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CHAPTER ONE 

 

General Introduction 

Global Change: Temperature 

Global Change is the term used to describe changes which affect the environment on a global scale 

(Lexikon der Geowissenschaften, 2000). As the definition states it is a global phenomenon and one 

of the greatest challenges of our time. The new IPCC 2014 has just been published (November 1st 

2014) and is worded strongly, clearly stating how prevalent the ongoing climate change is, having 

already influenced the earth dramatically (IPCC, 2014). The period of 1983 to 2012 was likely the 

warmest 30-year period of the last 1400 years in the Northern Hemispherem (IPCC, 2014). 

Increasing discharge variability with summer droughts and heavy rainfall in winter, rising 

temperatures and increasing variability of climatic factors in general will affect all terrestrial and 

aquatic ecosystems. Hot extremes, heat waves and heavy precipitation events are becoming more 

frequent (IPCC, 2014) and changes in temperature and precipitation are already noticeable (e.g. 

Della-Marta et al., 2007). 

Even Central Europe is affected by extreme events such as long droughts in summer, as 

was shown by the heat wave in the year 2003 in Switzerland (e.g. Zappa & Kan, 2007). Within the 

next century a temperature increase of 1.1 to 6.4 °C has been predicted (IPCC, 2007). Since 1970 

the mean air temperature has already increased by 1.5 °C in Switzerland (OcCC, 2008). An 

increase of the mean winter precipitation in the northern and western part of Switzerland and an 

increase of heavy precipitation events has also been documented for Switzerland (Schmidli et al., 

2002; Schmidli & Frei, 2005).  

It is still unclear what exact influence Global Change could have on freshwater biodiversity 

and how freshwater species will respond to these changes (e.g. Heino et al., 2009). It has already 

been shown that freshwaters and their biodiversity are especially vulnerable towards climate 

change (Heino et al., 2009; Woodward et al., 2010). Carpenter et al. (1992) expect that the 

temperature increase will have a great impact on the structure and functioning of freshwater 

ecosystems. The spectrum of consequences has recently been reviewed by Kernan et al. (2010). 
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Many species, including freshwater species, have shifted their geographic ranges, seasonal 

activities, migration patterns, abundances, and species interactions in response to these ongoing 

changes in climate (IPCC, 2014). 

The water temperature is one of the key factors that determine the life cycle characteristics, 

such as embryonic development and emergence, of invertebrates (e.g. Haidekker & Hering, 2008). 

In Swiss rivers warming was already recorded during the last quarter of the 20th century (Hari et 

al., 2006), for example in the Upper Rhone River (Daufresne et al., 2003). In response to Global 

Change, species are already expanding their ranges to higher latitudes and altitudes (Krajick, 2004; 

Heino et al., 2009). Extreme weather events can accelerate shifts in species composition and 

distribution (Jentsch et al., 2007). Cold-stenothermal species especially will experience range shifts 

or restrictions, as space with suitable thermal conditions decreases (Woodward et al., 2010). It is 

assumed that some of these species will become extinct and that extinction rates of freshwater 

species will exceed those assessed for terrestrial species (Heino et al., 2009). However, it is 

difficult to make such predictions as climate change interacts with other stressors (Durance & 

Omerod, 2007), for example landscape fragmentation and destruction and environmental pollution, 

resulting in Global Change. The results of these interactions are complex cause-effect chains since 

many environmental parameters are linked to precipitation and temperature (Hering et al., 2010). 

 

Ecotoxicology: Copper 

Ecotoxicology is the science of the distribution and effects of harmful substances on organisms or 

ecosystems, provided that damages for nature and humans occur directly or indirectly (Lexikon der 

Geowissenschaften, 2000; Fent, 2013). Considering the effects which Global Change is having on 

the environment, ecotoxicologial studies are becoming even more important for protecting many 

species which are becoming endangered. The species are endangered by the environmental changes 

and pesticides which are being used, for example, to ensure high yields of crops in spite of the less 

favourable environmental conditions such as high amounts of precipitation in a very short time 

span. It has been shown that changes in climate have had negative impacts on crop yields (IPCC, 

2014). The contamination of our environment has taken on new levels because of the more frequent 
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and widely distributed use of chemicals such as pharmaceuticals, endocrine substances and 

pesticides. Metals are also being introduced into the environment mainly through mining and 

copper also via fungicides. With the new and more precise measurement tools available, it is also 

becoming clearer exactly how strong the contamination of our freshwater systems is. 

Heavy metals affect the metabolic activity of organisms, their behaviour and their 

distribution in the ecosystems and temperature is a very important factor influencing this as well 

(Lemus & Chung, 1999). Copper is an essential metal for most organisms (Clarkson et al., 1991) 

since the ions play an important role in their cellular metabolism (Karan et al., 1998). Beyond 

certain threshold levels (Prato et al., 2013) copper ions are extremely toxic for aquatic organisms 

and pose a threat to many aquatic organisms when available in excess (De Martinez Gaspar 

Martins et al., 2011). The target maximum value of the „Amt für Umwelt und Energie, 2009” in 

Switzerland for copper is 2.0 µg copper per litre.  

Copper(II)sulphate pentahydrate CuSO4 * 5 H2O is a salt in which the five waters of 

crystallisation give it its bright blue colouring. It is extremely soluble in water with a solubility of 

31.6 g / 100 ml water at 0 °C (Weast, 1976). Copper salts are important ingredients in many 

fungicides and fertilisers used in agriculture (e.g. de Oliveira-Filho et al., 2004) and are one of the 

most widespread contaminants (Debelius et al., 2009). Copper ions also act as an algaecide and are 

used in swimming pools or in lakes, ponds and reservoirs to control phytoplankton and aquatic 

weeds (Effler et al., 1980). Copper-containing fungicides are also used in organic agriculture in 

Switzerland (Niggli, 2007). Copper ions can enter freshwater systems for example by runoff caused 

by strong rainfalls. In vineyards where fungicides containing copper ions are commonly applied 

(e.g. Ruyters et al. 2013), pollution of nearby springs is likely. Copper runoff from vineyard soils is 

also fortified by wind and water erosion (Komarek et al., 2010). Copper can also enter groundwater 

and surface waters for example through industrial sewage (Amt für Umwelt und Energie, 2009). 

 

Amphipods: Gammarus fossarum  

An established approach when investigating the effects of contamination on a certain ecosystem is 

to make use of a certain species which occurs abundantly and is fairly sensitive towards changes, 
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but not too sensitive and in the case of most ecotoxicological tests is fairly easy to handle in a 

laboratory. Therefore we decided to make use of a freshwater organism which occurs abundantly in 

Swiss headwaters and springs and fulfils the other required criteria as well. 

The family Gammaridae belongs to the order Amphipoda (Crustacea). The number of 

genera placed in the Gammaridae is the subject of much argument and change (Gledhill et al., 

1993). Approximately 900 freshwater species in the Gammaridae exist (Gledhill et al., 1993). This 

family is distributed from the sea of the Arctic to the Antarctic (Schellenberg, 1942). This family 

represents most freshwater inhabitants, but does not exist in the tropics or South America 

(Schellenberg, 1942). In the west-Palaearctic region most epigean freshwater species belong to the 

genus Gammarus (Fiser et al., 2012). Gammarus fossarum Koch, 1836 (nomenclature according to 

own nomenclatorial investigations) is a freshwater gammarid species and the most commonly 

occurring one in Switzerland (Westram et al., 2011). In Switzerland the non-invasive G. pulex 

(Linnaeus, 1758) (nomenclature according to Eggers & Martens, 2004) and G. roeselii Gervais, 

1835 (nomenclature according to own nomenclatorial investigations) also occur (Rey et al., 2005), 

albeit less frequently. Headwaters are frequent in Switzerland and G. fossarum inhabits these.  

To this day at least three cryptic species, types A, B and C, of G. fossarum have been 

identified (Müller, 2000; Westram et al., 2011). These species split during or before the ice ages of 

the Pleistocene (Webb & Bartlein, 1992). The results of a newly published study reveal that up to 

23 overlooked species may be found within G. fossarum (Weiss et al., 2014). The biodiversity and 

biogeography even of one of the most commonly known European amphipod species is still very 

poorly known (Weiss et al., 2014). However, it has been suggested that type A occurs mainly in 

eastern European river systems, whereas type B and C are apparently found in the western 

European regions (Westram et al., 2011). These lineages within G. fossarum explain why certain 

populations do not react entirely in the same manner when exposed to different stressors such as 

pollutants or unstable environmental conditions. It has been demonstrated that lineage A had 

significantly higher sensitivity towards teboconazole and thiacloprid than lineage B (Feckler et al., 

2012). The type of the gammarids used in the experiments conducted in this PhD project was 

identified at the Ruhr University of Bochum, Germany. Type B occurs in the spring we took the 
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gammarids from. The Röserenbach has type A. It can be assumed that both type A and B occur in 

the spring and the Röserenbach. Another spring, Q3, showed both types. 

G. fossarum is an important and efficient shredder (e.g. Schmidt, 2003) and functions as a 

key species (e.g. Dangles et al., 2004) in the ecosystem, breaking down leaf litter and so linking the 

terrestrial and aquatic ecosystems (Hieber & Gessner, 2002). G. fossarum does not solely break 

down leaf litter but also feeds on fine particulate organic matter (FPOM) (Moog, 1995). However 

G. fossarum plays a fundamental role in organic matter breakdown in springs and headwaters and 

in the distribution of coarse particulate organic matter (CPOM) and FPOM (Wagner, 1990; Simcic 

& Brancelj, 2006). G. fossarum is considered a sensitive gammarid species towards contamination 

of water, low oxygen and low pH (Rinderhagen et al, 2000). It has a relatively wide distribution, 

mainly in the central and eastern mountainous areas of Europe (Janetzky, 1994; Pöckl et al., 2003). 

It is not as widely distributed as G. pulex (Meijering, 1991; Rinderhagen et al., 2000), but when 

present, is usually abundantly so. Furthermore, it is a relatively robust representative of the spring 

fauna and is fairly easy to keep in the laboratory. 

 

Springs: the lower Röseren spring in the Röserental 

Springs are relatively temperature-stable (Odum, 1971; van der Kamp, 1995), locally very 

restricted ecotones between the groundwater and the surface water (Webb et al., 1998). They are 

physically fragmented ecotones in a terrestrial landscape and as such are particularly vulnerable 

(Woodward et al., 2010) and can be regarded as early warning systems for environmental changes 

(Woodward et al., 2009). They can be affected severely by pollutants because of their small size, 

their isolation and because of the direct connection to the groundwater. Springs can also be 

influenced strongly by disturbances such as drought or heavy rainfall (von Fumetti & Nagel, 2012). 

Pollution of springs can occur through entry of contaminated organic matter, run-off of 

contaminants directly into the water or via the groundwater or via soil erosion. Springs are 

important habitats for numerous specialised and rare species (Lindegaard et al., 1998) which are 

necessary for the entire ecotone to function sustainably. Spring species are adapted to the relatively 
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stable environmental conditions in springs (e.g. Danks & Williams, 1991; Ferrington, 1995), many 

of them being cold-stenothermal (e.g. Fischer et al., 1998).  

Thermal stability seems to be one of the main characteristics of springs fed by deep 

groundwater (Fischer et al., 1998). This is also thought to be the reason for the presence of cold-

stenothermal species (Erman & Erman, 1995). However, there is also evidence for certain 

variability in the temperature regime of springs (Fischer et al., 1998; von Fumetti et al., 2007) and 

since Global Change is causing more extreme weather events, the variability of the water 

temperature will become larger.  

The Röserental, near Liestal in the Canton Basel-Landschaft in Switzerland, with an 

average altitude of 400 m above sea level, has 22 springs (von Fumetti, 2014). These all flow into 

the small river Röserenbach (von Fumetti et al., 2007). This valley is part of the Swiss Tabular Jura 

Mountains with the Oxfordian as the main aquifer (von Fumetti, 2008). Although the underground 

is slightly karstified, most of the springs do not show the characteristics of typical karst springs 

because of the unkarstified upper geological layers (von Fumetti, 2008). A comprehensive study on 

the springs in the Röseren valley was conducted by Geijskes (1935). Information on the 

hydrogeology of these springs can be found in Butscher & Huggenberger (2007). A cultivated 

forest used for logging, partly consisting of non-resident Thuja, covers a vast part of this valley. 

Owing to the land use, the nitrate values of some of the springs is elevated, otherwise the water 

quality of the springs is good. 

The spring used in this thesis is called lower Röseren spring (Q4, see von Fumetti & Nagel, 

2012), is a natural rheocrene which flows out of a pipe, flows naturally for about 10 meters and 

then flows back into a pipe below a gravel path. It then flows over a few meters of large blocks of 

stone into the small river Röserenbach. This spring has a fairly strong and steady discharge and 

does not dry out in summers. Its fauna is typical of a rheocrene spring in the Swiss Jura (for more 

information see von Fumetti, 2008 & 2014), with G. fossarum occurring abundantly. The fauna of 

this spring has been monitored over the last 10 years (von Fumetti, 2014) and to date our 

experiments have not had an impact on the fauna.  
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Objectives of the thesis 

The aim of this thesis is to show the impacts which elevated water temperatures and exposure to 

copper ions can have on the spring fauna by using G. fossarum, a relevant representative of the 

spring fauna. G. fossarum is a spring and head water inhabitant which is not cold stenothermal or 

crenobiont, but is nevertheless known for its sensitivity and is used as a model organism in many 

laboratory tests. The experiments which were conducted demonstrate possible scenarios of what 

could take place in springs under the influence of Global Change and pollution caused by 

pesticides, pharmaceuticals and other xenobiotics which are brought into the environment.  

In order to understand how elevated temperatures could affect the spring fauna, G. 

fossarum specimens were tested in laboratory experiments in a first step. These experiments were 

conducted in flow channels, and the effects elevated temperatures have on the feeding and ETS 

activity of G. fossarum were examined (chapter two). The aim was to find out how tolerant this 

species is to temperature changes, considering the ongoing temperature elevations caused by 

Global Change.  

In chapter three further experiments with G. fossarum were conducted in the laboratory, 

testing the effects elevated water temperatures combined with exposure to copper ions had on the 

level of the organism and on the cellular level of the species. The results are discussed with regard 

to the more specialised and sensitive spring fauna and the implications for spring ecology.  

The importance of field experiments is undisputed and yet experiments like this are not 

very common, owing to many restricting and arduous conditions. Since field experiments are 

however the most realistic approach when examining the impact of a stressor on an organism, 

laboratory as well as field experiments using test chambers were conducted in chapter four. The 

same experimental set-up was used in both locations for optimum comparability. We investigated 

the impact of copper contaminated leaf discs on the feeding and ETS activity of G. fossarum. With 

these experiments we demonstrate the importance of conducting experiments not only in a 

laboratory but also in nature, as the results do not necessarily have to be similar. The results of our 

experiments make this clear. The implications for spring inhabitants in general and the relevance of 

field experiments for future freshwater research are discussed. 
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Abstract 
The effects of an increase in water temperature as a direct consequence of Global Change on 
organisms living in springs and spring brooks have rarely been studied in laboratory experiments. 
In this study experiments were conducted to test the response of Gammarus fossarum Koch, 1836, 
as an abundant representative of the European spring fauna, to changing water temperatures. The 
aim was to find out experimentally how G. fossarum reacts to varying and increasing water 
temperatures. The experiments were conducted in flow channels with spring water. In each flow 
channel G. fossarum were placed in boxes with a flow-through system for four weeks. Two 
analytical methods were applied: The feeding activity of the amphipods was quantified in order to 
determine the reaction of G. fossarum on the level of the organism and the respiratory Electron 
Transport System (ETS) assay was conducted in order to determine changes in the test organisms 
on the cellular level. The results show that the feeding activity of G. fossarum increased with 
increasing water temperature, up to an optimum, indicating an increase in their metabolic activity. 
The ETS activity does not show significant differences at the different temperatures tested. A 
possible explanation for this is the ability of the organisms to adapt quickly to the changed 
environmental circumstances. 
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Introduction 

The earth’s environment is under constant change, and the fauna of all ecosystems is hence 

subjected to these changes. Global Change is causing heat waves and heavy precipitation events in 

temperate regions (IPCC, 2007) more frequently and such changes in temperature and precipitation 

are already noticeable (Della-Marta et al., 2007; Hegerl et al., 2011). It has been shown that 

freshwaters and their biodiversity are especially vulnerable towards Climate Change (e.g. Heino et 

al., 2009, Woodward et al., 2010). Already in the early 1990ies it was expected that a temperature 

increase would have a great impact on the structure and functioning of freshwater ecosystems 

(Carpenter et al., 1992). The water temperature of Swiss rivers has already increased significantly 

(Vittoz et al., 2013). Springs are relatively temperature-stable ecotones with limited seasonal 

fluctuations (van der Kamp 1995; Cantonati et al., 2006) and this thermal stability seems to be one 

of the main characteristics of springs fed by deep groundwater (Fischer et al., 1998). However, 

there is also evidence for certain variability in the temperature regime of springs (Fischer et al., 

1998; von Fumetti et al., 2007) and since Global Change is causing more extreme weather events, 

the variability of the water temperature will become larger.  

