 (late, meningoencephalic) is characterized by 

neurological symptoms including behavioural changes, severe sleeping disturbances, and 

convulsions, which, if left untreated, lead to coma and death [9.10]. 

Available treatments for HAT [8] (Table 1) are few, old, and limited due to toxicity, 

diminishing efficacy in several geographical regions [11,12], and complexity of use [13]. 

Treatment is stage-specific, with the more toxic and difficult-to-use treatments being used 

for stage 2 HAT.  
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NECT, a combination treatment of a simplified course of intravenous eflornithine and oral 

nifurtimox, has been the only advance in the past 25 years [14,15], and has been recently 

accepted into the WHO’s Essential Medicines List as treatment for stage 2 HAT [16]. 

Despite being a clear improvement with reduced toxicity and treatment duration, the 

requirement for intravenous administration is still a limitation.  

 

Table 1. Available treatment options for HAT. 

Indication Drug Associated Problems 

Stage 1 Pentamidine 

(1940) 

7-10 daily intramuscular injections; only efficacious for 

stage 1 

Suramin 

(1920’s)  
Used primarily for stage 1 T. b. rhodesiense HAT 

Stage 2 

Melarsoprol 

(1949) 

Ten painful daily intravenous injections; highly toxic, 

with ~5 % treatment-related mortality. Increasing number 

of treatment failures (up to 30% in some regions); used 

for stage 2 HAT 

Eflornithine 

(1981) 

Administration difficult – 4 slow intravenous infusions 

per day for 14 days; increasingly used as 1st line for T. b. 

gambiense stage 2 HAT 

NECT  

(2009) 

Simplified regimen combining 7 days eflornithine (two 

infusions/day) and 10 days oral nifurtimox; expected to 

replace eflornithine monotherapy and melarsoprol for 

stage 2 T. b. gambiense HAT 

 

It is estimated that less than 20% of currently infected people have access to treatment or 

are under any HAT surveillance, due to a combination of lack of effective and field-adapted 

diagnostics and treatments, combined with extreme poverty and remoteness of the affected 

populations, including in conflict zones [4,17]. To change the dynamics of HAT control 

and access more patients while improving their case-management, a safe, effective, 

affordable, and easy-to-use (short course, preferably oral) treatment is urgently needed. 

Nitroimidazoles are a well-known class of pharmacologically active compounds, among 

which several have shown good activity against trypanosomes [18] . The best-known anti-

trypanosomal drug candidate in this class was megazol [19,20]; its development was 

abandoned because of toxicity, in particular mutagenicity [21,22], a known possibility in 

this chemical family [23,24]. However, other members of this family including 

metronidazole [25], are widely used as antibiotics, indicating that it is possible to select 

compounds with an acceptable activity/toxicity profile in this class.  
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A systematic review and profiling of more than 700 nitroheterocyclic compounds (mostly 

nitroimidazoles) from diverse sources was undertaken and included an assessment of anti-

parasitic activity and mutagenic potential using state-of-the-art scientific methods. From 

these efforts, fexinidazole, a 2-substituted 5-nitroimidazole, was identified as a promising 

drug candidate for the treatment of HAT. Fexinidazole (1-methyl-2-((p-

(methylthio)phenoxy)methyl)-5-nitroimidazole, CAS registry number 59729-37-2) had 

been in preclinical development in the 1970s and early 1980s as a broad-spectrum 

antimicrobial agent by Hoechst AG (now sanofi-aventis), selected within a broader series 

because of its wider range of action, lower toxicity and comparative ease of chemical 

synthesis [26,27]. In 1983, the in vivo activity of fexinidazole against African 

trypanosomes was also documented [28]. However fexinidazole’s further development was 

not pursued at the time.   

This paper describes the trypanocidal efficacy and preclinical profile of fexinidazole as a 

novel clinical drug candidate for HAT, devoid of genotoxic risks for patients. The results 

show fexinidazole’s potential to become a safe, efficacious, affordable, short-course (less 

than 14 days), oral treatment with a suitable shelf life in tropical conditions. Ideally the 

treatment will be safe and effective in both stages 1 and 2 HAT, allowing for significantly 

simplified diagnosis, treatment and patient-management and ultimately a better control of 

the disease.  

 

Methods 

Ethics Statement 

All work was conducted in accredited laboratories and according to international 

guidelines. Specific references to the relevant authorities are provided below as appropriate. 

Where not stated details of specific license holders can be obtained from the appropriate 

laboratories if required. 

Drug preparation  

Fexinidazole and metabolites were prepared for in vitro studies as a stock solution in 

DMSO further diluted with water or 0.5% methylcellulose in water to appropriate 

concentration required for the assay. 
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For in vivo studies fexinidazole was prepared as an optimized suspension comprising 5% 

w/v Tween 80/0.5% w/v Methocel in water, unless stated otherwise. 

Anti-trypanosomal activity studies 

In vitro trypanocidal and cytotoxicity assays [29,30,31]: Parasites were cultured with or 

without the test article at a concentration of 3x10
4
/mL in Minimal Essential Medium, 

according to Baltz et al. [30] with the following modifications: 0.2 mM 2-mercaptoethanol, 

1 mM Na-pyruvate, 0.5 mM hypoxanthine and 15% heat inactivated horse serum at 37°C in 

5% CO2 in 96-well microtitre plates for 72 h. 10 μL of Alamar Blue was added for the final 

3 h to determine viability. The assay was assessed by reading the fluorescence in each well 

at an excitation wavelength of 536 nm and at an emission wavelength of 588 nm. The IC50 

values were calculated from the sigmoidal inhibition curves. For cytotoxicity, 4×10
4
/mL L-

6 rat skeletal myoblast cells were used, and incubations and assessments carried out as 

above.  

In vivo trypanocidal assays [32,33]: Female NMRI mice were infected via intraperitoneal 

injection with bloodstream forms of T. b. rhodesiense STIB900 or T. b. gambiense 130R 

and treated with test drugs daily for 4 consecutive days, starting on day 3 or 7 post 

infection, respectively, or with bloodstream forms of T. b brucei GVR35 and treated daily 

from day 21 after infection for 5 days. Parasitemia was evaluated by tail blood examination 

and surviving, aparasitaemic mice at 60, 90, or 180 days, respectively, were considered 

cured. 

The mouse assays were conducted in accordance to relevant national and international 

guidelines. The studies were approved by the local veterinary office (Kantonales 

Veterinäramt Basel) under licence No. 739. 

 

Pharmacokinetic (PK) studies 

A range of pharmacokinetic studies have been performed in different species (mouse, rat, 

dog) in the context of this paper, either as pharmacokinetic studies to establish the PK 

profile of fexinidazole and its metabolites, or as part of other studies (safety pharmacology 

and toxicity) to demonstrate the systemic exposure of fexinidazole and its metabolites in 

the conditions of that particular study.  
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Plasma sampling: Blood samples were taken via into heparinised collection tubes and, 

following centrifugation, plasma was removed and stored frozen until required for assay. 

Brain sampling in mice: Following sacrifice, the cranium of mice was opened and the 

brain removed. Excess blood was washed from the brain with distilled water and any 

excess fluid blotted on absorbent paper. The brain was then snap frozen using liquid 

nitrogen and placed into a suitably labelled container and stored at approximately -70

C, 

pending analysis. Brains were homogenized and extracted samples were prepared 

appropriately for analysis via liquid chromatography-mass spectrometry (LC-MS). 

Plasma and brain pharmacokinetic (PK) analytical assessment: All PK evaluations 

were carried out using validated high performance liquid chromatography (HPLC) and LC-

MS assays as per standard operating procedures of the laboratories involved. 

The majority of PK studies were carried out by Accelera, Nerviano Medical Sciences, Italy 

following internal Standard Operating Procedures as non-GLP regulated studies and all  

procedures for housing and handling of animals were in strict compliance with EEC and 

Italian Guidelines for Laboratory Animal Welfare. 

One mouse PK and brain sampling study was carried out by BioDynamics Ltd., Rushden, 

UK according to internal Standard Operating Procedures as a non-GLP regulated study and 

animals were maintained as required by the “Code of practice for the housing and care of 

animals used in scientific procedures” (Home Office, London, 1989). 

 

ADME (Absorption, Distribution, Metabolism, Excretion) studies 

In vitro hepatocyte metabolism [34]: Fexinidazole was incubated with cryopreserved 

hepatocytes from male CD-1 mice, male Sprague Dawley rats, male beagle dogs, male 

cynomolgus monkeys, and from pooled white or African-American human donor samples, 

at concentrations of 1 M and 10 M. 1 M samples were used for the cross-species 

intrinsic clearance determination, whereas 10 M samples were used for the cross-species 

metabolite profile determination. The incubated samples were analyzed by LC-MS after 

extraction into acetonitrile.  

In vitro CYP-450 metabolism [35]: Duplicate samples of human recombinant CYP 

enzyme isotypes CYP1A2, CYP2B6, CYP2C8, CYP2C9, CYP2C19, CYP2D6, CYP3A4, 

CYP3A5 (10-30 pmol/mL) with NADPH as cofactor were incubated with fexinidazole, 
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fexinidazole sulfoxide, or fexinidazole sulfone at a concentration of 1.0 M for up to 60 

min (pH 7.4, 37°C). Detection of the compounds was via HPLC-MS. 

In vitro transcellular permeability: Caco-2 [36] or MDR1-MDCK (Madin Darby canine 

kidney cells transfected with the human multidrug resistance gene) [37] cell monolayers 

were grown to confluence on collagen-coated, microporous, polycarbonate membranes in 

12-well microtitre plates. The buffer for the donor chamber was Hanks balanced salt 

solution with 10 mM HEPES and 15 mM glucose at pH 7.4. The buffer in the receiver 

chamber contained the same with the addition of 1% bovine serum albumin (BSA). The test 

article was added at 5 µM in the assay buffer. Cells were dosed on the apical side or baso-

lateral side and incubated at 37°C with 5% CO2 in a humidified incubator. After 2 h, 

duplicate aliquots were taken from the donor and receiver chambers and assayed via 

LC/MS. The apparent permeability and recovery were calculated using standard methods. 

In vivo metabolism and distribution: Whole-body autoradiography in rats was conducted 

using [
14

C]-radiolabelled fexinidazole. The site of the [
14

C] label in the fexinidazole 

molecule on the bridging carbon atom ensured that the radioactivity would remain 

associated with both the sulfoxide and sulfone metabolites. The radiolabelled compound 

was administered at the dose of 800 mg/kg (approximately 3.7 MBq/kg, 100 Ci/kg) by 

gastric gavage to eight male albino Sprague Dawley rats. Two animals were sacrificed at 

each time point 2, 8, 24 or 48 h after administration and the quantitative radioactivity 

distribution in the organs and tissues was evaluated using quantitative whole-body 

autoradiography.  

Excretion balance in rats was carried out using a single oral dose of radiolabelled 

fexinidazole administered at the dose of 800 mg/kg (approximately 3.7 MBq/kg, 100 

Ci/kg) by gastric gavage to three male albino Sprague Dawley rats. 

The animal studies above were carried out by Accelera, Nerviano Medical Sciences, Italy 

following internal Standard Operating Procedures as non-GLP regulated studies and all 

procedures for housing and handling of animals were in strict compliance with EEC and 

Italian Guidelines for Laboratory Animal Welfare. 
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Safety pharmacology profiling [38,39]  

In vitro cardiac safety [40]: HEK 293 (human embryonic kidney) cells stably expressing 

hERG (human ether-a-go-go-related gene) were treated with fexinidazole, fexinidazole 

sulfoxide, or fexinidazole sulfone at 1, 5 or 30 µM, and the hERG peak tail current was 

measured. 

Dog cardiovascular safety assessment [40] : Cardiovascular safety parameters were 

assessed in beagle dogs. Four adult (>1 year old) beagle dogs were given oral doses of 

fexinidazole at 100, 300 and 1000 mg/kg in an escalating dose design. During the 

experimental phase animals were monitored via a Closed Circuit TeleVision CCTV system 

and physically inspected 24 h after dosing. On the day of dosing, a predefined set of 

telemetry signals from each animal were collected continuously from at least 1 h before 

dosing to at least 24 h after treatment.  

In vivo neurobehavioural safety profiling: Neurobehavioural safety was carried out using 

the Irwin’s test of general behaviour and body temperature in male rats [41,39]. Twenty-

four male rats (Crl:CD(SD)BR, aged about 7 weeks on the day of dosing were divided into 

four experimental groups of 6 animals per group. Each group of animals was treated orally 

with fexinidazole at doses of 100, 300, or 1000 mg/kg, or vehicle. General behaviour was 

assessed before treatment and 2 h and 24 h after vehicle or drug administration. A defined 

set of behavioural observations using an arbitrary intensity scale of 0 (no behavioural 

change) to 8 was made before treatment and 2 h and 24 h after treatment. Factors present in 

normal animals (e.g. alertness, mobility, etc.) were scored as 4; potentiation or depression 

of these factors was indicated as higher or lower integers, respectively. Factors absent in 

normal animals were scored from 0 (normal) to 8. 

In vivo respiratory safety profiling: Respiratory parameters were assessed in the rat [42]. 

Groups of eight male rats (Crl:CD(SD)BR, aged about 8 weeks on the day of dosing were 

administered doses of 100, 300, or 1000 mg/kg of fexinidazole by oral gavage. A pre-

determined standard set of respiratory parameters was acquired continuously from 

individual animals housed in plethysmographic chambers. Basal values were calculated as 

the mean of values from 30 to 10 min before treatment. After treatment, values were 

extracted every 30 min up to 4 h. Body weights were recorded on the day of treatment for 

calculation of dose volumes and for calculation of tidal and minute volumes per kg of body 

weight.  



 36 

All safety pharmacology studies in animals were carried out by Accelera, Nerviano 

Medical Sciences, Italy following internal Standard Operating Procedures and applicable 

ICH guidelines (ICH S7A, S7B), were GLP regulated and were conducted in compliance 

with the DECRETO LEGISLATIVO 2 Marzo 2007, No. 50 and OECD Principles of GLP 

(January 1998) ENV/MC/CHEM (98) 17. 

 

Repeated –Dose Study / Toxicokinetics [43,44]  

In the rat repeat-dose toxicokinetic study, fexinidazole was administered orally by gavage 

once a day for 28 consecutive days to ten or fifteen Crl:CD (SD)IGS BR rats/sex/group at 

doses of 50, 200, or 800 mg/kg/day. A control group received the vehicle alone (5% Tween 

80/0.5% methocel). Ten animals/sex/group were sacrificed at the end of the treatment 

period on day 29 or 30 of study. The remaining 5 animals/sex/group in the control and 

high-dose groups were sacrificed on day 43 at the end of a 2-weeks observation period. 

Systemic exposure to fexinidazole and its sulfoxide and sulfone metabolites was evaluated 

in three additional animals/sex/group. Samples were taken at predose, and 30 min, 1, 2, 4, 8 

and 24 h after dosing on days 1, 14, and 28, and in addition at 48 and 72 h after treatment 

on day 28. 

In the dog repeat-dose toxicokinetic study, fexinidazole was given orally by gavage once a 

day for 28 days to five (control and high dose) or three (low and mid dose) beagle dogs 

/sex/dose at the doses of 0 (control group), 50, 200, or 800 mg/kg/day. The control group 

received the vehicle alone (same as above). Systemic exposure to fexinidazole and of its 

sulfoxide and sulfone metabolites was evaluated on days 1, 14 and 28 in the same animals 

used for the toxicological study. Samples were taken at predose, and 30 min, 1, 2, 4, 8 and 

24 h after dosing on days 1, 14, and 28, and in addition at 48 and 72 h after treatment on 

day 28. 

For both species, the standard package of toxicological analyses was carried out.  

Both rat and dog studies were carried out by Accelera, Nerviano Medical Sciences, Italy 

according to their internal Standard Operating Procedures, were GLP regulated and were 

conducted in compliance with the DECRETO LEGISLATIVO 2 Marzo 2007, No. 50 and 

OECD Principles of GLP (January 1998) ENV/MC/CHEM (98) 17 and the ICH regulatory 

guidelines for repeated dose toxicokinetics studies (ICH M3 and S3A) 
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Developmental and reproductive toxicology [45] 

Preliminary studies in rat and rabbit have been performed to have an early idea of 

reproductive and developmental toxicity risks, and to determine dose levels to be used in 

further pivotal studies.  

In the rat study, fexinidazole was administered orally by gavage once a day from day 6 to 

day 17 of gestation or from day 6 of gestation to day 7 of lactation to 10 mated rat Crl:CD 

(SD)IGS BR rats/sex/group at doses of 50, 200, or 800 mg/kg/day. A control group 

received the vehicle alone (5% Tween 80/0.5% methocel). 

In the rabbit study, fexinidazole was administered orally by gavage once a day from day 6 

to day 20 of gestation to 6 inseminated New Zealand White Rabbit KBL females at the 

dose of  20,40 and 80 mg/kg/day. A control group received the vehicle alone (5% Tween 

80/0.5% methocel). 

Both rat and rabbit studies were carried out by Accelera, Nerviano Medical Sciences, Italy 

according to their internal Standard Operating Procedures, were GLP regulated and were 

conducted in compliance with the DECRETO LEGISLATIVO 2 Marzo 2007, No. 50 and 

OECD Principles of GLP (January 1998) ENV/MC/CHEM (98) 17 and the appropriate 

ICH regulatory guidelines for reproductive toxicology (ICH S5A). 

 

Genotoxicity assessments [46]  

In vitro Ames test: To evaluate bacterial mutagenicity, a full Ames test was carried out on 

fexinidazole and fexinidazole sulfone using the five strains of Salmonella typhimurium 

recommended by the relevant ICH regulatory guideline, namely TA1535, TA1537, TA98, 

TA100, and TA102, as well as the corresponding nitroreductase-deficient strains [47,48]. 

Standard bacterial plate incorporation assays were carried out, essentially as described by 

Maron and Ames [49]. Tests on fexinidazole were carried out with and without rat liver 

post-mitochondrial fraction plus co-factors (S9 mix) to provide a mammalian metabolic 

activation system. The S9 fraction was prepared from Spague-Dawley rats pretreated with 

the mixed cytochrome P 450 enzyme inducer Aroclor 1254. Tests on fexinidazole sulfone 

were carried out only in the absence of rat liver S9 (as this is a metabolite). After incubation 

at 37°C for three days, plates were scored for mutant colonies using a Colony Counter plate 

reader. 
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In vitro micronucleus test on human lymphocytes [50]: Duplicate human lymphocyte 

cultures were prepared from the pooled blood of two donors in two independent 

experiments. Treatments covering a broad range of concentrations, separated by narrow 

intervals, were done both in the absence and presence of metabolic activation (S9) from 

Aroclor-1254-induced animals. The highest concentration of fexinidazole was 220 g/mL. 

Cells were treated with the drug either 24 h or 48 h after mitogen stimulation by 

phytohaemagglutinin (PHA). The test concentrations for micronucleus analysis were 

selected by evaluating the effect of fexinidazole on the replication index (RI). In each 

experiment, micronuclei were analysed at three concentrations. Similar tests were carried 

out on fexinidazole sulfone. As per the Ames test, this was carried out in the absence of rat 

liver S9 only. 

In vivo mouse bone marrow micronucleus test [51]: Groups of six young adult male 

Crl:CD-1 (ICR) mice were treated with fexinidazole at two oral doses of 0, 500, 1000, or 

2000 mg/kg given 24 h apart, and bone marrows were harvested 24 h after the second dose. 

Slides of bone marrow cells were prepared, Giemsa stained, and 2000 polychromatic 

erythrocytes per animal were scored for micronuclei. 

Ex vivo unscheduled DNA synthesis (UDS) in rats [52]:  Groups of young male Sprague 

Dawley rats received fexinidazole at doses of 500, 1000, or 2000 mg/kg orally, and the 

livers were sampled either 2-4 h or 12-14 h after administration. Hepatocyte suspensions 

were prepared and incubated in the presence of titrated thymidine. Slides of fixed 

hepatocytes were coated in photographic emulsion and stored for 14 days at 4°C in the 

dark. The silver grains above the nuclei or cytoplasm (background) were counted, 

providing a measure of DNA uptake during DNA repair. The difference between these two 

counts indicated the extent of DNA repair (nuclear net grain count). 

All genotoxicological studies in animals were carried out by Covance Laboratories Ltd, 

Harrowgate, England following internal Standard Operating Procedures, the applicacble 

ICH guidelines (ICH S2) and in compliance with the UK GLP Regulations 1999, Statutory 

Instrument No. 3106 as amended by the GLP (Codification Amendments Etc.) Regulations 

2004 and the OECD Principles on GLP (January 1998) ENV/MC/CHEM (98) 17. Animals 

were maintained as required by the “Code of practice for the housing and care of animals 

used in scientific procedures” (Home Office, London, 1989). 
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Redox potential measurement: One-electron reduction potentials were determined by 

pulse radiolysis following an established procedure [53].  

 

Results 

Anti-parasitic activity 

The anti-parasitic activity of fexinidazole was assessed in experimental models of HAT. In 

vitro fexinidazole and its two main metabolites showed trypanocidal activity against the 

STIB900 laboratory strain of T. b. rhodesiense with very steep dose-response relations 

when assessed after 72 h of culture (Figure 1). With an IC50 of 0.48-0.82 μg/mL 

fexinidazole’s in vitro potency is weaker than that of the reference drug melarsoprol 

(IC50=0.003 μg/mL) and other trypanocidal drugs (Table 2) or the abandoned drug 

candidate megazol (IC50=0.02 μg/mL), although the two drugs currently used as first line to 

treat stage 2 HAT have a similarly modest in vitro potency (eflornithine: 0.9 μg/mL ; 

nifurtimox: 0.4 μg/mL). Importantly, in contrast to melarsoprol and other drugs, 

fexinidazole has little or no non-specific cytotoxicity. Fexinidazole has a comparable IC50 

of 0.16-0.36 μg/mL against a laboratory T. b. gambiense strain (STIB930), and against 6 

recent T. b. gambiense clinical isolates (IC50 values from 0.30 to 0.93 μg/mL) (data not 

shown).  

In vivo, fexinidazole is effective in curing both T. b. rhodesiense and T. b. gambiense acute 

models of infection, at an oral dose of 100 mg/kg/day (or 50 mg/kg twice a day) for 4 days 

(Table 3A). Most significantly, in a T. b. brucei GVR35 infected mouse model of stage 2 

HAT with brain infection involvement, fexinidazole given orally showed a dose-related 

increase in efficacy, with a dose of 200 mg/kg/day for 5 days being highly effective (Table 

3B). In two other independent experiments, 100% cure was obtained in groups of 5 mice 

receiving an oral dose of 100 mg/kg, twice per day for 5 days (in these experiments, five 

daily intraperitoneal injections of 15 mg/kg melarsoprol also cured 100%). Of the drugs 

currently in clinical use (Table 1), only melarsoprol is effective in this experimental stage 2 

HAT model. 
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Figure 1. Effect of fexinidazole and its two main metabolites on T. b. rhodesiense (STIB 

900).Parasite viability was measured in vitro after 72-h drug exposure. Fexinidazole - open 

circles (n=11). Fexinidazole sulfoxide - open squares (n=4). Fexinidazole sulfone - open 

diamonds (n=4). 

 

 

Table 2. In vitro anti-parasitic activity of fexinidazole, its metabolites, and reference 

compounds.  

Compound 
T. b. rhodesiense (STIB 

900) 
T. b. gambiense (STIB 930) 

Cytotoxicity L-6 rat 

myoblast cells 

 IC50 in µg/mL (M)* 

Fexinidazole 0.48-1.12 (1.71-4.00) 0.16–0.36 (0.58–1.29) >90 (>322) 

Fexinidazole 
sulfoxide 

0.41-0.49 (1.33-1.65) 0.18–0.36 (0.61–1.22) > 90 (>305) 

Fexinidazole sulfone 0.35-0.40 (1.14-1.30) 0.16–0.39 (0.48–1.25) > 90 (>289) 

Reference molecules    

Melarsoprol 0.002–0.004 (0.004-0.009) 0.0015-0.003 (0.004-0.006) 1.3 (3.3) 

Megazol 0.02 (0.10) Not available 57 (254) 

Eflornithine 0.90 (3.80) 0.40 (1.67) 12 (51) 

Nifurtimox 0.41 (1.44) 0.31 (1.08) 25 (87) 

Pentamidine 0.003 (0.009) 0.002 (0.01) 3 (9) 

Suramin 0.062 (0.046) Not available >90 (>70) 

* IC50: concentration of drug required to kill 50% of the parasites or skeletal myoblast cells. 
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ADME and Pharmacokinetics (PK) 

Fexinidazole is rapidly metabolised in vivo, with the main metabolites being the sulfoxide 

and sulfone derivatives (Figure 2) [26]. This principle metabolic conversion was confirmed 

in vitro using rat S9 fractions and hepatocytes from the mouse, rat, dog, monkey and 

human (results not shown). In a comparative hepatocyte metabolism assay, fexinidazole 

was rapidly metabolised by all species, with in vitro intrinsic clearance rates highest in 

monkey (6500 mL/min/kg) > dog (5000 mL/min/kg) > mouse (4300 mL/min/kg) > rat 

(2900 mL/min/kg) > human (125 mL/min/kg). No meaningful differences were observed  

 

Figure 2. Chemical structure of fexinidazole and its main metabolites [26], including 14C-

labeled fexinidazole indicating which carbon atom was labelled. 

 

 

when comparing the in vitro metabolism of fexinidazole by hepatocytes from African-

American or Caucasian donors. The main metabolic reactions were oxidation to the 
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sulfoxide and sulfone derivatives. This metabolic pathway was also confirmed to be the 

major route of metabolism in vivo in mice, rats and dogs (see below). As shown above, 

both metabolites have in vitro anti-trypanosomal activity similar to the parent compound 

(IC50 in g/ml: 0.41-0.49 for the sulfoxide and 0.35-0.40 for the sulfone versus 0.48-1.12 

for the parent compound) (Table 2). 

The potential hepatic oxidative pathways involved in fexinidazole metabolism were 

assessed by testing the clearance of the fexinidazole and its two primary metabolites by a 

range of cytochrome P450 (CYP450) enzymes. The data show that fexinidazole is 

extensively metabolised by a range of CYP450 enzymes, including 1A2, 2B6, 2C19, 3A4, 

and 3A5 and, to a lesser extent, 2D6. The 2C8 and 2C9 enzymes were inactive.  

 

Table 3. In vivo efficacy of fexinidazole experimental infection models for acute and 

chronic HAT. 

 Compound Dose 

(mg/kg) 

Route* Cured/infected Mean 

relapse time 

(days) 

A T. b. rhodesiense 

STIB900 (acute 

infection) 

    

 No treatment .. .. 0/4 7 

 Fexinidazole 25 × 4 days po 0/4 12 

 Fexinidazole 50 × 4 days po 1/4 >27 

 Fexinidazole 100 × 4 days po 4/4 >60 

 T. b. gambiense 130R 

(acute infection) 

    

 No treatment .. .. 0/4 10 

 Fexinidazole 100 × 4 days po 3/3 >90 

 Melarsoprol 4 × 4 days ip 4/4 >90 

B T. b. brucei GVR35 

(chronic infection) 

    

 Diminazene
+
 40 × 1 day ip 0/4 48.6 

 Fexinidazole 50 × 5 days po 0/8 41.3 

 Fexinidazole 100 × 5 days po 2/8 >82.1 

 Fexinidazole 200 × 5 days po 7/8 >163.8 

 Melarsoprol  10 × 5 days ip 2/8 >96.6 

 Melarsoprol
++

 15 × 5 days ip 4/5 >180 
 

*ip: intraperitoneal; po: per os. Fexinidazole was formulated as a suspension in 5% Tween80/95% methyl-

cellulose (0.5% w/v in water) and administered via gastric gavage. 
+
Diminazine diaceturate is used as a 

control as it is able to eliminate bloodstream parasitaemia but is not effective after CNS infection is 

established. Single dose on day 21 after infection. 
++

Data included from a separate experiment for illustration 

only. 
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Interestingly, none of the enzymes tested metabolised either the sulfoxide or the sulfone to 

any significant degree (their metabolic pathways remain to be established). These data are 

in agreement with in vivo data showing the long systemic half-lives of the sulfoxide and 

sulfone metabolites in animal studies (see below). Since fexinidazole is metabolised 

extensively by multiple CYP450 isoforms, its metabolism is unlikely to be significantly 

affected by other drugs.  

The oral absorption potential of fexinidazole was assessedin the well-known Caco-2 cell 

model for intestinal epithelial permeability [36, Dataset S4].  In this assay, fexinidazole 

showed high absorption potential (apparent permeability Papp= 57.2 10
-6

 cm/s and no 

significant efflux). Intestinal permeability of fexinidazole is therefore not expected to be a 

limiting factor for absorption in humans.  

The PK profile of fexinidazole was assessed in single-dose and multiple-dose studies in 

mice, rats, and beagle dogs. The absolute bioavailability of oral fexinidazole was 41% in 

mice, 30% in rats, and 10% in dogs. In all species tested, fexinidazole was rapidly and 

extensively metabolised to the sulfoxide and subsequently sulfone derivatives. Key 

pharmacokinetic parameter after oral absorption in mice for fexinidazole and its sulfoxide 

and sulfone metabolites are shown in Table 4 [Dataset S5]. Essentially similar PK profiles 

were observed in rats and dogs [Dataset S6, S7], even if the exact values varied among 

species (see also below). 

 

Table 4. Mouse pharmacokinetics of fexinidazole and its metabolites in plasma and brain 

after oral administration. 

 

 
Cmax (ng/mL) Tmax (h) T1/2 (h) AUC0-24 (h.ng/mL) 

Fexinidazole 500 0.25 0.8 424 

Sulfoxide metabolite 14171 0.5 1.0 45031 

Sulfone metabolite 13651 4.0 1.7 96286 
Fexinidazole was formulated as a suspension in 1% DMSO/99% methyl-cellulose (1% w/v in water) and administered to 

female NMRI mice (n = 3) via gastric gavage at a concentration of 25 mg/kg. 

Cmax: maximum plasma concentration. Tmax: time of maximum plasma concentration. T1/2: terminal elimination half 

life. AUC0–24: area under curve from time of dosing to the last measurable concentration. 

 

The ability to cross the blood-brain barrier is crucial for drugs intended to treat stage 2 

HAT. The ability of fexinidazole to do so was initially assessed in vitro in a MDR1-MDCK 

model [37, Dataset S8]. Fexinidazole showed high predicted brain permeation (apparent 
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permeability Papp= 60.6 10
-6

 cm/s and no significant efflux). In mice, the presence of 

fexinidazole and both metabolites in the brain was confirmed after oral dosing (Table 5 

Dataset S5), and is consistent with the data showing efficacy in the murine model of 

chronic HAT (Table 3B).  

The PK profile of fexinidazole was further characterised in mice which were administered 

the same treatment schedule that was curative in the chronic disease model (Table 3B). The 

plasma profile in mice of fexinidazole and its sulfoxide and sulfone metabolites after 5 days 

of fexinidazole treatment at the effective dose (200 mg/kg/day) is illustrated in Figure 3. 

The data show that a high and prolonged systemic bioavailability of biologically active 

compounds is achieved a few hours after drug administration, seemingly without drug 

accumulation and associated potential toxicity [Dataset S9].  

 

Table 5. Presence of fexinidazole and metabolites in the brain after oral administration of 

fexinidazole to mice.  

Time point (min) Fexinidazole (ng/g) Sulfoxide (ng/g) Sulfone (ng/g) 

15 1136 ± 54.1 ND ND 

30 800 ± 92.6 3315 ±1611 469 ± 222 

60 763 ± 90.7 4873 ± 2335 1183 ± 322 
Data are expressed as mean 6 SD (n = 3). ND: not determined. Fexinidazole was formulated as a suspension 

in 1% DMSO/99% methyl-cellulose (1% w/v in water) and administered to female NMRI mice via gastric 

gavage at a concentration of 25 mg/kg. 

 

The PK profile of fexinidazole was further characterised in mice which were administered 

the same treatment schedule that was curative in the chronic disease model (Table 3B). The 

plasma profile in mice of fexinidazole and its sulfoxide and sulfone metabolites after 5 days 

of fexinidazole treatment at the effective dose (200 mg/kg/day) is illustrated in Figure 3. 

The data show that a high and prolonged systemic bioavailability of biologically active 

compounds is achieved a few hours after drug administration, seemingly without drug 

accumulation and associated potential toxicity [Dataset S9].  

This pattern of parent and metabolite plasma profiles without significant drug accumulation 

is further illustrated in Tables 6 and 7, which show plasma PK parameters in Sprague-

Dawley rats and beagle dogs after 1 and 14 days of daily oral dosing with fexinidazole 

(data taken from the 28-day toxicokinetics studies, see below).In both species, it is 

interesting to note that there is no apparent accumulation in the plasma of either parent drug 

or metabolites, irrespective of dose, at least during the treatment period of 1–14 days. In the 
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dog, and to some extent in the rat, the only difference seen between the data from day 1 

versus day 14 is that the Tmax for the sulfone metabolite occurs some hours earlier on day 

14 compared to day 1, although the overall amount of the metabolite in plasma is similar on 

both days. 

 

Figure 3. Plasma concentrations of fexinidazole and its two main metabolites after 5 days 

of oral administration. 200 mg/kg fexinidazole was administered to mice (n = 3). 

Fexinidazole - open circles. Fexinidazole sulfoxide - open squares. Fexinidazole sulfone – 

open diamonds. 

 

 

Whole-body autoradiography in rats using [
14

C]-radiolabelled fexinidazole (see Figure 2 for 

labelling site) showed that the parent drug and/or its metabolites are broadly distributed to 

all organs and tissues (the assay did not distinguish between fexinidazole and its 

metabolites), with peak concentrations in most tissues 2 h after oral dosing. After 48 h, 

most radioactivity was eliminated from the body and no tissue specific accumulation was 

noted [Datasheet S10]. Furthermore, radioactivity was detected at all times in the brain, 

with a brain-to-blood concentration ratio of 0.4-0.6.  

Excretion balance studies in rats showed that 30% and 59% of fexinidazole-related material 

was excreted via urine and faeces, respectively, within 96 h [Dataset S11]. Elimination of 
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the radioactivity after oral dosing was rapid, with 84% eliminated within 48 h. About 1.4% 

of the dose was recovered from the carcass with an overall recovery of the total 

radioactivity of approximately 93%. 

 

Table 6. Rat plasma pharmacokinetic parameters for fexinidazole and its metabolites after 

oral administration of fexinidazole. 

Dose (mg/kg/day) 

 (no. animals) 

Sample 

 day 

Cmax *  

(μg/mL) 

tmax  

(h) 

AUC0-t(last)  

(μgh/mL) 

Fexinidazole    

50 (6) 1 0.09  0.07 1.42  1.28 0.47  0.34 

 14 0.18  0.14 1.92  1.20 0.83  0.54 

200 (6) 1 0.38  0.28 1.92  1.20 2.16  1.34 

 14 0.52  0.30 2.08  1.11 3.02  1.47 

800 (6) 1 1.48  0.71 1.58  0.66 12.8  4.10 

 14 1.02  0.87 3.17  2.84 9.29  5.20 

Fexinidazole sulfoxide   

50 (6) 1 2.70  1.40 2.50  1.22 15.4  9.28 

 14 5.23  3.28 2.17  0.98 29.8  19.4 

200 (6) 1 11.4  2.17 2.33  0.82 85.9  14.1 

 14 15.8  3.17 3.33  1.03 118  38.9 

800 (6) 1 31.7  3.74 4.67  1.63 410  101 

 14 25.0  8.99 2.67  1.03 277  160 

Fexinidazole sulfone   

50 (6) 1 2.92  2.26 7.33  1.63 36.1  28.6 

 14 6.38  2.30 6.00  2.19 89.6  34.1 

200 (6) 1 9.29  1.75 8.00  0.00 126  17.5 

 14 20.2  2.42 7.33  1.63 287  36.5 

800 (6) 1 42.6  13.1 10.7  6.53 574  256 

 14 40.5  13.0 6.67  2.07 543  252 
Data are expressed as mean 6 SD. Cmax: maximum plasma drug concentration achieved. Tmax: time to reach 

Cmax. AUC0-t(last): area under the plasma concentration time curve from initial to final data point 

 

Safety pharmacology 

In regulatory safety pharmacology assessments, in vitro exposure of hERG-transfected 

HEK 293 cells to fexinidazole sulfone, but not fexinidazole or the sulfoxide, showed a 

statistically significant decrease of 33%  on hERG peak tail current at the highest of the 3 

doses tested (30 M, 9.34 g/mL: no effect at 1 or 5 M) [Dataset S12]. However, 

assessment of cardiovascular parameters in beagle dogs after single oral doses up to 1000 

mg/kg showed no meaningful effects on blood pressure, heart rate, and ECG intervals, 
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including the Q-T interval. Similarly, no meaningful effects were observed after single oral 

doses in rats of up to 1000 mg/kg on general behaviour and body temperature (modified 

Irwin’s test) or on respiratory parameters [Datasets S14, S15]. 

Repeated dose toxicity and reproductive toxicity 

Because fexinidazole treatment for HAT is expected to be a single regimen of 14 days or 

less, 28-day regulatory toxicokinetic studies were carried out in rats and dogs.  

Once daily oral fexinidazole doses of 50, 200 and 800 mg/kg/day were well tolerated in rats 

at all doses tested [Dataset S16]. Only a minimal-to-slight decrease in food consumption 

and in the expected body weight increases (due to normal growth) was observed at 200 and 

800 mg/kg, in male animals only. Minimal-to-moderate changes were observed in the liver 

of all fexinidazole-treated animals (increased liver weight and/or hypertrophy of the 

centrilobular hepatocytes). However there was no increase in liver enzymes including AST 

and ALT, and all other clinical pathology parameters were also normal. Taken together 

with the observation that these changes were restricted to the dosing period, these were 

considered of adaptive origin (metabolism) and not indicative for liver toxicity. The No 

Observed Adverse Event Level (NOAEL) in rat was therefore 200 mg/kg/day. 

In Beagle dogs, daily oral fexinidazole doses of 50, 200 and 800 mg/kg/day were also well 

tolerated [Dataset S17]. Slight-to-moderate body weight loss and reduction in food intake 

were observed at 800 mg/kg/day during treatment. A minimal-to-slight decrease in the 

number of lymphocytes was seen at the highest dose. The No Observed Adverse Event 

Level (NOAEL) in dog was also set at 200 mg/kg/day. 

In both rat and dog studies, plasma levels of fexinidazole and both metabolites were 

measured and showed that fexinidazole was adequately absorbed, resulting in a significant 

and prolonged exposure of especially fexinidazole sulfoxide and sulfone (data up to 14 

days of treatment in rats and dogs is shown in Table 6 and 7). 

Preliminary studies on the potential effects of fexinidazole on embryo-foetal and early 

postnatal development were carried out in pregnant rats and no adverse effects on 

embryos/foetuses, parturition, and neonates were identified in dams. Further standard 

development and reproductive toxicology (DART) studies are currently ongoing to confirm 

and extend the preliminary results. 
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Table 7. Dog plasma pharmacokinetic parameters for fexinidazole and its metabolites after 

oral administration of fexinidazole. 

Dose (mg/kg/day) 

(no. animals) 

Sample day Cmax * (μg/mL) tmax * (h) AUC0-t(last)* 

(μgh/mL) 

Fexinidazole    

50 (6) 1 0.04  0.01 0.75  0.61 0.19  0.13 

 14 0.03  0.01 1.08  0.74 0.15  0.13 

200 (6) 1 0.07  0.03 1.00  0.55 0.44  0.09 

 14 0.08  0.01 1.50  0.77 0.45  0.14 

800 (10) 1 0.14  0.07 1.15  0.47 0.84  0.32 

 14 0.14  0.05 1.20  0.42 1.05  0.30 

Fexinidazole sulfoxide   

50 (6) 1 3.76  0.97 1.17  0.41 19.6  5.68 

 14 2.99  0.98 1.33  0.52 13.6  5.99 

200 (6) 1 8.12  2.66 1.25  0.61 51.4  14.1 

 14 8.99  2.83 2.00  0.00 56.7  16.6 

800 (10) 1 14.5  3.95 1.55  0.60 112  31.8 

 14 13.6  4.09 1.60  0.97 129  39.8 

Fexinidazole sulfone   

50 (6) 1 8.58  2.15 7.33  1.63 146  38.3 

 14 7.78  2.89 5.33  2.07 126  59.1 

200 (6) 1 17.6  2.46 12.7  8.91 348  63.9 

 14 21.8  3.86 5.33  2.07 384  49.9 

800 (10) 1 36.1  7.94 14.4  8.26 660  164 

 14 36.6  6.24 6.80  1.93 653  118 
Data are meanSD. 

 *Cmax: maximum plasma drug concentration achieved. Tmax: time to reach Cmax. 
  

AUC0-t(last): area under the plasma concentration time curve from initial to final data point  

 

Genotoxicity 

Fexinidazole and its primary metabolites are nitroimidazoles and, like many other 

nitroheterocyclic compounds, are potentially mutagenic [48]. To evaluate bacterial 

mutagenicity, a standard full Ames test was carried out on five strains of Salmonella 

typhimurium, with and without rat liver microsomes [Dataset S18]. Fexinidazole elicited 

both frameshift and base substitution mutations. However, this activity was significantly 

reduced or abolished when nitroreductase-deficient Salmonella strains were used for the 

assay (representative example shown in Figure 4). Rat liver microsomes metabolise 

fexinidazole efficiently to the sulfoxide metabolite under these experimental conditions 

(data not shown), so mutagenicity of this metabolite is covered by the above data. A 
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separate Ames test of the sulfone metabolite gave similar results to fexinidazole (data not 

shown). These data suggest that the observed mutagenic activity is due to bacterial 

activation of fexinidazole and its metabolites by nitroreductases, and is not an inherent 

property of the compounds. A detailed analysis of fexinidazole’s genotoxic potential on 

mammalian systems was undertaken subsequently. First, genotoxicity in mammalian cells 

was evaluated in an in vitro micronucleus test using human peripheral lymphocytes 

[Dataset S19]. Fexinidazole did not induce the formation of micronuclei, and thus no 

clastogenic damage, either in the presence or absence of rat liver microsomal enzymes 

(Table 8A). A separate in vitro micronucleus assay of the sulfone metabolite was also 

negative (data not shown). An in vivo bone-marrow micronucleus test in mice administered 

high oral doses of fexinidazole (up to 2 g/kg) confirmed the lack of clastogenicity (Table 

8B Dataset S20), while plasma analysis of these mice confirmed the exposure to 

fexinidazole and its two major metabolites (data not shown). Finally, an ex vivo rat liver 

unscheduled DNA synthesis study (Table 8C) confirmed the lack of mammalian genotoxic 

activity for fexinidazole and its metabolites [Dataset S21]. Taken together, these data 

support the conclusion that fexinidazole does not pose a genotoxic risk to patients. 

No direct studies have been done on the mode of action of fexinidazole. However, 

fexinidazole might act as a prodrug like other 5-nitroimidazoles that are toxic to the 

parasites only after bioreductive activation [54]. From studies of trypanosomes resistant to 

the action of nitroimidazoles, it appears that these parasites have bacterial-like 

nitroreductases, which can activate nitroimidazole drugs into reactive intermediates that in 

turn cause cellular damage [55]. Fexinidazole and the sulfoxide and sulfone metabolites 

were shown to have a low single electron redox potentials being -511 mV, -493 mV, and -

488 mV, respectively. In the same study, the single electron redox potential of 

metronidazole was -516 mV, and of megazole was -422 mV. 

 

Discussion 

This paper provides data showing that fexinidazole, a 2-substituted 5-nitroimidazole 

identified among a series of existing but long forgotten compounds, is a promising drug 

candidate for HAT. A full set of preclinical studies have been conducted in accordance with 

the regulatory requirements for pharmaceuticals for human use, and fexinidazole has now 
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successfully entered phase I clinical trials. Fexinidazole is the first new drug candidate for 

30 years that is in clinical development for the advanced and fatal stage of the disease 

(stage 2). In addition, being an oral drug with the potential to be effective against both stage 

1 and stage 2 HAT, it could become the much needed breakthrough for HAT control by 

drastically simplifying case management. 

 

Figure 4. Mutagenic activity of fexinidazole in the Ames test. Salmonella typhymurium 

strains TA98 (A) and TA100 (B) and their nitroreductase-deficient variants TA98NR and 

TA100NR were used, in the presence and absence of metabolic activation (+/2 S9). A: 

Solid circles: TA98 +S9; Open circles: TA98 -S9; Solid squares: TA98NR +S9; Open 

squares: TA98NR -S9; Negative control: Mean number of revertants per plate were TA98 

(2S9): 21; TA98 (+S9): 34; TA98NR (2S9): 29; TA98 (+S9): 18. B: Solid circles: TA100 

+S9; Open circles: TA100 2S9; Solid squares: TA100NR +S9; Open squares: TA100NR 

2S9; Negative control: Mean number of revertants per plate were TA100 (2S9): 104; 

TA100 (+S9): 116; TA100NR (2S9): 90; TA100NR (+S9): 111. 
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Fexinidazole has been shown to be selectively trypanocidal in vitro on T. b. rhodesiense 

and T. b. gambiense parasites, both on established laboratory strains and recent clinical 

isolates. Whilst in vitro potency is modest, with IC50 values between 0.1 and 0.8 µg/mL, a 

short course (4 or 5 days) of oral fexinidazole treatment is curative in experimental mouse 

models of acute and chronic (stage 2) HAT at doses of 100-200 mg/kg/day. This would 

correspond to a daily human  equivalent dose (HED) for adults of 16 mg/kg calculated 

based on body surface area [56]; however, more detailed mouse pharmacodynamics studies 

are required together with human PK data to be able to propose an effective therapeutic 

dose, including durationThe experimental curative capacity of fexinidazole  is significant as 

amongst the currently used drugs in the clinic, only the highly toxic drug melarsoprol is 

curative in the chronic mouse model which involves an established brain infection that  

mimics stage 2 HAT. The observation that a single high dose of fexinidazole was also 

partially curative in the acute model (data not shown) underscores the potential for a short 

course treatment which will be critical to achieve an easy-to-use treatment for remote and 

rural areas. While the predictive value of these murine models in terms of the potential for 

curing stage 2 patients is not fully established (only melarsoprol cures both), the 

demonstration that a drug candidate can clear systemic trypanosome infections in both the 

acute and chronic model, as well as clearing the brain infection (no relapse in the chronic 

model), is widely considered as the critical feature for a stage 2 HAT drug candidate.  

It has been argued by some that obtaining data from other animal models (rat, monkey) 

before moving into clinical development is desirable. However, the urgency to find new 

drugs for HAT combined with the lack of clinical candidates in the pipeline warrants a 

bolder strategy. Moreover, as fexinidazole’s in vivo efficacy is likely to depend on the 

combined exposure profile of the parent drug and its two major metabolites, and knowing 

that metabolism can vary between species, it is uncertain what can be learned from 

additional animal disease models. Clearly, the critical studies ahead to determine the 

curative potential of fexinidazole in humans will be the human safety and PK studies in 

phase I, and subsequently a proof-of-concept phase II study in patients.  

Upon oral administration, fexinidazole is well absorbed and rapidly metabolised into the 

sulfoxide and sulfone derivatives, both of which have similar in vitro trypanocidal activity 

to the parent compound. The excellent in vivo activity of fexinidazole when administered 
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Table 8. Mutagenicity assessments of fexinidazole on mammalian cells. 

*Relative Replication Index (RI: relative number of nuclei compared to controls) expressed as a %. 

**positive control. 

PCE: poly-chromatic erythrocyte. NCE: normo-chromatic erythrocyte. PHA: phytohemagglutinin. 

 

orally is likely to be due to the cumulative exposure to not one but three active compounds 

which distribute throughout the body with different but overlapping kinetics, thus ensuring 

A. In vitro micronucleus assay on human lymphocytes 

Micronucleated binucleate cells (%)* 

 24-h PHA 48-h PHA 

Fexinidazole dose (g/mL) - S9 +S9 -S9 +S9 

0 0.75 0.40 1.1 0.90 

20 0.50 0.50 1.1 0.60 

40 0.40 0.55 0.60 1.20 

80 0.70 0.75 0.90 0.40 

**4-nitroquinoline N-oxide, 5.0 g/mL 10.80  8.95  

**Cyclophosphamide, 6.25 mg/mL  3.60  12.85 

B. In vivo bone marrow micronucleus assay 

Fexinidazole dose (mg/kg) 
Micronucleated 

PCE/1000 
PCE/NCE 

0 1.0  0.75  

500 1.4  0.82  

1000 1.1  0.75  

2000 1.8  0.89  

**Cyclophosphamide, 4.0 mg/kg, 19.3  0.89  

C Ex vivo unscheduled DNA synthesis assay on rat liver cells 

Fexinidazole dose (mg/kg) 
Net nuclear grain 

count (2–4 h) 

Net nuclear grain 

count (12–14 h) 

0 0.2  0.6  

500 0.0  0.4  

1000 -0.1  0.5  

2000 -0.4  0.2  

**dimethylnitrosamine, 10 mg/kg 8.9    

**2-acetamidofluorene, 75 mg/kg   9.8  



 53 

effective exposure in both the systemic circulation and the brain. In mice, rats and dogs, the 

half-life of fexinidazole after oral treatment ranges from 1-3 h, whilst the half-life of the 

sulfoxide ranges from 2-7 h and that of the sulfone can be up to 24 h after dosing. As the in 

vitro intrinsic clearance rate by human hepatocytes was lower than of all other species 

tested, it can be expected that the half lives in humans will be even longer which further 

supports fexinidazole’s potential for a once per day short-duration treatment schedule. On 

the other hand, a non-linear dose-related absorption and consequent exposure was observed 

in both rats and dogs (not done in mice). It will thus be important to carefully analyse the 

dose-related pPK of fexinidazole and both metabolites after oral dosing in humans to better 

predict the dose-response relationship. 

While fexinidazole and the sulfoxide are metabolised by multiple liver microsomal 

enzymes, suggesting a low risk for drug-drug interactions, the metabolic route of the 

sulfone remains to be established. No accumulation of either fexinidazole or the primary 

metabolites was found in rats and almost all drug-related material was eliminated from the 

body within 48 h of oral dosing, excreted mainly through faeces (59%) and urine (30%). 

The distribution of fexinidazole and metabolites to the brain was confirmed in mice and 

rats, and, considering the lipophilicity of the molecules (logDpH 7.4 2.83 [fexinidazole], 0.74 

[sulfone], 0.52 [sulfoxide]), there is no reason to assume that the brain penetration 

potential, critical for the efficacy in stage 2 HAT, would be different in humans. 

A full regulatory toxicology package has been conducted, including safety pharmacology 

(respiratory, cardiovascular, and general behaviour) and 4-weeks repeated-dose 

toxicokinetics studies in rat and dog. Overall, fexinidazole was well tolerated, with no 

specific issues of concern or target organs for toxicity identified. Fexinidazole is positive in 

the classical in vitro Ames test, but this effect is highly dependent on the presence of 

bacterial nitroreductases. A carefully designed set of in vitro and in vivo assays to detect 

possible signals of mammalian genotoxicity remained negative.  

While a clearly positive Ames test result has long been considered a no-go for drug 

development (except for terminal diseases) as it would indicate a possible risk for (human) 

carcinogenicity, bacterial mutagenicity is not necessarily a relevant indication for 

mammalian genotoxicity, when bacterial specific metabolism is involved, especially with 

certain compound classes such as nitroimidazoles [57]. In fact several examples exist of 

nitroaromatic drug candidates currently in development for diseases requiring a much 
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longer treatment than HAT, for instance epilepsy and tuberculosis, in which either the 

positive Ames test was not considered decisional to indicate a hazard to patients or no 

bacterial mutagenicity was detected [58,59,60]. Instead, a carefully-designed series of in 

vitro and in vivo mammalian genotoxicity assays can be used to rule out the different 

possible mechanisms of mutagenicity that would indicate a risk for genotoxic-related 

carcinogenicity. The observation by us and others that it is possible to select non-

mammalian mutagenic compounds within the nitroheterocycles family reopens the 

potential for the further use of this family of compounds with well-known anti-infective 

properties. 

It is important to emphasize that the observed positive Ames results in nitroreductase-

containing tester strains in no way point to a residual risk for carcinogenicity not captured 

by the detailed in vitro and in vivo mammalian genotoxicity studies as performed with 

fexinidazole. In contrast to what is often assumed, the in vitro micronucleus test measuring 

chromosome damage is no less sensitive as a screening test than the Ames test, even if it 

involves larger scale genetic damage than bacterial point mutations [61]. Although there are 

a few documented examples of genotoxic carcinogens that can induce chromosome damage 

but not bacterial point mutations (e.g. arsenic), there are our knowledge, no examples of 

genotoxic carcinogens that induce bacterial point mutation but not chromosome damage.  

It has also been argued that gut flora contains bacterial nitroreductases, which could convert 

nitroaromatics into mutagenic species, much like what is observed in the in vitro Ames test 

and thus still present a genotoxic risk in vivo. A recent study of AMP397, a nitroaromatic 

compound previously in clinical development for epilepsy has attempted to address the 

issue of potential generation of gut-bacteria derived mutagens [58]. This compound has a 

similar profile to fexinidazole, with positive Ames test results in standard strains and lack 

of activity in nitroreductase-deficient bacterial strains and in mammalian cell assays. Suter 

et al. carried out a mutagenicity study of AMP397 in vivo in the transgenic MutaMouse 

model using five daily doses at the maximum tolerated dose and sampling at 3, 7 and 31 

days after treatment. No evidence of mutagenicity was seen in the colon or liver. Likewise, 

a comet assay (measuring DNA strand breakage) did not detect any genetic damage in the 

jejunum or liver of treated rats after dosing the animals at a dose six times higher than that 

possible in the mouse study. A radioactive DNA binding study also failed to show any 

DNA binding in rat liver. Thus, if a mutagenic metabolite was formed by intestinal 
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bacteria, it is unable to exert any genotoxic activity in adjacent intestinal tissue. As the 

genetic toxicology profile of fexinidazole is the same as AMP397 and the mechanism 

behind the bacterial specific mutation seen is the same, there is no reason to expect a 

different assessment regarding gut flora activation. 

The mechanism of action of fexinidazole is not yet elucidated, but likely involves 

bioreductive activation. Fexinidazole and the sulfoxide and sulfone metabolites were shown 

to have a low single electron redox potentials (ranging between -511 and -488 mV). The 

nitroreductive enzymes present in mammalian cells can only reduce compounds with 

relatively high redox potentials under aerobic conditions. In contrast, bacterial 

nitroreductases such as those in the Salmonella assay can act at much lower redox 

potentials than equivalent mammalian systems. This gives a plausible explanation for the 

positive results in the standard Ames test and the reduced or abolished activity in 

nitroreductase-deficient strains. In line with these observations, it is of interest to note that 

the single electron redox potential of metronidazole was -516 mV, while megazole’s is 

significantly higher at -422 mV.  

The rediscovery of fexinidazole as a drug candidate also shows the success of the 

compound mining approach, during which a careful investigation of existing compounds 

within a family of known pharmacologically active compounds using state-of-the-art 

science, has yielded a new drug candidate for clinical development in a relatively short 

time. Starting the experimental work within this limited set of existing compounds in 2005 

(around 700 compounds tested, mainly parasitology and genotoxicity assays), a preclinical 

candidate could be selected early 2007, and clinical trials initiated in the second half of 

2009. Compared to drug discovery “from scratch”, this represents a significant shortcut. It 

also shows that it is worthwhile to dig into past research efforts to find those potential drug 

candidates which are lingering in drawers or on shelves. In particular in the context of non-

profit drug development such as for neglected diseases where the existence of patent is not 

considered a prerequisite for development, this compound mining strategy may be 

worthwhile to pursue more vigorously. 

Based on the data presented in this paper fexinidazole has entered clinical development, 

and a phase I trial is currently ongoing to establish its PK and tolerability in healthy 

volunteers from African origin (in a combined single ascending dose and multiple 
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ascending dose study) [62]. If well tolerated, fexinidazole is expected to progress to phase 

II trials in patients with stage 2 HAT by the end of 2010. 

If fexinidazole successfully completes clinical development, it will represent a real 

breakthrough for the control of HAT in rural Africa for several reasons. Fexinidazole would 

be the first oral drug for stage 2 HAT, well tolerated and effective upon a short course 

treatment. Compared to the current options of either 10 days of daily intravenous 

melarsoprol with its dreadful toxicity and waning efficacy, the very complicated 

eflornithine monotherapy (56 infusions over 14 days), or even the recent improvement 

NECT (a combination therapy of 10 days oral nifurtimox and 7 days of 12 hourly 

eflornithine infusions) this would be ground-breaking. Moreover, based on its simple 

chemistry and short synthesis, fexinidazole is expected to be relatively cheap (certainly not 

more than US$ 50 per treatment, likely significantly less). Furthermore, stability data to 

date show that the fexinidazole drug substance is very stable, which is a good starting point 

for the development of a stable solid dosage formulation for use in tropical climates. 

Finally and most significantly, it could be the first treatment to be used for both stage 1 and 

stage 2 HAT, thereby overturning the long-standing but complicated diagnosis and 

treatment paradigm which includes systematic lumbar punctures of every diagnosed patient 

to determine which stage of the disease they are in before deciding which treatment to 

prescribe (to avoid exposing a stage 1 patient to the risks and burden of the stage 2 

treatments).  

A safe, effective, cheap and easy to use treatment for both stage 1 and 2 HAT, ideally in 

combination with an easy field-diagnostic, would make HAT control a realistic option for 

the future. In contrast to the current diagnosis and treatments options which are largely 

dependent on vertical HAT control approaches, this safe, effective, easy to use stage 1+2 

treatment could be integrated into more horizontal approaches which are more likely to 

reach the extremely poor and remote populations most affected by HAT. Clearly, there are 

many hurdles to overcome before fexinidazole can reach this target, but it surely is the most 

promising candidate in many years. A concerted effort to progress fexinidazole efficiently 

through clinical development and registration is warranted.   
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Abstract  

Fexinidazole is a 5-nitroimidazole drug currently in clinical development for the treatment 

of human sleeping sickness (human African trypanosomiasis (HAT)) caused by infection 

with species of the protozoan parasite Trypanosoma brucei. The compound and its two 

principal metabolites the sulfoxide and sulfone have been assessed for their ability to kill a 

range of T. brucei parasite strains in vitro and to cure both acute and chronic HAT disease 

models in the mouse. The parent molecule and both metabolites have shown trypanocidal 

activity in vitro in the 0.7 – 3.3 μM range against all parasite strains tested. In vivo 

fexinidazole is orally effective in curing both acute and chronic disease in the mouse at 

doses of 100 mg/kg/day for 4 days and 200 mg/kg/day for five days respectively.  

Pharmacokinetic data indicate that it is likely that the sulfoxide and sulfone metabolites 

provide most if not all of the in vivo killing activity (33). Fexinidazole and its metabolites 

require up to 48 hours exposure in order to induce maximal trypanocidal efficacy in vitro. 

The parent drug and its metabolites show no in vitro cross reactivity in terms of 

trypanocidal activity with either themselves or other known trypanocidal drugs in use in 

man. The in vitro and in vivo anti-trypanosomal activity of fexinidazole and its two 

principal metabolites provides evidence that the compound has the potential to be an 

effective oral treatment for both the T. b. gambiense and T. b. rhodesiense forms of human 

sleeping sickness and both stages of the disease. 
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Introduction 

Human African trypanosomiasis (HAT), also know as sleeping sickness, is caused by two 

subspecies of the protozoan parasite Trypanosoma brucei and is transmitted through the 

bite of infected tsetse flies. In west and central Africa T. b. gambiense is responsible for the 

chronic form of the disease whereas T. b. rhodesiense is responsible for a more acute form 

of the disease endemic in eastern Africa. Poor and neglected populations living in remote 

rural areas of sub-Saharan Africa are at risk for HAT and in 2006, it was estimated that 50 - 

70,000 individuals were infected (35). In recent years the reported HAT cases have 

decreased to approximately 10,000 (29, 36) with over 95% of the reported cases due to T. b. 

gambiense infection.  

