
Strong Spin-Orbit Interaction,

Helical Hole States, and Spin Qubits

in Nanowires and Quantum Dots

Inauguraldissertation

zur

Erlangung der Würde eines Doktors der Philosophie

vorgelegt der

Philosophisch-Naturwissenschaftlichen Fakultät

der Universität Basel

von

Christoph Klöffel

aus Nüdlingen, Deutschland

Basel, 2014

Originaldokument gespeichert auf dem Dokumentenserver der Universität Basel 
edoc.unibas.ch 

 

 
 

Dieses Werk ist unter dem Vertrag „Creative Commons Namensnennung-Keine 
kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz“ (CC BY-NC-ND 3.0 CH) lizenziert. 

Die vollständige Lizenz kann unter  
creativecommons.org/licenses/by-nc-nd/3.0/ch/ 

eingesehen werden. 



 

Namensnennung-Keine kommerzielle Nutzung-Keine Bearbeitung 3.0 Schweiz  
(CC BY-NC-ND 3.0 CH) 

Sie dürfen:  Teilen — den Inhalt kopieren, verbreiten und zugänglich machen  
 
Unter den folgenden Bedingungen:  

 

Namensnennung — Sie müssen den Namen des Autors/Rechteinhabers  
in der von ihm festgelegten Weise nennen. 

Keine kommerzielle Nutzung — Sie dürfen diesen Inhalt nicht für  
kommerzielle Zwecke nutzen.  

Keine Bearbeitung erlaubt — Sie dürfen diesen Inhalt nicht bearbeiten,  
abwandeln oder in anderer Weise verändern. 

 
Wobei gilt:  

 Verzichtserklärung — Jede der vorgenannten Bedingungen kann aufgehoben werden, 
sofern Sie die ausdrückliche Einwilligung des Rechteinhabers dazu erhalten.  

 Public Domain (gemeinfreie oder nicht-schützbare Inhalte) — Soweit das Werk, der 
Inhalt oder irgendein Teil davon zur Public Domain der jeweiligen Rechtsordnung gehört, 
wird dieser Status von der Lizenz in keiner Weise berührt.  

 Sonstige Rechte — Die Lizenz hat keinerlei Einfluss auf die folgenden Rechte:  

o Die Rechte, die jedermann wegen der Schranken des Urheberrechts oder aufgrund 
gesetzlicher Erlaubnisse zustehen (in einigen Ländern als grundsätzliche Doktrin 
des fair use bekannt);  

o Die Persönlichkeitsrechte des Urhebers;  

o Rechte anderer Personen, entweder am Lizenzgegenstand selber oder bezüglich 
seiner Verwendung, zum Beispiel für Werbung oder Privatsphärenschutz.  

 Hinweis — Bei jeder Nutzung oder Verbreitung müssen Sie anderen alle 
Lizenzbedingungen mitteilen, die für diesen Inhalt gelten. Am einfachsten ist es, an 
entsprechender Stelle einen Link auf diese Seite einzubinden.  

 
 
Quelle: http://creativecommons.org/licenses/by-nc-nd/3.0/ch/             Datum: 12.11.2013 

 



Genehmigt von der Philosophisch-Naturwissenschaftlichen Fakultät auf Antrag von

Prof. Dr. Daniel Loss

Prof. Dr. Guido Burkard

Basel, den 20.5.2014

Prof. Dr. Jörg Schibler

Dekan





Acknowledgments

First and foremost I would like to thank my supervisor Prof. Daniel Loss for accepting me as a PhD

student and for his advice, help, and support throughout my time in his group. His knowledge and

passion about physics are highly impressive. Despite his busy schedule and his large research group, he

was always willing and able to help, even regarding the tiny details, and his suggestions for new research

projects always turned out to be well thought through with rigor and foresight. I appreciate his respectful

and supportive attitude and am proud to be a part of his team.

Second, I wish to thank Prof. Guido Burkard for co-refereeing my thesis. His willingness to read and

referee my work is a great honor.

I am particularly grateful to Prof. Richard Warburton for his great support both at the Heriot-Watt

University in Edinburgh and at the University of Basel. I owe a lot to him, and I am glad that we had

a fruitful collaboration that became a part of this thesis. I also want to thank him for chairing the PhD

defense.

During the first year of my PhD program, I was fortunate to collaborate very closely with Dr. Mircea

Trif, who introduced me to the new and interesting topics that we had started working on. I benefitted

a lot from his expertise and want to thank him for this valuable collaboration. I am also grateful to my

office mates Prof. Suhas Gangadharaiah, Dr. Silas Hoffman, Dr. Peter Stano, Dr. Pawel Szumniak, and

Dr. Robert Zak, all of whom I truly enjoyed working with. In particular, I want to thank Dr. Peter Stano

for countless interesting and helpful discussions that notably contributed to the results of this thesis.

Moreover, I had the pleasure of sharing one project each with Viktoriia Kornich and Franziska Maier,

both of whom I thank for their great work that led to the success of these projects.

The experimental data in this thesis, taken in Prof. Richard Warburton’s and Prof. Brian Gerardot’s

laboratories at Heriot-Watt University, were obtained with rather unusual circumstances. After Dr. Paul

Dalgarno and I had carried out some first preparatory measurements in the absence of magnetic fields,

the project was about to end because Dr. Dalgarno had a new position at the University of St. Andrews

and I was going to start the PhD program in Basel soon. However, the project was too interesting to

just abandon it, and so we all decided that I would return to Edinburgh a few weeks later in order to

carry out the experiments at nonzero magnetic fields, given a limited time frame of less than 20 days

in total. Successfully obtaining all this data on my own and in this short amount of time would have

been impossible without Dr. Dalgarno, who very patiently had taught me a lot about working in the

lab. I want to cordially thank him for his help throughout this project. Many thanks also to Prof. Brian

Gerardot for useful advice and for allowing me to use some of his equipment, and to Dr. Daniel Brunner

for his kind assistance, e.g., during helium refills and with the installation of the magnet.

There are many people whom I would like to thank for useful discussions, in fact, too many to be

listed here completely. Besides the ones already mentioned above, I want to express my gratitude to Prof.

Hendrik Bluhm, Dr. Bernd Braunecker, Prof. Bill Coish, Prof. Carlos Egues, Dr. Jan Fischer, Prof. Vitaly

Golovach, Dr. Yongjie Hu, Dr. Georgios Katsaros, Prof. Ferdinand Kuemmeth, Prof. Charles Marcus, Dr.

Karl Petersson, Prof. Jason Petta, Prof. Martino Poggio, Dr. Beat Röthlisberger, Prof. Manuel Schmidt,
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Summary

Semiconducting nanowires (NWs) and quantum dots (QDs) are promising platforms for spintronics and

quantum computation. Great experimental and theoretical efforts have been made to continuously im-

prove their performances, which is evident from the large variety of setups, material combinations, and

operation schemes under investigation. With the work summarized in this PhD thesis, we want to con-

tribute to a better understanding of some of these systems.

The main result of our work is the discovery of a novel spin-orbit interaction (SOI) of Rashba type

that arises for holes in NWs in the presence of an electric field. In contrast to conventional Rashba and

Dresselhaus SOI, this mechanism is not suppressed by the fundamental band gap and therefore unusually

strong. As a consequence, we find that Ge/Si core/shell NWs can host helical hole states with remarkably

large spin-orbit energies on the order of millielectronvolts. Furthermore, we propose a setup for universal

and electrically controlled quantum information processing with hole-spin qubits in Ge/Si NW QDs.

Single-qubit gates can be performed on a subnanosecond timescale; two-qubit gates can be controlled

independently and over long distances; idle qubits are well protected against electrical noise and lattice

vibrations (phonons).

Another key result follows from our analysis of the phonon-mediated decay of singlet-triplet qubits in

lateral GaAs double quantum dots (DQDs). We find that two-phonon processes lead to strong dephasing

when the DQDs are biased, and the predicted temperature dependence provides a possible explanation

for recent experimental data. When the DQDs are unbiased, the dephasing is highly suppressed and the

decoherence times of the qubits are by orders of magnitude longer than those for biased DQDs.

In the last part of the thesis, we present a technique for manipulating the emission polarization and

the nuclear spins of a single self-assembled QD. Our scheme exploits a natural cycle in which an electron

spin is repeatedly created with resonant optical excitation when the QD is tunnel coupled to a Fermi sea.

Among other things, we find that the nuclear spin polarization and the effective electron g factor can be

changed continuously from negative to positive via the laser wavelength, with a region of bistability near a

particular detuning. An analogous behavior is observed for the average polarization of the spontaneously

emitted photons. Our experimental results, some of which are counterintuitive, are very well reproduced

with a quantitative model.

The thesis is organized as follows. In Chapter 1, we review experimental and theoretical progress

toward quantum computation with spins in QDs, with particular focus on NW QDs, lateral QDs, and

self-assembled QDs. In Chapter 2, we study the low-energy hole states of Ge/Si NWs in the presence

of electric and magnetic fields. We also consider the shell-induced strain, which strongly affects the NW

and QD spectra. In Chapter 3, hole-spin qubits in Ge/Si NW QDs are investigated. We find a highly

anisotropic and electrically tunable g factor and analyze the qubit lifetimes due to phonon-mediated

decay. A setup for quantum information processing with these qubits is proposed in Chapter 4, where we

also present surprisingly simple formulas for the effective Hamiltonian of the qubits. A detailed analysis

of the static strain and the low-energy phonons in core/shell NWs is provided in Chapter 5, completing

the part on NWs and NW QDs. In Chapter 6, we investigate the phonon-mediated decay of singlet-triplet

qubits in lateral DQDs. The developed technique for controlling the emission polarization and the nuclear

spins of optically active QDs is discussed in Chapter 7. Supplementary information to Chapters 2–7 is

appended.
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Chapter 1

Prospects for Spin-Based Quantum Computing

in Quantum Dots

Adapted from:

Christoph Kloeffel and Daniel Loss,

Annu. Rev. Condens. Matter Phys. 4, 51 (2013).

Experimental and theoretical progress toward quantum computation with spins in quantum dots (QDs)

is reviewed, with particular focus on QDs formed in GaAs heterostructures, on nanowire-based QDs, and

on self-assembled QDs. We report on a remarkable evolution of the field, where decoherence – one of

the main challenges for realizing quantum computers – no longer seems to be the stumbling block it had

originally been considered. General concepts, relevant quantities, and basic requirements for spin-based

quantum computing are explained; opportunities and challenges of spin-orbit interaction and nuclear

spins are reviewed. We discuss recent achievements, present current theoretical proposals, and make

several suggestions for further experiments.



1.1 Introduction

The concept of entanglement and nonlocality [1], one of the most striking features of quantum mechanics,

has been heavily debated since the early days of the field [2]. By now, there is abundant experimental

evidence [3] that Nature indeed does possess nonlocal aspects, in stark contrast to our everyday-life

experience.

But it was only relatively recently [4], when Richard Feynman [5, 6], David Deutsch [7], and other re-

searchers in the 1980s, envisioned the idea of exploiting the quantum degrees of freedom for a novel way of

information processing. The central questions then were whether and how it is possible to efficiently sim-

ulate any finite physical system with a man-made machine. Deutsch argued that such a simulation is not

possible perfectly within the classical computational framework that had been developed for decades [7].

Instead, the universal computing machine should be of a quantum nature, i.e., a quantum computer.

Since then, progress in different areas of research and industry tremendously influenced the advent

of quantum computing. First, the booming computer industry led to major progress in semiconductor,

nano-, and laser technology, a prerequisite for the fabrication, addressing, and manipulation of single

quantum systems needed in an experimental realization. Second, several algorithms have been devel-

oped, such as those by Deutsch [7, 8], Grover [9], and Shor [10, 11], which clearly illustrate that quantum

computers, exploiting the existence of entanglement, can solve problems much faster than classical com-

puters. A recent review on using quantum computers for quantum simulations can be found in Ref. [12].

In addition, the theories of quantum complexity and entanglement are currently being established, a

process that is still far from complete. The emerging fields of nano- and quantum information science

have inspired and motivated each other in various ways.

Shortly after the first quantum algorithms were developed, setups were suggested to turn quantum

computing into reality. These ideas, among others, are based on quantum dots (QDs) [13, 14], cold

trapped ions [15], cavity quantum electrodynamics (QED) [14, 16], bulk nuclear magnetic resonance [17],

low-capacitance Josephson junctions [18], donor atoms [19, 20], linear optics [21], molecular magnets [22],

spin clusters [23], or color centers in diamond [24–26]. Many interesting results have followed, some of

which are reviewed here.

In 1997, encoding quantum information in the spin states of QDs was proposed [13]. The tunnel

barrier between neighboring dots, which can be varied via gates (see Fig. 1.1), induces time-dependent

electron-electron interactions and affects the spin states via the Heisenberg exchange coupling. The pro-

posal demonstrates theoretically that such a setup allows for universal and scalable quantum computing,

controllable by purely electrical means at ultrahigh clock speed. Here, we particularly focus on the ex-

perimental and theoretical achievements following Ref. [13] because substantial progress in this field has

been made within the past few years. An overview on recent results in other setups can be found in,

e.g., Ref. [27], where different qubit platforms are also compared to each other. For previous reviews, see

Refs. [4, 28, 29].

The review is organized as follows. In Sec. 1.2 we introduce the three QD systems discussed in this

review: self-assembled QDs, lateral QDs, and nanowire-based QDs. We also comment on basic require-

ments for quantum computation and define the spin lifetimes T1, T2, and T ∗2 . Spin-orbit interaction

and nuclear spins are covered in Sec. 1.3. These present an undesired (noise) source of relaxation and

decoherence for the spin qubits on the one hand, but on the other hand allow for all-electrical spin ma-

nipulation via electric-dipole-induced spin resonance or for strong (effective) magnetic field gradients. In

Sec. 1.4, recent progress in these QD systems is summarized, compared, and discussed. Newly proposed

architectures for long-distance qubit-qubit coupling are reviewed in Sec. 1.5, followed by our summary

and final remarks in Sec. 1.6.
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Figure 1.1. Basic scheme for the physical implementation of a quantum computer as proposed in Ref. [13]. (a) The qubits

are encoded in the single-electron spin states of quantum dots (QDs), where the barrier between adjacent QDs is controllable

via electric gates. When the barrier is reduced, the electron wave functions overlap and the spins SL and SR (here in units

of ~) interact via the Heisenberg exchange coupling J(t)SL · SR, where J(t) is a function of gate voltage and corresponds

to the energy splitting of the spin singlet and triplet states. This allows for electrically controlled two-qubit gates with fast

operation times [13]. (b) A QD array based on panel a, where the qubits in the two right dots are coupled while the others

are decoupled. Rotations of individual spins may be achieved by pulling the desired electron down into a region of high

magnetization or high g factor via back gates, such that the Zeeman splitting and, hence, the resonance condition changes

for this electron in the presence of a static magnetic field B⊥. A resonantly applied oscillating magnetic field pulse Bac
‖

then rotates the addressed qubit (electron spin resonance, ESR), while all others remain unaffected due to off-resonance.

Exploiting spin-orbit interaction, the rotations may also be driven fully electrically via electric-dipole-induced spin resonance

(EDSR). For details on ESR and EDSR, see Sec. 1.3.1.1. Alternatively, fast single-qubit gates may be implemented via

exchange-controlled spin rotations [13, 198]. The combination of single- and two-qubit gates results in a universal set of

quantum gates, so that the proposed schemes allow for fast and purely electrically controlled quantum computation with

electron spins in QDs [13]. The pictures were used with permission of Daniel Loss.

1.2 Promising Quantum Dot Structures, Definition of Lifetimes, and

Essential Requirements

QDs confine electrons or holes (missing valence band electrons) in all three dimensions, on length scales

which are comparable to the wavelengths of the particles, i.e., typically ∼10–100 nm in each spatial

direction. There are many possibilities to realize such confinement, which is evident from the variety

of systems under study. In this report, we mainly focus on three of them. The first category is self-

assembled QDs. These form naturally during growth, where InGaAs dots within a GaAs matrix are

commonly used examples. When InGaAs is grown on GaAs (Stranski-Krastanov mode), islands form

spontaneously, due to the mismatch in the lattice constants, after a small critical thickness of only a few

monolayers is reached. These may then be covered with further layers of GaAs. Such QDs are typically

lens shaped, with heights of ∼5 nm (growth direction) and diameters ∼20 nm, and confinement results

from the difference in the conduction and valence band edges of the involved materials. Alternatively,

interface fluctuation QDs arise from monolayer fluctuations in thin quantum wells, typically resulting in

GaAs dots within AlGaAs [30]. The second category, lateral QDs, is based on two-dimensional electron

gases (2DEGs) and two-dimensional hole gases (2DHGs), which exist in heterostructures from materials

with suitable band properties and additional dopants. For instance, AlGaAs/GaAs heterostructures are

routinely used to form 2DEGs and 2DHGs within GaAs, which are strongly confined along the growth

direction. Lithographically defined gate electrodes on the sample surface also allow confinement in the

transverse directions, leading to quasi-2D QDs of ∼100 nm in diameter. The orbital parts of the wave

functions play an important role for lateral QDs and have been studied in great detail in Refs. [31, 32].

Finally, semiconductor nanowires naturally provide confinement in two dimensions, due to their small

diameters of ∼10–100 nm, and repulsive forces along the wire may again be added via nearby gates

or additional layers of barrier material. We note that several other QD implementations exist, which,

however, for space reasons we do not discuss. Prominent examples are colloidal QDs [33, 34] and QDs
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in carbon-based systems, like graphene [35] or carbon nanotubes [36, 37], which are highly attractive for

implementing spin qubits.

Any setup considered for quantum computation should fulfill a list of essential criteria, such as scala-

bility and the ability to initialize the system in a fiducial state [38]. For quantum error correction schemes

to be applicable, it is important that the lifetimes are much longer than the gate operation times. A

decade ago, this was considered a very serious challenge, but to a great extent, this problem has now

been overcome in QDs as discussed in Sec. 1.4. Three timescales are of interest in this context, which we

illustrate in terms of the electron spin qubit states |↑〉 and |↓〉, assuming that these are eigenstates of the

Pauli operator σz with energy difference ∆. First, the relaxation time T1 describes transitions |↑〉 → |↓〉
due to interactions with the environment, such as the lattice, which leads to relaxation from the excited

|↑〉 to the ground state |↓〉. A typical measure for T1 is 〈σz〉(t) with initial state |↑〉. Second, the deco-

herence time T2 quantifies the decay of quantum mechanical superpositions and accounts for transitions

of type |↑〉 + |↓〉 → {|↓〉 , |↑〉} induced by the environment (Fig. 1.2, inset). When the state is initially

(|↑〉+ |↓〉) /
√

2, an eigenstate of σx, a typical measure for T2 is the envelope function of 〈σx〉(t). We note

that 〈σx〉(t) oscillates between ±1 at angular frequency ∆/~ for a perfectly isolated system, but decays

to 0 as the state turns into either |↑〉 or |↓〉 because 〈↑|σx |↑〉 = 0 = 〈↓|σx |↓〉. The envelope function

itself may be referred to as |〈σ+〉| (t) = |〈σx〉(t) + i〈σy〉(t)|. Finally, in practice it is generally required

to average over an ensemble, rather than to measure a single system only. The averaged |〈σ+〉| (t) often

decays faster than in each individual case because the oscillation frequencies may be slightly different

from system to system (i.e., small deviations in ∆), which leads to destructive interference and additional

damping. The so-called dephasing time obtained from an ensemble measurement is therefore labeled T ∗2 .

The three timescales T1, T2, and T ∗2 are not completely unrelated. For spin qubits in QDs, where deco-

herence predominantly results from spin-orbit interaction (T2 = 2T1 [39, 40]; Sec. 1.3.1.2) and hyperfine

coupling to nuclear spins (T2 � T1; Sec. 1.3.2), one finds that T2 ≤ 2T1 and usually T ∗2 < T2 and T2 � T1

in practice. Commenting on the terminology, the relaxation (T1), decoherence (T2), and dephasing (T ∗2 )

times are only well defined when 〈σz〉 or |〈σ+〉|, respectively, decay exponentially, which is the assumed

behavior in most quantum error correction schemes. Strictly speaking, one should therefore avoid these

terms when the longitudinal or transverse decay is of a nonexponential form. We note, however, that the

introduced nomenclature is often used to characterize any decaying behavior for convenience.

A key criterion for building quantum computers, the one which actually justifies their name, is the

presence of a universal set of quantum gates. This may fortunately be realized with one- and two-body

interactions only, because any operation can be carried out as a sequence of one- and two-qubit gates. In

fact, the implementation of single-qubit rotations for each element, along with only one type of entangling

two-qubit gates, e.g.,
√

SWAP or CNOT, between neighboring qubits would be sufficient for universal

quantum computation [38, 41]. We note in passing that entanglement of spin qubits can be created in

many different ways and over long distances, for instance, by extracting and separating Cooper pairs from

an s-wave superconductor as proposed in Ref. [42] and experimentally investigated recently in Refs. [43–

46]. Nuclear spins and spin-orbit interaction, which present an undesired source of decoherence on the

one hand, may prove useful for implementing qubit gates on the other hand, and both mechanisms are

analyzed in more detail in the next section.

1.3 Spin-Orbit Interaction and Nuclear Spins in Quantum Dots

1.3.1 Spin-Orbit Interaction

Spin-orbit interaction (SOI) couples the orbital motion of a particle to its spin. Prime examples are

relativistic effects of type l · s, which can be derived from the Dirac equation, where l and s = ~σ/2
correspond to the orbital and spin angular momentum of the electron, respectively [47]. The operator l ·s
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is invariant under time reversal and parity transformations (spatial inversion) and commutes with both

(l + s)2 and lz + sz. As a consequence, due to Bloch functions of p- as opposed to s-type, SOI leads to

interesting properties in the topmost valence band, which can be described mathematically in terms of an

effective spin 3/2 [48, 49]. In the presence of inversion asymmetry, additional terms that do not conserve

parity arise for the envelope function of electron and hole states. Based on the type of asymmetry,

two important SOI mechanisms can be distinguished here. Rashba SOI results from structural inversion

asymmetry and, for electrons, is typically of the form HR ∝ Eeff · (σ × p), where the components σi

are the Pauli matrices for spin 1/2, p is the momentum operator, and Eeff is an effective electric field

determined by the system structure [48, 50]. Dresselhaus SOI is present in materials that lack bulk

inversion symmetry, such as InAs or GaAs, and is of the form HD ∝ px′(p2
y′−p2

z′)σx′+py′(p
2
z′−p2

x′)σy′+

pz′(p
2
x′ − p2

y′)σz′ , where x′, y′, and z′ correspond to the crystallographic directions [100], [010], and [001],

respectively [48, 51].

For quasi-2D systems, the Hamiltonians HR and HD can be reduced further. For strong confinement

along the z direction, the Rashba term simplifies to HR = α(pxσy−pyσx) with Rashba parameter α. The

resulting form of the Dresselhaus term strongly depends on the growth direction. For the z axis chosen

along the confinement direction, one can substitute pz → 〈pz〉 = 0, p2
z → 〈p2

z〉, and all other terms can

be neglected because of their smallness compared to terms ∝ 〈p2
z〉 [52]. For example, for z ‖ [100] one

obtains HD = β(pyσy − pxσx), while for z ‖ [110] the spin projection along the confinement direction is

conserved, HD ∝ pxσz. Both these Hamiltonians vary under rotations of the coordinate system about

the z axis, so that their exact form is determined by the relative orientation of coordinate and crystal

axes. This is different for z ‖ [111], where the effective Dresselhaus term is HD ∝ pxσy − pyσx, which

moreover corresponds exactly to the form of the Rashba term. Therefore, Rashba and Dresselhaus SOI

can cancel in lowest order for growth along the [111] direction [53].

We note that the presence of SOI results in small, but finite, anisotropic corrections to the Heisenberg

exchange interaction of electron spins, thus affecting the fidelity of quantum gates based on isotropic

exchange. Fortunately, strategies have been developed with which the SOI-induced gate errors can be

strongly suppressed [54–56]. In general, gate errors can be reduced from first to second (or higher) order

in SOI when the coupling strength J(t) is varied symmetrically in time, followed by additional qubit

rotations [54, 56]. In particular, the anisotropic corrections can be cancelled completely in the CNOT

gate construction of Ref. [13] when the system is pulsed such that the anisotropic terms are linear in J(t)

[55]. Additional errors caused by dipole-dipole interactions were found to be negligible for CNOT (in

typical situations) [55].

1.3.1.1 Electric-Dipole-Induced Spin Resonance

A rather useful technique for electrically controlled qubit rotations is electric-dipole-induced spin reso-

nance (EDSR). It is closely related to the well-known electron spin resonance (ESR), which we therefore

review first. For this, let us consider an electron in a QD in the presence of magnetic fields. The Hamil-

tonian H = H0 +HZ consists of a spin-independent part H0 = p2/(2m∗) +V (r), where the first (second)

term corresponds to the kinetic (potential) energy, and the Zeeman part HZ = gµBB ·σ/2, which couples

the magnetic field B to the spin. In the following, we assume that a constant magnetic field Bz is applied

along the z axis, while a small oscillating field Bx(t) = B⊥ cos(ωt), B⊥ < Bz, is applied along the x axis.

For any fixed orbital state |n〉, with H0 |n〉 = En |n〉, the time evolution of the spin is described by the
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(von Neumann) master equation for the density matrix ρ,

d

dt
ρ = − i

~
[En +HZ , ρ] = − i

~
[HZ , ρ], (1.1)

HZ =
~ωz

2

(
1 0

0 −1

)
+

~ω⊥
4

(
0 e−iωt

eiωt 0

)
+

~ω⊥
4

(
0 eiωt

e−iωt 0

)
, (1.2)

where we defined ~ωz ≡ gµBBz, ~ω⊥ ≡ gµBB⊥, and the states of the matrices correspond to {|n, ↑〉 , |n, ↓〉} ≡
{|↑〉 , |↓〉}. When ω ≈ ωz, the final term of the chosen representation of σx cos (ωt), Eq. (1.2), can be

omitted because it only superimposes a fast and negligibly small oscillation to the dynamics. Within this

rotating wave approximation, the resulting set of differential equations is exactly solvable. When the spin

is originally in the |↑〉 state and the oscillating field is applied for t ≥ 0, the probability p↓ of a spin flip

oscillates according to

p↓ =
ω2
⊥

ω2
⊥ + 4δ2

sin2

(
t

4

√
ω2
⊥ + 4δ2

)
, (1.3)

where δ ≡ ω − ωz is the detuning from the resonance condition ω = ωz, and 4π/
√
ω2
⊥ + 4δ2 is the cycle

duration. We note that the resulting spin-flip probability is completely equivalent to Eq. (1.3) when the

spin is initially down.

Remarkably, in the presence of SOI one finds that an oscillating electric field E(t) = E0 cos(ωt) leads

to an effective magnetic field b0 cos(ωt) with, in general, nonzero components perpendicular to the static

magnetic field. Hence, spin rotations can efficiently be driven by purely electrical means (EDSR). This

may be achieved by applying ac voltages to nearby gates, at frequencies that are in resonance with

the Zeeman splitting, as recently exploited in experiments on nanowire-based InAs and InSb QDs [57–

60]. Explicit expressions for b0 are lengthy, and in the following we therefore comment on important

properties found in an analysis for lateral QDs with growth axis z ‖ [100] and harmonic confinement

in the x-y plane [61]. First, in contrast to ESR, the EDSR arises from coupling to other orbital states

and therefore depends on the level spacing. This can easily be seen, because 〈↑|x |↓〉, 〈↑| y |↓〉, 〈n| px |n〉,
and 〈n| py |n〉 vanish, so that neither the dipolar term eE(t) · r nor HR or HD couples the spin states

in lowest order. A unitary Schrieffer-Wolff transformation shows that the leading term for EDSR is a

combination of Zeeman coupling and SOI. More precisely, the effective magnetic field in the ground state

is ∝ B0 × Ω(t), where B0 is the static magnetic field and Ω(t) = Ω0 cos(ωt) depends linearly on the

electric field components in the x-y plane and the parameters α and β [61]. We note that the resulting

magnetic field is fully transverse and therefore most efficient. It can be quenched if B0 ‖ Ω0. For typical

GaAs QDs, EDSR allows spin manipulation on a timescale of 10 ns with the current experimental setups

[61]. Numerical studies based on single electrons in 1D double quantum dots (DQDs) revealed rather

unexpected spin dynamics at large driving field amplitudes, such as incomplete spin flips and surprisingly

long cycle durations at resonance, pointing out possible challenges for future applications of EDSR in

DQDs [62]. An analysis for heavy-hole (HH) QDs can be found in Ref. [63].

1.3.1.2 Relaxation and Decoherence

SOI and hyperfine interaction (Sec. 1.3.2) are the dominant decay channels for spin qubits. In particular,

Rashba and Dresselhaus SOI lead to spin relaxation in combination with the phonon field, whereas other

relaxation processes are usually negligible [39, 40, 64–67]. For electrons in [100]-grown 2D QDs it has been

calculated that this phonon-mediated mechanism results in relaxation times T1 ∝ (~ω0)
4
/ (gµBB)

5
at low

temperatures, where gµBB is the Zeeman splitting induced by a magnetic field B, and ~ω0 is the orbital

level spacing [64]. For moderate magnetic fields, this dependence agrees very well with experimental

results [52, 68–70]. As the magnetic fields become very large, the wavelengths of the phonons with

energy gµBB eventually become much smaller than the size of the QD; i.e., the phonon-induced effects
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average out when integrating over the electron wave function and T1 increases rather than decreases [39].

Maximal relaxation rates are usually observed when the phonon wavelength matches the dot size [52].

In the other limit, for very small magnetic fields, the derived expression for T1 diverges. This is because

the above theory focuses on single-phonon processes, so that only phonons in resonance with the Zeeman

transition can contribute. Kramers’ theorem forbids SOI-induced spin relaxation in the absence of a

magnetic field [52, 64], which is also the reason why EDSR requires the presence of a finite magnetic

field. When two-phonon processes are included, T1 converges to a finite value [64, 71, 72].

Holes are an attractive alternative to electrons because of the suppressed contact hyperfine interaction

with nuclear spins (see subsection below). Phonon-mediated spin relaxation has also been analyzed in

detail for flat [100]-grown HH QDs with magnetic fields along the confinement axis [40]. For low magnetic

fields, one finds T1 ∝ B−5 due to Dresselhaus SOI, which is the same dependence as in the electron case,

while the contribution due to Rashba SOI is T1 ∝ B−9. The analysis shows that the spin relaxation

time for HHs can be comparable to or even longer than that for electrons when the QD is strongly 2D,

illustrating that holes are very sensitive to confinement [40]. For instance, T1 > 0.2 ms has been measured

for HHs in self-assembled InGaAs QDs [73–75]. In the limit B → 0, the relaxation times are determined

by two-phonon processes. These have been included theoretically [72], suggesting times T1 on the order

of milliseconds, in good agreement with values observed in experiments [74, 75].

Notably, the upper limit T2 = 2T1 is fulfilled in both the electron [39] and the hole [40] cases discussed

above, in contrast to the naively expected relation T2 � T1. Furthermore, theory predicts that electron

spin relaxation is drastically suppressed for a certain magnetic field direction when |α| = |β| in [100]-

grown QDs [39]. (In passing we note that in this special limit, a new symmetry in spin space emerges

giving rise to interesting spintronics effects in quasi-2D systems [76, 77].) Tuning the Rashba coefficient

via electric fields, this effect should be observable in an experiment with a vector magnet. The analysis of

SOI-mediated relaxation has been extended to QDs with two electrons, forming spin singlet and triplet

states, where magnetic field orientations with strongly suppressed spin relaxation were found to exist for

arbitrary Rashba and Dresselhaus coefficients [67]. The (relative) strengths of α and β may be found via

the singlet-triplet anticrossings for magnetic fields applied in growth direction, or by measuring the magic

angles at which the singlet-triplet anticrossings and thus the corresponding singlet-triplet relaxations

vanish in leading order of the SOI [67, 78]. Recently, a formula has been derived for lateral DQDs, which

quantifies the level splitting at the singlet-triplet anticrossing in terms of various parameters [79]. This

formula should allow the extraction of both the spin-orbit parameters and also the hyperfine coupling

from transport or charge-sensing experiments in such DQDs [79]. Effects of hyperfine interaction are

discussed below.

1.3.2 Nuclear Spins

A QD typically consists of 104–106 atoms, so that an electron or hole confined to the QD overlaps with a

large number of nuclear spins. The nuclear spin bath itself reveals large lifetimes, indicated by the long

dipole-dipole correlation time among nuclear spins, ∼0.1 ms in GaAs [80, 81]. (Since the dipole-dipole

interaction, resulting from the finite magnetic dipole moments of the nuclei, does not conserve spin, the

dipole-dipole correlation time can be interpreted as the time it takes for a nuclear spin to flip in the mean

field of the surrounding ones.) Despite its long lifetimes, the nuclear spin ensemble presents the main

source of electron and hole spin decoherence. This is due to the hyperfine interaction among electron and

nuclear spins, for which three different mechanisms can be derived from the Dirac equation [82]. The first

one is the (isotropic) contact hyperfine interaction, which is the most relevant mechanism for conduction

band electrons. For holes, where the Bloch functions are p- as opposed to s-type, the anisotropic hyperfine

interaction and coupling to the orbital angular momentum become dominant. Below we summarize the

effects and opportunities of a nuclear spin bath in more detail, beginning with a theoretical investigation
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in Secs. 1.3.2.1–1.3.2.2 and ending with a brief overview on experimental achievements in Sec. 1.3.2.3.

1.3.2.1 Electron Spin Decoherence

When we assume that the external magnetic field, if present, is oriented along the z axis, the Hamiltonian

of an electron spin ~σ/2 coupled to a bath of nuclear spins ~Ik reads

1

2
gµBBzσz +

1

2

∑
k

AkIk · σ =
1

2

(
gµBBz +

∑
k

AkI
z
k

)
σz +

1

4

∑
k

Ak
(
I+
k σ− + I−k σ+

)
, (1.4)

where σ = (σx, σy, σz) is the vector of spin-1/2 Pauli matrices, g is the effective electron g factor, Bz is the

external magnetic field, the Ak (positive for In, Ga, As) are the contact hyperfine coupling coefficients,

and I±k = Ixk ± iI
y
k and σ± = σx ± iσy are the raising and lowering operators for nuclear and electron

spin, respectively [82, 83]. The effects of the nuclear spins on an electron spin in a QD can thus be

described in terms of an effective magnetic field
∑
k AkIk/(gµB), referred to as the Overhauser field.

Its component Bzn along the z axis changes the total Zeeman splitting by the Overhauser shift, while

transverse components couple the spin states |↑〉 and |↓〉 through electron-nuclear-spin flip-flop processes

[83]. To avoid confusion, we mention that the term Overhauser field is often used for both the 3D effective

nuclear magnetic field and its component Bzn. The largest possible value for |Bzn|, obtained for a fully

polarized bath, is Bmax
n = IA/(|g|µB), where A is the averaged effective hyperfine coupling constant

and I is the (average) quantum number for the nuclear spin. For GaAs, A ≈ 90 µeV and I = 3/2,

thus Bmax
n ≈ 5 T for the bulk g factor −0.44, and we note that Bmax

n is independent of the dot size

[82, 83]. Without further preparation, the N nuclear spins inside a QD are in a superposition of states

with different fields Bzn, statistically distributed around a mean value pBmax
n , where −1 ≤ p ≤ 1 is the

nuclear spin polarization along the z axis. Unless |p| → 1, the width of this distribution is on the order of

Bmax
n /

√
N , i.e., a few (tens of) millitesla for typical GaAs QDs of ∼104–106 nuclear spins [84–86]. These

internal fluctuations lead to dephasing and reduce the electron spin coherence time in GaAs dots to a

few nanoseconds only [81–86]. The associated decay of the transverse spin is Gaussian and the decay

time scales ∝
√
N/
(
A
√

1− p2
)

when I = 1/2 and homogeneous coupling are assumed for simplicity [81].

One possibility for prolonging the lifetimes, apart from increasing the dot size, is therefore to polarize the

nuclear spins [31, 81, 84, 85], which is discussed in more detail in Sec. 1.3.2.3. However, referring to the

factor
√

1− p2 obtained for I = 1/2, |p| > 0.99 is required to reduce the decoherence by a factor of ten.

A second, attractive approach that has been theoretically proposed [81] for lifetime prolongation is

to narrow the intrinsic distribution for |p| < 1. When the nuclear spin bath is initially in a less noisy,

narrowed state, the electron spin decoherence induced by the finite width of possible Bzn is suppressed.

In particular, this dephasing mechanism is overcome when the system is initially in an eigenstate to a

field Bzn. In this case, the decoherence time is no longer ∝
√
N , but ∝ N , so that the coherence times can

be increased by several orders of magnitude [81–85, 87, 88]. The decay dynamics clearly differ from the

Gaussian behavior that results from internal dephasing. In fact, an entire zoo of decoherence laws has been

found, with a time decay that can proceed through several different stages (see Fig. 1.2) [89]. The reason

for this feature is a rather long bath correlation time of order ~N/A [82–85]. The dynamics of the isolated

electron spin interacting with the nuclear bath are therefore history-dependent (non-Markovian), and a

Markov approximation, for which the longitudinal and transverse spin components decay exponentially,

is typically invalid. On timescales < 0.1 ms, where the dipolar coupling among nuclear spins can be

ignored, this non-Markovian decay has been analyzed in great detail, and we list a few key results below.

Assuming that the externally induced Zeeman splitting is large, such that |gµBBz| > A for I of order

unity, i.e., |Bz| & 3.5 T for GaAs, direct electron spin flips are energetically forbidden, which gives rise

to pure dephasing of the electron spin [87]. Under these conditions (perturbative approach possible),

the various stages that the transverse electron spin dynamics pass through have been calculated with
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Figure 1.2. Schematic decay of |〈σ+〉| (t) for a quantum dot electron with large Zeeman splitting, assuming that the nuclear

spin bath has been prepared in a narrowed state and that echo pulses are absent. The sketch illustrates the variety of decay

laws that the system proceeds through. We note that the initial quadratic decay occurs on an ultrashort timescale, while

an additional quadratic shoulder appears at the transition from the power law to the exponential loss of coherence. Details

can be found in Refs. [81–83, 87–89]. (Inset) Decoherence corresponds to the decay of quantum mechanical superpositions

due to interaction with the environment. For the prominent example of an electron spin qubit with eigenstates |↑〉, |↓〉,
decoherence refers to transitions of type “|↑〉 and |↓〉” → “either |↑〉 or |↓〉” and can be quantified by the time decay of the

transverse spin |〈σ+〉| (t) as described in Sec. 1.2. The picture was taken from Ref. [89] and is property of Science Magazine

(http://www.sciencemag.org).

one unified and systematic method based on expansion of a generalized master equation [81–83, 87, 88].

These stages include an ultrashort quadratic decay and an initial (partial) power-law decay, followed by a

quadratic shoulder, a dominant exponential decay, and a long-time power-law decay. However, the exact

behavior depends on various parameters, such as the QD dimensionality [83, 87]. The Markovian regime,

which gives rise to the exponential decay, is reached for sufficiently large Bz, and analytic expressions

for the decoherence time T2 ∝ NB2
z have been found [82, 87, 88, 90]. This analysis was also of interest

from a technical point of view, because it verified that calculations based on high-order expansions of

a leading-order effective Hamiltonian can have limited validity. In particular, a notable modulation of

the decay envelope found at long times cannot be obtained with an effective Hamiltonian (see Ref. [87]

and references therein). Observing these additional oscillations experimentally would be a desirable

confirmation of the theory. At low magnetic fields, an expansion of the generalized master equation is

not possible, and the spin dynamics still are not understood in detail. A list of available approaches

allowing for some insight into the low-field regime can be found in Refs. [83, 91]. For instance, the

system is exactly solvable in the special case when the nuclear spin bath is initially fully aligned [84, 85].

Independently of Bz, it turns out that both 〈σz〉(t) and |〈σ+〉| (t) first perform small oscillations owing to

coherent exchange with the nuclear spin bath. After the bath correlation time of order ~N/A, electron

spin coherence is irreversibly lost and the spin components converge to constant values, slightly below

the initial values only, where the system remains until dipole-dipole interactions among the nuclear spins

become relevant [84, 85]. For Bz = 0, assuming a Gaussian envelope wave function, this asymptotic time

decay evolves according to ln−3/2(t′) and ln−1(t′) for 3D and 2D QDs, respectively, where t′ ∝ tA/N . At

large Bz, this decay is ∝ (t′)−3/2 and ∝ (t′)−1 in 3D and 2D dots, respectively, in agreement with the

systematic solutions of the generalized master equation [81, 84, 85].
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1.3.2.2 Hole Spin Decoherence

The spin dynamics have also been investigated for HHs in quasi-2D QDs [82, 92–94]. Assuming the

strong confinement along the z axis, we recall that the states can be classified according to their angular

momenta (effective spins) |J,mJ〉, where J quantifies the size and mJ ∈ {−J,−J + 1, ..., J} is the z-

projection in units of ~. This results from the strong SOI in the valence band, coupling the electron spin

to the p-type Bloch functions. HHs have |3/2,±3/2〉, whereas light-hole (LH) states have |3/2,±1/2〉, and

the two bands are energetically well separated in 2D-like QDs. Even though the contact hyperfine term

is absent, the remaining mechanisms, i.e., anisotropic hyperfine interaction and coupling to the orbital

angular momentum, turn out to be rather strong – in typical III-V compounds, they are only one order

of magnitude weaker than the contact hyperfine interaction for electrons [92, 95–98]. Remarkably, the

coupling of the HH to the nuclear spin bath takes on a simple Ising form in leading order,
∑
k A

h
kI
z
ksz,

where Ahk is the coupling to the kth nucleus, Izk denotes the z component of the kth nuclear spin in units

of ~, and sz is the HH pseudospin operator with eigenvalues sz = ±1/2 for mJ = ±3/2 [92, 94]. This

clearly differs from the Heisenberg-type contact hyperfine interaction
∑
k AkIk · σ/2 [Eq. (1.4)] because

transverse components are basically absent in the case of holes.

As for electrons, one can distinguish between different initial configurations. In the case of an un-

prepared, inhomogeneously broadened nuclear spin bath, the transverse hole spin decay depends on the

orientation of the external magnetic field B. For zero field or B ‖ z, dephasing results in a Gaussian time

decay, as for electrons, with timescales of typically a few tens of nanoseconds [92]. However, due to the

Ising-type rather than Heisenberg-type HH-nuclear-spin interaction, the situation changes drastically for

an in-plane magnetic field B ‖ x. Because the hyperfine fluctuations are now purely perpendicular to the

applied field, the decay is no longer Gaussian and one finds instead that the transverse hole spin decays

∝
√

~EZ,x/(〈E2
n,z〉t) at long times in the limit E2

Z,x � 〈E2
n,z〉, where EZ,x = |gxµBB| is the externally

induced Zeeman splitting, gx is the in-plane HH g factor, and 〈E2
n,z〉 is the variance of the nuclear field∑

k A
h
kI
z
k [82, 92]. For typical GaAs QDs and magnetic fields of a few Tesla, the associated decay times

are long, around tens of microseconds [92]. Only a few months after these calculations were published,

an experiment on self-assembled InGaAs QDs with B ‖ x confirmed that HH spins in 2D-like QDs are

highly coherent, with T ∗2 > 0.1 µs (T ∗2 > 1 µs with ∼40% probability) reported for the setup under study

[75, 99].

For applications that require large Zeeman splittings, an in-plane magnetic field may be inconvenient

because gx is usually much smaller than the HH g factor gz along the axis of strong confinement. Long

coherence times for B ‖ z can be achieved as well, namely by preparing the nuclear spin bath in a

narrowed state [93, 94]. When the nuclear spins are initially in an eigenstate of
∑
k A

h
kI
z
k , with B ‖ z,

decoherence can only result from additional transverse terms in the HH-nuclear-spin coupling which then

allow for flip-flop processes. These additional terms mainly arise from coupling to neighboring bands,

i.e., the conduction band, LH band, and split-off band, and are about one to two orders of magnitude

weaker than the dominant Ising term [93, 94]. It turns out that the time decay of the transverse spin due

to band hybridization is purely exponential and that the decoherence time T2 can be tuned over several

orders of magnitude via the applied magnetic field. In fact, decoherence due to nuclear spins can be so

strongly suppressed that other mechanisms, such as the dipole-dipole interaction or the coupling to the

phonon bath, may take over as the dominant sources of transverse spin decay [93, 94]. Calculations on

self-assembled QDs showed that the Ising-like form of the hyperfine coupling is preserved for realistic

strain distributions [94]. The strain considerably affects the hyperfine-induced hole spin decoherence,

largely through coupling to the conduction band, allowing tuning of T2 by an order of magnitude for

fixed Zeeman splittings [94].
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1.3.2.3 Distribution Narrowing and Dynamic Nuclear Polarization

As summarized above, the electron and hole spin decoherence induced by nuclear spins can be strongly

suppressed when the nuclear spin bath is initialized in a narrowed state. Moreover, the effective nuclear

magnetic field, up to ∼±5 T for electrons in GaAs QDs, allows the realization of large magnetic field

gradients among neighboring QDs [100] and tuning the resonance energies in optically active QDs over

several tens of microelectronvolts [101–104]. Therefore, nuclear spins are more and more considered a

source of opportunity rather than trouble, leading to enormous experimental efforts in this field. Dynamic

nuclear polarization (DNP) schemes are usually based on the isotropic contact hyperfine interaction

among electron spin and nuclear spins. As illustrated in Sec. 1.3.2.1, Eq. (1.4), the transverse components

of the Overhauser field allow the polarization of the nuclei via electron-nuclear-spin flip-flop processes,

building up a large nuclear field
∑
k AkI

z
k with maximum Overhauser shift |g|µBBmax

n = AI. An example

for DNP via the hole spin can be found in Ref. [105].

DNP has been achieved experimentally by multiple forms of optical [101–112], electrical [100, 113–117],

and magnetic [118, 119] driving, although it is impossible to completely list the large variety of approaches.

Polarizations 50% < |p| < 70% have been reported so far [106–108]; however, achieving |p| > 90% remains

a very challenging task. Interestingly, many DNP schemes feature an intrinsic feedback mechanism that

drives the system toward fixed, stable nuclear field values, so that the width of the nuclear field distribution

is narrowed at the same time [103–105, 118, 119]. Similar effects have been demonstrated using pulsed

optical excitation on an ensemble of QDs [120, 121], and it has been shown that efficient feedback loops

may also be included intentionally [113]. Further promising approaches for the preparation of narrowed

states are based on indirect measurement [122–125].

We note that all decay properties described earlier in this section correspond to the free-induction

decay, i.e., the case where the system evolves in the absence of externally applied control sequences.

The dephasing due to inhomogeneous broadening can be undone to a large extent by applying spin-echo

pulses, which notably increases the spin coherence times [126–132]. In parallel, an alternative trend is to

bypass the interaction with nuclear spins completely by switching to host materials such as Ge and Si,

which can be grown nuclear-spin-free. Examples for both approaches are discussed in the next section,

where we review recent progress toward quantum computation with spins in QDs. Finally, we note that

an alternative route to reduce the nuclear spin noise (besides narrowing and DNP) would be to polarize

the nuclear spins by freezing them out, either by applying a sufficiently strong magnetic field on the order

of 15 T at a few millikelvin [133] or by inducing an ordering transition of the nuclear spin system due

to Ruderman-Kittel-Kasuya-Yosida (RKKY) interactions. The latter phenomenon has attracted a lot of

interest in recent years, and we refer the interested reader to the literature [134–137].

1.4 Recent Progress in Quantum Dot Systems

Since the first proposals in the 1990s, researchers worldwide have been working hard toward the ambitious

goal of implementing a quantum computer. In QDs, seminal progress has been made within the past few

years. In this section, we summarize and discuss some of the key results, where we distinguish between

self-assembled, lateral, and nanowire-based QDs. Table 1.1 in Sec. 1.4.4 summarizes relevant information,

such as the measured lifetimes, and compares T2 to reported operation times as commented below.

Quantum systems are sensitive, and errors inevitably occur in any realistic device. Therefore, schemes

for fault-tolerant quantum computing have been developed, where errors can automatically be corrected

as long as they occur with low enough probability. The latter condition can usually be quantified in

terms of a threshold rate [138–140]. For instance, standard error correction schemes require that at least

∼104 gate operations can be carried out within the decoherence time of a qubit [138–143]. A few years

ago, a novel scheme derived from the toric code [144] was presented, referred to as the planar code or
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surface code [145–149]. The logical qubits are encoded within several physical qubits each, all of which are

arranged in a 2D lattice with nearest neighbor interactions. Logical single- and two-qubit gates are then

performed via a series of projective measurements. This code is probably the most powerful quantum

computing scheme presently known, with a remarkably large error threshold around 1% [145–149], so

that ∼102 operations per decoherence time may already be sufficient. When errors for readout become

negligible, error correction in the surface code is even possible up to a threshold rate of currently 18.5%

[150]. The viability of topological error correction has recently been demonstrated in a first proof-of-

principle experiment [151]. For further information on fault-tolerant quantum computation with the

surface code we refer to Refs. [145–151]. A general overview on fault-tolerance is provided in Ref. [149].

1.4.1 Self-Assembled Quantum Dots

As opposed to gate-defined QDs, the confinement in self-assembled dots purely arises from the conduction

and valence band offsets of the involved materials, leading to strong confinement on a very small scale

in all three dimensions. Therefore, self-assembled QDs are typically operational at 4 K, the boiling

temperature of 4He. Moreover, they are optically active and feature strong interband transitions with

almost hard selection rules [30, 75, 102]. Exploiting this property, self-assembled QDs are primarily

studied using optical means, and heterostructures have been designed that allow precise control over the

charge states [152, 153].

For a qubit with basis |1〉 and |0〉, the general qubit state can be written as |ψ〉 = cos(θ/2) |1〉 +

eiφ sin(θ/2) |0〉, neglecting global phases, where 0 ≤ θ ≤ π and 0 ≤ φ < 2π correspond to the polar and

azimuthal angles, respectively, of a point on the Bloch sphere. Prerequisites for the implementation of

a quantum computer are the abilities to initialize, to control, and to read out such a qubit state. All of

this has been achieved now. First, the spins of both electrons [154] and holes [74, 155] can be initialized

with ≥ 99% fidelity. Second, ultrashort optical pulses, combined with an externally induced Zeeman

splitting, have allowed for complete quantum control, i.e., arbitrary rotations on the Bloch sphere, with

operation times on the order of only a few picoseconds. Again, this has successfully been demonstrated

on both single electrons [129, 156, 157] and single holes [158–160]. Recently, initialization and coherent

control have also been reported for two-particle qubits defined by the spin singlet and triplet states of

electrons [161] and holes [159] in vertically stacked QDs. The latter, also referred to as QD molecules,

form naturally during growth when a second layer of QDs is grown on top of a first layer. Even though

the position of the dots in the first layer is arbitrary, the QDs in the second layer will form right on

top of the first ones due to strain in the tunnel barrier grown in between. Finally, several methods have

been developed to read out the spin states. These include time-averaged readout via Faraday rotations

[162], Kerr rotations [163], and resonance fluorescence [164]. In addition, time-resolved Kerr rotation

spectroscopy has been reported [156, 165], and it has been shown that QD molecules allow measurement

of the spin state of a single electron in real time via the resonance fluorescence [166]. In the latter

case, the presence of a second dot enables the use of different optical transitions (laser energies) for the

initialization and readout steps [166, 167].

Dephasing and decoherence times have been measured. For single-electron spin qubits, dephasing

results in T ∗2 ' 1–10 ns [120, 129, 156, 163, 165, 168] depending on the exact system, whereas the

observed decoherence times are T2 ' 3 µs [120, 129]. However, it has been verified already that T ∗2 can

be significantly prolonged by narrowing the distribution of the nuclear field [105, 120, 121]. For single

holes, the reported T ∗2 = 2–21 ns [158–160] and T2 = 1.1 µs [158] are similar to those for electrons, hence

shorter than initially expected, which is attributed to electrical noise [158, 159, 169]. Measurements

based on coherent population trapping, i.e., in the frequency domain as opposed to the time domain,

have revealed a much longer hole-spin dephasing time of > 0.1 µs [75, 99]. Electrical noise is also the

reason for the short T ∗2 = 0.4–0.7 ns [161] and T ∗2 ≤ 0.6 ns [159] observed for singlet-triplet qubits from
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electrons and holes, respectively. When the QD molecule is operated in a regime where the singlet-triplet

splitting is less sensitive to fluctuating electric fields, T ∗2 can be increased by several orders of magnitude,

and dephasing times up to 200 ns have recently been measured for coupled electrons [170]. Importantly,

comparing the listed T2 to the notably short operation times of a few (tens of) picoseconds illustrates that

the threshold factor of ∼104 for standard quantum error correction schemes has already been exceeded

in both electron and hole systems. For reported spin relaxation times T1, see Table 1.1.

The optical properties make self-assembled QDs highly promising candidates for applications as single-

photon sources, and designs for enhanced extraction efficiencies are being developed [171]. Moreover, they

may present an interface between stationary and flying qubits. Recently, interference of single photons

from two separate QDs was demonstrated [172, 173], which is a promising approach for generating

entanglement and implementing two-qubit gates between distant spins. Because different QDs, unlike

atoms, have different resonance energies, implementing such a two-qubit gate requires that the level

structure of a dot be tunable so that the photon energies can be made to match. Such fine tuning may

be achieved via strain [172, 174], via the Stark effect [173, 175], or by polarizing the nuclear spins up to a

desired (Overhauser) nuclear magnetic field. DNP in single self-assembled QDs has been studied in detail

[101–112]. For instance, schemes exist both for high [103] and low [104] external magnetic fields that

allow for continuous, bidirectional tuning of the Overhauser field, fully controlled by the laser wavelength.

Both schemes are also capable of narrowing the width of the nuclear field distribution [103, 104].

As an alternative to the widely studied III-V compounds, self-assembled QDs can also be grown from

group IV materials. A prominent example is self-assembled Ge QDs on Si substrates. Due to the indirect

band gap of Ge and Si, these dots are not as optically active as typical III-V QDs [176]. Self-assembled

Ge/Si QDs are subject to great experimental efforts, and detailed knowledge about growth and their

electrical and optical properties has been gained [176–178].

1.4.2 Lateral Quantum Dots

Substantial progress has been made on implementing gate-controlled qubits within the 2DEG of a het-

erostructure. Experiments have predominantly been carried out on GaAs QDs within AlGaAs/GaAs

heterostructures, which should be considered the host material in the following discussion unless stated

otherwise. Mainly, two different approaches for encoding the qubit have emerged. The first scheme

follows the original proposal [13], using the spin eigenstates |↑〉 and |↓〉 of single electrons. The second

scheme uses the singlet |S〉 = (|↑↓〉 − |↓↑〉) /
√

2 and triplet |T0〉 = (|↑↓〉+ |↓↑〉) /
√

2 states of two electron

spins, forming an S-T0 qubit [179–181]. We summarize below the results for both approaches. S-T+

qubits [182] and qubits from three-spin states [183–186] are currently under investigation.