Gammarus fossarum Koch, 1836 (Crustacea; Amphipoda) is a relatively robust 

representative of the macrozoobenthos of springs. Since it inhabits springs and spring brooks 

abundantly, mainly in the central and eastern mountainous areas of Europe (Janetzky, 1994; Pöckl 

et al., 2003), it can be considered a suitable organism for assessing possible impacts of Global 

Change on species inhabiting springs. Furthermore G. fossarum plays a fundamental role in organic 

matter breakdown in springs and spring brooks and hence in the distribution of coarse particulate 

organic matter (CPOM) and fine particulate organic matter (FPOM) (Wagner, 1990; Simcic & 

Brancelj, 2006). It was chosen as the test organism because of its abundant occurrence, its 

importance as an efficient shredder (Schmidt, 2003) and its function as a key species in the 

ecosystem, breaking down leaf litter and so linking the terrestrial and aquatic ecosystems (Hieber 

& Gessner, 2002). A set of experiments, in which the feeding and respiratory ETS activities of G. 

fossarum at different water temperatures were examined, was conducted.   
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The feeding activity of organisms has been observed in numerous experiments with 

gammarids, often on Gammarus pulex (Linnaeus, 1758), (e.g. Pascoe et al., 1995; Graca et al., 

2001; Felten at al., 2008) but also on G. fossarum (e.g. Dedourge-Geffard et al., 2009; Bundschuh 

et al., 2011), and is suitable to assess for example the effect of low concentrations of pollutants 

which are found in nature (Pestana et al., 2007). It is influenced by the choice of food i.e. tree 

species they feed on. Most feeding tests described in literature are conducted with Alnus glutinosa 

leaves (e.g. Maltby et al., 2002; Cold & Forbes, 2004; Bundschuh et al., 2009), these being the 

preferred tree species of G. fossarum and other detritivores (Bloor, 2009).The feeding activity is 

furthermore a simple way of assessing one aspect of the metabolic activity of the test organisms on 

the level of the organism.  

The respiratory Electron Transport System (ETS) is an enzyme system found in the inner 

mitochondrial membranes of eucaryotes and controls the oxygen consumption (G.-Toth, 1999). 

The results obtained from this assay reflect the maximum oxygen consumption when all enzymes 

are functioning optimally (Kenner et al., 1975). The ETS assay was developed by Packard (1971) 

and improved by G.-Toth (1999). Originally the biochemical method for measuring respiration via 

the electron transport system was used to determine oxygen respiration of marine plankton 

(Packard, 1971). Impairment of the organisms by elevated water temperature may have effects on 

the functioning of these enzymes and subsequently alter the ETS activity. The ETS assay is a 

useful tool to assess changes on the cellular level.  

The aim of this study was to find out experimentally how G. fossarum reacts to varying and 

increasing water temperatures, which could occur in summer in Swiss springs. The hypotheses of 

this study were (i) that the feeding activity would increase at higher temperatures and (ii) that the 

ETS activity would increase with increasing temperature and then decrease if the temperature 

reached the thermal tolerance limit of G. fossarum.   
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Materials and Methods 

Chemicals 

Copper sulphate penta-hydrate (CuSO4*5H2O, Merck, Lot no. A921690 717), magnesium sulphate 

hepta-hydrate (MgSO4*7H2O, Merck, Lot no. A966886 729), formaldehyde solution min. 37 % GR 

(HCHO, Merck, Lot no. K23876703 714), ortho-phosphoric acid 85 % (H3PO4, Merck, Lot no. 

K43024773 150) and potassium dihydrogen phosphate (H2KPO4, Merck, Lot no. K23916773 715) 

were purchased from Merck (Germany). Polyvinyl pyrrolidone (PVP) ((C6H9NO)x, Sigma Aldrich, 

Lot no. BCBG5331V), Triton-X-100 (Triton, Sigma Aldrich, Lot no. BCBC9283V), β-

Nicotinamide adenine dinucleotide, reduced disodium salt hydrate (NADH, Sigma Aldrich, Lot no. 

071M7021V), β-Nicotinamide adenine dinucleotide phosphate sodium salt hydrate (NADPH, 

Sigma Aldrich, Lot no. SLBH3107V), 2-p-iodo-phenyl-3-p-nitrophenyl-5-phenyl tetrazolium 

chloride (INT, Sigma Aldrich, Lot no. BCBG6164V) and sodium phosphate dibasic dodeca-

hydrate (HNa2O4P*12H2O, Sigma Aldrich, Lot no. SZBB201AV), were obtained from Sigma 

Aldrich (Germany). 

 

Choice of test organisms 

Gammarus fossarum specimens were collected from one natural spring, a rheocrene, in the 

Röserental near Liestal, in Switzerland (for further information see von Fumetti & Nagel (2012)), 

and transported in spring water with leaves and stones to the laboratory. Individuals of both sexes 

were collected. Their size ranged from about 8 mm to 15 mm body length, the majority of the 

gammarids being about 10 mm long. The wet weight of the gammarids used in these experiments 

ranged from 8 to 14 mg. The selected test specimens showed no visible form of parasitism and 

moved actively before being used for the experiments. The gammarids were kept at 10 °C for three 

and a half days for acclimatization to laboratory conditions before being used in an experiment.  

 

Conditioning of leaves 

Beech leaves (Fagus sylvatica L.) were collected from the litter layer near the spring from which 

the gammarids were obtained, after abscission in autumn 2011. As the spring is surrounded by 
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beech trees its leaves form the most important food source for many spring inhabitants including G. 

fossarum. The collected leaves were dried in an oven at 40 °C. They were stored as described by 

Bloor (2010). Leaf discs (Ø 1 cm) were cut out of the collected leaves with the help of a cork borer. 

Twenty-eight leaf discs (more info see below) were always weighed together and then placed 

together in numbered stainless steel herb infusers (Ø 9 cm). This was important for the 

quantification of the feeding activity, described later on. There are many different ways of 

conditioning leaves (e.g. Malbouisson et al., 1995; Coulaud et al., 2011) and we decided not to use 

synthetic water mixtures. The herb infusers containing the leaf discs were submerged in aerated 

spring water with FPOM from the spring for conditioning for 4 weeks at 17 °C. The temperature 

was given by the room temperature and was chosen in order for conditioning to be more efficient. 

 

Test design 

The experiments were conducted in a laboratory in 4 stainless steel flow channels, with 2 control 

and 2 experimental channels. Each system consisted of the actual flow channel (1 m x 0.4 m x 0.2 

m), a tube through which water flowed into a rain barrel (60 litres) functioning as a water reservoir, 

an aquarium pump (EHEIM, compact 1000, Deizisau, Germany) to pump the water into the 

channel and a cooling unit (Aqua Medic Titan 500, Blessendorf, Germany) which helped regulate 

the water temperature, with an accuracy of ± 0.5 °C. Six plastic boxes (78 mm x 108 mm x 67 mm) 

from which two sides were removed and replaced by mesh (mesh width 1 mm) in order for water to 

flow through them but to keep in the test organisms, were placed in every channel. Seven test 

organisms were placed into each box. Each flow channel held 3 boxes for feeding tests and 3 boxes 

for the ETS analysis. Each box also held 28 leaf discs so that every gammarid had 1 leaf disc per 

week to feed on and sufficient foliage for shelter. Natural spring water was used from the spring 

from which the organisms were collected so that the presence of a natural microflora was given 

(Jonsson & Malmquist, 2000). The photoperiod was adapted to the season and the time changed 

once a fortnight to the current sunrise and sunset times. All flow channels were illuminated by two 

different aquaria-lights (Juwel Aquarium warm-lite and Juwel Aquarium day-lite). The set-up of 

the experiments in the laboratory was deliberately as near-natural as possible. 
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The experiments lasted 26 days, during which time the water temperature was varied. The 

control groups were always kept at 10 °C and the experimental groups were varied for example as 

follows: first week 10 °C, second and third week 14 °C and last week 14 °C. In some regimes the 

water temperature was decreased back to 10 °C in the fourth week to see if the organisms would 

recover from the temperature elevation (Tab. 1). Many laboratory studies with gammarids use 

water temperatures of 12 to 16 °C (e.g. Cold & Forbes, 2004; Bundschuh et al., 2009; Schaller et 

al., 2010; Coulaud et al., 2011). This seems rather high for G. fossarum collected from springs, 

which are usually found in springs and spring brooks in Switzerland with temperatures around 10 

°C all year round, with absolute peaks of at most up to 14 °C (von Fumetti & Nagel, 2012). 

Although it is unlikely that the water of the Swiss spring used in this study will ever reach 

temperatures of 18 °C, this temperature was chosen in order to ascertain the tolerance of the tested 

individuals of this species. The temperature changes were achieved within 24 hours. 

For the duration of the experiments oxygen saturation (%) and concentration (mg / L), pH 

and electrical conductivity (µS / cm) of the spring water in the flow channels were measured twice 

a week, using portable meters (Wissenschaftlich-Technische Werkstätten, Weilheim, Germany). 

The phosphate (PO4
3-), nitrate (NO3

-), nitrite (NO2
-) and ammonia (NH4

+ ) concentrations (all in mg 

/ L), of the spring water in the flow channels were measured photometrically twice a week 

(Spectroquant NOVA 60, Merck, Darmstadt, Germany) to ensure that the water quality was stable.   

 

Feeding activity 

The organisms were monitored regularly for deaths and dead gammarids were removed and 

preserved in 100 % ethanol. At the end of the experiments all gammarids were preserved in 100 % 

ethanol and subsequently dried at 40 °C and then weighed. The leaf discs they had fed on were also 

dried at 40 °C and weighed. Additional replicates were set up to control for leaf mass loss driven 

by abiotic factors and microbial decomposition. The results of these were used for the 

quantification of the feeding activity (= control factor). Gammarus fossarum is a shredder, and 

hence not all processed i.e. shredded leaf material is actually eaten, therefore we refrain from using 

the term feeding rate and instead use the general term feeding activity. A feeding activity was 
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determined for every box, for the 7 organisms together, as described by Maltby et al. (2002) after 

the 26 days experiment duration: 

 

FA = ((Li × Control factor) - Lf) / (weight × time) 

 

where FA is the feeding activity, Li is the initial leaf weight (mg), Control factor is the loss of 

weight of leaves during four weeks when no feeding takes place, Lf is the final leaf weight (mg), 

weight is the dry weight of the gammarids (mg) and time is the duration of the experiment (days). 

 

ETS activity 

The ETS analysis was conducted as described by Simcic & Brancelj (1997). ETS assays were 

carried out at the end of weeks one, three and four in order to detect the influence of the changing 

water temperatures on the organisms at the cellular level. For each experiment 72 individuals were 

analysed, 24 individuals per week, i.e. 12 individuals from the control and 12 from the 

experimental group. Six live gammarids were removed from the flow channels one by one using 

tweezers, placed on a tissue and gently patted dry. They were then weighed singly on a 

microbalance (XP6, METTLER TOLEDO, Greifensee, Switzerland), placed on a numbered 

aluminium sheet with some distilled water. The gammarids were then homogenised singly in the 

homogenisation tube without the distilled water, using 4 ml of ice-cold homogenising buffer 

solution [0.1 M sodium phosphate buffer pH 8.4, 75 µM MgSO4, 0.15 % (w/v) polyvinyl 

pyrrolidone, 0.2 % (v/v) Triton-X-100]. The homogenate was poured into a centrifuge tube and 

sonicated with an ultrasonic homogeniser (Bandelin Sonopuls HD2070, Berlin, Germany) for 20 

seconds and stored in an ice solution. The homogenate was then centrifuged (Sigma 2-16 PK, 

Osterode am Harz, Germany) at 0 °C for 4 minutes at 10000 r.p.m., according to Simcic & 

Brancelj (2004). The supernatant (in triplicate) was incubated with 1.5 mL substrate solution [0.1 

M sodium phosphate buffer pH 8.4, 1.7 mM NADH, 0.25 mM NADPH, 0.2 % (v/v) Triton-X-100] 

and 0.5 mL reagent solution [2.5 mM 2-p-iodo-phenyl-3-p-nitrophenyl-5-phenyl tetrazolium 

chloride] for 40 minutes at 10 °C. Stopping solution [formaldehyde (conc.):H3PO4 (conc.) = 1:1], 
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0.5 mL, was added immediately after incubation and the formazan production determined 

spectrophotometrically with the spectroquant ® Pharo 300 (Merck, Darmstadt, Germany) by 

measuring the absorbance of the sample at 490 nm against the blank.  

The ETS activity was calculated according to Kenner & Ahmed (1975): 

 

ETS activity (µL O2 / mg × h) = ((Abs490nm x Vr × Vh × 60) / (Va × Gw × t × 1.42) 

 

where Abs490nm is the absorption of the sample, Vr is the final volume of the reaction mixture (3 

mL), Vh is the volume of the original homogenate (4 mL), Va is the volume of the aliquot of the 

homogenate (0.5 mL), Gw is the gammarid wet weight (mg), t is the incubation time (minutes) and 

1.42 is the factor for conversion to volume oxygen. 

 

Data analysis 

The analyses of variances (ANOVAs) were calculated using the Statistical Package for Social 

Sciences (SPSS) version 21 for Windows (SPSS Inc, Chicago, IL, U.S.A.). One-way ANOVAS 

were conducted to test the influence of the water temperatures on the feeding and ETS activities of 

the test organisms. 

Variance homogeneity was tested with the Levene-Test. The feeding activity data was 

found to be homogeneous. To correct for multiple single comparisons a Bonferroni-Holm 

correction was applied. For the ETS data variance was found to be unequal. A reason for this is 

because very small sample sizes may be particularly sensitive to the homogeneity of variance 

assumption. A Games-Howell-Test, which is applied in such cases of unequal variances and also 

takes unequal group sizes into account, was applied to the ETS data. The α-level was set at 0.05. 

 

Results 

The results demonstrate higher feeding activities at higher temperatures, being highest in condition 

10-18-18-18° C. The lowest measured feeding activity was 0.03 mg / mg × d at 10 °C; the highest 

one was 3.37 mg / mg × d, measured at 18 °C.  
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An ANOVA comparing the different temperature regimes revealed a significant effect on 

the feeding activity, F4, 67 = 12.537, p < 0.001. Further single comparisons were calculated using the 

Bonferroni-Holm correction. The feeding activities in the control (M = 0.09, SD = 0.04) were 

significantly lower than in conditions 10-14-14-14 °C (M = 0.14, SD = 0.04) and 10-18-18-18 °C 

(M = 0.20, SD = 0.09) (p < 0.005 and p < 0.001, respectively) (Fig. 1a). No significant differences 

could be made out between the control and conditions 10-14-14-10 °C (M = 0.09, SD = 0.03) and 

10-18-18-10 °C (M = 0.07, SD = 0.01) (p = 1.0 and p = 1.0, respectively) (Fig. 1b).  

Although 83.7 % of the organisms died in condition 10-18-18-18 °C (Tab. 1), the surviving 

gammarids shredded significantly more than those in the control. Significant differences also exist 

between condition 10-14-14-10 °C (M = 0.09, SD = 0.03) and 10-14-14-14 °C (M = 0.14, SD = 

0.04) (p = 0.040). Lastly, the difference between condition 10-18-18-10 °C (M = 0.07, SD = 0.01) 

and 10-18-18-18 °C (M = 0.20, SD = 0.09) was found to be significant (p < 0.001). 

 

 

Fig. 1a & 1b Mean feeding activities at the different conditions. The control is always at 10 °C, the 

experimental temperature regimes range between 10 °C and 18°C. Standard errors are represented 

in the figure by the error bars attached to each column. Note: *** < 0.001, ** < 0.005 

 

ETS activity 

Generally mean ETS values are in a similar range. The lowest measured ETS activity was 0.105 µL 

O2 / mg × h, the highest one was 1.142 µL O2 / mg × h, both measured at 10° C. 