There are four drugs currently registered for use against sleeping sickness. Pentamidine and 

suramin are used against the hemolymphatic stage (stage 1) of the disease whilst 

melarsoprol and eflornithine (DFMO) are used against stage 2 of the disease when the 

parasites have invaded the central nervous system (CNS). The disease is fatal if left 

untreated. The drugs currently in use are unsatisfactory due to cost, toxicity, poor oral 

bioavailability, long treatment and lack of efficacy. Melarsoprol treatment is highly toxic 

and up to 5% of the second stage patients treated with melarsoprol die of a reactive 

encephalopathy. Eflornithine treatment requires four daily intravenous infusions over 

fourteen days meaning that this therapy is expensive and logistically difficult in rural 

clinics. The only advance in the last twenty-five years has been the introduction of the 

eflornithine-nifurtimox combination therapy (NECT) (26). Despite the reduced toxicity and 

treatment duration of NECT when compared to melarsoprol or eflornithine, the 

requirements for seven days of intravenous administration is still a limitation.  

The aim of the present study was to characterize the anti-trypanosomal activity of the 5-

nitroimidazole drug candidate fexinidazole and its two principal metabolites fexinidazole 

sulfoxide and fexinidazole sulfone using phenotypic in vitro and in vivo screening. 

Fexinidazole is targeted for the treatment of HAT, currently in phase I clinical studies and 

had been in preclinical development as a broad spectrum antimicrobial agent during the 

1970’s when the in vivo efficacy in the T. b. brucei strain GVR35 mouse CNS model of 

HAT was first demonstrated (14).  

Some of the data presented here have previously been published in summary form (33). 
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Materials and Methods 

Materials. Fexinidazole (1-methyl-2-((p-(methylthio)phenoxy)methyl)-5-nitroimidazole) 

manufactured under GMP conditions (Axyntis), its sulfoxide and sulfone derivatives (1-

Methyl-2-(4-methylsulfonyl phenoxymethyl)-5-nitro imidazole and 1-Methyl-2-(4-

methylsulfonyl phenoxymethyl)-5-nitro imidazole) at laboratory grade (Axyntis) and 

nifurtimox (Bayer) were provided by DNDi, pentamidine isethionate and diminazene 

aceturate were purchased from Sigma-Aldrich; melarsoprol (Aventis) was provided by the 

WHO. The chemical structures of the experimental drug fexinidazole and the two 

metabolites fexinidazole sulfoxide and fexinidazole sulfone have been previously published 

(33). 

All other reagents were of standard laboratory grade and purchased from commercial 

suppliers. 

Preparation of compounds. For in vitro studies compounds were dissolved in 100% 

DMSO and finally diluted in culture medium prior to assay. The maximum DMSO 

concentration in the in vitro assays was 1%. 

For in vivo studies, the compounds were dissolved in DMSO and further diluted with 

distilled water to a final DMSO concentration of 10%, unless stated otherwise. In some 

studies fexinidazole was prepared in an optimized suspension medium for oral 

administration comprising 5% w/v Tween 80/0.5% w/v Methocel in water which has 

previously been shown to maximize absorption of the drug (33). 

Parasites and cell culture conditions. (i) T. b. rhodesiense: The STIB900 strain is a 

derivative of the STIB704 strain isolated from a patient in Ifakara, Tanzania, in 1982 (5). 

STIB900mel and STIB900pent are melarsoprol and pentamidine resistant lines, 

respectively which were generated by growing STIB900 in increasing sub-curative drug 

concentrations (3). 

(ii) T. b. gambiense: The STIB930 strain is a derivate of the TH1/78E(031) strain isolated 

from a patient in Côte d’Ivoire in 1978 (9). The DAL 898R strain was also isolated from a 

patient in Côte d’Ivoire in 1985 (5).  

T. b. gambiense strains 40R, 45R, 130R, 349Pi and 349R were all isolated from patients in 

the Democratic Republic of Congo in 2003-2004 (24). The K03048 strain was isolated 

from a patient in South Sudan in 2003 (20).  
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(iii) T. b. brucei: The strains used include BS221, a derivative of the S427 strain isolated in 

Uganda in 1960 (7); AT1KO, a P2 transporter knockout of the BS221 strain (21); 

STIB950mdr strain which is a derivative of the CP 2469 strain isolated in 1985 from a cow 

in Hakaka, Soakow District, Somalia (15). The GVR35 strain was isolated from a 

wildebeest in the Serengeti in 1966 (primary isolate S10) (13). 

T. b. rhodesiense and T. b. brucei parasites were cultured at 37°C under a humidified 5% 

CO2 atmosphere in Minimum Essential Medium (MEM) with Earle’s salts, supplemented 

according to the protocol of Baltz et al. (2) with the following modifications: 0.2mM 2-

mercaptoethanol, 1 mM Na-pyruvate, 0.5mM hypoxanthine, and 15% heat-inactivated 

horse serum as supplement. T. b. gambiense strains were grown in HMI-9 medium (11) 

supplemented with 15% heat-inactivated fetal bovine serum (FBS) and 5% human serum. 

To ensure maintenance of a log growth phase, parasites were sub cultured into fresh 

medium at appropriate dilutions every 2 to 3 days.  

In vitro growth inhibition assays. The compounds were tested in a serial drug dilution 

assay in order to determine the IC50 values (concentration of drug causing 50% growth 

inhibition) by using the Alamar Blue assay (27).  

Serial drug dilutions were prepared in 96-well microtitre plates containing appropriate 

culture medium as described above for each parasite strain, and wells were inoculated with 

either 2,000 bloodstream forms for T. b. rhodesiense or T. b. brucei assay or 10,000 

trypanosomes for T. b. gambiense assay. Cultures were incubated for 70 h at 37°C under a 

humidified 5% CO2 atmosphere. After this time ten microliters of resazurin (12.5 mg 

resazurin [Sigma] dissolved in 100 ml phosphate buffered saline) was added to each well. 

The plates were incubated for an additional 2 to 4 h for T. b. rhodesiense and T. b. brucei 

and an additional 6-8 h for T. b. gambiense isolates. The plates were read in a Spectramax 

Gemini XS microplate fluorescence scanner (Molecular Devices) using an excitation 

wavelength of 536 nm and an emission wavelength of 588 nm. The IC50 values were 

calculated by linear regression (12) from the sigmoidal dose inhibition curves using 

SoftmaxPro software. 

In vitro dynamic assays. T.b.rhodesiense (STIB900) was seeded in clear 96-well V-bottom 

plates at a density of 10,000 parasites per well in 100 μl medium and incubated for 1, 6, and 

24 h with serially diluted test compounds. One plate was prepared for each time point. At 

the designated time point a plate was spun at 650 rcf (relative centrifugal force) for 5 min to 
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sediment the parasites. The supernatant was removed and 100 μl of warmed MEM media 

was added to each well to resuspend the parasites. The wash process was repeated four 

more times. After the washing procedure the parasites were resuspended in 100 μl media 

and transferred into new culture plates and further incubated. After a total of 70 h 

incubation resazurin was added and the trypanocidal activity (IC50 and IC90 values) 

determined as described for the in vitro growth inhibition assays.  

In vitro combination assays. Drug combination studies were performed as previously 

described (10). Initially, the IC50 values of the test drugs alone were determined. 

Subsequently, drug solutions were diluted with culture medium to initial concentrations of 

10 times the predetermined IC50 value. The solutions were combined in ratios of 1:3, 1:1, 

and 3:1. Single and combination drug solutions were then introduced into 96-well plates 

and the parasites cultured as described above. The IC50 values of the drugs alone and in 

combination were determined as described above. For data interpretation, the IC50 values of 

the drugs in combination were expressed as fractions of the IC50 values of the drugs alone. 

These data were expressed as fractional inhibitory concentrations (FIC) for drug A and 

drug B, respectively. 

Isobolograms were constructed by plotting the FIC of drug A against that of drug B for 

each of the three drug ratios, with concave curves indicating synergism, straight lines 

indicating addition and convex curves indicating antagonism. To obtain numeric values for 

the interactions, results were expressed as the sum FICs (ΣFICs) of the FIC-A and FIC-B. 

Cutoff ranges were determined by mixing the same drug at various ratios and accounting 

for experimental variation. Changes in FIC values indicate the nature of the interactions as 

follows: ΣFIC<0.5 is synergism; ΣFIC 0.5 to 4.0 is indifferent, ΣFIC>4 is antagonism 

(8,23). Mean ΣFICs were used to classify the overall nature of the interaction. 

In vivo experiments. Adult female NMRI mice (Harlan Laboratories, The Netherlands) 

weighing between 20 and 25 g at the beginning of the study were housed under standard 

conditions with food pellets and water ad libitum. All protocols and procedures used in the 

current study were reviewed and approved by the local veterinary authorities of the Canton 

Basel-Stadt, Switzerland. 

T. b. rhodesiense (STIB900) acute mouse model. The STIB900 acute mouse model 

mimics the first stage of the disease. Experiments were performed as previously described 

(32), with minor modifications. Female NMRI mice were infected intraperitoneally (ip) 
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with 10
4
 T. b. rhodesiense (STIB900) bloodstream forms. Experimental groups of four 

mice were treated ip or orally (per os [po]) with compounds on four consecutive days from 

day 3 to 6 post infection. A control group was infected but remained untreated. The tail 

blood of all mice was checked for parasitemia up to 60 days post infection. Surviving and 

aparasitemic mice at day 60 were considered cured and were euthanized. The day of relapse 

of the animals was recorded (including the cured mice, as >60) and data expressed as the 

mean day of relapse (MRD).  

T. b. brucei (GVR35) CNS mouse model. The GVR35 mouse CNS model mimics the 

second stage of the disease. Five female NMRI mice per experimental group were 

inoculated ip with 2 x 10
4
 T. b. brucei (GVR35) bloodstream forms. Treatment (i.p. or p.o.) 

with compound was given on five consecutive days from days 21 to 25 post infection. 

Some experimental groups were treated twice daily with a time interval of 7-8 h. In all 

experiments with fexinidazole a control group was treated on day 21 with a single 

intraperitoneal dose of diminazene aceturate at 40 mg/kg, which is sub-curative since it 

clears the trypanosomes only in the hemolymphatic system and not in the CNS, leading to a 

subsequent reappearance of trypanosomes in the blood (13). Parasitemia was monitored 

twice per week in the first five weeks after treatment followed by once a week up to 180 

days post infection. Surviving and aparasitemic mice at day 180 were considered cured and 

were euthanized. The day of relapse of the animals was recorded (including the cured mice, 

as >180) to calculate the MRD. 

 

Results 

In vitro activity of fexinidazole and its primary metabolites against African 

trypanosomes 

Fexinidazole and its sulfoxide and sulfone metabolites and the reference drugs melarsoprol, 

pentamidine, eflornithine, nifurtimox and the veterinary compound diminazene aceturate 

have been assessed for in vitro efficacy against T. brucei subspecies isolates (Table 1).  

Fexinidazole showed in vitro trypanocidal activity against all tested T. brucei subspecies 

and strains in the range of 0.7 – 3.3 μM (0.2 to 0.9 μg/ml). The fexinidazole sulfoxide and 

sulfone metabolites were slightly more potent but within the same order of magnitude as 

the parent compound. Fexinidazole and its sulfoxide and sulfone metabolites showed 
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comparable activity to eflornithine and nifurtimox but were considerably less potent than 

the three other drugs tested. 

 

 

In vivo efficacy of fexinidazole in an experimental model of acute infection with 

African trypanosomes 

Fexinidazole showed dose related efficacy in the T. b. rhodesiense (STIB900) acute mouse 

model at intra-peritoneal (ip) doses of 20 – 50 mg/kg/day and oral (per os (po))  doses of 25 

– 100 mg/kg/day given on four consecutive days with 100 mg/kg/day po being 100% 

curative (Table 2). In a separate experiment the two fexinidazole metabolites were less 

potent than fexinidazole when administered ip or orally in the acute model of infection. 

Fexinidazole sulfoxide cured one out of four infected mice at a dose of 50 mg/kg/day ip and 

two mice at 100 mg/kg/day po. Fexinidazole sulfone was not effective at 50 mg/kg/day ip 

and cured one mouse at a dose of 100 mg/kg/day.    

 

In vivo efficacy of fexinidazole in an experimental model for chronic infection with 

African trypanosomes, involving brain infection 

Fexinidazole was shown to be effective in the GVR35 mouse model which mimics the 

advanced and fatal stage of the disease when parasites have disseminated into the brain 

(Table 3). At ip doses of 50 mg/kg given twice per day (bid) or po doses of 100 mg/kg also  

given twice per day for 5 consecutive days, all mice were cured; at single doses of 200 

mg/kg/day po for five consecutive days 7 out of 8 mice were cured and at single doses of 

100 mg/kg/day po 3 out of 5 mice (DMSO/water vehicle), and 2 out of 8 mice 

(Tween/Methocel vehicle) were cured, respectively. In another experiment using the same 

vehicle fexinidazole was compared to nifurtimox at the dose range of 50 - 200 mg/kg/day 

po given for five days. While fexinidazole resulted in partial cure at 100 mg/kg/day (2/8 

mice cured) and almost complete cure at 200 mg/kg/day (7/8) (data from Ref. 33), 

nifurtimox had no curative effect at any dose tested. Significant levels of fexinidazole and 

the sulfoxide and sulfone metabolites can be detected in mice treated using the same 

protocol and assessed for plasma drug levels after day 5 (33). The plasma levels of both 

fexinidazole sulfoxide and fexinidazole sulfone following five days of once per day oral 

treatment with fexinidazole were found to be in the same range as that shown to kill all  
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TABLE 1: In vitro trypanocidal activity against different T. brucei subspecies. IC50 values (M) are the mean ± standard deviation (SD) 

from 3-5 cultures. 

 

* IC90 values ± standard deviation in mM 

** MW: molecular weight 

Parasite Strain 
Fexinidazole 

MW** 279.3 

Fex- 

sulfone 

MW 295.3 

Fex-

sulfoxide 

MW 311.3 

Melarsoprol 

MW 398.3 

Pentamidine 

MW 592.7 

Eflornithine 

/DMFO 

MW 236.7 

Nifurtimox 

MW 287.3 

Diminazene 

MW 515.5 

T.b. 

rhodesiense 

STIB900 wt 
2.17 ± 0.29 

5.56 ± 1.9* 

1.44 ± 0.22 

3.2 ± 0.15* 

1.64 ± 0.36 

3.2 ± 0.44* 
0.011 ± 0.003 0.002 ± 0.0003 8.58 ± 2.7 1.09 ± 0.33 0.009 ± 0.002 

STIB900 mel 2.66 ± 0.57 1.26 ± 0.51 1.16 ± 0.29 0.092 ± 0.028 0.095 ± 0.035 nd nd 0.019 ± 0.002 

STIB900 pent 2.71 ± 0.87 1.16 ± 0.39 1.48 ± 0.75 0.043 ± 0.022 0.058 ± 0.019 nd nd 0.011 ± 0.004 

T.b. 

brucei 

BS221 wildtype 2.38 ± 0.88 1.63 ± 0.92 1.49 ± 0.61 0.013 ± 0.004 0.002 ± 0.0003 nd nd 0.005 ± 0.001 

BS221 AT1KO 1.33 ± 0.21 0.56 ± 0.04 0.85 ± 0.32 0.034 ± 0.003 0.008 ± 0.002 nd nd 0.060 ± 0.016 

STIB950 mdr 2.44 ± 0.99 0.99 ± 0.34 1.21 ± 0.14 0.038 ± 0.011 0.002 ± 0.0002 nd nd 0.062 ± 0.05 

T.b. 

gambiense 

STIB930  1.84 ± 1.13 0.91 ± 0.27 0.94 ± 0.39 0.012 ± 0.005 0.016 ± 0.001 2.85 ± 0.98 2.24 ± 0.66 0.021 ± 0.009 

DAL 898R 1.01 ± 0.36 0.76 ± 0.30 1.03 ± 0.13 0.009 ± 0.002 0.002 ± 0.0002 nd nd 0.014 ± 0.001 

K3048 0.95 ± 0.19 nd nd 0.032 ± 0.012 0.084 ± 0.015 7.63 ± 2.5 0.99 ± 0.12 0.076 ± 0.03 

45R 2.47 ± 1.59 0.95 ± 0.47 1.24 ± 0.60 0.033 ± 0.011 0.069 ± 0.044 9.98 ± 2.4 1.06 ± 0.38 0.074 ± 0.033 

40R 2.61 ± 1.03 0.67 ± 0.35 0.95 ± 0.33 0.032 ± 0.006 0.088 ± 0.024 11.4 ± 5.8 1.46 ± 0.20 0.12 ± 0.02 

349Pi 1.07 ± 0.14 nd nd 0.043 ± 0.011 0.066 ± 0.012 16.7 ± 3.6 0.78 ± 0.19 0.043 ± 0.025 

349R 3.31 ± 0.88 nd nd 0.033 ± 0.015 0.095 ± 0.012 22.8 ± 13.9 2.73 ± 0.66 0.064± 0.031 

130R 2.37 ± 1.14 nd nd 0.055 ± 0.023 0.074 ± 0.011 9.4 ± 2.19 1.34 ± 0.17 0.051 ± 0.013 
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parasites in vitro indicating that these compounds probably provided the bulk of the 

trypanocidal activity of the administered parent compound. 

 

In vitro dynamic results 

In order to better understand the in vitro trypanocidal activity of fexinidazole, and the 

sulfoxide and sulfone metabolites pulse incubation experiments were performed and 

IC50 and IC90 values determined following compound wash out at various time points 

after exposure. The results are shown in Figure 1. A 48- h period of exposure to the 

compounds is required to produce similar activities as in the standard 72-h assay 

indicating that maximum killing effectiveness requires up to 48 hours exposure to the 

drugs.  

 

TABLE 2: In vivo anti-trypanosomal activity in the STIB900 acute mouse model 

Compound 
Dose 

 mg/kg 
Route 

Cured/ 

Infected 

Mean day 

of relapse 

Control - - 0/12 8.75* 

Fexinidazole 4x 20 ip 0/4 11± 2 

Fexinidazole 4x 50 ip 4/4 >60 

Fexinidazole** 4x 25 po 0/4 12± 2 

Fexinidazole** 4x 50 po 1/4 >27 

Fexinidazole** 4x 100 po 4/4 >60 

Fexinidazole sulfoxide  4x 50 ip 1/4 >24.5 

Fexinidazole sulfoxide  4x 100 po 2/4 >38.25 

Fexinidazole sulfone 4x 50 ip 0/4 11± 2 

Fexinidazole sulfone 4x 100 po 1/4 >31.5 

Melarsoprol 4x 4 ip 4/4 >60 

* Mean survival days post infection of untreated control animals, the value 

given is the average of three experiments 

10% DMSO was used as vehicle 

** Data published E.Torreele PLoS Negl Trop Dis. 4(12): e923 (Ref 33) 

 

In vitro drug combination results 

Although NECT is currently the only available drug combination therapy to treat HAT 

the development of resistance to existing therapies is making the potential use of 

combination therapies increasingly relevant. Data on the in vitro interaction of possible 
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combinations has been proposed to support such development options (30). 

Fexinidazole and the biologically  

TABLE 3: In vivo anti-trypanosomal activity in the GVR25 chronic disease mouse 

model. 

Compound 
Dose  

mg/kg 
Route Vehicle 

Cured/ 

Infected 

Mean day  

of relapse 

Fexinidazole 5 x 50 ip DMSO/water 1/5 73.8 

Fexinidazole 5 x 50 bid ip DMSO/water 5/5 >180 

Fexinidazole 5 x 100 po DMSO/water 3/5 >127 

Fexinidazole 5 x 100 bid po DMSO/water 11/15 >156.5
+
 

Fexinidazole* 5 x 50 po MethocelTween ** 0/8 41.3± 9 

Fexinidazole* 5 x 100 po MethocelTween 2/8 >82.1 

Fexinidazole* 5 x 200 po MethocelTween 7/8 >163.8 

Nifurtimox 5 x 50 po MethocelTween 0/8 31.0± 2 

Nifurtimox 5 x 100 po MethocelTween 0/8 31.0± 2 

Nifurtimox 5 x 200 po MethocelTween 0/8 37.4± 5 

Diminazene 1 x 40 ip DMSO/water 0/24 49.8± 6
++

 

Eflornithine  10 x 2%*** po Water 0/4 76.3± 8
+++

 

Melarsoprol 5 x 5 ip Propyleneglycol/H2O 0/5 57.6± 14
++++ 

 

Melarsoprol 5 x 10 ip Propyleneglycol/H2O 1/5 >103.4
++++

  

Melarsoprol 5 x 15 ip Propyleneglycol/H2O 4/5 >180
++++

  

 

* Data published E.Torreele PLoS Negl Trop Dis. 4(12): e923 (Ref. 33). 

** An optimized suspension medium for oral administration comprising 5% w/v Tween 

80/0.5% w/v Methocel in water to maximize absorption. These data have been 

previously published and are reproduced here for comparative purposes (33). 

*** A 2% solution of eflornithine provided in drinking water for 10 days.  
+ 

Mean result from 3 separate experiments (n = 15) 
++ 

Mean result from 5 separate experiments (n = 24) 
+++ 

Data from 1 experiment (n = 4) 
++++ 

Representative data from 1 experiment (n =5/group) 

 

active sulfoxide and sulfone metabolites have been assessed in combination with several 

drugs currently available to patients. All drug combination studies were performed at 

three different ratios (1:3, 1:1 and 3:1) using the fixed-ratio isobologram method (10) 

and the data analysed using the IC50 results. Results of all drug interaction studies are 

shown in Table 5. Fexinidazole combined with its sulfoxide and sulfone metabolites as 
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well as the combination of sulfoxide and sulfone all showed indifferent effects. The 

combinations of fexinidazole or either of its metabolites with melarsoprol, eflornithine 

or pentamidine also resulted in an indifferent effect. These data indicate that there are 

no cross-reactivities between these compounds which would preclude their use in, albeit 

unlikely, combination therapies. 

 

FIG. 1. (A) Growth inhibition curves after compound washout at specified times and 

viability assessment at 72 h. (B) IC50 and IC90 values calculated from the compound 

washout procedure. Values are the means and standard deviations for 4 experiments (n 

=4). 
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Discussion 

Only four drugs are registered for HAT treatment. Pentamidine and suramin are used 

against the early stage of the disease whilst treatment of the second stage depends on 

melarsoprol, eflornithine and the recently introduced combination therapy nifurtimox-

eflornithine (NECT). Melarsoprol is an arsenical compound and is highly toxic with 

severe adverse effects (18). In addition there have been alarming reports of treatment 

failures with both melarsoprol and eflornithine, until recently the only available drugs 

for second stage treatment (1) and it is hoped that the broad implementation of the 

NECT regimen may avert the further development of eflornithine resistance. New safe 

and effective drugs with simplified dosing regimens are urgently needed. Ideally, such 

new treatments would be effective in both acute and chronic disease stages. Such new 

treatment options would largely simplify disease management and, importantly, avoid 
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the painful lumbar puncture procedure currently required for distinguishing between 

disease stages. 

Fexinidazole has recently been identified as a promising new drug candidate for 

treatment of HAT (33) and data presented here provide in vitro and in vivo profiling of 

the anti-trypanosomal efficacy of fexinidazole and its two primary metabolites, the 

sulfoxide and sulfone. 

Fexinidazole and the sulfoxide and sulfone metabolites were tested in vitro alongside 

reference drugs against a panel of African trypanosomes of the T. brucei spp. (Table 1) 

which included sensitive and resistant wild type, laboratory-induced melarsoprol and 

pentamidine resistant and P2-transporter knockout strains as well as new field isolates. 

The data showed that there is no evidence of innate resistance to fexinidazole or the two 

metabolites within any of the strains tested as all IC50 values were in a similar range and 

varied by less than a factor of four. The new T. b. gambiense strains showed reduced 

IC50 values for pentamidine but this is unlikely to indicate resistance in the field given 

the higher blood levels and long terminal half-life of the drug found in patients after 

standard treatment (4). 

Fexinidazole showed in vivo efficacy in both the acute mouse model and, more 

importantly, the chronic mouse model with established brain infection. In the STIB900 

acute mouse model fexinidazole demonstrated 100% efficacy at an ip dose of 50 

mg/kg/day and an oral dose of 100 mg/kg/day both given for 4 days (Table 2 ). Whilst a 

dose of 50 mg/kg/day ip fexinidazole was fully effective, the sulfoxide only partially 

cured with the same dose and route of administration and the sulfone was ineffective. 

After oral administration at a dose of 100 mg/kg/day both the sulfoxide and sulfone 

metabolites were only partially effective whereas fexinidazole cured 100% of the 

animals. Although no pharmacokinetic data are currently available to formally 

demonstrate oral absorption of the sulfoxide or sulfone metabolites in mice it may be 

that neither are as readily absorbed as fexinidazole via the oral route. However, it is 

apparent that, even using the ip route of administration which should maximize the 

systemic bioavailability of the compounds, neither metabolite was as effective as the 

parent fexinidazole in this acute model of disease. In addition it is unlikely that protein 

binding could account for the lack of effectiveness of the metabolites when given orally 

as, whilst fexinidazole is highly protein bound in plasma (93% in miice; 95% in man) 

neither metabolite is highly protein bound, at least in human plasma (26% and 42% 

respectively for the sulfoxide and sulfone metabolites) (Data on file at DNDi). Overall 
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these data support the view that the use of fexinidazole itself, acting as a biologically 

active pro-drug, whilst rapidly metabolized to the sulfoxide and sulfone metabolites in 

all animals tested (33), is likely to be the more useful compound for oral treatment 

compared to either of the two metabolites given alone.  

In 1983, Jennings and Urquhart reported that fexinidazole, given in combination with 

suramin, cured a T. brucei CNS infection in mice (14). We have tested fexinidazole as 

monotherapy in the GVR35 mouse model of stage 2 HAT involving brain infection 

using two different vehicle formulations (Table 3). Using the optimized 

methocel/Tween vehicle, fexinidazole showed a dose related increase in efficacy and 

cured 7 out of 8 infected mice at a single oral daily dose of 200 mg/kg/day for 5 days. In 

comparison, nifurtimox was ineffective in the GVR35 mouse model up to a dose of 200 

mg/kg/day for 5 days. It is of interest to note that the presumed trough levels of the two 

metabolites after 24 h are reported to be around 1 μg/ml (33) which would allow for a 

daily dosing schedule to be maintained with systemic drug levels near to those required 

to kill the parasite in vitro. Clearly, in this model, the drug levels in the CNS are of key 

importance and, whilst no data are available from the experiments presented, published 

data indicate that, in mice, brain levels of fexinidazole, the sulfoxide and the sulfone 

metabolites are approximately 0.8, 5 and 1 μg/ml respectively 60 minutes post oral 

dosing with fexinidazole (33). Further experiments are underway to more fully assess 

the brain levels of the compounds in mice at different times. Whilst the most effective 

oral dose of 200 mg/kg may seem high fexinidazole is well tolerated in laboratory 

animals at significantly higher doses (33) and, although no data are available in mice 

regarding a no toxic effect level an LD50 of >10,000 mg/kg has been reported (DNDi 

data on file). 

It is important to note that, of the drugs currently in clinical use, only melarsoprol has 

been shown to be effective in this experimental stage 2 HAT model. 

Pulse incubation of T. b. rhodesiense with fexinidazole and the sulfoxide and sulfone 

metabolites shows that a 48 hours period of exposure is required to produce irreversible 

effects on trypanosomal survival for all three compounds (Fig 1). This result has 

implications for in vivo efficacy as it suggests that plasma or CSF concentrations may 

need to be maintained at or above optimal trypanocidal concentrations for >48 h to 

achieve elimination of all parasites. As discussed above it is apparent, at least in mice, 

that, whilst plasma levels of fexinidazole may not be maintained at a sufficient killing 

concentration, both the sulfoxide and sulfone metabolites are present in plasma and in 
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brain, at concentrations sufficient to kill all parasites. In addition the data indicate that a 

five day dosing schedule would ensure sufficient trough levels of these metabolites at 

24 h to maintain effective killing concentrations, in plasma. Concentrations in brain 

reach several μg/ml one hour after oral application (33), information on the persistence 

of fexinidazole and its metabolites is not available. It can be assumed that the 

metabolites and mainly the sulfone are responsible for the trypanocidal effect in the 

brain. The CSF is often used as surrogate for the brain since it is accessible without the 

need to kill the animal (6). Thus these data provide support to the observations in both 

mouse models that oral treatment with fexinidazole for 4 days (acute model) or 5 days 

(CNS model) can achieve cure. This time-dose relationship has been previously 

described for diamidines such as diminazene aceturate which are able to kill 

trypanosomes after a short exposure time of 15 min at 1 g/ml (16), whilst other 

trypanocidal agents (e.g. trybizine hydrochloride) with an in vitro potency similar to or 

greater than diminazene aceturate require a much longer exposure time of >8 h at 10 

g/ml to lead to death of the parasites (17). 

Fexinidazole and the sulfoxide and sulfone metabolites have similar in vitro 

trypanocidal activity (Tables 1, 2 and Ref, 33). The in vivo activity of fexinidazole is 

likely to be due to the concerted action of the three molecules. The in vitro combination 

studies performed support this hypothesis. All combinations of fexinidazole and its 

metabolites were investigated using the fixed-ratio isobologram method (10). The IC50 

values for fexinidazole, the sulfoxide and the sulfone in combination did not differ from 

those of each drug alone, resulting in indifferent mean ΣFICs values between 1 and 1.4 

for the combinations.  

In several foci, melarsoprol treatment failures have reached 30% of those treated (19, 

22, 28, 31) and treatment failures of up to 16% with eflornithine have been recently 

reported (1, 25). A strategy to prevent the development of resistance is the use of drugs 

in combination and the introduction of nifurtimox-eflornithine combination therapy 

(NECT) is an important development in the treatment of T. b. gambiense infections 

(26). The rationale behind combination treatments in general is that the likelihood of 

developing resistance to a single drug is relatively high, but much lower with a drug 

combination (34). Although in vitro cross-resistance studies have yet to be fully 

validated as predictive of human drug resistance the recently published study on cross 

resistance of fexinidazole and its sulfoxide and sulfone metabolites in a nifurtimox-

resistant T. b. brucei strain supports the approach of utilizing chemically unrelated drug 
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combinations (30). The same authors also showed that resistance against fexinidazole 

could easily be generated in the laboratory thus underlining the potential need for a 

combination partner for fexinidazole. In the present study fexinidazole and the sulfoxide 

and sulfone metabolites were tested in vitro in combination with three existing drugs - 

pentamidine, melarsoprol and eflornithine. All combinations resulted in indifferent 

mean ΣFICs values. This observation supports the proposition that fexinidazole could 

be a candidate for combination with existing drugs that are currently acceptable 

treatments such as pentamidine, eflornithine and NECT or, more likely, with other new 

drug candidates that may become available in the future. 

In conclusion the data presented in this paper demonstrate that fexinidazole and the 

sulfoxide and sulfone metabolites rapidly formed in vivo are effective at killing the 

parasites responsible for human African trypanosomiasis. Fexinidazole is effective in 

both acute and chronic mouse models of HAT at doses and dosing regimens which are 

expected to be practicable for human treatment. Time-dose studies indicate that 

effective drug levels need to be maintained for at least 48 hours and interaction data 

show that there is no cross-inhibition between fexinidazole and the sulfoxide or sulfone 

metabolites or other, chemically unrelated, treatment modalities. Overall these data 

provide evidence that fexinidazole has the potential to be an effective oral treatment for 

both T. b. gambiense and T. b. rhodesiense forms of human sleeping sickness and both 

stages of the disease. 
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Abstract 

Nitroimidazoles are a well-known class of antibacterial and antiprotozoal drugs but in 

spite of the widespread clinical and veterinary use of these drugs, this family has been 

stigmatized in part due to associated genotoxicity problems. Here we report the 

synthesis, the anti-trypanosomal activity and a structureeactivity relationship (SAR) 

study of a series of about fifty 1-aryl-4-nitro-1H-imidazoles, with an emphasis on 

selected in vivo active molecules. Compounds 4-nitro-1-{4-(trifluoromethoxy)phenyl}- 

1H-imidazole and 1-(3,4-dichlorophenyl)-4-nitro-1H-imidazole are curative in mouse 

models of both acute and chronic African trypanosomiasis when given orally at doses of 

25-50 mg/kg for 4 days for the acute infection, and 50-100 mg/kg (bid) for 5 days in the 

chronic model. While both compounds are bacterial mutagens, activity is lost in strains 

lacking bacterial specific nitro-reductases. Mammalian nitroreductases do not reduce 

nitroaromatic compounds with low redox potentials with same avidity as their bacterial 

counterparts and these compounds were shown to be devoid of genotoxicity in 

mammalian cells. Both compounds are promising leads for the treatment of human 

African trypanosomiasis (HAT or sleeping sickness), including the fatal stage 2 of the 

disease, for which new treatments are urgently needed. 

 

Graphical Abstract 

16: R1 = H; R2 = OCF3

31: R1, R2= Cl  

This article describes the synthesis, antitrypanosomal activity, and non genotoxic profile 

of a promising new series of 1-aryl-4-nitro-1H-imidazoles with potential for the 

treatment of human African trypanosomiasis (HAT or sleeping sickness), with an 
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emphasis on the lead compounds 4-nitro-1-{4-(trifluoromethoxy)phenyl}-1H-imidazole 

(16) and 1-(3,4-dichlorophenyl)-4-nitro-1H-imidazole (31).  

Introduction 

 Classified among the most neglected diseases, human African trypanosomiasis 

(HAT), also known as sleeping sickness and caused by the two pathogenic parasite 

subspecies Trypanosoma brucei rhodesiense and T. b. gambiense, is a major health 

problem in sub-Saharan Africa [1,2]. Treatment of HAT is difficult [3], especially in its 

advanced fatal stage when the parasites have crossed the blood-brain barrier (BBB) for 

which only two drugs are currently registered and neither is adequate. Melarsoprol, an 

old arsenical drug in use for the treatment of HAT since 1949, is toxic (5-10% 

associated risk of mortality due to drug induced encephalopathy) and requires painful 

intravenous injections. Eflornithine, originally developed as an anticancer drug and 

registered for the treatment of HAT in 1981, has a narrow therapeutic window and 

requires 14 days of 6-hourly slow infusions, which is an impractical regimen for many 

patients in the countries where the disease is prevalent. Recently, a simplified co-

administration of oral Nifurtimox and intravenous Eflornithine (NECT) has proven 

good safety and efficacy and provides an improved first line treatment for stage 2 HAT, 

although as above it remains a severe challenge to implement in remote and rural 

settings where HAT is endemic [4,5]. With a renewed interest in neglected diseases, a 

new drug candidate has also emerged in recent years: Fexinidazole is today in phase I 

clinical development with potential for the advanced stage of HAT [6,7]. Despite this 

progress, and taking into account the inevitable attrition rates in drug development, 

there is still a long way to go before an improved treatment could become available for 

patients.  

 Nitroimidazoles are a well-known family of antibacterial and antiprozoal drugs 

[8], including antitrypanosomal drugs or compounds with known antitrypanosomal 

activity [9,10,11]. Metronidazole, the first drug to be introduced for this purpose and 

probably also the best-known drug in this class, has been in use for more than 50 years 

[12]. Other well-known examples include Tinidazole [13] closely related to 

Metronidazole and the antitrypanosomal drug Benznidazole indicated for the treatment 

of Chagas disease [14,15]. In spite of extensive use, this class of compounds has often 

been stigmatized for reasons of perceived genotoxic risks associated with the 

nitroaromatic group [16]. A well-known case here is the antitrypanosomal drug 
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candidate Megazol [10,11] which was abandoned because of clear mammalian cell 

genotoxicity [17,18]. In recent years however, several new nitroimidazole drug 

candidates have emerged, for instance PA-824 [19] and OPC-67683 [20], both in 

clinical development for the treatment of tuberculosis, and Fexinidazole for HAT [6]. In 

each of these cases, a detailed analysis of the genotoxic properties of the compounds 

concluded that they did not pose a genotoxic risk to humans. 

 One electron reduction potentials of nitroimidazoles as well as other nitroazoles 

mainly depend on the position of the nitro group on the azole ring and for 

nitroimidazoles generally increase in the following order 4-NO25-NO22-NO2 [21,22] 

. It is believed that generally genotoxicity problems increase in a similar order. 

Examples of non-genotoxic anti-infective 4-nitroimidazoles have been described 

[19,20], but while 1-alkyl derivatives have been largely explored, few 1-aryl-4-nitro-

1H-imidazoles have been studied due to serious synthetic limitations. We have 

developed a general method which allowed the synthesis of several 1-aryl-4-nitro-1H-

imidazoles from a very simple coupling reaction between 1,4-dinitro-1H-imidazole and 

the corresponding anilines [23]. Several compounds in this series have shown anti-

tuberculosis activity [24,25]. Here we report the antitrypanosomal activity and a 

structure-activity relationship (SAR) study, with an emphasis on selected in vivo active 

molecules, with evidence for lack of mammalian cell genotoxicity. Several 1-aryl-4-

nitro-1H-pyrazoles [26] were also prepared but proved inactive and are not included in 

the present paper. 

 

Results and discussion 

Chemistry 

 This work has further validated and demonstrated the wide applicability of the 

coupling reaction between 1,4-dinitro-1H-imidazoles and anilines for the synthesis of 1-

aryl-4-nitro-1H-imidazoles: the forty-three 1-aryl-4-nitro-1H-imidazoles and six 1-aryl-

2-methyl-4-nitro-1H-imidazoles of the present study were obtained by this method in 

relatively good yields (40-90%), with substituents on the benzene ring ranging from 

strong electron-withdrawing (e.g. NO2, CO2R) to electron-donating groups (e.g. Me, 

MeO) (Scheme 1). For a detailed description of the method, see [23,25]. The 

mechanism of the reaction involves a degenerated ring transformation reaction also 

called anrorc reaction (addition of nucleophile, ring opening, ring closure); on the 
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anrorc reaction, see [27] and references cited herein. The reaction is generally 

performed at room temperature though a higher temperature is often required for 

completion of the reaction. Water and gaseous nitrogen(I) oxide are the single easy to 

separate by-products; the so called ‘atom economy’ of this reaction [28], describing the 

conversion efficiency of a chemical process in terms of all atoms involved, exceeds 

80%. Alternative approaches exist, nevertheless none of them competes with the present 

anrorc coupling reaction between 1,4-dinitro-1H-imidazoles and anilines. Nitration of 

1-phenyl-1H-imidazole is not selective, compounds from nitration of both aromatic 

rings are usually obtained [29], and to our knowledge, selective reduction of the 

resulting dinitro- or trinitro-compounds has not been reported yet. 1-Arylation of 4(5)-

nitro-1H-imidazole anions with 1-fluoro(or chloro)-2(or/and 4)-nitrobenzenes is limited 

to these substrates only [24] (and references cited herein). Finally, attempts to replace 

the 1-nitro substituent in 1,4-dinitro-1H-imidazoles by another electron withdrawing 

group (e.g. -CN, -SO2Ar, -SO2NR2) were either unsuccessful [30] or only partly 

successful [31,32]. A similar degenerated ring transformation process mechanism was 

observed in these cases but the reaction was generally not clean, not reproducible and 

yields of the desired 1-aryl-4-nitro-1H-imidazoles were usually low. Only a few known 

compounds have been prepared following this approach [30,31,32]. 

 

Antitrypanosomal activity 

An overview of the in vitro assays is shown in Table 1. Of the 43 1-aryl-4-nitro-1H-

imidazoles evaluated, 28 compounds showed anti-trypanosomal activity with good 

selectivity against T. b. rhodesiense (STIB900) with an IC50 in the micromolar range or 

below 1 M for 15 compounds. Potent activity was observed for two compounds in 

particular, 4-nitro-1-{4-(trifluoromethoxy)phenyl}-1H-imidazole (16) and 1-(3,4-

dichlorophenyl)-4-nitro-1H-imidazole (31) (IC50 0.16 and 0.10 M, respectively), 

comparable to the activity known for Megazol (IC50 0.10 M). Several other 

compounds showed similar activity as compared to the new drug candidate 

Fexinidazole (IC50 2.57 M). A number of analogs with a methyl substituent in 

position C2 on the imidazole ring (1-aryl-2-methyl-4- nitro-1H-imidazoles) did not 

show activity; similarly none of the pyrazole analogs showed any activity (results not 

shown). 
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Scheme 1: Synthesis of 1-aryl-4-nitro-1H-imidazoles. R=H, CH3, R’, R’’= H, electron 

donating or electron withdrawing group, one or two substituents in ortho, meta or/and 

para positions.  

 

From these in vitro data, the following structure/antitrypanosomal activity 

relationships can be drawn (Scheme 2): 1- good activity is observed with the presence 

of an electron withdrawing substituent in the meta or para position at the phenyl group, 

as compared to the parent compound namely 4-nitro-1-phenyl-1H-imidazole (1); the 

activity is about the same with F, Cl, Br or NO2. In contrast, except in a few exceptions, 

the activity is decreased or lost with an electron donating substituent in the meta and 

para positions. 2- The activity is preserved with the addition of a second substituent in 

the para or other meta-position, independently on the nature of the substituent (electron 

withdrawing or electron donating group). 3- No to low activity is observed with a 

substituent present in the ortho position or the addition of a methyl substituent on the 

imidazole ring. A possible explanation for the loss of activity in the two latter cases lies 

in the lack of co-planarity of the two aromatic rings in those compounds; other 

derivatives can be almost planar (from quantum chemical calculations and x-ray 

measurements). 4- No to low activity is observed with a carboxyl ester substituent 

though we could expect some activity due to the electron withdrawing character of the 

substituent. 

The two potent compounds 4-nitro-1-{4-(trifluoromethoxy)phenyl}-1H-

imidazole (16) and 1-(3,4-dichlorophenyl)-4-nitro-1H-imidazole (31) were further 

evaluated in mouse models of HAT. In an acute infection model, both compounds were 

shown to be curative with a 100% cure rate at an oral dose of 25 mg/kg/day 16 or 50 

mg/kg/day 31 administered for 4 mg/kg/day 31 administered for 4 days (Table 2). In the  
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Table 1: IC50s of 1-aryl-4-nitro-1H-imidazoles and reference molecules against T. b. rhodesiense (STIB900) and in L-6 rat myoblast cells 

Compound 

No 
subtituents MW 

T. b. rhodesiense 

(STIB900) [g/ml] 
a)

 

T. b. rhodesiense 

(STIB900) [M] 
a)

 

Cytotoxicity
 
(L-6 rat 

myoblast cells) [g/ml] 

Reference to 

synthesis 

(I) 1-ary1-4-nitro-1H-imidazoles monosubtituted on the benzene ring 

1 H 189.17 0.85 4.49 >90 23 

2 2-F 207.16 0.59 2.85 >90 25 

3 3-F 207.16 0.15 0.72 >90 25 

4 4-F 207.16 0.52 2.53 >90 25 

5 2-Cl 223.62 n.a. n.a. no data 25 

6 3-Cl 223.62 0.16 0.72 >90 23, 25 

7 4-Cl 223.62 0.16 0.72 35.68 23 

8 2-Br 268.07 n.a. n.a. no data b) 

9 3-Br 268.07 0.24 0.90 >90 b) 

10 4-Br 268.07 0.26 0.97 17.88 24 

11 3-NO2 234.17 0.18 0.77 >90 b) 

12 3-CF3 257.17 0.37 1.45 >90 b) 

13 4-CF3 257.17 0.18 0.70 >90 b) 

14 2-CF3O 273.17 5.67 20.76 >90 b) 

15 3-CF3O 273.17 0.48 1.76 >90 b) 

16 4-CF3O 273.17 0.04 0.16 >90 b) 

17 3-Me 203.20 0.37 1.82 >90 23 

18 4-Me 203.20 2.43 11.96 >90 23 

19 3-MeO 219.20 0.42 1.92 >90 b) 

20 4-MeO 219.20 0.70 3.19 66.80 23, 24 

21 4-CO2Bu 289.29 8.11 28.03 >90 b) 

 



 

 

9
1
 

Error! Reference source not found. 1: continuation 

Compound 

No 
subtituents MW 

T. b. rhodesiense 

(STIB900) [g/ml] 
a)

 

T. b. rhodesiense 

(STIB900) [M] 
a)

 

Cytotoxicity
 
(L-6 rat 

myoblast cells) [g/ml] 

Reference to 

synthesis 

(II) 1-aryl-4-nitro-1H-imidazoles disubstituted on the benzene ring 

22 2,3-diF 225.15 0.49 2.18 >90 Error! 

ookmark not 

defined.25 23 2,4-diF 225.15 n.a. n.a. no data 25 

24 2,5-diF 225.15 0.37 1.64 >90 25 

25 2,6-diF 225.15 n.a. n.a. no data 25 

26 3,4-diF 225.15 0.17 0.76 >90 25 

27 3,5-diF 225.15 0.11 0.49 >90 25 

28 2,3-diCl 258.06 0.49 1.90 38.66 25 

29 2,4-diCl 258.06 n.a. n.a. no data 25 

30 2,5-diCl 258.06 n.a. n.a. no data 25 

31 3,4-diCl 258.06 0.03 0.10 >90 25 

32 3,5-diCl 258.06 0.18 0.70 40.55 25 

33 3-Cl-4-F 241.61 0.17 0.70 >90 b) 

34 2-Br-4-Me 282.10 n.a. n.a. no data b) 

35 3-Me-4-Br 282.10 0.28 0.99 15.54 b) 

36 3-Br-4-Me 282.10 0.56 1.99 >90 b) 

37 2,4-diMe 217.23 n.a. n.a. no data b) 

38 3,4-diMe 217.23 0.46 2.12 >90 b) 

39 2,4-diMeO 249.20 n.a. n.a. no data b) 

40 3,4-diMeO 249.20 n.a. n.a. no data b) 

41 3,4-O2CH2 233.18 0.22 0.94 >90 b) 

42 3-CO2Bu-4-Cl 323.74 45.75 141.32 >90 b) 

43 3-CO2H-4-Cl 267.63 25.57 95.54 >90 b) 



 

 

9
2
 

Error! Reference source not found.: continuation 

Compound 

No 
subtituents MW 

T. b. rhodesiense 

(STIB900) [g/ml] a) 

T. b. rhodesiense 

(STIB900) [M] a) 

Cytotoxicity
 
(L-6 rat 

myoblast cells) [g/ml] 

Reference to 

synthesis  

(III) 1-aryl-2-methyl-4-nitro-1H-imidazoles mono or disubstituted on the benzene ring 

44 4-CF3O 287.20 3.42 11.89 >90 b) 

45 4-CF3 271.20 3.06 11.28 >90 b) 

46 2-Br-4-Me 296.12 36.9 124.6 >90 b) 

47 3-Cl-4-F 255.64 6.91 27.03 >90 b) 

48 4-Br-3-Me 296.12 5.97 20.16 >90 b) 

49 3-Br-4-Me 296.12 6.97 23.54 >90 b) 

Reference molecules 

Fexinidazole     0.72 2.57 >90 - 

Megazol     0.02 0.10 57 - 

Melarsoprol     0.004 0.009 1.3 - 

Eflornithine     0.90 3.80 12 - 

a)  n.a. is for not active). b) Prepared for the present study, synthetic details are provided in the experimental part.   
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stage 2 HAT infection model involving brain infection (also days (Table 2). In the stage 

2 HAT infection model involving brain infection (also known as the “chronic CNS 

model”), 100% cure was achieved at an oral dose of 50 mg/kg 16 or 10 mg/kg 31 

administered twice a day (bid) for five days, while a daily oral dose of 100 mg/kg 

administered for five days was partially curative (Table 3). Very few compounds are 

known to cure this established chronic CNS model except some arsenicals and selected 

experimental diamidines [33], and the relatively low curative dose of 50 mg/kg/day 

given bid over 5 days is quite remarkable. In fact the curative capacity of these 

compounds is comparable or even slightly better than Fexinidazole, also a 

nitroimidazole, currently in phase I clinical development for HAT [6]. The lowest 

curative dose for Fexinidazole in the late stage model is 5x100 (bid) mg/kg/day.  

 Interestingly, in this series compound 14 showed in vitro activity against 

Trypanosoma cruzi, the causative agent of Chagas disease; compound 33 showed in 

vitro activity against both trypanosoma species (Trypanosoma brucei rhodesiense and 

Trypanosoma cruzi) (IC50 against T. cruzi respectively 2.7 M and 7.0 M). Both 

compounds were further evaluated in animal models for Chagas disease; they are 

described here in relation to their genotoxicity profile only (see further below).  
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Scheme 2: Qualitative structure antiparasitic activity (SAR) analysis of substituted 1-

aryl-4-nitro-1H-imidazoles 

Table 2: Efficacy of selected 1-aryl-4-nitro-1H-imidazoles in the treatment of experimental 

acute infections with T. b. rhodesiense (STIB900) in mice 

Compound 
Dose             

(days x mg/kg) 
Route 

a)
 Cured/ infected 

Mean survival 
days (MSD) 

Control 
b)

 - - 0/4 8 

31 4x 25 p.o. 0/4 27.75 

31 4x 50 p.o. 4/4 >60 

16 4x 25 p.o. 4/4 >60 

16 4x 50 p.o. 4/4 >60 

a) p.o.=oral application. b) Negative control: mice were infected but not treated. 

 

Table 3: Efficacy of selected 1-aryl-4-nitro-1H-imidazoles in the treatment of experimental 

chronic CNS infection with T. b. brucei (GVR35) in mice  

Study Compound 
Dose           

(days x mg/kg) 
Route 

a)
 

Cured/ 
infected 

Mean survival 
days (MSD) 

1 Control 
b)

 1x 40  i.p. 0/5 55.8 

 31 5x 50 p.o. 1/5 >120.4 

 31 5x 100 p.o. 2/5 >149.2 

 16 5x 50 p.o. 0/5 95.2 

 16 5x 100 p.o. 1/5 >156.8 

2 Control 
b)

 1x 40  i.p. 0/5 57.2 

 31 5x (50 bid) p.o. 3/4 >155 

 31 5x (100 bid) p.o. 5/5 >180 

 16 5x (50 bid) p.o. 5/5 >180 

 16 5x (100 bid) p.o. 3/3 >180 

a) i.p.=intraperitoneal application; p.o.=oral application. bid: twice per day at a 8 hrs interval. 

b) Negative control: mice were infected and treated on day 21 with a single dose of diminazene 

aceturate (see further below paragraph 4.2.3).  

 

Genotoxicity profile of four selected in vivo active compounds 

Bacterial mutagenicity - Ames test 

Bacterial mutagenicity of the four compounds 14, 16, 31 and 33 was assessed in the 

standard Salmonella tester strains recommended for mutagenicity screening by 

international guidelines for genotoxicity assessment: TA1535, TA100 and TA102, to 

detect base substitution point mutations and TA1537 and TA98 to detect frameshift 

point mutations. In addition, the assays were repeated in the corresponding strains 
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lacking one or both of the bacterial nitro-reductase genes (NR-deficient strains). By 

checking the difference in response between the normal Ames strains and its 

corresponding NR-deficient counterpart, the contribution of bacterial nitro-reduction to 

the observed mutagenicity can be estimated. 

A summary of the Ames tests results is shown in Table 4; as an example, dose 

responses for compound 31 in two tester strains are shown in Figure 1 and Figure 2.  

Table 4: Ames study  

Lowest concentration at which mutagenic 

effect is observed (g/plate) a) 

Compound No 

31 16 33 14 

TA98, detects frameshift mutations 

TA98 –S-9 100 N 20 N 

TA98NR –S-9 N N N N 

TA98 +S-9 100 N 100 N 

TA98NR+S-9 N N N N 

TA100, detects base-pair substitutions 

TA100 –S-9 100 350 20 700 

TA100NR –S-9 N N N N 

TA100 +S-9 20 350 20 700 

TA100NR +S-9 N N N N 

TA102, detects base-pair substitutions 

TA102 –S-9 N* N* N N 

TA102NR –S-9 Not treated Not treated Not treated Not treated 

TA102 +S-9 N* N* N N 

TA102NR +S-9 Not treated Not treated Not treated Not treated 

TA1535, detects base-pair substitutions 

TA1535 –S-9 N N N N 

TA1535NR –S-9 Not treated Not treated Not treated Not treated 

TA1535 +S-9 N N N N 

TA1535NR +S-9 Not treated Not treated Not treated Not treated 

TA1537, detects frameshift mutations 

TA1537 –S-9 100 N N N 

YG7167 (NR) –S-9 350 Not treated Not  treated Not treated 

TA1537 +S-9 N N N N 

YG7167 (NR) +S-9 Not treated N Not treated Not treated 
* Statistically significant increases in revertant numbers were observed at one or more concentrations although as they were 
not concentration related and were of a small magnitude, they were not considered to be indicative of mutagenic activity. 

All positive controls used gave the expected significant increases in revertant colonies. 

a) ‘N’ for ‘negative’, meaning there no mutagenic activity was observed at any dose tested (0.16, 0.8, 4, 20, 100, 350, 700 

and 5000 g/plate) 

 

All four test compounds induced mutations in one or more of the standard tester 

strains used. However, in each case, mutagenicity was abolished in the corresponding 

nitro-reductase deficient strains, with the exception of compound 31 in TA1537, where 

mutagenic activity was reduced but not eliminated by the removal of the classical nitro-

reductase in strain YG7167 (TA1537NR) (Table 4). This provides strong evidence that 
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the bacterial mutagenicity observed for 16, 14 and 33 is due entirely to the action of 

bacterial specific nitro-reductases. Mutagenicity induced by 31 is also due, at least in 

part to bacterial nitro-reduction, as confirmed by the lack of activity in TA98NR, which 

lacks both the standard nitro-reductase and a supplementary nitro-reductase [34]. 

Frame-shift mutagenicity induced by 31 in strain TA1537 is influenced by the classical 

nitro-reductase but the residual activity seen in its sister strain lacking this nitro-

reductase may be due to the action of the supplementary nitro-reductase, which is active 

in this strain.  

 

Figure 1: Mutagenic activity of compound 31 in the Ames test using Salmonella 

typhymurium strain TA98 and its nitro-reductase-deficient variant TA98NR, in the 

presence and absence of metabolic activation (+/- S9) 

 

 

Figure 2: Mutagenic activity of compound 31 in the Ames test using Salmonella 

typhymurium strain TA100 and its nitro-reductase-deficient variant TA100NR, in the 

presence and absence of metabolic activation (+/- S9) 

 

In vitro micronucleus test 

Each test compound was also screened in the human peripheral lymphocyte 

micronucleus test that detects chromosomal damage and aneugenicity. Compound 16 

did not induce significant increases in micronuclei in human peripheral lymphocytes 
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under the conditions of these assays, at concentrations that induced 57% cytotoxicity or 

less. The positive controls did induce statistically significant increases in the proportion 

of cells with micronuclei. Full data for 16 is shown in Table 5A-C.  

Preliminary data for the other three compounds in this series are shown in Tables 6-

8. Compound 31 showed no activity at concentrations inducing up to 62% cytotoxicity 

(Tanle 6A and B). Compound 14 showed no activity in the absence of S9. In the 

presence of S9 there were apparent small increases at 25 and 45 µg/mL compared to the 

concurrent vehicle control (Tables 7A and B). However, the values for the number of 

micronucleated cells at these concentrations were at the lower end of the normal 

historical control range (0-1.5%) for the testing laboratory concerned (as can be seen 

from comparisons with the data in Tables 5-8) and were attributed to an abnormally low 

vehicle control response. 

 

Table 5: In vitro micronucleus test of compound 16 

Test concentration µg/mL Cytotoxicity (%) Mean MNBN
a)

 (%) 

A) -S9, 3 hours exposure, 21 hours recovery  

Vehicle - 0.60 

120.0 0 0.15 

140.0 0 0.30 

160.0 0 0.40 

MMCb), 0.08 ND 11.25c) 

B) -S9, 24 hours exposure, no recovery  

Vehicle - 0.50 

12.5 10 0.55 

22.5 40 0.50 

30.0 57 0.40 

VIN
d)

, 0.03 ND 6.06
c)
 

C) +S9, 3 hours exposure, 21 hours recovery  

Vehicle - 0.40 

80.0 0 0.05 

100.0 0 0.20 

120.0 0 0.65 

CPA
e)

, 12.5 ND 2.45
c)
 

a)
 2000 cells scored for the vehicle control and 1000 cells scored for the test compound groups and 

the positive control.  
b)
 Mitomycin C (MMC), positive control. 

c)
 Statistically significant p< 0.001. MNBN = micronucleated binucleate cells, ND = not done. 

d)
 Vinblastine (VIN), positive control.  

e)
 Cyclophosphamide (CPA), positive control that requires metabolic activation by S9.  
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Table 6: In vitro micronucleus test of compound 31 

Test concentration µg/mL Cytotoxicity (%) Mean MNBN
a)

 (%) 

A) -S9, 20 hours exposure, 28 hours recovery  

Vehicle - 0.3 

343.6 3 0.3 

536.9 62 0.7 

2048 60 0.1 

4NQO
b)

, 2.5 ND 4.8
c)
 

B) +S9, 3 hours exposure, 45 hours recovery  

Vehicle - 0.5  

100.0 5 0.4 

200.0 20 0.3 

250.0 56 0.3  

CPAd), 6.25 ND 7.8c) 

a)
 2000 cells scored for the vehicle control and 1000 cells scored for the test compound 

groups and the positive control.  
b)

 4-Nitroquinoline –N-oxide (4NQO), positive control.  
c)

 Statistically significant p< 0.001. MNBN = micronucleated binucleate cells, ND = not 

done. 
d)

 Cyclophosphamide (CPA), positive control.  

 

Data for compound 33 are given in Tables 8A and B. In the absence of S9 a 

negative response was obtained. In the presence of S9, a small increase was seen at the 

middle test concentration of 200 µg/mL, but no increases were seen at the lower of 

higher test concentrations i.e. the increase was not dose-related. In addition the response 

was not consistent between the two replicate cultures. Thus this increase was not 

regarded as biologically significant. 

In conclusion all four compounds were deemed negative in human peripheral 

lymphocyte micronucleus tests.  

 

Redox potential 

The single electron redox potential of compound 16 was -575 mV, which is 

substantially more negative than mammalian redox systems. For comparison, it is -516 

mV for Metronidazole, -511 mV for Fexinidazole and significantly higher at -422 mV 

for Megazol). This low redox potential is consistent with the lack of activity observed in 

the in vitro micronucleus tests, indicating that mammalian cells cannot nitro-reduce 

these compounds to produce genotoxic chemical species under normal aerobic 

conditions.  

 

 



 

 99 

Table 7: In vitro micronucleus test of compound 14 

Test concentration µg/mL Cytotoxicity (%) Mean MNBN
a)

 (%) 

A) -S9, 20 hours exposure, 28 hours recovery  

Vehicle - 0.2 

175.0 9 0.2 

400.0 31 0.3 

475.0 69 0.3  

4NQOb), 2.5 ND 5.4c) 

B) +S9, 3 hours exposure, 45 hours recovery  

Vehicle - 0.0 

400.0 9 0.0 

525.0 25 0.20c) 

550.0 45 0.30c) 

CPAd), 12.5 ND 18.1e) 

a) 2000 cells scored for the vehicle control and 1000 cells scored for the test compound 

groups and the positive control.  

b) 4-Nitroquinoline –N-oxide (4NQO), positive control.  

c) Statistically significant p< 0.001. MNBN = micronucleated binucleate cells, ND = 

not done. 

d) Cyclophosphamide (CPA), positive control. 

e) Statistically significant p< 0.05. MNBN = micronucleated binucleate cells, ND = not 

done. 

