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Abstract 
 

Fundamental scientific research was always interested by the concept of mimicking Nature because of the 

presence of remarkable designs. In particular, due to their importance in numerous cellular processes, 

biological membranes got great interest in biochemical and biophysical research. It is crucial to 

understand the membrane morphology, the role of individual membrane components, and also to 

correlate the membrane structure to its various functions. In addition to contributing to fundamental 

understanding, membranes are also highly attractive for industrial research and technological 

development. However, the complexity and fragility of natural membranes often limit their direct use. 

For that reason, the development of membrane models is indispensable. Suitable building blocks for 

model systems could be lipids or amphiphilic polymers. 

The versatility of polymer chemistry allows the fine-tuning of biomimetic membranes in solution and on 

solid supports. Methacrylate-based amphiphilic triblock copolymers poly (2-hydroxyethyl methacrylate)-

b-poly (butyl methacrylate)-b-poly (2-hydroxyethyl methacrylate) PHEMA-b-PBMA-b-PHEMA were 

designed in solution and on gold surfaces. By varying the hydrophilic to hydrophobic ratio as well as the 

chain length, the polymers self-assembled into nanoparticles and micelles in solution. The micelles were 

used to encapsulate and release hydrophobic model payloads, showing their potential use as intracellular 

drug delivery systems. Also, artificial planar membranes as mimics of natural membranes were 

synthesized directly from gold surfaces. Upon the variations in thickness and packing density, potential 

incorporation of membrane proteins was shown at a determined grafting density. Upon insertion of those 

proteins, this system may find its application as biosensing devices. 

In solution, the nanostructures were characterized by using a wide range of methodologies including 

static and dynamic light scattering, transmission electron microscopy, ThioGlo detection, UV-vis 

spectroscopy, fluorescence spectroscopy and fluorescence correlation microscopy. On solid supports, 

atomic force microscopy and surface plasmon resonance along with neutron reflectivity were used to gain 

insights into morphology, homogeneity, grafting density and thickness of the layers. To demonstrate the 

planar membranes’ biomimetic potential, they were incubated with different channel proteins: Outer 

Membrane Protein F, Aquaporin Z and alpha-hemolysin. Occurring interactions were detected by in-situ 

ATR-FTIR and electrochemical impedance spectroscopy. In summary, this thesis might impact 

fundamental membrane science as well as prospective biotechnological applications. 
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1. Introduction 
 

1.1. General aspects of cell membranes 

 

Biological membranes are essential for all living organisms, as they play a central role for the structure 

and function of cells. Their complex self-assembled structure and composition is a prerequisite for the 

multiple functions of these membranes. Biological membranes act as a barrier that protects the inner 

space of a cell from their external environment. For instance, in the human body, we encounter about 100 

km
2

 of membranes, barely 5 nm thick, forming the boundary of the cells and cell organelles, such as 

mitochondria, Golgi-apparatus, endoplasmic reticulum, or lysosomes.
[1] Apart from compartmentalizing 

and protecting cells and cell organelles from their environment, they are involved in a multitude of 

biochemical processes. Membrane-related functions comprise passive and active transport of ions 

between the intra- and extracellular space in order to maintain electrochemical gradients across the 

membrane. To fulfil all these functions, highly selective membrane permeability is required. Nature 

solved this by creating a composite material formed by a lipid matrix in which highly specialized and 

optimized proteins achieve the respective functions. These proteins have different functions, such 

molecular transport across the membrane (transporter), anchoring point of cytoskeletal or extracellular 

elements (linker), selective receptivity and signal transduction (receptor) or are involved in enzymatic 

reactions (enzyme). Cell membranes are also involved in many different specialized processes like cell 

recognition and adhesion or immune reactions. Furthermore, membranes are involved in dynamic 

processes such as cellular differentiation or cell migration.
[2] 

The structure of a cell membrane can be 

described by the “fluid mosaic model” proposed by Singer and Nicolson in 1972,
[3] 

depicted in Figure 1-

1. 

 

 

Figure 1-1: A fluid mosaic model of the cell membrane.
[4]

 

 

According to this model, the central structural element is the lipid bilayer. It is arranged in such a way, 

that the fatty acid chains face towards each other and form the hydrophobic membrane core, whereas the 

hydrophilic parts are exposed to the intra- and extracellular space, respectively. 
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This arrangement is driven by the lipid geometry and the hydrophobic effect.
[5-7] 

The two individual 

leaflets of the lipid bilayer are held together by (non-covalent) hydrophobic interactions. Steroids, e.g. 

cholesterol, are embedded in the lipid matrix, mainly to stabilize the structure. Membrane proteins can be 

embedded in the bilayer as integral proteins, or/and associated to one side of the bilayer as peripheral 

proteins. 

Thus, the cell membrane can be formally considered as a two-dimensional solution of proteins in a 

viscous lipid bilayer solvent.
[3]

 The exact composition of biological membranes varies depending on the 

type and function of the cell or a membrane region.
[8]

 

Since the cell membrane with its vital functions is the most important interface in living organisms, 

modern research focuses on the investigation of its structure, properties, and functions. Membranes are 

valuable for addressing biophysical and biochemical questions such as studies of individual membrane-

related processes, investigations of membrane components at a single-molecule level, or ligand-receptor 

binding. In pharmaceutics, they are very important as therapeutic targets, since antibiotics or virus 

receptors interact with membranes. Furthermore, integral proteins are one of the key targets for drugs. 

However, due to their high hydrophobicity, investigations have to be performed in their natural 

environment, i.e. in a lipid membrane.
[1]

 The thorough investigation of integral proteins in lipid 

membranes is a fundamental step in drug design and development.
[9]

 Besides basic research, membranes 

are also highly attractive for industrial research. Membranes might be technologically interesting, e.g. for 

water purifications and desalination applications.
[10, 11] 

Moreover, they could act as platform for sensor 

devices, with potential applications in trace analysis or in biosensing.
[10, 12] 

 

However, natural membranes as highly specialized and complex multi-component assemblies are not 

always suitable to investigate and understand distinct membranes functions. Furthermore, their 

complexity and their lack of long-term stability are disadvantageous for many technological and 

industrial processes. Therefore, the development of simplified biomimetic model membranes is 

necessary. In order to break down the complexity of natural membranes, model systems usually consist of 

only a few membrane components, mainly mimicking a characteristic feature of the membrane, e.g. the 

central bilayer structure. 

Following Nature, commonly phospholipids are implemented as building blocks to create membrane 

mimics. Even though some reports on advanced lipid-based systems were already published,
[13-15] 

they 

still suffer from some drawbacks. Lipids are prone to oxidation, and chemical modification of lipids with 

functional groups is limited. Moreover, lipid membranes may not possess sufficient stability, 

mechanically and against air,
[16] 

which, depending on the conditions, limits their use for technological 

applications. 

These drawbacks can be overcome by employing alternative building blocks, i.e. amphiphilic block 

copolymers. These polymers are already well-known in the field of materials science, surface coatings or 

tissue engineering.
[17-20] 

Recently, amphiphilic block copolymers also attracted considerable interest as 



~ 21 ~ 
 

constituents for model membranes,
[21-24] 

and proved to be a suitable platform to study specific 

(membrane) proteins and protein-related processes in a non-natural environment.
[25-29] 

With an 

appropriate molar mass and hydrophilic to hydrophobic block ratio, amphiphilic block copolymers can 

adopt the bilayer structure in water.
[30, 31] 

Since the molecular weight of polymers can be considerably 

higher compared to lipids, the resulting membranes thickness can be also larger than the ones of lipid 

membranes, thus making polymer membranes mechanically more stable.
[32] 

Polymer synthesis allows for 

the adjustment of such parameters as block length, molecular weight, chemical composition, 

hydrophilic/hydrophobic balance, and molecular architecture. Hence, a broad range of possibilities are 

accessible to tailor customized block copolymer membranes.
[23, 33]

 

 

1.2. Amphiphilic block copolymers 

 

1.2.1. Self-assembly behaviors of amphiphilic block copolymers 

 

Block copolymers are macromolecules consisting of two or more polymer segments linked by covalent 

bonds or through an intermediate non-repeating unit known as a junction block.
[34]

 Block copolymers can 

be classified based on the arrangement and order of the homopolymer subunits which are normally 

marked as A, B, C etc. Figure 1-2 depicts some examples of block copolymer architectures. 

 

Figure 1-2: Different possible block copolymer architectures.
[35]

 

To be used in self-assembly, synthetic block copolymers must be constituted of two polymer segments 

having both long-range repulsive and short-range attractive forces.
[19] 

Such structures are called 

amphipathic, or amphiphilic (in the case of water) and resemble more conventional molecules such as 

surfactants or lipids. The basic principle of self-assembly is based on the poor solubility of one of the 
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blocks in a given solvent, while the second block has good solvent-solute interactions. In the case of 

water as solvent, although attractive forces between hydrophobic chains are weak, they will pack to 

segregate out of the aqueous environment, this both due to weak interactions with the water molecules, 

and to the large energy barrier that cause the disturbance of the water lattice surrounding them.
[7] 

In 

contrast, the hydrophilic chains are more soluble in water, due to strong solvent-solute interactions. 

Intuitively, one can deduce from this basic principle the most simple self-assembled structure induced by 

such forces, the micelle. In those self-assembled structures, the hydrophobic chains aggregate into a core 

to avoid contact with solvent molecules, while the hydrophilic chains interacting with solvent molecules 

form a corona at the surface. It should be noted that this example is only valid in the diluted state, where 

the critical micellar concentration (CMC) is extremely low for amphiphilic block copolymers when 

compared to low molecular weight surfactants. In this thesis, the behavior of the synthesized block 

copolymers was only studied in the diluted regime, where structures like micelles can be found.  

In the next paragraph, a short theoretical background on the formation of self-assembled structures in 

aqueous solution and on solid supports generated by synthetic amphiphilic block copolymers will be 

given. 

  1.2.1.1. Self-assembly in solution 

 

Amphiphilic (amphi: of both kinds; philic: having an affinity for) block copolymers consist of at least 

two polymer subunits, one of them with hydrophilic properties while the other has a hydrophobic 

character. Similar to low molecular weight amphiphiles (lipids, surfactants), amphiphilic block 

copolymers can self-assemble in block-selective solvents into a variety of structures such as micelles, 

vesicles, tubes, lyotropic liquid-crystal phases.
[36] 

Figure 1-3 shows some examples of copolymer self-

assemblies. The type of morphologies can be controlled by varying the copolymer composition, the initial 

copolymer concentration in the solution, the nature of the common solvent, the amount of water present 

in the medium, the temperature, the presence of additives such as ions, homopolymers, or surfactants and 

the polydispersity of the copolymer chains.
[37] 

The copolymer composition is mostly defined by the 

molecular weight and size of the homopolymer blocks which, in turn, determine the degree of block 

stretching.
[38]

 The latter is an important parameter and its value depends on the type of self-assemblies.
[39] 

The influence of the morphology on the concentration can be clearly seen in the phase diagram of 

particular copolymer systems. Shen and Eisenberg investigated the formation of PS-co-PAA vesicles as a 

function of the polymer concentration.
[40, 41]

 Generally, increasing the copolymer concentration or the 

amount of water content implies changes in aggregate morphology.
[41] 
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Figure 1-3: Examples of amphiphilic polymer self-assemblies
[19]

 

The choice of common solvent has also an effect on the morphologies of the resulting self-assemblies.
[42]

 

The control of the morphology of block copolymer aggregates can be achieved not only with single but 

also with mixed solvents.
[43] 

The addition of water serves to modify the polymer-solvent interactions and 

to induce self-assembly and morphological changes.
[44-46] 

The same can be accomplished in a single 

solvent through variation of the applied temperature. Temperature that implied changes of the block 

copolymer self-assembly were reported for thermoresponsive polymer systems.
[47-51] 

The experimental 

aspects of the influence of ionic strength
[43]

, pH
[49, 52]

, added salt
[52-57] 

and homopolymers
[50, 58] 

were 

mainly investigated with polyelectrolyte-based amphiphilic block copolymer systems. The effect of the 

chain polydispersity on the aggregate morphology was reported by Terreau and coauthors with series of 

PS-co-PAA copolymers.
[59] 

They showed that the size of vesicles decreased as the PAA polydispersity 

index increased.  

Generally, the self-assembling behavior of amphiphilic block copolymers can be affected by a variety of 

different factors. However, there are theories which provide guidelines for rationalizing the observed 

morphologies and might be used to predict the type of self-assembled structures.
[60, 61] 

From another point 

of view, the influence of the macromolecular composition or common solvent on the polymer self-

assembly can be exploited to tailor the type and properties of the aggregates. One advantage of polymer 

self-assembly in comparison to lipids and surfactants is the possibility for macromolecular amphiphilic 

structures to be fine-tuned by introducing different functional groups in order to obtain self-assemblies 

with defined properties for specific applications.
[62] 

Other advantages include the possibility of 
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introducing additional mechanisms for colloidal stabilization, the control over the polymer critical 

micellar concentration (CMC),
[18] 

lower permeability and improved stability of the amphiphilic polymer 

membranes
[23, 63] 

which might be used for technological applications. 

There is an ongoing debate as to know whether the aggregates formed upon self-assembly are kinetically 

frozen or equilibrium structures (thermodynamic).
[19] 

As of today, due to the incredible diversity in block 

copolymers, there is no universal theory able to predict which morphology will be adopted preferentially. 

However, several key parameters are well-known to influence the self-assembly and will be briefly 

reviewed here.  Self-assembly of amphiphilic block copolymers has been described in two aspects. First, 

in terms of geometric constraints, that is directly related to the macromolecular features of the polymer 

chains. Also, thermodynamic considerations, such as minimization of the total free energy of the system, 

involve the decrease of interfacial tension at hydrophilic/hydrophobic interface and the entropy loss from 

polymer chains.
[64] 

 

From a geometry perspective, the morphology is best described using the packing parameter p (Equation 

1).
[65]  

 

𝑝 =
𝜈

𝑎𝑙
    Equation 1 

 

This parameter encompasses the volume of the hydrophobic block (ν), the area covered by hydrophilic 

groups (a), and the length of the hydrophobic block (l). p can also be related to the radius of curvature 

through Equation 2: 

p = 1 − Hl +
𝐾𝑙2

3
= 1 −

1

2
(

1

𝑅1
+

1

𝑅2
) +  

𝑙2

3𝑅1𝑅2
 Equation 2 

where K is the Gaussian curvature and H is the mean curvature, R1 and R2 are curvature radii.
[64] 

As can 

be deduced from Equation 2, p approaches unity for very large curvature radii, which is characteristic of 

vesicular shapes. Such a high curvature is the result of the preferential chain packing upon bilayer 

formation, driven by volume and steric constraints. As an example, this phenomenon was illustrated by 

Discher et al. for poly (ethylene oxide)-b-poly  

(butadiene) (PEO-PBD) aggregates.
[66] 

In their work, they also define a convenient quantity, the 

hydrophilic to hydrophobic ratio f to characterize this phenomenon (Equation 3): 

𝑓 =
M𝑛 (hydrophilic)

M𝑛 (hydrophobic)
               Equation 3 
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 As a general rule, copolymers with ratios above 0.5 tend to form preferentially micelles, when 

copolymers with ratios less than 0.33 tend to form vesicles (see Figure 1-4). Although this ratio gives a 

good approximation, it may not be applicable to all systems. 

 

Figure 1-4: Schematics of block copolymer fractions with respective cryogenic transmission electron 

microscopy images showing vesicles or worm micelles and spherical micelles associated with different f 

ratios.
[66]

 

For all material scientists, the macromolecular architecture of amphiphilic block copolymers as well as 

their assembly at different length scales, time scales and levels of interaction make the use of these 

compounds very attractive. The most interesting examples of their potential applications are delivery of 

various substances,
[67] 

medical diagnostics,
[68] 

and reconstitution of biological molecules.
[26, 69, 70] 

Among 

different polymer self-assemblies, micelles and vesicles were mostly used in biotechnology so far. For 

instance, they serve as carriers of hydrophobic molecules (in the hydrophobic shell) as well as 

hydrophilic compounds (in the aqueous interior).
[71] 

The use of polymer micelles as drug delivery systems 

was pioneered by the group of Ringsdorf in 1984.
[72] 

Nowadays polymeric micelles are extensively 

studied as a promising nanoscopic drug carrier because of their attractive features to fulfill the 

requirements for selective drug delivery.
[39, 73-76] 

Most notably, the hydrophobic micellar core has a large 

capacity to accommodate hydrophobic drugs. Recently, polymeric micelles were also investigated as an 

oral drug delivery system,
[77, 78] 

but originally they were considered to be most suitable for intravenous 

administration.
[71] 

Extensive variety of drugs such as doxorubicin,
[79, 80]

 paclitaxel,
[81, 82]

 cisplatin,
[83, 84]

 

indomethacin
[85, 86]

 and others were incorporated into polymer micelles and tested for drug delivery 

application. The drug loading and release by polymer micelles, the approaches to further improve the 

effectiveness of such polymer delivery systems are well described elsewhere.
[71, 87, 88] 

Also, polymer 

vesicular self-assemblies were used as drug carriers.
[89] 

More complex systems were achieved by 

insertion of natural proteins into vesicular membranes.
[90, 91] 
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  1.2.1.2. Self-assembly of polymer brushes 

 

The term “polymer brush” refers to an assembly of polymer chains chemically attached to a surface with 

one or a few anchor points. Tethering is high enough so that the macromolecular chains become crowded 

and are stretched away from the surface.
[92]

 The main parameters governing the conformation of the 

polymer brushes in solution are the quality of the solvent, the chain stiffness and the degree of 

polymerization. Moreover, the conformational behavior of the polymer chains will be a function of the 

grafting density (the distance between two anchoring points) and on the radius of gyration (the average 

size of the chains). Two cases are distinguished depending on the grafting density σ:
[92, 93]

 

 

- If the grafting density is larger than the radius of gyration (σ > Rg), each chain will be isolated 

from the surrounding chains. According to the strength of interactions between polymer segments 

and the surface, two cases must be distinguished. If the interaction between chains and surface is 

weak, a “mushroom” conformation is coined. On the other hand, if the chains are strongly 

adsorbed onto the surface, a “pancake” conformation is obtained. Conformation of the tethered 

polymer chains and those that are free in solution, are similar. 

 

- If the grafting density is short (σ < Rg), the chains segments are close to each other, and try to 

minimize the segment-segment interactions by stretching away from the surface. This is the 

“brush” conformation. Conformation of tethered chains is significantly different to the one in 

solution.
[94]

 

 

The first description of such a brush system has been attempted by Alexander
[95] 

and de Gennes
[96] 

for 

monodisperse chains consisting of N segments, which are attached to non-adsorbing surface with an 

average distance of the anchor points d much smaller than the radius of gyration of the same unperturbed 

chains not in contact with the surface (Figure 1-5).
[97]

 

 

Figure 1-5: Schematic description of the Alexander-de Gennes model of polymer brushes.
[97]
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Using Flory theory, a universal law establishes the radius gyration dependence on the number of 

monomer N: 

𝑅𝑔~ 𝑁𝜈𝑏 

Where b is the radius of the monomer and ν reflects the quality of solvent. 

The value of ν for good, theta and bad solvent of the tethered polymer chains is respectively 3/5, 1/2 and 

1/3. 

 

Previous theoretical treatments of polymer brushes have employed scaling arguments where each 

polymer was considered as a sequence of “blobs”.
[98] 

Using the concept of Alexander-de Gennes model, 

the size of a blob ξ is defined as: 

𝜉~ 1/√σ 

The number of monomers g in a blob is determined by: 

𝑔~ (
𝜉

b
)1/𝜈~ 𝜎1/(2𝜈)𝑏1/𝜈  

The number of correlation blobs per chain is N/g 

𝑁/𝑔~ 𝑁𝜎1/(2𝜈)𝑏1/𝜈 

The height of the brush is the size of a correlation blob times the number of these blobs per chain: 

𝐻~ 𝜉𝑁/𝑔~ 𝑁𝜎1/(2𝜈)𝑏1/𝜈 

The height H increases linearly with the number of monomers N per chain at constant grafting density. 

 

1.2.2. Atom transfer radical polymerization (ATRP) 

 

Current approaches for the synthesis of amphiphilic block copolymers usually require “living” 

polymerization techniques, such as anionic,
[99] 

cationic,
[100]

 or group transfer polymerization.
[101] 

Living 

polymerization approaches have the advantage of yielding polymers with narrow molecular weight 

distributions with predetermined degrees of polymerization that depend only on the molar ratio of 

monomer to initiator concentration and the conversion. However, when one of the components cannot be 

polymerized according to a living mechanism, macromonomer synthesis,
[102, 103] 

or capping with special 

end-groups for restarting, chain transfer or termination
[104, 105]

 are also possible. For most synthetic 

procedures, high purity of reactants, tedious isolation protocols or/and use of protecting group chemistry 

is required. However, for controlled living polymerization in general, these tight procedures are not 

necessary. 

All synthetic approaches were discussed and reviewed in details by Hadijichristidis et al.,
[106] 

Taton et 

al.
[107] 

and in Förster et al.
[18]

 as well. However, in the next paragraphs, we will focus on the ATRP 
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technique, since this approach was used in this research work for the preparation of the amphiphilic block 

copolymers in solution and on surfaces.  