An ANOVA comparing the different temperature regimes revealed no significant effect on the ETS 

activity, F7, 360 = 1.831, p = 0.080. When looking at the conditions which lasted 3 weeks and then at 
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the conditions which lasted 4 weeks, it can be noted that a bell-shaped curve could be drawn over 

the three bars (Fig. 2a & 2b). 

In condition 10-18-18-18 °C the organisms destined for ETS analysis had died before the 

end of week 4. The reason for the many deaths (83.7 %) in this condition was probably entirely 

owing to the high temperature of 18 °C, with which the test organisms were not able to cope for 

longer than 3 weeks. In the other conditions the average death rate was around 30 % (Tab. 1). 

 

 

Fig. 2a & 2b Mean ETS activities of the conditions lasting 3 weeks (a) and those lasting 4 weeks, 

with the temperature regimes that declined after 3 weeks back to 10 °C (b). The control conditions 

are always at 10 °C, the experimental temperature regimes range between 10 °C and 18 °C. 

Standard errors are represented in the figure by the error bars attached to each column.  

 

Table 1: Temperature regimes applied in the conducted experiments. Control groups were always 

kept at 10° C for the entire experiment. The date indicates the start of the experiment. Deaths 

during the experiments are given in percentage. 

Date of experiment 

beginning (2012) 

Exp. 1 - 6 

Temperature regime   

= conditions [ °C]       

weeks 1 –2 –  3 –  4 

deaths 

control 

groups [%] 

deaths 

experimental 

groups [%] 

5th  March 10-14-14-10 39.3 17.9 

2nd April 10-14-14-14 7.1 8.3 

30th April 10-18-18-10 7.1 33.3 

28th May 10-18-18-18 45.1 83.7 

25th June 10-14-14-14 65.3 55.1 

23rd July 10-14-14-10 42.9 45.2 
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Discussion 

Feeding activity of G. fossarum 

The conducted feeding tests demonstrate that higher temperatures increase the feeding activity of 

G. fossarum and therefore have an impact on G. fossarum on the organismal level. Higher 

temperatures generally cause higher metabolic rates (e.g. Georgiadis, 1977). In addition it has also 

been observed that the consumption of stream-water conditioned alder leaves by G. pulex increased 

with increasing temperatures (Malbouisson et al., 1994). Feeding tests conducted with G. pulex at 

2, 5, 10 and 15 °C with Alnus sp. and Fagus sp. leaves caused a rise in consumption with 

increasing temperature (Nilsson, 1974). It would appear in this study that the conditions with the 

temperature regimes involving 14 °C were not stressful for the gammarids but might even be 

considered more optimal for these organisms. The feeding activity in the conditions 10-14-14-10 

°C and 10-18-18-10 °C were not significantly higher than the feeding activity of the control. It can 

be argued that a decrease in temperature after 2 weeks of an elevated water temperature normalizes 

the feeding activity so that the overall feeding activity ends up not significantly different from the 

feeding activity in the control condition. In this case a decrease of water temperature after the 

initial elevation has a stabilizing effect on the organisms’ metabolism. It was assumed that higher 

temperatures would raise mortality; indeed this was the case at 18 °C. This temperature was too 

warm for the gammarids, and the surviving ones were stressed by an elevation of their metabolic 

activity. 

The sex of the test organisms can influence the feeding activity (Malbouisson et al., 1994). 

In all the experiments females and males were used without determining their sexes, since 

determination would cause unnecessary stress of the test organisms. Also, we aimed at conducting 

the experiments as near-naturally as possible. However, it was always ensured that specimens of 

similar size compositions were used in the experiments. For G. pulex it has been shown that 

females consumed less food than males in terms of absolute dry weight (Malbouisson et al., 1994). 

It can be assumed that females of G. fossarum behave likewise and therefore certain observed 

feeding activities are potentially lower than others owing to the sex of the organisms used. 

However, it should be noted that natural differences in appetites of individuals can also have an 



Chapter 2: Effects of Increased and Variable Temperature on G. fossarum 
 

24 
 

effect on the feeding activity (Taylor et al., 1993). Certain results may also be affected by the fact 

that some test organisms moulted during the tests. In those cases it was observed that they often 

died within the following 24 hours. Gammarus fossarum specimens were also used regardless of 

the time of their last moult in tests conducted by Simcic & Brancelj (2003).  

 

ETS activity of G. fossarum 

The measured ETS activities in this study are in a similar range to ETS activities measured by other 

authors (e.g. Simcic et al., 2005; Simcic & Brancelj, 2006; Lukancic et al., 2010). It was assumed 

that ETS activity, i.e. the enzyme activity, would increase with increasing temperatures as 

demonstrated by Simcic and Germ (2010) up to a turning point and then decrease.  

The ETS activities measured after 3 weeks, comparing the temperature regimes 10-10-10 

°C, 10-14-14 °C and 10-18-18 °C, were not significantly different. However it would appear that 

the ETS activity increased in the condition 10-14-14 °C but decreased in the condition 10-18-18 

°C, compared to the mean ETS activity of the control channel kept at 10 °C during the 3 weeks. 

The same pattern is observed when comparing the ETS activities measured after 4 weeks, 

comparing the temperature regimes 10-10-10-10 °C, 10-14-14-10 °C and 10-18-18-10 °C. In 

natural environments G. fossarum competes with G. pulex. Gammarus pulex is more robust 

towards higher water temperatures up to 27 °C (Sutcliffe et al., 1981; Foucreau et al., 2014) and so 

G. fossarum is forced into colder waters. An intermediate temperature such as 14° C is probably 

more suitable for G. fossarum than 10 °C. However, higher water temperatures than 14 °C, for 

example 18 °C, were shown to have detrimental effects on G. fossarum, which could lead this 

species and other more sensitive species into survival difficulties. 

In order to understand the results obtained in this study, it needs to be pointed out that the 

ETS activities of the gammarids in this study were measured one week after changing the water 

temperature. This gave the gammarids a week to adapt to the new temperature: probably long 

enough for them to recover and stabilize their normal ETS activity. This adaption would explain 

the similar values of the control to the experimental conditions. In an experiment with daphnids at 

different temperatures, an adaptation time to experimental temperatures of only 3 hours was given 
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(Simcic & Brancelj, 1997). It has been shown that a certain time span enables adaptation of the 

species to the new circumstances (e.g. Bamsted, 1980). Organisms which live in relatively stable 

temperature environments, such as spring species, are not well adapted to temperature fluctuations. 

In such cases ETS activity is more sensitive to temperature variations (Simcic & Brancelj, 1997). 

Therefore it can be assumed that G. fossarum will react in a similar way when little time to adapt is 

given. It can also be assumed that the observed pattern, an increase at the intermediate temperature 

regime with 14 °C but a decrease at the extreme temperature regime with 18 °C, would become 

significant if adaptation time was considerably shortened. This will be a subject for future 

investigation. The findings also give an insight into the high adaptability of G. fossarum towards 

intermediate temperature elevations. The results do not suggest that a gradual temperature increase 

on its own, caused by Global Change, will be as problematic for G. fossarum on the cellular level 

as initially thought.  

 

Implications on the population and community level  

Water temperature has a dominating influence on the life history, reproduction and growth of G. 

fossarum (Pöckl et al., 2003). In this study it was shown that higher water temperatures caused 

higher feeding activities. This has consequences for G. fossarum on the population level, as a 

higher feeding activity induced by higher water temperatures as a direct consequence of Global 

Change could result in a faster depleted food source. Springs are dependent on allochtonous 

material input. For example: the spring the gammarids were taken from for this study is situated in 

a forest with a limited number of trees surrounding it. By the end of summer hardly any leaf litter is 

left in the springs. If the water temperature rises as predicted, and the feeding activity rises as 

observed in this study, then food might become scarce by the end of summer and so become a 

limiting factor for the organisms living in these ecotones. This food shortage in return could result 

in the reduction or complete stop of the individual’s scope for growth. This in turn might decrease 

the amount of energy available for reproduction and decreases the individual’s probability of 

survival (Naylor et al., 1989; Maltby, 1992).  
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On the community level, G. fossarum acts as a shredder, breaking down CPOM to FPOM 

(Wagner, 1990; Simcic & Brancelj, 2006). Therefore it plays a very important role in the lotic food 

web of springs, enabling other species to survive on the FPOM provided. Increased water 

temperatures could therefore cause larger FPOM production. This may be positive for species 

dependent on that food source, given that they survive the elevated water temperatures. 

According to the results 14 °C seems to pose no serious problems for G. fossarum, but 

other species living in springs might be affected more strongly by such an increase in water 

temperature, because they are adapted to a relatively stable environment. In consequence, elevated 

water temperature could change whole species assemblages and alter the susceptibility of 

macroinvertebrates to environmental stressors such as pesticides, pharmaceuticals or illnesses. A 

water temperature of 14 °C has indeed been measured in the spring used in this study in summer 

during especially warm periods. 

Generally, elevated water temperatures may cause physiological stress, rising metabolic 

activity and in consequence reduced fitness (Hering et al., 2010). The body temperature of most 

invertebrates fluctuates with the temperature of their immediate environment; subsequently the 

ETS activity of these species must function under a wide range of temperatures (Simcic et al., 

2014). This requirement is however not met by cold water adapted species. Supporting this, it has 

been demonstrated that cold-stenothermal chironomids had a lower ETS activity at high water 

temperatures (Simcic, 2005).  

In response to Global Change species are already expanding their ranges to higher latitudes 

and altitudes (Krajick, 2004; Heino et al., 2009). Especially cold-stenothermal species will 

experience strong range shifts or range contractions, as space with suitable thermal conditions 

decreases (Woodward et al., 2010). Extreme weather events in Europe are becoming more frequent 

owing to Global Change and so temperature fluctuations such as those used in these experiments 

will become increasingly important.  
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Conclusion 

By studying the feeding and the ETS activity of G. fossarum exposed to elevated water 

temperatures, the aim was to benefit from the simplicity of the one method on the level of the 

organism and complexity of the other method on the cellular level. Although the approach of these 

two methods is different, the results obtained by them should be complementary in assessing the 

responses of the test organisms. The feeding activity of G. fossarum at elevated water temperatures 

increased significantly. The measured ETS activities were not significantly different at increased 

temperatures. Reasons why the ETS activities of the gammarids did not increase significantly are 

discussed. With the results of these experiments it can be concluded that G. fossarum is suitable to 

help evaluate changes occurring in spring ecotones. It was shown that G. fossarum is able to adapt 

to short-term intermediate temperature elevations quickly and is hence not necessarily threatened 

by moderately rising water temperatures. Moreover, Global Change is interacting with other 

stressors, for example pesticides, (Durance & Omerod, 2007) and will result in complex cause-

effect chains as many other environmental parameters are linked to temperature (Hering et al., 

2010). Future research will concentrate on tests with G. fossarum under the influence of an 

additional stressor, with less time being allowed for adaption to the changed environmental 

circumstances. 
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Abstract 
The specialised fauna of freshwater springs will have to cope with a possible temperature rise 
owing to Global Change. It is affected additionally by contamination of the water with xenobiotics 
from human activities in the surrounding landscape. We assessed the combined effects of 
temperature increase and exposure to toxins in laboratory experiments by using copper sulphate as 
a model substance and Gammarus fossarum Koch, 1835, as the model organism. This amphipod is 
a common representative of the European spring fauna and copper ions are widespread 
contaminants, mainly from agricultural practice. The experiments were conducted in boxes placed 
in flow channels and the water temperatures were varied. The gammarids were fed with 
conditioned beech leaf discs. The feeding activity of the amphipods was quantified on the level of 
the organism; and the respiratory Electron Transport System (ETS) assay was conducted in order to 
determine changes on the cellular level in the test organisms. The results show that the feeding 
activity increased slightly with higher water temperature. The sub-lethal copper dose had no 
significant effect other than a trend towards lower feeding activity. The ETS activity was 
significantly higher at the higher water temperatures, and the copper ions significantly lowered the 
ETS activity of the organisms. The combination of the two methods was useful when testing for 
combined effects of environmental changes and pollutants on a species. From the results one can 
reasonably infer a higher risk of adverse effects with increase in water temperature and exposure to 
a particular heavy metal. 
 

 

 

 

 

 

Keywords 

Thermal stress, amphipod, copper sulphate, feeding activity, electron transport system (ETS) 



 Chapter 3: Effects of Increased Temperatures on G. fossarum Under the Influence of Copper 

34 
 

Introduction  

Springs are special ecotones between the groundwater and the surface water (Webb et al. 1998) and 

are important habitats for numerous specialised and rare species (Lindegaard et al. 1998) which are 

necessary for the entire ecotone to function sustainably. Freshwaters such as springs are spatially 

constrained and can be regarded as early warning systems (Woodward et al. 2009). They can be 

strongly influenced by pollutants because of their small size, their isolation and because of the 

direct connection to the groundwater. Spring species are adapted to the relatively stable 

environmental conditions in springs (e.g. Danks & Williams 1991; Ferrington 1995), many of them 

being cold-stenothermal (e.g. Fischer et al. 1998). Global Change is causing an increase in 

temperature, and since a few years extreme events such as heat waves and floods are becoming 

more frequent in the temperate regions (IPCC 2007). It has been shown that freshwaters and their 

biodiversity are especially vulnerable towards Global Change (e.g. Heino et al. 2009; Woodward et 

al. 2010). The water temperature affects macroinvertebrates directly, especially if they are cold-

water-adapted species (Heino et al. 2009). It is therefore important to investigate the effects of 

elevated water temperatures on macroinvertebrates, using realistic temperature scenarios which 

could occur in nature. This is becoming more important because extremely warm and dry summers 

are occurring more frequently (Vittoz et al. 2013), so the organisms need to adapt to fast elevating 

temperatures. Furthermore water temperature raises the toxicity of substances such as fungicides 

for non-target organisms (Bat et al. 2000; Holmstrup et al. 2010), making the organisms more 

susceptible to environmental warming. These interactions are of interest in ecotoxicology, since 

temperature has a large impact on species, especially in combination with toxicants. It is therefore 

important to conduct tests combining both stressors.  

Copper salts are important ingredients in many fungicides and fertilisers used in agriculture 

(e.g.de Oliveira-Filho et al. 2004) and are one of the most widespread contaminants (Debelius et al. 

2009). They also act as an algaecides and hence are used for control of phytoplankton and aquatic 

weeds (e.g. Effler et al. 1980). Copper salts have been introduced into water bodies as aquatic 

molluscicides (e.g. Guida et al. 2008). Although a certain amount of copper ions are essential for 

most organisms, they pose a threat to many aquatic organisms in general when available in excess 
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in water (De Martinez Gaspar Martins et al. 2011). They are strong fish poisons as well as one of 

the most toxic metals for microalgae, being toxic at concentrations as low as 1 µg/L (Debelius et al. 

2009). Terrestrially applied pesticides can be flushed into springs and rivers through means of 

runoff. This will take place more regularly when heavy rainfalls occur more frequently. In 

vineyards where fungicides containing copper ions are commonly applied (e.g. Ruyters et al. 

2013), pollution of nearby springs is likely. Although copper salts in soils are strongly 

immobilized, there has also been evidence of them migrating through soil profiles in vineyards 

(Komarek et al. 2010). Groundwater quality is then under risk and hence spring water quality is 

also affected. It is, however, more likely that springs are contaminated via runoff of freshly applied 

fungicides, intensified by heavy rainfall.  

Amphipods mainly take up ions such as Cu2+ via their gills since these are a large 

adsorptive organ system (Reichmuth et al. 2010). This makes them especially susceptible to water-

borne pollutants (Rinderhagen et al. 2000). Previous studies have been conducted on the effects of 

copper salts for example on G. pulex (e.g. Taylor et al. 1998; Güven et al. 1999; Brooks & Mills 

2003). In a study testing the effects of copper ions on the feeding rate and digestive enzymes of G. 

fossarum it was found that organisms exposed to a metallic contaminated site had inhibited 

digestive enzymes and a decreased feeding activity (Dedourge-Geffard et al. 2009).The impact of 

Cu2+ is expected to be stronger at higher temperatures because the higher temperatures can cause 

increased breathing as a consequence of the elevated metabolic activity and hence increased 

absorption of ions (Lemus & Chung 1999). Copper ions are important components in the 

haemocyanin, and are highly regulated in all gammarid species (Taylor & Anstiss 1999). 