1.4.2.1 Single-Spin Qubits

The two eigenstates of a single electron in a QD, |↑〉 and |↓〉, are split by an effective Zeeman energy

via coupling to external and internal (Overhauser) magnetic fields. This energy difference gives rise

to coherent single-qubit rotations (|↑〉+ |↓〉) /
√

2 ↔ (|↑〉 − |↓〉) /
√

2. Rotations about the second axis

of the Bloch sphere, |↑〉 ↔ |↓〉, can be driven by means of E(D)SR, which we introduced in Sec. 1.3.

Finally, two-qubit gates such as
√

SWAP and SWAP gates can be implemented by controlling the overlap

of the wave functions and, hence, the exchange energy for neighboring electrons. Thirteen years after

publication of the original proposal [13], the elementary unit of an all-electrical spin-qubit processor has

now been implemented for the first time, demonstrating independently controllable single-spin rotations

combined with interdot spin exchange in a DQD [187]. An important part of the setup in Ref. [187] is a

micromagnet at the sample surface, whose stray field provides a time-independent magnetic field gradient

at the QDs. This gradient is useful for two reasons. First, it allows for efficient and electrically driven

ESR; an oscillating electric field slightly shifts the position of the electron in the QD, so that the electron
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effectively feels an oscillating magnetic field of the same frequency without the need for SOI [187, 188].

Second, it leads to shifted resonance frequencies in adjacent QDs via a difference in the Zeeman energies,

so that neighboring qubits can be addressed individually [116, 117, 187–189].

When quantum information is processed with the spin states of single electrons in QDs, qubit states can

be read out via so-called spin-to-charge conversion as originally proposed in Ref. [13]. In this scheme, the

system is electrically tuned to a regime where the electron of interest, depending on its energy and, thus,

its spin state, does or does not tunnel into, e.g., a neighboring ancilla dot or a reservoir. The presence or

absence of an electron can be detected with a nearby quantum point contact (QPC), whose conductance

de-/increases due to the electric field provided by the electron charge [190, 191]. Single-shot readout of

individual spins via spin-to-charge conversion has successfully been demonstrated experimentally, and

furthermore this approach also allows for efficient qubit initialization when the QD is tunnel-coupled to

a reservoir [52, 192, 193].

Performance of the implemented spin-qubit processor [187] was tested via a time-averaged readout

scheme, using a QPC to measure the average charge configuration when the system is tuned to the Pauli

spin blockade regime (see also S-T0 qubits, Sec. 1.4.2.2). A fully operational unit for quantum computa-

tion requires precise initialization and single-shot readout of the individual qubit states, which therefore

still needs to be included. Latest developments are promising [52, 189, 192–194], and an independent

single-shot measurement of two electron spins in a DQD, with fidelities close to 90%, has recently been

reported [193]. In the experiments described in Ref. [193], a time around 1 ms was required for spin read-

out and initialization to |↑〉, slightly shorter than the measured spin relaxation time of ∼4–5 ms. The

latter strongly depends on the regime of operation, i.e., the applied gate voltages, and can take values

T1 > 1 s [70]. The decoherence times T2 can be assumed to be much longer than a microsecond. For a

single echo pulse and a magnetic field of 70 mT only, a decay time near 1 µs has been measured, and

clearly longer coherence times can be expected at higher magnetic fields and more sophisticated pulse

sequences [127].

Comparing T2 to the typical operation times, we find that the threshold rates of proposed (standard)

error correction protocols have already come within reach, as summarized below. Two-qubit gates are fast.

For instance, SWAP operations |↑↓〉 → |↓↑〉 require a time of order h/(2J), where h is Planck’s constant

and J is the exchange energy. They are routinely carried out within . 10 ns [187, 195], and SWAP times

< 0.5 ns have been demonstrated [126]. Furthermore, single-qubit rotations induced by the Zeeman

splitting typically occur on a subnanosecond timescale. Using the bulk g factor −0.44 for GaAs and

Bz = 1 T (often chosen in-plane to avoid orbital effects) as the magnetic field that defines the quantization

axis, the π-rotation (|↑〉+ |↓〉) /
√

2→ (|↑〉 − |↓〉) /
√

2 requires a time of order h/ |2gµBBz| ' 0.1 ns. The

efficiency of the universal set of qubit gates is therefore limited by the operation time ∼h/ |gµBB⊥|
for coherently driven spin flips |↑〉 → |↓〉, where B⊥ is the amplitude of the oscillating magnetic field

perpendicular to Bz (see also Sec. 1.3.1.1). Recently reported spin-flip times are on the order of several

tens of nanoseconds, for both magnetically [80, 127, 196] and electrically [188, 197] driven rotations,

corresponding to B⊥ ≈ 1–10 mT. The efficiency of electrically controlled rotations may, among other

things, be improved by increasing the magnetic field gradient [188] or even, in a brute-force approach,

by switching to host materials with stronger SOI [197] and larger g factors. Alternatively, coherent

single-spin rotations about an arbitrary axis may be implemented using an auxiliary spin in a nearby

QD with a different Zeeman field, which enables a purely exchange-based control without the need for

SOI or oscillating fields [13, 198]. Such exchange-controlled single-qubit gates have not yet been realized

experimentally; theoretical results, however, are promising and point toward high fidelities, with gating

times of ∼1 ns [198].
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1.4.2.2 Two-Spin Qubits (S-T0)

In the S-T0 approach, every qubit is formed by two electrons in two adjacent QDs, where the charge

configuration and the overlap of the electron wave functions depend on the shape of the confining potential,

which in turn is determined by the applied gate voltages. Within the frame of this review it is sufficient

to distinguish the two charge configurations (1,1) and (0,2), which denotes that the electrons are found

either in different dots or both in the right QD, respectively. Coherent rotations |S〉 ↔ |T0〉 are induced by

a magnetic field gradient between the two QDs, typically achieved by dynamic polarization of the nuclear

spins [100, 113, 115] or by a nearby positioned micromagnet [116, 117, 187–189]. When the barrier is

reduced such that the wave functions strongly overlap, the finite exchange energy gives rise to coherent

rotations |↑↓〉 ↔ |↓↑〉, i.e., (|T0〉+ |S〉) /
√

2 ↔ (|T0〉 − |S〉) /
√

2, thus allowing for arbitrary rotations on

the Bloch sphere [100]. These single-qubit operations can be carried out within a few nanoseconds only,

and even subnanosecond operation times have been achieved already (see Table 1.1) [100, 126]. Two-qubit

gates may be implemented by capacitive coupling, where the charge configuration in one DQD affects

the exchange energy and, hence, the precession frequency in the other DQD [181, 195, 199]. Charge-

conditional phase flips of an S-T0 qubit have recently been demonstrated in four-dot systems [195, 199],

and it was verified experimentally that the resulting CPHASE gate between two S-T0 qubits is entangling

[199]. Alternatively, as proposed theoretically in Ref. [200], CNOT gates may be implemented using the

exchange interaction between adjacent QDs as the only time-dependent control parameter. The proposal

shows that SOI and local magnetic field gradients allow for perfect CNOT operations, which are fast (a

few nanoseconds) and, moreover, protected against charge noise.

For initialization, the potential energy in one of the dots is reduced such that both electrons tend to

occupy the ground state of the same QD. This sets the qubit in the singlet state because the symmetric

orbital part of the two-electron wave function requires an antisymmetric contribution of the spin. After

operation in the (1,1) regime, the same idea also allows for a spin-to-charge conversion and therefore

presents a popular basis for readout schemes. Having reduced the potential energy in one QD, the system

changes to (0,2) for |S〉, but remains in (1,1) for |T0〉 due to Pauli exclusion. As described in Sec. 1.4.2.1,

these charge states can be observed via nearby QPCs [126, 190, 191], which may furthermore be embedded

in radio-frequency (rf) impedance matching circuits to allow for faster readout [125, 201, 202]. However,

the quality of the outcome (readout visibility, see also Sec. 1.4.4) strongly depends on the triplet relaxation

time at the measurement point, which may be clearly reduced in the presence of large magnetic field

gradients [115], and implementing schemes for fast and reliable single-shot readout therefore remains an

important task. Recently, single-shot measurements with measurement times down to 100 ns have been

reported, using an rf sensor QD that is much more sensitive than standard QPCs [194]. As an alternative

approach, dispersive readout of spin singlet and triplet states has been demonstrated with an rf resonant

circuit coupled to a DQD [203]. Also, readout via spin-dependent tunnel rates has been achieved for the

singlet and triplet states in a single QD [52, 204, 205].

Even though the random distribution of the nuclear spins leads to rapid dephasing within ∼10 ns

[113, 126, 206], two-electron spin states feature very long coherence times. A single echo pulse increases

the dephasing time to a few microseconds [126, 130–132], and more sophisticated pulse sequences have

demonstrated coherence times on the order of 100 µs [130–132], where 276 µs currently corresponds to

the largest value reported so far [131]. Assuming that the two-qubit gates can be operated on a similar

timescale (nanoseconds) as the single-qubit gates, the threshold value of ∼104 operations per decoherence

time is reached. As summarized above (Sec. 1.4.2.1), this similarly holds for the approach where qubits

are formed by the spin states of single electrons.
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1.4.2.3 Dynamic Nuclear Polarization and Alternative Host Materials

For both qubit encoding schemes, control over the nuclear spin bath is of great benefit. Various methods

for DNP have been developed and demonstrated [100, 113–119], all of which may be used to generate large

magnetic field gradients between neighboring QDs. Such gradients can be measured quantitatively via

the cycle duration of oscillations |S〉 ↔ |T0〉 [100, 113, 115], and differences > 200 mT in the Overhauser

field have been induced and subsequently exploited for coherent rotations on the Bloch sphere [100]. In

addition, schemes exist to reduce the width of the nuclear field distribution [113, 118, 119], allowing for

substantial prolongation of the dephasing times [113].

Besides GaAs QDs, other promising host materials are under investigation. In particular, rapid progress

has been made on Si QDs within Si/SiGe heterostructures [207–212]. For instance, slow electron spin

relaxation T1 > 1 s has recently been observed in this material via single-shot readout [210]. Also,

single-shot measurements have allowed the extraction of relaxation times T1 ∼ 10 ms for S-T0 qubits

operated near the (1,1)-(0,2) charge state transition [211]. Moreover, a hyperfine-induced dephasing time

T ∗2 = 360 ns has been deduced from ensemble-averaged measurements on an S-T0 qubit [212], which is

nearly two orders of magnitude longer than the dephasing times measured in GaAs.

As opposed to self-assembled QDs, gate-defined systems cannot confine electrons and holes at the same

time and are therefore optically inactive [30]. Currently, experiments are almost exclusively carried out

on gated 2DEGs, and new experimental challenges may be encountered when 2DHGs are used instead

[213]. However, considering the long lifetimes predicted for HHs in QDs [40, 92, 93] and the fact that

strong magnetic field gradients may be induced via micromagnets [116, 117, 187–189], we think that hole

spins can present a valuable alternative to electron spins.

1.4.3 Quantum Dots in Nanowires

Semiconducting nanowires attracted a lot of interest as promising platforms for Majorana fermions [214–

216], field effect transistors [217], programmable circuits [218], single-photon sources [219], lasers [220,

221], and others. QDs therein form when the confinement in the transverse directions, provided by the

wire geometry, is supplemented with an additional confinement in the longitudinal direction, which can

be achieved both via electric gates and via structured growth of materials with suitable band offsets.

In the first case, coupling between neighboring QDs is easily controllable via the gate voltages, while

the second case is highly attractive for optical processes because electrons and holes can be stored at

the same time (see also self-assembled QDs). Nanowires are thus versatile and may present a valuable

link between stationary and flying qubits. For instance, similar to self-assembled QDs [30, 75, 102, 153],

voltage-controlled charging and spin-dependent selection rules have been demonstrated on optically active

InAsP QDs embedded in InP wires [222–224].

Nanowires have been grown from a variety of materials, all of which feature different properties and

advantages. A prominent host material is InAs, which is known for its strong SOI and large g factors.

Experiments on electrons in InAs nanowire QDs revealed a spin-orbit length lSO ' 130 nm, i.e., a spin-

orbit energy ESO ' 100 µeV [78], along with g factors |g| ' 7–10 [57–59, 78]. These features allow for

fast spin rotations via EDSR [57–59], and spin-flip times < 10 ns have already been demonstrated on

single-spin qubits [57, 59]. However, the coherence time observed in Ref. [57] turned out to be rather

short, only 50 ns for a single echo pulse and < 200 ns for several pulses, which is considered to be

attributable to the large nuclear spin 9/2 of In. The relaxation times in this experiment clearly exceeded

the measurement range, i.e., the microsecond timescale [57], consistent with the theoretically predicted T1

of several microseconds to milliseconds [225]. Experiments with singlet-triplet states in an InAs nanowire

DQD in the multi-electron regime showed that spin relaxation may be suppressed via tuning of the

interdot coupling [226]. Besides InAs, InSb has also recently attracted a lot of attention, where EDSR
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Figure 1.3. Calculated low-energy properties of hole states in Ge/Si core/shell nanowires, following Ref. [233]. (a) Holes

accumulate in the Ge core of radius R, surrounded by a Si shell of thickness Rs − R leading to static strain. When the

nanowire is supplemented with confinement along the wire axis z, a quantum dot of radius R and (effective) length L

forms. (b) Energy gap between the two lowest Kramers doublets in a longitudinal Ge quantum dot of R = 5 nm and

different lengths L as a function of relative shell thickness γ = (Rs − R)/R. The Si shell allows changing of the level

splitting by several millielectronvolts, which is particularly useful for implementing spin qubits. (c, top) Hole spectrum

as a function of longitudinal wave number kz for a typical Ge/Si wire of R = 5 nm and Rs = 7 nm in the presence of

an electric field Ex = 10 V/µm and a magnetic field Bx = 1.8 T along x (see panel a), illustrating strong spin-orbit

interaction and sensitivity to magnetic fields, which are prerequisites for efficient qubit manipulation. The spin-orbit energy

ESO > 1.5 meV, resulting from direct, dipolar coupling to Ex, is more than 15 times greater than the reported value for

InAs [78]. At kz = 0, Bx opens a Zeeman gap of 0.5 meV, corresponding to |g| ∼ 5. (c, bottom) Expectation value of

the effective hole spin components Jx, Jy , and Jz for the ground state plotted above. When the Fermi level is set within

the gap at kz = 0, the wire transports opposite spins in opposite directions, the characterisitic feature of a helical mode.

Therefore, Ge/Si nanowires also provide a promising basis for spin filters and Majorana fermions [214–216, 229, 233].

spectroscopy on the two-electron states of a gate-defined nanowire DQD revealed lSO ' 200–300 nm and

very large g factors |g| & 30 [60].

A promising alternative to the III-V compounds are Ge/Si core/shell nanowires, which can be grown

nuclear-spin-free. The valence band offset at the Ge/Si interface is large, ∼0.5 eV, so that holes accumu-

late naturally in the Ge core without the need for dopants [227, 228]. High mobilities [217] and long mean

free paths [227] have been observed, along with a highly coherent charge transport seen through proximity-

induced superconductivity [229]. Progress has also been made on gate-controlled Ge/Si nanowire QDs,

even though the single-hole regime has not quite been reached yet [230–232]. Experiments on such a DQD

have recently revealed spin relaxation times near 1 ms [232]. Furthermore, as illustrated in Fig. 1.3b, the

relative thickness of the Si shell allows for varying the QD level splitting by several millielectronvolts via

the static strain [233]. Remarkably, Ge/Si nanowires were also found to feature strong SOI: theoretical

studies of the low-energy hole states showed that direct, dipolar coupling to an electric field gives rise to

a SOI of Rashba type (“direct Rashba spin-orbit interaction”) which exceeds the standard Rashba SOI

by one to two orders of magnitude [233]. Figure 1.3c (top) plots the ground-state spectrum for a typical

nanowire of 5 nm core radius and 2 nm shell thickness in a moderate electric field of 10 V/µm perpen-

dicular to the wire. The corresponding spin-orbit energy is ESO > 1.5 meV, more than 15 times greater

than the reported value for InAs [78]. The additional magnetic field in Fig. 1.3c (top) along the electric

field axis opens a gap in the spectrum (|g| ' 5 at kz = 0), illustrating sensitivity to magnetic fields, a

prerequisite for efficient qubit manipulation. The hole g factors in Ge/Si nanowire QDs are tunable via

both the confinement and the magnetic field orientation [231, 233]. All these properties should allow for

electrically controlled qubits with long lifetimes and short operation times. Furthermore, Ge/Si nanowires

present an outstanding platform for helical hole states and Majorana fermions [214–216, 229, 233]. Fi-

nally, we mention that helical states [37, 234] and Majorana fermions [235] can alternatively be realized
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in armchair carbon nanotubes without the need for a magnetic field, allowing for purely electrical setups.

The required field, on the order of 1 V/nm [37, 234, 235], is stronger than in the case of Ge/Si wires, but

still below experimentally achievable limits.

1.4.4 Overview

Table 1.1 summarizes important information about the systems covered in this section, such as the longest

measured lifetimes and shortest reported operation times. We would like to point out that, even though

we studied the literature carefully, the provided summary is not intended to be complete, as further

improvements might already have been achieved that we were not aware of when completing this review.

The table also lists established initialization and readout schemes for each system, along with a ratio of

the observed decoherence and gating times. The latter illustrates that decoherence no longer presents a

massive stumbling block.

Typical values for characterizing readout schemes are the measurement fidelities F and the visibilities

V . We note that these are not exactly equivalent. When e0→1 denotes the error probability that the qubit

state |0〉 is incorrectly read as |1〉, the measurement fidelity for state |0〉 is F0 = 1− e0→1 [125, 192, 204].

Analogously, the measurement fidelity for the qubit state |1〉 is F1 = 1 − e1→0. One may define the

readout fidelity for a particular experiment as F = p0F0 + p1F1 = 1− p0e0→1 − p1e1→0, where p0 (p1) is

the probability that the system is initially in |0〉 (|1〉) [166]. Weighting |0〉 and |1〉 equally, this results in

F = 1−(e0→1 +e1→0)/2 [52, 205]. A more general quantity is the visibility V = 1−e0→1−e1→0, which is

independent of p0 and p1 and presents a lower bound for the readout fidelity in a system [52, 125, 192, 204].

We note that readout may also be characterized by the measurement efficiency defined in Ref. [236], where

various readout schemes have been analyzed theoretically.

Description of Table 1.1:

For each of the systems discussed in the text, the table summarizes the longest lifetimes, the shortest oper-

ation times, the highest readout fidelities (visibilities), and the highest initialization fidelities reported so far

in experiments. Information on established schemes for readout and initialization is provided, along with a

rating on scalability. All single-qubit operation times correspond to rotations of π (about the z and x axis,

respectively) on the Bloch sphere. For a qubit with eigenstates |0〉 and |1〉, τZ refers to operations of type

(|0〉+ |1〉) /
√

2 → (|0〉 − |1〉) /
√

2, whereas τX refers to rotations of type |0〉 → |1〉. Two-qubit gates are charac-

terized by the SWAP time τSW, describing operations of type |01〉 → |10〉. The ratio T2/τop, where τop is the

longest of the three operation times, gives an estimate for the number of qubit gates the system can be passed

through before coherence is lost. Referring to standard error correction schemes, this value should exceed ∼104

for fault-tolerant quantum computation to be implementable. Using the surface code, values above ∼102 may

already be sufficient. Experiments on self-assembled QDs have predominantly been carried out in (In)GaAs.

Unless stated otherwise, GaAs has been the host material for gate-defined QDs in two-dimensional electron gases

(2DEGs). The results listed for nanowire QDs have been achieved in InAs (electrons) and Ge/Si core/shell (holes)

nanowires. We note that the experimental conditions, such as externally applied magnetic fields, clearly differ for

some of the listed values and schemes. Finally, we wish to emphasize that further improvements might already

have been achieved that we were not aware of when writing this review.

1.5 Proposals for Long-Distance Spin-Spin Coupling

Recently, pairwise control of the exchange interaction via electric gates has been demonstrated in a

triple quantum dot [185, 186]. Such control is an essential requirement for most quantum computer

architectures (see Fig. 1.1b), so the experiments of Ref. [185] present an important proof of scalability.

Large-scale quantum computers, however, must be capable of reaching a system size of several thousands
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Table 1.1. Overview of the state of the art for quantum computing with spins in quantum dots (QDs), with references in

footnotes. For details, see the description in Sec. 1.4.4. Abbreviation: n.a., not yet available.

Self-Assembled QDs Lateral QDs in 2DEGs QDs in Nanowires
Electrons Holes Single Spins S-T0 Qubits Electrons Holes

Lifetimes

T1 > 20 msa

T2 : 3 µsb

T ∗2 & 0.1 µsc

T1 : 0.5 msd

T2 : 1.1 µse

T ∗2 > 0.1 µsf

T1 > 1 sg

T2 : 0.44 µsh

T ∗2 : 37 nsh

TSi
1 > 1 si

T1 : 5 msj

T2 : 276 µsk

T ∗2 : 94 nsl

TSi
1 ∼ 10 msm

T ∗,Si
2 : 360 nsn

T1 � 1 µso

T2 : 0.16 µso

T ∗2 : 8 nso

T1 : 0.6 msp

T2 : n.a.
T ∗2 : n.a.

Operation
times

τZ : 8.1 psq

τX : 4 psr

τSW : 17 pss

τZ : 17 pse

τX : 4 pse

τSW : 25 pst

τZ : n.a.u

τX : 20 nsv

τSW : 350 psw

τZ : 350 psw

τX : 0.39 nsx

τccpf : 30 nsy

τZ : n.a.z

τX : 8.5 nsA

τSW : n.a.

n.a.

T2/τop 1.8× 105 4.4× 104 22 9.2× 103 n.a. n.a.

Readout
schemes and
visibilities V
(fidelities F )

F = 96%B

Resonance
fluorescence

in a QD
molecule

Other:
FaradayC and
KerrD rotation
spectroscopy,

resonance
fluorescenceE

AbsorptionF

and emissionG

spectroscopy
(selection rules)

V = 65%H

V Si = 88%i

Spin-selective
tunneling

F = 86%I

Spin-selective
tunneling

(two spins)

Other:
Photon-
assisted

tunnelingJ

V = 90%K

F = 97%L

Spin-dependent
charge

distribution
(rf-QPCK,
rf-SQDL)

V = 81%M

Spin-dependent
tunneling

rates

Other:
Dispersive
readoutN

F = 70%–80%O

Pauli spin
blockade

Other:
Dispersive
readoutP

Spin-dependent
charge

distribution
(sensor dot
coupled via

floating gate)Q

Initialization
schemes and
fidelities Fin

Fin > 99%R

Optical
pumping

Fin = 99%S

Optical
pumping

Fin > 99%T

Exciton
ionization

Spin-selective
tunneling,U

adiabatic
ramping to

ground state of
nuclear fieldV

Pauli
exclusionw

Pauli spin
blockadeO

n.a.
(single-hole

regime not yet
reached)

Scalability Scaling seems challenging
Seems scalableW

(e.g., via floating gatesX)
Seems scalable

(e.g., via floating gatesX)

a[68]; b[120, 129];
cMeasured for single electrons in a narrowed nuclear spin bath [105] and for two-electron states in quantum dot
molecules with reduced sensitivity to electrical noise [170], both via coherent population trapping. Without
preparation, T ∗2 ∼ 0.5–10 ns (see Sec. 1.4.1).;
d[73, 74]; e[158];
f[99]. Measured through coherent population trapping. Other experiments revealed T ∗2 = 2–21 ns attributed to
electrical noise [158, 159].;
g[70]; h[127]; i[210]; j[204, 206]; k[131];
l[113]. Achieved by narrowing the nuclear spin bath. Without narrowing, T ∗2 ∼ 10 ns [113, 126, 206].;
m[211];
n[212]. Hyperfine-induced.;
o[57]; p[232]; q[129]; r[129, 157]; s[161]; t[159];
uWhile Ref. [127] gets close, we are currently not aware of a Ramsey-type experiment where coherent rotations about
the Bloch sphere z axis have explicitly been demonstrated as a function of time. Thus no value is listed. However, τZ
should be short, on the order of 0.1 ns assuming a magnetic field of 1 T and g = −0.44 as in bulk GaAs.;
v[188]; w[126]; x[100];
y[195]. SWAP gates for S-T0 qubits have not yet been implemented. We therefore list the duration τccpf of a
charge-state conditional phase flip.;
zIn Ref. [57], rotations about an arbitrary axis in the x-y plane of the Bloch sphere are reported instead, controlled via
the phase of the applied microwave pulse.;
A[57, 59]; B[166]; C[162]; D[156, 163, 165]; E[164]; F[74, 159]; G[73, 158]; H[192]; I[193]; J[189];
K[125]. rf-QPC: radio-frequency quantum point contact [201, 202].;
L[199]. rf-SQD: radio-frequency sensor quantum dot [194].;
M[204]. The paper demonstrates readout of the singlet and triplet states in a single quantum dot.;
N[203]. A radio-frequency resonant circuit is coupled to a double quantum dot.;
O[57]. The readout and initialization schemes in this experiment only determine whether two spins in neighboring
qubits are equally or oppositely oriented.;
P[59]. A superconducting transmission line resonator is coupled to a double quantum dot.;
Q[232]. The scheme, operated in the multihole regime, distinguishes the spin triplet states from the spin singlet.;
R[154]; S[74]; T[155]; U[192, 193, 210];
V[126]. Information about the nuclear field is required for the electronic ground state to be known.;
W[185]; X[237].
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Figure 1.4. Long-distance qubit-qubit coupling via floating gates, allowing individual qubits to be separated by large

distances [237]. (a) Schematic setup for two spins in separated double quantum dots coupled capacitively via a floating

gate (here: simple, symmetric “dog bone” geometry). In the presence of a magnetic field and spin-orbit coupling, the

electrostatic interaction of the charges results in an effective spin-spin coupling. Depending on the actual system and

the gate geometry, remarkably strong qubit-qubit interactions of 1–100 µeV can be reached [237]. (b) Scalable quantum

computer architecture using metallic floating gates on top of a 2D electron gas. (c) An alternative architecture with qubits

(black dots) implemented in nanowires (vertical black lines). In both b and c, qubit-qubit interactions can be switched

on (off) via gates by moving the qubits close to (away from) the corresponding metal discs. The architectures provide a

platform for the powerful surface code [145–151]. All pictures were taken from Ref. [237] and are property of the American

Physical Society (http://www.aps.org).

of qubits. This poses serious architectural challenges to the exchange-based QD scheme from Ref. [13]

(see Fig. 1.1) because the large amount of wires and metallic gates needs to be installed and operated

on a very small scale. A promising strategy to meet this challenge has recently been proposed [237];

long-distance spin-spin coupling can be achieved capacitively via floating gates, allowing the (D)QDs to

be moved far apart. The effective qubit-qubit coupling J ′ via floating gates can take remarkably large

values J ′ ∼ 1–100 µeV [237]. These are comparable to the achievable exchange energies J ∼ 10–100 µeV

in typical GaAs DQDs [13, 52, 237], where we note that J close to 10 µeV has already been realized

[126]. The floating gates may be positioned on top of the sample, as sketched in Fig. 1.4a, or may even

be defined within the 2DEG. Qubit-qubit coupling can be switched on and off by changing the relative

positions of the QDs (charges) with respect to the gates, allowing for all-electrical control [237]. Proposed,

scalable architectures for a quantum computer with floating gates are shown in Figs. 1.4b and 1.4c. A key

feature of the architectures suggested in Ref. [237] is that they all consist of a 2D lattice of spin qubits

with nearest neighbor qubit-qubit interactions. Therefore, they all allow for the implementation of the

surface code with its strikingly large error threshold around 1% (see also Sec. 1.4 and Refs. [145–151] for

further information).

Another scheme for long-distance coupling between spins uses the photon field of a cavity. The original

idea goes back to a proposal from 1999, which suggests that laser-induced Raman transitions can be

used to couple the electron spin states of distant QDs when embedded in an optical cavity [14]. A

few years later, as an alternative to the standard cavity QED, 1D superconducting transmission line

resonators, which operate as on-chip microwave cavities, have been introduced and have launched the

field of circuit QED [238, 239]. Since then, several proposals for long-range spin-spin coupling via circuit

QED have been made [225, 240–244]. The direct coupling of a single spin to the magnetic component

of the cavity electromagnetic field, however, is weak, and achieving strong interactions between a spin

qubit and a cavity thus requires other mechanisms, resulting in a variety of suggested approaches. These,

for instance, are based on Raman-type transitions among single-electron states in DQDs [240], on S-T0

qubits in QD molecules with (nuclear) magnetic field gradients [241, 242], or on the single-electron states

in DQDs contacted to ferromagnetic insulators [243]. Relatively recently, using electron spins in InAs

nanowire QDs was proposed [225]. InAs nanowire QDs feature a strong SOI and, thus, enable efficient

coupling between the qubits and the electric component of the cavity field. Investigated architectures

are shown in Fig. 1.5, where nanowires with strong longitudinal (transverse) QD confinement are placed

parallel (perpendicular) to the transmission line in panel a (b). Rotations of individual qubits can be
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Figure 1.5. Architectures for long-range qubit-qubit coupling via microwave cavities as studied in Ref. [225]. The super-

conducting transmission line resonator is sketched in blue, assuming that the center conductor of length L is separated

from the neighboring ground planes by a distance d. Electron spin states (thick green arrows) in InAs nanowire quantum

dots (QDs) serve as qubits. The QD confinement, illustrated by brown discs within the nanowires (pink cylinders), can

be realized with a suitable barrier material, such as InP, or with electric gates. (a) A large-diameter nanowire is oriented

parallel to the transmission line and hosts QDs with strong longitudinal confinement. (b) Small-diameter nanowires, each

hosting a QD with strong transverse confinement, are placed perpendicular to the transmission line. An insulating material

separates the wires from the superconducting resonator to prevent a current flow. In both setups, the spin-orbit interaction

enables all-electrical operation along with strong long-range interactions mediated by the photon field of the cavity [225].

For the system in panel b, the time to coherently swap two spins was estimated to be around 20 ns, and further improve-

ment seems clearly possible. The pictures were taken from Ref. [225] and are property of the American Physical Society

(http://www.aps.org).

driven through EDSR [57–61], and two-qubit interactions can be turned on and off by changing the QD

confinements with nearby gates, allowing for all-electrical control [225]. For the setup shown in Fig. 1.5b,

an operation time around 20 ns was estimated for swapping two spins coherently, and further optimization

seems clearly possible. Recent experiments [59] following Ref. [225] have led to very encouraging results.

They demonstrate that spin-cavity coupling strengths on the order of 1 MHz (several nanoelectronvolts)

are experimentally feasible, exceeding the coupling of the spin to the magnetic component of the cavity

field by several orders of magnitude and anticipating that the strong coupling regime for spin qubits can

be reached [59]. Notably, it has been shown theoretically that circuit QED also allows for long-range

coupling between certain types of molecular magnets [245]. A discussion of relaxation and decoherence

in those systems can be found in Ref. [246].

1.6 Outlook

When electron spins in QDs were proposed for quantum computation, the experimental situation was not

encouraging. Gate-controlled QDs within 2DEGs were limited to around 30 or more confined electrons

each, and techniques for single-qubit manipulation and readout were not available [247]. Furthermore,

decoherence from interactions with the environment was considered an almost insurmountable obstacle.

Within the past decade, the situation has changed dramatically, owing to continuous experimental and

theoretical progress. QDs are now routinely controlled down to the last electron (hole), owing to a

clever gate design based on plunger gates [52, 247, 248], and various schemes have been applied for both

qubit initialization and readout. Reducing the occupation number of QDs to the minimum is desirable

for high-fidelity quantum computation [249]; however, larger fillings with a well-defined spin-1/2 ground

state are also useful [23]. In addition, efficient single- and two-qubit gates have been demonstrated,

allowing for universal quantum computing when combined. The achieved gating times are much shorter

than measured lifetimes, and it seems that one will soon be able to overcome decoherence to the required

extent. This is a major step toward the realization of a quantum computer.

While the field is very advanced for the workhorse systems such as lateral GaAs QDs or self-assembled
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(In)GaAs QDs, rapid progress is also being made in the quest for alternative systems with further opti-

mized performance. First, this includes switching to different host materials. For instance, Ge and Si can

be grown nuclear-spin-free, and required gradients in the Zeeman field may be induced via micromagnets.

Second, both electron- and hole-spin qubits are under investigation, exploiting the different properties

of conduction and valence bands, respectively. Finally, promising results are obtained from new system

geometries, particularly nanowire QDs.

Future tasks can probably be divided into three categories. The first one consists of studying new

quantum computing protocols (such as the surface code), which put very low requirements on the phys-

ical qubits. The second category refers to further optimization of the individual components listed in

Table 1.1. For instance, longer lifetimes are certainly desired, as are high-quality qubit gates with even

shorter operation times. However, as decoherence no longer seems to present the limiting issue, particular

focus should also be put on implementing schemes for highly reliable, fast, and scalable qubit readout

(initialization) in each of the systems. Finally, because the results in Table 1.1 are usually based on

different experimental conditions, the third category consists of merging all required elements into one

scalable device, without the need for excellent performance. Such a complete spin-qubit processor should

combine individual single-qubit rotations about arbitrary axes, a controlled (entangling) two-qubit oper-

ation, initialization into a precisely known state, and single-shot readout of each qubit. While Ref. [187]

presents an important step toward this unit, prototypes of a complete spin-qubit processor could present

the basis for continuous optimization.

In summary, considering the impressive progress achieved within the past decade, one may be cau-

tiously optimistic that a large-scale quantum computer can indeed be realized.

Summary Points:

• The experimental situation has dramatically changed since 1998, when the original proposal for

quantum computation with quantum dots [13] was published. Quantum dots are now precisely

controlled down to the last spin. Single-qubit rotations around different axes, two-qubit operations,

and various initialization and readout schemes have successfully been demonstrated (Table 1.1).

• Overcoming decoherence to the required extent should soon be possible, which is a big step toward

the implementation of a quantum computer.

• Nuclear spins and spin-orbit interaction, on the one hand, present a source of decoherence and

relaxation. On the other hand, they can generate large Overhauser fields and are useful for realizing

quantum gates. Schemes exist to narrow the width of the nuclear field distribution.

• Several quantum dot systems are currently under investigation, including host materials with or

without nuclear spins, operation in the conduction or valence band, and different geometries. Holes

in Ge/Si-nanowire-based quantum dots are promising examples [230–233].

• Electrically pulsed, pairwise control of the exchange interaction has been demonstrated in a triple

quantum dot [185]; i.e., the scalability of exchange-based schemes for quantum computing [13] has

now been verified experimentally.

• Long-distance spin-spin coupling via floating gates may be used to overcome architectural chal-

lenges of a large-scale quantum computer, and several 2D architectures have been proposed [237].

Alternatively, distant spins may be coupled via the photon field of a cavity [14, 59, 225, 240–245].

• Recent development toward quantum computation with quantum dots has been very positive, and

one can be curious about the progress to be made in the next few years.
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Future Issues:

• The surface code is a powerful protocol for fault-tolerant quantum computing [144–151]. Can the

requirements on the physical qubits be reduced further?

• Can longer lifetimes and more efficient qubit gates be reported? In particular, can schemes for fast

and highly reliable single-shot readout and initialization be implemented in each of the discussed

systems?

• Schemes for exchange-controlled single-spin rotations (about arbitrary axes) have been proposed

as an efficient alternative to rotations driven by oscillating fields [13, 198]. Can this be realized

experimentally?

• Electrically controlled single-qubit and two-qubit operations were demonstrated in the setup of

Ref. [187]. Can a complete spin-qubit processor be reported soon?
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PART II

Direct Rashba Spin-Orbit Interaction,

Helical Hole States, and Spin Qubits in

Nanowires and Nanowire Quantum

Dots in the Presence of Phonons,

Strain, and Control Fields

(Theory)





Chapter 2

Strong Spin-Orbit Interaction and

Helical Hole States in Ge/Si Nanowires

Adapted from:

Christoph Kloeffel, Mircea Trif, and Daniel Loss,

Phys. Rev. B 84, 195314 (2011).

We study theoretically the low-energy hole states of Ge/Si core/shell nanowires. The low-energy valence

band is quasidegenerate, formed by two doublets of different orbital angular momenta, and can be con-

trolled via the relative shell thickness and via external fields. We find that direct (dipolar) coupling to

a moderate electric field leads to an unusually large spin-orbit interaction of Rashba type on the order

of meV which gives rise to pronounced helical states enabling electrical spin control. The system allows

for quantum dots and spin qubits with energy levels that can vary from nearly zero to several meV,

depending on the relative shell thickness.



2.1 Introduction

Semiconducting nanowires are subject to intense experimental effort as promising candidates for single-

photon sources [1], field-effect transistors [2], and programmable circuits [3]. Progress is being made with

both group-IV materials [2–5] and III-V compounds, particularly InAs, where single-electron quantum

dots (QDs) [6, 7] and universal spin-qubit control [8] have been implemented. Proximity-induced su-

perconductivity was demonstrated in these systems [9, 10], forming a platform for Majorana fermions

[11–16].

The nanowires are operated in both the electron (conduction band, CB) [6–9] and hole (valence band,

VB) [2–5, 10, 17] regimes. While these regimes are similar in the charge sector, holes can have many

advantages in the spin sector. Due to strong spin-orbit interaction (SOI) on an atomic level, the electron

spin is replaced by an effective spin J = 3/2, and even in systems that are inversion symmetric, the

spin and momentum are strongly coupled, enabling efficient hole spin manipulation by purely electrical

means. Holes, moreover, are very sensitive to confinement, which strongly prolongs their spin lifetimes

[18–23]. Also, VBs possess only one valley at the Γ point, in contrast to the CBs of Ge and Si, which

is particularly useful for spintronics devices such as spin filters [24] and spin qubits [25]. Most recently,

spin-selective hole tunneling in SiGe nanocrystals was achieved [26].

In this chapter, we analyze the hole spectrum of Ge/Si core/shell nanowires, which combine several

useful features. The holes are subject to strong confinement in two dimensions and can be confined down

to zero dimension (0D) in QDs [4, 27, 28]. Ge and Si can be grown nuclear-spin-free, and mean free

paths around 0.5 µm have been reported [5]. During growth, the core diameter (∼5–100 nm) and shell

thickness (∼1–10 nm) can be controlled individually. The VB offset at the interface is large, ∼0.5 eV, so

that holes accumulate naturally in the core [5, 29]. Lack of dopants underpins the high mobilities [2] and

the charge coherence seen in proximity-induced superconductivity [10].

We find that the low-energy spectrum in Ge/Si nanowires is quasidegenerate, in contrast to typical CBs.

Static strain, adjustable via the relative shell thickness, allows lifting of this quasidegeneracy, providing

a high degree of control. We also calculate the spectrum in longitudinal QDs, where this feature remains

pronounced, which is essential for spin-qubit implementation. The nanowires are sensitive to external

magnetic fields, with g factors that depend on both the field orientation and the hole momentum. In

particular, we find an additional SOI of Rashba type (referred to as direct Rashba SOI, DRSOI), which

results from a direct dipolar coupling to an external electric field. This term arises in first order of the

multiband perturbation theory, and thus is 10–100 times larger than the known Rashba SOI (RSOI) for

holes which is a third-order effect [30]. Moreover, the DRSOI scales linearly in the core diameter R (while

the RSOI is proportional to R−1), so that spin-orbit interaction remains strong even in large nanowires.

Similarly to the conventional Rashba SOI [11–17, 24, 31, 32], the DRSOI induces helical ground states,

but with much larger spin-orbit energies (meV range) than in other known semiconductors.

The chapter is organized as follows. In Sec. 2.2 we introduce the unperturbed Hamiltonian for holes

inside the Ge core and provide its exact, numerical solution. The system is very well described by

an effective 1D Hamiltonian, which we derive in Sec. 2.3. In Sec. 2.4 we include the static strain and

find a strong dependence of the nanowire spectrum on the relative shell thickness. The spectrum of

Ge/Si-nanowire-based QDs is discussed subsequently (Sec. 2.5). In the main section, Sec. 2.6, we analyze

the hole coupling to electric fields and compare the DRSOI to the standard RSOI. In this context, we

also show that Ge/Si nanowires present an outstanding platform for helical hole states and Majorana

fermions. Magnetic field effects are discussed in Sec. 2.7, followed by our summary and final remarks,

Sec. 2.8. Technical details and additional information are appended, see Appendix A.
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Figure 2.1. Schematic drawing of the systems studied in this chapter. Top: Excerpt of a Ge/Si nanowire with core radius

R and shell thickness Rs −R, where the z axis corresponds to the axis along the wire. The nanowires are typically several

micrometers in length and can therefore be considered infinitely extended, hosting a 1D hole gas inside their cores. The

surrounding Si shell influences the hole spectrum through static strain. Bottom: Quantum dots of (effective) length L form

when the holes are subject to additional confinement in the z direction. This can be realized via gates [4, 27, 28] or, in

principle, by surrounding the Ge with layers of barrier material during growth [43].

2.2 Model Hamiltonian and Numerical Solution

In cubic semiconductors, the VB states are well described by the Luttinger-Kohn (LK) Hamiltonian

[33, 34],

HLK =
~2

2m

[(
γ1 +

5

2
γs

)
k2 − 2γs(k · J)2

]
, (2.1)

where Jx,y,z (in units of ~) are the three components of the effective electron spin in the VB, m is the

bare electron mass, ~k is the momentum operator, and γ1 and γs ≡ (2γ2 + 3γ3)/5 are the Luttinger

parameters in spherical approximation, which is well applicable for Ge (γ1 = 13.35, γs = 5.11) [35]. In

studying nanowires [Fig. 2.1 (top)], the LK Hamiltonian must be supplemented with the confinement in

the transverse directions (x-y plane), perpendicular to the wire axis z. Since we are interested in the

low-energy states, we can add two more simplifications at this stage. First, since the low-energy states are

located near the core center, we can assume a potential with cylindrical symmetry even though the real

system is not perfectly symmetric. Second, due to the large VB offset, the confinement can be treated

as a hard wall,

V (r) =

{
0, r < R,

∞, r > R,
(2.2)

with R as the core radius. Given this confinement, the total Hamiltonian HLK + V commutes with the

operator Fz = Lz+Jz, where Lz = −i∂φ is the orbital angular momentum along the wire axis, so that Fz

is a good quantum number and the states can be classified accordingly [36, 37]. The system is also time-

reversal symmetric (Kramers doublets), and due to cylindrical symmetry one obtains the same spectrum

for the same |Fz|. This is valid for any circular confinement and does not require the assumption of a

hard wall. We note that, again in clear contrast to the CB case, Lz is not conserved in the VB.

The Hamiltonian separates into 4×4 blocks corresponding to given Fz. By solving HLK+V numerically,

using an ansatz analogous to those in Refs. [36, 37], we find that the low-energy spectrum in the Ge core

is formed by two quasidegenerate bands, with Fz = ±1/2 each, where the ground (excited) states at

kz = 0 are of Lz ≈ 0 (|Lz| = 1) type. These four (in total) bands are well separated from higher bands,

and the quasidegeneracy indicates that one can project the problem onto this subspace. A plot of the

spectrum is shown in Fig. 2.2 (bottom).
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Figure 2.2. Low-energy hole spectrum of a Ge nanowire as a function of the longitudinal wave number kz . In the unstrained

case, γ = 0, the plot is independent of R, with ~2/(mR2) ' 0.76 meV for R = 10 nm. Due to time-reversal invariance

and cylindrical symmetry, each line is a twofold degeneracy, where red (blue) indicates quantum numbers Fz = ±1/2

(Fz = ±3/2). At kz = 0 the spectrum is quasidegenerate, with the lowest states having Lz ≈ 0 (ground states) and

|Lz | = 1 (excited states) character. Dashed red lines result from the effective 1D model for the lowest subspace, where kz is

treated perturbatively. The top figure is a plot of the low-energy sector of a strained system, γ = 40%, illustrating strong

dependence on the Si shell thickness.

2.3 Effective 1D Hamiltonian

The present analysis does not, however, allow us to derive an effective 1D Hamiltonian describing the

lowest-energy states. For this, we integrate out the transverse motion and treat kz in perturbation theory

(|kzR| < 1). The four eigenstates g∓ and e±, corresponding to ground and excited states for Fz = ±1/2

at kz = 0, serve as the basis states in the effective 1D Hamiltonian. The subscript refers to the sign of the

contained spin state |±3/2〉, since the system at kz = 0 can be separated into two 2×2 spin blocks [37];

details of the calculation are described in Appendix A.2. Knowledge of g± and e±, with eigenenergies

Eg ≡ 0 and Ee ≡ ∆LK, allows us to include the kz-dependent terms of the LK Hamiltonian. The diagonal

matrix elements take on the form 〈g±|HLK |g±〉 = ~2k2
z/(2mg), 〈e±|HLK |e±〉 = ~2k2

z/(2me) + ∆LK, and

the nonzero off-diagonal terms are of type 〈e±|HLK |g∓〉 = iCkz, with C as a real-valued coupling

constant [38]. Summarized in matrix notation, this yields

Heff
LK = A+ +A−τz + Ckzτyσx, (2.3)

where A± = ~2k2
z(m−1

g ± m−1
e )/4 ± ∆LK/2, and τi, σi are the Pauli matrices acting on {g, e}, {+,−}

(see also Appendix A.1). For Ge, the values are ∆LK = 0.73 ~2/(mR2), C = 7.26 ~2/(mR), mg '
m/(γ1 + 2γs) = 0.043 m, and me = m/(γ1 + γs) = 0.054 m. The eigenspectrum

Eg,e(kz) = A+ ∓
√
A2
− + C2k2

z (2.4)

nicely reproduces all the key features of the exact solution and is added to Fig. 2.2 for comparison, with

good agreement for |kzR| < 1.

42



Figure 2.3. Top: Hole energy spectrum in a nanowire-based QD (Ge/Si core/shell, R = 5 nm), for both a thin and a thick

shell, as a function of confinement length L. Each line corresponds to a Kramers pair, and dashed lines represent ∆LK for

comparison. Bottom: Level splitting of the two lowest Kramers doublets as a function of relative shell thickness γ and for

different lengths L. Static strain, induced via the shell, allows continuous tuning of the energy gap over several meV, an

attractive feature for spin qubit applications. For details, see Appendix A.4.

2.4 Static Strain

To the above model one needs to add the effects of static strain, since the Si shell (radius Rs) tends

to compress the Ge lattice. A detailed analysis of the strain field in Ge/Si core/shell nanowires can be

found in Chapter 5; here we just quote the results needed to calculate the hole spectrum. The coupling is

described by the Bir-Pikus Hamiltonian HBP [Eq. (A.11) in Appendix A.3], which for Ge (the spherical

approximation applies) is of the same form as Eq. (2.1), with kikj replaced by the strain tensor elements

εij [39]. Assuming a stress-free wire surface and continuous displacement and stress at the interface,

symmetry considerations and Newton’s second law require εxx = εyy and εxy = εxz = εyz = 0 within

the core, so that only terms proportional to J2
z contribute. Hence, Fz remains a good quantum number,

[HLK + V + HBP, Fz] = 0, which allows us to solve the system exactly even in the presence of strain,

following the same steps as described in Sec. 2.2. It is important that these exact spectra show that the

low-energy states [Fig. 2.2 (bottom)] separate even further from the higher bands when the Ge core is

strained by a Si shell, so that the low-energy sector remains energetically well isolated and projection

onto this subspace is always valid.

In the 1D model, strain leads to a simple rescaling of the energy splitting ∆LK → ∆LK + ∆BP(γ),

where 0 ≤ ∆BP(γ) . 30 meV for 0 ≤ γ <∞, with γ ≡ (Rs−R)/R as the relative shell thickness. Hence,

∆BP is independent of the core radius, while ∆LK ∝ R−2. We note that ∆LK ' 0.6 meV for a wire of

R = 10 nm, which makes this energy scale very small. Therefore the splitting can be changed not only

via R, but also via Rs. In fact, the system can be varied from the quasidegenerate to an electronlike

regime [Fig. 2.2 (top)], where the Lz ' 0 and |Lz| ' 1 states are parabolas.

2.5 Quantum Dot Spectrum

We analyze this feature in more detail by calculating the eigenenergies of Ge/Si-nanowire-based QDs

[Fig. 2.1 (bottom)]. All steps of this calculation are carefully explained in Appendix A.4. Remarkably,

the variability with Rs also transfers to the QD levels. Figure 2.3 shows the spectrum as a function of

confinement length for a wire with both thin and thick shells and plots the energy splitting of the lowest
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Figure 2.4. Dispersion relation for holes in a Ge nanowire of R = 10 nm, negligible shell, and an applied electric field Ex

along x, calculated from Heff
LK + HDR, Eqs. (2.3) and (2.6), with HDR as the DRSOI Hamiltonian. Hole bands of lower

(higher) energy are plotted blue (red). The RSOI is about 100 times smaller than the DRSOI and thus negligible. Note

that the DRSOI shows qualitatively similar features to the standard Rashba SOI with dispersion curves shifted along kz

against each other.

Kramers doublets as a function of γ. For a negligible shell, the states lie so close in energy that additional

degeneracies may even be observed. With increasing Rs, the QD spectrum changes monotonically from

the quasidegenerate regime to gaps of several meV, which should, in particular, be useful for implementing

spin qubits.

2.6 Direct Rashba Spin-Orbit Interaction and Helical Hole States

An electric field Ex applied along x couples directly to the charge of the hole via the dipole term

Hed = −eExx, (2.5)

with x = r cosφ as the carrier position in field direction. For holes in the Ge core we expect this energy

gradient to have sizable effects compared to electron systems, since the low-energy band is made of

quasidegenerate states of different Lz character. Moreover, Ex will also couple directly to the spins due

to the SOI in the VB. Projection of Hed onto the subspace yields the effective SOI Hamiltonian

HDR = Heff
ed = eExUτxσz, (2.6)

referred to as direct Rashba SOI (DRSOI), characterized by the coupling constant U = 〈g+| (−x) |e+〉.
The form of Eq. (2.6) still resembles that in the CB case, where dipolar coupling cannot modify the spins.

However, the additional kzτyσx term in Heff
LK makes the key difference to the CB and accounts for the

SOI featured in the LK Hamiltonian. Indeed, by diagonalizing Heff
LK +HDR we find that the DRSOI lifts

the twofold degeneracy, as plotted in Fig. 2.4. Surprisingly, the effects closely resemble a standard RSOI

for holes in a transverse electric field (see discussion below). [Again, this is not the case for the CB, where

Hed does not lift the degeneracy since spin and orbit are decoupled (in leading order).]

As a consequence, when analyzing the eigenstates of Heff
LK +HDR for their spin properties, we find that

an electric field generates helical ground states, i.e., holes of opposite spin move in opposite directions.

Figure 2.5 (top) shows the splitting of the lowest band when Ex = 6 V/µm is applied to a typical

Ge/Si nanowire of 5 nm core radius and 1.5 nm shell thickness. Even though RSOI is absent, the result

resembles the typical CB spectra considered in previous studies, where Rashba SOI for electrons leads

to two horizontally shifted parabolas in the E-k diagram [12–14, 17, 24, 31]. Moreover, the analogy also

holds for the spins, which are twisted toward the y direction, perpendicular to both the propagation axis

z and the field direction x. As Fig. 2.5 (bottom) illustrates, 〈Jy〉 in the ground state is an antisymmetric
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Figure 2.5. Top: Splitting of the lowest valence band when an electric field Ex = 6 V/µm is applied to a Ge/Si nanowire of

R = 5 nm and Rs = 6.5 nm. Ground (excited) hole states are plotted blue (red). ESO > 1.0 meV, a large value compared

to that for InAs [6, 40], and the degeneracy at kz = 0 may be lifted via a magnetic field (see Fig. 2.6). The conventional

RSOI for holes is negligible. Bottom: Plot of 〈Jy〉 for the above system, where 〈Jx〉 and 〈Jz〉 are zero throughout. In the

ground state, the nanowire carries opposite spins in opposite directions with |〈Jy〉| ≥ 1/2.

function of kz, the characteristic feature of a helical mode. We note that 〈Jx〉 = 〈Jz〉 = 0 throughout,

so that the spins are indeed oppositely oriented. The values of |Jy| around the band minima are ≥1/2,

while the spin-orbit (SO) energy, i.e., the difference between band minimum and degeneracy at kz = 0, is

ESO > 1.0 meV. This value exceeds the reported 100 µeV in InAs nanowires by a factor of 10 (see also

Appendix A.5) [6, 40], and further optimization is definitely possible via both the gate voltage and the

shell thickness.

We can understand the qualitative similarity of the DRSOI, Eq. (2.6), and RSOI [30],

HSO = αEx(kyJz − kzJy), (2.7)

by projecting the latter onto the low-energy subspace, which yields

HR = Heff
SO ' αExSτxσz (2.8)

for |kzR| < 1, with S = 〈g+| kyJz |e+〉. Further information on HSO, HR, and the Rashba coefficient α

can be found in Appendix A.6. This formal analogy of HDR and HR, Eqs. (2.6) and (2.8), immediately

implies that Ge/Si nanowires provide a promising platform for novel quantum effects based on Rashba-

type SOI [7, 8, 11–17, 24, 31, 32]. A particular advantage of the DRSOI, as compared to conventional

Rashba SOI, is its unusually large strength. While the Rashba term for holes arises in third order of

multiband perturbation theory and thus scales with 1/(band gap)2 [30], the DRSOI is a first-order effect

and therefore much stronger. Explicit values for Ge are U = 0.15 R, S = 0.36/R, and α ≈ −0.4 nm2e,

so that, in typical nanowires with R = 5–10 nm, HDR dominates HR by one to two orders of magnitude

(Appendix A.6). Moreover, sizable RSOI would require unusually small confinement, since HR ∝ R−1.

In stark contrast, for DRSOI we find HDR ∝ R, which allows one to realize the desired coupling strengths

in larger wires as well. The upscaling, however, is limited by the associated decrease of level splitting

(∝ R−2) and of the term Ckzτyσx (∝ R−1) in Eq. (2.3).
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Figure 2.6. Top: Hole spectrum of Fig. 2.5 (top) in the presence of Bx = 1 T. The magnetic field opens a gap of

0.30 meV at kz = 0, corresponding to a g factor above 5. Bottom: Plot of the ground state spin, 〈Jx〉 and 〈Jy〉, where

〈Jz〉 = 0 throughout. At energies within the gap, the Ge/Si nanowire features helical hole states with ESO > 1.0 meV,

|kz | ' 90 µm−1, and |〈Jy〉| ≥ 1/2.

2.7 Magnetic Field Effects

The Kramers degeneracy can be lifted by an external magnetic field B, which couples to the holes in two

ways, first, via the orbital motion, through the substitution ~k→ −i~∇+eA(r), with A(r) as the vector

potential, and second, via the Zeeman coupling HZ
B = 2κµBB · J , where κ is a material parameter. For

B along z (x), parallel (perpendicular) to the wire, the 1D Hamiltonian is of the form

HB,z = µBBz (Z1σz + Z2τzσz + Z3kzτxσy) , (2.9)

HB,x = µBBx (X1σx +X2τzσx +X3kzτy) , (2.10)

where the real-valued constants Zi (Xi) are listed in Eq. (A.24) of Appendix A.7. The results agree with

recent experiments, where the g factors in Ge/Si-nanowire-based QDs (multihole regime) were found to

vary dramatically with both the orientation of B and also the QD confinement [27, 28]. In the absence

of electric fields, the ground state g factor g‖(kz) for Bz along the wire turns out to be small for kz = 0,

|g‖(0)| ' 0.1, and increases as |kz| increases. In contrast, the g factor g⊥(kz) for a perpendicular field

Bx is large at kz = 0, |g⊥(0)| ' 6, and decreases as |kz| increases, until g⊥(kz) eventually changes

sign at |kz| ≈ 0.5/R. We note that these results for the ground state cannot be directly compared to

experimental results in the multihole regime, as the g factors in the excited state already show a clearly

different dependence on kz. In the presence of an electric field Ex, the effective g‖ and g⊥ at kz = 0 may,

to some extent, be tuned by the strength of Ex.