 

Preliminary further evaluation of the lead compound 16 

Considering the LogP and PSA physicochemical parameters alone, the lead 

compound 16 fits well to the selection criteria in terms of drugability and blood brain 

barrier permeability (logP(calc)= 2.3 (target value ~2); PSA(calc)= 72.9 (target value 

60-80)). A preliminary further evaluation of the ADME (Absorption, Distribution, 

Metabolism and Excretion) and safety profile of the lead compound 16 was performed 

in in vitro assays and animal studies including in vitro liver microsomal (mouse and 

human) metabolic stability assays, in vitro permeability assays (Caco-2, MDR1-

MDCK), in vitro safety pharmacology/receptor binding assays, a pharmacokinetics 

study in mice and a five-day repeated oral toxicity study in rats (all studies are listed in 

an annex, data are available on request); so far no critical issue or toxicity alerts could 

be identified which would preclude the further evaluation of this lead compound 

towards preclinical development. This assessment also confirmed the ability of the 

compound to cross the blood brain barrier which is a prerequisite for drugs intended to 

treat stage 2 HAT and is consistent with the high efficacy of the drug observed in the 

stage 2 HAT mouse model involving brain infection. 
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Table 8: In vitro micronucleus test of compound 33 

Test concentration µg/mL Cytotoxicity (%) Mean MNBN
a)

 (%) 

A) -S9, 20 hours exposure, 28 hours recovery  

Vehicle - 0.4 

150.0 25 0.6 

200.0 27 0.7 

300.0 44 0.4 

4NQOb), 5.0 ND 3.5c) 

B) +S9, 3 hours exposure, 45 hours recovery  

Vehicle - 0.8 

150.0 16 0.5 

200.0 0 1.3c) 

300.0 10 0.6 

CPAd), 6.25 ND 10.0e) 

a)
 2000 cells scored for the vehicle control and 1000 cells scored for the test compound 

groups and the positive control.  
b)

 4-Nitroquinoline –N-oxide (4NQO), positive control.  
c)

 Statistically significant p< 0.001. MNBN = micronucleated binucleate cells, ND = not 

done. 

d) Cyclophosphamide (CPA), positive control.  

e) Statistically significant p< 0.05. MNBN = micronucleated binucleate cells, ND = not 

done. 

 

Conclusion 

 This series of 1-aryl-4-nitro-1H-imidazoles has demonstrated potent and 

selective antrypanosomal activity, including the exceptional capacity to cure a stringent 

model of second stage HAT, the chronic CNS model. Taken together with the absence 

of mammalian mutagenicity and the ADME and safety profile investigated so far, this 

confirms these compounds, and in particular the lead compound 16, as promising leads 

for further development into a new oral treatment of human African Trypanosomiasis. It 

also corroborates the findings that it is possible to select compounds within the 

nitroimidazoles family that are pharmacologically active yet are unlikely to pose a 

genotoxic hazard to patients.  

 Although bacterial mutagenicity was observed in the standard Ames strains 

used, as is often the case for compounds containing nitroaromatic groups, this 

mutagenic activity was lost in strains lacking the classical bacterial nitro-reductase for 

three of the four compounds evaluated. No mutagenic activity was observed in the in 

vitro micronucleus test using human peripheral lymphocytes for any of the compounds 

tested, indicating that mammalian cells are unable to reduce these nitroaromatic groups 

to mutagenic products. To confirm the conclusion that these compounds are unlikely to 

represent a genotoxic risk for humans, a full regulatory genotoxicity assessment needs 



 

 101 

to be completed including in vivo mammalian genotoxicity assays (e.g. in vivo 

micronucleus or chromosome aberration test).  

 Finally, it is clear that this family of 1-ary-4-nitro-1H-imidazoles merits further 

exploration for anti-microbial drug discovery, including the synthesis of new molecules 

with different substituents on the phenyl group (-SO2R, -CO2R) or a different aryl group 

(e.g. quinoline, pyridine, indole) or a different position of the nitro group on the 

imidazole ring (e.g. 2-methyl-5-nitroimidazole), which may lead to new antiparasitic 

activity of interest without genotoxic activity. For instance, several compounds already 

showed activity of interest against Trypanosoma cruzi, which may need further 

optimization before a drug lead for Chagas disease can be selected in this series.  

 

Material and Methods 

Chemistry 

General  

Melting points (not corrected) were determined in an open capillary or with a Boetius 

HMK apparatus; 
1
H and 

13
C NMR spectra were recorded on a Varian XL-300 (300 

MHz for 
1
H, 75.5 MHz for 

13
C) or on a Varian 600 (600 MHz for 

1
H, 150 MHz for 

13
C) 

in DMSO-d6 (unless otherwise specified) and with tetramethylsilane as the internal 

reference. The chemical shifts () are reported in parts per million and the coupling 

constants (J) in hertz. Elementary analyses (EA) were performed using a Perkin-Elmer 

CHN automatic analyzer. Mass spectra were recorded using HPLC-MS Integrity 

Systems with a Termabeam Mass Detector (EI, 70 eV) (with introduction of samples in 

methanol) or on a GC/MS Perkin Elmer Clarus 600T (with injection of samples in 

acetone). UV-VIS spectra were recorded on a Hitachi U-2910 spectrometer in water 

containing 2.5-6% methanol as the solvent. 

 

Synthesis 

4.1.2.1. 1,4-Dinitro-1H-imidazoles were obtained by nitration of imidazoles 

following a known general procedure [35]. CAUTION: 1,4-dinitro-1H-imidazoles are 

potential self-reacting/explosive substances; for the risk associated with their synthesis 

and handling, see ref. [30,36]. 
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4.1.2.1.1. 1,4-Dinitro-1H-imidazole: yield 70%, white prisms, m. p. 92-94°C, 
1
H 

NMR (300 MHz) 8.97 (d, 1H, J=1.5 Hz, H-2imid), 9.40 (d, 1H, J=1.5 Hz, H-5imid), 

13
C NMR (75.5 MHz): 115.9 (s, C­5imid), 132.6 (s, C-2imid), 144.3 (s, C­4imid). 

4.1.2.1.2. 2-Methyl-1,4-dinitro-1H-imidazole: yield 70%, white needles, m. p. 122-

124 °C, 
1
H NMR (300 MHz) 2.67 (s, 3H, -CH3 imid), 9.26 (s, 1H, H-5imid), 

13
C NMR 

(75.5 MHz) 16.2 (s, -CH3 imid), 116.9 (s, C-5imid), 141.4 (s, C-2imid), 142.7 (s, C-4imid). 

4.1.2.2. Anilines: Commercially available anilines were used without purification 

except in a few cases of dark liquids or darkish solids which were distilled or 

recrystallized prior to use. Other anilines were prepared according to published 

procedures. Preparation of butyl 5-amino-2-chlorobenzoate [CAS No: 135813-38-6] is 

described below.  

4.1.2.2.1. 4-bromo-3-methylaniline [37]: yield 85%, m. p. 81-82 °C, white powder, 

1
H NMR (300 MHz) 2.18 (s, 3H, -CH3), 5.13 (s, 2H, -NH2), 6.33 (dd, 1H, J=8.7 Hz, 

J=2.1 Hz, H-6), 6.52 (d, 1H, J=2.1 Hz, H-2), 7.12 (d, 1H, J=8.7 Hz, H-2), 
13

C NMR 

(75.5 MHz) 22.5, 108.8, 113.5, 116.3, 132.0, 136.8, 148.2.  

4.1.2.2.2. 3-bromo-4-methylaniline [38,39] yield 87%, dark yellow oil, 
1
H NMR 

(300 MHz) 2.15 (s, 3H, -CH3), 5.11 (s, 2H, -NH2), 6.46 (dd, 1H, J=8.1 Hz, J=2.4 Hz, H-

6), 6.78 (d, 1H, J=2.4 Hz, H-2), 6.93 (d, 1H, J=8.1 Hz, H-5), 
13

C NMR (75.5 MHz) 

21.2, 113.4, 116.8, 122.9, 124.2, 131.0, 148.1.  

4.1.2.2.3. 3-bromo-5-methylaniline [40] yield 45%, after distillation colorless oil, 

b.p. 124-125°C(6mmHg) (lit. 150-154°C(4 mm Hg)), 
1
H NMR (300 MHz) 2.13 (sb, 3H, -CH3), 

5.26 (sb, 2H, -HN2), 6.33-6.34 (m, 1H, Ar-H), 6.45-6.46 (m, 1H, Ar-H), 6.53-6.55 (m, 

1H, Ar-H), 
13

C NMR (75.5 MHz) 20.8, 113.3, 113.3, 118.6, 121.9, 140.2, 150.2.  

4.1.2.2.4. Butyl 5-amino-2-chlorobenzoate: A mixture of 2-chloro-5-aminobenzoic 

acid (3.0 g, 11 mmol), 1-butanol (20.25 g, 270 mmol) and sulfuric acid (1 ml) was 

heated under reflux for 5 hours in a flask equipped with a Dean-Stark apparatus. After 

addition of diethyl ether (60 ml), the resulting solution was washed with 315 ml of a 

saturated solution of sodium bicarbonate and then with water to neutral pH. 3-

Butoxycarboxy-4­chloroaniline was extracted by washing with 515 ml of hydrochloric 

acid 10%. The aqueous layer was neutralized with solid sodium bicarbonate and the 

aniline extracted with diethyl ether 420 ml. The ethereal layer was separated, dried 

over magnesium sulfate and evaporated to dryness. 3-Butoxycarbonyl-4-chloroaniline 

was obtained as a yellowish oil. Yield 24%, 
1
H NMR (300 MHz, CDCl3) 0.97 (t, 3H, J 

= 7.2 Hz, -CH3), 1.44-1.51 (m, 2H, -CH2-CH3), 1.72-1.77 (m, 2H, -CH2-CH2-CH3), 3.67 
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(sb, 2H, -NH2), 4.32 (t, 2H, J = 6.6 Hz ­O­CH2­CH2­CH2-CH3), 6.70 (dd, 1H, J = 8.6 

Hz, J = 3.0 Hz, H-6), 7.09 (d, 1H, J = 3.0 Hz, H-2), 7.18 (d, 1H, J = 8.6 Hz, H-5). 
13

C 

NMR (75.5 MHz, CDCl3)  13.7, 19.3, 30.7, 65.3, 117.2, 118.9, 122.2, 130.9, 131.6, 

145.0, 166.1. MS (m/z): 227 (M
+
, 42%), 171 (100%), 154 (69%). 

4.1.2.3. 1-Aryl-4-nitro-1H-imidazoles (general procedure). For compounds 1-7, 10, 

17, 18 and 22-32, see reference to synthesis given in Table 1. 1-Aryl-4-nitro-1H-

imidazoles were prepared following the general procedure we have developed in our 

laboratory [23] with some slight modifications. Equimolar amount of aniline derivative 

was treated with 1,4-dinitro-1H-imidazole in aqueous methanol at ambient temperature 

in the dark for several hours until complete disappearance of 1,4-dinitro-1H-imidazole 

monitored by TLC. In some cases, the mixture was heated under reflux to complete the 

reaction. On cooling, the desired crude 1-aryl-4-nitro-1H-imidazoles separated from the 

mixture by precipitation. After filtration and recrystallisation the pure product was 

obtained. Yields, solvents used for recrystallization and specific data are given below in 

the respective sections. Further details are available on request.  

4.1.2.3.1. 1-(2-bromophenyl)-4-nitro-1H-imidazole (8): Yield 61%, light brown 

powder, m. p. 134-135.5 °C
 
 (ethyl acetate/hexane); 

1
H NMR (300 MHz) 7.54 (td, 1H, 

J=7.5 Hz, J=1.5 Hz, Ar-H), 7.62 (td, 1H, J=7.5 Hz, J=1.5 Hz, Ar-H), 7.71 (dd, 1H, 

J=7.5 Hz, J=1.5 Hz, Ar-H), 7.79 (dd, 1H, J=7.5 Hz, J=1.5 Hz, Ar-H), 8.15 (d, 1H, 

J=1.5 Hz, H-2imid.), 8.76 (d, 1H, J=1.5 Hz, H-5imid.); 
13

C NMR (75.5 MHz) 119.5, 122.7, 

128.9, 129.0, 131.8, 133.5, 134.8, 138.0, 147.4 (s, 1C, C-4imid.); EA: calcd. for 

C9H6BrN3O2 C 40.32, H 2.26, N 15.68; found C 40.24, H 2.30, N 15.68. 

4.1.2.3.2. 1-(3-bromophenyl)-4-nitro-1H-imidazole (9): Yield 85%, yellowish 

powder, m. p. 113-114 °C (methanol/water); 
1
H NMR (300 MHz) 7.53 (t, 1H, J=8.1 Hz, 

H-5’), 7.68 (ddd, 1H, J=8.1 Hz, J=1.8 Hz, J=0.9 Hz, Ar-H), 7.85 (ddd, 1H, J=8.1 Hz, 

J=1.8 Hz, J=0.9 Hz, Ar-H), 8.14 (t, 1H, J=1.8 Hz, H-2’), 8.53 (d, 1H, J=1.5 Hz, H-

2imid.), 9.06 (d, 1H, J=1.5 Hz, H-5imid.); 
13

C NMR (75.5 MHz) 119.7, 120.2, 122.5, 

124.0, 131.3, 131.6, 135.6, 136.7, 148.1 (s, 1C, C-4imid.); UV-VIS λmax =300 nm; EA: 

calcd. for C9H6BrN3O2 C 40.32, H 2.26, N 15.68; found C 40.27, H 2.32, N 15.91. 

4.1.2.3.3. 4-nitro-1-(3-nitrophenyl)-1H-imidazole (11): Yield 72%, dark yellow 

powder, m. p. 229-231 °C (glacial acetic acid);
, 1

H NMR (300 MHz) 7.88 (t, 1H, J=8.1 

Hz, H-5’), 8.28-8.33 (m, 2H, H-4’, H-6’), 8.65 (d, 1H, J=1.5 Hz, H-2imid.), 8.72 (t, 1H, 

J=2.4 Hz, H-2’), 9.19 (d, 1H, J=1.5 Hz, H­5imid.); 
13

C NMR (75.5 MHz) 116.5, 120.0, 

123.1, 127.6, 131.4, 135.9, 136.3 (s, 1C, C-1’), 148.24 (s, 1C, C-4imid.), 148.51 (s, 1C, 
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C-3’); EA: calcd. for C9H6N4O4 C 46.16, H 2.58, N 23.93; found C 46.32, H 2.65, N 

23.91. 

4.1.2.3.4. 4-nitro-1-{3-(trifluoromethyl)phenyl}-1H-imidazole (12): Yield 79%, 

yellowish powder, m. p. 114-116 °C (ethyl acetate/hexane);
 1

H NMR (300 MHz) 7.80-

7.87 (m, 2H, Ar-H), 8.14-8.18 (m, 1H, Ar-H), 8.27-8.28 (m, 1H, Ar-H), 8.62 (d, 1H, 

J=1.6 Hz, H-2imid.), 9.16 (d, 1H, J=1.6 Hz, H-5imid.); 
13

C NMR (75.5 MHz) 118. 4 (q, 

J=3.9 Hz, C-4’), 119.9 (s, C-2imid.), 123.5 (q,  J=272.8 Hz, -CF3), 125.1 (q, J=3.7 Hz, C-

2’), 125.3 (s, 1C), 130.7 (q, 1C, J=32.6 Hz, C-3’), 131.1 (s, 1C), 135.8 (s, 1C), 136.1 (s, 

1C), 148.2 (s, C-4imid.); UV-VIS λmax =298 nm; MS: m/z: 257 (M
+
, 35%), 172 (70%), 

145 (100%); EA calcd. for C10H6F3N3O2 C 46.70, H 2.35, N 16.34, found C 46.77, H 

2.36, N 16.46. 

4.1.2.3.5. 4-nitro-1-{4-(trifluoromethyl)phenyl}-1H-imidazole (13): Yield 69%, white 

powder, m. p. 144-145 °C
 
(methanol/water); 

1
H-NMR (300 MHz) 7.97 (d, 2H, J=8.4 

Hz, Ar-H), 8.08 (d, 2H, J=8.4 Hz, Ar-H), 8.61 (d, 1H, J=1.6 Hz, H-2imid), 9.13 (d, 1H, 

J=1.6 Hz, H-5imid); 
13

C NMR (75.5 MHz) 119.6 (s, C-2imid.), 121.9 (s, C-2’, C-6’), 123.7 

(q, J=270.6 Hz -CF3), 127.1 (q, J=3.7 Hz, C-3’, C-5’), 128.7 (q, J=32.3 Hz, C-4’) 135.7 

(s, C-5imid.), 138.5-138.5 (m, C-1’) 148.3 (s, C-4imid..); UV-VIS λmax =307.5 nm (2.4% 

methanol in water); MS: m/z: 257 (M
+
, 37%), 172 (69%), 145 (100%); EA calcd. for 

C10H6F3N3O2 C 46.70, H 2.35, N 16.34, found C 46.93, H 2.34, N 16.16. 

4.1.2.3.6. 4-nitro-1-{2-(trifluoromethoxy)phenyl}-1H-imidazole (14): Yield 71%, 

white plates, m. p. 87-89 °C (ethyl acetate/hexane), white needels m. p. 90.8-92 C 

(diethyl ether); 
1
H-NMR (300 MHz) 7.62-7.76 (m, 3H, Ar-H), 7.83-7.86 (m, 1H, Ar-H), 

8.23 (d, 1H, J=1.5 Hz, H-2imid), 8.81 (d, 1H, J=1.5 Hz, H-5imid); 
13

C NMR (75.5 MHz) 

119.7 (q, 1C, J=259.2 Hz, ­OCF3), 122.2, 122.3, 128.1, 128.4, 128.8, 131.4, 137.8, 

141.72­141.74 (m, 1C, C­2’), 147.7 (s, 1C, C-4imid); UV-VIS λmax =294 nm; MS: m/z: 

273 (M
+
, 48%), 188 (64%), 95 (100%). EA calcd for C10H6F3N3O3 C 43.97, H 2.21, N 

15.38, found C 44.01, H 2.21, N 15.36. 

4.1.2.3.7. 4-nitro-1-{3-(trifluoromethoxy)phenyl}-1H-imidazole (15): Yield 31%, 

white powder, m. p. 92-94 °C (ethanol); 
1
H NMR (600 MHz) 7.49-7.51 (m, 1H, H-4’), 

7.73 (t, 1H, J=8.4 Hz, H-5’), 7.91 (dd, 1H, J=8.4 Hz, J=1.2 Hz, H-2’), 7.98 (sB, 1H, H-

2’), 8.57 (d, 1H, J=1.2 Hz H-2imid), 9.10 (d, 1H, J=1.2 Hz, H-5imid); 
13

C NMR (150 

MHz) 114.6, 119.7 120.0 (q, 1C, J=257.8 Hz, ­OCF3), 120.2, 120.7, 131.7, 135.7, 

136.8, 148.2, 149.0; EA calcd for C10H6F3N3O3 C 43.97, H 2.21, N 15.38, found C 

44.18, H 2.19, N 15.34. 



 

 105 

4.1.2.3.8. 4-nitro-1-{4-(trifluoromethoxy)phenyl}-1H-imidazole (16): Yield 84%, 

light yellow plates, m. p. 129.5-131 °C (methanol/water); 
1
H NMR (300 MHz): 7.63 (d, 

2H, J=8.4 Hz, H-2’, H-6’), 7.95-7.99 (m, 2H, H-3’, H-5’), 8.51 (d, 1H, J=1.2 Hz, H-

2imid.), 9.05 (d, 1H, J=1.2 Hz, H-5imid.); 
13

C NMR (75.5 MHz) 120.0 (s, 1C), 120.0 (q, 

1C, J=257.0 Hz, -OCF3), 122.6 (s, 1C), 123.5 (s, 1C), 134.5 (s, 1C), 135.9 (s, 1C), 147.9 

(s, 1C, C-4’), 148.2 (s, 1C, C-4imid.); UV-VIS λmax =216, 300 nm; MS: m/z: 273 (M
+
, 

47%), 188 (100%), 161 (51%), 95 (91%); EA calcd. for C10H6F3N3O3 C 43.97, H 2.21, 

N 15.38, found C 43.83, H 2.09, N 14.87. 

4.1.2.3.9. 1-(3-methoxyphenyl)-4-nitro-1H-imidazole (19): Yield 87%, bright yellow 

needels, m. p. 151­151.5 °C (methanol/water); 
1
H NMR (300 MHz) 3.86 (s, 3H, -

OCH3), 7.03-7.08 (m, 1H, H-4’), 7.36-7.39 (m, 1H, H­6’), 7.40-7.41 (m, 1H, H-2’), 

7.48 (t, 1H, J=8.1 Hz, H-5’), 8.51 (d, 1H, J=1.5 Hz, H­2imid.), 9.03 (d, 1H, J=1.5 Hz, H-

5imid.); 
13

C NMR (75.5 MHz) 55.6 (s, 1C, -OCH3), 106.9 (s, C-2’), 113.0 (s, C-4’), 114.4 

(s, C-6’), 119.6 (s, C-5imid), 130.8 (s, C-5’), 135.6 (s, C-2imid), 136.5 (s, C-1’), 148.0 (s, 

C-4imid), 160.3 (s, C-6’); UV-VIS λmax =303 nm; EA calcd. for C10H9N3O3 C 54.79, H 

4.14; N 19.17, found: C 54.6, H 4.20, N 19.35. 

4.1.2.3.10. butyl 4-(4-nitro-1H-imidazol-1-yl)benzoate (21): Yield 53%, bright 

yellow plates, m. p. 134-135.5 C (methanol); 
1
H NMR (600 MHz) 0.96 (t, 3H, J = 7.5 

Hz, -CH3), 1.45 (sk, 2H, J=7.5 Hz, ­CH2­CH3), 1.70-1.75 (m, 2H, -CH2-CH2-CH3), 4.31 

(t, 2H, J=6.6 Hz, -O-CH2-CH2-), 7.97­7.99 (m, 2H, Ar-H), 8.09-8.11 (m, 2H, Ar-H), 

8.59 (d, 1H, J=1.5 Hz, H-2imid), 9.09 (d,­1H, J=1.5 Hz, H-5imid); 
13

C NMR (150 MHz) 

13.5, 18.7, 30.2, 64.7, 119.4, 121.1 (s, 2C), 129.52, 130.73 (s, 2C), 135.59, 138.85, 

148.32 (s, 1C, C-4imid), 164.67 (s, 1C, C=O); EA calcd. for C14H15N3O4 C 58.13, H 

5.23, N 14.53, found C 58.45, H 5.18, N 14.49. 

4.1.2.3.11. 1-(3-chloro-4-fluorophenyl)-4-nitro-1H-imidazole (33): Yield 64%, bright 

yellow prisms, m. p. 115-116 °C
 
 (methanol); 

1
H NMR (300 MHz) 7.63-7.69 (m, 1H, 

Ar-H), 7.86-7.88 (m, 1H, Ar-H), 8.19-8.20 (m, 1H, Ar-H), 8.48 (sb, 1H, H-2imid), 9.02 

(sb, 1H, H-5imid), 
13

C NMR (75.5 MHz) 117.9 (d, 1C, J=22.6 Hz, C-5’), 119.9 (s, 1C, C-

5imid), 120.8 (d, 1C, J=19.1 Hz, C-3’), 122.1 (d, 1C, J=7.8 Hz, C-6’), 123.8 (sb, 1C, C-

Ar), 132.5 (d, 1C, J=3.1 Hz, C-1’), 135.8 (s, 1C, C-2imid), 148.0 (s, 1C, C-4imid), 156.8 

(d, 1C, J=247.7 Hz, C-4’); UV-VIS λmax =299 nm; MS: m/z: 241 (M
+
, 38%), 156 

(100%), 129 (87%); EA calcd. for C9H5ClFN3O2 C 44.74, H 2.09, N 17.39, found C 

44.77, H 2.14, N 18.32. 
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4.1.2.3.12. 1-(2-bromo-4-methylphenyl)-4-nitro-1H-imidazole (34): Yield 56%, 

yellowish thin plates, m. p. 144-145 °C (methanol); 
1
H NMR (300 MHz) 2.41 (s, 3H, -

CH3), 7.41 (dd, 8.0 Hz, J=0.9 Hz, H-5’), 7.58 (d, 1H, J=8.0 Hz, H-6’), 7.75 (d, 1H, 

J=0.9 Hz, H-3’), 8.12 (d, 1H, J=1.5 Hz, H-2imid), 8.73 (d, 1H, J=1.5 Hz, H-5imid); 
13

C 

NMR (75.5 MHz) 20.3 (s, 1C, ­CH3), 119.1 (s, 1C, C­2’), 122.8 (s, 1C, C-5imid), 128.4 

(s, 1C, C-6’), 129.5 (s, 1C, C-5’), 132.3 (s, 1C, C-1’), 133.6 (s, 1C, C-3’), 138.1 (s, 1C, 

C-4’), 142.2 (s, C-2imid), 147.4 (s, 1C, C­4imid); EA calcd. for C10H8BrN3O2 C 42.58, H 

2.86, N 14.90, found C 42.55, H 2.86, N 14.85. 

4.1.2.3.13. 1-(4-bromo-3-methylphenyl)-4-nitro-1H-imidazole (35): Yield 88%, 

yellowish powder, m. p. 161-163 °C (methanol/water); 
1
H NMR (300 MHz) 2.42 (s, 

3H, CH3), 7.60 (dd, 1H, J=8.7 Hz, J=2.4 Hz, H-6’), 7.76 (d, 1H, J=8.7 Hz, H-5’), 7.87 

(d, 1H, J=2.4 Hz, H-2’), 8.48 (d, 1H, J=1,5 Hz, H-2imid), 8.98 (d, 1H, J=1,5 Hz, H-5imid); 

13
C NMR (75.5 MHz) 22.4, 119.4, 120.3, 123.5, 123.7, 133.3, 135.4, 139.3, 148.1; UV-

VIS λmax =229, 303 nm; EA calcd. for C10H8BrN3O2 C 42.58, H 2.86, N 14.90, found C 

42.59, H 2.91, N 15.24. 

4.1.2.3.14. 1-(3-bromo-4-methylphenyl)-4-nitro-1H-imidazole (36): Yield 70%, 

bright yellow powder m. p. 147-148 °C (methanol/water); 
1
H NMR (300 MHz) 2.40 (s, 

3H, CH3), 7.53 (d, 1H, J=8.4 Hz, H-5’), 7.74 (dd, 1H, J=8.4 Hz, J=2.1 Hz, H-6’), 8.12 

(d, 1H, J=2.1 Hz H-2’), 8.50 (d, 1H, J=0.9 Hz, H-2imid), 9.02 (d, 1H, J=0.9 Hz, H-2imid); 

13
C NMR (75.5 MHz) 21.9, 119.6, 120.2, 124.5, 124.7, 131.8, 134.3, 135.5, 137.8, 

148.0; UV-VIS λmax = 303 nm; EA calcd. for C10H8BrN3O2 C 42.58, H 2.86, N 14.90, 

found C 42.80, H 2.93, N 14.94. 

4.1.2.3.15. 1-(2,4-dimethylphenyl)-4-nitro-1H-imidazole (37): Yield 78%, yellowish 

prisms, m. p. 123­124.5 °C (methanol); 
1
H NMR (300 MHz) 2.16 (s, 3H, -CH3), 2.36 (s, 

3H, -CH3), 7.20 (db, 1H, J=7.8 Hz, H­5’), 7.27 (sb, 1H, H-3’), 7.33 (d, 1H, J=7.8 Hz, 

H­6’), 8.06 (d, 1H, J=1.5 Hz, H-2imid), 8.67 (d, 1H, J=1.5 Hz, H-5imid); 
13

C NMR (75.5 

MHz) 17.1 (s, -CH3), 20.6 (s, -CH3), 122.5 (s, C-5imid), 126.3 (s, 1C), 127.5 (s, 1C), 

131.7 (s, 1C), 132.6 (s, C-2imid), 133.0 (s, C-1’), 137.9 (s, 1C), 139.4 (s, 1C), 147.5 (s, 

C-4imid); EA calcd. for C11H11N3O2 C 60.82, H 5.10, N19.34, found C60.70, H 5.05, N 

19.37. 

4.1.2.3.16. 1-(3,4-dimethylphenyl)-4-nitro-1H-imidazole (38): Yield 77%, white 

powder, m. p. 114.5-116 °C (methanol); 
1
H NMR (300 MHz) 2.27 (s, 3H, -CH3), 2.30 

(s, 3H, -CH3), 7.31 (d, 1H, J=8.1 Hz, H-5’), 7.50 (dd, 1H, J=8.1 Hz, J=2.4 Hz, H-6’), 

7.60 (d, 1H, J=2.4 Hz, H-2’), 8.41 (d, 1H, J=1.4 Hz, H-2imid), 8.91 (d, 1H, J=1.4 Hz, H-
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5imid); 
13

C NMR (75.5 MHz) 18.8 (s, -CH3), 19.3 (s, -CH3), 118.3 (s, 1C), 119.4 (s, 1C), 

122.0 (s, 1C), 130.5 (s, 1C), 133.2 (s, C-1’), 135.3 (s, 1C), 136.9 (s, Ar­CH3), 138.2 (s, 

Ar-CH3), 147.9 (s, C­4imid); UV-VIS λmax = 308 nm; EA calcd. for C11H11N3O2 C 60.82, 

H 5.10, N 19.34, found C 60.78, H 4.90, N 19.43. 

4.1.2.3.17. 1-(2,4-dimethoxyphenyl)-4-nitro-1H-imidazole (39): Yield 66.5%, grey 

powder m. p. 161.5-162 C (methanol); 
1
H NMR (300 MHz) 3.85 (sb, 6H, 2-OCH3), 

6.67 (dd, 1H, J=0.9 Hz, J=0.3 Hz, H-5’), 6.82 (d, 1H, J=0.3 Hz, H-3’), 7.46 (d, 1H, 

J=0.9 Hz, H-6’), 8.02 (d 1H, J=0.2 Hz, H­2imid), 8.56 (d, 1H, J=0.15 Hz, H-5imid); 
13

C 

NMR (75.5 MHz) 55.7 (s, -OCH3), 56.2 (s, ­OCH3), 99.6 (s, 1C), 105.2 (s, 1C), 117.6 

(s, C-1’), 122.5 (s, C-5imid), 127.0 (s, 1C), 137.9 (s, C-2imid), 147.1 (s, C-4imid), 153.6 (s, 

Ar-OCH3), 161.1 (s, Ar­OCH3); EA calcd. for C11H11N3O4 C 53.01, H 4.45, N 16.86, 

found C 53.01, H 4.39, N 16.61. 

4.1.2.3.18. 1-(3,4-dimethoxyphenyl)-4-nitro-1H-imidazole (40): Yield 82.5%, yelow 

powder, m. p. 167.5-168.5 C (methanol); 
1
H NMR (300 MHz) 2.14 (s, 3H, ­CH3 imid), 

3.82 (s, 3H, -OCH3), 3.86 (s, 3H, -OCH3), 6.68 (dd, 1H, J=8.7 Hz, J=2.4 Hz, H-5’), 

6.82 (d, 1H, J=2.4 Hz, H-3’), 7.58 (d, 1H, J=8.7 Hz, H-6’), 8.37 (s, 1H, H-5imid); 
13

C 

NMR (300 MHz) 12.7 (s, -CH3 imid), 55.7 (s, -OCH3), 56.1 (s, -OCH3), 99.5 (s, 1C), 

105.3 (s, 1C), 117.1 (s, 1C, C-5imid), 123.7 (s, 1C), 128.8 (s, 1C), 145.9 (s, 1C, C-4imid), 

146.0 (s, 1C, C-1’), 154.8 (s, Ar-OCH3), 161.6 (Ar-OCH3); EA calcd for C12H13N3O4 C 

54.75, H 4.98, N 15.96, found C 54.86, H 4.86, N 16.05. 

4.1.2.3.19. 1-(benzo[d][1,3]dioxol-5-yl)-4-nitro-1H-imidazole (41): Yield 58%, grey 

powder, m. p. 206-207 °C (acetone);
 1

H NMR (300 MHz) 6.15 (s, 2H, -CH2-), 7.09 (d, 

1H, J=8.4 Hz, H-5’), 7.26 (dd, 1H, J=2.4 Hz, H-6’), 7.26 (dd, 1H, J=2.4 Hz, H-6’), 7.47 

(d, 1H, J=2.4 Hz, H-2’), 8.36 (d, 1H, J=1.7 Hz, H-2imid), 8.89 (d, 1H, J=1.7 Hz, H­5imid); 

13
C NMR (75.5 MHz) 102.2, 103.2, 108.6, 115.0, 120.0, 129.7, 135.7, 147.4, 147.8, 

148.2. MS: m/z: 233 (M
+
, 100.0%); EA calcd. for C10H7N3O4 C 51.51, H 3.03, N 18.02, 

found C 51.64, H 3.00, N 17.95. 

4.1.2.3.20. butyl 2-chloro-5-(4-nitro-1H-imidazol-1-yl)benzoate (42): Yield 37%, 

yellowish powder, m. p. 88-90 C (methanol); 
1
H NMR (600 MHz) 0.94 (t, 3H, J = 7.5 

Hz, -CH3), 1.41-1.47 (m, 2H, -CH2-CH3), 1.70-1.75 (m, 2H, -CH2-CH2-CH3), 4.34 (t, 

2H, J = 6.6 Hz, -O-CH2-CH2-CH2-CH3), 7.81 (d, 1H, J = 9.0 Hz, H-5’), 8.02 (dd, 1H, J 

= 9.0 Hz, J = 3.0 Hz, H-6’), 8.20 (d, 1H, J = 3.0 Hz, H-2’), 8.53 (d, 1H, J = 1.2 Hz, H-

2imid), 9.06 (d, 1H, J = 1.2 Hz, H-5imid). 
13

C NMR (150 MHz) 13.5, 18.6, 30.0, 65.5, 

119.9, 123.3, 125.5, 131.0, 132.0, 132.1, 134.4, 135.8, 148.1 (s, 1C, C-4imid), 164.39 
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(s,1C, C=O). EA calcd. for C14H14ClN3O4 C 51.94, H 4.36, N 12.98, found C 52.12, H 

4.44, N 12.78. 

4.1.2.3.21. 2-chloro-5-(4-nitro-1H-imidazol-1-yl)benzoic acid (43): Yield 89%, light 

brown prisms, m. p. 266-268 C (methanol), 
1
H NMR (600 MHz) 7.77 (d, 1H, J = 8.4 

Hz, H-3), 7.98 (dd, 1H, J = 8.4 Hz, J=3.0 Hz, H-4), 8.20 (d, 1H, J = 3.0 Hz, H-6), 8.53 

(d, 1H, J = 1.2 Hz, H-2imid), 9.07 (d, 1H, J=1.2 Hz, H-5imid), 13.77 (sb, 1H, -COOH). 
13

C 

NMR (150 MHz) 119.8, 123.2, 124.9, 131.0, 131.9, 133.2, 134.2, 135.7, 148.1 (s,1C, C-

4imid), 165.8 (s, 1C, C=O); EA calcd. for C10H6ClN3O4 C 44.88, H 2.26, N 15.70, found 

C 44.96, H 2.31, N 15.92. 

4.1.2.3.22. 2-methyl-4-nitro-1-{4-(trifluoromethoxy)phenyl}-1H-imidazole (44): 

Yield 73.5%, bright yellow powder, m. p. 130-132 °C (methanol-chloroform); 
1
H NMR 

(300 MHz) 2.32 (s, 3H, -CH3 imid), 7.59-7.62 (m, 2H, Ar-H), 7.74-7.79 (m, 2H, Ar-H), 

8.61 (s, 1H, C-5imid). 
13

C NMR (75.5 MHz) 13.4 (s 1C, -CH3 imid), 120.0 (q, J=257.3 Hz, 

-CF3), 122.2 (s, 2C), 122.7 (s, 1C, C-2imid), 128.1 (s, 2C), 134.6 (s, 1C, C­1’), 144.8 (s, 

1C, C-5imid), 146.2 (s, 1C, C-4imid), 148.5 (sb, 1C, C-4’); EA calcd. for C11H8F3N3O2 C 

46.00, H 2.81, N 14.63, found C 45.66, H 2.70, N 14.35. 

4.1.2.3.23. 2-methyl-4-nitro-1-{4-(trifluoromethyl)phenyl}-1H-imidazole (45): Yield 

66%, yellow powder, m. p. 96-98 °C (ethyl acetate/hexane); 
1
H NMR (300 MHz) 2.37 

(s, 3H, -CH3 imid), 7.86 (d, 2H, J=8.4 Hz, Ar-H), 8.00 (d, 2H, J=8.4 Hz, Ar-H), 8.67 (s, 

1H, H-5imid); 
13

C NMR (75.5 MHz) 13.5 (s, 1C, -CH3 imid), 122.5 (s, C-2imid), 123.7 (q, 

J=272.1 Hz, -CF3), 126.8 (m, C-2’, C-3’, C-5’, C-6’), 129.0 (d, J=1.3 Hz, C-1’), 144.7 

(s, 1C, C-5imid), 146.3 (s, 1C, C-4imid); EA calcd. for C11H8F3O2N3 C 48.72, H 2.97, N 

15.49, found C 48.66, H 2.63, N 14.33. 

4.1.2.3.24. 1-(2-bromo-4-methylphenyl)-2-methyl-4-nitro-1H-imidazole (46): Yield 

40%, yellow powder, m. p. 126-128 °C (ethyl acetate/hexane), 
1
H NMR (300 MHz) 

2.14 (s, 3H, -CH3 imid), 2.42 (s, 3H, -CH3), 7.24 (dd, 1H, J=7.8 Hz, J=0.9 Hz, H-5’), 7.59 

(d, 1H, J=7.8 Hz, H-6’), 7.76 (d, 1H, J=0.9 Hz, H-3’), 8.54 (s, 1H, H-5imid); 
13

C NMR 

(75.5 MHz) 12.8 (s, -CH3 imid), 20.3 (s, ­CH3), 120.4, 123.1, 129.0, 129.7, 132.1, 133.6, 

142.6, 145.3, 146.2 (s, 1C, C-4imid); EA calcd. for C11H10BrN3O2 C 44.62, H 3.40, N 

14.19, found C 45.01, H 3.46, N 14.09. 

4.1.2.3.25. 1-(3-chloro-4-fluorophenyl)-2-methyl-4-nitro-1H-imidazole (47): Yield 

72%, white powder, m. p. 177-178 °C
 
 (methanol/water); 

1
H NMR (300 MHz) 2.32 (s, 

3H, -CH3), 7.63-7.72 (m, 2H, Ar-H), 7.99-8.02 (m, 1H, Ar­H), 8.59 (s, 1H, H-5imid); 
13

C 

NMR (75.5 MHz) 13.3 (s, 1C, -CH3 imid), 117.7 (d, 1C, J=22.5 Hz, C-5'), 120.4 (d, 1C, 
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J=19.0 Hz, C-3’), 122.8 (s, 1C, C-5imid), 127.1 (d, 1C, J=8.2 Hz, C-Ar), 128.6 (s, 1C, C-

Ar), 132.6 (d, 1C, J=3.5 Hz, C-1’), 145.0 (s, 1C, C­2imid), 146.0 (s, 1C, C-4imid); EA 

calcd. for C10H7ClFN3O2 C 46.99, H 2.76, N 16.44, found C 47.02, H 2.97, N 16.97. 

4.1.2.3.26. 1-(4-bromo-3-methylphenyl)-2-methyl-4-nitro-1H-imidazole (48): Yield 

64%, yellowish powder, m. p. 156-158 °C (methanol/water); 
1
H NMR (300 MHz)2.33 

(s, 3H, CH3 imid), 2.42 (s, 3H, CH3), 7.38 (dd, 1H, J=8.7 Hz, J=2.7 Hz, H-6’) 7.62 (d, 

1H, J=2.7 Hz, H-2’), 7.79 (d, 1H, J=8.7 Hz, H-5’), 8.54 (s, 1H, H-5imid); 
13

C NMR (75.5 

MHz) 13.4 (s, 1C, -CH3 imid), 22.4 (s, 1C, -CH3), 125.0 (s, 2C), 128.2 (s, 1C), 133.1 (s, 

1C), 135.0 (s, 1C), 139.1 (s, 1C), 144.6 (s, 1C), 146.1 (s, 1C); EA calcd. for 

C11H10BrN3O2 C 44.62, H 3.40, N 14.19, found C 44.75, H 3.38, N 14.29. 

4.1.2.3.27. 1-(3-bromo-4-methylphenyl)-2-methyl-4-nitro-1H-imidazole (49): Yield 

69%, light brown powder, m. p. 150-152 °C
 
 (methanol/water); 

1
H NMR (300 MHz) 

2.31 (s, 3H, CH3 imid), 2.43 (s, 3H, CH3), 7.53 (dd, 1H, J=8.1 Hz, J=1,8 Hz, H-6’), 7.57 

(d, 1H, J=8.1 Hz, H-5’), 7.90 (d, 1H, J=1.8 Hz, H-2’), 8.57 (s, 1H, H-5imid); 
13

C NMR 

(75.5 MHz) 13.4 (s, 1C, CH3 imid), 22.1 (s, 1C, CH3), 122.7 (s, 1C) 124.3 (s, 1C), 125.1 

(s, 1C), 129.2 (s, 1C), 131.6 (s, 1C), 129.2 (s, 1C), 131.6 (s, 1C), 134.5 (s, 1C), 138.9 (s, 

1C), 144.8 (s, 1C, C-5imid), 146.0 (s, 1C, C­4imid); EA calcd. for C11H10BrN3O2 C 44.62, 

H 3.40, N 14.19, found C 44.60, H 3.49, N 14.57. 

 

Antiprotozoal activity testing 

Drug preparation 

For the in vitro assays, a 10 mg/ml stock solution in dimethyl sulfoxide (DMSO) of 

the test compounds was prepared. For the in vivo studies, the test compounds were 

dissolved in dimethyl sulfoxide (DMSO), the resulting solution was further diluted with 

water up to 10% in volume. Drugs were administered to mice by gavage (oral 

administration) or intraperitoneal injection (i.p. administration).  

 

In vitro trypanocidal and cytotoxicity assays 

The compounds were tested in Minimum Essential Medium (50 µl) with Earle’s 

salts, supplemented [41] with the following modifications: 2-mercaptoethanol 0.2 mM, 

Na-pyruvate 1 mM, hypoxanthine 0.5 mM and 15% heat-inactivated horse serum. Serial 

drug dilutions of seven 3-fold dilution steps covering a range from 90 to 0.123 μg/ml 

were prepared. Then 3x10
4
/ml bloodstream forms of T. b. rhodesiense STIB900 in 50 µl 

medium was added to each well and the plate was incubated at 37°C under a 5% CO2 
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atmosphere for 70h. 10 μl of the viability marker Alamar blue (12.5 mg resazurin 

[Sigma] dissolved in 100 ml phosphate buffered saline) was then added to each well and 

the plates incubated for an additional 2-4 hours to determine cell viability [42]. The 

assay was assessed by reading the fluorescence in each well at an excitation wavelength 

of 536 m and at an emission wavelength of 588 m. The IC50s were calculated from 

the sigmoidal inhibition curves using SoftmaxPro software. 

For the cytotoxicity assessment, 4x10
4
/ml L-6 rat skeletal myoblast cells were seeded in 

96 well plates. Test compounds were prepared and added as above. Incubations and 

assessment of cell viability were carried out as for parasite cultures.  

 

In vivo trypanocidal assays 

Acute infection with Trypanosoma brucei rhodesiense (STIB900): Groups of 4 mice 

were infected by intraperitoneal injection with 10
4 

bloodstream forms of 

T. b. rhodesiense (STIB900) and treated with the test compounds or reference drugs 

once or twice daily for 4 consecutive days, starting on day 3 post-infection [33]. A 

control group was infected but not treated. Parasitaemia was monitored using smears of 

tail-snip blood twice a week after treatment for two weeks followed by once a week 

until 60 days post-infection. Mice were considered cured if there was no parasitaemia 

relapse detected in tail blood over the 60 days observation period.  

Chronic CNS infection with Trypanosoma brucei brucei (GVR35): Groups of 5 mice 

were infected intraperitoneally with 2x10
4 

bloodstream forms of T. b. brucei (GVR35) 

and treated with the test compounds or reference drugs once or twice daily from day 21 

post-infection for 5 days [33,43]. A control group was treated on day 21 with a single 

dose of diminazene aceturate at 40 mg/kg i.p., which is subcurative as it clears the 

trypanosomes only in the hemolymphatic system but not in the CNS leading to a 

subsequent reappearance of trypanosomes in the blood. Parasitemia was monitored 

twice in the first week after treatment followed by once a week until 180 days post 

infection. Mice were considered cured when there was no parasitemia relapse detected 

in tail blood over the 180 days observation period [33,43]. 

All protocols and procedures used in the current study were reviewed and approved 

by the local veterinary authorities of the Canton Basel-Stadt. 
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Genotoxicity assays 

Drug preparation 

For all tests, stock solutions were prepared by formulating the test compound in 

DMSO under subdued lighting conditions with the aid of vortex mixing, warming at 

37°C and ultrasonication, immediately prior to assay to give the maximum required 

treatment solution concentration. Subsequent dilutions were made using DMSO. The 

test article solutions were protected from light and used within approximately 4 hours of 

initial formulation. 

 

Bacterial mutagenicity tests 

Strains: Salmonella typhimurium strains TA1535, TA1537, TA100, TA98 and 

TA102 were obtained from the UK NCTC. TA100NR and TA98NR, which lack the 

classical Salmonella typhimurium nitro-reductase, were obtained from Novartis Pharma 

AG (Switzerland) and the University of York CRU (UK) respectively. It is known that 

TA98 and TA98NR are also deficient in a second ‘supplementary’ nitro-reductase [34]. 

TA1535NR and derivatives of TA1535, TA1537 and TA102 containing knock-outs of 

the classical nitro-reductase gene were constructed and kindly supplied by Dr Masami 

Yamada, National Institute of Health Sciences, Tokyo (Japan).  

Ames tests: Standard bacterial plate incorporation assays were carried out, using 

triplicate plating, essentially as described by [44]. Tests were carried out with and 

without rat liver post-mitochondrial fraction plus co-factors (S9 mix) to provide a 

mammalian metabolic activation system. The S9 fraction was obtained from Molecular 

Toxicology Incorporated USA and was prepared from Sprague-Dawley rats pretreated 

with the mixed cytochrome P 450 enzyme inducer Aroclor 1254. After incubation at 37 

°C for three days, plates were scored for mutant colonies using a Seescan Colony 

Counter (Seescan plc) plate reader. 

In the absence of rat liver S9, the positive controls used were for TA98 and TA98NR 

4-nitoquinoline-1-oxide and for TA1535 and TA1535NR, TA100 and TA100NR, 

sodium azide. For TA1537, 9-aminoacridine was used and for TA102, mitomycin C. In 

the presence of S9, 2-aminoanthracene was used for all strains. 2-Nitrofluorene and 

nitrofurantoin were used as additional positive controls to check the effects of loss of 

the nitro-reductase enzymes in the NR strains on the detection of nitro-containing 

compounds. In the presence of S9, the positive controls used were benzo(a)pyrene for 

the TA98 strains and 2-aminoantracene for the TA100 strains.  
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In vitro micronucleus tests 

Lymphocytes were obtained from healthy, non-smoking female donors. Whole blood 

cultures were established by placing 0.4 mL of pooled heparinised blood into a 

sufficient volume of HEPES-buffered RPMI medium containing 20% (v/v) heat 

inactivated fetal calf serum and 50 g/mL gentamycin. The mitogen, 

phytohaemagglutinin (PHA), reagent grade, was included in the culture medium at a 

concentration of approximately 2% of culture to stimulate the lymphocytes to divide. 

Blood cultures were incubated at 37 ± 1°C and rocked continuously for 48 hours prior 

to treatment. Quadruple cultures were used for the negative control and duplicate 

cultures for the test compounds and the positive control. Tests were carried out with and 

without rat liver S9-mix. 

Preliminary tests were carried out to determine the effects of the test compounds to 

determine concentrations that induced cytotoxicity. Data from concentrations exhibiting 

high cytotoxicity (>55%) were excluded from the analysis. 

a) Protocol used for compound 16 

The test compound was added at 48 hours following culture initiation (stimulation 

by PHA). Cells were exposed to the test compound for 3 hours followed by a 21-hour 

recovery period (+/-S9). In addition (–S9), a further group was exposed for 24 hours 

with no further recovery time, to explore the effects of extended exposure. 

Cytochalasin-B (6 µg/mL per culture), was added at the time of treatment. This 

generates binucleate cells by preventing cytokinesis, without preventing nuclear 

division. Scoring binucleate cells ensures that the cells scored have passed through one 

cell division. Several drops of cells suspended in fixative were spread onto multiple 

clean, dry microscope slides. After the slides were dried the cells were stained for 

5 minutes in filtered 4% (v/v) Giemsa in pH 6.8 buffer. The slides were rinsed, dried 

and mounted with coverslips for scoring. One thousand binucleate cells were scored per 

replicate for the presence of micronuclei, the scoring of such cells ensures that the 

micronuclei seen have resulted from the last nuclear division. Slides were also 

examined for the proportions of mononucleate and binucleate cells per culture. 

Measurements were made to check changes in the osmolality of the culture in the 

presence of the highest concentration of the test compounds and also for any pH 

changes. Studies have shown that significant changes in osmolality and pH can induce 

false positive results in these assays. 
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The positive controls used were mitomycin C (0.08 µg/mL) and vinblastine (0.03 

µg/mL) for the cultures without S9 and cyclophosphamide (12.5 µg/mL), which 

requires metabolism by S9 to generate clastogenic metabolites, for cultures with S9. 

b) Screening protocol used for compounds 14, 31 and 33 

As above, but a 20 hour treatment was used in the absence of rat liver S9, with a 28 

hour recovery period. In the presence of S9, a 3 hour treatment period was used, with a 

45 hour recovery period. For compound 33, quadruple cultures were used for the 

vehicle control and duplicate cultures for the test compound. For compounds 31 and 14, 

duplicate cultures were scored for the vehicle control and single cultures for the test 

compounds. The positive controls used were 4-Nitroquinoline-N-oxide (2.5 or 5.0 

µg/mL) in the absence of S9 and cyclophosphamide (6.25 or 12.5 µg/mL) in the 

presence of S9. 

 

Redox potential measurement 

One-electron reduction potentials were determined by pulse radiolysis following 

an established procedure [22].  

 

 

Financial disclosure 

Studies to evaluate the antiparasitic activity and genotoxicity profile of the compounds 

were financed by DNDi, the synthetic work was financed part by DNDi and part by the 

Foundation for the Polish Science (doctoral grant N204 065 31/1722). DNDi received 

financial support from the following donors for this project: the Ministry of Foreign and 

European Affairs of France, the Department for International Development (DFID) of 

the UK and a Swiss private foundation. None of these donors had any role in the study 

design, data collection and analysis, decision to publish, or preparation of the 

manuscript. 

 

 

Contributors 

B Bourdin Trunz identified the 1-aryl-4-nitro-1H-imidazoles of the present study as 

potential new drug candidates for HAT, and coordinated the chemistry work, the 

parasitology and genotoxicity studies with partners as part of DNDi’s nitroimidazoles 



 

 114 

project. J Suwinski and R Je˛drysiak designed and synthesized the molecules, the anrorc 

coupling reaction was developed in the laboratory of J Suwinski; B Bourdin Trunz, J 

Suwinski and R Jedysiak contributed to the structureeactivity relationship (SAR) 

analysis. D Tweats acted as a toxicology expert consultant for the design and 

interpretation of the genotoxicity studies. M Kaiser and R Brun designed, conducted 

and interpreted the parasitology studies. E Torreele was the overall project leader of 

DNDi’s nitroimidazoles project. B Bourdin Trunz drafted the manuscript with input 

from all authors. 

 

 

Conflict of interest 

The authors declare that they have no conflict of interests. 

 

 

Acknowledgments 

The various nitro-reductase deficient bacterial strains were constructed and supplied by 

Dr Masami Yamada, of the National Institute of Health Sciences, Tokyo, Japan. Dr 

Ricardo Del Sol (University of Swansea) confirmed the NR status of these strains. The 

redox potentials were measured in the laboratory of Prof RF Anderson from the 

University of Auckland in New Zealand. We also thank Christiane Braghiroli and Guy 

Riccio of the Swiss TPH for their assistance with the mouse model experiments. 

The Ames tests and the in vitro cytogenetic experiments were contracted out to Covance 

Laboratories Ltd, Harrogate, UK. 

 

Appendix. Supplementary data 

Supplementary data related to this article can be found online at 

doi:10.1016/j.ejmech.2011.01.071. 

 

References 

1. WHO fact sheet (http://www.who.int/mediacentre/factsheets/fs259/en/ (last 

accessed on 19 November 2010). 

2. R. Brun, J. Blum, F. Chappuis, C. Burri, Human African trypanosomiasis, Lancet 

375 (9709) (2010) 148-159. 

http://www.who.int/mediacentre/factsheets/fs259/en/


 

 115 

3. M.P. Barrett, D.W. Boykin, R. Brun, R.R. Tidwell, Human African 

trypanosomiasis: pharmacological re-engagement with a neglected disease, Br. J. 

Pharmacol. 152 (2007) 1155-1171. 

4. G. Priotto, S. Kasparian, W. Mutombo, D. Ngouma, S. Ghorashian, U. Arnold, S. 

Ghabri, E. Baudin, V. Buard, S. Kazadi-Kyanza, M. Ilunga, W. Mutangala, G. 

Pohlig, C. Schmid, U. Karunakara, E. Torreele, V. Kande, Nifurtimox-eflornithine 

combination therapy for second-stage African Trypanosoma brucei gambiense 

trypanosomiasis: a multicentre, randomised phase III, non-inferiority trial, Lancet 

374 (9683) (2009) 56-64. 

5. J. Opigo, C. Woodrow, NECT trial: more than a small victory over sleeping 

sickness, Lancet 374 (9683) (2009) 7-9. 

6. E. Torreele, B. Bourdin Trunz, D. Tweats, M. Kaiser, R. Brun, G. Mazué, M.A. 

Bray, B. Pécoul, Fexinidazole - A new oral nitroimidazole drug candidate entering 

clinical development for the treatment of sleeping sickness, PLoS Neglected 

Tropical Diseases, in press. 

7. http://www.clinicaltrials.gov/ct2/show/NCT00982904?term=fexinidazole&rank=1

, (last accessed on 19 November 2010). 

8. W. Raether, H. Hänel, Nitroheterocyclic drugs with broad spectrum activity, 

Parasitol. Res. 90 (2003) S19–S39. 

9. E. Winkelmann, W. Raether, U. Gebert, A. Sinharay, Chemotherapeutically active 

nitro compounds, 4. 5-Nitroimidazoles (Part I-IV). Arzneimittelforschung (1977) 

27-28. 

10. A. Marie-Daragon, M.C. Rouillard, B. Bouteille, et al, An efficacy trial on 

Trypanosoma brucei brucei of molecules permeating the blood-brain barrier and 

of megazol, Bull. Soc. Pathol. Exot. 87 (1994) 347-352. 

11. B. Bouteille, A. Marie-Daragon, G. Chauviere, et al, Effect of megazol on 

Trypanosoma brucei brucei acute and subacute infections in Swiss mice, Acta 

Trop. 60 (1995) 73-80. 

12. C.D. Freeman, N.E. Klutman, K.C. Lamp, Metronidazole. A therapeutic review 

and update, Drugs 54 (1997) 679-708. 

13. H.B. Fung, T.L. Doan, Tinidazole: a nitroimidazole antiprotozoal agent, Clin 

Ther. 27(12) (2005) 1859-1884. 

14. J.A. Pérez-Molina, A. Pérez-Ayala, S. Moreno, M.C. Fernández-González, J. 

Zamora, R. López-Velez, Use of benznidazole to treat chronic Chagas' disease: a 

http://www.clinicaltrials.gov/ct2/show/NCT00982904?term=fexinidazole&rank=1
http://www.clinicaltrials.gov/ct2/show/NCT00982904?term=fexinidazole&rank=1
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Doan%20TL%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Clin%20Ther.');
javascript:AL_get(this,%20'jour',%20'Clin%20Ther.');
http://www.ncbi.nlm.nih.gov/pubmed?term=%22P%C3%A9rez-Molina%20JA%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22P%C3%A9rez-Ayala%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Fern%C3%A1ndez-Gonz%C3%A1lez%20MC%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Zamora%20J%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22L%C3%B3pez-Velez%20R%22%5BAuthor%5D


 

 116 

systematic review with a meta-analysis, J. Antimicrob. Chemother. 64(6) (2009) 

1139-1147. Epub 2009 Oct 9. 

15. A.L. de Andrade, F. Zicker, R.M. de Oliveira, S. Almeida Silva, A. Luquetti, L.R. 

Travassos, I.C. Almeida, S.S. de Andrade, J.G. de Andrade, C.M. Martelli, 

Randomised trial of efficacy of benznidazole in treatment of early Trypanosoma 

cruzi infection. Lancet 348 (9039) (1996) 1407-1413. 

16. C.E. Voogd, On the mutagenicity of nitroimidazoles, Mutat. Res. 86 (1981) 243-

277. 

17. F. Nesslany, S. Brugier, M.A. Mouries, F. Le Curieux, D. Marzin, In vitro and in 

vivo chromosomal aberrations induced by megazol, Mutat. Res. 560 (2004) 147-

158. 

18. B. Enanga, M.R. Ariyanayagam, M.L. Stewart, M.P. Barrett, Activity of megazol, 

a trypanocidal nitroimidazole, is associated with DNA damage, Antimicrob. 

Agents Chemother. 47 (2003) 3368-3370. 

19. C.K. Stover, P. Warrener, D.R. Van Devanter, D.R. Sherman, T.M. Arain, M.H. 

Langhorne, S.W. Anderson, J.A. Towell, Y. Yuan, D.N. McMurray, B.N. 

Kreiswirth, C.E. Barry, W.R. Baker, A small-molecule nitroimidazopyran drug 

candidate for the treatment of tuberculosis, Nature 405(6789) (2000) 962-966. 

20. M. Matsumoto, H. Hashizume, T. Tomishige, M. Kawasaki, H. Tsubouchi, H. 

Sasaki, Y. Shimokawa, M. Komatsu, OPC-67683, a nitro-dihydro-imidazooxazole 

derivative with promising action against tuberculosis in vitro and in mice, PLoS 

Med. 3(11) (2006) e466. 

21. C.E. Barry 3
rd

, H.I.M. Boshoff, C.S. Dowd, Prospects for Clinical Introduction of 

Nitroimidazole Antibiotics for the Treatment of Tuberculosis, Curr. Pharm. Des. 

10 (2004) 3239-3262. 

22. P. Wardman, Reduction potentials of one-electron couples involving free radicals 

in aqueous solution, J. Phys. Chem. Ref. Data 18(4) (1989) 1637-1756. 

23. E. Salwińska, J. Suwiński, Nitroimidazoles. Part X. Synthesis of 1-aryl-4-

nitroimidazoles from 1,4-dinitroimidazoles and primary aromatic amines, Polish 

J. Chem. 64 (1990) 813-817. 

24. K. Walczak, A. Gondela, J. Suwiński, Synthesis and anti-tuberculosis activity of 

N-aryl-C-nitroazoles, Eur. J. Med. Chem. 39(10) (2004) 849-853. 

http://www.ncbi.nlm.nih.gov/pubmed?term=%22Luquetti%20A%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Travassos%20LR%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Martelli%20CM%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'Lancet.');
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Kawasaki%20M%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Sasaki%20H%22%5BAuthor%5D
http://www.ncbi.nlm.nih.gov/pubmed?term=%22Komatsu%20M%22%5BAuthor%5D
javascript:AL_get(this,%20'jour',%20'PLoS%20Med.');
javascript:AL_get(this,%20'jour',%20'PLoS%20Med.');
http://jpcrd.aip.org/jpcrbu/v18/i4/p1637_s1
http://jpcrd.aip.org/jpcrbu/v18/i4/p1637_s1


 

 117 

25. R. Jędrysiak, J. Suwiński, Synthesis and characterization of some 1-halophenyl-4-

nitroimidazoles, Polish J. Chem. 81 (2007) 1935-1948. 