1.2.2.1. Introduction to ATRP  

 

In 1995, Matyjaszewski and Wang
[108, 109]

 independently from Sawamoto et al.
[110] 

developed this 

polymerization approach from redox catalyzed telomerization reactions
[111, 112]

 and atom transfer radical 

addition (ATRA).
[113] 

Atom transfer radical polymerization (ATRP) is one of the most successful 

methods to polymerize styrenes, methacrylates, acrylates and a variety of other monomers in a controlled 

fashion, yielding polymers with predetermined molecular weights and narrow polydispersities.
[114] 

This 

technique allows preserving of the polymer functionalities and modeling of the polymer chain 

architecture, thus resulting in multifunctional polymers of different compositions and architectures such 

as block copolymers, multiarmed stars or hyperbranched polymers.
[114] 

 

1.2.2.2. Components of ATRP  

 

ATRP is in many ways a complex reaction, which includes one or more (co)monomers, a transition metal 

complex in two or more oxidation states,
[115] 

which can be composed of various counter ions and ligands, 

an initiator with one or more radically transferable atoms or groups and can additionally include an 

optional solvent, suspending media and various additives. All of the components present in the reaction 

medium can, and often do, affect the ATRP equilibrium.
[116, 117] 

The initiator molecule is typically an 

alkyl halide (R-X). In all of the published literature on ATRP, this R-X molecule has been called the 

initiator. Even though in contrast to a standard free radical polymerization initiator, this molecule is an 

inherently thermally stable entity and is incorporated into the final polymer. The halide is most frequently 

a bromide or chloride, although iodide based initiators were reported.
[118] 

Examples of halogenated 

compounds that were used as initiators in ATRP are carbon tetrachloride and chloroform, benzyl halides 

and α-halo esters.
[119]

 The R-X molecule can be a mono functional initiator, a multifunctional initiator, 

i.e. it can either possess more than one initiating functionality or it can be used to introduce additional 

functionalities into the alpha-chain end; it can be a macroinitiator (a polymer containing initiator site), or 

initiators attached to a surface, either a particle, flat surface or fiber. The only requirement is the presence 

of the radical stabilizing substituents around the halogen group. Also, the initiation step must be faster 

than or equal to the propagation rate for a controlled polymerization.
[120] 

Several transition metals were 

applied in ATRP. Catalyst systems employing copper are mostly used for the polymerization; however a 

wide range of other metals can be applied for ATRP including iron,
[121, 122] 

ruthenium,
[110, 123] 

nickel,
[124, 

125] 
molybdenum,

[126, 127] 
rhenium,

[128]
 rhodium,

 [129]
 palladium,

[130] 
osmium

[131] 
and cobalt.

[132]
 But 

transition metals catalysts can be an issue in the synthesis of polymers for biomedical applications. To 

overcome this problem, Bruns et al. developed new systems of natural catalysts for ATRP called 



~ 29 ~ 
 

ATRPases, made of hemoglobin
[133]

 and horseradish peroxidase.
[134] 

To fine-tune the catalyst systems, a 

variety of ligands were developed that attenuate solubility, selectivity and/or reactivity of catalysts. For 

example, the use of 4,4’-alkyl- substituted bipyridynes resulted in the preparation of polymers with very 

low dispersity (Mn/Mw < 1.1).
[135] 

Furthermore, linear aliphatic amines,
[136] 

terpyridyl,
[137]

 and picolyl
[138] 

ligands provided catalysts that were more reactive than the 2,2’-bipyridyne (bpy) ligands originally 

employed for ATRP.
[108] 

Phosphine-based ligands are also applied in the ATRP catalyst systems.
[110, 121, 

122] 
ATRP is well-suited for the polymerization of styrenes,

[139] 
methacrylates

[140-143] 
and acrylates.

[144-146] 

The power of this technique is its tolerance towards many functional groups of the monomer molecules. 

These functional monomers often contain donor atoms such as N or O, and have the potential to 

coordinate to the catalyst.
[147] 

However, sometimes a protected monomer is still required during the 

ATRP process because e.g. acid monomers can poison the catalysts by coordinating to the transition 

metal.
[148]

 

1.2.2.3. Mechanism of ATRP  

 

ATRP is a catalytic process where a transition metal complex reversibly activates the dormant chains via 

a halogen atom transfer reaction
[108, 110, 137-139] 

(Figure 1-6). 

 

Figure 1-6: Mechanism of metal complex-mediated ATRP.
[152]

 

Thus, the transition metal catalyst (Mt
n
/L) reacts with an alkyl halide initiator generating a radical and a 

transition metal complex by transfer of the halogen (X) to the catalyst. The bond between the alkyl and 

the halide is cleaved homolytically and a carbon- centered radical is formed on the alkyl.
[109]

  

The radical propagates by addition of monomer (M) is rapidly deactivated by reaction with the oxidized 

transition metal halide (X-Mt
n+1

/L) to reform the original catalyst and an oligomeric alkyl halide. This 

process repeats itself with all chains growing in sequential steps, resulting in polymers with molecular 

weights defined by: 

𝐷𝑃𝑛 =  
Δ[M]

[𝐼]0
 

where [I]0 is the original concentration of initiator (alkyl halide) and DP the degree of polymerization. 

Narrow molecular weight distributions were considered for Mw/Mn < 1,5.  
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The activity of the catalyst is correlated to the equilibrium constant (Keq) defined by the ratio 

Keq=kact/kdeact, where kact and kdeact are activation and deactivation rate constants, respectively. In order to 

obtain a good control over the polymerization, the equilibrium must be strongly shifted towards the 

dormant species to limit termination between active species (kt). Furthermore, deactivation of the active 

species must be fast enough, in comparison with propagation (kp), to provide the same rate of growth for 

all chains and to lead to a controlled/”living” behavior.
[153] 

If deactivation is very slow or non-existent, 

the polymerization becomes uncontrolled.
[154] 

The reaction is termed controlled/”living” since termination 

reactions are not completely avoided.
[109, 149] 

Therefore, the ATRP should be carefully distinguished from 

ideal living polymerizations as defined by Szwarc.
[155]

 Taking into account the termination processes, the 

percentage of living chains capped by a halogen atom is less than 100%. Moreover, besides bimolecular 

termination, several side reactions may affect the chain-end functionality, which additionally reduce the 

number of living chains. Since a high portion of living chains is required for the preparation of well-

defined block copolymers,
[156] 

an accurate control over the chain-end functionality must be provided. 

Lutz et al. reported a significant decrease of the amount of bromine-functionalized chains during the 

increase of the monomer conversion for bulk ATRP of styrene.
[157] 

The loss of functionality was divided 

into two steps: first, the functionality decreased linearly with the monomer conversion, and second, at 

very high conversions (> 90%, i.e. long reaction times), the functionality decreased faster with the 

conversion. The authors experimentally proved that the quenching of the ATRP at the latest 47 % of 

styrene conversion provided 92% of end-functional polymer chains which could further serve as 

macroinitiators for the subsequent polymerization steps. This is one of the crucial features of ATRP when 

applied for the synthesis of block copolymers. In order to reduce the fraction of termination reactions and 

slow down the propagation rate, a low level of oxidized transition metal halide is usually injected.
[158, 159]  

1.2.2.4. Kinetics of ATRP  

 

Based on the ATRP mechanism presented in Figure 1-6, two equations were proposed by Matyjaszewski 

et al.
[139] 

(M-2) and by Fischer
[160]

 (F-2) to describe the kinetics of ATRP.  

𝐾𝑒𝑞 =
𝑘𝑎𝑐𝑡

𝑘𝑑𝑒𝑎𝑐𝑡
=  

[𝑃𝑛][𝑋−𝑀𝑡
𝑛+1−𝑌]

[𝑀𝑡
𝑛−𝑌][𝑃𝑛−𝑋]

  (1) 

ln
[𝑀]0

[𝑀]
= 𝑘𝑝𝐾𝑒𝑞[𝑅 − 𝑋]

[𝑀𝑡
𝑛−𝑌]

[𝑋−𝑀𝑡
𝑛+1−𝑌]

𝑡  (M-2) 

ln
[𝑀]0

[𝑀]
=

3

2
𝑘𝑝([𝑅 − 𝑋]0[𝑀𝑡

𝑛 − 𝑌]0)1/3 𝐾𝑒𝑞

3𝑘𝑡

1/3
𝑡2/3 (F-2) 

Equation (M-2) is based on the assumption that the termination step can be neglected and a fast pre-

equilibrium is established, thus the value of kp is constant throughout the reaction. According to M-2, the 

propagation rate (Rp) corresponds to a first-order reaction with respect to monomer [M], initiator [R-X] 
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and activator [Mt
n
-Y] concentrations. This equation explains the fact that the rate of ATRP in bulk is 

about four times greater than that conducted with 50 % in volume of monomer solutions.
[151] 

Thus, a 

reduction in the concentrations of both initiator and activator by a factor of two should result in a 

reduction of the overall rate by a factor of four. So far, the majority of the experimental results were 

analyzed according to Matyjaszewski’s equation (M-2). Some data were in agreement with M-2 in terms 

of reaction orders for initiator and Cu(I),
[151, 161, 162] 

while some others deviated to various extents.
[163-165] 

The deviations were mostly assigned to the existence of “self-regulation” caused by the persistent radical 

effect in ATRP.
[166] 

On the basis of the existence of this persistent radical effect, Fischer derived a kinetic 

equation for the ATRP (F-2). This equation was also proven to be applicable in some living radical 

polymerization systems.
[167, 168] 

Zhang et al. experimentally verified both equations (M-2 and F-2) in Cu-

mediated ATRP of methyl methacrylate.
[169] 

The results obtained showed that initially added Cu(II) had 

strong effects on the kinetics of the ATRP depending on the [Cu(II)]0/[Cu(I)]0 ratio. When ≤10% of 

Cu(II) relative to Cu(I) was added at the beginning of the polymerization, the kinetics were described by 

Fischer's equation (ln([M]0/[M]) ∼ t
2/3

, F-2). The obtained reaction orders for initiator, Cu(I) and Cu(II) 

were close to or the same as those in Fischer's equation verifying the applicability of Fischer's equation in 

ATRP systems of lower activity. On the other hand, when [Cu(II)]0/[Cu(I)]0 ≥ 0.1, the kinetics could be 

interpreted by Matyjaszewski's equation (ln([M]0/[M]) ∼ t, M-2). 

The polymerization rate was almost first order with respect to the concentration of the initiator and Cu(I) 

and inverse first order with respect to the concentration of Cu(II), suggesting that the "self-regulation" 

and radical termination becomes less important for ATRP process when enough Cu(II) is added at the 

beginning of the reaction. These results brought a great contribution to a better control of ATRP systems 

as well as an understanding of applicability of both kinetic equations for ATRP.  

1.2.2.5. Surface-initiated ATRP  

 

As mentioned before, the ATRP initiator molecule can be attached to a planar surface, spherical particles, 

fibers, etc. In this case, the polymerization proceeds from the surface and the final polymer chains are 

anchored on the support. Often, the control over the surface-initiated ATRP does not necessarily result 

from the application of conditions suitable for the ATRP in solution. Prucker and Rühe showed that the 

main differences between surface and solution polymerizations occur because of changes in termination 

reactions.
[170] 

For some polymerizations from surfaces, termination is enhanced at elevated temperatures 

because of rapid initiation, and the rate of “thickening” can actually decrease with the reaction 

temperature.
[171] 

Several studies of surface-initiated ATRP proved that the growth in polymer film 

thicknesses decreases with time, suggesting significant termination.
[172-174] 

Matyjaszewski et al. simulated 

the growth of polymer chains by surface-initiated polymerization, considering the transfer of the 

monomer to the growing chains and changes in the polydispersity index with time.
[175] 

The authors 
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concluded that initiator coverage is a major factor in defining whether the growth in layer thickness 

depends linearly on the reaction time. Moreover, the effect of initiator density of monolayer adsorbed on 

surface clearly affects the configuration and the thickness of the brushes. Jones et al. reported the first 

systematic study of initiator density on surface-initiated polymerization. Indeed, they showed that the 

density of initiating sites strongly influences the chains growth rate and the morphology of the resulting 

polymer film.
[176] 

Si-ATRP of methyl methacrylate and glycidyl methacrylate were carried out from a 

mixed monolayer of two thiols (where the quantity of each thiol was known). Only one of these two 

thiols carries a bromoisobutyrate end-group and is able to surface-initiate the synthesis of the polymer 

chains. As mentioned previously, linear relationship between the initiator density and the thickness of the 

polymer brush has been established. Chilkoti et al. clearly show that protein repelling on poly (oligo 

(ethylene glycol) methyl methacrylate) brushes depends on both parameters: film thickness and polymer 

surface density.
[177]

 Authors show that the synthesis of low density brushes lead to the best coating 

against protein adsorption. 

Later, Kim et al. showed that there is a specific catalyst concentration that yields a maximum film 

thickness for a given polymerization time.
[178] 

The optimal catalyst concentration depends on the 

particular ATRP system applied. They concluded that the polymerization at high catalyst concentration 

causes a high concentration of radicals and, therefore, rapid initial growth followed by early termination, 

whereas polymerization at low catalyst concentrations simply yields very little film growth. Interestingly, 

stirring of the solution also appears to enhance early termination processes. This was explained in terms 

of increased mobility of chain ends during stirring, which increases the possibility of radical coupling.
[178]

 

 

1.3. Solid-supported block copolymer membranes 

 

Solid-supported biomimetic membranes were developed in the 1980s as membrane models to overcome 

the lack of stability of natural cell membranes.
[179]

 To create such artificial membranes, immobilization of 

polymeric nanostructures such as vesicles on surfaces as well as the formation of planar membranes can 

be performed. The immobilization on surfaces offers the ability to easily isolate and array vesicles 

individually
[180-182]

 or in groups,
[183] 

to apply a wide range of surface-sensitive techniques for the 

investigation of the vesicles
[180] 

and to create well-suited platforms for high-throughput experiments.
[184] 

However, most of the reported studies were performed on liposomes while anchoring of polymer vesicles 

on surfaces is rarely reported. The situation is similar with solid-supported planar membranes. For almost 

20 years, phospholipid bilayers deposited onto solid substrates were the only used experimental cell-

surface models and allowed gaining insights into immune reactions and cell adhesion.
[185-189] 

This resulted 

in membranes, only separated from the solid support by an ultrathin (1-2 nm) water film.
[190, 192] 

However, 

this concept suffers from a number of intrinsic difficulties. The mere physical coupling between the lipid 
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bilayer and the solid support eventually may lead to partial detachment of membrane constituents or 

replacement by other surface-active compounds.
[192]

 

Furthermore, as depicted in Figure 1-7a, the membrane-substrate distance is usually not large enough to 

avoid direct contact between incorporated membrane components (e.g. integral proteins) and the solid 

surface.
[193] 

Some of the proteins envisaged for basic biophysical studies or technological applications, 

however, possess functional units which stick out far from the bilayer.
[192]

 Strong interactions and/or 

frictional coupling between the substrate and incorporated proteins might lead to partial loss of 

functionality or even to complete protein denaturation.
[192]

 

Next generations of solid-supported membranes were therefore optimized in such a way that unfavorable 

contacts between the substrate and integral membrane components can be avoided. Two major concepts, 

depicted in Figures 1-7b and 1-7c, are used to achieve this improvement: lipid bilayers are either 

“cushioned” on polymer or polyelectrolyte films,
[190, 191, 193, 194]

 or covalently coupled to the substrate by 

anchor or spacer groups (and are often referred to as “tethered bilayer membranes”).
[192, 194, 195]

 

 

Figure 1-7: Solid-supported membranes. Solid-supported lipid membrane (a), lipid membrane that is 

supported using a polymer cushion (b) or lipopolymer tethers (c). Transmembrane proteins are marked 

as blue objects across the membranes.
[193]

 

Recent attempts involved the introduction of spacer units like peptides, oligomers, or polymers.
[13, 193, 195-

198] 
In particular, the approach of covalent tethering is of central importance to this thesis. This concept 

guarantees a mechanically and chemically robust attachment of the artificial membranes to the solid 

support, while at the same time the membrane retains its fluid character.
[195] 

The covalent attachment of 

the polymer chains to the substrate can be achieved either by “grafting-to” or “grafting-from” techniques. 

The “grafting-to” procedure implies to anchor an end-functional polymer chain to the substrate 

containing suitable functional groups for covalent binding.
[199] 

Common preparation techniques for such 

membranes include dip- or spin-coating,
[200] 

layer-by-layer deposition,
[201] 

Langmuir film transfers,
[202-204] 

or vesicle and micelles spreading.
[205-207] 

This method usually leads to polymer membranes with low 

grafting density of the chains due to diffusion problems of large macromolecules reaching a substrate. 

The “grafting-from” technique overcomes this problem and results in preparation of thick, covalently 

tethered polymer brushes with a high grafting density.
[208]

 This method attracted a lot of attention since 

the “living” polymerization techniques were optimized for surface functionalization. The grafting of 
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amphiphilic triblock copolymer from gold substrates and subsequent analysis of the resulting brushes will 

be presented in this thesis. 

 

Tethering polymer vesicles to solid surfaces can find their applications as smart and active surfaces.
[209]

 

Two publications
[27, 210] 

made use of the specific and strong streptavidin-biotin binding assay to 

immobilize triblock copolymer vesicles on glass. Rosenkranz et al. employed this approach to investigate 

protein folding at a single molecule level. Proteins, encapsulated in triblock copolymer nanocontainers, 

could be individually observed for extended time periods.
[210]

 Moreover, this immobilization method 

proved its usefulness for studying enzymatic conversions on precisely patterned surfaces. Grzelakowski 

et al. encapsulated an enzyme in surface-bound hybrid protein-polymer nanoreactors.
[27] 

A fluorogenic 

substrate was introduced into the nanoreactors via a previously incorporated channel protein. By 

enzymatic conversion, it became insoluble and fluorescent, thus detectable by laser scanning microscopy. 

More recently, polymer nanoreactors immobilized on surfaces were shown to be used as local drug 

delivery and antifouling systems.
[211, 212] 

Langowska et al. designed and prepared vesicles based on a poly 

(2-methyloxazoline)-block-poly (dimethylsiloxane)-block-poly (2-methyloxazoline (PMOXA-b-PDMS-

b-PMOXA) amphiphilic triblock copolymer encapsulating the enzyme penicillin acylase for local and 

controlled production of antibiotics.
[211] 

The latter system found its use as a self-defending system to fight 

bacterial adhesion by a controlled release of drugs for a long period of time.
[212]

 

Planar membranes anchored to a solid support were designed as active surfaces for potential applications 

in tissue engineering
[213, 214] 

or biosensing.
[215, 216]

 As templates for biological mineralization, amphiphilic 

poly (acrylic acid)–block–poly (n-butylacrylate) diblock copolymer films at the air-water interface as 

well as a system based on polymer-lipid mixed monolayers have been mineralized with calcium 

phosphate.
[213, 214] As sensing devices, laccase enzyme has been immobilized on an asymmetric 

amphiphilic triblock copolymers made of poly (ethylene glycol)-block-poly (γ-methyl-ε-caprolactone)-

block-poly ((2-dimethylamino) ethyl methacrylate) (PEG45-b-PMCLx-b-PDMAEMAy), with preservation 

of enzyme activity.
[215]

 Additionally, potential biosensor devices can be designed by the incorporation of 

biological moieties i.e. membrane proteins inside planar membranes. So far the closest achievements in 

this area are the successful insertion of channel proteins alpha-hemolysin (α-HL) and potassium channel 

protein MloK1 into polymeric bilayers created with Langmuir techniques.
[216, 217]

 Similarly, incorporation 

of proteins will be performed in this thesis. For this purpose, the system presented in the work of 

Rakhmatullina et al.
[218] 

will be optimized by controlling the packing density, as the polymers were 

synthesized using a “grafting-from” approach. 
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2. Scope of the thesis 
 

2.1. Aim and motivation 

 

The research work in this thesis aimed at developing novel biomimetic nanostructures based on 

amphiphilic triblock copolymers membranes in solution and on solid supports. For both systems, 

synthesis as well as physical and chemical characterization were conducted. 

In solution, these self-assembled structures were investigated as potential intracellular drug delivery 

systems. At first, we studied the influence of the chain length and the hydrophilic to hydrophobic ratio on 

the macromolecular self-assembly. Then, the ability of these self-assemblies to encapsulate and release 

small molecules was investigated. For the release process, a strategy was developed for the disintegration 

of nanostructures in the way that the degradation products would be either water-soluble or could 

potentially be cleared from the body or cells. Also, the block copolymers were designed in order to be 

further used as polymeric bilayers on solid supports.  

On solid substrates, systems based on amphiphilic triblock copolymers were developed that mimic the 

structure of cell membranes and that allow for the insertion of membrane proteins.  Of particular interest 

was the effect of the membrane density on the membrane's ability to host functional pore-forming 

proteins. First, we investigated the best synthesis strategy to build a suitable matrix that allowed channel 

protein reconstitution inside an artificial membrane. For this purpose, the block copolymers mentioned 

above were used for consecutive monolayer transfers on solid supports. In parallel, polymer brushes were 

synthesized directly from the surface. For this second system, the effect of grafting density on the self-

assembly behavior of the brushes and on protein reconstitution were studied. Upon insertion of 

compatible channel proteins, these systems could find their potential applications as biosensor devices. 

 

2.2. Strategies and approaches 

 

The self-assembled structures in solution and the solid supported polymer membranes are based on 

methacrylate amphiphilic triblock copolymers, made of poly (2-hydroxyethyl methacrylate)-block-poly 

(butyl methacrylate)-block-poly (2-hydroxyethyl methacrylate) (PHEMA-b-PBMA-b-PHEMA), that 

exhibit a hydrophilic-hydrophobic-hydrophilic structure. Their self-assembly was studied in solution and 

on surfaces. PHEMA and PBMA are interesting choices as polymers for biomedical applications because 

of their biocompatibility and biodegradability.
[1, 2]

 Furthermore, the –OH groups from PHEMA allow 

further functionalization for specific use. For the synthesis of this triblock copolymer in solution and on 

solid supports, atom transfer radical polymerization (ATRP) was used. ATRP is a robust technique since 
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it can fine-tune well-designed polymers with narrow polydispersity index.
[3, 4]

 Polydispersity is actually a 

key parameter both for the self-assembly in solution and for the homogeneity of polymer brushes on 

surfaces. PBMA was also chosen for its mobility, as it is one of the most flexible hydrophobic polymer 

that can be synthesized by ATRP, with a glass transition temperature of 20°C-27°C.
[5, 6]

 

As mentioned above, PHEMA-b-PBMA-b-PHEMA self-assembled in solution to form nanostructures 

that can be further used as potential intracellular drug delivery systems. To study the effect of the chain 

structure on the self-assembly and to favor the formation of nanoobjects, hydrophilic to hydrophobic ratio 

as well as the polymers chain length were varied. Here, the triblock copolymer was designed as a 

reduction-sensitive amphiphilic block copolymer. The characteristic feature of these polymeric structures 

is their cleavable disulfide bond in the center of the hydrophobic block, obtaining the polymer PHEMA-

b-PBMA-S-S-b-PBMA-b-PHEMA. Therefore, the triblock copolymer can be cleaved into amphiphilic 

diblock copolymers. As the degradation products of the nanoobjects are amphiphilic, they should 

therefore allow for facile clearing from biological systems. Moreover, the self-assembly can be cleaved 

by using biological reducing agents such as glutathione. As concentration gradients of this reducing agent 

are commonly found in biological systems, the nanostructures could be used as redox-sensitive 

nanocarriers for the intracellular delivery of drugs.  