Detailed analysis of the low-energy Hamiltonian yields the result that the combination of magnetic and

electric fields allows for optimal tuning of the energy spectrum. For instance, Bx = 1 T opens a gap of

0.30 meV at kz = 0 in Fig. 2.5 (top), keeping the spin properties for kz 6= 0 unaffected. This corresponds

to |g⊥(0)| ' 5.2 and is illustrated in Fig. 2.6. With the Fermi level within the induced gap, the spectrum

of Fig. 2.6 presents a promising basis for applications using helical hole states. Remarkably, an all-

perpendicular setup with, e.g., Bx along x and Ey along y, HDR,y = −eEyUτy, leads to an asymmetric

spectrum where only states with one particular direction of motion may be occupied, which moreover

provide a well-polarized spin along the magnetic field axis. As before, this does not require standard

RSOI.
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2.8 Discussion

The low-energy properties found in this work make Ge/Si core/shell nanowires promising candidates for

applications. The dipole-induced formation of helical modes proves useful for several reasons. First, the

strength and orientation of externally applied electric fields are well controllable via gates. Second, the

DRSOI scales linearly in R, instead of R−1, and thicker wires remain operational. Third, the system is

sensitive to magnetic fields, and undesired degeneracies at kz = 0 may easily be lifted, with |g⊥(0)| & 5.

Finally, helical modes with large ESO and wave numbers kF are achievable using moderate electric fields

of order V/µm. In Fig. 2.6, with the Fermi level inside the gap opened by the magnetic field, these

are ESO > 1.0 meV and kF ' 90 µm−1, with |〈Jy〉| ≥ 1/2, and optimization via both the gate voltage

and the Si shell is possible. For R = 10 nm and thin shells, due to the quasidegeneracy at γ → 0,

even small electric fields of ∼0.1 V/µm are sufficient to form helical states with ESO & 0.3 meV. We

note that a strong SOI, tuned via electric fields, was recently reported for Ge/Si nanowires based on

magnetotransport measurements [41].

The nanowire spectrum can be changed from the quasidegenerate to an electronlike regime, depending

on the shell thickness. This moreover holds for QD spectra, so that, given the strong response to

electric and magnetic fields, Ge/Si wires also seem attractive for applications in quantum information

processing, particularly via electric-dipole-induced spin resonance [7, 8, 42]. Finally, when combined

with a superconductor [10], the DRSOI in these wires provides a useful platform for Majorana fermions

[11–16].
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Chapter 3

Tunable g Factor and Phonon-Mediated

Hole Spin Relaxation in Ge/Si Nanowire

Quantum Dots

Adapted from:

Franziska Maier, Christoph Kloeffel, and Daniel Loss,

Phys. Rev. B 87, 161305(R) (2013).

We theoretically consider g factor and spin lifetimes of holes in a longitudinal Ge/Si core/shell nanowire

quantum dot that is exposed to external magnetic and electric fields. For the ground states, we find

a large anisotropy of the g factor which is highly tunable by applying electric fields. This tunability

depends strongly on the direction of the electric field with respect to the magnetic field. We calculate the

single-phonon hole spin relaxation times T1 for zero and small electric fields and propose an optimal setup

in which very large T1 of the order of tens of milliseconds can be reached. Increasing the relative shell

thickness or the longitudinal confinement length prolongs T1 further. In the absence of electric fields, the

dephasing vanishes and the decoherence time T2 is determined by T2 = 2T1.



3.1 Introduction

Semiconducting nanowires (NWs) allow to create nanoscale systems defined precisely regarding composi-

tion, geometry, and electronic properties and hence are subject to great experimental efforts. Furthermore,

they offer new ways for implementing spin-based quantum computation [1]. Both III-V compounds and

group-IV materials are considered and operated in the conduction band (CB, electrons) [2–9] and in the

valence band (VB, holes) [10–22] regime. A particularly favored material is InAs, where single-electron

quantum dots (QDs) [3] and electrically controlled spin rotations [5, 6, 8] have been implemented. Re-

cently, qubits have also been implemented in InSb NW QDs [7, 9, 22], a system for which extremely large

electron g factors have been found [4, 7]. However, the strong hyperfine interaction in InAs and InSb is

considered the dominant source for the short coherence times observed [5, 9]. The latter may therefore

be substantially prolonged in group-IV NWs that can be grown nuclear-spin-free. In this context, Ge and

Si have emerged as promising materials for nanoscale systems such as lateral QDs [23–26], self-assembled

QDs [27–29], cylindrical core/shell NWs [10–20], and ultrathin, triangular NWs [21].

For applications in spintronics and quantum information processing, it can be advantageous to consider

holes instead of electrons. Due to the p-wave symmetry of the Bloch states, holes experience a strong

spin-orbit interaction (SOI) on the atomic level leading to an effective spin J = 3/2 behavior. Hence, spin

and momentum are coupled strongly, which allows efficient control of the hole spin by electrical means.

Furthermore, hole spin lifetimes are prolonged in the presence of confinement [30–35].

In Ge/Si core/shell NWs, the large VB offset leads to an accumulation of holes in the core [11, 36].

They form a one-dimensional (1D) hole gas with an unusually large, tunable Rashba-type SOI, referred

to as direct Rashba SOI (DRSOI) [37]. This DRSOI makes Ge/Si core/shell NWs attractive candidates

for quantum information processing via electric-dipole-induced spin resonance [38], and we mention that

signatures of a tunable Rashba SOI were already deduced from magnetotransport experiments [17].

Experiments on gate defined QDs in this system revealed an anisotropy and confinement dependence of

the g factor [15, 16]. Recently, singlet-triplet relaxation times in the range of several hundred microseconds

were measured [20].

In this work, we consider holes forming qubits in the energetically lowest states of longitudinal QDs

in Ge/Si core/shell NWs. We find the effective g factor geff of this subsystem, which turns out to be

strongly anisotropic and tunable by choosing the direction and magnitude of applied electric fields. For

small electric fields, we perturbatively derive an effective subspace Hamiltonian and the according hole-

spin-phonon coupling and calculate the hole spin relaxation rate T−1
1 . At small Zeeman splittings ~ω

we observe an ω7/2 proportionality of T−1
1 , which contrasts the ω5 behavior found for electrons in QDs

[39–44]. The magnitude of T−1
1 depends strongly on the direction of the magnetic field with respect to the

wire. For zero electric field, aligning the magnetic field perpendicular to the wire results in very long T1

of the order of tens of milliseconds. Directing the magnetic field along the wire results in a much shorter

T1. For both configurations, the dephasing is zero, hence the decoherence time is given by T2 = 2T1.

Applying small electric fields can enhance the relaxation rate by several orders of magnitude. This effect

depends strongly on the direction of the electric field with respect to the magnetic field. Long T1 in the

presence of electric fields are obtained when electric and magnetic fields are perpendicular to each other

and perpendicular to the wire. Moreover, we find that T1 can be prolonged further by increasing the

relative shell thickness and the longitudinal QD confinement. Thus, we predict an optimal field geometry

for spin qubits in Ge/Si NWs that can be tested experimentally.
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3.2 Theoretical Model

3.2.1 Effective 1D Hamiltonian for Holes in Ge/Si Nanowires

Low-energetic hole states in a cylindrical Ge/Si core/shell NW are well described by an effective 1D

Hamiltonian [37]

Hw = H0 +H ′ (3.1)

that can be split into a leading-order term H0 and a perturbation H ′,

H0 = HLKd
+Hstrain +HB,Z , (3.2)

H ′ = HLKod
+HR +HDR +HB,orb. (3.3)

Using the notation introduced in Ref. [37] and defining the z axis as the NW axis (see Fig. 3.1), the

diagonal terms of the Luttinger-Kohn (LK) Hamiltonian and the strain-induced energy splitting read

HLKd
+Hstrain = A+(kz, γ) +A−(kz, γ)τz. (3.4)

Here and below, τi and σi are the Pauli matrices for band index ({g, e}) and spin block ({+,−}) of

the basis states g±(x, y) and e±(x, y) that provide the transverse motion. In Eq. (3.4), we defined

A±(kz, γ) = ~2k2
z(m−1

g ±m−1
e )/4 ± ∆/2, with mg ' m/(γ1 + 2γs) and me = m/(γ1 + γs) as the effective

masses along z. Here γ1 and γs are the Luttinger parameters in spherical approximation and m denotes

the bare electron mass. For Ge, γ1 = 13.35 and γs = 5.11 [45]. ∆ = ∆LK +∆strain(γ) is the level splitting

between the g± and e± states, γ = (Rs − R)/R is the relative shell thickness, and R (Rs) is the core

(shell) radius. The Zeeman coupling HB,Z with splitting ~ωB,Z in the lowest-energy subspace (g band)

is determined by the magnetic field B = (Bx, 0, Bz) ≡ |B|(sin θ, 0, cos θ) (Fig. 3.1), where we set By = 0

due to cylindrical symmetry. The main contributions to H ′ are

HLKod
= Ckzτyσx, (3.5)

HDR = eU(Exτxσz − Eyτy), (3.6)

where HLKod
features the off-diagonal couplings with coupling constant C = 7.26 ~2/(mR) provided by

the LK Hamiltonian as a consequence of the strong atomic-level SOI. HDR is the DRSOI that results

from direct, dipolar coupling to an electric field E = (Ex, Ey, 0), where U = 0.15 R. We note that

~kz = −i~∂z in Eqs. (3.4) and (3.5) is the momentum operator along the wire. In the absence of

longitudinal confinement, the wave functions along z are of type eikzz with kz as the wave number. HR

is the conventional Rashba SOI, and, although fully taken into account in the present analysis, turns out

to be negligible for the typical parameters and electric fields considered here. Finally, HB,orb denotes the

orbital coupling to the magnetic field. Details on all elements of H0 and H ′ are provided in Ref. [37] and

in Appendix B.1.

3.2.2 Effective 1D Hamiltonian for Hole-Phonon Interaction

We proceed with the derivation of an effective 1D Hamiltonian Hh-ph for the coupling between low-

energetic holes and acoustic phonons. There are three different types of acoustic phonon modes in cylindri-

cal NWs: torsional, longitudinal, and flexural [46]. We find four different modes λ with dispersion relation

ωλ(q), where q is the phonon wave number along the wire and the exact form of ωλ depends strongly on

the shell thickness. For the torsional and longitudinal modes (λ = T, L), ωλ depends linearly on q, whereas

for the two flexural modes (λ = F±1) this dependence is quadratic. The detailed derivation is provided in

Chapter 5; here we directly apply the displacement field u(r, t) =
∑
λ,q [uλ(q, r, t)bq,λ(t) + H.c.] obtained
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Figure 3.1. Sketch of a Ge/Si core/shell NW aligned with the z axis of the coordinate system. Electric gates (blue) induce

confinement along the z axis and define a QD. The electric field E lies perpendicular to the wire in the x-y plane and the

magnetic field B lies in the x-z plane. The figure was provided by Franziska Maier.

for a finite shell following Refs. [46–48]. The introduced bq,λ(t) = e−iωλ(q)tbq,λ are the time-dependent

phonon annihilation operators. To deriveHh-ph, we insert the associated strain tensor components εij(r, t)

into the Bir-Pikus Hamiltonian [49]

HBP = b

[∑
i

εiiJ
2
i + 2 (εxy{Jx, Jy}+ c.p.)

]
, (3.7)

where we omitted the global shift in energy and used the spherical approximation. The Ji with i = x, y, z

are the effective spin-3/2 operators of the VB electrons and the anticommutator is defined as {A,B} =

(AB +BA)/2. For Ge, the deformation potential b takes the value b ' −2.5 eV [49]. We finally obtain

Hh-ph =
∑
λ

Hλ = HT +HL +HF+1 +HF−1 (3.8)

by integrating out the transverse part of the matrix elements, i.e., by projecting the Hamiltonian onto

the subspace spanned by g± and e±. The components of Hh-ph are given explicitly in Appendix B.2.

3.2.3 Harmonic Confinement and Quantum Dot Hamiltonian

Longitudinal confinement is realized by electric gating (see Fig. 3.1), which is modeled by adding a

harmonic confinement potential in the z direction,

Hqd = Hw + Vc(z), (3.9)

where Vc(z) = 1
2αcz

2. Hqd describes the QD well if the longitudinal confinement length is much larger

than R. The basis states of Hqd are products of type g±ψ
g
n and e±ψ

e
n, where the ψ

g/e
n (z) are eigenfunctions

of the harmonic oscillator ~2k2
z/(2mg/e) + Vc(z) and n ∈ {0, 1, . . .} is the harmonic oscillator quantum

number. The confinement energies ~ωg/e relate to αc via αc = mg/eω
2
g/e and the harmonic oscillator

confinement lengths read lg/e =
√
~/(mg/eωg/e).

3.3 Large Anisotropy and Electrical Tunability of Hole-Spin g Factor

From Hqd we extract the effective g factor geff of the lowest-energy subsystem by performing an exact,

numerical diagonalization which gives the Zeeman splitting ∆EZ,num (defined as positive) and

geff =
∆EZ,num

µB |B|
, (3.10)
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Figure 3.2. Effective g factor geff as a function of the angle θ defined by B = |B|(sin θ, 0, cos θ) for E ‖ x̂ (a) and E ‖ ŷ (b).

We vary |E| from 0 to 10 V/µm. For |E| = 0, we find geff(0) ≈ 0.14 and geff(π/2) ≈ 5.7. It is clearly visible that geff is

affected much stronger by changes in |E| for E ‖ x̂ than for E ‖ ŷ. Even though the curves in panel a seem to overlap

for |E| ≥ 6 V/µm, geff(π/2) still decreases for growing fields and geff remains anisotropic. We choose R = 10 nm and

Rs = 13 nm for the NW and a QD confinement length of lg ≈ 80 nm. The figure was provided by Franziska Maier.

where µB is the Bohr magneton. In Fig. 3.2, we plot geff as a function of the angle θ, for both E ‖ x̂
and E ‖ ŷ (unit vectors along the x, y, z axes are denoted here by x̂, ŷ, ẑ). In both cases, geff is highly

anisotropic and tunable over a wide range of values by adjusting the magnitude of E. The tunability

is caused by two mechanisms which occur in the system for large |E|; the admixture of the e± states

to the effective lowest-energy subsystem increases while the spin-orbit length lSOI decreases. For very

small lSOI (lSOI � lg), the hole spin flips many times while moving through the QD and the resulting geff

starts to average out. The tunability is much stronger for E ‖ x̂ than for E ‖ ŷ. Note that geff is also

tunable by varying Vc(z). We find good agreement with the results given in Ref. [20], where gexp ≈ 1.02

was measured for B aligned with the NW axis with an accuracy of ∼30◦. We note, however, that clearly

different results for the g factor can be expected in QDs with very large occupation number, i.e., when

the hole-spin qubits are formed in an excited band.

3.4 Phonon-Mediated Decay of Hole-Spin Qubits

3.4.1 Effective Qubit Hamiltonian and Bloch-Redfield Theory

In the following, we are interested in the dynamics of the lowest-lying, Zeeman split states which we

decouple perturbatively from the higher-energy states. This is done by two consecutive Schrieffer-Wolff

transformations (SWTs) to account for the two different energy scales ∆ and ~ωg. The general form

of the SWT is H̃ = e−SHeS , where to lowest order S ≈ S1. We first remove the coupling between

the g± and e± states in the effective 1D picture using Sg1 . The hole-phonon coupling then transforms

according to Hh-ph − [Sg1 , Hh-ph] and we refer to its projection on g± as Hg
h-ph. In the second step,

we add harmonic confinement as introduced above and decouple the two lowest, Zeeman split states

|0〉 ≡ {|⇑〉 , |⇓〉} by another SWT using S
|0〉
1 . A necessary condition for this approach is that the energy

splittings obey ∆� ~ωg � ~ωB,Z , and the magnitude of E is restricted by 2C|E|eU/(lg∆)� ~ωg. The

latter condition is fulfilled for |E| � 1 V/µm. We obtain an effective Zeeman term HZ,eff = µBBeff · σ′

with Zeeman splitting ∆EZ,eff = 2µB |Beff|, where σ′ is a vector of Pauli matrices for the hole-spin qubit.

The effective hole-spin-phonon coupling is obtained via Hs-ph = Hg
h-ph− [S

|0〉
1 , Hg

h-ph], where Hg
h-ph is now

written in the basis given by the confinement. Projecting Hs-ph on |0〉 results in an effective coupling

Hs-ph,eff = µBδB ·σ′ with the fluctuating magnetic field δB(t) =
∑
λ,q [aλ(q)bq,λ(t) + H.c.]. The effective
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phonon branches F±1 and T (dashed). We find maximal values T−1
1,max(B ‖ ẑ) ≈ 11 ms−1 and T−1

1,max(B ‖ x̂) ≈ 60 s−1.

Note the nonmonotonic behavior of T−1
1 as a function of ωZ,eff. The NW and QD parameters are chosen as in Fig. 3.2.

The figure was provided by Franziska Maier.

Hamiltonian for the qubit subspace is then

Heff = HZ,eff +Hs-ph,eff = µB [Beff + δB(t)] · σ′. (3.11)

The spin relaxation rate in the Born-Markov approximation is given by the Bloch-Redfield approach

[40, 50, 51]

1

T1
= ninj

[
δij(δpq − npnq)J+

pq(ω)− (δip − ninp)J+
pj(ω)− δijεkpqnkI−pq(ω) + εipqnpI

−
qj(ω)

]
, (3.12)

where summation over repeated indices is assumed, n = Beff/|Beff| is the unit vector in the direction

of the effective magnetic field, and ~ω = ~ωZ,eff = ∆EZ,eff is the energy splitting of the considered

states. Furthermore, J+
ij (ω) = Re[Jij(ω) + Jij(−ω)] and I−ij (ω) = Im[Jij(ω) − Jij(−ω)], with Jij(ω) =

(2µ2
B/~2)

∫∞
0
dte−iωt〈δBi(0)δBj(t)〉 denoting the spectral function.

3.4.2 Decay Rates for Various Setup Geometries

In Fig. 3.3, we display T−1
1 for |E| = 0 and two different directions of B with respect to the wire, B ‖ ẑ

and B ‖ x̂. In the absence of electric fields, the spin-phonon coupling Hs-ph,eff depends only on the

coupling terms of HB,orb. For low ωZ,eff, i.e., the long-wavelength regime (qlg � 1), both curves are

proportional to ω
7/2
Z,eff. This behavior is valid for low temperatures (~ωZ,eff � kBT ) and will be replaced

by T−1
1 ∝ ω

5/2
Z,effT for ~ωZ,eff � kBT . The ω

7/2
Z,eff scaling contrasts the ω5

Z,eff behavior of electrons in

QDs [39–44]. For B ‖ ẑ, only the F±1 modes contribute significantly to T−1
1 . When B ‖ x̂, the F±1

contributions dominate for low ωZ,eff and, for the chosen QD geometry, are replaced by a dominating

contribution from the torsional mode T at |B| ≈ 150 mT (Fig. 3.3, dashed). This results in a double

peak whose relative height can be modified by changing lg or R and Rs. Most remarkably, for B ‖ x̂,

T−1
1 is several orders of magnitude smaller than for B ‖ ẑ. For the chosen QD geometry, T−1

1 reaches

maximal values T−1
1,max(B ‖ x̂) ≈ 60 s−1 and T−1

1,max(B ‖ ẑ) ≈ 11 ms−1. These rates are, depending on

the direction of B, comparable to or much smaller than those for electrons in InAs NW QDs [41].

Considering nonzero electric fields, we plot T−1
1 for E ‖ x̂ again forB ‖ ẑ andB ‖ x̂ (Fig. 3.4). We add

the corresponding curves for |E| = 0 (Fig. 3.4, dotted) to allow for comparison. For both orientations

of B, T−1
1 is enhanced significantly for larger ωZ,eff. This is due to phonons of the L mode coupling

|⇑〉 and |⇓〉 via a combination of HLKod
and HDR which dominates HR. Due to cylindrical symmetry,

applying E ‖ ŷ for B ‖ ẑ results in the same effect as described for E ‖ x̂. Remarkably, in stark contrast
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Figure 3.4. Relaxation rates T−1
1 for E ‖ x̂ with |E| = 0.1 V/µm for B ‖ x̂ (red, solid) and B ‖ ẑ (blue, solid). For

comparison we plot T−1
1 at |E| = 0 (dotted). We find maximal values T−1

1,max(B ‖ ẑ) ≈ 3.2 µs−1 and T−1
1,max(B ‖ x̂) ≈

5.8 µs−1. Rotating the electric field so that E ‖ ŷ yields the same curve for B ‖ ẑ. Remarkably, for B ‖ x̂ almost no

difference between the curves at E ‖ ŷ (dashed) and |E| = 0 (dotted) is observed. We use the NW and QD parameters

given in the caption of Fig. 3.2. The figure was provided by Franziska Maier.

to E ‖ B ‖ x̂, only minor changes with respect to the curve at |E| = 0 (Fig. 3.4, dotted) are observed

when E ‖ ŷ and B ‖ x̂ (Fig. 3.4, dashed). In the latter case, the dominant contributions of Hs-ph,eff are

already present in Hs-ph,eff for |E| = 0.

In both cases, |E| = 0 and |E| 6= 0, increasing the relative shell thickness γ shifts the T−1
1 curves

to slightly larger ωZ,eff and lowers the peak height; e.g., increasing γ from 0.3 to 0.7 reduces T−1
1 by a

factor ∼3. However, decreasing (increasing) R and Rs while keeping γ constant has no substantial effect

on T−1
1 aside from slight shifts to the right (left) on the ωZ,eff axis. Additionally, for |E| = 0 and for

E ‖ ŷ and B ‖ x̂, enhancing the confinement length lg lowers T−1
1,max since the short-wavelength regime

is reached for smaller ωZ,eff. This effect is quite large; for instance, raising lg from 60 to 100 nm reduces

T−1
1,max by factors between 10 and 100. However, for E ‖ x̂ and B ‖ ẑ or B ‖ x̂, increasing lg results

in larger T−1
1,max. From the analysis we conclude that there exist optimal configurations of B and E in

order to obtain long T1 in this type of NW QD. B should be applied perpendicular to the NW and the

optional E should lie perpendicular to both B and the NW. For vanishing B, as pointed out in Ref. [20],

two-phonon processes [32] might become relevant.

In the Bloch-Redfield framework, the decoherence time T2 is given by T−1
2 = (2T1)−1 +T−1

ϕ , where Tϕ

denotes the dephasing time [40, 51]. For |E| = 0, we find T2 = 2T1 because the corresponding spectral

function is superohmic and gives T−1
ϕ = 0. For |E| 6= 0, the SOI results in a nonzero dephasing term

T−1
ϕ 6= 0 and hence T2 < 2T1.

3.5 Conclusions

In conclusion, we have examined the effective Zeeman splitting and the spin dynamics for holes of lowest

energy in a Ge/Si core/shell NW QD. We reported a highly anisotropic effective g factor that is strongly

tunable by applying electric fields. We calculated relaxation rates and found particular configurations

of electric and magnetic fields which correspond to very long spin relaxation times. Furthermore, we

pointed out that the relative shell thickness and the QD confinement length influence the spin relaxation

time.
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Chapter 4

Circuit QED with Hole-Spin Qubits in

Ge/Si Nanowire Quantum Dots

Adapted from:

Christoph Kloeffel, Mircea Trif, Peter Stano, and Daniel Loss,

Phys. Rev. B 88, 241405(R) (2013).

We propose a setup for universal and electrically controlled quantum information processing with hole

spins in Ge/Si core/shell nanowire quantum dots (NW QDs). Single-qubit gates can be driven through

electric-dipole-induced spin resonance, with spin-flip times shorter than 100 ps. Long-distance qubit-qubit

coupling can be mediated by the cavity electric field of a superconducting transmission line resonator,

where we show that operation times below 20 ns seem feasible for the entangling
√
iSWAP gate. The

absence of Dresselhaus spin-orbit interaction (SOI) and the presence of an unusually strong Rashba-type

SOI enable precise control over the transverse qubit coupling via an externally applied, perpendicular

electric field. The latter serves as an on-off switch for quantum gates and also provides control over the

g factor, so single- and two-qubit gates can be operated independently. Remarkably, we find that idle

qubits are insensitive to charge noise and phonons, and we discuss strategies for enhancing noise-limited

gate fidelities.



4.1 Introduction

In the past decade, the idea of processing quantum information with spins in quantum dots (QDs) [1]

was followed by remarkable progress [2]. While the workhorse systems are highly advanced, such as self-

assembled (In)GaAs QDs [3–10] and negatively charged, lateral GaAs QDs [11–17], an emerging theme is

the search for systems that allow further optimization. In particular, Ge and Si have attracted attention

because they can be grown nuclear-spin-free, which eliminates a major source of decoherence [18–20].

Promising examples based on Ge/Si are core/shell nanowires (NWs) [21–31], self-assembled QDs [32–34],

lateral QDs [35, 36], and ultrathin, triangular NWs [37]. In addition, spin qubits formed in the valence

band (VB, holes) were found to feature long lifetimes [4, 31, 38–42]. Finally, new sample geometries such

as NW QDs are investigated, and have allowed for electric-dipole-induced spin resonance (EDSR) [43] in

InAs [44–46] and InSb [47] with spin-flip times down to several nanoseconds only.

Prime examples for novel qubits are hole spins in Ge/Si NW QDs [25, 26, 31, 42, 48], because they

combine all the advantages of group-IV materials, VB states, and strong confinement along two axes.

The Si shell provides a large VB offset ∼0.5 eV [22], induces strain, and removes dangling bonds from

the core. Furthermore, the holes feature an unusually strong Rashba-type spin-orbit interaction (SOI),

referred to as direct Rashba SOI (DRSOI), that is not suppressed by the band gap [48]. We show here

that these properties are highly useful for implementing spin qubits.

In this work, we propose a setup for quantum information processing with holes in Ge/Si core/shell

NW QDs. In stark contrast to previous systems [13, 43–47, 49], where the EDSR relies on conventional

Dresselhaus and Rashba SOI [50], the dynamics in our setup are governed by the DRSOI whose origin

fundamentally differs. We find that EDSR allows flipping of hole spins within less than 100 ps. Two-qubit

gates can be realized via circuit quantum electrodynamics (CQED), i.e., with an on-chip cavity [51–53],

where we estimate that operation times below 20 ns are feasible for
√
iSWAP. The long-range spin-spin

interactions [49, 54–56] enable upscaling. Compared to the original proposal for electron spins in InAs

[49], which was recently followed by encouraging results [46], we find several new and striking features.

First, because of bulk inversion symmetry, the SOI and the quantum gates can be precisely controlled by

perpendicular electric fields. In particular, these fields serve as on-off switches for two-qubit operations

performed on any two spins in the cavity. Second, a strong electric-field-dependence of the g factor allows

fine tuning and independent control of all quantum gates. Third, the large DRSOI leads to remarkably

short operation times. Finally, we find that noise becomes an issue during quantum operations only, and

we discuss how noise-limited gate fidelities can be enhanced. While this chapter summarizes our main

results, the supplementary information [57] explains all the derivations and provides the details of the

theory.

4.2 Setup and Model Hamiltonian

Figure 4.1a depicts the setup we consider. Electric gates (not shown) form a Ge/Si NW QD with

harmonic confining potential V (z) = ~ωgz2/
(
2l2g
)

along the wire axis z, where ~ωg is the level spacing,

lg =
√

~/(mgωg) is the confinement length, and mg is the hole mass along z in the subband of lowest

energy. An electric (magnetic) field Ey (By) along y controls the DRSOI (Zeeman splitting). The electric

field Ez is induced either externally, Ez = Eez,0 cos(ωact), or by the cavity, Ez = Ecz,0(a† + a), where ωac

is the angular frequency, Ee,cz,0 is the amplitude, and a† (a) is the creation (annihilation) operator for the

quasi-resonant cavity mode [51, 57].

When the Ge/Si NW QD of core (shell) radius R (Rs) is elongated, lg � R, the low-energetic hole

states are well described by the Hamiltonian

H = H1D + V (z)− eEzz. (4.1)
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Figure 4.1. Proposed setup. (a) An electric (magnetic) field Ey (By) is applied perpendicular to the Ge/Si NW QD. Ac

fields Ez(t) shift the confining potential along the NW axis z. (b) When placed between the center conductor (C) and the

ground plane (G) of a transmission line resonator, the hole-spin qubits (red arrows) can interact via the cavity field Ec,

with the interaction strengths controlled by local electric fields E
(i)
y . In the sketch, a two-qubit gate is performed between

qubits 2 and 4. The setup does not require equidistant QDs and is robust against misalignment.

Here e is the elementary positive charge and H1D is the effective one-dimensional (1D) Hamiltonian

derived in Ref. [48]. For our setup, one finds H1D = HLK +HBP +HB +HDR +HR, with

HLK +HBP = A+ +A−τz + Ckzτyσz, (4.2)

HB = µBBy (−X2σy −X1τzσy + Lkzτxσz) , (4.3)

HDR = −eEyUτy. (4.4)

The Pauli operators τi and σi act on the transverse band index {g, e} and the spin index {+,−}, re-

spectively. Equation (4.2), where A± = ~2k2
z(m−1

g ±m−1
e )/4±∆/2 and ∆ = 0.73 ~2/(mR2) + ∆BP(γ),

combines the Luttinger-Kohn (LK) [58, 59] with the Bir-Pikus (BP) Hamiltonian [60], which describe,

respectively, the kinetic energy and the effects of strain. The strain-induced energy ∆BP(γ) increases with

γ = (Rs−R)/R, and we note that 10 meV . ∆ . 25 meV in typical Ge/Si NWs with R ∼ 5–10 nm and

γ ∼ 10%–50%. Equation (4.3), HB , accounts for the orbital effects and the Zeeman coupling due to By.

The SOI comprises the DRSOI HDR induced by Ey, Eq. (4.4), and the much smaller standard Rashba

SOI (RSOI) HR due to Ey and Ez. For the explicit form of HR, see Appendix C. The parameters for

Ge are [48] C = 7.26 ~2/(mR), U = 0.15R, X1 ≡ (K +M)/2, X2 ≡ (K −M)/2, L = 8.04R, K = 2.89,

M = 2.56, mg = 0.043m, me = 0.054m, m is the bare electron mass, and ~kz = −i~∂z is the canonical

momentum along z.

4.3 Effective Hamiltonian for the Hole-Spin Qubit

Our main result is the derivation of the effective 2×2 Hamiltonian for the hole-spin qubit,

Hq =
EZ
2
σ̃z + Tqσ̃x. (4.5)

Hq describes the lowest-energy subspace of H, Eq. (4.1). Its parameters are the Zeeman splitting EZ =

|gµBBy| ≡ ~ωZ , with g factor g, and the transverse coupling Tq = ν̄Ez. Introducing νe,c = ν̄Ee,cz,0, one

obtains Tq = νe cos(ωact) for EDSR and Tq = νc(a
† + a) for the cavity field. The tilde over the σ̃i
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denotes that the Pauli operators act on the two QD states forming the qubit. Both EZ and ν̄ are chosen

here as positive. The derivation of Hq comprises several basis transformations, two of which we expand

perturbatively [57]. While the resulting formulas (“model”) for EZ and ν̄ are too lengthy to be displayed

here, they can be very well approximated for realistic Ge/Si NW QDs. Performing a linear expansion in

By and neglecting HR completely, we find (“approximation”)

ν̄ ' 2EZ |Ey|e2UC

(~ω̃g)2∆̃
, (4.6)

g ' 2

(
K̃ − LC∆

l̃2g∆̃
2

)
exp

[
−

(
2eUCEy

l̃g~ω̃g∆̃

)2 ]
, (4.7)

where

K̃ = K −
(K +M)E2

y(
∆̃+∆
2eU

)2

+ E2
y

, (4.8)

∆̃ =
√

∆2 + (2eUEy)2 is the effective subband spacing,

~ω̃g = ~ωg

√
1− 2mgC2∆2

~2∆̃3
(4.9)

is the effective level splitting, and l̃g = lg
√
ω̃g/ωg. Comparing with the exact diagonalization of H

(“numerics”) [57], we find that Eqs. (4.6) and (4.7) provide a quantitatively reliable description of the

qubit. Considering the complex character of holes and the nontrivial setup with three control fields, the

derived formulas are surprisingly simple and therefore provide insight into the role of various parameters.

Next, we demonstrate the usefulness of our results by quantifying the basic characteristics of these qubits,

such as operation times and lifetimes, and by identifying the most suitable operation schemes.

4.4 Ultrafast Single-Qubit Gates and Tunable g Factors

We consider a Ge/Si NW QD with R = 7.5 nm, lg = 50 nm, and ∆ = 16 meV based on Rs ' 10 nm.

At Ey = 0, g ∼ 2K and ~ω̃g = 0.56 meV ≡ ~ω̃0. When 2KµB |By| � ~ω̃0, a linear expansion in By

applies and both EZ ∝ |By| and ν̄ ∝ |By|. In Fig. 4.2 (top), we plot ν̄/|By| as a function of Ey and find

excellent agreement between numerical and perturbative results. The electrical tunability is remarkable.

The coefficient ν̄ goes from the exact zero at Ey = 0 through a peak at Ey ' 1.8 V/µm into a decreasing

tail. Most striking is the magnitude, ν̄/|By| ' 10 nm e/T, which allows for ultrafast single-qubit gates

through EDSR. When ωac = ωZ , a π rotation on the Bloch sphere requires the spin-flip time tflip = ~π/νe
[2]. For Eez,0 = 103–104 V/m and By = 0.5 T, for instance, νe ' 5–50 µeV and tflip ∼ 400–40 ps, an

extremely short operation time.

The decrease of ν̄ at large |Ey| is related to the g factor decay. As shown in Fig. 4.3 (top), g decreases

from g ' 5.5 at Ey = 0 toward g ∼ 0 when Ey is increased to several V/µm. This tunability was already

observed numerically in Ref. [42], and our model provides an explanation for the rapid decay of g in

this setup. First, as seen in Eqs. (4.7) and (4.8), the main contribution K̃ changes from K toward a

much smaller value (K −M)/2 when Ey strongly mixes the subbands g and e. In addition, the g factor

averages out to zero when the spin-orbit length becomes much smaller than l̃g [42, 49, 61], leading to

the exponential suppression. We note that a similar tunability of g was recently measured [34] in SiGe

nanocrystals.

For the QD under study, the linear expansion applies well for |By| . 0.5 T (2KµB |By| . ~ω̃0/3).
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Figure 4.2. Electrical tunability of ν̄ for the QD in the text. Solid blue (dotted red) curves result from the numerical

calculation (effective model) [57]; dashed black lines correspond to Eq. (4.6). The thin blue lines (RSOI only, HDR = 0)

illustrate that much stronger Ey would be required for realizing a given ν̄ with the conventional RSOI. Top: Result for

|By | . 0.5 T, where a linear expansion in By applies. Bottom: By = 1.5 T, beyond the linear regime. Inset: Height and

position of the peak as a function of By . For Ey = 0, a level crossing in the numerics occurs at By ' 1.8 T (vertical dashed

line). The achievable operation times scale with 1/ν̄.

However, it may also be useful to operate the qubit at rather strong By. In Fig. 4.2 (bottom), we plot

ν̄ for the example By = 1.5 T. As expected, the perturbative results show deviations from the exact

calculation as EZ approaches the orbital level spacing. Nevertheless, they remain correct qualitatively.

Compared to |By| . 0.5 T, the simulated ν̄ peaks at smaller |Ey| and the maximum value, ν̄ ' 16 nm e,

is even greater than the one extrapolated from Fig. 4.2 (top). For Eez,0 = 103–104 V/m, tflip ∼ 100–10 ps.

As plotted in the inset of Fig. 4.2, the trends found for By = 1.5 T are enhanced as By approaches the

value at which neighboring levels cross, allowing the realization of ν̄ > 20 nm e. Figure 4.3 (bottom)

shows that the perturbative results for EZ are reliable even at high magnetic fields.

4.5 Two-Qubit Gates via Circuit QED

Thus far, we have identified three major features: a tunable g factor, a strong transverse coupling

driven by Ez, and precise electrical control via Ey. When combined, these features prove ideal for

implementing two-qubit gates via CQED. The proposed setup is sketched in Fig. 4.1b. Ge/Si NWs are

placed perpendicular to the 1D resonator and host a qubit each inside the cavity. Because the ith qubit

can only couple to the cavity electric field when E
(i)
y 6= 0, the fields E

(i)
y can be used to control qubit-

cavity interactions and, hence, two-qubit gates. In addition, the E
(i)
y provide precise control over the

detunings ∆
(i)
q = E

(i)
Z −~ωc, where ~ωc is the energy of the cavity mode. This allows the implementation

of fast quantum gates through fine tuning of ∆
(i)
q . Moreover, as illustrated in Fig. 4.4, all single- and

two-qubit gates can be performed independently.

Quantitative information about the cavity field is summarized in Refs. [51, 57]. For the mode of

lowest energy, we estimate [57] that eEcz,0/(~ωc) ∼ 10−2/µm is feasible by decreasing the mode volume

compared to Refs. [51–53]. From Fig. 4.4, we deduce EZ ' 0.35 meV at maximal ν̄ for By = 1.5 T. With

Ecz,0 = 3 V/m, νc ' 50 neV. Thus, Rabi oscillations in the qubit-cavity system require ~π/νc ∼ 40 ns

for a full cycle at resonance. When ν
(i)
c /|∆(i)

q | < 1, the coupling between qubits i and j is determined by
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Figure 4.3. The g factor [|By | . 0.5 T (top)] and Zeeman splitting [By = 1.5 T (bottom)] as a function of Ey for the

parameters in the text. Solid blue (dotted red) lines are calculated numerically (perturbatively) [57]; dashed black lines

result from Eq. (4.7). The thin blue lines (RSOI only, HDR = 0) confirm that the strong electrical tunability results from

the DRSOI, Eq. (4.4). Inset: EZ at the Ey for which ν̄ is maximal (see inset of Fig. 4.2).

the transverse spin-spin interaction

J (i,j)
xy = ν(i)

c ν(j)
c

(
1

∆
(i)
q

+
1

∆
(j)
q

)
, (4.10)

which is the basis for the entangling
√
iSWAP gate [49, 51, 54, 57, 62]. For numerical estimates, we

set ν
(i)
c = ν

(j)
c = νc, ∆

(i)
q = ∆

(j)
q = ∆q, and J

(i,j)
xy = Jxy = 2ν2

c /∆q. Because corrections to Jxy are

on the order of ν4
c /∆

3
q only, we allow for νc/|∆q| ' 0.1–0.5, which results in short

√
iSWAP times,

~π/|2Jxy| ∼ 100–20 ns. At larger By (and/or larger Ecz,0), these can be reduced further.

4.6 Qubit Lifetimes and Gate Fidelities

In general, qubits that can be manipulated electrically are also sensitive to charge noise [17, 63]. Remark-

ably, idle qubits in our setup are insulated from the environment; at Ey = 0 = Ez, all first derivatives

of EZ and Tq with respect to Ey and Ez vanish, cavity fields are negligible due to off-resonance, and

relaxation via phonons is suppressed [42] for the magnetic field B along y. At maximal ν̄, we derive [57]

1/T el
1 = 2κ2

z ν̄
2RzEZ/~2, (4.11)

1/T el
ϕ = κ2

y

(
∂EyEZ

)2
RykBTy/~2, (4.12)

from the Bloch-Redfield theory [64–66] and the spectral functions for Johnson-Nyquist noise [67–69]. Here

T el
1 (T el

ϕ ) is the relaxation (dephasing) time due to electrical noise, Rα (Tα) is the resistance (temperature)

of the gate that generates Eα along α ∈ {y, z}, and the κα convert fluctuations in the gate voltages to

fluctuations in Eα. Considering EZ > kBTα, we find T el
ϕ � T el

1 for the values from Fig. 4.4, which

implies T el
2 = 2T el

1 ∝ 1/(κ2
zE

3
Z) for the decoherence time. Thus, the setups should be designed such that

κz is small. Assuming Rα = 102 Ω and κz = 0.1/µm, we obtain T el
2 = 1 ms (30 µs) for By = 0.5 T

(1.5 T). If gate fidelities are limited by charge noise, they can be increased by lowering EZ or κz or even

by operation away from maximal ν̄. If, instead, the fidelities are limited by phonons, they can be much
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Figure 4.4. Basic operation scheme with the numerical results from Figs. 4.2 and 4.3. When Ey = 0 (idle), the qubit features

long lifetimes. Two-qubit operations are envisaged at Ey with maximal ν̄ (cavity). Single-qubit gates can be performed

independently by applying a different Ey (EDSR) for which all cavity modes are far off-resonant. The associated change in

the g factor (EZ) is indicated by ∆g (∆EZ). For |By | . 0.5 T (left), ν̄ is maximal at Ey ' 1.8 V/µm, where g ' 3.4 and

∂Eyg ' −1.6 µm/V. For By = 1.5 T (right), ν̄ peaks at Ey ' 1.1 V/µm, where EZ ' 0.35 meV and ∂EyEZ ' −0.13 nm e.

enhanced in the short-wavelength regime at larger EZ [42, 49, 65, 70]. Noise that is slow compared to

the operation times can be dynamically decoupled [2, 17, 71, 72].

4.7 Results for Different Setups

We studied variants in the setup geometry. For B along x, ν̄ = 0 even at Ey 6= 0. Although large ν̄ are

possible for B along z, such a setup requires stronger B due to the smaller g factor [31, 42] and exact

alignment of all NWs, which is challenging. When the ac fields are perpendicular to the NW, ν̄ becomes

several orders of magnitude weaker because of lg � R. Hence, the setup we propose in Fig. 4.1 is the

most favorable one.
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[4] B. D. Gerardot, D. Brunner, P. A. Dalgarno, P. Öhberg, S. Seidl, M. Kroner, K. Karrai, N. G. Stoltz,

P. M. Petroff, and R. J. Warburton, Nature (London) 451, 441 (2008).

[5] T. M. Godden, S. J. Boyle, A. J. Ramsay, A. M. Fox, and M. S. Skolnick, Appl. Phys. Lett. 97,

061113 (2010).

[6] K. Müller, T. Kaldewey, R. Ripszam, J. S. Wildmann, A. Bechtold, M. Bichler, G. Koblmüller, G.

Abstreiter, and J. J. Finley, Sci. Rep. 3, 1906 (2013).

[7] A. N. Vamivakas, C.-Y. Lu, C. Matthiesen, Y. Zhao, S. Fält, A. Badolato, and M. Atatüre, Nature
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Chapter 5

Acoustic Phonons and Strain in

Core/Shell Nanowires

Adapted from:

Christoph Kloeffel, Mircea Trif, and Daniel Loss,

Phys. Rev. B 90, 115419 (2014).

We study theoretically the low-energy phonons and the static strain in cylindrical core/shell

nanowires (NWs). Assuming pseudomorphic growth, isotropic media, and a force-free wire surface,

we derive algebraic expressions for the dispersion relations, the displacement fields, and the stress and

strain components from linear elasticity theory. Our results apply to NWs with arbitrary radii and arbi-

trary elastic constants for both core and shell. The expressions for the static strain are consistent with

experiments, simulations, and previous analytical investigations; those for phonons are consistent with

known results for homogeneous NWs. Among other things, we show that the dispersion relations of the

torsional, longitudinal, and flexural modes change differently with the relative shell thickness, and we

identify new terms in the corresponding strain tensors that are absent for uncapped NWs. We illustrate

our results via the example of Ge/Si core/shell NWs and demonstrate that shell-induced strain has large

effects on the hole spectrum of these systems.



5.1 Introduction

In the past years, it has been demonstrated that the performance of nanowires (NWs) can greatly benefit

from the presence of a shell. For instance, surface passivation is an option to reduce scattering, and

measurements on InAs/InP core/shell NWs have revealed significantly higher mobilities than in uncapped

InAs NWs [1]. Furthermore, experiments on various core/shell NWs [2–6] have demonstrated that adding

a shell can be very useful for optical applications, a feature that is well-known, e.g., from colloidal quantum

dots (QDs) [7, 8]. In Ge/Si core/shell NWs, which recently attracted attention, the shell is beneficial

for several reasons. In particular, it provides a large valence band offset at the interface, leading to a

strongly confined hole gas inside the Ge core without the need for dopants [9, 10].

Due to lattice mismatch, core/shell heterostructures are usually strained, which can have important

consequences on their electrical and optical properties. For instance, strain may affect the lifetimes

of spin qubits [11, 12] and has already been used to tune photons from separate QDs into resonance

[13, 14]. The reason for such effects lies in the strain dependence of the Hamiltonian of the electronic

states [15]. For the core/shell NWs of Refs. [2–5], a strong and strain-based correlation between the

shell thickness (or composition) and the wavelength of the emitted photons has already been measured.

In addition, the shell-induced strain may lift quasidegeneracies in the spectrum of NWs and NW QDs

[16]. Considering these and other possibly relevant consequences, knowledge of the strain distribution

in core/shell NWs is crucial. Exact calculations of the lattice displacement, however, typically require

numerics [5, 17, 18]. Analytical results are rare and require simplifying assumptions that may or may not

be justified, depending on the choice of materials and on the effects that one is interested in. The model

of Ref. [18], for instance, assumes purely uniaxial strain along the NW axis. The results of Refs. [19, 20]

apply when the core and shell materials are isotropic and have the same elastic properties. To our

knowledge, the most general formulas provided so far are those of Ref. [21], assuming isotropic media

and requiring only Poisson’s ratio to be the same in core and shell.

A particularly attractive feature of NWs is their potential to host electrically controllable spin qubits

[22]. While bare InAs and InSb NWs have been the workhorse systems [23–27], spin qubits may also be

implemented in core/shell NWs such as Ge/Si [28–31], for which a large degree of external control has

been predicted [32]. As electrons and holes interact with lattice vibrations, understanding of the quantum

mechanical behavior of the system requires knowledge of the phonon bath. For instance, it is well-known

that phonons can be dominant decay channels for spin qubits [33–38]. The shell of core/shell NWs not

only induces static strain, it also affects the phonon modes. While phonons in homogeneous NWs have

been discussed in detail in the literature [39, 40], we are not aware of analytical results for NWs with a

finite shell.

In this work, we derive algebraic expressions for the static strain and the low-energetic phonon modes

in core/shell NWs. Assuming isotropic materials and a force-free wire surface, we allow for arbitrary

core and shell radii, independent elastic properties in core and shell, and take all components of the

stress and strain tensors into account. Our results for the phonons illustrate that the shell notably

affects the phonon-based displacement fields and, among other things, that the dispersion relations of

the longitudinal, torsional, and flexural modes change differently with the shell thickness. In particular,

new terms arise in the corresponding strain and stress tensors that are absent in homogeneous NWs. We

illustrate our results via the example of Ge/Si NWs, given the fact that the coherence of their interfaces

has already been demonstrated experimentally [41, 42]. The derived formulas for the static strain can

be considered a further extension of those listed in Ref. [21] and are consistent with experiments [2–

5, 18, 41, 42] and numerical simulations [3, 5, 17, 18]. We calculate the effects of the static strain on the

low-energy hole spectrum of Ge/Si NWs, complementing the analysis of Ref. [16].

The chapter is organized as follows. In Sec. 5.2 we introduce the notation and recall relevant relations

from linear elasticity theory. The results for the static strain are derived in Sec. 5.3, where we also
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investigate the effects of strain on the spectrum of Ge/Si NWs. Having summarized the low-energetic

phonon modes in homogeneous NWs in Sec. 5.4, we extend these results to the case of core/shell NWs

in Sec. 5.5, followed by concluding remarks in Sec. 5.6. Appendix D contains useful relations and further

details of the calculations. In particular, providing also a comparison to the case of bulk material,

we discuss the displacement operator and the normalization condition for phonons in core/shell and

core/multishell NWs, as quantization is mandatory for quantum mechanical analyses.

5.2 Linear Elasticity Theory

In this section we recall relevant relations from linear elasticity theory and introduce the notation used

throughout this chapter. The information summarized here is carefully explained in Refs. [39, 40], and

we refer to these for further details.

In a bulk semiconductor without additional forces, the atoms form a periodic and very well structured

lattice, characterized by the lattice constant a. The displacement of an atom X from its original position

rX is described by the displacement vector u(rX). It may be caused by externally applied forces, or, as

in the case of core/shell NWs, by an interface between materials with different lattice constants. In the

continuum model, the displacement field u(r) is directly related to the strain tensor elements εij via

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
, (5.1)

leading to strain-induced effects on the conduction and valence band states [15]. The position is denoted

here by r =
∑
i xiei, where the three orthonormal basis vectors ei are the unit vectors along the or-

thogonal axes i. Important quantities besides the strain are the stress tensor elements σij . These are of

relevance as σijdA corresponds to the force along ei experienced by an area dA normal to ej . We note

that εij = εji and σij = σji, which implies that the strain and stress tensors are fully described by three

diagonal and three off-diagonal elements each.

For semiconductors with diamond (Ge, Si, . . . ) or zinc blende (GaAs, InAs, . . . ) structure, the relation

between stress and strain is given by

σ11

σ22

σ33

σ23

σ13

σ12


=



c11 c12 c12 0 0 0

c12 c11 c12 0 0 0

c12 c12 c11 0 0 0

0 0 0 c44 0 0

0 0 0 0 c44 0

0 0 0 0 0 c44





ε11

ε22

ε33

2ε23

2ε13

2ε12


, (5.2)

where the cij are the elastic stiffness coefficients and {1, 2, 3} are the main crystallographic axes. Cal-

culations with the exact stiffness matrix often require elaborate numerical analyses, and it is therefore

common to replace the stress-strain relations by those of an isotropic material. This simplification usu-

ally results in good approximations when compared with the precise simulations [39, 40]. The elastic

properties of such a material are fully described by the two Lamé parameters λ and µ, which are found

from Young’s modulus Y (often denoted by E) and Poisson’s ratio ν through

λ =
Y ν

(1 + ν)(1− 2ν)
, (5.3)

µ =
Y

2(1 + ν)
. (5.4)

Considering the limit of isotropic media, we thus replace the stiffness coefficients of Eq. (5.2) by c12 = λ,
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c44 = µ, and c11 = 2µ + λ. The relations between stress and strain are now the same for arbitrarily

rotated coordinate systems. Hence, referring to NWs, we obtain

σrr

σφφ

σzz

σφz

σrz

σrφ


=



2µ+ λ λ λ 0 0 0

λ 2µ+ λ λ 0 0 0

λ λ 2µ+ λ 0 0 0

0 0 0 µ 0 0

0 0 0 0 µ 0

0 0 0 0 0 µ





εrr

εφφ

εzz

2εφz

2εrz

2εrφ


, (5.5)

where

er = ex cosφ+ ey sinφ, (5.6)

eφ = −ex sinφ+ ey cosφ, (5.7)

and ez = ex × ey = er × eφ are the orthonormal basis vectors for cylindrical coordinates r, φ, and z.

The vector ez is oriented along the symmetry axis of the NW, while er and eφ point in the radial and

azimuthal direction, respectively. From

r = rer + zez = xex + yey + zez (5.8)

it is evident that the Cartesian coordinates x and y are related to r and φ through x = r cosφ and

y = r sinφ (the z axis is the same in both coordinate systems). We wish to emphasize that we use

r =
√
x2 + y2 (5.9)

throughout this chapter in order to avoid confusion with the density ρ, and so r 6= |r|. Detailed infor-

mation about the stress and strain tensor elements in Cartesian and cylindrical coordinates is provided

in Appendixes D.2.2 and D.2.3. Finally, we note that Eq. (5.5) is independent of the growth direction of

the NW because of the isotropic approximation.

5.3 Static Strain in Core/Shell Nanowires

An interface between two materials of mismatched lattice constants induces a static strain field. In

core/shell NWs, such an interface is present at the core radius Rc. When the lattice constants in core

(ac) and shell (as) are different, the system will tend to match these for reasons of energy minimization.

For instance, ac = 5.66 Å and as = 5.43 Å for Ge/Si core/shell NWs [43, 44], and so the shell tends to

compress the core lattice, strongly affecting the properties of the confined hole gas [15, 16]. Below, we

analyze the strain in core/shell NWs and derive algebraic expressions for both the inner and outer part

of the heterostructure. The resulting static strain is found by assuming a coherent interface between the

two materials, i.e., pseudomorphic growth. We consider the limit of an infinite wire, which applies well

away from the ends of the NW [17] when the length L is much larger than the shell radius Rs (L� Rs).

Our approach is similar to those used previously [17–21].
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5.3.1 Boundary Conditions

When the strain changes slowly on the scale of the lattice spacing, the displacement field leads to the

distorted lattice vectors [17]

lc,s(r,n) =
∑
i

ei
∑
j

(
δij +

∂uc,si (r)

∂xj

)
njac,s (5.10)

when viewed from an atom at position r + uc,s(r) in the core (c) or shell (s), respectively, where ei

are the orthonormal basis vectors of the lattice, n is a vector with integer components ni, and δij is

the Kronecker delta. Pseudomorphic strain requires the components of the distorted lattice vectors in

core and shell that are parallel to the interface to match at the core-shell transition. Thus t · lc = t · ls,
where t stands for an arbitrary tangent to the core-shell interface. Using cylindrical coordinates, the two

orthogonal directions eφ and ez are the basis vectors for any t, which results in the boundary conditions

eφ · lc = eφ · ls and ez · lc = ez · ls at radius Rc. Furthermore, the core-shell transition needs to be

spatially matched in the radial direction, i.e., there should be no unrealistic gaps or overlaps between the

two materials at the interface.

In order to ensure pseudomorphic strain, we start from an initial configuration where the shell is

unstrained and the core is highly strained, such that the lattice constant of the core matches the one

in the shell [17, 45]. Of course, this initial arrangement is unstable, and so the system will relax into a

stable and energetically favored configuration. Considering the continuum limit, the requirements for a

coherent interface at r ' Rc can now be summarized in a simple form [46],

ũc(Rc, φ, z) = ũs(Rc, φ, z), (5.11)

where the ũc,s, in contrast to the uc,s of Eq. (5.10), denote the displacement from the initially matched

configuration. That is,

uc(r) = ũc(asr/ac) +
as − ac
ac

r (5.12)

and us(r) = ũs(r). As illustrated in Eq. (5.12), the displacement field uc(r) in the core can be described

by a sum of two parts. When the lattice constant changes from ac to as, the term (as/ac − 1)r shifts an

atom that is originally located at r to its new position asr/ac. Additional displacement from this new

position is then accounted for by ũc(asr/ac). Consequently, the strain tensor elements εc,sij (r) in the core

and shell read

εc,sij (r) =
as

2ac,s

[
∂ũc,si (r′)

∂x′j
+
∂ũc,sj (r′)

∂x′i

]
r′ = asr/ac,s

+
as − ac,s
ac,s

δij , (5.13)

where r′ =
∑
i x
′
iei. The resulting strain tensor εc,s(r) is linearly related to the stress tensor σc,s(r) via

the Lamé constants [Eq. (5.5)]. As additional boundary conditions, the stress must be continuous at the

interface [46] and we assume that the shell surface is free of forces,

σc(Rc, φ, z)er = σs(Rc, φ, z)er, (5.14)

σs(Rs, φ, z)er = 0. (5.15)

Next, using the above-mentioned boundary conditions, we derive algebraic expressions for the static strain

in core/shell NWs.