26. R. Jędrysiak, M. Sawicki, P. Wagner, J. Suwiński, Ring transformations in 

reactions of 1,4-dinitropyrazole with N-nucleophiles, Arkivoc vi (2007) 103-111. 

27. H.C. van der Plas, Degenerate ring transformations of heterocyclic compounds, 

in: A. R. Katritzky FRS (Ed.), Adv. Het. Chem. 74 (1999) pp. 126-128. 

28. R.A. Sheldon, The E factor: fifteen years on, Green Chem. 9(12) (2007) 1273-

1283. 

29. L.I. Larina, V.A. Lopyrev, M.G. Voronkov, Methods of nitroazoles synthesis, 

Russ. J. Org. Chem. 30(7) (1994) 1141-1179; translated from: Zhur. Org. Chim. 

30(7) (1994) 1081-1118. 

30. C.J. Helal, Z. Kang, J.C. Lucas, B.R. Bohall, Stereoselective synthesis of cis-1,3-

disubstituted cyclobutyl kinase inhibitors, Org. Lett. 6(11) (2004) 1853-1856; see 

also: Org. Lett. 6(17) (2004) 3017. 

31. E. Salwińska, J. Suwiński, Nitroimidazoles. Part XVI. Novel reaction of 1-(p-

toluenosulfonyl)-4-nitroimidazole with aniline, Polish J. Chem. 66 (1992) 1623-

1626. 

32. J. Suwiński, E. Salwińska, Reactions of 1-arenesulfonyl-4­nitroimidazoles with 

aniline in aqueos methanol solution, Tetrahedron 50(19) (1994) 5741-5752. 

33. T. Wenzler, D.W. Boykin, M.A. Ismail, J.E. Hall, R.R. Tidwell, R. Brun, New 

treatment option for second-stage African sleeping sickness: in vitro and in vivo 

efficacy of aza analogs of DB289, Antimicrob. Agents Chemother. 53(10) (2009) 

4185-92. Epub 2009 Jul 20. 

34. S. Porwollik, R.M. Wong, S.H. Sims, R.M. Schaaper, D.M. DeMarini, M. 

McClelland, The Delta uvrB mutations in the Ames strains of Salmonella span 

15-119 genes, Mutat. Res. 463 (2001) 1-11. 

35. J. Suwiński, E. Salwińska, Nitroimidazoles. Part IX. Some reactions of 1,4-

dinitroimidazoles, Polish J. Chem. 61 (1987) 913-920. 

36. R. Andreozzi, R. Marotta, R. Sanchirico, Thermal decomposition of acetic 

anhydride-nitric acid mixtures, J. Hazardous Materials A90 (2002) 111-121. 

37. T. Tanouchi, M. Kawamura, I. Ohyama, I. Kajiwara, Y. Iguchi, T. Okada, T. 

Miyamoto, K. Taniguchi, M. Hayashi, K. Iizuka, M. Nakazawa, Highly selective 



 

 118 

inhibitors of thromboxane synthetase. 2. Pyridine derivatives, J. Med. Chem. 

24(10) (1981) 1149-1155. 

38. A.Higginbottom, P. Hill, W.F. Short, Syntheses in the phenanthrene series. Part 

V. 4-Methoxy-1-methylphenanthrene, J. Chem. Soc. (1937) 263-266. 

39. West R.W., Reduction of aromatic nitro-compounds, J. Chem. Soc. Trans. 127 

(1925) 494-495. 

40. P. Kovacic, J.F. Gormish, Amination of haloaromatics with trichloramine-

aluminum chloride. σ substitution and nucleophilic σ substitution, J. Am. Chem. 

Soc. 88(16) (1966) 3819-3824. 

41. T. Baltz, D. Baltz, C. Giroud, J. Crockett, Cultivation in a semi-defined medium 

of animal infective forms of Trypanosoma brucei, T. equiperdum, T. evansi, T. 

rhodesiense and T. gambiense, EMBO J 4 (1985) 1273–1277. 

42. B. Räz, M. Iten, Y. Grether-Bühler, R. Kaminsky, R. Brun, The Alamar Blue 

assay to determine drug sensitivity of African trypanosomes in vitro, Acta Trop 

68 (1997) 139-147. 

43. F.W. Jennings, G.D. Gray, Relapsed parasitaemia following chemotherapy of 

chronic T. brucei infections in mice and its relation to cerebral trypanosomes, 

Contrib. Microbiol. Immunol. 7 (1983) 147-154. 

44. D.M. Maron, B.N. Ames, Revised methods for the Salmonella mutagenicity test, 

Mutat. Res. 113 (1983) 173-215. 

  



 

 119 

 

 

 

Novel 3-Nitro-1H-1,2,4-triazole-based Aliphatic and Aromatic 

Amines as anti-Chagasic Agents 
 

Maria V. Papadopoulou
†,*

, Bernadette Bourdin Trunz
‡
, William D. Bloomer

†
, Caroline 

McKenzie
§
, Shane R. Wilkinson

§
, Chaiya Prasittichai

¶
, Reto Brun

£
, Marcel Kaiser

£
, and 

Els Torreele
‡
 

 

†
NorthShore University HealthSystem, Evanston IL, US 

‡
Drugs for Neglected Diseases 

initiative (DNDi), Geneva, Switzerland 
§
School of Biological & Chemical Sciences, 

Queen Mary University of London, London UK 
¶
Northwestern University, Dept. of 

Chemistry, Evanston IL, US 
£
Swiss Tropical and Public Health Institute, Parasite 

Chemotherapy, Basel, Switzerland 

*
Correspondence to: Maria V. Papadopoulou, Ph.D., NorthShore University 

HealthSystem, Department of Radiation Medicine, 2650 Ridge Ave., Evanston IL, 

60201, USA. Tel: (847)570-2262; Fax: (847)570-1878, 

mpapadopoulou@northshore.org. 

 

a
Abbreviations: T. cruzi, Trypanosoma cruzi; T. brucei, Trypanosoma brucei; HAT, 

human African trypanosomiasis; Nfx, nifurtimox (4-(5-nitrofurfurylindenamino)-3-

methylthio-morpholine-1,1-dioxide); Bnz, benznidazole (N-benzyl-2-(2-nitro-

1Himidazol- 1-yl)acetamide); NTR, type I nitroreductase; TbNTR, T. brucei NTR; 

DNDi, Drugs for Neglected Diseases initiative; SI, selectivity index; SARs, structure-

activity relationships; E1/2, reduction potential; tet, tetracycline. 

 

 

This article has been published in: J Med Chem. 2011 Dec 8;54(23):8214-23 

 

CHAPTER 5 

mailto:mpapadopoulou@northshore.org


 

 120 

Abstract 

A series of novel 2-nitro-1H-imidazole- and 3-nitro-1H-1,2,4-triazole-based aromatic 

and aliphatic amines were screened for anti-trypanosomal activity and mammalian 

cytotoxicity by the Drugs for Neglected Diseases initiative (DNDi). Out of 42 

compounds tested, eighteen 3-nitro-1,2,4- triazoles and one 2-nitroimidazole displayed 

significant growth inhibitory properties against T. cruzi amastigotes (IC50 ranging from 

40 nM to 1.97 μM), without concomitant toxicity towards the host cells (L6 cells), 

having selectivity indices (SI) 44 to 1320. Most (16) of these active compounds were up 

to 33.8-fold more potent than the reference drug benznidazole, tested in parallel. Five 

novel 3-nitro-1,2,4-triazoles were active against bloodstream form (BSF) T. b. 

rhodesiense trypomastigotes (IC50 at nM levels and SI 220 to 993). An NADH-

dependent nitroreductase (TbNTR) plays a role in the anti-parasitic activity, since BSF 

T. b. brucei trypomastigotes with elevated TbNTR levels were hypersensitive to tested 

compounds. Therefore, a novel class of affordable 3-nitro-1,2,4-triazole-based 

compounds with antitrypanosomal activity has been identified. 

 

Keywords 

nitrotriazoles; amines; T. cruzi; Chagas disease; antitrypanosomal agents 

 

Introduction 

The protozoan parasites Trypanosoma cruzi (T. cruzi)
a
, Trypanosoma brucei (T. brucei), 

and various Leismania species, also referred to as trypanosomatids, are the causative 

agents of Chagas disease, Human African Trypanosomiasis (HAT) and different forms 

of leishmaniasis, respectively. Over 10 million people are infected by T. cruzi and 

50,000 to 80,000 by T. b. gambiense or T. b. rhodesiense, resulting in more than 40,000 

deaths per year.
1
 Chagas disease is transmitted by blood sucking triatomine insects and 

occurs mainly in Latin America. Although over the past 20 years the number of 

incidences has declined, primarily due to vector control initiatives,
2
 the number of cases 

in non-endemic regions such as the United States is on the rise.
3
 Reasons for this rise 

include population migration, drug usage and medical practices. With no immediate 

prospect for vaccines, chemotherapy is the only way to fight the parasite in the patient. 
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Chart 1 

 

 

Currently two nitroheterocycle prodrugs, Nifurtimox (4-(5-nitrofurfurylidenamino)-3- 

methylthio-morpholine-1,1-dioxide) (Nfx) and Benznidazole (N-benzyl-2-(2-nitro 

1Himidazol- 1-yl)acetamide) (Bnz) (Chart 1), are used to treat Chagas disease.
4
 

However, their use is problematic as both can cause side effects, have limited efficacy, 

while some strains are refractory to treatment.
5
 In addition, the large quantities of 

medication required render it expensive, and the recommended long course of treatment 

is often not completed, resulting in the development of resistance. Therefore, the need 

for new drugs to treat this disease is urgent. 

As with most nitroheterocyclic compounds, Nfx and Bnz both function as prodrugs and 

must undergo activation before mediating their cytotoxic effects. Initially it was 

proposed that the trypanocidal action of Nfx was due to its ability to induce oxidative 

stress within the parasite
5-7

 and several trypanosomal flavoproteins have been shown to 

mediate the 1- electron reduction of this prodrug's conserved nitro-group that 

subsequently promotes formation of superoxide anions via a futile cycle.
7-9

 However, 

although this reaction does occur in parasite cells, the available functional data suggests 

that it does not occur at levels that are toxic to the trypanosome.
10

 Recently, an 

alternative reduction pathway has been elucidated involving the activity of a type I 

nitroreductase (NTR).
11

 This enzyme can mediate a series of 2 electron reduction 

reactions of both Nfx and Bnz resulting in fragmentation of the heterocyclic ring and 

production of toxic metabolites.
10,12

 

Recent reports about several new nitroheterocycles having trypanocidal activities with 

no or low toxicity,
 13-18

 in conjunction with the fact that the activation of 

nitroheterocyclic prodrugs can be catalyzed by the type I NTR, which is normally 

absent in most eukaryotes, with trypanosomes being a major exception, have led to a 

renewed interest in the use of these compounds as antiparasitic agents. 
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Chart 2 

 

 

In collaboration with the Drugs for Neglected Diseases initiative (DNDi), we have 

found that 9-[(3-nitro-1H-1,2,4-triazolyl)-propylamino]acridine hydrochloride (NTLA-1 

or NLA-6, 1; Chart 2), a compound that was originally designed as a DNA-targeting 

anticancer agent,
19,20

 and which was screened against T. cruzi, T. b. rhodesiense and L. 

donovani, was significantly and selectively active against T. cruzi amastigotes in 

infected L6 myoblasts, without showing toxicity for the host cells.
21

 Thus, NTLA-1 

demonstrated an IC50 of 140 nM for the parasite and a selectivity index (SI = IC50 for 

L6 cells/IC50 for T. cruzi) of 146.
21

 NTLA-1, given at just 2 mg/kg/day, for 50 days in 

mice infected with T. cruzi, in the acute phase of infection, resulted in a rapid and 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3258117_nihms335920f3.jpg
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persistent drop in peripheral parasite levels and in a fraction of cures (20%).
22

 

Importantly, there was an absolute correlation between treatment efficacy as determined 

parasitologically and the increase in the fraction of T. cruzi-specific CD8+ T cells with a 

T central memory phenotype in the peripheral blood of treated mice.
22

 However, 

NTLA-1, which inhibits topoisomerase I and II,
20

 demonstrated toxicity at 15 mg/kg 

given i.p. for 30 days. Therefore, a more thorough investigation was initiated for the 

development of less toxic and more efficacious nitrotriazole- and nitroimidazole-based 

compounds as trypanocidal agents. Here we describe the synthesis and in vitro 

evaluation of 3-nitro-1H-1,2,4-triazole-based and 2- nitroimidazole-based aromatic and 

aliphatic amines as antiparasitic agents. 

 

Chemistry 

The structure of all compounds is depicted on Chart 2. Their synthesis is 

straightforward and based on well-established chemistry, outlined in Scheme 1. 

Aromatic amines 1-14 and 16-24 were synthesized by coupling the appropriate 

nitrotriazole- or nitroimidazole alkyl amine
19

 with the appropriate chloro- or fluoro-

aromatic chromophore
23

 by nucleophilic aromatic substitution (Scheme 1A). The yields 

were in general moderate to good with the exception of 18. Aliphatic secondary and 

tertiary amines 26-38 were synthesized via the same reaction by nucleophilic attack of 

the appropriate nitrotriazole- or nitroimidazole alkyl amine to a chosen bromide in the 

presence of K2CO3 (Scheme 1B). In most cases the monoalkylated product was the 

dominant one, since 1 equivalent of the required halide was used. Piperazine derivatives 

39-42 were synthesized similarly, by nucleophilic attack of the appropriate, 

commercially available mono-substituted piperazine to the appropriate nitrotriazole- or 

nitroimidazole alkyl bromide
24

 (Scheme 1C). Finally, enamines 15 and 25 were 

synthesized from 2,3-dichloro-1,4-naphthoquinone and 2-nitroimidazole-propylamine 

or 3-nitro-1,2,4-triazole-propylamine, respectively, by nucleophilic substitution 

(Scheme 1D). 

 

Results and Discussion 

Anti-proliferative effects of nitrotriazole and nitroimidazole compounds 

The in vitro growth inhibitory properties of all compounds against T. b. rhodesiense 

bloodstream form trypomastigotes, T. cruzi amastigotes (in infected L6 myoblasts),  
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Schema 1 

 

 

axenically cultured L. donovani amastigotes and rat skeletal myoblasts (L6 cells) were 

evaluated by using standard drug screens
25

. From resultant dose response curves, IC50 

values in μM were determined (Table 1). The criteria for activity were set as follows: 

For T. b. rhodesiense, compounds that gave an IC50 < 0.5 μM, were designated as 

‘active’, while those yielding an IC50 = 0.5-6.0 μM or an IC50 > 6.0 μM were 

designated ‘moderately active’ and ‘inactive’, respectively. For T. cruzi, IC50 < 4.0 μM, 

‘active’; IC50 = 4.0-60 μM, ‘moderately active’; IC50 > 60 μM, ‘inactive’. For L. 

donovani, IC50 < 1 μM, ‘active’; IC50 = 1.0-6.0 μM, ‘moderately active’; IC50 > 6.0 

μM, ‘inactive’. Based on these criteria, all but compounds 19 and 31 were active or 

moderately active against T. cruzi, about 66 % of all compounds were active or 

moderately active against T. brucei rhodesiense, and only 6 compounds (∼ 14%) were 

active or moderately active against L. donovani parasites. However, for a compound to 

be considered for further in vivo investigation, the growth inhibitory effect against the 

mammalian cell line L6 has to be evaluated from which a measure of a compound's 

cytotoxicity can be deduced. Thus, the selectivity index (SI), namely the ratio of IC50 

against L6 cells to IC50 against each parasite, is also an important parameter. This SI 

must be ≥ 100 for T. b. rhodesiense, ≥ 50 for T. cruzi and ≥ 20 for L. donovani axenic 

amastigotes. 

Based on the above, only 6 compounds (16-18, 24, 36, 38) were active and selective 

against 
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Table 1: In vitro screening data against three different trypanosomatids 

Compound  L6 cellsd Compound

IC-50 SI IC-50 SI IC-50 SI IC-50 Typee

1 0.61 34 0.140 147 35.4 1 20.50 Nitro-Trz

2 0.134 74 0.151 66 10.2 1 9.94 Nitro-Trz

3 0.996 <1 0.996 <1 9.09 <1 0.309 Nitro-im

4 0.60 3 0.926 2 14.8 <1 1.68 Nitro-im

5 1.40 18 1.04 24 54.4 <1 25.0 Nitro-im

6 1.87 36 3.51 19 39.1 2 66.8 Nitro-im

7 3.46 9 2.10 15 68.3 <1 31.6 Nitro-im

8 3.92 22 1.97 45 10.1 9 87.8 Nitro-im

9 2.76 12 3.63 9 6.17 5 32.5 Nitro-im

10 15.2 >16 4.28 >55 20.1 >12 >236 Nitro-im

11 10.3 >28 7.08 >41 >95.7 ~3 >287 Nitro-im

12 11.8 >23 41.8 >7 98.1 >3 >275 Nitro-im

13 2.26 7 0.968 17 3.63 5 16.5 Nitro-im

14 15.5 1 9.67 1 12.4 1 11.7 Nitro-im

15 0.62 6 30.1 <1 0.516 8 3.9 Nitro-im

16 0.309 463 0.607 236 45.8 3 143 Nitro-Trz

17 0.193 708 0.140 976 64.5 2 137 Nitro-Trz

18 0.117 973 0.305 373 137.0 1 114 Nitro-Trz

19 21.8 >14 92.1 >3 >299 ~1 >299 Trz

20 1.42 68 1.48 66 9.48 10 97.0 Nitro-Trz

21 0.562 137 1.74 44 8.69 9 77.0 Nitro-Trz

22 2.19 >131 33.7 >8 >95.4 ~3 >286 Nitro-Trz

23 2.22 60 1.03 129 182 1 133 Nitro-Trz

24 0.435 220 0.461 209 >275 <1 95.8 Nitro-Trz

25 0.882 8 15.6 <1 6.53 1 7.2 Nitro-Trz

26 13.8 10 24.5 6 >69.4 ~2 140 Nitro-im

27 23.0 >7 3.77 >46 6.49 >27 >172 Nitro-im

28 21.6 4 8.02 10 4.27 19 79.6 Nitro-im

29 7.84 18 0.169 816 11.1 12 138 Nitro-Trz

30 8.17 10 1.96 40 4.87 16 78.8 Nitro-Trz

31 32.3 >7 123 >2 172.0 >1 >223 Trz

32 8.56 16 6.05 23 80.3 2 137 Nitro-im

33 14.2 7 4.67 20 18.7 5 93.6 Nitro-im

34 1.05 136 0.311 460 63.8 2 143 Nitro-Trz

35 0.92 78 0.358 200 9.58 7 71.6 Nitro-Trz

36 0.463 100 0.320 144 9.33 5 46.0 Nitro-Trz

37 3.61 34 0.320 383 159 1 122 Nitro-Trz

38 0.271 339 0.145 634 0.348 264 91.9 Nitro-Trz

39 15.3 >13 20.7 >9 >191 ~1 >191 Nitro-im

40 1.38 >138 0.340 >562 58.2 >3 >191 Nitro-Trz

41 1.20 100 0.412 287 44.5 3 118 Nitro-Trz

42 5.33 10 0.040 1320 25.9 2 52.8 Nitro-Trz

Melarsoprol 0.01*

Benznidazole 1.35*

Miltefosine 0.44*

active

moderate active

active but low specificity

T.b.rhodesiense a T. cruzib L.donovani axen. c

All values as µM

 
a
STIB 900 trypomastigotes; 

b
Tulahuen C4 amastigotes; 

c
MHOM-ET-67/L82 

amastigotes; 
d
Cytotoxicity measurements; 

e
Nitro-Trz: 3-nitro-1.2.4-triazole; Nitro-Im: 

2-nitro-1,3-imidazole; The IC50 values are the means of two independent assays, the 

individual values vary less than a factor 2. *Median values from 43 measurements in 

parallel with each compound. SI = IC50 in L6 cells / IC50 in parasites. Compounds in 

green have been previously synthesized. 
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T. b. rhodesiense, whereas 18 compounds (1, 2, 16-18, 20, 23, 24, 27, 29, 34-38, 40-42) 

were active and selective against T. cruzi (Table 1). Only one compound, 38, was active 

and selective against L. donovani. Therefore, the antichagasic activity of these 

compounds is of the greatest interest based on the number of active molecules.  

 

Evaluation of Structure-Activity Relationships: Analysis of the nitroheterocyclic 

ring  

As a large set of the compounds showed significant anti-T. cruzi activity, we were able 

to conduct a detailed structure-activity relationship. Analysis of the trypanocidal activity 

in relation to the nitroheterocyclic ring revealed that compounds (3-9, 13, 21, 27, 30) 

that were active against T. cruzi (IC50< 4 μM) but not sufficiently specific (SI < 50), 

were exclusively 2-nitroimidazole derivatives except for compounds 21 and 30. 

Similarly, moderately active compounds with low specificity against T. cruzi (11, 12, 

14, 15, 22, 25, 26, 28, 32, 33, 39) were seen mainly in the 2-nitroimidazole series. In 

contrast, all 3-nitrotriazoles, with the exception of 22 and 25, demonstrated significant 

in vitro anti-T. cruzi activity coupled with excellent selectivity (Table 1). In all cases 

where an active/moderately active trypanocidal effect was observed, irrespective of SI 

values, the 3-nitrotriazole derivatives (1, 16, 17, 20, 21, 29, 38) always had a greater 

effect (1.3 - 45 fold) on parasite growth as compared to their 2-nitroimidazole 

counterparts (3, 5, 6, 8, 9, 26, 27), and no toxicity: compare 1 with 3, 16 with 5, 17 with 

6 etc (Table 1). Similar results are seen even with the moderately active and not specific 

3-nitrotriazole 25 (a naphthoquinone derivative) which is 2-fold more potent than its 2-

nitroimidazole analog 15. 

To determine whether the nitro-group was important in the anti-parasitic activity of the 

triazoles, two non-nitro compounds (19 and 31) were synthesized and their growth 

inhibitory properties against T. cruzi compared with that of their nitro-analogs 17 and 

29 (note: 31 has an extra methylene group as compared to 29). In both cases, the 

removal of the nitro-group led to inactivity (IC50 > 60 μM) and the IC50 value was 

significantly increased (658- and 730-fold, respectively) compared to the nitro-

containing analog (Table 1). The anti-HAT activity of 19 and 31 was also reduced 

compared to that of 17 and 29, but to a lesser degree. Therefore, the nitro group present 

on the triazole ring is essential in mediating the anti-parasitic activity of these 

compounds. 
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Table 2: Biological and physical properties of analogs active against T. cruzi 

amastigotes 

a
Bzn/Comp: IC50 of Bnz / IC50 of Comp. PSA: Polar surface area. *Median values 

from 43 measurements in parallel with each compound. All physical properties were 

predicted by using the Marvin Calculator (www.chemaxon.com). 

 

Analysis of aromatic amines 

A closer look at the SARs for all antichagasic compounds is given in Table 2. In the 

subclass of 3-nitrotriazole bearing aromatic amines (1, 2, 16-18, 20, 21, 23, 24), activity 

decreases in the following order: acridines (1, 2) ≥ quinolines (16-18) > 1,5-

naphthyridines (23, 24) > quinazolines (20, 21). The 2-nitroimidazole linked 

quinazoline derivative 8 demonstrates similar activity with the 3-nitrotriazole analogs 

20 and 21. 

An extra methylene group in the linkage in compound 2 and the chloro- substituent in 

the acridine ring increased lipophilicity and toxicity, compared to its analog 1, but did 

not decrease activity. It is assumed that the acridine compounds 1 and 2 demonstrate 

increased toxicity and lack of sufficient selectivity due to DNA-intercalation
19

 and 

topoisomerase I/II inhibition.
20

 Thus, compound 1, which was tested in vivo for Chagas, 

could not be given at sufficient doses for an extended period of time, due to the 

observed toxicity.
22

 

Comparing the quinoline analogs 16 and 17, it is observed that increased lipophilicity in 

17, due to an extra methylene group in the linkage, slightly increased toxicity (Table 1); 

  T. cruzi  SI Bzn/Compa clogP pKa Lipinski  PSA (Å2) 

Compound IC-50 (µM)         Rule of 5   

1 0.14 147 9.6 3.20 9.20 S 101.45 

2 0.15 66 8.9 4.16 8.84 S 110.68 

8 1.97 45 0.7 4.56 5.06 S 101.45 

16 0.61 236 2.2 2.43 7.31 S 101.45 

17 0.14 976 9.6 2.95 7.31 S 101.45 

18 0.31 373 4.4 3.22 7.53 S 101.45 

20 1.48 66 0.9 4.05 5.06 S 114.34 

21 1.74 44 0.8 4.52 5.06 S 114.34 

23 1.03 129 1.3 0.99 6.81 S 114.34 

24 0.46 208 2.9 1.51 6.81 S 114.34 

29 0.17 816 8.0 3.51 9.44 S 88.56 

34 0.31 460 4.3 2.60 8.76 S 101.45 

35 0.36 200 3.8 5.55 6.87 V (2) 105.55 

36 0.32 144 4.2 5.88 6.87 V (2) 105.55 

37 0.32 383 4.2 2.63 9.65 S 88.56 

38 0.15 634 9.3 5.62 8.79 V (2) 79.77 

40 0.34 >562 4.0 2.86 8.33 S 83.01 

41 0.41 287 3.3 3.38 8.52 S 83.01 

42 0.04 1320 33.8 3.03 7.85 S 83.01 

Bnz 1.35*   1.0 1.32   S 92.74 
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however, at the same time activity was also increased, resulting in an improved SI (by a 

factor of 4) compared to 16. Comparing the analogs 17 and 18, it is observed that the 

replacement of chlorine in 17 with a trifluoromethyl group increases lipophilicity and 

toxicity in 18, however the activity remains at low nM concentrations, slightly less than 

that in 17, but still better than the one in 16. All three quinoline compounds show 

excellent selectivity, significantly higher than the threshold of 50 we have set, and are 

candidates for in vivo studies. 

 

Table 3.  The effect of type I Nitroreductase (TbNTR) on the activity of selected 

compounds against bloodstream-form T. brucei brucei parasites. 

a
 Bloodstream form  wild type T. brucei brucei parasites; 

b
 bloodstream form T. b. 

brucei,  engineered to over-express  type I nitroreductase in the presence of tetracycline 

(tet). 
C
 Reduction potential  of each compound was measured in DMSO (except for 17, 

in CH3CN) by cyclic voltammetry relative to Ag/AgCl. d The E1/2 value is taken from 

ref. [25]. 

 

Comparing the quinazoline systems 20 and 21 (Tables 1 and 2), it is observed that in 

this case an extra methylene group in the linkage of 21 did not improve the antichagasic 

activity but increased lipophilicity and thus toxicity, lowering thus the SI from 66 to 44. 

Similar results, but significantly more prominent, can be seen with the 2-nitroimidazole-

based quinazoline systems 8 and 9, which are the corresponding analogs of 20 and 21, 

respectively; in this case 9 was totally inactive, whereas 8 is more comparable with 21 

rather than 20 with regard to its antichagasic activity and selectivity (Table 2). 

Finally, in the case of the two naphthyridine compounds 23 and 24, the beneficial effect 

of an extra methylene group in the linkage of 24 is reflected in its improved activity and 

selectivity, despite its increased toxicity (Tables 1 and 2). 

ID No T.b. brucei
a
 TbNTR

b
 TbNTR

b
 Ratio E1/2

c 

  IC-50 (µM) -tet +tet -tet/+tet       (V)  

8 7.47 ± 0.71 7.58±0.19 0.95±0.11 8.00 -1.03 

17 0.17 ± 0.04 0.44±0.06 0.10±0.04 4.00 -1.18 

20 2.63 ± 0.25 4.48±0.19 0.07±0.02 64.00 -1.04 

23 > 10 nd nd nd nd 

29 7.83 ± 0.32 11.08±2.50 0.76±0.16 14.00 -1.07 

38 0.21 ± 0.01 0.20±0.01 0.10±0.02 2.00 -1.06 

40 > 10 nd nd nd nd 

41 > 10 nd nd nd -1.04 

42 2.30 ± 0.10 2.63±0.12 0.21±0.01 13 nd 

Nifurtimox d   1.71 ± 0.06 0.13±0.04 13 -0.88 
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It is worth mentioning that while alteration in the length of the linkage between the 

nitrotriazole/imidazole ring and aromatic chromophore in the aromatic amines can not 

always predict the direction of changes in the antichagasic activity, it is clear in all cases 

(2, 17, 18, 21, 24) that four methylene groups in the linkage favor anti-HAT activity 

(Table 1). 

 

Analysis of aliphatic amines 

The 3-nitrotriazole-based benzylamines 29, 37 and 38 are all active against T. cruzi and 

demonstrate very good SI values (Table 2). The dibenzylated derivative 38 is 

significantly more lipophilic and thus more toxic than the monobenzylated analog 37, 

violating twice the Lipinski rule of 5 (Table 2). However, its increased antichagasic 

activity balances out its toxicity, so it appears with a better SI value than 37 (Tables 1 

and 2). Interestingly, 38 is the only compound active across all parasites tested (Table 

1). Compound 29, although more lipophilic (due to 2 trifluoromethyl groups) than 37, 

appears less toxic, perhaps because the trifluoromethyl groups being in meta positions 

offer a better compound-stability compared to 37. 

The 3-nitrotriazole-based quinaldinamines 34, 35 and 36 demonstrate similar 

antichagasic activity and their SI corresponds inversely to their clogP value and toxicity 

(Table 1 and 2). All three analogs have similar activity with the p-

trifluoromethylbenzylamine 37, but the monoalkylated chloro-quinaldine analog 34 

demonstrates a superior SI value, presumably due to its decreased toxicity compared to 

37, despite the fact that both 34 and 37 have similar clogP values. As was expected, the 

dialkylated analogs 35 and 36 also violate the Lipinski rule of 5. 

The piperazine systems (40-42) showed significant antichagasic activity in vitro (Table 

1). However, the 1-phenyl-piperazine 42 showed about 10-fold increased activity (IC50 

at low nM concentrations) compared to the 1-benzyl-piperazines 40 and 41. Although 

the lipophilicity of 42 was between that of 40 and 41, its toxicity was higher than both 

of them. Despite an increased toxicity (Table 1), the SI of 42 was 1320, the highest of 

all tested compounds, making 42 a good candidate for in vivo studies. Comparing the 

substituted benzylpiperazine derivatives 40 and 41, it is observed that an extra 

methylene in 41, in the linkage between 3-nitrotriazole and the piperazine ring, 

decreased potency and increase lipophilicity and toxicity, resulting in a lower SI value 

compared to 40 (Table 2). 
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It can be observed that all compounds with antichagasic activity in Table 2 have a polar 

surface area < 140 and >60 Å
2
, which means good cell-membrane permeability and 

presumably absence of neurotoxicity since they can not cross the blood-brain barrier. In 

addition, all but compounds 8, 20 and 21 (all 2-phenylquinazolines), demonstrate a 

better antichagasic activity (1.3-33.8 fold) than the reference compound benznidazole, 

tested in parallel. It appears that increased antichagasic activity is observed with 

increased basicity in the amines of Table 2. 

 

Evaluating the mechanism of action of nitrotriazoles 

As was mentioned earlier, nitroheterocyclic prodrugs must undergo enzyme-mediated 

activation within the pathogen to have cytotoxic effects. These enzymes are most likely 

nitroreductases, although other reducing enzymes specific to the parasite, such as 

trypanothione reductase
8,26 

or NADH-fumarate reductase
27

, could be involved. Both Nfx 

and Bnz are activated by the NADH-dependent, oxygen insensitive, mitochondrially 

localized, bacterial-like, type I NTR, and down-regulation of this enzyme explains how 

resistance emerges.
10-12

 Therefore, we investigated the role of recombinant T. brucei 

NTR (TbNTR) in the activation of selected nitrotriazoles and the nitroimidazole 8 (Fig. 

1; supplemental material), as well as the susceptibility of bloodstream form T. brucei 

brucei, engineered to overexpress tetracycline-inducible TbNTR, to these compounds 

(Table 3). The reduction potentials (E1/2) of the active compounds towards bloodstream 

form T. b. brucei were also measured by cyclic voltametry, to elucidate if there is any 

correlation between enzymatic activity and redox properties, and are shown in Table 3. 

Compounds from all sub-categories (aromatic and aliphatic amines, as well as 

piperazinic derivatives) have been chosen for these studies. 

With regard to anti-HAT activity, it is observed that compounds 17 and 38 that were 

very active against T. b. rhodesiense (Table 1), were similarly active against 

bloodstream form T. b. brucei (Table 3), whereas compounds that were inactive (8, 29, 

42) or moderately active (20, 23, 40, 41) against T. b. rhodesiense (Table 1), were in 

general more inactive against bloodstream form T. b. brucei (Table 3). With regard to 

the tetracycline (+tet)-inducible TbNTR overexpression system, it is observed that 

parasites induced to overexpress TbNTR are more susceptible to all 

nitrotriazoles/nitroimidazole tested, with compounds being moderately active against 

bloodstream form T. b. brucei showing a greater difference than the most active 17 and 

38. As a general rule of thumb, if a -tet/+tet ratio is >5, then it is assumed that the major 
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growth inhibitory activity of a compound is via NTR activation. For compounds with a -

tet/+tet ratio <5, alternative systems may be involved or the NTR generated reduction 

products are extremely trypanocidal. 

There was no correlation between trypanocidal activity and enzymatic activity (see 

supplemental material). Furthermore, no conclusive data were obtained by comparing 

the enzymatic activity with reduction potentials (E1/2), although there was a trend 

suggesting an increasing activity at more negative E1/2 values, values that possibly lie 

outside the normal range of mammalian redox systems. If this is true, then the 

mutagenic potential of these compounds may be low,
28

 something that has been 

confirmed in limited Ames studies with 16, 20 and 29 (data not shown). 

In conclusion, nine nitrotriazole-based compounds (16-18, 24, 29, 34, 40-42) have been 

identified from Table 2 as potential candidates for in vivo studies in T. cruzi infected 

mice, and further development against Chagas. All of them have demonstrated 

significant antichagasic activity at low to intermediate nmolar concentrations, SI values 

of ≥200, and satisfy the Lipinski's rule of 5. In addition, compound 38 may also warrant 

additional attention as it displays significant anti-parasitic activity against T. cruzi, both 

T. brucei subspecies and L. major with high selectivity, although this compound does 

violate two of the Lipinski's rule of 5. 

 

Experimental 

All starting materials and solvents were purchased from Sigma-Aldrich (Milwaukee, 

WI), were of research-grade quality and used without further purification. Solvents used 

were anhydrous and the reactions were carried out under a nitrogen atmosphere and 

exclusion of moisture. Melting points were determined by using a Mel-Temp II 

Laboratory Devices apparatus (Holliston, MA) and are uncorrected. Elemental Analyses 

were obtained by Midwest Microlab, LLC (Indianapolis, IN). Proton NMR spectra were 

obtained on a Varian Inova-500 or a Bruker Avance-III-500 spectrometer at 500 MHz 

and are referenced to Me4Si or to the corresponding protonated solvent, if the solvent 

was not CDCl3. Highresolution electrospray ionization (HRESIMS) mass spectra were 

obtained on a Agilent 6210 LC-TOF mass spectrometer at 11000 resolution. Thin-layer 

chromatography was carried out on aluminum oxide N/UV254 or polygram silica gel 

G/UV254 coated plates (0.2 mm, Analtech, Newark, DE). Chromatography was carried 

out on preparative TLC alumina GF (1000 microns) or silicagel GF (1500 microns) 

plates (Analtech). All the amines were purified by preparative TLC chromatography on 



 

 132 

alumina plates (≥ 95% purity). The results from elemental analysis for C, H and N were 

within 0.4 of the theoretical value. 

The synthesis of compounds 1, 3-7, 10 and 15 has been described before.
19, 23, 29-31

 

Compounds 2 and 25 were synthesized in a similar manner with 1
19

 and 15,
31

 

respectively. 

 

General Synthetic Procedure of aromatic amines 

For compounds 8-14, 16-24: The appropriate chloro-aromatic starting material 

(commercially available in most cases) (1.24 mmol) was coupled with 2-nitro-1H-- 

imidazolyl-alkylamine (1.24 mmol)
19

 or 3-nitro-1,2,4-triazolyl-alkylamine (1.24 

mmol),
19

 by refluxing in absolute propanol (7-10 ml) for 12 -30 h. In the case of 

compounds 16, 17 and 19, the 4,7-dichloroquinoline was first converted to 7-chloro-4-

fluoroquinoline
23

 before coupling. In the case of compound 19, 4-(1H-1,2,4-triazol-1-

yl)butylamine was first synthesized as in ref. [19], to be then coupled with 7-chloro-4-

fluoroquinoline. In the case of compound 18, 4 fluoro-7-trifluoromethyl quinoline could 

not be synthesized from the corresponding 4-chloro-7-trifluoromethylquinoline. In most 

cases the hydrochloride salt of the final product was precipitated upon cooling of the 

reaction mixture and separated by filtration. In some cases, the free amine of the desired 

product was isolated by preparative TLC on alumina, dissolved in ethyl acetate and 

converted to its HCl salt by treating with 1 M HCl in diethyl ether. In the case of 

compounds 23 and 24, the starting material 4- chloro-1,5-naphthyridine was synthesized 

in 4 steps as described previously.
29

 

 

General Synthetic Procedure of mono- and dialkylated aliphatic amines 26-38 

The appropriate bromide (1.035 mmol) was added dropwise (15 min) to a solution of 2- 

nitro-1H-imidazolyl-alkylamine (1.035 mmol) or 3-nitro-1H-1,2,4-triazolyl-alkylamine 

(1.035 mmol)
19

 in the presence of potassium carbonate (9.52 mmol) in dry acetonitrile 

(15 mL) and the reaction mixture was stirred under a nitrogen atmosphere, at room 

temperature for 48 h. In the case of 31, 4-(1H-1,2,4-triazol-1-yl)butylamine was used. 

The reaction mixture was then filtered, the solids were washed with acetonitrile, the 

organic filtrate was evaporated and the residue extracted from water-chloroform. The 

organic layer was separated and dried over anhydrous Na2SO4. The solvent was 

evaporated and the residue was separated by preparative TLC on alumina plates with 

ethyl acetate: petroleum ether mixture. Monoalkylated and dialkylated products were 
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obtained in the same reaction at varying ratios for each case. The separated products 

were dissolved in ethyl acetate and converted to their HCl salts by treating with HCl gas 

in dry ether (1 M solution). 

Piperazine derivatives (39-42) were synthesized from the commercially available 

appropriate monoalkylated piperazines (1.44 mmol) and the appropriate 2-nitro-

1Himidazolyl- alkylbromide or 3-nitro-1H-1,2,4-triazolyl-alkylbromide (1.485 mmol)
24

 

in the presence of potassium carbonate (13.24 mmol) in dry acetonitrile (25 mL) as 

above. 

 

6-Chloro-2-methoxy-N-[4-(3-nitro-1H-1,2,4-triazol-1-yl)butyl]acridin-9-amine 

hydrochloride (2) 

Yellow powder (35%): mp 214-216 °C; 
1
H NMR (500 MHz, CD3OD) : 8.58 (s, 1H), 

8.44 (d, J=9.5 Hz, 1H), 7.78 (m, 3H), 7.68 (dd, J=8.0, 2.0 Hz, 1H), 7.50 (d, J=9.0 Hz, 

1H), 4.40 (t, J=6.5 Hz, 2H), 4.18 (t, J=7.0, 2H), 4.01 (s, 3H), 2.11 (m, 2H), 1.99 (m, 

2H). HRESIMS calcd for C20H20ClN6O3 m/z [M+H]
+
 427.1286, found 427.1286. 

N-[3-(2-Nitro-1H-imidazol-1-yl)propyl]-2-phenylquinazolin-4-amine hydrochloride 

(8) 

Off white powder (44%): mp 174-176 °C (dec.); 
1
H NMR (500 MHz, CD3OD) : 8.34 

(d, J=8.5 Hz, 1H), 8.27 (d, J=7.5 Hz, 2H), 8.07 (t, J=7.5 Hz, 1H), 7.98 (d, J=8.0 Hz, 

1H), 7.81-7.76 (m, 2H), 7.69 (t, J=8.0 Hz, 2H), 7.59 (s,1H), 7.13 (s, 1H), 4.68 (t, J=7.0 

Hz, 2H), 4.04 (t, J=7.0 Hz, 2H), 2.45 (quintet, J=7.0 Hz, 2H). HRESIMS calcd for 

C20H19N6O2 m/z [M+H]
+
 375.1570, found 375.1569. 

N-[4-(2-Nitro-1H-imidazol-1-yl)butyl]-2-phenylquinazolin-4-amine hydrochloride 

(9) 

Off white powder (51%). 
1
H NMR (500 MHz, CD3OD) : 8.34-8.30 (m, 3H), 8.05 (t, 

J=7.5 Hz, 1H), 7.96 (d, J=8.5 Hz, 1H), 7.80-7.75 (m, 2H), 7.69 (t, J=8.0 Hz, 2H), 7.49 

(s, 1H), 7.08 (s, 1H), 4.55 (t, J=7.0 Hz, 2H), 3.99 (t, J=7.0 Hz, 2H), 2.06 (quintet, J=7.0 

Hz, 2H), 1.93 (quintet, J=7.0 Hz, 2H). HRESIMS calcd for C21H21N6O2 m/z [M+H]
+
 

389.1721, found 389.1729. 

6-Methyl-4-N-[3-(2-nitro-1H-imidazol-1-yl)propyl]-pyrimidin-2,4-diamine 

hydrochloride (11) 

Orange solid (34%): mp 178 °C (dec); 
1
H NMR (500 MHz, CD3OD) : 7.53 (s, 1H), 

7.17 (s, 1H), 5.89 (s, 1H), 4.55 (t, J=7.0 Hz, 2H), 3.52 (t, J=6.5, 2H), 2.25 (s, 3H), 2.19 

(m, 2H). HRESIMS calcd for C11H16N7O2 m/z [M+H]
+
 278.1366, found 278.1364. 
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6-Methyl-4-N-[4-(2-nitro-1H-imidazol-1-yl)butyl]-pyrimidin-2,4-diamine 

hydrochloride (12) 

Off white powder (45%): mp 225-226 °C (dec); 
1
H NMR (500 MHz, CD3OD) : 7.50 

(s, 1H), 7.15 (s, 1H), 5.86 (s, 1H), 4.51 (t, J=7.5 Hz, 2H), 3.49 (t, J=6.5 Hz, 2H), 2.23 

(s, 3H), 1.92 (quintet, J=7.5 Hz, 2H), 1.66 (quintet, J=7.5 Hz, 2H). HRESIMS calcd for 

C12H18N7O2 m/z [M+H]
+
 292.1522, found 292.1530. 

2-Chloro-6,7-dimethoxy-N-[4-(2-nitro-1H-imidazol-1-yl)butyl]quinazolin-4-amine 

(13) 

Light yellowish powder (21%). 
1
H NMR (500 MHz, CDCl3) : 7.23 (s, 1H), 7.17 (s, 

1H), 7.14 (s, 1H), 6.91 (s, 1H), 5.93 (br t, 1H), 4.54 (t, J=7.5 Hz, 2H), 4.00 (s, 3H), 3.98 

(s, 3H), 3.80-3.76 (m, 2H), 2.00 (quintet, J=7.5 Hz, 2H), 1.82 (quintet, J=7.5 Hz, 2H). 

HRESIMS calcd for C17H20ClN6O4 m/z [M+H]
+
 407.1229, found 407.1236. 

6-Chloro-N-[4-(2-nitro-1H-imidazol-1-yl)butyl]-2,5-diphenylpyrimidin-4-amine 

hydrochloride (14) 

pale white powder (72%): mp 79-81 °C; 
1
H NMR (500 MHz, CD3OD) : 8.21 (d, J=7.5 

Hz, 2H), 7.68-7.56 (m, 6H), 7.46 (s, 1H), 7.39 (d, J=7.5 Hz, 2H), 7.08 (s, 1H), 4.49 (t, 

J=7.0 Hz, 2H), 3.66 (t, J=7.0, 2H), 1.91 (quintet, J=7.5 Hz, 2H), 1.71 (quintet, J=7.5 

Hz, 2H). 

HRESIMS calcd for C23H22ClN6O2 m/z [M+H]
+
 449.1487, found 449.1488. 

7-Chloro-N-[3-(3-nitro-1H-1,2,4-triazol-1-yl)propyl]quinolin-4-amine 

hydrochloride (16) 

White powder (84%): mp 240-242 °C; 
1
H NMR (500 MHz, D2O) : 8.61 (s, 1H), 8.28 

(d, J=7.0 Hz, 1H), 7.89 (d, J=9.0 Hz, 1H), 7.82 (s, 1H), 7.57 (d, J=9.0 Hz, 1H), 6.76 (d, 

J=7.0 Hz, 1H), 4.55 (t, J=6.5 Hz, 2H), 3.74 (t, J=6.5, 2H), 2.48 (m, 2H). HRESIMS 

calcd for C14H14ClN6O2 m/z [M+H]
+
 333.0867, found 333.0866. 

7-Chloro-N-[4-(3-nitro-1H-1,2,4-triazol-1-yl)butyl]quinolin-4-amine hydrochloride 

(17) 

White powder (67%): mp 210-220 °C (dec); 
1
H NMR (500 MHz, D2O) : 8.58 (s, 1H), 

8.20 (d, J=7.0 Hz, 1H), 8.03 (d, J=9.0 Hz, 1H), 7.78 (s, 1H), 7.68 (d, J=9.0 Hz, 1H), 

6.68 (d, J=7.0 Hz, 1H), 4.39 (t, J=6.5 Hz, 2H), 3.58 (t, J=7.0, 2H), 2.07 (m, 2H), 1.77 

(m, 2H). HRESIMS calcd for C15H16ClN6O2 m/z [M+H]
+
 347.1023, found 347.1019. 
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N-[4-(3-Nitro-1H-1,2,4-triazol-1-yl)butyl]-7-(trifluoromethyl)quinolin-4-amine 

hydrochloride (18) 

White powder (14%). 
1
H NMR (500 MHz, CD3OD) : 8.64 (s, 1H), 8.57 (d, J=8.5 Hz, 

1H), 8.50 (d, J=7.0 Hz, 1H), 8.16 (s, 1H), 7.95 (d, J=8.5 Hz, 1H), 4.44 (t, J=6.5 Hz, 

2H), 3.69 (t, J=7.0 Hz, 2H), 2.13 (m, 2H), 1.86 (m, 2H). HRESIMS calcd for 

C16H16F3N6O2 m/z [M +H]
+
 381.1281, found 381.1286. 

7-Chloro-N-[4-(1H-1,2,4-triazol-1-yl)butyl]quinolin-4-amine (19) 

White powder (43%): mp 125-127 °C; 
1
H NMR (500 MHz, CDCl3) : 8.54 (d, J=5.30 

Hz, 1H), 8.10 (s,1H), 8.01 (s, 1H), 7.96 (d, J=2.1 Hz,1H), 7.73 (d, J=9.0, 1H), 7.37 (dd, 

J=8.9, 2.1 Hz, 1H), 6.39 (d, J=5.4 Hz, 1H), 5.32 (br s, 1H), 4.30 (t, J=6.8 Hz, 2H), 3.37 

(m, 2H), 2.10 (m, 2H), 1.79 (m, 2H). HRESIMS calcd for C15H17ClN5O2 m/z [M+H]
+
 

302.1167, found 302.1169. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-2-phenyl-quinazolin-4-amine 

hydrochloride (20) 

Yellow powder (71%): mp 246-248 °C (dec); 
1
H NMR (500 MHz, CD3SOCD3) : 8.91 

(s, 1H), 8.49 (br d, J=7.0 Hz,1H), 8.33 (d, J=7.5 2H), 8.08 (br s, 1H), 8.03 (br s, 1H), 

7.75 (br s, 2H), 7.65 (br t, J=7.0 Hz, 2H), 4.52 (t, J=6.5 Hz, 2H), 3.90 (br m, 2H), 2.38 

(t, J=6.5 Hz, 2H). HRESIMS calcd for C19H18N7O2 m/z [M+H]
+
 376.1522, found 

376.1523. 

N-[4-(3-Nitro-1H-1,2,4-triazol-1-yl)butyl]-2-phenyl-quinazolin-4-amine 

hydrochloride (21) 

Yellow powder (69%): mp >250 °C; 
1
H NMR (500 MHz, CD3SOCD3) : 8.90 (s, 1H), 

8.57 (d, J=8.0 Hz,1H), 8.39 (d, J=7.5 2H), 8.16 (d, J=8.0 Hz, 1H), 8.04 (t, J=7.5 Hz, 

1H), 7.76 (t, J=7.0, 2H), 7.68 (t, J=7.5 Hz, 2H), 4.41 (t, J=7.0 Hz, 2H), 3.86 (br q, J=6.0 

Hz, 2H), 2.012 (quintet, J=7.5 Hz, 2H), 1.78 (quintet, J= 7,0 Hz, 2H). HRESIMS calcd 

for C20H20N7O2 m/z [M+H]
+
 390.1679, found 390.1681. Calculated analysis for 

C20H20ClN7O2: C, 56.41; H, 4.73; N, 23.02; Cl, 8.33. Found: C, 56.06; H, 5.01; N, 

22.84; Cl, 9.06. 

6-Methyl-4-N-[3-(2-nitro-1H-1,2,4-triazol-1-yl)propyl]-pyrimidin-2,4-diamine 

hydrochloride (22) 

Off white powder (58%): mp 204-206 °C; 
1
H NMR (500 MHz, CD3OD) : 8.60 (s, 1H), 

5.85 (s, 1H), 4.42 (t, J=6.5 Hz, 2H), 3.53 (t, J=6.5, 2H), 2.28 (m, 2H), 2.24(s, 3H). 

HRESIMS calcd for C10H15N8O2 m/z [M+H]
+
 279.1318, found 279.1319. 
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N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-1,5-naphthyridin-4-amine 

hydrochloride (23) 

Yellowish powder (50%): mp 215-217 °C (dec); 
1
H NMR (500 MHz, CD3OD) : 8.94 

(d, J=3.5 Hz,1H), 8.65 (s, 1H), 8.47 (d, J=7.0 Hz, 1H), 8.27 (d, J=8.5 Hz,1H), 7.95 (dd, 

J=8.5, 4.5 Hz, 1H), 7.09 (d, J=7.0 Hz, 1H), 4.54 (t, J=6.5 Hz, 2H), 3.80 (t, J=7.0, 2H), 

2.48 (m, 2H). HRESIMS calcd for C13H14N7O2 m/z [M+H]
+
 300.1209, found 300.1206. 

N-[4-(3-Nitro-1H-1,2,4-triazol-1-yl)butyl]-1,5-naphthyridin-4-amine hydrochloride 

(24) 

Off white powder (61%). 
1
H NMR (500 MHz, CD3OD) : 8.97 (d, J=4.0 Hz,1H), 8.64 

(s, 1H), 8.43 (d, J=7.0 Hz, 1H), 8.26 (d, J=8.5 Hz,1H), 7.95 (dd, J=8.5, 4.5 Hz, 1H), 

7.06 (d, J=7.5 Hz, 1H), 4.44 (t, J=7.0 Hz, 2H), 3.72 (t, J=7.0, 2H), 2.12 (m, 2H), 

1.85(m, 2H). HRESIMS calcd for C14H16N7O2 m/z [M+H]
+
 314.1360, found 314.1362. 

2-Chloro-3-{[3-(3-nitro-1H-1,2,4-triazol-1-yl)propyl]amino}-1,4-

dihydronaphthalene-1,4-dione (25) 

Dark red powder (74%): mp 137-138 °C; 
1
H NMR (500 MHz, CD3COCD3) : 8.69 (s, 

1H), 8.06 (d, J=8.0 Hz,1H), 8.02 (d, J=8.5 Hz, 1H), 7.84 (t, J=8.0 Hz,1H), 7.75 (t, J=8.0 

Hz, 1H), 6.96 (br s, 1H), 4.61 (t, J=7.0 Hz, 2H), 4.04 (t, J=7.0 Hz, 2H), 2.44 (m, 2H). 

HRESIMS calcd for C15H13ClN5O4 m/z [M+H]
+
 362.0651, 364.0627, found 362.0654, 

364.0632. 

{[3,5-bis(Trifluoromethyl)phenyl]methyl}[3-(3-nitro-1H-1,2,4-triazol-1-

yl)propyl]amine 

hydrochloride (29) 

White powder (60-64%): mp 140-142 °C; 
1
H NMR (500 MHz, CD3OD) : 8.68 (s, 1H), 

8.20 (s, 2H), 8.12 (s, 1H), 4.52 (m, 2H), 4.44 (s, 2H), 3.27 (t, J=8.0 Hz, 2H), 2.40 (m, 

2H). HRESIMS calcd for C14H14F6N5O2 m/z [M+H]
+
 398.1052, found 398.1054. 

bis({[3,5-bis(Trifluoromethyl)phenyl]methyl})[3-(3-nitro-1H-1,2,4-triazol-1-

yl)propyl] amine hydrochloride (30) 

White powder (8.5%): mp 138-140 °C (dec.); 
1
H NMR (500 MHz, CD3OD) : 8.61 (s, 

1H), 8.06 (s, 4H), 8.00 (s, 2H), 4.60-4.48 (br m, 6H), 3.29 (br m, 2H), 2.54 (br m, 2H). 

HRESIMS calcd for C23H18F12N5O2 m/z [M+H]
+
 624.1263 found 624.1279. 

{[3,5-bis(Trifluoromethyl)phenyl]methyl}[4-(1H-1,2,4-triazol-1-yl)butyl]amine 

hydrochloride (31) 

White powder (37%): mp 120-123 °C; 
1
H NMR (500 MHz, CD3OD) : 9.00 (s, 1H), 

8.33 (s, 1H), 8.19 (s, 2H), 8.12 (s, 1H), 4.41 (br s, 4H), 3.17 (br t, J=5.8 Hz, 2H), 2.03 
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(m, 2H), 1.76 (m, 2H). HRESIMS calcd for C15H17F6N4 m/z [M+H]
+
 367.1352, found 

367.1338. 

[(6-Bromoquinolin-2-yl)methyl][3-(2-nitro-1H-imidazol-1-yl)propyl]amine 

hydrochloride (32) 

White powder (22%): mp 158-160 °C (dec.); 
1
H NMR (400 MHz, CD3OD) : 8.33 (d, 

J=8.4 Hz, 1H), 8.19 (s, 1H), 7.99 (d, J=9.6 Hz, 1H), 7.89 (d, J=8.8 Hz, 1H), 7.53 (s, 

1H), 7.52 (d, J=9.6 Hz, 1H), 7.17 (s, 1H), 4.61 (t, J=7.2 Hz, 2H), 4.59 (s, 2H), 3.34 (br 

t, 2H), 2.41 (m, 2H). HRESIMS calcd for C16H17BrN5O2 m/z [M+H]
+
 390.0566, 

392.0545 found 390.0569. 392.0551. 

bis[(6-Bromoquinolin-2-yl)methyl][3-(2-nitro-1H-imidazol-1-yl)propyl]amine 

hydrochloride (33) 

Pinkish powder (18%). 
1
H NMR (400 MHz, CD3OD) : 8.36 (d, J=8.4, 2H), 8.2 (s, 2H), 

7.91 (s, 4H), 7.57 (d, J=8.4 Hz, 2H), 7.47 (s, 1H), 7.09 (s, 1H), 4.95 (s, 4H), 4.63 (t, 

J=7.6 Hz, 2H), 3.66 (t, J=8.0 Hz, 2H), 2.60 (m, 2H). HRESIMS calcd for 

C26H23Br2N6O2 m/z [M +H]
+
 609.0249, 611.0229, 613.0208, found 609.0251, 611.0233, 

613.0210. 

[(7-Chloroquinolin-2-yl)methyl][3-(3-nitro-1H-1,2,4-triazol-1-yl)propyl]amine 

hydrochloride (34) 

Beige powder (29%): mp 135 °C (dec.); 1H NMR (500 MHz, CD3OD) : 8.68 (s, 1H), 

8.42 (d, J=8.5 Hz, 1H), 8.12 (s, 1H), 7.99 (d, J=9.0 Hz, 1H), 7.64 (d, J=8.5 Hz, 1H), 

7.54 (d, J=8.5 Hz, 1H), 4.64 (s, 2H), 4.55 (t, J=6.5 Hz, 2H), 3.35 (t, J=8.0 Hz, 2H), 2.50 

(m, 2H). HRESIMS calcd for C15H16ClN6O2 m/z [M+H]
+
 347.1018, 349.0994, found 

347.1003. 349.0985. 

bis[(7-Chloroquinolin-2-yl)methyl][3-(3-nitro-1H-1,2,4-triazol-1-yl)propyl]amine 

hydrochloride (35) 

Off white powder (17%): mp 104-106 °C (dec.); 
1
H NMR (500 MHz, CD3OD) : 8.61 

(s, 1H), 8.55 (d, J=8.5 Hz, 2H), 8.14 (s, 2H), 8.03 (d, J=8.5 Hz, 2H), 7.69 (d, J=8.0 Hz, 

4H), 4.91 (s, 4H), 4.52 (t, J=6.5 Hz, 2H), 3.56 (br t, 2H), 2.04 (m, 2H). HRESIMS calcd 

for C25H22Cl2N7O2 m/z [M+H]
+
 522.1212, found 522.1216. 

bis[(6-Bromoquinolin-2-yl)methyl][3-(3-nitro-1H-1,2,4-triazol-1-yl)propyl]amine 

hydrochloride (36) 

Off white powder (16%): mp 128-130 °C (dec); 
1
H NMR (500 MHz, CD3OD) : 8.60 

(s, 1H), 8.41 (d, J=8.5 Hz, 2H), 8.22 (s, 2H), 7.92 (br s, 4H), 7.63 (d, J=8.5 Hz, 2H), 

4.95 (s, 4H), 4.52 (t, J=6.5 Hz, 2H), 3.64 (t, J=8.0 Hz, 2H), 2.62 (m, 2H). HRESIMS 
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calcd for C25H22Br2N7O2 m/z [M+H]
+
 611.0235, 612.0181, 613.0215 found 611.0254, 

612.0233, 613.0230. 

[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]({[4-

(trifluoromethyl)phenyl]methyl})amine 

hydrochloride (37) 

White powder (12%): mp 127-128 °C; 
1
H NMR (500 MHz, CD3OD) : 8.65 (s, 1H), 

7.79 (d, J=8.5 Hz, 2H), 7.71 (d, J=8.0 Hz, 2H), 4.50 (t, J=6.5 Hz, 2H), 4.33 (s, 2H), 

3.22 (t, J=8.0 Hz, 2H), 2.38 (m, 2H). HRESIMS calcd for C13H15F3N5O2 m/z [M+H]
+
 

330.1172 found 330.1179. 

