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Abstract

This PhD thesis focuses on the synthesis of new polypyridine anchoring ligands and several di�erent

applications. The ligands consist of a coordinating part, a �exible linker and an anchoring group.

Due to the fact that di�erent anchoring groups were used, the ligands can be applied for several

types of surface-materials. Using these anchoring ligands, several coordination complexes were

synthesized. Ruthenium-based complexes, bearing an ion-sensitive ligand, were tested towards their

sensing properties. The photophysical properties of luminescent Ir(III)-complexes were investigated

and compared to related compounds. Furthermore, di�erent types of materials were functionalized

with the coordinating anchoring ligands and characterized.

Chapter 1: Introduction

Chapter 1 gives background information about the di�erent topics where the synthesized ligands

and complexes can be applied.

Chapter 2: coordination anchoring ligands

Here, the synthesis of the anchoring ligands is presented. The photophysical properties and an X-ray

structure are discussed.

Chapter 3: Complexes for detection

In this chapter, the synthesis and the photophysical properties of several ruthenium complexes are

described. Titration experiments and sensing tests are described and the results are discussed.

Chapter 4: Surface functionalization

Chapter 4 shows di�erent applications for the synthesized ligands. Functionalization of di�erent

surfaces is described as well as their photophysical characterization. Also the synthesis and the pho-

tophysical properties of luminescent Ir(III) complexes, bearing an anchoring ligand, are presented.

Chapter 5: Diverse other ligands

The synthetic routes for two DSSC anchoring ligands are shown in chapter 5. Furthermore, the

syntheses of solvatation ligands for quantum dots and for a novel detection ligand are described.

xii



1 INTRODUCTION

1 Introduction

1.1 General

In 1893, Alfred Werner built the basis of modern coordination chemistry with his publication about

the composition of cobalt complexes.[1] Since then, this �eld of chemistry has become very impor-

tant with many di�erent applications. Besides the metal and its oxidation state, the ligands have a

key role, strongly in�uencing the properties of the complex. Due to their increased stability, mul-

tidentate chelating ligands are often preferred to simple monodentate ligands.[2] The vast class of

chelating ligands ranges from �exible bidentate ligands like ethylenediamine to tetradentate ones like

EDTA[3] and further to quite rigid structures like the octadentate DOTA. Among this huge variety,

the family of polypyridines is often used. 1,10-Phenanthroline (phen) and especially the di�erent

isomers of bipyridine (bpy) and terpyridine (tpy) play probably the most prominent role. The most

widely utilized isomers of the ligands are shown in Fig. 1.1. Particularly the chelating bidentate

2,2′-bipyridine and the tridentate 2,2′;6′,2′′-terpyridine with their huge number of derivatives can be

found in many areas of modern coordination chemistry and are applied for multiple applications.

Complexes containing bpy and tpy have become one of the main classes of sensitizers in dye sensi-

tized solar cells (DSSCs).[4, 5] Both bpy and tpy domains feature in ancillary ligands in complexes

applied as the emitting layers in light-emitting electrochemical cells (LECs).[6, 7] In addition, func-

tionalization of a wide range of polymers with bpy and tpy ligands and their metal complexes has

been demonstrated, [8, 9] and polypyridyls have also been used as supporting and anchoring ligands

in transition metal catalysts.[10, 11, 12]

Figure 1.1: isomers of the ligands bpy and tpy.

From the synthetic point of view, these ligands o�er several advantages. The unsubstituted bpy-

ligand is commercially available in large quantities due to its use as precursor for the preparation of

1



1.1 General 1 INTRODUCTION

Diquat insecticides.[13] Substitution at the 4,4′-positions by a standard procedure allows the intro-

duction of di�erent functional groups.[14] Also cross-coupling and lithiation reactions are possible to

obtain asymmetric substitution or functionalize at the 5,5′ and 6,6′ positions.[15, 16, 17, 18] By using

a Kröhnke-type synthesis, functional groups can be directly inserted during the reaction.[19] This

method can also be used to obtain tpy-ligands with di�erent substituents on several positions.[19, 20]

Additionally the introduction of reactive groups allows further substitutions. Some of these ligands

are also accessible by the method reported by Wang and Hanan.[21] This one-step synthesis is often

used for di�erent phenyl-substituted terpyridines because of the straightforward performance of the

reaction and the easy puri�cation.

The class of polypyridine ligands shows good chelating properties for many transition metals, mainly

in the oxidation state +2 and +3.[13, 22] In contrast to other ligands like catechol or acetylaceto-

nate, these ligands are neutral and thus allow the synthesis of charged coordination complexes.[23]

Depending on the metal, thermodynamically stable [M(tpy)2]2+ complexes can be synthesized with

stability constants of log K = 13.8 for Fe2+ and log K = 11.1 for Ni2+.[8] For other metals like Co2+

ligand exchange in solution is known due to kinetic lability.[24, 25] Tpy coordination complexes for

nearly every metal in the periodic table are known in the literature (Fig. 1.2). The synthesis can

Figure 1.2: Periodic table of elements (only metals are shown). The number indicates the number
of scienti�c papers dealing with the respective terpyridine complexes (determined by SciFinderTM ,
search performed 31st December 2010).[8]

be performed in a one-step reaction to obtain the homoleptic complex or in a two-step procedure

yielding the heteroleptic bis(terpyridine) complex, bearing two di�erent ligands.[8] Homoleptic bpy

complexes are known for most metals and di�erent oxidation states.[13] For several metals there exist

2



1 INTRODUCTION 1.1 General

bis-heteroleptic complexes and for some such as Ru(II) and Os(II) even tris-heteroleptic coordination

complexes have been reported.[26, 27, 28, 29]

Metal Number of publication

Mn 153
Fe 532
Co 426
Ni 163
Cu 262
Ru 1079
Os 160

Table 1.1: The number of scienti�c publications dealing with the respective complex of 2,2′;6′,2′′-
terpyridine or 4′-substituted derivatives (determined by SciFinderTM , search performed 8th October
2014).

3



1.2 Dye-Sensitized Solar Cells (DSSCs) 1 INTRODUCTION

1.2 Dye-Sensitized Solar Cells (DSSCs)

Overcoming the world′s growing energy consumption is one of the main issues for the immediate

future. For this, new technologies should be established because the current mainly used methods

to produce electricity have several drawbacks. Oil and gas are limited resources. In addition the

released CO2 is in�uencing the global climate.[30] Nuclear energy produces highly toxic radioactive

waste consisting of isotopes with half-lives of several thousands years or more. Furthermore, incidents

in nuclear plants can lead to enormous environmental pollution as seen in 1986 in Chernobyl, Ukraine

and in 2011 in Fukushima, Japan.[31] Therefore, to satisfy the energy demand, renewable sources

should be used. Wind and water power are site dependent and limited, but solar energy is disposable

all over the world and available in su�cient quantity.[30] To harvest the sunlight and convert it into

electric power, solar cells are commonly used. Among the di�erent existing types for the future, the

third generation, the so-called Dye Sensitized Solar Cells (DSSC) are probably the most promising.

Several advantages make them more favourable than the most commonly used �rst generation, based

on silicon.[32] The production costs of a DSSC are much lower and application on diverse materials

like �exible polymers is possible. Since they are transparent, they can also be used as stained glazing

for houses.[33] Currently, these cells have shorter life-times and less e�ciency than silicon-based cells,

but much research is in progress to overcome these drawbacks.[34] The build-up and working principle

of such a DSSC is shown in Fig. 1.3.

Figure 1.3: Schematic overview of a dye-sensitized solar cell.[34]

A layer of a mesoporous semiconducting (usually n-type) metal oxide like TiO2 is deposited on

a transparent conducting oxide (TCO) like �uorine doped tin oxide (FTO) on a plastic or glass

substrate. The semiconducting oxide is loaded with a dye, which is excited by incident sunlight and

injects an electron from its excited state into the conducting band of the metal oxide. The oxidized

4



1 INTRODUCTION 1.2 Dye-Sensitized Solar Cells (DSSCs)

dye is reduced back by the redox electrolyte which is then oxidized. The reduction of this electrolyte

occurs at the counter electrode, which consists of a catalytic metal like platinum on a TCO coated

glass or plastic substrate.[34, 35]

For sensitizing, transition metal complexes are often used due to several reasons. They have long

excited state lifetimes, are stable in the oxidized as well as in the reduced form and have strong

absorption in the visible range of the light spectrum. Furthermore they show no degradation or

aggregation.[36] From the beginning, Ru(II) complexes have shown good e�ciencies due to their

broad absorption and good photovoltaic properties like �tting energy levels and stability. For these

reasons, ruthenium is one of the mainly used metals in DSSCs. A detailed list of di�erent Ru(II)

polypyridine complexes has been developed,[34] the probably most prominent sensitizers of this class,

N719 and N749 which is also called black dye, are illustrated as examples in Fig. 1.4.

Figure 1.4: Ru(II) based sensitizer N719 and N749 (TBA = nBu4N+).[34]

Introduction of substituents to the ligands can have a strong in�uence on the performance of the

dye. The e�ciency can be improved in several ways. Insertion of chromophores like thiophene can

lead to an increased molar extinction whereas long alkyl chains can decrease the aggregation of the

dye. In addition substituents can be used to optimize the redox potential. In case of bpy ligands

the functionalization is mainly concentrated on the 4,4′-position.[34]

This type of solar cell is by now so well established that companies from industry not only produce

and sell some of these Ru(II) based dyes on a multi-gram scale,[37] but also o�er fully manufactured

cells for sale.[38, 39]

Despite the great performance of Ru(II)-based dyes, the major drawbacks are the low abundance of

ruthenium in the Earth's crust and the high prices for this precious metal. As a consequence, there

is a need for more abundant and cheaper alternatives. This is found in copper, which is far more

common on earth and less expensive (Tab. 1.2). Also Cu(I) complexes show similar photophysical

properties compared to Ru(II) complexes.
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Metal Abundance in earth's crust Metal price

Ru 0.1 ppb 2765.27 USD/kg
Cu 25 ppm 8.85 USD/kg

Table 1.2: Abundance on earth and metal prices for ruthenium and copper (18.08.2014).[40, 41]

For copper, the majority of the reported dyes consist of bpy or phen-based ligands. The ligands bear

on the 6,6′- and 2,9-position respectively sterically demanding groups like phenyl or alkyl chains to

stabilize the tetraheadral geometry and prevent oxidation of the metal to Cu(II), which prefers a

square planar coordination environment.[42]

Figure 1.5: Possible binding modes of COOH groups to a metal oxide (TiO2).[36]

Covalent binding of the sensitizer to the metal oxide is required for good electron injection, thus the

coordination complexes comprise anchoring groups on the ligand. For TiO2 and SiO2, phosphonic

and carboxylic acids exhibit the best performances and are most commonly used. For other metal

oxides like SnO2, anchoring groups like SiCl3 are also possible.[36] Binding to the hydroxy groups

of the metal oxide can occur in di�erent ways. For carboxylates, this is shown in Fig. 1.5. The

anchoring groups can be connected to the ligand by a linker. Whereas �exible saturated linkers can

slow down the electron injection rate,[36] the insertion of conjugated, rigid linkers like phenyl groups

can increase the e�ciency.[43, 44]

The anchoring of ruthenium dyes like N719 or N749 (Fig. 1.4) on the metal oxide surface is performed
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by immersing the electrodes into a solution of the complex for several hours or days.[45] When

copper dyes are used, the electrodes are �rst immersed into a solution of the anchoring ligand for 1

day, washed and dried. Then, the functionalized electrodes are either immersed in a solution of a

homoleptic Cu(I) complex or in a 1:1 mixture of ancillary ligand and [Cu(MeCN)4][PF6] for several

days.[46] With both methods, the heteroleptic copper(I) complex on the surface is obtained.
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1.3 Light-emitting electrochemical cells (LECs)

Another approach to solve the global energy problem is to decrease the energy comsumption by

using more e�cient lighting devices. In the �eld of illumination, an immense progress was made

by introducing solid-state lighting (SSL) which replaces the common but very ine�cient tungsten

�lament light bulbs. The two main families of SSL are the light-emitting diodes (LEDs) and the

organic light-emitting diods (OLEDs). These SSL devices are made of semiconducting materials

which produce photons when an electric �eld is applied. This electroluminescence converts the

energy mainly into light and not, like in light bulbs, into heat. This leads to very high e�ciencies of

such devices. Due to their working priciple, LEDs are built as light point sources whereas OLEDs

are made as �at light devices. These devices consist of a multilayer stack (Fig. 1.6) and have

quite demanding requirements for the materials used and the preparation of the devices. These

requirements and the connected high production costs have so far prevented a breakthrough in the

lighting market.[47, 48]

A new concept for building �at lighting devices are light-emitting electrochemical cells (LECs). Com-

pared with OLEDs they have several eminent advantages, for example a much simpli�ed architecture

compared to OLEDs (Fig. 1.6).

Figure 1.6: Build-up of OLED (left) and LEC (right).[48]

The opto-electronically active layers are reduced to just one and also the manufacturing is much

easier. As active compound air and water stable materials can be used. Due to this, rigorous

encapsulation of the devices can be omitted. As luminescent material in the emitting layer, either
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light-emitting conjugated polymers or ionic transition metal complexes (iTMC) are used. Early

research on iTMC-LECs was done with [Ru(bpy)3][PF6]2 and other ruthenium(II) polypyridine

complexes.[49] Today, mostly iridium(III) compounds are used due to their superior properties. With

Ir(III) as metal center many di�erent emission colours are possible which cover the whole visible

light spectrum whereas with ruthenium(II) complexes only emission colours in the red-orange range

are available. The used Ir(III) complexes usually consist of two cyclometalating C^N ligands and

one ancillary N^N ligand. As C^N ligand phenylpyridine (ppy) or one of its derivatives is applied,

whereas most of the ancillary ligands are bpy-based (Fig. 1.7).[48]

Figure 1.7: Bipyridine-based ancillary ligands for iTMC-LECs.[48]

The emission colour of the iridium(III) complexes can be tuned by the substituents on the ligands.

Usually the frontier orbitals are located on di�erent ligands. The LUMO is located on the ancillary

ligand whereas the HOMO lies mainly on the cyclometalating ligands.[47] Therefore the energy of

the frontier oritals can be changed almost independently by introducing electron-withdrawing or

electron-donating groups to the ligands. By changing the HOMO-LUMO energy gap the emission

colour of the complex can be tuned. The substituents on the ligands can also have an in�uence on

the perfomance of the LEC device.

Beside the superior properties of Ir(III) as metal center for iTMC-LECs this metal has similar

disadvantages as ruthenium. It is quite rare on earth with an abundance of only 0.05 ppb[41] and

thus expensive. A more abundant and low-cost alternative could again be Cu(I) as metal center.

The most investigated complexes consist of a N^N chelating ligand like bpy or phen and a P^P

(bisphosphine) ligand. Cu(I)-based LEC devices with almost white-light emission and quite high

brightness were build. Other examples demonstrated at low voltages performance comparable to

Ru(II) or Ir(III) based LECs.[48]
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1.4 Sensing

Ions play a substantial role in medicine, biology and chemistry. Some metal ions like iron or sodium

are essential for basic processes in the body, other ions like cadmium or mercury can be highly toxic

to organisms.[50] Thus it is very important to have reliable, speci�c and accurate methods for their

detection. It would also be favourable if the used methods are low-price, fast and straightforward

to operate, especially for medical applications. Advances were made by developing abiotic receptors

with speci�c recognition to certain ions. These chemosensors can interact with the particular ion

in di�erent ways. For anions the reversible interaction can be either electrostatic, by formation of

hydrogen bonds or working via coordination to a metal center. If the recognition occurs irreversibly

through a reaction, the term chemodosimeter should be used.[51, 52] For cations the recognition can

be done by large cyclic molecules such as crown ethers or cryptands.[50] This ion binding site is also

connected to a signalling unit. This approach is shown in Fig. 1.8. It is desirable that the read-out

occurs in the form of an easy-to-measure signal, for example a colour change induced by the ion

which can be detected by absorption spectroscopy. The other possibility is a change in �uorescence.

This is most widely used because it is more sensitive and o�ers �uorescence quenching, enhancement

as well as a colour shift as signal read-out.

Figure 1.8: Anion chemosensors based on the binding site-signaling subunit approach.[51]

For �uorescence-based signal report organic molecules like anthracene, naphtalene or other aromatic

heterocycles can be used. The emission of these molecules occurs near the UV region which could

lead to matrix interference. To avoid this problem, transition metal complexes with emission in the

visible region can be applied. Signalling subunits based on Ir(tpy)23+ and Ru(tpy)22+ are known,

but most research was done with Ru(bpy)32+-based reporting units.[51] Here, at least one of the three

bpy ligands is functionalized at the 4,4′ -positions to introduce the covalent linkage to the binding

site. Some examples for Cl− and H2PO4
− sensors with Ru(bpy)32+ reporting units are shown in

Fig. 1.9. In these cases, signal report occurs by �uorescene enhancement. It is presumed that the
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presence of the anion changes the rigidity of the complex and thus reduces the non-radiative decay

of the excited state,[53] resulting in more intense emission.

Figure 1.9: Ru(II)bipyridine based sensors for Cl−and H2PO4
−. [53]
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1.5 Catalysis

Polypyridine ligands also play a role in transition metal catalysis. In the �eld of water oxidation

especially Ru(II) complexes have extensively been studied. The splitting of water into its components

hydrogen and oxygen can be expressed rather simple (equation 1 ). But the chemical processes are

complicated due to the required 4-electron reaction.

2H2O + 4hν → O2 + 2H2 (1)

Several steps have to be carried out: (i) light absorption, followed by (ii) excited state electron

transfer, (iii) directional long-range electron transfer and proton transfer and (iv) single electron

activation of multielectron catalysis.[54] The requirements for the catalyst mimicing natural photo-

synthesis are thus rather demanding. The �rst working molecular catalyst was a oxygen-brigded

Ru(bpy)2-dimer, called �blue-dimer� (Fig. 1.10).

Figure 1.10: Blue dimer, the �rst synthetic water-oxidizing catalyst.[55]

Starting from that point, many other multimetallic molecular catalysts have been developed, but

also catalysts based on one metal center have shown promising results. Many of the monometallic

catalysts are based on [Ru(bpy)3]2+ due to the �tting properties. This complex class o�ers absorption

in the visible region, a relatively long-lived excited-state lifetime, reversible redox processes and

stability in the ground and excited states. Furthermore it has an oxidation potential of approximately

1.51 V vs NHE (normal hydrogen electrode). For the oxidation of water a potential of at least 1.23

V vs. NHE is needed, but a more positive potential is favourable.[55]

A di�erent approach to water splitting is done with photoelectrochemical cells (PECs). The schematic

build-up is shown in Fig. 1.11. The construction is comparable to the architecture of a DSSC. In

such a cell the transition metal complex also acts as a sensitizer. The catalyst can be a transition

metal oxide such as IrO2 or Co3O4.[56]
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Figure 1.11: Scheme of a photoelectrochemical cell (PEC) for water splitting: C is a chromophore,
and Catox and CatRed are catalysts for water oxidation and reduction.[54]

The di�erent derivatives of bpy and tpy can also act as ligands for transition metal catalysts in

organic synthesis. They mainly play the role of ancillary ligands. The type of reactions in which

these catalysts are successfully applied cover a broad range. Iridium catalyzed borylation using

bipyridine ligands are known[57] as well as nickel-terpyridine catalysts for cross-coupling reactions.[58]

Recently a molybdenum catalyst for phosphoester hydrolysis has been reported.[11] But the ligands

can also be used as covalent linkers to a solid support like SiO2
[12, 10] or polymer beads. [59] With

this method, the puri�cation can be simpli�ed because the heterogenous catalyst can be �ltered o�

and is easily recycled.
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1.6 Polymers

Bipyridine and terpyridine ligands have also proven to be useful for the functionalization of polymers.

The synthesis can be carried out in di�erent ways. One advance is the synthesis of bpy and tpy

ligands bearing a functional group for polymerization. For this, groups like vinyl or acrylate can be

used. With these functionalized ligands either homopolymers or, by addition of other monomers,

copolymers can be synthesized. It is also possible to add the coordinating ligands to the ready-made

polymer. This approach is done by reacting functional groups on the polymer with the ligands

to yield a covalent linkage. The type and length of the linker can be varied to obtain di�erent

properties like energy transfer between the complex and the polymer backbone (Fig. 1.12). This

usually yields lower ligand loading of the polymer than the �rst mentioned method. By adding

transition metal ions to the functionalized polymers, cross-linked gels can be formed. But also

compounds like [Ru(bpy)2Cl2] or [Ru(tpy)Cl3] can be added to avoid cross-linking.[8, 23, 60]

These functionalized materials can be used for various applications. Bipyridine-decorated polymers

can show selectivity to certain hazardous metal ions and thus be used for metal sorption. Bartsch

et al. synthesized polymers which showed very good selectivities of Cu(II) over Co(II) and Ni(II) in

competitive sorption and of Hg(II) over Cd(II) in single species sorption.[61]

Furthermore examples are known where polymers containing metal complexes can also act as cata-

lysts. With palladium, hydrogenation of ole�ns at ambient temperature and pressure[23] is possible

and cobalt-containing materials can act as oxidation catalysts for cyclic alkenes. [Ru(bpy)3]2+ -

moiety containing polymers can be used as heterogeneous photocatalysts. These materials also have

electroluminescent properties. [60]By adding lanthanides like Eu(III) and Tb(III) or transition metals

like Ir(III) to tpy-decorated polymers, emissive polymers can be synthesized. These can be applied

in the construction of polymer light-emitting diodes.[8]
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Figure 1.12: Bipyridine ruthenium and -osmium complexes linked to polystyrene by di�erent link-
ers.[60]
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2 Coordinating anchoring ligands

2.1 Abstract

In this chapter the synthesis, characterization as well as photophysical properties of a total of

eight polypyridine-based anchoring ligands are described. The four 2,2′-bipyridine-based and four

2,2′:6′,2′′-terpyridine-based compounds all contain �exible alkyl chains of di�erent lengths as linkers

between the anchoring group and the metal-coordinating domain. Protection of the anchoring group

was necessary to avoid unwanted side reactions during synthesis but also simpli�ed the puri�cation,

characterization and handling of the ligands. Deprotection was performed as the last step. Sulfur-

containing groups were used as binding sites to gold (section 4.4 ) whereas phosphonic and carboxylic

acids are used for tethering to metal oxides such as TiO2 (section 4.2 ).

Scheme 2.1: Terpyridine based ligands L1 and L2 and bipyridine based ligands L3 and L4 .
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2.2 Synthetic strategy and synthesis

2.2.1 Ligand L1

The synthetic route to L1 is shown in Scheme 2.2. The synthesis starts from 4′-(p-tolyl)- 2,2′:6′,2′′-

terpyridine (ttpy), prepared via the one-pot reaction reported by Wang and Hanan.[21] The substi-

tuted tridentate ligand is formed by an aldol condensation andMichael addition[62] of 2-acetylpyridine

with an aryl aldehyde under basic conditions. Ammonia acts as the nitrogen source for the central

pyridine during ring closure. The second step to intermediate P1 is an allylic bromination of the

methyl group with N -bromosuccinimide (NBS). As radical starter azobisisobutyronitrile (AIBN)

was used. To obtain the primary amine from the bromide compound, a Gabriel synthesis[63] was

performed. This two-step synthesis via an imide is necessary due to the higher nucleophilicity of pri-

mary amines compared to ammonia. First, the bromide is substituted by a phtalimide (P2). Then,

the nitrogen was reduced by hydrazine hydrate to obtain the primary amine P3.[64] In the last step,

the amide with racemic thioctic acid (TA) was formed, mediated by N,N '-dicyclohexylcarbodiimide

(DCC) as coupling reagent under mild conditions.[65] All intermediates are known in the literature

and were characterized by 1H and 13C NMR spectroscopy and mass spectrometric methods. For L1,

full characterization with absorption and photoluminescence spectroscopy (section 2.3 ), NMR spec-

troscopy, mass spectrometry, elemental analysis and IR spectroscopy (section 7.2 ) was performed.