Also, planar membranes on solid supports were elaborated in order to mimic the cell membrane. 

Actually, their hydrophilic-hydrophobic-hydrophilic configuration exhibits a similar structure as lipid 

bilayers. PHEMA-b-PBMA-S-S-b-PBMA-b-PHEMA used above for the formation of nanoobjects was 

investigated as a membrane mimic by consecutive Langmuir transfer techniques, Langmuir-Blodgett 

(LB) and Langmuir-Schaefer (LS), on gold supports. Then, the possibility of channel protein insertion 

into this obtained artificial bilayer membrane was studied using both attenuated total reflectance Fourier 

transform infrared spectroscopy (ATR-FTIR) and electrochemical impedance spectroscopy (EIS).  

In addition, PHEMA-b-PBMA-b-PHEMA was synthesized directly from gold substrates using surface-

initiated ATRP to obtain homogeneous membranes with minor defects. As packing density is a key 

parameter for protein insertion, the “grafting-from” approach was selected instead of the “grafting-to” 

and the vesicle spreading because of the possibility to control over the polymer grafting density. By 

varying the grafting density, a potential matrix for the insertion of channel protein can be found. The 

control over the packing density can be monitored with surface-sensitive technique such as neutron 

reflectivity. However, a spacer between the solid substrate and the polymeric membrane is needed to 

avoid protein denaturation by contact with the surface. For that, the ATRP initiator molecule containing a 

disulfide bond will be covalently attached to the gold surface, forming a self-assembled monolayer 

(SAM). This initiator SAM acts as a spacer between the membrane and the metallic substrate. Along with 

the covalent attachment to the initiator molecule, gold is an interesting choice as a solid support for its 

dielectric properties, useful for surface-sensitive characterization methods, such as surface plasmon 
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resonance (SPR), neutron reflectivity or polarization modulated infrared reflection absorption 

spectroscopy (PM-IRRAS). Moreover, gold dielectric properties may also find their use for the insertion 

of channel proteins using electrochemical impedance spectroscopy (EIS).
[7, 8]

 Furthermore, recent work 

showed solvent response of amphiphilic triblock copolymer PHEMA-b-PBMA-b-PHEMA through their 

reversible rehydration.
[9]

 Therefore, because of this solvent response, upon insertion of channel proteins, 

this membrane can be potentially used as air-stable and reusable biosensor devices. 
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3. Self-organization behavior of methacrylate-based reduction-sensitive 

amphiphilic triblock copolymers in solution 
 

Parts of this chapter were published in: S. Toughraï, V. Malinova, R. Masciadri, S. Menon, P. Tanner, C. 

G. Palivan, N. Bruns, W. Meier, “Reduction-Sensitive Amphiphilic Triblock Copolymers Self-Assemble 

into Stimuli-Responsive Micelles for Drug Delivery”, Macromolecular Bioscience, 2014, DOI: 

10.1002/mabi.201400400. 

 

3.1. Introduction 

 

Stimuli-responsive amphiphilic block copolymers that self-assemble into well-defined nanostructures 

have a great potential for many applications, such as nanoreactors or controlled drug delivery systems.
[1-3] 

The self-assembly of amphiphilic block copolymers with designed architectures, including diblock,
[4-7]

 

triblock,
[8-10]

 but also dendritic
[11-13]

 and graft
[14]

 copolymers, has been shown to result in the formation of 

various supramolecular structures, such as micelles and vesicles.
[15-17]

 These nanostructures are regarded 

as good candidates for the encapsulation and controlled intracellular delivery of drugs and other 

biological compounds.
[18]

 For many of them, the underlying strategy is the use of an external stimulus, 

like temperature,
[2, 19]

 pH
[2]

 or light,
[20]

 to induce destabilization of micelles or vesicles, hence triggering 

the release of a payload.
[21, 22]

 The structures can be destabilized, e.g., by modifying the hydrophilic 

block,
[22-24]

 by selectively degrading one block,
[25-27]

 or by cleaving a linker between blocks.
[20, 28, 29]

 

Redox-responsive drug-delivery nanovehicles take advantage of naturally occurring reducing agents, 

such as glutathione.
[30, 31] 

The concentration of glutathione in cytosol, mitochondria and cellular nuclei is 

around 2-10 mM; whereas the concentration in extracellular fluids is 500-1000 times lower.
[32-34]

 This 

concentration gradient can be harnessed to trigger the disruption of carriers and the release of their cargo 

within cells.
[33-35]

 A common reduction-sensitive motif is the disulfide bond. Cleavage of S-S bonds in 

redox-responsive polymer nanovehicles can be achieved with concentrations of glutathione similar to 

those in intracellular environment.
[36] 

Reduction of S-S bonds of polymers has also been reported with 

chemical reducing agents such as TCEP, cysteine or DTT, e.g. for the release of doxorubicin.
[36-38]

 

Moreover, a combination of reducing agent and high intensity focused ultrasound allowed fine-tuning of 

the release kinetics of payload from polymeric micelles.
[39] 

Various redox-sensitive nanostructures such 

as reversible shell-crosslinked or core-crosslinked micelles, as well as micelles with a reductively 

degradable core have been demonstrated to release therapeutic payloads in response to intracellular level 

of glutathione.
[34]

 Most of the reduction-responsive systems are made of block copolymers that feature a 

hydrophilic block A linked by a disulfide-containing linker to a hydrophobic block B, i.e. with a structure 

A-S-S-B.
[28]

 Polymers that were used in such redox-responsive block copolymer systems were often poly 

(ethylene glycol) (PEG) in combination with biodegradable polymers such as polyesters (poly (lactic 
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acid), poly (γ-methyl-ε-caprolactone))
[37]

 or polypeptides.
[1]

 The cleavage of the S-S bond in this kind of 

polymers yields hydrophilic and hydrophobic homopolymers. One dilemma with such systems is that the 

hydrophobic residues can accumulate in the body, especially if the biodegradation of the hydrophobic 

block is slow.
[34]

 This can make the application of such systems in drug delivery problematic. Reduction-

sensitive polymers with a different molecular architecture can circumvent this problem. Sun et al. 

reported amphiphilic polyamide amine-graft-polyethylene glycol copolymers with S-S bonds in the 

hydrophobic main chain.
[40]

 Poly (2-hydroxyethyl methacrylate) hydrogels with a disulfide-containing 

crosslinker were synthesized by Ejaz et al. and yield hydrophilic polymers upon reduction.
[41]

 

Here we present reduction-sensitive nanostructures for intracellular drug delivery that are based on 

amphiphilic triblock copolymers with a disulfide bond in the middle of the hydrophobic block, i.e. with 

an A-B-S-S-B-A (hydrophilic-hydrophobic-S-S-hydrophobic-hydrophilic) architecture. This structure 

results in amphiphilic A-B-SH diblock copolymers upon cleavage of the S-S bond. The degradation 

products are either water-soluble or self-assemble into new nanoobjects and could therefore potentially be 

cleared from the body or cells. The nanovehicles presented in this study are attractive candidates for 

intracellular drug delivery systems that could circumvent the problem of accumulation of hydrophobic 

polymers. We studied the capability of these systems to encapsulate and release payloads, and 

investigated the dynamic behavior of the structures obtained after its degradation with reducing agents. 

A-B-S-S-B-A block copolymers with poly (2-hydroxyethyl methacrylate) (PHEMA) as the hydrophilic 

block and poly (butyl methacrylate) (PBMA) as the hydrophobic part were synthesized by sequential 

atom transfer radical polymerization (ATRP) from a bifunctional bromoisobutyrate initiator containing an 

internal disulfide.
[42]

 ATRP was used since it is a robust technique towards functional groups and a 

versatile living/controlled polymerization that affords well-defined copolymers.
[43, 44]

 PHEMA and 

PBMA are interesting choices for biomedical applications because both polymers are biocompatible.
[45, 

46]
 In this chapter, two triblock copolymer systems were synthezised and characterized. Both systems are 

different by their chain length and their hydrophilic to hydrophobic ratio in order to investigate the 

differences in their self-assembly in solution. Systems that can lead to micelles or vesicles in solution will 

be further considered for release studies. 
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3.2. Results and discussion 

 

3.2.1. Formation of micelles 

 

3.2.1.1. Synthesis of triblock copolymer 

 

The bifunctional ATRP initiator 11,11´-dithiobis [1-(2-bromo-2-methylpropionyloxy)undecane]  was 

synthesized. It bears a cleavable disulfide bond in the middle of the molecule and bromine groups at each 

end. It was used to initiate the polymerization of BMA by ATRP with CuBr/PMDETA as catalyst, 

yielding a Br-(PBMAm-S-S-PBMAm)-Br macroinitiator. The latter was used to initiate the polymerization 

of HEMA, yielding a triblock copolymer PHEMAn-b-(PBMAm-S-S-PBMAm)-b-PHEMAn (for simplicity 

termed ABA1 in this text) (Figure 3-1).  

 
Figure 3-1: Synthesis of PHEMAn-b-(PBMAm-S-S-PBMAm)-b-PHEMAn triblock copolymer ABA1. 

 

  

Figure 3-2: 
1
H NMR spectra of Br-(PBMA25-S-S-PBMA25)-Br (B1) and PHEMA25-b-(PBMA25-S-S-

PBMA25)-b-PHEMA25 (ABA1). 

 

ppm 
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The degree of polymerization and the molecular weight of both macroinitiator and triblock copolymer 

were determined by 
1
H NMR and GPC (Figures 3-2 and 3-3) and are reported in Table 3-1. The GPC 

curves of the copolymer revealed a clear shift toward higher molecular weight when compared to the Br-

(PBMAm-S-S-PBMAm)-Br macroinitiator. Moreover, the triblock copolymer traces were unimodal. 

 

Figure 3-3: GPC traces of Br-(PBMA25-S-S-PBMA25)-Br (B1) and PHEMA25-b-(PBMA25-S-S-PBMA25)-

b-PHEMA25 (ABA1). 

Table 3-1: Characteristics of macroinitiator B1 and block copolymer ABA1.  

Polymer Structure DP
a
 

(PBMA) 

DP
a
 

(PHEMA) 

Mn (NMR) 

(g/mol) 

Mn (GPC) 

(g/mol) 

PDI
b
 f

c
 

B1 Br-(PBMA25-S-S-PBMA25)-Br 50 -- 7815 7690 1.3 -- 

ABA1 PHEMA25-b-(PBMA25-S-S-
PBMA25)-b-PHEMA25 

50 50 14320 11460 1.6 0.83 

a Degree of polymerization (DP) values calculated from 1H NMR. b Polydispersity index (PDI) obtained by GPC, using poly 

(methyl methacrylate) standards. c Hydrophilic to hydrophobic ratio as Mn(PHEMA)/Mn(PBMA). 

 

3.2.1.2. Formation of the self-assembled structures 

 

The self-assembly was performed with ABA1 polymers under conditions described in the experimental 

part (see section 7.2.2. in Chapter 7). ABA1 formed micelles, as confirmed by dynamic and static light 

scattering (DLS and SLS) and transmission electron microscopy (TEM) (Figures 3-4 and 3-5). 

ABA1 

B1 
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Figure 3-4: A) Number-averaged size distribution obtained by dynamic light scattering (DLS) at 90° of a 

self-assembled ABA1 solution in water; B) TEM micrograph of micelles formed by self-assembly of ABA1 

in water. Concentration 0.1 mg mL
-1

. 

The DLS-derived size distribution histogram of the ABA1 solution shows one population with a 

hydrodynamic radius (Rh) of 44 ± 3 nm, which are most probably micelles. SLS data (using cumulant 

analysis and Zimm plots, see Figure 3-5) gave a radius of gyration (Rg) of 108 nm, Rh = 145 nm and a 

ratio Rg/Rh of 0.74. This ratio is close to 0.78, which is the typical value for hard-sphere micelles.
[47]

 

However, SLS was measured with a polymer concentration range from 0.1 to 1.0 mg mL
-1 

and the 

presence of aggregates along with the micelles was observed in concentrations above 0.5 mg mL
-1

. This 

may explain the differences in the hydrodynamic radii between DLS and SLS. TEM micrographs reveal 

the presence of special structures of diameters ranging from 40 to 60 nm, in good agreement with the 

dynamic light scattering data. The combination of all this data implies that ABA1 block copolymers self-

assembled into micelles. 

 

Figure 3-5: SLS measurements of ABA1. Measurements were performed from 30° to 150°. Zimm plot 

model, q:2nd order and c:1st order. Concentration range: 0.1 to 1.0 mg mL
-1

. 

In order to estimate the long-term stability of the self-assemblies, an aliquot of a micellar solution was 

stored at room temperature for two years and measured by DLS and TEM thereafter. TEM micrographs 

revealed similar particle sizes and shapes as the freshly prepared solutions, and DLS shows similar 
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hydrodynamic radius (Rh = 40 ± 2 nm) (see Figure 3-6). Therefore, the micelles remained the same and 

were stable.  

 

Figure 3-6: A) TEM micrograph showing ABA1 micelles after 2 years of storage at room temperature; B) 

Number-averaged size distribution obtained by dynamic light scattering (DLS) at 90° of ABA1 after 2 

years at room temperature. Concentration of polymer = 0.1 mg mL
-1

. 

 

3.2.1.3. Degradation of redox-sensitive block copolymers in organic solvents 

 

Prior studying the degradation process of the self-assemblies in solution, a preliminary experiment was 

conducted to investigate the disulfide bond cleavage upon reduction in an organic environment. GPC data 

show that the addition of tributylphosphine to ABA1 resulted in a shift towards smaller Mw after 2h, 5h, 

and 24h, proving the cleavage of the polymer in organic solvent (Figure 3-7).

 

Figure 3-7: GPC traces of ABA1 during reduction with tributylphosphine (after 2h, 5h and 24h 

reduction). 
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3.2.1.4. Degradation of the self-assembled structures upon reduction of the disulfide 

bond 

 

For a better understanding of the release process of small molecules from such polymeric micelles, 

degradation studies in aqueous solutions were conducted. To this end, disulfide bonds in the self-

assembled structures were cleaved with two different reducing agents, TCEP and glutathione. TCEP was 

chosen as a chemical reducing agent because it performs selective, fast and complete reduction of 

disulfide bonds
[48]

 and it is resistant to air oxidation. Glutathione is also selective, fast and efficient in 

reducing S-S bonds. Importantly, glutathione is present inside of cells
[30-34]

 and is therefore a suitable 

agent to investigate S-S reduction under biological relevant conditions. DLS and TEM were performed in 

order to observe the changes in size over time (Figures 3-8 and 3-9). In both reduction scenarios (e.g. 

TCEP and glutathione), an increase of the particle sizes of ABA1 micelles was observed by DLS within 

the first 4 hours (Figures 3-8 and 3-10). Large particles were formed with hydrodynamic radii between 

150 and 450 nm during the first hour and above 500 nm after 2 hours. Most likely, the observed increase 

in particle size is due to the formation of aggregates from totally or partially disintegrated micelles after 

addition of the reducing agents. TEM images support this hypothesis. The micrograph in Figure 3-9A 

was recorded after 1 hour of reduction with glutathione and shows not only aggregates, but also the 

formation of particles with diameters that range from 100 to 200 nm. After 3 hours of reduction, particles 

with diameters from 50 to 120 nm were formed, with the presence of agglomerates (Figure 3-9B). Most 

probably, upon reduction of the disulfide bond, the resultant amphiphilic diblock copolymer PHEMAm-

PBMAn-SH reassembled to larger particles. The agglomeration of those particles may explain the 

increase in particles size observed by DLS. DLS measurements that were conducted after 24 h of 

reduction revealed apparent Rh between 1 to 2 nm, independent of the reducing agent used (see Figures 

3-8 and 3-10). As macroscopic aggregates were observed by eye, these findings indicate the complete 

disruption and aggregation of the previous formed particles. The resulting aggregates were too large to be 

detectable by light scattering methods.  
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Figure 3-8: Evolution of Rh vs. time for ABA1 upon reduction with TCEP (▲) and glutathione (▼). The 

particle size increased within the first 4 hours, proving that the cleaved polymers formed aggregates and 

larger particles. After 24h, apparent Rh is between 1 and 2 nm, indicating the complete disruption of the 

micelles. 

 

 

Figure 3-9: Morphology change observed by TEM micrographs of ABA1 micelles: A) After 1 h reduction. 

B) After 3 h reduction. C) After 24 h reduction. Reducing agent: 17.5 mM glutathione. 

 



~ 57 ~ 
 

 

 Figure 3-10: Evolution of number-averaged size distributions obtained by DLS at 90° of ABA1 during 

reduction with TCEP (A) and glutathione (B) (after 1h, 2h, 3h, 4h, and 24 h). As DLS does not give 

reliable results from Rh > 1000 nm because of the formation of aggregates, the size distributions 

histograms are only presented from 0 to 1000 nm. 

 

The degradation of the ABA polymers upon the reduction of the disulfide bond was also investigated by 

the ThioGlo assay, which is commonly used to determine the presence of SH groups.
[49]

 In these 

experiments, TCEP was used as a reducing agent because it does not interfere with the conjugation of 

free thiols with the maleimide moiety of the ThioGlo-5 reagent.
[48]

 An increase in the fluorescence 

intensity over time was observed for the micelles mixed with the TCEP solution, which can be explained 

by the cleavage of the disulfide bond, and the reaction of the resulting free thiol groups with the ThioGlo 

reagent (Figure 3-11). 
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Figure 3-11: Formation of free thiol groups upon reduction of ABA1 micelles with TCEP as determined 

by the ThioGlo assay. Fluorescence (maximum emission intensity at λ = 525 nm) vs. time of reduction. 
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3.2.1.5. Encapsulation and release of low molecular weight molecules 

 

In order to test whether the polymeric micelles can be used as redox-responsive nanovehicles, the 

encapsulation and the release of small hydrophobic molecules were studied. Micelles were loaded with 

hydrophobic dyes by adding Nile Red and BodiPy 630/650, respectively, to polymer solutions during the 

self-assembly process. TEM micrographs of micelles that were prepared in the presence of BodiPy show 

that the hydrophobic cargo did not change the morphology of the self-assemblies (Figure 3-12A). In 

order to determine the concentration of encapsulated BodiPy in the micelles, UV-vis spectra of BodiPy-

loaded micelles were recorded. The spectrum of encapsulated BodiPy in micelles shows BodiPy’s 

maximum absorbance at 630 nm, indicating the presence of the dye (see Figure 3-12B). The 

concentration of BodiPy in the polymeric solution at the beginning of the self-assembly process was 72 

μM. Inside the micelles the concentration was 11 μM (see Figure 3-13 for the calibration curve). 

Therefore, an encapsulation efficiency of 15 % was achieved. Both observations from TEM and UV-vis 

prove that the self-assemblies were able to encapsulate hydrophobic guests. The fluorescence of Nile Red 

strongly depends on the polarity of the dye’s environment. In hydrophobic surroundings the dye 

fluoresces, while in water it does not fluoresce. A calibration curve that reliably quantifies the 

concentration of the dye in the hydrophobic polymer phase of the micelles could not be obtained and 

therefore the encapsulation efficiency of Nile Red could not be determined.  

  

Figure 3-12: A) TEM micrograph of ABA1 micelles that encapsulate BodiPy 630/650. B) UV-vis 

spectrum of encapsulated BodiPy in micelles, showing the characteristic absorbance band of BodiPy 

with a maximum at 630 nm. 
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Figure 3-13: Calibration curve of dilution series of BodiPy 630/650. Absorbance (maximum absorbance 

at λ = 630 nm) vs. BodiPy concentration. The red solid line corresponds to the linear fit. 

 

The release of Nile Red upon reduction of micelles was followed by fluorescence spectroscopy. 

Glutathione caused a strong decrease of the fluorescence intensity within the first hour, due to release of 

dye from the hydrophobic core of micelles into water (Figures 3-14A and 3-16A). The fluorescence 

continued to decrease slightly for 9 hours, indicating a continued release of dye. Not surprisingly, 

reduction of empty micelles did not result in fluorescence. Nile Red-loaded micelles that were incubated 

in the absence of a reducing agent retained their fluorescence (Figure 3-16A). Therefore, the observed 

release of dye in the presence of reducing agents was caused by the reduction of the polymers and not by 

a diffusion of dye from the micelles. Reduction with TCEP gave similar results (Figure 3-14B). Within 

the first 45 minutes the fluorescence intensity of loaded micelles decreased to approximately one third of 

its initial value. The loss of fluorescence continued at longer reduction times, and the fluorescence 

intensity reached zero within 24 hours. This indicates that the whole amount of encapsulated Nile Red 

was released. The combination of these results along with the DLS and TEM data allows drawing the 

following conclusion: the self-assembled polymer micelles lose their stability within the first hour of 

reduction by aggregating and starting to form particles. This leads to a pronounced release of their 

payload. The formed particles probably retain or encapsulate residual dye, which is then slowly released 

while the amphiphilic A-B-SH block copolymers further aggregate. 
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Figure 3-14: Fluorescence spectra of Nile Red-loaded micelles upon reduction with glutathione recorded 

every 5 minutes during the first hour, then every 2 hours over a time of 8 hours (A), and with TCEP after 

45 minutes and 24 hours (B), showing a decrease in fluorescence over time. 

 

Fluorescence correlation spectroscopy (FCS) was used to gain further insight into the glutathione-

triggered release of payloads from ABA1 micelles because it is a very sensitive method, detecting at a 

single molecule level. Moreover, FCS allows determining the size of polymeric nanostructures present in 

solution. These experiments were carried out with BodiPy 630/650 instead of Nile Red, because the latter 

dye immediately forms aggregates in aqueous solution and can therefore not be quantified by FCS. The 

normalized autocorrelation curves of dye-loaded micelles and of free dye are presented in Figure 3-15. 