[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]bis({[4-

(trifluoromethyl)phenyl]methyl})amine 

hydrochloride (38) 

White powder (26%): mp 184-186 °C; 
1
H NMR (500 MHz, CD3OD) : 8.59 (s, 1H), 

7.78 (d, J=8.0 Hz, 4H), 7.70 (d, J=7.5 Hz, 4H), 4.53 (br s, 4H), 4.44 (t, J=6.0 Hz, 2H), 

3.25 (br s, 2H), 2.52 (br m, 2H). HRESIMS calcd for C21H20F6N5O2 m/z [M+H]
+
 

488.1516 found 488.1513. Calculated analysis for C21H20F6ClN5O2: C, 48.13; H, 3.85; 

N, 13.37; Cl, 6.77. Found: C, 48.21; H, 3.93; N, 13.29; Cl, 6.88. 

1-[3-(2-Nitro-1H-imidazol-1-yl)propyl]-4-{[4-

(trifluoromethyl)phenyl]methyl}piperazine 

dihydrochloride (39) 

White powder (67%): mp 185-187 °C; 
1
H NMR (500 MHz, D2O) : 7.85 (d, J= 7.5 Hz, 

2H), 7.70 (d, J=7.5 Hz, 2H), 7.49 (s, 1H), 7.22 (s, 1H), 4.58 (br t, J=7.0 Hz, 2H), 4.53 

(s, 2H), 3.63 (br s, 8H), 3.34 (br s, 2H), 2.37 (br s, 2H). HRESIMS calcd for 

C18H23F3N5O2 m/ z [M+H]
+
 398.1798, found 398.1803. Calculated analysis for 

C18H24F3Cl2N5O2: C, 45.95; H, 5.15; N,14.89; Cl, 15.08. Found: C, 45.85; H, 5.05; N, 

14.59; Cl, 15.12. 

1-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-4-{[4 (trifluoromethyl)phenyl]methyl} 

piperazine dihydrochloride (40) 

White powder (74%): mp 233-235 °C (dec); 
1
H NMR (500 MHz, D2O) : 8.65 (s, 1H), 

7.84 (d, J=8.0 Hz, 2H), 7.67 (d, J=8.0 Hz, 2H), 4.51 (t, J=6.0 Hz, 2H), 4.39 (s, 2H), 

3.48 (br s, 8H), 3.27 (t, J=8.0 Hz, 2H), 2.41 (m, 2H). HRESIMS calcd for 

C17H22F3N6O2 m/z [M+H]
+
 399.1751, found 399.1761. Calculated analysis for 

C17H23F3Cl2N6O2: C, 43.30; H, 4.92; N, 17.83; Cl, 15.05. Found: C, 43.26; H, 4.91; N, 

17.71; Cl, 15.42. 
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1-[4-(3-Nitro-1H-1,2,4-triazol-1-yl)butyl]-4-{[4 (trifluoromethyl)phenyl]methyl} 

piperazine dihydrochloride (41) 

White powder (16%): mp 223-225 °C (dec); 
1
H NMR (500 MHz, CD3OD) : 8.67 (s, 

1H), 7.80 (s, 4H), 4.44 (t, J=7.0 Hz, 2H), 4.41 (s, 2H), 3.80-3.40 (br m, 10H), 2.06 

(quintet, J=7.5 Hz, 2H), 1.86 (m, 2H). HRESIMS calcd for C18H24F3N6O2 m/z [M+H]
+
 

413.1907, found 413.1909. 

1-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-4-[4-(trifluoromethyl)phenyl]piperazine 

dihydrochloride (42) 

White powder: mp 225 °C (dec.); 
1
H NMR (500 MHz, CD3OD) : 8.68 (s, 1H), 7.56 (d, 

J=8.5 Hz, 2H), 7.14 (d, J=8.5 Hz, 2H), 4.52 (t, J=6.5 Hz, 2H), 4.04 (d, J=13 Hz, 2H), 

3.72 (d, J=11.5 Hz, 2H), 3.35 (t, J=8.0 Hz, 2H), 3.27-3.20 (m, 4H), 2.48 (quintet, J=6.5 

Hz, 2H). HRESIMS calcd for C16H20F3N6O2 m/z [M+H]
+
 385.1595, found 385.1606; 

calcd for C16H19F3N6NaO2 m/z [M+Na]
+
 407.1414, found 407.1419. Calculated analysis 

for C16H21F3Cl2N6O2: C, 42.01; H, 4.63; N, 18.38; Cl, 15.51. Found: C, 42.29; H, 4.68; 

N, 18.79; Cl, 15.39. 

 

In vitro biological evaluation 

In vitro activity against T. cruzi, Trypanosoma b. rhodesiense, Leishmania donovani 

axenic amastigotes and cytotoxicity assessment using L6 cells (rat skeletal myoblasts) 

was determined using a 96-well plate format as previously described.25 Data were 

analyzed with the graphic program Softmax Pro (Molecular Devices, Sunnyvale, CA, 

USA), which calculated IC50 values by linear regression from the sigmoidal dose 

inhibition curves. 

 

In vitro T. brucei brucei antiproliferating assays and susceptibility studies 

T. brucei brucei bloodstream form parasites were seeded at 1 × 103 ml-1 in 200 μL of 

growth medium containing different concentrations of a nitrotriazole or nifurtimox. 

Where appropriate, induction of the TbNTR was carried out by adding tetracycline (1 

μg/mL). After incubation for 3 days at 37 °C, 20 μL of Alamar blue was added to each 

well and the plates incubated for a further 16 h. The cell density of each culture was 

determined as described before11 and the IC50 established. 
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Enzymatic activity studies 

Recombinant TbNTR was prepared and assayed as previously described.16 The activity 

of purified his-tagged TbNTR was assessed spectrophotometrically at 340 nm using 

various nitrotriazole substrates (100 μM) and NADH (100 μM) and expressed as nmol 

NADH oxidized min-1 mg-1 of enzyme. 

 

Cyclic Voltametry 

Reduction potentials (E1/2) were measured by cyclic voltametry and evaluated relative 

to the Ag/AgCl reference electrode. Supporting electrolyte was 0.1M of tetrabutyl 

ammonium hexafluorophosphate (TBAPF6), 98% purity from Sigma Aldrich. The 

working electrode was carbon mesh and the counter electrode Pt wire. The typical scan 

rate was 100 mV/sec. 

 

Supplementary Material 

Refer to Web version on PubMed Central for supplementary material. 
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Abstract 

A series of novel 3-nitro-1H-1,2,4-triazole-(and in some cases 2-nitro-1H-imidazole)-

based amides and sulfonamides were characterized for their in vitro anti-trypanosomal 

and antileishmanial activities as well as mammalian toxicity. Out of 36 compounds 

tested, 29 (mostly 3-nitro-1H-1,2,4-triazoles) displayed significant activity against T. 

cruzi intracellular amastigotes (IC50 ranging from 28 nM to 3.72 μM) without 

concomitant toxicity to L6 host cells (selectivity 66 to 2782). Twenty three of these 

active compounds were more potent (up to 58 fold) than the reference drug 

benznidazole, tested in parallel. In addition, 9 nitrotriazoles which were moderately 

active (0.5 μM ≤ IC50 < 6.0 μM) against T. b. rhodesiense trypomastigotes, were 5 to 

31 fold more active against bloodstream-form T. b. brucei trypomastigotes engineered 

to overexpress NADH-dependent nitroreductase (TbNTR). Finally, 3 nitrotriazoles 

displayed a moderate activity against the axenic form of Leishmania donovani. 

Therefore, 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides are potent anti-

trypanosomal agents. 

 

Keywords 

nitrotriazoles; amides; sulfonamides; T. cruzi; Chagas disease; anti-trypanosomal agents 

 

INTRODUCTION 

The trypanosomatids protozoan parasites Trypanosoma cruzi (T. cruzi), Trypanosoma 

brucei (T. brucei), and various Leishmania species are the causative agents of Chagas 

disease, human African trypanosomiasis (HAT) and different forms of leishmaniasis, 

respectively. Over 20 million people are infected by T. cruzi, T. brucei and Leishmania, 

resulting in 100,000 of deaths per year.
1
 Chagas disease is transmitted by blood sucking 

triatomine insects and occurs mainly in Latin America. Despite the fact that in the past 

20 years the number of incidences for both Chagas and HAT has significantly declined, 



 

 147 

primarily due to vector control initiatives,
2
 the number of cases in non-endemic regions 

such as the United States, Australia, Europe and Japan is on the rise.
3
 Reasons for this 

rise include population migration, drug usage and medical practices. With no immediate 

prospect for vaccines, chemotherapy is the only way to fight the parasite in the patient. 

Currently, two nitroheterocycle prodrugs, nifurtimox (4-(5-nitrofurfurylidenamino)-3- 

methylthio-morpholine-1,1-dioxide) (Nfx) and benznidazole (N-benzyl-2(2-nitro-

1Himidazol- 1-yl)acetamide) (Bnz) (Chart 1), are used to treat Chagas disease.
4
 

However, their use is problematic as both can cause side effects, have limited efficacy, 

while some strains are refractory to treatment.
5
 In addition, the large quantities of 

medication required render it expensive, and the recommended long course of treatment 

is often not completed, resulting in the development of resistance. Therefore, the need 

for new, affordable and safer drugs to treat this disease is urgent. 

 

Chart 1. 

 

 

Most nitroheterocyclic compounds function as prodrugs and must undergo activation 

before mediating their cytotoxic effects. Initially it was proposed that the trypanocidal 

action of Nfx was due to its ability to induce oxidative stress through 1-electron 

reduction of its nitrogroup and the subsequent formation o  superoxide anions via a 

futile cycle
.5–9

 Several trypanosomal flavoproteins have been shown to mediate 1-

electron reduction in vitro. However, more recent studies have shown that the above 

process does not occur to such a degree to cause toxicity to the parasites
10

 and that a 

type I nitroreductase (NTR) 
11

 is responsible for Nfx and Bnz trypanocidal activity. This 

enzyme mediates a series of 2 electron reduction reactions resulting in the fragmentation 

of the heterocyclic ring and production of toxic metabolites.
10, 12

 The fact that the 

activation of nitroheterocyclic prodrugs can be catalyzed by the type I NTR, which is 
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absent from most eukaryotes, with trypanosomes being a major exception, have led to a 

renewed interest in the use of such compounds
13–18

 as antiparasitic agents. 

 

We have recently reported
19

 that 3-nitro-1H-1,2,4-triazole-based aromatic and aliphatic 

amines demonstrate excellent in vitro activity against intracellular T. cruzi amastigotes 

and in some cases activity against T. b. rhodesiense and T. b. brucei parasites. We have 

also shown that 3-nitrotriazole-based amines are activated by type I nitroreductase and 

that blood stream form T. b. brucei parasites overexpressing NTR are hypersensitive to 

these compounds. Moreover, these compounds were significantly less toxic in host cells 

compared to parasites, and up to 34 fold more potent than the reference compound 

benznidazole.
19

 Interestingly, the 3-nitrotriazole-based amines that were evaluated in the 

Ames test, were found negative for mutagenicity, in contrast to their 2-nitroimidazole 

analogs (unpublished data). Treatment of T. cruzi-infected mice with one aromatic 

amine, NTLA-1,
19,20

 given at just 2 mg/kg/day × 50 days, resulted in a rapid and 

persistent drop in peripheral parasite levels and in a fraction of cures.21 Importantly, 

there was an absolute correlation between treatment efficacy as determined 

parasitologically and the increase in the fraction of T. cruzi-specific CD8+ T cells with a 

T central memory phenotype in the peripheral blood of treated mice.
21

 Several other 3-

nitrotriazole-based amines are currently being investigated in vivo for antichagasic 

activity. Encouraged by these results, we have expanded our investigation to the classes 

of 3-nitro-1H-1,2,4-triazole-based amides and sulfonamides. 

Here we describe the synthesis and in vitro evaluation of such compounds as 

antitrypanosomal agents. 

 

CHEMISTRY 

The structure of all compounds is depicted on Table 1. Their synthesis is 

straightforward and based on well-established chemistry, outlined in Scheme 1. 

Compound 1 has been described before.
22

 Amides 2–13 and sulfonamides 21–36 were 

synthesized at room temperature by nucleophilic substitution of the appropriate 

arylcarbonyl/arylsulfonyl chloride by the appropriate nitrotriazole/nitroimidazole alkyl 

amine
23

 in the presence of triethyl amine (Scheme 1A). For compounds 3, 5, 22, 26, 30 

and 32 the hydrochloride salt of 2-(3- nitro-1H-1,2,4-triazole)ethylamine was used 

because the free amine was too water soluble to be extracted by an organic solvent after 

its synthesis. Amides 14–19 were synthesized as depicted in Scheme 1B, according to 
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the literature
24

. First, 3-nitro-1,2,4-triazole was converted to its potassium salt by 

treating with KOH in acetonitrile under mild heating and then this mixture was added to 

a solution of the appropriate α-chloroacetamide 37a–f in acetonitrile for a nucleophilic 

substitution, which occurred under refluxing conditions (8 h). The 2-chloro-N-

arylacetamides 37a–f were synthesized through nucleophilic acyl substitution of an 

appropriate arylamine with 2-chloroacetyl chloride in dry dichloromethane
24

 (Scheme 

1C). The yields of the final compounds in Table 1 were in general good to very good 

with the exception of some compounds (14, 19, 22, 26, 29, 30–32) with yields < 50%. 

However, the yields are higher if they are calculated on the basis of recovered starting 

material, since on many 

 

Scheme 1. 

 

i) Et3N (2 eq), CH2Cl2, RT, 12 h; n = 1–3; X= C, 2-NO2; X= N, 3-NO2; when n =1, the HCl salt was 

used instead of the free amine with 4 eq of Et3N. ii) KOH, CH3CN, mild heating. iii) Et3N, CH2Cl2. 

 

nucleophilic substitution of the appropriate arylcarbonyl/arylsulfonyl chloride by the 

appropriate nitrotriazole/nitroimidazole alkyl amine
23

 in the presence of triethyl amine 

(Scheme 1A). For compounds 3, 5, 22, 26, 30 and 32 the hydrochloride salt of 2-(3- 
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nitro-1H-1,2,4-triazole)ethylamine was used because the free amine was too water 

soluble to be extracted by an organic solvent after its synthesis. Amides 14–19 were 

synthesized as depicted in Scheme 1B, according to the literature
24

. First, 3-nitro-1,2,4-

triazole was converted to its potassium salt by treating with KOH in acetonitrile under 

mild heating and then this mixture was added to a solution of the appropriate α-

chloroacetamide 37a–f in acetonitrile for a nucleophilic substitution, which occurred 

under refluxing conditions (8 h). The 2-chloro-N-arylacetamides 37a–f were 

synthesized through nucleophilic acyl substitution of an appropriate arylamine with 2-

chloroacetyl chloride in dry dichloromethane
24

 (Scheme 1C). The yields of the final 

compounds in Table 1 were in general good to very good with the exception of some 

compounds (14, 19, 22, 26, 29, 30–32) with yields < 50%. However, the yields are 

higher if they are calculated on the basis of recovered starting material, since on many 

occasions unreacted chloride was isolated from the reaction mixture. Finally, the urea 

20 was formed by addition of 3-(3-nitro-1H-1,2,4- triazolyl)propylamine to 3,5 

bis(trifluoromethyl)phenyl isocyanate. 

 

RESULTS AND DISCUSSION 

Anti-Trypanosomal activity of nitrotriazole/nitroimidazole-based amides and 

sulfonamides 

The in vitro growth inhibitory properties of all compounds against bloodstream form T. 

b. rhodesiense trypomastigotes, T. cruzi amastigotes (in infected L6 myoblasts), 

axenically cultured L. donovani amastigotes and rat skeletal myoblasts (L6 cells) were 

evaluated by using standard drug screens.
25

 From resultant dose response curves, IC50 

values in μM were determined (Table 1). The criteria used for activity take into account 

the complex life cycles of the parasites and the fact that T. cruzi and L. donovani are, in 

contrast to T. b. rhodesiense, intracellular parasites. These criteria were established by 

the TDR’s “compound screeners network”, published in a review
26

 and are as follows: 

For T. b. rhodesiense, compounds that gave an IC50 < 0.5 μM, were designated as 

‘active’, while those yielding an IC50 = 0.5–6.0 μM or an IC50 > 6.0 μM were 

designated ‘moderately active’ and ‘inactive’, respectively. For T. cruzi, IC50 < 4.0 μM, 

‘active’; IC50 = 4.0–60 μM, ‘moderately active’; IC50 > 60 μM, ‘inactive’. For L. 

donovani, IC50 < 1 μM, ‘active’; IC50 = 1.0–6.0 μM, ‘moderately active’; IC50 > 6.0 

μM, ‘inactive’. 
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On the basis of these criteria, all but compound 32 were active or moderately active 

against T. cruzi, 16 compounds (47 %) were active or moderately active against T. b. 

rhodesiense, and only 3 compounds (~ 8%) were moderately active against L. donovani 

parasites (Table 1). However, for a compound to be considered for further in vivo 

investigation, the growth inhibitory effect against the mammalian cell line L6 has to be 

evaluated from which a measure of a compound’s cytotoxicity can be deduced. Thus, 

the selectivity index (SI), namely the ratio of IC50 against L6 cells to IC50 against each 

parasite, is also an important parameter and both IC50 and SI values are used to rank 

compounds.
26

 This SI must be ≥ 100 for T.b. rhodesiense, ≥ 50 for T. cruzi and ≥ 20 for 

L. donovani axenic amastigotes. 

On the basis of the above, only 9 compounds (4–6, 13, 23, 24, 28, 29 and 34) were 

moderately active/active and selective against T. b. rhodesiense, whereas 30 compounds 

(83%), namely 1–17, 21–31 and 34–36 were active (with the exception of 30 which 

was moderately active) and selective against T. cruzi (Table 1). Compounds 17 and 18, 

which were moderately active against L. donovani have also an acceptable selectivity. 

Therefore, as  in the case of 3-nitrotriazole-based amines,
19

 the majority of these 3-

nitrotriazole-based amides/sulfonamides act as antichagasic agents. 

 

Evaluation of SARs: Analysis of the nitroheterocyclic ring 

On the basis of our previous experience that the 2-nitroimidazole-based aromatic and 

aliphatic amines tend to be significantly less potent as anti-trypanosomal agents and 

more toxic to the host cells than their 3-nitrotriazole analogs
19

, we focused more on the 

synthesis and evaluation of 3-nitrotriazole-based amides/sulfonamides. Therefore, only 

two 2- nitroimidazole-based amides (1 and 2) and one sulfonamide (21) were included. 

Because of the very limited number of such compounds, no solid conclusions can be 

obtained regarding the effect of the nitroheterocyclic ring on the anti-trypanosomal 

activity of these classes. However, it is apparent that all of these compounds were 

inactive against T. b. rhodesiense, and in general, they were less potent anti-chagasic 

agents than their closely related 3- nitrotriazoles or benznidazole (compare 1 with 3, 4 

and 7; 2 with 5 and 6; 21 with 23) (Table 1). 
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Analysis of amides in which the 3-nitrotriazole ring is linked through the amino 

group 

Comparing the antichagasic activity of the N-(3-nitrotriazolyl-alkyl)benzamides 3–8, it 

is observed that activity increases with the length of the linker between the 3-

nitrotriazole ring and amido group (Table 1, compare 3 with 4 and 7; 5 with 6). The 

same rule applies for the activity against T. b. rhodesiense as well. Replacing the 

trifluoromethyl group in 3 with the trifluoromethoxy group, resulted in decreased 

activity and selectivity against T. cruzi in 5; however the opposite effect was observed 

in the case of compounds 4 and 6. Interestingly, the more lipophilic 6, was slightly less 

toxic to L6 cells compared to the less lipophilic 5 and, because of its increased potency 

against T. cruzi, resulted in a very high selectivity of > 2381. It is also worthy 

mentioning that the trifluoromethoxy group increased lipophilicity to the same degree as 

two methylene groups (Table 1). However, this increased lipophilicity was not always 

translated to increased antichagasic or anti-HAT activity and the length of the linker 

played a more important role. The addition of an extra trifluoromethyl group in the 

phenyl ring of 8 resulted also in decreased antichagasic activity and selectivity, as well 

as in inactivity against T.b. rhodesiense (Table 1). Exchanging the phenyl group with a 

pyridino- in 9, significantly decreased the activity and selectivity against T. cruzi but did 

not have any dramatic effect on the moderate activity against T. b. rhodesiense 

(compare 7 with 9). 

Quinoline-2-carboxamides 10 and 11 demonstrated exceptional in vitro activity against 

T. cruzi and very good selectivity. The additional methylene in the linker of 11 naturally 

increased lipophilicity of this compound and led to a decreased selectivity (Table 1). 

Going from the quinoline-2-carboxamide 10 to the quinoxaline analog 12, we observe a 

decrease in the antichagasic activity and selectivity, and complete inactivity against T. 

b. rhodesiense (Table 1). A significant drop in logP value compared to 10 (Table 1) may 

be related to this inactivity. Finally, the 4-phenylbenzamide 13 was the most potent 

derivative against T. cruzi, with an IC50 of 43 nM (36 times more potent than 

benznidazole) and selectivity of 2782, the highest selectivity observed in all 

compounds. Compound 13 was also moderately active against T. b. rhodesiense (Table 

1). 

All the 3-nitrotriazole-based amides in which the nitrotriazole ring was linked through 

the amino group (3–13), with the exception of 9, were 1.9–36 fold more potent than 

benznidazole against T. cruzi amastigotes (Table 1). 
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Table 1. In Vitro Biological and Physical Properties of 3-Nitrotriazole-Based 

Amides/Sulfonamides 

 
 

 

Comp. T.b.rhod.
a

SI T. cruzi
b

SI L.don. axen.
c

SI
d

Cytotox. L6 
e

IC50 Bnz/ Chemical 

IC50 (µM) IC50 (µM) IC50 (µM) IC50 (µM) IC50 Comp Structure

Melars. 0.012 ± 0.001 Reference

Bnz 1.562 ± 0.011 Reference

Miltef. 0.382 ± 0.005 Reference

Podoph. 0.022 Reference

1 21.374 6.053 29 13.77 176.6 0.3 2.5 92.7

2 46.648 3.715 74 36.03 274 0.4 3.1 102.0

3 3.161 0.438 >625 33.44 >273.6 3.6 2.1 105.6

4 0.501 208 0.176 591 7.93 104.3 8.9 2.7 105.6

5 1.986 >131 0.73 >357 29.25 >260.9 2.1 2.6 114.9

6 1.391 >193 0.113 >2381 12.98 >268 13.8 3.2 114.9

7 3.761 0.353 >826 37.32 >292 4.4 2.2 105.6

8 16.4 11.4 0.642 290.7 12.34 186.6 2.4 3.0 105.6

9 3.546 3.459 >84 96.51 >291 0.5 1.3 118.5

10 3.22 0.138 1579 19.94 217.98 11.3 1.8 118.5

11 4 0.132 691 13.41 91.5 11.8 2.3 118.5

12 34.862 0.807 >379 62.69 >306 1.9 1.0 131.4

13 0.587 199 0.043 2782 8.37 117 36.3 2.9 105.6

14 9.96 3.383 102 28.12 344.83 0.5 1.0 105.6

15 6.474 0.970 133 10.39 128.88 1.6 1.8 105.6

logP PSA (Å
2
)
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Table 1. continued 

 

 

 

Comp. T.b.rhod.
a

SI T. cruzi
b

SI L.don. axen.
c

SI
d

Cytotox. L6 
e

IC50 Bnz/ Chemical 

IC50 (µM) IC50 (µM) IC50 (µM) IC50 (µM) IC50 Comp Structure

16 3.404 0.307 468 51.37 143.77 5.1 2.2 96.8

17 11.51 14.8 1.799 94.4 5.91 28.7 169.8 0.9 2.6 118.5

18 48.45 3.4 6.588 24.8 5.82 28 163.1 0.2 2.7 118.5

19 34.42 <1 7.876 3.3 4.68 26.3 8.49 0.2 1.9 131.7

20 6.03 4 0.734 33 11.43 24.18 2.1 3.1 117.7

21 27.51 1.659 106 15.55 175.99 0.9 2.3 109.8

22 2.79 0.803 248.5 32.38 199.5 1.9 1.8 122.7

23 0.504 467 0.359 656 13.09 235.33 4.4 1.9 122.7

24 0.354 240 0.71 120 7.79 84.91 2.2 2.4 122.7

25 10.313 0.644 178 46.09 114.77 2.4 2.8 122.7

26 36.7 3 1.677 66.2 33.26 111.1 0.9 2.7 122.7

27 11.3 9.6 0.322 337.6 20.74 108.7 4.9 2.8 122.7

28 2.54 121 0.412 746.8 38.15 8.1 307.7 3.8 1.5 122.7

29 0.477 234.9 0.203 551.7 7.8 14.4 112 7.7 3.0 131.9

30 8.39 >38.3 6.463 >48 112.86 >321.5 0.2 0.7 122.7

31 6.49 >47.4 2.237 >137.6 79.38 >307.7 0.7 0.8 122.7

32 35.88 >9.3 83.39 4 >332.2 >332.2 0.0 -0.3 140.5

logP PSA (Å
2
)
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Table 1. continued 

 
a
T.brucei rhodesiense, strain STIB 900, trypomastigotes. 

b
T. cruzi, strain Tulahuen C4, 

amastigotes. 
c
Axenic L. donovani, strain MHOM-ET-67/L82,amastigotes. 

d
SI is the 

ratio IC50 in L6 cells/IC50 in each parasite. 
e
Cytotoxicity in L6 cells. Reference drugs: 

melarsoprol (Melars), benznidazole (Bnz), miltefosine (Miltef), podophylotoxin 

(podoph). The IC50 value of each reference is the mean from 36 measurements in 

parallel with each 

compound (SD was 0.001, 0.011, and 0.005 for Melars, Bnz, and Miltef, respectively). 

PSA = polar surface area. All physical properties werepredicted by using the Marvin 

Calculator (www.chemaxon.com). 

 

Analysis of amides in which the 3-nitrotriazole ring is linked through the carbonyl 

group 

A small number of amides (14–19) in which the 3-nitrotriazole ring is linked through 

the carbonyl group were also synthesized for comparison with benznidazole. Compound 

14 was 0.5 fold less potent against T. cruzi amastigotes than its 2-nitroimidazole-

bearing analog, benznidazole (Table 1), perhaps due to its decreased lipophilicity (logP 

0.95 versus 1.32 for benznidazole). Indeed, the more lipophilic amides 15 and 16 were 

also more potent antichagasic agents than benznidazole (Table 1). 

Interestingly, despite their relatively high lipophilicity, the benzothiazole acetamides 17 

and 18 and the benzoxazole acetamide 19 were less potent against T. cruzi amastigotes 

compared to benznidazole. Similarly, all three compounds were inactive against T. b. 

rhodesiense (Table 1). However, compounds 17–19 demonstrated a moderate 

antileishmanial activity and could be considered as initial scaffolds for further 

investigation for such drugs. 

To further expand the class of amides, we have evaluated one urea (20). Although urea 

20 was similarly active against T. cruzi with the analogous amide 8, it was significantly 

Comp. T.b.rhod.
a

SI T. cruzi
b

SI L.don. axen.
c

SI
d

Cytotox. L6 
e

IC50 Bnz/ Chemical 

IC50 (µM) IC50 (µM) IC50 (µM) IC50 (µM) IC50 Comp Structure

33 21.9 >14.5 20.57 >15 223.17 >317.5 0.1 -0.2 140.5

34 1.99 122 0.438 556 33 7.4 243.5 3.6 1.7 122.7

35 1.049 0.028 1764 7.54 50 55.8 2.7 122.7

36 6.519 0.4 519 32.87 208 3.9 1.2 135.6

active active but cytotoxic, low specificitymoderately active

logP PSA (Å
2
)
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more toxic, resulting in an unacceptable selectivity of 33 (Table 1). Lipophilicity alone 

could not account for the toxicity of 20, since both 8 and 20 have similar logP values 

(Table 1). 

 

Analysis of N-(3-nitrotriazole-alkyl) arene-sulfonamides 

Evaluating sulfonamides 21–36, it is observed that all but the methyl-imidazole 

sulfonamides 32 and 33, were potent antichagasic agents. Looking at Table 1, it is 

apparent that compounds 32 and 33 were the only ones with negative logP values and 

PSA > 140 A, indicative of poor penetration through cell membranes. 

The 2-nitroimidazole-based sulfonamide 21 was a more potent antichagasic agent than 

the analogous amides 1 and 2, but still slightly less active than the reference drug 

benznidazole (Table 1). These results imply that perhaps further evaluation of 2-

nitroimidazole-based sulfonamides as antichagasic agents is worthwhile. However, as 

was mentioned previously, both 2-nitroimidazole-based amides and sulfonamides were 

not effective anti-HAT agents compared to their 3-nitrotriazole-based analogs. 

As in the case of N-(3-nitrotriazolyl-alkyl)benzamides, activity of N-(3-nitrotriazolyl-

alkyl) benzene sulfonamides 22–24 against T. b. rhodesiense, proportionally increases 

with the length of the linker between the 3-nitrotriazole ring and sulfamido group (Table 

1). The same rule, however, does not apply here for activity against T. cruzi, although it 

is clear that two methylene-linker corresponds to the lowest activity (Table 1). 

In general, sulfonamides were slightly less potent antichagasic agents compared to their 

analogous amides (compare 22 with 3; 24 with 4; 29 with 6). However, sulfonamides 

27 and35 were more potent than amides 8 and 13, respectively, against T. cruzi (Table 

1). A second trifluoromethyl group on the phenyl ring (25, 26 and 27) resulted in 

inactivity against T. b. rhodesiense, independently of its position on the ring (25, 26, 

27), with the linker length (26) being the most determinant parameter. However, the 

effect of the second trifluoromethyl group on the antichagasic activity of sulfonamides 

was not clear (Table 1). Replacing the trifluoromethyl group in 24 with a 

trifluoromethoxy group in 29 increased the activity and selectivity against T. cruzi but 

slightly reduced the activity and selectivity against T. b. rhodesiense. Membrane 

permeability issues, due to a greater PSA value in 29, may be the reason for this slight 

reduction in anti-HAT activity (Table 1). 

Replacing the trifluoromethyl group in 23 with a methyl group in 28 resulted in slightly 

decreased activity and slightly increased selectivity against T. cruzi, perhaps due to a 
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slight decrease in lipophilicity (Table 1). However, this slight decrease in lipophilicity 

of 28 had a more dramatic decrease in both activity and selectivity against of T. b. 

rhodesiense (Table 1). Exchanging the tolyl group in 28 with a benzyl group in 31 

further decreased the logP value and resulted in lower activity and selectivity against 

both T. cruzi and T. b. rhodesiense (Table 1). Finally, shortening the linker of 31 by one 

methylene group in 30 significantly decreased the activity against T. cruzi and T. b. 

rhodesiense and resulted in unacceptable selectivity (Table1). Interestingly, both benzyl  

 

Table 2. Effect of TbNTR Expression on the Activity of Selected Compounds against 

Bloodstream-Form T. brucei brucei Parasites 

 

T.b. rhod.
a

      T.b. Brucei
b      

TbNTR
c

TbNTR
c

Ratio

ID No IC50 (µM) IC50 (µM) -tet +tet -tet/+tet

3 3.16 1.3 ± 0.4 1.26 ± 0.27 0.09 ± 0.02 14

4 0.50 0.9 ± 0.1 1.30 ± 0.28 0.13 ± 0.01 10

6 1.39 3.6 ± 0.7 1.05 ± 0.05 0.10 ± 0.00 11

7 3.76 > 10 nd
d

nd nd

8 16.4 >10 nd nd nd

9 3.55 7.9 ± 0.2 nd nd nd

10 3.22 > 10 nd nd nd

11 4.00 > 10 nd nd nd

12 34.86 > 10 nd nd nd

13 0.59 0.3 ± 0.0 0.28 ± 0.02 0.05 ± 0.01 6

14 9.96 > 10 nd nd nd

15 6.47 8.5 ± 0.2 nd nd nd

16 3.40 > 10 nd nd nd

20 6.03 1.0 ± 0.0 0.81 + 0.07 0.18 + 0.02 5

22 2.79 > 10 nd nd nd

23 0.50 3.4 ± 0.6 7.83 ± 0.50 0.25 ± 0.01 31
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Table 2. (continued) 

 

a
STIB 900 trypomastigotes. 

b
Bloodstream-form wild-type T. brucei brucei (Lister 427, 

clone 221a) parasites. 
c
Bloodstream-form T. brucei brucei parasites, engineered to 

overexpress type I nitroreductase in the presence (+tet) or absence (−tet) of tetracycline. 
d
Not determined. 

e
Nifurtimox (positive control). 

f
Benznidazole (positive control). 

g
Melarsoprol (negative control). 

 

sulfonamides 30 and 31 were less potent antichagasic agents than benznidazole. 

As in the case of 4-phenylbenzamide 13, the 4-phenylbenzene sulfonamide 35 was the 

most potent antichagasic compound in the series of sulfonamides, with an IC50 of 28 

nM (~56 times more potent than benznidazole) and selectivity of 1764. Sulfonamide 35 

was more potent against T. cruzi than the analogous amide 13, but less active than 13  

against T. b. rhodesiense. In addition, increased toxicity of 35 to L6 host cells, 

independently of lipophilicity, resulted in decreased selectivity as compared to 13 

(Table 1). 

Replacing the phenyl ring with a chloro-thiophene in 34, slightly decreased the potency 

against T. cruzi and had a more significant impact in selectivity due to an increase in 

toxicity (compare 28 with 34). However, the activity against T. b. rhodesiensie and 

selectivity of 34 was similar to that of 28 (Table 1). Replacing the benzene ring with an 

8-quinoline in 36, did not affect the antichagasic potency but resulted in increased 

toxicity and decreased selectivity as compared to 28. The decreased anti-HAT activity 

T.b. rhod.
a

      T.b. Brucei
b      

TbNTR
c

TbNTR
c

Ratio

ID No IC50 (µM) IC50 (µM) -tet +tet -tet/+tet

25 10.31 > 10 nd nd nd

26 36.7 7.9 ± 0.1 nd nd nd

27 11.3 6.6 ± 0.1 nd nd nd

28 2.54 4.0 ± 0.3 5.63 + 2.40 0.24 + 0.02 23

34 1.99 2.3 ± 0.1 4.34 ± 0.05 0.23 + 0.01 19

35 1.05 0.5 ± 0.0 0.44 ± 0.03 0.07 ± 0.01 6

36 6.52 > 10 nd nd nd

Nfx
e

1.71 ± 0.06 0.13 ± 0.04 13
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of 36 compared to 28, may be related to a decreased lipophilicity and an increased PSA 

value (Table 1). 

 

The involvement of type I nitroreductase in the activation of 3-nitrotriazole-based 

amides/sulfonamides 

Nitroheterocyclic prodrugs must undergo enzyme-mediated activation within the 

pathogen to have cytotoxic effects, a reaction catalyzed by nitroreductases. Both Nfx 

and Bnz are activated by the NADH-dependent, oxygen insensitive, mitochondrially 

localized, bacteriallike, type I NTR, and down-regulation of this enzyme resulted in 

resistance to these compounds.
10–12

 

 

 

Figure 1. Activity of recombinant TbNTR toward different amides/sulfonamides and 

nifurtimox (Nfx). 

 

Several compounds from all sub-categories in Table 1 have been evaluated for anti-

HAT activity against bloodstream form T. b. brucei (Table 2). With few exceptions (3, 

13, 20, 35), most compounds demonstrated a greater IC50 value or were inactive 

against T. b. brucei compared to T. b. rhodesiense (Table 2). Compounds with an IC50 

≤ 5 μM against T. b. brucei were tested in a parasite line engineered to overexpress 

tetracycline-inducible TbNTR, in order to examine the involvement of this enzyme in 

their activation (Table 2). 

It is observed that parasites overexpressing tetracycline-inducible TbNTR were more 

susceptible to all such compounds (3, 4, 6, 13, 20, 23, 28, 34 and 35) as compared to 
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wildtype parasites, with −tet/+tet (non-induced/induced) ratio ranging from 5 to 31 

(Table 2). This implies that the major growth inhibitory activity of these compounds is 

via type I NTR activation. It is also observed in Table 2 that the least active compounds 

against wild type T. b. brucei (6, 23, 28 and 34) showed a greater −tet/+tet ratio than the 

most active compounds 13 and 35. 

Selected compounds from Table 1 were tested as substrates of purified type I TbNTR. 

As shown in Fig. 1, all of the tested compounds were preferred substrates of the 

nitroreductase and there is, in general, a good correlation between enzymatic activity 

and activity against T. b. rhodesiense. 

To exclude the possibility that these compounds may exert some of their anti-

trypanosomal activity via trypanothione reductase (TR) inhibition,
8,27

 we have tested 

selected compounds (3, 6, 10, 15, 16, 21, 23) against this enzyme. None of the 

compounds showed an inhibitory activity against TR at concentrations < 100 μM 

(unpublished results, private communication with Dr. Mary O’Sullivan, Canisius 

College, Buffalo, NY). 

 

CONCLUSIONS 

From the above results and discussion, it is concluded that, like the 3-nitrotriazole-based 

aromatic and aliphatic amines, 3-nitrotriazole-based amides and sulfonamides exert 

exceptional in vitro antichagasic and anti-HAT activities. All tested compounds satisfy 

the Lipinski rule of 5 and at least 19 of them (3–8, 10–13, 16, 22, 23, 27–29, 34–36) 

have been identified (Table 1) as potential candidates for in vivo studies in T. cruzi 

infected mice. All of the 19 compounds have demonstrated significant antichagasic 

activity at low to intermediate nmolar concentrations and selectivity > 200. In addition, 

all of them were 2–56 fold more potent as antichagasic agents than benznidazole (Table 

1). Compounds 4, 13, 23, 24 and 29 also deserve further in vivo investigation as anti-

HAT agents, whereas compounds 17–19 should be used as initial scaffolds for further 

investigation of antileishmania drugs. 

 

EXPERIMINTAL 

All starting materials and solvents were purchased from Sigma-Aldrich (Milwaukee, 

WI), were of research-grade quality and used without further purification. Solvents used 

were anhydrous and the reactions were carried out under a nitrogen atmosphere and 
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exclusion of moisture. Melting points were determined by using a Mel-Temp II 

Laboratory Devices apparatus (Holliston, MA) and are uncorrected. Elemental Analyses 

were obtained by Midwest Microlab, LLC (Indianapolis, IN). Proton NMR spectra were 

obtained on a Varian Inova-500 or a Bruker Avance-III-500 spectrometer at 500 MHz 

and are referenced to Me4Si or to the corresponding protonated solvent, if the solvent 

was not CDCl3. Highresolution electrospray ionization (HRESIMS) mass spectra were 

obtained on a Agilent 6210 LC-TOF mass spectrometer at 11000 resolution. Thin-layer 

chromatography was carried out on aluminum oxide N/UV254 or polygram silica gel 

G/UV254 coated plates (0.2 mm, Analtech, Newark, DE). Chromatography was carried 

out on preparative TLC alumina GF (1000 microns) or silicagel GF (1500 microns) 

plates (Analtech). All of the amides/ sulfonamides were purified by preparative TLC 

chromatography on silicagel GF plates (≥ 95% purity). The results from elemental 

analysis for C, H and N were within 0.4 of the theoretical value. 

The synthesis of compound 1 has been described before.
22

 

 

General synthetic procedure of arylamides/sulfonamides and urea 20 

For compounds 2–13 and 21–36: The appropriate commercially available arylcarbonyl/ 

arylsulfonyl chloride (1.24 mmol) was dissolved in 2–3 mL dry dichloromethane and 

added dropwise to a solution of 3-nitro-1H-1,2,4-triazolyl-alkylamine23 (1.24 mmol) 

and triethylamine (2.48 mmol) in 6–8 mL of dry dichloromethane, at room temperature 

and under an inert atmosphere. In three cases (1, 2, 21), 3-(2-nitro-1H-imidazolyl)- 

propylamine23 (1.24 mmol) was used. The reaction mixture was worked up after 12 h 

of stirring at room temperature. For compounds 3, 5, 22, 26, 30 and 32 the 

hydrochloride salt of 2-(3-nitro-1H-1,2,4-triazole)ethylamine (instead of the free amine) 

and 4 eq of triethyl amine were used. In this case, the reaction mixture was a suspension 

and the yields of the final product were not very good. 

For urea 20, the commercially available 3,5-bis(trifluoromethyl)phenyl isocyanate (1.1 

mmol) was added dropwise to a dichloromethane solution of 3-nitro-1H-1,2,4-

triazolylpropylamine (1.1 mmol), at room temperature and under an inert atmosphere. 

The urea was formed immediately at 100% yield, as a white precipitate. 

For amides 14–19, 3-nitro-1,2,4-triazole (0.9–1.0 mmol) was stirred under an inert 

atmosphere and exclusion of moisture with 1.2 eq of KOH in acetonitrile under mild 

heating (ca. 40 °C) and then this suspension was slowly added to an acetonitrile solution 

of the appropriate α-chloroacetamide
24

 (37a–f). α-Chloroacetamides 37b–f were 
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synthesized at room temperature by adding a dichloromethane solution of an 

appropriate amine (2.79 mmol) and triethylamine (3.07 mmol) to a dichloromethane 

solution of α-chloroacetyl chloride (3.07 mmol), according to the literature
24

. 

 

N-[3-(2-Nitro-1H-imidazol-1-yl)propyl]-4-(trifluoromethoxy)benzamide (2)—Off 

white powder (54%): mp 68–70 °C; 
1
H NMR (500 MHz, CDCl3) δ: 7.84 (d, J=9.0 Hz, 

2H), 7.31 (br s, 2H), 7.30 (s, 1H), 7.18 (s, 1H), 6.40 (br s, 1H), 4.54 (t, J=7.0 Hz, 2H), 

3.57 (m, 2H), 2.21 (m, 2H). HRESIMS calcd for C14H14F3N4O4 and C14H13F3N4NaO4 

m/z [M+H]
+
 and [M+Na]

+
 359.0962, 381.0781, found 359.0962, 381.0784. 

N-[2-(3-Nitro-1H-1,2,4-triazol-1-yl)ethyl]-4-(trifluoromethyl)benzamide (3)— 

White powder (65%): mp 155–157 °C; 
1
H NMR (500 MHz, CDCl3) δ: 8.24 (s, 1H), 

7.86 (br s, 1H), 7.72 (d, J=8.0 Hz, 2H), 7.46 (d, J=8.0 Hz, 2H), 4.43 (t, J=5.0 Hz, 2H), 

3.76 (m, 2H). HRESIMS calcd for C12H11F3N5O3 m/z [M+H]
+
 330.0809, found 

330.0815. 

N-[4-(3-Nitro-1H-1,2,4-triazol-1-yl)butyl]-4-(trifluoromethyl)benzamide (4)— 

White powder (62%): mp 78–79 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 8.69 (s, 1H), 

8.07 (d, J=8.0 Hz, 2H), 8.04 (br s, 1H), 7.81 (d, J=8.0 Hz, 2H), 4.49 (t, J=7.0 Hz, 2H), 

3.49 (m, 2H), 2.06 (m, 2H), 1.69 (m, 2H). HRESIMS calcd for C14H15F3N5O3 m/z 

[M+H]
+
 358.1122, found 358.1131. 

N-[2-(3-Nitro-1H-1,2,4-triazol-1-yl)ethyl]-4-(trifluoromethoxy)benzamide (5)— 

White powder (65%): mp 108–109 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 8.70 (s, 

1H), 8.17 (br s, 1H), 7.95 (d, J=8.5 Hz, 2H), 7.41 (d, J=8.5 Hz, 2H), 4.65 (t, J=5.5 Hz, 

2H), 3.93 (t, J=5.5 Hz, 2H). HRESIMS calcd for C12H11F3N5O4 m/z [M+H]
+
 346.0758, 

found 346.0765. 

N-[4-(3-Nitro-1H-1,2,4-triazol-1-yl)butyl]-4-(trifluoromethoxy)benzamide (6)— 

White powder (72%): mp 64–65 °C; 
1
H NMR (500 MHz, CDCl3) δ: 8.26 (s, 1H), 7.82 

(d, J=8.5 Hz, 2H), 7.27 (d, J=8.0 Hz, 2H), 6.44 (br s, 1H), 4.39 (t, J=7.0 Hz, 2H), 3.53 

(m, 2H), 2.06 (quintet, J=7.0 Hz, 2H), 1.69 (quintet, J=7.0 Hz, 2H). HRESIMS calcd for 

C14H15F3N5O4 m/z [M+H]
+
 374.1071, found 374.1075. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-3-(trifluoromethyl)benzamide (7)— 

White powder (70%): mp 81–83 °C; 
1
H NMR (500 MHz, CDCl3) δ: 8.45 (s, 1H), 8.05 

(s, 1H), 7.98 (d, J=7.5 Hz, 1H), 7.81 (d, J=8.0 Hz, 1H), 6.63 (t, J= 8.0 Hz, 1H), 6.55 (br 

s, 1H), 4.43 (t, J=6.5 Hz, 2H), 3.58 (m, 2H), 2.32 (quintet, J=6.5 Hz, 2H). HRESIMS 

calcd for C13H13F3N5O3 m/z [M+H]
+
 344.0965, found 344.0969. 
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N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-3,5-bis(trifluoromethyl)benzamide (8) 

—White powder (83%): mp 152–153 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 8.72 (s, 

1H), 8.52 (s, 2H), 8.46 (br s, 1H), 8.25 (s, 1H), 4.57 (t, J=7.0 Hz, 2H), 3.59 (q, J=6.5 

Hz, 2H), 2.35 (quintet, J=7.0 Hz, 2H). HRESIMS calcd for C14H12F6N5O3 m/z [M+H]
+
 

412.0839 found 412.0844. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-6-(trifluoromethyl)pyridine-3- 

carboxamide (9)—White powder (71%): mp 92–94 °C; 
1
H NMR (500 MHz, CDCl3) 

δ: 9.09 (s, 1H), 8.39 (s, 1H), 8.33 (d, J=8.5 Hz, 1H), 7.82 (d, J=8.0 Hz, 1H), 6.73 (br s, 

1H), 4.43 (t, J=6.5 Hz, 2H), 3.60 (q, J=6.5 Hz, 2H), 3.42 (quintet, J=6.5 Hz, 2H). 

HRESIMS calcd for C12H12F3N6O3 and C12H11F3N6NaO3 m/z [M+H]
+
 and [M+Na]

+
 

345.0917, 367.0737, found 345.0929, 367.0745. Calculated analysis for C12H11F3N6O3: 

C, 41.87; H, 3.22 ; N, 24.41. Found: C, 41.93; H, 3.38; N, 24.17. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]quinoline-2-carboxamide (10)—Off 

white powder (70%): mp 135–137 °C; 
1
H NMR (500 MHz, CD3OD) δ: 8.68 (s, 1H), 

8.46 (d, J=8.5 Hz, 1H), 8.17 (t, J=9.0 Hz, 2H), 8.0 (d, J=8.5 Hz, 1H), 7.83 (t, J=8.5 Hz, 

1H), 7.69 (t, J=8.0 Hz, 1H), 4.46 (t, J=8.0 Hz, 2H), 3.58 (t, J=6.5 Hz, 2H), 2.34 (quintet, 

J=6.5 Hz, 2H). HRESIMS calcd for C15H15N6O3 and C15H14N6NaO3 m/z [M+H]
+
 and 

[M+Na]
+
 327.1200, 349.1020, found 327.1209, 349.1026. 

N-[4-(3-Nitro-1H-1,2,4-triazol-1-yl)butyl]quinoline-2-carboxamide (11)—Off white 

powder (67%): mp 124–126 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 8.75 (br s, 1H), 

8.70 (s, 1H), 8.52 (d, J=8.5 Hz, 1H), 8.24 (d, J=8.5 Hz, 1H), 8.06 (t, J=9.5 Hz, 2H), 7.84 

(t, J=7.0 Hz, 1H), 7.70 (t, J=7.0 Hz, 1H), 4.52 (t, J=7.0 Hz, 2H), 3.58 (q, J=6.5 Hz, 2H), 

2.09 (m, 2H),1.76 (quintet, J=7.0 Hz, 2H). HRESIMS calcd for C16H17N6O3 m/z 

[M+H]
+
 341.1357, found 341.1369. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]quinoxaline-2-carboxamide (12)—Off 

white powder (66%): mp 143–144 °C; 
1
H NMR (500 MHz, CDCl3) δ: 9.67 (s, 1H), 

8.47 (s, 1H), 8.22 (d, J=8.0 Hz, 1H), 8.21 (br s, 1H), 8.12 (d, J=7.5 Hz, 1H), 7.90 (m, 

2H), 4.45 (t, J=6.5 Hz, 2H), 3.66 (q, J=6.5 Hz, 2H), 2.39 (quintet, J=6.5 Hz, 2H). 

HRESIMS calcd for C14H14N7O3 m/z [M+H]
+
 328.1153, found 328.1166. Calculated 

analysis for C14H13N7O3: C, 51.38; H, 4.0; N, 29.96. Found: C, 51.29; H, 4.17; N, 29.68. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-4-phenylbenzamide (13)—White 

powder (96%): mp 177–179 °C; 
1
H NMR (500 MHz, CDCl3) δ: 8.48 (s, 1H), 7.85 (d, 

J=8.5 Hz, 2H), 7.69 (d, J=7.0 Hz, 2H), 7.48 (t, J=7.5 Hz, 2H), 7.40 (t, J=7.5 Hz, 1H), 

6.49 (br t, 1H), 4.43 (t, J=6.5 Hz, 2H), 3.57 (q, J=6.5 Hz, 2H), 2.30 (quintet, J=6.5 Hz, 
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2H). HRESIMS calcd for C18H18N5O3 and C18H17N5NaO3 m/z [M+H]
+
 and [M+Na]

+
 

352.1404, 374.1224, found 352.1406, 374.1222. Calculated analysis for C18H17N5O3: C, 

61.53; H, 4.88; N, 19.93. Found: C, 61.79; H, 4.96; N, 19.58. 

N-Benzyl-2-(3-nitro-1H-1,2,4-triazol-1-yl)acetamide (14)—Off white powder (40%): 

mp 103–106 °C; 
1
H NMR (500 MHz, CDCl3) δ: 8.39 (s, 1H), 7.38-7.28 (m, 5H), 6.26 

(br s, 1H), 4.98 (s, 2H), 4.50 (d, J=5.5 Hz, 2H). HRESIMS calcd for C11H12N5O3 m/z 

[M+H]
+
 262.0935, found 262.0935. 

2-(3-Nitro-1H-1,2,4-triazol-1-yl)-N-{[4-(trifluoromethyl)phenyl]methyl}acetamide 

(15)—White microcrystal (78%): mp 168–170 °C; 
1
H NMR (500 MHz, CDCl3) δ: 8.37 

(s, 1H), 7.62 (d, J=8.0 Hz, 2H), 7.40 (d, J=8.0 Hz, 2H), 6.35 (br s, 1H), 4.99 (s, 2H), 

4.56 (d, J=6.0 Hz, 2H). HRESIMS calcd for C12H11F3N5O3 and C12H10F3N5NaO3 m/z 

[M+H]
+
 and [M+Na]

+
 330.0809, 352.0628, found 330.0814, 352.0632. 

1-(4-Benzylpiperidin-1-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)ethan-1-one (16)— 

White powder (84%): mp 129–131 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 8.57 (s, 

1H), 7.31-7.18 (m, 5H), 5.47 (dt, J=19.0, 16.5 Hz, 2H), 4.44 (d J=13 Hz, 1H), 3.97 (d, 

J=13.5 Hz, 1H), 3.16 (t, J=13.5 Hz, 1H), 2.64 (t, J=13.0 Hz, 1H), 2.60 (d, J=7.0 Hz, 

2H), 1.88 (m, 1H), 1.76 (d, J=13.0 Hz, 1H), 1.69 (d, J=13.0 Hz, 1H), 1.36-1.32 (dq, 

J=12.5, 4.5 Hz, 1H), 1.16-1.13 (dq, J=12.0, 4.0 Hz, 1H). HRESIMS calcd for 

C16H20N5O3 m/z [M+H]
+
 330.1561, found 330.1576. Calculated analysis for 

C16H19N5O3: C, 58.35; H, 5.82; N, 21.26. Found: C, 58.27; H, 5.83; N, 21.30. 

N-(6-methyl-1,3-benzothiazol-2-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)acetamide 

(17)—Off white powder (59%): mp 230 °C (dec); 
1
H NMR (500 MHz, CD3COCD3) δ: 

8.81 (s, 1H), 7.74 (s, 1H), 7.63 (d, J=8.0 Hz, 1H), 7.28 (d, J=8.0 Hz, 1H), 5.68 (s, 2H), 

2.44 (s, 3H). HRESIMS calcd for C12H11N6O3S m/z [M+H]
+
 319.0608, found 319.0617. 

N-(6-chloro-1,3-benzothiazol-2-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)acetamide 

(18)—Off white powder (58%): mp 245–248 °C (dec); 1H NMR (500 MHz, 

CD3COCD3) δ: 8.81 (s, 1H), 8.06 (s, 1H), 7.74 (d, J=8.5 Hz, 1H), 7.04 (dd J=8.5, 2.0 

Hz, 1H), 5.71 (s, 2H). HRESIMS calcd for C11H8ClN6O3S m/z [M+H]
+
 339.0062, 

341.0034, found 339.0072, 341.0045. 

N-(5-chloro-1,3-benzoxazol-2-yl)-2-(3-nitro-1H-1,2,4-triazol-1-yl)acetamide (19) 

—Off white powder (45%): mp 208–210 °C (dec); 
1
H NMR (500 MHz, CD3COCD3) 

δ: 8.76 (s, 1H), 7.60 (s, 1H), 7.59 (d, J=9.0 Hz, 1H), 7.34 (dd, J=8.5, 2.0 Hz, 1H), 5.80 

(s, 1H). HRESIMS calcd for C11H6ClN6O4 m/z [M−H]
−
 321.0145, 323.0119, found 

321.0147, 323.0143. 
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1-[3,5-bis(trifluoromethyl)phenyl]-3-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]urea 

(20)—White powder (95%): mp 151–152 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 

8.71 (s, 1H), 8.68 (br s, 1H), 8.15 (s, 2H), 7.54 (s, 1H), 6.31 (br s, 1H), 4.51 (t, J=6.5 

Hz, 2H), 3.35 (m, 2H), 2.21 (quintet, J=6.5 Hz, 2H). HRESIMS calcd for C14H13F6N6O3 

m/z [M+H]
+
 427.0948, found 427.0954. 

N-[3-(2-Nitro-1H-imidazol-1-yl)propyl]-4-(trifluoromethyl)benzene-1- 

sulfonamide (21)—White powder (56%): mp 129–131 °C; 
1
H NMR (500 MHz, 

CDCl3) δ: 7.99 (d, J=8.0 Hz, 2H), 7.82 (d, J=8.5 Hz, 2H), 7.24 (s, 1H), 7.19 (s, 1H), 

4.77 (br t, 1H), 4.57 (t, J=7.0 Hz, 2H), 3.06 (q, J=6.5 Hz, 2H), 2.12 (quintet, J=6.5 Hz, 

2H). HRESIMS calcd for C13H14F3N4O4S and C13H13F3N4NaO4S m/z [M+H]
+
, 

[M+Na]
+
 379.0682, 401.0502 found 379.0685, 401.0506. 

N-[2-(3-Nitro-1H-1,2,4-triazol-1-yl)ethyl]-4-(trifluoromethyl)benzene-1- 

sulfonamide (22)—White powder (35%): mp 155–156 °C; 
1
H NMR (500 MHz, CDCl3 

+ several drops of CD3COCD3) δ: 8.51 (s, 1H), 7.99 (d, J=8.5 Hz, 2H), 7.82 (d, J=8.5 

Hz, 2H), 7.04 (br s, 1H), 4.56 (t, J=6.0 Hz, 2H), 3.56 (m, 2H). HRESIMS calcd for 

C11H11F3N5O4S m/z [M+H]
+
 366.0478, found 366.0481. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-4-(trifluoromethyl) benzene-1- 

sulfonamide (23)—White powder (88%): mp 67–68 °C; 
1
H NMR (500 MHz, CDCl3) 

δ: 8.36 (s, 1H), 7.97 (d, J=8.5 Hz, 2H), 7.81 (d, J=8.5 Hz, 2H), 5.01 (br t, 1H), 4.51 (t, 

J=6.5 Hz, 2H), 3.03 (q, J=6.5 Hz, 2H), 2.23 (quintet, J=6.0 Hz, 2H). HRESIMS calcd 

for C12H13F3N5O4S m/z [M+H]
+
 380.0635, found 380.0635. 

N-[4-(3-Nitro-1H-1,2,4-triazol-1-yl)butyl]-4-(trifluoromethyl) benzene-1- 

sulfonamide (24)—White powder (49%): mp 83–85 °C; 
1
H NMR (500 MHz, CD3OD) 

δ: 8.59 (s, 1H), 8.03 (d, J=8.0 Hz, 2H), 7.89 (d, J=8.0 Hz, 2H), 4.32 (t, J=7.0 Hz, 2H), 

2.94 (t, J=6.5 Hz, 2H), 1.96 (quintet, J=7.5 Hz, 2H), 1.51 (quintet, J=7.5 Hz, 2H). 

HRESIMS calcd for C13H15F3N5O4S m/z [M+H]
+
 394.0791, found 394.0796. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-2,5-bis(trifluoromethyl)benzene-1- 

sulfonamide (25)—White powder (85%): mp 131–133 °C; 
1
H NMR (500 MHz, 

CDCl3) δ: 8.42 (s, 1H), 8.31 (s, 1H), 8.06 (d, J=8.0 Hz, 1H), 8.00 (d, J=8.0 Hz, 2H), 

5.10 (br s, 1H), 4.49 (t, J=6.5 Hz, 2H), 3.07 (m, 2H), 2.25 (quintet, J=6.5 Hz, 2H). 

HRESIMS calcd for C13H12F6N5O4S and C13H11F6N5NaO4S m/z [M+H]
+
 and [M+Na]

+
 

448.0509, 470.0328, found 448.0496, 470.0310. 

N-[2-(3-nitro-1H-1,2,4-triazol-1-yl)ethyl]-3,5-bis(trifluoromethyl)benzene-1- 

sulfonamide (26)—White powder (40%): mp 164–165 °C; 
1
H NMR (500 MHz, 
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CD3COCD3) δ: 8.67 (s, 1H), 8.40 (s, 2H), 8.37 (s, 1H), 4.60 (t, J=5.5 Hz, 2H), 3.67 (t, 

J=5.5 Hz, 2H). HRESIMS calcd for C12H10F6N5O4S and C12H9F6N5NaO4S m/z [M+H]
+
 

and [M+Na]
+
 434.0352, 456.0172, found 434.0358, 456.0178. 

N-[3-(3-nitro-1H-1,2,4-triazol-1-yl)propyl]-3,5-bis(trifluoromethyl)benzene-1- 

sulfonamide (27)—White microcrystals (62%): mp 132–134 °C; 
1
H NMR (500 MHz, 

CD3COCD3) δ: 8.64 (s, 1H), 8.41 (s, 2H), 8.38 (s, 1H), 7.15 (br s, 1H), 4.53 (t, J=7.0 

Hz, 2H), 3.15 (t, J=6.5 Hz, 2H), 2.22 (quintet, J=7.0 Hz, 2H). HRESIMS calcd for 

C13H12F6N5O4S m/z [M+H]
+
 448.0509, found 448,0495. 

4-Methyl-N-[3-(3-nitro-1H-1,2,4-triazol-1-yl)propyl]benzene-1-sulfonamide (28) 

—White microcrystals (81%): mp 122–124 °C; 
1
H NMR (500 MHz, CD3COD) δ: 8.57 

(s, 1H), 7.70 (d, J=8.5 Hz, 2H), 7.37 (d, J=8.5 Hz, 2H), 4.41 (t, J=6.5 Hz, 2H), 3.31 (t, 

J=6.5 Hz, 2H), 2.42 (s, 3H), 2.08 (quintet, J=6.5 Hz, 2H). HRESIMS calcd for 

C12H16N5O4S and C12H15N5NaO4S m/z [M+H]
+
 and [M+Na]

+
 326.0918, 348.0737, 

found 326.0917, 348.0734. Calculated analysis for C12H15N5O4S: C, 44.30; H, 4.65; 

N, 21.53; S, 9.85. Found: C, 44.51; H, 4.81; N, 21.22; S, 9.89. 