Scheme 2.2: The synthesis of ligand L1 .
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2.2.2 Ligand L3

Scheme 2.3 shows the synthetic route to L3. The side chain SC1 is prepared from 6-bromohexan-

1-ol by a nucleophilic substitution with potassium thioacetate.[66] The commercially available 4,4′-

dimethyl-2,2′-bipyridine is transformed into [2,2′-bipyridine]-4,4′-dicarboxylic acid (dcbpy) by oxi-

dation with KMnO4. The carboxyl groups were activated with SOCl2 to yield the acid chloride. The

reactive intermediate was not isolated and heated to re�ux in toluene with SC1 to yield the desired

ester L3.[67] Triethylamine was added to neutralize the formed HCl and prevent hydrolysis. L3 was

characterized by absorption and photoluminescence spectroscopy (section 2.3 ), NMR spectroscopy,

mass spectrometric methods, elemental analysis and IR spectroscopy (section 7.2 ).

Scheme 2.3: The synthesis of a) side chain SC1 and b) ligand L3 .

2.2.3 Ligands L2 and L4

For the ligands L2 and L4, a similar synthetic pathway was used, starting from the methoxy sub-

stituted 4,4′-dimethoxy-2,2′-bipyridine (MeO-bpy) and 4′-(4-methoxyphenyl)-2,2′:6′,2′′-terpyridine

(MeO-tpy), synthesized by literature methods,[21, 68] MeO-bpy was also commercially available.

These precursors were converted into the corresponding hydroxy analogues 4-([2,2′:6′,2′′-terpyridin]-

4′-yl)phenol (OH-tpy) and [2,2′-bipyridine]-4,4′-diol (OH-bpy). For the bpy-compound, this was

performed with HBr in acetic acid.[69] For OH-tpy a di�erent approach, using pyridinium chloride

in a microwave reactor, was used. The protected ligands L2 and L4 were obtained by a Williamson

synthesis [63] of the hydroxy-compounds with the chains SC2, SC3 and SC4 in the presence of

potassium carbonate.[70] (Scheme 2.4). The chains were synthesized and used with protected an-

choring groups. This was necessary to avoid unwanted side reactions during synthesis and to simplify

the puri�cation, characterization and handling of the ligands. SC2 and SC3 were obtained start-

ing from 1,3-dibromopropane (Scheme 2.5). For SC2, a nucleophilic substitution with potassium

thioacetate similar to the preparation of SC1 was used.[71] SC3 was obtained by re�uxing the

starting material in triethyl phosphite, yielding the diethyl phosphonate.[72] SC4 was commercially

available.
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Scheme 2.4: Preparation of the protected ligands L2 and L4 .

Scheme 2.5: Synthesis of the side chains a) SC2 and b) SC3 ; c) structure of side chain SC4 .

Full characterization with absorption and photoluminescence spectroscopy (section 2.3 ), NMR spec-

troscopy, mass spectrometry, elemental analysis and IR spectroscopy (section 7.2 ) of all 6 protected

ligands L2-SAc, -PEt, -CMe and L4-SAc, -PEt, -CMe was performed.
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2.2.4 Activation of ligands L2 and L4

Deprotection of the anchoring groups to yield the six activated ligands L2-S, -P, -C and L4-S,

-P, -C was performed with di�erent methods, shown in Scheme 2.6. The ligands L2-S and L4-S

were obtained by treating the precursors L2-SAc and L4-SAc with sodium methoxide in anhydrous

methanol at room temperature.[73] Hydrolysis of the phosphonates (-PEt) to the phosphonic acids

(-P) was achieved using Me3SiBr in CH2Cl2 at room temperature. The methyl carboxylates were

hydrolyzed under basic conditions. For the conversion of L2-CMe to L2-C, K2CO3 in aqueous

methanol at 80 °C was used. L4-C was obtained from re�uxing L4-CMe in aqueous NaOH.[74]

All activated ligands were isolated and characterized by NMR spectroscopy and mass spectrometric

methods (section 7.2 ). For L2-C and L4-C elemental analysis was obtained, but satisfactory data

could not be obtained for the remaining compounds.

Scheme 2.6: Reaction scheme to show the deprotection to give a) thiol -S , b)carboxylic acid -C and
c) phosphonic acid -P .

Scheme 2.7: The deprotected ligands L2 and L4 .
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2.2.5 Thioacetate ligands S1 to S4

In addition to L3, the asymmetric analogue S1 was synthesized. Several approaches were tried

until the ligand was successfully synthesized. The �rst attempt started from 2-chloroisonicotinic

acid, forming an ester with SC1 in a Steglich esteri�cation.[75] The ester was obtained, but the

Negishi cross-coupling [63] with 2-pyridylzinc bromide was unsuccessful. In the second approach,

[2,2′-bipyridine]-4-carboxylic acid could, in principle, be synthesized from 2-chloroisonicotinic acid

and 2-pyridylzinc bromide, again by a Negishi cross-coupling reaction.[63] This attempt also did

not work. The successful approach started again from 2-chloroisonicotinic acid, forming the methyl

ester under Steglich conditions.[75] This step was necessary to increase the solubility and protect

the carboxy group. Then, a Negishi cross-coupling[63] with 2-pyridylzinc bromide was performed,

yielding methyl [2,2′-bipyridine]-4-carboxylate. The methyl ester was hydrolyzed under alkaline

conditions and S1 was obtained from a Steglich esteri�cation[75] with SC1.

Scheme 2.8: The 2,2′-bipyridine based ligands S1-S4 with di�erent substituents on the 4- and
4,4′-position.

The ligand S1 has several drawbacks. Due to its asymmetric nature it has only one anchoring

group and thus presumably shows a weaker binding to surfaces compared to L3. If heteroleptic

complexes are prepared, several isomers will be formed, which leads to complicated characterization.
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Furthermore, the synthesis implies several steps with moderate yields. Because of these reasons the

ligand S1 was not used further.

Several attempts were made to synthesize bipyridine-based ligands with alkyl and alkynyl-bridged

anchoring groups. The C-C bond should provide a strong connection. The thioacetate precursor for

S2 was synthesized in the same manner as SC2. A Sonogashira cross-coupling[62] with 4,4′-diiodo-

2,2′-bipyridine was performed to yield the desired ligand. But only the mono-substituted compound

was obtained, con�rmed by NMR and MS methods. With optimized conditions the desired ligand

was obtained.

Attempts to synthesize S3 and S4 followed the same strategy, shown in Scheme 2.9. Lithiation of

4,4′-dimethyl-2,2′-bipyridine and reaction with a bromo-substituted chain should lead to the desired

C-C bond formation. The chains also bear reactive end groups for further functionalization. Chains

with THP-protected hydroxy or bromo end groups were used, but none of the reactions succeeded.

In the case of an alkenyl end group, the reaction to the mono-substituted bpy was successful.

Attempts to obtain the symmetric ligand were made, but none yielded the desired product. Several

attempts were made to functionalize the double-bond with a thioacetate. This included the reaction

with thioacetic acid and AIBN in MeOH under re�ux as well as in THF under light irradiation. All

trials were unsuccessful.

Scheme 2.9: Reaction scheme for S3 and two S4 -precursors.
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2.2.6 Ligands S5 and S6 for polymer functionalization

The bipyridine based ligand S5 comprises a long �exible chain connected via an ether bridge. The

alkyl chain bears a hydroxyl group as the reactive site. S6 is the symmetric analogue. The ligands

are synthesized in the same way as the L4 derivatives. Reaction of 10-bromodecan-1-ol with [2,2′-

bipyridin]-4-ol or [2,2′-bipyridine]-4,4′-diol in the presence of potassium carbonate yields S5 and S6,

respectively. 10-Bromodecan-1-ol was synthesized by bromination of 1,10-decandiol.[76] The asym-

metric bipyridine was obtained from 2,2′-bipyridine.[14, 77] Attempts to synthesize this precursor by a

Negishi cross-coupling[63] between 4-methoxy-2-bromopyridine and 2-pyridylzinc bromide were per-

formed but discarded as only low yields were obtained. The monofunctionalization of 2,2′-bipyridine

was preferred as this synthetic route involved less steps and higher yields.

Attempts were made to functionalize the hydroxyl groups at the chain ends. Reaction of S6 with

methacrylic anhydride in THF at room temperature only partially yielded the desired ester.[78] With

the ligand S5 almost complete ester-formation was obtained, but due to the reactive character of the

methacrylate, puri�cation was not possible. Neither column chromatography nor recrystallization

yielded the pure product.

Scheme 2.10: The ligands S5 and S6 .
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2.3 Photophysical properties

All absorption and photoluminescence spectra were recorded in CHCl3. For the L2 family, the

protected compounds L2-SAc, L2-CMe and L2-PEt were used due to their good solubility which

contrasts with the poor solubility of the deprotected compounds. Additionally, spectra of MeO-tpy

were recorded to see if the alkyl chain and the anchoring group in�uence the photophysical properties.

The same procedure was utilized for the L4 family. For these ligands spectra of L4-SAc, L4-CMe,

L4-PEt and MeO-bpy were recorded.

2.3.1 Absorption spectra

Ligand L1

The electronic absorption spectrum of L1 (Fig. 2.1) shows a maximum at a wavelength of 280 nm

with ε = 31800 dm3mol−1 cm−1. This band arises from π* ← π transitions centred on the aromatic

system. The spectrum also shows a shoulder at 315 nm.

Figure 2.1: UV-Vis spectrum of L1 (CHCl3, 4.2 ·10−5M).
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Ligand L2

The absorption spectra of L2-SAc, -CMe, -PEt and MeO-tpy are shown in Fig. 2.2. All four

compounds show an intense band at 287 nm. This absorption arises from π* ← π transitions. No

di�erence between the various anchoring groups can be observed. Also the extinction coe�cients

are in the same range with ε ≈ 34000 dm3mol−1 cm−1.

Figure 2.2: UV-Vis spectra of the L2 ligands (CHCl3, 1 ·10−5M).

Ligand L3

The ligand L3 shows two main bands in the UV-Vis absorption spectrum. The �rst maximum is at

a wavelength of 243 nm with an extinction coe�cient of 16200 dm3mol−1 cm−1. The second band

is at 301 nm with ε =11500 dm3mol−1 cm−1. Both bands arise from π* ← π transitions.

Ligand L4

In the solution absorption spectra, the ligand family L4 shows di�erent maxima, depending on

the anchoring group (Fig. 2.3). Whereas MeO-bpy and L4-CMe have absorption maxima at

259 nm, L4-PEt and L4-SAc are blue-shifted with maxima at 255 nm and 240 nm respectively.

All absorption bands arise from π*�π transitions.
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Figure 2.3: UV-Vis spectra of the L4 family (CHCl3, 1 ·10−5M).
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2.3.2 Photoluminescene

Ligand L1

The emission and excitation spectra of L1 are shown in Fig. 2.4. The excitation spectrum was

recorded at λem = 360 nm and shows a maximum at 285 nm. This is in in accordance with the

observations from the absorption spectroscopy, where the maximum was found at 280 nm. In the

emission spectrum with an excitation wavelength of 280 nm, two maxima at 342 nm and 356 nm

are found.

Figure 2.4: Solution emission (solid line) and excitation (dashed line) spectra of CHCl3 solutions of
L1 , λexc = 280 nm, λem = 360 nm, normalized.

Ligand L2

The emission spectra were recorded with λexc = 290 nm. At 287 nm, the absorption maximum

is located. All ligands of the L2 family show emission with maximum at 359 nm (Fig. 2.5). As

described above in the absorption spectra, no di�erence between the spectra for the various ether

chains is observed.
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Figure 2.5: Solution emission spectra of CHCl3 solutions of ligands MeO-tpy and L2 , λexc = 290
nm, normalized.

Ligand L3

The solution emission and excitation spectra for L3 are shown in Fig. 2.6. Upon excitation at

300 nm, where the maximum of the second absorption band is located, the ligand shows two emission

maxima at 350 nm and 365 nm. In the excitation spectrum for 360 nm, the maximum is found at

287 nm.
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Figure 2.6: Solution emission (solid line) and excitation (dashed line) spectra of CHCl3 solutions of
L3 , λexc = 300 nm, λem = 360 nm, normalized.

Ligand L4

Two di�erent excitation wavelengths, 250 nm and 320 nm, were used to record emission spectra of

L4. The �rst, 250 nm, was chosen due to the position of the absorption maxima, whereas the second,

320 nm, was found as a maximum in the excitation spectra. With λexc = 250 nm, MeO-bpy and

L4-PEt show maxima at 316 nm with a shoulder at 382 nm, L4-CMe shows a maximum at 382 nm

with a shoulder at 316 nm. L4-SAc shows also a shoulder at 382 nm and a red-shifted maximum

at 443 nm. Excitation at 320 nm gives for MeO-bpy, L4-CMe and L4-PEt maxima at 386 nm

whereas L4-SAc shows a red-shifted maximum at 443 nm. As observed in the electronic absorption

spectroscopy, there is a dependence on the substituent present in the ligand.
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Figure 2.7: Solution emission spectra of the L4 family (CHCl3, λexc. = 250 nm), normalized.

Figure 2.8: Solution emission spectra of the L4 family (CHCl3, λexc.= 320 nm), normalized.
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2.4 XRD

2.4.1 L4-CMe

Crystallographic grade crystals of L4-CMe were grown by slow evaporation from acetone.

Crystallographic data

formula moiety C20H24N2O6 μ(Cu-Kα) [mm−1] 0.848

formula weight [g mol −1] 388.41 T [K] 123

crystal colour and habit colourless block re�n. collected 7934

crystal sytem triclinic unique re�n. 1668

space group P-1 re�n. for re�nement 1573

a,b,c [Å] 6.7491(4), 7.1363(5), 10.5428(7) parameters 128

α, β,γ [°] 77.923(3), 73.076(3), 78.520(3) threshold I > 2σv

U [Å3] 469.83(5) R1 ( R1 all data) 0.0363 (0.0377)

Dc [Mg m−3] 1.373 wR2 ( wR2 all data) 0.0960 (0.0971)

Z 1 goodness of �t 1.075

L4-CMe (Fig. 2.9) crystallizes in the space group P-1 with the bpy unit planar by symmetry in a

trans conformation. The molecules arrange as layered sheets in the crystal. In one plane hydrogen

bonds between the pyridine nitrogen (N1) and a hydrogen of the methyl group (H10B) are formed

as well as between the ether oxygen (O1) and the hydrogen of the pyridine ring on the 4-position

(H4A). Additional hydrogen bonding occurs between the carbonyl oxygen (O2) of one layer and a

hydrogen of a CH2 group (H6B) in the upper sheet (Fig. 2.10). The interplane distance between

two pyridine rings is too large to enable π-stacking.
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Figure 2.9: Structure of L4-CMe with ellipsoids plotted at 50 % probability.

Figure 2.10: Hydrogen bonding between the L4-CMe molecules in the crystal.
Distances: N1-H10B = 2.675 Å; O1-H4A = 2.479 Å; O2-H6B (upper sheet) = 2.686 Å,
interplane distance = 3.510 Å, interplane centroid-centroid distance = 5.071 Å.
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2.5 Concluding remarks

2.5.1 Ligand L1

The terpyridine-based anchoring ligand L1 contains a disul�de group as the anchoring moiety. This

group can be used for anchoring on gold surfaces and nanoparticles (NPs), but also applied for other

materials like CdSe. For gold, functionalization with the ligand can be done directly[79] whereas for

CdSe, reduction of the disul�de to the thiols is necessary.[80] The amide linkage between the tpy

and the anchoring chain provides a very stable connection. Even under harsh conditions such as

high temperatures or low pH values no cleavage was observed. A phenyl-substituted terpyridine

acts as coordination site. With this, complexation with most transition metals is possible. Addi-

tionally the phenyl-substituent leads to the extension of the conjugated π system and a resultant

photoluminescent emission near the visible region.

The synthetic route involves �ve steps with acceptable to good yields. All synthetic procedures and

most intermediates are known in the literature. L1 was used as anchoring ligand in complex C1

(chapter 3 ).

2.5.2 Ligand L3

Anchoring ligand L3 contains bipyridine as coordination site and acetate protected thiols as an-

choring groups. These can be applied for functionalization of the same materials like L1. A �exible

hexyl chain acts as spacer and an ester group as linkage between the anchor and the coordination

site. The ester should yield a robust connection but problems concerning the stability were observed.

It is known that esters are prone to hydrolysis under basic or acidic conditions. But we observed

transesteri�cation with di�erent alcohols as solvent under elevated temperatures (section 3.2.2 ).

The synthesis of the ligand is straightforward and contains only three steps with good yields. L3

was used as anchoring ligand in complex C2 (chapter 3 ).

2.5.3 Ligands L2 and L4

L2 and L4 were obtained following a similar synthetic strategy. Both ligand families were synthesized

with each three anchoring groups. With carboxylic and phosphonic acids functionalization of metal

oxides like TiO2 or SiO2 is possible. With thiols the same materials as described for L1 and L3 are

accessible. This variety of materials o�ers a broad range of possible applications. The conncetion via

an ether-bridge shows high stability under di�erent conditions. Neither extreme pH values nor high

temperatures or high pressure caused cleavage of the side chain. The bridging oxygen also expands

the π-system of the ligands and leads to luminescence enhancement and for L4 also to a red-shift of

the emission maxima.

The synthetic approach starts from readily accessible materials and contains no more than �ve steps.

Altering of the chain length as well as introduction of other anchoring groups is possible with this
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strategy. L2 and L4 were used for surface functionalization (chapter 4 ). L4-SAc was applied as

anchoring ligand in complex C3 (chapter 3 ).
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3 Complexes for ion detection

3.1 Abstract

In this chapter the synthesis, characterization and photophysical properties of six Ru(II) complexes

are described. Also the sensing properties are examined and discussed. The complexes contain a sen-

sor ligand and one or two anchoring ligands, described in chapter 2. The anchoring ligands should

yield strong binding to a surface to give a metal complex functionalized material with detection

properties. C1 with its accessible pyridine nitrogen was tested for pH-sensing. C2, its model com-

pound C2*, and C3 bear the phen-based ligand L5 which is known to interact with F− ions.[81, 82]

These complexes were used as �uoride sensing agents. C4 and C5 contain 1,10-phenanthroline-

4,7-dicarbaldehyde (PDA) as the detection ligand and should act as cyanide detectors, like other

ruthenium-based PDA complexes from the literature.[83]

3.2 Synthetic strategy and synthesis

3.2.1 Complex C1

Complex C1 (Scheme 3.1) was synthesized in a straightforward manner. Reaction of pytpy with

RuCl3 in re�uxing EtOH gives the intermediate Ru(pytpy)Cl3,[84] which was used directly for the

next step. The complexation with L1 under re�ux yields the desired compound. As solvent and

reducing agent, ethylene glycol was used.

3.2.2 Complexes C2 and C2*

In Scheme 3.2, the synthesis for the complex C2 is shown. Reaction of the starting material RuCl3
with 1,5-cyclooctadiene (cod) results in the intermediate RuCl2(cod). Here cod acts as an η4-ligand

for the Ru(II) metal center.[85] In the next step, cod is substituted by two anchoring ligands L3 to

yield Ru(L3)2Cl2. The phen-based ligand L5 was synthesized by Dr. Iain A. Wright. The pre-

cursor 1,10-phenanthroline-5,6-dione was synthesized as described in literature.[86] Reaction of this

precursor with commercial 2,4-dinitrophenylhydrazine under acidic conditions yielded the desired

compound. L5 has a low solubility in many common solvents. Thus complexation was performed in

the microwave reactor to allow higher temperatures and pressures in the closed vials. The solvents

THF, DMF, tert-butyl alcohol and water were tested but none yielded the desired complex. When

alcohols such as ethylene glycol and EtOH were used, the complexation proceeded, but partial trans-

esteri�cation of the anchoring ligands was observed. Lowering the reaction temperature to avoid this

side reaction was unsuccessful. MeOH as solvent showed promising results although transesteri�ca-

tion was also observed. Several test reactions were made to optimize the reaction parameters. No

complexation at temperatures below 110 °C occured. Shorter reaction times showed slightly lower

transesteri�cation but also lower yields. Finally, a temperature of 115 °C and a reaction time of 23

min. showed the best results with respect to yield and transesteri�cation.
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Scheme 3.1: Complexes C1-C5 for detection.

Approaches to introduce the L5-precursor 1,10-phenanthroline-5,6-dione for subsequent reaction to

the hydrazone did not work either.

Due to the rather demanding synthesis of C2, the model compound C2* was synthesized. In this

complex, the anchoring ligand L3 was substituted by dimethyl [2,2′-bipyridine]-4,4′-dicarboxylate

(dmcbpy). It was supposed that the methyl ester would provide the same environment as the
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substituted hexyl ester of L3 and would have no in�uence on the detection properties of the complex.

Thus, all further experiments were conducted with the model complexC2*. As shown in Scheme 3.2,

the dmcbpy-ligand was reacted with the RuCl3, yielding cis-Ru(dmcbpy)2Cl2 as intermediate.[87]

For the complexation with L5, higher temperatures and longer reaction times could be used because

transesteri�cation caused no problems.

Scheme 3.2: The synthetic routes to the complexes C2 and C2* .

3.2.3 Complex C3

The complex C3 was made as an alternative to C2. It also contains the ligand L5 for F− detection,

but as anchoring ligand L4-SAc was used instead of L3. For synthesis, the same procedure was

applied as for C2 (Scheme 3.2). First, two anchoring ligands were coordinated to the RuCl2(cod)

precursor. Then, L5 was introduced, using MeOH as solvent in the microwave reactor. With

L4-SAc as anchoring ligand, even at higher temperatures no stability problems were observed.

3.2.4 Complexes C4 and C5

The complexes contain a 1,10-phenanthroline ligand with two aldehyde groups (PDA) as detection

unit. C4 bears dmcbpy-ligands which should act as a model compound for the ligand L3, similar to

C2 and C2*. The synthesis follows the same procedure as for C2*. The complex is obtained from

reaction of Ru(dmcbpy)2Cl2 and PDA in the microwave reactor. C5 is yielded by the complexation

of PDA to the cis-Ru(L4-SAc)2Cl2 precursor under re�ux conditions in aqueous EtOH.
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3.3 Photophysical properties

3.3.1 Absorption spectra

Complex C1

The heteroleptic complex C1 shows three maxima in the absorption spectrum (Fig. 3.1). The two

bands in the UV region at 280 nm (ε= 68600 dm3mol−1 cm−1) and 312 nm (ε = 65800 dm3 mol−1 cm−1)

arise from ligand based π* ← π transitions. The maximum at 490 nm with an extinction coe�cient

of 27500 dm3mol−1 cm−1 is caused by an MLCT transition. These maxima are comparable with

the values obtained for the homoleptic complex [Ru(pytpy)2][PF6]2.[88]

Figure 3.1: Solution absorption spectrum of C1 (MeCN, 1 ·10−5M).

Upon addition of H+, the maximum of the MLCT is red-shifted due to protonation of the free

nitrogen in the pendant pyridine ring (Fig. 3.2). This can be examined by titration with an acid.

The results of the titration with HCl are shown in Tab.3.1. The �rst shift occurs after the addition

of 2 eq. H+ and levels o� after about 4.5 eq. with a red-shift of 9 nm. This shift is in accordance

with the values obtained for the mono-protonated homoleptic pyridyl-terpyridine complex.[89]
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Figure 3.2: Absorption spectrum of C1 before (solid line) and after addition (dashed line) of an
excess HCl (MeCN, 5 ·10−5M).