Crustaceans including the gammarid species have detoxification mechanisms to counteract toxicity 

by metal ions (Geffard et al. 2010). However, if these detoxification mechanisms are unable to 

regulate the excess of internalized metal, the excess leads to physiological disturbances (Lebrun et 

al. 2012). Amphipods are frequently used as bioindicators in aquatic toxicity tests owing to their 

prolific breeding, high abundance in nature and sensitivity to anthropogenic compounds such as 

metal ions in water bodies which they inhabit (e.g. Ladewig et al. 2006). Gammarus fossarum 

Koch, 1835 (Crustacea; Amphipoda) is a typical inhabitant of running waters rich in oxygen 
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(Lukancic et al. 2009) and abundantly inhabits springs and spring brooks in mountainous regions of 

central Europe (Janetzky 1994; Pöckl et al. 2003). This species is more sensitive than Gammarus 

pulex (L) towards contamination of water, low oxygen and low pH (Rinderhagen et al. 2000; 

Alonso et al. 2010), but is a relatively robust representative of the macrozoobenthos of springs. G. 

fossarum is mainly an efficient shredder, but also feeds on fine particulate organic matter (FPOM) 

(Moog 1995). It plays a fundamental role in organic matter breakdown in springs and spring brooks 

and hence in the distribution of coarse particulate organic matter (CPOM) and fine particulate 

organic matter (FPOM) (Wagner 1990; Simcic & Brancelj 2006). Furthermore it is fairly easy to 

keep in the laboratory. The use of a crenobiontic species for our experiments would have been 

more desirable; however these taxa do not occur abundantly and are therefore not suitable for 

experiments which require large numbers of individuals. For these reasons G. fossarum can be 

deemed a suitable organism for assessing possible impacts of Global Climatic Change and 

pollution. 

We decided to make use of the following two endpoints in our experiments: The feeding 

activity and the respiratory Electron Transport System (ETS) activity. It is known that the 

metabolic activity of an organism can be expressed for example by the feeding activity and the 

respiratory rate. These parameters were chosen because one of them reveals information on the 

metabolism of the organism on the level of the organism and the other one reflects the metabolic 

activity of the organism on the cellular level. Furthermore the feeding and ETS activity are 

replicable in a fairly short time frame. 

The feeding activity gives insight into the metabolic activity of the organisms on the level 

of the organism. Such a non-lethal endpoint is suitable for assessing low concentrations of 

pollutants which are found in nature (Pestana et al. 2007). The feeding activity is also a good 

indicator for environmental stressors (Pestana et al. 2007) such as pollution and temperature 

increases.  

The ETS assay is a useful tool for assessing the metabolic activity of an organism on the 

cellular level. The ETS is an enzyme system found in the inner mitochondrial membranes of 

eucaryotes which controls the oxygen consumption (G.-Toth 1999). The results obtained from this 
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assay reflect the maximum oxygen consumption when all enzymes are functioning optimally 

(Kenner & Ahmed 1975).  

The objective of this study was to find out how G. fossarum reacts to stepwise increasing 

water temperatures and the additional stressor copper on a sub-lethal level. This was tested in a 

laboratory under controlled conditions using environmentally realistic copper ion concentrations. 

Rising water temperatures are postulated to enhance the effects of copper pollution and generally 

increase the metabolic activity of G. fossarum. We assumed that both the feeding and ETS activity 

of G. fossarum would increase with rising temperatures, but decrease under the influence of copper 

ions.  

 

Materials and Methods 

Chemicals 

Copper sulphate penta-hydrate (CuSO4*5H2O, Merck, Lot no. A921690 717), magnesium sulphate 

hepta-hydrate (MgSO4*7H2O, Merck, Lot no. A966886 729), formaldehyde solution min 37 % GR 

(HCHO, Merck, Lot no. K23876703 714), ortho-phosphoric acid 85 % (H3PO4, Merck, Lot no. 

K43024773 150) and potassium dihydrogen phosphate (H2KPO4, Merck, Lot no. K23916773 715) 

were purchased from Merck (Germany). Polyvinyl pyrrolidone (PVP) ((C6H9NO)x, Sigma Aldrich, 

Lot no. BCBG5331V), Triton-X-100 (Triton, Sigma Aldrich, Lot no. BCBC9283V), β-

Nicotinamide adenine dinucleotide, reduced disodium salt hydrate (NADH, Sigma Aldrich, Lot no. 

071M7021V), β-Nicotinamide adenine dinucleotide phosphate sodium salt hydrate (NADPH, 

Sigma Aldrich, Lot no. SLBH3107V), 2-p-iodo-phenyl 3-p-nitrophenyl 5-phenyl tetrazolium 

chloride (INT, Sigma Aldrich, Lot no. BCBG6164V) and sodium phosphate dibasic dodeca-

hydrate (HNa2O4P*12H2O, Sigma Aldrich, Lot no. SZBB201AV), were obtained from Sigma 

Aldrich (Germany). 

 

Collection of test organisms 

G. fossarum specimens were collected from one natural spring, a rheocrene, in the Röserental near 

Liestal, in Switzerland (for further information see von Fumetti & Nagel (2012)), and transported 
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in spring water with leaves from the spring to the laboratory. Individuals of both sexes were 

collected and their size ranged from about 8 mm to 14 mm body length, the majority of the 

gammarids being about 10 mm long. The wet weight of the gammarids used in these experiments 

ranged from 8 to 14 mg and the selected specimens showed no form of parasitism and their 

movement was not impaired. They were kept at 10 °C in the transport containers for 84 hours for 

acclimatisation to laboratory conditions before being used in an experiment. 

 

Conditioning of the leaf discs 

As the spring the gammarids were obtained from is surrounded mainly by beech trees, these leaves 

form the most important food source for many of the spring inhabitants including G. fossarum. 

Therefore we collected beech leaves (Fagus sylvatica L.) from the litter layer near the spring after 

abscission in autumn. The collected leaves were dried in an oven at 40° C and then stored as 

described by Bloor (2010). Leaf discs (Ø 1 cm) were cut out of these dried leaves with the help of a 

cork borer and then weighed. Twelve leaf discs (more info see below) were always weighed 

together and then placed together in numbered stainless steel herb infusers (Ø 9 cm). The infusers 

were submerged into aerated spring water with FPOM from the spring for conditioning at a water 

temperature of ±17 °C for four weeks. 

 

Measured physical and chemical parameters  

The oxygen saturation (%) and concentration (mg / L) as well as the pH and conductivity (µS / cm) 

of the spring water were measured in the field using portable meters (Wissenschaftlich-Technische 

Werkstätten, Weilheim, Germany). The phosphate (PO4
3-), nitrate (NO3

-), nitrite (NO2
-) and 

ammonia (NH4
+) concentrations (all in mg / L), of the spring water were measured with ICP-OES 

(SPECTRO MS, Spectro Analytical Instruments GmBh, Kleve, Germany). 

 

Choice of copper ion concentration 

In order to decide what sub-lethal concentration of copper ions to use for our experiments, we 

conducted LC50-tests with copper sulphate and G. fossarum at 10, 14 and 18 °C for 96 hours. 
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During this time the gammarids were not fed. The copper ion concentrations for the LC50 testing 

were chosen based on values from a previous study (Güven et al. 1999). Three temperatures were 

tested, using 126 gammarids per temperature with 18 per tested concentration. Two controls and 

five nominal concentrations namely 0.05, 0.08, 0.15, 0.3and 0.5 mg Cu2+ / L were tested. The 

actual test concentrations of the copper ions in the water were not tested owing to technical and 

financial restrictions. The LC50-values of these tests exhibited a clear pattern in that with higher 

temperatures less Cu2+ was tolerated by the gammarids; the LC50-value at 10 °C after 96 hours was 

0.239 mg Cu2+ / L, at 14 °C was 0.188 mg Cu2+ / L  and at 18 °C was 0.135 mg Cu2+ / L. The LC10-

value at 10 °C after 96 hours was 0.164 mg Cu2+ / L, at 14 °C was 0.100 mg Cu2+ / L and at 18 °C 

was 0.073 mg Cu2+ / L. Since the main experiments were designed to last 12 days (288 hours) we 

decided to run a small test with 10 gammarids at 10 °C for 12 days. These gammarids were fed ad 

libitum with Fagus sylvatica leaf discs because 12 days of starving would have stressed and 

weakened the gammarids additionally. The LC50-value at 10 °C after 288 hours was 0.304 mg Cu2+ 

/ L and the LC10-value was 0.167 mg Cu2+ / L (Table 1). The latter value is nearly identical to the 

one obtained at 10 °C after 96 hours (0.164 mg Cu2+ / L). The LC10-value of 0.164 mg Cu2+ / L 

received after 96 hours at 10 °C was thus chosen as the sub-lethal concentration for further feeding 

and ETS tests. By comparison copper salt concentrations in natural unimpacted waters are mainly 

influenced by the geology of the water shed of the area and are in the range of < 4.00 µg / L 

(Schönborn & Risse-Buhl 2013). In streams natural copper ion concentrations are 4 to 12 µg / L 

and in groundwater it is less than 0.1 µg / L (Standard Methods for the Examination of Water and 

Wastewater 1998). The copper salt concentration of impacted waters can be considerably higher, 

and in a stream in Northern Germany for example copper ion concentrations of up to 13 mg / L 

have been measured (Sridhar et al. 2001). 
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Table 1: LC50-values and confidence limits  

Temperature [°C], 
time [hours] 

LC50-value          
[mg Cu2+ / L] 

95% lower 
confidence limit 
[mg Cu2+ / L] 

95% upper 
confidence limit 
[mg Cu2+ / L] 

LC10-value          
[mg Cu2+ / L] 

95% lower 
confidence limit 
[mg Cu2+ / L] 

95% upper 
confidence limit 
[mg Cu2+ / L] 

10, 96 0.239 0.095 0.294 0.164 0.016 0.223 

14, 96 0.188 0.141 0.238 0.1 0.045 0.122 

18, 96 0.135 0.111 0.166 0.073 0.05 0.091 

10, 288 0.304 0.226 0.412 0.167 0.074 0.224 

 

Experimental design 

The experiments were conducted in a laboratory in four stainless steel flow channels. Each unit 

consisted of the actual flow channel (1 m x 0.4 m x 0.2 m), a tube through which water flowed into 

a rain barrel (60 litres) functioning as a water reservoir, an aquarium pump (EHEIM, compact 

1000, Deizisau, Germany) to pump the water into the channel and a cooling unit (Aqua Medic 

Titan 500, Blessendorf, Germany). The water temperature was regulated with this cooling unit with 

an accuracy of ± 0.5 °C. Eight plastic boxes (78 mm x 108 mm x 67 mm) were placed in every 

channel: four plastic boxes were filled with pure spring water (= control groups); the other four 

were filled with the chosen copper sulphate pentahydrate spring water solution of 0.164 mg Cu2+ / 

L (= experimental groups). Spring water from the spring from which the organisms were collected 

was used so that the presence of a natural microflora was given (Jonsson & Malmquist 2000). The 

copper ion concentration of the natural spring water was measured with ICP-EOS and found to be 

0.00 mg Cu2+ / L. The actual test concentration of copper ions in the water of every box in the 

experiments was not tested owing to technical and financial restrictions. Six test organisms were 

placed into each box; this correlates approximately with the natural population density (Jonsson & 

Malmquist 2000). Organisms were used regardless of their sex, as has been done in other studies 

(e.g. Cold & Forbes 2004; Alonso et al. 2010; Bundschuh et al. 2009). Twelve leaf discs were 

placed into every box of six gammarids as the food source. Each box was aerated by a pump (Tetra, 

APS 50, Melle, Germany) and an air outlet stone (Trixie, Nr. 85501, Tarp, Germany), which was 

renewed for every experiment. This ensured constant oxygen content of the water over the entire 

duration of the experiments. The photoperiod was 11 hours light, 13 hours dark. All flow channels 

were illuminated by two different aquaria-lights (Juwel Aquarium warm-lite and Juwel Aquarium 
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day-lite). The experiments all lasted twelve days. During this time the temperature was varied. 

Channel 1 was kept at 10 °C and functioned as the control channel regarding the water 

temperature. The water temperatures in the experimental channels were increased as follows: on 

the first day the water temperature was set at 10 °C, on the fifth day it was raised and on the ninth 

day it was raised further. The temperature regime of channel 2 was 10, 12, 14 °C, that of channel 3 

was 10, 14, 16 °C and that of channel 4 was 10, 16, 18 °C (Table 2). The experiments were 

repeated a total of 5 times to obtain 5 replicates.  

 

Table 2: Temperature regimes applied in the conducted experiments 1-5. Channel 1: control 

channel, kept at 10°C during the entire experiment. Date: start of the experiments. Deaths during 

the experiments are given in total numbers of the 48 per channel; all deaths occurred in the copper-

exposed groups and with rising water temperature more deaths occurred.  

Temperature regime   
channels 1 - 4               
days 4 – 8 – 12  

Exp 1:           
5/11/2012 
deaths  

Exp 2:             
10/12 /2012  
deaths 

Exp 3:           
7/1/2013 
deaths 

Exp 4:           
28/1/2013 
deaths 

Exp 5:             
25/2/2013 
deaths  

Total deaths per 
channel over all 
experiments 

10-10-10 °C 1 1    2 

10-12-14 °C 1   3  4 

10-14-16 °C 1 1 1  1 5 

10-16-18 °C   2 2 3   7 

 

Feeding activity 

Each flow channel held 4 boxes for feeding tests, 2 were copper-free, and 2 were with copper. The 

organisms were monitored daily for deaths and dead ones were removed from the boxes. At the end 

of the experiments all gammarids were preserved in 100% ethanol, dried at 40° C and weighed. 

The leaf discs they had fed on were also dried at 40°C and then weighed. Maltby et al. (2002) and 

many other authors using feeding activity as an endpoint for their experiments speak of feeding 

rates. However, considering that gammarids are shredders and hence do not necessarily eat all the 

leaf material they process we prefer to use the term feeding activity. We decided to determine an 

overall feeding activity at the end of each experiment, since it was of interest to us how the 

temperature elevations affected the feeding activity over the entire duration of the experiment. The 
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feeding activity was determined for every box, according to Maltby et al. (2002), for the 6 

organisms together, as described below: 

 

FA = ((Li × Control factor) - Lf) / (weight × time) 

 

where FA is the feeding activity, Li is the initial weight (mg) of the leaves, Control factor was 

determined experimentally by us and is the loss of weight of leaves during 12 days when no 

feeding takes place, Lf is the final weight (mg) of the leaves, weight is the dry weight of 

gammarids (mg) and time is the duration of experiment (days). 

 

ETS activity 

Each flow channel held 4 boxes for ETS tests, 2 were copper-free, and two were with copper. The 

ETS activity of the test organisms was determined according to the method originally developed by 

Packard (1971) and improved by G.-Toth (1999). All experiments started off at 10 °C; the 

experimental groups were then exposed to higher temperatures, while the controls were kept at 10 

°C. The ETS activity was always measured 48 hours after a steady water temperature had been 

reached in order to detect the influence of the changing water temperatures on the organisms at a 

cellular level. ETS assays were carried out on days 4, 8 and 12 of the experiments. Four test 

organisms out of one box with copper and four from one without copper, per flow channel, were 

used. In total 8 test organisms per temperature and a total of 32 gammarids per day were analysed. 

To conduct the ETS assay eight live gammarids were removed from the flow channels one 

by one using tweezers, placed on a tissue and gently patted dry. They were then weighed singly on 

a microbalance (XP6, METTLER TOLEDO, Greifensee, Switzerland), placed on a numbered 

aluminium sheet with some distilled water and then homogenised singly in the homogenisation 

tube without the distilled water, using 4ml of ice-cold homogenising buffer solution [0.1 M sodium 

phosphate buffer pH 8.4, 75 µM MgSO4, 0.15% (w/v) polyvinyl pyrrolidne, 0.2% (v/v) Triton-X-

100]. The homogenate was poured into a centrifuge tube and sonicated with an ultrasonic 

homogeniser (Bandelin Sonopuls HD2070, Berlin, Germany) for 20 seconds and stored in an ice 



 Chapter 3: Effects of Increased Temperatures on G. fossarum Under the Influence of Copper 

43 
 

solution. The homogenate was then centrifuged (Sigma 2-16 PK, Osterode am Harz, Germany) at 

0°C for 4 minutes at 10000 r.p.m., according to Simcic & Brancelj (2004). The supernatant (in 

triplicate) was incubated with 1.5 mL substrate solution [0.1 M sodium phosphate buffer pH 8.4, 

1.7 mM NADH, 0.25 mM NADPH, 0.2% (v/v) Triton-X-100] and 0.5mL reagent solution [2.5 mM 

2-p-iodo-phenyl-3-p-nitrophenyl-5-phenyl tetrazolium chloride] for 40 minutes at 10 °C. Stopping 

solution [formaldehyde (conc.):H3PO4 (conc.) = 1:1], 0.5mL, was added immediately after 

incubation and the formazan production determined spectrophotometrically with the spectroquant 

® Pharo 300 (Merck, Darmstadt, Germany) by measuring the absorbance of the sample at 490nm 

against the blank. 