The encapsulation of BodiPy in micelles shifted the curve to significant higher diffusion times. These 

curves allow calculating diffusion times of the fluorophore and as a consequence the hydrodynamic 

radius of the diffusing species according to the Stokes-Einstein equation.
[50]

 The autocorrelation data of 

free BodiPy was fitted with a single component function and resulted in a diffusion time of 42 ± 1 μs and 

a Rh around 0.4 nm. This size is close to the theoretical value of 0.6 nm, based on the molecular weight of 

the dye. The autocorrelation curve of the dye-containing micelle solution had to be fitted taking two 

populations into account. The first population, which contributed to 40% of the signal, had a diffusion 

time of 3.2 ± 1 ms. This translates into a hydrodynamic radius of 33 ± 10 nm which indicates that BodiPy 

was encapsulated in the micelles. The FCS-derived size of the micelles is in agreement with the radius 

and diameter of micelles calculated from DLS and TEM data (Figure 3-4). The second population had a 

larger diffusion time of 22 ± 4 ms (population size 60%) and, consequently, a larger hydrodynamic radius 

of around 200-230 nm. Most likely this population consisted in dye-containing aggregates, as the 

presence of micellar aggregates was observed for polymer concentrations > 0.5 mg mL
-1

 (used here for 

FCS measurements).  
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Figure 3-15: Normalized FCS auto-correlation curves (experimental data: dotted lines, fitted data: 

continuous lines) obtained for (a) a solution of free BodiPy in water based on a single component 

autocorrelation function and (b) a solution of encapsulated micelles with BodiPy 630/650 in water based 

on a two-component autocorrelation function. 

 

In order to follow the release of BodiPy from the micelles, the micelles were treated with the reducing 

agent glutathione using the same procedure as with fluorescence measurements. FCS measurements were 

performed in regular time intervals (Figure 3-16B). Nearly 80 % of the dye in micelles and aggregates 

was released with the first 13 min of reduction and dye-filled micelles and dye-containing aggregates 

vanished. The fraction of free dye slowly increased upon longer reduction time. Most of the dye was 

released within 30 min after the start of the experiment.  
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Figure 3-16: Reduction-triggered release of hydrophobic payloads from ABA1 micelles. A) Plot of 

fluorescence vs. reduction time with glutathione for Nile Red-loaded micelles (♦) and empty micelles as 

control experiment (■); Nile-Red-loaded-micelles in the absence of reducing agent (▲) (maximum 

emission intensity at λ = 600 nm). B) FCS-detectable species during reduction of BodiPy 630/650-loaded 

self-assembled polymer structures with glutathione: free dye (□), micelles (X) and aggregates (●). The 

release was fitted with three-component auto-correlation function (free dye, micelles, and aggregates). 

 

3.2.2. Formation of nanoparticles 

 

3.2.2.1. Synthesis of triblock copolymer 

 

The synthesis and the characterization of the triblock copolymer ABA2 were conducted the same way as 

previously for the ABA1 polymer. The polymerization of BMA and HEMA in ABA2 as well as the 

degree of polymerization and the molecular weight were evidenced similarly to ABA1 (see Figures 3-17 

and 3-18 and Table 3-2). 
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Figure 3-17: 
1
H NMR spectra of Br-(PBMA20-S-S-PBMA20)-Br (B2) and (PHEMA13-b-(PBMA20-S-S-

PBMA20)-b-PHEMA13 (ABA2). 

 

Figure 3-18: GPC traces of Br-(PBMA20-S-S-PBMA20)-Br (B2) and PHEMA13-b-(PBMA20-S-S-PBMA20)-

b-PHEMA13 (ABA2). 

 

Table 3-2: Characteristics of macroinitiator B2 and block copolymer ABA2. 

Polymer Structure DP
a
 

(PBMA) 

DP
a
 

(PHEMA) 

Mn (NMR) 

(g/mol) 

Mn (GPC) 

(g/mol) 

PDI
b
 f

c
 

B2 Br-(PBMA20-S-S-PBMA20)-Br 40 -- 7530 7680 1.5 -- 

ABA2 PHEMA13-b-(PBMA20-S-S-
PBMA20)-b-PHEMA13 

40 26 11070 12275 1.6 0.47 

a Degree of polymerization (DP) values calculated from 1H NMR. b Polydispersity index (PDI) obtained by GPC, using poly 

(methyl methacrylate) standards. c Hydrophilic to hydrophobic ratio as Mn(PHEMA)/Mn(PBMA). 
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3.2.2.2. Formation of the self-assembled structures 

 

Self-assembly of ABA2 polymer was performed under identical conditions as with ABA1. 

  

Figure 3-19: A) Number-averaged size distribution obtained by dynamic light scattering (DLS) at 90° of 

ABA2; B) TEM micrograph showing formation of ABA2 nanoparticles in water. Concentration 0.1 mg 

mL
-1

. 

 

The size distribution histogram of ABA2 solution shows one population with Rh = 129 ± 12 nm (Figure 

3-19A). SLS data (using cumulant analysis and Zimm plots, see Figure 3-20) gave Rg = 136 nm and Rh = 

139 nm, and a ratio of 0.98 between Rg and Rh. This value is comparable to the theoretical value given for 

hollow spheres (Rg/Rh = 1.0),
[51]

 and may indicate the formation of polymer vesicles. TEM micrographs 

reveal the presence of spherical structures of diameters ranging from 100 to 200 nm, and only a few 

smaller ones (diameter < 100 nm) (Figure 3-19B). 

 

Figure 3-20: SLS measurements of ABA2. Measurements were performed from 30° to 150°. Zimm plot 

model, q:2nd order and c:1st order. ABA2: concentration range: 0.1 to 0.5 mg mL
-1

. 

In order to confirm the presence of polymeric vesicles, i.e. hollow spheres, cryo-TEM experiments were 

performed. The micrographs reveal the presence of spherical structures with diameters range from 100 to 

300 nm (see Figure 3-21). However, even if previous light scattering data indicate the formation of 

vesicles, the absence of the characteristic membrane usually present in polymersomes proved that the 

polymers self-assembled into polymeric nanoparticles, i.e. into filled spheres.  
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Figure 3-21: Visualization of hard spheres nanoparticles by cryo-TEM. Concentration 1.0 mg mL
-1

. 

 

The storage stability of the self-assemblies was estimated by measuring with DLS and TEM an aliquot of 

a polymer solution stored at room temperature for two years. Similar particle sizes and shapes as the 

freshly prepared solutions were shown by TEM micrographs (Figure 3-22A) and similar hydrodynamic 

radius (Rh = 128 ± 11 nm) was measured by DLS (see Figure 3-22B). Therefore, the nanoparticles 

remained the same and were stable.  

 

Figure 3-22: A) TEM micrograph showing ABA2 nanoparticles after 2 years of storage at room 

temperature; B) Number-averaged size distribution obtained by dynamic light scattering (DLS) at 90° of 

ABA2 after 2 years at room temperature. Concentration of polymer = 0.1 mg mL
-1

. 
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3.2.2.3. Degradation of the self-assembled structures upon reduction of the disulfide 

bond 

 

Degradation studies were conducted for a better understanding of the behavior of the self-assemblies after 

splitting their disulfide bond. To this end, the cleavage of the disulfide bond was performed under the 

same conditions as for ABA1, using the same reducing agents, e.g. TCEP and glutathione. The changes 

over time in shape and size were monitored by DLS and TEM. In both reduction scenarios, DLS data 

reveal an increase of the particles size of ABA2 nanoparticles during the first 4 hours (see Figures 3-23 

and 3-24). The formation of larger nanoparticles was observed, with hydrodynamic radii between 200 

and 300 nm during the first 2 hours and above 600 nm after 3 hours. This observed increase in particle 

size is most probably due to the formation of aggregates from disintegrated nanoparticles after addition of 

the reducing agent. Also, the changes in size and shape during reduction were observed by TEM 

micrographs (Figure 3-25), with the formation of aggregates and broken nanoparticles (see Figure 3-

25A). This is in a good agreement with DLS data. Most likely, this particle increase is due to the 

reformation of aggregates from the totally or partially disintegrated nanoparticles after addition of both 

reducing agents. However, 24 hours after reduction, micelles and micellar aggregates with a size of 50 

nm in diameter were formed (Figure 3-25B). Most probably, upon reduction of the disulfide bond beyond 

4 hours, the resultant amphiphilic diblock copolymers PHEMAm-PBMAn-SH reaggregated to micelles. 

Also, according to DLS, a decrease in the particles size occurred after 24 hours of reduction, with a Rh 

close to zero (see Figures 3-23, 3-24A and 3-24B), supposing the complete disruption of particles. 

However, micelles were observed in TEM micrographs (Figure 3-25B). This result can be explained by 

dissolution of the aggregates into individual polymer chains at a polymer concentration below the CMC 

that cannot be detected by DLS. Moreover, CMC could not be detected by surface tension, proving that 

individual polymer chains along with few micellar structures were formed after 24 hours. 
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Figure 3-23: Evolution of Rh vs. time for ABA2 during reduction with TCEP (■) and glutathione (●). The 

particles size increased within the first 4 hours, proving that the cleaved polymers formed aggregates. 

After 24h, Rh is close to zero, indicating that the aggregates dissolved or formed micelles. 

 

 

 

Figure 3-24: Evolution of number-averaged size distributions obtained by DLS at 90° of ABA2 during 

reduction with TCEP (A) and glutathione (B) (after 1h, 2h, 3h, 4h, and 24 h). As DLS does not give 

reliable results from Rh > 1000 nm because of the formation of aggregates, the size distributions 

histograms are only presented from 0 to 1000 nm. 
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Figure 3-25: Morphology change observed by TEM micrographs of ABA2 nanoparticles: A) after 1 h 

reduction, aggregates B), after 24h reduction, micelles and micellar aggregates. Reducing agent: 17.5 

mM glutathione.  

 

Similarly to ABA1 micelles, the degradation of the ABA polymers upon the reduction of the disulfide 

bond was also investigated by the ThioGlo assay. A significant increase in the fluorescence intensity over 

time was observed for the nanoparticles mixed with the TCEP solution, which is the result of the 

cleavage of the disulfide bond, and the reaction of the resulting free thiol groups with the ThioGlo 

reagent (Figure 3-26). 
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Figure 3-26: Formation of free thiols groups upon reduction of ABA2 nanoparticles with TCEP as 

determined by the ThioGlo assay. Fluorescence (maximum emission intensity at λ = 515 nm) vs. time of 

reduction with TCEP. 
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3.3. Conclusions and outlook 

 

Novel amphiphilic triblock copolymers with a disulfide bond as a redox-sensitive functional group within 

the main chain of the hydrophobic block were synthesized. These polymers self-assembled into micelles 

and nanoparticles. The disulfide bond of these polymers can be broken by a reduction with a chemical 

(TCEP) or a biological (glutathione) reducing agent, resulting in two amphiphilic block copolymers that 

either form larger particles and latter aggregate, or aggregate and then form particles. Destabilization of 

the micelles via reduction of disulfide bond triggered the successful release of payloads from the system. 

The release of hydrophobic model substances from the micelles show that these self-assembled 

nanostructures could serve as efficient reduction-sensitive systems for intracellular drug delivery. Further 

investigations, such as modification of the micelles with targeting ligands and in vitro drug delivery 

assays would elucidate the full potential of these polymer-based nanostructures. However, prior to in 

vitro studies, cell viability tests on those polymeric systems should be investigated. Also, residual THF 

from the self-assembly with the co-solvent method should be removed in order to circumvent a cause of 

possible toxicity of the nanoobjects. Alternatively, the micelles could be used for the encapsulation of 

supra paramagnetic iron oxide nanoparticles (SPION) inside the hydrophobic core of the micelles for 

targeted and controlled therapy.
[52]

 Similarly, the functionalization of our polymeric nanoparticles could 

lead to a novel system based on targeted ligand for cancer chemotherapy.
[53]

 Moreover, in a more 

chemical aspect, further investigations in the synthesis and characterization of the triblock copolymers 

could be also conducted by varying the chain lengths or the hydrophilic to hydrophobic ratios for a same 

chain length in order to study their self-assembly behaviors in aqueous solution or to establish a phase 

diagram of this system. 
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4. Solid-supported amphiphilic block copolymer membranes using 

Langmuir techniques 
 

4.1. Introduction 

 

Cell membranes are highly specialized and inherently complex multi-component assemblies, in which 

multiple chemical and structural processes occur simultaneously, such as in cellular differentiation, 

growth, and interactions with the environment.
[1, 2]

 They are essentially characterized by a ‘‘bilayer 

structure’’ that exhibits a finely tuned hydrophilic/hydrophobic balance.
[3]

 It is thus essential to study the 

membrane barrier properties as well as the changes that occur when membrane proteins incorporated into 

the lipid membrane are activated or blocked.
[4]

 In this context, artificial membranes meet increasing 

interest as model systems that mimic biomembranes and organelles or even whole cells.
[1, 2]

 Placing of 

model membranes on solid supports has become a very popular approach,
[5, 6]

 both for studying basic 

membrane processes and for possible biotechnological applications such as biosensing.
[7-10]

 Various 

systems have been suggested including solid-supported lipid bilayers,
[11, 12]

 polymer-cushioned lipid 

bilayers,
[13, 14]

 hybrid bilayers,
[15, 16]

 tethered lipid bilayers,
[17] 

suspended lipid bilayers,
[18, 19]

 or supported 

vesicular layers.
[20]

 A variety of methods to immobilize lipid bilayers on diverse solid substrates (glass, 

silicon, gold, platinum, etc) have been suggested.
[21]

 However, severe drawbacks such as lack of stability 

and “adaptability” limit technical applications of the lipid-based models.
[2, 3]

 Hence it is necessary to 

develop simplified biomimetic model membranes based on block copolymers attached to a surface. This 

offers inherent stability of the system due to the underlying supporting surface and allows the application 

of surface sensitive analytical techniques for monitoring of membrane-protein binding.
[22]

 Frequently, the 

synthetic block copolymer membranes are thicker,
[23]

 more stable,
[24]

 highly flexible and compressible, 

and the versatility of polymer chemistry allows adapting of relevant properties for a wide range of 

applications.
[22] 

The aim of this work consists in mimicking biological cell membranes by developing novel bilayer films 

from artificial amphiphilic block copolymers. Easy routes for the creation of planar membranes made of 

poly (butadiene)-b-poly (ethylene oxide) (PB-PEO) by spreading micelles or vesicles have been 

previously described.
[25-27]

 Goertz et al. reported the adsorption of PB-PEO micelles on solid substrates, 

forming either bilayers or monolayers.
[25]

 Dorn et al. demonstrated the effectiveness of PB-PEO vesicles 

spreading on glass and on ultrasmooth gold surfaces.
[26]

 Also, spreading of polyelectrolyte vesicles made 

of poly (2,2-dimethylaminoethyl methacrylate)-block-poly (butyl methacrylate)-block-poly (2,2-

dimethylaminoethyl methacrylate) (PDMAEMA-b-PBMA-b-PDMAEMA) on negatively charged silicon 

oxide and on mica substrates induced the formation of solid-supported block copolymer membranes.
[27] 

So far, the most recent achievements in the field of biomimetic membranes have been solid-supported 

amphiphilic polymeric bilayers covalently attached to a gold support.
[28]

 The inner leaflet of this bilayer 
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consists of sulfur-functionalized poly (butadiene)-block-poly (ethylene oxide) block copolymers (PB-

PEO-LA) transferred with the Langmuir-Blodgett (LB) technique and the outer leaflet consists of 

hydroxyl-functionalized poly (butadiene)-block-poly (ethylene oxide) (PB-PEO-OH) polymers deposited 

with the Langmuir-Schaefer (LS) method. This system showed the characteristic hydrophilic-

hydrophobic-hydrophilic structure similar to biological membranes. Moreover, the channel protein alpha-

hemolysin (α-HL) was successfully incorporated into this polymeric system with the help of electrical 

current,
[29]

 having here the reconstitution of a real biomimetic membrane from amphiphilic block 

copolymers. Very recently, by using a similar approach, the successful reconstitution of potassium 

channel protein MloK1 into a polymeric bilayer based on poly (dimethylsiloxane)-block-poly (2-methyl-

2-oxazoline) (PDMS-b-PMOXA) was reported.
[30] 

Here, an approach is presented that uses methacrylate-based amphiphilic triblock copolymers as solid-

supported biomimetic membranes. PHEMA25-b-(PBMA25-S-S-PBMA25)-b-PHEMA25 polymer (ABA1, 

see Chapter 3) was employed as potential membrane mimics, composed of amphiphilic triblock 

copolymers with an internal disulfide bond in the middle of the hydrophobic block. The molecular 

weight, the chain length as well as the flexibility of this block copolymer suggests the transfer of thin 

bilayers < 10 nm on solid supports, suitable for potential protein reconstitution. For protein insertion 

experiments, the tested proteins are Outer Membrane Protein F (OmpF), Aquaporin Z (AqpZ) and alpha-

hemolysin (α-HL). OmpF is an E. Coli derived channel protein that allows passive diffusion of molecules 

smaller than 600 Da. OmpF is a firmly built trimeric channel, stability given by its trimeric form. The 

monomer consists of 16 antiparallel β-sheets connected by eight loops situated on the outer part of the 

cell, respectively on the periplasmic site.
[31]

 The water channel AqpZ, also derived from E. Coli, remains 

associated as a homotetramer, and assembles into highly ordered two-dimensional tetragonal crystals 

with unit cell dimensions a = b = 95 Å.
[32] 

The structure of water-soluble protein α-HL from the human 

pathogen Staphylococcus aureus has been determined as a mushroom-shaped heptameric transmembrane 

pore channel, with 10 nm in length that runs along the sevenfold axis ranged from 1.4 to 4.6 nm in 

diameter. The lytic, transmembrane domain comprises the lower half of a 14-strand antiparallel β barrel, 

to which each protomer contributes two β strands, each 6.5 nm long. The interior of the β barrel is 

primarily hydrophilic, and the exterior has a hydrophobic belt 28 Å wide.
[33]

 Additionally, PHEMA and 

PBMA are attractive choices for this system because of their flexibility and biocompatibility. Here we 

present a combination of sequential LB and LS monolayer transfer techniques to deposit individual 

polymeric monolayers on solid supports. Transfers on silicon wafers were carried out for structure 

characterization by ellipsometry, contact angle measurements, ATR-FTIR, and atomic force microscopy 

to gain insights into the morphology, homogeneity, and thickness of the layers. Bilayers deposited on 

germanium surface and on ultrasmooth template stripped gold (TSG) were used further for protein 

incorporation experiments. 
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4.2. Results and discussion 

 

4.2.1. Monolayers at the air-water interface 

 

The triblock copolymer used for the assembly of solid-supported membranes by Langmuir monolayer 

transfers was PHEMA25-b-(PBMA25-S-S-PBMA25)-b-PHEMA25 (ABA1). It was first characterized at the 

air-water interface by surface pressure-area isotherms (π-A). 

Representative isotherms of the polymer film recorded at 20 °C on ultrapure water are presented in 

Figure 4-1. Unlike low molecular weight amphiphiles, polymers usually do not display clear, well-

defined phase transitions.
[34]

 

 

Figure 4-1: Surface pressure (π) versus area for the PHEMA25-b-(PBMA25-S-S-PBMA25)-b-PHEMA25 

(ABA1) polymer. The isotherm was recorded at 20°C. 

At low surface pressures and areas > 375 cm
2
, no difference in the π-A isotherms of the hydrophilic and 

the hydrophobic part of the polymer was recognizable, suggesting that the polymer films are in a gas-like, 

expanded state (“pancake” conformation). In this relaxed state, the hydrophobic PBMA blocks were 

supposed to be lying flat at the air-water interface, and anchored at the interface to the PHEMA blocks. 

Upon compression, a constant increase in surface pressure of the polymer was observed, with a higher 

increase at areas < 125 cm
2
, indicating that the films undergo a transition from a gas-like to a more 

condensed phase, until 25 mN m
-1

. Above this value, a collapse of the polymer film could start. As 

reported previously, PHEMA monolayers reached a plateau upon high compression for a surface pressure 

at 10 mN m
-1[35]

 and PBMA monolayers at 20 mN m
-1

.
[36]

 The PBMA blocks may have an effect on the 

late surface pressure collapse of the ABA1 triblock copolymers at 25 mN m
-1

. 

Additionally, polymer organization at the air-water interface was investigated by Brewster angle 

microscopy (BAM). The observed monolayers were smooth and did not show any significant features 

over the whole compression range (see Figure 4-2). 



~ 76 ~ 
 

 

Figure 4-2: BAM image (220 X 250 μm
2
) of an ABA1 monolayer at 18 mN m

-1
. 

 

In order to create bilayers by consecutive Langmuir-Blodgett/-Schaefer film deposition, film stability is 

crucial. Therefore, the polymer monolayers were compressed to a surface pressure of 22 mN m
-1

 applied 

in the transfer experiments, which was monitored over time. The compressed monolayers maintained the 

pressure for longer than 100 min, which was the usual duration for the transfers, indicating high film 

stability. 

 

4.2.2. Langmuir transfer techniques 

  

4.2.2.1. Monolayers on solid supports 

 

The immobilization of ABA1 was achieved by Langmuir-Blodgett (LB) transfer on different solid 

supports: silicon wafers for surface characterization, germanium ATR crystal and ultra-smooth gold 

substrates in order to perform protein insertion experiments after the second monolayer deposition. A 

major advantage of the LB transfer technique is the ability to produce highly ordered monolayers without 

major defects on very large scales compared to the size of its components. It has been applied for the 

controlled fabrication of highly ordered monomolecular films
[37]

 and successfully employed for lipid 

bilayer preparation.
[38-40]

 The procedure is depicted on Figure 4-3. 
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Figure 4-3: Monolayer transfer: the silicon substrate is coated with a monolayer of disulfide-containing 

polymer on the dipper upstroke. 

 

Film depositions were carried at the surface pressure of 22 mN m
-1

, which refer to the compressed film at 

88% of the collapse pressure. In this phase, the polymer films assume the most densely packed brush-like 

order. A useful parameter to evaluate the film deposition is the transfer ratio (TR), defined as
[41]

: 

 

𝑇𝑅 =
decrease in Langmuir monolayer surface area

total surface area of substrate
 

 

The transfer ratio in this case is approximately 1.4. Since the transfer ratio is an approximate indication of 

the transfer quality,
[41]

 our value moderately deviating from unity is acceptable and suggests successful 

monolayer transfer. 

 

4.2.2.2. Bilayers on solid supports 

 

The Langmuir-Schaefer (LS) technique was applied for the transfer of the second monolayer to the 

ABA1-covered substrate in order to obtain a complete bilayer membrane. A substrate, which had been 

previously coated with an ABA1 monolayer, was placed horizontally above an ABA1 Langmuir film and 

subsequently pressed through the air-water interface. The procedure is depicted in Figure 4-4. After 

transfer, the sample was stored in pure water in a crystallization dish. 
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Figure 4-4: Langmuir-Schaefer transfer of an ABA1 monolayer to an ABA1-covered substrate. 
 