79



5.3.2 Analytical Results

From symmetry considerations, the displacement in both core and shell must be of the form

ũp = ũpr(r)er + ηpz(r)zez, (5.16)

where we introduced p ∈ {c, s} for convenience. For the displacement field to be static, the differential

equations ∑
j

∂σpij
∂xj

= 0 (5.17)

need to be solved in the absence of body forces [40], and in doing so we find

ũpr = αpr +
βp
r
− δp(λp + µp)

2(λp + 2µp)
r ln r, (5.18)

ηpz = γp + δp ln r, (5.19)

where λc,s and µc,s are the Lamé parameters in the core and shell, respectively. The coefficients αc,s to

δc,s are to be determined from the boundary conditions. Since the displacement must be finite in the

center, we first conclude that βc = 0 = δc. Second, also δs = 0 because σsrz ∝ δsz/r must vanish at the

surface [Eq. (5.15)], and so the ηc,sz = γc,s are constants. Consequently, one obtains

γs = εszz =
ae − as
as

, (5.20)

with ae as the resulting (equilibrium) lattice constant in the z direction. From the boundary conditions

listed in Eqs. (5.11), (5.14), and (5.15), we can express all nonzero coefficients

γc = γs, (5.21)

βs = (αc − αs)R2
c , (5.22)

and αc,s in terms of ae only. The latter can finally be found by minimizing the elastic energy of the

system.

Using Eq. (5.13), the above-mentioned results for ũc,s, and the equations of Appendix D.2.3 for the

strain tensor in cylindrical coordinates, one finds

εcrr = εcφφ =
as
ac
αc + ε0, (5.23)

εczz =
as
ac
γc + ε0 =

ae − ac
ac

(5.24)

in the core, and

εsrr = αs −
βs
r2
, (5.25)

εsφφ = αs +
βs
r2
, (5.26)

εszz = γs =
ae − as
as

(5.27)

in the shell, with 0 = εc,srφ = εc,srz = εc,sφz . The parameter

ε0 =
as − ac
ac

(5.28)
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introduced in Eqs. (5.23) and (5.24) is the relative mismatch of the lattice constants. Remarkably,

Eqs. (5.23) and (5.24) imply that the stress and strain are constant within the core, which is consistent

with simulations [5, 17, 18]. Furthermore, we note that εcrr = εcφφ = εcxx = εcyy. Below, we outline the

calculation of ae and provide our final results.

The elastic energy density in an isotropic solid is [40]

F =
1

2

∑
i,j

σijεij =
λ

2
[Tr(ε)]

2
+ µ

∑
i,j

ε2ij , (5.29)

where Tr(ε) =
∑
i εii is the trace of the strain tensor, and

U =

∫
V

d3rF (r) (5.30)

is the elastic energy of an object with volume V . For the static strain discussed in this section, the elastic

energy density Fc in the core is constant and Fs in the shell depends solely on the coordinate r. The

elastic energy of the NW can therefore be calculated via

U = 2πL

(
R2
cFc
2

+

∫ Rs

Rc

drrFs(r)

)
. (5.31)

By imposing the condition ∂U/∂ae = 0 in order to find the energetically favored configuration, we obtain

algebraic expressions for ae and, thus, for all previously discussed quantities. As expected, these are not

affected by the length of the wire, since U ∝ L for the regime L � Rs considered here. Moreover, the

coefficients αc,s and γc,s do not depend on the absolute values of Rc and Rs. Instead, they depend on

the relative shell thickness

γ =
Rs −Rc
Rc

. (5.32)

More precisely, it is possible to write the dependence of αc,s and γc,s on the radii in terms of

γ̃ = γ2 + 2γ =
R2
s −R2

c

R2
c

(5.33)

only, which is the ratio between the shell and core area in the cross section. Similarly, the coefficients αc,s,

βs, and γc,s do not depend on the absolute values of the lattice constants ac and as, but on the relative

lattice mismatch ε0 [Eq. (5.28)]. We note that |ε0| � 1, which is important for the linear elasticity theory

of this work to hold.

The full results are rather lengthy. Nevertheless, they can be very well approximated through an

expansion in the small parameter ε0. Neglecting corrections of order ε20 and rewriting the results in a

convenient form, we obtain

αs = − ε0ξc
2Dstr

[
µc(2µs − λs) + (2µ2

s − λsµc)γ̃
]
, (5.34)

βs = −R
2
cε0ξcξs
2Dstr

[
µc + (µc + µs)γ̃ + µsγ̃

2
]
, (5.35)

γs = − ε0ξc
Dstr

[
µc(2µs + λs) + (λsµc + µsµc + µ2

s)γ̃
]
, (5.36)

where we defined

ξp = 2µp + 3λp. (5.37)
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The denominator is

Dstr = µcξc(2µs + λs) +
[
ξc(λsµc + µsµc + µ2

s) + ξsµs(2µc + λc)
]
γ̃ + µsξs(λc + µc + µs)γ̃

2. (5.38)

Inserting αc = αs + βs/R
2
c , γc = γs, and the above-listed expressions into Eqs. (5.23) and (5.24), and

neglecting again terms of order ε20, one finds

εc⊥ = εcrr = εcφφ =
ε0ξsµs
2Dstr

[
(2µc − λc)γ̃ + (2µs − λc)γ̃2

]
, (5.39)

εczz =
ε0ξsµs
Dstr

[
(2µc + λc)γ̃ + (λc + µc + µs)γ̃

2
]

(5.40)

for the strain in the core.

The expressions derived in this work are more general than those provided previously [18–21] and may

be interpreted as a further extension of those in Ref. [21]. Indeed, by writing the Lamé parameters λc,s

and µc,s in terms of Young’s modulus Yc,s and Poisson’s ratio νc,s for core and shell [Eqs. (5.3) and (5.4)],

we find that our results are exactly identical to those of Ref. [21] for the case νc = νs assumed therein.

From the ratio of Eqs. (5.39) and (5.40),

εc⊥
εczz

=
2µc − λc + (2µs − λc)γ̃

4µc + 2λc + 2(λc + µc + µs)γ̃
, (5.41)

we find that typically |εczz| > |εc⊥|, in agreement with numerical results [3, 5, 17, 18]. Our formulas also

feature the correct limits. For instance, we obtain ae → ac for γ → 0 as expected, and so the strain in

the core vanishes for a negligibly thin shell. In the limit of an infinite shell (γ →∞), our formulas yield

ae → as, ε
c
zz → ε0, and

lim
γ→∞

εc⊥ =
ε0(2µs − λc)

2(λc + µc + µs)
+O(ε20), (5.42)

which corresponds exactly to the previously studied case of a wire embedded in an infinite matrix [47].

When switching to Cartesian coordinates, we obtain εsxy = −βs sin(2φ)/r2, which seems consistent with

numerics [17]. As pointed out in Ref. [17], where core/shell NWs with anisotropic materials have been

investigated, also other off-diagonal strain tensor components may be nonzero in reality. However, these

were found to be very small, particularly in the core.

5.3.3 Results for Ge/Si Core/Shell Nanowires

We conclude our discussion of the static stress and strain fields by applying our results to the example of

Ge/Si core/shell NWs, demonstrating that the strain can have major effects on the electronic properties

of a system. As illustrated in this example, the strain is usually not negligible, and so our formulas

derived for both core and shell may prove very useful for a wide range of material combinations.

Ge/Si core/shell NWs have attracted attention because they host strongly confined hole states inside

their cores [9]. Thus, we focus here on the static strain in the core and discuss its effects on the holes

in more detail. The lattice mismatch for Ge/Si core/shell NWs is ε0 = −0.040 [43, 44], and the Lamé

constants, listed in units of 109 N/m2, are λc = 39.8, µc = 55.6, λs = 54.5, and µs = 67.5 (see also

Appendix D.1) [39, 44]. In Fig. 5.1 (top), the strain tensor elements εc⊥ and εczz of Eqs. (5.39) and (5.40)

are plotted as a function of γ. These are negative over the entire range of shell thicknesses, and so the

core material is compressed, as expected from ac > as. The dependence of the strain on γ is consistent

with simulations and experiments [18], and we note that |εczz| > |εc⊥| for any γ.

The effects of strain on hole states in the topmost valence band of Ge are described by the Bir-Pikus

Hamiltonian [15]. Using the spherical approximation d =
√

3b, which applies well to Ge (b ' −2.5 eV,
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Figure 5.1. Static core strain and its effect on the hole spectrum of Ge/Si core/shell NWs as a function of the relative shell

thickness γ. In the top figure, the nonzero components εc⊥ and εczz of Eqs. (5.39) and (5.40) are plotted for the parameters

in the text. The resulting splitting ∆BP [Eq. (5.47), bottom figure] can be as large as ∼30 meV and strongly affects the

low-energetic hole states, as explained in detail in Chapter 2.

d ' −5.0 eV [15]), and neglecting global shifts in energy, the Bir-Pikus Hamiltonian for holes reads

HBP = b

[∑
i

εiiJ
2
i + 2

(
εxy{Jx, Jy}+ c.p.

)]
. (5.43)

Here b and d are the deformation potentials, Ji are the components of the effective spin 3/2 along the

axes i, “c.p.” stands for cyclic permutations, and {A,B} = (AB+BA)/2. We note that the axes x, y, and

z need not coincide with the main crystallographic axes due to the spherical approximation. Our results

for the static strain in core/shell NWs reveal that the relations εcxx = εcyy = εc⊥ and 0 = εcxy = εcxz = εcyz

are fulfilled in the core. Exploiting these properties and the equality J2
x + J2

y = 15/4− J2
z , the Bir-Pikus

Hamiltonian for the core is of the simple form

Hc
BP = b (εczz − εc⊥) J2

z , (5.44)

where global shifts in energy have again been omitted. As discussed in Ref. [16], this Hamiltonian has

important effects on the hole spectrum in Ge/Si core/shell NWs, because it determines the splitting ∆

between the ground states |g±〉 and the first excited states |e±〉 at wave number kz = 0 along the NW.

The subscripts “+” and “−” refer to the spin states, and we note that the total angular momentum along

the wire is Fz = ∓1/2 for |g±〉, whereas Fz = ±1/2 for |e±〉. The splitting ∆ = ∆LK + ∆BP comprises

a strain-independent term ∆LK ∝ R−2
c , which arises from the radial confinement and the kinetic energy

(Luttinger-Kohn Hamiltonian), and the strain-induced term

∆BP = 〈e±|Hc
BP |e±〉 − 〈g±|Hc

BP |g±〉 . (5.45)

Defining

Λ = 〈e±| J2
z |e±〉 − 〈g±| J2

z |g±〉 , (5.46)

one finally obtains

∆BP = bΛ (εczz − εc⊥) . (5.47)
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The parameter Λ turns out to be independent of Rc, and using |g±〉 and |e±〉 of Ref. [16] we find Λ = 0.46

for Ge. That is, ∆BP = ∆BP(γ) is determined by εczz−εc⊥ and depends only on the relative shell thickness.

Figure 5.1 (bottom) shows the dependence of ∆BP on γ for Ge/Si core/shell NWs. Remarkably,

∆BP can be as large as 30 meV and exceeds 10 meV at relatively thin shells (γ & 0.15) already. For

comparison, one finds ∆LK ' 3.0–0.75 meV for typical core radii Rc ' 5–10 nm. Therefore, the splitting

∆ is mostly determined by ∆BP, i.e., by the relative shell thickness. The combination of a small ∆LK

and 0 ≤ ∆BP(γ) . 30 meV is of great importance not only for the spectrum in the wire, but also for,

e.g., the properties of hole-spin qubits in NW QDs [12, 16, 27, 32].

5.4 Phonons in Homogeneous Nanowires

In this section, we recall the calculation of lattice vibrations in homogeneous NWs [39, 40, 48, 49]

and provide the displacement vectors and the core strain for the phonon modes of lowest energy. The

information forms a basis for Sec. 5.5, where the analysis is extended to the case of core/shell NWs.

5.4.1 Equation of Motion, Ansatz, and Boundary Conditions

For an isotropic material with density ρ and Lamé parameters λ and µ, the equations of motion

ρüi =
∑
j

∂σij
∂xj

(5.48)

can be summarized in the form

ρü = (λ+ µ)∇(∇ · u) + µ∇2u, (5.49)

where

∇ = ex∂x + ey∂y + ez∂z = er∂r + eφ
1

r
∂φ + ez∂z (5.50)

is the Nabla operator and

∇2 = ∂2
x + ∂2

y + ∂2
z = ∂2

r +
1

r
∂r +

1

r2
∂2
φ + ∂2

z (5.51)

is the Laplacian. In order to find the eigenmodes for the cylindrical NW, the displacement vector may

be written in terms of three scalar functions Φη, η ∈ {0, 1, 2}, via [46, 48, 50]

u = ∇Φ0 +∇× ezΦ1 +∇× (∇× ezΦ2). (5.52)

Inserting Eq. (5.52) into Eq. (5.49) and exploiting identities such as ∇ · (∇ × A) = 0, the resulting

equation of motion reads

0 = ∇
(
ρΦ̈0 − (2µ+ λ)∇2Φ0

)
+∇× ez

(
ρΦ̈1 − µ∇2Φ1

)
+∇×

[
∇× ez

(
ρΦ̈2 − µ∇2Φ2

)]
. (5.53)

This equation is therefore satisfied when the scalar functions obey the wave equations

ρΦ̈η = [µ+ δη,0(µ+ λ)]∇2Φη, (5.54)

where δη,0 is a Kronecker delta. While these wave equations are sufficient criteria for the equation of

motion to be satisfied, we note that some special solutions of Eq. (5.49) can be found that do not obey

Eq. (5.54). An example is provided below for the torsional mode. However, we also illustrate that this
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solution can be interpreted as the limit of a more general solution obtained with an ansatz that relies on

the above-mentioned wave equations.

Due to the cylindrical symmetry and the translational invariance along the NW axis z (L � radius),

the Φη can be written in the form

Φη = fη(r)ei(qzz+nφ−ωτ), (5.55)

where qz is the wave number along the wire, n is an integer, ω is the angular frequency, and τ is the time.

Insertion of Eq. (5.55) into Eq. (5.54) results in the differential equation(
∂2
r +

1

r
∂r −

n2

r2
− q2

z +
ρω2

µ+ δη,0(µ+ λ)

)
fη(r) = 0 (5.56)

for the function fη(r). With Jn and Yn as Bessel functions of the first and second kind, respectively,

and with χη,J and χη,Y as (dimensionful) complex coefficients, the general solution of this differential

equation is

fη(r) = χη,JJn(κη,Jr) + χη,Y Yn(κη,Y r), (5.57)

where

κ2
η,J = κ2

η,Y =
ρω2

µ+ δη,0(µ+ λ)
− q2

z . (5.58)

We mention that κη,J and κη,Y need not be identical and may be chosen arbitrarily, provided that

Eq. (5.58) is satisfied. For homogeneous NWs considered in this section, χη,Y = 0 because Yn diverges

in the limit r → 0, and so

Φη = χη,JJn(κη,Jr)e
i(qzz+nφ−ωτ). (5.59)

For given n and qz, the corresponding eigenfrequencies and coefficients can be determined from the

boundary conditions that we discuss below.

In vector notation, with the three components referring to er, eφ, and ez, respectively, Eq. (5.52) reads

as

u =

uruφ
uz

 =


∂rΦ0 + 1

r∂φΦ1 + ∂r∂zΦ2

1
r∂φΦ0 − ∂rΦ1 + 1

r∂φ∂zΦ2

∂zΦ0 −
(
∂2
r + 1

r∂r + 1
r2 ∂

2
φ

)
Φ2

 . (5.60)

From Eq. (5.5) and the equations in Appendix D.2.3, one finds

σer =

σrrσrφ

σrz

 =

(2µ+ λ)∂rur + λ
(

1
rur + 1

r∂φuφ + ∂zuz
)

µ
(

1
r∂φur −

1
ruφ + ∂ruφ

)
µ (∂zur + ∂ruz)

 (5.61)

for the stress related to the radial direction. For a homogeneous NW of radius R, the boundary conditions

are

σ(R,φ, z)er = 0, (5.62)

i.e., the stress tensor elements σrr, σrφ, and σrz must vanish at r = R due to the assumption of a force-

free wire surface. Using the ansatz introduced above, these boundary conditions can be written in the

form ∑
η

χη,JVη =
∑
η

χη,J

Vη,rVη,φ

Vη,z

 = 0, (5.63)

where Vη are vectors with components Vη,r, Vη,φ, and Vη,z. The boundary conditions can only be met in
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a nontrivial fashion (i.e., not all χη,J are zero) when the corresponding determinant vanishes,

det
[
V0,V1,V2

]
= det

 V0,r V1,r V2,r

V0,φ V1,φ V2,φ

V0,z V1,z V2,z

 = 0. (5.64)

For given n and qz, the allowed angular frequencies ω can be found from this determinantal equation.

We note, however, that a root of Eq. (5.64) does not necessarily correspond to a physical solution that

describes a phonon mode. The latter can be found for given n, qz, and ω by calculating the coefficients χη,J

from the set of boundary conditions. One of these coefficients can be chosen arbitrarily and determines

the phase and amplitude of the lattice vibration. In a quantum mechanical description, this coefficient

is finally obtained from the normalization condition.

There are four types of low-energetic phonon modes in a NW: one torsional (t; n = 0), one longitudinal

(l; n = 0), and two flexural modes (f±; n = ±1). These modes are referred to as gapless, as their angular

frequencies ω(qz) and, thus, the phonon energies ~ω(qz) converge to zero when qz → 0. In the following,

we summarize the dispersion relation, the displacement field, and the strain tensor elements for each of

these modes. We consider the regime of lowest energy, i.e., the regime of small qz for which an expansion

in qzr applies. We note that the investigated phonon modes are acoustic modes, as the atoms of a unit cell

move in phase, i.e., in the same direction, in contrast to the out-of-phase movement of optical phonons

where the atoms of a unit cell move in opposite directions.

5.4.2 Torsional Mode

We start our summary with a special solution. It can easily be verified that the displacement [39]

uqzt = cqztre
i(qzz−ωqztτ)eφ (5.65)

meets the boundary conditions, as 0 = σrr = σrφ = σrz. The prefactor cqzt is a dimensionless complex

number and may be chosen arbitrarily. Furthermore, defining angular frequencies as positive, the equation

of motion [Eq. (5.49)] is satisfied for

ωqzt = vt|qz| =
√
µ

ρ
|qz|. (5.66)

Due to the displacement along eφ, this mode is referred to as torsional (t), and vt is the speed of the

corresponding sound wave. From Eq. (5.60), it can be seen that uqzt of Eq. (5.65) is generated via

0 = Φ0 = Φ2 and

Φ1 = −cqzt
2
r2ei(qzz−ωqztτ). (5.67)

A special feature of this result compared to the others summarized in this work is that Φ1 does not obey

the wave equation, Eq. (5.54). Moreover, the presented solution for the torsional mode in homogeneous

NWs is exact and does not require an expansion in qzr. The only nonzero strain tensor element in

cylindrical coordinates is

εφz = i
cqzt
2
qzre

i(qzz−ωqztτ), (5.68)

and we mention that εxz = −εφz sinφ and εyz = εφz cosφ in Cartesian coordinates.

In Sec. 5.5.2, the torsional mode in core/shell NWs is investigated with an ansatz based on Bessel

functions, for which Eq. (5.54) is satisfied. It is therefore worth mentioning that the special solution for

homogeneous NWs is obtained in the limit of a vanishing shell. We consider 0 = Φ0 = Φ2 and

Φ1 = χ1,JJ0(κ1,Jr)e
i(qzz−ωτ) (5.69)
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as an ansatz, assuming κ1,J 6= 0, i.e., ω 6= |qz|
√
µ/ρ, which may be due to the presence of a shell. The

resulting displacement function is

u = χ1,Jκ1,JJ1(κ1,Jr)e
i(qzz−ωτ)eφ, (5.70)

and we note that 0 = σrr = σrz. The arbitrary coefficient χ1,J may be written as χ1,J = 2cqzt/κ
2
1,J .

Considering κ1,Jr as a small parameter, expansion yields

u = cqztr
[
1 +O(κ2

1,Jr
2)
]
ei(qzz−ωτ)eφ (5.71)

and

σrφ = −µcqzt
4
κ2

1,Jr
2
[
1 +O(κ2

1,Jr
2)
]
ei(qzz−ωτ). (5.72)

For ω → |qz|
√
µ/ρ, i.e., κ1,J → 0, which corresponds to the limit of a vanishing shell, one finds that

the boundary condition of a force-free wire surface is fulfilled due to σrφ → 0. As anticipated, the

displacement u converges to the solution for homogeneous NWs, Eq. (5.65).

5.4.3 Longitudinal Mode

The longitudinal and torsional modes in the NW have no angular dependence, n = 0. In stark contrast

to the torsional mode, however, the longitudinal mode (l) does not lead to displacement along eφ, and

so uφ = 0. The boundary condition σrφ(R,φ, z) = 0 is therefore fulfilled and one may set χ1,J =

0 in the ansatz discussed in Sec. 5.4.1. Analogously to Eq. (5.64), the eigenfrequencies ωqzl can be

calculated via the determinant of a 2×2 matrix that summarizes the remaining boundary conditions.

Considering angular frequencies as positive, one finds that the dominant terms of this determinant vanish

for [39, 40, 50]

ωqzl = vl|qz| = vl,0|qz|
[
1 +O(q2

zR
2)
]
, (5.73)

vl,0 =

√
Y

ρ
, (5.74)

where vl is the corresponding speed of sound. The properties of the longitudinal and flexural modes can

conveniently be written in terms of Young’s modulus and Poisson’s ratio [see also Eqs. (5.3) and (5.4)]:

Y =
µ(2µ+ 3λ)

µ+ λ
, (5.75)

ν =
λ

2(µ+ λ)
. (5.76)

Introducing the dimensionless cqzl as an arbitrary complex prefactor, the resulting displacement vector

is of the form

uqzl = cqzlR

−iνqzr +O(δ3)

0

1 +O(δ2)

 ei(qzz−ωqzlτ), (5.77)

with er, eφ, and ez as the basis vectors. Here and in the remainder of the section, O(δm) refers to higher-

order terms of type qmz R
krm−k, where k ≥ 0 and m ≥ k are integers. For the strain tensor elements in
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cylindrical coordinates, one obtains

εrr = −icqzlνqzR
[
1 +O(δ2)

]
ei(qzz−ωqzlτ), (5.78)

εφφ = −icqzlνqzR
[
1 +O(δ2)

]
ei(qzz−ωqzlτ), (5.79)

εzz = icqzlqzR
[
1 +O(δ2)

]
ei(qzz−ωqzlτ), (5.80)

and 0 = εrφ = εrz = εφz. We note that the corrections to εrr and εφφ are not identical. In Cartesian

coordinates, one therefore finds nonzero εxy, with

εxy = icqzl sin(2φ)
ν(1− 2ν2)

8(1− ν)
q3
zRr

2
[
1 +O(δ2)

]
ei(qzz−ωqzlτ). (5.81)

The dominant term for εxx and εyy is the same as that for εrr and εφφ, and for completeness we mention

that 0 = εxz = εyz.

5.4.4 Flexural Modes

The flexural modes, also referred to as bending modes, comprise displacement in all three dimensions.

Furthermore, the displacement is angular-dependent due to n = ±1. Considering positive ω, we note that

a lattice vibration of type exp[i(qzz+φ−ωτ)] cannot be written as a linear combination of those of type

exp[i(qzz − φ − ωτ)], as the waves travel in opposite directions around the NW for fixed z. Therefore,

the flexural modes f+ and f−, which correspond to n = +1 and n = −1, respectively, are independent.

Among the gapless modes, the flexural ones are the most complicated, and neither of the χη,J can be set

to zero in the ansatz discussed in Sec. 5.4.1. Solving Eq. (5.64) yields the parabolic dispersion relation

[39, 40, 50]

ωqzf = ωqzf+ = ωqzf− = ζfq
2
z = ζf,0q

2
z

[
1 +O(δ2)

]
, (5.82)

ζf,0 =
R

2

√
Y

ρ
. (5.83)

The displacement vectors for f± can be written as

uqzf± = cqzf±R

 ∓i±O(δ2)

1 +O(δ2)

∓qzr ±O(δ3)

 ei(qzz±φ−ωqzfτ), (5.84)

where the components of the vector refer again to the basis {er, eφ, ez}, and cqzf± are dimensionless

complex prefactors. Introducing the shorthand notation

e(±) = ei(qzz±φ−ωqzfτ) (5.85)

for convenience, the diagonal strain tensor elements for the flexural modes f± are

εrr = ±icqzf±νq2
zRr

[
1 +O(δ2)

]
e(±), (5.86)

εφφ = ±icqzf±νq2
zRr

[
1 +O(δ2)

]
e(±), (5.87)

εzz = ∓icqzf±q2
zRr

[
1 +O(δ2)

]
e(±), (5.88)
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and the off-diagonal ones are

εrφ =
cqzf±

48

[
q4
zRr

(
R2 − r2

)
(1− 2ν) +O(δ6)

]
e(±), (5.89)

εrz = ±
cqzf±

8

[
q3
zR
(
R2 − r2

)
(3 + 2ν) +O(δ5)

]
e(±), (5.90)

εφz = i
cqzf±

8

[
q3
zR
(
R2(3 + 2ν)− r2(1− 2ν)

)
+O(δ5)

]
e(±). (5.91)

From the above equations, it is evident that εrφ and εrz vanish at r = R, consistent with the boundary

conditions. The dominant terms of the strain components in Cartesian coordinates may easily be obtained

with the relations listed in Appendix D.2.2. We note that calculation of εxy requires knowledge of the

difference

εrr − εφφ = ±i
cqzf±

24

[
W1 +O(δ6)

]
e(±), (5.92)

where we defined

W1 = q4
zRr

[
2r2(1 + ν)−R2(1− 2ν)

]
. (5.93)

It is worth mentioning that the listed expressions for displacement and strain do not depend on Young’s

modulus, whereas the dispersion relation does not depend on Poisson’s ratio. The same feature is seen

for the longitudinal mode.

5.4.5 Normalization

When quantum mechanical effects of lattice vibrations in NWs are investigated, such as, e.g., the phonon-

mediated decay of spin qubits in NW QDs [12, 49], the amplitudes of the modes are no longer arbitrary

as the phonon field must be quantized [48]. Defining the time-independent displacement operator as

u(r) =
∑
qz,s

(aqzsuqzs(r, τ = 0) + H.c.) , (5.94)

where uqzs = uqzs(r, τ) are the displacement functions discussed in this section, s ∈ {l, t, f+, f−} indicates

the mode, and “H.c.” stands for the Hermitian conjugate, the normalization condition for the coefficients

cqzs is [51] ∫ R

0

drru∗qzs · uqzs =
~

4πLρωqzs
(5.95)

in the case of homogeneous NWs. The introduced operators a†qzs and aqzs are the creation and annihilation

operators for the phonons, and we mention that

H =
∑
qz,s

~ωqzs
(
a†qzsaqzs +

1

2

)
(5.96)

is the phonon Hamiltonian. As in Eq. (5.94), the sum runs over all mode types s and all wave numbers

qz within the first Brillouin zone. For details, see Appendix D.4 (wherein uqzs is written as cqzsuqzs for

illustration purposes).

From Eq. (5.95) and the derived expressions for uqzs, we calculate the normalization condition for the

coefficients cqzs in leading order of qzR. For the torsional, longitudinal, and flexural modes, respectively,
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one finds

|cqzt|2 =
~

πLR4ρvt|qz|
, (5.97)

|cqzl|2 =
~

2πLR4ρvl,0|qz|
[
1 +O(δ2)

]
, (5.98)

|cqzf± |2 =
~

4πLR4ρζf,0q2
z

[
1 +O(δ2)

]
. (5.99)

5.5 Phonons in Core/Shell Nanowires

We now extend the analysis of the previous section to the more complicated case of core/shell NWs.

Considering the complexity of the system, the resulting formulas are surprisingly simple, and so we

believe that our results will prove very helpful in future investigations that involve acoustic phonons in

core/shell NWs.

5.5.1 Ansatz and Boundary Conditions

We assume pseudomorphic growth and start from a core/shell NW that is statically strained. The static

strain in the NW was calculated in Sec. 5.3 and ensures that the surface is free of forces, that the core-shell

interface is coherent, and that the stress at the interface is continuous. The dynamical displacement field

of the lattice vibrations discussed in this section describes the displacement from this statically strained

configuration. As the lattice mismatch |ε0| � 1 is small, the static and dynamical displacement fields

can be considered as independent and add linearly in good approximation (analogous for the stress and

strain) [39].

The dynamical displacement uc,s and the stress tensor σc,s for core (c; 0 ≤ r ≤ Rc) and shell (s;

Rc ≤ r ≤ Rs), respectively, are calculated with the ansatz introduced in Sec. 5.4.1 [46]. Suitable

functions Φc,sη are

Φcη = χcη,JJn(κcη,Jr)e
i(qzz+nφ−ωτ), (5.100)

Φsη =
[
χsη,JJn(κsη,Jr) + χsη,Y Yn(κsη,Y r)

]
ei(qzz+nφ−ωτ), (5.101)

where

(κcη,J)2 =
ρcω

2

µc + δη,0(µc + λc)
− q2

z , (5.102)

(κsη,J)2 = (κsη,Y )2 =
ρsω

2

µs + δη,0(µs + λs)
− q2

z . (5.103)

The boundary conditions are the same as for the static strain and can be summarized as

uc(Rc, φ, z) = us(Rc, φ, z), (5.104)

σc(Rc, φ, z)er = σs(Rc, φ, z)er, (5.105)

σs(Rs, φ, z)er = 0. (5.106)

For a given mode type and wave number qz, these boundary conditions determine the eigenfrequency

and the set of coefficients {χc,sη,J , χsη,Y }. As in the case of homogeneous NWs, one of the coefficients

may be chosen arbitrarily and quantifies the amplitude and phase of the lattice vibration. Analogous to

Eq. (5.64), the eigenfrequency can be calculated by solving a determinantal equation that comprises the

boundary conditions (see also Fig. 5.2).
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Figure 5.2. Dispersion relation of gapless phonon modes in Ge/Si core/shell NWs. Top: The thin red lines are numerically

calculated roots of the determinant that comprises the nine boundary conditions described in Sec. 5.5.1. For the parameters

in Appendix D.1 and an assumed core (shell) radius of Rc = 10 nm (Rs = 14 nm), phonons with gapped spectra were found

at ω > 5 × 1011s−1, i.e., ~ω > 0.3 meV. The dashed black lines correspond to ω = vt,0|qz |, ω = vl,0|qz |, and ω = ζf,0q
2
z ,

respectively, and agree well with the exact result even at relatively large qz . Bottom: The mode velocities vt,0 [torsional,

Eq. (5.110)], vl,0 [longitudinal, Eq. (5.116)], and ζf,0/Rs [flexural, Eq. (5.138)] are plotted as a function of the relative shell

thickness γ.

In order to derive algebraic expressions, we consider again the regime of lowest energy (small qz) for

which an expansion in qzr applies. In this section, higher-order contributions denoted by O(δm) refer

to corrections of type qmz R
j
sR

k
c r
l, where j, k, l, and m = j + k + l are integers. We note that l < 0 is

allowed in the shell due to the Bessel functions of the second kind. While we list the dominant terms of

the displacement field for both the core and the shell, the phonon-based strain tensor is provided in detail

for the core only. This is typically sufficient, as qubit states, for instance, are usually confined therein.

5.5.2 Torsional Mode

As expected from symmetry considerations, it turns out that the main features of the gapless phonon

modes remain unchanged when the NW is surrounded by a shell. For instance, the torsional mode has

no angular dependence (n = 0) and involves displacement along eφ only. Thus, one obtains 0 = χc,s0,J =

χc,s2,J = χs0,Y = χs2,Y , and the eigenfrequency ωqzt can be calculated via the determinant of a 3×3 matrix

that contains the three remaining boundary conditions. We find

ωqzt = vt|qz| = vt,0|qz|
[
1 +O(δ2)

]
, (5.107)

vt,0 =

√
µcR4

c + µs(R4
s −R4

c)

ρcR4
c + ρs(R4

s −R4
c)
, (5.108)

and note that vt,0, in fact, is a function of the relative shell thickness. Defining

γ̊ = γ̃2 + 2γ̃ =
R4
s −R4

c

R4
c

(5.109)
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Figure 5.3. Radial dependence of the displacement field (top) and core strain (bottom) in cylindrical coordinates due to

the torsional phonon mode in a Ge/Si NW with core radius Rc = 10 nm and shell radius Rs = 14 nm. Thin red lines

correspond to the exact, numerical solution of the ansatz described in Sec. 5.5.1, while dashed black lines are calculated

with the algebraic expressions listed in Sec. 5.5.2. Besides the parameters for Ge and Si in the text (see also Appendix D.1),

we use cqzt = 0.01 and qz = 0.2/Rs. The global phase factor exp[i(qzz − ωqztτ)] is set to 1. Excellent agreement

between the exact and approximate solutions is found even when qz is relatively large. We note that 0 = ur = uz and

0 = εcrr = εcφφ = εczz = εcrz .

analogously to Eqs. (5.32) and (5.33), the mode velocity vt,0 has the remarkably simple form

vt,0 =

√
µc + µsγ̊

ρc + ρsγ̊
. (5.110)

The displacement field is

ucqzt = cqztr
[
1 +O(δ2)

]
ei(qzz−ωqztτ)eφ, (5.111)

usqzt = cqztr
[
1 +O(δ2)

]
ei(qzz−ωqztτ)eφ, (5.112)

i.e., the dominant term for core and shell is the same. The strain tensor elements for the core are

εcrφ =
cqzt
8

[
q2
zr

2

(
1− v2

t,0

ρc
µc

)
+O(δ4)

]
ei(qzz−ωqztτ), (5.113)

εcφz = i
cqzt
2

[
qzr +O(δ3)

]
ei(qzz−ωqztτ), (5.114)

and 0 = εcrr = εcφφ = εczz = εcrz. We emphasize that εcrφ is nonzero, in stark contrast to εrφ in homogeneous

NWs. The strain components in Cartesian coordinates, among which only εczz is zero, can be calculated

with the above-mentioned εcrφ and εcφz and the relations in Appendix D.2.2.

In Fig. 5.2 (top), we illustrate that the derived formula for the velocity vt,0 is consistent with exact,

numerical solutions of the underlying model (Sec. 5.5.1). This also holds for the dispersion relation of

the longitudinal and flexural modes that we investigate next. The dependence of the different phonon

velocities on the relative shell thickness of a Ge/Si core/shell NW is shown in Fig. 5.2 (bottom). A

comparison between exact results and the above-listed expressions for the displacement and strain caused

by torsional lattice vibrations is provided in Fig. 5.3.
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5.5.3 Longitudinal Mode

In the ansatz for the longitudinal mode, we set n = 0 and 0 = χc,s1,J = χs1,Y . From the boundary conditions,

we obtain

ωqzl = vl|qz| = vl,0|qz|
[
1 +O(δ2)

]
, (5.115)

vl,0 =

√
YcG0 + YsG1γ̃2 + YcG2γ̃

(G0 +G1γ̃)(ρc + ρsγ̃)
, (5.116)

where we introduced

G0 = 2Yc(1− ν2
s ), (5.117)

G1 = Yc(1 + νs) + Ys(1− νc − 2ν2
c ), (5.118)

G2 = Yc(1 + νs) + Ys(3− νc − 4νcνs) (5.119)

for convenience. The resulting displacement field uqzl is

ucqzl = cqzlRs

−i
νcG0+G3γ̃
G0+G1γ̃

qzr +O(δ3)

0

1 +O(δ2)

 ei(qzz−ωqzlτ) (5.120)

within the core and

usqzl = cqzlRs


−i
[

(G4+νsG1γ̃)qzr
G0+G1γ̃

+
G5qzR

2
s

(G0+G1γ̃)r

]
+O(δ3)

0

1 +O(δ2)

 ei(qzz−ωqzlτ) (5.121)

within the shell, where

G3 = Yc(1 + νs)νc + Ys(1− νc − 2ν2
c )νs, (5.122)

G4 = Yc(1 + νs)(νc + νs − 2νcνs), (5.123)

G5 = Yc(1 + νs)(νc − νs). (5.124)

An example based on Ge/Si NWs for the displacement and the strain discussed below is shown in Fig. 5.4,

where we also provide a comparison with the exact solution.

The diagonal strain tensor elements for the core are similar to those for homogeneous NWs,

εcrr = −icqzl
νcG0 +G3γ̃

G0 +G1γ̃
qzRs

[
1 +O(δ2)

]
ei(qzz−ωqzlτ), (5.125)

εcφφ = −icqzl
νcG0 +G3γ̃

G0 +G1γ̃
qzRs

[
1 +O(δ2)

]
ei(qzz−ωqzlτ), (5.126)

εczz = icqzlqzRs
[
1 +O(δ2)

]
ei(qzz−ωqzlτ). (5.127)

Furthermore, we note that 0 = εcrφ = εcφz as the longitudinal mode is independent of φ and does not

provide displacement along eφ. In stark contrast to homogeneous NWs, however, we find nonzero εcrz,

εcrz = cqzl(1 + νc)
Yc(G0ρs −G6ρc)γ̃ + (YcG7ρs − YsG1ρc)γ̃

2

2Yc(G0 +G1γ̃)(ρc + ρsγ̃)
q2
zRsr

[
1 +O(δ2)

]
ei(qzz−ωqzlτ), (5.128)
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Figure 5.4. Comparison between exact results and derived formulas for the longitudinal phonon mode, analogous to Fig. 5.3.

Good agreement is found for all components at qz = 0.2/Rs assumed here, and the quality of the approximation increases

with decreasing |qz |. The longitudinal mode features uφ = 0 and 0 = εcrφ = εcφz . For details, see Sec. 5.5.3.

with

G6 = 2Ys(1− νcνs), (5.129)

G7 = Yc(1 + νs) + Ys(1− νc − 2νcνs). (5.130)

The dominant term for εcrr and εcφφ is identical to that for εcxx and εcyy, and the off-diagonal strain

components in Cartesian coordinates may be calculated via εcxz = εcrz cosφ, εcyz = εcrz sinφ, and εcxy =

(εcrr − εcφφ) sinφ cosφ. The resulting formula for εcxy involves higher-order corrections to εcrr and εcφφ and

is too lengthy to be displayed here in its entirety. Nevertheless, we provide an approximation that applies

to the case of a very thin shell (γ̃ � 1),

εcxy ' icqzl sin(2φ)

[
νc(1− 2ν2

c )

8(1− νc)
+

γ̃(1 + νc)

16(1− νc)

(
G8

G0
− ρ′

ρc

)]
q3
zRsr

2
[
1 +O(δ2)

]
ei(qzz−ωqzlτ). (5.131)

In the opposite limit of a very thick shell, we find

lim
γ→∞

εcxy = icqzl sin(2φ)
1

16G1

(
Ys(1 + νc)ρc
Yc(1− νc)ρs

G9 −G10

)
q3
zRsr

2
[
1 +O(δ2)

]
ei(qzz−ωqzlτ). (5.132)

In Eq. (5.131),

G8 = 2Ys

[
1 + νs + νc(1− 3νs) + 2ν2

c (2νc − 1)(3νs + 1)− 8ν4
c

]
(5.133)

and

ρ′ = ρs(1 + 2νc − 4ν2
c ), (5.134)

while

G9 = Yc(1 + 2νc − 4ν2
c )(1 + νs) + Ys(1− νc − 2ν2

c )(1 + 2νs − 4νcνs), (5.135)

G10 = Yc(1 + 2νc)(1 + νs) + Ys(1 + νc)(1− 4νcνs) (5.136)
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in Eq. (5.132).

5.5.4 Flexural Modes

The calculation for the flexural modes in core/shell NWs is most complicated as neither of the coefficients

χc,sη,J and χsη,Y is zero. Furthermore, the flexural modes have an angular dependence due to n = ±1.

Despite this complexity, the resulting formulas are relatively simple and can be written in a compact

form. By solving the determinantal equation that comprises the nine boundary conditions, we find the

dispersion relation

ωqzf = ωqzf+ = ωqzf− = ζfq
2
z = ζf,0q

2
z

[
1 +O(δ2)

]
, (5.137)

ζf,0 =
Rs
2

√
YcK0 + YsK1γ̊2 + YcK2γ̊

(1 + γ̃)(K0 +K1γ̊)(ρc + ρsγ̃)
, (5.138)

where

K0 = 4Yc(1− ν2
s ), (5.139)

K1 = Yc(1 + νs) + Ys(3− νc − 4ν2
c ), (5.140)

K2 = Yc(1 + νs) + Ys(7− νc − 8νcνs), (5.141)

and γ̊ = γ̃2 + 2γ̃ has been introduced in Eq. (5.109). We note that Rs/
√

1 + γ̃ = Rs/(1 + γ) = Rc

in the expression for ζf,0 may be substituted by the core radius. Remarkably, the dominant terms of

the displacement field in both core and shell turn out to be equivalent to those for a homogeneous NW.

Referring again to the basis vectors er, eφ, and ez, we obtain

ucqzf± = cqzf±Rs

 ∓i±O(δ2)

1 +O(δ2)

∓qzr ±O(δ3)

 e(±) (5.142)

for the core, and the formally identical result

usqzf± = cqzf±Rs

 ∓i±O(δ2)

1 +O(δ2)

∓qzr ±O(δ3)

 e(±) (5.143)

for the shell. The shorthand notation e(±) for the phase factor has been introduced in Eq. (5.85).

With the definitions

K3 = Yc(1 + νs)νc + Ys(1 + νc)(νs + 2νc − 4νcνs), (5.144)

K4 = Yc(1 + νs)νc + Ys(3− νc − 4ν2
c )νs, (5.145)

the diagonal core strain components due to the flexural modes f± are

εcrr = ±icqzf±
νcK0 +K3γ̊

K0 +K1γ̊
q2
zRsr

[
1 +O(δ2)

]
e(±), (5.146)

εcφφ = ±icqzf±
νcK0 +K4γ̊

K0 +K1γ̊
q2
zRsr

[
1 +O(δ2)

]
e(±), (5.147)

εczz = ∓icqzf±q2
zRsr

[
1 +O(δ2)

]
e(±). (5.148)

Thus, in contrast to the case of homogeneous NWs, the leading-order terms for εcrr and εcφφ differ when
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Figure 5.5. Comparison between exact and approximate solutions for a flexural phonon mode (n = 1), analogous to Figs. 5.3

and 5.4. Assuming again qz = 0.2/Rs, the top and middle figures exhibit very good agreement for the displacement and

the diagonal strain components, respectively. In the bottom figure, εcrz and εcφz are well approximated by Eqs. (5.157) and

(5.158) (dashed black lines, γ̃ → ∞). Equations (5.151) and (5.152) (not plotted, γ̃ � 1) yield a slightly worse but still

good approximation. We note that the quantitative agreement can be improved by taking γ̃ ∼ 1 of the studied NW fully

into account in the terms of order cqzf±O(δ3) (thin dotted lines for εcrz and εcφz , expressions too lengthy for text). For εcrφ,

the observed deviation between Eq. (5.150) (dashed black line) and the exact result decreases rapidly with decreasing |qz |,
as expected. We illustrate that corrections of order cqzf±O(δ4) become important in the considered example by taking

them into account (thin dotted line for εcrφ, expressions too long for text). For details, see Sec. 5.5.4.

Poisson’s ratios νc and νs are different,

εcrr − εcφφ = ±icqzf±
[

2Ys(1 + νc)(νc − νs)̊γ
K0 +K1γ̊

q2
zRsr +O(δ4)

]
e(±). (5.149)

Similarly, the off-diagonal strain tensor element

εcrφ = cqzf±

[
Ys(1 + νc)(νs − νc)̊γ

K0 +K1γ̊
q2
zRsr +O(δ4)

]
e(±) (5.150)

exhibits a new term that vanishes in homogeneous NWs or when νc = νs. The expressions for εcrz and

εcφz are rather lengthy and therefore cannot be provided here completely. When γ̃ � 1, they are well

approximated by

εcrz ' ±cqzf±qzRs
[
q2
z

(R2
s − r2)ν′

8
+ γ̃q2

z

R2
sK5 + r2K6

2K0
+O(δ4)

]
e(±), (5.151)

εcφz ' icqzf±qzRs
[
q2
z

R2
sν
′ − r2(1− 2νc)

8
+ γ̃q2

z

R2
sK5 + r2K7

2K0
+O(δ4)

]
e(±), (5.152)
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where

K5 = Ys(1 + νc)(3− νs + 4ν2
c − 6νcνs)− Yc(3 + 2νc)(1− ν2

s ), (5.153)

K6 = 2Ys(1 + 3νc + 2ν2
c )(νs − νc), (5.154)

K7 = 2Ys(3 + νc − 2ν2
c )(νs − νc), (5.155)

ν′ = 3 + 2νc. (5.156)

In the opposite regime, i.e., γ̃ � 1, the results for εcrz and εcφz converge to

lim
γ→∞

εcrz = ±cqzf±
[
q3
zRs

(
R2
sK8

8K9
− r2K10

8K1

)
+O(δ5)

]
e(±), (5.157)

lim
γ→∞

εcφz = icqzf±

[
q3
zRs

(
R2
sK8

8K9
− r2K11

8K1

)
+O(δ5)

]
e(±), (5.158)

where we defined

K8 = 2Ys(1 + νc)(3 + 2νs), (5.159)

K9 = Yc(1 + νs) + Ys(1 + νc), (5.160)

and

K10 = Yc(3 + 2νc)(1 + νs) + Ys(1 + νc)(9− 2νc − 4νs − 8νcνs), (5.161)

K11 = Yc(1− 2νc)(1 + νs) + Ys(1 + νc)(3 + 2νc − 12νs + 8νcνs). (5.162)

The strain tensor elements in Cartesian coordinates may again be calculated with the relations listed in

Appendix D.2.2. The radial dependence of the displacement field and the core strain of a flexural lattice

vibration is plotted in Fig. 5.5, confirming that our formulas are consistent with exact solutions.

As mentioned before, the new terms in Eqs. (5.149) and (5.150) vanish when Rs → Rc or νs → νc.

Therefore, the higher-order contributions of order cqzf±O(δ4) may become important for the calculation of

εcrφ and εcxy, particularly when qzRs is rather large and γ and νs−νc are small [see also Fig. 5.5 (bottom)].

The expressions for these higher-order corrections in core/shell NWs are too lengthy to be displayed here.

However, if needed, they can be approximated via the formulas that we provide in Eqs. (5.89) and (5.92)

for homogeneous NWs.

5.5.5 Normalization

The normalization condition of Eq. (5.95) applies only to the special case of homogeneous NWs with

cylindrical symmetry. In the more general case of cylindrically symmetric core/shell and core/multishell

NWs, the normalization condition reads∫ Rtot

0

drrρ(r)u∗qzs · uqzs =
~

4πLωqzs
, (5.163)

where ρ(r) is the radially dependent density, s ∈ {l, t, f+, f−} is the mode type, and Rtot is the total

radius of the NW, i.e., the radius of the outermost shell. Considering core/shell NWs, we therefore obtain
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the normalization conditions

|cqzt|2 =
~(1 + γ̊)

πLR4
s(ρc + ρsγ̊)vt,0|qz|

[
1 +O(δ2)

]
, (5.164)

|cqzl|2 =
~(1 + γ̃)

2πLR4
s(ρc + ρsγ̃)vl,0|qz|

[
1 +O(δ2)

]
, (5.165)

|cqzf± |2 =
~(1 + γ̃)

4πLR4
s(ρc + ρsγ̃)ζf,0q2

z

[
1 +O(δ2)

]
(5.166)

for the coefficients of the phonons investigated in this section. Details about the derivation of Eq. (5.163)

are provided in Appendixes D.3 and D.4.

5.5.6 Limits of Vanishing and Infinite Shell

Our results for phonons in core/shell NWs are fully consistent with those in Sec. 5.4 for homogeneous

NWs. For instance, when Rs → Rc, i.e., γ → 0, the expressions for the mode velocities and for the

displacement and strain in the core converge exactly to those for a homogeneous wire made of the core

material. Analogously, it can easily be verified that the dispersion relations and the shell displacement

(also the shell strain, not shown) match those of a bare wire made of the shell material in the limit

γ →∞.

5.6 Conclusions

In conclusion, we have derived a comprehensive list of algebraic expressions that describe the static strain

and the low-energy phonons in core/shell NWs. We take all stress and strain tensor elements into account,

allow for arbitrary core and shell radii, and consider the elastic properties of the involved materials as

independent. While the common approximation νc = νs for Poisson’s ratio in core and shell is often

justified, we find that possibly important terms are ignored with this assumption [see, e.g., Eq. (5.150)].

We have investigated the resulting strain field for both the static and dynamical lattice displacement

in great detail. Among other things, knowledge of the strain tensor elements is important for analyzing

electron and hole spectra [15, 43] and for studies that involve electron- and hole-phonon interactions

[48, 52, 53]. As seen in the example of Ge/Si NWs (Sec. 5.3.3), the shell-induced strain can affect

the carrier spectrum substantially [16]. Furthermore, we have shown that the presence of a shell leads

to additional, phonon-based strain components within the core that are absent in homogeneous NWs.

Although the elements of the stress tensor are not listed in this work explicitly, they can directly be

obtained via the stress-strain relations in Eqs. (5.2) and (5.5).

Given pseudomorphic growth, the dominant source of error in our model is certainly the assumption

of isotropic materials (c11 = c12 + 2c44). Taking anisotropies exactly into account, however, is usually

not possible without extensive numerical simulations [5, 17, 18] and, moreover, leads only to quantitative

rather than qualitative corrections in most applications (see also Sec. 5.3.2). We are therefore convinced

that the results of our work will be very useful for future studies based on core/shell NWs.
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PART III

Lifetimes of Singlet-Triplet Qubits

in Lateral Double Quantum Dots

With and Without Detuning

(Theory)





Chapter 6

Phonon-Mediated Decay of Singlet-Triplet

Qubits in Double Quantum Dots

Adapted from:

Viktoriia Kornich, Christoph Kloeffel, and Daniel Loss,

Phys. Rev. B 89, 085410 (2014).

We study theoretically the phonon-induced relaxation (T1) and decoherence times (T2) of singlet-triplet

qubits in lateral GaAs double quantum dots (DQDs). When the DQD is biased, Pauli exclusion enables

strong dephasing via two-phonon processes. This mechanism requires neither hyperfine nor spin-orbit

interaction and yields T2 � T1, in contrast to previous calculations of phonon-limited lifetimes. When the

DQD is unbiased, we find T2 ' 2T1 and much longer lifetimes than in the biased DQD. For typical setups,

the decoherence and relaxation rates due to one-phonon processes are proportional to the temperature T ,

whereas the rates due to two-phonon processes reveal a transition from T 2 to higher powers as T is

decreased. Remarkably, both T1 and T2 exhibit a maximum when the external magnetic field is applied

along a certain axis within the plane of the two-dimensional electron gas. We compare our results with

recent experiments and analyze the dependence of T1 and T2 on system properties such as the detuning,

the spin-orbit parameters, the hyperfine coupling, and the orientation of the DQD and the applied

magnetic field with respect to the main crystallographic axes.



6.1 Introduction

The spin states of quantum dots (QDs) are promising platforms for quantum computation [1, 2]. In

particular, remarkable progress has been made with S-T0 qubits in lateral GaAs double quantum dots

(DQDs) [3–7], where a qubit is based on the spin singlet (S) and triplet (T0) state of two electrons in

the DQD. In this encoding scheme, rotations around the z axis of the Bloch sphere can be performed

on a subnanosecond timescale [4] through the exchange interaction, and rotations around the x axis are

enabled by magnetic field gradients across the QDs [5].

The lifetimes of S-T0 qubits have been studied with great efforts. When the qubit state precesses around

the x axis, dephasing mainly results from Overhauser field fluctuations, leading to short dephasing times

T ∗2 ∼ 10 ns [4, 8–12]. This low-frequency noise can be dynamically decoupled with echo pulses [4, 13–15],

and long decoherence times T2 > 200 µs have already been measured [14]. In contrast to x rotations,

precessions around the z axis dephase predominantly due to charge noise [16, 17]. Rather surprisingly,

however, recent Hahn echo experiments by Dial et al. [16] revealed a relatively short T2 ' 0.1–1 µs

and a power-law dependence of T2 on the temperature T . The origin of the observed decoherence is

so far unknown, although the dependence on T suggests that lattice vibrations (phonons) may play an

important role.

In this work, we calculate the phonon-induced lifetimes of a S-T0 qubit in a lateral GaAs DQD. Taking

into account the spin-orbit interaction (SOI) and the hyperfine coupling, we show that one- and two-

phonon processes can become the dominant decay channels in these systems and may lead to qubit

lifetimes on the order of microseconds only. While the decoherence and relaxation rates due to one-

phonon processes scale with T for the parameter range considered here, the rates due to two-phonon

processes scale with T 2 at rather high temperatures and obey power laws with higher powers of T as the

temperature decreases. Among other things, the qubit lifetimes depend strongly on the applied magnetic

field, the interdot distance, and the detuning between the QDs. Based on the developed theory, we

discuss how the lifetimes can be significantly prolonged.

The chapter is organized as follows. In Sec. 6.2, we present the Hamiltonian and the basis states of

our model. In the main part, Sec. 6.3, we discuss the calculation of the lifetimes in a biased DQD and

investigate the results in detail. In particular, we show that two-phonon processes lead to short dephasing

times and identify the magnetic field direction at which the lifetimes peak. The results for unbiased DQDs

are discussed in Sec. 6.4, followed by our conclusions in Sec. 6.5. Details and further information are

appended (Appendix E).

6.2 System, Hamiltonian, and Basis States

We consider a lateral GaAs DQD within the two-dimensional electron gas (2DEG) of an AlGaAs/GaAs

heterostructure that is grown along the [001] direction, referred to as the z axis. Confinement in the

x-y-plane is generated by electric gates on the sample surface, and the magnetic field B is applied in

plane to avoid orbital effects. When the DQD is occupied by two electrons, the Hamiltonian of the system

reads

H =
∑
j=1,2

(
H

(j)
0 +H

(j)
Z +H

(j)
SOI +H

(j)
hyp +H

(j)
el−ph

)
+HC +Hph, (6.1)

where the index j labels the electrons, H0 comprises the kinetic and potential energy of an electron in

the DQD potential, HZ is the Zeeman coupling, HSOI is the SOI, Hhyp is the hyperfine coupling to the

nuclear spins, Hel−ph is the electron-phonon coupling, HC is the Coulomb repulsion, and Hph describes

the phonon bath.
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Figure 6.1. The energy spectrum of the DQD calculated for the parameters described in the text. The S-T0 qubit is formed

by the eigenstates of type |(1, 1)S〉 and |(1, 1)T0〉. The figure was provided by Viktoriia Kornich.