Eq. of HCl Absorption maximum [nm] Eq. of HCl Absorption maximum [nm]

0 490 4.0 498
0.5 490 4.5 499
1.0 490 5.0 498
1.5 490 5.5 499
2.0 492 6.0 499
2.5 493 6.5 499
3.0 496 7.0 499

Table 3.1: Titration of C1 with HCl, correlation between absorption maximum and H+ concentra-
tion.
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Complex C2*

Three maxima can be observed in the electronic absorption spectrum of the complex C2*. The

band at 309 nm (ε = 77000 dm3mol−1 cm−1) arises from ligand based π* ← π transitions. The

second maximum at a wavelength of 474nm (ε = 53400 dm3mol−1 cm−1) is caused by a charge

transfer centred on the L5-ligand[81] and the maximum of the MLCT transition is at 576 nm with

an extinction coe�cient of 18800 dm3mol−1 cm−1.

To examine the interaction between the complex and di�erent halide ions, excess of the particular

TBA salt was added and absorption spectra were recorded, as seen in Fig. 3.3. As expected the

presence of �uoride ions causes a red-shift in the MLCT band by 7 nm and a strong enhancement to

an extinction coe�cient of 49700 dm3mol−1 cm−1(Fig. 3.4). This can also be observed by naked-eye

with a colour change from red to purple. With other halides, no colour change is observed.
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Figure 3.3: Absorption spectra of C2* with excess of TBA halide salts (MeCN, 1 ·10−5M).

Titrations of the complex C2* with TBA-F solutions were performed and monitored by absorption

spectroscopy. As solvents, MeCN and CH2Cl2 were used. The spectra of the titration in MeCN

are shown in Fig. 3.4. Based on the obtained values dissociation constants Kd were calculated by

Dr. Colin J. Martin using WinEQNMR2 (version 2.00 by Michael J. Hynes [90]). The equilibrium

constant was calculated according to K.Hirose [91] for a logarithmic �tting process. The output of

this �t was used as input for a linear �t to determine the equilibrium constant for the reaction shown

in equation 2.
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For the measurements values of log Kd = 6.49 ± 0.05 (MeCN) and log Kd = 7.42 ± 1.15 (CH2Cl2)

were obtained.

C2∗ + F−� [C2∗ · · · F ]− (2)

A colour change of the C2* solution was also observed upon addition of acetate and hydroxide

anions. Hence titrations with TBA-Ac were performed, also using MeCN and CH2Cl2 as solvents.

The titration was again monitored by absorption spectroscopy and the spectra of the MeCN titration

are shown in Fig. 3.5. For acetate ions (equation 3 ), log Kd values of 7.58 ± 0.24 (MeCN) and

7.42 ± 0.34 (CH2Cl2) were calculated.

C2∗ +AcO−� [C2∗ · · ·AcO]− (3)
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Figure 3.4: Titration of C2* with TBA-F in MeCN (2.5 ·10−5 M).
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Figure 3.5: Titration of C2* with TBA-Ac in MeCN (2.5 ·10−5 M).

Complex C4

In solution, the complex C4 shows in the absorption spectrum a ligand-based maximum at 309 nm

(ε = 36200 dm3mol−1 cm−1) and a shoulder at 362 nm with ε = 9600 dm3mol−1 cm−1. Both bands

arise from π* ← π transitions. In between 420 nm and 500 nm, a broad MLCT transition can be

observed. The maximum is at 473 nm (ε = 13500 dm3mol−1 cm−1) with a shoulder at 440 nm

(ε = 11400 dm3mol−1 cm−1).

The complex was titrated with TBA-CN solution and the process was followed with absorption

spectroscopy (Fig. 3.7). Only small changes were noticed during the addition of the cyanide

salt. The maximum at 473 nm shows a decrease of the extinction from 13500 dm3mol−1 cm−1

to 11700 dm3 mol−1 cm−1 whereas the maximum at 362 nm is red-shifted to 371 nm combined

with an extinction coe�cent increase from 9600 dm3mol−1 cm−1 to 11300 dm3mol−1 cm−1.

The addition of TBA-salts with Br−, I−, NO2
− and HSO4

− anions to C4 caused no changes in the

absorption spectrum. Upon addition of �uoride, acetate and hydroxide anions a di�erent absorption

behaviour was observed, as seen in Fig. 3.8. The maximum at 362 nm is red-shifted to 375 nm with

an increase of the extinction (F− : 11200 dm3mol−1 cm−1; AcO−: 11600 dm3mol−1 cm−1; OH−:

11400 dm3mol−1 cm−1). The MLCT at 473 experiences a blue-shift of almost 40 nm to 343 nm

with an extinction of 13200 dm3mol−1 cm−1 (F−) and 13100 dm3mol−1 cm−1 (AcO−/OH−).
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Figure 3.6: Solution absorption spectrum of C4 (MeCN, 2 ·10−5M).

Figure 3.7: Titration of C4 with TBA-CN in MeCN (MeCN, 2 ·10−5M).
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Figure 3.8: Absorption spectra of C4 with several TBA-salts (MeCN, 2 ·10−5M).
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3.3.2 Photoluminescence

Complex C1

Solution emission spectra of C1 with excitation wavelengths of 490 nm, 540 nm and 590 nm were

recorded (Fig. 3.9). Excitation at 490 nm gives an emission maximum at 658 nm and a shoulder

at 703 nm. With 540 nm as the excitation wavelength, a maximum at 707 nm and a smaller

band at 653 nm are observed, whereas λexc = 590 nm gives only a maximum at 709 nm. For the

homoleptic complexes [Ru(pytpy)2][PF6]2 and [Ru(phtpy)2][PF6]2, emission maxima at 655 nm,[89]

and at 715 nm[92] respectively, were found in the literature. This suggests that the emission spectrum

of C1 is a superposition of two emissions, based on the di�erent ligands.

Addition of HCl to a solution of C1 leads to a red-shift of the maximum to 723 nm and a strong

increase in the intensity (Fig. 3.10). This is in agreement with the literature, where an increase

in intensity and an emission maximum of the mono-protonated complex [Ru(pytpy)(Hpytpy)]3+

at 723 nm is reported.[89] Titrations with NaCl-solution were conducted to prove that the chloride

anions have no in�uence on the results. Upon addition of up to 1.2 equivalents of NaCl, no changes

of the maximum were observed. Reversibility of the protonation was proven by addition of solid

K2CO3 after the addition of acid. The maximum and the intensity returned to their initial values.

Figure 3.9: Solution emission spectra of C1 in MeCN with λexc = 490 nm (solid line), λexc = 540
nm (dashed line), λexc = 590 nm (dotted line).
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Figure 3.10: Solution emission spectra of C1 before (solid line) and after (dotted line) addition of
HCl (MeCN, λexc = 490 nm).

Complex C2*

The solution emission spectra of C2* were recorded at three di�erent excitation wavelengths (Fig.

3.11). With λexc = 309 nm, the maximum was found at 630 nm. Excitation with 474 nm and 575 nm

showed maxima at 643 nm and 648 nm, respectively. Titrations with TBA-F were performed to

examine the e�ects of �uoride anions on the photoluminescent properties of the complex C2*. The

emission spectra were recorded with the excitation wavelengths as mentioned before. Emission

enhancement upon addition of F− was observed, independent of the excitation wavelength. With

λexc = 474 nm, also a continuous shift of the maximum towards longer wavelengths was observed.

The emission maximum for C2* with 2.6 eq. TBA-F is found at 657 nm, a red-shift of 13 nm. The

spectra of this titration are shown in Fig. 3.12. Up to 2.6 equivalents of �uoride, no saturation

of the emission intensity was observed. Only after addition of a huge excess of 22 equivalents, an

intensity decrease was observed, presumably due to quenching. The increase of the emission intensity

is linear. This is shown by plotting the maximum intensity vs. equivalents of F− (Fig. 3.13). The

R2 value displays how good the linear regression �ts to the experimental data. For λexc = 474 nm,

a pseudo-linear increase with a R2 value of 0.9922 (Fig. 3.13) was obtained, whereas λexc = 309 nm

yielded an R2 value of 0.95.
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Figure 3.11: Emission spectra of C2* (MeCN), excited at di�erent wavelengths, λexc= 309 nm
(solid line), λexc= 474 nm (dashed line), λexc= 575 nm (dotted line).
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Figure 3.12: Titration of C2* with TBA-F in MeCN (λexc = 474 nm).

Figure 3.13: Increase of emission intensity of C2* during TBA-F addition ( λexc = 474 nm).
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Complex C4

Emission spectra with two di�erent excitation wavelengths (λexc = 280 nm and 485 nm) were

recorded for the complex C4. With both wavelengths the same emission maximum at 652 nm

was obtained. The in�uence of di�erent anions on the photoluminescence properties of the complex

were investigated by adding four equivalents of the TBA-salt to a solution of C4 (MeCN, 2·10−5 M)

and emission spectra with an excitation wavelength of 485 nm were meassured (Fig. 3.14). No

signi�cant e�ects were observed, aside from an intensity decrease for some anions. When cyanide is

added to a solution of the complex, small changes in intensity and a slight red-shift of 3 nm during

the addition of TBA-CN were observed (Fig. 3.15). As these changes show no consistency, no clear

conclusion can be drawn if these changes are real, just dilution e�ects or measuring errors.

Figure 3.14: Emission spectra of C4 with 4.0 eq. of di�erent TBA salts (λexc = 485 nm, MeCN,
2 ·10−5 M).
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Figure 3.15: Emission spectra of C4 upon additon of TBA-CN (MeCN, λexc = 485 nm).

Complex C5

Photoluminescence spectra of the complex C5 are presented in Fig. 3.16. The emission spectrum

with an excitation wavelength of 485 nm shows a maximum at 660 nm. The same results were

obtained with λexc= 500 nm. The excitation spectrum was measured with λem= 660 nm. The main

contributions to this emission were found at 274 nm and 484 nm with a smaller contribution at

574 nm. The e�ects of cyanide anions on the complex C5 and its emission properties were examined

(Fig. 3.17). Addition of TBA-CN causes a small blue-shift of 3 nm combined with an intensity

decrease.
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Figure 3.16: Solution emission and excitation spectra of C5 (MeCN, λexc = 485 nm, λem = 660 nm,
* = secondary).

Figure 3.17: Emission spectra of C5 before (solid line) and after addition (dashed line) of TBA-CN
(MeCN, λexc = 485 nm).
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3.4 Concluding remarks

3.4.1 Complex C1

The complex C1 was tested towards its properties as a proton sensor. In the electronic absorption

spectra, a clear di�erence between before and after addition of excess H+ to the complex can be

observed (Fig. 3.2). But the �rst shift of the maximum occurs after 2 equivalents of acid and in the

further course the shift is not proportional to the concentration of H+. So, absorption spectroscopy

is not a suitable method for monitoring the H+-concentration with C1.

In the photoluminescence spectra the addition of protons causes an intensity increase and a red-shift

of the maximum to 723 nm, which is in good accordance with the literature.[89] The intensity en-

hancement and the red-shift could be observed for both excitation wavelengths 490 nm and 540 nm.

Intensity saturation was observed at approximately 3 equivalents. The protonation is reversible,

which was shown by the addition of excess K2CO3. C1 shows a quite sensitive response to protons

in photoluminescence spectroscopy. This could be a method for monitoring proton concentration

using C1 as detector.

3.4.2 Complex C2*

The complex C2* was synthesized as a model compound without anchoring groups. It is supposed

that all results are transferable to the detection complexes C2 and C3 with anchoring moieties.

When halide salts were added to a solution of this compound, the absorption spectra showed only

signi�cant changes for �uoride. The intensity of the band at 474 nm decreases and the intensity of the

MLCT band is strongly increased, causing a colour change from red to purple. These observations

are consistent with the published data about this ligand.[82] Bai et al. also report that no changes

were observed for the other halides or anions including HSO4
−, NO3

− and H2PO4
−. The proposed

binding mode of F− to the detection ligand L5 is shown in Scheme 3.3. Without anions, the

ligand can be seen as a quinonehydrazone, in which the keto oxygen and the N-H hydrogen undergo

hydrogen bonding thus forming a six-membered ring. If �uoride is added, a partial proton transfer

to the �uoride occurs which leads to a bond rearrangement. It is assumed that the band at 576 nm

is caused by a charge transfer of the newly formed azophenol-ligand.[81]

Scheme 3.3: Proposed mode of anion binding of L5.[81]
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In the UV-Vis titration experiments, saturation was observed at 1.0 equivalent. This indicates

that one detection ligand interacts with only one anion. To prove this 1:1 stoichiometry, several

measurements were performed and presented as a Job's plot [93] (Fig. 3.18). The fact, that there

are two di�erent lines with a angular point at a molar fraction of 0.5 is a strong argument for the

proposed 1:1 stoichiometry. Comparable results were obtained by Lin et al.[82] Also the calculated

stability constants in MeCN with logK being 6.23 ± 0.03[81] are of the same magnitude as the values

we obtained (log Kd = 6.49 ± 0.05 ). Additional measurements were carried out using CH2Cl2 as

solvent. This was done to gain an insight into the in�uence of the solvent. No signi�cant changes

in the shape of the curves were observed. But stability issues of the salts were noticed, thus only

freshly prepared solutions could be used. It is assumed that this degradation, caused by the acidity

of the solvent, led to the big error in the calculated dissociation constant (log Kd = 7.42 ± 1.15).
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Figure 3.18: Job's plot for the titration of C2* with TBA-F in MeCN, data for maximum at 575
nm.

In the emission spectrum, the addition of �uoride anions causes an increase in the intensity and

leads to red-shifting of the maximum. This intensity gain seems to be linear, at least up to the

tested 2.6 equivalents. The measurements were performed with two di�erent excitation wavelengths

(λexc = 309 nm and 474 nm) and comparable results were obtained. It is supposed that the presence

of F− ions enhances the rigidity of the complex and thus energy loss through non-radiative decay is
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reduced. A second reason for the luminescent enhancement could be attributed to the deprotonation

of the N�H group under the in�uence of the �uoride ion. This can weaken the luminescence quenching

processes intensifying the luminescene.[82]

For related 2,4-dinitrophenyl-hydrazone-based molecules not only sensitivity with �uoride, but also

with other anions have been reported.[94] For the compound, shown in Fig. 3.19, signi�cant changes

in the absorption spectra were observed upon addition of AcO−, H2PO4
− and F−. A�nity constants

were calculated for the anions and the highest a�nity was found for AcO−.

For the complex C2* similar results were obtained. The titrations with TBA-Ac showed the same

changes of the absorption spectra as with TBA-F and here also a 1:1 stoichiometry can be assumed

from the obtained data. This is in accordance with the results from Shao et al.[94] C2* shows also

a higher a�nity to acetate than to �uoride, indicated by the higher log Kd values of 7.58 ± 0.24.

The titration experiments also showed a colour change during the addition of hydroxide anions. It

can be assumed, that this is caused by the same reasons as for �uoride. Hydroxide is a small ion

with a high charge density, like �uoride. So it is reasonable that it can interact in the same way

with the ligand.

In summary, C2* was synthesized, characterized and several measurements were performed. As

reported, the ligand L5 acted as a detector for �uoride and acetate and the results were in good

agreement with the literature.[81, 82, 94] No signi�cant di�erences were noticed between the perfor-

mance of C2* and the complex with 2,2′-bipyridine as ancillary ligands, reported by Lin et. al.[81] So

it was assumed that the ancillary ligands have no in�uence on the sensing properties of the complex

and further investigations with the complexes C2 and C3 were omitted.

Figure 3.19: A 2,4-dinitrophenyl-hydrazone-based compound with strong interaction with acetate
ions.[94]
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3.4.3 Complex C4

The complex C4 was synthesized as a detector for cyanide ions. It is reported that the aldehyde

groups on the phenanthroline ligand interact with the CN− ions and cyanohydrins are formed.[83]

This should eliminate the interference with other reactive ions like �uoride, acetate or hydroxide.

Titration of C4 with TBA-CN showed in the absorption spectra similar changes to those reported

for the complex with two 2,2′-bipyridine ancillary ligands. Other anions like F−, AcO− and OH−

induced a change in the UV-Vis spectra, which contrasts with the results reported by Schmittel et

al.[83] For complex 1 and 2 (Fig. 3.20), no interaction with other ions was observed.

Figure 3.20: Cyanide detection complexes 1 and 2 , reported by Schmittel et al.[83]

In the emission spectra no signi�cant changes were noticed upon addition of di�erent anions. Adding

TBA-CN to a solution of C4 gave no strong enhancement, which is again in contrast to the report by

Schmittel et al.[83] for their complexes. An explanation for this could be found in the calculated MO

compositions (Fig. 3.21). For the complex 1 with bpy as ancillary ligand (Fig. 3.20), the LUMO

and LUMO+1 are almost completely located on the PDA ligand. If the aldehyde is converted into

the cyanohydrin, the orbital distribution changes and large parts of the MOs are located on the

ancillary ligands. The HOMO is based for both complexes on the metal center (Fig. 3.21). It is

assumed that the observed strong blue shift for compounds 1 and 2 is caused by an MLCT switch

from Ru(II) → PDA to Ru(II) → bpy/phen upon addition of cyanide.[83] The complexes 1 and 2

show emission at 732 nm, whereas the emission maxima of the cyanohydrine complexes is at 624 nm

and 614 nm, respectively. These values are comparable with the emission maxima of the homoleptic

complexes at 615 nm[95] and 596 nm.[96]

The introduction of EWGs to the ancillary ligand can have a strong in�uence on the distribution

and energy levels of the MOs. We assume that this is the reason for the di�erent behaviour of
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C4 compared to the complexes reported by Schmittel et al.[83] If the LUMO is already located on

the anchoring ligand, the addition of cyanide ions may not necessarily cause a redistribution of the

composition of the MOs and thus no MLCT switch can occur and no changes in the emission spectra

are observed.

Figure 3.21: Calculated MOs for [Ru(bpy)2(PDA)][PF6]2 (left) and [Ru(bpy)2(PDA-CN2)][PF6]2
(right); DFT calculations with B3LYP/ 6-31G(d) for C, H, N and LANL2DZ for Ru as exchange
correlation functional.[83]
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3.4.4 Complex C5

Complex C5 shows similar properties as C4 in the photoluminescence spectra. Addition of TBA-CN

to a solution of the complex causes only a small blue-shift and a decrease in intensity. This indicates

that here again the MO distribution on the complex with anchoring ligands is di�erent to the one

on 1 and 2 with unsubstituted ancillary ligands (Fig. 3.20). The ether bridge shows a weaker

inductive (-I ) and a stronger mesomeric (+M) e�ect, compared to the ester. But presumably the

in�uence of this substituent is still too strong, so that the energy of the bpy-based MOs is lowered

and the LUMO is located on the anchoring ligands and not, like in the complexes 1 and 2, on the

PDA-ligand (Fig. 3.21). With this MO composition, upon addition of CN− no MLCT switch can

occur, as described before (section 3.4.3).
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3.5 Summary

In summary, six ruthenium complexes have been synthesized, characterized and tested towards their

detection properties. Information read-out was investigated by absorption and photoluminescence

spectroscopy. All tested sensing compounds were derivatives of known substances from the literature.

Complex C1 showed sensitivity towards protons, but the monitoring with photoluminescene spec-

troscopy cannot be done straightforward. Complex C2*, bearing a �uoride-sensitive ligand, showed

similar detection properties as reported in the literature.[81, 82] For monitoring the analyte concen-

tration, both spectroscopic methods are suitable. Although the complex is quite selective towards

F−, comparable responses with two other anions were observed. The complexes C2 and C3 bear the

same detector ligand as C2*. Based on the obtained results, similar behaviour of these compounds

as for C2* can be assumed. C4 and C5 are derived from a cyanide-sensitive compound from the

literature.[83] Both complexes showed only slight changes upon addition of CN−, unlike as reported.

But a possible explanation for the di�erent behaviour could be found. The structural changes from

the literature complex 1 (Fig. 3.20) to C4 and C5 showed a bigger in�uence than expected.
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4 Surface functionalization

4.1 Abstract

In this chapter several applications for the previously described anchoring ligands L2 and L4 (Scheme

4.1) are shown. Here the functionalization of TiO2 surfaces with the ligands is described as well

as the photophysical characterization of these surfaces (section 4.2). Possible applications of the

terpyridine-based ligand as a detector for transition metal ions were investigated (section 4.3). Fur-

thermore, gold nanoparticles (Au-NP) were synthesized, functionalized with L2-S and L4-S and

examined by absorption and photoluminescence spectroscopy (section 4.4). L2 was also used as

ancillary ligand for three cyclometalated Ir(III) complexes (section 4.5).

Scheme 4.1: The anchoring ligands L2 and L4 .
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4.2 TiO2

4.2.1 Preparation and functionalization of TiO2 surfaces

TiO2-coated FTO glass slides were prepared as previously described.[97] One layer of TiO2-paste

(DSL 90-T) was screenprinted onto FTO-glass, dried at 120 °C, sintered at 450 °C and had an area

of approx. 0.28 cm2. Functionalization of the TiO2 surfaces was performed by dipping methods.

Solutions of the ligands L2-P, L2-C, L4-P and L4-C (2.5 mM) in aqueous NaOH (pH 11) were

prepared and for each, two TiO2-coated FTO glass samples were immersed for a certain period of

time. The slides were removed from the solutions and were washed with water, 0.1 M aqueous NaOH

and again with water before drying in an air stream.

The ligand-functionalized TiO2-samples were used for further complexation with transition metal

ions. Aqueous solutions of FeCl2 or CoCl2 (10 mM) were dropped onto L2-functionalized samples,

which led to an immediate colour change (Fe, purple; Co, yellow) of the initially colourless slides.

Afterwards the samples were washed with water and dried.

L4-functionalized samples were treated �rst with a 10 mM aqueous FeCl2 solution for 5 minutes

and washed with water. The slides were then immersed in an acetone solution (10 mM) of either

bpy or phen for 5 minutes, then removed and washed with acetone and dried. Persistence of a red

colour indicated complex formation.

4.2.2 Photophysical properties

The solid state absorption spectroscopy was carried out in transmission mode. The samples were

put in the light beam during the measurements. As a blank, a non-functionalized TiO2 sample was

used.

TiO2 with ligand

Solid state absorption spectra of L2 and L4 functionalized TiO2 surfaces were recorded. Absorption

in the UV region was observed for all samples, but due to the background absorption of the TiO2,

no reliable results could be obtained.

In their solid state photoluminescence spectra, L2-P functionalized samples show an emission maxi-

mum at 359 nm upon excitation at 280 nm (Fig. 4.1). This is identical with the maximum obtained

in solution (section 2.3.2 ). So there is no di�erence between emission of the free ligand in solution

and bound on TiO2. At the 366 nm-wavelength of a common laboratory UV-lamp the luminescence

of the ligand can be seen by eye. So the coverage of the surface with the ligand after functionalization

can be checked easily.

As the bypridine-based ligands L4 are only weakly emissive, no solid state photoluminescence of the

functionalized samples could be detected.
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Figure 4.1: Solid state emission of untreated and treated TiO2, excitation at 280 nm.

TiO2 with metal complex

Fe(II) and Co(II) were used as metal ions because they yield coordination complexes with absorp-

tion in the visible region. Addition of aqueous FeCl2 to the L2-functionalized samples caused an

immediate colour change. Depending on the ligand used, a di�erent colour was obtained. Fig. 4.2

shows a picture of the samples. Solid state absorption spectroscopy showed an MLCT maximum at

577 nm for L2-P and at 594 nm for L2-C. For comparison, the homoleptic iron(II) complexes with

the ligands L2-PEt, L2-CMe and L2-C were synthesized following the previous reported general

procedure.[98] Purity was con�rmed by 1H-NMR spectroscopy. The solution absorption spectra of

these complexes are displayed in Fig. 4.3. The maximum of the MLCT transition band for the

three complexes is at 570 nm, demonstrating that the MLCT transition bands of the surface-bound

complexes are red-shifted by 7 nm and 24 nm respectively.