In order to obtain a conversion to equivalent oxygen the ETS activity was calculated 

according to Kenner & Ahmed (1975) as follows: 

 

ETS activity (µL O2 / mg × h) = ((Abs490nm× Vr × Vh × 60) / (Va × Gw × t × 1.42) 

 

where Abs490nm is the absorption of the sample, Vr is the final volume of the reaction mixture 

(3mL), Vh is the volume of the original homogenate (4mL), Va is the volume of the aliquot of the 

homogenate (0.5mL), Gw is the gammarid wet weight (mg), t is the incubation time (minutes) and 

1.42 is the factor for conversion to volume oxygen. 

 

Data analysis 

The programme “EPA Probit Analysis Program, Version 1.5” (http://www.epa.gov/) was used to 

determine LC50- and LC10-values of G. fossarum specimens for copper sulphate. The programme is 

based on the method of probit analysis, which is a type of regression used to analyse binomial 

response variables, in this case concentration and mortality of the test individuals, always at the 

different temperatures. The method transforms the sigmoid dose-response curve to a straight line 

(Newmann, 2010). This line may be fitted by the method of weighted least squares (Litchfield & 

Wilcoxon, 1948). 
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The effects of the copper ion concentration and water temperatures on G. fossarum were 

tested using one and two way ANOVAs followed by Scheffes’s post-hoc tests. Prior to the 

ANOVA analyses assumptions of variance homocedasticity and data normality were tested using 

Levene’s and Kolgomorof-Smirnov’s tests. To correct for multiple single comparisons a 

Bonferroni-Holm correction was applied. The α-level was set at 0.05. Analyses were performed 

using the Statistical Package for Social Sciences (SPSS) version 21 for Windows (SPSS Inc, 

Chicago, IL, U.S.A.) 

 

Results 

Measured physical and chemical parameters  

The temperature of the spring water ranged from 10 to 11 °C; the pH ranged from 6.9 to 7.4; the 

electrical conductivity of the spring water ranged from 534 µS / cm to 684 µS / cm; the oxygen 

concentration was between 6.8 mg / L and 11.8 mg / L and the saturation between 65 % and 98 %; 

the phosphate (PO4
3-) and the nitrite (NO2

-) concentrations were < 0.05 mg / L; the ammonia (NH4
+) 

concentration of the spring water was < 0.1 mg / L and the nitrate (NO3
-) concentration was 

18.0 mg / L. 

 

Feeding activity 

The feeding activity ranged from 0.008 to 0.373 mg / mg × d. The lowest value was measured in a 

copper-exposed box in the control channel at 10°C and the highest in a copper-free box in an 

experimental group with the temperature regime 10-12-14 °C. A tendency towards higher feeding 

activity at the intermediate temperature regime 10-12-14 °C in the control group can be noted 

(Fig. 1). 

A two-way ANOVA showed that the copper ions did not have a significant effect on the 

feeding activity, F (1, 72) = 1.5, p = 0.225 and that temperature had a nearly significant effect, 

F (3, 72) = 2.612, p = 0.058. The interaction of temperature and copper ions was not significant, 

F (3, 72) = 0.807, p = 0.494. 
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Fig. 1 Calculated mean feeding activityof G. fossarum at the different conditions, with and without 

copper ion influence. The control channel (1) is always at 10 °C, the experimental channels (2, 3 

and 4) have temperature regimes which range from 10 ° to maximum 18 °C. Standard errors are 

represented by the error bars attached to each column. Pale grey: no copper, Dark grey: copper 

influence. 

 

ETS activity  

The ETS values ranged from 0.174 to 1.431µL O2 / mg × h. The lowest value was measured in a 

gammarid at 10 °C exposed to copper ions and the highest in a gammarid at 10 °C not exposed to 

copper ions. The ETS values of the gammarids not exposed to copper ions were all higher than the 

ETS activities of the gammarids exposed to copper ions (Fig. 2).  

A two-way ANOVA showed that the copper ions had a highly significant effect on the ETS 

activities of the gammarids F (1, 463) = 19.625, p < 0.001. The temperature also had a significant 

influence on the ETS activities F (4, 463) = 3.683, p = 0.006. The interaction of temperature and 

copper ions was not significant F (4, 463) = 0.527, p = 0.716. 

A one-way ANOVA comparing the different treatments (copper-free & copper-exposed) in 

the control channel, channels 2, 3 and 4 showed significant (p = 0.002; p < 0.001; p = 0.030; p = 

0.028, respectively) effects of copper (F 1,121 = 9.558; F 1,118 = 14.435; F 1,108 = 4.845; F 1,102 

=4.939, respectively). In all channels copper reduced the ETS activity (Fig. 2). 
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Fig. 2 Mean ETS activities of G. fossarum for all channels with their different temperature regimes, 

with and without copper ion influence. The control channel (1) is always at 10 °C, the experimental 

channels (2, 3 and 4) have temperature regimes which range from 10 ° to maximum 18 °C. 

Standard errors are represented by the error bars attached to each column. Pale grey: no copper, 

Dark grey: copper influence. Note: *** < 0.001, ** < 0.003, * < 0.05 

 

Temperature did not affect the ETS activity in channel 2 (F 2,118 = 1.75) significantly (p 

= 0.178), but did so significantly (p = 0.008; p < 0.001, respectively) in channels 3 and 4 (F 2,108 = 

5.017; F 2,102 = 9.903, respectively) increasing the ETS activity (Fig. 3a-c). 
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Fig. 3a-c Mean ETS activities of G. fossarum for the channels 2(a), 3(b) and 4(c) with their 

different temperature regimes, regardless of the copper ion influence. Standard errors are 

represented by the error bars attached to each column. Note: *** < 0.001, ** < 0.003, * < 0.05   

 

Discussion 

It is known that heavy metals affect the metabolic activity of organisms, their behavior and their 

distribution in the ecosystems and that temperature is a very important factor influencing this as 

well (Lemus & Chung 1999). Temperature has often been quoted to have an effect on the toxicity 

of pesticides and other pollutants (Fent 2013) and it has been shown that increasing temperatures 

increase the toxicity of copper (Holmstrup et al. 2010). We therefore assumed that higher water 

temperatures would significantly change the susceptibility of the tested organisms to copper.  

In our experiments the feeding activity was not significantly changed by the sub-lethal copper ion 

concentration or higher water temperatures; however a trend towards higher feeding activity at 

higher water temperatures could be seen. The ETS activity of G. fossarum increased significantly at 
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elevated temperatures and the presence of copper ions significantly lowered the ETS activity. Our 

findings demonstrate the benefit of using two different approaches when examining environmental 

changes on an organism. 

 

Feeding activity  

The chosen tree species can affect the feeding activity considerably and most feeding tests 

described in literature are conducted with Alnus glutinosa leaves (e.g. Cold & Forbes 2004; Felten 

et al. 2008; Bundschuh et al. 2009), these apparently being the preferred leaf species of G. 

fossarum and other detritivores (Haeckel et al. 1973; Naylor et al. 1990; Bloor 2009). We chose 

Fagus sylvatica as the food source because the springs from which the gammarids for this study 

were collected are surrounded by beech trees and we aimed to provide the gammarids with their 

natural food source. The feeding activities measured in this study are similar, albeit a bit lower, 

than those recorded by Maltby et al. (2002) with G. pulex. The feeding activity of our control group 

was however higher than the one recorded by Felten et al. (2008). In both cited studies alder leaves 

were used. The results of our study suggest that well-conditioned beech leaves are also a palatable 

food source for gammarids. 

Feeding tests conducted with G. pulex at different temperatures showed that the 

consumption rose with temperature (Nilsson 1974). In an in-situ study G. pulex had a lower feeding 

activity in April compared to August (Bloor & Banks, 2006). The authors suggest that this was 

owing to temperature stress: in April it was too cold and hence the organisms ate less. The 

gammarids used in our experiments were all collected in winter between November and March and 

so we do not expect any seasonal effects. In our study the higher water temperatures had nearly 

significant effects on the feeding activity, both in the copper-free and copper-exposed groups. 

Significance should be reached by longer test periods. In tests lasting 26 days we were able to show 

that increasing water temperatures increased feeding activity of G. fossarum significantly 

(Schmidlin et al. subm.). Coulaud et al. (2011) also found an increase of the feeding activity at 

elevated water temperatures for G. fossarum. The same has been shown for G. pulex by Maltby et 

al. (2002). A distinctly higher feeding activity of the gammarids not exposed to copper in the 
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condition 10 – 12 – 14 °C was observed. This temperature range is actually optimal for G. 

fossarum, as it has been shown that the ideal temperature for optimal reproduction lies at 12 °C 

(Pöckl & Humpesh 1990). 

In the control condition and condition 10-12-14 °C there was a slight trend towards lower 

feeding activity of the gammarids exposed to copper ions compared to the gammarids not exposed 

to copper ions. Previously a decreasing feeding rate of G. pulex when exposed to copper was 

measured (Taylor et al. 1993). The concentrations they used were between 0.01 and 0.150 mg / L 

Cu2+ and the highest one being nearly identical to the one used here. Their findings support our 

observation. It has been shown previously that the feeding rate of G. pulex decreased with 

increased cadmium ion concentrations (Felten et al. 2008; Alonso et al. 2009). Brief exposure of G. 

pulex to high concentrations of Lindane has been shown to have the largest effect on the feeding 

rate of G. pulex during the first 24 hours after exposure (Malbouisson et al. 1995). The feeding 

activities in our study may have been lower after the first few hours of exposure and then, owing to 

adaption, rise slightly to a constant level. We cannot be sure of this because we determined a 

feeding activity for the entire duration of the experiment. 

We assumed that higher temperatures would enhance the negative effects of copper ion 

exposure and so reduce the feeding activity. Furthermore we assumed that elevated temperatures 

would cause higher metabolic activity and so an increase in feeding activity would take place. 

Higher temperatures did not cause a clear increase in the feeding activity of G. fossarum in this 

study and the copper ions did not significantly reduce the feeding activity. A reason for the copper 

ions not having a significant effect on the feeding activity is most likely because a sub-lethal 

copper ion concentration was chosen for these tests. A further reason may be that partial adsorption 

of the copper ions to the leaf discs (Tattersfield 1993) reduced the copper ion concentration in the 

water and this in turn might explain why the feeding activity at the higher temperatures was not 

significantly higher. The average water temperatures of the four channels (10 °C, 12 °C, 13.3 °C 

and 14.7 °C) are not as different from each other as the temperature regimes might suggest, but the 

temperature jumps are far more important, since these doubtlessly affected the gammarids. The 

temperature jumps in channels 3 and 4 are extreme. We speculate that the gammarids had to first 
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become accustomed to the much higher temperature (i.e. from 10 °C to 14 °C and 10 °C to 16 °C) 

before they resumed feeding which resulted in an overall similar feeding activity to the control   

10- 10-10 °C. The feeding activity of G. fossarum was highest in the channel 2, where the jumps of 

2 °C from 10 °C to 12 °C and then to 14 °C effectively made the conditions for G. fossarum more 

optimal. 

 

ETS activity 

Our ETS results show that a change on the cellular level of the organisms was caused both by 

increased temperature and copper ion exposure. In two previously published studies the ETS 

activities for G. fossarum ranged from 0.4 to 0.48 µL O2 / mg × h and from 0.39 to 0.45 µL O2 / mg 

× h (Lukancic et al. 2010; Simcic 2005). During fasting the ETS activity of G. fossarum has also 

been found to be in a similar range (0.36 to 0.58 µL O2 / mg × h) (Mezek et al. 2010). These 

activities are just slightly lower than the ones recorded in our study. 

With rising water temperatures we measured a significant increase of the ETS activity of 

G. fossarum within the copper-free and copper-exposed groups in channels three and four. An 

increase in ETS activity with increasing water temperatures has also been observed e.g. for daphnid 

species and hybrids: both juveniles and adults displayed a higher ETS activity at higher 

temperatures (Simcic & Brancelj 1997; Simcic & Brancelj 2004). The absolute ETS activities of 

channels two, three and four are lower than those of the control channel at the same point in time. 

This can be explained by two competing factors: with higher temperatures the metabolism of the 

organisms is more efficient, on the other hand the oxygen concentration is lower the higher the 

temperature becomes. 

G. fossarum exposed to copper showed significant decreases in ETS activity compared to 

those in pure spring water. It has been shown that a copper ion concentration of 10 µg Cu2+ / L 

caused a small but significant increase in the ETS activity of mixed zooplankton while the lower 

concentration of 5µg Cu2+ / L had no significant effect (Bamsted 1980). On the other hand it has 

been found that Atrazine and Imidacloprid reduced the ETS activity of G. fossarum (Lukancic et al. 

2010). Bamsted’s observation of an increase in ETS activity emphasizes that different taxa react 
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differently to metal pollution. It has also been demonstrated that cadmium and chromium affected 

the ETS activity of Daphnia magna differently: cadmium did not affect cellular respiration after 

48 hours of exposure; chromium however caused an increase after 48 hours and a decrease after 

96 hours of exposure in the ETS activity (De Coen & Janssen 2003). This is similar to the ETS 

activities we measured in the copper-exposed gammarids at the temperature regimes 10 to 14 °C 

and 10 to 16 °C, where the ETS activity did not increase continuously but fluctuated. Many 

enzymes are organometallic compounds (Meyer 2001) and hence one would expect heavy metals 

to have some effect on the enzyme activity which would reflect in the ETS activity.  

 

Implications for springs 

The results of this study show that the exposure to Cu2+ ions coupled with a higher temperature has 

the potential to be stressful to G. fossarum. A temperature elevation on its own, however, is 

unlikely to be very problematic for eurythermal species as can be seen from our results. In a study 

by Pöckl et al. (2003) it was concluded that a temperature rise in rivers with a current mean 

temperature of 7 to 10 °C would not affect G. fossarum and G. roeseli greatly, but a warming of 

colder rivers would have a positive effect for the gammarids and that a warming of already warm 

flowing waters would be negative. His study underpins our assumption that G. fossarum is fairly 

tolerant towards slightly elevated temperatures, with the clear understanding that these do however 

influence their life history, especially when coupled with pesticides and other pollutants, and that 

larger temperature elevations of more than 4 °C are problematic. However, G. fossarum has a 

narrower distribution than G. pulex because it is more sensitive to environmental variables and is 

also often more sensitive towards pollutants (Alonso et al. 2010). G. fossarum probably also does 

not occur in warmer waters because G. pulex is the stronger of the two competitors, being more 

robust towards higher water temperatures up to 27 °C (Foucreau et al., 2014; Sutcliffe et al., 1981) 

and so G. fossarum is forced into colder waters. 

Assuming Global Change raises temperatures further this might nevertheless bring the 

gammarids into difficulties, because raised metabolisms and hence higher feeding activity could 

cause food to become a limiting factor, because allochthonous in-put of leaf litter is finite. 
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Although springs are known for their clean water, pollution of these unprotected habitats in 

Switzerland (Zollhöfer, 1997) can occur. Our study demonstrates the importance of clean spring 

water for organisms, especially when an increase in water temperatures cannot be prevented. The 

findings emphasize the need for springs and headwaters and their species to be protected from 

pesticide inputs and other forms of pollution and to be monitored regularly. We worked with G. 

fossarum in this study as an abundant representative of spring species and have been able to show 

that a gradual temperature elevation will probably not pose a problem for G. fossarum and other 

eurythermal species. G. fossarum nevertheless reacted when exposed to copper ion and elevated 

temperatures. It can be deduced that exposure to a pollutant will be tolerated even worse by cold-

stenothermal organisms and they will most probably react much more sensitively to elevated 

temperatures. It has been shown that the respiratory ETS activity in cold-stenothermal and 

eurythermal chironomid larvae from high mountain lakes increased with rising temperatures for 

two chironomid genera (Simcic et al. 2005). Different responses to temperature changes were 

observed between cold-stenothermal and eurythermal genera, especially at high temperatures. The 

findings of Simcic et al. (2005) are in accordance with the assumption that cold-stenothermal 

spring species would react even more sensitively to temperature changes. While the ability of 

survival of many species may decrease, a few species might find more ecological niches to live in 

and hence their populations might increase. A consequence of environmental pollution and changes 

will, however, presumably be an overall loss of biodiversity in springs. 