The electron-phonon interaction has the form

Hel−ph =
∑
q,s

Ws(q)aqse
iq·r + H.c., (6.2)

where r is the position of the electron, q is a phonon wave vector within the first Brillouin zone, s ∈
{l, t1, t2} stands for the longitudinal (l) and the two transverse (t1, t2) phonon modes, and “H.c.” is

the Hermitian conjugate. The coefficient Ws(q) depends strongly on q and s, and is determined by

material properties such as the relative permittivity εr, the density ρ, the speed vl (vt) of a longitudinal

(transverse) sound wave, and the constants Ξ and h14 for the deformation potential and piezoelectric

coupling, respectively. The annihilation operator for a phonon of wave vector q and mode s is denoted

by aqs. The Hamiltonian

HSOI = α (px′σy′ − py′σx′) + β (py′σy′ − px′σx′) (6.3)

contains both Rashba and Dresselhaus SOI. Here px′ and py′ are the momentum operators for the x′

and y′ axes, respectively. The latter coincide with the crystallographic axes [100] and [010], respectively,

and σx′ and σy′ are the corresponding Pauli operators for the electron spin. We take into account the

coupling to states of higher energy by performing a Schrieffer-Wolff transformation that removes HSOI in

lowest order [18–24]. The resulting Hamiltonian H̃ is equivalent to H, except that HSOI is replaced by

H̃SOI ' gµB(rSOI ×B) · σ, (6.4)

where g is the in-plane g factor, σ is the vector of Pauli matrices, and

rSOI =

(
y′

lR
+
x′

lD

)
e[100] −

(
x′

lR
+
y′

lD

)
e[010]. (6.5)

Here x′ and y′ are the coordinates of the electron along the main crystallographic axes, whose orientation

is provided by the unit vectors e[100] and e[010], respectively. The spin-orbit lengths are defined as

lR = ~/(meffα) and lD = ~/(meffβ), where meff is the effective electron mass in GaAs and α (β) is the

Rashba (Dresselhaus) coefficient. For our analysis, the most relevant effect of the nuclear spins is the

generation of an effective magnetic field gradient between the QDs, which is accounted for by Hhyp. We

note that this magnetic field gradient may also result from a nearby positioned micromagnet [25–27]. For

details of H and H̃, see Appendix E.2.
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The S-T0 qubit in this work is formed by the basis states |(1, 1)S〉 and |(1, 1)T0〉, where the notation

(m,n) means that m (n) electrons occupy the left (right) QD. In first approximation, these states read

|(1, 1)S〉 = |Ψ+〉 |S〉 , (6.6)

|(1, 1)T0〉 = |Ψ−〉 |T0〉 , (6.7)

with

|Ψ±〉 =
|Φ(1)
L Φ

(2)
R 〉 ± |Φ

(1)
R Φ

(2)
L 〉√

2
, (6.8)

where the ΦL,R(r) are orthonormalized single-electron wave functions for the left and right QD, respec-

tively (see also Appendix E.1) [28, 29]. The spin singlet is

|S〉 =
|↑↓〉 − |↓↑〉√

2
, (6.9)

whereas

|T0〉 =
|↑↓〉+ |↓↑〉√

2
, (6.10)

with the quantization axis of the spins along B. Analogously, one can define the states |(1, 1)T+〉 =

|Ψ−〉 |↑↑〉 and |(1, 1)T−〉 = |Ψ−〉 |↓↓〉, which are energetically split from the qubit by ±gµB |B|. For our

analysis of the phonon-induced lifetimes, a simple projection of H̃ onto this 4D subspace of lowest energy

is not sufficient, because ∑
j

(
〈Ψ+|H(j)

el−ph |Ψ+〉 − 〈Ψ−|H(j)
el−ph |Ψ−〉

)
= 0. (6.11)

That is, corrections from higher states must be taken into account in order to obtain finite lifetimes

[23, 30]. The spectrum that results from the states considered in our model is plotted in Fig. 6.1.

Depending on the detuning ε between the QDs, the lifetimes of the qubit are determined by admixtures

from |(2, 0)S〉, |(0, 2)S〉, or states with excited orbital parts.

6.3 Regime of Large Detuning

6.3.1 Effective Hamiltonian and Bloch-Redfield Theory

We first consider the case of a large, positive detuning ε at which the energy gap between |(0, 2)S〉 and

the qubit states is smaller than the orbital level spacing ~ω0. In this regime, contributions from states

with excited orbital parts are negligible, and projection of H̃ onto the basis states |(1, 1)T0〉, |(1, 1)S〉,
|(1, 1)T+〉, |(1, 1)T−〉, |(0, 2)S〉, and |(2, 0)S〉 yields

H̃ =



PT
δbB

2
0 0 0 0

δbB
2

V+ − V− + PT
Ω√
2

− Ω√
2

−
√

2t+ P †S −
√

2t+ PS

0 Ω√
2

EZ + PT 0 0 0

0 − Ω√
2

0 −EZ + PT 0 0

0 −
√

2t+ PS 0 0 −ε+ U − V− + PSR 0

0 −
√

2t+ P †S 0 0 0 ε+ U − V− + PSL

+Hph. (6.12)

Here PT , PS , P †S , PSL, and PSR are the matrix elements of the electron-phonon interaction, t is the

tunnel coupling, U is the on-site repulsion, V± = 〈Ψ±|HC |Ψ±〉, EZ = gµB |B|,

Ω = gµB
(
〈ΦL|(rSOI ×B)z|ΦL〉 − 〈ΦR|(rSOI ×B)z|ΦR〉

)
, (6.13)
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and δbB = 2〈(1, 1)S|Hhyp|(1, 1)T0〉 (see also Appendix E.2.5). We note that the energy in Eq. (6.12)

was globally shifted by 〈(1, 1)T0|
(
H

(1)
0 +H

(2)
0 +HC

)
|(1, 1)T0〉. Furthermore, we mention that the state

|(2, 0)S〉 is very well decoupled when ε is large and positive. In Eq. (6.12), |(2, 0)S〉 is mainly included for

illustration purposes, allowing also for large and negative ε and for an estimate of the exchange energy

at ε ' 0.

In order to decouple the qubit subspace {|(1, 1)S〉, |(1, 1)T0〉}, we first apply a unitary transformation

to H̃ that diagonalizes H̃ −
∑
j H

(j)
el−ph exactly. Then we perform a third-order Schrieffer-Wolff transfor-

mation that provides corrections up to the third power in the electron-phonon coupling, which is sufficient

for the analysis of one- and two-phonon processes. The resulting effective Hamiltonian can be written as

Hq +Hq−ph(τ)+Hph in the interaction representation, where the time is denoted by τ to avoid confusion

with the tunnel coupling. Introducing the effective magnetic fields Beff and δB(τ) and defining σ′ as

the vector of Pauli matrices for the S-T0 qubit,

Hq =
1

2
gµBBeff · σ′ (6.14)

describes the qubit and

Hq−ph(τ) =
1

2
gµBδB(τ) · σ′ (6.15)

describes the interaction between the qubit and the phonons. The time dependence results from

Hq−ph(τ) = eiHphτ/~Hq−phe
−iHphτ/~. (6.16)

For convenience, we define the basis of σ′ such that Beff,x = 0 = Beff,y. Following Refs. [20, 31], the

decoherence time (T2), the relaxation time (T1), and the dephasing contribution (Tϕ) to T2 of the qubit

can then be calculated via the Bloch-Redfield theory (see also Appendix E.5), which yields

1

T2
=

1

2T1
+

1

Tϕ
, (6.17)

1

T1
= J+

xx(ωZ) + J+
yy(ωZ), (6.18)

1

Tϕ
= J+

zz(0), (6.19)

where ~ωZ = Jtot = |gµBBeff | and

J+
ii (ω) =

g2µ2
B

2~2

∫ ∞
−∞

cos(ωτ)〈δBi(0)δBi(τ)〉dτ. (6.20)

The correlator 〈δBi(0)δBi(τ)〉 is evaluated for a phonon bath in thermal equilibrium and depends strongly

on the temperature T .

6.3.2 Input Parameters

The material properties of GaAs are g = −0.4, meff = 6.1 × 10−32 kg, εr ' 13, ρ = 5.32 g/cm3,

vl ' 5.1×103 m/s and vt ' 3.0×103 m/s (see also Appendix E.2.6.1) [32–34], h14 ' −0.16 As/m2 [33–35],

and Ξ ≈ −8 eV [36, 37]. In agreement with ω0/(2π) = 30 GHz [16], we set lc =
√

~/(meffω0) ' 96 nm,

which is the confinement length of the QDs due to harmonic confining potential in the x-y plane. For

all basis states, the orbital part along the z axis is described by a Fang-Howard wave function [38] of

width 3az = 6 nm (see Appendix E.1). Unless stated otherwise, we set lR = 2 µm and lD = 1 µm

[39–41], where lD is consistent with the assumed az (see also Appendix E.9) [41]. We note, however,

that adapting az to lD is not required, because changing the width of the 2DEG by several nanometers
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Figure 6.2. (a) Temperature dependence of the decoherence time (T2, blue) and relaxation time (T1, red) for the parameters

in the text. The solid line corresponds to a power-law fit to T2 for 0.1 K ≤ T ≤ 0.2 K, which yields T2 ∝ T−3 and good

agreement with recent experiments [16]. We note that T2 � T1. (b) The decoherence time due to one-phonon (1/Γ1p
2 ) and

two-phonon processes (1/Γ2p
2 ) and the full decoherence time T2 = 1/Γ2 = 1/(Γ1p

2 + Γ2p
2 ) as a function of temperature. We

note that 1/Γ2p
2 changes its behaviour from ∝ C1 +C2T−5 to ∝ T−2, where C1 and C2 are constants, whereas 1/Γ1p

2 ∝ T−1

for the range of T considered here. The figure was provided by Viktoriia Kornich.

turns out not to affect our results. All calculations are done for |B| = 0.7 T [6, 12], δbB = −0.14 µeV, in

good agreement with, e.g., Refs. [12, 16], and an interdot distance of 2a = 400 nm. For Figs. 6.1 to 6.5

(large ε), we use U = 1 meV, t = 7.25 µeV, and V+ = 40 µeV [29]. We choose here V− = 39.78 µeV such

that the resulting energy splitting Jtot(ε) between the qubit states is mostly determined by the hyperfine

coupling at ε → 0, as commonly realized experimentally [4, 16]. The detuning ε is then set such that

0 < U − V± − ε < ~ω0 and Jtot = 1.43 µeV, and we note that this splitting is within the range studied

in Ref. [16].

6.3.3 Temperature Dependence

Figures 6.1 to 6.3 consider B applied along the x axis that connects the two QDs, assuming that the

x axis coincides with the crystallographic [110] direction. The geometry x ‖ [110] is realized in most

experiments [13, 15, 17], particularly because GaAs cleaves nicely along [110]. In stark contrast to

previous theoretical studies of phonon-limited lifetimes, where T2 = 2T1 [20, 42–45], Fig. 6.2a reveals

T2 � T1 at 30 mK ≤ T ≤ 1 K considered here, which implies Tϕ � T1. In the discussion below we

therefore focus on the details of the temperature dependence of Γ2 = 1/T2. We note, however, that the

contributions to Γ2 and Γ1 = 1/T1 from one-phonon processes scale similarly with T , and analogously

for two-phonon processes. Defining Γ1p
2 (Γ2p

2 ) as the decoherence rate due to one-phonon (two-phonon)

processes, Fig. 6.2b illustrates Γ2p
2 � Γ1p

2 , and so Γ2 = Γ1p
2 + Γ2p

2 ' Γ2p
2 . In the considered range

of temperatures, we find Γ1p
2 ∝ T . This behavior results from the fact that ~ωZ/(kBT ) < 1 for our

parameters, where kB is the Boltzmann constant. Therefore, the dominant terms in the formula for Γ1p
2

are proportional to Bose-Einstein distributions defined as

nB(ω) =
1

e~ω/(kBT ) − 1
(6.21)
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Figure 6.3. Dependence of the decoherence time T2 on the temperature for the parameters in the text and different spin-orbit

lengths. Keeping the splitting Jtot between the qubit states constant, the values chosen for the detuning ε are 0.896 meV

(black), 0.912 meV (blue), 0.918 meV (green), and 0.933 meV (red), increasing with increasing SOI. Within the range

T = 100–200 mK, T2 ∝ T−3 in all cases. We note that the best quantitative agreement with the experiment [16] is obtained

for the strongest SOI (red), where lR = 1 µm and lD = 0.5 µm. The figure was provided by Viktoriia Kornich.

and may all be expanded according to nB(ω) ' kBT/(~ω), keeping in mind that the nB(ω) contributing

to Γ1p
2 are evaluated at ω = ωZ because of energy conservation. The time 1/Γ2p

2 due to two-phonon

processes smoothly changes its behaviour from C1 + C2T
−5 at T ∼ 40 mK to T−2 with increasing

temperature, where Cn are constants. This transition is explained by the fact that, in the continuum

limit, the rate corresponds to an integral over the phonon wave vector q, where the convergence of this

integral is guaranteed by the combination of the Bose-Einstein distribution and the Gaussian suppression

that results from averaging over the electron wave functions. More precisely, the decay rate is obtained

by integrating over the wave vectors of the two involved phonons. Due to conservation of the total energy,

however, considering only one wave vector q is sufficient for this qualitative discussion. For Γ2p
2 , we find

that the dominating terms decay with q due to factors of type

fs(q) = e−(q2x+q2y)l2cnB(ωqs) [nB(ωqs) + 1] , (6.22)

where qx and qy are the projections of q onto the x and y axes, respectively, and ~ωqs = ~vs|q| is the

phonon energy. Whether the Bose-Einstein part or the Gaussian part from fs(q) provides the convergence

of the integral depends on lc, vs ∈ {vl, vt}, and mainly T , as the latter can be changed significantly.

When the Gaussian part exp[−(q2
x+q2

y)l2c ] cuts the integral, Γ2p
2 ∝ T 2 due to the expansion nB(nB+1) '

(kBT )2/(~ωqs)
2 that applies in this case. When nB(nB + 1) affects the convergence of the integral,

terms with higher powers of T occur. The resulting temperature dependence is rather complex, but is

usually well described by 1/Γ2p
2 = Cm + CnT

−ν with ν ≥ 2 for different ranges of T [see Fig. 6.2b]. The

temperature ranges for the different regimes are determined by the details of the setup and the sample.

For the parameters considered here, a power-law approximation T2 ∝ T η for T = 100–200 mK yields

η ' −3 mainly because of the dephasing due to two-phonon processes (see Figs. 6.2 and 6.3), which

agrees well with the experimental data of Ref. [16].

Figure 6.3 shows the resulting temperature dependence of T2 for different spin-orbit lengths. Remark-

ably, the calculation yields short T2 even when SOI is completely absent. Keeping Jtot = 1.43 µeV fixed

by adapting the value of ε, one finds that T2 decreases further with increasing SOI. As seen in Eq. (6.12),

H̃SOI couples |(1, 1)S〉 to the triplet states |(1, 1)T+〉 and |(1, 1)T−〉. An important consequence of the

resulting admixtures is that greater detunings are required in order to realize a desired Jtot. In Fig. 6.3,

for instance, ε increases from 0.896 meV (no SOI) to 0.933 meV (lR = 1 µm, lD = 0.5 µm). As explained

below, increasing ε decreases the lifetimes because it enhances the effects of |(0, 2)S〉 through reduction

of the energy gap (see also Fig. 6.1).
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6.3.4 Origin of Strong Dephasing

The results discussed thus far have revealed two special features of the phonon-mediated lifetimes of S-T0

qubits in biased DQDs. First, T2 � T1, as seen in Fig. 6.2a. Second, the strong decay does not require

SOI, as seen in Fig. 6.3. These features have not been observed in previous calculations for, e.g., spin

qubits formed by single-electron [20, 39] or single-hole [42, 43] or two-electron [23] states in GaAs QDs,

hole-spin qubits in Ge/Si nanowire QDs [44], or electron-spin qubits in graphene QDs [45]. Therefore, we

discuss the dominant decay mechanism for S-T0 qubits in DQDs in further detail and provide an intuitive

explanation for our results.

Assuming again a large, positive detuning ε, with 0 < U − V± − ε < ~ω0, and setting Ω = 0 (no SOI),

the states |(1, 1)T+〉, |(1, 1)T−〉, and |(2, 0)S〉 of Eq. (6.12) are practically decoupled from the qubit. The

relevant dynamics are then very well described by

H̃ =

 0 δbB
2 0

δbB
2 V+ − V− −

√
2t+ P †S

0 −
√

2t+ PS −ε+ U − V− + P̃

+Hph, (6.23)

with |(1, 1)T0〉, |(1, 1)S〉, and |(0, 2)S〉 as the basis states and

P̃ = PSR − PT . (6.24)

In the absence of SOI, the hyperfine interaction (δbB) is the only mechanism that couples the spin states

and enables relaxation of the S-T0 qubit. We note that even when Ω is nonzero, the relaxation times

T1 are largely determined by the hyperfine coupling instead of the SOI for the parameters considered in

this work. At sufficiently large temperatures, where T2 � T1, δbB is negligible in the calculation of T2,

leading to pure dephasing T2 = Tϕ. In addition, the matrix element PS turns out to be negligible for our

parameters. Following Appendix E.7, we finally obtain

1

T2
=

1

Tϕ
=

2t4

~2(∆′S)6

∫ ∞
−∞
〈P̃ 2(0)P̃ 2(τ)〉dτ (6.25)

from this simple model, where

∆′S =
√

(U − V+ − ε)2 + 8t2 (6.26)

corresponds to the energy difference between the eigenstates of type |(1, 1)S〉 and |(0, 2)S〉 (using δB = 0).

We note that terms of type a†qsaqs and aqsa
†
qs must be removed from P̃ 2 in Eq. (6.25), as the Bloch-

Redfield theory requires 〈δB(τ)〉 to vanish (see also Appendix E.7) [46]. In Fig. 6.4, we compare T2 from

Eq. (6.25) with T2 derived from Eq. (6.12) for Ω = 0 (see also Fig. 6.3), and find excellent agreement at

T & 50 mK where relaxation is negligible.

The above analysis provides further insight and gives explanations for the results observed in this work.

First, Eq. (6.25) illustrates that dephasing requires two-phonon processes and cannot be achieved with

a single phonon only. As dephasing leaves the energy of the electrons and the phonon bath unchanged,

the single phonon would have to fulfill ωqs = 0 = |q|. However, phonons with infinite wavelengths do not

affect the lifetimes, which can be explained both via eiq·r → 1 [see Eq. (6.2)] and via the vanishing density

of states at ωqs → 0 for acoustic phonons in bulk. Thus, Γ1p
2 = Γ1p

1 /2 in all our calculations, where Γ1p
1 is

the relaxation rate due to one-phonon processes. Second, as discussed above, we find that the hyperfine

interaction in combination with electron-phonon coupling presents an important source of relaxation in

this system [24]. Third, the strong dephasing at large detuning ε results from two-phonon processes

between states of type |(1, 1)S〉 and |(0, 2)S〉. This mechanism is very effective because the spin state

remains unchanged. Therefore, the dephasing requires neither SOI nor hyperfine coupling, and we note
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Figure 6.4. Decoherence time T2 as a function of temperature from two different models. The dotted line is also shown in

Fig. 6.3 and was calculated via Eq. (6.12), using the parameters in the text with Ω = 0 (no SOI) and ε = 0.896 meV. The

crosses result from Eq. (6.25), using exactly the same parameters. We note that the associated Jtot differ only slightly. The

remarkable agreement demonstrates that the simple model of Sec. 6.3.4 accounts for the dominant decay mechanism. At

T . 50 mK, the curves start to deviate because relaxation is no longer negligible. When the hyperfine coupling in Eq. (6.23)

is not omitted, excellent agreement is obtained also at low temperatures. The figure was provided by Viktoriia Kornich.

that Eq. (6.25) reveals a strong dependence of Tϕ on the tunnel coupling t and the splitting ∆′S . Hence,

the short Tϕ in the biased DQD can be interpreted as a consequence of the Pauli exclusion principle. When

the energy of the right QD is lowered (ε > 0), the singlet state of lowest energy changes from |(1, 1)S〉
toward |(0, 2)S〉 since the symmetric orbital part of the wave function allows double-occupancy of the

orbital ground state in the right QD. The triplet states, however, remain in the (1,1) charge configuration.

While this feature allows tuning of the exchange energy and readout via spin-to-charge conversion on the

one hand [4], it enables strong dephasing via electron-phonon coupling on the other hand: effectively,

phonons lead to small fluctuations in ε; due to Pauli exclusion, these result in fluctuations of the exchange

energy and, thus, in dephasing [47]. This mechanism is highly efficient in biased DQDs, but strongly

suppressed in unbiased ones, as we show in Sec. 6.4 and Appendix E.8.

We note that the discussed dephasing mechanism that does not require SOI or hyperfine coupling

corresponds to a two-phonon Raman process and has been studied before for impurity atoms [48–51],

particularly in the presence of singlet states [49–51]. The same mechanism is used in Ref. [47] to analyze

the dephasing of singlet-triplet qubits in unbiased DQDs. We note that the conclusions of Ref. [47] and

our work substantially differ from each other. While Ref. [47] finds dominant dephasing times due to this

Raman process, we find that this process for dephasing is negligible in the unbiased regime for realistic

DQD parameter values (see also Appendix E.8).

6.3.5 Angular Dependence

We also calculate the dependence of T1 and T2 on the angle between B and the x axis, assuming that

x ‖ [110]. The results for T = 100 mK and Jtot = 1.43 µeV are plotted in Fig. 6.5. Remarkably, the

phonon-induced lifetimes of the qubit are maximal when B ⊥ x and minimal when B ‖ x. The difference

between minimum and maximum increases strongly with the SOI, and for lR = 1 µm and lD = 0.5 µm

we already expect improvements by almost two orders of magnitude. These features can be understood

via the matrix elements of the effective SOI [22–24],

Ω = FSOI(a, lc)EZ
lD cos (θB − θ) + lR cos (θB + θ)

lDlR
, (6.27)

where θB (θ) is the angle between B (the x axis) and the crystallographic axis [110], and FSOI(a, lc) is

a function of a and lc. From this result, we conclude that there always exists an optimal orientation for

the in-plane magnetic field for which the effective SOI is suppressed and, thus, for which the phonon-

mediated decay of the qubit state is minimal (comparing the lifetimes at fixed Jtot). Remarkably, one
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Figure 6.5. Dependence of the relaxation (T1) and decoherence time (T2) on the angle θB between the in-plane magnetic

field B and the x axis that connects the QDs. When B ⊥ x (θB = π/2), both T1 and T2 exhibit a maximum. Red (black)

corresponds to the spin-orbit lengths lR = 2 µm and lD = 1 µm (lR = 1 µm and lD = 0.5 µm). For the stronger SOI, the

lifetimes increase by almost two orders of magnitude. For details, see text. The figure was provided by Viktoriia Kornich.

finds for x ‖ [110] (θ = 0) that this suppression always occurs when B ⊥ x (θB = π/2), independent of

lR and lD. In the case where Ω = 0, the finite T2 in our model results from admixtures with |(0, 2)S〉, as

explained in Sec. 6.3.4. Due to the hyperfine interaction, these admixtures also lead to finite T1. We wish

to emphasize, however, that suppression of the effective SOI only results in a substantial prolongation of

the lifetimes when the spin-orbit lengths are rather short, as the dominant decay mechanism in biased

DQDs is very effective even at Ω = 0.

6.4 Regime of Small Detuning

All previous results were calculated for a large detuning ε ∼ U −V±. Now we consider an unbiased DQD,

i.e., the region of very small ε. The dominant decay mechanism in the biased DQD is strongly suppressed

at ε ' 0, where the basis states |(2, 0)S〉 and |(0, 2)S〉 are both split from |(1, 1)S〉 by a large energy

U − V+. Adapting the simple model behind Eq. (6.25) to an unbiased DQD yields

8t4

~2(U − V+)6

∫ ∞
−∞
〈P̃ 2(0)P̃ 2(τ)〉dτ (6.28)

as the associated dephasing time (see Appendix E.8 for details). Comparing the prefactor with that of

Eq. (6.25) results in a remarkable suppression factor below 10−4 for the parameters in this work. As

explained in Appendix E.8, this suppression factor may also be estimated via (∆′S)4/(U − V+)4 for fixed

Jtot, where ∆′S is the splitting between the eigenstates of type |(1, 1)S〉 and |(0, 2)S〉 at large ε and U−V+

is the above-mentioned splitting at ε ' 0.

Consequently, the lifetimes T1 and T2 in the unbiased DQD are no longer limited by |(2, 0)S〉 or

|(0, 2)S〉, but by states with an excited orbital part (see Fig. 6.1). We therefore extend the subspace by

the basis states |(1∗, 1)S〉, |(1∗, 1)T0〉, |(1∗, 1)T+〉, and |(1∗, 1)T−〉, and proceed analogously to the case

of large detuning (see Appendixes E.1 and E.3 for details). The asterisk denotes that the electron is in

the first excited state, leading to an energy gap of ~ω0 compared to the states without asterisk. Setting

B ‖ x ‖ [110], the orbital excitation is taken along the x axis, because states with the excitation along y

turn out to have negligible effects on the qubit lifetimes. From symmetry considerations, states with the

excited electron in the right QD should only provide quantitative corrections of the lifetimes by factors

on the order of 2 and are therefore neglected in this analysis. The resulting temperature dependence of

T2, 1/Γ1p
2 , and 1/Γ2p

2 is shown in Fig. 6.6. The plotted example illustrates that two-phonon processes

affect T2 only at rather high temperatures when ε is small, leading to T2 ∝ T−1 for a wide range of T

due to single-phonon processes. In stark contrast to the biased DQD, we find T2 ' 2T1. Remarkably,
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Figure 6.6. Temperature dependence of the decoherence time (T2) and its one-phonon (1/Γ1p
2 ) and two-phonon (1/Γ2p
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parts for the detuning ε ' 0, where excited states are taken into account. For this plot, U = 1 meV, V+ = 50 µeV,

V− = 49.5 µeV, t = 24 µeV, Jtot = 1.41 µeV, and the other parameters as described in the text. We note that T2 ' 2T1.

The figure was provided by Viktoriia Kornich.

the absolute value of T2 is of the order of milliseconds, which exceeds the T2 at large ε by 2–3 orders of

magnitude. For B ⊥ x, x ‖ [110], and typical sample temperatures T ∼ 0.1 K, we find that the lifetimes

can be enhanced even further.

6.5 Conclusions and Outlook

In conclusion, we showed that one- and two-phonon processes can be major sources of relaxation and

decoherence for S-T0 qubits in DQDs. Our theory provides a possible explanation for the experimental

data of Ref. [16], and we predict that the phonon-induced lifetimes are prolonged by orders of magnitude

at small detunings and, when the SOI is strong, at certain orientations of the magnetic field. Our results

may also allow substantial prolongation of the relaxation time recently measured in resonant exchange

qubits [52].

While the model developed in this work applies to a wide range of host materials, the resulting lifetimes

depend on the input parameters and, thus, on the setup and the heterostructure. By separately neglecting

the deformation potential coupling (Ξ = 0) and the piezoelectric coupling (h14 = 0), we find that the qubit

lifetimes of Figs. 6.2 to 6.6 for GaAs DQDs are limited by the piezoelectric electron-phonon interaction,

the latter providing much greater decay rates than the deformation potential coupling. Consequently,

the phonon-limited lifetimes of singlet-triplet qubits may be long in group-IV materials such as Ge or Si

[53–55], where the piezoelectric effect is absent due to bulk inversion symmetry.

Essentially, there are two different schemes for manipulating singlet-triplet qubits in DQDs electrically.

The first and commonly realized approach is based on biased DQDs and uses the detuning to control the

exchange energy [4]. Alternatively, the exchange energy can be controlled by tuning the tunnel barrier [1]

rather than the detuning. Our results suggest that the second approach is advantageous, as it applies

to unbiased DQDs for which the phonon-mediated decay of the qubit state is strongly suppressed. In

addition, one finds dJtot/dε ∝ ε at very small detunings ε [28], which implies that not only dJtot/dε ' 0

but also 〈dJtot/dε〉 ' 0 at ε ' 0, where 〈· · · 〉 now stands for the average over some random fluctuations

of ε. Therefore, singlet-triplet qubits in unbiased DQDs are also protected against electrical noise. The

latter, for instance, turned out to be a major obstacle for the implementation of high-fidelity controlled-

phase gates between S-T0 qubits [6]. Keeping in mind that two-qubit gates for singlet-triplet qubits may

also be realized with unbiased DQDs [7], we conclude that operation at ε ' 0 with a tunable tunnel

barrier is a promising alternative to the commonly realized schemes that require nonzero detuning. As

single-qubit gates for S-T0 qubits correspond to two-qubit gates for single-electron spin qubits, the regime

ε ' 0 is also beneficial for many other encoding schemes.
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Chapter 7

Controlling the Interaction of Electron and

Nuclear Spins in a Tunnel-Coupled

Quantum Dot

Adapted from:

Christoph Kloeffel, Paul A. Dalgarno, Bernhard Urbaszek, Brian D. Gerardot, Daniel Brunner,

Pierre M. Petroff, Daniel Loss, and Richard J. Warburton,

Phys. Rev. Lett. 106, 046802 (2011).

We present a technique for manipulating the nuclear spins and the emission polarization from a single

optically active quantum dot. When the quantum dot is tunnel coupled to a Fermi sea, we have discovered

a natural cycle in which an electron spin is repeatedly created with resonant optical excitation. The

spontaneous emission polarization and the nuclear spin polarization exhibit a bistability. For a σ+ pump,

the emission switches from σ+ to σ− at a particular detuning of the laser. Simultaneously, the nuclear spin

polarization switches from positive to negative. Away from the bistability, the nuclear spin polarization

can be changed continuously from negative to positive, allowing precise control via the laser wavelength.



7.1 Introduction

Semiconductor quantum dots are very attractive for applications as qubits [1] and sources of quantum

light [2–4]. Versatile materials are the III-V semiconductors, notably GaAs which has established itself as

the workhorse material. A significant property is that all the Ga, As, and In isotopes have large nuclear

spins. In a typical quantum dot there is an intermediate number of atoms, too large to use each nuclear

spin as a resource yet too small for efficient cancellation in the total spin, and noise in the nuclear spins

limits the electron spin coherence to just ∼10 ns through the hyperfine interaction [5–7]. An emerging

theme is that the nuclear spin noise may be reduced by narrowing the distribution [8–11] and that the

nuclear spin ensemble may represent as much opportunity as trouble. Currently, schemes exist to tune

both the optical transition energy [12] and the selection rules [13] of a quantum dot in situ, but presently,

the possibilities of using nuclear spins beneficially are limited.

We present here a new control over the electron-nuclear-spin interaction on driving an optical transition

resonantly. Dynamic nuclear polarization at the single quantum dot level is established [14–18]. The

crucial advance here is to operate in the tunneling regime [17, 18] where we discover a natural cycle.

There are two interrelated features. First, spontaneous emission following resonant excitation either

preserves the circular polarization of the source or inverts it. For instance, with a σ+ pump, we can

switch from predominantly σ+ to σ− emission either with a small change in pump wavelength or device

bias allowing the polarization of a single photon source to be controlled in situ. Secondly, the resonant

excitation creates a large nuclear spin polarization which changes sign abruptly at the bistability, a

new feature compared to the bistabilities following nonresonant optical excitation [14, 19]. At smaller

laser wavelengths, the nuclear spin polarization changes monotonically from a large negative value to a

large positive value. This bidirectional tuning is demonstrated here at low magnetic fields (0.5 T), and

complements the optical dragging effect at high magnetic fields [12]. Control of the nuclear spins via the

optical wavelength is a powerful route to narrowing the distribution [12] and to tuning the quantum dot

exciton over tens of µeV.

7.2 Setup

Our experiments use a field effect device in which InGaAs self-assembled quantum dots are in tunnel

contact with an n+ GaAs Fermi sea via a 25 nm thick GaAs tunnel barrier [20]. A voltage is applied

to a Schottky contact on the sample surface, 150 nm above the quantum dot layer, at 4.2 K. Photolu-

minescence (PL) is excited either nonresonantly at 830 nm wavelength, or resonantly using 13 kW/cm2

from a tunable narrowband cw laser. The PL is dispersed with a monochromator and detected with a

CCD array detector, a system with resolution 50 µeV. The polarization of excitation and collection are

independently controlled. A small magnetic field, Bz = +0.5 T, is applied along the growth z direction.

7.3 Natural Cycle in the Hybridization Region

Excited nonresonantly, the PL from a single quantum dot shows a clear charging step from the neutral

exciton, X0, to the negatively charged trion, X1−. The energies of the initial states |X0〉 and |X1−〉,
and their corresponding final states, |0〉 (vacuum) and |e〉 (single electron), as a function of gate voltage

are shown in Fig. 7.1. In the final states (no hole present), the ground state charges from |0〉 to |e〉 at

a more positive voltage than the change in the initial states from |X0〉 to |X1−〉 [20], a consequence of

the different electron-hole and electron-electron Coulomb energies. A “hybridization region” is created,

a voltage region in which both excitons are tunnel coupled to the Fermi sea, X0 in the initial state, X1−

in the final state [20]. We show here that this region is ideal for controlling the electron-nuclear-spin

interaction.
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Figure 7.1. Top: Photoluminescence (PL) at 4.2 K from a single quantum dot versus bias driven with excitation at the X0

energy. X1− PL appears in a narrow range of voltage, the hybridization regime. Bottom: Energy dependence versus bias

for the quantum dot vacuum state |0〉 and the single electron state |e〉, showing a crossing where the ground state changes.

X0 and X1− cross at lower bias on account of the hole. Within the hybridization region, automatic cycling takes place

when a laser is tuned to the |0〉 ↔ |X0〉 transition. An electron tunneling from the Fermi sea turns the |X0〉 into |X1−〉;
recombination leaves the system in state |e〉; tunneling out returns the dot to |0〉.

Figure 7.1 shows the result of pumping the |0〉 ↔ |X0〉 transition of a single quantum dot. Over a small

region of voltage, X1− PL is observed, redshifted by 6 meV with respect to the laser. A comparison with

the nonresonantly excited PL demonstrates that this region corresponds to the low bias edge of the X1−

plateau, i.e., the hybridization region, and that the resonantly excited PL has the X0 energy. In terms of

the level diagram in Fig. 7.1, the dot is initially in the vacuum state |0〉. The laser then creates an X0,

which, although neutral, is unstable with respect to tunneling. Electron tunneling into the dot (time scale

∼50 ps, considerably shorter than the radiative lifetime of ∼1 ns) creates an X1− which then recombines.

After spontaneous emission, the dot is in the |e〉 state. Now that the hole has disappeared, this state is

also unstable with respect to tunneling: electron tunneling out of the dot (time scale ∼10 ps) returns the

dot to |0〉 whereupon the process can be repeated. This cycle offers a number of attractive features. First,

the X0 spin is determined by the polarization of the laser through the optical selection rules. Second, the

cycle round-trip time is small, just ∼1 ns, limited only by spontaneous emission. Third, the redshift of

the PL with respect to the excitation makes it easy to distinguish spontaneous emission from scattered

laser light even though one of the transitions is driven resonantly. The PL is useful in its own right as

an antibunched source. It also provides an in situ monitor of the nuclear spin polarization through the

Overhauser shift. Finally, the process can be described quantitatively with no ad hoc assumptions.

7.4 Control of Emission Polarization and Overhauser Field

The main experiment consists of monitoring the X1− PL as a function of laser detuning with respect to

the X0 transition for a constant pump polarization, e.g., σ+. A PL spectrum is recorded for both σ+

and σ− polarizations. These counts-energy spectra are fitted to Lorentzians [21], yielding both the signal

energy E(σ±) (center of Lorentzian) and the signal intensity S(σ±) (area under Lorentzian). Figure 7.2

shows both S(σ+) and S(σ−) for a σ+ pump, and the associated polarization degree

P =
S(σ+)− S(σ−)

S(σ+) + S(σ−)
. (7.1)
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Figure 7.2. Left (right) panels: Experimentally measured (calculated) signal intensity, polarization degree, and Overhauser

shift versus laser energy (laser detuning) for a σ+ pump and an external field of +0.5 T at fixed bias in the center of the

hybridization region. In the experiment, the laser is tuned close to the |0〉 ↔ |X0〉 transition and the dot (at 4.2 K) is the

same as in Fig. 7.1.

At large negative and positive detunings, the PL has largely σ+ character with P up to 0.76±0.05. This is

the intuitive result from the selection rules. Absorption of a σ+ photon with spin angular momentum +~
along z creates an |⇑↓〉 exciton consisting of a heavy hole ⇑ with spin z projection + 3

2~ and an electron ↓
with − 1

2~. An electron tunnels in to form the X1− exciton |⇑↓↑〉. Hole spin relaxation is slow compared

to recombination [22, 23] such that recombination |⇑↓↑〉 → |↑〉 creates a σ+ photon. The counterintuitive

result in Fig. 7.2 is that close to the center of the resonance, the PL has an inverted polarization degree,

with P ∼ −0.7. Strikingly, P changes abruptly at a particular detuning.

An indicator that the nuclear spins are involved is provided by the Overhauser shift

∆n = E(σ+)− E(σ−)− gXµBBz. (7.2)

∆n is interpreted as an energy shift of the unpaired electron spin in the X1− final state arising from the

nuclear spin polarization along z. Its determination requires a knowledge of the exciton g factor, and we

measure gX = 1.55± 0.10 as described in Appendix F. Close to the center of the resonance we now find

that ∆n switches sign exactly at the point where P switches sign. The Overhauser shift is related to the

average nuclear spin z projection 〈Iz〉 (in units of ~) through ∆n ' −A〈Iz〉 [21]. Taking the coupling

constant A ≈ 90 µeV, an averaged value for In0.5Ga0.5As [24], we find that 〈Iz〉 ≈ +0.36↔ −0.36. Full

polarization corresponds to 〈Iz〉 = ±2.25, where I = 2.25 is the average nuclear spin quantum number in

the dot.

The abrupt jump in P corresponds to a bistability. With σ+ excitation, in state I (II) the dot emits

σ+ (σ−) photons and the nuclear spins point up (down). The bistability is demonstrated clearly in
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Figure 7.3. Top: Bistability between state I (σ+ PL, nuclear spins up) and state II (σ− PL, nuclear spins down). The

polarization degree P and Overhauser shift ∆n were measured as the laser was tuned. The laser was blocked for 30 s

between each point. Bottom: Demonstration of switching with gate voltage pulses (40 mV, 5 s duration) by measuring the

σ+ PL; strong PL signifying state I, weak PL signifying state II. In between voltage pulses, the laser was turned off. Both

curves were recorded at +0.5 T, 4.2 K, using a σ+ pump and the same dot as in Figs. 7.1 and 7.2.

the hysteresis curve of Fig. 7.3 (top). In this case, the laser energy was tuned in fine steps (less than

0.5 µeV), blocking the laser path for about 30 s between each data point during which time the state of

the system was always preserved. At more positive laser detunings, the polarization degree P and the

nuclear spin polarization are continuous monotonic functions of detuning, changing from large negative

to large positive values. Correspondingly, ∆n goes smoothly from +30 to −35 µeV. The total electron

Zeeman splitting, geff
e µBBz = geµBBz + A〈Iz〉, changes sign at the bistability, followed by continuous

tuning from −45 to +20 µeV (tuning of effective electron g factor geff
e from −1.6 to +0.7).

To switch from state I to state II, it is more convenient to change the gate voltage than the laser

wavelength. We have achieved this by exploiting the Stark effect of the exciton energy. Figure 7.3

(bottom) demonstrates controlled switching between state I and II by applying voltage pulses to the

gate, monitoring the state of the system via the σ+ PL. The system is initially in state I. It is forced into

state II with a negative voltage pulse, equivalent to moving the laser energy up and back down again.

This results in a lower σ+ PL, the signature of state II. Analogously, we can switch the system back into

state I with a positive voltage pulse. In between these voltage pulses, the laser is turned off. When it is

turned back on again ∼30 s later, the system always adopts its original state, demonstrating a slow I-II

relaxation rate (< 0.1 s−1).

7.5 Quantitative Model

We present a quantitative model to describe these results. The two crucial ingredients are first, a coherent

coupling between |⇑↓〉 and |⇓↑〉, the so-called fine structure which arises from the anisotropic part of the

electron-hole exchange, and second, a hyperfine coupling between the nuclear spins and the unpaired

electron spin. A full description of the model is given in Appendix F.
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Figure 7.4. Top: The five quantum states in the simulation showing an optical coupling (Rabi energy ~Ω) and a coherent

coupling (energy ~ωfs) between the two neutral exciton states. Decay processes are drawn with dashed lines. Bottom: The

calculated nuclear spin dynamics as a function of laser detuning for a σ+ pump, +0.5 T external field, and the parameters

described in the text. The solid (dashed) line shows the stable (unstable) solution of d
dt
〈Iz〉 = 0.

First, we calculate the effect of the laser field on the dynamics of a five-level system, consisting of the

vacuum state |0〉, the two X0 exciton states |⇑↓〉 and |⇓↑〉, and the two X1− states |⇑↓↑〉 and |⇓↑↓〉. The

laser is σ+ polarized and drives the |0〉 ↔ |⇑↓〉 but not the |0〉 ↔ |⇓↑〉 transition on account of the selection

rules. The optical Rabi energy is ~Ω, the detuning ~δ = ~ω − ~ω0, where ω is the angular frequency

of the laser and ~ω0 is the eigenenergy of |⇑↓〉 and |⇓↑〉 in the absence of magnetic field, fine structure,

and nuclear spins. Coupling between |⇑↓〉 and |⇓↑〉 is characterized by the fine structure ~ωfs. Decay

processes are sketched in the level diagram, Fig. 7.4 (top). The neutral excitons can decay by spontaneous

emission to |0〉 at rate τ−1
0 ; or they can become trion states via tunneling at rate τ−1

in . Starting with the

entire population in the ground state, we use the master equation for the density matrix to determine the

occupation probabilities p|⇑↓↑〉 and p|⇓↑↓〉 of the trion states after time τ1, the spontaneous recombination

lifetime of X1−, resulting in the rates of creating an ↑, ↓ electron via optical recombination.

After trion recombination, the free electron interacts with the N quantum dot nuclei through the

contact hyperfine interaction before it tunnels out at rate τ−1
out. The spin flip-flop probability pff is

pff =
2γτ2

out

(4γ + ξ) τ2
out + ~2

, (7.3)

where γ = A2

4N (I − |〈Iz〉|) and ξ = (geµBBz +A〈Iz〉)2
, with ge as the electron g factor [21]. The com-

bination of electron creation rate and flip-flop probability results in a dynamic equation for the nuclear

spin polarization. 〈Iz〉 is driven up depending on p|⇑↓↑〉, down depending on p|⇓↑↓〉, and decays in the

absence of driving with rate Γleak,

d

dt
〈Iz〉 '

pff

Nτ1

[
p|⇑↓↑〉 − p|⇓↑↓〉

]
t = τ1

− Γleak〈Iz〉. (7.4)

We solve this equation numerically to find stable values of 〈Iz〉 as a function of laser detuning ~δ. At each

solution one can also calculate the Overhauser shift ∆n and the polarization degree P in the quantum

dot emission [21].
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Parameters are set by in situ characterization and by comparison with previous experiments, making

small tweaks to fit the experimental data in Fig. 7.2. We use the following values [21]: ~Ω = 23 µeV,

~ωfs = 40 µeV, τ0 = 0.75 ns, τ1 = 0.95 ns, τin = 35 ps, τout = 5 ps, N = 8.5 × 104, Γleak = 0.1 s−1, and

ge = −0.5. Figure 7.4 (bottom) contains a plot of d
dt 〈Iz〉, showing that the solution for 〈Iz〉 changes from

positive to negative with a region of bistability. The calculated P and ∆n are plotted in the right panels

to Fig. 7.2. Close to the optical resonance, there is an excellent agreement with the experimental results.

The theory offers an explanation for the counterintuitive inversion of the PL polarization. When the

σ+ polarized laser comes into resonance with the forbidden |0〉 ↔ |⇓↑〉 transition, a combination of the

allowed |0〉 ↔ |⇑↓〉 transition and the |⇑↓〉 ↔ |⇓↑〉 coupling causes the population to build up in the |⇓↑〉
state, leading to electron spin ↓ creation following tunneling in and recombination. When the laser is

then tuned further, the allowed |0〉 ↔ |⇑↓〉 transition takes over and the cycle results in the creation of

electron spin ↑. The creation of a particular electron spin leads to nuclear spin polarization which alters

the energies of the |⇓↑〉, |⇑↓〉 states via the Overhauser field. This feedback results in a bistability close

to the forbidden transition and continuous tuning thereafter.

7.6 Outlook

We have explored some of the parameter space theoretically. For parameters close to the ones used

in this experiment, a region of bistability exists when Γleak is small enough. A bistability is definitely

possible even at zero magnetic field, provided that Γleak . 1 s−1 and that the tunneling times are

increased relative to those in this experiment. The inversion in polarization can be enhanced to at least

P = +0.85 ↔ −0.85, again by increasing the tunneling times and also by optimizing the ωfs : Ω ratio.

Furthermore, at detunings larger than those at the bistability, these parameters allow continuous control

of the |↑〉, |↓〉 eigenenergies from ∓40 to ±50 µeV, and, following Refs. [21, 25], a reduction in the variance

of the nuclear spin distribution by factors ∼5. All these features are attractive for spin qubits and single

photon emitters.
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A.1 Representation of Spin Matrices

All results presented in Chapter 2 are based on the following representation of the spin-3/2 matrices:

Jx =


0

√
3

2 0 0
√

3
2 0 1 0

0 1 0
√

3
2

0 0
√

3
2 0

 , (A.1)

Jy =


0 −i

√
3

2 0 0

i
√

3
2 0 −i 0

0 i 0 −i
√

3
2

0 0 i
√

3
2 0

 , (A.2)

Jz =


3
2 0 0 0

0 1
2 0 0

0 0 − 1
2 0

0 0 0 − 3
2

 . (A.3)

The Pauli operators τi (referring to {g, e}) and σi (acting on {+,−}) are defined as

τx =

(
0 1

1 0

)
, τy =

(
0 −i
i 0

)
, τz =

(
1 0

0 −1

)
, (A.4)

and analogously for σi.

A.2 Basis States for the Effective 1D Hamiltonian

In this appendix we outline the calculation of the basis states {g+, g−, e+, e−}. For kz = 0, each of

the 4×4 blocks for given quantum number Fz and energy E reduces to two 2×2 blocks, labeled by ±
according to the sign of the contained spin state |±3/2〉. In the absence of confinement, using an ansatz

analogous to those in Refs. [1, 2], the eigenstates to be considered are

ψFzhh,± = JFz∓3/2(khhr)e
i(Fz∓3/2)φ |±3/2〉 −

√
3JFz±1/2(khhr)e

i(Fz±1/2)φ |∓1/2〉 , (A.5)

ψFzlh,± =
√

3JFz∓3/2(klhr)e
i(Fz∓3/2)φ |±3/2〉+ JFz±1/2(klhr)e

i(Fz±1/2)φ |∓1/2〉 , (A.6)

where the Jn(x) are Bessel functions of the first kind, and

khh,lh ≡
1

~

√
2mE

γ1 ∓ 2γs
. (A.7)

When confinement is present, the eigenstates read

ΦFz± (r, φ) = aFz± ψ
Fz
hh,±(r, φ) + bFz± ψ

Fz
lh,±(r, φ), (A.8)

where the coefficients aFz± , b
Fz
± and the energies E are to be found from the boundary condition ΦFz± (R,φ) =

0, resulting in the determinant equations

0 = JFz∓3/2(khhR)JFz±1/2(klhR) + 3JFz±1/2(khhR)JFz∓3/2(klhR). (A.9)

By solving the above equations, we find that for ± the lowest eigenenergy corresponds to Fz = ∓1/2,

and the second lowest one to Fz = ±1/2. The associated eigenstates g± ≡ Φ
∓1/2
± and e± ≡ Φ

±1/2
± for the
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transverse motion are found by calculating the coefficients a
∓1/2
± , b

∓1/2
± , a

±1/2
± , and b

±1/2
± , respectively,

and serve as the basis states in the effective 1D Hamiltonian. Normalization requires

〈g± | g±〉 =

∫ R

0

drr

∫ 2π

0

dφ |g±|2 = 1, (A.10)

and analogously for e±. It turns out that the excited states are purely heavy-hole-like, b
±1/2
± = 0, and we

choose the complex phases such that all coefficients are real, with a
∓1/2
± < 0, b

∓1/2
± > 0, and a

±1/2
± > 0.

A.3 Bir-Pikus Hamiltonian

Referring to holes, the Bir-Pikus Hamiltonian reads

HBP = −
(
a+

5

4
b

)∑
i

εii + b
∑
i

εiiJ
2
i +

2d√
3

(
εxy {Jx, Jy}+ c.p.

)
, (A.11)

where a, b, and d are the deformation potentials, εij = εji are the strain tensor elements, {A,B} ≡
(AB + BA)/2, and “c.p.” stands for cyclic permutations [3]. The axes x, y, z refer here to the main

crystallographic axes. For Ge, the deformation potentials are b ' −2.5 eV and d ' −5.0 eV [3], so that

the spherical approximation d =
√

3b applies. The hydrostatic deformation potential a accounts for the

constant energy shift of the VB in the presence of hydrostatic strain, and therefore does not contribute

to ∆BP(γ), i.e., the rescaling of the energy gap ∆LK.

A.4 Quantum Dot Spectrum

When the quantum dot length L is much larger than the core radius R (Fig. 2.1), the spectrum can be

well approximated using the effective Hamiltonian for extended states. In the absence of external fields,

Fz remains a good quantum number and the Hamiltonian

Heff
LK =


~2k2z
2mg

−iCkz 0 0

iCkz
~2k2z
2me

+ ∆LK + ∆BP(γ) 0 0

0 0
~2k2z
2mg

−iCkz
0 0 iCkz

~2k2z
2me

+ ∆LK + ∆BP(γ)

 , (A.12)

here explicitly written out in the basis {g+, e−, g−, e+} for illustration purposes, is 2×2 block diagonal with

degenerate eigenstates. The subspace {g+, e−} corresponds to Fz = −1/2, while {g−, e+} corresponds to

Fz = +1/2. Aiming at the quantum dot spectrum, we introduce two complex functions gn(z) and en(z),

for which we require( ~2k2z
2mg

−iCkz
iCkz

~2k2z
2me

+ ∆LK + ∆BP(γ)

)(
gn(z)

en(z)

)
= En

(
gn(z)

en(z)

)
. (A.13)

The associated set of coupled differential equations reads

0 = − ~2

2mg
g′′n(z)− Ce′n(z)− Engn(z), (A.14)

0 = − ~2

2me
e′′n(z) + Cg′n(z) + [∆LK + ∆BP(γ)− En] en(z), (A.15)
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and in addition we demand gn(0) = en(0) = gn(L) = en(L) = 0 due to hard wall confinement at z = 0

and z = L. When the differential equations have been solved, these boundary conditions finally lead to

a determinant equation for the eigenenergies En, which can be analyzed numerically. The results are

plotted in Fig. 2.3.

A.5 Spin-Orbit Energy in InAs Nanowires

For electrons in an electric field Ex along x, the Hamiltonian for Rashba SOI is of the form

Hel
SO = αEx(kzσ̃y − kyσ̃z), (A.16)

where α is the Rashba coefficient in the conduction band (Γc6) and σ̃i are the Pauli matrices for spin

1/2 [4]. In the following, we use the notation αx ≡ αEx for illustration purposes. Assuming a nanowire

in which the electron moves freely along the z direction with effective mass m∗, the Hamiltonian of the

system becomes

Hel =
~2k2

z

2m∗
+ αxkzσ̃y, (A.17)

with eigenspectrum

E± =
~2

2m∗

(
kz ±

m∗ |αx|
~2

)2

− m∗α2
x

2~2

=
~2

2m∗
(
kz ± l−1

SO

)2 − ESO. (A.18)

The spin-orbit length is defined as lSO = ~2/ (m∗ |αx|), and the SO energy, the energy difference between

the band minima and the degeneracy at kz = 0, is ESO = m∗α2
x/(2~2), so that

ESO =
~2

2m∗
l−2
SO. (A.19)

We can use Eq. (A.19) to calculate the spin-orbit energy for InAs wires, where lSO has recently been

measured [5, 6]. Using lSO ' 127 nm and m∗ ' m∗bulk = 0.023 m [5], the SO energy in InAs is ESO '
100 µeV. Further experiments confirmed that lSO typically varies between 100 and 200 nm in InAs

nanowires [6], and in the latter case ESO ' 40 µeV only.

A.6 Standard Rashba SOI and Rashba Coefficient

Both Ge and Si are inversion symmetric, and thus coupling of Dresselhaus type is absent. However, this

does not exclude the conventional Rashba term (RSOI) [Eq. (2.7) in Chapter 2]. Here we briefly outline

its derivation; details are described in Ref. [4]. As in Sec. 2.6, we assume a constant electric field Ex

along the x axis, which, referring to holes, results in the dipole term Hed = −eExx as a perturbation

added to the potential energy. Accordingly, Hed is added to the multiband Hamiltonian (envelope function

approximation), where it appears only on the diagonal, while off-diagonal parts provide the k ·p coupling.

Finally, a Schrieffer-Wolff transformation of the multiband Hamiltonian, with focus on the valence band

Γv8, yields the Rashba term

HSO = αEx(kyJz − kzJy), (A.20)

α ' − eP
2

3E2
0

(A.21)
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in third order of perturbation theory, where α is the Rashba coefficient and additional, negligible terms

have been omitted. In Eq. (A.21), E0 is the band gap (direct, k = 0) between conduction (Γc6) and

valence (Γv8) band, and P is the corresponding momentum matrix element between the s-like Γc6 and

the p-like Γv8,Γ
v
7 states [4]. For Ge, explicit values are E0 = 0.90 eV and P = 9.7 eVÅ [7], which yields

α ≈ −0.4 nm2e.

We can project Eq. (A.20) onto the low-energy subspace {g+, g−, e+, e−} by calculating the 16 matrix

elements. The effective Hamiltonian for RSOI takes on the form

HR = Heff
SO = αExSτxσz + αExkz . . . , (A.22)

where S = 〈g+| kyJz |e+〉. This Hamiltonian has two effects: first, it features a constant coupling between

the g and e states, and second, it provides a term which is linear in kz and mixes the spin blocks. The

latter is absent at kz = 0, so that only the constant term αExSτxσz contributes for small kz; this is of

the same form as the direct Rashba SOI HDR = eExUτxσz (DRSOI) resulting from dipolar coupling.

[We note that it is not directly obvious that the second term in Eq. (A.22) can be omitted at nonzero kz

as well. The negligibility is seen from a suitable unitary transformation of the final 1D Hamiltonian that

contains Heff
LK + HDR + HR and the effects of additional (magnetic) fields, if present.] Finally, we note

that
eExU

αExS
' −1.1

R2

nm2
(A.23)

for Ge, so that the DRSOI dominates RSOI by one to two orders of magnitude in typical Ge/Si nanowires

of 5–10 nm core radius.