Upon addition of CoCl2 to a L2-functionalized sample, a colour change from colourless to yellow

was observed. This indicates the formation of a complex.
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Figure 4.2: Picture of TiO2 samples functionalized with L2-P (left) and L2-C (right), after addition
of FeCl2.

L4-functionalized samples show no colour change when aqueous FeCl2 solution is applied. Only

after the addition of another ligand, a change from colourless to red can be observed. From this, the

formation of a heteroleptic complex on the surface can be assumed (Scheme 4.2). As capping units,

di�erent bidentate ligands such as bpy, MeO-bpy and phen were used. In the absorption spectra

(Fig. 4.4) no signi�cant di�erences between the ancillary ligands can be observed. All spectra show

a broad absorption in the UV-region up to 360 nm which tails o� into the visible range. The MLCT

transitions are not observed due to their low extinction coe�cients.
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Figure 4.3: Solution absorption spectra of the homoleptic complexes [Fe(L2-PEt)2][PF6]2 (solid
line), [Fe(L2-CMe)2][PF6]2 (dashed line) and [Fe(L2-C)2][PF6]2 (dotted line) (MeCN).

Scheme 4.2: Scheme of the proposed processes on the TiO2 surface upon addition of Fe(II) ions
followed by addition of capping ligands.
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Figure 4.4: Solid state absorption spectra of L4-P functionalized TiO2 after addition of FeCl2-
solution and bpy (solid line), MeO-bpy (dotted line) and phen (dashed line) as ancillary ligand.

4.2.3 Time dependence

The in�uence of the dipping time on the ligand loading on the surface was investigated for L2. Two

samples were left in the dipping solution for one day, two days and three days. After addition of

FeCl2 solution, absorption spectra were recorded and the absorbance was compared. For L2-P, no

signi�cant di�erence between the dipping times can be observed (Fig. 4.5). Therefore it can be

assumed that even after one day, the maximum ligand loading on the surface is obtained. Although

for L2-C the measurements were performed several times, no consistent results have been obtained

due to a broad background absorption over the whole spectrum (Fig. 4.6). Hence for this ligand no

conclusion about the in�uence of the dipping time on the ligand loading can be made.
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Figure 4.5: Solid state absorption spectra of the L2-P functionalized and FeCl2-treated TiO2 samples
with di�erent dipping times.

Figure 4.6: Solid state absorption spectra of the L2-C functionalized and FeCl2-treated TiO2 samples
with di�erent dipping times.
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4.3 Metal ion sensing with MeO-tpy

Preliminary studies for a potential application as metal ion detector of the L2- functionalized TiO2-

samples, described in section 4.2, were performed. Homoleptic transition metal complexes with the

model ligand 4′-(4-methoxyphenyl)-2,2′:6′,2′′-terpyridine (MeO-tpy) were synthesized and character-

ized by absorption and photoluminescence spectroscopy. The metal ions Cd2+, Co2+, Cu2+, Fe2+,

Mn2+, Ni2+ and Zn2+ were used as chloride salts.

4.3.1 Complex synthesis

All complexes were synthesized following the same procedure. A 1 mM solution of MeO-tpy in

MeOH was prepared. 10 ml of the ligand solution (10 µmol) and a metal salt solution (5 µmol in

5 ml water) were combined and stirred at room temperature for 30 min. NH4PF6 was added and

the precipitate that formed was separated by centrifugation. The solid was suspended in water and

separated by centrifugation. After drying in an airstream the complex was obtained as a solid.

4.3.2 Photophysical properties

The absorption and photoluminescence spectra were recorded in MeCN. In Tab. 4.1, the maxima

for the di�erent metal complexes are displayed. All complexes show two absorption bands in the

UV-region. Both bands are ligand based and arise from π*← π transitions. Only the complexes with

Fe2+ and Co2+ show an MLCT transition in the visible region. The emission spectra were recorded

with λexc= 290 nm (Fig. 4.7) and λexc= 330 nm (Fig. 4.8). With cadmium and zinc a strong blue

emission at 460 nm was obtained at both excitation wavelengths. The Fe2+ complex showed an

emission in the red region at 752 nm. The metal contribution to this emission is con�rmed by the

observation of a band at 588 nm in the excitation spectrum (Fig. 4.9). Attempts to measure the

lifetime and quantum yield of this emission failed due to its weak intensity.

Metal ion Max. absorbance Max. emission (λexc= 290 nm) Max. emission (λexc= 330 nm)

Cd2+ 283 nm / 330 nm 461 nm 460 nm
Co2+ 283 nm / 326 nm / 517 nm 399 nm 440 nm
Cu2+ 288 nm / 317 nm 427 nm 437 nm
Fe2+ 283 nm / 322 nm / 569 nm 389 nm / 752 nm 443 nm
Mn2+ 286 nm / 341 nm 390 nm 458 nm
Ni2+ 280 nm / 342 nm 420 nm 430 nm
Zn2+ 283 nm / 340 nm 462 nm 463 nm

Table 4.1: Absorption and emission maxima of the homoleptic [M(MeO-tpy)2][PF6]2 complexes.
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Figure 4.7: Solution emission spectra of the homoleptic [M(MeO-tpy)2][PF6]2 complexes. (MeCN,
λexc= 290 nm).

Figure 4.8: Solution emission spectra of the homoleptic [M(MeO-tpy)2][PF6]2 complexes (MeCN,
λexc= 330 nm). 69
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Figure 4.9: Photoluminescence spectra of [Fe(MeO-tpy)2][PF2]2, emission (λexc= 290 nm, solid
line) and excitation (λem= 750 nm, dotted line); MeCN, * = secondary.
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4.4 Gold nanoparticles

4.4.1 Synthesis and functionalization

Two nanoparticle solutions (A and B) were synthesized according to a literature procedure.[99] A

solution of 1% aqueous HAuCl4-solution (A: 1 ml, B : 2 ml), water (100 ml) and 1% aqueous sodium

citrate-solution (2 ml) was heated to re�ux for 1.5 h. During this time the colourless solution turned

red. After cooling to room temperature, 0.1 M aqueous K2CO3-solution (0.5 ml) was added. The

solutions were stored in the dark.

Functionalization of both particle solutions A and B was performed with ligands L2-S and L4-S.

The ligands were deprotected as described earlier (section 2.2.4 ). The solutions with an approximate

concentration of L2-S: 1.5 mM and L4-S: 1.0 mM were used directly for functionalization. The

nanoparticle solution (10 ml) and ligand solution (1 ml) were mixed and stirred at room temperature

for 1.5 h. For L2-S, the excess ligand was �oating on top of the solution and was removed by �ltering

with a syringe �lter (0.20 µm).

The obtained solutions A-L2, B -L2, A-L4 and B-L4 were mixed with 10 mM FeCl2-solution

(100 µl). This caused a colour change from red to purple of solutions A-L2 and B -L2. A small

amount of each solution was taken and NH4PF6 was added. As no precipitation was observed it can

be assumed that essentially no complex is unbound in solution.

Filtering of the solutions A and B with a 0.20 µm syringe �lter had no e�ect on the solutions.

No precipitate in the �lter was visible. Also no change in the absorption spectrum before and

after �ltering was observed. After �ltration of the solutions A-L2 and B -L2 no change in colour or

intensity could be detected by eye. This observation was proven by absorption spectroscopy. Similar

results were obtained for A-L4 and B -L4. Filtration of the solutions after addition of iron(II) yielded

colourless liquids and purple particles in the �lter. This can also be seen as an indication for almost

no free complex in solution.

4.4.2 Photophysical properties

Absorption spectra

In the electronic absorption spectra of the nanoparticle solutions A and B, surface plasmon resonance

(SPR) bands at 522 nm and 519 nm, respectively were observed (Fig. 4.10). According to the

literature, from this wavelength a particle size of 15-20 nm[100, 101, 102, 103] and a concentration of

0.15 nM for A and 0.27 nM for B can be approximated.[103, 104]

The L2-S functionalized particles show a ligand-based absorption band at 290 nm. The SPR band is

red-shifted to 541 nm (Fig. 4.11). Functionalization with L4-S leads to a red-shift of the SPR band

to 540 nm (A-L4) and 524 nm (B -L4) (Fig. 4.12). It is presumed that these shifts are attributed

to the increased size of the functionalized particles. The addition of FeCl2 to A-L2 and B -L2 again
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Figure 4.10: Absorption spectra of the gold nanoparticle solutions A (solid line) and B (dotted line).

causes a change in the absorption spectra (Fig. 4.11). With maxima at 283 nm, 319 nm and 571 nm

the spectra are similar to the ones obtained from the homoleptic complexes [Fe(MeO-tpy)2][PF6]2

(section 4.3.2 ), [Fe(L2-PEt)2][PF6]2, [Fe(L2-CMe)2][PF6]2 and [Fe(L2-C)2][PF6]2 (section

4.2.2 ). This gives rise to the assumption that the homoleptic complex is formed on the surface of

the nanoparticles.

The presence of iron(II) in solutions A-L4 and B -L4 causes a further red-shift of the SPR to 548 nm

and 542 nm respectively (Fig. 4.12). This is consistent with another particle size increase. The

maximum of the MLCT transition of the homoleptic complex [Fe(L4-SAc)3][PF6]2 is at 538 nm.

This gives rise to the assumption that the species present is not the homoleptic coordination complex.

These results are congruent with the observations on TiO2 (section 4.2).

A second batch of L2-S functionalized particles A-L4′ and B -L4′ were prepared. For these samples

absorption maxima of 532 nm and 543 nm were obtained. The samples were measured again after

one week. Both maxima were red-shifted to 540 nm and 547 nm respectively. Addition of Fe(II)

to the solution caused no further change. A reason for the observed shift could be aggregation

processes. The unfunctionalized particle solutions A and B showed no change in the absorption

spectra after 3 weeks.
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Figure 4.11: Absorption spectra of A (solid line), A-L2 (dotted line) and A-L2+Fe (dashed line).

Figure 4.12: Absorption spectra of B (solid line), B-L4 (dotted line) and B-L4+Fe (dashed line).

73



4.4 Gold nanoparticles 4 SURFACE FUNCTIONALIZATION

Photoluminescence

Both particle solutions A and B were excited at 520 nm and showed emission maxima at 571 nm,

632 nm and 781 nm. After functionalization, A-L2 and B -L2 show an intensity increase for the

emission at 781 nm. After the addition of iron(II) to the solution, the emission is quenched and

returns to the initial values (Fig. 4.13).

For A-L4 and B -L4, comparable results as for the L2-S functionalized particles were obtained.

Upon excitation at 520 nm, an increased intensity for the emission at 783 nm was observed. The

addition of FeCl2 leads to a decreased intensity of that emission.

Figure 4.13: Solution emission spectra of B (solid line), B-L2 (dashed line) and B-L2+Fe (dotted
line) (λexc= 520 nm).
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4.5 Iridium(III) complexes

4.5.1 Synthetic strategy and synthesis

The Ir(III) complexes C6, C7 and C8 were synthesized following a common strategy. IrCl3 and cy-

clometalating ligands H(C^N) were reacted to yield a chloride-bridged dimer Ir2(C^N)4Cl2. Ligands

2-phenylpyridine (Hppy), 2-(4-�uorophenyl)pyridine (Hfppy) and 2-(2,4-di�uorophenyl)pyridine (Hdfppy)

were used. In the next step, an ancillary ligand (N^N) was introduced to obtain the mononuclear

complex [Ir(C^N)2(N^N)][PF6].[105] For all three complexes L4-SAc was used as ancillary ligand.

Complex C6 was �rst synthesized and partially characterized by Dr. Iain A. Wright.

Scheme 4.3: The cyclometalated Ir(III) complexes C6 , C7 and C8 .
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4.5.2 Photophysical properties

In the electronic absorption spectrum of C6, a maximum at 256 nm is observed. Complex C7 shows

two bands in its solution absorption spectrum in the UV region at 227 nm and 251 nm. C8 shows

a shoulder at 232 nm and a maximum at 247 nm. The absorption of the three complexes tails o�

into in the visible region up to approximately 460 nm (C6, C7) and to 420 nm (C8) (Fig. 4.14).

Figure 4.14: Solution absorption spectra of C6 (solid line), C7 (dashed line) and C8 (dotted line)
(MeCN, 2 ·10−5 M).

The wavelength of the emission maximum depends on the substituents of the phenylpyridine ligand.

The �uoro-substituents cause a blue-shift of the emission wavelength. The di�erent coloured emis-

sions can be seen by eye under UV radiation at 366 nm. The photoluminescence spectra of C7 and

C8 are shown in Fig. 4.15. The several photoluminescence emissions of the complexes C6, C7 and

C8 are displayed in Tab. 4.2.
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Complex Emission [nm] Emission [nm] Colour of emission at λexc= 366 nm

C6 574, 638sh (λexc= 260 nm) 358 (λexc= 292 nm) orange
C7 360, 542 (λexc= 290 nm) 542 (λexc= 340 nm) yellow
C8 360, 512 (λexc= 280 nm) 512 (λexc= 360 nm) green

Table 4.2: Emission maxima and colour of the complexes C6 , C7 and C8 (MeCN, 1 ·10−5 M).

Figure 4.15: Solution emission spectra of C7 (solid line,λexc= 340 nm) and C8 (dotted line,
λexc = 360 nm) (MeCN, 1 ·10−5 M).

The ether chains on the bipyridine also in�uence the photoluminescence properties. This can be

seen by comparing the emission wavelengths and the corresponding quantum yields Φ with the

analogous unsubstituted bpy-complexes (Tab. 4.3). The emission maxima of C6, C7 and C8 are

blue-shifted and the quantum yields of the complexes C7 and C8 are increased. The value of C6

is not comparable as the measurement was performed with a non-degassed solution. The presence

of oxygen in the solution has a strong e�ect on the quantum yield.
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Complex λ
max
em [nm] Φ [%] Complex λ

max
em [nm] Φ [%]

C6 574 3.9 [Ir(ppy)2(bpy)](PF6)[106] 590 4.5
C7 542 50.8 [Ir(fppy)2(bpy)](PF6)[105] 557 36
C8 512 83 [Ir(dfppy)2(bpy)](PF6)[107] 537 40

Table 4.3: Emission wavelengths and corresponding quantum yields for Ir(III)complexes (MeCN-
solutions, degassed except for C6 ).
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4.6 Concluding remarks

4.6.1 TiO2

TiO2-samples have been prepared and were functionalized with the four ligands L2-P, L2-C, L4-P

and L4-C. Characterization of the functionalized surfaces was performed by absorption and pho-

toluminescence spectroscopy. The L2-P functionalized surfaces showed in the photoluminescence

spectrum a similar emission maximum as the ligand in solution. Treatment of the functionalized

surfaces with aqueous FeCl2-solution resulted for L2-P and L2-C in an immediate colour change

to purple. From this observation, the formation of the homoleptic complex on the surface can be as-

sumed. This is possible due to the ligand structure with one �exible linker chain and an ether bridge.

A di�erence in colour was observed between the complexes of L2-P and L2-C. This was con�rmed

by solid state absorption spectroscopy. Compared to the complexes in solution, both surface-bound

compounds showed a red-shifted MLCT maximum of 7 nm (L2-P) and 24 nm (L2-C). Similar ef-

fects were also reported for ruthenium based DSC dyes upon adsorption on TiO2.[108] An immediate

colour change from colourless to yellow and thus complex formation was observed upon addition of

CoCl2.

For L2, the dipping time of the TiO2 samples in the ligand solution was varied between one and

three days to investigate the time in�uence on the ligand loading. Analysis was performed by solid

state absorption spectroscopy after adding aqueous FeCl2-solution. With L2-P, the results obtained

indicated that even after one day, the maximum ligand loading was reached. The measurements

with L2-C yielded no unambiguous results.

L4-P functionalized samples show no immediate colour change when aqueous FeCl2-solution is

added. Only upon addition of another bidentate ligand like bpy or phen a colour change from

colourless to red can be observed. This indicates that a surface-bound heteroleptic Fe(II) complex

is formed. The capping ligand is necessary due to the structure of the anchoring ligand. With its

two binding sites the ligand is too rigid to form a homoleptic complex. Furthermore, due to the

bidenticity of L4, three ligands would be required to form the octahedral complex. This is not

possible with only surface-bound ligands.

In the absorption spectra, no signi�cant di�erences between the diverse complexes were observed.

Due to the low extinction coe�cient, no MLCT transition was measurable. Only absorption in the

UV-region was observed, but the TiO2 also absorbs in this area.

4.6.2 Metal ion sensing with MeO-tpy

Homoleptic complexes of Cd2+, Co2+, Cu2+, Fe2+, Mn2+, Ni2+ and Zn2+ with MeO-tpy as ligand

were synthesized and examined by electronic absorption and photoluminescence spectroscopy. In the

solution absorption spectra, all complexes show two absorption bands in the UV-region with slightly

shifted maxima. Only the iron(II) and cobalt(II) complexes show absorption in the visible region.

All complexes show emission in the range between 390 nm to 460 nm with excitation wavelengths of
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290 nm and 330 nm. Only the iron complex shows an additional emission at 752 nm. The complexes

with Cd(II) and Zn(II) show at both excitation wavelengths a strong blue emission with maxima at

approximately 460 nm.

Di�erences between the various coordination complexes were observed in the absorption as well as in

the photoluminescence spectra. Using both spectroscopy methods, in principle it should be possible

to distinguish between the di�erent metals. For metals like iron with its characteristic absorption in

the visible region or zinc with its strong emission, detection of the metal ion should be feasible. But

as seen in section 4.2.2, binding to a surface can in�uence the photophysical properties of the metal

complex. Thus, further investigation is required to see if this would be an appropriate method for

metal ion detection.

4.6.3 Gold nanoparticles

Two gold nanoparticle solutions (A, B) were prepared, functionalized with L2-S and L4-S and

treated with FeCl2-solution. Characterization of all samples was performed by absorption and

photoluminescence spectroscopy. Functionalization with the ligands led to a red-shifted maximum

of the SPR band in the absorption spectra. This shift can be attributed to a size increase of the

particles due to the attached ligands as the SPR absorption maximum is depending on the particle

size. After addition of iron(II) ions, the absorption spectra of the L2 functionalized particles showed

the characteristics of the homoleptic complex in solution. For the solutions A-L4 and B -L4 a further

red-shift was observed upon addition of FeCl2. This is consistent with a further size increase.

The nanoparticle solutions show a maximum at 781 nm in the emission spectra at λexc= 520 nm.

Functionalization with L2-S and L4-S caused an increased intensity of this emission. When Fe(II)

ions are added, the emission is quenched and returns almost to its initial values. To gain a more

accurate insight into this phenomenon, more experiments have to be performed.

4.6.4 Iridium(III) complexes

A series of three di�erent luminescent Ir(III) complexes bearing the anchoring ligand L4-SAc were

successfully synthesized and charaterized. The complexes emit light of di�erent wavelengths with

λexc = 366 nm. Comparison with the analogous unsubstituted bpy-complexes show blue-shifted

emission maxima and for C7 and C8 increased quantum yields. This enhancement can be attributed

to the ether substituents.
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5 Diverse ligands

5.1 Abstract

In this chapter, the synthetic route to several di�erent ligands is described. Attempts to an improved

synthetic pathway to the DSSC anchoring ligand ALP are shown as well as the synthesis of the new

anchoring ligand ALP2. Furthermore the preparation of the compounds TA-TEG and TA-PEG

is shown. Also the synthesis of a new detection ligand L6 is described.

5.2 DSSC anchoring ligands

5.2.1 ALP

For DSSCs with copper(I) dyes, di�erent ligands are needed compared to those optimized for ruthe-

nium. If a bpy-based ligand is used, the molecule bears sterically demanding groups like phenyl or

alkyl chains on the 6,6′-positions. These substituents are required to stabilize the tetraheadral geom-

etry of the Cu(I) complex and prevent oxidation of the metal to Cu(II), which prefers a square planar

coordination environment.[42] Two common anchoring ligands are 6,6′-dimethyl-[2,2′-bipyridine]-4,4′-

dicarboxylic acid (ALC) and (6,6′-dimethyl-[2,2′-bipyridine]-4,4′-diyl)bis(phosphonic acid) (ALP),

shown in Fig. 5.1. DSSCs with ALP as anchoring ligand showed better results compared to ALC.
[44] But the synthetic route to this ligand implies in total 7 steps, including several with low yields.

The synthesis of the compound P16 (Scheme 5.1), starting from 2,2′-bipyridine, has an overall yield

of 1 % for this 5-step synthesis. From this precursor, the phosphonate ester ALPE is obtained by

a palladium-catalyzed coupling reaction and the ligand ALP by hydrolysis of the ester under acidic

conditions.[43] Due to the very low yield of the precursor P16, an improved synthetic route was

investigated.

Figure 5.1: Anchoring ligands ALC and ALP for copper(I) dyes.
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Scheme 5.1: The synthetic route to the ALP precursor P16 .

Synthetic strategy and synthesis

A di�erent route to the precursor P16 was sought. The new approach follows the same route as

the current way (Scheme 5.1), but instead of starting with bpy the functionalizations are done on

a pyridine-ring (Scheme 5.2). Then, a crosscoupling should yield the precursor P16 or its chloro-

derivative P21. The chloro-substituent on the 4-position was planned to prevent the formation of

unwanted side products during the crosscpoupling reaction and should allow the reaction to the

phosphonate ester in the next step. This route was expected to deliver higher yields and probably

also allows other substitution patterns or the preparation of asymmetric ligands. Starting from

commercially available 2-bromo-6-methylpyridine, the N-oxide P17 was obtained by reaction with

mCPBA. Treatment of this compound with sulfuric and nitric acids under re�ux conditions yielded

the nitro-compound P18 in good yields for this type of reaction. The substitution of the nitro-group

by a chloride to obtain compound P19 was tried several times, but never succeeded. Neither did

the reaction with acetyl chloride in acetic acid nor with POCl3 in CH2Cl2 yield the desired product.

The bromination with acetyl bromide to obtain compound P20 and the subsequent oxygen removal

with PBr3 should work as reported for similar substances.[109] From this intermediate, bipyridine

P16 should be obtained by a homo-coupling. In the literature, some examples are known where

nickel-based catalysts were used for this type of coupling reaction.[110, 111] By choosing the ideal

reaction conditions, the formation of the substituted bpy should be possible. The nitrogen can

probably coordinate to the metal and thus form the desired bidentate ligand. Unfortunately, the

best conditions for these reactions still have to be found.
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Scheme 5.2: The planned new synthetic route to the ALP precursor.
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5.2.2 ALP2

To improve the performance of DSSCs, di�erent modi�cations were made to the anchoring ligands.

The introduction of a phenyl-spacer between the coordinating and the anchoring part of the ligand

yielded the anchoring ligands ALC1 and ALP1 (Fig. 5.2). Solar cells, built with these ligands,

showed improved e�ciencies compared to the ligands ALC and ALP.[44, 43] So the next step was

the introduction of a biphenyl spacer to obtain the next generation ligand ALP2 (Fig. 5.2).

Figure 5.2: Anchoring ligands ALC1 , ALP1 and ALP2 for copper(I) dyes.

A synthetic route to this ligand (Scheme 5.3) was developed and the reactions partly done by

Dr. Iain A. Wright. As the �rst step, commercially available 4,4′-dibromo-1,1′-biphenyl was con-

verted into the mono-aldehyde P22.[112] Then, the substituted bipyridine P24 was synthesized

following the Kröhnke-strategy.[19] From this intermediate, the phosphonate ester ALPE2 was ob-

tained by a palladium-catalyzed coupling reaction, similar to the procedure used for the syntheses

of ALPE and ALPE1.[43] Transformation of this ester to the ligand ALP2 was tried by acidic

hydrolysis, following the procedure for ALP1,[43] but the reaction did not succeed. Attempts to

hydrolyze the ester by reaction with bromotrimethylsilane in CH2Cl2 under inert atmosphere also

did not work, although this common method works for many other compounds.[113, 114, 115]
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Due to the low solubility in any common solvent, the intermediates P23 and P24 were only charac-

terized by MALDI-MS. For ALPE2, a micro-TXI probe was used to record 1H{31P}, 13C, 31P{1H},

HMQC{31P}, HMBC{31P} and 13C-31P correlation NMR spectra.