N-[4-(3-nitro-1H-1,2,4-triazol-1-yl)butyl]-4-(trifluoromethoxy)benzene-1- 

sulfonamide (29)—White powder (42%): mp 66–68 °C; 
1
H NMR (500 MHz, 

CD3COCD3) δ: 8.64 (s, 1H), 7.99 (d, J=8.5 Hz, 2H), 7.55 (d, J=8.0 Hz, 2H), 6.68 (br s, 

1H), 4.42 (t, J=7.0 Hz, 2H), 3.01 (t, J=6.5 Hz, 2H), 2.01 (m, 2H), 1.59 (quintet, J=6.5 

Hz, 2H). HRESIMS calcd for C13H15F3N5O5S m/z [M+H]
+
 410.0741, found 410.0744. 

N-[2-(3-Nitro-1H-1,2,4-triazol-1-yl)ethyl]-1-phenylmethanesulfonamide (30)— 

White powder (31%): mp 165–166 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 8.62 (s, 

1H), 7.42-7.35 (m, 5H), 6.42 (br s, 1H), 4.50 (t, J=5.5 Hz, 2H), 4.37 (s, 2H), 3.58 (t, 

J=5.5 Hz, 2H). HRESIMS calcd for C11H14N5O4S and C11H13N5NaO4S m/z [M+H]
+
 and 

[M+Na]
+
 312.0761, 334.0580, found 312.0773, 334.0594. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-1-phenylmethanesulfonamide (31)— 

White microcrystals (45%): mp 104–106 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 8.62 

(s, 1H), 7.43-7.35 (m, 5H), 6.25 (br s, 1H), 4.49 (t, J=7.0 Hz, 2H), 4.35 (s, 2H), 3.13 (m, 

2H), 2.17 (quintet, J=7.0 Hz, 2H). HRESIMS calcd for C12H16N5O4S and 

C12H15N5NaO4S m/z [M+H]
+
 and [M+Na]

+
 326.0918, 348.0737, found 326.0923, 

348.0737. 

1-Methyl-N-[2-(3-nitro-1H-1,2,4-triazol-1-yl)ethyl]-1H-imidazole-2-sulfonamide 

(32)—White powder (24%): mp 170–172 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 

8.72 (s, 1H), 7.45 (br s, 1H), 7.30 (s, 1H), 7.02 (s, 1H), 4.63 (t, J=6.0 Hz, 2H), 3.90 (s, 
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3H), 3.79 (t, J=6.0 Hz, 2H). HRESIMS calcd for C8H12N7O4S and C8H11N7NaO4S m/z 

[M+H]
+
 and [M+Na]

+
 302.0666, 324.0485, found 302.0664, 324.0480. 

1-Methyl-N-[3-(3-nitro-1H-1,2,4-triazol-1-yl)propyl]-1H-imidazole-2-sulfonamide 

(33)—White powder (61%): mp 106–109 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 

8.68 (s, 1H), 7.28 (s, 1H), 6.99 (s, 1H), 4.57 (t, J=7.0 Hz, 2H), 3.92 (s, 3H), 3.28 (t, 

J=6.5 Hz, 2H). 2.25 (quintet, J=7.0 Hz, 2H). HRESIMS calcd for C9H14N7O4S and 

C9H13N7NaO4S m/z [M+H]
+
 and [M+Na]

+
 316.0822, 338.0642, found 316.0832, 

338.0649. Calculated analysis for C9H13N7O4S: C, 34.28; H, 4.16; N, 31.10; S, 10.17. 

Found: C, 34.32; H, 4.27; N, 30.83; S, 9.85. 

5-Chloro-N-[3-(3-nitro-1H-1,2,4-triazol-1-yl)propyl]thiophene-2-sulfonamide 

(34)—White powder (75%): mp 104–105 °C; 
1
H NMR (500 MHz, CD3COCD3) δ: 

8.65 (s, 1H), 7.47 (d, J=4.0 Hz, 1H), 7.16 (d, J=4.0 Hz, 1H), 7.01 (br s, 1H), 4.53 (t, 

J=7.0 Hz, 2H), 3.13 (t, J=6.5 Hz, 2H), 2.23 (quintet, J=6.5 Hz, 2H). HRESIMS calcd for 

C9H11ClN5O4S2 and C9H10ClN5NaO4S2 m/z [M+H]
+
 and [M+Na]

+
 351.9935, 373.9755, 

found 351.9930, 353.9899, 373.9751, 375.9721. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]-4-phenylbenzene-1-sulfonamide (35) 

—White powder (60%): mp 132–133 °C; 
1
H NMR (500 MHz, CDCl3) δ: 8.36 (s, 1H), 

7.88 (d, J=8.5 Hz, 2H), 7.73 (d, J=8.0 Hz, 2H), 7.59 (d, J=7.0 Hz, 2H), 7.49 (t, J=7.5 

Hz, 2H), 7.43 (t, J=7.0 Hz, 1H), 4.76 (t, J=6.0 Hz, 1H), 4.51 (t, J=6.5 Hz, 2H), 2.80 (q, 

J=6.5 Hz, 2H), 2.21 (quintet, J=6.5 Hz, 2H). HRESIMS calcd for C17H18N5O4S and 

C17H17N5NaO4S m/z [M+H]
+
 and [M+Na]

+
 388.1074, 410.0893, found 388.1070, 

410.0887. 

N-[3-(3-Nitro-1H-1,2,4-triazol-1-yl)propyl]quinoline-8-sulfonamide (36)—Off white 

powder (63%): mp 142–143 °C; 
1
H NMR (500 MHz, CDCl3) δ: 9.04 (d, J=4.0 Hz, 

1H), 8.40 (s, 2H), 8.32 (d, J=8.0 Hz, 1H), 8.10 (d, J=8.5 Hz, 1H), 7.68 (t, J=7.5 Hz, 1H), 

7.62-7.59 (m, 1H), 6.61 (br t, J=6.0 Hz, 1H), 4.55 (t, J=6.0 Hz, 2H), 2.80 (m, 2H), 2.18 

(m, 2H). HRESIMS calcd for C14H15N6O4S and C14H14N6NaO4S m/z [M+H]
+
 and 

[M+Na]
+
 363.0870, 385.0689, found 363.0883, 385.0680. 

N-Benzyl-2-chloroacetamide (37a)—This was commercially available by Aldrich. 

2-Chloro-N-{[4-(trifluoromethyl)pheny]methyl}acetamide (37b)—Pink-white 

crystallic powder28 (89%): mp 87–88 °C; 
1
H NMR (500 MHz, CDCl3) δ: 7.62 (d, 

J=7.5 Hz, 2H), 7.42 (d, J=8.0 Hz, 2H), 6.98 (br s, 1H), 4.57 (d, J=6.0 Hz, 2H), 4.14 (s, 

2H). HRESIMS calcd for C10H10ClF3NO m/z [M+H]
+
 252.0398, 254.0370, found 

252.0407, 254.0378. 
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1-(4-benzylpiperidin-1-yl)-2-chloroethan-1-one (37c)—Yellowish oil29 (91%): 
1
H 

NMR (500 MHz, CDCl3) δ: 7.32-7.14 (m, 5H), 4.55 (d, J=13.0 Hz, 1H), 4.07 (m, 2H), 

3.83 (d, J=13.5 Hz, 1H), 3.05 (t, J=13.0 Hz, 1H), 2.61-2.55 (m, 3H), 1.81-1.74 (m, 3H), 

1.20– 1.29 (m, 2H). HRESIMS calcd for C14H19ClNO m/z [M+H]
+
 252.1150, 254.1124, 

found 252.1161, 254.1134. 

2-Chloro-N-(6-methyl-1,3-benzothiazol-2-yl)acetamide (37d)—Off white crystallic 

powder30 (100%): mp 190–191 °C; 
1
H NMR (500 MHz, CDCl3) δ: 9.74 (br s, 1H), 

7.70 (d, J=8.5 Hz, 1H), 7.63 (s, 1H), 7.28 (d, J=8.5 Hz, 1H), 4.31 (s, 2H), 2.49 (s, 3H). 

HRESIMS calcd for C10H10ClN2OS m/z [M+H]
+
 241.0197, 243.0168, found 241.0194, 

243.0163. 

2-Chloro-N-(6-chloro-1,3-benzothiazol-2-yl)acetamide (37e)—White microcrystallic 

powder30,31 (73%): mp 203–204 °C (dec); 
1
H NMR (500 MHz, CDCl3) δ: 

9.71 (br s, 1H), 7.82 (s, 1H), 7.73 (d, J=9.0 Hz, 1H), 7.43 (dd, J=10.5, 6.5 Hz, 1H), 4.33 

(s, 2H). HRESIMS calcd for C9H7Cl2N2OS m/z [M+H]
+
 260.9651, 262.9621, found 

260.9663, 262.9630. 

2-Chloro-N-(5-chloro-1,3-benzoxazol-2-yl)acetamide (37f)—Light brownish powder 

(70%): mp 168–170 °C; 
1
H NMR (500 MHz, CDCl3) δ: 9.38 (br s, 1H), 7.80-7.30 (m, 

3H), 4.38 (s, 2H). HRESIMS calcd for C9H7Cl2N2O2 and C9H6Cl2N2NaO2 m/z [M+H]
+
 

and [M+Na]
+
 244.9879 and 266.9699, found 244.9871 and 266.9700. 

 

In vitro biological evaluation 

In vitro activity against T. cruzi, T. b. rhodesiense, Leishmania donovani axenic 

amastigotes and cytotoxicity assessment using L6 cells (rat skeletal myoblasts) was 

determined using a 96-well plate format as previously described.
25

 Data were analyzed 

with the graphic program Softmax Pro (Molecular Devices, Sunnyvale, CA, USA), 

which calculated IC50 values by linear regression from the sigmoidal dose inhibition 

curves. 

 

In vitro T. brucei brucei antiproliferating assays and susceptibility studies 

T. b. brucei bloodstream form parasites were seeded at 1 × 103 ml−1 in 200 μL of 

growth medium containing different concentrations of a nitrotriazole or nifurtimox. 

Where appropriate, induction of the TbNTR was carried out by adding tetracycline (1 

μg/mL). After incubation for 3 days at 37 °C, 20 μL of Alamar blue was added to each 
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well and the plates incubated for a further 16 h. The cell density of each culture was 

determined as described before
11

 and the IC50 established. 

 

Enzymatic activity studies 

Recombinant TbNTR was prepared and assayed as previously described.
16

 The activity 

of purified his-tagged TbNTR was assessed spectrophotometrically at 340 nm using 

various nitrotriazole substrates (100 μM) and NADH (100 μM) and expressed as nmol 

NADH oxidized min−1 mg−1 of enzyme. 
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ABBREVIATIONS USED 

T. cruzi  Trypanosoma cruzi 

T. brucei  Trypanosoma brucei 

HAT   human African trypanosomiasis 

Nfx   nifurtimox (4-(5-nitrofurfurylindenamino)-3-methylthio-morpholine-1,1- 

dioxide) 

Bnz   benznidazole (N-benzyl-2(2-nitro-1H-imidazol-1-yl)acetamide) 

NTR   type I nitroreductase 

TbNTR  T. brucei NTR 

DNDi   Drugs for Neglected Diseases initiative 

SI   selectivity index 

SARs   structure-activity relationships 

tet   tetracycline 
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ABSTRACT 

Background: Chagas disease is caused by the parasite Trypanosoma cruzi, is endemic 

in Latin America and leads to an estimated 14,000 deaths per year and around 100 

million people at risk of infection. Drugs currently used in the treatment of Chagas are 

old, partially effective and have numerous side effects. Methodology: We have 

previously reported that 3-nitro-1H-1,2,4-triazole-based compounds demonstrate 

significant and selective activity against T. cruzi amastigotes in infected L6 cells via 

activation of a type I nitroreductase, specific to trypanosomatids. In the present work we 

evaluated in vivo 13 of these compounds based on their high in vitro potency against T. 

cruzi (IC50 < 1 μM) and selectivity (SI: toxicity to L6 cells/toxicity against T. cruzi 

amastigotes > 200). Representative compounds of different chemical classes were 

included. A fast luminescence assay with transgenic parasites that express luciferase, 

and live imaging techniques were used. A total of 11 out of 13 compounds 

demonstrated significant antichagasic activity when administered intraperitoneally for 

5–10 days at relatively small doses. The best in vivo activity was demonstrated by 

amides and sulfonamide derivatives. ADMET studies were performed for specific 

compounds. Conclusion: At least three compounds were identified as effective, non 

toxic antichagasic agents suitable for further development. 

Executive summary 

 American trypanosomiasis or Chagas disease is a neglected disease that is 

expanding recently in non-endemic countries in North America, Europe and 

Asia. 

 Due to the absence of a vaccine and in view of problems associated with current 

drugs, there is an urgent need for the development of effective, non-toxic and 

affordable new drugs. 

 We have discovered that 3-nitro-1,2,4-triazole-based amines, amides and 

sulfonamides demonstrate significant antichagasic activity against Trypanosoma 

cruzi amastigotes in infected L6 cells with high selectivity for the parasite. 

 Such compounds are prodrugs that exert their antiparasitic activity via a type I 

nitroreductase activation, specific to the trypanosomatids, as has been previously 

demonstrated. 

 At least three such compounds have demonstrated excellent in vivo activity 

against T. cruzi and are superior to benznidazole, at the acute phase of infection, 

without systemic or developmental toxicity. 

 Limited mutagenicity studies suggest that several of these compounds do not 

demonstrate mutagenic toxicity, at least at concentrations up to their in vitro 

toxicity level. 
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INTRODUCTION 

American trypanosomiasis or Chagas disease is caused by the protozoan parasite 

Trypanosoma cruzi, which is transmitted by blood-sucking insects and remains a major 

health problem in Latin America. It is estimated that around 100 million people are at 

risk of infection with T. cruzi in endemic areas in Latin America [1]. Despite the fact 

that in the past two decades the number of incidences has significantly declined, 

primarily due to vector control initiatives, the epidemiology of the disease has changed 

due to population migration, illegal drug usage and medical practices. Thus, the number 

of cases in non-endemic regions such as the USA, Australia, Europe and Japan is on the 

rise [2,3]. In the absence of successful vaccines, chemotherapy remains the only viable 

option to fight the parasite in the patient. 

Currently, two nitro heterocyclic prodrugs are used to treat Chagas disease: nifurtimox 

(a nitrofuran; Nfx) and benznidazole (a 2-nitroimidazole; Bnz). Both were introduced 

over 50 years ago [4], have limited efficacy, can cause various side effects, and some 

strains are refractory to treatment [5]. Recently, inhibitors of the sterol 14a-demethylase 

enzyme (CYP51), which is part of the ergosterol biosynthesis, are under development as 

effective antichagasic agents [6]. Unfortunately, the high cost of these inhibitors 

prohibits their use in poor countries where the disease is most prevalent [7]. Therefore, 

we urgently need new, affordable and safer drugs to treat Chagas disease. 

Most nitroheterocyclic compounds function as prodrugs and must undergo activation 

before mediating their cytotoxic effects. It was previously demonstrated that an oxygen-

insensitive, type I nitroreductase (NTR), absent from most eukaryotes with 

trypanosomes being a major exception, is responsible for nitrofuran and Bnz 

trypanocidal activity [8–10]. This enzyme mediates a series of two-electron reduction 

reactions that result in the fragmentation of the heterocyclic ring and production of toxic 

metabolites [11]. The fact that the activation of nitroheterocyclic prodrugs can be 

catalyzed by a type I NTR specific to trypanosomatids has led to a renewed interest in 

the use of such compounds as antiparasitic agents [12–17]. 

We have recently reported that 3-nitro- 1H-1,2,4-triazole-based amines, amides and 

sulfonamides demonstrate excellent activity against T. cruzi amastigotes in infected L6 

cells with no toxicity towards the host cells [18,19]. The IC50 values of these 

compounds against the intracellular parasite ranged from low 

nanomolar to less than 4 μM and have selectivity indices ranging from 66 to 2682. In 

addition, several of these compounds were up to 56-fold more active than the reference 
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drug Bnz, tested in parallel [18,19]. We have also demonstrated that nitrotriazole-based 

compounds are activated by the type I NTR and that when this enzyme is overexpressed 

in the related T. brucei, the recombinant cells displayed hypersensitivity to these 

compounds [18,19]. However, since there are concerns about the toxicity and potential 

mutagenicity of nitro-compounds, the ultimate test for any nitro-triazole is their in vivo 

evaluation for efficacy and adverse effects. Interestingly, in preliminary in vivo studies, 

we found out that treatment of T. cruzi-infected mice with one nitrotriazole-based 

aromatic amine, NTLA-1 [20], given at just 2 mg/kg/day × 50 days, resulted in a rapid 

and persistent drop in peripheral parasite levels and in a fraction of cures [21,22]. More 

importantly, there was an absolute correlation between treatment efficacy as determined 

parasitologically and the increase in the fraction of T. cruzi-specific CD8+ T cells with a 

T-central memory phenotype in the peripheral blood of treated mice [21,22]. 

In the present study we have evaluated in vivo 13 nitrotriazole-based compounds based 

on their high in vitro potency against T. cruzi (IC50 <1 μM) and selectivity index ([SI]: 

toxicity to L6 cells/toxicity against T. cruzi amastigotes >200). Representative 

compounds of different chemical classes were included. A fast luminescence assay, in 

which mice are infected with transgenic parasites that express luciferase, and live 

imaging techniques were used. ADME studies were also performed for specific 

compounds, to explain discrepancies between in vitro and in vivo activity. Finally, 

studies were performed to assess potential toxicity/mutagenicity associated with these 

compounds. 

 

Results & discussion 

As was mentioned earlier, the criteria used for the selection of compounds in the present 

study were their in vitro high potency, selectivity >200 and variability in structure. 

Thus, compounds 1 and 10 were selected as the most potent in vitro aromatic amines, 2 

and 3 as potent aliphatic amines, 4, 7 and 13 as representative potent amides, and 

 6, 8, 11 and 12 as representative potent sulphonamides (Table 1). Compound 1 is a 

chloroquinoline-based and 13 a chlorobenzothiazole-based aromatic amine. In the class 

of aliphatic amines, 2 was selected as a benzyl amine whereas 3 as a piperazine 

derivative. The phenethylamine 9 was added for in vivo evaluation later on, although its 

SI is <200, to test the hypothesis that it may demonstrate better in vivo stability than 

compound 2. In the class of amides we included the benzylamide 4, the benzothiazole 

amide 13 and the amide 7 in which the nitrotriazole ring is connected through the  
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Table 1. In vitro biological data and physical properties of all in vivo tested compounds. 

 

T. cruzi, strain Tulahuen C4 amastigotes; IC50 values are means of two independent 

assays, which varied < ±50%. Selectivity is the ratio: IC50 in L6 cells/IC50 in T. cruzi; 

Bnz/com: The ratio IC50 of Bnz/IC50 of each compound against T. cruzi; logD6: the 

logD at pH 6. All physical properties were predicted using the Marvin Calculator [101]. 

Bnz: Benznidazole; PSA: Polar surface area; T. cruzi: Trypanosoma cruzi. 

 

carbonyl rather than the amino functionality. Finally, in the case of sulfonamides, 

phenyl- (5), biphenyl- (6) and thiophene sulfonamides (8, 11 & 12) were included. The 

in vitro evaluation of compounds 1–13 against T. cruzi intracellular amastigotes in L6 

host cells was performed by the Drugs for Neglected Diseases initiative in Switzerland 
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and the data are presented in Table 1. The corresponding data for compounds 1-8 have 

been presented before [18,19], but are included here for comparison purposes with  

regard to their in vivo activity. A structure–activity relationship discussion, based on the 

in vitro data of compounds 1–13, is not appropriate since the compounds cover a range 

of chemical classes with limited number of members in each class. However, comparing 

compounds in the same chemical class, we can conclude that by increasing lipophilicity 

(logP) we increase antichagasic potency and toxicity in the host cells (decreasing IC50 

values in L6 cells); (compare 5 to 6; 8 to 12). It is worth mentioning that all compounds 

apart from 9 demonstrated superior activity against T. cruzi amastigotes with IC50 

values at nM concentrations and selectivity indices (SI = IC50 in L6 host cells/IC50 in T. 

cruzi) ≥200, namely they fulfilled the criteria set by us for further in vivo evaluation. In 

addition, all compounds in Table 1 were from 2- to 56-fold more potent than the 

reference compound Bnz, tested in parallel. In particular, the sulfonamide 6 and the 2-

aminobenzothiazole derivative 10 demonstrated exceptional antichagasic activity with 

IC50 values of 28 and 59 nM, respectively, exhibiting excellent selectivity of >1700. 

Interestingly, compounds with the best antichagasic activity (at low nM concentrations) 

and selectivity (1, 2, 4, 6 & 10) had a clogP value between 3 and 3.5 (with the exception 

of 6). No correlation seems to exist between PSA value and antichagasic activity or host 

cell toxicity (Table 1). 

 

 

Figure 1. In vivo evaluation of compounds in Table 1. Parasite index was determined 

after 5- and 10-day treatment at the indicated doses. For compounds 1 and 5, parasite 

index was determined only after 10-day treatment, whereas for compound 6 after 5-day 

treatment only. Errors indicate SD. *p ≤ 0.05; **p ≤ 0.01. 
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The in vivo antichagasic activity of the compounds in Table 1 was assessed by using a 

fast luminescence assay [23] in which mice are infected with transgenic parasites that 

express luciferase [24]. Animals were treated with each candidate compound for 5–10 

days and were imaged as described in detail in the Experimental section. The dose used 

for each compound was selected based on its in vitro activity against T. cruzi and  

toxicity towards host L6 cells. The results of the in vivo studies are depicted in Figure 

1. Mice treatment was continued for up to 10 days and the data were analyzed after 5 

(blue bars) and 10 days (red bars) of treatment. For compounds 1 and 5, the data were 

analyzed only after 10 days of treatment (yellow bars) whereas treatment with 

compound 6 was continued only for 5 days (purple bar) due to its high in vitro potency 

(Table 1). Bnz was included in all experiments at an effective low dose of 15 

mg/kg/day, since most of the new compounds were tested at this dose. In Figure 1, data 

for Bnz from two individual experiments with the greatest difference are shown. 

Compounds 1, 4, 5, 6, 8, 9 & 11 significantly dropped the parasite index more than 80 

and up to 100%. In particular, compounds 4 and 11 demonstrated greater activity than 

Bnz at 15 mg/kg/day, with no detectable parasite signal after 10 days of treatment.  

 

Control                      Compound 4              Compound 11             Benznidazole            

        0d  

       5d  

       

10d  

Figure 2. Images of untreated and treated mice with the indicated compounds. 

Groups of five mice were infected with T. cruzi trypomastigotes expressing luciferase 

and imaged before and after 5- and 10-day treatment. d=day 

 

Images of mice treated with compounds 4 and 11 are shown in Figure 2. Compound 8, 

at 15 mg/kg/day, also demonstrated significant antichagasic activity, similar to that of 
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Bnz, dropping the parasite index by 94% after 10-day treatment (Figure 1). Images of 

mice treated with compound 8 are shown in Figure 3. Although compounds 3, 7, 12 

and 13 demonstrated significant in vivo antichagasic activity, they failed to perform 

better than Bnz after 10-day treatment at 30, 30, 15 and 15 mg/kg/day, respectively 

(Figure 1). Compounds 2 and 10 failed to demonstrate in vivo antichagasic activity 

after 5- or 10-day treatment at 40 and 10 mg/kg/day, respectively. 

 

Control                       Benznidazole            Compound 8               

      0 days 

 

     5 days 

     10 days 

Figure 3. Images of untreated and treated mice with the indicated compounds. 

Groups of five mice were infected with T. cruzi trypomastigotes expressing luciferase 

and imaged before and after 5- and 10-day treatment. 

Comparing the in vivo (Figure 1) with the in vitro efficacy (Table 1) of all tested 

compounds, we observed no direct correlation. This is expected considering the number 

of additional parameters that determine drug activity in vivo and not modelled in the in 

vitro assay. Thus, compounds 2 and 10 with IC50 values against T. cruzi at low nM 

concentrations, failed to show activity in vivo. Moreover, compound 2 with an in vitro 

selectivity index of 816 also resulted in some deaths at 40 mg/kg/day, presumably due 

to its bioactivation to reactive intermediates [25]. Furthermore, it has been reported that 

although both benzyl- and phenethyl-amines substituted with electron-withdrawing 

groups are substrates of monoamine oxidase B, several such phenethylamines were 

acting as inhibitors of the enzyme [26]. Therefore, the phenethylamine compound 9 was 

tested in vivo to compare its activity and toxicity with that of 2. Indeed, compound 9, 

which was 4.6-fold less active in vitro than 2 (IC50 775 nM vs 169 nM) dropped the 

parasite index in mice by about 88 and 85% after 5-day and 10-day treatment, 
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respectively, at 30 mg/kg/day without any sign of toxicity. Similarly, compounds 8 and 

11 with excellent in vivo activity were not the most potent antichagasic compounds in 

vitro (Table 1). The lack of a direct correlation between in vitro and in vivo activity 

confirms that compounds with in vitro IC50 values <2 μM against T. cruzi may be also 

worthy of in vivo evaluation. 

 

Table 2. Microsomal stability screen data summary.   

Compound  Concentration Mean remaining Comments 

  (μM)       

    
Parent comp 
(%)  

Parent comp 
(%)   

    (+)NADPH  (-)NADPH   

Verapamil 1 5.6 113 High metabolized control 

Warfarin 1 83.9 118 Low metabolized control 

1 1 5.1 112   

4 1 90.2 115   

8 1 91.6 120   

10 1 1 108   

 

To explain some of the discrepancies observed between in vitro and in vivo activity, we 

performed some ADME studies for selected compounds (1, 4, 8 & 10). Compounds 4 

and 8 were selected because of both their excellent in vitro and in vivo activity, whereas 

10 for its lack of in vivo activity despite its excellent in vitro activity. Compound 1 was 

selected for its excellent in vitro activity and good in vivo activity, despite the fact that it 

is an aromatic amine similar to the in vivo inactive compound 10. Table 2 shows 

microsomal stability data for compounds 1, 4, 8 and 10, using verapamil and warfarin as 

high metabolized and low metabolized controls, respectively. All compounds were 

stable in the absence of NADPH. However, in the presence of NADPH, mouse 

microsomal protein highly metabolized the aromatic amines 1 and 10, but left the amide 

4 and sulphonamide 8 intact. These data are consistent with the lack of in vivo activity 

observed for compound 10, especially at the relatively low tested dose of 10 mg/kg/day 

(Figure 1). However, all compounds were relatively stable in mouse plasma (Table 3), 

and this perhaps partially explains the good in vivo activity of compound 1. Since amide 

4 and sulfonamides 8 and 11 were the best compounds in terms of in vivo activity, their 

permeability through Caco-2 monolayers were investigated to evaluate whether such 

compounds can be administered orally at a sufficient blood concentration [27]. Only 

compounds 4 and 8 were tested in this system: sulphonamides 8 and 11 are closely 
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related analogs, therefore data pertaining to one compound should reflect the situation 

of the other. Both 4 and 8 (Table 4) demonstrated an excellent permeability since the 

apparent permeability value (Papp) was more than 5 × 10-6 cm/s [27]. It has also been 

recently proposed that compounds with a logPapp > -4.96 accurately predict high 

permeability [28]. In our case the logPapp values of 4 and 8 were -4.61 and -4.55, 

respectively. Based on the criteria proposed by Chaturvedi et al., it is predicted that 

compounds 4 and 8 with Papp values >10 × 10-6 cm/s will demonstrate 70–100% oral 

absorption [29]. Partition coefficients (log D and log P) and molecular surface area 

(PSA) are also potential predictors of the intestinal permeability of drugs. According to 

a recent study [30], the logD value at pH 6 (logD6) can more accurately predict 

intestinal permeability than the other mentioned parameters and a logD6 > -0.42, (the 

logD6 value of labetalol) is associated with high permeability [30]. As can be seen in 

Table 1, all compounds 1–13 demonstrate logD6 values > -0.42 and thus they may 

demonstrate a good intestinal permeability. However, as was shown above, 

bioavailability is dependent upon a combination of parameters, a crucial one of which is 

metabolic stability; therefore ADME studies are necessary for reliable predictions.  

 

Table 3. Plasma stability screen data summary.   

Compound  Concentration Mean remaining Comments 

  (μM) 
Parent comp 
(%)    

Propantheline 5 30.4 High metabolized control 

Warfarin 5 97.8 Low metabolized control 

1 5 96.6   

4 5 93.4   

8 5 88.6   

10 5 87.3   

 

Similarly, in the case of compounds 2 and 9, ADME studies will confirm whether or not 

extensive metabolism of 2 is responsible for its inactivity in vivo. Such studies are 

planned in the near future. 

All potent in vivo compounds did not show apparent toxicity at the doses tested. 

However, since these compounds are nitro-derivatives, there is a concern for potential 

mutagenicity/genotoxicity. Therefore, representative 3-nitrotriazoles (some of them not 

yet tested in vivo) were evaluated using the Ames assay [31,32]. Here we present the 

results for only compound 4, since this compound demonstrated excellent in vivo 

antichagasic activity. The compound was tested against Salmonella typhimurium TA98 
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strain (Figure 4) and against a mixed TA7001–7006 strain (MixS; Figure 5), with or 

without the rat liver metabolic activation system S9, and the mean number of revertants 

was plotted versus compound concentration [32]. The compound was not mutagenic, 

with one exception; mutagenicity was seen in mixed strains at the highest tested 

concentration of 1000 μ g/ml and only in the presence of S9 (Figure 5). This 

concentration was toxic to the L6 cells (Table 1). Since a linear dose response is not 

observed in the mutagenicity tests (Figures 4 & 5), we can assume that compound 4 is 

not mutagenic at non0toxic doses, otherwise a safe threshold presumably exists, as has 

been suggested for certain compounds [33,34]. 

 

Table 4. Caco-2 permeability summary.   

Compound  Concentration Mean A → B Comments 

  (μM) Papp† 10-6 cm s-1   

Ranitidine 10 0.5 Low permeability control 

Warfarin 10 44.2 High permeability control 

4 10 24.5   

8 10 27.9   
†Permeability ranking: Papp × (10-6 cm s-1).   

Low: Papp <0.5; Moderate: 0.5 <Papp < 5 ; High: Papp > 5. 

Papp: Apparent permeability.     

 

For comparison purposes a 2-nitroimidazolebased compound was also tested in the 

Ames assay. Mutagenicity was demonstrated against TA98/TA98NR strains in the 

presence or absence of S9 at doses as low as 20 μg/plate (data not shown). In addition, 

this compound was highly mutagenic in the TA100/TA100NR strains in the presence or 

absence of S9 at doses ≥0.8 μg/plate (data not shown). Furthermore, the 2-

nitroimidazole-based compound was toxic at doses ≥350 μg/plate to all strains. In 

general, most 3-nitrotriazole-based compounds that were tested in the Ames test did not 

show mutagenicity, suggesting that mutagenicity is associated to a greater degree with 

2-nitroimidazole rather than 3-nitrotriazole systems, although further compounds should 

be tested for more accurate conclusions. In addition, the 3-nitrotriazolic compounds that 

exhibited mutagenicity did so at concentrations significantly higher than their IC50 

value in the L6 host cells (Table 1). It should also be mentioned that mutagenicity in S. 

typhimurium strains is not necessarily translated to mutagenicity in humans. For 

instance, although Bnz shows significant mutagenicity at relatively low concentrations 

(<62 μg/ml) in S. typhimurium strains [35], mutagenicity in humans has never been 
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reported. A mutagenicity study of serum and urine from guinea pigs treated with Bnz 

showed that Bnz is not metabolized by the mammalian host into stable mutagenic 

derivatives detectable by the Ames test, suggesting that the potential cancer risk in 

humans is minimal [36]. 

 

 

Figure 4. Mutagenicity study (Ames test) for compound 4 in TA98 strains 

without/with S9. PC was 625/1200ng/mL 4-nitroquinoline-N-oxide / 2-nitrofluorene (-

S9) and 2-aminoanthracene (+S9). 

 

We also investigated the effect of compound 1 on zebrafish embryos’ development. 

Drugs were applied to developing zebrafish embryos at 24 h post-fertilization (hpf), at 

the end of the segmentation stage when the primary stages of organogenesis are 

complete and the fish have begun to move. Groups of six embryos per dose were 

examined at three developmental time-intervals (24, 48 and 72 hpf) and each 

experiment repeated in triplicate. The data are summarized in Table 5. No compound-

related toxicity or phenotypic changes were observed at all doses and time intervals. 

Concentrations up to 300 μM were tested. Similar results were obtained with two other 

3-nitrotriazole-based amides, analogs of 4 (data not shown). In contrast, incubation of 

embryos in nifurtimox resulted in weakened heart beat, pericardial oedema or death 

(data not shown). 

The in vivo luminescence assay combined with in vitro ADMET data provides a rapid 

method to identify safe, stable compounds with in vivo activity and potentially good 

oral bioavailability before any other expensive pharmacokinetic/ pharmacodynamic 

evaluation. Thus, this strategy can lead to an accelerated drug discovery process [23]. 
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Compounds with good in vivo activity seem to also have good metabolic stability. 

Through this process we have identified at least three compounds, 4, 8 and 11 as 

candidates for further development. However, the question of whether or not a 10-day 

treatment resulted in the sterile cure of these animals has not been answered yet, since 

the animals were not kept long after treatment. Experiments in which mice will be kept 

for an extended period of time post-treatment and treated with an immunosuppressant  

 

 

Figure 5. Mutagenicity study (Ames test) for compound 4 in mixed TA7001-7006/ 

strains without /with S9. PC: -S9-Mix: 625/1200ng/mL 4-nitroquinoline-N-oxide/2-

nitrofluorene; +S9 Mix: 10 μg/mL 2-aminoanthracene. * p ≤ 0.05; ** p ≤ 0.01. 

 

Table 5. Zebrafish embryos toxicity data for compound 1.   

Compound 1 (μM)   Time (hours post-fertilization)† 

    24 48 72 

3.7  Embryos 18/18 18/18 17/18 

11.1  Embryos 18/18 18/18 17/18 

33.3  Embryos 18/18 17/18 17/18 

100  Embryos 18/18 17/18 17/18 

300  Embryos 18/18 18/18 18/18 

Control  Embryos 18/18 18/18 16/18 

DMSO   Embryos 18/18 17/18 16/18 

†The data show the ratio of number of surviving zebrafish embryos at different 
developmental time points (in hours post fertilization) at each compound 1 
concentration versus the total number of zebrafish embryos used in the assay. 

 

will be the next step to provide us with an answer [22]. In addition, studies should be 

done to determine if these compounds can treat the chronic stage of the disease. 

However, current studies have clearly demonstrated that 3-nitrotriazole-based amides 
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and sulfonamides have a significant chance to be developed as antichagasic drugs. They 

can be easily synthesized in high yields and purity with low cost [19], they show very 

good mouse plasma and metabolic stability (Tables 2 & 3) and, in general, are not 

mutagenic at nontoxic concentrations. However, not all in vivo active compounds have 

been tested yet for mutagenicity. Moreover, additional compounds with IC50 values 

against T. cruzi <2 μ M might be good candidates for ADMET and subsequent in vivo 

evaluation. 

 

Experimental 

Chemistry 

All starting materials and solvents were purchased from Sigma-Aldrich (WI, USA), 

were of research-grade quality and were used without further purification. Solvents used 

were anhydrous and the reactions were carried out under a nitrogen atmosphere and 

exclusion of moisture. Melting points were determined by using a Mel-Temp II 

Laboratory Devices apparatus (MA, USA) and are uncorrected. Proton NMR spectra 

were obtained on a Varian Inova- 500 or a Bruker Avance-III-500 spectrometer at 500 

MHz and are referenced to Me4Si or to the corresponding protonated solvent, if the 

solvent was not CDCl3. High-resolution electrospray ionization (HRESIMS) MS were 

obtained on a Agilent 6210 LC–TOF MS at 11000 resolution. Thin-layer 

chromatography was carried out on aluminum oxide N/UV254 or polygram silica gel 

G/UV254-coated plates (0.2 mm, Analtech, DE, USA). Chromatography was carried out 

on preparative TLC alumina GF (1000 microns) or silica gel GF (1500 microns) plates 

(Analtech). All compounds were purified by preparative TLC chromatography on silica 

gel GF plates (≥95% purity). The synthesis of compounds 1–8 has been described 

before [18,19]. Similar synthetic procedures were followed to obtain compounds 9–13. 

For compound 9, 3-(trifluoromethyl)phenethyl bromide (1.035 mmol) was added 

dropwise (15 min) to a solution of 3-nitro-1H-1,2,4- triazolyl-propylamine (1.035 

mmol) [37] in the presence of potassium carbonate (9.52 mmol) in dry acetonitrile (15 

ml), and the reaction mixture was refluxed under a nitrogen atmosphere for 10 h. The 

reaction mixture was cooled down, filtered, the solids were washed with acetonitrile, the 

organic filtrate was evaporated and the residue extracted from water-ethyl acetate. The 

organic layer was separated and dried over anhydrous Na2SO4. The solvent was 

evaporated and the residue was purified by preparative TLC on alumina plates with 

ethyl acetate:MeOH (99:1). A yellowish oil was obtained (Rf = 0.53), which was the 
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desired monoalkylated product. This was dissolved in ethyl acetate and converted to its 

HCl salt by treating with HCl gas in dry ether (1 M solution). 

 

[3-(3-nitro-1H-1,2,4-triazol-1-yl)propyl] ({2-[3 (trifluoromethyl)phenyl]ethyl})amine 

hydrochloride (9) 

Fine white powder (40%): mp 103-104°C; 
1
H NMR (500 MHz, CD3OD) : 8.66 (s, 

1H), 7.64–7.55 (m, 4H), 4.50 (t, J = 7.0 Hz, 2H), 3.34 (t, J = 7.0 Hz, 2H), 3.17 (t, J = 

8.0 Hz, 2H), 3.10 (t, J = 8.0 Hz, 2H), 2.35 (quintet, J = 8.0 Hz, 2H). HRESIMS 

calculated for C14H17F3N5O2 and C14H16F3N5NaO2 m/z [M+H]
+
 and [M+Na]

+ 
344.1329, 

345.1356 and 366.1148, 367.1176, found 344.1336, 345.1363 and 366.1152, 367.1181, 

respectively. 

For compound 10, the commercially available 2,6-dichloro-1,3-benzothiazole (1.24 

mmol) was coupled with 3-nitro-1H-1,2,4-triazolyl-propylamine (1.24 mmol) [37], by 

refluxing in absolute propanol (8 ml) for 16 h, and in the presence of fivefold excess of 

triethyl amine.  

 

6-chloro-N-[3-(3-nitro-1H-1,2,4-triazol-1-yl) propyl]-1,3-benzothiazol-2-amine (10) 

Orange powder (65%): mp 194-195°C (dec.); 
1
H NMR (500 MHz, CD3COCD3) : 8.71 

(s, 1H), 7.70 (d, J = 2.5 Hz, 1H), 7.39 (d, J = 8.5 Hz, 1H), 7.37 (br s, 1H), 7.26 (dd J1 = 

8.5, J2 = 2.5 Hz, 1H), 4.57 (t, J = 7.0 Hz, 2H), 3.62 (m, 2H), 2.39 (quintet, J = 6.5 Hz, 

2H). HRESIMS calculated for C12H12ClN6O2S m/z [M+H]
+
 339.0425, 341.0398, found 

339.0427, 341.0395. 

 

General synthetic procedure of arylamides/sulfonamides 11–13 

For compounds 11–13: the appropriate commercially available 

arylcarbonyl/arylsulfonyl chloride (1.24 mmol) was dissolved in 2–3 ml dry 

dichloromethane and added dropwise to a solution of 3-nitro-1H-1,2,4-triazolyl-

butylamine) (1.24 mmol) [37], and triethylamine (2.48 mmol) in 6–8 ml of dry 

dichloromethane, at room temperature and under an inert atmosphere. The reaction 

mixture was stirred for 12 h. Consequently, the inorganic salts were filtered off, the 

filtrate was evaporated and the residue was chromatographed on silica gel. 

 

5-chloro-N-[4-(3-nitro-1H-1,2,4-triazol-1-yl) butyl]thiophene-2-sulfonamide (11) 
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White crystallic powder (84%): mp 81–83 C; 
1
H NMR (500 MHz, CD3COCD3) : 8.65 

(s, 1H), 7.46 (d, J = 4.0 Hz, 1H), 7.14 (d, J = 4.0 Hz, 1H), 6.84 (br t, 1H), 4.44 (t, J = 

7.0 Hz, 2H), 3.10 (t, J = 7.0 Hz, 2H), 2.05 (m, 2H), 1.65 (m, 2H). HRESIMS calculated 

for C10H13ClN5O4S2 and C10H12ClN5NaO4S2 m/z [M+H]
+
 and [M+Na]

+
 366.0092, 

368.0063 and 387.9911, 389.9882, found 366.0091, 368.0063 and 387.9909, 389.9884, 

respectively. 

 

4,5-dichloro-N-[4-(3-nitro-1H-1,2,4-triazol-1- yl)butyl]thiophene-2-sulfonamide (12) 

White crystallic powder (75%): mp 104–105oC; 
1
H NMR (500 MHz, CDCl3) : 8.19 (s, 

1H), 7.39 (s, 1H), 4.82 (br t, 1H), 4.34 (t, J = 7.0 Hz, 2H), 3.13 (q, J = 6.5 Hz, 2H), 2.09 

(quintet, J = 7.5 Hz, 2H), 1.65 (quintet, J = 7.5 Hz, 2H). HRESIMS calculated for 

C10H12Cl2N5O4S2 and C10H11Cl2N5NaO4S2 m/z [M+H]
+
 and [M+Na]

+ 
399.9702, 

401.9673 and 421.9522, 423.9492 found 399.9704, 401.9671 and 421.9521, 

423.9490. 

 

N-[4-(3-nitro-1H-1,2,4-triazol-1-yl)butyl]-1,3- benzothiazole-2-carboxamide (13) 

Off-white powder (71%): mp 92–94oC; 
1
H NMR (500 MHz, CDCl3) : 8.22 (s, 1H), 

8.06 (d, J = 8.0 Hz, 1H), 7.98 (d, J = 8.0 Hz, 1H), 7.57–7.51 (m, 3H), 4.39 (t, J = 7.0 

Hz, 2H), 3.59 (t, J = 7.0 Hz, 2H), 2.10 (quintet, J = 7.5 Hz, 2H), 1.75 (quintet, J = 7.5 

Hz, 2H). HRESIMS calculated for C14H15N6O3S m/z [M+H]
+
 347.0921, found 

347.0922. 

 

ADME in vitro studies 

ADME in vitro studies were performed by APREDICA (MA, USA) for several 

compounds. Samples were analyzed by LC/MS/ MS using an Agilent 6410 MS coupled 

with an Agilent 1200 HPLC and a CTC PAL chilled autosampler, all controlled by 

MassHunter software (Agilent). After separation on a C18 reverse-phase HPLC column 

(Agilent, Waters or equivalent) using an acetonitrile-water gradient system, peaks were 

analyzed by MS using ESI ionization in MRM mode. 

 

Microsomal stability screen 

Each test compound was dissolved in DMSO and incubated (37°C) at 1 μM final 

concentration with 0.3 mg/ml of mouse microsomal protein in 100 mM potassium 

phosphate, 3 mM MgCl2, pH 7.4, in the presence or absence of 2 mM NADPH (to 
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detect NADPH-free degradation) for up to 60 min. At indicated times (0 and 60 min), 

an aliquot was removed from each experimental and control reaction then mixed with 

an equal volume of ice-cold Stop Solution (0.3% acetic acid in acetonitrile containing 

haloperidol, diclofenac, or other internal standard). Stopped reactions were incubated 

for at least 10 min at -20°C, and an additional volume of water was added. The samples 

were centrifuged to remove precipitated protein, and the supernatants were analyzed by 

LC/MS/MS to quantitate the remaining parent compound. Data were reported as % 

remaining by dividing by the time zero concentration value [38]. 

 

Plasma stability screen 

Each test compound (in a DMSO stock solution) was incubated at 5 μM final 

concentration with mouse plasma and 2% DMSO at 37°C in duplicate. At indicated 

times (0 and 60 min), an aliquot was removed from each experimental and control 

reaction and mixed with three volumes of ice-cold Stop Solution (methanol containing 

haloperidol, diclofenac or other internal standard). Stopped reactions were incubated at 

least for 10 min at -20°C. The samples were centrifuged to remove precipitated protein, 

and the supernatants were analyzed by LC/MS/MS to quantitate the remaining parent 

compound. Data were converted to % remaining by dividing by the time zero 

concentration value [39]. 

 

Caco-2 monolayer permeability studies 

Caco-2 cells grown in tissue culture flasks were trypsinized, suspended in medium, and 

the suspensions were applied to wells of a collagencoated BioCoat Cell Environment in 

96-well format. The cells were allowed to grow and differentiate for 3 weeks, feeding at 

2-day intervals. For apical to basolateral (A→B) permeability, the test agent was added 

to the apical (A) side at 10 μ M final concentration and amount of permeation was 

determined on the basolateral (B) side. The A-side buffer contained 100 μM Lucifer 

yellow dye, in Transport Buffer (1.98 g/l glucose in 10 mM HEPES, 1×Hank’s 

Balanced Salt Solution) pH 6.5, and the B-side buffer was Transport Buffer, pH 7.4. 

Caco-2 cells were incubated with these buffers for 2 h and the receiver side buffer was 

removed for analysis by LC/MS/ MS. To verify that the Caco-2 cell monolayers were 

properly formed, aliquots of the cell buffers were analyzed by fluorescence to determine 

the transport of the impermeable dye Lucifer Yellow. Data were expressed as 
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permeability (Papp): Papp = (dQ/dt)/C0A, where dQ/dt is the rate of permeation, C0 is 

the initial concentration of test agent, and A is the area of the monolayer [27]. 

 

In vitro evaluation against T. cruzi 

In vitro activity against T. cruzi intracellular amastigotes and cytotoxicity assessment in 

the host L6 cells (rat skeletal myoblasts) was determined using a 96-well plate format as 

previously described [40]. Data were analyzed with the graphic program Softmax Pro 

(Molecular Devices, CA, USA), which calculated IC50 values by linear regression from 

the sigmoidal dose inhibition curves. 

 

In vivo anti-T. cruzi activity assessment 

Trypomastigote forms from transgenic T. cruzi Y strain expressing firefly luciferase 

[24] were purified, diluted in PBS and injected intraperitoneally in Balb/c mice (10
5
 

trypomastigotes per mouse). 3 days after infection the mice were anesthetized by 

inhalation of isofluorane (controlled flow of 1.5% isofluorane in air was administered 

through a nose cone via a gas anesthesia system). Mice were injected with 150 mg/kg of 

d-luciferin potassium-salt (Goldbio) dissolved in PBS. Mice were imaged 5–10 min 

after injection of luciferin with an IVIS 100 (Xenogen, CA, USA) and the data 

acquisition and analysis were performed with the software LivingImage (Xenogen) as 

described before [23]. 1 day later (4 days after infection) treatment with compounds at a 

specific concentration (usually 15 mg/kg/day) or vehicle control (2% methylcellulose + 

0.5% Tween 80) was started by intraperitoneal injection in groups of five mice and 

continued daily for 5–10 days. On the days indicated, mice were imaged again after 

anesthesia and injection of luciferin as described above. Parasite index is calculated as 

the ratio of parasite levels in treated mice compared with the control group and is 

multiplied by 100. The ratio of parasite levels is calculated for each animal dividing the 

luciferase signal after treatment by the luciferase signal on the first imaging (before 

treatment). Mean values of all animals in each group ± SD were then used to calculate 

the parasite index [23]. 

 

Toxicity studies in zebrafish embryos 

Wildtype (WT) zebrafish strains (Tubingen and Tupfel long fin) were bred and raised in-

house at the zebrafish facility of Queen Mary College, University of London, UK. 

Embryos were collected by natural spawning and staged according to Kimmel and 
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colleagues [41] – given in the text as standard developmental time at 28.5°C (hpf). 

Work on zebrafish embryos (prior to independent feeding) is exempt under the UK 

Animals (Scientific Procedures) Act 1986 and does not require ethical approval. For 

each experiment six zebrafish embryos (three embryos per well in a 24-well plate) were 

treated per compound concentration (concentration was varied from 3.7 to 300 μM) and 

the viability of the developing embryos assessed with respect to time (hpf) as the 

ratio:number of live zebrafish at the time indicated/number of zebrafish at time 0 per 

each concentration. Each experiment was conducted in triplicate using a total of 18 

embryos being analyzed per each concentration. 

 

Mutagenicity studies 

The Ames mutagenicity test was performed with S. typhimurium TA98, TA100, 

TA98NR (nitroredutase deficient) and TA100NR (nitroreductase deficient) strains 

according to a method described before [31]. Concurrently, nitrofurantoin (NFT), 2-

nitrofluorene, 4-nitroquinoline- N-oxide and benzo[a]-pyrene were included in the 

assays with TA98/TA98NR strains or sodium azide, nitrofurantoin, metronidazole and 

2-aminoanthracene in the assays with TA100/ TA100NR strains. In one case, mixed 

TA7001–7006 series of Salmonella, his¯ mutant strains were used [32]. The assays 

were performed in the presence (for metabolic activation) or absence of the liver S9 mix 

[31,32]. All tested compounds were dissolved in DMSO and the same amount of 

DMSO was delivered to each plate. Prior to starting the assay, the concentrations to be 

tested were selected in terms of solubility and toxicity results in the test system. 

Concentrations up to 1000 μg/plate were tested. Triplicate (in one case duplicate) plates 

were used for each dose and mean values of His
+
 revertants per plate are indicated as 

the results. 

 

Statistical analysis 

Data were analyzed by using the t-test (Prism vs 4.0c, GraphPad). Statistics were 

considered significant if p was ≤ 0.05 (*) or p ≤ 0.01 (**). 

 

Future perspective 

Recently Chagas disease was characterized as ‘the new AIDS of the Americas’ because 

its spread resembles the early dissemination of HIV [42]. Although this characterization 

is an exaggeration, there are similarities in the sense that both HIV and T. cruzi cause 
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life-long infections and, like all blood-borne pathogens, are potentially transmitted by 

blood transfusion and congenitally from mother to newborn. As a result of reactivation 

among immigrant populations, an increase in Chagas disease infections has been 

reported in non-endemic settings and this ‘globalization’ will be of concern [2,3]. 

Currently, around 8–10 million individuals are infected with T. cruzi in endemic areas, 

while it has been estimated there are around 325,000 cases in the USA and about 

100,000 cases in Europe, 87,000 of which are in Spain [1]. In addition, Chagas disease 

creates financial and social burdens to individuals, their households and countries. The 

early mortality and substantial disability caused by this disease, which often occurs in 

the most productive population, young adults, results in a devastating economic loss in 

the Americas. 

As was mentioned earlier, with no immediate prospect for vaccines, chemotherapy is 

the only way to fight the parasite in the patient. One way to develop effective drugs is 

by targeting enzymes specific to the parasite, for example, cruzipain or CYP51. 

However, such approaches may lead to drug-resistant phenotypes that will create 

additional searches for new targets. Another approach is to utilize an enzyme specific to 

the parasite that activates a prodrug. We have followed the latter strategy. We have 

shown that 3-nitrotriazole-based compounds can be very effective in vitro against T. 

cruzi amastigotes via NTR-activation, without showing toxicity to the host cells [18,19]. 

In vitro active compounds demonstrating good metabolic and plasma stability also 

showed in vivo effectiveness against the parasite. Furthermore, our data have shown that 

3-nitrotriazole-based compounds do not cause developmental toxicity, they are not 

mutagenic at non-toxic doses and are significantly less mutagenic than 2-

nitroimidazoles. Therefore, further in vivo evaluation of these compounds is necessary 

to determine whether or not we can obtain cures without long-term toxicity and whether 

or not such compounds have an effect against the chronic phase of the disease. In 

addition, studies in combination with target-specific or even currently used antichagasic 

drugs may reveal a synergistic interaction, which could result in lowering of doses and 

shortening of the treatment-period in humans. Therefore, there is a considerable future 

in drug development research against Chagas disease. Moreover, the treatment for 

Chagas disease is currently expensive and effective agents with low cost are desperately 

needed. Nitrotriazole-based compounds could be a potential future solution. However, 

additional studies are necessary to determine the efficacy of these compounds in the 

chronic stage of the disease and under oral administration. 
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Abstract 

In tropical regions, protozoan parasites can cause severe diseases with malaria, 

leishmaniasis, sleeping sickness, and Chagas disease standing in the forefront. Many of 

the drugs currently being used to treat these diseases have been developed more than 50 

years ago and can cause severe adverse effects. Above all, resistance to existing drugs is 

widespread and has become a serious problem threatening the success of control 

measures. In order to identify new antiprotozoal agents, more than 600 commercial 

agrochemicals have been tested on the pathogens causing the above mentioned diseases. 

For all of the pathogens, compounds were identified with similar or even higher 

activities than the currently used drugs in applied in vitro assays. Furthermore, in vivo 

activity was observed for the fungicide/oomyceticide azoxystrobin, and the insecticide 

hydramethylnon in the Plasmodium berghei mouse model, and for the oomyceticide 

zoxamide in the Trypanosoma brucei rhodesiense STIB900 mouse model, respectively. 

 

Author Summary 

Even though agrochemistry and infectious disease control have the same principle goal - 

the suppression of harmful organisms without harming human health and the 

environment - there have been only very limited activities to exploit this overlap for the 

development of new anti-infectious drugs so far. In this study and for the first time, over 

600 commercial agrochemicals were systematically screened against the infectious 

pathogens causing malaria, sleeping sickness, Chagas disease and leishmaniasis. Many 

highly active compounds with known low mammalian toxicity were identified in cell 

based assays, and the activity of some of them could even be confirmed in first animal 

model studies. Further expansion of this concept to other pathogens and the examination 

of analogues of the identified hits, potentially available from agrochemical companies, 

would allow for a very efficient source of novel drug candidates. 
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Introduction 

The Protozoan parasites of the genera Plasmodium spp., Leishmania spp., 

Trypanosoma brucei spp. and Trypanosoma cruzi, are the disease causative agents 

threatening entire populations in mainly resource poor countries around the world.  

Malaria, due to infection with Plasmodium spp., is one of the most devastating 

diseases in developing countries, with 216 million cases in 2010, causing an estimated 

655,000 deaths per year [1]. Other recent estimates assume up to 1.2 million deaths per 

year [2]. For the treatment of malaria several highly active drugs are available, like 

chloroquine, quinine, mefloquine, atovaquone, artesunate, and their analogs. Thus, 

malaria is often not included in the list of the neglected tropical diseases. Unfortunately, 

significant resistance to almost all of these drugs has developed; even to the ‘‘last 

resort’’ artemisinin-derivatives, first cases of delayed clinical efficacy have been 

reported [3]. Recently, large libraries from pharma companies have been screened 

against protozoan parasites and some interesting hits [4,5,6,7] have been found, 

especially against malaria with the spiroindolones currently undergoing clinical 

evaluation [8,9]. 

Most of the promising compounds in the development pipeline are in a rather early 

clinical stage, so that a high failure rate is expected [10]. Considering the rapid 

development of resistance, and the challenges seen with the development of malaria 

vaccines [11], a continuous refilling of research pipelines with compounds in 

preclinical/clinical evaluation will be necessary, for the long term perspective. 

Therefore new compounds for resistance management would be highly desirable, even 

if they might not show the same remarkably high activity levels as the recently 

promoted peroxide candidates like OZ439 [12]. In addition, the global malaria agenda 

has shifted from the mere control of clinical cases to malaria elimination and eventually 

eradication urgently requiring transmission blocking agents [13]. 

Human African trypanosomiasis (HAT), also known as sleeping sickness, is caused 

by infections of T. b. rhodesiense and T. b. gambiense. Populations living in remote 

rural areas of sub-Saharan Africa are at risk of acquiring HAT. The disease burden in 

2000 was estimated at 1.3 Mio DALYs (Disability-Adjusted Life Years) and the 

estimated number of cases up to 70,000 in 2006 [14]. In recent years the public health 

situation has improved due to increased monitoring and chemotherapy, resulting in the 

decrease of reported HAT cases to approximately 10,000 [15]. Only 4 drugs are 

currently registered as HAT treatment. Pentamidine and suramin are used to treat the 
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hemolymphatic stage (stage 1) of the disease, while melarsoprol and eflornithine 

(DFMO) are used in stage 2 of the disease when the parasites have invaded the central 

nervous system (CNS) and which is lethal if untreated. The available drugs are 

unsatisfactory due to cost, toxicity, poor oral bioavailability, long treatment and lack of 

efficacy. Melarsoprol is highly toxic, and up to 5% of the second stage patients treated 

with melarsoprol die of a reactive encephalopathy. Eflornithine treatment is expensive 

and logistically difficult; it requires four daily intravenous infusions over fourteen days. 

Recently the eflornithine-nifurtimox combination therapy (NECT) was introduced [16]. 

The requirement of intravenous administration although reduced to a quarter of 

injections as compared to monotherapy is still a limitation, with a need for new and 

more easily administrable drugs. 

Trypanosoma cruzi infection elicts Chagas disease and is an important public health 

problem causing approximately 14,000 deaths and 0.7 Mio DALY annually [17]. 

Treatment options are limited due to toxicity of available drugs, parasite resistance, and 

poor drug activity during the chronic phase of the disease. Currently there are two 

medications being used to treat Chagas disease, nifurtimox and benznidazole [18]. 

Severe toxicity and long treatment requirements are associated with both drugs [19]. 

Therefore new medications are badly needed for treating this disease especially in its 

chronic phase. 

Leishmaniasis causes approximately 50,000 deaths and 2.1 Mio DALY annually 

[20]. It threatens about 350 million people around the world and 12 million people are 

believed to be infected, with 1–2 million estimated new cases every year [21]. Widely 

used medications are still based on i.v. application of antimony compounds like 

stilbogluconate, resulting in severe side effects. More modern, but also more expensive 

medications are liposomal amphotericin B, miltefosine, and paromomycin [22]. 

Thus new affordable and effective therapies are urgently needed to combat these 

disastrous diseases. Registration requirements for agrochemicals are in some aspects 

even more stringent than for pharmaceuticals, as side effects that are tolerated for drugs 

against many life threatening diseases, are not acceptable for agrochemicals that 

potentially could enter the food chain [23,24,25]. As a consequence, all commercialized 

agrochemicals must go through broad toxicological profiles including e.g. chronic and 

reprotoxicological studies in different mammalian species, covering at least part of the 

preclinical studies required for drug development. Furthermore, agrochemicals are 

highly optimized on agrochemical pest targets with often good selectivities in mammals 
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and excellent temperature and storage stability. Another interesting feature of 

commercial agrochemicals is the very low production cost of only a few cent/g, as the 

compounds are produced in highly optimized processes on the multi-ton scale. 

Surprisingly, these aspects have not led to a systematic evaluation of agrochemicals for 

pharmacological use so far [26]. 

Here we present data of over 600 commercial agrochemicals which have been 

systematically tested for the first time for their antiparasitic activity. 

 

Materials and Methods 

Chemical library 

A library of over 600 compounds (for a list of CAS-numbers and common names 

of the tested agrochemicals see Supporting Information S1), that are or have been active 

ingredients in commercial agrochemical products, has been compiled from the 

BASF compound depository and was dissolved in DMSO stock solutions in a 

concentration of 10 mg/ml. These samples were then further diluted according to the 

requirements of the assays. The structural integrity of the dissolved samples has been 

confirmed subsequently by LCMS-analysis. 