A.7 Coupling to Magnetic Fields

In Eqs. (2.9) and (2.10) of Chapter 2, we show the effect of external magnetic fields on the low-energy

sector for fields applied along (z) and perpendicular (x) to the nanowire, respectively. Below, the explicit

values for Zi and Xi are listed,

Z1 = 0.75, X1 = 2.72,

Z2 = −0.81, X2 = 0.17,

Z3 = 2.38 R, X3 = 8.04 R,

(A.24)

using the parameters γ1 = 13.35, γs = 5.11, and κ = 3.41 for Ge [8].
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Appendix B

Supplementary Information to Chapter 3

“Tunable g Factor and Phonon-Mediated

Hole Spin Relaxation in Ge/Si Nanowire

Quantum Dots”

Adapted from:

Franziska Maier, Christoph Kloeffel, and Daniel Loss,

Phys. Rev. B 87, 161305(R) (2013).



B.1 Effective 1D Hamiltonian for Holes

In this appendix, we display the effective 1D Hamiltonians used in Eqs. (3.2) and (3.3) of Chapter 3. The

derivation of these terms is discussed in Chapter 2. We use the basis {g+, g−, e+, e−} and refer to, e.g.,

Appendix C.1.1 for the exact form of the basis states g±(x, y) and e±(x, y).

The diagonal elements of the Luttinger-Kohn (LK) Hamiltonian and the strain-induced splitting are

combined in

HLKd
+Hstrain =


~2k2z
2mg

0 0 0

0
~2k2z
2mg

0 0

0 0
~2k2z
2me

+ ∆ 0

0 0 0
~2k2z
2me

+ ∆

 , (B.1)

where ~kz = −i~∂z is the momentum operator for the wire axis z, and mg ' m/(γ1 + 2γs) and me =

m/(γ1 + γs) are the corresponding effective masses. Here γ1 and γs are the Luttinger parameters in

spherical approximation and m denotes the bare electron mass. ∆ = ∆LK + ∆strain(γ) quantifies the

level splitting between g± and e±, γ = (Rs − R)/R is the relative shell thickness, and R (Rs) is the

core (shell) radius. One finds ∆LK = 0.73 ~2/(mR2), and the strain-dependent energy splitting can

take values ∆strain(γ) ' 0–30 meV (see also Sec. 5.3.3, wherein ∆strain = ∆BP). The magnetic field

B = (Bx, 0, Bz) = |B|(sin θ, 0, cos θ) interacts via the effective Zeeman coupling

HB,Z = µB


BzG BxK 0 0

BxK −BzG 0 0

0 0 BzF BxM

0 0 BxM −BzF

 , (B.2)

where we set By = 0 due to cylindrical symmetry. The Bohr magneton is µB and the parameters take

the numerical values G = −0.06, K = 2.89, M = 2.56, and F = 1.56. The LK Hamiltonian provides also

off-diagonal coupling terms, and we find

HLKod
=


0 0 0 −iCkz
0 0 −iCkz 0

0 iCkz 0 0

iCkz 0 0 0

 (B.3)

with coupling constant C = 7.26 ~2/(mR). In order to describe interactions with the electric field

E = (Ex, Ey, 0) = |E|(cosϕel, sinϕel, 0), we introduce the shorthand notation Ẽ = |E|eiϕel . With this

definition, the effective conventional Rashba SOI reads

HR = α


0 −iẼkzT ẼS 0

iẼ∗kzT 0 0 −Ẽ∗S
Ẽ∗S 0 0 − 3

4 iẼ
∗kz

0 −ẼS 3
4 iẼkz 0

 , (B.4)

where T = 0.98, S = 0.36/R, and α = −0.4 nm2e. The asterisk denotes complex conjugation. Although

fully taken into account, HR turns out to be negligible for the typical parameters and electric fields
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considered here [see also Eq. (B.6)]. The direct, dipolar coupling to E is given by

HDR = eU


0 0 Ẽ 0

0 0 0 −Ẽ∗

Ẽ∗ 0 0 0

0 −Ẽ 0 0

 , (B.5)

where U = 0.15R scales linearly in the core radius R. We note that the parameters S and U in HR and

HDR are related by
eU

αS
' −1.1

R2

nm2
, (B.6)

so HDR dominates HR by one to two orders of magnitude for R = 5–10 nm. Lastly, effects of the magnetic

field due to the orbital motion along z are described by

HB,orb = iµB


0 0 −BxLkz −BzDkz
0 0 BzDkz −BxLkz

BxLkz −BzDkz 0 0

BzDkz BxLkz 0 0

 (B.7)

with L = 8.04R and D = 2.38R.

B.2 Effective 1D Hamiltonian for Hole-Phonon Interaction

Inserting our results for acoustic phonons (see Chapter 5) into the spherical Bir-Pikus Hamiltonian

[Eq. (3.7) of Chapter 3], we derive the effective 1D hole-phonon coupling for each mode type λ. Again,

this is done by projecting the corresponding terms onto the low-energy subspace spanned by g±(x, y) and

e±(x, y), i.e., by integrating out the degrees of freedom for the transverse motion. To improve readability,

we introduce here the modified phonon annihilation operators b̃λ = eiqzbq,λ(t) = eiqze−iωλ(q)tbq,λ as a

shorthand notation.

Referring again to the basis {g+, g−, e+, e−}, the torsional phonon mode T couples through

HT =
∑
q

a1


0 0 0 b̃T − b̃†T
0 0 −b̃T + b̃†T 0

0 b̃T − b̃†T 0 0

−b̃T + b̃†T 0 0 0

 , (B.8)

and the longitudinal mode L yields

HL =
∑
q


a2(b̃L + b̃†L) 0 0 ia3(b̃L − b̃†L)

0 a2(b̃L + b̃†L) ia3(b̃L − b̃†L) 0

0 ia3(b̃L − b̃†L) a4(b̃L + b̃†L) 0

ia3(b̃L − b̃†L) 0 0 a4(b̃L + b̃†L)

 . (B.9)

For the two flexural modes F±1, we find

HF+1
=
∑
q

ia5


0 0 b̃†F+1

0

0 0 0 b̃F+1

−b̃F+1 0 0 0

0 −b̃†F+1
0 0

 (B.10)
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and

HF−1
=
∑
q

ia5


0 0 −b̃F−1

0

0 0 0 −b̃†F−1

b̃†F−1
0 0 0

0 b̃F−1
0 0

 , (B.11)

respectively. The prefactors ai with i = 1, 2, 3, 4, 5 are real and q-dependent. The total effective hole-

phonon coupling Hh-ph is finally given by

Hh-ph =
∑
λ

Hλ = HT +HL +HF+1
+HF−1

. (B.12)
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Appendix C

Supplementary Information to Chapter 4

“Circuit QED with Hole-Spin Qubits in

Ge/Si Nanowire Quantum Dots”

Adapted from:

Christoph Kloeffel, Mircea Trif, Peter Stano, and Daniel Loss,

Phys. Rev. B 88, 241405(R) (2013).



C.1 Effective 1D Hamiltonian

C.1.1 Basis States

The low-energy hole states in a Ge/Si core/shell nanowire (NW) are well described by the effective 1D

Hamiltonian derived in Ref. [1]. Using the notation introduced therein, with the NW axis referred to as

the z axis, the four basis states that comprise the spin and the transverse subband degrees of freedom

read

|g+〉 =
(
agJ2(kghhr) +

√
3bgJ2(kglhr)

)
e−2iφ |3/2〉

+
(
bgJ0(kglhr)−

√
3agJ0(kghhr)

)
|−1/2〉 , (C.1)

|g−〉 =
(
agJ2(kghhr) +

√
3bgJ2(kglhr)

)
e2iφ |−3/2〉

+
(
bgJ0(kglhr)−

√
3agJ0(kghhr)

)
|1/2〉 , (C.2)

|e+〉 = −aeJ1(kehhr)
(
e−iφ |3/2〉+

√
3eiφ |−1/2〉

)
, (C.3)

|e−〉 = aeJ1(kehhr)
(
eiφ |−3/2〉+

√
3e−iφ |1/2〉

)
, (C.4)

where the Ji(κ) with integer i are Bessel functions of the first kind. The polar coordinates r and φ in

the cross section are related to the Cartesian coordinates by x = r cosφ and y = r sinφ (origin on the

symmetry axis of the NW). The |mz〉, mz ∈ {±3/2,±1/2}, correspond to the effective electron spin

states in the topmost valence band (VB) and fulfill Jz |mz〉 = mz |mz〉, where Jz is the operator for the

z-projection of this effective spin 3/2. The wave numbers kghh, kglh, kehh and the coefficients ag, bg, ae are

determined by the Luttinger parameters of Ge and result from the hard-wall boundary conditions at the

Ge/Si interface and the normalization. We choose all coefficients as real, with ag < 0, bg > 0, and ae > 0.

For further details, see Ref. [1].

C.1.2 Effective 1D Hamiltonian

In the setup studied in Chapter 4, we consider a magnetic field By along the y axis and electric fields Ey

and Ez along the y and z axes, respectively. For the externally controlled electric-dipole-induced spin

resonance (EDSR), we assume Ez = Ez(t) = Eez,0 cos(ωact) with amplitude Eez,0 and angular frequency

ωac. The quantized field of the cavity is described by Ez = Ecz,0
(
a† + a

)
, see also Appendix C.5, where

Ecz,0 is the amplitude and a† (a) is the bosonic creation (annihilation) operator for the cavity mode that

is near or at resonance with the qubit. The different contributions to the Hamiltonian

H = HLK +HBP +HB +HDR +HR,y +HR,z − eEzz + V (z) (C.5)

for this setup take the following 4×4 representation when written out explicitly in the basis Σ1D =

{g+, g−, e+, e−}. First,

HLK +HBP =


~2k2z
2mg

0 0 −iCkz
0

~2k2z
2mg

−iCkz 0

0 iCkz
~2k2z
2me

+ ∆ 0

iCkz 0 0
~2k2z
2me

+ ∆

 (C.6)

combines the Luttinger-Kohn (LK) and the Bir-Pikus (BP) Hamiltonian, where the latter changes the

energy gap ∆ = ∆LK + ∆BP(γ) through the static strain that is caused by the Si shell of relative
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Table C.1. Constants in the 1D model for holes in Ge/Si nanowires. The values were calculated as explained in Ref. [1]

and in the text; α was obtained following Ref. [2], and underlying Luttinger parameters for Ge were taken from Ref. [3]. R

denotes the core radius, m is the bare electron mass, and e is the elementary positive charge.

Constant Value Constant Value

C 7.26 ~2/(mR) ∆LK 0.73 ~2/(mR2)
mg 0.043 m me 0.054 m
K 2.89 L 8.04 R
M 2.56 U 0.15 R
S 0.36/R T 0.98
α −0.4 nm2e

thickness γ. The latter is defined as γ = (Rs −R)/R, where R (Rs) is the core (shell) radius. Second,

HB = µBBy


0 iK Lkz 0

−iK 0 0 −Lkz
Lkz 0 0 −iM

0 −Lkz iM 0

 (C.7)

describes the orbital and Zeeman-type coupling due to By. Third,

HDR = eEyU


0 0 i 0

0 0 0 i

−i 0 0 0

0 −i 0 0

 (C.8)

is the direct Rashba spin-orbit interaction (DRSOI) induced by Ey, and the conventional Rashba spin-

orbit interaction (RSOI) reads

HR,y = αEy


0 Tkz iS 0

Tkz 0 0 iS

−iS 0 0 − 3
4kz

0 −iS − 3
4kz 0

 . (C.9)

Finally, one finds

HR,z = 2αEzS


0 0 0 1

0 0 1 0

0 1 0 0

1 0 0 0

 (C.10)

for the RSOI due to Ez. In Chapter 4, we write HR = HR,y + HR,z for brevity. The longitudinal

confinement V (z) and the linear shift −eEzz do not affect the states |g±〉, |e±〉, and therefore come with

the identity matrix in this basis. We note that HDR is obtained by projecting the direct coupling to the

hole charge, −eEyy, onto the low-energy subspace, whereas HR,y and HR,z result from αEy (kzJx − kxJz)
and αEz (kxJy − kyJx), respectively. Here, e is the elementary positive charge, α is a material-dependent

constant ∝ (band gap)−2 [2], and ~ki (~Ji) is the operator for the momentum (spin) along the i axis.

Further information on the different contributions can be found in Ref. [1], and the values of all relevant

constants are summarized in Table C.1.
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C.2 Quantum Dot: Perturbative Analysis

C.2.1 Hamiltonian

In the presence of harmonic confinement

V (z) =
mgω

2
gz

2

2
=

~ωgz2

2l2g
, (C.11)

where the confinement length

lg =

√
~

mgωg
(C.12)

is defined by the effective mass mg and the associated level spacing ~ωg, we now derive an effective 2×2

Hamiltonian

Hq =
EZ
2
σ̃z + Tqσ̃x (C.13)

for qubits that are formed by the two hole states of lowest energy in the quantum dot (QD). Here, the

σ̃i are spin-1/2 Pauli operators, and the tilde denotes that they act on the two QD states that form the

qubit, in contrast to the σi that act on the spin index {+,−}. The parameters in Hq are the Zeeman

splitting EZ and the transverse coupling Tq ∝ Ez that is induced by the electric field along the NW.

Writing Tq = ν̄Ez, one has Tq = νe cos(ωact) for externally driven EDSR, and Tq = νc(a
† + a) for

the cavity field. The coupling strengths νe,c = ν̄Ee,cz,0 are proportional to the amplitudes Ee,cz,0, and we

calculate the proportionality factor ν̄ below. Without loss of generality, EZ and ν̄ will always be defined

as positive. Because typical Ge/Si NWs are rather thin, R ∼ 5–10 nm, we consider elongated QDs with

lg � R. This implies that the hole states are very well described by H, Eq. (C.5), where the effective 1D

Hamiltonian is supplemented with the confinement V (z). We now derive an analytical expression for Hq

perturbatively.

From numerical results, Appendix C.3, we find that HR,z and the difference between mg and me may

be neglected to a very good accuracy. Within the perturbative analysis, we therefore omit HR,z and set

mg = me ≡ mg for simplicity. The part of H, Eq. (C.5), that comes with the identity matrix in the basis

Σ1D then reads

H id =
~2k2

z

2mg
− eEzz + V (z). (C.14)

With the definition

U ′ ≡ U + αS/e, (C.15)

the remaining terms of H may be written as Ha
1D +Hb

1D +HB , where

Ha
1D =


0 0 ieEyU

′ 0

0 0 0 ieEyU
′

−ieEyU ′ 0 ∆ 0

0 −ieEyU ′ 0 ∆

 (C.16)

and

Hb
1D = kz


0 αEyT 0 −iC

αEyT 0 −iC 0

0 iC 0 − 3
4αEy

iC 0 − 3
4αEy 0

 . (C.17)
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C.2.2 Step 1

For Ge/Si NWs with typically R ∼ 5–10 nm and γ ∼ 10%–50%, one finds 10 meV . ∆ . 25 meV.

Although this energy scale is rather large, we want to derive an effective model that also applies for

rather strong electric fields for which |eEyU ′| ∼ ∆. Therefore, we first perform a unitary transformation

H ′ = U†1HU1

= H id +H ′a1D + U†1
(
Hb

1D +HB

)
U1, (C.18)

where the transformation matrix

U1 =


cos θ 0 i sin θ 0

0 cos θ 0 i sin θ

i sin θ 0 cos θ 0

0 i sin θ 0 cos θ

 (C.19)

brings Ha
1D into the diagonal form

H ′a1D = U†1H
a
1DU1 =


0 0 0 0

0 0 0 0

0 0 ∆′ 0

0 0 0 ∆′

 . (C.20)

Above, we neglect global shifts in energy and use

cos θ ≡ ∆ + ∆′√
(∆ + ∆′)

2
+ (2eEyU ′)

2
, (C.21)

sin θ ≡ 2eEyU
′√

(∆ + ∆′)
2

+ (2eEyU ′)
2
, (C.22)

∆′ ≡
√

∆2 + (2eEyU ′)
2
. (C.23)

We note that U1 and H ′a1D in Eqs. (C.19) and (C.20) are represented in the basis Σ1D introduced

before. That is, we keep the basis states fixed and rearrange the matrix elements according to U1.

Although H ′ 6= H in general, H can, of course, be represented in exactly the same quasi-diagonal form

as H ′, as the inverse transformation H = U1H
′U†1 may be performed by changing the basis states while

keeping the matrix elements the same. In the proposed setup, knowledge of the eigenstates that form

the qubit is not required (see Appendix C.2.8). Therefore, we proceed analogously with the remaining

unitary transformations, i.e., we keep the basis states fixed and work with the formally equivalent, rotated

versions of the Hamiltonian. If needed, the basis states of the unrotated system may be calculated either

numerically (see Appendix C.3) or via inverse transformations as mentioned above.

C.2.3 Step 2

The second unitary transformation corresponds to a Schrieffer-Wolff (SW) transformation that pertur-

batively decouples |g±〉 from |e±〉 to second order, where ∆′ in H ′a1D provides the large energy. When the

SW transformation is formally denoted by U2, we find

Hg = PgU
†
2H
′U2Pg = H0

g +Hr
g (C.24)
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for the projection (Pg) onto the subspace Σg = {g+, g−} of the bands of lowest-energy, where

H0
g =

 ~2k2z
2m′g

+ V (z) C ′kz + iE0
Z,g/2

C ′kz − iE0
Z,g/2

~2k2z
2m′g

+ V (z)

 (C.25)

contains the dominant contributions and Hr
g contains the rest. In Eq. (C.25), the shorthand notation

E0
Z,g ≡ 2µBBy

(
K cos2 θ −M sin2 θ

)
(C.26)

stands for the Zeeman splitting at kz = 0, and

m′g =

(
1

mg
− 2C̃2

~2∆′

)−1

(C.27)

is the corrected effective mass, where

C̃ ≡ C cos(2θ)− αEy
3 + 4T

8
sin(2θ). (C.28)

Due to the large coupling constants C and U , the expression

C ′ ≡ C sin(2θ) + αEy

(
T cos2 θ − 3

4
sin2 θ

)
(C.29)

in Eq. (C.25) becomes large even at moderate Ey, so that C ′kz is no longer a small perturbation when

the applied field exceeds a certain threshold value. In typical Ge/Si NW QDs, one finds |C ′|/lg ∼ ~ωg
for |Ey| ∼ 1 V/µm, and we therefore treat this coupling as part of the leading-order Hamiltonian.

C.2.4 Step 3

Next, we introduce a suitable basis for the QD states. For this, we consider the Hamiltonian

H ′g = U†3HgU3 = H ′0g +H ′rg , (C.30)

where

U3 =
1√
2

(
1 −1

1 1

)
(C.31)

was chosen such that H ′0g = U†3H
0
gU3 reads

H ′0g =
~2k2

z

2m′g
+ V (z) +

(
C ′kz iE0

Z,g/2

−iE0
Z,g/2 −C ′kz

)
. (C.32)

We note that
~2k2

z

2m′g
± C ′kz =

~2

2m′g

(
kz ±

C ′m′g
~2

)2

−
C ′2m′g

2~2
, (C.33)

and from the diagonal elements of Eq. (C.32) we identify

|n±〉 ≡ |g±〉 ⊗ e∓iC
′m′gz/~

2

|ϕn〉 (C.34)
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as a well-suited set of basis states for H ′g. The |ϕn〉, with quantum number n ∈ {0, 1, . . .}, correspond to

the solutions ϕn(z) of the 1D harmonic oscillator(
~2k2

z

2m′g
+ V (z)

)
ϕn(z) = ~ω′g

(
n+

1

2

)
ϕn(z), (C.35)

where kz = −i∂z in coordinate space. The effective level spacing reads

~ω′g =

√
mg

m′g
~ωg (C.36)

and, consequently, one may define the corrected confinement length l′g as

l′g =

√
~

m′gω
′
g

= lg

(
mg

m′g

)1/4

. (C.37)

We mention in passing that Hr
g and H ′rg contain a term ∝ B2

yk
2
z that gives rise to additional rescaling

of the effective mass. Taking this term into account, the corrected effective mass reads

m′′g =

(
1

mg
− 2C̃2 + 2(µBLBy)2

~2∆′

)−1

, (C.38)

which implies that the level spacing depends on both Ey and By. However, the above correction due to

By turns out to be very small, and we therefore treat this term as part of H ′rg .

Using (
~2k2

z

2m′g
+ V (z)± C ′kz

)
|n±〉 = En |n±〉 , (C.39)

with

En = ~ω′g
(
n+

1

2

)
−
C ′2m′g

2~2
, (C.40)

we represent H ′g by a 2N -dimensional matrix with basis

ΣN = {0+, 0−, . . . , (N − 1)+, (N − 1)−}. (C.41)

The projection onto this basis is denoted by PQD
N , and the projected versions of H ′g, H

′0
g , and H ′rg are

referred to as

HN = PQD
N H ′gP

QD
N , (C.42)

H0
N = PQD

N H ′0g P
QD
N , (C.43)

Hr
N = PQD

N H ′rg P
QD
N . (C.44)

We note that HN = H ′g in the limit N →∞ (analogously for H0
N and Hr

N ). As discussed below, we find

that N = 3 is usually sufficient for a quantitatively reliable estimate of Hq, Eq. (C.13).

C.2.5 Step 4

A fourth unitary transformation is required to derive a leading-order Hamiltonian H ′aN that is diagonal

and includes the Zeeman splitting. This Hamiltonian is calculated via

H ′aN = Diagonal
[
U†4H

0
NU4

]
, (C.45)
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where Diagonal[A] stands for the diagonal part of matrix A. The transformation matrix U4 corresponds

to a Kronecker product

U4 = 1N ⊗ Uy (C.46)

of an N -dimensional unit matrix 1N for the states |ϕn〉 and

Uy =
1√
2

(
1 1

−i i

)
(C.47)

for |g±〉. Based on Eq. (C.32), Uy was chosen to fulfill

E0
Z,g

2
U†y

(
0 i

−i 0

)
Uy =

E0
Z,g

2

(
1 0

0 −1

)
. (C.48)

We note, however, that the resulting Zeeman splitting between states |n+〉 and |n−〉 in H ′aN is not simply

E0
Z,g and changes with n. In contrast, the orbital level spacing is always ~ω′g. The remaining terms of

the Hamiltonian are summarized in

H ′bN = U†4HNU4 −H ′aN . (C.49)

C.2.6 Step 5

We perturbatively decouple the two lowest QD states |0±〉 from higher states via a second-order SW

transformation. The large energy is now provided by the level spacing ~ω′g in H ′aN , and H ′bN corresponds

to the perturbation. The resulting projection (P 0
q ) onto the qubit subspace Σq = {0+, 0−} reads

H ′q = P 0
q U
†
5

(
H ′aN +H ′bN

)
U5P

0
q , (C.50)

where the SW transformation is denoted by U5. Neglecting global shifts in energy, the result can be

written in terms of Pauli matrices,

H ′q = cxσ
′
x + cyσ

′
y + czσ

′
z. (C.51)

For the setup under study and with the standard representation in the basis Σq,

σ′x =

(
0 1

1 0

)
, σ′y =

(
0 −i
i 0

)
, σ′z =

(
1 0

0 −1

)
, (C.52)

we find cx = 0 and cy ∝ Ez for arbitrarily large N . That is, cz provides the Zeeman splitting between

the qubit states, whereas cy corresponds to the transverse coupling driven by Ez. In fact, within the

second-order perturbation theory, cy is fully determined by the coupling between states |0±〉 and |1±〉,
so that the result for cy does not change for N > 2. This is different for cz. The reason, in particular,

is that H ′g features terms of type σx,y that couple the two spin blocks (σi: Pauli operators acting on the

spin index {+,−} [1]). Because of

|〈n±|σx,y |m∓〉| 6= δmn, (C.53)

these also generate nonzero matrix elements between |0±〉 and |n∓〉 with large n. However, as H ′g

contains terms up to the second power in kz only, the dominant contributions to cz are provided within

the subspace of states |0±〉, |1±〉, and |2±〉. Remarkably, we find from Taylor expansions that linear terms

in By are due to the first four states |0±〉 and |1±〉 only. Hence, the calculated g factor g ≡ 2cz/(µBBy)

remains unchanged for N > 2 (as for cy), provided that By is weak enough for the linear expansion of cz
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to apply. In the main text, we use N = 3 for all plots presenting the effective model. The quantitative

corrections from N > 3 to the Zeeman splitting are only expected in the regime where both Ey and By

are large.

The full formulas for cy and cz are too lengthy to be displayed here. However, as mentioned above,

we can perform a linear expansion in By when the Zeeman splitting is small compared to the orbital

level spacing. The results are shown in Eqs. (C.123) and (C.124) of Appendix C.7, and we note that the

corrections for both cy and cz are of order B3
y . By keeping only the dominant terms, these formulas can

be simplified even further. In particular, we find that DRSOI � RSOI in typical Ge/Si NW QDs, and

conventional RSOI may therefore be neglected. The simplified results without RSOI are summarized in

Eqs. (C.127) and (C.128).

C.2.7 Step 6

From H ′q, Eq. (C.51), the final form of the effective 2×2 Hamiltonian Hq, Eq. (C.13), is obtained through

a unitary transformation

H ′′q = U†6H
′
qU6 =

EZ
2
σ′z + Tqσ

′
x, (C.54)

where EZ is the Zeeman splitting and Tq = ν̄Ez is the transverse coupling due to the electric field Ez.

We recall that Tq = νe cos(ωact) for EDSR and Tq = νc(a
† + a) for operations based on the cavity field,

with νe,c = ν̄Ee,cz,0 as the coupling strengths. When U6 is chosen such that EZ and ν̄ are both positive,

one identifies

EZ = |2cz|, (C.55)

ν̄ =
|cy(Ez,0)|
Ez,0

, (C.56)

where Ez,0 stands for an arbitrary electric field amplitude and cy = cy(Ez) is the transverse coupling

coefficient derived in this appendix. Because the ac fields along the NW are small in the studied setup,

corrections of type E2
z in cz [see, e.g., Eq. (C.124)] are neglected in Eq. (C.55), and, thus, the Zeeman

splitting EZ is independent of cos(ωact) and (a† + a), respectively.

We note that Hq is obtained from the formally equivalent H ′′q when the Pauli operators σ′i are replaced

by σ̃i, i.e., when the basis states |0±〉 in Σq are replaced by the corresponding eigenstates of H that form

the qubit.

C.2.8 Remarks

The unitary transformations presented here illustrate that the true basis states of the qubit will differ from

|0±〉, Eq. (C.34). The eigenstates may be calculated either by an inverse transformation or numerically,

see Appendix C.3. However, we emphasize that knowledge of the qubit states is not required for the

implementation of quantum gates proposed here. EDSR only requires knowledge about the Zeeman

splitting and the presence of an electric-field-induced transverse coupling. Moreover, long-range qubit-

qubit interactions mediated by the cavity field are independent of the basis states of the individual qubits

(see also Appendix C.5).

C.3 Quantum Dot: Numerical Analysis

C.3.1 Basis States

The Zeeman energy EZ and the coupling parameter ν̄ in QDs with lg � R, for which H of Eq. (C.5)

applies, can also be calculated numerically. For this, we represent H = H(Ez) by a matrix with 4N ′
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basis states. The basis of the matrix reads ΣN ′ = {ΣgN ′ ,ΣeN ′}, where

Σg,eN ′ = {0g,e+ , 0g,e− , . . . , (N ′ − 1)g,e+ , (N ′ − 1)g,e− }, (C.57)

and we denote the projector for ΣN ′ by PN ′ . The basis states are defined as

|ng±〉 = |g±〉 ⊗ |ϕgn〉 , (C.58)

|ne±〉 = |e±〉 ⊗ |ϕen〉 . (C.59)

Here, analogous to Appendix C.2, the |ϕg,en 〉 are the eigenstates of the 1D harmonic oscillator(
~2k2

z

2mg,e
+ V (z)

)
|ϕg,en 〉 = ~ωg,e

(
n+

1

2

)
|ϕg,en 〉 , (C.60)

where n is the quantum number and ωe = ωg
√
mg/me. When an electric field Ez with amplitude

Ez,0 is applied along the NW, two approaches are suitable for the numerical calculation of EZ and ν̄

in Hq, Eq. (C.13). Provided that N ′ is chosen large enough, both approaches make use of an exact

diagonalization in the degrees of freedom of the longitudinal coordinate z. However, they differ in the

range of allowed Ez,0 and in the computation time. Both algorithms are outlined below.

C.3.2 Algorithm 1

The first approach requires calculation of all 4N ′ eigenstates. As explained in more detail in the next

paragraph, it applies for any strength of Ez and can therefore be regarded as generally valid. At first,

we calculate all the eigenstates |m〉 and corresponding eigenenergies Em of PN ′H(0)PN ′ . Based on this

eigensystem, where m ∈ {0, 1, . . . , 4N ′ − 1} and E0 ≤ E1 ≤ . . . ≤ E4N ′−1, we generate a transformation

matrix U0 that diagonalizes the Hamiltonian according to

diag(E0, E1, . . . , E4N ′−1) = U†0PN ′H(0)PN ′U0. (C.61)

The transverse coupling ν ≡ ν̄Ez,0 is then calculated via

ν =
∣∣〈1|U†0PN ′H(Ez,0)PN ′U0 |0〉

∣∣, (C.62)

and the Zeeman energy EZ is obtained through

EZ =
∣∣〈1|U†0PN ′H(Ez,0)PN ′U0 |1〉 − 〈0|U†0PN ′H(Ez,0)PN ′U0 |0〉

∣∣. (C.63)

We note that, for realistic Ez,0, the latter is very well approximated by E1 − E0, which is the Zeeman

splitting between the qubit states in the absence of Ez.

When Ez,0 is large, the two eigenstates of H(Ez,0) with lowest energy cannot be expressed in terms

of |0〉 and |1〉 only. In systems driven through EDSR, however, where Ez is an ac field that is in (quasi-

)resonance with the Zeeman splitting E1 − E0, the dynamics are determined by the coupling strength

induced between |0〉 and |1〉, Eq. (C.62). Therefore, this algorithm applies for any strength of Ez when

N ′ is large enough for the diagonalization in the degrees of freedom of the coordinate z to be accurate.

C.3.3 Algorithm 2

The second approach applies for small Ez,0 only and allows for reduced computation times when N ′ is

chosen very large, because only four instead of 4N ′ eigenstates need to be calculated and a transforma-

tion matrix U0 is not required. Analogously to the first method, we calculate the eigenenergies Em of
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PN ′H(0)PN ′ and the two eigenstates |0〉 and |1〉 of lowest energy. In addition, we compute the eigenen-

ergies E′m and the eigenstates |0′〉 and |1′〉 of PN ′H(Ez,0)PN ′ . When Ez,0 is small, such that |0′〉 ≈ |0〉,
|1′〉 ≈ |1〉, and

|〈0|0′〉|2 + |〈1|0′〉|2 ' 1, (C.64)

|〈0|1′〉|2 + |〈1|1′〉|2 ' 1, (C.65)

one finds

ν =
E′1 − E′0

2

∣∣〈1|1′〉 〈1′|0〉 − 〈1|0′〉 〈0′|0〉∣∣, (C.66)

EZ = (E′1 − E′0)
(
|〈0|0′〉|2 + |〈1|1′〉|2 − 1

)
. (C.67)

C.3.4 Remarks

The plots in Chapter 4 were generated with the first, more general method, using N ′ = 10. The latter

was chosen because, on the one hand, N ′ = 10 is large enough so that notable changes in the results

are not observed as N ′ is increased, and, on the other hand, it is small enough to enable fast evaluation,

as 40×40 matrices can be diagonalized quickly. For the Ge/Si NW QD considered in Chapter 4, we

find that plots from approaches 1 and 2 are basically indistinguishable at Ez,0 . 2 × 103 V/m, i.e., for

eEz,0lg/(
√

2~ωg) . 0.1 [see also Eq. (C.71)]. At Ez,0 > 2 × 103 V/m, the ν from method 2 become

smaller than those from method 1. This deviation is expected, because the assumptions of approach 2

are no longer well fulfilled when Ez,0 is large.

C.4 Parameter Range and Validity of Results

C.4.1 Effective 1D Hamiltonian

In the presence of a Si shell, we estimate that the effective 1D Hamiltonian

H1D = HLK +HBP +HB +HDR +HR,y +HR,z (C.68)

is valid for 2 nm . R . 12 nm. At R . 2 nm, the holes notably leak into the Si shell, despite the large

VB offset ∼0.5 eV [4] at the interface. Furthermore, the LK Hamiltonian loses validity when the cross

section consists of very few atoms only [5, 6]. When both R and γ are large, a simple projection of the BP

Hamiltonian onto the low-energy subspace is no longer reliable as the strain-induced coupling to higher

bands may exceed the energy separation ∝ R−2 [1].

In general, H1D is valid as long as the low-energy 4×4 subspace is well isolated from these higher bands.

This criterion puts restrictions on the strength of Ey in our model, and the limits for Ey depend on the

energy difference to the next excited band (|Fz| = 3/2). Because the total angular momentum Fz along

the Ge/Si NW is conserved in the spherical approximation, which applies well for both the LK and the

BP Hamiltonian of the system, the hole spectrum can be calculated exactly in the absence of external

fields, as outlined in Ref. [1]. Based on these exact spectra, we estimate that the 4×4 subspace can be

considered well isolated when

|Ey| . 5
kV

µm

nm3

R3
. (C.69)

This criterion holds for any shell thickness, and higher transverse subbands should be included when

|Ey| is much larger than the boundary value. The proportionality to R−3 is consistent with U ∝ R and

the R−2-type decrease of the level spacings. For R = 7.5 nm discussed in Chapter 4, Eq. (C.69) yields

|Ey| . 12 V/µm.
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C.4.2 Qubit Hamiltonian

Our numerical and analytical results for Hq describing the qubit are based on the Hamiltonian H,

Eq. (C.5). The latter is valid when both lg � R and H1D apply.

The perturbative approach from Appendix C.2 furthermore assumes that m′g in Eq. (C.27) is positive

and finite, which corresponds to

2mgC̃
2

~2∆′
� 1. (C.70)

In addition, the two SW transformations require that the block-off-diagonal terms are small enough for

the perturbative decoupling to be possible. From careful analysis of all matrices, we deduce a list of

inequalities that have to be fulfilled. It turns out, however, that all these criteria are usually very well

met when Eq. (C.70) holds and when By is chosen such that the Zeeman splitting does not exceed the

orbital level spacing. We note that the left-hand side of Eq. (C.70) roughly scales with R−2. Based on

all criteria, we find that the perturbative approach applies when 5 nm . R . 12 nm for typical Ge/Si

NW QDs, and the agreement between numerics (Appendix C.3) and the derived formulas improves as R

increases. For small core radii R . 5 nm, the Hamiltonian Hq should, e.g., be calculated numerically as

described in Appendix C.3. The condition for the electric field amplitude Ez,0 along the NW reads

Ez,0 �
√

2~ω′g
l′ge

. (C.71)

This inequality has a simple physical meaning. For the perturbation theory to be applicable, the shift

of the minimum of V (z) due to Ez,0 should not exceed the confinement length l′g. With m′g ∼ mg and

the value from Table C.1, one obtains Ez,0 � 2.5 V nm2/l3g. For lg = 50 nm discussed in Chapter 4, this

implies Ez,0 � 2× 104 V/m.

The numerical results from Appendix C.3 hold whenever H applies, provided that N ′ is large enough.

Furthermore, they can provide detailed information about the basis states of the qubit, if required.

C.4.3 Remarks

In conclusion, although the parameter range is limited due to the complexity of the system, our theories

are very well suited for commonly used Ge/Si NWs and NW QDs [4, 7–16]. All electric fields considered

in Chapter 4 are far below the boundary values listed here.

C.5 Cavity-Based Interactions

C.5.1 Electric Cavity Field

We consider a 1D superconducting transmission line resonator [17, 18] of length Lc along the x axis. The

center conductor ranges from x = 0 to x = Lc, and the distance between the ground planes and the

center conductor is denoted by d. When c (l) stands for the capacitance (inductance) per unit length of

the resonator, the electric field Ec(x) within the cavity reads

Ec(x) =
1

d

∞∑
p=1

√
~ωp
cLc

cos

(
pπx

Lc

)(
a†p + ap

)
, (C.72)

where

~ωp =
~pπ
Lc
√
lc

(C.73)

are the energies of the photon modes p ∈ {1, 2, . . .} inside the cavity. Details of the derivation can be

found in Ref. [17]. In Eq. (C.72), the operators a†p and ap are the creation and annihilation operators,
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respectively, for the modes p, and obey the commutation relations [ap, a
†
p′ ] = apa

†
p′ − a

†
p′ap = δpp′ and

[ap, ap′ ] = 0 = [a†p, a
†
p′ ]. With these ladder operators, the cavity photon Hamiltonian is

Hγ =

∞∑
p=1

~ωp
(
a†pap +

1

2

)
. (C.74)

In the hybrid system with Ge/Si NW QDs inside the cavity, we assume that the qubits are quasi-

resonant with one particular photon mode p = p̃ (typically p̃ = 1, 2), so that all other modes can be

neglected. With the notation a ≡ ap̃, a
† ≡ a†p̃, and ωc ≡ ωp̃, the cavity electric field that is relevant for

the qubit dynamics reduces to

Ec(x) =
1

d

√
~ωc
cLc

cos

(
p̃πx

Lc

)(
a† + a

)
, (C.75)

and the relevant part of Hγ reads

Hγ = ~ωca†a. (C.76)

When a NW QD is located near an antinode of Ec(x), with the cavity field oriented along the symmetry

axis of the NW (z axis), the cavity-induced electric field inside the dot is

Ez = Ecz,0
(
a† + a

)
, (C.77)

where the effective strength Ecz,0 corresponds to

Ecz,0 =
1

εrd

√
~ωc
cLc

. (C.78)

Because the hole states in Ge/Si NWs are located in the Ge core, the electric field Ez inside the NW QD

is reduced compared to Ec by the relative permittivity εr ' 16 of Ge.

From a rough estimate, we obtain 1/
√
lc ≈ c0/neff and Ecz,0 ∝ ~ωc/

√
p̃hd, where c0 is the speed of light

in vacuum, neff is the effective refractive index within the cavity, and h is the height of the superconductor.

This relation allows us to estimate experimentally feasible values of Ecz,0. Based on the numbers provided

in Refs. [17–19], we consider ~ωc = 25 µeV, d = 5 µm, h = 0.2 µm, p̃ = 2, and εrE
c
z,0 = 0.2 V/m as

reference values. When hd = 1 µm2 is reduced to hd = 10−2 µm2, which seems feasible, one obtains

Ecz,0 = 0.7 V/m for p̃ = 1 and ~ωc = 0.1 meV. In Chapter 4, we therefore set Ecz,0 = 3 V/m for the

example of ~ωc ' 0.35 meV. Higher values for Ecz,0 can easily be realized for qubits with larger Zeeman

energies, but may also be possible for fixed frequencies when the fabrication can be further optimized

(reducing the cavity mode volume).

Finally, we note that magnetic fields |By| > 0.2 T imply that the superconducting transmission line

resonators are fabricated from suitable materials, as By exceeds the critical magnetic field of commonly

used Nb resonators [18–20]. One possible material is NbTiN, which remains superconducting at magnetic

fields of several Tesla [21, 22].

C.5.2 Qubit-Cavity Coupling

The coupled system of cavity field and qubit is described by Hc-q = Hq +Hγ ,

Hc-q =
EZ
2
σ̃z + νcσ̃x

(
a† + a

)
+ ~ωca†a, (C.79)
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where we recall the notation νc = ν̄Ecz,0. Introducing

σ̃± = σ̃x ± iσ̃y (C.80)

as the raising and lowering operator, respectively, of the qubit, one obtains

Hc-q =
EZ
2
σ̃z +

νc
2

(σ̃+ + σ̃−)
(
a† + a

)
+ ~ωca†a. (C.81)

When the detuning

∆q ≡ EZ − ~ωc (C.82)

between the qubit and the cavity is small, i.e., |∆q| � EZ and |∆q| � ~ωc, one can adopt the rotating

wave approximation [23] and get the Jaynes-Cummings Hamiltonian

Hc-q =
EZ
2
σ̃z +

νc
2

(
σ̃+a+ σ̃−a

†)+ ~ωca†a. (C.83)

If, for instance, the qubit is prepared in the excited state, Hc-q implies that the excitation is coherently

swapped between the qubit and the cavity. At resonance and at low temperatures (kBT � ~ωc; kB
is the Boltzmann constant, T the temperature), for which the occupation number of the cavity mode

approaches zero, the resulting Rabi oscillation has a full-cycle duration on the order of π~/νc.

C.5.3 Qubit-Qubit Coupling

Long-distance two-qubit gates can be implemented by operating two qubits near resonance with the

cavity field. With the index in superscript parentheses labeling qubits, the corresponding Hamiltonian

reads

Hc-2q =

2∑
i=1

[
E

(i)
Z

2
σ̃(i)
z +

ν
(i)
c

2

(
σ̃

(i)
+ a+ σ̃

(i)
− a
†
)]

+ ~ωca†a. (C.84)

Analogous to the single-qubit case, this Hamiltonian applies for |∆(i)
q | � E

(i)
Z and |∆(i)

q | � ~ωc, where

∆
(i)
q = E

(i)
Z − ~ωc. If furthermore ν

(i)
c � |∆(i)

q |, it is possible to remove the qubit-cavity interaction

H int
c-2q =

2∑
i=1

ν
(i)
c

2

(
σ̃

(i)
+ a+ σ̃

(i)
− a
†
)

(C.85)

perturbatively via a Schrieffer-Wolff transformation [17, 23–25]. For this, we define

H̃c-2q = eTHc-2qe
−T , (C.86)

where Hc-2q = H0
c-2q +H int

c-2q and T = T1 +O
(
ν3
c /∆

3
q

)
with

T1 =

2∑
i=1

ν
(i)
c

2∆
(i)
q

(
σ̃

(i)
+ a− σ̃(i)

− a
†
)
. (C.87)
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Exploiting [T1, H
0
c-2q] = −H int

c-2q, expansion of Eq. (C.86) yields

H̃c-2q = H0
c-2q +

1

2

[
T1, H

int
c-2q

]
+O

(
ν4
c

∆3
q

)

= H0
c-2q +

2∑
i=1

(
ν

(i)
c

)2
2∆

(i)
q

(
1 + σ̃(i)

z + 2σ̃(i)
z a†a

)
+
Jxy
8

(
σ̃

(1)
+ σ̃

(2)
− + σ̃

(1)
− σ̃

(2)
+

)
+O

(
ν4
c

∆3
q

)
, (C.88)

where we defined

Jxy = J (1,2)
xy = ν(1)

c ν(2)
c

(
1

∆
(1)
q

+
1

∆
(2)
q

)
. (C.89)

The subscript of Jxy indicates that the qubit-qubit interaction in H̃c-2q is equivalent to a transverse

spin-spin coupling,

σ̃
(1)
+ σ̃

(2)
− + σ̃

(1)
− σ̃

(2)
+ = 2

(
σ̃(1)
x σ̃(2)

x + σ̃(1)
y σ̃(2)

y

)
. (C.90)

Finally, when the photon number operator in Eq. (C.88) is replaced by the average occupation number,

i.e., a†a → 〈a†a〉 ≡ n̄, and when global shifts in energy are neglected, H̃c-2q results in the effective

two-qubit Hamiltonian

Hq-q =

2∑
i=1

Ē
(i)
Z

2
σ̃(i)
z +

Jxy
8

(
σ̃

(1)
+ σ̃

(2)
− + σ̃

(1)
− σ̃

(2)
+

)
, (C.91)

where

Ē
(i)
Z = E

(i)
Z + (1 + 2n̄)

(
ν

(i)
c

)2
∆

(i)
q

. (C.92)

The cavity-induced correction to the Zeeman splitting that is independent of (proportional to) n̄ corre-

sponds to the Lamb shift (ac Stark shift) [17, 23].

C.5.4 Two-Qubit Gates

The Hamiltonian Hq-q, Eq. (C.91), enables the implementation of entangling two-qubit gates (iSWAP,√
iSWAP) and, thus, in combination with single-qubit operations, allows for universal quantum computing

[17, 23–26]. For illustration purposes, we discuss below the special case Ē
(1)
Z = Ē

(2)
Z ≡ ĒZ in more detail.

In the basis Σq-q = {11, 10, 01, 00} with |ab〉 = |a(1)〉 ⊗ |b(2)〉, where the qubit states |0〉 (ground) and

|1〉 (excited) are eigenstates of σ̃z with eigenvalues ∓1, the matrix representation of Hq-q is of the simple

form

Hq-q =


ĒZ 0 0 0

0 0 Jxy/2 0

0 Jxy/2 0 0

0 0 0 −ĒZ

 . (C.93)

The eigenstates and eigenenergies are |11〉, (|10〉 ± |01〉)/
√

2, |00〉, and ĒZ , ±Jxy/2, −ĒZ , respectively.

Provided that Hq-q is constant within the time interval 0 ≤ t′ ≤ t, one finds from the Schrödinger equation

that the time evolution |ψ(t)〉 = Uxy(t) |ψ(0)〉 for an arbitrary state |ψ(0)〉 is described by the operator

Uxy(t) =


e−iĒZt/~ 0 0 0

0 fxy(t) gxy(t) 0

0 gxy(t) fxy(t) 0

0 0 0 eiĒZt/~

 , (C.94)
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where

fxy(t) = cos

(
Jxyt

2~

)
, (C.95)

gxy(t) = −i sin

(
Jxyt

2~

)
. (C.96)

We note that the relation Uxy(t2)Uxy(t1) = Uxy(t1 + t2) may easily be verified. After the time tiSWAP =

π~/|Jxy|, the states |10〉 and |01〉 have been coherently exchanged, which is commonly referred to as an

iSWAP operation. For Jxy > 0,

Uxy(tiSWAP) =


e−iπĒZ/Jxy 0 0 0

0 0 −i 0

0 −i 0 0

0 0 0 eiπĒZ/Jxy

 , (C.97)

and, for Jxy < 0,

Uxy(tiSWAP) =


eiπĒZ/Jxy 0 0 0

0 0 i 0

0 i 0 0

0 0 0 e−iπĒZ/Jxy

 . (C.98)

An entangling
√
iSWAP gate is obtained when the system evolves for the time tiSWAP/2. We note that

also iSWAP is entangling, in stark contrast to the SWAP operation that we recall below.

For comparison, we consider the Hamiltonian for an isotropic (Heisenberg-type) spin-spin coupling

HH
q-q =

2∑
i=1

EZ
2
σ̃(i)
z +

JH
4
σ̃(1) · σ̃(2) − JH

4
, (C.99)

where σ̃ = (σ̃x, σ̃y, σ̃z) is the vector of Pauli matrices and the global energy shift −JH/4 was added for

convenience. In matrix form, with basis Σq-q as above, HH
q-q reads

HH
q-q =


EZ 0 0 0

0 −JH/2 JH/2 0

0 JH/2 −JH/2 0

0 0 0 −EZ

 . (C.100)

The resulting time evolution |ψ(t)〉 = UH(t) |ψ(0)〉 for an arbitrary state |ψ(0)〉 is given by

UH(t) =


e−iEZt/~ 0 0 0

0 fH(t) gH(t) 0

0 gH(t) fH(t) 0

0 0 0 eiEZt/~

 , (C.101)

where

fH(t) =
1

2

(
1 + eiJHt/~

)
, (C.102)

gH(t) =
1

2

(
1− eiJHt/~

)
. (C.103)
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The operation time for a SWAP gate is tSWAP = π~/|JH | (usually JH > 0),

UH(tSWAP) =


e−iπEZ/|JH | 0 0 0

0 0 1 0

0 1 0 0

0 0 0 eiπEZ/|JH |

 , (C.104)

and the entangling
√

SWAP operation [27] is realized after the time tSWAP/2. As for Uxy, we note that

verification of UH(t2)UH(t1) = UH(t1 + t2) is easily possible for UH , which implies (
√

SWAP)2 = SWAP

(analogous for iSWAP).

C.6 Charge Noise

C.6.1 Perturbation due to Electric Field Fluctuations

The Hamiltonian Hq, Eq. (C.13), depends on the applied electric fields, and random fluctuations δEy(t)

and δEz(t) therefore lead to a noisy perturbation

δHel
q (t) =

δEZ(t)

2
σ̃z + δTq(t)σ̃x. (C.105)

Linear expansion yields

δEZ(t) '
(
∂EyEZ

)
δEy(t) + (∂EzEZ) δEz(t), (C.106)

δTq(t) '
(
∂EyTq

)
δEy(t) + (∂EzTq) δEz(t), (C.107)

where the partial derivatives are evaluated at the electric fields Ey and Ez applied to the QD. This implies

δEZ(t) ' 0 and δTq(t) ' 0 for an idle qubit, because all first derivatives vanish at Ey = 0 = Ez. That is,

the proposed setup is highly insensitive to charge noise when the electric fields are switched off during the

waiting time between quantum operations. The system, however, becomes sensitive to electrical noise

when Ey is applied in order to induce the DRSOI. Since, as shown in Chapter 4, single-qubit gates are

much faster than two-qubit gates, the system performance is limited by the noisy perturbations during

two-qubit operations, and below we study the resulting lifetimes in further detail.

C.6.2 Relaxation and Dephasing at Maximal Transverse Coupling

The long-distance two-qubit gates are much slower than single-qubit gates. During two-qubit operations,

Ey should therefore be chosen such that the coupling parameter ν̄ is maximal, which implies ∂EyTq = 0.

Furthermore, ∂EzEZ = 0, as illustrated, e.g., in Eq. (C.124). When the electric field fluctuations δEα(t),

α ∈ {y, z}, are related to the voltage fluctuations δVα(t) in the corresponding electric gates by δEα(t) =

καδVα(t), we find

δEZ(t) ' κy
(
∂EyEZ

)
δVy(t), (C.108)

δTq(t) ' κz ν̄δVz(t), (C.109)

where the κα are device and geometry dependent constants. We recall that Tq = ν̄Ez and, thus, ∂EzTq =

ν̄, which is used in Eq. (C.109).

The relaxation (T el
1 ) and dephasing (T el

ϕ ) times of the qubit in the presence of δHel
q (t) can be calculated
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with the Bloch-Redfield theory [28–30]. With ωZ ≡ EZ/~ and Re[· · · ] as the real part, the rates read

1

T el
1

=
4

~2

∫ ∞
0

cos(ωZt)Re
[
〈δTq(0)δTq(t)〉

]
dt

=
2

~2

∫ ∞
−∞

cos(ωZt)〈δTq(0)δTq(t)〉dt (C.110)

and

1

T el
ϕ

=
1

~2

∫ ∞
0

Re
[
〈δEZ(0)δEZ(t)〉

]
dt

=
1

2~2

∫ ∞
−∞
〈δEZ(0)δEZ(t)〉dt. (C.111)

The correlation functions obtained from ensemble averages 〈· · · 〉 fulfill 〈δTq(0)δTq(−t)〉 = 〈δTq(0)δTq(t)〉∗

and 〈δEZ(0)δEZ(−t)〉 = 〈δEZ(0)δEZ(t)〉∗, where the asterisk denotes complex conjugation, because the

correlation functions are invariant under time translation and δTq(t) and δEZ(t) are hermitian. We note

that the Bloch-Redfield approach requires 〈δEZ(t)〉 = 0 = 〈δTq(t)〉, which is fulfilled for 〈δVα(t)〉 = 0

combined with Eqs. (C.108) and (C.109). When we introduce the spectral functions [31]

SVα(ω) ≡
∫ ∞
−∞

eiωt〈δVα(t)δVα(0)〉dt =

∫ ∞
−∞

e−iωt〈δVα(0)δVα(t)〉dt, (C.112)

i.e., the Fourier transforms of 〈δVα(t)δVα(0)〉 = 〈δVα(0)δVα(−t)〉, Eqs. (C.110) and (C.111) take the form

1

T el
1

=
κ2
z ν̄

2

~2
[SVz (ωZ) + SVz (−ωZ)] , (C.113)

1

T el
ϕ

=
κ2
y

2~2

(
∂EyEZ

)2
SVy (0). (C.114)

SVz (ωZ) describes the process in which the gate for Ez absorbs the energy EZ from the qubit, and vice

versa for SVz (−ωZ) [31]. In contrast to the relaxation, dephasing happens without an energy transfer

between the gate and the qubit, and it is correspondingly quantified by SVy (0).

A major source of electrical noise is the Johnson-Nyquist noise [32, 33]. Following Refs. [31, 33], we

therefore consider the spectral functions

SVα(ω) =
2Rα~ω

1− e−βα~ω
, (C.115)

where βα ≡ 1/(kBTα) and Rα (Tα) is the effective resistance (temperature) of the gate that generates

Eα. We note in passing that these spectral functions fulfill SVα(ω) = eβα~ωSVα(−ω), which corre-

sponds to the detailed balance relation for a noise source in thermal equilibrium. Furthermore, the

equality 〈δVα(0)δVα(−t)〉 = 〈δVα(0)δVα(t)〉∗ is ensured because SVα(ω) is real. Finally, substitution into

Eqs. (C.113) and (C.114) yields

1

T el
1

=
2κ2

z ν̄
2RzEZ

(
eβzEZ + 1

)
~2 (eβzEZ − 1)

, (C.116)

1

T el
ϕ

=
κ2
y

~2

(
∂EyEZ

)2
RykBTy. (C.117)

The decoherence time T el
2 obeys the relation 1/T el

2 = 1/(2T el
1 ) + 1/T el

ϕ [29, 30].
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C.6.3 Numerical Estimates

For numerical estimates of the lifetimes discussed above, we set Ty = Tz ∼ 10 mK on the order of typical

sample temperatures [18, 20]. When kBTz � EZ , which is very well fulfilled for EZ > 3 µeV here, the

gates can only absorb energy and the relaxation rate becomes independent of the temperature,

1

T el
1

=
2κ2

z ν̄
2RzEZ
~2

. (C.118)

From an estimate based on typical gate dimensions (length ∼1 cm; cross section ∼103 nm2) and the

residual resistivities of copper and gold (∼10−11 Ωm), we choose Ry = Rz ∼ 102 Ω. Assuming that the

material between the gates and the NW has a permittivity similar to that of Ge, κy can be approximated

by κy ≈ 1/dy, where dy ∼ 0.1 µm is the distance between the electric gates for Ey. Because the NW QD

is usually located above the gates that generate the confinement along the NW axis [20, 34–36], it is likely

that the conversion factor for δEz(t) is smaller than that for δEy(t), and we set here κz = 1/µm = κy/10.

We emphasize, however, that both κy and κz depend strongly on the details of the setup.

The derivatives ∂EyEZ and ∂EzTq = ν̄ are extracted from the numerical results summarized in Fig. 4.4

of Chapter 4. At magnetic fields |By| . 0.5 T, ν̄ is maximal for Ey ' 1.8 V/µm. At this electric field,

we calculate ν̄ ' 10|By| nm e/T, and find g ' 3.4 and ∂Eyg ' −1.6 µm/V for the g factor. With

EZ = |gµBBy|, substitution of all numbers into Eqs. (C.117) and (C.118) yields

T el
ϕ ∼ 3.7× 10−2 s T2

B2
y

, (C.119)

T el
1 ∼ 6.3× 10−7 s T3

|By|3
, (C.120)

which, in terms of the Zeeman energy, is equivalent to

T el
ϕ ∼ 1.4× 103 s µeV2

E2
Z

, (C.121)

T el
1 ∼ 4.8 s µeV3

E3
Z

. (C.122)

We note that T el
ϕ ∝ 1/E2

Z , whereas T el
1 ∝ 1/E3

Z . Because the dephasing due to Johnson-Nyquist noise is

strongly suppressed at low temperatures, we find here that T el
1 � T el

ϕ for all reasonable By, leading to

T el
2 = 2T el

1 .