Scheme 5.3: Synthesis of the ALP2 precursor ALPE2 .
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5.3 TA-PEG, TA-TEG

Semiconductor nanocrystals, so-called quantum dots (QDs), o�er unique electronic and optical prop-

erties and are promising candidates for molecular �uorophores with many di�erent applications.[80]

For bioimaging, QDs made of CdSe and CdTe show high potential.[116] Common methods for the

synthesis of these QDs are carried out in organic solvents, but especially bioimaging applications

require solubility in aqueous media. One way to modulate the solubility of the QDs is the exchange

of the hydrophobic surface ligands, which are needed during synthesis to obtain the desired size

and properties. Common ligands for replacement are the hydrophilic compounds thioctic acid (TA)

or its reduced form dihydrothioctic acid (DHTA).[80] The hydrophilicity can be even increased if

derivatives of TA with poly(ethylene glycol) (PEG) chains of di�erent lengths are used. With these

ligands, water-soluble and biocompatible QDs can be obtained.[116]

Two TA-based ligands containing either a tetraethylene glycol (TA-TEG) or a PEG400 (TA-PEG)

chain (Fig. 5.3) have been prepared on a multigram scale . The synthesis followed the route described

by Mattoussi et al.[116] Reaction of the particular ethylene glycol with racemic TA under Steglich

conditions[75] yielded the desired ligand. The compounds were delivered to the group of Prof. A.

Credi, University of Bologna for further investigations.

Figure 5.3: Structure of the ligands TA-TEG and TA-PEG.

86



5 DIVERSE LIGANDS 5.4 Detector ligand L6

5.4 Detector ligand L6

The detection of anions and transition metal cations in aqueous media is of great interest. Of special

interest is so-called �naked-eye� detection with chromogenic receptors which o�er easy read-out

without complicated instruments. Compound 3a (Fig. 5.4) is reported in the literature as a detector

for Hg2+ ions[117] and 3b, as its metal complex, as anion sensor.[118] The ligands consist of an azathia

macrocycle, which can coordinate to transition metal ions, and p-nitroazobenzene as chromophore.

Upon addition of a range of metal nitrate salts, compound 3a shows only a colour change with the

mercury(II) salt.[117] Neither the addition of several group 1 and 2 metals as perchlorate salts nor

di�erent anions as TBA salts to a solution of 3b caused a change. Also with diverse transition

metal ions like Ni2+, Zn2+, Cd2+, Pb2+, Fe2+ and Ag+ no signi�cant e�ect was observed. Only

with Cu2+, Hg2+ and Fe3+ changes in the absorption spectrum were observed. The mercury(II) and

iron(III) complexes of 3b also showed selective response to some anions such as nitrate or iodide.[118]

To use the speci�c detection properties of this type of compound and probably also improve them,

the nitro-group was substituted by a tpy-ligand. This led to an enlarged conjugated π-system and

also o�ered the possibility for further coordination.

Figure 5.4: Structure of the detector ligand 3 .

Synthetic strategy and synthesis

The synthetic route to L6 (Scheme 5.4) followed the strategy reported by Kou et al.[117] with some

modi�cations. Reaction of N -phenyldiethanolamine with methanesulfonyl chloride under basic con-

ditions yielded compound P25. The macrocyclic compound P26 was obtained by the reaction

with 3,6-dioxa-1,8-octanedithiol in the presence of potassium carbonate. 4-([2,2′:6′,2′′-Terpyridin]-

4′-yl)aniline was �rst converted into the diazonium salt and then reacted with P26 to the ligand

L6.[119] Unfortunately, this last step was not reproducible. Although several attempts were made

to reproduce it, none of them was successful. Changing the order of the reactions yielded inter-

mediates, but never succeeded to the �nal compound. Because of this, no ion sensing experiments

were performed. L6 was characterized by 1H and 13C NMR spectroscopy and mass spectrometric

methods.
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Scheme 5.4: Synthetic route to ligand L6 .
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5.5 Concluding remarks

5.5.1 ALP

The already established synthesis to ALPE was performed and slightly improved. A novel route to

intermediate P16 (Scheme 5.2) was developed in theory and parts of it performed experimentally.

This new approach should improve the very low yields of the currently used method. To obtain the

desired compound in good yields and high purity, further investgations are necessary.

5.5.2 ALP2

The synthetic pathway to the phosphonate ester ALPE2 has been developed further and the inter-

mediate compounds have been characterized by mass spectrometry. Full 1H and 13C NMR assign-

ment of ALPE2 was performed with NMR spectroscopic methods. Di�erent ways for the hydrolysis

of the ester to the acid have been tried, but none was successful. This last step has to be part of

further investigations to obtain the new anchoring ligand ALP2.

5.5.3 TA-PEG, TA-TEG

The two compounds TA-TEG and TA-PEG were successfully synthesized on a multigram scale

and delivered to the partner-group at the University of Bologna. There, the materials were used for

the modulation of the solubility of QDs.

5.5.4 Detector ligand L6

The new ligand L6 was synthesized once and characterized by standard methods. Unfortunately,

the resynthesis was not possible and also other synthetic approaches did not succeed. As no re-

liable synthesis for this ligand was established, further investigations of the targetted ion sensing

experiments were not performed.
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6 Summary

In this thesis, the synthesis and characterization of a series of polypyridine anchoring ligands have

been presented. A part of these anchoring ligands have been used for the preparation of coordination

complexes for detection applications. The transition metal complexes have been characterized and

their sensing abilities have been examined. Futhermore, the anchoring ligands have been used for the

functionalization of di�erent kinds of surfaces. Additionally, some other ligands have been prepared

for di�erent types of applications.

In Chapter 2, several bpy and tpy-based ligands have been synthesized and fully characterized by
1H and 13C NMR spectroscopy, mass spectrometry, IR spectroscopy, melting point and absorption

and photoluminescene spectroscopy. The ligand families of L2 and L4 have been prepared by a

straightforward synthetic procedure. This strategy allows also variation in the linker chain length

and the use of other anchoring groups.

In Chapter 3, a series of di�erent Ru(II) complexes for detection applications are discussed. The

complexes have been synthesized and characterized by standard analytical methods. Sensing tests

have been performed and investigated by absorption and photoluminescence spectroscopy. Complex

C2* performed well as detection compound for �uoride anions, but also showed sensitivity towards

acetate and hydroxide ions. Complexes C4 and C5 showed only little potential as cyanide detector

compounds.

In Chapter 4, simple protocols have been established for the functionalization of di�erent mate-

rials with the anchoring ligands L2 and L4. For TiO2 surfaces, phosphonic and carboxylic acids

have been used as anchoring groups, whereas thiols have been applied for gold nanoparticle. The

functionalized surfaces have been characterized by absorption and photoluminescence spectroscopy.

Post-treatment of these materials with transition metal salts were performed and evidence for the

formation of coordination complexes on the surface was obtained. Furthermore, three luminescent

Ir(III) complexes with L4-SAc as ancillary ligand have been synthesized and characterized. Com-

parison of the photoluminescent properties with the analogous unsubstituted bpy-complexes showed

forC6, C7 andC8 blue-shifted emission maxima. ForC7 andC8, the quantum yield was increased.

These changes can be attributed to the substituents on the bpy-ligand.

In Chapter 5, a new synthetic strategy to the DSSC anchoring ligand ALP was presented as well

as to a new compound ALP2. For ALP, the improved synthesis should give higher yields than

the one currently used. The preparation of the desired compound was not performed successfully,

but the obtained intermediates showed promising results. For ALP2, the synthesis of the precursor

ALPE2 was performed and improved. Di�erent methods for the hydrolysis of the phosphonate ester
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were tried but did not work. Additionally, a possible new detection ligand L6 has been synthesized

and characterized by 1H and 13C NMR spectroscopy, IR spectroscopy and mass spectrometric meth-

ods. Due to synthetic problems, only a small amount of L6 was obtained and no further sensing

experiments were performed.
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7 Experimental

7.1 General

1H, 13C, 19F and 31P NMR spectra were recorded using a Bruker Avance III-250, Avance III-400

and Avance III-500 NMR spectrometer. For full assignment additional COSY, HMBC and HMQC

spetra were recorded on the Bruker Avance III-500. The chemical shifts δ were referenced to residual

solvent peaks (chloroform: 1H : 7.26 ppm, 13C : 77.16 ppm, acetonitrile: 1H : 1.94 ppm, 13C : 118.26

ppm, DMSO: 1H : 2.50 ppm, 13C : 39.52 ppm, tri�uoroacetic acid: 1H : 11.50 ppm).

Infrared spectra were recorded on a Shimadzu FTIR 8400 S Fourier-transform spectrophotometer

with Golden Gate accessory for solid samples.

Solid state and solution absorption spectra were recorded on an Agilent 8453 spectrophotometer,

for solution photo luminescence a Shimadzu RF-5301PC spectro�uorometer was used. Solid state

emission spectra were measured using a Hamamatsu Compact Fluorescence lifetime Spectrometer

C11367-11 Quantaurus-Tau. Quantum yields were measured with a Hamamatsu absolute PL quan-

tum yield spectrometer C11347 Quantaurus-QY.

Electron impact spectrometry was performed on a Finnigan MAT 95 spectrometer by Dr. P. Nadig.

Electrospray ionization (ESI) and MALDI-TOF mass spectra were recorded on Bruker esquire 3000

plus and Bruker Daltonics Micro�ex mass spectrometers, respectively. LC-ESI-MS was measured

on a Shimadzu Prominence UFLC and a Bruker amaZon X instrument. The microanalyses were

performed with a Vario Micro Cube microanalyser by Sylvie Mittelheisser.

Microwave reactions were carried out in a Biotage InitiatorTM 8 reactor.

X-ray di�raction data were collected on a Bruker-Nonius KappaAPEX di�ractometer with data

reduction, solution and re�nement using the programs APEX2 [120] and SHELXL97.[121]
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7.2 Synthesis of ligands

4′-(p-Tolyl)-2,2′:6′,2′′-terpyridine (ttpy)

SM21

2-Acetylpyridine (4.5 ml, 40 mmol, 2 eq.), p-tolualdehyde (2.37 ml,

20 mmol, 1.0 eq.), KOH (3.1 g) and ammonia (aq., 32 wt%, 60 ml) were

mixed with EtOH (100 ml) and the mixture was stirred at 34 °C for

8 h. The precipitated solid was �ltered o� and washed several times with

cold EtOH. The crude product was recrystallized from EtOH. Ttpy was

obtained as colourless needles (2.3 g, 7.11 mmol, 35 %). [21]

1H-NMR (500 MHz, CDCl3) δ/ppm: 8.73 (m, 4H, B3,HA6), 8.67 (dt,

J = 8.0, 1.0 Hz, 2H, HA3), 7.88 (m, 2H, HA4), 7.83 (d, J = 8.2 Hz,2H,

HC2), 7.35 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H, HA5), 7.32 (d, J = 8.4 Hz, 2H,

HC3), 2.43 (s, 3H, HMe). 13C-NMR (101 MHz, CDCl3) δ/ppm: 156.5 (CA2/B2), 156.0 (CA2/B2),

150.3 (CB4), 149.3 (CA6), 139.2 (CC4), 137.0 (CA4), 135.6 (CC1), 129.8 (CC3), 127.3 (CC2), 123.9

(CA5), 121.5 (CA3), 118.8 (CB3), 21.4 (CMe). The 1H NMR spectroscopic data are in accord with

the literature.[122]

4′-(4-(Bromomethyl)phenyl)-2,2′:6′,2′′-terpyridine (P1)

SM22

A solution of ttpy (1.0 g, 3.1 mmol, 1.0 eq.), N-bromosuccinimide

(663 mg, 3.72 mmol, 1.2 eq.), AIBN (61 mg, 372 µmol, 0.12 eq.) in

CCl4(15 ml) was re�uxed for 2 h. The precipitated solid was removed by

�ltration of the warm solution. After removal of the solvent, the crude

product was recrystallized from EtOH/CHCl3. P1 was obtained as an

o�-white solid (1.04 g, 2.6 mmol, 83 %).

1H-NMR (400 MHz, CDCl3) δ/ppm:(Lit. 2) 8.73 (m, 4H,HA6,B2), 8.68

(d, J = 8.0 Hz, 2H, HA3), 7.89 (m, 4H, A4, HC2), 7.54 (d, J = 8.3 Hz,

2H, HC3), 7.36 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H, HA5), 4.57 (s, 2H, HCH2).
13C-NMR (101 MHz, CDCl3) δ/ppm: 156.3, 156.2, 149.7, 149.3, 138.8, 137.0, 129.8, 127.9, 127.3,

124.0, 121.5, 118.9, 33.1. The 1H NMR spectroscopic data are in accord with the literature.[122]
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2-(4-([2,2′:6′,2′′-Terpyridin]-4′-yl)benzyl)isoindoline-1,3-dione (P2)

SM24

A microwave �ask was charged with P1 (403 mg, 1.0 mmol, 1.0 eq.),

potassium phthalimide (195 mg, 1.05 mmol, 1.05 eq.) and DMF

(15 ml) and heated for 30 min to 180 °C in a MW reactor. After the

reaction was �nished, water was added, the resulting solid �ltered o�

and washed several times with water and Et2O. P2 was yielded as

an o�-white solid (300 mg, 640 µmol, 64 %).

1H-NMR (500 MHz, CDCl3) δ/ppm: 8.71 (ddd, J = 4.8, 1.8, 0.9

Hz, 2H, HA6), 8.69 (s, 2H, HB3), 8.65 (dt, J = 7.9, 1.0 Hz, 2H, HA3),

7.87 (m, 6H, HA2,C2,D2), 7.72 (dd, J = 5.5, 3.0 Hz, 2H, HD3), 7.58

(d, J = 8.4 Hz, 2H, HC3), 7.34 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H, HA5),

4.93 (s, 2H, HC5). The 1H NMR spectroscopic data are in accord

with the literature. [64]

(4-([2,2′:6′,2′′-Terpyridin]-4′-yl)phenyl)methanamine (P3)

SM27

P2 (223 mg, 475 µmol, 1 eq.) was dissolved in anhydrous EtOH (7.5 ml)

and CHCl3 (5 ml) under nitrogen atmosphere. Hydrazine hydrate (64 %

solution, 0.121 ml, 2.5 mmol, 5.26 eq.) was added and the mixture was

re�uxed for 4 h. CHCl3 (12 ml) was added to the cooled solution and

the white precipitate was �ltered o�. The resulting yellow solution was

washed with water, 1 M aq. NaOH, a second time with water and dried

over MgSO4. After removal of the solvent P3 was obtained as a yellow

solid (143 mg, 423 µmol, 89 %).

1H-NMR (400 MHz, CDCl3) δ/ppm: 8.73 (m, 4H, HA6,B3), 8.68 (d, J

= 8.0 Hz, 2H, HA3), 7.95 � 7.85 (m, 4H, HA4,C2), 7.46 (d, J = 8.3 Hz, 2H, HC3), 7.37 (ddd, J = 7.4,

4.8, 1.2 Hz, 2H, HA5), 3.96 (s, 2H, HCH2). 13C-NMR (101 MHz, CDCl3) δ/ppm: 156.5 (CA2/B2),

156.1 (CA2/B2), 150.1 (CB4), 149.3 (CA6), 137.0 (CA4), 127.7 (CC2/C3), 127.6 (CC2/C3), 124.0 (CA5),

121.5 (CA3), 118.9 (CB3), 46.4 (CCH2). MS (EI, m/z): 338.1 [M]+ (calc. 338.1). The 1H NMR

spectroscopic data are in accord with the literature. [64]
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N -(4-([2,2′:6′,2′′-Terpyridin]-4′-yl)benzyl)-5-(1,2-dithiolan-3-yl)pentanamide (L1)

SM28

P3 (200 mg, 591 µmol, 1 eq.), DL- thioctic acid (158 mg,

768 µmol, 1.3 eq.), N,N ′-dicyclohexylcarbodiimide

(158 mg, 768 µmol, 1.3 eq.) and anhydrous CH2Cl2(50 ml)

were mixed and stirred under nitrogen atmosphere for

48 h. The solvent was removed partially and the reduced

solution was cooled. The precipitate was �ltered o� and

the solvent was removed completely. The crude prod-

uct was puri�ed chromatographically (Al2O3, cyclohex-

ane/ethyl acetate, 2:1 => 1: 5, Rf (1:1) = 0.48). L1 was

obtained as a yellow solid (155 mg, 295 µmol, 50 %)

1H-NMR (500 MHz, CDCl3) δ/ppm:8.72 (ddd, J = 4.8, 1.8, 0.9 Hz, 2H, HA6), 8.71 (s, 2H, HB3),

8.67 (dt, J = 7.9, 1.0 Hz, 2H, HA3), 7.88 (m, 4H, A4, HC2), 7.41 (d, J = 8.3 Hz, 2H, HC3), 7.35

(ddd, J = 7.5, 4.8, 1.2 Hz, 2H, HA5), 5.89 (t, J = 5.4 Hz, 1H, HNH), 4.52 (d, J = 5.8 Hz, 2H,

HC5), 3.57 (dq, J = 12.6, 6.4 Hz, 1H, H3′), 3.14 (m, 2H, H1′), 2.45 (dtd, J = 12.0, 6.6, 5.4 Hz,

1H, H2′), 2.26 (td, J = 7.4, 2.0 Hz, 2H, H7′),1.90 (dq, J = 12.8, 7.0 Hz, 1H, H2′),1.79� 1.65 (m,

4H, H4′,6′),1.55 � 1.43 (m, 2H, H5′). 13C-NMR (126 MHz, CDCl3) δ/ppm: 172.7 (CC=O), 156.3

(CA2/B2), 156.1 (CA2/B2), 149.8 (CB4), 149.3 (CA6), 139.5 (CC4), 137.8 (CC1), 137.0 (CA4), 128.5

(CC3), 127.8 (CC2), 124.0 (CA5), 121.5 (CA3), 118.9 (CB3), 56.5 (C3′), 43.4 (CCH2), 40.4 (C2′), 38.6

(C1′), 36.6 (C7′), 34.8 (C4′), 29.0 (C5′), 25.6 (C6′). MP: 149 °C. IR (solid, ν/cm−1): 681 (m), 731

(s), 787 (s), 887 (w), 989 (w), 1036 (w), 1261 (w), 1385 (m), 1466 (m), 1537 (s), 1583 (m), 1636 (s),

2355 (w), 2851 (w), 2922 (w), 3273 (w). MS (EI, m/z): 526.2 [M]+ (calc. 526.2). EA: Found C

66.29 %, H 5.86 %, N 10.05 %, C30H30N4OS2·H2O requires C 66.15 %, H 5.92 %, N 10.29 %.

S -(6-Hydroxyhexyl) ethanethioate (SC1)

SM44

6-Bromo-1-hexanol (2.5 g, 13.8 mmol, 1.0 eq.) and potassium thioac-

etate (3.16 g, 27.7 mmol, 2.0 eq.) were added to DMF (20 ml) and

molecular sieves (4 Å). The mixture was stirred at rt for 48 h, �ltered

and diluted with water and Et2O. The organic phase was separated,

the aqueous phase extracted 4 times with Et2O and the combined organic phases were dried over

MgSO4. The solvent was removed and the brown oil was puri�ed chromatographically (SiO2, cy-

clohexane/ethyl acetate, 1:1 => 1:3, Rf (1:1) = 0.34). SC1 was obtained as a brown oil (2.24 g,

12.7 mmol, 92 %).
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7 EXPERIMENTAL 7.2 Synthesis of ligands

1H-NMR (250 MHz, CDCl3) δ/ppm: 3.61 (t, J = 6.5 Hz, 2H), 2.85 (t, J = 7.5 Hz 2H), 2.31 (s, 3H),

1.55 (m, 4H), 1.36 (m, 4H). The 1H NMR spectroscopic data are in accord with the literature.[66]

[2,2′-Bipyridine]-4,4′-dicarboxylic acid (dcbpy)

SM50

A microwave vial was charged with 4,4′-dimethyl-2,2′-bipyridine (200 mg,

1.08 mmol, 1.0 eq.), KMnO4 (0.95 g, 6.0 mmol, 5.5 eq.) and water (16 ml)

and heated in a MW reactor for 1 h at 130 °C. The formed MnO2 was �ltered

o� and the solution was acidi�ed with concentrated HCl. The precipitate

was �ltered o�, washed with water, ethyl acetate and Et2O. After drying,

dcbpy was obtained as a colourless solid (140 mg, 573 µmol, 50 %).

1H NMR (250 MHz, DMSO-d6) δ/ppm: 13.82 (s, 2H, HOH), 8.92 (d, J = 5.5 Hz, 2H, HA6), 8.85

(s, 2H, HA3), 7.92 (dd, J = 4.9, 1.6 Hz, 2H, HA5). The 1H NMR spectroscopic data are in accord

with the literature.[123]

Bis(6-(acetylthio)hexyl) [2,2′-bipyridine]-4,4′-dicarboxylate (L3)

SM51

Dcbpy (0.5 g, 2.05 mmol, 1.0 eq.) was added to thionyl chloride (5 ml)

and re�uxed under N2-atmosphere for 1.5 h until the solution was clear.

The remaining thionyl chloride was removed under vacuum. Anhydrous

toluene (16 ml), anhydrous triethyl amine (1.15 ml, 8.19 mmol, 4.0 eq.)

and SC1 (0.76 g, 4.3 mmol, 2.1 eq.) were added to the solid and the

mixture was re�uxed for 3 h. CHCl3 (25 ml) and cold aq. NaHCO3-

solution (25 ml) were added, the organic phase was separated, dried over

MgSO4 and the solvent was removed. The crude material was puri�ed

by recrystallization (MeOH/EtOH/n-hexane). L3 was obtained as an

o�-white solid (0.75 g, 1.34 mmol, 65 %).

1H NMR (500 MHz, CDCl3) δ/ppm: 8.94 (dd, J = 1.6, 0.9 Hz, 2H,

HA3), 8.87 (dd, J = 5.0, 0.8 Hz, 2H, HA6), 7.90 (dd, J = 5.0, 1.6 Hz, 2H,

HA5), 4.39 (t, J = 6.7 Hz, 4H, H6′), 2.88 (t, J = 7.3, 4H, H1′), 2.32 (s, 6H, HMe), 1.82 (m, 4H, H5′),

1.61 (m, 4H, H2′), 1.46 (m, 8H, H3′,4′).
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13C NMR (126 MHz, CDCl3) δ/ppm: 196.1 (CC=O,Ac), 165.3 (CC=O), 156.7 (CA2), 150.2 (CA6),

139.0 (CA4), 123.4 (CA5), 120.7 (CA3), 66.0 (C6′), 30.8 (CMe), 29.5 (C2′), 29.1 (C1′), 28.6 (C5′), 28.5

(C3′), 25.6 (C4′). MP: 101 °C. IR (solid, ν/cm−1): 507 (s), 513 (s), 522 (s), 549 (m), 561 (m), 571

(m), 582 (m), 628 (s), 665 (m), 697 (s), 722 (s), 744 (m), 764 (s), 832 (m), 866 (m), 890 (m), 921

(m), 960 (s), 1008 (m), 1064 (m), 1091 (m), 1109 (m), 1137 (s), 1240 (s), 1260 (m), 1292 (s), 1358

(m), 1395 (w), 1425 (m), 1458 (m), 1467 (m), 1560 (m), 1592 (m), 1688 (s), 1720 (s), 2855 (m),

2898 (w), 2926 (m), 2961 (w). MS (ESI, m/z): 561.2 [M+H]+ (calc. 561.2), 583.2 [M+Na]+ (calc.