Depending on the nature of the solid substrate, differences in the film deposition can be observed. When 

the film transfer occurred on silicon wafers or germanium, the PHEMA blocks are non-covalenty 

attached to the substrate, but they are attracted to the surface because of its hydrophilicity, as depicted in 

Figure 4-4. However, the behavior of the film deposition on gold cannot be easily predicted. As gold 

substrate is hydrophobic and the triblock copolymer contains a disulfide bond, we can suppose that the 

polymer conformation on the surface would lead to a covalently attachment to the gold support by its 

disulfide group. Contact angles measurements on the monolayer and bilayer films show a difference in 

wettability. A decrease in contact angle between the monolayer and bilayer film was observed (from 91° 

to 71°), proving the hydrophilicity of the top layer and therefore the presence of PHEMA brushes. 

4.2.3. Characterization of the block copolymer membranes on the surface 

 

All the characterization techniques were performed on the transferred monolayer and bilayer films on 

silicon wafers in dry state at room temperature. 

 

4.2.3.1. Thickness determination by ellipsometry 

 

Monolayer and bilayer formation were characterized by ellipsometry in order to follow the surface 

functionalization process. Prior measuring the membrane thicknesses, a thickness of 1.8 ± 0.3 nm was 

determined for the silicon oxide layer naturally present on silicon wafer. Assuming a refractive index of 

1.5 for the block copolymers in monolayer and bilayer membranes, a summary of the overall membrane 
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thicknesses for the monolayer and the bilayer are presented in Table 4-1. The values were measured on 

three samples as an average of nine different measurements for each sample. The experiments were 

performed in air. 

 

Table 4-1: Thicknesses on subsequent layers on silicon measured by ellipsometry. 

Analyzed layer Overall membrane thickness (nm) 

Monolayer on silicon 3.3 ± 0.4 

Bilayer on silicon 8.1 ± 0.6 

 

By comparing the theoretical thickness (based on chemical C-C bonds, 0.154 nm,109.28°) of the 

monolayer (3.1 nm) with the obtained experimental thickness, we can assume the formation of an ABA1 

monolayer on the solid support. After the bilayer deposition, an increase in thickness was observed, 

showing the successfulness of the transfer by the Langmuir Schaefer method. The overall thickness for 

the bilayer is 8.1 nm, meaning that the second layer has a thickness of 4.8 nm. The doubling of the layer 

thickness suggests a bilayer structure of the type hydrophilic-hydrophobic-hydrophilic. However, the 

slightly higher thickness of the second layer may suppose either a more extended polymer conformation 

than in the case of the monolayer transfer, or the formation of nanodomains on the top of the layers. 

 

4.2.3.2. Contact angle 

 

In order to follow the surface functionalization process, contact angle measurements were carried out on 

the bare silicon wafer surface, and on the transferred LB and LB/LS films. Contact angle values were 

obtained on three samples from at least nine different individual measurements for the monolayers, and 

from twelve different measurements for the bilayers. Contact angles increased from 37° for freshly 

cleaned silicon wafer to 64 ± 2° for the ABA1 monolayer, suggesting the presence of PBMA 

hydrophobic blocks. From the monolayer to the bilayer membrane, a decrease of 5° was observed, with a 

contact angle value of 59 ± 5°. This slight decrease could suggest the presence of hydrophilic PHEMA 

layers on the surface. However, the relative large standard deviation in this case indicates a 

heterogeneous behavior of the bilayer surface. 

 

4.2.3.3. ATR-FTIR characterization 

 

The transfer ratios, the contact angle measurements and the thickness determination by ellipsometry 

already hint towards successful immobilization of ABA1 monolayers and bilayers on silicon wafer. 
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Furthermore, attenuated total reflection infrared spectroscopy (ATR-IR) was applied to investigate the 

presence of monolayer and bilayer samples on the surface. A blank silicon wafer slide was measured as a 

reference, for which no adsorption bands could be detected. Spectra of ABA1 monolayers and bilayers on 

silicon wafer were recorded. The measurements were performed immediately after transfer. The spectra 

in Figure 4-5 clearly show the ν (C-O) (ester) band at 1110 cm
-1

 for both samples, indicating the 

successfulness of the two monolayer depositions, forming a bilayer structure on the solid support, which 

is in accordance with the results reported above.  

 

Figure 4-5: Section of an ATR-IR spectrum of ABA1 monolayer and bilayer on silicon wafer. 

 

4.2.3.4. Characterization by AFM 

 

To study local film morphology, atomic force microscopy (AFM) was applied for monolayer and bilayer 

characterization. Information about homogeneity, structural defects, and roughness of the membranes can 

be obtained by this method. AFM measurements were performed in air at room temperature. A typical 

height image, phase image and cross section (with X: distance and Z: height) of a film in dry state for 

both samples are presented in Figure 4-6. 

 

0.08

0.13

0.18

0.23

0.28

400 600 800 1000 1200

Tr
a

n
sm

it
ta

n
ce

 

Wavelength (nm) 

Monolayer

Bilayer



~ 81 ~ 
 

 

 

Figure 4-6: AFM images recorded in air of the immobilized ABA1 monolayer (A: height, C: phase 

image) and ABA1 bilayer (D: height, F: phase image) on silicon wafer; and their corresponding cross 

sections (Figures B and E). 

The monolayer film presents a smooth and defect-free surface on the micrometer scale (Figures 4-6A and 

4-6C). Roughness (rootmean-square) does not exceed 0.3 nm over one square micrometer (Figure 4-6B). 

The polymer monolayer corresponds to the PBMA blocks anchored to disulfide bonds on the top, as 

previously proofed by contact angle. However, the vertical direction shown on the phase image (Figure 

4-6C) may suppose that the monolayer film does not cover the whole surface. 

The bilayer membrane shows a significant change in morphology, as seen in Figures 4-6D and 4-6F. A 

heterogeneous surface with formation of nanodomains was observed. Objects of 0.5-1.0 nm in height 

were present everywhere on the surface (Figure 4-6E), which suggests the disassembly of the 

architecture. An explanation to this observation could be the formation of PHEMA islands upon 

compressed surface pressure, as reported previously.
[35]

 Probably, membrane stability in dry state can be 

increased by using longer block copolymers. In this case, a higher degree of interaction between the two 

opposing leaflets, thus enhanced membrane stabilization, is expected. On the other hand, a higher degree 

of entanglement and an increase in thickness, due to the use of longer polymers, might minimize fluidity 

and prevent incorporation of proteins.
[42]

 This is disadvantageous for a prospective purpose of this 

membrane system, i.e. serving as a matrix for protein incorporation. However, surface topography and 

phases have been performed only in dry state. As protein incorporation experiments were taken place in 

aqueous media, we expect an extension of the polymer membranes due to the swelling behavior of 

PHEMA blocks,
[43] 

that can allow potential protein insertion.  
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4.2.4. Interaction of channel proteins with the polymeric bilayer 

  

4.2.4.1. ATR in situ studies 

 

In-situ ATR-FTIR spectroscopy is a powerful tool for the assessment of interactions between proteins 

and surfaces with carefully characterized physicochemical properties. This technique allowed monitoring 

the processes occurring at the solid-liquid interfaces, such as adsorption and aggregation phenomena.
[44-

48]
 Since ATR-FTIR spectroscopy can work in-situ and does not require protein labeling of some sort, it 

provides most biologically relevant information about protein adsorption process on solid supports. The 

aim of this experiment consists in finding out if the bilayer membrane can interact with membrane 

proteins, prior to further electrical measurements for protein reconstitution. For this purpose, channel 

protein Outer Membrane Protein F (OmpF) was chosen. The scheme of the experimental setup was 

described elsewhere.
[48]

 

OmpF was flowed through ABA1 bilayer membrane attached to a germanium ATR crystal (Figure 4-7). 

Prior to OmpF incubation, an IR spectrum of ABA1 membrane in PBS buffer on solid support was 

measured (see Figure 4-7A). 
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Figure 4-7: ATR-IR spectra of ABA1 bilayer on germanium ATR crystal (A) and of ABA1 bilayer with the 

presence of OmpF (B). 
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The spectrum clearly indicates the presence of the membrane with its characteristic ester bands 

absorption at 1730 cm
-1

 (ν (C=O) (ester)) and at 1150 cm
-1 

(ν (C-O) (ester)). This result is in accordance 

with previous characterization data on silicon wafers and proves the stability of the bilayer membrane 

independently from the solid support. 

When OmpF solution in PBS flowed over the membrane, scans were taken every 45 seconds to monitor 

the changes with time. For this purpose, we focused on the changes in absorbance intensity of ν (C=O) 

(ester) band at 1730 cm
-1

 as well as on the eventual presence of new absorbance peaks. For the ν (C=O) 

(ester) band at 1730 cm
-1

, Figure 4-8 showed an increase in absorbance intensity after 200 seconds, 

followed by a relative stabilization. It means that OmpF is adsorbing on the polymeric membrane. 

Moreover, the appearance of new peaks between 1200 and 1700 cm
-1

 along with the more intense peaks 

between 2800 and 3000 cm
-1

 (Figure 4-7B) proved the presence of OmpF on the membrane. After 

flowing OmpF across the membrane, a washing process with PBS buffer was conducted in order to 

observe whether the protein still interacts with the polymeric bilayer. In this case, we focused on the 

peaks between 1200 and 1700 cm
-1

. The black and the red spectrum looked similar before and after 

washing with buffer (see Figure 4-9), proving that OmpF still stays on or in the polymer membrane even 

after the washing process. 

 

 

Figure 4-8: Evolution of the ν (C=O) (ester)) absorbance intensity at 1730 cm
-1

 in function of time. 

Spectra were scanned every 45 seconds. 

 

Control experiments consisting in repeating the same experiments as above, but on bare germanium 

substrate, were carried out. Similar results were observed, i.e. no significant changes in the spectra during 

OmpF incubation and after washing with PBS (see green and blue spectra on Figure 4-9). As OmpF can 

adsorb on the polymeric bilayer as well as on bare Ge surface, we cannot determine if the protein 
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reconstitution inside the ABA1 membrane occurred by in-situ ATR-FTIR technique. However, we 

testified the presence of OmpF channel protein on or in the ABA1 membrane. In order to assess whether 

the proteins have functionally inserted into the membrane, it is necessary to perform further experiments 

with electrochemical impedance spectroscopy (EIS). Furthermore, the presence of electrical current could 

help the insertion of channel proteins, as already reported elsewhere.
[29, 30] 

 

 

Figure 4-9: ATR-IR spectra of ABA1 bilayer incubated with OmpF and its washing with buffer. Control 

experiments with incubation with the protein and buffer washing were also performed on bare Ge ATR 

crystal. 

 

4.2.4.2. Electrical measurements by impedance spectroscopy 

 

Electrochemical impedance spectroscopy (EIS) is a sensitive and non-invasive technique to investigate 

and characterize the electrochemical properties of materials and their interfaces in contact with 

electrically conducting electrodes. Among others, the electrochemical properties of artificial membranes, 

as well as the alterations upon reconstitution of e.g. channel proteins, can be probed by EIS.
[29, 30, 38, 49, 50] 

The highly reproducible preparation of stable polymer bilayers on gold by sequential Langmuir film 

transfers was described in sections 4.2.2. and 4.2.3. The aim of this experiment consists of investigating 

if the ABA1 membrane is a suitable matrix for hosting peptides or proteins by measuring the conductivity 

through the membrane. If the protein is incorporated into an artificial membrane, the ions flow through 

the channel protein can be detected. To evaluate if and how biologically relevant species interact with the 

supported polymer bilayer, two different proteins OmpF and AqpZ were tested. Both proteins were 

incubated with the bilayer membrane using the Biobeads method in order to remove the detergent used to 
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stabilize the proteins in aqueous solution.
[51]

 After an overnight incubation with Biobeads followed by a 

washing process, electrical measurements were carried out in buffer. The conductance was calculated as 

G = I/V, where I is the electrical current, and V voltage. A constant voltage of 40 mV was applied until a 

stable current was observed. Control experiments consisting in measuring the electrical current across the 

polymer membrane in buffer and with Biobeads prior to exposure to proteins, were performed. For a 

better accuracy of the results, all samples were prepared at least three times separately, and the average 

values of their conductance were calculated. 

Bare gold substrate gave high conductance (138 ± 3 nS), the presence of the polymer membrane resulted 

in a strong decrease in conductance, with 5.4 ± 0.2 nS, both in buffer and with Biobeads. Moreover, 

ABA1 polymer membranes incubated with Biobeads and detergent were measured as control 

experiments and gave a stable conductance of 5.1 ± 0.2 nS (see Figure 4-10). This result showed that the 

Biobeads and detergents did not influence the membrane stability. However, electrical measurements 

after incubation with OmpF and AqpZ respectively, did not give any reliable results because of unstable 

conductance over time (Figure 4-11). Therefore, these two proteins are not compatible for incorporation 

inside ABA1 system. 

 

Figure 4-10: Control measurements of electrical conductance across ABA1 polymer in buffer before 

protein insertion and in buffer with the presence of Biobeads (in blue). The membranes were also 

incubated in detergent using the Biobeads method (in red). 
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Figure 4-11: Electrical conductance measurements over time of ABA1 membrane after insertion of Outer 

Membrane Protein F (A) and Aquaporin Z (B). 
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Consequently, we can deduce that neither OmpF nor AqpZ was inserted into the artificial system. These 

results could be explained in different ways: 

- ABA1 triblock copolymers were not flexible enough to allow the insertion of pore channels OmpF and 

AqpZ. Moreover, two Langmuir transfers, i.e. LB and LS, were performed on a triblock copolymer with 

a disulfide bond in the middle of the hydrophobic block. The transfer of two triblock copolymers on the 

gold support in combination with the disulfide bond might have induced the formation of a very complex 

matrix that cannot allow any protein insertion (see Figure 4-4 in section 4.2.2.1.). 

- The Biobeads method can lead to some inaccuracies in the results. Actually, the same sample should be 

used in-situ both for the control measurements and for the protein incubation, as impedance spectroscopy 

is a sensitive method to any external disturbance that implied changes in conductance and high noise 

level in the signal. In this case, different samples were used for every control experiment and for protein 

incubation measurements. 

- Conductance measurements could be disturbed either by traces of detergent even with the presence of 

Biobeads, or by a too rapid detergent removal that can induce protein precipitation. 

Also, channel protein alpha-hemolysin (α-HL) was tested for insertion experiments. This peptide from 

Staphylococcus aureus has the advantage of being stable without any detergent.
[38]

 In this case, the 

eventual inaccuracies due to the Biobeads method were avoided. Also, the protein insertion with the 

Biobeads method requires the use of different samples for the control and insertion experiments. In the 

case of α-HL, the protein incorporation can be measured in-situ on the same sample. Consequently, the 

inherent errors due to the inhomogeneity of the membrane or defects on the surface could be significantly 

decreased. Also, previous work already proved the successful incorporation of α-HL into a biomimetic 

triblock copolymer membrane.
[29, 52]

 The impedance measurements were performed under the same 

conditions as above. 

Before α-HL insertion, the formation of polymer membranes leads to a strong decrease in conductance, 

with 5.4 ± 0.2 nS. However, after incubation with α-HL in-situ, the conductance remained stable; with 

5.5 ± 0.3 nS (see Figure 4-12). As reliable results can be measured after addition of α-HL, studies of 

protein incorporation without any detergent removal methods proved to be advantageous. But the same 

conductance before and after peptide incubation was observed, meaning that α-HL was not inserted 

inside the polymeric membrane. As mentioned previously, this result here might be explained by the very 

complex matrix of this artificial membrane, which cannot lead to insertion of α-HL. 
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Figure 4-12: Electrical conductance measurements of ABA1 membranes before insertion (in blue) and 

after insertion (in red) of alpha-hemolysin. 

 

4.3. Conclusions and outlook 

 

In this chapter, novel planar membranes were presented, composed of methacrylate-based amphiphilic 

triblock copolymer ABA1. This triblock copolymer has been transferred successfully by subsequent 

Langmuir-Blodgett and Langmuir-Schafer techniques, resulting in a stable bilayer membrane. The 

characteristic feature of this triblock copolymer, mimicking the hydrophilic-hydrophobic-hydrophilic 

structure of lipid membranes, consists in its disulfide bond in the middle of the hydrophobic block. 

Ellipsometry results indicated a bilayer thickness of 8.1 nm and AFM measurements showed the 

formation of a heterogeneous surface in dry state even though monolayer revealed the presence of a more 

homogeneous system. However, this matrix is too complex to allow protein insertion. To improve this 

system as mimics of cell membranes, ABA1 polymer based of PHEMA-b-PBMA-S-S-PBMA-b-PHEMA 

could be cleaved after its synthesis by adding a reducing agent to obtain a diblock copolymer. The 

cleaved polymer PHEMA-b-PBMA-SH can be used further for consecutive Langmuir transfers for the 

formation of an artificial bilayer membrane. By varying the hydrophilic to hydrophobic ratio as well as 

the chain length of PHEMA-b-PBMA-SH diblock copolymers, their self-assembly behavior on solid 

supports should be systematically investigated in order to find a system that allows protein insertion. 

However, this diblock copolymer can be covalently attached to a gold substrate with its hydrophobic 

block. This could disrupt the layer morphology of the amphiphilic block copolymer membranes. 

Therefore, either the nature of the solid support or the characterization method should be modified to 

monitor potential protein reconstitution. 
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5. Functionalization of gold surfaces with amphiphilic block copolymer 

brushes using surface-initiated ATRP 
 

Parts of this chapter are from: S. Toughraï, C. K. Pandiyarajan, J.-L. Perin, P. Korelis, T. Geue, T. Bürgi, 

N. Bruns, W. Meier, “Insertion of Natural Channel Protein into a Solid-Supported Artificial Membrane 

made of Grafted-Amphiphilic Triblock Copolymers”, in preparation. 

 

5.1. Introduction 

 

As mentioned previously in this thesis, cell membranes are the most important interface in living 

organisms. Native biological membranes are fascinating because of their complex composition and 

functions as well as their amphiphilic structure in which two hydrophilic layers enclose a hydrophobic 

one.
[1] 

However, they are not always ideal in the study of specific membrane processes, and their 

structural complexity limits the scope of their utility in many technological and industrial processes. This 

is why many efforts have been made over the past decades to mimic cell membranes properties and 

functions by creating artificial model membranes.
[2-4]

 Such membrane models offer great potential in 

fundamental scientific research, especially for investigating the structure and function of membrane 

proteins. They are also highly relevant for technological applications, including sensor technologies. In 

particular, block copolymers are regarded as highly promising structures for the development of new 

biosensors.
[5-8]

 Polymer synthesis allows for the adjustment of such parameters as block length, molecular 

weight, chemical composition, hydrophilic/hydrophobic balance, and molecular architecture. This 

provides new ways to control amphiphilic self-assembly. Moreover, it allows producing structures of 

defined morphology, molecular packing, and membrane thickness. Previous experiments showed the 

possibility of mimicking cell membranes with artificial amphiphilic polymer membranes either by 

consecutive monolayer transfers
[9, 10]

 or by vesicle
[11, 12]

 or micelle
[13]

 spreading. Recently, a “grafting 

from” approach has been adopted as a well-controlled method for the successful growth of amphiphilic 

diblock copolymer brushes from silicon and gold surfaces
[14]

 as well as for the synthesis of triblock 

copolymer brushes on surfaces.
[15-18]

 Furthermore, biomimetic polymer membranes based on 

immobilized amphiphilic triblock copolymers could be particularly interesting structures, since they 

potentially allow the insertion of membrane proteins.
[19, 20]

 To be considered as attractive alternative 

models of biosensors, solid-supported polymer membranes must incorporate membrane proteins as the 

“active” component.
[21]

 Successful protein insertion requires a spacer to decouple the membrane from the 

support, thus minimizing a defect formation, avoiding the denaturation of the protein by contact with the 

substrate and increasing the mobility (fluidity) of the membrane.
[22]
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Here, we demonstrated the potential incorporation of a membrane protein into gold-supported biomimetic 

membrane based on amphiphilic triblock copolymers. This ABA triblock copolymer with poly (2-

hydroxyethyl methacrylate) (PHEMA) as the hydrophilic block and poly (butyl methacrylate) (PBMA) as 

the hydrophobic part was synthesized by surface-initiated atom transfer radical polymerization (Si-

ATRP) from an initiator molecule that forms a self-assembled monolayer (SAM) on the surface.
[18]

 To 

determine the most suitable matrix for protein incorporation, polymer brushes were synthesized under 

variation of the grafting density of the polymer. PHEMA and PBMA are interesting choices for 

biomedical applications because both polymers are biocompatible.
[23, 24]

 By varying the grafting density 

of the brushes, channel proteins could be successfully incorporated inside this artificial membrane. So far 

the closest achievements in protein insertion into artificial membranes have been solid-supported 

amphiphilic polymeric bilayers that allow the successful incorporation of membrane proteins with the 

help of electrical current.
[10, 25]

 In this case, the deposition of the bilayers was performed using 

consecutively Langmuir-Blodgett (LB) and Langmuir-Schaefer (LS) techniques. However, polymer 

bilayers made by monolayer transfers or by vesicle spreading suffer of several drawbacks, mainly the 

lack of control of the grafting density. The characteristic feature in our present work consists in inserting 

the membrane protein into an amphiphilic triblock copolymer grafted directly from a solid support. In 

this case, the grafting-from method offers the advantages of a good surface coverage and a better control 

of the packing density. Grafting-from involves the synthesis of the triblock copolymer directly from the 

surface using ATRP technique.
[26-28]

 Here, grafting density can be controlled by adjusting the surface 

density of the initiator molecules. 

The hydrophilic PHEMA blocks are not fully water-soluble, but take up water and considerably swell in 

aqueous media. Remarkably, preliminary experiments indicated that the PHEMA-b-PBMA-b-PHEMA 

copolymer membranes can reversibly be hydrated and dehydrated without loss of structural integrity,
[18]

 

which is a key importance for successful protein incorporation. Here we will evaluate necessary 

conditions for a successful insertion of membrane proteins. The insertion process requires a certain 

flexibility and fluidity of the membrane that should sensitively depend on the length and the grafting 

density of the polymer chains. The good control over these parameters is of high importance, since thick 

and very densely packed membranes have a low permeability which affects drastically the protein 

insertion. The grafting density of the polymer chains depends on the density of the initiator molecules 

anchored to the surface. The latter can be controlled by diluting the initiator SAM disulfide molecules 

with similar disulfide molecules which are, however, chemically inert to initiate ATRP. Thus substrates 

with gradual variation of the grafting density will be studied for protein incorporation. Upon insertion of 

this channel protein, our polymeric membrane could allow for the preparation of mechanically and 

chemically stable biosensor devices. 
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5.2. Results and discussion 

 

5.2.1. Synthesis strategy of the triblock copolymers 

 

Amphiphilic triblock copolymer brushes on gold interfaces were synthesized by the “grafting-from” 

method. This procedure included the immobilization of initiator molecules 11,11´-dithiobis [1-(2-bromo-

2-methylpropionyloxy)undecane] on template stripped gold (TSG) substrates followed by ATRP of 2-

hydroxyethyl methacrylate (HEMA) and n-butyl methacrylate (BMA) monomers. In-situ analysis of the 

initiator monolayer and the copolymer brushes were performed to get a better understanding of the 

materials behaviour on solid supports in order to investigate a possible protein insertion. A synthesis 

scheme of the triblock copolymers on gold surfaces is depicted in Figure 5-1. 