In the example of a rather strong magnetic field By = 1.5 T, ν̄ peaks at Ey ' 1.1 V/µm. At these

fields, we obtain ν̄ ' 16 nm e, EZ ' 0.35 meV, and ∂EyEZ ' −0.13 nm e. The resulting lifetimes are

T el
ϕ ∼ 19 ms and T el

1 ∼ 0.15 µs, and we mention in passing that these are very similar to the lifetimes

extrapolated from Eqs. (C.119) to (C.122) derived for the case of relatively weak By. Again, T el
2 = 2T el

1 ,

i.e., the dephasing is negligible compared to the relaxation.

C.6.4 Remarks

For both strong and weak magnetic fields, we find that the above calculated relaxation times are relatively

close to the operation times of cavity-based two-qubit gates. In order to enhance the gate fidelities,

relaxation due to Johnson-Nyquist noise should be suppressed by choosing a setup with small κz. For

instance, when the details of the setup are designed such that κz = 0.1/µm instead of κz = 1/µm assumed

above, the lifetimes T el
1 and T el

2 are prolonged by two orders of magnitude because of T el
1 ∝ 1/κ2

z. Further

possibilities for increasing noise-limited gate fidelities are discussed in Chapter 4.

We also note that high-frequency cut-offs were not considered in the analysis of the electrical noise.
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Consequently, the correlation functions 〈δTq(0)δTq(t)〉 and 〈δEZ(0)δEZ(t)〉 cannot be calculated explicitly

as the spectral functions do not converge at infinite ω, and, moreover, one finds T el
1 → 0 in the limit

EZ → ∞. Cut-offs in the spectral functions of noisy perturbations can have various origins. When

spin qubits relax via the phonon bath, for instance, the lifetimes turn out to be minimal when the

corresponding phonon wavelength matches the dot size [23, 29, 37, 38]. This is because the relevant

matrix elements vanish after integration over the wave functions when the phonon wavelength is much

smaller than the QD. Analogously, one may argue that T el
1 increases when EZ & ~πc0/

(
2lg
√
εr
)
∼ 1 eV.

Since the speed of light is by orders of magnitude greater than the speed of sound in Ge, this wavelength-

based cut-off for charge noise occurs at much higher energies than that for phonons [38]. It is likely that

other mechanisms in the metal itself lead to an increase of T el
1 and T el

2 at EZ < 1 eV already. However,

we assume that high-frequency cut-offs in the spectral functions of the Johnson-Nyquist noise do not set

in within the range of Zeeman energies discussed here. If they do occur, the resulting lifetimes will be

increased significantly.

Finally, three more features of the proposed setup are worth mentioning in the context of charge noise.

First, we note that the confinement length lg presents an additional control parameter for the g factor

[see, e.g., Eqs. (C.124) and (C.128)]. Hence, if required, fine tuning of l
(i)
g should allow realizing both

∂
E

(i)
y
T

(i)
q = 0 (maximal ν̄(i)) and the desired ∆

(i)
q for any qubit i in the cavity. Second, static electric fields

from the substrate, if present, will most likely be oriented along the y axis. Therefore, in order to achieve

the desired Ey (particularly Ey = 0), they may easily be compensated with the electric gates. Third,

radial fields from the Ge/Si interface, if present, do not break the symmetry of the wire and may result

in small corrections to ∆, C, and K only. All these properties are useful in an experimental realization.

C.7 Results from Effective Model

Below, we summarize the coefficients cy and cz of H ′q, Eq. (C.51), that result from the perturbative

analysis described in Appendix C.2. Although the full results are lengthy and cannot be written out

explicitly here, a Taylor expansion in the magnetic field By for N →∞ yields

cy = µBByEz
2eC ′

(~ω′g)2
e
−
(

C′

l′g~ω′g

)2 [(
K − (K +M) sin2 θ

)
− LC̃

l′2g ∆′

]
+O(B3

y) (C.123)

and

cz = µBBye
−
(

C′

l′g~ω′g

)2 [(
K − (K +M) sin2 θ

)(
1− C ′2e2E2

z

(~ω′g)4

)
− LC̃

l′2g ∆′

]
+O(B3

y). (C.124)

The correction ∝ E2
z in cz is negligible for the small electric fields Ez in our setup. In the regime of

relatively weak By, where the linear expansion in By applies, the coefficients can therefore be summarized

as follows,

cy ' Ez
2eC ′

(~ω′g)2
cz, (C.125)

cz ' µBBye
−
(

C′

l′g~ω′g

)2 [(
K − (K +M) sin2 θ

)
− LC̃

l′2g ∆′

]
. (C.126)

Finally, because the DRSOI is much stronger than the conventional RSOI [1], it turns out that the latter

results in small quantitative corrections only and may be omitted. For α → 0, one finds ∆′ → ∆̃,
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C ′ → 2CeEyU/∆̃, C̃ → C∆/∆̃, ω′g → ω̃g, l
′
g → l̃g, and the coefficients read

cy ' Ez
4e2UCEy

(~ω̃g)2∆̃
cz, (C.127)

cz ' µBBye
−
(

2eUCEy

l̃g~ω̃g∆̃

)2 (
K̃ − LC∆

l̃2g∆̃
2

)
, (C.128)

where l̃g = lg
√
ω̃g/ωg and

K̃ = K −
(K +M)E2

y(
∆̃+∆
2eU

)2

+ E2
y

, (C.129)

∆̃ =
√

∆2 + (2eEyU)2, (C.130)

ω̃g = ωg

√
1− 2mgC2∆2

~2∆̃3
. (C.131)
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Appendix D

Supplementary Information to Chapter 5

“Acoustic Phonons and Strain in

Core/Shell Nanowires”

Adapted from:

Christoph Kloeffel, Mircea Trif, and Daniel Loss,

Phys. Rev. B 90, 115419 (2014).



D.1 Parameters for Ge/Si Core/Shell Nanowires

In this appendix, we summarize the most important parameters used in the calculations for Ge/Si

core/shell nanowires (NWs) in Chapter 5. The lattice constants of the core (c, Ge) and shell (s, Si) mate-

rial are ac = 5.66 Å and as = 5.43 Å [1, 2]. The densities are ρc = 5.32 g/cm3 and ρs = 2.33 g/cm3 [2, 3].

As explained below, the Lamé parameters are approximately λc = 39.8×109 N/m2, µc = 55.6×109 N/m2,

λs = 54.5× 109 N/m2, and µs = 67.5× 109 N/m2.

The elastic stiffness coefficients, taken from Ref. [3] and listed here in units of 109 N/m2, are cc11 = 129,

cc12 = 48, cc44 = 67.1, cs11 = 165, cs12 = 64, and cs44 = 79.2. We note that the numbers agree very

well with those provided, e.g., in Ref. [2]. Introducing p ∈ {c, s} for convenience and following Ref. [4]

(Appendix E.2.6.1), we approximate these stiffness coefficients by c̃p11, c̃p12, and c̃p44, respectively, such that

the conditions c̃p11 = c̃p12 + 2c̃p44 for isotropic media are fulfilled. When the relative deviations of the three

coefficients for a material are chosen to be the same, this approximation yields a relative deviation from

the original values of 17.1% in Ge and 14.8% in Si. The results are c̃c12 = 39.8, c̃c44 = 55.6, c̃s12 = 54.5,

and c̃s44 = 67.5, leading to the above-mentioned Lamé parameters due to c̃p12 = λp and c̃p44 = µp.

D.2 Coordinate Systems for Stress and Strain

D.2.1 Cartesian and Cylindrical Coordinates

We mainly consider two different coordinate systems in this work. In the case of Cartesian coordinates

(x, y, z), a position r is described by

r = xex + yey + zez. (D.1)

The z axis coincides with the symmetry axis of the NW, and ex, ey, and ez = ex×ey are the orthonormal

basis vectors pointing along the axes indicated by subscripts. In cylindrical coordinates (r, φ, z), we write

r = rer + zez, (D.2)

with

x = r cosφ, (D.3)

y = r sinφ, (D.4)

and so the z axis is the same for both coordinate systems. We use

r =
√
x2 + y2 (D.5)

in this work in order to avoid confusion with the density ρ. Therefore r 6= |r|. The unit vectors

er = ex cosφ+ ey sinφ, (D.6)

eφ = −ex sinφ+ ey cosφ (D.7)

point in the radial and azimuthal direction, respectively, and we note that {er, eφ, ez} forms again a

right-handed, orthonormal basis.
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D.2.2 Transformation of Second Rank Tensors

In the following, we recall how the strain and stress tensors transform under a change of basis and

summarize the relations between the tensor elements in Cartesian and cylindrical coordinates. The

chosen notation is similar to the one in Ref. [3].

We consider two coordinate systems Σ and Σ′ with basis vectors ei and e′i, respectively, which are

related via

e′j =
∑
i

Rijei. (D.8)

Given the two sets of basis vectors, an arbitrary vector a can be written as

a =
∑
i

aiei =
∑
i

a′ie
′
i, (D.9)

where ai (a′i) are the coefficients in Σ (Σ′). Inserting Eq. (D.8) into Eq. (D.9) yields

aj =
∑
i

Rjia
′
i. (D.10)

These linear relations between the coefficients of a can conveniently be written as (considering three

dimensions) a1

a2

a3

 = R

a
′
1

a′2

a′3

 , (D.11)

where the matrix

R =

R11 R12 R13

R21 R22 R23

R31 R32 R33

 (D.12)

comprises the elements Rij introduced in Eq. (D.8). Since the basis vectors of Σ and Σ′, respectively, are

orthonormal, one finds RTR = 1 = RRT, and so the transposed matrix RT corresponds to the inverse

operation, i.e., RT = R−1. Consequently, the inverse relations between the coefficients ai and a′i reada
′
1

a′2

a′3

 = RT

a1

a2

a3

 , (D.13)

which is equivalent to

a′j =
∑
i

Rijai. (D.14)

The transformation rules for second rank tensors, such as stress and strain, can easily be found with

the above-mentioned equations, keeping in mind that the result of a tensor acting on some vector a must

be independent of the coordinate system. When the matrices T ′ and T , respectively, contain the tensor

elements T ′ij and Tij for the primed and unprimed basis, the relations between these tensor elements are

given in matrix form by

T ′ = RTTR, (D.15)

with R as shown in Eq. (D.12). An intuitive proof for this result is obtained by applying the left- and

right-hand side to a column vector with coefficients a′i. As this column vector corresponds exactly to

the representation of a in Σ′, and analogously for the matrix T ′ representing the tensor, the left-hand

side yields a column vector whose coefficients b′i describe the result of the operation “tensor on a” in

the primed basis. On the right-hand side, the matrix R transfers the coefficients a′i of the column vector
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into ai. Next, applying T yields the resulting coefficients of “tensor on a” in the unprimed basis. Finally,

RT replaces these coefficients bi by those in Σ′, i.e., by b′i. The equality of left- and right-hand side holds

for arbitrary a′i, and so Eq. (D.15) applies. Analogously,

T = RT ′RT. (D.16)

We note that the results are equivalent to

T ′mn =
∑
ij

RimRjnTij , (D.17)

Tmn =
∑
ij

RmiRnjT
′
ij . (D.18)

Considering the Cartesian and cylindrical coordinate systems introduced in Appendix D.2.1 as Σ and

Σ′, respectively, the matrix R is

R =

cosφ − sinφ 0

sinφ cosφ 0

0 0 1

 . (D.19)

Thus, exploiting Eq. (D.15), the relations between the strain tensor elements in the two coordinate

systems are

εrr = εxx cos2 φ+ εyy sin2 φ+ εxy sin(2φ), (D.20)

εφφ = εxx sin2 φ+ εyy cos2 φ− εxy sin(2φ), (D.21)

εrφ = εxy cos(2φ) + (εyy − εxx) sinφ cosφ, (D.22)

εrz = εxz cosφ+ εyz sinφ, (D.23)

εφz = εyz cosφ− εxz sinφ, (D.24)

where we made use of εij = εji and the trigonometric identities cos(2φ) = cos2 φ− sin2 φ and sin(2φ) =

2 sinφ cosφ. The element εzz is the same in both coordinate systems, and the inverse relations

εxx = εrr cos2 φ+ εφφ sin2 φ− εrφ sin(2φ), (D.25)

εyy = εrr sin2 φ+ εφφ cos2 φ+ εrφ sin(2φ), (D.26)

εxy = εrφ cos(2φ) + (εrr − εφφ) sinφ cosφ, (D.27)

εxz = εrz cosφ− εφz sinφ, (D.28)

εyz = εφz cosφ+ εrz sinφ (D.29)

can be derived from Eq. (D.16). The above-listed equations apply analogously to the stress tensor

elements σij , of course.

D.2.3 Strain in Cylindrical Coordinates

In cylindrical coordinates, the relations between the displacement field

u = urer + uφeφ + uzez (D.30)
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and the strain tensor elements εij are nontrivial, since the basis vectors er and eφ depend on the angle φ.

Based on Eqs. (D.6) and (D.7), one finds

∂φer = eφ, (D.31)

∂φeφ = −er. (D.32)

Consequently,

∂ru = er∂rur + eφ∂ruφ + ez∂ruz, (D.33)

1

r
∂φu = er

∂φur − uφ
r

+ eφ
∂φuφ + ur

r
+ ez

∂φuz
r

, (D.34)

∂zu = er∂zur + eφ∂zuφ + ez∂zuz. (D.35)

With

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
(D.36)

as introduced in Sec. 5.2 of Chapter 5, this yields [5]

εrr = ∂rur, (D.37)

εφφ =
∂φuφ + ur

r
, (D.38)

εzz = ∂zuz (D.39)

for the diagonal elements, and

εrφ =
1

2

(
∂φur − uφ

r
+ ∂ruφ

)
, (D.40)

εrz =
1

2
(∂zur + ∂ruz) , (D.41)

εφz =
1

2

(
∂zuφ +

∂φuz
r

)
(D.42)

for the off-diagonal elements.

D.3 Phonons in Bulk

In this appendix, we recall the theoretical description of acoustic phonons in bulk material. The formulas

and results form the basis for Appendix D.4, where we derive the normalization condition for phonons in

core/shell and core/multishell NWs.

D.3.1 Plane Waves and Classical Lattice Vibrations

We start from the dynamical equation of motion in an isotropic material [3, 5, 6],

ρü = (λ+ µ)∇(∇ · u) + µ∇2u, (D.43)

which is equivalent to

ρüi =
∑
j

∂σij
∂xj

. (D.44)

The introduced ∇ is the Nabla operator, and ∇2 is the Laplacian. In bulk, where ρ, λ, and µ are

constants, the elementary solutions of Eq. (D.43) are longitudinal (l) and transverse (t1, t2) plane waves
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with wave vectors q,

u±ql ∝ eqle
i(q·r±ωqlτ), (D.45)

u±qt1 ∝ eqt1e
i(q·r±ωqt1τ), (D.46)

u±qt2 ∝ eqt2e
i(q·r±ωqt2τ), (D.47)

where the unit vectors eql = q/q, eqt1 ⊥ eql, and eqt2 = eql×eqt1 provide the polarizations and τ is the

time. The dispersion relations between q = |q| and the angular frequencies ωql and ωqt = ωqt1 = ωqt2

are

ωql =

√
λ+ 2µ

ρ
q = vlq, (D.48)

ωqt =

√
µ

ρ
q = vtq, (D.49)

respectively, where vl (vt) is the speed of sound for longitudinal (transverse) polarization. Assuming

periodic boundary conditions and a rectangular sample of length Lx, width Ly, and height Lz, the

N = V/a3 allowed values of q = qxex + qyey + qzez within the first Brillouin zone are given by

qκ ∈
{
−π
a
,−π

a
+

2π

Lκ
, · · · , π

a
− 2π

Lκ

}
, (D.50)

qκ ∈
{
−π
a

+
π

Lκ
,−π

a
+

3π

Lκ
, · · · , π

a
− π

Lκ

}
(D.51)

for even or odd Lκ/a, respectively, where κ ∈ {x, y, z}, V = LxLyLz is the sample volume, and a is the

lattice constant of the material.

Classically, an arbitrary acoustic lattice vibration in bulk is described by the displacement function

u(r, τ) =
∑
q,s

eqs

(
cqse

i(q·r−ωqsτ) + c.c.
)
, (D.52)

which corresponds to the most general, real-valued solution to Eq. (D.43) that fulfills the boundary

conditions. The abbreviation “c.c.” stands for the complex conjugate, and the summation runs over

all wave vectors q within the first Brillouin zone and the three mode types s ∈ {l, t1, t2}. The real and

imaginary parts of the complex coefficients cqs (units: length) can be chosen according to the initial

conditions, and we note that the 6V/a3 free parameters in Eq. (D.52) are sufficient to set the initial

positions and velocities of all N = V/a3 lattice sites in the sample. Equation (D.52) yields the time

derivatives

u̇(r, τ) = −i
∑
q,s

ωqseqs

(
cqse

i(q·r−ωqsτ) − c.c.
)
, (D.53)

ü(r, τ) = −
∑
q,s

ω2
qseqs

(
cqse

i(q·r−ωqsτ) + c.c.
)
, (D.54)

which serve as input functions for the Hamiltonian that we discuss next.

D.3.2 Hamiltonian

In the continuum limit, the total energy of a lattice vibration comprises the kinetic energy

Ekin =
1

2

∫
V

d3rρu̇2 (D.55)
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and the elastic energy

U =
1

2

∑
i,j

∫
V

d3rσijεij , (D.56)

where we note that the density ρ and the Lamé parameters λ and µ depend on r in the general case.

Integrating Eq. (D.56) by parts and exploiting σij = σji and Eq. (D.44), one finds that the elastic energy

can be rewritten as

U = −1

2

∫
V

d3rρu · ü. (D.57)

We omitted here the surface terms that arise from the integration by parts as these terms vanish in most

cases due to the boundary conditions. For instance, considering the previously introduced, rectangular

sample centered at the origin, it can directly be seen that the surface terms, which are of type

[σijui]
xj=Lj/2

xj=−Lj/2 , (D.58)

are zero both for periodic boundary conditions and for force-free sample surfaces. In the above example

of the rectangular sample, the axes {1,2,3} correspond to {x, y, z}. We also verified that the surface terms

vanish for the system discussed in Appendix D.4, i.e., for a cylindrically symmetric NW with a force-free

surface perpendicular to the radial direction and periodic boundary conditions at the longitudinal ends.

The resulting Hamiltonian

H = Ekin + U (D.59)

in the continuum limit reads

H =
1

2

∫
V

d3rρ (u̇ · u̇− u · ü) . (D.60)

With

m(R) = ρa3|r=R (D.61)

as the mass of the lattice site at position R (comprising the masses of all atoms in the corresponding

unit cell), the discretized version of H is

H =
1

2

∑
r=R

m (u̇ · u̇− u · ü) , (D.62)

where the sum runs over all lattice vectors R in the material, i.e., over all lattice sites.

We note in passing that insertion of Eqs. (D.52) to (D.54) of Appendix D.3.1 into Eq. (D.60) or (D.62)

yields

H = 2ρV
∑
q,s

|cqs|2ω2
qs, (D.63)

which corresponds to the total energy of a classical acoustic lattice vibration in bulk.

D.3.3 Quantization

D.3.3.1 Generalized Coordinates and Momenta

Before quantizing the phonon field, we demonstrate that uj(R) and

pj(R) = m(R)u̇j(R) (D.64)

correspond to the generalized coordinates and momenta of the lattice vibrations investigated here. The

subscript j refers to the three spatial directions and, as introduced before, R can be any of the N lattice

vectors of the material. Using the results of Appendix D.3.2 and the Hamiltonian of Eq. (D.62), one finds
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L =
∑
R,j

pj(R)u̇j(R)−H =
1

2

∑
R

m (u̇ · u̇+ u · ü) = Ekin − U, (D.65)

and so L indeed is the Lagrangian of the system. We note that

∂L
∂u̇j(R)

= pj(R) (D.66)

can easily be verified, since terms of type u · ü are independent of u̇j [see also Eqs. (D.43) and (D.44)].

Furthermore, as outlined below, one can prove that Hamilton’s equations of motion are fulfilled, leaving

no doubt about uj(R) and pj(R) being generalized coordinates and momenta.

Equations (D.43) and (D.44) illustrate that ü can be obtained from the displacement field u via spatial

derivatives. Due to the linear dependence, one may write [6]∑
R

u(R) ·m(R)ü(R) = U ·DU =
∑
R,j

uj(R)
∑
R′,j′

DR,j,R′,j′uj′(R
′), (D.67)

where U is a 3N -dimensional vector that comprises all uj(R), and D is a 3N×3N matrix whose matrix

elements DR,j,R′,j′ do not depend on U . An important relation evident from Eq. (D.67) is∑
R′,j′

DR,j,R′,j′uj′(R
′) = m(R)üj(R) = ṗj(R). (D.68)

Furthermore, the matrix D must be Hermitian since U ·DU is part of the Hamiltonian, and so

DR,j,R′,j′ = DR′,j′,R,j , (D.69)

i.e., D = DT. We note in passing that the term U · DU and the property D = DT apply to the case

of real-valued U and D considered here. More generally, with the complex conjugate denoted by an

asterisk (∗) and the Hermitian conjugate denoted by a dagger (†), they correspond to U∗ · DU and

D = D†, respectively, and so DR,j,R′,j′ = D∗R′,j′,R,j . Inserting Eq. (D.67) into Eq. (D.62) yields the

Hamiltonian

H =
1

2

∑
R,j

m(R)u̇2
j (R)− 1

2
U ·DU , (D.70)

from which one finds

− ∂H

∂uj(R)
= ṗj(R) (D.71)

by exploiting Eqs. (D.68) and (D.69). Similarly,

∂H

∂pj(R)
= u̇j(R) (D.72)

can easily be verified with Eqs. (D.64) and (D.70).

D.3.3.2 Operators for Phonons in Bulk

Having identified uj(R) and pj(R) as the generalized coordinates and momenta, we now promote them

to operators and refer, e.g., to Ref. [7] for further details about the information summarized in this

appendix. For the quantum mechanical description of uj(R) and pj(R), we introduce the bosonic ladder
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operators a†qs and aqs, which obey the commutation relations[
aqs, a

†
q′s′

]
= δq,q′δs,s′ , (D.73)[

a†qs, a
†
q′s′

]
= 0 = [aqs, aq′s′ ] , (D.74)

with δq,q′ and δs,s′ as Kronecker deltas and [A,B] = AB − BA. We anticipate at this stage that the

operators a†qs and aqs generate and annihilate, respectively, a phonon of mode s with wave vector q.

Based on Eqs. (D.52) and (D.53), a reasonable ansatz for the operators uj(R) and pj(R) is

u(R) =
∑
q,s

eqs
(
cqsaqse

iq·R + H.c.
)
, (D.75)

u̇(R) =
p(R)

m
= −i

∑
q,s

ωqseqs
(
cqsaqse

iq·R −H.c.
)
, (D.76)

where u(R) =
∑
j ejuj(R), and analogous for the vector operators p(R) and u̇(R). The Hermitian

conjugate is denoted by “H.c.”. As we analyze here the case of bulk material, the mass m(R) = m is

independent of the lattice site.

The introduced operators uj(R) and pj(R) need to meet a list of criteria. Of course, they must be

Hermitian, which obviously is fulfilled. Moreover, they need to obey the canonical commutation relations

[uj(R), pj′(R
′)] = i~δj,j′δR,R′ , (D.77)

[uj(R), uj′(R
′)] = 0 = [pj(R), pj′(R

′)] . (D.78)

Exploiting, among other things, the identity∑
q

eiq·(R−R
′) = NδR,R′ (D.79)

and the properties of eqs, particularly ∑
s

(eqs)j(eqs)j′ = δj,j′ (D.80)

due to their orthonormality, one finds that all canonical commutation relations apply when

|cqs|2 =
~

2mNωqs
. (D.81)

We note that mN = ρa3N = ρV is the mass of the sample. The above-mentioned expressions for uj(R)

and pj(R), however, are not the only ones that meet the criteria discussed so far. For instance, it is

obvious that the canonical commutation relations also apply when uj(R) → uj(R)Fj(R) and pj(R) →
pj(R)/Fj(R), where Fj(R) is an arbitrary factor that is chosen real in order to preserve Hermiticity.

Thus, an important criterion remains. We can ensure that the introduced operators feature the desired

physical interpretations by verifying that the Hamiltonian takes the well-known form

H =
∑
q,s

~ωqs

(
a†qsaqs +

1

2

)
. (D.82)

Indeed, this requirement is satisfied for Eqs. (D.75), (D.76), and (D.81). It may easily be proven by
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inserting these equations into Eq. (D.62), exploiting

ü(R) = −
∑
q,s

ω2
qseqs

(
cqsaqse

iq·R + H.c.
)
, (D.83)

the properties of eqs and ωqs, and the identity∑
R

ei(q−q
′)·R = Nδq,q′ . (D.84)

Equation (D.83) can readily be obtained from Eq. (D.75) because the latter is written in terms of the

eigenmodes, i.e., the eigenstates of the matrix D. We conclude that Eqs. (D.75) and (D.76) are suit-

able operators for the canonical coordinates and momenta of acoustic lattice vibrations in bulk. The

normalization condition is shown in Eq. (D.81).

Finally, we mention that the time dependence

O → O(τ) = eiHτ/~Oe−iHτ/~ (D.85)

of an operator O, where τ is the time and H is the phonon Hamiltonian [Eq. (D.82)], can easily be

obtained via

a†qs → a†qs(τ) = a†qse
iωqsτ , (D.86)

aqs → aqs(τ) = aqse
−iωqsτ . (D.87)

D.4 Phonon Quantization in Core/Shell and Core/Multishell Wires

With the information of Appendix D.3, the normalization condition for low-energetic phonons in cylin-

drically symmetric core/shell and core/multishell NWs can quickly be derived. Based on Chapter 5, we

consider here the four gapless phonon modes and denote the time-independent and unnormalized part of

the corresponding displacement fields by

uqzs(r) = uqzs(r, φ)eiqzz. (D.88)

In contrast to Appendix D.3, s ∈ {l, t, f+, f−} now refers to the longitudinal (l) and torsional (t) modes,

which fulfill

uqzl(r, φ) = uqzl(r) = [uqzl(r)]rer + [uqzl(r)]zez, (D.89)

uqzt(r, φ) = uqzt(r) = [uqzt(r)]φeφ, (D.90)

and to the two flexural modes (f±), for which

uqzf±(r, φ) = uqzf±(r)e±iφ. (D.91)

The notation uqzs(r) indicates here that the components along er, eφ, and ez depend solely on r in

cylindrical coordinates. In Chapter 5, we explicitly show that the above-mentioned properties apply to

homogeneous NWs and core/shell NWs, and we note that these features may analogously be considered

for arbitrary core/multishell wires with cylindrical symmetry. The length of the NW is denoted by

L = Lz, and Nz = Lz/a is the number of lattice sites along z. We mention in passing that the lattice

constant a along the NW corresponds to an effective, equilibrated lattice spacing when the system is

coherently strained (see, e.g., ae in Sec. 5.3 of Chapter 5). Assuming periodic boundary conditions along
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z, the Nz values of the wave number qz in the first Brillouin zone are given by Eqs. (D.50) and (D.51).

Consequently, the displacement field of an arbitrary, classical lattice vibration based on the gapless modes

reads

u(r, τ) =
∑
qz,s

(
cqzsuqzs(r)e−iωqzsτ + c.c.

)
, (D.92)

where ωqzs (defined as positive) are the angular frequencies of the phonon modes, cqzs are complex

coefficients (dimensionless), and the sum runs over all s and all qz within the first Brillouin zone. The

time derivative is

u̇(r, τ) = −i
∑
qz,s

ωqzs
(
cqzsuqzs(r)e−iωqzsτ − c.c.

)
. (D.93)

The Hamiltonian derived in Appendix D.3.2 and the discussion of the generalized coordinates and

momenta in Appendix D.3.3.1 are independent of the geometry and composition of the sample. [We note

in passing that additional terms of type σstatic
ij εphonons

ij and σphonons
ij εstatic

ij arise for the elastic energy in

the Hamiltonian of NWs when both the static (see also Sec. 5.3) and the dynamical displacement are

taken into account. However, these terms vanish when averaging over time and also when integrating

over the NW. Contributions of type σstatic
ij εstatic

ij only provide a constant energy shift, and so we can focus

here on the terms caused solely by phonons.] For the quantum mechanical description of low-energetic

phonons in NWs, we therefore proceed analogously to Appendix D.3.3.2 and define the operators

u(R) =
∑
qz,s

(cqzsaqzsuqzs(R) + H.c.) , (D.94)

u̇(R) =
p(R)

m(R)
= −i

∑
qz,s

ωqzs (cqzsaqzsuqzs(R)−H.c.) . (D.95)

The creation (a†qzs) and annihilation (aqzs) operators for the respective phonons obey again the commu-

tation relations [
aqzs, a

†
q′zs
′

]
= δqz,q′zδs,s′ , (D.96)[

a†qzs, a
†
q′zs
′

]
= 0 =

[
aqzs, aq′zs′

]
. (D.97)

As we focus only on the four gapless modes, the canonical commutation relations shown in Eqs. (D.77) and

(D.78) cannot be verified with Eqs. (D.94) and (D.95) only. The reason is simply that the cqzs introduced

in Eq. (D.92) provide only 8Nz free parameters, and so phonon modes of higher energy need to be included

in order to reach the required 6N degrees of freedom (N is the number of lattice sites). Nevertheless,

Eqs. (D.94) and (D.95) can be considered consistent with the canonical commutation relations, given the

formal analogy with the discussed case of bulk. The normalization condition can therefore be derived by

choosing cqzs such that the resulting Hamiltonian reads

H =
∑
qz,s

~ωqzs
(
a†qzsaqzs +

1

2

)
. (D.98)

We start from the Hamiltonian in the continuum limit, Eq. (D.60), and write

H =
a

2

∑
z

∫ Rtot

0

drrρ(r)

∫ 2π

0

dφ
[
u̇(r) · u̇(r)− u(r) · ü(r)

]
, (D.99)

where ρ(r) = ρ(r) because of the symmetry, and Rtot is the radius of the outermost shell, i.e., the total

radius of the NW. The summation over the coordinate z runs over the Nz lattice positions along the

z axis. That is, we consider here a discrete lattice along the NW and use the continuum limit for the
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transverse directions. After insertion of [see also Eqs. (D.94) and (D.95)]

u(r) =
∑
qz,s

(cqzsaqzsuqzs(r) + H.c.) , (D.100)

u̇(r) = −i
∑
qz,s

ωqzs (cqzsaqzsuqzs(r)−H.c.) , (D.101)

ü(r) = −
∑
qz,s

ω2
qzs (cqzsaqzsuqzs(r) + H.c.) , (D.102)

and Eq. (D.88) into Eq. (D.99), the dependence on z can be removed due to [7]∑
z

ei(qz−q
′
z)z = Nzδqz,q′z . (D.103)

It is then convenient to introduce the shorthand notation

Int[a · b] =

∫ Rtot

0

drrρ(r)

∫ 2π

0

dφa · b (D.104)

with arbitrary a and b, and we mention that Int[a ·b] = Int[b ·a]. Exploiting the properties of the phonon

modes, in particular ωqzs = ω−qzs, ωqzf+ = ωqzf− , and

Int[u∗qzs(r, φ) · uqzs′(r, φ)] = δs,s′Int[u∗qzs · uqzs] (D.105)

due to Eqs. (D.89) to (D.91), the Hamiltonian can be reduced to

H = 2Lz
∑
qz,s

ω2
qzs|cqzs|

2Int[u∗qzs · uqzs]
(
a†qzsaqzs +

1

2

)
. (D.106)

Thus, comparison with Eq. (D.98) yields the normalization condition

|cqzs|2Int[u∗qzs · uqzs] =
~

2Lzωqzs
. (D.107)

For convenience, the arguments of uqzs were omitted here because of

u∗qzs(r, φ) · uqzs(r, φ) = u∗qzs(r) · uqzs(r) = u∗qzs(r) · uqzs(r) = u∗qzs · uqzs, (D.108)

as evident from Eqs. (D.88) to (D.91). Insertion into Eq. (D.104) therefore yields

Int[u∗qzs · uqzs] = 2π

∫ Rtot

0

drrρ(r)u∗qzs · uqzs. (D.109)

In conclusion, the normalization condition for gapless phonon modes in cylindrically symmetric core/shell

and core/multishell NWs is

|cqzs|2
∫ Rtot

0

drrρ(r)u∗qzs · uqzs =
~

4πLzωqzs
. (D.110)

When ρ(r) = ρ, this condition matches the well-known result for homogeneous NWs [8]. In order to

avoid confusion, we mention that the displacement operator u(r) is sometimes defined with an additional

prefactor of 1/
√
N . A general discussion of phonon quantization in nanostructures can be found in

Ref. [9]. Analogous to the case of bulk (Appendix D.3.3.2), time-dependent operators may easily be

obtained through a†qzs → a†qzs(τ) = a†qzse
iωqzsτ and aqzs → aqzs(τ) = aqzse

−iωqzsτ .
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E.1 Basis States

We consider a GaAs/AlGaAs heterostructure that contains a two-dimensional electron gas (2DEG).

Electric gates on the top of the sample induce a double quantum dot (DQD) potential that confines

electrons and enables the implementation of a singlet-triplet qubit. Assuming that this spin qubit is

based on low-energy states of two electrons in the DQD, we consider the four states of lowest energy

|(1, 1)S〉 = |Ψ+〉|S〉, (E.1)

|(1, 1)T+〉 = |Ψ−〉|T+〉, (E.2)

|(1, 1)T0〉 = |Ψ−〉|T0〉, (E.3)

|(1, 1)T−〉 = |Ψ−〉|T−〉, (E.4)

two states with a doubly occupied quantum dot (QD)

|(0, 2)S〉 = |ΨR〉|S〉, (E.5)

|(2, 0)S〉 = |ΨL〉|S〉, (E.6)

and four additional states that feature one electron in a first excited orbital state

|(1∗, 1)S〉 = |Ψe
+〉|S〉, (E.7)

|(1∗, 1)T+〉 = |Ψe
−〉|T+〉, (E.8)

|(1∗, 1)T0〉 = |Ψe
−〉|T0〉, (E.9)

|(1∗, 1)T−〉 = |Ψe
−〉|T−〉 (E.10)

as the basis in this problem. In the notation used above, the first and second index in parentheses

corresponds to the occupation number of the left and right QD, respectively. The asterisk denotes that

the electron in the QD is in the first excited state. The spin part of the wave functions consists of the

singlet |S〉 and the triplets |T0〉, |T+〉, and |T−〉,

|S〉 =
|↑↓〉 − |↓↑〉√

2
, (E.11)

|T0〉 =
|↑↓〉+ |↓↑〉√

2
, (E.12)

|T+〉 = |↑↑〉 , (E.13)

|T−〉 = |↓↓〉 , (E.14)

where ↑ (↓) corresponds to an electron spin oriented along (against) the externally applied magnetic field

(see Appendix E.2).

As the two minima in the DQD potential may be approximated by the confining potential of a 2D

harmonic oscillator, the one-particle wave functions for ground and first excited states can be constructed

from the eigenstates of the harmonic oscillators [1]. Defining the growth axis of the heterostructure as

the z axis, we consider harmonic confinement potentials around (x, y) = (±a, 0) with lc =
√

~/(meffω0)

as the confinement length in the QDs. The x axis connects the two QDs, pointing from the left to the

right one. The interdot distance is L = 2a, meff is the effective mass of electrons in GaAs, and ~ω0 is the

orbital level spacing in each QD. With these definitions, the orbital parts of the 2D harmonic oscillator
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wave functions (ground, excited along x, excited along y) can be written as

φL,R(x, y) =
1√
πlc

e−[(x±a)2+y2]/(2l2c), (E.15)

φxL,R(x, y) =

√
2

πl4c
(x± a)e−[(x±a)2+y2]/(2l2c), (E.16)

φyL,R(x, y) =

√
2

πl4c
ye−[(x±a)2+y2]/(2l2c). (E.17)

The confining potential along the z axis may be considered as a triangular potential of type

V (z) =

{
∞, z < 0,

Cz, z > 0,
(E.18)

where C is a positive constant with units energy/length and z = 0 corresponds to the interface between

AlGaAs (z < 0) and GaAs (z > 0). The ground state in such a potential can be approximated by the

Fang-Howard wave function [2]

φFH(z) = θ(z)
z√
2a3
z

e−z/(2az), (E.19)

with az as a positive length and

θ(z) =

{
0, z < 0,

1, z > 0,
(E.20)

as the Heaviside step function. The Fang-Howard wave function from Eq. (E.19) is normalized and fulfills

〈φFH| z |φFH〉 = 3az, (E.21)

which may be interpreted as the width of the 2DEG.

Following Refs. [1, 3, 4] for constructing wave functions in the DQD potential, we define overlaps

between the harmonic oscillator wave functions:

s = 〈φL|φR〉 = e
− a2
l2c , (E.22)

sx = 〈φxL|φxR〉 = s

(
1− 2a2

l2c

)
, (E.23)

sy = 〈φyL|φ
y
R〉 = s, (E.24)

and

g =
1−
√

1− s2

s
, (E.25)

gx =
1−

√
1− s2

x

sx
, (E.26)

gy =
1−

√
1− s2

y

sy
= g. (E.27)
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Then, the normalized orbital parts of the one-particle wave functions for the DQD are

ΦL,R(r) =
φL,R(x, y)− gφR,L(x, y)√

1− 2sg + g2
φFH(z), (E.28)

Φe,xL,R(r) =
φxL,R(x, y)− gxφxR,L(x, y)√

1− 2sxgx + g2
x

φFH(z), (E.29)

Φe,yL,R(r) =
φyL,R(x, y)− gφyR,L(x, y)√

1− 2sg + g2
φFH(z). (E.30)

We note that these six states form an orthonormal set of basis states to a very good accuracy. The only

nonzero scalar products among different states are 〈ΦL|Φe,xL 〉, 〈ΦR|Φ
e,x
R 〉, 〈ΦL|Φ

e,x
R 〉, and 〈ΦR|Φe,xL 〉. Even

though there is a nonzero overlap, the absolute values of these scalar products are small (∼0.01–0.1 de-

pending on the parameters of the DQD), which indicates that Eqs. (E.28)–(E.30) present a very good ap-

proximation for an orthonormal basis. It is, however, important to note that we set 〈ΦL|Φe,xL 〉, 〈ΦR|Φ
e,x
R 〉,

〈ΦL|Φe,xR 〉, and 〈ΦR|Φe,xL 〉 equal to zero when calculating the matrix elements of the effective Hamiltonian

later on, in order to avoid artifacts from the finite overlap of these basis states.

Given the six basis states for the orbital part of single electrons, we can construct the two-particle wave

functions [1, 4]

Ψ±(r1, r2) =
ΦL(r1)ΦR(r2)± ΦR(r1)ΦL(r2)√

2
, (E.31)

Ψe,ν
± (r1, r2) =

Φe,νL (r1)ΦR(r2)± ΦR(r1)Φe,νL (r2)√
2

, (E.32)

ΨL,R(r1, r2) = ΦL,R(r1)ΦL,R(r2), (E.33)

where ν ∈ {x, y}. The calculations for Fig. 6.6 in Chapter 6 were done with the orbital excitation along

the x axis only, Ψe
± = Ψe,x

± , because the rates resulting from Ψe,y
± are much smaller than those from Ψe,x

±

in this setup. For some special configurations, such as B ‖ y and x ‖ [110], where B is the external

magnetic field, the calculations for Ψe
± = Ψe,y

± lead to lifetimes similar to or even shorter than those for

Ψe
± = Ψe,x

± , and so states with the excitation along the y axis should be taken into account in these

special cases. States of type (1, 1∗) with the excited electron in the right QD will change the results only

by factors around 2, and therefore were not included for simplicity.

E.2 Hamiltonian

The Hamiltonian of the considered system is

H =
∑
j=1,2

(
H

(j)
0 +H

(j)
Z +H

(j)
SOI +H

(j)
hyp +H

(j)
el−ph

)
+HC +Hph, (E.34)

where the index j denotes the electron, H0 takes into account the motion of the electron in the double dot

potential, HZ is the Zeeman term, HSOI is the spin-orbit interaction (SOI), Hhyp is the hyperfine coupling,

Hel−ph is the electron-phonon interaction, HC is the Coulomb repulsion, and Hph is the Hamiltonian of

the phonon bath. In the following, we discuss the contributions to H in further detail.
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E.2.1 Hamiltonian H0

Due to az � lc, the wave function along the z axis is the same for all basis states in our model. The

one-particle Hamiltonian H0 can therefore be written as an effective 2D Hamiltonian

H0 =
p2
x + p2

y

2meff
+ V (x, y), (E.35)

where px (py) is the momentum along the x (y) axis and V (x, y) is the confining potential in the transverse

directions. The potential V (x, y) is provided by the electric gates and features a finite barrier between

the two QDs. It also accounts for electric fields applied along the DQD axis that effectively shift the

electron energy in the left QD by the detuning ε compared to the right QD.

E.2.2 Coulomb Repulsion

The Hamiltonian that describes the Coulomb interaction between the two electrons is

HC =
1

4πε0εr

e2

|r1 − r2|
, (E.36)

where e is the elementary positive charge, ε0 is the vacuum permittivity, and εr is the relative permittivity

of GaAs.

E.2.3 Zeeman Term

We consider an in-plane magnetic field B = |B|eB = BeB with arbitrary orientation in the x-y plane.

Here and in the following, ek (eη) stands for the unit vector along the direction of some vector k (axis η).

As the 2DEG is only a few nanometers wide, orbital effects due to an in-plane magnetic field are negligible.

The Hamiltonian for the Zeeman coupling reads

HZ =
EZ
2
σB , (E.37)

where EZ = gµBB is the Zeeman energy, g is the in-plane g factor, µB is the Bohr magneton, B = |B|
is the magnetic field strength, and

σB = σ · eB, (E.38)

with σ as the vector of Pauli matrices, denotes the Pauli operator for the electron spin along the magnetic

field.

E.2.4 Spin-Orbit Interaction

We assume that the heterostructure was grown along the [001] direction, referred to as both the z and z′

direction. Consequently, the SOI due to Rashba and Dresselhaus SOI reads

HSOI = α (px′σy′ − py′σx′) + β (py′σy′ − px′σx′) (E.39)

for a single electron, where the axes x′ and y′ correspond to the main crystallographic axes [100] and

[010], respectively.

Using the antihermitian operator

S1 = i
meff

~
[
α (x′σy′ − y′σx′) + β (y′σy′ − x′σx′)

]
, (E.40)
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which fulfills the commutation relation

[S1, H0] = S1H0 −H0S1 = −HSOI, (E.41)

we can remove the SOI to lowest order via a unitary (Schrieffer-Wolff) transformation [5–11],

H̃ = eSHe−S = e

(∑
j S

(j)
1 +...

)
He
−
(∑

j S
(j)
1 +...

)
'

∑
j=1,2

(
H

(j)
0 +H

(j)
Z +H

(j)
hyp +H

(j)
el−ph

)
+HC +Hph

+
∑
j=1,2

(
[S

(j)
1 , H

(j)
Z ] +

1

2
[S

(j)
1 , H

(j)
SOI]

)
. (E.42)

The perturbation theory applies when both the SOI and the Zeeman coupling are weak compared to the

confinement (spin-orbit length � confinement length; Zeeman splitting � orbital level splitting), which

is well fulfilled in the system under study. Exploiting the commutation relations [σx′ , σy′ ] = 2iσz′ (and

analogously for cyclic permutations) of the Pauli matrices, one finds

[S1, HZ ] = gµB (rSOI ×B) · σ, (E.43)

where we defined the SOI-dependent vector operator

rSOI =

(
y′

lR
+
x′

lD

)
e[100] +

(
−x
′

lR
− y′

lD

)
e[010]. (E.44)

The unit vector along the [100] axis, i.e., the x′ direction, is denoted by e[100] = ex′ , and analogously for

all other crystallographic directions. The spin-orbit lengths lR and lD are defined as

lR =
~

meffα
, (E.45)

lD =
~

meffβ
. (E.46)

The contribution due to [S1, HSOI]/2 is less important when B is sufficiently large, and considering

B ∼ 0.7 T [12, 13] we therefore omit it in our model. Nevertheless, we provide the result for completeness

[8],
1

2
[S1, HSOI] = −meff

(
α2 + β2

)
+
meff

~
(
β2 − α2

)
lz′σz′ . (E.47)

The operator lz′ = (x′py′ − y′px′) herein corresponds to the angular momentum along the axis of strong

confinement. Again, orbital effects (canonical momentum 6= kinetic momentum) are negligible when the

magnetic field is applied in plane. Finally, we mention that corrections of type [S1, Hhyp] were neglected

in Eq. (E.42), because HZ is assumed to be much larger than the hyperfine coupling Hhyp that we discuss

next.

E.2.5 Hyperfine Interaction

The hyperfine interaction between the electron and the nuclear spins can be described in terms of an

effective magnetic field. The latter can be split into a sum field, which is present in both QDs, and a

gradient field, which accounts for the difference in the hyperfine field between the dots. As the sum field

is usually small compared to the external magnetic field, and, moreover, may largely be accounted for by

HZ , we use Hhyp to quantify the gradient field between the dots. Hence, this Hamiltonian reads

Hhyp =
δb · σ

4
(PL − PR) , (E.48)
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where δb arises from the hyperfine field gradient between the QDs. The operators PL and PR are

projectors for the left and right QD, respectively, and can be written as

PL = |ΦL〉 〈ΦL|+ |Φe,xL 〉 〈Φ
e,x
L |+ |Φ

e,y
L 〉 〈Φ

e,y
L | , (E.49)

PR = |ΦR〉 〈ΦR|+ |Φe,xR 〉 〈Φ
e,x
R |+ |Φ

e,y
R 〉 〈Φ

e,y
R | (E.50)

for the basis states defined in Appendix E.1.

We note that

〈(1, 1)S|Hhyp |(1, 1)T0〉 =
δbB
2
, (E.51)

where

δbB = δb · eB (E.52)

is the component of δb along the external magnetic field B. Because it turns out that all other matrix

elements of Hhyp within the basis of Appendix E.1 are negligible for the lifetimes of the qubit, we

approximate the hyperfine coupling by

Hhyp '
δbB
2
|(1, 1)S〉 〈(1, 1)T0|+ H.c., (E.53)

with the Hermitian conjugate abbreviated as “H.c.”. We set δbB = −0.14 µeV in our calculations, in

good agreement with Refs. [12, 14].

E.2.6 Electron-Phonon Coupling

The electron-phonon interaction

Hel−ph = Hdp +Hpe (E.54)

comprises the deformation potential coupling Hdp and the piezoelectric coupling Hpe. Both mechanisms

can be derived from the displacement operator, which we therefore recall first. Most of the information

summarized in this appendix on electron-phonon coupling is described in great detail in Refs. [15–21],

and we refer to these for further information.

E.2.6.1 Displacement Operator

Acoustic phonons in an isotropic crystal (bulk) lead to the displacement operator

u =
∑
q,s

eqs
(
cqse

iq·raqs + c∗qse
−iq·ra†qs

)
, (E.55)

where cqs is an arbitrary coefficient with normalization condition |cqs|2 = ~/(2ρV ωqs), ρ and V are

the density and volume of the crystal, and ωqs is the angular frequency of the acoustic phonon of

type s with wave vector q. For the longitudinal mode s = l, the dispersion relation at small q = |q| is

ωql = q
√

(λ+ 2µ)/ρ = qvl, while for the transverse modes s = t1 and s = t2 one finds ωqt1 = ωqt2 = ωqt =

q
√
µ/ρ = qvt, where λ and µ are the Lamé parameters of the material and vl (vt) is the speed of sound

for longitudinal (transverse) waves [20]. The operators a†qs and aqs create and annihilate a corresponding

phonon, and fulfill the commutation relations [a†qs, a
†
q′s′ ] = 0, [aqs, aq′s′ ] = 0, and [aqs, a

†
q′s′ ] = δq,q′δs,s′ ,

with δq,q′ and δs,s′ as Kronecker deltas. For each wave vector q, the three real-valued polarization vectors

eqs form an orthonormal basis with eql ‖ q. The summation over q runs over all wave vectors within the

first Brillouin zone.

With a suitable choice of the polarization vectors eqs, the displacement operator from Eq. (E.55) can
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be simplified further. We choose these vectors in such a way that the relations

e−ql = −eql, (E.56)

e−qt1 = −eqt1 , (E.57)

e−qt2 = eqt2 (E.58)

are fulfilled. The advantages of this definition become obvious later on when we write the Hamiltonian

for the electron-phonon coupling. In short terms, this choice allows one to define eql = q/q and to

represent the vectors eqs via a simple right-handed basis. Setting cqs =
√

~/(2ρV ωqs), and making use

of Eqs. (E.56) to (E.58) and of the property ω−qs = ωqs, the displacement operator can be written in

the convenient form

u =
∑
q,s

√
~

2ρV ωqs
eqs

(
aqs ∓s a†−qs

)
eiq·r, (E.59)

where

∓s =

{
− for s = l, t1,

+ for s = t2.
(E.60)

This representation of the displacement operator [Eq. (E.59)] will now be used to derive the Hamiltonian

for the electron-phonon coupling. We note that the time dependence u→ u(τ) and Hel−ph → Hel−ph(τ)

in the interaction picture (see Appendix E.5) is simply obtained via aqs → aqs(τ) = aqse
−iωqsτ and

a†qs → a†qs(τ) = a†qse
iωqsτ .

It is worth mentioning how we choose the values for the speeds of sound in GaAs. The three elastic

stiffness coefficients for GaAs are c11 = 118, c12 = 53.5, and c44 = 59.4, each in units of 109 N/m2. These

values were taken from Ref. [20] and are in very good agreement with those in, e.g., Refs. [21, 22]. It

makes sense to approximate these coefficients by c̃11, c̃12, and c̃44, respectively, for which the condition

c̃11 = c̃12 + 2c̃44 of an isotropic material is fulfilled. By postulating that the relative deviation for

each of the three constants should be the same, we find λ = c̃12 = 43.5 × 109 N/m2 and µ = c̃44 =

48.3 × 109 N/m2, corresponding to a relative deviation of 18.7%. The resulting sound velocities in the

isotropic approximation are vl =
√
c̃11/ρ = 5.1 × 103 m/s and vt =

√
c̃44/ρ = 3.0 × 103 m/s. We

note that basically the same values are obtained by simply averaging over the speeds of sound along the

[100], [110], and [111] directions (longitudinal or transverse waves, respectively), as listed, for instance,

in Refs. [21, 22].

E.2.6.2 Deformation Potential Coupling

The first coupling mechanism is the deformation potential coupling. In the presence of strain, the energy

of the conduction band changes. For GaAs, a cubic semiconductor with the conduction band minimum

at the Γ point, the shift of the conduction band edge is determined by the simple Hamiltonian

Hdp = Ξ∇ · u = Ξ(εxx + εyy + εzz), (E.61)

where Ξ is the hydrostatic deformation potential, ∇ is the Nabla operator, and εij are the strain tensor

elements, which are related to the displacement via

εij =
1

2

(
∂ui
∂xj

+
∂uj
∂xi

)
. (E.62)

The trace of the strain tensor ∇ · u = εxx + εyy + εzz corresponds to the relative change in the volume.

One finds Ξ ≈ −8 eV for GaAs [19, 23], and so compression increases the energy of the conduction band
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edge. Exploiting ∇eiq·r = iqeiq·r and defining eql = q/q, substitution of Eq. (E.59) into (E.61) yields

Hdp = iΞ
∑
q

√
~

2ρV ωql
q
(
aql − a†−ql

)
eiq·r. (E.63)

We note that only the longitudinal mode contributes to the deformation potential coupling. This is

different for the piezoelectric electron-phonon interaction that we derive next.

E.2.6.3 Piezoelectric Coupling

In crystals without inversion symmetry, lattice vibrations (i.e., phonons) result in a finite polarization

density P phon
p and, consequently, lead to an effective electric field Ep. The latter is characterized by the

equation

0 = ε0Ep + P diel
p + P phon

p = ε0εrEp + P phon
p , (E.64)

where we set the electric displacement on the left-hand side to zero due to the absence of free charges

in this mechanism. The vector P diel
p = ε0(εr − 1)Ep is the polarization density induced by the field Ep,

ε0 is the vacuum permittivity, and εr is the relative permittivity of the material (εr ' 13 in GaAs). In

contrast to P diel
p , the term P phon

p results directly from the strain that is caused by the lattice vibrations.

The polarization density P phon
p is related to the strain tensor elements via

P phon
p,i =

∑
j,k

hijkεjk, (E.65)

where the hijk are the elements of the third-rank piezoelectric tensor. In zinc blende structures such as

GaAs, the hijk take on a rather simple form

hijk = h14|εijk| =

{
h14 for |εijk| = 1,

0 for |εijk| = 0.
(E.66)

Here εijk is the Levi-Civita symbol, and the xi, xj , and xk related to the indices i, j, and k, respectively,

correspond to the main crystallographic axes.

We now proceed to calculate the electric field Ep via the relation [17]

Ep = −
P phon
p

ε0εr
, (E.67)

which results directly from Eq. (E.64). In order to improve readability, we use a shorthand notation in the

remainder of this subsection for convenience: x, y, and z correspond to the coordinates along the main

crystallographic axes, with ex, ey, and ez as the unit vectors along the [100], [010], and [001] directions,

respectively. Substitution of Eqs. (E.59), (E.62), (E.65), and (E.66) into Eq. (E.67) yields

Ep = − ih14

ε0εr

∑
q,s

qye
z
qs + qze

y
qs

qze
x
qs + qxe

z
qs

qxe
y
qs + qye

x
qs

√ ~
2ρV ωqs

(
aqs ∓s a†−qs

)
eiq·r,

where

q = qxex + qyey + qzez, (E.68)

eqs = exqsex + eyqsey + ezqsez, (E.69)

and the three components of the vector refer to the basis {ex, ey, ez}. The phonon-induced electric field
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Ep can be split into two parts,

Ep = E‖p +E⊥p , (E.70)

where the “longitudinal” part

E‖p = − ih14

ε0εr

∑
q,s

2
(
qxqye

z
qs + qyqze

x
qs + qzqxe

y
qs

)
q2

q

√
~

2ρV ωqs

(
aqs ∓s a†−qs

)
eiq·r (E.71)

contains the contributions parallel to q for each mode, while the “transverse” part E⊥p = Ep − E‖p
comprises the remaining components perpendicular to q. The longitudinal and transverse parts fulfill

∇×E‖p = 0, (E.72)

∇ ·E⊥p = 0, (E.73)

respectively. As a consequence, one can write E
‖
p as the gradient of a scalar potential Φp, and E⊥p as the

curl of a vector potential Ap,

E‖p = −∇Φp, (E.74)

E⊥p = ∇×Ap. (E.75)

From Eqs. (E.71) and (E.74), one finds

Φp =
h14

ε0εr

∑
q,s

fqs

√
~

2ρV ωqs

(
aqs ∓s a†−qs

)
eiq·r (E.76)

for the scalar potential, where we introduced

fqs =
2
(
qxqye

z
qs + qyqze

x
qs + qzqxe

y
qs

)
q2

. (E.77)

The vector potential Ap and, hence, the transverse part E⊥p are usually omitted for the piezoelectric

electron-phonon interaction. Reasons for this omission may be inferred from Maxwell’s equations.