583.2). EA: Found C 60.07 %, H 6.64 %, N 5.35 %, C28H36N2O6S2 requires C 59.98 %, H 6.47 %,

N 5.00 %.

[2,2′-Bipyridine]-4,4′-diol (OH-bpy)

SM109

4,4′-Dimethoxy-2,2′-bipyridine (1.51 g, 7.0 mmol, 1.0 eq.) was dissolved in

acetic acid (80 ml) and HBr (48 wt% sol. in water, 7.97 ml, 70.0 mmol,

10 eq.) was added. After re�uxing for 24 h and cooling to rt the formed pre-

cipitate was �ltered o� and disolved in water. Neutralisation of the solution

with aqueous ammonia yielded precipitate which was �ltered o�, washed

with water and dried. OH-bpy was obtained as a colourless solid (1.07 g,

5.68 mmol, 81 %).

1H NMR (250 MHz, D2O + NaOH) δ/ ppm: 8.04 (d, J = 6.3 Hz, 2H, HA6 ), 6.99 (d, J = 2.5 Hz,

2H, HA3), 6.58 (dd, J = 6.3, 2.5 Hz, 2H, HA5). The 1H NMR spectroscopic data are in accord with

the literature.[124]

4′-(4-Methoxyphenyl)-2,2′:6′,2′′-terpyridine (MeO-tpy)

SM173

4-Methoxybenzaldehyde (2.43 ml, 20 mmol, 1.0 eq.), 2-acetylpyridine

(4.5 ml, 40 mmol, 2.0 eq.) and KOH (3.14 g, 56 mmol, 2.8 eq.) were

mixed with ammonia (aq., 30 wt%, 60 ml) and EtOH (100 ml) and the

solution was stirred at rt for 24 h. The formed precipitate was �ltered

o�, washed with cold EtOH and dried. Puri�cation was performed by

recrystallization (ethyl acetate/n-hexane). MeO-tpy was obtained as

small colourless needles (2.4 g, 7.07 mmol, 35 %).
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7 EXPERIMENTAL 7.2 Synthesis of ligands

1H NMR (400 MHz, CDCl3) δ/ppm: 8.73 (ddd, J = 4.8, 1.8, 0.9 Hz, 2H), 8.71 (s, 2H), 8.67 (dt,

J = 8.0, 1.0 Hz, 2H), 7.93 � 7.83 (m, 4H), 7.35 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H), 7.04 (m, 2H), 3.89

(s, 3H). The 1H NMR spectroscopic data are in accord with the literature.[125]

4-([2,2′:6′,2′′-Terpyridin]-4′-yl)phenol (OH-tpy)

SM185

A 2-5 ml MW-vial was charged with MeO-Phtpy (0.8 g, 2.36 mmol,

1.0 eq.) and pyridine hydrochloride (1.3 g, 11.2 mmol, 4.7 eq.) and heated

in the MW reactor at 200 °C for 1 h. Water was added to the reaction

mixture and the formed solid was �ltered o�, washed with water and

dried. The washing water was �ltered again and the obtained solid was

washed with water and dried. OH-tpy was obtained as a colourless solid

(650 mg, 2.0 mmol, 84 %).

1H NMR (400 MHz, DMSO-d6) δ/ppm: 9.94 (s, 1H), 8.76 (ddd, J =

4.8, 1.8, 0.9 Hz, 2H), 8.68 (m, 4H), 8.05 (td, J = 7.7, 1.8 Hz, 2H), 7.80

(d, J = 8.6 Hz, 2H), 7.54 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H), 6.97 (d, J = 8.6 Hz, 2H). The 1H NMR

spectroscopic data are in accord with the literature.[59]

S -(3-Bromopropyl) ethanethioate (SC2)

SM107

Potassium thioacetate (2.1 g, 18 mmol, 1.0 eq.) and 1,3-dibromopropane

(2.02 ml, 19.8 mmol, 1.1 eq.) were re�uxed in THF (100 ml) for 2.5 h. Af-

ter cooling, the mixture was stirred at rt for 3 h followed by removal of the

solvent under reduced pressure. The residue was dissolved in CH2Cl2, �ltered

over celite and the solvent was removed in vacuo. SC2 was obtained after distillation (65 °C at

1·10−1mbar) as colourless oil (1.73 g, mmol, 8.78 mmol, 48 %).

1H NMR (400 MHz, CDCl3) δ/ppm: 3.44 (t, J = 6.5 Hz, 2H), 3.00 (t, J = 7.0 Hz, 2H), 2.33 (s,

3H, Me), 2.11 (m, 2H). The 1H NMR spectroscopic data are in accord with the literature.[126]
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Diethyl (3-bromopropyl)phosphonate (SC3)

SM180

Triethyl phosphite (2.58 ml, 15 mmol, 1.0 eq.) and 1,3-dibromopropane (6.12 ml,

60 mmol, 4.0 eq.) were heated for 2 h at 160 °C. The during the reaction produced

bromoethane was distilled o� with a distillation bridge. SC3 was obtained after

distillation (100 °C at 5·10−2mbar) as colourless oil (2.02 g, 7.80 mmol, 52 %).

1H{31P} NMR (400 MHz, CDCl3) δ/ppm: 4.10 (m, 4H), 3.47 (t, J = 6.5 Hz, 2H), 2.15 (m, 2H),

1.89 (m, 2H), 1.33 (t, J = 7.1 Hz, 6H). 31P NMR (162 MHz, CDCl3) δ/ppm: 30.53. The 1H NMR

spectroscopic data are in accord with the literature.[72]

S -(3-(4-([2,2′:6′,2′′-Terpyridin]-4′-yl)phenoxy)propyl) ethanethioate (L2-SAc)

SM154

OH-tpy (415 mg, 1.28 mmol, 1.0 eq.) and potassium carbon-

ate (670 mg, 4.84 mmol, 3.8 eq.) were added to a solution of

SC2 (300 mg, 1.52 mmol, 1.2 eq.) in DMF (15 ml). The sus-

pension was stirred at 80 °C for 5.5 h. The solvent was removed

under reduced pressure and the resulting solid was suspended

in water and extracted three times with CH2Cl2. The com-

bined organic fractions were dried over MgSO4 and the solvent

was removed under reduced pressure. The product was puri�ed

by colunm chromatography (Al2O3, Ethyl acetate/cyclohexane

1:1, Rf = 0.74). L2-SAc was obtained as a colourless solid

(300 mg, 679 μmol, 53 %).

1H NMR (500 MHz, CDCl3) δ/ppm: 8.73 (m, 2H, HA6), 8.70 (s, 2H, HB3), 8.67 (dt, J = 8.0, 1.1

Hz, 2H, HA3), 7.88 (m, 4H, HA4,C2), 7.35 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H, HA5), 7.02 (d, J = 8.7 Hz,

2H, HC3), 4.09 (t, J = 6.0 Hz, 2H, H3′), 3.10 (t, J = 7.1 Hz, 2H, H1′), 2.36 (s, 3H, HMe), 2.12 (m,

2H, H2′).13C NMR (126MHz, CDCl3) δ/ppm: 195.9 (Cd), 159.8 (CC4), 156.5 (CA2), 155.9 (CB2),

149.8 (CB4), 149.2 (CA6), 137.0 (CA4), 131.0 (CC1), 128.7 (CC2), 123.1 (CA5), 121.5 (CA3), 118.4

(CB3), 115.0 (CC3), 66.4 (C3′), 30.8 (CMe), 29.4 (C2′), 26.0 (C1′). MP: 161 °C. IR (solid, ν/cm−1):

520 (s), 533 (m), 566 (s), 577 (s), 603 (s), 619 (s), 659 (m), 675 (m), 687 (m), 733 (s), 745 (m), 791

(s), 834 (s), 872 (m), 890 (s), 922 (m), 944 (m), 968 (m), 988 (m), 1000 (m), 1009 (m), 1024 (m),

1036 (m), 1054 (w), 1075 (m), 1091 (m), 1097 (m), 1115 (m), 1131 (m), 1187 (s), 1227 (m), 1257

(m), 1287 (m), 1350 (m), 1391 (m), 1421 (m), 1441 (m), 1464 (s), 1514 (s), 1546 (m), 1566 (m),
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7 EXPERIMENTAL 7.2 Synthesis of ligands

1581 (s), 1598 (m), 1644 (m), 1651 (m), 1678 (s), 2867 (w), 2931 (w), 3053 (w). MS (MALDI-TOF,

m/z): 442.1 [M+H]+ (calc. 442.2). EA: Found C 70.24 %, H 5.32 %, N 9.29 %, C26H23N3O2S

requires C 70.73 %, H 5.25 %, N 9.52 %.

3-(4-([2,2′:6′,2′′-Terpyridin]-4′-yl)phenoxy)propane-1-thiol (L2-S)

SM204

L2-SAc (40 mg, 90.6 µmol, 1.0 eq.) and NaOMe (6 mg, 111 µmol,

1.2 eq.) were stirred in anhydrous MeOH (15 ml) under an inert ni-

trogen atmosphere at room temperature for 2 h. Dowex 50WX4 ion

changer resin was added, the mixture was stirred for 5 min. then �l-

tered and the resin washed with MeOH. After removal of the solvent

from the �ltrate, L2-S was obtained as a colourless solid.

1H NMR (500 MHz, CDCl3) δ/ppm: 8.74 (ddd, J = 4.8, 1.8, 0.9 Hz,

2H, HA6), 8.71 (s, 2H, HB3), 8.67 (m, 2H, HA3), 7.88 (m, 4H, HA4,C2),

7.36 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H, HA5), 7.02 (m, 2H, HC3), 4.15 (t,

J = 5.9 Hz, 2H, H3′), 2.77 (m, 2H, H1′), 2.12 (m, 2H, H2′), 1.43 (t, J

= 8.1 Hz, 1H, HSH). 13C NMR (126 MHz, CDCl3) δ/ppm: 159.9 (CC4), 156.4 (CA2), 155.8 (CB2),

149.9 (CB4), 149.1 (CA6), 137.2 (CA4), 130.9 (CC1), 128.7 (CC2), 123.9 (CA5), 121.6 (CA3), 118.5

(CB3), 115.0 (CC3), 65.9 (C3′), 33.5 (C2′), 21.4 (C1′). IR (solid, ν/cm−1): 504 (s), 566 (m), 781 (s),

837 (m), 1032 (m), 1185 (m), 1238 (m), 1295 (m), 1357 (w), 1416 (w), 1521 (s), 1586 (s), 3054 (m),

3358 (m). MS (MALDI-TOF, m/z): 400.1 [M+H]+ (calc. 400.1).

Diethyl (3-(4-([2,2′:6′,2′′-terpyridin]-4′-yl)phenoxy)propyl)phosphonate (L2-PEt)

SM181

OH-tpy (200 mg, 615 µmol, 1.0 eq.) and potassium carbonate

(297 mg, 2.15 mmol, 3.5 eq.) were added to a solution of SC3

(191 mg, 738 µmol, 1.2 eq.) in DMF (15 ml) and stirred for

4 h at 80 °C. After removal of the solvent, the residue was sus-

pended in water and extracted three times with CH2Cl2. The

combined organic fractions were dried over MgSO4 and then

solvent was removed. The crude product was puri�ed by re-

crystallization (n-hexane/ethyl acetate). L2-PEt was obtained

as a colourless solid (280 mg, 556 µmol, 90%).
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1H{31P} NMR (500 MHz, CDCl3) δ/ppm: 8.73 (d, J = 3.4 Hz, 2H, HA6), 8.70 (s, 2H, HB3),

8.67 (d, J = 8.0 Hz, 2H, HA3), 7.88 (m, 4H, HA4,C2), 7.35 (dd, J = 7.4, 4.7 Hz, 2H, HA5), 7.01

(m, 2H, HC3), 4.12 (m, 6H, H3′, a), 2.13 (m, 2H, H2′), 1.98 (m, 2H, H1′), 1.34 (t, J = 7.1 Hz, 6H,

Hb). 13C NMR (126 MHz, CDCl3) δ/ppm: 159.8 (CC1) , 156.5 (CA2) , 156.0 (CB2) , 149.8 (CB4)

, 149.2 (CA6) , 137.0 (CA4) , 131.0 (CC4) , 128.7 (CC2), 123.9 (CA5) , 121.5 (CA3) , 118.4 (CB3),

114.9 (CC3) , 67.6 (d, J = 16.0 Hz, C3′), 61.8 (d, J = 6.5 Hz, Ca), 22.8 (d, J = 4.8 Hz, C2′), 22.5

(d, J = 142.7 Hz, C1′), 16.6 (d, J = 6.0 Hz, Cb). 31P{1H} NMR (162 MHz, CDCl3) δ/ppm: 31.6.

MP: 136 °C. IR (solid, ν/cm−1): 506 (s), 517 (s), 533 (m), 603 (m), 736 (m), 789 (s), 831 (m), 893

(m), 953 (m), 989 (m), 1015 (s), 1052 (m), 1183 (m), 1212 (m), 1230 (m), 1391 (m), 1440 (m), 1467

(m), 1514 (m), 1565 (m), 1582 (m), 1602 (w), 2980 (w), 3051 (w), 3446 (w). MS (MALDI-TOF,

m/z): 504.3 [M+H]+ (calc. 504.2), 526.3 [M+Na]+ (calc. 526.2), 542.4 [M+K]+ (calc. 542.2). EA:

Found C 65.92 %, H 6.10 %, N 8.56 %, C28H30N3O4P·0.5H2O requires C 65.62 %, H 6.10 %, N 8.20

%.

(3-(4-([2,2′:6′,2′′-Terpyridin]-4′-yl)phenoxy)propyl)phosphonic acid (L2-P)

SM186

A solution of L2-PEt (60 mg, 119 µmol, 1.0 eq.) and bromotrimethyl-

silane (0.13 ml, 0.95 mmol, 8.0 eq.) in CH2Cl2 (20 ml) was stirred at

room temperature for 16 h. The reaction was quenched by addition

of water and the pH was brought to the basic range by addition of

conc. aqueous NH3. The formed solid was separated by �ltration,

washed with water followed by acetone and Et2O, and dried. L2-P

was isolated as a yellow solid (36 mg, 80.5 µmol, 68%).

1H{13P} NMR (500 MHz, DMSO-d6) δ/ppm: 8.91 (d, J = 8.0 Hz,

2H, HA3), 8.87 (d, J = 4.6 Hz, 2H. HA6), 8.81 (s, 2H, HB3), 8.30 (t, J

= 7.7 Hz, 2H, HA4), 8.00 (d, J = 8.6 Hz, 2H, HC2), 7.75 (t, J = 6.4

Hz, 2H, HA5), 7.17 (d, J = 8.6 Hz, 2H, HC3), 4.14 (t, J = 6.5 Hz, 2H, H3′), 1.97 (m, 2H, H2′), 1.70

(m, 2H, H1′). 13C NMR (126 MHz, DMSO-d6) δ/ppm: 160.6 (CC4), 152.9 (CA2), 150.2 (CB4),

147.2 (CA6), 140.1 (CA4), 129.1 (CC1), 128.3 (CC2), 125.3 (CA5), 122.2 (CA3), 118.4 (CB3), 115.1

(CC3), 67.5 (C3′), 23.7 (d, J = 141.4 Hz, C1′), 22.7 (C2′). 31P{1H} NMR (202 MHz, DMSO-d6)

δ/ppm: 25.8. MP: Dec. > 265 °C. IR (solid, ν/cm−1): 527 (m), 536 (m), 545 (m), 571 (m), 599

(m), 741 (w), 782 (m), 833 (w), 1184 (w), 1239 (w), 1516 (m), 1591 (m). MS (MALDI-TOF, m/z):

448.2 [M+H]+ (calc. 448.14), 470.3 [M+Na]+ (calc. 470.1).
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7 EXPERIMENTAL 7.2 Synthesis of ligands

Methyl 4-(4-([2,2′:6′,2′′-terpyridin]-4′-yl)phenoxy)butanoate (L2-CMe)

SM168

OH-tpy (240 mg, 738 µmol, 1.0 eq.) and potassium carbonate

(357 mg, 2.58 mmol, 3.5 eq.) were added to a solution of 4-

bromobutanoate (160 mg, 0.11 ml, 885 µmol, 1.2 eq.) in DMF

(15 ml) and the mixture was stirred for 6 h at 80 °C. After cooling

and removal of the solvent, the residue was suspended in water and

extracted three times with CH2Cl2. The combined organic fractions

were dried over MgSO4 and the solvent was then removed. The

product was puri�ed by recrystallization (n-hexane/ethyl acetate).

L2-CMe was obtained as a colourless solid (300 mg, 705 µmol,

95%).

1H NMR (500 MHz, CDCl3) δ/ppm: 8.72 (ddd, J = 4.8, 1.8, 0.9 Hz, 2H, HA6), 8.70 (s, 2H, HB3),

8.66 (dt, J = 8.0, 1.1 Hz, 2H, HA3), 7.86 (m, 4H, HA4,C2), 7.34 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H,

HA5), 7.01 (m, 2H, HC3), 4.07 (t, J = 6.1 Hz, 2H, H3′), 3.70 (s, 3H, HMe), 2.57 (t, J = 7.3 Hz, 2H,

H1′), 2.16 (m, 2H, H2′). 13C NMR (126 MHz, CDCl3) δ/ppm: 173.8 (CC=O), 159.9 (CC4), 156.5

(CA2), 155.9 (CB2), 149.8 (CB4), 149.2 (CA6), 137.0 (CA4), 130.9(CC1), 128.6 (CC2), 123.9 (CA5),

121.5 (CA3), 118.4 (CB3), 114.9 (CC3), 66.9 (C3′), 51.8 (CMe), 30.6 (C1′), 24.7 (C2′). MP: 141 °C.

IR (solid, ν/cm−1): 512 (s), 578 (m), 607 (s), 659 (w), 739 (s), 791 (s), 833 (s), 886 (m), 987 (m),

1018 (m), 1036 (w), 1081 (w), 1114 (w), 1184 (s), 1229 (m), 1266 (s), 1366 (m), 1388 (m), 1418 (m),

1439 (m), 1470 (m), 1514 (s), 1549 (m), 1562 (m), 1582 (m), 1602 (m), 1732 (s), 2947 (w), 3053 (w).

MS (MALDI-TOF, m/z): 426.5 [M+H]+ (calc. 426.2), 448.6 [M+Na]+ (calc. 448.2). EA: Found

C 72.75, H 5.57, N 9.88% , C26H23N3O3 requires C 73.39 %, H 5.45 %, N 9.88 %.
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4-(4-([2,2′:6′,2′′-Terpyridin]-4′-yl)phenoxy)butanoic acid (L2-C)

SM170

L2-CMe (80 mg, 188 µmol, 1.0 eq.) and potassium carbonate

(260 mg, 1.88 mmol, 10 eq.) were stirred in MeOH/water (15ml/10ml)

at 80 °C for 1 h. After cooling and removal of the organic solvent, the

aqueous phase was diluted with water, neutralized with 1M HCl and

extracted three times with CH2Cl2. The combined organic fractions

were dried over MgSO4 and the solvent was removed. L2-C was iso-

lated as a colourless solid (54 mg, 131 µmol, 70%).

1H NMR (500 MHz, DMSO-d6) δ/ppm: 12.16 (s, 1H, HOH), 8.76

(ddd, J = 4.8, 1.8, 0.8 Hz, 2H, HA6), 8.68 (s, 2H, HB3), 8.67 (dt, J

= 8.0, 1.1 Hz, 2H, HA3), 8.04 (td, J = 7.7, 1.8 Hz, 2H, HA4), 7.89 (d,

J = 8.8 Hz, 2H, HC2), 7.53 (ddd, J = 7.5, 4.8, 1.2 Hz, 2H, HA5), 7.14 (d, J = 8.8 Hz, 2H, HC3),

4.08 (t, J = 6.4 Hz, 2H, H3′), 2.43 (t, J = 7.3 Hz, 2H, H1′), 1.99 (m, 2H, H2′). 13C NMR (126

MHz, DMSO-d6) δ/ppm: 174.1 (CC=O), 159.7 (CC4), 155.6 (CB2), 155.1 (CA2), 149.3 (CA6), 149.0

(CB4), 137.5 (CA4), 129.5 (CC1), 128.2 (CC2), 124.5 (CA5), 120.9 (CA3), 117.3 (CB3), 115.3 (CC3),

66.8 (C3′), 30.1 (C1′), 24.2 (C2′). MP: 253 °C. IR (solid, ν/cm−1): 518 (m), 610 (m), 629 (m), 725

(m), 744 (m), 768 (m), 787 (s), 838 (s), 987 (m), 1036 (m), 1190 (s), 1227 (m), 1249 (m), 1267 (m),

1287 (m), 1393 (m), 1441 (w), 1466 (m), 1518 (m), 1564 (m), 1584 (s), 1605 (m), 1693 (m), 1700

(m), 2478 (w), 2871 (w), 3063 (w). MS (MALDI-TOF, m/z): 412.4 [M+H]+ (calc. 412.2), 368.3

[M-CO2]+ (calc. 368.2). EA: Found C 68.26 %, H 5.01 %, N 9.33 %, C25H21N3O3 ·1.5H2O requires

C 68.48 %, H 5.52 %, N 9.58 %.

S,S ′-(([2,2′-Bipyridine]-4,4′-diylbis(oxy))bis(propane-3,1-diyl)) diethanethioate (L4-SAc)

SM111

OH-bpy (226 mg, 1.2 mmol, 1.0 eq.) and K2CO3 (1.0 g, 7.24 mmol, 6.0 eq.)

were added to a solution of SC2 (500 mg, 2.54 mmol, 2.1 eq.) in DMF

(15 ml) and the reaction mixture was stirred for 6 h at 80 °C. After cooling and

removal of the solvent, the residue was suspended in water and extracted three

times with CH2Cl2. The combined organic fractions were dried over MgSO4

and the solvent was removed. The crude product was puri�ed by column

chromatography (SiO2, cyclohexane/ethyl acetate 1:6, Rf = 0.2). L4-SAc

was isolated as a colourless solid (0.43 g, 1.02 mmol, 85%).
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7 EXPERIMENTAL 7.2 Synthesis of ligands

1H NMR (400 MHz, CDCl3) δ/ppm: 8.46 (d, J = 5.7 Hz, 2H, HA6), 7.95 (d, J = 2.5 Hz, 2H,

HA3), 6.83 (dd, J = 5.7, 2.6 Hz, 2H, HA5), 4.18 (t, J = 6.0 Hz, 4H, H3′ ), 3.07 (t, J = 7.1 Hz, 4H,

H1′), 2.34 (s, 6H, HMe), 2.11 (m, 4H, H2′). 13C NMR (126 MHz, CDCl3) δ/ppm: 195.8 (CC=O,

166.0 (CA4), 158.0 (CA2), 150.3 (CA6), 111.4 (CA5), 106.8 (CA3), 66.3 (C3′), 30.8 (CMe), 29.1 (C2′),

25.9 (C1′). MP: 134 °C. IR (solid, ν/cm−1): 509 (m), 537 (m), 577 (m), 625 (s), 753 (m), 827 (s),

857 (m), 928 (m), 953 (m), 987 (m), 1026 (m), 1065 (m), 1105 (m), 1134 (s), 1181 (m), 1223 (m),

1243 (s), 1294 (s), 1348 (m), 1384 (m), 1408 (m), 1438 (m), 1454 (m), 1507 (m), 1538 (m), 1560 (s),

1581 (s), 1630 (m), 1687 (s), 2930 (w). MS (ESI, m/z): 421.2 [M+H]+ (calc. 421.1). EA: Found

C 57.19 %, H 5.83 %, N 6.55 %, C20H24N2O4S2 requires C 57.12 %, H 5.75 %, N 6.66 %.