 

Figure 5-1: Synthesis scheme of PHEMA-b-PBMA-b-PHEMA triblock copolymer grafted from gold 

supports. The initiator molecule was immobilized on gold surface by its disulfide bond prior to ATRP 

reactions.  

This system was fine-tuned by controlling the chain length in order to allow the insertion of three 

different membrane proteins: Outer Membrane Protein F (OmpF), Aquaporin Z (AqpZ) and alpha-

hemolysin (α-HL).  Therefore, taking into account the polymer flexibility, the thickness of the overall 

ABA polymer could be fixed around 10 nm. Above this value, the probability of protein insertion may 

decrease, even if both PHEMA and PBMA have flexible properties. Thus, polymerization time and 

temperature are essential parameters for a better control over the brush thickness. Also, fully packed 

brushes may be a critical point because of the lack of sufficient space for protein insertion. The grafting 

density will be therefore systematically varied to give enough space for the incorporation of membrane 
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proteins. The variation of the grafting density was performed by mixing the initiator molecule with 1-

dodecanethiol, inert to ATRP. By decreasing the grafting density, we expect a decrease in brush thickness 

that can enhance the insertion.
[29, 30]

 As the channel proteins allow passive diffusion of small solutes 

(ions, nutrients, antibiotics) across the membrane,
[25, 29, 30]

 functional incorporation of channel proteins 

can be monitored directly by conductance measurements across the polymer brushes. Gold was used here 

as a solid support for its dielectric properties to ease the protein insertion by applying an electrical 

current.
[25, 31]

 In addition, the preservation of protein functionality inside the artificial membrane is 

crucial. For this, the initiator that forms a self-assembled monolayer will serve as a spacer between the 

substrate and the polymer brushes in order to avoid protein denaturation by contact between the pore 

channel and the gold substrate. 

 

5.2.2. Initiator self-assembled monolayer on gold surfaces 

 

The formation of self-assembled monolayers (SAMs) of thiolated molecules on gold is well known.
[32]

 

This property of thiol compounds was used to prepare SAMs of ATRP initiator molecules that contain a 

bromine atom at the other end of the thiol linker. Here we used 11,11´-dithiobis [1-(2-bromo-2-

methylpropionyloxy)undecane] as described elsewhere.
[33]

 

 

  5.2.2.1. Atomic composition determination by XPS 

 

The atomic composition of the self-assembled monolayer (SAM) of initiator was determined by XPS. A 

bare TSG substrate was used as a reference. The results are displayed in Figure 5-2. XPS spectrum of 

SAM initiator showed an intense oxygen peak (O1s) at 534 eV and an intense carbon signal (C1s) at 286 

eV associated with the organic part of the initiator molecules. More specific signals are the sulfur atom 

(S2s, S2p) peaks and the small bromine signals (Br3d, Br3p, Br3s), which are respectively assigned to the 

Au-S and C-Br bonds of the SAM initiator. The XPS data qualitatively proved the presence of the 

initiator layer. However, the presence of a small carbon peak (C1s) was observed on the reference 

spectrum, due to air contamination. 
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Figure 5-2: XPS spectra of bare TSG substrate as a reference (A) and of SAM initiator on gold surfaces 

(B). 

 

  5.2.2.2. Contact angle measurements 

 

As the coverage of gold substrate with SAM initiator was proven by XPS, contact angles measurements 

were carried out in order to observe the influence of the SAM initiator on surface wettability. Contact 

angles increased from 75° for freshly cleaned TSG to 79 ± 2° for the SAM initiator, indicating the 

monolayer makes the surface slightly more hydrophobic. The small standard deviation can suggest a 

homogeneous layer with minor defects.  

 

  5.2.2.3. Thickness determination by SPR 

 

Thickness measurements of SAM initiator were carried out by SPR in order to follow the surface 

functionalization process. Prior to the monolayer thickness, the gold layer deposited on glass substrate 

through the TSG process was determined. The values were measured as an average of three samples. The 

experiments were performed in air at room temperature. The SPR spectra and their corresponding fits are 

reported on Figure 5-3. A gold layer thickness of 51 ± 2 nm was determined. Assuming a refractive index 

of 1.4 for the initiator molecule, SAM initiator thickness was found to be 3.4 ± 0.2 nm. Therefore, the 

increase in this thickness range suggests the successful deposition of the initiator molecules 11,11´-

dithiobis [1-(2-bromo-2-methylpropionyloxy)undecane] as a self-assembled monolayer. However, 

comparing to the theoretical value of 2.5 nm (based on C-C bonds, 0.154 nm, 109.28°), the experimental 

value may indicate a stretched conformation of the initiator molecules grafted on the surface due to their 

dense packing in the monolayer. 
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Figure 5-3: Representative angular SPR spectra measured in air at room temperature showing the shift 

of the reflectivity minimum from blank gold (■) to the covalently attached self-assembled monolayer (■). 

The solid lines represent the fits. 

 

  5.2.2.4. Characterization by AFM 

 

In order to study local topography and roughness, AFM measurements were performed on SAM initiator. 

AFM measurements were performed in air at room temperature. A typical height image, a phase image 

and cross section (with X: distance and Z: height) of a SAM in dry state as well as of a bare TSG used as 

a reference are presented in Figure 5-4. 

 

Figure 5-4: AFM images recorded in air of the bare TSG substrate (A: height, C: phase image) and SAM 

initiator on gold (D: height, F: phase image); and their corresponding cross sections (Figures B and E). 
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In comparison to the reference AFM image corresponding to the bare gold, topography and phase of 

SAM initiator shows a coverage of the monolayer on the surface, which is in accordance with results 

described above. SAM initiator presents a very flat and homogeneous surface on the micrometer range 

(Figures 5-4D and 5-4F). Roughness (rootmean-square) does not exceed 0.2 nm over one square 

micrometer (Figure 5-4E). Therefore, anchoring of the ATRP initiator molecules resulted in a densely 

packed homogeneous self-assembled monolayer (SAM) on the gold surface. Moreover, AFM 

measurements also proved the success of the self-made TSG technique, with a maximum roughness of 

0.4 nm for the bare gold (Figure 5-4B), in accordance with previous results described elsewhere.
[34-36]  

Here, we have demonstrated the importance of producing very flat metallic layer in order to obtain not 

only a flat and reproducible SAM initiator, but also to ease further brushes characterization. 

 

5.2.2.5. Orientation of the SAM by PM-IRRAS 

 

Polarization Modulation Infrared Reflection Absorption Spectroscopy (PM-IRRAS) is a powerful surface 

technique used to determine the orientation of functional groups and molecules,
[37]

 making use of the 

polarization of the electric field perpendicular to the surface. This method can be used for the study of the 

orientation of thin polymeric layers
[38, 39]

 as well as for single peptide molecules.
[40]

 Here, we aimed at 

exploring the orientation of the SAM initiator on gold, as it is covalently attached to the surface. 

Furthermore, it was previously shown that the initiator forms a densely packed monolayer, suggesting a 

stretched conformation on the solid substrate. 

SAM initiator on gold as well as a drop of the initiator substance 11,11´-dithiobis [1-(2-bromo-2-

methylpropionyloxy)undecane] were measured. This bulk sample is isotropic and is used here as a 

reference. The PM-IRRAS spectra of the initiator molecule in bulk and on the surface are displayed in 

Figure 5-5. 



~ 100 ~ 
 

 

Figure 5-5: PM-IRRAS of 11,11´-dithiobis [1-(2-bromo-2-methylpropionyloxy)undecane] in bulk (A) and 

as a SAM on 3 different gold surfaces (B). 

Both spectra can attest the presence of the initiator molecule by the appearance of the ν (C=O) (ester) 

band at 1750 cm
-1

. More importantly, there is a prominent peak at 1450 cm
-1

 in the bulk spectrum that 

disappears in the monolayer spectra. This band is associated with a scissoring mode of the CH2 units of 

the hydrocarbon chain and is polarized perpendicular to the latter. The disappearance of this band in the 

SAM spectrum shows the preferential perpendicular orientation of the hydrocarbon chain with respect to 

the surface. This result confirms that the SAM formed a densely packed and homogeneous monolayer 

with a stretched conformation.  

 

5.2.3. Characterization of the polymer brushes 

 

5.2.3.1. Following of the polymerization by contact angle 

 

Contact angle measurements were carried out to follow ATRP of the triblock copolymers in-situ. Contact 

angle values were obtained on three samples from at least nine different individual measurements. A 

summary of the obtained results for each block is presented in Table 5-1. 
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Table 5-1: Summary of the contact angles of PHEMA-b-PBMA-b-PHEMA layer by layer for three 

different gold substrates. 

SAM PHEMA PHEMA-b-PBMA PHEMA-b-PBMA-b-PHEMA 

81°± 2° 45°± 3° 87°± 6° 83°± 3° 

 

Contact angles decreased from 81° for the self-assembled monolayer to 43 ± 3° for the first PHEMA 

layer, suggesting the presence of a hydrophilic surface. From the first to the second layer, an increase of 

38° was observed, with a contact angle value of 87 ± 6°. This large increase may suggest the presence of 

hydrophobic PBMA layer on the surface. The relative large standard deviation in this case indicates a 

heterogeneous behavior of the second layer on the solid support. A slight decrease of 4° was observed 

from the second PBMA to the third PHEMA layer, supposing the successful synthesis of the third 

hydrophilic block. However, this last result also indicates the strong influence of the second hydrophobic 

block on the contact angle. 

 

5.2.3.2. ATR-FTIR characterization 

 

ATR-FTIR was applied to prove the presence of the amphiphilic polymer on the gold surface. A blank 

gold slide was measured as a reference, for which no adsorption bands could be detected. Spectra of each 

layer were recorded immediately after their synthesis. The spectra in Figure 5-6 clearly show for each 

layer the ν (C=O) (ester) band at 1725 cm
-1

, indicating the presence of the polymers on the surface and 

the successful growth of the brushes. 

 

Figure 5-6: ATR-FTIR spectra of PHEMA (A), PHEMA-b-PBMA (AB) and PHEMA-b-PBMA-b-PHEMA 

(ABA) brushes on a gold substrate. 
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5.2.3.3. Thickness determination by SPR 

 

Each block of the polymer brushes was characterized by surface plasmon resonance in order to determine 

their thickness. Assuming a refractive index of 1.512 for the PHEMA blocks and 1.4 for PBMA, a 

summary of the overall thicknesses of the brushes (without the initiator molecule) were presented in 

Table 5-2. The values were measured on three samples as an average of six different measurements for 

each sample. The experiments were performed in air at room temperature. For each polymer layer, the 

SPR spectra and their corresponding fits are displayed in Figure 5-7. 

Table 5-2: Thicknesses of subsequent layers on gold measured by surface plasmon resonance for fully 

packed brushes. 

Analyzed brush Overall membrane thickness (nm) 

PHEMA 3.8 ± 0.5 

PHEMA-b-PBMA 8.4 ± 0.3 

PHEMA-b-PBMA-b-PHEMA 10.8 ± 0.3 

 

Each block of the polymer brush revealed a successful growth of the layer by the increase of their 

thickness. The first PHEMA block got a thickness of 3.8 ± 0.5 nm. The synthesis of the first PHEMA 

block was fine-tuned to obtain a thickness < 4 nm by controlling the reaction time. Above this value, the 

probability of increasing termination reactions with bromine groups may occur, and consequently further 

ATRP reactions with the second and the third block could not be performed efficiently. This assumption 

was based on previous knowledge from the Meier group in the area of surface-initiated ATRP.
[41] 

The 

overall thickness for the diblock brush is 8.4 ± 0.3 nm, meaning that the second layer has a thickness of 

4.6 nm. The triblock copolymer presents a hydrophilic-hydrophobic-hydrophilic structure with an overall 

thickness of 10.8 ± 0.3 nm, meaning the third PHEMA block exhibits a thickness of 2.4 nm. This overall 

size of 10 nm was targeted based on membrane thickness that allows protein reconstitution.
[4]
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Figure 5-7: Representative angular SPR spectra measured in air at room temperature showing the shift 

of the reflectivity minimum from initiator SAM (■) to each polymer layer (1
st
 PHEMA: ▼,PHEMA-b-

PBMA: ▲, PHEMA-b-PBMA-b-PHEMA: ●). The solid lines represent the fits. 

 

5.2.3.4. Characterization by AFM 

 

To study local film morphology, atomic force microscopy (AFM) was applied for each layer 

characterization. Information about homogeneity, structural defects, and roughness of the membranes can 

be obtained by this method. AFM measurements were performed in air at room temperature. A typical 

height image, phase image and cross section (with X: distance and Z: height) of a film in dry state for the 

three samples are presented in Figure 5-8. 
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Figure 5-8: AFM images recorded in air of the PHEMA layer (A: height, C: phase), diblock (D: height, 

F: phase) and triblock (G: height, I: phase) copolymers on gold; and their corresponding cross sections 

(Figures B, E and H). 

The first PHEMA film presents a smooth and homogeneous surface with minor defects, with a well-

ordered structure on the micrometer scale (Figures 5-8A and 5-8C). Roughness (rootmean-square) does 

not exceed 0.16 nm over one square micrometer (Figure 5-8B). This proves the presence of a hydrophilic 

polymer monolayer. The second polymer block shows a significant change in morphology, as seen in 

Figures 5-8D and 5-8F. A heterogeneous and rough surface was observed, with objects of 5-20 nm in 

height (Figure 5-8E), showing the presence of the hydrophobic block on the surface. This is in 

accordance with the contact angle results described above. The third block revealed a more homogeneous 

layer, with fewer defects on the surface due to the hydrophilic behavior of the PHEMA layer (Figures 5-

8G and 5-8I). Roughness of 0.10-0.35 nm over one square micrometer was determined. However, this 

roughness was higher than the one from the first PHEMA layer. ATRP reaction was initiated by the 

bromine group at the end of the brushes. After each block, the probability to initiate new ATRP reaction 

decreased due to the termination reactions that could occur between the polymer radicals. In the case of 

the third polymerization, some of the end groups will be not initiated because they are terminated from 

previous reactions.
[41] 

Therefore, we get less PHEMA brushes in the third layer than in the first one. This 

hypothesis could also explain the less pronounced decrease in contact angle for the third block than for 
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the first one. To conclude this part, the overall ABA polymer brushes present a homogeneous surface 

with minor defects, which is a key importance for electrical characterization during the functional 

incorporation of channel proteins. 

 

5.2.3.5. Orientation of the brushes by PM-IRRAS 

 

PM-IRRAS was applied to detect orientation changes of the methacrylate ester group with respect to the 

surface during chain growth. The ester group is directly connected to the main polymer chain, thus the 

results obtained in the PM-IRRAS experiment provide a qualitative indication of the chain tilt toward the 

gold surface. The analysis is based on the fact that for metal surfaces a PM-IRRAS signal is only 

observed for molecular vibrations polarized in the z-direction, i.e. perpendicular to the surface. This 

means that only the projection of the dynamic dipole moment on the z-direction gives rise to signal. One 

way to make use of this fact is to choose two modes, which are orthogonally polarized and to compare 

their relative intensity for an isotropic sample and for the adsorbed (oriented) sample. We chose the ester 

functionality for this purpose. The signals due to ν (C=O) at 1732 cm
-1 

and ν (C-C-O) at 1080 cm
-1

 were 

assigned before for similar systems.
[42, 43] 

The two bands are orthogonally polarized. We have performed 

similar analysis on a similar system before and more details can be found elsewhere.
[18]

 

Qualitatively one can observe that the relative intensity of the ester carbonyl ν (C=O) vibration with 

respect to the ν (C-C-O) is larger for the PHEMA block when compared to the isotropic polymer 

reference (see Figure 5-9). This means that the carbonyl group is oriented preferentially perpendicular to 

the surface. The situation then changes when growing the PBMA and the second PHEMA block. Here 

the relative intensity of the carbonyl band decreases, meaning that the carbonyl is now more inclined 

towards the surface. By applying a quantitative approach
[44]

 one can determine an average angle θ 

between the carbonyl bond and the surface normal of 38 °, 51 ° and 54 °, for PHEMA, PHEMA-b-PBMA 

and PHEMA-b-PBMA-b-PHEMA, respectively. Note that these are averages that rely on assumptions
[45]

 

and therefore the absolute values are to be taken with care. However, the trend is clear and a similar 

behavior was found before.
[35]

 Because the methacrylate ester group is connected to the main polymer 

chain, its increasing tilt to the surface upon addition of polymer blocks might be also related to the 

change of polymer chain orientation. Therefore the PM-IRRAS measurements indicate that the polymer 

chain, on average, is tilted more away from the surface normal when the PBMA block is added. 
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Figure 5-9: PM-IRRAS spectra on gold substrate of a) PHEMA reference polymer sample (isotropic), b) 

PHEMA brush, c) PHEMA-b-PBMA brush, d) PHEMA-b-PBMA-b-PHEMA brush. The neat gold surface 

was used as the reference. Spectra were scaled for clarity and the bands used for the analysis (see text) 

are highlighted. 

 

5.2.4. Influence of the grafting density on the block copolymer brushes 

   

5.2.4.1. Thickness and roughness determination by neutron scattering 

 

To determine the potential suitable matrix for protein incorporation, experiments with variation of the 

packing density were performed. The grafting density was varied by mixing the initiator used for the 

surface-initiated ATRP with a molecule inert to ATRP reaction that can be still attached to the gold 

substrate. In this case, 1-dodecanethiol was used. The grafting densities were expressed as the volume 

percentage of the ATRP initiator in the mixture. The thickness of each layer depending on the grafting 

density was measured by neutron reflectivity, as it is a powerful technique to characterize ultra-thin 

polymers films down to the nanoscale.
[46] 

The experimental data of the ABA triblock copolymer at 

different grafting densities and their corresponding fits
[47, 48]

 are depicted in Figure 5-10. The fits for the 

determination of ABA thicknesses took into account the thicknesses of initiator, PHEMA and AB block 

copolymers measured separately by neutron reflectivity. Also, for the fits, we assumed that the layer 

roughnesses for each block at every grafting density were similar to the ones determined by AFM for 

fully packed brushes. A summary of the obtained overall membrane thicknesses for each block and 

different grafting densities is presented in Table 5-3. 
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Figure 5-10: Experimental reflectivity data and their corresponding fits (red solid lines) of triblock 

copolymer PHEMA-b-PBMA-b-PHEMA at different grafting densities (A: 100% grafted SAM initiator, 

B: 90%, C: 70%, D: 50%, E: 30%). 

Table 5-3: Overall membrane thicknesses on subsequent layers on gold at different grafting densities 

measured by neutron reflectivity. 

% grafted 

initiator 

Initiator thickness 

(nm) 

Overall PHEMA thickness 

(nm) 

Overall AB thickness 

(nm) 

Overall ABA thickness 

(nm) 

100 3.1 5.9 10.2 12.7 

90 2.3 5.0 9.9 10.9 

70 1.6 3.9 8.9 9.9 

50 1.3 3.0 5.7 6.7 

30 1.3 3.1 5.4 6.6 
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For fully packed brushes, the thicknesses obtained for SAM, first, second and third block copolymer were 

3.1 nm, 2.8 nm, 4.3 nm and 2.5 nm respectively; in accordance with SPR results presented above. 

However, for all layers, a decrease in grafting density implied a decrease in brush thicknesses (see Figure 

5-11). Therefore, we can conclude that the grafting density has an effect on the thickness of the brushes, 

in accordance with previous results described elsewhere.
[29, 30, 49-51]

 In particular, the thickness dropped 

markedly from 9.9 nm to 6.7 nm when the grafting density changed from 70% to 50%. This effect could 

be explained by the “mushroom” behavior of the brushes on the surface when a decrease of the grafting 

density occurred (see Figure 5-12). Therefore, taking into account the overall ABA thicknesses and with 

respect of the membrane protein dimensions, the samples at 100%, 90% and 70% will be tested as 

suitable matrix for the insertion of channel proteins. 

 

Figure 5-11: Relationship between the percentage of grafted initiator on the gold substrate and the 

overall thickness of the layers. A decrease in brushes thickness was observed while decreasing the 

grafting density. 

 

 

Figure 5-12: Scheme of brushes behavior while decreasing the grafting density. 
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5.2.4.2. Orientation of the brushes by PM-IRRAS 

 

The samples with various grafting densities were also investigated by PM-IRRAS to evaluate the brushes 

orientation. Like previously, ester groups at 1730 cm
-1 

were chosen for this purpose. However, except for 

the fully packed brushes (see Section 5.2.3.5), reliable signals could not be obtained for lower grafting 

densities (see Figure 5-13). As noticed in previous section 5.2.4.1., brushes thickness decreased by lower 

packing densities because of their mushroom behavior in dry state. In these conditions, the brushes 

orientation could not be determined. 

 

Figure 5-13: PM-IRRAS spectra on gold surfaces of ABA triblock copolymers at different grafting 

densities. 

 

5.2.5. Influence of channel proteins on the block copolymer brushes 

   

5.2.5.1. Protein insertion with the Biobeads method 

 

First, the protein insertion experiments were tested with channel proteins Outer Membrane Protein F 

(OmpF) and Aquaporin Z (AqpZ). Both proteins were incubated in the triblock copolymer membranes at 

100%, 90% and 70% packing density using the Biobeads method to remove the detergent used to 

stabilize the proteins in aqueous solution.
[52]

 After washing, the protein incorporation was monitored in 

buffer by electrical measurements.
[53]

 A constant voltage of 40 mV was applied until a stable current was 

observed. Prior incubating the membrane with channel proteins, control experiments consist ing in 

measuring the electrical current across the polymer membrane in buffer and with Biobeads, were 
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performed. For a better accuracy of the results, all samples were prepared at least three times separately, 

and the average values of their conductance were calculated. 