 

Conclusions 

Higher water temperatures increase the metabolic activity of G.fossarum and copper ions have a 

tendency to decrease the feeding activity and significantly decrease ETS activity of the tested 

organisms. G. fossarum can cope with a slight elevation in temperature; copper however impairs its 

general fitness. The ETS assay has proved to be more sensitive in detecting the effects of sub-lethal 

copper ion concentrations on the metabolic activity of G. fossarum than the feeding tests. Therefore 

we propose the usage of the ETS assay in addition to the well-established feeding tests for more 
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detailed results. Further experiments will be conducted with a cold-stenothermal species in order to 

test its responses to a temperature increase and exposure to copper. 
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Abstract  
The specialised fauna of freshwater springs is affected by contamination of the water with 
xenobiotics from human activities in the surrounding landscape. We assessed the effects of 
exposure to toxins in laboratory and field experiments by using copper sulphate as a model 
substance and Gammarus fossarum Koch, 1836, as the model organism. This amphipod is a 
common representative of the European spring fauna and copper is a widespread contaminant, 
mainly from agricultural practice. The experiments were conducted in test chambers placed in flow 
channels and directly in a spring. The gammarids were fed with conditioned beech leaf discs, 
which had been exposed to a 0.8 mg Cu / L solution for 96 hours. The feeding activity of the 
amphipods was quantified on the level of the organism; and the respiratory electron transport 
system (ETS) assay was conducted in order to determine changes on the cellular level in the test 
organisms. The results show that the feeding activity when the leaf discs were contaminated with 
copper was not significantly different from the control. The ETS activity of the gammarids which 
had been feeding on the copper contaminated leaf discs was however significantly reduced. The 
results followed the same pattern for gammarids from both the laboratory and the spring. By 
conducting the experiments not only in a laboratory but also directly in a spring in the field, we 
took a crucial step towards a more realistic approach when examining environmental pollutants on 
an organism. Our findings demonstrate the importance of conducting experiments out in the field, 
in natural conditions, as well as in the laboratory. 
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1. Introduction  

Pollution of our freshwaters is taking place rapidly, for example through pharmaceutical 

compounds, fertilisers and pesticides. Terrestrially applied pesticides are flushed into springs and 

rivers through runoff. This will take place more regularly when heavy rainfalls occur more 

frequently as a consequence of Global Change which is causing an increase in extreme events such 

as floods in the temperate regions (IPCC, 2007). An increase of the mean winter precipitation in the 

northern and western part of Switzerland and an increase of heavy precipitation events is 

documented for Switzerland (Schmidli et al., 2002; Schmidli & Frei, 2005). 

Copper salts are important ingredients in many fungicides and fertilisers used in agriculture 

(e.g. de Oliveira-Filho et al., 2004) for example in vineyards (e.g. Ruyters et al., 2013) and are one 

of the most widespread contaminants (Debelius et al., 2009). Contamination of leaf litter with 

copper can happen, for example, in vineyards where fungicides containing copper are applied. 

Owing to its non-degradability, copper moves up food webs and is distributed in the entire biotic 

compartment of freshwaters (Lebrun et al., 2012). Copper concentrations in natural unimpacted 

waters are mainly influenced by the geology of the watershed of the area and are typically less than 

4 µg / L (Schönborn & Risse-Buhl, 2013). The copper concentration of impacted waters can be 

considerably higher, reaching more than 10 mg / L (e.g. Sridhar et al., 2001). Although a certain 

amount of copper is essential for most organisms, it is extremely toxic for aquatic organisms 

beyond certain threshold levels (Prato et al., 2013). Copper poses a threat to many aquatic 

organisms when available in excess in water (De Martinez Gaspar Martins et al., 2011). A 

consequence of exposure to copper salts is the accumulation of these ions in the tissues of the 

exposed organisms. Bioaccumulation of copper has been observed in different aquatic species (e.g. 

Tattersfield, 1993; Reichmuth et al., 2010; Pinho et al., 2011).  

Amphipods are frequently used as bioindicators in aquatic toxicity tests owing to their 

prolific breeding, high abundance in nature and sensitivity to anthropogenic compounds (e.g. 

Ladewig et al., 2006) such as metal ions in water bodies which they inhabit. Amphipods mainly 

take up ions via their gills since these are a large adsorptive organ system (Reichmuth et al., 2010) 

making them especially susceptible to water-borne pollutants (Rinderhagen et al., 2000).  
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The genus Gammarus is most commonly used in experiments in Europe (e.g. Brooks & 

Mills, 2003; Fialkowski et al., 2003; Dedourge-Geffard et al., 2009; Coulaud et al., 2011). 

Gammarids are also often more sensitive than Daphnia magna Straus, 1820 (Gerhardt, 2011) 

towards different types of pesticides, such as neurotoxic substances and especially pyrethroids. 

Gammarus fossarum Koch, 1836 (Crustacea; Amphipoda) is a relatively robust and abundantly 

occurring member of the macrozoobenthos of European springs. It inhabits springs and spring 

brooks in mountainous regions of central Europe (Janetzky, 1994; Pöckl et al., 2003). G. fossarum 

is a key species (e.g. Dangles et al., 2004) that mainly acts as an efficient shredder, but also feeds 

on fine particulate organic matter (FPOM) (Moog 1995). It plays a fundamental role in organic 

matter breakdown in springs and spring brooks and hence in the distribution of coarse particulate 

organic matter (CPOM) and FPOM (Wagner 1990; Simcic & Brancelj, 2006). G. fossarum, a 

typical inhabitant of running waters rich in oxygen (Lukancic et al., 2009) and low pH, is more 

sensitive than Gammarus pulex (L.) (e.g. Rinderhagen et al., 2000; Alonso et al., 2010) towards 

contamination of water and low oxygen. For these reasons G. fossarum can be deemed a suitable 

organism for assessing impacts of pollution and it is readily used in ecotoxicological assays (e.g. 

Westram et al., 2011; Gerhardt, 2011; Maltby et al., 2002). 

Laboratory experiments guarantee reproducibility of the results by exactly defining the test 

conditions. They provide numerous replicates and are suitable for a variety of experiments on 

different biological levels, for example the population level. Furthermore they are useful tools 

when assessing contamination effects on certain species. Quite a few studies on laboratory 

experiments concerning the effects of copper exposure on freshwater species have been published 

(e.g. Sroda & Cossu-Leguille, 2011; Reichmuth et al., 2010). However, laboratory conditions are, 

depending on the experimental design, far from natural (e.g. petri dishes, static), usually very 

standardised and optimised so that species might react differently under natural conditions. 

Laboratory experiments conducted in flow channels provide a certain degree of reproducibility and 

control and are much more realistic than other laboratory experiments. Experiments in artificial 

flow channels are more suitable than other laboratory set-ups, especially for stream invertebrates. 

Mesocosms have been used in artificial indoor streams (e.g. Böttger et al., 2013) and in a few 
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natural streams (e.g. Coulaud et al., 2011). Furthermore, flow-through microcosms were used to 

analyse the impact of elevated temperature on the emergence of the mayfly Baetis bicaudatus 

Dodds (Harper & Peckarsky, 2006). However, the best approach to natural conditions is gained 

with field experiments, which are generally not easy to establish and usually lack reproducibility 

but are crucial for understanding for example the real effects of pollutants on certain species in the 

field. 

In this study, we conducted feeding tests and the respiratory Electron Transport System 

(ETS) assay in order to determine the effects of copper contaminated leaf discs on G. fossarum 

both in the laboratory in artificial flow channels and in the field, using test chambers. The feeding 

activity is a suitable non-lethal endpoint (Pestana et al., 2007) and gives insight into the metabolic 

activity of the organisms, on the level of the organism. It has been used widely in the last decade in 

many different experiments (e.g. Bundschuh et al., 2009; Dedourge-Geffard et al., 2009). The ETS 

assay was conducted to quantify the effects of the copper on the cellular level of the organisms. 

The ETS is an enzyme system found in the inner mitochondrial membranes of eucaryotes which 

controls the oxygen consumption (G.-Toth, 1999) and the results reflect the maximum oxygen 

consumption when all enzymes are functioning optimally (Kenner & Ahmed, 1975).  

Our aims were to find out how G. fossarum reacts to a copper-contaminated food source 

and to see if results from the laboratory differed to those from the field.  

 

2. Materials and Methods 

2.1. Sampling site 

Specimens were collected from one natural rheocrene in the Röserental near Liestal, in Switzerland 

(see von Fumetti et al., (2007)). They were pipetted with a turkey baster into white trays and 

counted out for use in the spring and laboratory. Individuals of both sexes were collected and their 

average wet weight was 11.1 ± 5.2 mg. Organisms were used regardless of their sex, as has been 

done in other studies (e.g. Cold & Forbes 2004; Bundschuh et al. 2009; Alonso et al. 2010). 

Selected specimens showed no sign of being parasitised and their movement was normal. 

Specimens for use in the laboratory were transported in closed plastic boxes with spring water and 
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leaves from the spring. They were then kept in the transport containers at 10 °C for 46 hours, for 

technical reasons not 48 hours owing to transport time, for acclimatisation to laboratory conditions 

before being used in an experiment. 

The temperature of the spring water was 10.4 ± 0.1 °C. The pH was 7.1 ± 0.2 and the 

electrical conductivity of the spring water was 571.2 ± 17.7 µS / cm. The oxygen concentration was 

7.3 ± 1.5 mg / L and the saturation was 68.0 ± 13.9 %. They were all measured using portable 

meters (Wissenschaftlich-Technische Werkstätten, Weilheim, Germany).  

The nutrients phosphate (PO4
3-), nitrate (NO3

-), nitrite (NO2
-) and ammonia (NH4

+) of the 

spring water were measured with Inductively Coupled Plasma Optical Emission Spectroscopy 

(ICP-OES) (SPECTRO MS, Spectro Analytical Instruments GmBh, Kleve, Germany). The nitrate 

concentration of the spring water was 18.0 mg / L, the nitrite < 0.05 mg / L, the ammonia 

concentration < 0.1mg / L and the phosphate < 0.5 mg / L. 

The copper concentration of the natural spring water measured with ICP-OES was found to 

be smaller than 0.001 mg Cu / L. The spring water has a ionic composition as follows: potassium 

(Na+) 2.5 mg / L, calcium (Ca2+) 106.5 mg / L, magnesium (Mg2+) 7.9 mg / L, chloride (Cl-) 12.7 

mg / L and sulphate (SO42-) 33.9 mg / L. The carbonate hardness is 24.7 mg / L. The spring water 

exhibits a total hardness of 29.9 mg / L. 

 

2.2. Conditioning of the leaf discs 

The spring from which the gammarids were obtained is surrounded mainly by beech trees. These 

leaves form the most important food source for its inhabitants including G. fossarum. Therefore, 

we collected beech leaves (Fagus sylvatica L.) from the litter layer near the spring after abscission 

in autumn 2013. The collected leaves were first washed, dried in an oven at 40 °C and then stored 

as described by Bloor (2010). Leaf discs (diameter 1 cm) were cut out of the collected leaves using 

a cork borer. Ten leaf discs were always weighed together and then placed together in numbered 

stainless steel herb infusers (Ø 9 cm). The infusers were submerged into aerated spring water with 

fine particulate organic matter from the spring for conditioning. They were conditioned at a water 

temperature of 17 ± 0.5 °C for four weeks. 
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2.3. Choice of copper concentration for leaf disc exposure 

We conducted pre-tests with beech leaf discs using the following nominal copper concentrations 

(all in mg Cu / L): 0.4, 0.8, 1.6, 3.2 and 6.4, in order to decide to which copper concentration to 

expose the leaf discs in our experiments. The range of 0.4 to 6.4 mg Cu / L was chosen loosely on 

previously conducted LC50-tests (see Schmidlin et al., 2014). We started off with a ten times higher 

concentration than for the LC50-tests and then always doubled the concentrations in order to obtain 

a concentration range suitable for testing. Copper sulphate penta-hydrate (CuSO4*5H2O, Merck, 

Lot no. A921690 717) was used together with spring water to make up all solutions. The results of 

the pre-tests suggested using a nominal copper concentration of 0.8 mg Cu / L for leaf discs 

exposure. After four weeks conditioning time the leaf discs were placed into 250 ml beakers and 

soaked for 96 hours before use in the experiments: those destined for the control in 200 ml pure 

spring water and those for the experimental groups in 200 ml of the chosen copper spring water 

solution. This procedure was based on Abel & Bärlocher, who exposed oak leaf discs to cadmium 

(1988). 

 

2.4. Experimental design: laboratory and spring 

The experiments were carried out both in a laboratory and in a natural spring using test chambers. 

The test chambers were flow-through systems, consisting of a sheer 95 mm long plastic tube with a 

diameter of 85 mm and on the one end a mesh net (0.5 mm net size) which was held to the tube by 

a cable binder and silicon. At the other end was a removable lid for addition of leaf discs and 

gammarids. The lids were soft plastic where the centre parts were replaced by mesh netting stuck 

on with silicon and sewn on with fishing line, so that water could flow through the test chambers. 

In the laboratory the experiments were conducted in two stainless steel flow channels, one held the 

experimental group and the other the control group. Each unit consisted of the actual flow channel 

(1 m x 0.4 m x 0.2 m), a tube through which spring water flowed into a rain barrel (60 litres) 

functioning as a water reservoir, an aquarium pump (EHEIM, compact 1000, Deizisau, Germany) 

to pump the water into the channel and a cooling unit (Aqua Medic Titan 500, Blessendorf, 

Germany). The water temperature was kept at 10 °C with an accuracy of ± 0.5 °C. Spring water 
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from the spring from which the organisms were collected was used so that the presence of a natural 

microflora was given (Jonsson & Malmquist, 2000). Five test chambers were placed into every 

channel; two per channel were for feeding tests and the other three for ETS testing. In the control 

the gammarids were fed non-contaminated leaf discs and in the experimental groups the gammarids 

were fed copper contaminated leaf discs. The photoperiod was 11 hours light and 13 hours dark.  

The field experiments were conducted in a spring with the amount of copper smaller than 

0.001 mg Cu / L in the Swiss Jura, from which the gammarids had been taken. In the field the five 

test chambers with non-contaminated leaf discs were positioned in the upper reach of the spring 

and the other five below these. The test chambers were attached with cable binders to large 

stainless steel nails which were hammered into the bed of the spring. 

Both in the laboratory and the field six test organisms were placed into each test chamber. 

Ten conditioned leaf discs were placed into every test chamber as the food source and for shelter. 

Each experiment lasted seven days and was repeated a total of six times to obtain six replicates. 

The experiments were conducted from February to April 2014. 

Both in the laboratory and field the test chambers 1, 2, 6 and 7 were destined for feeding 

tests. The other test chambers were reserved for ETS testing. Test chambers 1 to 5 held copper-free 

leaf discs; test chambers 6 to 10 held copper-contaminated leaf discs. 

In the laboratory the organisms were monitored daily for deaths and these were removed 

from the test chambers. In the field the test chambers were untouched during the duration of the 

experiments. Few deaths occurred both in the laboratory and field, the maximum mortality rate 

being 5 %. 

 

2.5. Copper accumulation: in leaf discs and gammarids 

The copper content of the leaf discs and gammarids used in our experiments were determined with 

ICP-OES (SPECTRO MS, Spectro Analytical Instruments GmBh, Kleve, Germany) by extracting 

the copper from these tissues. For this, the leaf discs and gammarids were dried at 40 °C, weighed 

and then placed separately in test tubes containing 10 ml of 2M HNO3. The tubes were placed in a 

rack in a boiling water bath for extraction for 2 hours. The content of these tubes was then filtered 
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and the liquid stored in clean plastic tubes shut tightly. Before measuring the copper content, the 

leaf disc samples were diluted 5 or 10 times with 3 % HNO3. The gammarid samples were not 

diluted in this manner. The leaf discs of the laboratory and spring were analysed separately by their 

location. Since the sample size of the analysed gammarids was so limited they were analysed 

together, regardless of their location. 