3,3′-([2,2′-Bipyridine]-4,4′-diylbis(oxy))bis(propane-1-thiol) (L4-S)

SM203

L4-SAc (30 mg, 71.3 µmol, 1.0 eq.) and NaOMe (6.5 mg, 114 µmol, 1.6 eq.)

were stirred in anhydrous MeOH (5 ml) under an inert atmosphere at room

temperature for 2 h. Dowex 50WX4 ion changer resin was added, stirred for

5 min., then removed by �ltration and washed with MeOH. After removal of

solvent from the �ltrate, L4-S was isolated as a colourless solid (yield not

determined).

1H NMR (500 MHz, CDCl3) δ/ppm: 8.46 (d, J = 5.5 Hz, 2H, HA6), 7.96 (d,

J = 2.6 Hz, 2H, HA3), 6.83 (dd, J = 5.6, 2.6 Hz, 2H, HA5), 4.26 (t, J = 5.9 Hz, 4H, H3′), 2.75 (m,

4H, H1′), 2.13 (m, 4H. H2′), 1.41 (t, J = 8.1 Hz, 2H, HSH). 13C NMR (126 MHz, CDCl3) δ/ppm:

166.0 (CA4), 157.9 (CA2), 150.3 (CA6), 111.4 (CA5), 106.9 (CA3), 65.8 (C3′), 33.1 (C2′), 21.2 (C1′).

IR (solid, ν/cm−1): 516 (m), 549 (m), 567 (m), 727 (w), 822 (m), 849 (m), 860 (w), 1019 (s),

1177 (m), 1208 (m), 1231 (m), 1255 (m), 1294 (m), 1313 (m), 1442 (m), 1458 (m), 1494 (m), 1558

(s), 1584 (s), 1607 (m), 2937 (w). MS (MALDI-TOF, m/z): 337.1 [M+H]+ (calc. 337.1), 359.0

[M+Na]+ (calc. 359.1), 375.0 [M+K]+ (calc. 375.1).
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Tetraethyl (([2,2′-bipyridine]-4,4′-diylbis(oxy))bis(propane-3,1-diyl))bis(phosphonate)

(L4-PEt)

SM182

OH-bpy (150 mg, 797 µmol, 1.0 eq.) and potassium carbonate (0.55 g,

4.0 mmol, 5.0 eq.) were added to a solution of SC3 (454 mg, 1.75 mmol,

2.2 eq.) in DMF (15 ml) and the reaction mixture was stirred for 5 h at

80 °C. After removal of the solvent, the residue was suspended in water

and extracted three times with CH2Cl2. The combined organic fractions

were dried over MgSO4 and the solvent was then removed. The product

was recrystallized from n-hexane/ethyl acetate, and L4-PEt was isolated

as a colourless solid (280 mg, 514 µmol, 65%).

1H{31P} NMR (500 MHz, CDCl3) δ/ppm: 8.45 (d, J = 5.6 Hz, 2H,

HA6), 7.94 (d, J = 2.5 Hz, 2H, HA3), 6.81 (dd, J = 5.6, 2.6 Hz, 2H, HA5),

4.18 (t, J = 6.1 Hz, 4H, H3′), 4.10 (m, 8H, Ha), 2.13 (m, 4H, H2′), 1.93 (m, 4H, H1′), 1.32 (t, J =

7.1 Hz, 12H, Hb). 13C NMR (126 MHz, CDCl3) δ/ppm: 165.9 (CA4), 157.9 (CA2), 150.3 (CA6),

111.3 (CA5), 106.9 (CA3), 67.5 (d, J = 16.6 Hz, C3′), 61.8 (d, J = 6.5 Hz, Ca), 22.6 (d, J = 4.8 Hz,

C2′), 22.4 (d, J = 143.1 Hz, C1′), 16.6 (d, J = 6.0 Hz, Cb). 31P{1H} NMR (162 MHz, CDCl3)

δ/ppm: 31.2. MP: 54 °C. IR (solid, ν/cm−1): 518 (w), 550 (m), 749 (m), 783 (m), 824 (s), 850

(s), 865 (m), 959 (s), 1012 (s), 1217 (s), 1233 (s), 1304 (s), 1393 (w), 1460 (m), 1561 (m), 1582 (s),

2977 (w). MS (MALDI-TOF, m/z): 545.5 [M+H]+ (calc. 545.2), 567.5 [M+Na]+ (calc. 567.2),

583.5 [M+K]+ (calc. 583.2). EA: Found C 52.38 %, H 7.05 %, N 5.34 % , C24H38N2O8P2 requires

C 52.94 %, H 7.03 %, N 5.14 %.
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(([2,2′-Bipyridine]-4,4′-diylbis(oxy))bis(propane-3,1-diyl))bis(phosphonic acid) (L4-P)

SM188

A solution of L4-PEt (50 mg, 92 µmol, 1.0 eq.) and bromotrimethylsi-

lane (0.18 ml, 1.38 mmol, 15 eq.) in CH2Cl2 (20 ml) was stirred at room

temperature for 19 h. The reaction was quenched by addition of water

and the phases were separated. After neutralization of the aqueous phase

with aqueous NH3, the solvent was removed in vacuo to yield L4-P as a

colourless solid (34 mg, 79 µmol, 86%).

1H{31P} NMR (500 MHz, D2O) δ/ppm: 8.61 (d, J = 6.7 Hz, 2H, HA6),

7.80 (s, 2H, HA3), 7.38 (d, J = 6.7 Hz, 2H, HA5), 4.41 (t, J = 6.3 Hz,

4H, H3′), 2.12 (m, 4H, H2′), 1.83 (m, 4H, H1′). 13C NMR (126 MHz, D2O) δ/ppm: 169.4 (CA4),

149.0 (CA2), 147.0 (CA6), 112.7 (CA5), 110.3 (CA3), 70.4 (C3′), 24.1 (d, J = 134.6 Hz, C1′), 22.8

(d, J = 3.9 Hz, C2′). 31P{1H} NMR (202 MHz, D2O) δ/ppm: 25.1. IR (solid, ν/cm−1): 521 (s),

548 (s), 554 (s), 582 (s), 638 (s), 1017 (w), 1052 (w), 1117 (w), 1287 (m), 1337 (m), 1389 (s), 1586

(m), 1629 (m), 1688 (w), 2792 (m), 3010 (s), 3096 (m). MS (MALDI-TOF, m/z): 449.0 [M+NH3]+

(calc. 449.1), 433.2 [M+H]+ (calc. 433.1).

Dimethyl 4,4′-([2,2′-bipyridine]-4,4′-diylbis(oxy))dibutyrate (L4-CMe)

SM175

OH-bpy (250 mg, 1.33 mmol, 1.0 eq.) and potassium carbonate (0.92 g,

6.64 mmol, 5.0 eq.) were added to a solution of methyl 4-bromobutanoate

(529 mg, 0.37 ml, 2.92 mmol, 2.2 eq.) in DMF (15 ml) and the mix-

ture was stirred for 5 h at 80 °C. After removal of the solvent the

residue was suspended in water and extracted three times with CH2Cl2.

The combined organic fractions were dried over MgSO4 and the sol-

vent was removed. The crude product was puri�ed by recrystallization

(n-hexane/ethyl acetate). L4-CMe was obtained as a colourless solid

(480 mg, 1.23 mmol, 93%).

1H NMR (500 MHz, CDCl3) δ/ppm: 8.45 (d, J = 5.6 Hz, 2H, HA6), 7.94 (d, J = 2.5 Hz, 2H,

HA3), 6.82 (dd, J = 5.6, 2.6 Hz, 2H, HA5), 4.18 (t, J = 6.1 Hz, 4H, H3′), 3.69 (s, 6H, HMe), 2.54

(t, J = 7.2 Hz, 4H, H1′), 2.16 (m, 4H, H2′). 13C NMR (126 MHz, CDCl3) δ/ppm: 173.5 (CC=O),

166.0 (CA4), 158.0 (CA2), 150.3 (CA6), 111.4 (CA5), 106.8 (CA3), 66.9 (C3′), 51.9 (CMe), 30.5 (C1′),

24.5 (C2′). MP: 144 °C.
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IR (solid, ν/cm−1): 579 (m), 766 (m), 846 (s), 881 (m), 976 (m), 1022 (s), 1087 (m), 1167 (s), 1190

(m), 1242 (m), 1277 (m), 1303 (m), 1369 (m), 1400 (m), 1436 (m), 1465 (m), 1560 (s), 1580 (s),

1729 (s), 2887 (w), 2957 (m), 3084 (w). MS (MALDI-TOF, m/z): 389.4 [M+H]+ (calc. 389.2),

411.4 [M+Na]+ (calc. 411.2), 427.4 [M+K]+ (calc. 427.1). EA: Found C 61.54 %, H 6.34 %, N 7.16

% , C20H24N2O6 requires C 61.85 %, H 6.23 %, N 7.21 %.

4,4′-([2,2′-Bipyridine]-4,4′-diylbis(oxy))dibutyric acid (L4-C)

SM196

L4-CMe (80 mg, 206 µmol, 1.0 eq.) and NaOH (20.6 mg, 515 µmol,

2.5 eq.) were added to water (20 ml) and heated at re�ux for 2 h. Af-

ter �ltering, the solution was neutralized with 1M HCl and a colourless

precipitate formed that was separated by �ltration and dried. L4-C was

isolated as a colourless solid (65 mg, 180 µmol, 87.5%).

1H NMR (500 MHz, DMSO-d6) δ/ppm: 12.18 (s, 2H, HOH), 8.48 (d, J

= 5.6 Hz, 2H, HA6), 7.91 (d, J = 2.6 Hz, 2H, HA3), 7.03 (dd, J = 5.7,

2.6 Hz, 2H, HA5), 4.16 (t, J = 6.4 Hz, 4H, H3′), 2.41 (t, J = 7.3 Hz, 4H,

H1′), 1.99 (m, 4H, H2′). 13C NMR (126 MHz, DMSO-d6) δ/ppm: 174.0 (CC=O, 165.4 (CA4), 156.7

(CA2), 150.2 (CA6), 110.7 (CA5), 106.1 (CA3), 66.8 (C3′), 29.8 (C1′), 23.7 (C2′). MP: 229 °C. IR

(solid, ν/cm−1): 655 (m), 673 (m), 769 (m), 845 (s), 856 (s), 868 (m), 1021 (s), 1192 (s), 1247 (s),

1266 (s), 1280 (s), 1304 (m), 1391 (m), 1403 (m), 1457 (m), 1467 (s), 1559 (m), 1592 (s), 1712 (m),

2973 (w). MS (MALDI-TOF, m/z): 361.3 [M+H]+ (calc. 361.1). EA: Found C 59.06 %, H 5.71

%, N 7.96 %, C18H20N2O6·0.5H2O requires . C 58.53 %, H 5.73 %, N 7.58 %.
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Methyl 2-chloroisonicotinate (P4)

SM41

A solution of 2-chloroisonicotinic acid (0.5 g, 3.17 mmol, 1.0 eq.) and

4-dimethylaminopyridine (0.12 g, 0.95 mmol, 0.3 eq.) in CH2Cl2(30 ml) and MeOH

(5 ml) was degassed with nitrogen for 10 min. N,N ′-dicyclohexylcarbodiimide

(0.85 g, 4.13 mmol, 1.3 eq.) was dissolved in CH2Cl2 (5 ml), degassed with nitro-

gen for 5 min. and added to the solution. After stirring for 3 h at rt, the solvent was

removed and the residue was suspended in CH2Cl2. The suspension was cooled,

�ltered and the solvent was removed. This was repeated three times. The crude product was puri�ed

by column chromatography (SiO2, ethyl acetate/cyclohexane 1:3, Rf = 0.21). P4 was obtained as

a colourless solid (0.4 g, 2.33 mmol, 73.5 %).

1H NMR (400 MHz, CDCl3) δ/ppm: 8.55 (dd, J = 5.0, 0.6 Hz, 1H), 7.89 (s, 1H), 7.77 (dd, J =

5.1, 1.3 Hz, 1H), 3.97 (s, 3H). The 1H NMR spectroscopic data are in accord with the literature.[127]

Methyl [2,2′-bipyridine]-4-carboxylate (P5)

SM43

A microwave vial was charged with P4 (0.4 g, 2.33 mmol, 1.0 eq.) and

Pd(PPh3)4 (135 mg, 0.12 mmol, 0.05 eq.). The substances were dried

under high vacuum for 10 min. Under nitrogen atmosphere, 2-pyridylzinc

bromide (0.5M in THF, 7.0 ml, 3.5 mmol, 1.5 eq.) and anhydrous THF

(5 ml) were added and the mixture was heated in a microwave reactor for

2 h at 115 °C. The resulting brown solution was diluted with saturated

aq. NaHCO3-solution (30 ml) and extracted four times with ethyl acetate. The combined organic

fractions were dried over MgSO4 and the solvent was removed. The obtained brown oil was diluted

with CH2Cl2, �ltered over a plug of SiO2 and the solvent was removed. The crude product was

puri�ed by recrystallization from n-hexane. P5 was obtained as a colourless solid (0.27 g, 1.28 mmol,

55 %).

1H NMR (250 MHz, CDCl3) δ/ppm: 8.94 (dd, J = 1.5, 0.9 Hz, 1H), 8.83 (dd, J = 5.0, 0.8 Hz,

1H), 8.73 (ddd, J = 4.8, 1.7, 0.9 Hz, 1H), 8.43 (dt, J = 8.0, 1.0 Hz, 1H), 7.85 (m, 2H), 7.35 (ddd,

J = 7.5, 4.8, 1.2 Hz, 1H), 3.99 (s, 4H). The 1H NMR spectroscopic data are in accord with the

literature.[128]
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[2,2′-Bipyridine]-4-carboxylic acid (P6)

SM45

P5 (74 mg, 345 μmol) was re�uxed for 2 h in a mixture of MeOH (5 ml)

and aq. 1 M NaOH (2.5 ml). The organic solvent was removed and

0.5 M HCl was added to adjust pH to 2.5 - 3. The aqueous phase was

extracted three times with ethyl acetate, the combined organic fractions

were dried over MgSO4 and the solvent was removed. P6 was obtained

as a colourless solid (40 mg, 200 μmol, 58 %).

1H NMR (250 MHz, DMSO-d6) δ/ppm: 8.87 (d, J = 4.9 Hz, 1H), 8.83 (s, 1H), 8.73 (dd, J = 4.7,

0.7 Hz, 1H), 8.42 (d, J = 7.9 Hz, 1H), 7.98 (td, J = 7.8, 1.8 Hz, 1H), 7.87 (dd, J = 4.9, 1.6 Hz,

1H), 7.50 (ddd, J = 7.5, 4.8, 1.1 Hz, 1H). The 1H NMR spectroscopic data are in accord with the

literature.[129]

6-(Acetylthio)hexyl [2,2′-bipyridine]-4-carboxylate (S1)

SM46

A solution of P6 (76 mg, 379 μmol, 1.0 eq.), SC1 (74 mg, 417 μmol,

1.1 eq.) and 4-dimethylaminopyridine (20 mg, 164 μmol, 0.4 eq.)

in CH2Cl2 (50 ml) was degassed with nitrogen for 10 min. N,N ′-

dicyclohexylcarbodiimide (102 mg, 582 μmol, 1.5 eq.) was dissolved in

CH2Cl2 (5 ml), degassed with nitrogen for 5 min. and added to the solu-

tion. After stirring for 20 h at rt, the solvent was removed and the residue

was suspended in CH2Cl2. The suspension was cooled, �ltered and the

solvent was removed. This was repeated twice. The crude product was

puri�ed by column chromatography (SiO2, ethyl acetate/cyclohexane 2:1

+ 2 % MeOH, Rf = 0.61). S1 was obtained as a colourless solid (86 mg,

240 µmol, 63 %).

1H NMR ( 500 MHz, CDCl3) δ/ppm: 8.90 (dd, J = 1.6, 0.9 Hz, 1H, HB3), 8.80 (dd, J = 5.0, 0.9

Hz, 1H, HB66), 8.71 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H, HA6), 8.39 (dt, J = 8.0, 1.0 Hz, 1H, HA3), 7.85

(dd, J = 5.0, 1.6 Hz, 1H, HB5), 7.82 (td, J = 7.8 , 1.8 Hz, 1H, HA4), 7.33 (ddd, J = 7.5, 4.8, 1.2

Hz, 1H, HA5), 4.36 (t, J = 6.7 Hz, 2H, H6′), 2.86 (t, J = 7.3, 2H, H1′), 2.30 (s, 3H, HMe), 1.79 (m,

2H, H5′), 1.59 (m, 2H, H2′), 1.45 (m, 4H, H3′,4′).
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13C NMR (126 MHz, CDCl3) δ/ppm: 196.0 (CC=O,Ac), 165.4 (CC=O,B7), 157.4 (CB2), 155.5 (CA2),

150.0 (CB6), 149.5(CA6), 138.9 (CB4), 137.1 (CA4), 124.2 (CA5), 122.9 (CB5), 121.3 (CA3), 120.5

(CB3), 65.8 (C6′), 30.7 (CMe), 29.5 (C2′), 29.0 (C1′), 28.6 (C3′), 28.5 (C5′), 25.6 (C4′).

[2,2′-Bipyridine] 1-oxide (P7)

SM228

2,2′-Bipyridine (2.6 g, 16.6 mmol, 1.0 eq.) was dissolved in TFA (15 ml)

and H2O2 (30 %, 2.6 ml, 25.5 mmol, 1.5 eq) was added. the mixture was

stirred at rt for 4 h, neutralized with 3 M aq. NaOH-solution and extracted

four times with CH2Cl2. The combined organic fractions were washed with

sat. NaCl-solution, dried over MgSO4 and the solvent was removed. P7

was obtained as orange oil which solidi�ed over night (1.72 g, 10.0 mmol, 60 %).

1H NMR ( 250 MHz, CDCl3) δ/ppm: 8.88 (d, J = 8.1 Hz, 1H), 8.71 (m, 1H), 8.31 (m, 1H), 8.17

(dd, J = 7.7, 1.8 Hz, 1H), 7.82 (m, 1H), 7.33 (m, 2H). The 1H NMR spectroscopic data are in accord

with the literature.[77]

4-Nitro-[2,2′-bipyridine] 1-oxide (P8)

SM229

P7 (1.5 g, 8.71 mmol) was dissolved in conc. H2SO4 (8 ml) and cooled. A

mixture of conc. H2SO4 (8 ml) and HNO3 (68 %, 10 ml) was added slowly

and the solution was stirred at 100 °C for 7.5 h. The reaction mixture was

poured on ice and was made alkaline with 30% aq. NaOH-solution. The

formed precipitate was �ltered o�, washed with water and diethyl ether and

dried. P8 was yielded as an o�-white solid (0.95 g, 4.37 mmol, 50 %).

1H NMR ( 250 MHz, CDCl3) δ/ppm: 9.16 (d, J = 3.2 Hz, 1H), 8.89 (d, J = 8.1 Hz, 1H), 8.79 (d,

J = 4.2 Hz, 1H), 8.36 (d, J = 7.2 Hz, 1H), 8.06 (dd, J = 7.2, 3.3 Hz, 1H), 7.88 (td, J = 7.9, 1.7

Hz, 1H), 7.43 (dd, J = 6.9, 5.0 Hz, 1H). The 1H NMR spectroscopic data are in accord with the

literature.[77]
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4-Methoxy-[2,2′-bipyridine] 1-oxide (P9)

SM230

A solution of P8 (300 mg, 1. 38 mmol, 1.0 eq.) and sodium methoxide

(164 mg, 3.04 mmol, 2.2 eq.) in anhydrous MeOH (15 ml) was stirred at

60 ◦C under nitrogen atmosphere for 4.5 h. The solution was neutralized

with 4 M HCl and the solvent was removed. The residue was suspended

in water and extracted three times with CH2Cl2. The combined organic

fractions were dried over MgSO4 and the solvent was removed. P9 was

yielded as an o�-white solid (191 mg, 945 µmol, 68 %).

1H NMR (250 MHz, CDCl3) δ/ppm: 9.04 (dt, J = 8.1, 1.1 Hz, 1H), 8.72 (ddd, J = 4.8, 1.8, 0.9

Hz, 1H), 8.21 (d, J = 7.3 Hz, 1H), 7.84 (ddd, J = 8.1, 7.6, 1.8 Hz, 1H), 7.74 (d, J = 3.6 Hz, 1H),

7.36 (ddd, J = 7.6, 4.8, 1.2 Hz, 1H), 6.84 (dd, J = 7.3, 3.6 Hz, 1H), 3.93 (s, 3H). The 1H NMR

spectroscopic data are in accord with the literature.[130]

4-Methoxy-2,2′-bipyridine (P10)

SM232

PBr3 (0.21 ml, 2.23 mmol, 3.0 eq.) was added to a solution of P9 (150 mg,

742 µmol, 1.0 eq.) in ethyl acetate (15 ml). The mixture was stirred at

75 ◦C for 2 h, poured on ice and was neutralized with 3 M aq. NaOH-

solution. The aqueous phase was extracted three times with CH2Cl2 and

the combined organic fractions were dried over MgSO4. The solvent was

removed and an oil was obtained which solidi�ed upon cooling. P10 was

yielded as a brown solid (124 mg, 666 µmol, 90 %).

1H NMR (250 MHz, CDCl3) δ/ppm: 8.67 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H), 8.49 (d, J = 5.7 Hz, 1H),

8.40 (dt, J = 8.0, 1.0 Hz, 1H), 7.98 (d, J = 2.5 Hz, 1H), 7.81 (td, J = 7.8, 1.8 Hz, 1H), 7.31 (ddd,

J = 7.5, 4.8, 1.2 Hz, 1H), 6.85 (dd, J = 5.7, 2.6 Hz, 1H), 3.95 (s, 3H). The 1H NMR spectroscopic

data are in accord with the literature.[130]

112



7 EXPERIMENTAL 7.2 Synthesis of ligands

[2,2′-Bipyridin]-4-ol (P11)

SM236

A solution of P10 (0.55 g, 2.95 mmol, 1.0 eq.) and HBr (48 %, 2.0 ml,

17.7 mmol, 6.0 eq.) in glacial acetic acid (45 ml) was stirred under re�ux for

21 h. The formed solid was �ltered o�, dissolved in H2O and the solution was

neutralized with aq. NH3-solution. The aqueous phase was extracted four

times with CH2Cl2, the combined organic fractions were dried over MgSO4

and the solvent was removed. P11 was obtained as a colourless solid (0.26 g, 1.51 mmol, 51 %).

1H NMR ( 250 MHz, CDCl3) δ/ppm: 8.65 (dt, J = 4.9, 1.5 Hz, 1H), 7.90 (m, 2H), 7.65 (d, J =

7.3 Hz, 1H), 7.42 (ddd, J = 6.4, 4.8, 2.4 Hz, 1H), 7.20 (d, J = 2.4 Hz, 1H), 6.56 (dd, J = 7.3, 2.4

Hz, 1H).

10-Bromodecan-1-ol (P12)

SM213

To a suspension of 1,10-decandiol (5.0 g, 28.7 mmol, 1.0 eq.) in toluene (50 ml)

was added HBr (48 %, 3.8 ml, 33.4 mmol, 1.1 eq.) and the mixture was

stirred under re�ux for 64 h. H2O (15 ml) was added to the yellow solution

and the phases were separated. The organic phase was diluted with diethyl

ether (25 ml) and washed with 1 M aq. NaOH-solution and saturated NaCl-solution. After drying

over MgSO4 the solvent was removed. The obtained dark-yellow liquid was puri�ed by column

chromatography (SiO2, cyclohexane/ethyl acetate 2:1, KMnO4 , Rf = 0.32). P12 was obtained as

a pale-yellow liquid (5.13 g, 21.6 mmol, 75 %).