Bare gold substrate gave high conductance (138 ± 3 nS), and formation of the polymer membrane 

resulted in a strong decrease in conductance, with 5.2 ± 0.2 nS for the fully packed brushes and 17.1 ± 0.3 

nS for the 90% grafted brushes (see Figures 5-14A and 5-14B). The same results as previously were 

obtained for polymer membranes in buffer with the presence of Biobeads. Also, polymer membranes 

incubated with Biobeads and detergent were also measured as control experiments and gave stable 

conductance: 5.3 ± 0.2 nS for the fully packed brushes and 15.4 ± 0.3 nS for the 90% grafted brushes (see 

Figures 5-14C and 5-14D). Systems at 70% of grafted brushes also gave an average stable conductance 

of 62 ± 2 nS from 1840 seconds (see Figure 5-15 blue). Therefore, an increase of conductance was 

observed with the decrease of packing density, as lower grafting density allows more space for the 

circulation of electric current. The 70% grafted brushes were also incubated with Biobeads and detergent, 

and gave a stable conductance of 61 ± 2 nS, showing that the Biobeads and detergents did not affect the 

membrane stability. However, for the 90% and 70% grafted brushes, artefacts and noise were noticed at 

the beginning of the measurements (Figures 5-14B and 5-15 blue), as impedance spectroscopy technique 

is highly sensitive to external disturbance. 

 

Figure 5-14: Control measurements of electrical conductance in buffer before protein insertion at 100% 

grafted brushes (A) and at 90% grafted brushes (B). The membranes were also incubated in detergent 

and Biobeads at 100% brushes (C) and at 90% of grafted brushes (D). 
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Figure 5-15: Control measurements of electrical conductance across membrane at 70% grafted brushes 

in buffer before protein insertion (blue spectrum). The membranes were also incubated in detergent and 

Biobeads (red spectrum). 

Electrical impedance spectroscopy measurements after incubation of proteins for the polymer brushes at 

different grafting density lead to either unstable conductance or unreliable results in conductance (see 

Figure 5-16). Systems composed of 100% grafted brushes and of 70% grafted brushes gave conductance 

with at least 10
4
 times higher than expected for conductance across artificial membranes (Figures 5-16A, 

5-16C, 5-16D and 5-16F).
[25] 

Also, unstable conductance was observed for 90% grafted brushes (Figures 

5-16B and 5-16E). It means that neither OmpF nor AqpZ was inserted into systems with fully packed 

brushes, 90% and 70% packing density. 
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Figure 5-16: Electrical conductance measurements of polymeric membranes after incubation of OmpF 

(in red) and AqpZ (in blue) for 100% grafted brushes (A, D), 90% grafted brushes (B, E) and 70% 

grafted brushes (C, F) on gold support. 

Therefore, with all these combined results, we can deduce that neither OmpF nor AqpZ was completely 

inserted into the artificial system. Other possible reasons, similar as for the transferred ABA1 polymer 

(see section 4.2.4.2. on Chapter 4) can also explain those results: 

- ABA triblock copolymers were too rigid to allow the incorporation of pore channels OmpF and AqpZ. 

- Impedance spectroscopy is a sensitive method to any external disturbance that can imply changes in 

conductance as well as noise in the signals.  
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- Therefore the Biobeads methods can give inaccurate results, as for the same grafting density, the same 

sample should be measured in-situ both for the control measurements and for the protein incubation. 

Also, the differences in the noise level in the measurements as well as the observed artefacts in the 

signals can be explained by the sensitivity of electrical impedance spectroscopy. 

- Conductance measurements could be disturbed either by traces of detergent even with the presence of 

Biobeads, or by a too rapid detergent removal that can induce protein precipitation. 

 

5.2.5.2. Protein insertion with alpha-hemolysin 

 

Performing experiments with α-HL present many advantages, as it does not require any detergent for 

stabilization in aqueous media. Therefore, using Biobeads to remove the detergent is not needed. Also, 

the protein insertion with the Biobeads method requires the use of different samples for the control and 

insertion experiments.
[10] 

In our case, the protein incorporation can be measured in-situ on the same 

sample. Consequently, the inherent errors due to the inhomogeneity of the membrane or defects on the 

surface could be significantly decreased.  

The incorporation of the channel protein into the polymeric membrane was evaluated by measuring the 

electrical conductance across the artificial membrane. We measured the current across the membrane as a 

function of time for a constant applied voltage of 40 mV. This voltage was applied until a stable 

conductance was obtained. The conductance was calculated as G = I/V, where I is the electrical current, 

and V voltage. Also, previous work already proved the successful incorporation of α-HL into a 

biomimetic triblock copolymer membrane.
[54] 

We tested the insertion for the following grafting densities: 

100%, 90% and 70% (see raw data in Figure 5-17). For a better accuracy of the results, all samples were 

prepared at least three times separately, and the average values of their conductance were calculated. 
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Figure 5-17: Electrical conductance measurements of polymeric membranes before insertion (in blue) 

and after insertion (in red) of alpha-hemolysin for 90% grafted brushes (A), 100% grafted brushes (B) 

and 70% grafted brushes (C) on gold support. 



~ 115 ~ 
 

Bare gold substrate gave high conductance (138 ± 2 nS), and as expected, presence of the polymer 

membrane resulted in a strong decrease in conductance. A summary of the obtained conductance before 

and after the protein insertion are presented in Table 5-4. 

Table 5-4: Conductance measured by electrochemical impedance spectroscopy at different grafting 

densities before and after the incorporation of membrane protein alpha-hemolysin. 

% grafted initiator Membrane conductance 

before insertion of α-HL (nS) 

Membrane conductance 

after insertion of α-HL (nS) 

100 5.2 ± 0.2 5.7 ± 0.2 

90 17.1 ± 0.3 28.8 ± 0.3 

70 62 ± 2 unstable 

 

After adding in-situ the α-HL solution in PBS, conductance increased from 17.1 ± 0.3 nS to 28.8 ± 0.3 nS 

for the brushes grafted at 90% (Figure 5-17A and Table 5-4), whereas the conductance did not change 

and remained stable for the fully packed polymer brushes (Figure 5-17B and Table 5-4). 100% grafted 

polymer brushes are too densely packed to let the protein incorporation happen. Also, the tilted 

orientation of the 100% grafted brushes observed by PM-IRRAS could have prevented the insertion of 

alpha-hemolysin, even if the brushes orientation plays here a minor role. The conductance results 

obtained for the 90% grafted brushes is close to conductance obtained for polymer bilayers
[30, 43]

 and for 

natural lipid membranes
[55, 56]

 after protein insertion, which indicates a successful insertion of the protein 

into the amphiphilic triblock copolymer membrane. At 90% polymer grafting density, there may be 

enough space to allow protein insertion. Also, the slight decrease in grafting density implied a decrease in 

polymer thickness that could enhance the insertion. As the buffer and temperature conditions were similar 

to the work of Zhang et al., the insertion of a single α-HL corresponds to a conductance of 0.8 nS.
[43]

 Due 

to protein insertion, a conductance increase of 11.7 nS was observed. Therefore at least 15 α-HL proteins 

were inserted in the “measuring window”, which covered a membrane surface area of 12.5 mm
2
. This 

corresponds to approximately 1.2 α-HL per mm
-2

 of the membrane. In addition, the conductance after the 

α-HL insertion remained stable for at least 1400 seconds (see raw data on Figure 5-17A), which proved 

the preservation of the channel protein’s functionality in the artificial membrane. However, we were not 

able to obtain reliable results with the 70% grafted brushes after protein insertion, as unstable 

conductance was observed (Figure 5-17C). Most probably, the packing density is not dense enough. This 

system is therefore not suitable as a matrix for protein insertion. 
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5.3. Conclusions and outlook 

 

In conclusion, amphiphilic triblock copolymers were synthesized from a self-assembled initiator 

monolayer that initiated a surface ATRP reaction. The obtained polymer brushes were fully characterized 

layer by layer using a broad range of surface characterization techniques in order to investigate the 

behavior of the polymer brushes on the surface (wettability, covalent attachment, thickness, roughness, 

orientation). By varying the grafting density, a potential matrix for the functional incorporation of alpha-

hemolysin was found. Electrochemical impedance spectroscopy showed an increase in conductance 

during the insertion of α-HL in systems made of 90% grafted PHEMA-b-PBMA-b-PHEMA brushes. The 

stable conductance observed after incorporation proved the full preservation of protein functionality. We 

demonstrate a successful reconstitution of membrane proteins into a system made of amphiphilic triblock 

copolymers synthesized with a grafting-from approach. Further insertion experiments with alpha-

hemolysin at grafting densities between 90% and 100% should be conducted in order to investigate the 

changes in the amount of inserted proteins, and therefore confirm the biomimetic potential of this 

artificial system. Upon insertion of membrane proteins these systems could allow for the preparation of 

mechanically and chemically robust and, potentially, air-stable biosensor devices. 
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6. General conclusions and outlook 
 

In this thesis, the synthesis and characterization of methacrylate-based amphiphilic triblock copolymer 

membranes and nanoparticles in solution and on solid supports have been described. This study started 

with the synthesis of different polymer amphiphiles in solution, followed by the characterization of their 

self-assembly behavior. Further, the research shifted from solution to surfaces to take another step 

towards the development of solid-supported biomimetic block polymer membranes. 

Reduction-sensitive amphiphilic triblock copolymers with different hydrophilic to hydrophobic ratios and 

chain length were synthesized using ATRP. We showed the influence of these two parameters on their 

macromolecular self-organization. The first polymer PHEMA25-b-(PBMA25-S-S-PBMA25)-b-PHEMA25, 

with a hydrophilic to hydrophobic ratio of 0.83, self-assembled into micelles of 40-60 nm in diameter. 

The second structure PHEMA13-b-(PBMA20-S-S-PBMA20)-b-PHEMA13, with a hydrophilic to 

hydrophobic ratio of 0.47, favored the formation of hard spheres nanoparticles with diameters ranging 

from 130 nm to 140 nm. The self-assembled nanostructures disintegrated upon reduction of the disulfide 

bond with the reducing agents tris (2-carboxyethyl) phosphine (TCEP) and glutathione, yielding 

amphiphilic diblock copolymers that self-assembled into smaller micellar-like structures. Micelles were 

further able to encapsulate hydrophobic dyes molecules (Nile Red, BodiPy 630/650) as model payloads.  

Upon reduction of the disulfide bond, fluorescence spectroscopy and fluorescence correlation 

spectroscopy showed a burst release of payload within the first 15 minutes, followed by a constant release 

over several hours. The release of hydrophobic model substances from the micelles show that these self-

assembled nanostructures could serve as efficient reduction-responsive intracellular drug delivery 

systems.  

Polymer brushes obtained through the synthesis of block copolymers on a solid support were investigated 

as potential biosensing systems. These brushes were synthesized via a “grafting-from” approach to give 

an amphiphilic triblock copolymer anchored to a gold substrate. Therefore, a hydrophilic-hydrophobic-

hydrophilic artificial membrane that mimics the lipid bilayer structure can be formed. PHEMA-b-PBMA-

b-PHEMA triblock copolymer brushes were synthesized by surface-initiated ATRP. By systematically 

varying the grafting density of the polymer brushes and measuring their corresponding thicknesses by 

neutron reflectivity and SPR, we found a potential matrix for the incorporation of alpha-hemolysin, a 

membrane protein from Staphylococcus aureus. Electrochemical impedance spectroscopy showed during 

the protein insertion an increase in conductance from 17.1 nS to 28.8 nS for systems with 90% of grafted 

brushes, with preservation of protein’s functionality. Here, we demonstrated a successful protein 

reconstitution into an artificial membrane made of amphiphilic triblock copolymers synthesized with a 

grafting-from approach. This system could be potentially used for further applications in biosensing or in 

local drug delivery systems. As a comparison, planar membranes using the “grafting-to” approach were 
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prepared using PHEMA25-b-(PBMA25-S-S-PBMA25)-b-PHEMA25 triblock copolymer. But the 

consecutive Langmuir transfers with this polymer lead to a membrane with a complex structure that did 

not allow any protein insertion. 

Nevertheless, some improvements need to be achieved in the membranes preparation. Using copper 

catalysts for ATRP can be an issue for membranes that can find their potential application as biomedical 

devices. For both systems in solution and on solid supports, ATRP catalysts containing transition metals 

can be substituted by natural catalysts such as enzymes. Sigg et al.
[1]

 as well as Silva et al.
[2]

 reported the 

development of new ATRP catalysts based on horseradish peroxidase and hemoglobin respectively. Also, 

nanostructures containing a disulfide bond in the middle of the hydrophobic block implied a complex 

self-assembly on gold supports. The possibility of protein insertion in this complex matrix was limited, 

probably due to steric hindrance of the polymer chains. Therefore, the cleavage of the disulfide bond 

before Langmuir transfers on the surface should be performed. With a novel structure such as PHEMA-b-

PBMA-SH, consecutive monolayer transfers could lead to less steric hindrance and more flexible 

amphiphilic bilayer that can be investigated as a new matrix for protein incorporation. Finally, the self-

assembly studies of systems composed of diblock PHEMA-b-PBMA or triblock PHEMA-b-PBMA-b-

PHEMA are quite recent. Consequently, their macromolecular architecture should be investigated by 

varying the hydrophilic to hydrophobic ratio as well as the chain length in order to study their self-

assembly behavior in solution and on surfaces. 
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7. Experimental Part 
 

7.1. Materials 

 

Dimethylformamide (DMF; Sigma-Aldrich, > 99.8 %), acetone (Sigma-Aldrich, > 99.9 %), 

tetrahydrofurane (THF; J. T. Baker, > 99.5 %), methanol (MeOH; J. T. Baker, > 99.8 %), diethylether 

(DEE; J. T. Baker, > 99.0 %), acetonitrile (Sigma-Aldrich, > 99.5 %), ethanol (EtOH; Sigma-Aldrich, > 

99.8 %), chloroform (CHCl3; Sigma-Aldrich, > 99.8 %), tris (2-carboxyethyl) phosphine (TCEP; Alfa 

Aesar, 98 %), glutathione (Alfa Aesar, 97 %), methyl 9-maleimido-8-methoxy-2-oxo-2H-naphtho[2,3-

b]pyran-3-carboxylate (ThioGlo-5; Covalent Associates Inc.), Nile Red (Sigma), BodiPy 630/650 

(Invitrogen), Biobeads (SM-2 adsorbents, BioRad) and alpha-hemolysin (α-HL; Sigma-Aldrich, 

lyophilized powder, protein ~ 60 % by Lowry, > 10 000 units/mg) were used as received. 

2-Hydroxyethyl methacrylate (HEMA; Sigma-Aldrich, 99.0 %), n-butyl methacrylate (BMA; Sigma-

Aldrich, 99.0 %), N,N,N’,N’’,N’’-pentamethyldiethylenetriamine (PMDETA; Sigma-Aldrich, 99.0 %) 

were distilled before use. Copper (I) bromide (CuBr; Sigma-Aldrich, > 98.0 %) and copper (II) bromide 

(CuBr2; Fluka, > 99.0 %) were dried overnight under vacuum at 80°C. 

11,11´-Dithiobis [1-(2-bromo-2-methylpropionyloxy)undecane] was synthesized according to a protocol 

described elsewhere.
[1]

 Phosphate Buffered Saline (PBS) was prepared by dissolving 8.0 g of NaCl, 0.2 g 

of KCl, 1.44 g of Na2HPO4 and 0.24 g of KH2PO4 in 1 L H2O, the pH was adjusted to 7.4. Outer 

Membrane Protein F channel (OmpF) was extracted and purified according to a procedure described 

previously.
[2]

 Aquaporin Z (AqpZ) was purified as described by Borgnia et al..
[3]

  

 

7.2. Self-organization behavior of methacrylate-based redox-sensitive amphiphilic 

triblock copolymers in solution 

 

7.2.1. Synthesis and characterization of block copolymers 

 

Atom Transfer Radical Polymerization (ATRP) was carried out under inert argon atmosphere and 

oxygen- and water-free conditions using standard Schlenk techniques. 
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7.2.1.1. Synthesis of the macroinitiators Br-(PBMAm-S-S-PBMAm)-Br 

 

Macroinitiator 1 (B1): 11,11´-Dithiobis [1-(2-bromo-2-methylpropionyloxy)undecane] (443 mg, 0.629 

mmol) and freshly distilled BMA (20 mL, 126 mmol) were dissolved in a 100 mL Schlenk flask in dry 

acetone (15 mL) and degassed by three freeze-evacuate-thaw cycles. CuBr (90 mg, 0.63 mmol), and 

CuBr2 (14 mg, 0.063 mmol) were dissolved in dry acetone (6 mL) under argon in a 50 mL Schlenk flask 

and degassed as described above. PMDETA (0.144 mL, 0.692 mmol) was added under stirring for 30 

min to produce a dark green solution. One-tenth of this catalyst solution was transferred with an argon-

flushed syringe to the monomer/initiator solution. The reaction mixture was stirred for one hour. 

Quenching of the reaction was achieved by exposure to air; subsequently the mixture was diluted in non-

degassed acetone. The polymer solution was passed through a basic aluminum oxide column and rinsed 

with acetone to remove copper impurities. The liquids (acetone, BMA) were evaporated under vacuum 

for 3 h. The crude product was dissolved in THF, passed through a small column of basic aluminum 

oxide and rinsed with THF to remove residual copper salts. The filtrate was evaporated to dryness, the 

crude polymer was dissolved in THF and added slowly to cold (-80 °C) MeOH (200 mL) under stirring. 

While MeOH was still cold, the precipitate was filtered off through a porcelain funnel with filter paper 

and the polymer was collected, dissolved in THF and precipitated in cold MeOH (60 mL) a second time 

in the same manner. The polymer was dried overnight at room temperature under high vacuum. 

Macroinitiator 2 (B2):  The second macroinitiator was synthesized following the above described 

procedure, but using different reagents amounts: 11,11´-Dithiobis [1-(2-bromo-2-

methylpropionyloxy)undecane] (466 mg, 0.662 mmol), CuBr (101 mg, 0.703 mmol), CuBr2 (18 mg, 0.08 

mmol), PMDETA (0.144 mL, 0.690 mmol), with ratios for initiator : CuBr : CuBr2 :  PMDETA of 1 : 1: 

0.1 : 1.1. The reaction was performed for 30 minutes. 

 

7.2.1.2. Synthesis of the triblock copolymers PHEMAn-b-(PBMAm-S-S-PBMAm)-b-

PHEMAn 

 

Polymer 1 (ABA1): Macroinitiator 1 Br-(PBMAm-S-S-PBMAm)-Br (1.32 g, 0.182 mmol) and HEMA 

(4.42 mL, 36.4 mmol) were dissolved in dry DMF (4.42 mL) in a 50 mL Schlenk flask and the solution 

was degassed by three freeze-evacuate-thaw cycles. CuBr (260 mg, 1.82 mmol) and  CuBr2 (40 mg, 0.18 

mmol) were dissolved under stirring in dry DMF (44.2 mL) in a second argon-filled 50 mL Schlenk 

flask, and degassed as described above. Then, PMDETA (0.42 mL, 2.0 mmol) was added and stirred at 

room temperature for 30 min. One-tenth of this catalyst solution was added with an argon-flushed syringe 

to the HEMA/macroinitiator solution. The reaction mixture was stirred for two hours. Then the reaction 

mixture was exposed to air and directly added into water (100 mL). The precipitate was filtered off on a 
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paper filter as a thin film and was then washed with bidistilled water. Thereby the HEMA, the copper 

salts and the DMF were mostly removed. The obtained crude copolymer was dissolved in THF and 

further purified by filtering through a basic aluminum oxide column. After drying, the polymer was 

dissolved in a minimal amount of THF and was added into 100 mL of cold DEE (-20°C). A turbid 

mixture was obtained and centrifuged at 4000 rpm until the polymer was separated from the solvent. The 

final product was dried at room temperature under high vacuum overnight. 

Polymer 2 (ABA2): The second polymer was synthesized following the above described procedure, but 

using different reagents amounts: macroinitiator 2 Br-(PBMAm-S-S-PBMAm)-Br (566 mg, 0.075 mmol) 

and HEMA (2.1 mL, 15 mmol) were dissolved in DMF (1.1 mL), CuBr (70 mg, 0.48 mmol), CuBr2 (12 

mg, 0.05 mmol), PMDETA (0.10 mL, 0.52 mmol) were dissolved under stirring in dry DMF (12.8 mL). 

The reaction was performed for 30 minutes. 

 

7.2.1.3. Methods 

 

7.2.1.3.1. Characterization of the macroinitiators 

The molecular weight of the macroinitiator was determined by GPC (Viscotek GPCmax; column: PLgel 

5 μm mixed C, Varian) and 
1
H NMR (Bruker DPX-400 in CDCl3; calibration: tetramethylsilane; 

processing: MestReNova software). Samples were analyzed by GPC with THF as eluent (flow rate: 1 ml 

min
-1

; temperature: 30 °C; detection: refractive index). Narrow poly (methyl methacrylate) standards 

(Agilent Technologies) were used to calculate number average molecular weight Mn and polydispersity 

index PDI of the macroinitiator block. The number of the butyl methacrylate repeating units (the 

molecular weight, respectively), was calculated as a ratio of the integral corresponding to the 4 protons of 

the initiator at δ = 2.6 ppm to the 4 protons of the poly (butyl methacrylate) from the side chains at δ = 

4.0 ppm in the 
1
H NMR spectrum of the block copolymer (see figures 2, 3, 17, 18 and tables 1 and 2 in 

Chapter 3). 

 

7.2.1.3.2. Characterization of the triblock copolymers 

The triblock copolymers were also characterized by 
1
H NMR and GPC. HEMA polymerization is 

evidenced with the appearance of the characteristic signals belonging to the protons of the methylene 

groups of HEMA residues at δ = 3.8 ppm and δ = 4.0 ppm (see the corresponding figures above in 

Chapter 3). The number of the 2-hydroxyethyl methacrylate repeating units, thus the molecular weight, 

was calculated as a ratio of the integral corresponding to the 4 protons of the initiator at δ = 2.6 ppm to 



~ 126 ~ 
 

the 4 protons of the poly (2-hydroxyethyl methacrylate) from the side chains at δ = 3.8 ppm in the 
1
H 

NMR spectrum of the block copolymer (see figures 2, 3, 17, 18 and tables 1 and 2 in Chapter 3). 