 

Bioassays 

Plasmodium falciparum (Pf). P. falciparum drug-sensitive strain NF54 was 

cultivated in a variation of the medium previously described, consisting of RPMI 1640 

supplemented with 0.5% ALBUMAX II, 25 mM Hepes, 25 mM NaHCO3 (pH 7.3), 

0.36 mM hypoxanthine, and 100 g mL
-1

 neomycin. Human erythrocytes served as host 

cells. Cultures were maintained in an atmosphere of 3% O2, 4% CO2, and 93% N2 in 

humidified modular chambers at 37°C. Compounds were dissolved in 

(CH3)2SO (10 mg mL
-1

), diluted in hypoxanthine-free culture medium and titrated 

in duplicates over a 64-fold range in 96-well plates. Infected erythrocytes (1.25% final 

hematocrit and 0.3% final parasitemia) were added into the wells. After 48 h incubation, 

0.5 Ci of [
3
H]hypoxanthine per well was added and the plates were incubated for an 

additional 24 h. Parasites were harvested onto glass-fiber filters, and radioactivity was 

counted using a Betaplate liquid scintillation counter (Wallac, Zurich). The results were 

recorded and expressed as a percentage of the untreated controls. Fifty percent 

inhibitory concentrations (IC50) were estimated by linear interpolation. Assays were run 
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in duplicate and at least repeated once. Artesunate and chloroquine were used as 

positive controls. 

 

Trypanosoma brucei rhodesiense (Tb). This stock was isolated in 1982 from a 

human patient in Tanzania and after several mouse passages cloned and adapted to 

axenic culture conditions [27] Minimum Essential Medium (50 µL) supplemented with 

25 mM HEPES, 1g L
-1

 additional glucose, 1% MEM non-essential amino acids (100x), 

0.2 mM 2-mercaptoethanol, 1mM Na-pyruvate and 15% heat inactivated horse serum 

was added to each well of a 96-well microtiter plate. Serial drug dilutions of eleven 3-

fold dilution steps covering a range from 100 to 0.002 μg mL
-1

 were prepared. Then 

4x10
3
 bloodstream forms of T. b. rhodesiense STIB 900 in 50 µL was added to each 

well and the plate incubated at 37 °C under a 5 % CO2 atmosphere for 70 h. 10 µL 

resazurin solution (resazurin, 12.5 mg in 100 ml double-distilled water) was then added 

to each well and incubation continued for a further 2–4 h [28].  Then the plates were 

read with a Spectramax Gemini XS microplate fluorometer (Molecular Devices 

Cooperation, Sunnyvale, CA, USA) using an excitation wave length of 536 nm and an 

emission wave length of 588 nm. The IC50 values were calculated by linear regression 

[29] from the sigmoidal dose inhibition curves. Melarsoprol was used as positive 

control. 

 

Trypanosoma cruzi (Tc).  Rat skeletal myoblasts (L-6 cells) were seeded in 96-well 

microtiter plates at 2000 cells/well in 100 µL RPMI 1640 medium with 10% FBS and 

2 mM L-glutamine.  After 24 h, the medium was replaced by 100 µL per well medium 

containing 5000 trypomastigote forms of T. cruzi Tulahuen strain C2C4 containing the 

β-galactosidase (Lac Z) gene (Buckner et al. 1996) [30]. After 48 h the medium was 

removed from the wells and replaced by 100 μL fresh medium with or without a serial 

drug dilution of eleven 3-fold dilution steps covering a range from 100 to 0.002 µg mL
-

1
.  After 96 h of incubation, the plates were inspected under an inverted microscope to 

assure growth of the controls and sterility.  Then the substrate CPRG / Nonidet (50 µL) 

was added to all wells.  A color reaction developed within  

2-6 h and could be measured photometrically at 540 nm with a VersaMax microplate 

reader (Molecular Devices Cooperation, Sunnyvale, CA, USA).  The IC50 values were 

calculated by linear regression from the sigmoidal dose inhibition curves. Benznidazole 

was used as positive control. 
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Leishmania donovani (Ld).  Amastigotes of L. donovani strain MHOM/ET/67/L82 

were grown in axenic culture at 37 °C in SM medium [31] at pH 5.4 supplemented with 

10% heat-inactivated fetal bovine serum under an atmosphere of 5% CO2 in air. One 

hundred microlitres of culture medium with 10
5
 amastigotes from axenic culture with or 

without a serial drug dilution were seeded in 96-well microtitre plates. Serial drug 

dilutions of eleven 3-fold dilution steps covering a range from 100 to 0.002 μg mL
-1

 

were prepared. After 70 h of incubation the plates were inspected under an inverted 

microscope to assure growth of the controls and sterile conditions. 10 µL resazurin 

solution (resazurin, 12.5 mg in 100 ml double-distilled water) [32] were then added to 

each well and the plates incubated for another 2 h. Then the plates were read with a 

Spectramax Gemini XS microplate fluorometer (Molecular Devices Cooperation, 

Sunnyvale, CA, USA) using an excitation wave length of 536 nm and an emission wave 

length of 588 nm. The IC50 values were calculated by linear regression from the 

sigmoidal dose inhibition curves. Miltefosine was used as positive control. 

 

P. berghei in vivo model. From a donor mouse with approximately 30% 

parasitaemia (PbANKA-GFPCON) [33], heparinized blood (containing 50 µL of 

200 u mL
–1

 Heparin) was taken and diluted in physiological saline to 10
8
 parasitized 

erythrocytes per mL.  Of this suspension, 0.2 mL were injected intravenously (i.v.) into 

experimental groups of 3 mice, and a control group of 5 mice. 6, 24, 48 and 72 hours 

after infection (6 hour time point omitted during 3 times treatment), the experimental 

groups were treated with a single daily dose (p.o. or s.c.). 24 hours after the last drug 

treatment (96 hours after infection), 1 µL tail blood was taken and the parasitaemia 

determined with a FACScan. The difference between the mean value of the control 

group and those of the experimental groups was calculated and expressed as a percent 

relative to the control group (= activity). The survival of the animals was monitored up 

to 30 days. Mice surviving for 30 days were checked for parasitaemia by slide reading.  

A compound was considered curative if the animal survived to day 30 post-infection 

with no detectable parasites. All protocols and procedures were reviewed and approved 

by the local veterinary authorities of the Canton Basel-Stadt. 

 

T. b. rhodesiense in vivo model. The STIB900 acute mouse model mimics the first 

stage of the disease [34,35].Four female NMRI mice were used per experimental group. 
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Each mouse was inoculated i.p. with 10
4
 bloodstream forms of STIB900. Heparinized 

blood from a donor mouse with approximately 5x10
6
 mL

-1
 parasitaemia was suspended 

in PSG to obtain a trypanosome suspension of 4×10
4
 mL

-1
. Each mouse was injected 

with 0.25 ml. Compound treatment was initiated 3 days post-infection on four 

consecutive days for all administration routes (i.p., p.o.) in a volume of 10 mL kg
-1

. 

Three mice served as infected-untreated controls. They were not injected with the 

vehicle alone since we have established in our labs that these vehicles do not affect 

parasitaemia nor the mice. Parasitaemia was monitored using smears of tail-snip blood 

twice a week after treatment for two weeks followed by once a week until 60 days post-

infection. Mice were considered cured when there was no parasitaemia relapse detected 

in the tail blood over the 60-day observation period. Mean relapse days were determined 

as day of relapse post-infection of mice. All protocols and procedures were reviewed 

and approved by the local veterinary authorities of the Canton Basel-Stadt. 

 

Ethics Statement 

All work was conducted in accordance to relevant national and international guidelines. 

The in vivo efficacy studies were approved by the veterinary authorities of the Canton 

Basel-Stadt. The in vivo studies were carried out under license No. 1731 and license No. 

739 of the Kantonales Veterinäramt, CH-4025 Basel, Switzerland adhering to the 

Tierschutzverordnung from 23.04.2008 (based on the Tierschutzgesetz from 

26.12.2005). 

 

Results and Discussion  

Starting with the analysis of the phylogenetic relationship of the pests combated 

with agrochemicals, and the most important tropical infectious disease pathogens as 

defined by WHO [36], the close relationship of oomycetes, to which important 

agricultural pathogens like potato blight or downy mildew belong, with protozoan 

parasites was realized [37]. As a result, a first set of oomyceticidal agrochemicals was 

tested, resulting in a number of interesting hits. Based on this finding, over 600 

commercially available agrochemicals were selected and their activity against the 

tropical disease pathogens Plasmodium falciparum, Leishmania donovani, 

Trypanosoma cruzi and Trypanosoma brucei rhodensiense tested in cell based screens. 
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Activity against Plasmodium falciparum 

In vitro Activity against Plasmodium falciparum. For 24 commercial 

agrochemicals sub-M activity on P. falciparum could be shown (Figure 1), therefore 

only the most active compounds will be discussed in more detail. The standards 

Artesunate (LD50 rat i.p. 352 mg/kg; LD50 p.o. not available) [38,39] and Chloroquine 

in the same assay (LD50 rat p.o. 330 mg/kg) [40] exhibited an activity of 5.7 and 17.1 

nM, respectively. 

Fluacrypyrim, (LD50 rat p.o. >2000 mg/kg) [41] demonstrated the best activity 

against P. falciparum of all agrochemicals with an IC50 of 8.3 nM. Fluacrypyrim is an 

acaricide from the group known as the strobilurins, which is mainly used in Japan 

against mites in orchards. The acaricidal mode of action is the inhibition of respiration 

by binding to the Qo-site of the bc1-complex [42]. This target is also addressed by the 

antimalarial drug Atovaquone. Other strobilurin-analogues have been examined before 

as antimalarials [43]. 

Azoxystrobin (LD50 rat p.o. >5000 mg/kg), also a strobilurin, showed activity at 15 

nM. Azoxystrobin is a broadspectrum fungicide and oomyceticide with annual sales of 

>1 bn€, and production volumes of several 1000 tons/year. It is one of the predominant 

agrochemicals in the market. Azoxystrobin has also been identified in a high throughput 

screening campaign of Glaxo- SmithKline, where it showed an IC50 value of 41 nM 

against P. falciparum [44]. This result has surprisingly not been mentioned in the 

analysis and no follow up has been published. 

Hydramethylnon (LD50 rat p.o. 1131 mg/kg), an insecticide used in baits against 

ants, termites and cockroaches, showed 53 nM activity. It is also inhibiting the 

respiration chain, but probably not at the Qo binding site [45].  

Iminoctadine (LD50 rat p.o. 300 mg/kg), a broad spectrum fungicide, showed 68 

nM activity, with the mode of action presumed to be interaction with cell membranes 

and lipid biosynthesis. Related bisguanidines have also been examined extensively as 

antiprotozoal drugs before [46]. 

Acequinocyl (LD50 rat p.o. >5000 mg/kg), an acaricide used predominantly against 

mites in ornamentals, exhibited an IC50 value of 76 nM. It is also inhibiting the Qo-site 

in the bc1-complex like atovaquone, to which it also shows some structural similarities. 

Additional strobilurins with broadspectrum fugicidal and oomyceticidal activity 

were tested including trifloxystrobin (LD50 rat p.o. >5000 mg/kg), dimoxystrobin (LD50 

rat p.o. >5000 mg/ kg), picoxystrobin (LD50 rat p.o. >5000 mg/kg), and pyraoxystrobin 
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(LD50 not available), resulting in IC50 values of 84, 148, 305 and 859 nM activity, 

respectively. 

 

 

Figure 1. In vitro activity of the top 10 most active commercial agrochemicals on P. 

falciparum NF54 strain. The IC50 values are the means of two independent assays; the 

individual values vary by less than a factor of 2. 

 

The pre-emergence herbicides from the dinitroaniline-type including prodiamine 

(LD50 rat p.o. >5000 mg/kg), dinitramine (LD50 rat p.o. 3000 mg/kg), and fluchloralin 

(LD50 rat p.o. 1550 mg/kg), showed values of 118, 253 and 816 nM activity, 

respectively. Their mode of action is the inhibition of mitosis. Other herbicidal 

dinitroanilines have been shown before to have antiplasmodial activity, but on a 

significantly weaker level [47]. 

The plant growth regulator tetcyclacis (LD50 rat p.o. 261 mg/kg) inhibits P450 

enzymes [48] and exhibits an IC50 value of 194 nM. 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3493374_pntd.0001805.g001.jpg
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Fenchlorazol-ethyl (LD50 rat p.o. >5000 mg/kg), an herbicide safener used in 

cereals, showed 223 nM activity. Furthermore, the corresponding acid, which is 

potentially the first metabolite of fenchlorazol-ethyl, showed no activity in the assay. 

Other submM agrochemicals are fluazinam (IC50 = 258 nM), cafenstrole (493 nM), 

difenthiuron (560 nM), fenamidone (641 nM) and butamifos (816 nM). 

The biocides fentin acetate (33 nM) (LD50 rat p.o. 140–278 mg/ kg), berberine (83 

nM) (LD50 rat i.v. 60 mg/kg), cycloheximide (101 nM) (LD50 rat p.o. 2 mg/kg), fentin 

hydroxide (408 nM) (LD50 rat p.o. 150–165 mg/kg) and thiocyclam (525 nM) (LD50 rat 

p.o. 370 mg/kg) which are used in agrochemistry e.g. as seed dressing, also showed 

high activity against P. falciparum, but were not further followed up due to their 

published high toxicity in mammalian species. 

 

In vivo antimalarial activity. In the P. berghei mouse model azoxystrobin showed 

after 4x100 mg/kg p.o. application no significant activity using the Tween-formulated 

a.i.; but using the aqueous suspension of the commercial fungicidal formulation (200 g/l 

suspension concentrate) in p.o. application, an extension of survival time from 6–7 to 

10.7 days compared to untreated control animals was achieved. With s.c. application of 

the aqueous formulation a reduction of parasitemia by 98% compared to the untreated 

mice 24 hrs after last compound application (or 96 hrs after infection) and an extension 

of the survival time from 6–7 to 13.3 days was observed. This suggests some potential 

for further optimization of the delivery system. 

Hydramethylnon showed with 4x100 mg/kg s.c. application a reduction of 

parasitemia of 87% and an extension of survival time from 6–7 to 14 days. Furthermore, 

with a 4x100 mg/kg p.o. application, the parasitemia was reduced by 96% and the 

survival time was increased to up to 16 days. Considering the challenging 

physicochemical properties, moderate transfer factor and the nonoptimized dosing 

regime and formulation of hydramethylnon there might still be some potential to reach a 

sufficient activity level especially in combination therapies. This warrants further follow 

up and is currently under examination 

Activity on Trypanosoma cruzi (Chagas disease) 

38 agrochemicals with sub-mM activity on T. cruzi were identified, many of which 

being azoles with P450-inhibiting activity (Figure 2). P450-monoxygenases have been 

discussed before as targets against T. cruzi, especially the sterol 14demethylase [49]. 
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Figure 2. Top 10 most active commercial agrochemicals on T. cruzi. The IC50 

values are the means of two independent assays; the individual values vary by less than 

a factor of 2. 

 

The standard drug benznidazole (LD50 rat p.o. not available) [50,51] has an IC50 of 

1871 nM in this assay. 

Ipconazole (LD50 rat p.o. 888 mg/kg), has an IC50 of 3.0 nM, the most active 

agrochemical against T. cruzi. It is a fungicide used predominantly in seed dressing. The 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3493374_pntd.0001805.g002.jpg
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tested material is, like the commercial material, racemic and a mixture of diastereomers, 

therefore an enantiopure isomer could potentially have even higher activity. 

Difenoconazole (LD50 rat p.o. 1453 mg/kg), a broad spectrum and systemic 

fungicide, showed an IC50 value of 7.4 nM. This commercial agrochemical is again a 

racemic diasteromeric mixture and could therefore also have intrinsically higher activity 

as a pure isomer. 

Clotrimazole (14 nM), and viniconazole [52] (26 nM), are two azole drugs used 

against fungal skin infections, that have also been discussed as agro fungicides and 

therefore have been tested in this screen. As they have a complete pharmacological 

dossier they might also be interesting drug candidates. 

Zoxamide (LD50 rat p.o. >5000 mg/kg), a broadspectrum oomyceticide used in 

fruits and vegetables, showed 27 nM activity. It is sold and was tested as a racemate. Its 

mode of action against oomycetes is the inhibition of microtubule formation. 

Pyridaben (30 nM), and tolfenpyrad (55 nM), are insecticides/ acaricides inhibiting 

the complex 1 in the mitochondrial electron transport chain. 

A number of further azole fungicides showed activities below 100 nM including 

metconazole 31 nM, tebuconazole 36 nM, bitertanol 35 nM, climbazole 55 nM, 

prochloraz 69 nM, hexaconazole 73 nM, and fenapanil 99 nM. Further agrochemicals 

with high activity in this assay were penconazole (130 nM), epoxyconazole (136 nM), 

imazalil (148 nM), propiconazole (160 nM), fenarimol (193 nM), fluquinconazole (199 

nM), picoxystrobin (248 nM), cyproconazole (257 nM), myclobutanil (374 nM), 

tetraconazole (478 nM), and pyrifenox (491 nM). 

In spite of the excellent in vitro activity initial experiments in a T. cruzi mouse 

model did so far not show in vivo efficacy for selected hits (personal communication 

Nazare´ Soiro). 

 

Activity on Leishmania donovani (Leishmaniasis) 

Against L. donovani only two agrochemicals showed sub-M activity (Figure 3). 

The standard miltefosine (LD50 rat p.o. 246 mg/kg) showed in this assay an IC50 value 

of 250 nM. 

Zoxamide (LD50 rat p.o. >5000 mg/kg) showed an IC50 of  250 nM. The 

oomyceticidal compound has been discussed in the T. cruzi section. 

Tolylfluanid (LD50 rat p.o. >5000 mg/kg) resulted in an IC50 value of 861 nM. It is 

a protective fungicide and oomyceticide with presumed thiol conjugating activity. 
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Other agrochemicals with moderate activity against L. donovani were flocumafen 

(2451 nM), dimoxystrobin (3248 nM), bromofenoxin (3839 nM), cyhexatin (4517 nM), 

and cyazofamid (4988 nM). 

 

 

Figure 3. Most active commercial agrochemicals on L. donovani. The IC50 values 

are the means of two independent assays; the individual values vary by less than a factor 

of 2. 

 

Activity on Trypanosoma brucei rhodensiense  

In vitro activity against T. b. rhodensiense. The standard melarsoprol, an arsenate 

derivative (LD50 in mouse i.v. 44 mg/kg), showed an IC50 value of 5 nM in this assay. 

Seven sub-mM active agrochemicals could be identified in the T. b. rhodensiense 

assay (Figure 4). The two agrochemicals thiram (IC50 12 nM), and thiolutin (IC50 9 nM) 

[53] are known to have rather high cytotoxicity in cell systems, which likely interferes 

with this assay. 

Zoxamide (LD50 rat p.o. >5000 mg/kg) showed the highest activity with an IC50 

value of 6 nM. This oomyceticidal compound has been discussed above. Toylfluanid 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3493374_pntd.0001805.g003.jpg
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(LD50 rat p.o. >5000 mg/kg), showed an IC50 value of 52 nM, in addition to its activity 

against L. donovani.  

In addition to the above described antimalarial activity, hydramethylnon (LD50 rat 

p.o. 1131 mg/kg), showed 663 nM activity. 

Chlorothalonil (LD50 rat p.o. >5000 mg/kg), a protective fungicide with thiol 

conjugating activity, showed 688 nM activity. 

 

 

Figure 4. Top 10 most active commercial agrochemicals on T. b. rhodesiense. The 

IC50 values are the means of two independent assays; the individual values vary by less 

than a factor of 2. 

http://www.ncbi.nlm.nih.gov/core/lw/2.0/html/tileshop_pmc/tileshop_pmc_inline.html?title=Click on image to zoom&p=PMC3&id=3493374_pntd.0001805.g004.jpg
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Iminoctadin/guacetin (LD50 rat p.o. 360 mg/kg), showed 743 nM activity and is 

discussed in the P. falciparum chapter. 

 

In vivo activity against T. b. rhodensiense. Zoxamide has been tested in the T. b. 

rhodesiense mouse model for the acute phase of human African trypanosomiasis. 

Zoxamide showed with 4x200 mg/kg i.p. a weak activity. On day 7 post infection, 24 

hours after the last treatment, no T. b. rhodesiense could be detected; on day 10 all mice 

showed a relapse. 

 

Conclusion 

Due to the split of most life science companies into their agro- and pharma 

branches in the 1990s, the companies active in agrochemistry have not been involved in 

the recent screening activities to identify new drugs against infectious tropical diseases, 

even though agrochemicals might have a high potential to yield interesting hits for these 

applications. 

In this cooperation between industrial and public partners, it was shown for several 

commercial agrochemicals that they are highly active against some of the most 

important pathogens of infectious tropical diseases. Interestingly as anticipated, several 

of the oomyceticides (strobilurins against P. falciparum, zoxamide against T. b. 

rhodesiense and L. donovani) were active against these protozoans, but also other 

agrochemicals (e.g. hydramethylnon against P. falciparum; azoles like iproconazole 

against T. cruzi) showed very interesting activities. Exemplified by one of the major 

commercial agrochemicals, the fungicide azoxystrobin, as well as for the insecticide 

hydramethylnone, the reduction of parasitemia, and significant life extension for P. 

berghei infected mice was achieved. For zoxamide, an effect against T. brucei in the 

mouse model was also demonstrated. This successful in vitro– in vivo transfer without 

galenic optimization could not be taken for granted, as these agrochemicals have not 

been optimized for mammalian pharmacokinetics. 

There is still a high probability that the identified hits in the end might not be 

suitable for human use, as there are still several hurdles to overcome. However, the 

results of this highly focussed and relatively low input approach are more promising 

than could have been hoped for. It is especially noteworthy, that the screen of less than 

700 agrochemical resulted in e.g. 24 new sub-M hits against P. falciparum, compared 
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to 4 new sub-M hit in over 2687 recently tested commercial drugs (excluding known 

antimicrobial and anticancer a.i.) [54,55]. This clearly demonstrates that agrochemistry 

can be a very interesting and so far untapped source of new leads, and maybe even drug 

candidates, against protozoal diseases. It would also be very interesting to screen 

commercial agrochemicals against the pathogens of other neglected diseases, like 

schistosomes, nematodes, food borne trematodes, diarrhoeal amoebas and also tropical 

bacterial pathogens, for which good antibiotic cures are missing. These studies are still 

to be done. 
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Abstract 

Neglected tropical diseases cause significant morbidity and mortality and are a source of 

poverty in endemic countries. Only a few drugs are available to treat diseases such as 

leishmaniasis, Chagas’ disease, human African trypanosomiasis and malaria. Since drug 

development is lengthy and expensive, a drug repurposing strategy offers an attractive 

fast-track approach to speed up the process. A set of 100 registered drugs with drug 

repositioning potential for neglected diseases was assembled and tested in vitro against 

four protozoan parasites associated with the aforementioned diseases. Several drugs and 

drug classes showed in vitro activity in those screening assays. The results are critically 

reviewed and discussed in the perspective of a follow-up drug repositioning strategy 

where R&D has to be addressed with limited resources.   

 

Author Summary 

Neglected tropical diseases affect the poorest people in developing countries and cause 

significant morbidity and mortality. There are only few drugs available for the treatment 

of these diseases. For combating these diseases, new and better drugs are needed. Drug 

development is a lengthy and expensive process. In this study we were looking for low-

hanging fruits and followed a drug repurposing strategy. A set of 100 registered drugs 

with drug repositioning potential for neglected diseases was assembled.  The compound 

collection was systematically screened against protozoan parasites, T. b. rhodesiense, L. 

donovani, T. cruzi and P. falciparum. This low-hanging fruit approach using a relatively 

small collection of compounds was certainly worth the effort. Several drugs and drug 

classes exhibited in vitro activity and selectivity against one of the protozoan parasites. 

The results offer opportunities for drug repurposing but the identified compound classes 

could also be starting point for new drug discovery projects.  

 

Introduction 

Neglected tropical diseases (NTDs) such as leishmaniasis, human African 

trypanosomiasis and Chagas’ disease affect the poorest people in developing countries. 

NTDs are responsible for substantial global morbidity, mortality and economic losses 

[1]. Leishmaniasis is endemic in 88 countries around the globe with 350 million people 
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living at risk, and there are an estimated 1.5 to 2 million new cases per year [2]. Human 

African trypanosomiasis is transmitted by tsetse flies and the disease threatens millions 

of people in over 20 countries in sub-Saharan Africa. Due to reinforced surveillance and 

vector control the prevalence has come down in the last 15 years from approximately 

40,000 to less than 8,000 cases [3]. Chagas’ disease is endemic in 18 countries of 

Central and South America. It is estimated that 120 million people are at risk of 

infection and that 8 million are already infected [4]. Malaria, caused by Plasmodium 

spp., is one of the most devastating diseases in developing countries, with 207 million 

reported cases in 2012, causing 627,000 deaths in that year [5]. There are only a few 

drugs available for the treatment of these diseases. These drugs have associated 

liabilities including lack of efficacy, severity of side effects, high costs, or lack of 

practicality for field use, all of which constitute hurdles in terms of access to treatments 

for the patients. To combat these neglected diseases, new and better drugs are needed. 

The next generation of drugs will need to be very effective and safe, orally-available, 

and with a long shelf-life in tropical field conditions. Those drugs should provide 

simple, short-course drug administration regimens (maximum 10 days, ideally 1-3 days 

for malaria) amenable for drug combinations, to prevent the emergence of resistance. 

The latter demand applies to all diseases but is especially important for malaria due to 

the global spread of drug resistance to existing antimalarials including artemisinin-

based derivatives, for which the first cases of delayed clinical efficacy have already 

been reported [6]. 

There are several strategies to develop new drugs against NTDs. De novo drug 

discovery and drug development is a highly rational approach but it is a lengthy and 

expensive process [7, 8]. Alternatively, a drug repurposing strategy can be used as a 

fast-track approach guided by the established Target Product Profiles (TPP) [9, 10]. 

However, this attractive approach can only be considered with drugs achieving in vitro 

activity in relevant assays in the first place. Here, we report the in vitro activity against 

Trypanosoma brucei rhodesiense, Leishmania donovani, Trypanosoma cruzi and 

Plasmodium falciparum - of 100 registered drugs selected for their potential to be 

repurposed for the antiprotozoal diseases based on their respective TPPs.  
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Methods 

Chemicals  

Antiviral compounds were received from the NIH AIDS Reagent Program (USA) Other 

compounds were purchased from Sigma-Aldrich 

Bioassays 

The in vitro activities against the protozoan parasites T. b. rhodesiense, T. cruzi, L. 

donovani axenic amastigotes, and P. falciparum, and cytotoxicity assessment against L6 

cells were determined as reported in Orhan et al 2010 [11]  . Selectivity index (SI) was 

calculated as IC50 L6 cells/IC50 parasite. 

Activity against Leishmania donovani intracellular amastigotes in macrophage assay: 

Mouse peritoneal macrophages (4 x 10
4
 in 100 µl RPMI 1640 medium containing 10% 

heat-inactivated FBS) were seeded into wells of Lab-tek 16-chamber slides. After 24 h 

1.2 x 10
5
 amastigote L. donovani in 100 µl were added. The amastigotes were taken 

from an axenic culture grown at pH 5.4. Four hours later, the medium containing free 

amastigote forms was removed and replaced by fresh medium. The next day the 

medium was replaced by medium containing different compound dilutions. Parasite 

growth in the presence of the drug was compared to control wells. After 96 hours of 

incubation, the medium was removed and the slides fixed with methanol for 10 min 

followed by staining with a 10% Giemsa solution. Infected and non-infected 

macrophages were counted for the control cultures and the ones exposed to the serial 

drug dilutions. The infection rates were determined. The results were expressed as 

percent reduction in parasite burden compared to control wells, and the IC50 calculated 

by linear regression analysis. 

In vitro cytotoxicity with mouse peritoneal macrophages. Mouse peritoneal 

macrophages were seeded in 96-well microtitre plates at 10
4
 cells/well in 100 μL RPMI 

1640 medium containing 10% FBS and 2 mM l-glutamine. After 48 h 100 μl fresh 

medium was added with or without a serial drug dilution of seven 3-fold dilution steps 

covering a range from 100 to 0.14 μg/ml. After 96 h of incubation, the plates were 

inspected under an inverted microscope to assure sterility.  Alamar Blue (20 l) was 

added to each well and the plates incubated for a further 4 hours. The plates were then 

read with a Spectramax Gemini XS microplate fluorometer (Molecular Devices 

Cooperation, Sunnyvale, CA, USA) using an excitation wave-length of 536 nm and an 
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emission wavelength of 588 nm. The IC50 values were calculated by linear regression 

from the sigmoidal dose inhibition curves using SoftmaxPro software (Molecular 

Devices Cooperation, Sunnyvale, CA, USA). Podophyllotoxin was used as control. 

Cluster analysis  

The drugs selected in this study were clustered according to certain criteria including a) 

main indication(s) for which they are registered, b) chemical class and c) mechanisms of 

action(s). Whenever possible, the DrugBank classification (http://www.drugbank.ca) 

was followed to assign indication as well as mechanism of action labels to the selected 

drugs. These labels do not intend to be exhaustive as additional indications as well as 

mechanisms of action are known for several of the drugs. Chemical classes were 

arbitrarily defined according the chemical scaffolds of the molecules under 

consideration, with the exception of protease inhibitors that are better captured under 

this appellation due to structural variety. 

 

Results and Discussion 

A set of 100 registered drugs were collected (Table S1) in the framework of DNDi 

exploratory activities and submitted systematically to a panel of in vitro assays to be 

profiled for their antiprotozoal activities. These drugs and drug classes were primarily 

selected for their potential to be repurposed provided that in vitro activity could be 

demonstrated. The inclusion criteria comprised favorable bioavailability profile, 

moderate cost of goods and a good safety profile. The selection is heavily biased for 

anti-infectious indications (66 compounds) including antibiotics (26), antifungals (14), 

antivirals/antiretrovirals (16) as well as antiparasitic compounds (10) and 15 

psychoactive compounds. Another 19 drugs are related to other indications (Table S1). 

In some instances, drugs were selected based on literature reports of antiprotozoal 

activity in relation with one specific molecule or class of compounds. A panel of well-

known antiprotozoal drugs such as artesunate, mefloquine, pentamidine, nifurtimox and 

amphotericin B (not an exhaustive list) were included as benchmarks as well as to 

cross-profile these drugs in the entire screening assay panel. 

The results (Table S2) are ranked in agreement with the in vitro activity cutoffs defined 

at the hit stage for kinetoplastids [12] and for P. falciparum [13].  
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Human African trypanosomiasis 

Pentamidine and nifurtimox were, unsurprisingly, identified as active against T. b. 

rhodesiense; both drugs are used for the treatment of human African trypanosomiasis 

(HAT) (Table 1, Figure S1). The mode of action of pentamidine - an aromatic 

diamidine, a chemical class well-known for its antitrypanosomal activity - is not fully 

understood. There is evidence that impairment of mitochondrial function is involved 

[14] and that this family of compounds can rapidly accumulate within trypanosomes as 

demonstrated with DB75 and DB820 [15]. Nifurtimox is a well-known 

antitrypanosomal nitrofurane, only partially understood in terms of its mechanism of 

action as being related to the induction of oxidative stress in the target cell [16]. More 

recently, the activation of nifurtimox by trypanosomal type I nitroreductases leading to 

the generation of cytotoxic nitrile metabolites has been described [17].  

Two 5-nitrofuran antibiotics chemically related to nifurtimox (Figure S1), namely 

nifuroxazide (IC50 = 0.03 M, SI: 410) and nitrofurantoin (IC50 = 0.5 M, SI: 180) were 

identified as being remarkably potent against T. b. rhodesiense (Table 1). These 

compounds are reduced by nitrofuran reductase to reactive intermediates that cause 

oxidative stress [16]. The nitrophenylbenzamine niclosamide showed a lower in vitro 

activity (IC50 = 1.67 M), whereas the 5-nitroimidazole derivatives metronidazole and 

tinidazole were shown to be inactive in the same assay, presumably as they are not 

activated via enzymatic reduction under the experimental conditions. Overall, the 

potential for drug repurposing of any nitroheterocycles for HAT heavily depends on 

their toxicity – and notably genotoxicity/mutagenicity - profile in respect to their 

efficacy in relevant rodent models, as demonstrated by the successful development of 

fexinidazole currently in Phase II/III clinical trials [18,19].  

Rifamycin SV (IC50 =0.99 M, SI: 16) exhibited a selective activity profile against T. b. 

rhodesiense (Table 1), whereas other members of the rifamycin family (rifabutin, 

rifampicin and rifaximin) were devoid of antitrypanosomal activity. Rifamycins have 

been used for the treatment of several diseases, the most important one being HIV-

related tuberculosis. They are particularly active against mycobacteria via the inhibition 

of bacterial DNA-dependent RNA polymerase [20]. Rifamycin SV is a semi-synthetic 

broad-spectrum antibiotic with activity against Gram-positive and Gram-negative 

bacteria and mycobacteria.  It belongs to the class of ansamycins obtained from 

rifamycin B, which is produced by fermentation of Streptomyces mediterranei n. sp. 
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Rifamycin SV is poorly bioavailable and is used parenterally or topically in the 

treatment of cutaneous and soft tissue infections such as osteomyelitis, 

bronchopulmonary and biliary tract infections, traveler’s diarrhea, infectious colitis and 

staphylococcal septicemias. Rifamycin SV accumulates especially in the bile but - as 

other rifamycins - has rather limited penetration into the brain due to its high molecular 

weight (800 Da) as well as a high protein binding capacity (around 80%). These 

features and its lack of bioavailability are clear liabilities for the repositioning of this 

drug for HAT. 

Auranofin showed good and selective activity against T. b. rhodesiense (IC50 =0.01 M, 

SI: 479) (Figure S1). Auranofin is a gold complex used to treat rheumatoid arthritis. It 

putatively acts as an inhibitor of kappa B kinase and thioredoxin reductase which would 

lead to a decreased immune response and decreased free radical production, respectively 

[21]. It is a compound that targets selenoproteins in the bloodstream form and 

procyclics of T. brucei [22]. In a recent high-throughput drug screen, high activity 

against Entamoeba was discovered [23]. Auranofin showed 10 times better activity 

against Entamoeba histolytica than the standard drug metronidazole. The very high 

potency of auranofin in vitro constitutes an excellent starting point towards repurposing. 

In addition, auranofin suppressed T. brucei parasitemia in vitro within a 6-hour time 

period at a concentration of 0.92 M. It also presents a favorable tissue permeability 

profile based on data obtained from an in vitro MDR1-MDCK assay (data not 

presented). Given the relatively good bioavailability (17-23%) of auranofin as well as 

favorable drug exposure in various tissues in rats (terminal half-life of 29 and 43 hours 

based on blood and serum levels, respectively) following oral administration of a single 

dose (6.7 mg /kg) [24], we performed an in vivo efficacy study in an acutely infected T. 

brucei murine model. However after daily oral administration of up to 25 mg/kg 

auranofin over a 4 day period no in vivo efficacy was observed in comparison to an 

untreated control group regarding reduction of parasitemia or increased survival time 

(data not presented). This negative outcome could be explained by the lack of a cidal- 

mechanism of action, which needs to be further investigated through an in vitro time-

kill assay using a drug wash-out step, or a sub-optimal drug exposure in vivo in mice. 

The latter might be due to degradation or metabolism of auranofin as the analytical 

method that had been used was based on the detection of gold by atomic absorption 

spectrometry [24]. Alternative explanations might be a significantly different 
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pharmacokinetic profile in mouse versus rat, from where the published data came from, 

or high protein binding of auranofin.  

Two adamantane derivatives were tested, one of which rimantadine, was selectively 

acting (IC50 = 13.83 M SI: 23) against T. b. rhodesiense, albeit at a moderate level. 

The activity of rimantadine and of other adamantane derivatives against T.brucei had 

already been reported by Kelly et al. in 1999 and 2001 [25, 26] and Zoidis et al. 2008 

[27]. Ademantanes presumably target essential T. brucei membrane-localized ion 

channels or transporters [28, 29]. They are known to act on viral matrix protein 2 with 

respect to their primary antiviral indication [30]. Adamantanes are inexpensive, orally 

active drugs [31]. They exhibit steady-state levels in serum of 2.5 to 5.0 M and plasma 

half-lives of 24 to 36 hours in humans [32, 33]. Furthermore, adamantanes readily cross 

the blood-brain barrier [34]. As such adamantanes, and more particularly the T. brucei 

active rimantadine, seem to offer promising potential in terms of drug repurposing for 

HAT, although the moderate in vitro potency of rimantadine might be insufficient to 

demonstrate efficacy in vivo given the aforementioned serum levels.  Adamantanes may 

therefore be preferably pursued as part of a lead optimization program to increase 

potency against T. brucei while keeping, and possibly improving, the favorable 

pharmacokinetic properties of the series. A limited evaluation of 17 adamantanes 

supported this approach as the most active derivative (1-adamantyl-4-amino-

cyclohexane) was about 20 to 25 times more effective than rimantadine [26]. The same 

study delivered the first proof of principle of efficacy of adamantanes in vivo, with a 

transient 98% suppression of parasitemia in mice with an acute T. brucei infection. 

These encouraging results seem to indicate that lead optimization might be more 

promising than a repurposing strategy for this class of compounds. 

A key feature of the TPP to cure the second stage of HAT is CNS penetration [9]. 

Psychoactive compounds, by definition cross the blood-brain barrier. All anti-

depressant and antipsychotic drugs – including tricyclics, and  selective serotonin 

reuptake inhibitors - displayed IC50 values in the range of 0.5 – 2 M (Table 1) against 

T. b. rhodesiense, as well as a limited selectivity window with respect to the L-6 rat 

myoblast cell line apart from nortriptyline (SI> 20) (Figure S2). The only exception was 

spirenone – a butyrophenone derivative known to act via serotonin and dopamine 

receptor inhibition – that was reported to be inactive in this assay. These drugs act in 

various ways and levels on dopaminergic and serotoninergic central receptors indicating 
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that they all have the potential of crossing the blood brain barrier. The related drugs 

thioridazine, triflupromazine, promazine and chlorpromazine are D2 dopamine receptor 

antagonists and Ca
2+

 channel blockers. Nortriptyline inhibits reuptake of norepinephrine 

and is a strong antagonist of the H1 receptor. It is also known as a Na
+
 channel blocker. 

There were earlier attempts to develop tricyclic compounds as trypanothione reductase 

inhibitors via lead optimization efforts [35, 36]. However no clear relationship between 

the activities measured on trypanothione reductase and the T. brucei whole cell assay 

could be drawn from a series of 22 inhibitors [36]. It is, to our knowledge, the first time 

that selective serotonin reuptake inhibitors (including sertraline and paroxetine) are 

reported to show activity against T. b. rhodesiense. Demonstration of a cidal profile of 

these drugs in a time-kill non-reversible T. brucei assay can be proposed as the next 

experimental study towards a repurposing strategy. The poly-pharmacology profile of 

these drugs, notably in respect to associated central effects and toxicity will have to be 

carefully considered with respect to dose finding in mouse models.   

Chagas’ disease 

Not surprisingly nitroheterocycles, in particular nitrofurane derivatives including 

nifurtimox, nifuroxazide and nitrofurantoin, exhibited the highest antichagasic activity 

(Table 2, Figure S3). Nitrofuranes are well known for their antichagasic activity: 

Nifurtimox - as well as benznidazole, the second treatment available for Chagas’ 

disease- has been shown to be activated by a NADH-dependent, mitochondrially 

localized type I nitroreductase [37]. A repurposing strategy for any nitrofurans or 

nitroimidazole analogues including nifuroxazide and nitrofurantoin, must be based 

primarily on the safety profile compared to currently used drugs. This notably includes 

genotoxicity/mutagenicity as previously mentioned in the case of human African 

trypanosomiasis. In addition, the compound should demonstrate equivalent or better in 

vitro activity and in vivo efficacy than the current drugs. Interestingly, another 

compound from the nitroimidazole class – fexinidazole -  has recently also been 

reported for its oral efficacy in acute and chronic experimental models of  benznidazole-

susceptible, partially resistant, or resistant T. cruzi isolates [38] and could therefore be 

considered as a good candidate for drug repositioning.   

Azoles were identified as the most potent class of inhibitors: six representatives with 

IC50 values in the range of 0.003 – 0.3 M and SI:  >100 (bifonazole, clotrimazole, 

econazole nitrate, miconazole and tioconazole as imidazoles as well as itraconazole and 
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ketoconazole as triazoles) while other compounds from this class displayed lower 

activity and/or selectivity against T. cruzi (Table 2). These well-known antifungal drugs 

are already known for their activities against T. cruzi and for acting via inhibition of 14-

alpha-sterol demethylase, an enzyme of the sterol biosynthesis pathway [39]. Two 

triazole antifungals, posaconazole and E1224 (a prodrug of ravuconazole), have recently 

been reported as failing to demonstrate sustained clearance of T. cruzi parasitemia in 

chronically infected patients in phase II clinical trials, putting azoles as a therapeutic 

class at stake for the treatment of Chagas’disease, at least in monotherapy [40]. This 

outcome might well be correlated with the inability of azoles and of non-azole CYP51 

inhibitors to achieve parasite clearance in vitro in various T. cruzi lineages [41].  

Two other compounds that popped up showing moderate micromolar in vitro activity 

against T. cruzi are tadalafil (IC50 = 8.6 M SI: >26) and mebeverine (IC50 = 3.89 M 

SI: 18) (Table 2, Figure S3). Tadalafil is a phosphodiesterase type 5 (PDE5) inhibitor 

used in treating erectile dysfunction. PDEs are cAMP-specific hydrolases and play a 

major role in cyclic nucleotide signaling [42]. One of the main challenges to be 

considered in terms of drug repurposing of PDE inhibitors relates to the safety profile 

associated to the structural similarity between the human and protozoan PDE.  

The antispasmodic mebeverine is used for the treatment of irritable bowel syndrome 

(IBS) and the associated abdominal cramping. It works by relaxing the muscles in and 

around the gut. It is a musculotropic antispasmodic drug acting directly on the gut 

muscles at the cellular level to relax them. Mebeverine is also a functional inhibitor of 

acid sphingomyelinase (FIASMA) [43] as well as a serotonin 5-HT3 receptor 

antagonist. To our knowledge this is the first time that tadalafil and mebeverine are 

reported to have antichagasic properties. Even if the antitrypanosomal activity is 

moderate, a more careful evaluation of their activity needs to be conducted to better 

understand their potential of drug repositioning for Chagas’ disease, notably their ability 

to exert a cidal, irreversible and total clearance of T. cruzi infection in vitro as well as in 

vivo in relevant models. If successful, the dose regimens of tadalafil and mebeverine 

required to cure a T. cruzi infection in vivo will have to be compared with the maximum 

tolerated doses identified from preclinical in vivo models, to ensure that the safety 

profiles of the two drugs are compatible with this new indication. 
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Leishmaniasis 

All selected candidates were tested in two different assays, involving axenic amastigotes 

and intracellular amastigotes of L. donovani, respectively. The latter assay used 

peritoneal mouse macrophages as host cells. Amastigotes in macrophages are currently 

considered as more relevant for the visceral disease pathology than axenic amastigotes 

[44]. For cytotoxicity the compounds were counter-screened against non-infected 

peritoneal mouse macrophages. Apart from amphotericin B and sitamaquine that can be 

considered as control drugs in this screening, clofazimine was the only compound 

exhibiting activity in the Leishmania donovani intracellular assay as well as an 

acceptable level of selectivity (SI 10) (Table 3, Figure S4). Amphotericin B is a 

polyene antifungal drug displaying either fungistatic or fungicidal activity depending on 

the drug concentration in body fluids with respect to the susceptibility of the 

investigated fungal microorganism. The liposomal formulation of amphotericin B 

(marketed as AmBisome) is currently used as monotherapy for the treatment of visceral 

leishmaniasis. Amphotericin B binds irreversibly to ergosterol, resulting in disruption of 

membrane integrity and leakage of intracellular components leading to cell death [45].  

Sitamaquine, a known antileishmanial drug, displayed only moderate activity against 

both axenic and intracellular amastigotes (Table 3). The drug development of 

sitamaquine was discontinued in Phase II clinical trials by GlaxoSmithKline due to 

safety concerns related to methemoglobinemia, a known feature of 8-aminoquinolines 

[46].  

 Clofazimine is a lipophilic riminophenazine derivative possessing both 

antimycobacterial and anti-inflammatory properties. Its efficacy has been demonstrated 

only in the treatment of leprosy in combination with rifampicin and dapsone, but not in 

human tuberculosis, despite the fact that it is impressively active in vitro against 

multidrug-resistant strains of Mycobacterium tuberculosis [47]. Interestingly, 

clofazimine is more active against intracellular than axenic Leishmania donovani, 

putatively due to the accumulation of clofazimine in the macrophages, a known feature 

of riminophenazines [48]. The antileishmanial properties of clofazimine have previously 

been reported both in vitro and in animal models for three different Leishmania species 

including L. donovani [49]. Clofazimine binds to guanine bases leading to an inhibition 

of cell proliferation [50, 51]. Additionally, clofazimine inhibits acid sphingomyelinase 

(FIASMA) and increases the activity of phospholipase A2 [43]. Cell membrane 
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destabilization and subsequent dysfunction as well as intracellular redox cycling 

involving oxidation of reduced clofazimine leading to the generation of reactive oxygen 

species were proposed as mechanisms contributing to the antimycobacterial activity of 

clofazimine. These putative mechanisms of action have recently been reviewed by 

Cholo et al. 2012 [47]. The safety profile of clofazimine related to the tendency of this 

drug to concentrate in fatty tissues and in cells of the mononuclear phagocyte system is 

certainly a factor that needs to be carefully considered in view of drug repurposing. 

Considering the very good pharmacokinetic, distribution and safety profiles of 

clofazimine in the mouse [48] it seems quite reasonable to envisage an in vivo efficacy 

study of this drug in a relevant mouse model infected with Leishmania donovani. 

 Auranofin, tipranavir (a non-peptidic protease inhibitor [52], the antimalarial artesunate 

and other antibacterials like nitrofurantoine, nifuroxazide, rifampicin and rifamycin SV 

were all active (IC50: < 3M) against axenic amastigotes of L. donovani, but inactive 

against the intracellular amastigotes (Table 3). The hydroxypyridinone antifungal 

ciclopirox olamine showed activity against axenic amastigotes and activity against 

intracellular amastigotes of L. donovani (IC50 = 0.1 M, SI: 9) with moderate selectivity 

(Table 3, Figure S4). The mode of action of cicloporix is not well understood, a loss of 

function of certain catalase and peroxidase enzymes, and various other components of 

cellular metabolism are involved [53, 54]. The two azoles clotrimazole and tioconazole 

were active with low selectivity against intracellular L. donovani too (Table S1).  

Niclosamide used as anthelmintic, in addition to auranofin, showed the best activity of 

all tested compounds against L. donovani axenic amastigotes but it was inactive against 

intracellular amastigotes at a concentration of 0.1 g/ml, and toxic at higher 

concentrations (>0.3g/ml) to mouse macrophages (Table S1).  The repurposing 

potential of these few drugs seems rather low as they were not able to demonstrate any 

significant activity in the intracellular L. donovani assay or alternatively lacked 

selectivity. 

Malaria 

The in vitro activity of all of the tested standard animalarials (artesunate, mefloquine, 

tafenoquine, chloroquine and sitamaquine) was confirmed against P. falciparum as 

shown in Table 4. Interestingly, four of the tested azoles (clotrimazole, econazole, 

miconazole and tioconazole) were active against P. falciparum (Table 4, Figure S5) 
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confirming the finding of Penna Coutinho et al. 2011 [55] who described the 

antimalarial activity of posaconazole and itraconazole. 

Rifamycins, especially rifampicin (IC50= 0.1 , SI: >100), showed remarkably 

selective activity in the antiplasmodial assay (Table 4).  The anti-tuberculosis drug 

rifampicin is a RNA polymerase inhibitor of bacterial transcription and was previously 

described for its in vitro and in vivo antimalarial activities [56, 57]. To our knowledge, 

other compounds from this class have not been reported to have antimalarial activity. 

The antiplasmodial activity associated with tricyclic antidepressants (Table 4, Figure 

S5) is certainly one of the most striking observations of this screen. Promazine and 

nortriptyline displayed the highest selective activity against P. falciparum. Promazine is 

a phenothiazine compound D2 dopamine receptor antagonist and showed an IC50 value 

of 0.49  with a selectivity index of 61. Nortriptyline, a tricyclic antidepressant and 

potent inhibitor of the norepinephrine transporter exhibited an IC50 value of 0.58 M 

against P. falciparum, and a selectivity index of 48. Tricyclic antidepressant drugs have 

previously been shown to reverse chloroquine resistance in P. falciparum in vitro and in 

monkey studies [58]. The reversal of resistance is probably mediated by the inhibition 

of a chloroquine efflux pump. Tricyclic compounds were additionally described in a 

recent publication as blocking agents for Plasmodium oocyst development and 

transmission [59]. Transmission blocking is an important feature for the elimination of 

malaria. It is worth noting that further tricyclics (including fluphenazine and 

amitriptyline) as well as selective serotonin reuptake inhibitors (sertraline and 

fluoxetine) also displayed antiplasmodial activities in the micromolar range as well as 

reasonable selectivity profiles against the L-6 cell line. Additionally, in vitro selective 

activities against P. falciparum were identified for the antiviral rimantadine, the anti-

thrombotic dipyridamole, the anti-tussive clopersatine, and the anti-histamine ketotifen. 

All of these activities have already been reported elsewhere [60, 61, 62]. Providing a 

cidal mechanism of action can be confirmed for these drugs, the next step will consist of 

an evaluation of their potential to suppress parasitemia in a mouse malaria model, 

ideally following single oral dose. If successful, the repurposing potential of these drugs 

will need to be carefully assessed considering the safety profile at the defined curative 

dose, notably in relation to the pharmacological effects of these drugs at the used dosing 

regimen. This constitutes a major challenge, especially for the drugs for which there is a 

dramatic discrepancy in terms of in vitro activities between their primary indication 
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(generally 1-10 nM range) and malaria (100 nM-1M range). The compatibility of these 

drugs with a short (1-3 day) oral treatment, their low susceptibility to generate 

resistance, and their amenability to be used in combination with existing antimalarial 

drugs will similarly need to be considered. 

 

Conclusion 

Several drugs and drug classes were confirmed to have in vitro activity against 

protozoan parasites including T. brucei rhodesiense, L. donovani, T. cruzi and P. 

falciparum, offering various opportunities for drug repurposing. Several of these 

antiparasitic activities – but not all- have already been reported. To our knowledge it is 

indeed the first time that tadalafil and mebeverine have been described for their 

antichagasic activity. The confirmation of an activity in state-of-the-art in vitro assays 

and eventually in animal models is obviously just the beginning of a long journey. 

Several of these candidates might indeed be discarded at a relatively early stage for 

various reasons including safety, inadequate mode of drug administration, or lack of 

efficacy in vivo to mention just a few obstacles down the road of development. On a 

more specific basis, any in vitro cytotoxicity - and therefore derived selectivity - data 

generated in the frame of this work should be put in perspective with the existing 

toxicity profiles of these drugs and should not be considered per se as a rule-out filter 

unless the results clearly compromise the antiprotozoal readout of intracellular assays. 

For these drugs a wealth of preclinical and clinical data can be used to determine 

whether their safety profiles are compatible with the anticipated dose of drug to be used 

in animal models and eventually in patients. The candidates for further development 

should ideally be associated with a favorable bioavailability profile, as oral drug 

administration is preferable for the next generation of drugs used to treat kinetoplastid 

diseases. The reasons for a lack of or insufficient in vivo efficacy in relevant preclinical 

animal models shall be further investigated to assist in the decision to drop or further 

pursue an existing drug for repurposing. Indeed, one of the reasons might be a clear 

“no-go’” such as an inappropriate mechanism of action (e.g. drug working via a static 

mechanism, CYP51 inhibition for Chagas’ disease), while other characteristics might be 

surmountable (e.g. lack of drug exposure due to a suboptimal drug dosing regimen). 

There is a clear need to carefully define the types of preclinical experiments that need to 



 

 236 

be run to progress the candidates identified from screening in the framework of a 

defined drug discovery cascade supported by DMPK and toxicity assays. 

Drug repurposing - also called drug repositioning - has proven to be an attractive way to 

address drug development in a cost-effective and less risky manner when compared to 

de novo drug discovery and development [63]. This discovery strategy aims at making 

the best use of pre-existing preclinical and clinical knowledge accumulated on 

registered drugs and drug candidates for a new indication, and is nowadays actively 

pursued by the pharmaceutical companies [63] and currently accounts for approximately 

30% of the newly approved drugs and vaccines by the US Food and Drug 

Administration - in recent years [64]. Drug repurposing led to a number of success 

stories that have been reviewed and documented elsewhere [63, 65] including the 

famous revival of thalidomide – a sedative drug which was banned in the early 60s for 

causing severe skeletal birth defects in new born children – for the treatment of 

erythema nodosum laprosum, an agonizing inflammatory condition of leprosy.  The 

repositioning of sildenafil (Viagra) in the 1980s from a cardiac related indication 

(angina) to erectile dysfunction is certainly a striking example of an opportunistic 

exploitation of an observed side-effect that led to a switch of therapeutic use for this 

PDE-5 inhibitor. Other examples include the repurposing of the antiparkisonian 

atomoxetine for the treatment of attention deficit hyperactivity disorder, and the anti-

emetic and antihistamine chlorpromazine as a non-sedative tranquilizer. The area of 

neglected diseases has similarly accounted a few drug repositioning successes such as 

the antibacterial sulfonamides (dapsone, sulfadoxine), tetracyclines (doxycycline) and 

combination of trimethoprim/sulfamethoxazole in the area of malaria [66], 

fluoroquinolones for tuberculosis [66], the anticancer agent miltefosine as well as the 

antifungal amphotericin B for the treatment of visceral leishmaniasis [65].  

Several approaches can be used to address the identification of novel drug candidates at 

an early discovery stage using a drug repositioning approach. They notably include 

target-based screening, phenotypic (“target unbiased or blinded”) screening, knowledge-

based methods (e.g. chemoinformatics and bioinformatics), signature-based methods, 

pathway or network methods and targeted mechanism-based methods, reviewed and 

illustrated elsewhere [64]. From a recent comparative analysis based on 259 approved 

agents [67], 50 were shown to be first-in-class small molecules associated with a new 

molecular mechanism of action, of which 28 and 17 of these drugs were identified from 
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phenotypic screening and target-based approaches, respectively. These results illustrate 

the impressive potential of phenotypic screening in the area of drug discovery. The 

screening of a library of drugs and drug candidates in a phenotypic assay is therefore 

seen as an attractive way to identify new potential candidates with a modest work load. 

This can be illustrated by the discovery of the antimalarial properties of astemizole from 

the screening of 2687 approved drugs or drug candidates using a P. falciparum whole 

cell in vitro screening assay [68].  

In summary, this low-hanging fruit approach is certainly worth the effort as related to a 

“low risk, high return on investment” drug discovery process, especially in the field of 

Neglected Diseases where R&D has to be addressed with limited resources. The 

availability of a significant amount of data and expertise, notably related to preclinical 

and clinical toxicity as well as pharmacokinetics for all of these drugs can indeed lead to 

significant savings in terms of time and money related to drug development. This 

information can be used to support decision-making related to the progression of the 

early candidates in a rather fast-track mode, using existing drugs from the same class for 

benchmarking, if this option is available. Some of the approved marketed drugs will 

have the additional advantage of being off-patent, facilitating the drug repurposing 

process from an intellectual property management standpoint. A drawback related to the 

progression of old drugs might however be the lack or the paucity of recently generated 

data reports (e.g. lack of quality of pharmacokinetic measurements based on LC/MS, 

and toxicity assays performed in obsolete in vitro and in vivo predictive models). 
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Figure S5. Malaria cluster of all tested compounds. Chemical class vs log(IC50 in 

M) 
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Tables 

 

Table 1. In vitro activity against T .b. rhodesiense in IC50 (M) of compounds fulfilling hit criteria 

Drug ID 
a
T. b. 

rhod. 

b
Cytotox. 

L6 

c
SI Indication Chemical Class Mode of Action 

Pentamidine 0.01 8.87 887 Antibacterial/Antiprotozoal Dibenzimides Interferes with nuclear synthesis/ interfering agent/ 

DNA, RNA, phospholipids and protein synthesis 

inhibitor 

Auranofin 0.01 4.79 479 Antirheumatic Gold agent kappaB kinase and thioredoxin reductase inhibitor 

Nifuroxazide 0.03 12.31 410 Antibacterial Nitroheterocycles Lipoamide dehydrogenase inhibition 

Nitrofurantoin 0.5 90.31 181 Antibacterial Nitroheterocycles Oxygen-insensitive NADPH nitroreductase 

Thioridazine 0.53 5.39 10 Antipsychotic/Antidepressant Tricyclics Dopamine D1 and D2 inhibitor 

Amphotericin B 0.76 10.27 14 Antifungal/Antiprotozoal Polyenes Membrane cell sterol binder 

Sertraline 0.77 8.10 11 Antipsychotic/Antidepressant Tetrahydro-

napthalenamines 

Selective serotonin-reuptake inhibitors 

Rifamycin SV  0.99 15.68 16 Antibacterial/Antituberculotic Rifamycins bacterial DNA-dependent RNA synthesis inhibitor 

Paroxetine 1.13 13.84 12 Antipsychotic/Antidepressant Dehydrophenyl-

piperidines 

Selective serotonin-reuptake inhibitors 

Nortryptyline 1.17 27.87 24 Antipsychotic/Antidepressant Tricyclics Serotonin reuptake inhibitor  

Triflupromazine 1.42 18.5 13 Antipsychotic/Antiemetic Tricyclics Dopamine D1 and D2 receptor inhibitors 

Nifurtimox 1.44 87.02 60 Antibacterial/Antiprotozoal Nitroheterocycles Induction of oxidative stress in  target cell 

Clomipramine 2.06 19.79 10 Antipsychotic/Antidepressant Tricyclics Serotonin reuptake inhibitor  

Promazine 2.16 30.06 14 Antipsychotic/Antidepressant Tricyclics Dopamine, serotonine, alpha1 and histamine 

receptor inhibitor 

Amitriptyline 3.03 42.18 14 Antipsychotic/Antidepressant Tricyclics Norepinephrine and serotonin reuptake inhibitor  

Chloroquine  3.81 50.61 13 Antimalarial Quinolines Heme polymerase inhibitor 

Pizotifen 3.99 45.02 11 Antimigraine Tricyclics serotonin receptor antagonist 
a
T. b. rhod.:T. b. rhodesiense strain STIB 900, trypomastigotes. 

b
Cytotoxicity on L6 cells. 

c
Selectivity index: IC50 Cytotoxicity L6/ IC50 T. b. 

rhodesiense  

IC50 values are means of two independent assays, which varied < ±50%. 
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Table 2. In vitro activity against T. cruzi in IC50 (M) of compounds fulfilling hit criteria 

Drug ID 
a
T. 

cruzi 

b
Cytotox. 