 

2.6. Feeding activity: laboratory and spring 

At the end of the feeding experiments all gammarids were preserved in 100 % ethanol, dried at 40 

°C and weighed. The leaf discs on which they had fed were also dried at 40 °C and then weighed. 

Maltby et al. (2002) and many other authors using feeding activity as an endpoint for their 

experiments speak of feeding rates; considering that gammarids are shredders and hence do not 

necessarily eat all the leaf material they process, we prefer to use the term feeding activity. The 

feeding activity was determined for every box, according to Maltby et al. (2002), for the 6 

organisms together, as described below: 

 

FA = ((Li × Control factor) - Lf) / (weight × time) 

 

where FA is the feeding activity, Li is the initial dry weight (mg) of the leaves, Control factor is the 

loss of weight of leaves during 7 days when no feeding takes place (experimentally tested), Lf is 

the final dry weight (mg) of the leaves, weight is the dry weight of gammarids (mg) and time is the 

duration of experiment (days).The dry weight of six gammarids together, as used in the feeding 

tests, was on average 14.5 ± 3.5 mg.  

 

2.7. ETS activity: laboratory and spring 

The ETS activity of the test organisms was determined according to the method originally 

developed by Packard (1971) and improved by G.-Toth (1999). The ETS activity was always 

measured at the end of every experiment. All six specimens from one test chamber were removed 

and placed together in a numbered plastic tube which was immediately put into a container with 
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liquid nitrogen, LN2 voyageur 5 (Carbagas, Gümligen, Switzerland). This was done both in the 

laboratory and field. The tubes were removed from the liquid nitrogen container after 1 hour and 

stored in a fridge at 4 °C for approximately 20 hours until being analysed. Liquid nitrogen has been 

used before in the ETS assay for fixation of Daphnia magna (De Coen, 2003) and of tissue of 

crayfish (Simcic et al., 2014). 

In total 18 test organisms per treatment giving a total of 36 gammarids per experiment, 

both in the laboratory and field, giving a total of 72 gammarids, were analysed.  

To conduct the ETS assay nine gammarids were removed from the plastic tubes, one by 

one, placed on a tissue and gently patted dry. They were then weighed singly on a microbalance 

(XP6, METTLER TOLEDO, Greifensee, Switzerland), and placed on a numbered aluminium 

sheet. The gammarids were then homogenised singly in the homogenisation tube, using 4ml of ice-

cold homogenising buffer solution [0.1 M sodium phosphate buffer pH 8.4, 75 µM MgSO4, 0.15 % 

(w/v) polyvinyl pyrrolidone, 0.2 % (v/v) Triton-X-100]. The homogenate was poured into a 

centrifuge tube and sonicated with an ultrasonic homogeniser (BandelinSonopuls HD2070, Berlin, 

Germany) for 20 seconds and stored in an ice solution. The homogenate was then centrifuged 

(Sigma 2-16 PK, Osterode am Harz, Germany) at 0 °C for 4 minutes at 10000 r.p.m., according to 

Simcic & Brancelj (2004). The supernatant (in triplicate) was incubated with 1.5 mL substrate 

solution [0.1 M sodium phosphate buffer pH 8.4, 1.7 mM NADH, 0.25 mM NADPH, 0.2 % (v/v) 

Triton-X-100] and 0.5 mL reagent solution [2.5 mM 2-p-iodo-phenyl-3-p-nitrophenyl-5-phenyl 

tetrazolium chloride] for 40 minutes at 10 °C. Stopping solution [formaldehyde (conc.):H3PO4 

(conc.) = 1:1], 0.5 mL, was added immediately after incubation and the formazan production 

determined spectrophotometrically with the spectroquant® Pharo 300 (Merck, Darmstadt, 

Germany) by measuring the absorbance of the sample at 490 nm against the blank. 

In order to obtain a conversion to equivalent oxygen the ETS activity was calculated 

according to Kenner & Ahmed (1975) as follows: 

 

ETS activity (µL O2 / mg × h) = ((Abs490nm×Vr×Vh× 60) / (Va ×Gw× t × 1.42) 
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where Abs490nm is the absorption of the sample, Vr is the final volume of the reaction mixture (3 

mL), Vh is the volume of the original homogenate (4 mL), Va is the volume of the aliquot of the 

homogenate (0.5 mL), Gw is the gammarid weight (mg), t is the incubation time (minutes) and 1.42 

is the factor for conversion to volume oxygen. The weight of a single gammarid used in the ETS 

experiments was on average 10.7 ± 5.2 mg. 

 

2.8. Data analysis 

Standard calculations were done with Microsoft Office Excel 2007. The analyses of variance 

(ANOVAs) were calculated using the Statistical Package for Social Sciences (SPSS) version 22 for 

Windows (SPSS Inc, Chicago, IL, U.S.A.). Two-way and one-way ANOVAS were conducted to 

test the copper influence (contaminated leaf discs) and the influence of location (laboratory or 

spring) on the feeding and ETS activities of the test organisms. Variance homogeneity was tested 

with the Levene-Test and the data variance was found to be homogeneous. The α-level was set 

at 0.05. 

 

3. Results 

3.1. Copper accumulation: in leaf discs and gammarids 

The average copper content in the leaf discs not exposed to copper was 0.09 ± 0.02 mg Cu / g leaf 

disc. The average copper content in the leaf discs exposed to copper was 0.7 ± 0.9 mg Cu / g leaf 

disc. The lowest value was measured in leaf discs not exposed to copper in the laboratory and the 

highest in leaf discs exposed to copper in the laboratory. The mean copper content in the leaf discs 

not exposed to copper were all lower than the copper content in the leaf discs exposed to copper. 

A one-way ANOVA comparing the different treatments (copper-free & copper-exposed) 

revealed a significant effect of the copper on the copper content of the leaf discs in the laboratory, 

F1, 25= 6.73, p = 0.018 and in the spring, F1, 25 = 10.81, p = 0.003 in that those leaf discs exposed to 

copper had significantly more copper than those not exposed (Fig. 1). A comparison of the 

locations (laboratory and spring) under no copper influence revealed no significant effect on the 

copper content of the leaf discs, F1, 25 = 0.18, p = 0.674. A comparison of the locations under copper 



 Chapter 4: Copper Reduces the Metabolic Activity of G. fossarum  

69 
 

influence also revealed no significant effect on the copper content of the leaf discs, F1, 25 = 1.70, p = 

0.204 (Fig. 1). 

The mean copper content in the gammarids ranged from 0.05 to 0.11 mg Cu / g of 

gammarid tissue. The lowest value was measured in a gammarid not exposed and the highest in a 

gammarid exposed to copper. A one-way ANOVA comparing the different treatments revealed no 

significant effect on the copper content of the gammarids, F1, 11= 3.00, p = 0.111 (Fig. 1). 

 

 
Fig. 1 Mean copper ion content of the leaf discs both in the laboratory and in the spring. Standard 

errors are represented by the error bars attached to each column. White: copper-free, Dark grey: 

copper-exposed. Note: treatment ** < 0.004, * < 0.05 

 

3.2. Feeding activity: laboratory and spring 

The average feeding activity was 0.12 ± 0.06 mg / mg × d. Both the lowest and highest value was 

measured in a test chamber exposed to copper in the spring.  

A two-way ANOVA over all the feeding activity data showed that the treatment (copper-

free and copper-exposed) did not have a significant effect on the feeding activity of the gammarids 

F1, 44= 0.106, p = 0.747 but the location (laboratory and spring) had a highly significant effect on 

the feeding activity of the gammarids F1, 44= 12.724, p = 0.001. The interaction of treatment and 

location was found to be insignificant, F1, 44= 0.732, p = 0.397. 

A one-way ANOVA comparing the different treatments revealed no significant effect on 

the feeding activity in the laboratory, F0, 22 = 0.17, p = 0.680 or in the spring, F1, 22 = 0.58, p = 0.451. 
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A comparison of the locations under no copper exposure revealed a significant effect on the 

feeding activity, F1, 22 = 4.16, p = 0.053, in that the feeding activity of the gammarids in the 

laboratory was higher than of those in the spring (Fig. 2). A comparison of the locations with 

copper exposure revealed a significant effect on the feeding activity, F1, 22 = 8.75, p = 0.007, in that 

the feeding activity of the gammarids in the laboratory was higher than of those in the spring 

(Fig. 2). 

 

 
Fig. 2 Calculated mean feeding activity of G. fossarumin the laboratory and in the spring. The data 

was obtained between February and May 2014 and is pooled. Standard errors are represented by 

the error bars attached to each column. White: copper-free, Dark grey: copper-exposed. 

 

3.3. ETS activity: laboratory and spring 

The average ETS activity was 0.6 ± 0.3 µL O2 / mg × h. The lowest activity was measured in a 

gammarid exposed to copper in the spring and the highest in a gammarid exposed to copper in the 

laboratory. The mean ETS activities of the gammarids not exposed to copper were all higher than 

the ETS activities of the gammarids exposed to copper. 

A two-way ANOVA over all the ETS data showed that both the treatment (copper-free and 

copper-exposed)  F1, 418 = 32.914, p < 0.001 and the location (laboratory and spring) had a highly 

significant effect on the ETS activity of the gammarids F1, 418 = 32.914, p < 0.001 and F1, 418 = 

38.014, p < 0.001, respectively. The interaction of treatment and location was also found to be 

significant, F1, 418 = 5.464, p = 0.020. 
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A one-way ANOVA comparing the different treatments revealed a highly significant effect 

on the ETS activity in the laboratory, F1, 206= 29.49, p < 0.001 and in the spring, F1, 212 = 6.42, p = 

0.012 in that the copper reduced the ETS activity of the gammarids (Fig. 3). A comparison of the 

locations with no copper exposure revealed a highly significant effect on the ETS activity of the 

gammarids, F1, 208= 36.56, p < 0.001, in that the ETS activity of the gammarids in the laboratory 

was higher than of those in the spring (Fig. 3). A comparison of the locations with copper exposure 

revealed a significant effect on the ETS activity, F1, 220= 7.29, p = 0.008, in that the ETS activity of 

the gammarids in the laboratory was higher than of those in the spring (Fig. 3). 

 

 
Fig. 3 Mean ETS activities of G. fossarum both in the laboratrory and spring. The data was 

obtained between February and May 2014 and is pooled. Standard errors are represented by the 

error bars attached to each column. White: copper-free, Dark grey: copper-exposed. Note: 

treatment *** < 0.001, * < 0.05 

 

4. Discussion 

4.1. Copper accumulation 

Heavy metals affect the metabolic activity of organisms, their behaviour and their distribution in 

the ecosystems (e.g. Lemus & Chung, 1999). It is known that many freshwater species, such as the 

highly endangered freshwater pearl mussels (Nagel, 1990) and amphipods, accumulate metals in 

their systems by absorption from the surrounding water and sediment or through ingestion of food 

(e.g. Abel & Bärlocher, 1988; Weeks, 1992).  In our experiments it was shown that copper was 

absorbed by leaf discs exposed to a copper solution for 96 hours. Obviously adsorption of the 
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copper to the leaf discs took place, as has been previously described (Tattersfield, 1993). The 

location (laboratory versus spring) did not have an effect on the concentration of copper in the leaf 

discs. It can be assumed that an eluviation of the copper did not occur, and the adsorption was 

stable. Our experiment is therefore a realistic approach for assessing the impact of contaminated 

food on macroinvertebrates. 

The copper concentration of the gammarids fed with contaminated and non-contaminated 

leaf discs did not differ significantly; there was no net accumulation of copper, this means that 

uptake and excretion were balanced. Reasons for the insignificance may lay in the fact that sample 

sizes were too small for statistical testing.  It has recently been concluded that G. pulex is a suitable 

biomonitor to quantify the bioavailabe fraction of copper in freshwaters (Lebrun et al., 2012). This 

also seems to be true for G. fossarum. Copper ions are essential for oxygen transport in 

haemocyanin, but if the up-take is in excess, then accumulation can occur (Reichmuth et al., 2010). 

Long-term accumulation has been postulated to be caused by contaminated food sources 

(Schwörbel & Brendelberger, 2005), which makes investigations into contaminated potential food 

sources even more important when considering pollution of the environment. 

 

4.2. Feeding and ETS activity 

In the laboratory the feeding activity of the gammarids fed on copper contaminated leaf discs was 

slightly higher than in the control groups. This is surprising, as copper acts as a fungicide and 

therefore the leaf discs were probably not as rich in living fungi as those from the control groups. It 

has been shown that G. fossarum preferred leaf discs conditioned in the presence of an antibiotic 

mixture over those in the control (Bundschuh et al., 2009). In a further study G. fossarum avoided 

leaf discs conditioned in the presence of the fungicide tebuconazole (Bundschuh et al., 2011). In 

the spring, the feeding activity of the gammarids in the experimental groups was slightly lower than 

those in the control group. This result was expected. However, since the differences were not 

significant, the results in the laboratory which differ slightly compared to the spring should not be 

given too much attention. The hypothesis that copper would lower the metabolic activity of G. 

fossarum on the level of the organism has to be rejected when the feeding activity is used as a 
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measure. Obviously the contaminated leaf discs were still palatable for the gammarids and so the 

feeding activity does not reflect the contamination. Also, it should be pointed out that only a 

limited amount of replicates were used when determining the feeding activity and so the results 

should not be overrated.  

Our ETS results show that a significant change on the cellular level of the organisms was 

caused by exposure to a copper contaminated food source, as had been hypothesised. G. fossarum 

exposed to copper contaminated leaf discs showed significant decreases in ETS activity when 

compared to G. fossarum fed with non-contaminated leaf discs, in both the laboratory and the 

spring. Copper ions are regulated in all gammarid species (Taylor & Anstiss, 1999) and these have 

detoxification mechanisms to counteract toxicity by metal ions (Geffard et al., 2010). However, if 

these detoxification mechanisms are unable to regulate the excess of internalized metal, the excess 

leads to physiological disturbances (Lebrun et al., 2012).This has been shown in this study with the 

ETS assay. Besse et al. (2013) concluded that gammarids can be regarded as poor indicators for 

copper (Besse et al., 2013). Like Lebrun et al. (2012) we have also been able to demonstrate in this 

study that the ETS activity is affected by this metal. 

In the laboratory the difference of the ETS activities between the control and experimental 

groups was highly significant. A reason for this can be found in the results of the feeding activity: 

the gammarids consumed most leaf litter in the test chambers containing copper contaminated leaf 

discs which is directly reflected in the ETS activity. Another explanation for this observation could 

be that ingested copper was excreted back into the water and since the water was circulated in the 

laboratory, the water immediately contained more copper than the water in the spring – the water in 

the spring was constantly renewed, and so any excreted copper would have been flushed away. 

 

4.3. Laboratory versus field experiment 

We hypothesised that the feeding and ETS activities of G. fossarum would generally be lower in 

the laboratory than in the spring but the opposite was found to be true: the feeding and also ETS 

activity of the organisms in the spring were significantly lower than those in the laboratory, 

regardless of the treatment. 
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We assumed that the values obtained in laboratory experiments would be lower than in 

nature because of the artificial laboratory conditions. This is however not necessarily the case, as 

our results demonstrate. If the conditions in the laboratory are optimal, the exposed organisms are 

in fact exposed to more favourable conditions than in nature. In nature, organisms are often 

exposed to suboptimal conditions and these affect their behaviour and response towards 

contaminants and other environmental changes. In the field, the gammarids in the test chambers 

were exposed to rain, wind and other disturbances, which may have caused differences in the 

chemical composition of the spring water. It is generally agreed that organisms living under 

environmental conditions that are near to their tolerance limits are often less resistant to additional 

stressors, such as exposure to pollutants (Heugens, 2003). In previous experiments with fluctuating 

temperatures, we concluded that a water temperature of 12 to 14 °C was probably more optimal for 

G. fossarum (Schmidlin et al., 2014). The gammarids in the spring are exposed to 10 °C throughout 

the year and although the gammarids in the laboratory were also exposed to 10 °C, they were not 

subjected to additional stressors when compared to those in the spring. Our results suggest that all 

these disturbance factors in the spring were responsible for the lower feeding and ETS activity. 

Another explanation could be that the feeding activity in the spring was influenced by the 

gammarids feeding on incoming particles and small organisms, which we were not able to quantify. 