 

7.2.2. Preparation of self-assembled structures 

 

Triblock copolymers were dissolved in 1 mL of THF. Bidistilled water was added dropwise under stirring 

until a THF:water ratio of 1:9 was reached. Solutions with final polymer concentration from 0.1 to 1.0 

mg mL
-1 

were prepared. The solutions were allowed to equilibrate overnight, and then extruded three 

times through 1.0 μm and 0.4 μm PTFE filters (Nucleopore Track-Etched membrane, Whatman). The 

encapsulation of small dye molecules was conducted as follows: 

 

7.2.2.1. Nile Red and BodiPy 630/650 encapsulation into micelles 

0.1 mL of a 1 mg mL
-1

 Nile Red solution in THF, or 0.1 mL of a 72 µg mL
-1

 BodiPy 630/650 solution in 

pure water were mixed to a polymer solution in THF. Bidistilled water was added dropwise under stirring 

until a THF:water ratio of 1:9 was reached. The mixture was allowed to equilibrate overnight. Then it 

was extruded first through 1.0 μm and 0.4 μm PTFE filters (Nucleopore Track-Etched membrane, 

Whatman). No further removal of free dye was performed. 

 

7.2.2.2. Characterization of the self-assemblies 

Transmission electron microscopy (TEM) was used to visualize the self-assembled copolymer structures. 

0.1 to 1.0 mg mL
-1

 solutions of polymer were placed on parlodium-coated copper grids (400 mesh), 

treated with glow discharge to make them hydrophilic. Then the grids were rinsed with water and stained 

(2% uranyl acetate). TEM micrographs were acquired with a Philips CM 100 instrument, operated at 80 

kV. The hydrodynamic radii and size distribution of the self-assembled copolymer structures were 

measured at 20°C by dynamic light scattering (DLS; scattering angle: 90°) with a goniometer 

(ALV/CGS-8F, ALV Langen) equipped with a He:Ne linear polarized laser (JDS Uniphase, wavelength 

= 632.8 nm). An ALV/LSE-5004 v. 1.7.4 correlator was used to calculate the correlation function of the 

scattered light intensity, which was analyzed using the CONTIN algorithm. Hydrodynamic radii for DLS 

measurements were determined with its standard deviation as an average of 12 measurements. For static 

light scattering measurements (SLS), we used solutions with different polymer concentrations (from 0.1 

to 1.0 mg mL
-1

), at scattering angles from 30 to 150° with 10° angular steps. For each angle, three 

measurements of 100 s were performed. For DLS and SLS data processing, we used the ALV static & 
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dynamic fit and plot software (version 4.31 10/01). SLS data were processed according to the Zimm 

model and cumulant analysis. 

 

7.2.3. Reduction of the disulfide bond  

 

The reduction of the disulfide bond was performed with two reducing agents: TCEP and glutathione. 0.5 

mL polymer solution (self-assemblies in water, concentration 0.05 mg mL
-1

) was mixed with 0.5 mL of 

35 mM reducing agent solution in pure water. After mixing, the behavior of the polymer aggregates was 

followed by DLS and TEM up to 24 hours. Experiments were conducted at room temperature. 

 

7.2.4. Thiol quantification using ThioGlo-5 

 

A 2.6 mM stock solution of ThioGlo-5 was prepared by dissolving 1.00 mg of ThioGlo-5 in 1 mL 

anhydrous acetonitrile. The solution was stored at 4°C and protected from light. The stock solution was 

diluted in bidistilled water to obtain a 9 μM ThioGlo-5 solution and the pH was adjusted to 7.4 with 

concentrated HCl. 

0.2 mL reduced polymer solution was mixed with 1 mL of a 9 μM ThioGlo-5 solution. Free thiols were 

determined by fluorescence on a LS55 spectrometer (Perkin Elmer). The excitation wavelength was set at 

365 nm, and the emission spectra were recorded from 450 to 700 nm. The instrument was used in scan 

mode, with excitation and emission slits set to 10 nm. Experiments were conducted at room temperature. 

 

7.2.5. Fluorescence kinetics 

 

The release of fluorescent dyes was followed at room temperature using fluorescence spectroscopy on a 

LS55 spectrometer (Perkin Elmer). 0.5 mL of loaded self-assembled structures were mixed in quartz 

cuvettes with 0.5 mL of 35 mM reducing agent solution in pure water and directly analyzed. For Nile Red 

and BodiPy 630/650, the excitation wavelength was set at 530 nm and 630 nm, respectively. The 

emission spectra were recorded from 550 to 690 nm and from 610 nm to 670 nm, respectively. The 

instrument was used in scan mode, with excitation and emission slits set to 10 nm for Nile Red; with 

excitation and emission slits set to 5 nm for BodiPy 630/650. For the release of Nile Red, spectra were 

recorded after 45 minutes and after 24 hours; for the release of BodiPy 630/650, every 5 minutes during 

the first hour, then every 2 hours over a time of 8 hours. 
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7.2.6. Encapsulation efficiency 

 

The encapsulation efficiency was determined by UV-vis spectroscopy, using a Specord 210 plus 

spectrometer (Analytik Jena). After separating micelles from free dye by simple decantation, 1 mL of a 

polymer solution with encapsulated BodiPy 630/650 was measured, with a slit width of 4 nm in 1 cm 

quartz cuvettes (Hellma). In order to determine the concentration of the encapsulated dye in the sample, a 

dilution series of the dye in bidistilled water was measured in order to establish a calibration curve. The 

absorbance was set at 630 nm, and the spectra were recorded from 550 to 700 nm. Experiments were 

conducted at room temperature. 

 

7.2.7. Fluorescence correlation spectroscopy 

 

Fluorescence correlation spectroscopy (FCS)  measurements were performed in special chambered quartz 

glass holders (Lab-Tek; 8-well, NUNC A/S) at an air-conditioned room (23°C) using a Zeiss LSM 510-

META/ConfoCor2 laser-scanning microscope with a Helium/Neon laser (633 nm) and a 40x-water-

immersion objective (Zeiss C/Apochromat 40x, NA 1.2). The pinhole was adjusted to 90 μm for the 

measurements. The He/Ne laser had an excitation power of  PL = 5 mW, and the excitation transmission 

at 633 nm was set to 5%. Spectra were recorded over 10 s, and the measurement was repeated 10 times. 

The diffusion time and the structural parameters for the free dye (BodiPy) were independently 

determined and fixed in the fitting procedure and used for the analysis of further dye-release 

measurements. The fitting parameters were processed using a single component auto-correlation function 

for the free BodiPy, two-component auto-correlation function for the encapsulated micelles and three-

component auto-correlation function for the release of BodiPy from micelles. 

 

7.3. Solid-supported amphiphilic block copolymer membranes using Langmuir 

techniques 

 

7.3.1. Gold substrates preparation  

 

Ultrasmooth template stripped gold (TSG) surfaces were prepared according to a procedure previously 

described by Naumann et al.
[4]

 where 50 nm thin gold films were deposited by electrothermal evaporation 

(0.8-1 Å s
-1

; 5 x 10
-6

 mbar) on clean silicon wafers (CrysTec, Germany) and glued with epoxy glue 
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(EPO-TEK 353ND4, USA) to clean microcrown LaSFN9 glass slides (Menzel, Germany). The glued 

slides were cured for 2 h at 120 °C and stored until further use. 

 

7.3.2. Bilayer preparation using Langmuir-Blodgett/Langmuir-Schaefer transfers 

 

PHEMA25-b-(PBMA25-S-S-PBMA25)-b-PHEMA25 (ABA1) triblock copolymer was prepared following 

the procedure in section 7.2.1.2. A CHCl3/MeOH solution (4:1 by volume) of ABA1 (concentration 0.5 

mg mL
-1

) was used for the film spreading. First, ABA1 monolayers were transferred onto various solid 

supports by the Langmuir-Blodgett technique, using a KSV 5000 (KSV Instruments, Finland) Langmuir 

TeflonTM trough (area 1860 cm
2
), placed on an antivibrational table in a plastic cabinet. Prior to film 

spreading, one freshly cleaved TSG substrate, 3 freshly cleaned silicon wafers and one freshly cleaned Ge 

substrate (internal reflection element, 50 mm × 20 mm × 1 mm, treated by diamond paste polishing, 

ethanol, acetone and ethanol rinsing, and UV cleaning) were immersed in the subphase using a dipper. 

After compressing a film to the pressure of 22 mN m
-1

, it was left for 15 min in order for the polymer 

chains to establish their most favorable orientation. Afterwards, a monolayer film was transferred at 

constant speed (0.3 mm min
-1

) on dipper upstroke. The polymer coated slide was then used for a second 

monolayer transfer by the Langmuir-Schaefer technique in order to obtain the bilayer membrane. For 

that, the ABA1 coated slide was placed in the dipper horizontally above the floating monolayer. A 

compressed ABA1 film (target pressure 22 mN m
-1

) was produced at the air-water interface. At constant 

dipper speed (51 mm min
-1

), the substrate was lowered through the interface. The water was cleaned and 

the obtained bilayers deposited on the solid supports were stored under water in a crystallization dish for 

further in-situ ATR-FTIR experiments on the Ge surface, and for electrical measurements on the TSG 

substrate. Bilayers transferred on silicon surfaces were immediately used for membrane characterization. 

 

7.3.3. Measurement methods of the bilayer 

 

7.3.3.1. Characterization at the air-water interface 

 

Monolayers measurements were investigated with a KSV 2000 Langmuir TeflonTM trough (KSV 

Instruments, Finland), area 420 cm
2
, equipped with two symmetric, hydrophilic barriers (DelrinTM) and 

a Wilhelmy plate (ashless filter paper strips; width: 10 mm; accuracy: 0.1 mN m
-1

) to monitor the surface 

pressure. The trough was placed in a plastic cabinet to prevent dust contaminations. All experiments were 

carried out in an air-conditioned lab (20 °C). Monolayers (concentration 0.5 mg mL
-1

) were spread drop-

wise on bidistilled water surface from CHCl3/MeOH solutions (4:1 by volume). The solvent was allowed 



~ 130 ~ 
 

to evaporate for 15 min, and the monolayers were compressed at the rate of 10 mm min
-1

. The 

compression was monitored together with the Brewster angle microscopy (BAM) setup (EP 3 SW 

system, Accurion, Göttingen, Germany). 

 

7.3.3.2. Ellipsometry 

 

Film thickness was determined using a spectroscopic multi-angle ellipsometer Nanofilm_ep3 (Accurion 

GmbH, Germany) measuring between 55° and 75°, increments of 2°. Measurements were carried out on 

three samples in dry state and at 20°C. The values were measured as an average of nine measurements for 

each sample. The refractive index of the films at all angles was fitted to 1.5. 

 

7.3.3.3. Contact angle 

 

All the contact angle measurements were performed applying the static sessile drop method with a fully 

computer-controlled instrument (DSA 10, Krüss, Germany). The measurements were carried out under 

constant ambient temperature (20°C) and constant drop size (3 µL). Bidistilled water was applied for the 

analysis. The presented results were taken as average values from at least nine different individual 

measurements for the monolayers, and from twelve different measurements for the bilayers. The errors 

were defined by the standard deviations. 

 

7.3.3.4. Attenuated Total Reflectance Fourier Transform Infrared Spectroscopy 

(ATR-FTIR) 

 

ATR-FTIR measurements were performed using an Alpha Platinium ATR single reflection diamond 

ATR module spectrophotometer (Bruker Optics GmbH). Spectra were recorded with 128 scans repetition 

for the blank gold surface and the sample, with 2 cm
-1

 resolution. 

 

7.3.3.5. Atomic force spectroscopy (AFM) 

 

Tapping mode AFM was performed using PycoLE System, Molecular Imaging, and aluminum coated 

silicon cantilevers (k=10-350 N/m). Images were recorded at a scan speed of 1.2 lines s
-1

, a force set 

point of 6.5 V, in topography and friction modes with a pixel number of 512 x 512. All the measurements 

were run in an air-conditioned lab (23°C). 
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7.3.4. Bilayer incubation with channel proteins analyzed by in-situ ATR-FTIR  

 

To study the influence of channel proteins on ABA1 membranes, we used attenuated total reflection 

infrared (ATR-IR) spectroscopy. The cell was mounted on an attachment for ATR measurements within 

the sample compartment of a Bruker Vertex 80 V FTIR spectrometer, equipped with a narrow-band MCT 

detector. Spectra were recorded at room temperature with a resolution of 4 cm
-1

 by co-adding 200 scans 

and the whole spectrometer (optical bench and sample compartment) was under vacuum of 1 hpa. 20µg 

mL
-1

 of an OmpF solution in PBS was passed through the cell and over the Ge ATR crystal by means of 

peristaltic pump located before the cell. A constant flow rate of about 0.2 ml min
-1

 was used and the 

spectra were recorded every 45 seconds. Bidistilled water and PBS were flowed through the sample 

before and after incubation with OmpF solution. Control experiments consist in following the same 

procedure with bare Ge surface. 

 

7.3.5. Incubation of bilayers with channel protein using Biobeads 

 

Channel proteins were incubated into the bilayer membranes using the Biobeads method.
[5]

 Freshly 

transferred bilayer membranes on gold supports were immersed either in OmpF or AqpZ solutions in 

PBS (concentration 20 μM). Biobeads were added into the protein solutions containing the immersed 

substrates following this rule of thumb (1 g Biobeads remove 0.07 g detergent at room temperature within 

6 h),
[6] 

and the slides were incubated in the protein solutions overnight. After that, both protein solutions 

and Biobeads were removed and exchanged with fresh PBS solution. The surfaces were cleaned 3 times 

with PBS and stored in buffer prior to electrical measurements. Control experiments with immersing 

polymer membranes in PBS and detergent solutions were performed with addition of Biobeads. 

 

7.3.6. Electrical measurements with channel proteins 

 

Electrical measurements were performed according to a procedure previously described by Zhang et 

al.,
[7]

 where microsized gold electrodes prepared by using a standard photolithography process were used 

together with a PDMS liquid chamber. The gold wires were first attached to the bilayer surface with 

silver paint, and the samples left for 10 min to stabilize. After that, the bilayer membrane on the surface 

was immersed with a PBS solution in the PDMS liquid chamber and a constant voltage of 40 mV was 
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applied across the bilayer membrane for several minutes before measurement in order to initialize the 

system until stable conductance of the membrane was achieved. The current was measured by a source-

meter (Keithley 2636A) at a constantly applied 40 mV. All devices were automatically controlled by a 

self-made LabView program. 

 

7.4. Functionalization of gold surfaces with amphiphilic block copolymer brushes 

using surface-initiated ATRP  

 

7.4.1. Preparation of initiator functionalized substrates 

 

In order to form self-assembled monolayers (SAM) of the initiator molecules on the gold surface, freshly 

stripped gold substrates were immersed into a 1 mM ethanol solution of 11,11´-Dithiobis [1-(2-bromo-2-

methylpropionyloxy)undecane] during 24 h at room temperature under oxygen- and water-free conditions 

in a glovebox. After that, the samples were washed 3 times with ethanol and dried in an argon stream. To 

create SAMs with lower grafting densities, 11,11´-Dithiobis [1-(2-bromo-2-

methylpropionyloxy)undecane] was mixed with 1-dodecanethiol in ethanol solution, the gold substrates 

were immersed in those solutions following the same procedure as above. 

 

7.4.2. Growth of polymer brushes from immobilized initiator SAMs 

 

7.4.2.1. Synthesis of the first PHEMA block 

 

In a dry box under inert atmosphere, water- and oxygen-free reaction conditions, HEMA (2 mL, 17 

mmol) was dissolved in dry DMF (1 mL) in a Petri dish. Freshly SAMs on TSG were immersed in this 

solution. CuBr (592 mg, 4.13 mmol) and CuBr2 (92 mg, 0.41 mmol) were dissolved under stirring in dry 

DMF (25 mL) in an argon-filled 50 mL round-bottom flask. Then, PMDETA (0.95 mL, 4.5 mmol) was 

added and stirred at room temperature for 30 min to allow the complex formation. One-twenty-fifth of 

this catalyst solution was transferred with a syringe to the HEMA solution containing immersed TSG and 

the reaction was carried out at room temperature for 30 min. Quenching of the reaction was achieved by 

injecting an ethanol/water solution of CuBr2 and PMDETA (molar ratio 1 : 1, 0.04 M CuBr2) in order to 

preserve the end functionality of the PHEMA block. The substrates were consecutively cleaned with 

ethanol, water, ethanol, and dried under an argon stream. 
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7.4.2.2. Synthesis of the second PBMA block 

 

The same procedure as above was applied for BMA polymerization. 2.6 mL of BMA were dissolved in 

1.6 mL dry DMF. The reaction was carried out for 60 minutes and quenched by addition of a 

CuBr2/PMDETA solution. The substrates were cleaned with DMF, water, DMF and dried under an argon 

stream. 

7.4.2.3. Synthesis of the third PHEMA block 

 

The same procedure as for section 7.4.2.1. was applied for the polymerization of the third PHEMA block, 

with a 30-min reaction time, with a quenching by a CuBr2/PMDETA solution and with the same cleaning 

process as previously. 

 

7.4.3. Measurement methods of initiator SAMs and the polymer brushes 

 

7.4.3.1. Contact angle 

 

All the contact angle measurements were performed applying the same procedure as for section 7.3.3.3. 

The presented results were taken as average values from nine measurements. 

 

7.4.3.2. AFM 

 

Tapping mode AFM was performed using the same method as for section 7.3.3.5., with a set point force 

of 7.2 V and a scan speed of 1 line/s for the images recording. 

 

7.4.3.3. Surface Plasmon Resonance (SPR) 

 

Surface Plasmon Resonance (SPR) is an optical method used to measure the film thickness and refractive 

index of a film deposited on a metal surface. The technique is based on the fact that at a certain condition, 

the surface plasmons are excited on a metallic film (typically gold surface) at a specific resonance 

frequency.
[8]

 Such measurements were performed using an instrument constructed with the Kretschmann 

configuration from RES-TEC (Germany), where, Helium-Neon laser was used as a light source (λ = 

632.8 nm).
[9]

 In SPR, angular scan was run to determine the optical components where, the reflected 
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intensity is measured as a function of incident angle. Upon fitting the obtained data using Fresnel 

calculations with the software Winspall 3.02 (Max Planck Institute for Polymer Research, Mainz, 

Germany), the optical components of a deposited film can be determined.
[8]

 The real (ε') and imaginary 

(ε") permittivity constants of the layers are presented in the following table. 

Layer Thickness (d) nm ε' ε" 

LaSFN9 (glass) -- 3.4036 0 

Au 50 -12.3 1.29 

Initiator -- 1.992 0 

PHEMA -- 2.286 0 

PBMA -- 1.939 0 

PHEMA -- 2.286 0 

Nitrogen air 0 1 0 

 

Spectra were analyzed using a seven layer model including the LaSFN9 glass, gold, initiator, each block 

of the triblock copolymer, and air. A refractive index of n = 1.4 was assumed for the initiator, n = 1.512 

for the PHEMA and n = 1.40 for the PBMA.
[10] 

All the measurements were performed using dried 

samples in a nitrogen atmosphere. 

 

7.4.3.4. X-Ray Photoelectron Sprectoscopy (XPS) 

 

The photoemission spectroscopy measurements were performed with a VG ESCALAB 210 spectrometer 

using monochromatic Al Kα radiation (1486.6 eV) without breaking the vacuum. The Gaussian 

broadening of the spectrometer (convolution of the spectral resolution (which itself is a convolution of 

the analyzer resolution and the source resolution) and thermal broadening) was calibrated as 0.55 eV for 

the 20 V analyzer pass energy used in this thesis. Normal electron escape angle and a step size of 

(maximum) 0.05 eV were used. Initially, wide scan XPS spectra from 0 to 1200 eV were taken in order to 

specify all the species present on the sample surface. The base pressure in the chamber was around 1 × 

10−
7
 Pa during acquisition. The binding energy scale was calibrated using a clean gold sample and 

positioning the Au 4f7/2 line at 84.0 eV binding energy. As all the samples were verified to be stable in 

UHV and under X-ray irradiation, longer integration times could be used to optimize the signal to noise 

ratio.  
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7.4.3.5. ATR-FTIR 

 

ATR-FTIR measurements were performed using a FTIR-8400S spectrophotometer applying a Golden 

Gate ATR setup (Shimadzu). Spectra were recorded with 128 scans repetition for the blank gold surface 

and the sample, with 2 cm
-1

 resolution. 

 

7.4.3.6. Polarization Modulation Infrared Reflection Absorption Spectroscopy (PM-

IRRAS) 

 

The sample was mounted in the complementary setup for PM-IRRAS measurements within the 

compartment of a Bruker PM 50 accessory, connected to an external beam port of a Bruker Tensor 27 

Fourier Transform Infrared spectrometer. The detector was a photovoltaic MCT element cooled with 

liquid nitrogen. Polarization was modulated with a photoelastic modulator (Hinds, PEM 90) at a 

frequency of 50 kHz. Demodulation was performed with a lock-in amplifier (Stanford Research, SR830 

DSP). All spectra were recorded with a resolution of 2 cm
-1

. Bare cleaned gold surface served as a 

reference for the PM-IRRAS spectra. Reference spectra for PBMA and PHEMA were recorded using 

commercial non crystalline polymers. Orientation measurements were performed using the Debe 

method.
[11]

 The azimuthal factor was taken into the relative concentration factor and was further 

ignored.
[12]

 We selected vibrations from the ester functionality ν(C=O) at 1732 cm
-1

 and ν(C-C-O) at 

1080 cm
-1

 for the analysis.
[13]

 

 

7.4.3.7. Neutron Reflectivity 

 

Experiments were carried out in Time-of-Flight (ToF) mode at the neutron reflectometer instrument 

AMOR at SINQ, Paul Scherrer Institute, Villigen, Switzerland at three angles of incidence.
[14, 15]

 The 

experimentally obtained reflectivity curves were analyzed by applying a standard fitting routine using 

Parratt’s recursive method
[16]

 by the corresponding software program package Parratt32.
[17]

 The 

measurements were performed with dried samples at room temperature. 
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7.4.4. Influence of the channel proteins on block copolymer brushes 

 

7.4.4.1. Incubation of polymer brushes with channel protein 

 

The incubation process of channel protein for the triblock copolymer brushes was performed in the same 

manner as in section 7.3.5. 

 

7.4.4.2. Electrochemical Impedance Spectroscopy (EIS) 

 

EIS measurements were performed by using the same procedure as in section 7.3.6.  
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