L6 

c
SI Indication Chemical Class Mode of Action 

Bifonazole 0.003 39.30 >1000 Antifungal Azoles 14alpha-sterol demethylase inhibitor 

Itraconazole 0.004 1.11 278 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Clotrimazole 0.006 2.99 498 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Miconazole  0.04 15.44 383 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Econazole  0.04 15.60 390 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Tioconazole 0.064 19.47 304 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Ketoconazole 0.27 50.99 189 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Fluconazole  9.96 >294 >30 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Nifurtimox 0.19 87.02 458 Antibacterial/Antiprotozoal Nitroheterocycles Induction of oxidative stress in  target cell 

Nifuroxazide 0.23 12.31 54 Antibacterial Nitroheterocycles Lipoamide dehydrogenase inhibition 

Nitrofurantoine 4.35 90.31 21 Antibacterial Nitroheterocycles Oxygen-insensitive NADPH nitroreductase 

Mebeverine 3.89 70.77 18 Antispasmotic Phenylbenzoates serotonin 5-HT3 receptor antagonist 

Fluconazole  8.60 221.1 26 Erectile dysfunction Pyridoiindolediones cGMP-specific 3',5'-cyclic phosphodiesterase 

inhibitor 
a
T. cruzi, strain Tulahuen C4, intracellular amastigotes. 

b
Cytotoxicity on L6 cells. 

c
Selectivity index: IC50 Cytotoxicity L6/ IC50 T. cruzi. 

IC50 values are means of two independent assays, which varied < ±50%. 
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Table 3. In vitro activity against L. donovani in IC50 (M) of compounds fulfilling hit criteria 

Drug ID 
a
L.don. 

axen. 

b
L. don. 

intracell 

c
Cytotox. 

mac.inf. 

d
Cytotox. 

PMM 

e
SI Indication Chemical Class Mode of Action 

Auranofin 0.11 >1.47 4.42 N/A 40 Antirheumatic Gold agent kappaB kinase and thioredoxin 

reductase inhibitor 

Amphotericin B 0.34 0.31 32.4 22.39 95 Antifungal/ 

Antiprotozoal 

Polyenes Membrane cell sterol binder 

Ciclopirox 

olamine 

1.64 9.09 20.3 20.27 12 Antifungal  Pyridinones Polyvalent metal cation chelator 

Tolnaftate 4.33 50.1 97.6 N/A >23 Antifungal  Thiocarbamates Squalene epoxidase inhibitor 

Artesunate 0.35 >7.8 7.8 N/A >22 Antimalarial Endoperoxides Unknown, acting via reactive oxygen 

radical species 

Rifamycin SV  1.5 >13.87 41.62 N/A 28 Antibacterial/ 

Antituberculotic 

Rifamycins bacterial DNA-dependent RNA 

synthesis inhibitor 

Rifampicin 1.53 >36.45 36.5 N/A >24 Antibacterial/ 

Antituberculotic 

Rifamycins Bacterial DNA-dependent RNA 

synthesis inhibitor 

Nitrofurantoine 2.12 >41.81 125.44 N/A 59 Antibacterial Nitroheterocycles Oxygen-insensitive NADPH 

nitroreductase 

Nifurtimox 2.76 20.68 34.8 15.7 13 Antibacterial/ 

Antiprotozoal 

Nitroheterocycles Induction of oxidative stress in  target 

cells 

Troglitazone 4.26 >67.94 68 N/A >16 Antidiabetic/ 

Antinflammatory 

Thiazolidinediones Nuclear receptor (PPAR) binder 

Clofazimine 22.39 0.95 6.34 10.65 10 Antibacterial/ 

Antituberculotic 

Riminophenazines Mycobacterial DNA binder, Redox 

cycling, Cell membrane destabilizer, 

Acid sphingomyelinase inhibitor 

Nifuroxazide 2.83 >10.86 36.2 N/A 13 Antibacterial Nitroheterocycles Lipoamide dehydrogenase inhibition 

Tipranavir 1.64 >49.78 50 N/A >30 Antiviral/ 

Antiretroviral 

Protease Inhibitors HIV protease inhibitor 

Lonidamine 8.66 >93.41 93.4 N/A >11 Anticancer Indazoles Glycolysis inhibition via hexokinase 

activation 
a
L. don. axen.: axenic amastigotes of  L. donovani, strain MHOM-ET-67/L82. 

b
L. don. intracell: intracellular amastigotes of L. donovani strain 

MHOM-ET-67/L82. 
c
Cytotoxicity on macrophages infected with L. donovani. 

d
Cytotoxicity on peritoneal mouse macrophages. 

e
Selectivity index: 

IC50 Cytotoxicity macrophages/ IC50 L. donovani. IC50 values are means of two independent assays, which varied < ±50%. 
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Table 4. In vitro activity against P. falciparum in IC50 (M) of compounds fulfilling hit criteria 

Drug ID 
a
P. falc. 

K1 

b
Cytotox. 

L6 

c
SI Indication Chemical Class Mode of Action 

Mefloquine  0.002 3.25 1354 Antimalarial Quinolines Unknown, putative heme polymerase inhibitor 

Artesunate 0.003 0.78 260 Antimalarial Endoperoxides Unknown, acting via reactive oxygen radicals  

Chloroquine  0.17 50.61 298 Antimalarial Quinolines Heme polymerase inhibitor 

Tafenoquine 0.27 5.52 20 Antimalarial Quinolines Unknown, putative heme polymerase inhibitor 

Sitamaquine 0.08 32.31 404 Antileishmanial Quinolines Unknown 

Rifampicin 0.1 75.22 752 Antibacterial/Antituberculotic Rifamycins Bacterial DNA-dependent RNA synthesis inhibitor 

Rifamycin SV  0.55 15.68 29 Antibacterial/Antituberculotic Rifamycins bacterial DNA-dependent RNA synthesis inhibitor 

Rifaximin 0.92 88.05 96 Antibacterial/Antituberculotic Rifamycins Bacterial DNA-dependent RNA synthesis inhibitor 

Amphotericin B 0.8 10.27 13 Antifungal/Antiprotozoal Polyenes Membrane cell sterol binder 

Clotrimazole 0.11 2.99 27 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Econazole  0.32 15.6 49 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Miconazole  0.49 15.44 32 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Tioconazole 0.63 19.47 31 Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Promazine 0.49 30.06 61 Antipsychotic/Antidepressant Tricyclics 
Dopamine, serotonin, alpha1 and histamine 

receptor inhibitor 

Fluphenazine 0.50 11.54 23 Antipsychotic/Antidepressant Tricyclics Dopamine receptor inhibitor 

Sertraline 0.51 8.10 16 Antipsychotic/Antidepressant 
Tetrahydro-

napthalenamines 
Selective serotonin-reuptake inhibitors 

Nortryptyline 0.58 27.87 48 Antipsychotic/Antidepressant Tricyclics Serotonin reuptake inhibitor  

Ketotifen 0.75 147.04 196 Antihistamine 
Cycloheptathio-

phenones 
H1-Histamine receptor antagonist 

Cloperastine 0.87 43.35 50 Cough Suppressant 
Phenylmethoxy-

piperidines 
Unknown 

Rimantadine 0.97 311.2 321 Antiviral/Antiretroviral Adamantanes Matrix protein 2 inhibitor 
a
P. falc.: P. falciparum strain K1. 

b
Cytotoxicity on L6 cells. 

c
Selectivity index: IC50 Cytotoxicity L6/ IC50 P. falciparum. 

IC50 values are means of two independent assays, which varied < ±50%. 
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Supporting Information 
Table S1. Table 1. Set of 100 registered drugs tested for their antiparasitic activity. 

Drug ID Indication Chemical Class Mode of Action 

Rimantadine Antiviral/Antiretroviral Adamantanes Matrix protein 2 inhibitor 

Amantadine Antiviral/Antiretroviral Adamantanes Matrix protein 2 inhibitor 

Terbinafine 

(Hydrochloride) Antifungal  Allylamines Squalene epoxidase inhibitor 

Tioconazole Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Ketoconazole Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Bifonazole Antifungal Azoles 14alpha-sterol demethylase inhibitor 

Satranidazole Antibacterial/Antiprotozoal Azoles 14alpha-sterol demethylase inhibitor 

Secnidazole Antibacterial/Antiprotozoal Azoles 14alpha-sterol demethylase inhibitor 

Ornidazole Antibacterial/Antiprotozoal Azoles 14alpha-sterol demethylase inhibitor 

Itraconazole Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Clotrimazole Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Albendazole Antihelmintic Azoles Tubulin polymerization inhibitor 

Econazole (Nitrate salt) Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Voriconazole Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Miconazole (Nitrate salt) Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Fluconazole  Antifungal  Azoles 14alpha-sterol demethylase inhibitor 

Omeprazole Antiulcer agent Azoles Proton pump inihibitor 

Spiperone Antipsychotic/Antidepressant Butyrophenones Serotonin and dopamine receptor inhibitor 

Bacitracine Antibacterial Cyclic polypeptides Insulin-degrading enzym 

Ketotifen Antihistamine Cycloheptathiophenones H1-Histamine receptor antagonist 

Paroxetine Antipsychotic/Antidepressant Dehydrophenylpiperidines Selective serotonin-reuptake inhibitors 

Pentamidine Antibacterial/Antiprotozoal Dibenzimides 

Interfer nuclear synthesis interfering agent/ DNA, 

RNA, phospholipids and protein synthesis inhibitor 
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Table S1 continued 

Drug ID Indication Chemical Class Mode of Action 

Dapsone Antibacterial/Antileprotic Diphenylsulfones Dihydofolic acid synthesis inhibitor 

Artesunate Antimalarial Endoperoxides Unknown, acting via reactive oxygen radical species 

Benfluorex Anorectic/Hypolipidemic Fenfluramines Lipase stimulator; PPAR agonist 

Auranofin Antirheumatic Gold agent kappaB kinase and thioredoxin reductase inhibitor 

Cimetidine Antihistamine Imidazoles Histamine H2-receptor antagonist 

Lonidamine Anticancer Indazoles Glycolysis inhibition via hexokinase activation 

Leflunomide Antirheumatic Isoxazoles Unknown 

Lincomycin Antibacterial Lincosamides Ribosomal protein synthesis inhibitor 

Erythromycine (Hydrate) Antibacterial Macrolides Ribosomal protein synthesis inhibitor 

Nitrofurantoine Antibacterial Nitroheterocycles Oxygen-insensitive NADPH nitroreductase 

Nifuroxazide Antibacterial Nitroheterocycles Lipoamide dehydrogenase inhibition 

Metronidazole Antibacterial/Antiparasitic Nitroheterocycles Oxygen-insensitive NADPH nitroreductase 

Nifurtimox Antibacterial/Antiprotozoal Nitroheterocycles Induction of oxidative stress in  target cell 

Tinidazole Antibacterial/Antiprotozoal Nitroheterocycles DNA damaging via reactive intermediates 

Niclosamide Antiparasitic/Anthelmintic Nitroheterocycles oxidative phosphorylation uncoupler 

Zidovudine Antiviral/Antiretroviral Nucleosides Nucleoside reverse transcriptase inhibitor 

Stavudine Antiviral/Antiretroviral Nucleosides Nucleoside reverse transcriptase inhibitor 

Fluoxetine Antipsychotic/Antidepressant Phenlyphenoxypropanamine Selective serotonin-reuptake inhibitors 

Mebeverine Antispasmotic Phenylbenzoates serotonin 5-HT3 receptor antagonist 

Cloperastine Cough Suppressant Phenylmethoxypiperidines Unknown 

Triamterene Diuretic Phenylpteridines Epithelial sodium channel inhibitor 

Cetirizine 

(Hydrochloride) 
Antihistamine Phenylpyperazinylaceticacids Histamine  H1-receptor inhibitor 

Amphotericin B Antifungal/Antiprotozoal Polyenes Membrane cell sterol binder 

Indinavir (Sulfate) Antiviral/Antiretroviral Protease Inhibitors HIV protease inhibitor 
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Table S1 continued 

Drug ID Indication Chemical Class Mode of Action 

Ritonavir Antiviral/Antiretroviral Protease Inhibitors HIV protease inhibitor 

Amprenavir Antiviral/Antiretroviral Protease Inhibitors HIV protease inhibitor 

Tipranavir Antiviral/Antiretroviral Protease Inhibitors HIV protease inhibitor 

Ganciclovir Antiviral/Antiretroviral Protease Inhibitors 
Thymidine kinase activator, DNA polymerase 

inhibitor 

Atazanavir (Sulfate) Antiviral/Antiretroviral Protease Inhibitors HIV protease inhibitor 

Saquinavir Antiviral/Antiretroviral Protease Inhibitors HIV protease inhibitor 

Darunavir Antiviral/Antiretroviral Protease Inhibitors HIV protease inhibitor 

Lopinavir Antiviral/Antiretroviral Protease Inhibitors HIV protease inhibitor 

Nelfinavir Antiviral/Antiretroviral Protease inhibitors HIV protease inhibitor 

Famciclovir Antiviral/Antiretroviral Protease inhibitors 
Thymidine kinase activator, DNA polymerase 

inhibitor 

Penciclovir Antiviral/Antiretroviral Protease inhibitors 
Thymidine kinase activator, DNA polymerase 

inhibitor 

Pyrazinamide Antibacterial/Antituberculotic Pyrazines Fatty acid synthetase I inhibitor 

Izoniazide Antibacterial/Antituberculotic Pyridines Micolic acid synthesis inhibition 

Isoniazide Antibacterial/Antituberculotic Pyridines Miclic acid synthesis inhibition 

Nicotinamide Vitamin Pyridines (N/A) 

Ciclopirox olamine Antifungal Pyridinones Polyvalent metal cations chelator 

Tadalafil Erectile dysfunction Pyridoiindolediones 
cGMP-specific 3',5'-cyclic phosphodiesterase 

inhibitor 

Pyrimethamine Antimalarial Pyrimidines Dihydrofolate reductase inhibitor 

Pirenperone Antipsychotic/Antidepressant Pyrimidinones Serotonin 5-HT 1a receptor agonist 

Dipyridamole Antithrombotic Pyrimidopyrimidines cGMP-specific 3',5'-cyclic phosphodiesterase 

 



 

  

2
5
1
 

Table S1 continued 

Drug ID Indication Chemical Class Mode of Action 

Tafenoquine Antimalarial Quinolines Unknown, putatively heme polymerase inhibitor 

Mefloquine 

(Hydrochloride) 
Antimalarial Quinolines Unknown, putatively heme polymerase inhibitor 

Primaquine Antimalarial/Antiprotozoal Quinolines 
Unknown, putatively reactive oxygen species or 

electron transport interference 

Sitamaquine Antileishmanial Quinolines Unknown 

Chloroquine 

(Diphosphate) 
Antimalarial Quinolines Heme polymerase inhibitor 

Ciprofloxacin Antibacterial Quinolones DNA gyrase subunit A inhibitor 

Enoxacin Antibacterial Quinolones DNA gyrase subunit A inhibitor 

Rifabutin Antibacterial/Antituberculotic Rifamycins Bacterial DNA-dependent RNA synthesis inhibitor 

Rifampicin Antibacterial/Antituberculotic Rifamycins Bacterial DNA-dependent RNA synthesis inhibitor 

Rifaximin Antibacterial/Antituberculotic Rifamycins Bacterial DNA-dependent RNA synthesis inhibitor 

Rifamycin SV (Sodium 

salt) 
Antibacterial/Antituberculotic Rifamycins bacterial DNA-dependent RNA synthesis inhibitor 

Clofazimine Antibacterial/Antituberculotic Riminophenazines 

Mycobacterial DNA binder, Redox cycling, Cell 

membrane destabilizer, Acid sphingomyelinase 

inhibitor 

Silver sulfadiazine Antibacterial Silver agent Cell membane interfering agent 

Griseofulvin Antifungal Spirobenzofuranediones Tubulin binder 

Danazol Endomitriosis Steroids Gonadotropin inhibitor 

Ganaxolone Anesthetic Steroids GABAA receptor modulator 

Glybenclamide Antidiabetic Sulfonylureas Sulfonylurea receptor 1 activator  

Doxycycline Antibacterial Tetracyclines Ribosomal protein synthesis inhibitor 

 

http://en.wikipedia.org/wiki/Sulfonylurea_receptor
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Table S1 continued 

Drug ID Indication Chemical Class Mode of Action 

Minocycline Antibacterial Tetracyclines Ribosomal protein sythesis inhibitor 

Sertraline Antipsychotic/Antidepressant Tetrahydronapthaleneamines Selective serotonin-reuptake inhibitors 

Troglitazone 
Antidiabetic/ 

Antinflammatory 
Thiazolidinediones Nuclear receptors (PPAR) binder 

Tolnaftate Antifungal Thiocarbamates Squalene epoxidase inhibitor 

Clomiphene Fertility agent Triarylethylenes Estrogen receptor inhibitor 

Thioridazine Antipsychotic/Antidepressant Tricyclics Dopamine D1 and D2 inhibitor 

Triflupromazine Antipsychotic/Antiemetic Tricyclics Dopamine D1 and D2 receptor inhibitors 

Amoxapine Antipsychotic/Antidepressant Tricyclics Selective serotonin-reuptake inhibitors 

Fluphenazine Antipsychotic/Antidepressant Tricyclics Dopamine receptor inibitor 

Clomipramine Antipsychotic/Antidepressant Tricyclics Serotonin reuptake inhibitor 

Nortryptyline Antipsychotic/Antidepressant Tricyclics Serotonin reuptake inhibitor 

Promazine Antipsychotic/Antidepressant Tricyclics 
Dopamine, serotonine, alpha1 and histamine 

receptor inhibitor 

Chlorpromazine Antipsychotic/Antidepressant Tricyclics 
Dopamine, serotonin alpha1/2 and histamine 

receptor antagonist 

Amitriptyline Antipsychotic/Antidepressant Tricyclics Norepinephrine and serotonin reuptake inhibitor 

Trifluoperazine Antipsychotic/Antiemetic Tricyclics Dopamine D1 and D2 receptor inhibitors 

Pizotifen Antimigraine Tricyclics serotonin receptor antagonist 
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Table S2. Table 2. In vitro activity profile in IC50 (M) of all tested compounds. 

Drug ID 

aT. b. 
rhod. bT. cruzi 

cL. don. 
axen. 

dL. don. 
intracell eP. falc.  

fCytotox. 
L6 

gCytotox. 
mac.inf. 

hCytotox. 
PMM 

Melarsoprol 0.01               
Benznidazole   1.99             
Miltefosine     0.44 1.21         
Chloroquine         0.13       

Podophyllotoxin           0.017     

Rimantadine 13.83 320.68 427.2 >167.31 0.97 311.2 >167.31 N/A 
Amantadine 52.76 371.3 >595.03 >198.34 5.67 214.87 >198.34 N/A 

Terbinafine (Hydrochloride) 95.15 40.87 23 69.54 7.72 46.97 >91.49 N/A 
Tioconazole 29.92 0.064 9.26 13.1 0.63 19.47 77.38 51.07 

Ketoconazole 33.12 0.27 38.76 >18.82 N/A 50.99 56.45 N/A 
Bifonazole 26.8 0.003 5.48 >32.22 3.18 39.3 >32.22 N/A 

Satranidazole 18.7 19.08 10.41 >103.71 N/A >311.13 >103.71 N/A 

Secnidazole 28.68 >161.12 >161.12 >161.12 N/A >483.37 >161.12 N/A 
Ornidazole 25.93 130.08 >135.97 >135.97 N/A >407.91 >135.97 N/A 

Itraconazole 8.53 0.004 2.42 >1.42 1.37 1.11 4.25 N/A 
Clotrimazole 23.69 0.006 2.23 14.67 0.11 2.99 87 32.48 
Omeprazole 51.82 68.32 90.9 >86.85 13.23 125.64 >86.85 N/A 
Albendazole 14.7 12.32 >113.06 >3.77 N/A 0.41 11.31 N/A 

Econazole (Nitrate salt) 41.7 0.04 6.15 13.97 0.32 15.6 67.62 22.82 
Voriconazole >286.27 11.25 >286.27 >85.88 >143.14 194.95 >85.88 N/A 

Miconazole (Nitrate salt) 36.6 0.04 4.39 10.79 0.49 15.44 62.74 23.89 

Fluconazole  273.28 9.96 210.59 >97.95 N/A >293.85 >97.95 N/A 

Spiperone 22.35 64.58 >227.57 >75.86 1.76 54.36 >75.86 N/A 

Bacitracine >70.29 47.09 >70.29 >21.09 19.75 42.24 >21.09 N/A 
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Table S2 continued 

Drug ID 

aT. b. 
rhod. bT. cruzi 

cL. don. 
axen. 

dL. don. 
intracell 

eP. 
falc.  

fCytotox. 
L6 

gCytotox. 
mac.inf. 

hCytotox. 
PMM 

Ketotifen 15.19 141 >290.86 >96.95 0.75 147.04 >96.95 N/A 
Paroxetine 1.13 14.36 >273.25 >9.11 9.23 13.84 30.36 N/A 

Pentamidine 0.01 4.44 19.77 2.63 N/A 8.87 >29.37 7.78 
Dapsone 352.79 219.89 >402.73 >120.82 167.54 203.78 >120.82 N/A 

Artesunate 16.78 8.97 0.35 >7.8 0.003 0.78 >7.8 N/A 
Benfluorex 21.06 73.71 243.05 54.36 6.52 49.15 >85.38 N/A 
Auranofin 0.01 2.27 0.11 >1.47 1.67 4.79 4.42 N/A 
Cimetidine >396.28 351.11 >396.28 >118.89 29.17 301.57 >118.89 N/A 
Lonidamine 134.82 177.48 8.66 >93.41 >15.57 273.07 >93.41 N/A 
Leflunomide 212.8 152.1 21.76 >111.02 >18.5 123.98 >111.02 N/A 
Lincomycin >221.38 >221.38 >221.38 >73.79 7.08 >221.38 >73.79 N/A 

Erythromycine (Hydrate) 72.08 113.97 >132.99 >39.9 9.91 92.16 >39.9 N/A 
Nitrofurantoine 0.5 4.35 2.12 >41.81 N/A 90.31 125.44 N/A 

Nifuroxazide 0.03 0.23 2.83 >10.86 7.82 12.31 36.2 N/A 
Metronidazole 337.7 278.69 491.36 >175.28 276.94 338.87 >175.28 N/A 

Nifurtimox 1.44 0.19 2.76 20.68 N/A 87.02 >34.81 15.7 
Tinidazole 16.57 >80.95 >80.95 >80.95 N/A >242.86 >80.95 N/A 

Niclosamide 1.67 2.49 0.15 >0.31 1.14 2.3 1.01 N/A 
Zidovudine 139.57 155.66 >374.19 >112.26 174.75 206.93 >112.26 N/A 
Stavudine 119.53 340.74 >446 >133.8 186.43 266.26 >133.8 N/A 
Fluoxetine 2.01 19.14 >290.95 >9.7 1.21 14.97 32.33 N/A 

Mebeverine 54.24 3.89 >209.52 54.94 1.74 70.77 >69.84 N/A 
Cloperastine 4.91 9.46 265.26 >30.31 0.87 43.35 90.94 N/A 
Triamterene 21.68 22.74 306.79 >11.85 17.21 8.53 >11.85 N/A 
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Table S2 continued 

Drug ID 

aT. b. 
rhod. bT. cruzi 

cL. don. 
axen. 

dL. don. 
intracell 

eP. 
falc.  

fCytotox. 
L6 

gCytotox. 
mac.inf. 

hCytotox. 
PMM 

Cetirizine (Hydrochloride) 99.45 119.9 186.43 >70.53 19.98 148.82 >70.53 N/A 
Amphotericin B 0.76 56.69 0.34 0.31 0.8 10.27 32.4 22.39 

Indinavir (Sulfate) 48.19 93.55 >140.89 >42.27 6.03 >140.89 >42.27 N/A 
Ritonavir 4.3 20.67 8.97 >41.61 16.23 37.73 >41.61 N/A 

Amprenavir 28.48 105.21 112.53 >59.33 15.17 159.8 >59.33 N/A 
Tipranavir 26.38 28.21 1.64 >49.78 44.63 53.43 >49.78 N/A 
Ganciclovir 251.53 240.17 >391.8 >117.54 >195.9 179.44 >117.54 N/A 

Atazanavir (Sulfate) 12.74 33.34 24.1 >37.46 7.95 46.45 >37.46 N/A 
Saquinavir 12.27 17.14 77.36 >44.72 11.94 18.19 >44.72 N/A 
Darunavir 31.41 92.21 125.26 >54.78 46.93 155.57 >54.78 N/A 
Lopinavir 10.81 15.38 11.83 >47.71 1.92 18.92 >47.71 N/A 
Nelfinavir 20.61 10.23 9.62 20.25 10.44 12.05 >52.84 N/A 

Famciclovir 225.31 206.95 >311.2 >93.36 >155.6 179.87 >93.36 N/A 

Penciclovir >394.85 254.28 >394.85 >118.45 169.39 219.54 >118.45 N/A 
Pyrazinamide >812.28 564.54 >812.28 >243.68 178.7 458.13 >243.68 N/A 
Nicotinamide >736.94 >736.94 >736.94 >245.65 >40.94 >736.94 >245.65 N/A 

Izoniazide >656.26 >656.26 >656.26 >218.75 >36.46 >656.26 >218.75 N/A 
Isoniazide >729.18 382.82 >729.18 >218.75 246.46 602.3 >218.75 N/A 

Ciclopirox olamine 0.8 2.49 1.64 9.09 3.75 1.04 >11.18 20.27 
Tadalafil 97.58 8.6 40.06 >77.04 >12.84 221.1 >77.04 N/A 

Pyrimethamine 6.75 5.71 277.83 >12.06 9.85 2.51 >12.06 N/A 

Pirenperone 29.99 128.35 161.57 >76.25 4.35 232.3 >76.25 N/A 
Dipyridamole 7.45 29.33 62.02 >59.45 1.3 38.64 >59.45 N/A 

Tafenoquine 1.42 6.11 17.91 2.16 0.27 5.52 6.47 N/A 
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Table S2 continued 

Drug ID 

aT. b. 
rhod. bT. cruzi 

cL. don. 
axen. 

dL. don. 
intracell 

eP. 
falc.  

fCytotox. 
L6 

gCytotox. 
mac.inf. 

hCytotox. 
PMM 

Mefloquine (Hydrochloride) 0.53 4.48 38.58 2.41 0.0024 3.25 7.23 N/A 
Primaquine 4.78 17.85 48.58 28.19 N/A 43.18 >38.56 39.72 
Sitamaquine 7.39 21.98 13.65 19.48 0.08 32.31 >29.11 21.37 

Chloroquine (Diphosphate) 3.81 99.25 >196.15 >58.85 0.17 50.61 >58.85 N/A 

Ciprofloxacin 35.91 92.05 >301.8 >90.54 13.19 118.01 >90.54 N/A 
Enoxacin 113.01 162.65 >312.18 >93.66 76.8 25.01 >93.66 N/A 
Rifabutin 12.61 27.51 56.43 >35.42 1.59 60.92 >35.42 N/A 

Rifampicin 16.74 >109.36 1.53 >36.45 0.1 75.22 >36.45 N/A 
Rifaximin 17.14 40.21 15.01 >38.17 0.92 88.05 >38.17 N/A 

Rifamycin SV (Sodium salt) 0.99 49.95 1.5 >13.87 0.55 15.68 41.62 N/A 
Clofazimine 7.63 38.23 22.39 0.95 4.1 9.97 6.34 10.65 

Silver sulfadiazine 18.45 24.87 125.57 >12.04 1.44 20.62 40.12 N/A 
Griseofulvin 39.97 87.31 87.03 >85.04 75.12 20.52 >85.04 N/A 

Danazol 45.93 6.25 10.16 >29.63 14.13 32 >29.63 N/A 
Ganaxolone 5.47 64.96 42.46 >90.22 >15.04 23.49 >90.22 N/A 

Glybenclamide 87.65 93.93 9.8 >60.73 38.26 116.19 >60.73 N/A 
Doxycycline 63.68 39.15 24.08 >22.5 4.48 14.49 67.5 N/A 
Minocycline 36.55 22.3 45.68 >21.86 3.58 9.42 >21.86 N/A 

Sertraline 0.77 6.76 86.4 >9.8 0.51 8.1 32.65 N/A 
Troglitazone 59.34 32.61 4.26 >67.94 7.27 80.63 >67.94 N/A 
Tolnaftate 69.29 19.97 4.33 50.1 18.99 84.58 >97.59 N/A 

Clomiphene 6.21 11.45 21.6 >7.39 1.37 13.06 24.63 N/A 
Thioridazine 0.53 5.83 22.41 >7.74 1.07 5.39 25.79 N/A 

Triflupromazine 1.42 15.01 79.79 >8.51 2.72 18.5 28.38 N/A 
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Table S2 continued 

Drug ID 

aT. b. 
rhod. bT. cruzi 

cL. don. 
axen. 

dL. don. 
intracell 

eP. 
falc.  

fCytotox. 
L6 

gCytotox. 
mac.inf. 

hCytotox. 
PMM 

Amoxapine 1.87 17.94 >286.82 >9.56 1.14 16.16 31.87 N/A 
Fluphenazine 2.03 12.98 46.69 >6.86 0.5 11.54 22.86 N/A 
Clomipramine 2.06 20.29 75.68 >9.53 1.3 19.79 31.76 N/A 
Nortryptyline 1.17 22.89 >341.71 >11.39 0.58 27.87 37.97 N/A 

Promazine 2.16 49.15 >316.43 >35.16 0.49 30.06 >35.16 N/A 
Chlorpromazine 1.25 17.15 48.45 >9.41 3.03 12.32 31.36 N/A 

Amitriptyline 3.03 35.11 131.25 >10.81 1.16 42.18 36.05 N/A 
Trifluoperazine 1.23 10.13 52.93 >7.36 1.48 10.99 24.54 N/A 

Pizotifen 3.99 30.63 215.03 >33.85 1.86 45.02 >101.54 N/A 
a
T. b. rhodesiense strain STIB 900, trypomastigotes. 

b
T. cruzi, strain Tulahuen C4, intracellular amastigotes. 

c
L. don. axen.: axenic amastigotes of  L. 

donovani, strain MHOM-ET-67/L82. 
d
L. don. intracell: intracellular amastigotes of L. donovani strain MHOM-ET-67/L82. . 

e
P. falc.: P. falciparum 

strain K1. 
f
Cytotoxicity on L6 cells. 

g
Cytotoxicity on macrophages infected with L. donovani. 

h
Cytotoxicity on peritoneal mouse macrophages 

IC50 values are means of two independent assays, which varied < ±50%. 
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Figure S1. HAT cluster of all tested compounds. Chemical class vs log (IC50 in M) 
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Figure S2. HAT cluster of antidepressant and antipsychotics. Chemical class vs log(IC50 in M) 
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Figure S3. Chagas disease cluster of all tested compounds. Chemical class vs log(IC50 in M) 
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Figure S4. Leishmaniasis cluster of all tested compounds. Chemical class vs log(IC50 in M) 
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Figure S5. Malaria cluster of all tested compounds. Chemical class vs log(IC50 in M) 
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General Discussion 

 

Drug discovery for neglected diseases: Why and How? 

The neglected tropical diseases (NTDs) [1,2,3,4] are a group of communicable 

diseases which are highly endemic in low income countries of Africa, Asia and 

America. The NTDs include more than 10 infectious diseases, most of which parasitic 

infections [2,5]. The NTDs cause a large part of the global morbidity, mortality and 

poverty [2]. More than 1 billion are affected and hundred thousands of people die by an 

NTD every year. The burden of a disease is measured in DALYs (disability-adjusted 

life years). The number of DALYs gives an estimate of the sum of years of potential life 

lost due to mortality and the years of productivity life lost. It is estimated that NTDs 

cause 20 million DALYs. [2,6]. 

There is no doubt that the welfare of people in the developing world can only be 

improved if the NTDs are controlled. WHO recommends five strategies for the 

prevention and control of NTDs: (i) preventive chemotherapy; (ii) intensified case-

management; (iii) vector control; (iv) provision of safe water, sanitation and hygiene; 

and (v) veterinary public health [7]. Chemotherapies of most NTDs are unsatisfactory, 

due to limited number of drugs, lack of efficacy, significant side effects or the 

affordability of the drugs. This fact is especially true for the protozoan diseases, 

Chagas’ disease, leishmaniasis and human African trypanosomiasis (HAT) [8,9,10,11].  

There is a broad consensus that new, more efficient, non-toxic, easy to be administered 

and cost-effective drugs are urgently needed. 

Essential in drug discovery is the identification of starting points. Paul Ehrlich 

(1854 – 1915) was one of the first chemists who systematically tested compounds for 

their antibacterial and antiprotozoal effect. With phenotypic screening he detected the 

antitrypanosomal activity of trypan red [12] and the antimalarial activity of methylene 

blue [13].  It can be said that the modern drug discovery starts with Paul Ehrlich [14]. 

Phenotypic screening was for a long time the only approach to discover new drugs.  

CHAPTER 10 
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Only in 1995, with the whole genome sequencing of bacteria [15], a new era was 

launched in drug discovery. The molecular approach, also called target-based approach, 

was heralded. The target-based approach is hypothesis-driven with the initial step of 

identification and validation of a potential target. The first rationally developed drugs 

are HIV protease inhibitors (Saquinavir).  In the meantime several parasite genomes 

have been sequenced and a number of targets were identified and proved to be essential 

e.g. dehydrofolate reductase (DHFR) [16,17],  cyclin-dependent kinase [18]  or sterol 

synthesis [19,20]. Despite all the identified targets, the target based screening approach 

to drug discovery for neglected diseases is still in the early discovery phase. Parasites 

are perfectly adapted to the host and obtain nutrients and other vital substances from 

their host. Putative targets that are essential in the in vitro cultured parasites need not be 

absolutely essential for the parasite in the host; there could be redundancy between 

biosynthesis and import. The more proteins a pathogen has, the lower is the percentage 

of essential ones and the harder it is to identify suitable targets. These aspects could be 

explanations why an effect on a target does not translate into an effect on the parasite. It 

seems that the target-based approaches are not the most successful strategy for drug 

discovery against NTDs [21]. The pragmatic way of phenotypic screening is still a very 

valuable alternative. In this thesis not only was the approach of phenotypic testing 

followed, it was also tried to implement the piggyback [22] approach and the advice of 

Sir Black “...to start with an old drug” [23]. Three different series of compounds 

(agrochemicals, marketed drugs and nitroimidazoles) were screened to identify new 

lead compounds or even clinical candidates against three neglected diseases Chagas’ 

disease, leishmaniasis, and human African trypanosomiasis. 

 

Agrochemicals against neglected tropical diseases 

Agrochemicals are used worldwide on a large scale in food production. For registration 

the agrochemicals must fulfill stringent requirements, e.g. it is not accepted that the 

chemicals get into the food chain either in the diet or in the drinking water [24]. That 

means that all agrochemicals on the market were subjected to rigorous toxicological 

screening. Agrochemicals are highly optimized for selectivity and the mode of action is 

well understood. For economic reasons the production of agrochemicals must be very 

cheap. All these aspects are also important for drugs against neglected tropical diseases. 

Nevertheless agrochemicals have so far not been systematically screened for their anti-

parasitic activity. Only few studies can be found in the literature in which agrochemicals 
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were tested against parasites. Bajsa et al (2007) [25] tested herbicides against P. 

falciparum and describe some compounds which could be lead structure for 

optimization.  

Recently the plant fungicide fenarimol belonging to the pyrimidinylcarbinols was 

described to show activity against T. cruzi [26]. This compound was identified by 

testing a set of diverse agrochemicals against T. cruzi. Fenarimol inhibits ergosterol 

formation by inhibiting 14-demethylase [27]. Feranimol was taken as a lead structure 

and new analogues were synthesized to successfully improve the in vitro and in vivo 

activity [23].  

Within a PPP we tested a series of over 600 agrochemicals against the 4 

protozoan parasites P. falciparum, T. b. rhodesiense, T. cruzi, and L. donovani (Chapter 

8) This screening campaign resulted in a number of new hits with submicromolar 

activity (Fig 1): 24 hits against P. falciparum, 7 hits against T. b. rhodesiense, 2 hits 

against L. donovani and 38 hits against T. cruzi. The two strobilurins, fluacryprym and 

azostrobin, showed, with IC50’s of 8.2 nM and 15 nM, respectively, the best in vitro 

activity against P. falciparum.  Strobilurins inhibit cell respiration by the interruption of 

electron transport in the mitochondrial respiratory chain at the cytochrome bc1 complex 

[29]. Azostrobin is not toxic (LD50 rat p.o. >5000mg/kg); it is a broad-spectrum 

fungicide and oomyceticide with annual sales of  >1bn Euro and a production volume of 

several 1000 tons per year. Azoxystrobin has also been identified in a high throughput 

screening campaign of GlaxoSmithKline, where it showed an IC50 value of 41 nM 

against P. falciparum (ChEMBL website). In the P. berghei mouse model azostrobilin 

showed moderate activity. The trifluoromethyl aminohydrazone compound 

hydramethylnon is an insecticide and showed good in vitro activity against P. 

falciparum.  This insecticide reduced the parasitemia of P. berghei infected mice and 

significantly prolonged their survival. Hydramethylnon is an inhibitor of the respiration 

chain too, but probably not of the bc1 complex [30]. 

Zoxamide, a broadspectrum oomyceticide, showed in vitro activity against all 

three trypanosomatid parasites. It had an IC50 of  6 nM  against T. b. rhodesiense, 27 

nM against T. cruzi and an 250 nM against L. donovani.  The mode of action of 

zoxamide is the inhibition of nuclear division and the destruction of the microtubule 

cytoskeleton  [31]. Zoxamide showed only little activity in the acute T. b. rhodesiense 
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mouse model. The fungicide tolylfluanid was active against T. b. rhodesiense (IC50 of 

52 nM) and against L. donovani (IC50 of 861 nM).  

38 compounds showed sub-M activity against T. cruzi. Most of these 

compounds belong to the compound class of azoles inhibiting sterol 14a-demethylase, a 

target of  T. cruzi [32]. Ipconazole, clotrimazole and viniconazole showed IC50’s <30 

nM against T. cruzi. Non-azoles such as pyridaben and tolfenpyrad inhibitors of the 

complex I in the mitochondrial electron transport chain showed also in vitro activity. In 

spite of this excellent in vitro activity, the selected hits did not show efficacy in a T. 

cruzi mouse model. 

Agrochemicals are not optimized for use in mammals. Nevertheless there was a 

considerable number of molecules with good and selective in vitro activity and some 

were also active in the corresponding rodent model. These results demonstrate that 

agrochemicals can be very interesting new leads, and maybe even drug candidates 

against protozoan diseases.  

The results also suggest that the agrochemicals should be tested against other 

neglected pathogens like schistosomes, nematodes, food-born trematodes, amoebae and 

bacteria for which good drugs are missing. 

 

Approved Drugs 

One strategy to identify new drug candidates for NTDs is the screening of 

libraries of diverse compounds for the identification of novel scaffolds. However, the 

restriction to drug or drug-like compounds is an ideal starting point because substantial 

pharmacokinetic and toxicological data are available for approved drugs. The success of 

this approach has been confirmed several times [33,34,35,36], but these screening 

campaigns focused on a single parasite. Here, a series of approved drugs including 

antibiotic, antiviral, antifungal and antipsychotic drugs was evaluated in an integrated 

screening against the three trypanosomatid parasites (Chapter 9).  

From the 23 tested antibiotics nifuroxazide and nitrofurantoin showed activity 

against T . b. rhodesiense and T. cruzi. Both belong to the class of nitro-compounds. 

Clofazimine, used in leprosy therapy, was active against axenic amastigotes and 

intracellular amastigotes of L. donovani. It also exhibited some cytotoxicity against L6 

cells and mouse macrophages. Clofazimine inhibits cell proliferation [37] and it is also 
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an inhibitor of acid sphingomyelinase [38]. Ryfamacins showed remarkable selective 

activity in the antiplasmodial assay. Especially the antituberculosis drug rifampicin was 

highly active. 

Psychoactive compounds are an interesting class of compounds because they 

cross the blood-brain barrier.  This feature is important for curing the second stage of 

HAT. Thioridazine, triflupromazine, chlorpromazine, nortriptylene, paroxetine and 

sertraline showed moderate activity and selectivity against T. b. rhodesiense. Another 

interesting result is the antimalarial activity of the tricyclic antidepressants. Thioridazine 

is a piperidine compound that inhibits CYP1A2 and CYP3A2 [39]. The three related 

drugs thioridazine, triflupromazine and chlorpromazine are D2 dopamine receptor 

antagonists and Ca2+ channel blockers. Nortriptylene inhibits reuptake of 

norepinephrine and sertraline is a tricyclic serotonin reuptake inhibitor [40].  

Of the tested anti-fungal drugs, all which showed activity against T. b. 

rhodesiense, T.  cruzi and P. falciparum belonged to the class of azoles; these interfere 

with the biosynthesis of ergosterol by inhibiting cytochrome P450-dependent enzymes 

[41]. The hydroxypyridinone antifungal ciclopirox olamine showed activity against 

axenic amastigotes and intracellular amastigotes of L. donovani with a limited 

selectivity. 

Two other compounds, tadalafil and meberverine, were in vitro activity against 

T. cruzi. Tadalafil is a phosphodiesterase type 5 (PDE5) inhibitor used in treating 

erectile dysfunction. The antispasmodic mebeverine is used as treatment of the irritable 

bowel syndrome (IBS) and the associated abdominal cramping. It works by relaxing the 

muscles in and around the gut. 

Thus a number of the tested approved drugs showed selective antiparasitic 

activity. Some of these activities have already been reported through literature, but not 

the activity of tadalafil and mebeverine against T. cruzi and the antimalarial activity of 

the rifamycins. The results confirm that this low hanging-fruit approach is worthwhile 

to follow up, especially when R&D has to be addressed with limited resources. These 

active compounds and compound classes respectively should now be further 

characterized and tested in the corresponding rodent models. The novel scaffolds could 

also be a starting point for medicinal chemistry programs. 
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Nitrotriazoles 

The current treatments for Chagas disease are two nitroheterocyclic compounds, 

benznidazole and nifurtimox [8]. Both drugs have side effects, limited efficacy, and a 

long treatment is needed and some T. cruzi strains are refractory to treatment. 

Benznidazole and nifurtimox were introduced over 40 year ago. Currently the most 

promising antichagasic drug candidates are ergosterol biosynthesis inhibitors. T. cruzi 

requires endogenous sterols for its survival and proliferation because it is not able to use 

the cholesterol available in mammalian hosts [42]. In the past years several azole 

derivatives blocking ergosterol biosynthesis were described [42,43]. These compounds 

are inhibitors of the cytochrome P-450-dependent C14 sterol demethylase (CYP51). 

Two of these azoles, posaconazole and E1224 (a pro-drug of ravuconazole), are in 

Phase II clinical trials for the treatment of chronic Chagas disease [44,45]. 

Unfortunately the production costs of both compounds are very high, and maybe 

prohibit their use in poor countries. New cheap and efficacious drugs are urgently 

needed. 

The initial series of compounds tested were originally designed as a DNA-

targeting anticancer drug [46,4]. The first tested compounds showed activity against T. 

cruzi without overt cytotoxicity. One of the initially screened compounds showed also 

some activity in an acute T. cruzi mouse model [48]. This topoisomerase I and II 

inhibitor demonstrated also in vivo toxicity in mice. Due to the promising first results 

the development of less toxic and more efficacious nitrotriazole- and nitroimidazole-

based compounds was initiated. A first set of compounds was evaluated against T. b. 

rhodesiense, T. cruzi and L. donovani (Chapter 5). Six compounds were active against 

T. b. rhodesiense, one compound was active against L. donovani, and 18 compounds 

showed selective activity against T. cruzi. With the obtained data set a structure-activity 

relationship (SAR) was conducted. 2-nitroimidazole derivatives were active against T. 

cruzi (IC50’s < 4 M) but also to some extent cytotoxic. In contrast, 3-nitrotriazoles 

demonstrated in vitro anti-T. cruzi activity coupled with excellent selectivity (SI>100). 

The nitro group is essential for the anti-trypanosomal activity. Nine nitrotriazole-based 

compounds were identified as potential in vivo candidates for the acute T. cruzi rodent 

model. All of them demonstrated activity at low to intermediate nanomolar 

concentrations, SI values > 200, and satisfied the Lipinski’s rule of 5. Based on these 

promising results, the synthesis of a second set of compounds was restricted to new 3-

nitrotriazole-based amids and sulfonamids. In this second set 36 compounds were tested 
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against the three trypanosomatid parasites (Chapter 6). Nine compounds showed 

activity against T. b. rhodesiense (IC50 of 0.35 – 2.5 M, SI>100) and 2 compounds 

showed moderate activity against axenic amastigotes of L. donovani. Most of the tested 

compounds, 30 out of 36 compounds, were active and selective against T.cruzi (IC50 of 

0.05 - 3.5 M, SI>100). In the second set of compounds a further 19 in vivo candidates 

for the T.cruzi mouse model were identified. All these in vivo candidates fulfilled 

Lipinski’s rule of 5, demonstrated activity in submicromolar concentrations and 

selectivity >200.  

Nifurtimox and benznidazole are both prodrugs, as most nitroheterocycles are. The 

mechanism of action of these drugs was for a long time not well understood. It was 

believed that the cytotoxic effect of nifurtimox is based on oxidative stress, through the 

reduction of its nitro group and the subsequent formation of superoxide anions and nitro 

radicals [49]. The cytotoxic mechanism of benznidazole was not understood. Recent 

studies have shown that the trypanocidal activity of nitroheterocyclic compounds on 

parasites depends on type I nitroreductase (NTR) [50,51]. This enzyme is absent in most 

eukaryotes including mammalian cells. The NTR enzyme catalyzes a series of reduction 

reactions, whereby the heterocyclic ring is fragmented and toxic metabolites are formed. 

The process produces no significant amounts of superoxide. Type I NTR is NADH-

dependent, oxygen intensive, and localized in the mitochondria. The down-regulation of 

the enzyme leads to resistance to benznidazole and nifurtimox [49,50,51,52,53]. 

Compounds showing IC50 < 5 M against T. b. brucei were tested in a transgenic T. b. 

brucei line overexpressing tertracycline-inducible TbNTR. Parasites with tetracycline 

induced overexpressing of TbNTR were more susceptible to the test compounds than 

wildtype parasites or parasites without induced overexpression of TbNTR. These results 

suggest that the type I NTR-mediated activation of the compounds is essential for their 

antitrypanosomal activity. The enzyme assays also indicated that the compounds are 

substrates of type I NTR and that enzyme inhibition correlates with the whole cell 

activity.  

Based on the high in vitro potency against T.cruzi, 13 nitrotriazole compounds 

with IC50’s < 1 M and SI >200 were selected for in vivo testing in an acute rodent 

model (Chaper 7). The compounds were tested in a fast luminescence assay [54] in 

which mice are infected with transgenic T.cruzi Y strain expressing firefly luciferase 

[55]. The mice were treated on day 4 post infection for 5-10 consecutive days and were 
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imaged after treatment.    The dose was between 10 mg/kg/day and 40 mg/kg/day 

depending on the in vitro activity and selectivity. Seven compounds lowered the 

parasite index (ratio of parasite level in treated mice compared with the control group 

multiplied by 100) by more than 80%. Two compounds demonstrated better activity 

than benznidazole. As expected the in vivo results did not correlate with the in vitro 

IC50 values because additional parameters such as bioavailability, blood levels and 

metabolic stability have a great influence on in vivo activity. These parameters are not 

modeled in the vitro assays. The two most potent compounds in vitro were inactive in 

the mouse model. In order to explain the discrepancies observed between the in vitro 

and in vivo activity some ADME studies for selected compounds were performed. All 

tested compounds showed microsomal stability in the absence of NADPH. However, 

the aromatic amines were metabolized in the presence of NADPH by mouse 

microsomal protein, but not the amide and sulfonamide compound. All compounds 

were relatively stable in mouse plasma. The two most active compounds in vivo showed 

excellent permeability when tested in the Caco-2 monolayer system. This indicates that 

the compounds are orally bioavailable [56]. 

For all nitro compounds there are concerns about genotoxicity and mutagenicity. 

Therefore, some compounds were tested in the Ames test [57,58]. Most 3-nitrotriazole-

based compounds did not show mutagenicity in the Ames test. Although not all 

compounds were tested for mutagenicity, it seems that 3-nitrotriazoles are not generally 

mutagenic. 3-nitrotriazoles showed good in vitro and in vivo antichagasic potency, they 

were non-toxic and metabolically stable. However, further investigations of this class of 

compounds are required to determine the efficacy in the chronic stage of the disease. 

 

Nitroimidazoles 

Nitroimidazoles are a well-known class of compounds showing antibacterial and 

antiprotozoal activity [59,60]. Megazol was a drug candidate to treat HAT [61], but it 

turned out to be mutagenic [62,63]. Metronidazole, another nitroimidazole, was 

introduced as an antibiotic more than 50 years ago. There are other nitro-compounds on 

the market such as tinidazole, nimorazole, nitrofurantoin, nifurtimox ,or benznidazole. 

This class of compounds is often associated with genotoxicity [64] and not seen as the 

ideal  new drugs. Nevertheless, PA-825 [65] and OPC-67683 [66], two nitroimidazoles, 

were recently described as drug candidates against tuberculosis. Both are in clinical 

development. The genotoxicity of both drugs was investigated and it was concluded that 
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the compounds do not pose a genotoxic risk to humans. It is believed that the 

genotoxicity problems depend on the position of the nitro group in the azole ring, 

increasing in the following order: 4-NO2 <5-NO2 <2-NO2 [67,68].  

 

 

Fig Hit rate in HAT screening 

 

1-Aryl-4-nitro-1H-imidazoles 

A series of 43 1-aryl-4-nitro-1H-imidazoles was assayed for antitrypanosomal 

activity (Chapter 4). 15 compounds showed good selectivity against T. b.rhodesiense 

with IC50’s < 1 M. Especially 4-nitro-1-{4-(trifluoromethoxy)phenyl}-1H-imidazole 

(Cpd16)  and   1-(3,4-dichlorophenyl)-4-nitro-1H-imidazole (Cpd 31) showed excellent 

in vitro activity with IC50-values of 0.16 M and 0.1 M, respectively. Both 

compounds cured a first stage disease mouse model at an oral dose of 25 mg/kg/day and 

50 mg/kg/day, respectively, given on four consecutive days. In the stage 2 HAT 

infection model involving brain infection 100% cure was achieved at an oral dose of 50 

mg/kg (Cpd 16) or 100mg/kg (Cpd 31) administered twice daily for five days. Only few 
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compounds are known to cure this stringent mouse model, for instance melarsoprol or 

some experimental diamidines [69]. 

Ames test (bacterial mutagenicity) was performed with standard Salmonella 

tester strains which have the classical bacterial nitroreductases. The contribution of the 

bacterial nitro-reductase to the observed mutagenicity was estimated by testing against 

nitro-reductase deficient strains. The tested compounds induced mutations in the 

standard tester strains, but mutagenicity was not detected in the corresponding nitro-

reductase deficient strains. The exception was Cpd 31 which showed only reduced 

mutagenicity. The mutagenicity observed for Cpd 16 was solely due to the action of 

bacterial nitro-reductases. The micronucleus test is another method to assess the 

genotoxicity of a compound. This test detects chromosomal damages and aneugenicity 

in all mammalian cells. All tested compounds were negative in this test.  The results 

clearly show that the family of 1-aryl-4-nitro-1H-imidazoles merits further exploration 

for anti-protozoal drug discovery. 4-nitro-1-{4-(trifluoromethoxy)phenyl}-1H-

imidazole (Cpd 16) cured both first stage and second stage HAT disease mouse models 

and did not show any genotoxicity. This compound can be considered as promising lead 

for further development into a new oral drug for human African trypanosomoasis. 

 

Fexinidazole 

Over 700 nitroheterocyclic compounds, mostly nitroimidazoles, were 

systematically reviewed and profiled including antiprotozoal activity, ADME-Tox, and 

mutagenicity (Chapter 1). The compounds had been obtained from diverse sources, 

from pharma industry as well as from academic groups.  The goal of the screening 

campaign was the identification of drug candidates against HAT (Fig. 1) and the 

identification of new leads against Chagas disease and leishmaniasis. All collected 

compounds were tested in vitro against T. b. rhodesiense, T. cruzi, L. donovani, and for 

cytotoxicity against L6 rat skeletal myoblast cells. Non cytotoxic compounds which 

showed activity against one of the parasites were further pursued in toxicity tests and in 

the corresponding rodent models. At the end of the screening campaign fexinidazole 

was identified as the most promising drug candidate for the treatment of HAT. 

Fexinidazole (HOE239) is a 2-substituted 5-nitroimidazole and had been in clinical 

development in the 1970’s and 1980’s as a broad-spectrum antimicrobial drug by 

Hoechst AG [70,71]. The in vivo antitrypanosomal activity was described at that time. 

Fexinidazole was successfully tested in a T. cruzi mouse model [71] and Jennings et al 
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(1983) [72] described the in vivo activity of fexinidazole against African trypanosomes. 

However, the development of fexinidazole was not pursued at that time.  

Fexinidazole is rapidly metabolized in to fexinidazole sulfoxide and fexinidazole 

sulfone. The parent compound and the two principle metabolites showed trypanocidal 

activity in vitro in the range of 0.2 – 0.9 g/ml against a panel of T. b. rhodesiense and 

T. b. gambiense strains (Chapter 2), including sensitive and drug resistant laboratory 

strains as well as recent clinical isolates. Fexinidazole and its metabolites require up to 

48 hours exposure in order to induce maximal effect in vitro. In spite the modest in vitro 

activity fexinidazole and metabolites cured the acute mouse model at an oral dose of 

100 mg/kg administered on 4 consecutive days. The chronic disease mouse model for 

stage 2 of the disease was also cured by all three compounds at a 5-day orally 

administered dose of 200mg/kg. Fexinidazole is well absorbed by the oral route and 

rapidly metabolised into the sulfoxide and sulfone derivatives, both showing high 

plasma levels (Chapter 1). The pharmacokinetic data suggest that the excellent in vivo 

activity of fexinidazole is likely due to the cumulative exposure to the three compounds.  

The three compounds are very well distributed in the body with different but 

overlapping kinetics, thus ensuring effective exposure in both the hemolymphatic 

system and the brain. The half-life of fexinidazole in mice, rats and dogs is 1 to 3 h after 

oral treatment, whilst the half-life of the sulfoxide is 2 to 7 h and that of the sulfone up 

to 24 h. No accumulation of the compounds was observed in rats, and the drug is 

excreted through faeces (59%) and urine (30%) within 48 h. The distribution to the 

brain was confirmed in mice and rats.  There is no reason to assume that the brain 

penetration of the three lipophilic compounds could be critical.  

A full regulatory toxicology package has been prepared. Overall, fexinidazole 

was well tolerated and there were no specific concerns identified. In the classical in 

vitro Ames test, fexinidazole was positive. But this effect is dependent on the presence 

of bacterial nitroreductases. Fexinidazole was carefully tested in a set of in vitro and in 

vivo assays to detect possible signals of mammalian genotoxicity; all tests were 

negative. 

The mechanism of action of fexinidazole is not yet understood, but recent studies have 

shown that the trypanocidal activity of nitroheterocyclic compounds on parasites 

depends on type I nitroreductase [50,51]. Fexinidazole and its metabolites were shown 

to have low single electron potentials. The nitroreductive enzymes in mammalian cells 
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can only reduce compounds with relatively high redox potentials. In contrast, the 

bacterial nitroreductases can act at much lower redox potentials. This could explain the 

positive results in the standard Ames test and the reduced or abolished activity in 

nitroreductive-deficient strains.  

The rediscovery of fexinidazole as a drug candidate is the success of a pragmatic 

approach. With an extensive compound mining within a family of known active 

compounds and in true sense to Sir J. Black, a new drug candidate was identified in 

short time. A set of 700 compounds was collected and assayed for anti-parasitic activity 

and genotoxicity. Within 2 years a candidate for preclinical development was selected 

and 3 years later a clinical phase I trial was initiated. In the completed phase I trial [73] 

in healthy volunteers of African origin fexinidazole showed safety and was well 

tolerated. Phase II/III clinical trial [74] was initiated in late 2012. Stage 2 patients are 

treated either with Fexinidazole for 10 days (4 days with 1800mg/day and 6 days with 

1200mg/day) or with NECT. This so far successful drug discovery and development 

program shows that it is worthwhile to dig into post research efforts. 

 

Fexinidazole and the combat against HAT 

T. b. gambiense is causing more than 95% of the reported HAT cases and T. b. 

rhodesiense less than 5%. Between 1999 and 2010 the reported cases decreased 

significantly for T. b. gambiense from 27862 to 6985 and for T. b. rhodesiense from 615 

to 155. The disease is endemic in 36 countries; in 50% of the countries there are no 

HAT cases and in 40% of countries there are fewer than 20 HAT cases per year. The 

most affected countries are Uganda, Chad, South Sudan, Central African Republic and 

the Democratic Republic of Congo, where over 90% of T. b. gambiense cases were 

found.  

The London Declaration on NTDs (2012) [75] and the WHO Roadmap on NTDs [76]  

target the elimination of gambiense HAT as public-health problem by 2020. The 

threshold for elimination was defined as less than 1 new case per 10’000 inhabitants in 

at least 90% of endemic foci. The ultimate goal is to interrupt the transmission of the 

disease to avoid past experiences where the disease re-emerged after a massive 

reduction. The absence of transmission will result in zero reported cases and it is 

envisaged to reach this goal by 2030 [77]. The diagnosis of sleeping sickness involves 

serological test, parasitological confirmation of infection, and determining the stage of 
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disease. The disease stage of each diagnosed patients must be determined with a lumbar 

puncture to avoid exposing a stage 1 patient to the risks and burden of the stage 2 

treatments. The current treatment options are either 10 days of daily intravenous 

melarsoprol with its toxicity, the very complicated eflornithine monotherapy with 56 

infusions over 14 days, or the recent improvement of NECT (10 days oral nifurtimox 

and 7 days of 12 hourly eflornithine infusions). Since a few years, NECT is the first- 

line treatment for stage 2 T. b. gambiense cases. The drawback of this treatment is the 

intravenous administration of eflornithine which is logistically complex. Patients are 

found in remote rural areas and need to be hospitalized in poorly equipped hospitals.  A 

non-toxic, effective and easy to use drug for both stages of HAT, ideally in combination 

with an easy field diagnostic, would make the goal of HAT elimination realistic.  

Fexinidazole is the first new clinical drug candidate in thirty years with the 

potential for treating advanced-stage sleeping sickness. If the clinical development of 

fexinidazole can be successfully completed, then this will be a major breakthrough in 

the control and even the elimination of HAT in Africa. Fexinidazole would be the first 

oral drug for both stages of HAT, well tolerated and effective in a 10 day treatment. The 

fact that it can be used for both stages of sleeping sickness, would have an impact on the 

complicated diagnosis. The determination of the stage of disease would not be 

mandatory, and the lumbar puncture could be waived. Fexinidazole would decisively 

simplify the treatment for the patients as well as the logistics. Based on the simple 

chemistry and short synthesis of fexinidazole, the treatment costs are estimated to be not 

more than US$ 50. It seems that fexinidazole is very stable, which is helpful for the 

development of a formulation for use in the tropics. Of course, there are still many 

hurdles to overcome before fexinidazole is registered and can be launched, but it is 

certainly the most promising candidate since many years. 

 

Conclusion 

The present work confirms that the approach of whole-cell assays, also called 

phenotypic screening, is a valuable alternative to the approach of target-based 

screening. In a relatively short time new chemical scaffolds and drug candidates have 

been identified. For the identification of new lead structures, it is worthwhile to test 

compounds that were developed for other purposes, as the examples of agrochemicals 

and marketed drugs show. The rediscovery of fexinidazole underlines that an accurate 
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and extensive revisiting of past research and data mining can help in the discovery of 

new drug candidates. Drug discovery is a multidisciplinary task and a team effort is 

required to bring a drug into clinical development in such a short time. Fexinidazole is 

the first drug candidate in clinical phase II/III trial since decades. It would be the first 

oral drug for the treatment of stage 1 and stage 2 of HAT. If fexinidazole overcomes all 

obstacles then it will be a major breakthrough in the combat against human African 

sleeping sickness. 
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