In accordance with common practice, we neglect the vector potential Ap in the following and consider

only the scalar potential Φp. Using an explicit representation for the unit vectors eqs, the result from

Eq. (E.76) can be simplified further. We choose

eql =
q

q
=

cosφq sin θq

sinφq sin θq

cos θq

 , eqt1 =

 sinφq

− cosφq

0

 , eqt2 =

cosφq cos θq

sinφq cos θq

− sin θq

 , (E.78)

in agreement with Eqs. (E.56) to (E.58), where 0 ≤ φq < 2π is the azimuthal angle and 0 ≤ θq ≤ π

is the polar angle of q in spherical coordinates. Again, the vector components in Eq. (E.78) refer to

the basis {ex, ey, ez}, i.e., to the unit vectors for the main crystallographic directions (note the special

definition of x, y, and z in this subsection). Also, we note that the {eql, eqt1 , eqt2} defined above form

a right-handed, orthonormal set of basis vectors for any q. With this convenient representation, which is

similar to the one chosen in Ref. [18], the expression fqs from Eq. (E.77) simplifies to

fql = 3 cos θq sin2 θq sin(2φq), (E.79)

fqt1 = − sin(2θq) cos(2φq), (E.80)

fqt2 = −
(
3 sin2 θq − 2

)
sin θq sin(2φq), (E.81)
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where we mention that trigonometric identities allow one to rewrite the above relations in many different

ways. Finally, the potential energy of an electron in the phonon-induced electric field, i.e., the Hamiltonian

for the piezoelectric electron-phonon coupling, corresponds to

Hpe = −eΦp, (E.82)

where −e is the charge of the electron.

E.2.7 Phonon Bath

The Hamiltonian for the phonon bath is

Hph =
∑
q,s

~ωqs

(
a†qsaqs +

1

2

)
, (E.83)

where the sum runs again over all modes s and all wave vectors q within the first Brillouin zone.

E.3 Model Hamiltonian at Small Detuning

As described in detail in Chapter 6, we study the lifetimes of the singlet-triplet qubit at both small and

large detuning ε. In this appendix, we explain the details of our model at small detunings ε ' 0.

E.3.1 Exchange Energy and Orbital Level Spacing

In the unbiased DQD, the energy of |(0, 2)S〉 and |(2, 0)S〉 is much larger than that of (1∗, 1)-type states

with an excited orbital part. This allows us to calculate the lifetimes with an 8×8 matrix [see Eq. (E.90)]

that is based on states of type (1, 1) and (1∗, 1) only. Even though |(0, 2)S〉 and |(2, 0)S〉 are not part of

the basis, their presence can be accounted for as described below.

Considering the basis states introduced in Appendix E.1 and shifting the energy globally by

〈(1, 1)T0|
(
H

(1)
0 +H

(2)
0 +HC

)
|(1, 1)T0〉 ,

the Hamiltonian H
(1)
0 +H

(2)
0 +HC can be approximated via

H
(1)
0 +H

(2)
0 +HC ≈ −JS |(1, 1)S〉 〈(1, 1)S|+ ∆E

(
|Ψe

+〉 〈Ψe
+|+ |Ψe

−〉 〈Ψe
−|
)
, (E.84)

where the exchange energy JS results from admixtures with |(0, 2)S〉 and |(2, 0)S〉. The energy gap

∆E ' ~ω0 is well described by the level spacing ~ω0 in the left QD and corresponds to the energy

difference between the four states of lowest energy in the DQD and the states with excited orbital part.

We note that JS can be estimated [1, 3, 4] by projecting H
(1)
0 + H

(2)
0 + HC onto the subspace

{|(2, 0)S〉 , |(0, 2)S〉 , |(1, 1)S〉} through a projector PS3, which yields the Hamiltonian

HS3 = PS3

(
H

(1)
0 +H

(2)
0 +HC

)
PS3 (E.85)

with matrix representation

HS3 =

U − V− 0 −
√

2t

0 U − V− −
√

2t

−
√

2t −
√

2t V+ − V−

 . (E.86)

195



Here,

t = −〈ΦL|H0|ΦR〉 −
1√
2
〈Ψ+|HC |ΨR〉 (E.87)

is the hopping amplitude (also referred to as the tunnel coupling), U = 〈ΨR|HC |ΨR〉 is the on-site

repulsion, V± = 〈Ψ±|HC |Ψ±〉, and the energy was globally shifted as mentioned before. Diagonalization

of HS3 results in

H̃S3 = U†S3HS3US3 =

U − 2V− + V+ + JS 0 0

0 U − V− 0

0 0 −JS

 , (E.88)

where US3 is the matrix for the unitary transformation and

JS =
1

2

(√
16t2 + (U − V+)2 − U − V+ + 2V−

)
(E.89)

is the resulting exchange splitting between |(1, 1)S〉 and |(1, 1)T0〉. Considering ε ' 0, the formulas for

JS and US3 from this estimate allow us to account for admixtures of |(2, 0)S〉 and |(0, 2)S〉 to the qubit

state of type |(1, 1)S〉 and, consequently, to study the effects of these admixtures on the phonon-induced

lifetimes of the qubit.

E.3.2 Matrix Representation

We analyze the qubit lifetimes in an unbiased DQD by projecting the Hamiltonian H̃, Eq. (E.42), onto

the basis {|(1, 1)S〉, |(1, 1)T0〉, |(1, 1)T+〉, |(1, 1)T−〉, |(1∗, 1)S〉, |(1∗, 1)T+〉, |(1∗, 1)T0〉, |(1∗, 1)T−〉}. The

basis states are described in detail in Appendix E.1, and the projection yields

H̃ =



−JS + PSS
δbB

2
Ω√
2

− Ω√
2

P ecr
Ω1√

2
0 −Ω1√

2
δbB

2
PT 0 0 0 −Ω1√

2
P ecr −Ω1√

2
Ω√
2

0 EZ + PT 0 Ω1√
2

P ecr −Ω1√
2

0

− Ω√
2

0 0 −EZ + PT −Ω1√
2

0 −Ω1√
2

P ecr

P e†cr 0 Ω1√
2

−Ω1√
2

∆E + P e Ω2√
2

0 −Ω2√
2

Ω1√
2

−Ω1√
2

P e†cr 0 Ω2√
2

∆E + EZ + P e −Ω3√
2

0

0 P e†cr −Ω1√
2

−Ω1√
2

0 −Ω3√
2

∆E + P e −Ω3√
2

−Ω1√
2

−Ω1√
2

0 P e†cr −Ω2√
2

0 −Ω3√
2

∆E − EZ + P e


+Hph.

(E.90)

Here the Ω with different indices quantify the matrix elements resulting from the SOI. Defining

RSOI = (rSOI × eB)z, (E.91)

one obtains

Ω = EZ (〈ΦL|RSOI|ΦL〉 − 〈ΦR|RSOI|ΦR〉) , (E.92)

Ω1 = EZ〈ΦL|RSOI|Φe,νL 〉, (E.93)

Ω2 = EZ (〈Φe,νL |RSOI|Φe,νL 〉 − 〈ΦR|RSOI|ΦR〉) , (E.94)

Ω3 = EZ (〈Φe,νL |RSOI|Φe,νL 〉+ 〈ΦR|RSOI|ΦR〉) . (E.95)
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Analogously, the electron-phonon coupling is denoted by P with different labels,

PT = 〈ΦR|Hel−ph|ΦR〉+ 〈ΦL|Hel−ph|ΦL〉, (E.96)

P e = 〈Φe,νL |Hel−ph|Φe,νL 〉+ 〈ΦR|Hel−ph|ΦR〉, (E.97)

P ecr = 〈ΦL|Hel−ph|Φe,νL 〉. (E.98)

The above expressions for Ω1, Ω2, Ω3, P e, and P ecr correspond to Ψe
± = Ψe,ν

± , for which the orbital

excitation is chosen along the axis ν ∈ {x, y}.
In order to account for the finite admixtures from the states |(0, 2)S〉 and |(2, 0)S〉, we set the matrix

element 〈(1, 1)S|
(
H

(1)
el−ph + H

(2)
el−ph

)
|(1, 1)S〉 of the electron-phonon interaction to PSS . The latter is a

linear combination of PSL, PSR, PS , and P †S , where

PSL = 2〈ΦL|Hel−ph|ΦL〉, (E.99)

PSR = 2〈ΦR|Hel−ph|ΦR〉, (E.100)

PS =
√

2〈ΦR|Hel−ph|ΦL〉. (E.101)

The coefficients of the linear combination depend on U , V+, V−, and t. We find these coefficients by

projecting H
(1)
el−ph +H

(2)
el−ph onto the subspace {|(2, 0)S〉 , |(0, 2)S〉 , |(1, 1)S〉},

PS3(H
(1)
el−ph +H

(2)
el−ph)PS3 =

PSL 0 P †S
0 PSR PS

PS P †S PT

 , (E.102)

which allows calculation of PSS via

PSS =
(
U†S3PS3

(
H

(1)
el−ph +H

(2)
el−ph

)
PS3US3

)
33
. (E.103)

For further information on the transformation matrix US3, see Appendix E.3.1.

We note, however, that the above-mentioned contributions from |(2, 0)S〉 and |(0, 2)S〉 to PSS turn out

to be negligibly small, because setting PSS = PT does not affect the lifetimes in our calculations. Fur-

thermore, two-phonon processes based on admixtures from |(2, 0)S〉 and |(0, 2)S〉 are strongly suppressed

at ε ' 0 and can be omitted, as we explain in detail in Appendix E.8. In conclusion, we find for the

parameters in this work that the qubit lifetimes in unbiased DQDs are determined by the basis states

with excited orbital parts. The corrections from |(2, 0)S〉 and |(0, 2)S〉 are negligible.

E.4 Model Hamiltonian at Large Detuning

When |ε| ∼ U − V± such that the energy gap between the qubit and either |(2, 0)S〉 (negative ε) or

|(0, 2)S〉 (positive ε) is smaller than the orbital level spacing, 0 < U − V± − |ε| < ~ω0, the effects of

higher orbitals on the lifetimes are negligible. In the regime of large detuning, we therefore project H̃,

Eq. (E.42), onto the basis {|(1, 1)T0〉, |(1, 1)S〉, |(1, 1)T+〉, |(1, 1)T−〉, |(0, 2)S〉, |(2, 0)S〉} and investigate

the lifetimes via this 6×6 matrix. The explicit form of the matrix is shown in Eq. (6.12) of Chapter 6,

and details for all its matrix elements are provided in Appendix E.3.

E.5 Bloch-Redfield Theory

Having identified a suitable matrix representation for small and large detunings, we apply a unitary

transformation to H̃ that diagonalizes H̃−
∑
j=1,2H

(j)
el−ph exactly. In order to decouple the qubit subspace
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{|(1, 1)S〉, |(1, 1)T0〉} perturbatively from the remaining states, we then perform a third-order Schrieffer-

Wolff transformation, leading to corrections up to the third power in the electron-phonon coupling. The

perturbation theory applies when the matrix elements for the electron-phonon coupling are smaller than

the energy separation between the qubit and the other states.

The resulting effective Hamiltonian Heff = Hq +Hq−ph +Hph for the S-T0 qubit, its interaction with

the phonon bath, and the bath itself can be described in terms of a coupled spin-1/2 system and allows

application of the Bloch-Redfield theory [7, 24, 25]. Introducing the effective magnetic fields Beff and

δB, we write the Hamiltonian of the qubit as

Hq =
1

2
gµBBeff · σ′, (E.104)

and the Hamiltonian for the interaction between the qubit and the phonon bath reads

Hq−ph(τ) =
1

2
gµBδB(τ) · σ′. (E.105)

Here σ′ is the vector of spin-1/2 Pauli matrices for the S-T0 qubit, τ is the time, and the time-dependent

Hq−ph(τ) is written in the interaction representation,

Hq−ph(τ) = eiHphτ/~Hq−phe
−iHphτ/~. (E.106)

Next, following Refs. [7, 25], we define the spectral functions

Jij(ω) =
g2µ2

B

2~2

∫ ∞
0

e−iωτ 〈δBi(0)δBj(τ)〉dτ, (E.107)

where the temperature-dependent correlators 〈δBi(0)δBj(τ)〉 with i, j ∈ {x, y, z} are calculated for a

phonon bath in thermal equilibrium. More precisely, we assume that the density matrix ρph that describes

the mixed state of the phonon bath is diagonal when represented via standard Fock states for the phonons

considered here (i.e., occupation numbers referring to acoustic phonons classified by the wave vectors q

and modes s), with the probabilities on the diagonal provided by Boltzmann statistics. The correlator

〈δBi(0)δBj(τ)〉 corresponds to the expectation value of the operator δBi(0)δBj(τ) and, thus, is equal to

the trace of ρphδBi(0)δBj(τ). In particular, one obtains 〈a†qsaq′s′〉 = δq,q′δs,s′nB(ωqs), where

nB(ω) =
1

e~ω/(kBT ) − 1
(E.108)

is the Bose-Einstein distribution, kB is the Boltzmann constant, and T is the temperature.

Using the formulas (C16) and (C25)–(C27) from Ref. [25], it is possible to express the lifetimes of the

qubit in terms of the above-mentioned spectral functions. For convenience, we define the basis of σ′

such that only the z component of the effective magnetic field Beff is nonzero. In this case, the lifetimes

depend solely on the quantities

J+
ii (ω) = Re[Jii(ω) + Jii(−ω)] =

g2µ2
B

2~2

∫ ∞
−∞

cos(ωτ)〈δBi(0)δBi(τ)〉dτ. (E.109)

The last equality holds because the δBi(τ) are Hermitian and the correlators are time-translational

invariant. We finally calculate the relaxation time T1 of the qubit via

1

T1
= J+

xx(ωZ) + J+
yy(ωZ), (E.110)

where ~ωZ = |gµBBeff | is the effective Zeeman splitting. The time Tϕ that accounts for pure dephasing

198



is obtained through
1

Tϕ
= J+

zz(0), (E.111)

and the decoherence time T2 can then be expressed in terms of T1 and Tϕ,

1

T2
=

1

2T1
+

1

Tϕ
. (E.112)

Considering one- and two-phonon processes in our calculations, the third-order contribution to δBi(0)

[δBi(τ)] enters the correlator 〈δBi(0)δBi(τ)〉 in Eq. (E.109) together with the first-order contribution to

δBi(τ) [δBi(0)]. As a consequence, the third-order terms in δB cannot contribute to the dephasing rate

1/Tϕ (see also Appendix E.7). Furthermore, we expect only a negligible effect on the relaxation rate

1/T1, as the rates that arise from third-order corrections can be considered small compared to those from

single-phonon processes that are based solely on the first-order terms. For simplicity, the third-order

contributions to δB are therefore omitted in the calculations for Figs. 6.2 to 6.6 in Chapter 6.

E.6 Continuum Limit

For the investigation of the phonon-induced lifetimes of the qubit, we consider the continuum limit and

replace the summation over the phonon wave vectors q by an integral. Furthermore, the low temperatures

discussed here allow integration up to infinite q, because the effects resulting from terms with wave vectors

outside the first Brillouin zone are clearly negligible. We therefore substitute

∑
q

→ V

(2π)3

∫ ∞
0

dqq2

∫ π

0

dθq sin θq

∫ 2π

0

dφq (E.113)

in our calculations. For details of the electron-phonon interaction, see Appendix E.2.6.

E.7 Simple Model for Dephasing at Large Detuning

As discussed in Sec. 6.3.4 of Chapter 6, the relevant dynamics at 0 < U − V± − ε < ~ω0 and Ω = 0 is

very well described by the Hamiltonian

H̃ =

 0 δbB
2 0

δbB
2 V+ − V− −

√
2t+ P †S

0 −
√

2t+ PS V+ − V− + ∆S + P̃

+Hph (E.114)

with basis states |(1, 1)T0〉, |(1, 1)S〉, and |(0, 2)S〉. Compared to Eq. (6.12), we omitted here the decoupled

states |(1, 1)T+〉, |(1, 1)T−〉, and |(2, 0)S〉, subtracted PT from the diagonal (global shift, no effect on the

lifetimes), and introduced

P̃ = PSR − PT (E.115)

as a matrix element for the electron-phonon coupling and

∆S = U − V+ − ε (E.116)

as the bare splitting between |(1, 1)S〉 and |(0, 2)S〉.
The hyperfine coupling (δB) is the only mechanism in Eq. (E.114) that couples the spin states and,

hence, is crucial for the relaxation of the S-T0 qubit. In fact, we find for the parameters in this work

that the relaxation times T1 are mainly determined by the hyperfine coupling rather than the SOI. In
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order to derive a simple model for the short decoherence times [T2 � T1, Fig. 6.2a], we neglect δB in the

following, resulting in pure dephasing, and so T2 = Tϕ. Furthermore, we find that the matrix element

PS is negligible for our parameter range. Defining

H̃ = Hs +Hs−ph +Hph (E.117)

and omitting δB and PS , one obtains

Hs =

0 0 0

0 V+ − V− −
√

2t

0 −
√

2t V+ − V− + ∆S

 (E.118)

for the part that describes the electronic system, and

Hs−ph =

0 0 0

0 0 0

0 0 P̃

 (E.119)

for the interaction with the phonon bath.

The Hamiltonians Hs and Hs−ph can be rewritten in a different basis {|(1, 1)T0〉, |(1, 1)S′〉, |(0, 2)S′〉}
as

Hs =

0 0 0

0 −Jtot 0

0 0 −Jtot + ∆′S

 (E.120)

and

Hs−ph = P̃

0 0 0

0 v2
s′d vs′dvd′d

0 vs′dvd′d v2
d′d

 , (E.121)

where

∆′S =
√

∆2
S + 8t2 (E.122)

and

Jtot = V− − V+ +
∆′S −∆S

2
. (E.123)

The basis states

|(1, 1)S′〉 = vs′s |(1, 1)S〉+ vs′d |(0, 2)S〉 , (E.124)

|(0, 2)S′〉 = vd′s |(1, 1)S〉+ vd′d |(0, 2)S〉 (E.125)

are normalized eigenstates of Hs. The notation |(1, 1)S′〉 and |(0, 2)S′〉 is justified because we consider

∆S > 0, and so |vs′s|2 > 1/2 and |vd′d|2 > 1/2. In Eq. (E.121), vs′d and vd′d are assumed to be real. A

suitable choice for the coefficients is, e.g.,

vs′s =
∆S + ∆′S
D+

, (E.126)

vs′d =
2
√

2t

D+
, (E.127)

vd′s =
∆S −∆′S
D−

, (E.128)

vd′d =
2
√

2t

D−
, (E.129)
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where the denominator

D± =

√
(∆S ±∆′S)

2
+ 8t2 (E.130)

ensures normalization.

Following the steps explained in Appendix E.5, one finds

gµBBeff,z = Jtot (E.131)

and

gµBδBz = −v2
s′dP̃ +

v2
s′dv

2
d′d

∆′S
P̃ 2 +

v2
s′dv

2
d′d

(
v2
s′d − v2

d′d

)
(∆′S)2

P̃ 3 (E.132)

from the third-order Schrieffer-Wolff transformation. We recall that δBx = 0 = δBy due to omission of

the hyperfine coupling, and so T2 = Tϕ (pure dephasing). Furthermore, we note that the Bloch-Redfield

theory requires 〈δB(τ)〉 to vanish [24]. Therefore, terms of type a†qsaqs and aqsa
†
qs must be removed

from the second-order contributions to δB and, consequently, from the part ∝ P̃ 2 in Eq. (E.132). The

terms removed from δB can be considered as minor corrections to Beff , with a†qsaqs → nB(ωqs) and

aqsa
†
qs → nB(ωqs) + 1, where nB(ω) is the Bose-Einstein distribution [Eq. (E.108)]. In this work, we

simply neglect these corrections to Beff because of their smallness.

The decoherence time T2 = Tϕ is calculated via

1

T2
=
g2µ2

B

2~2

∫ ∞
−∞
〈δBz(0)δBz(τ)〉dτ, (E.133)

see Appendix E.5. Remarkably, the only nonzero contribution after insertion of Eq. (E.132) into Eq. (E.133)

is
1

T2
=

v4
s′dv

4
d′d

2~2(∆′S)2

∫ ∞
−∞
〈P̃ 2(0)P̃ 2(τ)〉dτ. (E.134)

In particular, one finds that single-phonon processes cannot lead to dephasing,∫ ∞
−∞
〈P̃ (0)P̃ (τ)〉dτ = 0. (E.135)

As there is no energy transfer between the electrons and the phonon bath [evaluation of J+
zz(ω) at ω = 0],

the left-hand side of Eq. (E.135) can only be nonzero for a phonon with ωqs = 0 = q, for which, however,

the expression vanishes as well. An analogous explanation applies to∫ ∞
−∞
〈P̃ 3(0)P̃ (τ)〉dτ = 0 =

∫ ∞
−∞
〈P̃ (0)P̃ 3(τ)〉dτ. (E.136)

Consequently, the dephasing in our model results purely from two-phonon processes that are based on

the second-order contributions to δBz.

Finally, using Eqs. (E.127) and (E.129) in Eq. (E.134) yields

1

T2
=

2t4

~2(∆′S)6

∫ ∞
−∞
〈P̃ 2(0)P̃ 2(τ)〉dτ. (E.137)

We note that in the case of |t| � ∆S and negligibly small V+−V−, one finds Jtot ' 2t2/∆′S in this model

and
2t4

~2(∆′S)6
' J2

tot

2~2(∆′S)4
(E.138)

for the prefactor.
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E.8 Dephasing via Singlet States at Small Detuning

In order to estimate the dephasing due to the states |(2, 0)S〉 and |(0, 2)S〉 in an unbiased DQD, ε ' 0,

we study a model similar to that of Appendix E.7. Using |(2, 0)S〉, |(0, 2)S〉, |(1, 1)S〉, and |(1, 1)T0〉 as

the basis states, we consider

Hs =


U − V− 0 −

√
2t 0

0 U − V− −
√

2t 0

−
√

2t −
√

2t V+ − V− 0

0 0 0 0

 (E.139)

as the Hamiltonian for the electronic system and

Hs−ph =


−P̃ 0 0 0

0 P̃ 0 0

0 0 0 0

0 0 0 0

 (E.140)

as the electron-phonon interaction. Again, we removed here PT from the diagonal and neglected the

off-diagonal matrix elements PS and P †S . Furthermore, we exploited the relation

PSL − PT = −(PSR − PT ) = −P̃ . (E.141)

This relation is based on the properties

〈ΦL| cos(q · r) |ΦL〉 = 〈ΦR| cos(q · r) |ΦR〉 , (E.142)

〈ΦL| sin(q · r) |ΦL〉 = −〈ΦR| sin(q · r) |ΦR〉 . (E.143)

Using the states |ΦL,R〉 defined in Appendix E.1 [Eq. (E.28)], it is straightforward to show that these

equations apply to our calculations (at least in very good approximation, given the small width of the

2DEG). Proceeding analogously to Appendix E.7 and exploiting |t| � U −V+, the calculation of T2 = Tϕ

with Eqs. (E.139) and (E.140) yields

1

T2
=

8t4

~2(U − V+)6

∫ ∞
−∞
〈P̃ 2(0)P̃ 2(τ)〉dτ, (E.144)

which is formally equivalent to Eq. (E.137).

Operation of the qubit at ε ' 0 requires control over the tunnel coupling t, which can be achieved by

changing the tunnel barrier of the DQD with electric gates [26]. Consequently, the value of t at ε ' 0

is usually different from that at large ε. As a simple estimate, using |t| � U − V+ and assuming that

V+−V− and δB are negligible, one finds Jtot ' 4t2/(U−V+) through Taylor expansion of JS [Eq. (E.89)].

Analogously, one obtains
8t4

~2(U − V+)6
' J2

tot

2~2(U − V+)4
(E.145)

for the prefactor in Eq. (E.144). Considering Jtot to be the same in the biased and unbiased DQD,

comparison with Eq. (E.138) yields a suppression factor on the order of (∆′S)4/(U − V+)4. For the

parameters in this work, the associated dephasing times at ε ' 0 are therefore several orders of magnitude

longer than those at large ε. The strong suppression allows omission of this mechanism in our model for

an unbiased DQD described in Appendix E.3.

The matrix elements PS and P †S of the electron-phonon interaction provide a direct coupling between
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Table E.1. Input parameters used for the calculations in Chapter 6.

Parameter Value References

εr 13
ρ 5.32 g/cm3

vl 5.1× 103 m/s [20–22], Appendix E.2.6.1
vt 3.0× 103 m/s [20–22], Appendix E.2.6.1
Ξ −8 eV [19, 23]
h14 −0.16 As/m2 [21, 22, 31]
g −0.4
B 0.7 T [12, 13]
meff 6.1× 10−32 kg

∆E = ~ω0 124 µeV [14]
lD 1, 0.8, 0.5 µm [27–29], Appendix E.9
lR 2, 1.6, 1 µm
3az 6 nm Appendix E.9

L = 2a 400 nm
δbB −0.14 µeV [12, 14]
U 1 meV [4]
V+ 40, 50 µeV [4]
V− 39.78, 49.5 µeV [4], Appendix E.9
t 7.25, 24 µeV [4], Appendix E.9

the state |(1, 1)S〉 and the states |(0, 2)S〉 and |(2, 0)S〉. Consequently, these matrix elements enable

dephasing via two-phonon processes even at t = 0. In the case of large detuning ε, the effect of PS and

P †S on the dephasing time Tϕ (and on the lifetimes in general) turns out to be negligible. At ε ' 0, this two-

phonon-based contribution to Tϕ is suppressed even further, by a factor on the order of 4∆2
S/(U − V+)2,

and can therefore be neglected in the calculation with excited orbital states (Appendix E.3).

E.9 Summary of Input Parameters

Table E.1 lists the values that were used for the results discussed in Chapter 6. We note that the results

are independent of the sample volume V because the volume cancels out in the calculation.

It is worth mentioning that the values lD ∼ 0.5–1 µm [27–29] for the Dresselhaus SOI are consistent

with the assumed width of the 2DEG. Neglecting orbital effects, the general form of the Dresselhaus SOI

for an electron in GaAs is

HD = b6c6c
41

[(
k2
y′ − k2

z′
)
kx′σx′ + c.p.

]
, (E.146)

where ~ki is the momentum along the i axis, σi is the corresponding Pauli operator for spin 1/2, the axes

x′, y′, and z′ are the main crystallographic axes [100], [010], and [001], respectively, “c.p.” stands for

cyclic permutations, and b6c6c
41 ' 28 Å3eV [29]. For our 2DEG with strong confinement along the [001]

direction (z axis), the Dresselhaus SOI can be well approximated by

HD ' b6c6c
41 〈φFH| k2

z |φFH〉 (ky′σy′ − kx′σx′) , (E.147)

where z′ = z and φFH(z) is the Fang-Howard wave function of Eq. (E.19). Using 〈φFH| k2
z |φFH〉 = 1/(4a2

z),

one finds

lD '
4~2a2

z

meffb6c6c
41

(E.148)

from comparison with Eqs. (E.39) and (E.46). With meff = 0.067mel [29] as the effective electron mass in

GaAs and mel as the bare electron mass, evaluation of Eq. (E.148) with 3az = 6 nm yields lD ' 0.65 µm,
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in good agreement with the values used in the calculation.

The splitting between the eigenstates of type |(1, 1)S〉 and |(1, 1)T0〉 after diagonalization is denoted by

Jtot = ~ωZ . When Jtot � |δbB |, the spin states of these eigenstates are |S〉 and |T0〉 with high accuracy,

and the state of the S-T0 qubit precesses around the z axis of the Bloch sphere. When the splitting is

provided by the hyperfine coupling δbB instead of the exchange interaction, the eigenstates are of type

|↑↓〉 and |↓↑〉, leading to precessions around the x axis. In experiments, Jtot � |δbB | is commonly realized

for a biased DQD (large detuning) and the hyperfine coupling dominates in the unbiased case [14, 30].

In order to account for this feature, we set the parameters in Sec. 6.3 such that Jtot at ε ' 0 would be

largely provided by δbB . Using U , V+, V−, and t approximately as in Ref. [4], we do this by adapting t

(or V−) such that JS � |δbB |, where JS is the bare exchange splitting at ε = 0 [Eq. (E.89)]. The lifetimes

in Figs. 6.2 to 6.5 were calculated with U = 1 meV, V+ = 40 µeV, V− = 39.78 µeV, and t = 7.25 µeV,

for which JS � |δbB | is fulfilled. The detuning ε ∼ 0.9 meV in these calculations was chosen such that

Jtot = 1.43 µeV, and we note that the excited states are negligible due to 0 < U − V± − ε < ~ω0. In

Fig. 6.6, where we consider operation at small detuning, the parameters U = 1 meV, V+ = 50 µeV, and

V− = 49.5 µeV are similar to before. However, in order to achieve Jtot = 1.41 µeV at ε ' 0, we use a

larger tunnel coupling t = 24 µeV. Experimentally, this can be realized by tuning the tunnel barrier of

the DQD electrically [26].
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Supplementary Information to Chapter 7
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Pierre M. Petroff, Daniel Loss, and Richard J. Warburton,

Phys. Rev. Lett. 106, 046802 (2011).



F.1 Outline

In Chapter 7 we report a technique for manipulating the nuclear spins and the emission polarization

of a single optically active quantum dot. In order to describe this system theoretically, we divide the

calculation into two interlinked parts. Process I: the laser field induces dynamics in a five-level elec-

tronic system. The final event is X1− recombination. Process II: nuclear spin polarization builds up

via electron-nuclear-spin flip-flop processes. Process I provides an unpaired electron spin as input to

process II. Conversely, process II creates an Overhauser field which is an input to process I. In the pres-

ence of nuclear spin leakage, a master equation for the nuclear spin polarization 〈Iz〉 has stable solutions

where d
dt 〈Iz〉 = 0. Associated with the stable solutions for 〈Iz〉 are particular values of the Overhauser

field and, hence, particular values of the photoluminescence energies and intensities for the two light

polarizations σ+ and σ−. The details of this calculation are described here along with the input parame-

ters. The results of the calculation can be compared directly with the experiment (Fig. 7.2 of Chapter 7).

Based on our model, we also discuss consequences on the fluctuations of the nuclear spin ensemble.

F.2 Coherent Evolution of Five-Level System

The dynamics of the five-level quantum system induced by the laser field are calculated with the density

matrix. The ground state is the empty dot, |0〉. There are two neutral exciton states, |⇑↓〉 (hole spin

up, electron spin down) and |⇓↑〉 (hole spin down, electron spin up). Defining the ground state energy

as zero, the diagonal terms of the Hamiltonian matrix Ĥ are

〈⇑↓| Ĥ |⇑↓〉 = ~ω0 +
1

2
(gXµBBz −A〈Iz〉) , (F.1)

〈⇓↑| Ĥ |⇓↑〉 = ~ω0 −
1

2
(gXµBBz −A〈Iz〉) , (F.2)

where ~ω0 is the eigenenergy of |⇑↓〉 and |⇓↑〉 in the absence of a magnetic field. Coupling to the external

magnetic field Bz is determined by the exciton g factor gX . The electron also interacts with the internal

(Overhauser) magnetic field, given by the expectation value of the nuclear spin z projection 〈Iz〉 (in

units of ~) and the averaged effective coupling constant A. The σ+ polarized laser of angular frequency

ω = ω0 +δ, with ~δ as detuning, drives the |0〉 ↔ |⇑↓〉 but not the |0〉 ↔ |⇓↑〉 transition on account of the

selection rules. As the laser is always close to the resonance, the rotating wave approximation applies.

The off-diagonal elements in the Hamiltonian are

〈0| Ĥ |⇑↓〉 =
~Ω

2
eiωt, (F.3)

〈⇓↑| Ĥ |⇑↓〉 =
~ωfs

2
, (F.4)

where ~Ω is the optical Rabi energy and ~ωfs is the fine structure splitting arising from the anisotropic

part of the electron-hole exchange [1]. The two neutral exciton states can decay either to the ground state

by spontaneous emission at rate τ−1
0 , or to a negatively charged trion X1− by tunneling of an electron

into the quantum dot at rate τ−1
in . Tunneling converts |⇑↓〉 into the X1− state |⇑↓↑〉, and |⇓↑〉 into the

other X1− state |⇓↑↓〉. The trion states decay by spontaneous recombination, at rate τ−1
1 , to states |↑〉

and |↓〉, respectively. Figure 7.4 (top) of Chapter 7 summarizes all the decay processes and coherent

couplings.

At time t = 0, the entire population resides in the ground state. The probability of finding the system

in state |s〉 at a time t > 0 corresponds to the element 〈s| ρ̂ |s〉 of the density matrix ρ̂, and we use the
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Figure F.1. Left: Simulation of the trion occupation probabilities p|⇑↓↑〉 and p|⇓↑↓〉 in the five-level system formed by

|0〉, |⇑↓〉, |⇓↑〉, |⇑↓↑〉, and |⇓↑↓〉, considering the entire population in the ground state |0〉 at time t = 0. The parameters,

summarized in detail in Appendix F.6, are the same as used in Chapter 7, with the detuning ~δ fixed in the region of

bistability. Depending on the value of 〈Iz〉, either |⇑↓↑〉 or |⇓↑↓〉 is preferentially occupied after the X1− recombination

time τ1, resulting in different rates for the emission of σ+ and σ− photons and, thus, for the creation of ↑ and ↓ electrons.

Right: Measured counts-energy spectra with the laser tuned to the region of bistability. The dot, at 4.2 K, is the same as in

Figs. 7.1 to 7.3 of Chapter 7, and the energy of the detected signal corresponds to X1−. The experimental data are fitted

to Lorentzians, yielding both the energies E(σ±) (center of curve) and the signal intensities S(σ±) (area under curve). A

clear shift in the energies is observed, arising from different nuclear spin polarizations 〈Iz〉. As expected from the theory

(left), the σ+ signal is pronounced when 〈Iz〉 is positive, and vice versa. Both theory and experiment use a σ+ pump and

an external field of Bz = +0.5 T.

master equation with the decay processes in Lindblad form,

d

dt
ρ̂ = − i

~

[
Ĥ, ρ̂

]
+Dρ̂, (F.5)

Dρ̂ =
∑
m,n

Γ|m〉→|n〉

(
|n〉 〈m| ρ̂ |m〉 〈n| − 1

2
|m〉 〈m| ρ̂− 1

2
ρ̂ |m〉 〈m|

)
, (F.6)

to calculate its coherent evolution [2]. The dissipator Dρ̂ accounts for the decay processes, where Γ|m〉→|n〉

is the transition rate from state |m〉 to state |n〉.
Of particular interest are the trion populations p|⇑↓↑〉 = 〈⇑↓↑| ρ̂ |⇑↓↑〉 and p|⇓↑↓〉 = 〈⇓↑↓| ρ̂ |⇓↑↓〉, since

they determine both the X1− emission intensity and the probability of creating a conduction band

electron with spin up (down) after trion recombination. The spontaneous X1− recombination time is τ1,

and we therefore take (p|⇑↓↑〉/τ1)|t=τ1 and (p|⇓↑↓〉/τ1)|t=τ1 as the rates of creating an electron ↑ and ↓,
respectively. This approximation, assuming essentially that the dynamics approach the steady state

(population distributed among trions) before X1− recombines, is well justified for laser energies near

resonance. At large detunings, the approximation works less well, but going beyond this approximation

would greatly complicate the calculation at the expense of transparency. Figure F.1 (left) shows the

evolution of the trion population as calculated in the five-level system for a laser energy in the region

of the bistability. The parameters are the same as used in Chapter 7 and are summarized in detail in

Appendix F.6. For positive (negative) nuclear spin polarization, the |⇑↓↑〉 (|⇓↑↓〉) state is preferentially

occupied, leading to σ+ (σ−) emission and dynamic nuclear spin polarization in positive (negative) z

direction.
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F.3 Flip-Flop of Electron and Nuclear Spin

At time t = τ1, after X1− recombination, the quantum dot is in the |e〉 state and contains a free electron.

This electron interacts with the N nuclear spins in the quantum dot before it tunnels into the Fermi sea

at rate τ−1
out. Since the conduction band electron has an s-type Bloch function, its coupling to the nuclear

spins is well described by the contact hyperfine interaction with effective Hamiltonian

Ĥhf = ν0

∑
k

Ajk |ψ(Rk)|2Ik · S. (F.7)

Here ψ(Rk) is the electron wave function at the kth nucleus, Ajk = Aj are the effective hyperfine coupling

constants for atoms of type j, ν0 denotes the volume per atom, and Ik and S, respectively, are the nuclear

and electron spins in units of ~ [3]. We assume homogeneous coupling, which yields

Ĥhf '
A

N

∑
k

Ik · S ≡ A〈I〉 · S, (F.8)

a result used in the diagonal elements of the five-level system [Eqs. (F.1) and (F.2)]. Based on In0.5Ga0.5As,

we take A ≈ 90 µeV as the averaged effective coupling constant [3] and I = 0.75 · 3/2 + 0.25 · 9/2 = 2.25

as averaged nuclear spin quantum number. Adding the Zeeman term Ĥext, with ge as electron g factor,

the total Hamiltonian reads

Ĥext + Ĥhf = geµBBzSz +A〈Iz〉Sz +
A

2N

∑
k

(
I+
k S
− + I−k S

+
)
, (F.9)

where I±k = Ixk ± iI
y
k and S± = Sx ± iSy are ladder operators, so that the final term describes a flip-flop

of electron and nuclear spin. In the following it is assumed that the electron has spin up; the calculation

for spin down is analogous.

In order to estimate the flip-flop probability as a function of net nuclear polarization, we calculate the

time evolution of the effective two-level system formed by |M, ↑〉 and |M + 1, ↓〉, where |M〉 represents

the ensemble of nuclear spin states with z projection M = N〈Iz〉. With the system in state |M, ↑〉 at

time t′ = t − τ1 = 0, one finds from the von Neumann equation [2] that the population of |M + 1, ↓〉
oscillates in time according to

p|M+1,↓〉 =
4γ

4γ + ξ
sin2

(√
4γ + ξ

2~
t′
)
, (F.10)

where

γ =
∣∣∣〈M + 1, ↓| Ĥhf |M, ↑〉

∣∣∣2 , (F.11)

ξ =
∣∣∣〈M + 1, ↓| Ĥext + Ĥhf |M + 1, ↓〉 − 〈M, ↑| Ĥext + Ĥhf |M, ↑〉

∣∣∣2 . (F.12)

From Eq. (F.9), one finds

ξ = (geµBBz +A〈Iz〉)2
. (F.13)

Simple results for γ only exist when the nuclear spins are either fully correlated or fully uncorrelated,

neither of which is the case here. With

γ =
A2

4N
(I − |〈Iz〉|) (F.14)

we take an average of the two extremes, as derived in Appendix F.7. Integrating Eq. (F.10) over the
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survival distribution, characterized by the tunneling time τout, finally yields the flip-flop probability

pff =

∞∫
t′=0

dt′
e−t

′/τout

τout
p|M+1,↓〉 =

2γτ2
out

(4γ + ξ) τ2
out + ~2

. (F.15)

Referring to previous work on dynamic nuclear polarization, the result is of a rather standard form, with

τout as correlation time [4, 5]. Since we operate at relatively low magnetic fields, where the “bright” X0

states |⇑↓〉 and |⇓↑〉 are split from the “dark” X0 states |⇑↑〉 and |⇓↓〉 by far more than a hundred µeV

[1, 6], spin flip-flops among electron and nuclei are negligible in the presence of a hole.

F.4 Nuclear Spin Dynamics and Stable Solutions

The combination of the electron spin creation rate and the flip-flop probability results in a dynamic

equation for the nuclear spin polarization 〈Iz〉. The latter is driven up depending on p|⇑↓↑〉, down

depending on p|⇓↑↓〉, and decays in the absence of driving with rate Γleak. With τ1 (∼ns) � τout (∼ps),

the cycle round-trip time is simply τ1 and the dynamic equation reads

d

dt
〈Iz〉 '

pff

Nτ1

[
p|⇑↓↑〉 − p|⇓↑↓〉

]
t = τ1

− Γleak〈Iz〉. (F.16)

The flip-flop probability pff is a function of 〈Iz〉; the populations p|⇑↓↑〉 and p|⇓↑↓〉 are functions of both

〈Iz〉 and laser detuning ~δ. We solve Eq. (F.16) numerically to find stable values of 〈Iz〉 as a function

of ~δ. Figure F.2 shows d
dt 〈Iz〉 from Eq. (F.16) as a function of 〈Iz〉 as the laser is tuned through the

bistability (parameters as in Chapter 7 and Appendix F.6). Stable nuclear spin polarizations are found

where d
dt 〈Iz〉 crosses zero with negative slope. These stable values of 〈Iz〉 are directly related to the

Overhauser shift ∆n observed in the experiment. For the difference between the X1− emission energies

E(σ+) and E(σ−) measured for photons with σ+ and σ− polarization, respectively, one obtains

E(σ+)− E(σ−) = gXµBBz + ∆n ≡ geff
X µBBz, (F.17)

where we use ∆n = −A〈Iz〉 based on Eq. (F.8). Figure F.1 (right) shows four counts-energy spectra

measured in the region of bistability and fitted to Lorentzian curves, with E(σ±) given by the centers of

the respective fit functions. The figure illustrates a key feature of the presented scheme, i.e., the tuning of

resonance energies via control over the net polarization of the nuclear spin bath. In Chapter 7, a change

from −45 µeV to +20 µeV in the total electron Zeeman splitting geff
e µBBz = geµBBz+A〈Iz〉 is observed.

That is, the sign of the effective electron g factor geff
e can be inverted and, using the continuous change

in 〈Iz〉 at more positive laser energies, geff
e can be tuned precisely to zero. Accordingly, the effective

exciton g factor geff
X is tuned from 2.6 to 0.3, and tuning geff

X through zero should easily be possible with

an optimized cycle.

The Lorentzians fitted to the experimental data not only yield the line energies (center), but also the

line intensities (area under the curve) denoted by S(σ±). In terms of the theoretical model, the σ+ (σ−)

intensity corresponds to the rate of creating an ↑ (↓) electron via X1− recombination. For each stable

solution of d
dt 〈Iz〉 = 0 we can hence calculate the σ± emission intensity and the associated degree of

polarization,

P =
S(σ+)− S(σ−)

S(σ+) + S(σ−)
=
p|⇑↓↑〉 − p|⇓↑↓〉
p|⇑↓↑〉 + p|⇓↑↓〉

∣∣∣∣
t = τ1

. (F.18)
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Figure F.2. Simulation of d
dt
〈Iz〉, Eq. (F.16), with Bz = +0.5 T and the parameters summarized in Appendix F.6. Stable

nuclear spin polarizations are found where the horizontal axis is crossed with negative slope. For ~δ1 = −42 µeV (green),

one solution exists at positive 〈Iz〉. For ~δ2 = −38.5 µeV (red), an additional stable solution exists at negative nuclear spin

polarization, leading to a bistability. The solution at positive 〈Iz〉 disappears when the laser detuning is increased further,

~δ3 = −36 µeV (blue). The theoretical width of the bistable region is 2 µeV and generally depends on the various input

parameters. Widths > 10 µeV are achievable.

F.5 Calculation of Nuclear Spin Distribution Width

The model also provides insight into the width of the nuclear spin distribution. Typical fluctuations

of the nuclear magnetic field seen by the electron spin via the hyperfine interaction are of the order of

A/(|ge|µB
√
N) [7, 8]. This corresponds to fluctuations of the nuclear spin polarization 〈Iz〉 by ∼1/

√
N

and, in terms of the associated Gaussian distribution function, to a variance of σ2 ∼ 1/N . In order to

calculate the nuclear spin distribution in the presence of the laser field, we follow the steps summarized

in the supplementary information of Ref. [9]. Starting from a basic rate equation, reformulation in the

continuum limit results in a Fokker-Planck equation that is solved for stable nuclear spin distributions.

These solutions are of type eF (〈Iz〉), and expansion of the function F (〈Iz〉) around the stable nuclear spin

polarization Iz,0 to the second power of 〈Iz〉 − Iz,0 yields the variance of the distribution. One finds

σ2 =
1

2N

Γtot

∂
∂〈Iz〉

(
− d
dt 〈Iz〉

) ∣∣∣∣∣
〈Iz〉 = Iz,0

, (F.19)

where Γtot is the total spin-flip rate divided by N ,

Γtot =
pff

Nτ1

[
p|⇑↓↑〉 + p|⇓↑↓〉

]
t = τ1

+ Γleak|〈Iz〉|+ 2Γleak. (F.20)

The additional 2Γleak accounts for intrinsic diffusion and ensures that σ2 = 1/N in the absence of a laser

field. The simulation shows that our cycle results in a reduction of the variance by a small factor ∼1.7 in

the experiment of Chapter 7. However, by increasing the tunneling times slightly, the scheme is capable

of narrowing the variance of the nuclear spin distribution by factors ∼5. Similar numbers have been

reported in Ref. [10].

F.6 Input Parameters

The parameters for the simulation are set by in situ characterization of the quantum dot, by comparison

with previous experiments on the same sample, and by making small tweaks to fit the experimental

data in Fig. 7.2 of Chapter 7. The main features – an abrupt inversion in the polarization of both

photoluminescence (PL) and nuclear spins, followed by continuous tuning through zero – are not sensitive

to the parameters in the calculation. Reproducing the exact experimental results is however sensitive to
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the exact parameters, in particular to ~ωfs, τin, τout, and Γleak.

• The Rabi energy ~Ω is proportional to the amplitude of the oscillating electric field and can therefore

be estimated from the power density at the quantum dot, which gives us a rough estimate of ~Ω.

A more precise determination is taken from Ref. [11] in which the Rabi energy is measured directly

from the Autler-Townes splitting in a pump-probe experiment. This experiment used the same

microscope and a sample from the same wafer as the present experiment. Given a laser power of

13 kW/cm2 and the values reported in Ref. [11], we determine ~Ω = 23 µeV.

• The fine structure splitting ~ωfs is highly scattered from dot to dot in this sample [12]; 40 µeV is

taken here, largely by fitting the results of the model to the experimental data.

• For the exciton recombination times τ0 (X0) and τ1 (X1−), we take τ0 = 0.75 ns and τ1 = 0.95 ns

from lifetime measurements of quantum dots in this wafer [13]. There is a systematic increase in

the recombination lifetimes on going from X0 to X1−, and a systematic dependence on the X0

exciton energy. Both these factors are included.

• The time τin = 35 ps for tunneling into the dot is estimated from τ0 and the ratio of X0 and X1−

PL intensities in the hybridization region. The time τout for tunneling out of the dot is smaller as

the electron is now above rather than below the Fermi energy (where the energy barrier is thinner).

Experiments probing the spin cotunneling rate [14] and the PL in the hybridization region [15]

on dots similar to the one used here point to a time τout ∼ 10 ps. Fine tuning by fitting the

experimental data gives τout = 5 ps.

• N , the number of quantum dot nuclear spins, is estimated from the extent of the electron wave

function. For this, the ground state wave function for harmonic confinement,

ψ0 = C0e
−1

2

(
x2

l2x
+ y2

l2y
+ z2

l2z

)
, (F.21)

is replaced by a box-like function ψb with constant amplitude ψb = C0/
√
e = 1/

√
V in the volume V

and with ψb = 0 outside of V . We note that, in the simple case of spherical symmetry, C0/
√
e is

the value of ψ0 at the radius r =
√
x2 + y2 + z2 where |ψ0|24πr2dr peaks. From the normalization

condition one obtains V = lxlylzπ
3/2e, and the effective number of nuclear spins in the quantum dot

corresponds to N = 8V/a3 (zinc blende), where a is the lattice constant. The confinement lengths

li are related to the level spacings ~ωi and the effective electron mass m∗ via li =
√
~/(m∗ωi).

With ~ωx,y = 30 meV [16] and ~ωz = 95 meV [17], we calculate N = 8.5 × 104 as the number of

nuclear spins covered by ψb. This result is consistent with a measurement of the fluctuations in the

Overhauser field [18] (see also Appendix F.5).

• The electron g factor is ge = −0.5, as determined by optically detected single electron spin resonance

performed on a dot in a very similar sample to the one used here [18]. For the exciton, gX = 1.55

was measured by assuming that at large detunings, where E(σ+)−E(σ−) takes on a constant value,

∆n changes sign but not magnitude on switching the pump polarization,

gX '
1

2µBBz

([
E(σ+)− E(σ−)

]
σ+ pump +

[
E(σ+)− E(σ−)

]
σ− pump

)
. (F.22)

• The order of magnitude of the spin depolarization rate Γleak results from direct experimental obser-

vations. As demonstrated in Chapter 7, the system always preserves its state when the laser, tuned

to the region of bistability, is turned off and back on after ∼30 s. For times > 1 min this is no longer

true, pointing towards leakage rates of ∼0.01–0.1 s−1. This measures the decay of the nuclear spin
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polarization with the dot in the vacuum state |0〉. Optical pumping in the hybridization region

causes the dot, averaged over time, to be partially occupied such that the relevant value of Γleak is

likely to be larger. We take Γleak = 0.1 s−1 here as it gives the best fit to the experimental data.

F.7 Flip-Flop Term in an Effective Two-Level System

In this appendix we provide details for the derivation of the electron-nuclear-spin flip-flop probability in

Appendix F.3. Since 〈Iz〉 is observed via the Overhauser shift ∆n = −A〈Iz〉, we calculate the flip-flop

probability as a function of the nuclear spin polarization. Defining

M =
∑
k

Izk = N〈Iz〉 (F.23)

as the total nuclear spin z projection in units of ~, the state of the nuclear spin bath is a linear super-

position of states |J,M, λJM 〉 with fixed M . Here J is the quantum number for the size of the total spin,

|M | ≤ J ≤ NI, and λJM is an additional quantum number whose range depends on M and J such that

NI∑
J=0( 1

2 )

J∑
M ′=−J

∑
λ

|J,M ′, λJM ′〉 〈J,M ′, λJM ′ | = 1. (F.24)

Assuming that the free electron in the quantum dot has initially spin up (Appendix F.3), the Hamiltonian

Ĥext + Ĥhf shown in Eq. (F.9) couples the states |J,M, λJM , ↑〉 with states |J,M + 1, λJM+1, ↓〉, where the

electron spin was simply added in the notation. For given M , considering the large number of ∼105

nuclear spins, the system of interest is therefore high-dimensional. However, it can be reduced to an

effective two-level system.

Since the energy depends only on the electron spin and the nuclear spin z projection, all states

|J,M, λJM , ↑〉 and |J,M + 1, λJM+1, ↓〉 have the same eigenenergy E1 and E2, respectively. The popu-

lation at time t′ = 0 is distributed among the states |J,M, λJM , ↑〉, which we formally replace by a state

|M, ↑〉 with 100% occupation probability and eigenenergy E1. This state |M, ↑〉 is coupled to the states

with electron spin down and nuclear spin z projection M+1 via the flip-flop term in the contact hyperfine

interaction [Eqs. (F.8) and (F.9)]. For the estimate of the flip-flop probability it only matters whether

the system occupies state |M, ↑〉 or any of the other states |J,M + 1, λJM+1, ↓〉. Therefore, the dynamics

can equivalently be calculated in a reduced system, where the |J,M + 1, λJM+1, ↓〉 are replaced by the

effective state |M + 1, ↓〉 of energy E2. The effective coupling between |M, ↑〉 and |M + 1, ↓〉 is given by

γ =
∣∣∣〈M + 1, ↓| Ĥhf |M, ↑〉

∣∣∣2 =

NI∑
J=|M+1|

∑
λ

∣∣∣〈J,M + 1, λJM+1, ↓| Ĥhf |M, ↑〉
∣∣∣2 . (F.25)

The value of γ strongly depends on the system. In the following, the two extremes of a strongly correlated

and a fully uncorrelated nuclear spin bath will be considered.

F.7.1 Strong Correlation

As a first limit, we assume a highly coherent system free of further interactions, so that transitions

J ↔ J + 1 are impossible. The relevant flip-flop term in the Hamiltonian Ĥhf is

A

2N

∑
k

I+
k S
− =

A

2N
J+S−, (F.26)
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where J+ =
∑
k I

+
k acts as a raising operator for the total spin. Its effect on a state |J,M, ↑〉 (λ irrelevant)

within |M, ↑〉 is
A

2N
J+S− |J,M, ↑〉 =

A

2N

√
(J −M)(J +M + 1) |J,M + 1, ↓〉 , (F.27)

which breaks down as soon as the expression under the square root is zero. Starting from an unpolarized

system, the typical order of magnitude for the starting value of J can be estimated from the infinite

temperature limit,

J̄(J̄ + 1) = 〈J · J〉 =
∑
k 6=k′
〈Ik · Ik′〉+

∑
k

〈Ik · Ik〉 =
∑
k

〈Ik · Ik〉 = NI(I + 1), (F.28)

which yields

J̄ '
√
N
√
I(I + 1). (F.29)

Given this value, J ∼ J̄ , the square root in Eq. (F.27) typically approaches zero at |〈Iz〉| ∼
√
I(I + 1)/N .

For N = 8.5 × 104 and I = 2.25, these so-called dark states would therefore be reached at nuclear

spin polarizations |〈Iz〉|/I of less than 1% in both positive and negative z direction. This is in clear

contradiction with the experiment, where polarizations of ∼20% were measured and dark states were not

observed.

F.7.2 No Correlation

In the other extreme, we take an uncorrelated system without transverse spin coherence, so that there is

no correlation among the x, y components of the nuclear spins. Starting from Eq. (F.25), we find

γ =

NI∑
J=|M+1|

∑
λ

∣∣∣〈J,M + 1, λJM+1, ↓| Ĥhf |M, ↑〉
∣∣∣2 =

A2

4N2

NI∑
J=|M+1|

∑
λ

∣∣∣〈J,M + 1, λJM+1|
∑
k

I+
k |M〉

∣∣∣2
=

A2

4N2

∑
k,k′

〈M | I−k
NI∑

J=|M+1|

∑
λ

|J,M + 1, λJM+1〉 〈J,M + 1, λJM+1|︸ ︷︷ ︸
equivalent to 1, only nonzero contribution

I+
k′ |M〉

=
A2

4N2

∑
k 6=k′
〈M | I−k I

+
k′ |M〉︸ ︷︷ ︸

= 0

+
A2

4N2

∑
k

〈M | I−k I
+
k |M〉

=
A2

4N2

∑
k

〈M |
(
I2 + I − (Izk)2 − Izk

)
|M〉 ' A2

4N

(
I2 + I − 〈Iz〉2 − 〈Iz〉

)
. (F.30)

This calculation represents the nuclear spin system when coherence in the nuclear spin bath is lost

between two cycles via various mechanisms such as the dipole-dipole interaction among the nuclear spins.

However, these interactions are weak and the cycle round-trip time is very short, ∼1 ns, and so this limit

is not realistic either.

Considering I = 2.25, we therefore take γ = A2

4N (I − |〈Iz〉|) as a compromise of the two extremes. An

analogous calculation can be carried out when the electron spin is initially down. It is clear that γ must

decrease as |〈Iz〉| increases. The exact functional form of γ is not crucial to describe theoretically the

main experimental phenomena but it is important to describe the experimental results quantitatively.
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