It can also be argued that elevated feeding activity in the laboratory could be a response to stress 

and so the metabolic activity of the gammarids was higher. 

 

4.4. Implications for spring ecology 

The contamination of our environment has taken on new levels since the frequent and wide spread 

use of various substances such as pharmaceuticals and pesticides. Metals are being introduced into 

the environment for example through mining, paint and via fungicides. Copper is introduced into 

the environment mainly through non-point sources such as road and roof run-off. Laboratory 

studies testing for a certain substance and its effects are important; however, the environment is 

exposed to a variety of mixtures of contaminants and is exposed to many environmental 

disturbances. This shows that it is very important to make use of bioindicators directly in the field 
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and that field experiments are vital. G. pulex is widely used as a bioindicator (Gerhardt, 2011), as 

well as G. fossarum, although less frequently. G. fossarum has a narrower distribution than G. 

pulex because it is more sensitive to environmental variables and towards pollutants (Alonso et al., 

2010) and is the more vulnerable of the two competitors. This species was chosen in this 

experiment as a representative of the European spring fauna, while it is not cold-stenothermal, it is 

still sensitive to environmental contaminants. Other spring inhabitants such as Trichoptera and 

Plecoptera larvae can be considered less resilient towards contamination, for example by copper, 

than G. fossarum. These species are adapted to the relatively stable environmental conditions (e.g. 

Danks & Williams, 1991; Ferrington, 1995) they find in these locally very restricted ecotones 

(Webb et al., 1998). Springs can be strongly influenced by disturbances such as drought or heavy 

rainfall (von Fumetti & Nagel, 2012) and the occurring spring species are especially sensitive 

towards these influences. Although springs are known for their clean water, pollution can occur 

through entry of contaminated leaf matter and run-off of contaminants directly into the water or via 

the groundwater or via soil erosion. Depending on the characteristics of the contaminants these can 

accumulate in the leaf litter in the spring via adsorption as is shown in our experiments and are thus 

not flushed away, but stay in the systems for a long period of time. Ingestion of the contaminated 

leaf litter through invertebrates promotes bioaccumulation. Our study clearly demonstrates the 

impacts contaminated leaf litter, at a sublethal level, can have on G. fossarum in springs by 

significantly lowering their ETS activity. A similar or greater impact on more sensitive spring 

species can be expected. G. fossarum’s function as a bioindicator should be used as such.  

 

4.5. Benefits of field experiments 

Many laboratory experiments have been conducted with gammarids in recent years, with some 

using artificial indoor streams (e.g. Böttger et al., 2013; Prato et al., 2013; Berghahn et al., 2012; 

Jubeaux et al., 2012; Bundschuh et al., 2011).  In comparison, fewer field studies have been 

conducted using this taxon (but see e.g. Besse et al., 2013; Gerhardt et al., 2012; Coulaud et al., 

2011; Dangles & Guérold, 2000). Generally speaking, laboratory investigations cannot fully 

simulate or form a substitute for field studies under actual environmental conditions (Nagel, 1995). 
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Our results demonstrate how important field experiments are also for ecotoxicology, since 

extrapolations of results from the laboratory to the field are not always accurate. In our study we 

were however able to demonstrate that extrapolations are possible, as was also shown by Selck et 

al. (2002). The ultimate aim of ecotoxicology is to determine and predict the effects of 

contaminants in real-world systems, optimally at large spatial scales (e.g. Newman and Unger, 

2003). It is still difficult to predict the effects of toxicants on real-world ecosystems at large spatial 

scales, as the capacity for these remains limited (Beketov & Liess, 2012). In a quantitative analysis 

of data, where uncertainty factors for laboratory to field extrapolations were calculated, it was 

ascertained that the toxicity under laboratory and relevant field conditions differed by factors of 2.6 

to 130 depending on the examined effect parameters (Heugens, 2003). It was shown by Versteeg et 

al. (1999) that sufficiently large data sets from laboratory-generated chronic tests can be used to 

define concentrations protective of model ecosystems. The combination of laboratory and field 

tests is essential for environmental risk assessments. We made a first step in this direction by 

conducting a field experiment with a number of replicates and without harming the entire spring 

fauna, while still simulating a realistic scenario. Such experiments should be promoted in future 

freshwater studies. 

 

5. Conclusions 

The results of this study show that the exposure to copper in excess has the potential of being 

stressful to G. fossarum. Copper did not affect the feeding activity but significantly reduced the 

ETS activity of G. fossarum. The ETS assay has proved to be more sensitive than the feeding tests 

in detecting the effects of sub-lethal copper concentrations on the metabolic activity of G. 

fossarum. We therefore propose the use of the ETS assay in addition to the well-established feeding 

tests for more detailed results. Furthermore we demonstrated the importance of conducting 

experiments both in a laboratory and directly in the field, as the results cannot necessarily be 

extrapolated. The feeding activity differed, although not in a way that meaningfully affected 

toxicity. However, it could be shown that the effect of copper on the ETS activity of the exposed 

gammarids was comparable between the laboratory and field studies.  
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CHAPTER FIVE 

 

General Discussion and Conclusion 

Since Global Change is affecting the entire world at an alarmingly fast rate (IPCC, 2014) and entire 

ecosystems have been contaminated by fertilizers, pesticides and other xenobiotics in recent 

decades, we decided to conduct research considering these disturbances and investigating possible 

effects caused by them.  

The question we aimed to answer was: how will Global Change including environmental 

pollution affect spring species? Switzerland is the “water castle of Europe” 

(http://www.swissworld.org/; Zollhöfer, 1999) and springs and headwaters are numerous. 

Unfortunately springs are not legally protected habitats in Switzerland (Zollhöfer, 1997) but are 

mostly thought of as sources of drinking water. It was assumed for a long time that springs were 

stable ecotones and as such not influenced by disturbances. However it has recently been shown 

that springs are no exception (von Fumetti et al., 2007). For example, the discharge of springs can 

vary and affect the distribution of macroinvertebrate assemblages (von Fumetti, 2008). Switzerland 

is a relatively small country surrounded by other land masses and is strongly influenced by the 

Alps, a mountain range with altitudes > 4800m. This is also one of the reasons why temperature 

warming, as a result of Global Change, has noticeable effects, as for example glaciers are melting 

(Clitherow et al., 2013; IPCC 2014). Thus important habitats are being lost or changed so 

dramatically that the species inhabiting those areas are forced to migrate. Migration into more 

suitable habitats is not always possible (Woodward et al., 2010) and so the extinction of certain 

highly specialised and endemic species will occur. 

Ecotoxicological studies are usually conducted under strictly standardised conditions (Fent, 

2013). We decided to follow another, much less frequently chosen approach and conducted our 

experiments as naturally as possible in flow channels. Although less standardised conditions 

inevitably lead to more variation in the results, we wanted to propagate a more natural approach in 

laboratory experiments. G. fossarum is subjected to daylight exposure in its natural environment 

and usually does not go through starvation periods. In our study the organisms were therefore 
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exposed to light and were fed. It was ensured that the test individuals were of similar size but we 

did not differentiate between sexes. A natural undisturbed population of gammarids consists of 

females and males, all of different age groups and sizes of organisms. Determination of the sex of 

the gammarids would have caused additional stress. The handling of the gammarids was kept to a 

minimum since we were interested in exposing the test organisms to as little stress as possible so 

that the results reflected, as far as possible, the temperature and copper influences. 

It is known that the two chosen endpoints, the feeding and ETS activity, are influenced by a 

number of factors, while other endpoints such as growth or reproduction are also influenced by 

many factors. It is documented that the feeding activity of gammarids can be influenced by three 

factors: the tree species consumed (e.g.  Maltby et al., 2002; Cold & Forbes, 2004; Bundschuh et 

al., 2009), the sex, as was shown for G. pulex (Malbouisson et al., 1994), and natural differences in 

appetites of individuals (Taylor et al., 1993). The ETS activity of organisms can be influenced by 

light (Simcic & Brancelj, 2007) and feeding or fasting (Mezek et al., 2010). Size influenced the 

ETS activity of the intertidal amphipod Corophium volutator (Pallas, 1766) (nomenclature 

according to Bousfield & Hoover, 1997) (Cammen et al., 1990). Other experiments have 

demonstrated that larger individuals of G. fossarum have a lower ETS activity (Simcic & Brancelj, 

2003). The reason for this is the increasing proportion of metabolically inactive mass with 

increasing body size, since larger gammarids have a larger amount of metabolically inactive keratin 

protecting their bodies (Simcic & Brancelj, 2003). In a separate experiment we tested the effect of 

the sex of G. fossarum on the ETS activity and no significant differences were found. This is in line 

with findings that the ETS activity of crayfish was not affected by the sex but by temperature 

(Simcic et al., 2014).  

Numerous experiments have been conducted with gammarids in the laboratory testing 

effects of different contaminants (e.g. Malbouisson et al., 1995; Bat et al., 2000; De Lange et al., 

2006; Zubrod et al., 2010; Funck et al., 2013). However, very few studies consider water 

temperature and its effects on the exposed organisms. It has previously been shown that amphipods 

are able to tolerate acid stress for a longer period of time at lower temperatures than at higher 
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temperatures (Rinderhagen et al., 2000). G. fossarum has been shown to be stressed when high 

NaCl concentrations are coupled with high water temperatures (Georgiadis, 1977).  

The experiments conducted in this thesis take temperature elevations and their impacts on 

the metabolism of the exposed gammarids into consideration. The results of our first set of 

experiments, in which water temperatures ranging from 10 to 18 °C were used, showed that G. 

fossarum is not able to tolerate water temperatures of 18 °C and mortality was accordingly very 

high. Many laboratory studies with gammarids use a single water temperature which usually ranges 

between 12 and 16 °C (e.g. Cold & Forbes, 2004; Bundschuh et al., 2009; Schaller et al., 2010; 

Coulaud et al., 2011). It has been shown that different lineages of G. fossarum differ in sensitivity 

towards xenobiotics (Feckler et al., 2012) and likewise we assume that they also have different 

temperature tolerances. The gammarids used in the tests of this project are naturally exposed to 

water with temperatures of about 10 °C all year round. Although an increase of 6 to 8 °C of water 

temperature is unlikely, we chose to test up to 18 °C to detect the temperature tolerance limit of this 

species. It is important to know the limiting factors when trying to protect a species. Mortality was 

highest at 18 °C and seems to be the tolerance limit of the gammarids used in this project. As 

expected the gammarids shredded more leaf material at the higher water temperatures, indicating a 

higher metabolic activity. This is in accordance with other studies about temperature influence on 

the metabolism of organisms (e.g. Nilsson, 1974; Georgiadis, 1977; Fent, 2013). 

The heavy metal copper is essential for most organisms (e.g. Clarkson et al., 1991). It is an 

important ingredient in many fungicides (de Oliveira-Filho et al., 2004) but toxic when available in 

excess (De Martinez Gaspar Martins et al., 2011). For these reasons, and since it is so widely 

applied and even used in organic agriculture (e.g. Trewavas, 2004; Niggli, 2007), it was chosen as 

an additional stressor in our investigations. Copper ions are part of haemocyanin and therefore 

regulated in gammarid species (Taylor & Anstiss 1999). However, these regulation mechanisms are 

limited and so copper exposure also causes problems for gammarids such as G. fossarum. 

Temperature has often been quoted to have effects on the toxicity of pesticides and other pollutants 

(e.g. Fent, 2013), but most authors only conduct LC50-tests at one temperature (e.g. Güven et al., 

1999; Felten et al., 2008). In this project LC50-tests with copper were conducted at water 
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temperatures ranging from 10 to 18 °C. Higher temperatures were shown to raise copper toxicity. 

Previous studies have been conducted on the effects of copper, for example on G. pulex (e.g. 

Taylor et al., 1998; Güven et al., 1999; Brooks & Mills, 2003), G. duebenii Liljeborg, 1851 

(nomenclature according to own nomenclatorial investigations) (e.g. Lawrence & Poulter, 1998) 

and G. aequicauda (Martynov, 1931) (nomenclature according to own nomenclatorial 

investigations) (e.g. Prato et al., 2013), but not many have been done with G. fossarum. Dedourge-

Geffard et al. (2009) studied the effects of inter alia copper on the feeding rate and digestive 

enzymes of G. fossarum and found that organisms originating from a metallic contaminated site 

showed inhibited digestive enzymes and a decreased feeding activity. In accordance with this, we 

showed that copper ions tended to reduce feeding activity and significantly lowered the ETS 

activity of the organisms. These effects were noted in flow channels in the laboratory as well as in 

the spring. Furthermore these effects were found when the copper ions were in the water or on the 

leaf litter.  

The results of the experiments conducted in this project help us to answer the question of 

how gammarids will respond to the ongoing Global Change, including environmental pollution. 

Given that the water quality is not impaired, we conclude that a temperature increase of about two 

degrees will not endanger G. fossarum. If, however, an additional stressor such as copper is added, 

then a water temperature elevation will not be tolerated. Furthermore we conclude that spring 

species which are more sensitive towards temperature will not be able to tolerate temperature 

elevations as easily, especially when considering all the other influences to which they are exposed. 

It can be concluded that G. fossarum is a useful model organism for freshwater research in 

combination with toxic substances and Global Change. In addition the chosen approach of more 

natural conditions in the laboratory was helpful in assessing the effects of temperature and copper 

ions. Lastly, the experimental set-up with test chambers proved promising for future field 

experiments in springs to test effects of contaminated food sources. The use of test chambers, as we 

designed them, could also become an important tool for biomonitoring of springs and other larger 

freshwaters. 
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SUMMARY 

 

Global Change including climate change, environmental pollution and habitat destruction are 

taking place all over the world. Temperature rises are occurring and changing the ecosystems. 

Glaciers are melting and as a result the sea level is rising, just to give one example of the impact 

Global Change is having. Taking these changes into consideration and the fact that little is known 

about the exact consequences of these changes on freshwater species, the aim of this thesis was to 

find out how a model organism reacts to rising water temperatures and copper exposure. In order to 

test this, experiments were conducted with G. fossarum in flow channels in a laboratory and one set 

of experiments was conducted in the field directly in a spring. 

In the first set of experiments the temperature tolerance of G. fossarum was determined in 

laboratory flow channel experiments. Three different temperature scenarios were tested and the end 

points chosen in these and all further experiments were the feeding and respiratory electron 

transport system (ETS) activity. These endpoints are complementary in determining different 

aspects of the metabolic activity of the tested organisms. The feeding activity increased with 

temperature increase; no significant temperature effect on the ETS activity was observed. This is 

discussed and the implications of our results portrayed for more sensitive spring species. 

In the second set of experiments an additional stressor in the form of copper sulphate was 

added to the set-up, in order to assess what impact elevated water temperatures in combination with 

a sub-lethal copper exposure would have on G. fossarum. Although it is known that temperature 

can raise the toxicity of substances and is a determining factor for growth, relatively few 

experiments have been conducted in the field of ecotoxicology considering temperature. Therefore 

we conducted a set of LC50-tests at different water temperatures prior to these experiments. We 

were able to confirm that elevated water temperature raises copper toxicity to gammarids. The 

second set of experiments demonstrated no significant effect of copper on the feeding activity; it 

was however slightly raised at the higher water temperatures. The ETS activity of G. fossarum was 

significantly lowered when exposed to copper, but increased with increasing water temperature. In 

this set of experiments we demonstrated the importance of using different endpoints to find 
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answers to a question. The approach of using two methods which enable assertions on the same 

biological responses is desirable. A higher risk of adverse effects with increase in water 

temperature and exposure to copper can be reasonably inferred from our results. 

The value of field experiments is not disputed and yet experiments of such nature are 

seldom, especially in the field of ecotoxicology. Flow channel experiments are a good option for 

conducting experiments with freshwater species under controlled conditions. In this project we 

went a step further and conducted the stird set of experiments in the natural habitat of G. fossarum. 

We designed the experimental set-up to be suitable for experiments both in flow channels in the 

laboratory and in a natural spring. Since we did not want to pollute the entire spring we opted for 

contaminated leaf litter, which was placed in the spring in test chambers. The water temperature 

was not changed in this set of experiments. The feeding activity was not significantly affected by 

the copper; the ETS activity was significantly lowered. Generally the metabolic activity of the 

gammarids was higher in the laboratory than in the spring. In this last set of experiments we took a 

crucial step towards a more realistic approach when examining environmental pollutants on 

organisms. 
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