1H NMR (250 MHz, CDCl3) δ/ppm: 3.64 (t, J = 6.6 Hz, 2H), 3.40 (t, J = 6.9 Hz, 2H), 1.95 �

1.75 (m, 2H), 1.63 � 1.47 (m, 4H), 1.37 � 1.25 (m, 10H). The 1H NMR spectroscopic data are in

accord with the literature.[76]

113



7.2 Synthesis of ligands 7 EXPERIMENTAL

10-([2,2′-Bipyridin]-4-yloxy)decan-1-ol (S5)

SM237

A mixture of P11 (120 mg, 697 µmol, 1.0 eq.), P12 (182 mg, 767 µmol,

1.1 eq.) and potassium carbonate (337 mg, 2.44 mmol, 3.5 eq.) in DMF

(15 ml) was stirred at 80 °C for 5.5 h. The solvent was removed and the

residue suspended in water. The aqueous phase was extracted three times

with CH2Cl2, the combined organic fractions were dried over MgSO4 and the

solvent was removed. The crude product was puri�ed by recrystallization

from n-hexane. S5 was obtained as a colourless solid (118 mg, 359 µmol,

51 %).

1H NMR (500 MHz, CDCl3) δ/ppm: 8.67 (ddd, J = 4.8, 1.8, 0.9 Hz, 1H,

HA6), 8.47 (d, J = 5.6 Hz, 1H, HB6), 8.39 (dt, J = 8.0, 1.0 Hz, 1H, HA3),

7.94 (d, J = 2.5 Hz, 1H, HB3), 7.81 (ddd, J = 8.0, 7.5, 1.8 Hz,1H, HA4),

7.31 (ddd, J = 7.5, 4.8, 1.2 Hz, 1H,HA5), 6.83 (dd, J = 5.7, 2.5 Hz, 1H,

HB5), 4.13 (t, J = 6.5 Hz, 2H,H1′), 3.64 (t, J = 6.8 Hz, 2H, H10′), 1.82

(m, 2H, H2′), 1.56 (m, 2H, H9′), 1.47 (m, 2H, H3′), 1.37 � 1.27 (m, 10H, H4′−8′). 13C NMR

(126 MHz, CDCl3) δ/ppm: 166.37 (CB4), 158.03(CB2), 156.20 (CA2), 150.39 (CB6), 149.17 (CA6),

137.07 (CA4), 123.94 (CA5), 121.42 (CA3), 111.31 (CB5), 106.77 (CB3), 68.19 (C1′),63.19 (C10'),

32.92 (C9′), 29.60 (CH2,C4′−8′), 29.55 (CH2,C4′−8′), 29.49(CH2,C4′−8′), 29.37 (CH2,C4′−8′ , 29.07

(C2′), 26.04 (C3′),25.85 (CH2,C4′−8′). MS (ESI, m/z): 329.4 [M+H]+ (calc. 329.2). EA: Found C

72.15 %, H 8.56 %, N 8.05 % , C20H28N2O2 requires C 73.14 %, H 8.59 %, N 8.53 %.
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10,10′-([2,2′-Bipyridine]-4,4′-diylbis(oxy))bis(decan-1-ol) (S6)

SM218

A mixture of OH-bpy (150 mg, 797 µmol, 1.0 eq.), P12 (410 mg,

170 mmol, 2.1 eq.) and potassium carbonate (550 mg, 3.99 mmol, 5.0 eq.)

in DMF (20 ml) was stirred at 85 °C for 5.5 h. The solvent was removed

and the residue suspended in water. The aqueous phase was extracted four

times with a mixture of ethyl acetate/CH2Cl2 (1:1), the combined organic

fractions were dried over MgSO4 and the solvent was removed. Puri�cation

was performed by suspending the crude product in boiling n-hexane prior

to cooling and �ltration. S5 was obtained as a colourless solid (181 mg,

361 µmol, 45 %).

1H NMR ( 500 MHz, CDCl3) δ/ppm: 8.45 (d, J = 5.7 Hz, 2H, HA6), 7.94

(d, J = 2.5 Hz, 2H, HA3), 6.83 (dd, J = 5.7, 2.5 Hz, 2H, HA5), 4.13 (t, J

= 6.5 Hz, 4H, H1′),3.64 (t, J = 6.6 Hz, 4H, H10′),1.82 (m, 4H, H2′), 1.56

(m, 4H,H9′), 1.46 (m, 4H, H3′), 1.38 - 1.28 (m, 20H, H4′−8′).13C NMR

(126 MHz, CDCl3) δ/ppm: 166.4 (CA4), 157.7 (CA2), 150.2 (CA6), 111.5 (CA5), 106.9 (CA3), 68.2

(C1′), 63.2 (C10′), 32.9 (C9′), 29.6 (CH2, C4′−8′), 29.5 (CH2, C4′−8′), 29.5 (CH2, C4′−8′), 29.3 (CH2,

C4′−8′), 29.0 (C2′), 26.0 (C3′), 25.8 (CH2, C4′−8′). MS (ESI, m/z): 501.6 [M+H]+ (calc 501.4). EA:

Found C 70.34 %, H 9.63 %, N 5.95 %, C30H48N2O4·0.5H2O requires C 70.69 %, H 9.69 %, N 5.50

%.

6-(2-(2,4-Dinitrophenyl)hydrazono)-1,10-phenanthrolin-5-one (L5)

IW43

The precursor 1,10-phenanthroline-5,6-dione (phen-dione) was syn-

thesized following the procedure reported by Paw and Eisenberg.
[86] Phen-dione (1.0 g, 4.76 mmol, 1.0 eq.) was suspended in EtOH

(15 ml) and conc. H2SO4 (3 ml) and added to a suspension of

2,4-dinitrophenylhydrazine (1.62 g, 5.71 mmol, 1.2 eq.) in EtOH

(15 ml) and conc. H2SO4 (2 ml). The mixture was heated to re-

�ux overnight. The formed orange precipitate was �ltered o� and

washed with 5% aq. NaHCO3-solution to remove residual acid, then washed with water. The solid

was stirred as a suspension in hot EtOH/acetone to remove precursors. After �ltering and drying

the product L5 was obtained as a bright orange solid (1.62 g, 4.1 mmol, 87 %).

115



7.2 Synthesis of ligands 7 EXPERIMENTAL

1H NMR (250 MHz, TFA-d) δ/ppm: 9.62 (dd, J = 8.4, 1.2 Hz, 1H), 9.40 (m, 2H), 9.25 (dd, J =

4.8, 1.5 Hz, 1H), 9.13 (m, 2H), 8.78 (d, J = 1.2 Hz, 2H), 8.33 (dd, J = 8.4, 5.6 Hz, 1H), 8.09 (dd,

J = 8.1, 4.9 Hz, 1H).

Dimethyl [2,2′-bipyridine]-4,4′-dicarboxylate (dmcbpy)

SM64

A mixture of dcbpy (372 mg, 1.52 mmol) and MeOH (60 ml) was cooled

in an ice-bath and conc. H2SO4 (8 ml) was added. After re�uxing for

15 h the clear solution was cooled to room temperature, added to 100 ml

water and the pH was adjusted to 8 by addition of NaOH-solution. The

aqueous phase was extracted twice with CH2Cl2, dried over MgSO4 and

the solvent was removed. Dmcbpy was obtained as a colorless solid

(320 mg, 1.18 mmol, 77 %).

1H NMR (400 MHz, CDCl3, δ/ppm): 8.96 (dd, J = 1.6, 0.9 Hz, 2H), 8.86 (dd, J = 5.0, 0.8 Hz,

2H), 7.90 (dd, J = 5.0, 1.6 Hz, 2H), 4.00 (s, 6H). The 1H NMR spectroscopic data are in accord

with the literature.[131]

1,10-Phenanthroline-4,7-dicarbaldehyde (PDA)

SM73

To a mixture of 4,7-dimethyl-1,10-phenanthroline (208 mg,

1.0 mmol, 1.0 eq.) and SeO2 (464 mg, 4,18 mmol, 4.2 eq.) in

1,4-dioxane (25ml) were added 3 drops of water and the suspen-

sion was stirred under re�ux for 3.5 h. The hot mixture was �ltered

over a plug of celite, the plug was washed with 1,4-dioxane and the

resulting yellow solution was cooled. The formed precipitate was �ltered o� and dried. PDA was

obtained as yellow needles (220 mg, 931 µmol, 93 %).

1 H NMR (400 MHz, CDCl3) δ/ppm: 10.64 (s, 2H), 9.54 (d, J = 4.3 Hz, 2H), 9.23 (s, 2H), 8.10

(d, J = 4.3 Hz, 2H). The 1H NMR spectroscopic data are in accord with the literature.[83]
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7.3 Synthesis of complexes

Ru(pytpy)Cl3

SM32

A solution 4′-(pyridin-4-yl)-2,2′:6′,2′′-terpyridine (100 mg, 322 µmol) and RuCl3·xH2O (90 mg) in

EtOH (20 ml) was re�uxed for 3 h. The reaction mixture was �ltered and the solid was dried.

Ru(pytpy)Cl3 was obtained as a black solid (132 mg, 255 µmol, 79%).

The product was used without further puri�cation or chararterization

[Ru(pytpy)(L1)][PF6]2 (C1)

SM33

Ru(ptpy)Cl3 (41 mg, 79 µmol, 1.04 eq.), L1 (40 mg, 76 µmol,

1.0 eq.) and ethylene glycol (20 ml) were heated in a household

microwave to re�ux for 3 minutes. The red solution was cooled,

diluted with water and aqueous NH4PF6-solution was added.

The formed precipitate was �ltered over Celite, washed with

water and diethyl ether and dried in an airstream. The solid

was dissolved in acetonitrile and the solvent was evaporated.

C1 was obtained as a red solid (67 mg, 54.6 µmol, 72 %).

1H-NMR (500 MHz, CD3CN) δ/ppm: 9.07 (s, 1H, HE3), 9.06

(s, 1H, HE3), 9.01 (s, 1H, HB3), 9.00 (s, 1H, HB3), 8.96 (m,

2H, HF3), 8.66 (m, 4H, HA3,D3), 8.15 (m, 4H, HC2,F2), 7.96

(m, 4H, HA4,D4), 7.65 (d, J = 8.2 Hz, 2H, HC3), 7.44 (m, 4H,

HA6,D6), 7.20 (m, 4H,HA5,D5), 7.03 (t, J = 6.0 Hz, 1H, HNH),

4.52 (d, J = 6.1 Hz, 2H, HC5), 3.62 (ddd, J = 12.3, 8.8, 6.4

Hz, 1H, H3′), 3.19 (m, 1H, H1′), 3.11 (m, 1H, H1′), 2.46 (dt, J = 12.0, 6.5 Hz, 1H, H2′ ), 2.27 (t,

J = 7.3 Hz, 2H, H7′), 1.90 (dd, J = 13.3, 6.4 Hz, 1H, H2′), 1.75 (m, 1H, H4′), 1.68 (m, 2H, H6′),

1.62 (m, 1H, H4′), 1.46 (m, 2H, H5′). 13C-NMR (126 MHz, CD3CN) δ/ppm: 173.8 (CC=O), 159.1

(CA2/D2), 158.9 (CA2/D2), 156.9 (CB2/E2), 156.2 (CB2/E2), 153.5 (CA6/D6), 153.4 (CA6/D6), 152.1

(CF3), 139.1 (CA4,D4), 129.5 (CC3), 128.9 (CC2), 128.6 (CA5/D5), 128.4 (CA5/D5), 125.7 (CA3/D3),

125.5 (CA3/D3), 122.9 (CF2), 122.8 (CE3), 122.7 (CE3), 122.6 (CB3), 57.5 (C3′), 43.2 (CC5), 41.1

(C2′), 39.3 (C1′), 36.6 (C7′), 35.4 (C4′), 29.6 (C5′), 26.3 (C6′). IR (solid, ν/cm−1): 521 (s), 555 (s),

586 (m), 610 (m), 744 (m), 784 (m), 829 (s), 1025 (w), 1404 (m), 1468 (m), 1528 (m), 1601 (m),
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1647 (m), 2925 (w), 3638 (w). MS (ESI, m/z): 469.1 [M-2PF6]2+ (calc. 469.1). EA: Found C 46.08

%, H 4.48 %, N 8.92 %, C50H44F12N8OP2RuS2 ·4H2O requires C 46.19 %, H 4.03 %, N 8.62 %.

[Ru(L1)2][PF6]2

SM35

A solution of L1 (150 mg, 285 µmol) and RuCl3·xH2O (42 mg)

in EtOH (15 ml) was heated in a microwave reactor at 130 °C

for 2 h. The obtained red solution was cooled, diluted with

water and aqueous NH4PF6-solution was added. The formed

precipitate was �ltered over Celite, washed with water and di-

ethyl ether and dried in an airstream. The solid was dissolved

in acetonitrile and the solvent was evaporated. [Ru(L1)2][PF6]2
was obtained as a red solid (140 mg, 97 µmol, 68 %).

1H-NMR (500 MHz, CD3CN) δ/ppm: 9.00 (s, 4H, HB3), 8.64

(d, J = 8.0 Hz, 4H, HA3), 8.16 (d, J = 8.3 Hz, 4H, HC2),7.94

(td, J = 8.0, 1.4 Hz, 4H, HA4), 7.64 (d, J = 8.4 Hz, 4H, HC3),

7.44 (dd, J = 4.9, 0.6 Hz, 4H, HA6), 7.18 (m, 4H, HA5), 7.07

(t, J = 6.2 Hz, 2H, HNH), 4.52 (d, J = 6.1 Hz, 4H, HC5),

3.61 (ddd, J = 12.2, 8.8, 6.4 Hz, 2H, H3′), 3.18 (m, 2H, H1′

),3.10 (m, 2H, H1′), 2.45 (tdd, J = 11.9, 6.5, 5.5 Hz, 2H, H2′),

2.27 (t, J = 7.3 Hz, 4H, H7′), 1.89 (dd, J = 12.8, 6.9 Hz, 2H,

H2′), 1.74 (m, 2H, H4′), 1.66 (m, 4H, H6′), 1.61 (m, 2H, H4′), 1.44 (m, 4H, H5′). 13C-NMR (126

MHz, CD3CN) δ/ppm: 174.0 (CC=O), 159.2 (CA2), 156.4 (CB2), 153.4 (CA6), 149.1 (CB4), 143.4

(CC4),139.0 (CA4), 136.4 (CC1), 129.5 (CC3), 128.9 (CC2), 128.5 (CA5), 125.5 (CA3), 122.5 (CB3),

57.5 (C3′), 43.3 (CC5),41.1 (C2′), 39.3 (C1′), 36.6 (C7′), 35.4 (C4′), 29.6 (C5′), 26.3 (C6′). MS (ESI,

m/z): 577.1 [M-2PF6]2+ (calc. 577.1).
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RuCl2(cod)

SM54

A solution of 1,5-cyclooctadien (4.4 g, 5.0 ml, 40.7 mmol) and RuCl3·x H2O (4 g, ∼ 14.5 mmol) in

Ethanol (50 ml) was re�uxed for 55 h. After cooling to room temperature the brown precipitate

was �ltered o�, washed with Et2O and dried. RuCl2(cod) was obtained as a brown solid. (3.98 g,

14.2 mmol, 98 %).

Ru(L3)2Cl2

SM55

A microwave vial was charged with RuCl2(cod) (50 mg, 178 µmol,

1.0 eq ), L3 (200 mg, 357 µmol, 2.0 eq) and DMF (12 ml) and heated

in a microwave reactor for 1 h at 100 °C. The solvent was removed

and Ru(L3)2Cl2 was obtained as a dark green solid without further

puri�cation. (230 mg, quant. yield).

MS (MALDI-TOF, m/z): 1257.2 [M-Cl]+(calc. 1257.3).
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Ru[(L3)2(L5)][PF6]2 (C2)

SM71

Ru(L3)2Cl2 (25mg, 19 µmol, 1.0 eq.) and L5

(10 mg, 26 µmol, 1.3 eq.) were mixed with

MeOH (4 ml), degassed with nitrogen for 5 min.

and heated in a microwave reactor for 23 min.

at 115 °C. The red solution was poured into wa-

ter and aqueous NH4PF6-solution was added.

The formed precipitate was �ltered over Celite,

washed with water and diethyl ether and dried

in an airstream. The solid was dissolved in

acetonitrile, the solvent was removed and the

crude product was puri�ed by recrystallization

(EtOH/n-hexane) C2 was obtained as a red

solid (15 mg, 8 µmol, 41 %).

1H NMR (500 MHz, CD3CN) δ/ppm: 9.10 (d,

J = 2.5 Hz, 1H, HF3), 9.05 (d, J = 1.0 Hz, 4H,

HA3,B3), 8.97 (dd, J = 8.3, 1.0 Hz, 1H, HD4),

8.85 (dd, J = 8.1, 1.3 Hz, 1H, HC4), 8.69 (d, J

= 9.4 Hz, 1H, HF6), 8.59 (dd, J = 9.4, 2.5 Hz,

1H, HF5), 8.00 (m, 1H, HC2), 7.88 (d, J = 5.9

Hz, 4H, HA6,B6), 7.83 (dd, J = 5.9, 1.7 Hz, 4H, HA5,B5), 7.79 (dd, J = 5.4, 1.2 Hz, 1H, HD2),

7.68 (dd, J = 8.1, 5.6 Hz, 1H, HC3), 7.63 (dd, J = 8.4, 5.4 Hz, 1H, HD3), 4.40 (t, J = 6.4 Hz,

8H, H6′), 2.84 (m, 8H, H1′), 2.25 (s, 12H, HMe), 1.79 (m, 8H, H5′ ), 1.55 (m, 8H, H2′), 1.43 (m,

16H, H3′,4′). 13C NMR (126 MHz, CD3CN) δ/ppm: 196.6 (CC=O), 178.4 (CE3), 164.3 (CA7,B7),

158.2 (CA2,B2), 157.4 (CC2), 155.8 (CE1), 153.0 (CA6,B6), 153.0 (CD2), 148.5 (CE6), 144.3 (CF4),

143.3 (CF1), 140.6 (CA4,B4), 137.4 (CC4), 136.1 (CF2), 133.6 (CD4), 133.1 (CE5), 131.4 (CE2/E4),

131.3 (CE2/E4), 131.0 (CF5), 129.0 (CD3), 128.6 (CC3), 127.7 (CA5,B5), 125.0 (CA3,B3), 123.4 (CF3),

120.0 (CF6), 67.5 (C6′), 30.8 (CMe), 30.2 (C2′), 29.4 (C1′), 28.9 (C5′), 28.9 (C3′), 26.0 (C4′). IR

(solid, ν/cm−1): 510 (s), 515 (s), 527 (m), 555 (s), 621 (s), 726 (m), 740 (m), 824 (s), 953 (m),

1012 (m), 1029 (m), 1107 (m), 1134 (m), 1213 (m), 1246 (w), 1312 (m), 1336 (m), 1393 (w), 1442

(m), 1465 (m), 1485 (m), 1555 (m), 1609 (s), 1682 (s), 1973 (w), 2931 (w). MS (ESI, m/z): 1612.3

[M-2PF6]+ (calc. 1612.4), 806.2 [M-2PF6]2+(calc. 806.2). EA: Found C 46.74 %, H 4.86 %, N 6.74

%, C74H82F12N10O17P2RuS4·EtOH requires C 46.84 %, H 4.55 %, N 7.19 %.
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Ru(dmcbpy)2Cl2

SM65

A solution of dmcbpy (200 mg, 735 µmol, 2.0 eq) and RuCl3·x H2O

(100 mg, 367 µmol, 1.0 eq) in ethanol (20 ml) was degassed with argon

for 5 min and the mixture was re�uxed under argon atmosphere for 5 h.

The solvent was removed, the resulting solid was suspended in ethyl ac-

etate, �ltered, washed with ethyl acetate and dried. Ru(dmcbpy)2Cl2

was obtained as a black solid (236 mg, 329 µmol, 90 %).

1H NMR (250 MHz, CDCl3) δ/ppm: 10.44 (d, J = 5.5 Hz, 2H), 8.84

(d, J = 1.3 Hz, 2H), 8.67 (d, J = 1.3 Hz, 2H), 8.16 (dd, J = 5.7, 1.4

Hz, 2H), 7.70 (d, J = 6.1 Hz, 2H), 7.49 (d, J = 5.8 Hz, 2H), 4.11 (s,

6H), 3.97 (s, 6H). The 1H NMR spectroscopic data are in accord with

the literature.[87]

[Ru(dmcbpy)2(L5)] [PF6]2 (C2*)

SM69

Ru(dmcbpy)2Cl2 (42 mg, 59 µmol, 1.0 eq.) and

L5 (23 mg, 59 µmol, 1.0 eq.) were mixed with

MeOH (4 ml) and heated in a microwave reac-

tor for 2.5 h at 120 ◦C. The red solution was

poured into water and aqueous NH4PF6-solution

was added. The formed precipitate was �ltered

over Celite, washed with water and diethyl ether

and dried in an airstream. The solid was dissolved

in acetonitrile, the solvent was removed and C2*

was obtained as a red solid ( 54 mg, 41 µmol,

70 %).
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1H NMR (500 MHz, CD3CN) δ/ppm: 9.09 (m, 4H, HA3,B3 ), 9.06 (d, J = 2.5 H, 1H, HF3), 8.97 (d,

J = 7.5 Hz, 1H, HD4), 8.84 (dd, J = 8.1, 1.3 Hz, 1H, HC4), 8.69 (d, J = 9.4 Hz, 1H, HF6), 8.58 (dd,

J = 9.4, 2.5 Hz, 1H, HF5), 8.02 (m, 2H, HA6/B6) 8.01 (d, J = 5.6 Hz, 2H, C2) 7.96 (m, 2H. HA6/B6),

7.85 (m, 4H, HA5,B5), 7.79 (dd, J = 5.4, 1.0 Hz, 1H, HD2), 7.68 (dd, J = 8.1, 5.5 Hz, 1H, HC3),

7.63 (dd, J = 8.3, 5.4 Hz, 1H, HD3), 4.01 (d, J = 1.9 Hz, 6H, HMe), 3.99 (s, 6H, HMe).13C

NMR (126 MHz, CD3CN) δ/ppm: 178.5 (CE3), 164.9 (CA7,B7), 158.7 (CA2/B2), 158.4 (CA2/B2),

157.6 (CC2), 155.9 (CE1), 154.4 (CA6/B6), 154.3 (CA6/B6), 153.1 (CD2), 148.6 (CE6), 144.4 (CF4),

143.4 (CF1), 140.2 (CA4,B4), 137.5 (CC4), 136.1 (CF2), 133.7 (CD4), 133.2 (CE5), 131.5 (CE4), 131.3

(CE2), 131.1 (CF5), 129.1 (CD3), 128.7 (CC3), 127.6 (CA5,B5), 124.9 (CA3,B3), 123.4 (CF3), 120.1

(CF6), 54.1 (CMe). IR (solid, ν/cm−1): 517 (s), 539 (s), 551 (s), 555 (s), 615 (m), 697 (s), 831 (s),

980 (w), 1028 (w), 1074 (w), 1124 (m), 1256 (m), 1319 (m), 1487 (m), 1612 (w), 1722 (m), 3090 (w).

MS (ESI, m/z): 1035.0 [M-H,-2PF6]+(calc. 1035.1), 518.1 [M-2PF6]2+ (calc. 518.1). EA: Found

C 40.15 %, H 3.02 %, N 10.09 %, C46H34F12N10O13P2Ru·3H2O requires C 40.04 %, H 2.92 %, N

10.15 %.

Ru(L4-SAc)2Cl2

SM113

A microwave vial was charged with RuCl2(cod) (60 mg, 214 µmol,

1.0 eq.), L4-SAc (180 mg, 428 µmol, 2.0 eq.) and DMF (15 ml) and

heated in a microwave reactor for 1 h at 100 °C. The solvent was re-

moved and Ru(L4-SAc)2Cl2 was obtained as a dark red solid without

further puri�cation. (215 mg, quant. yield).
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[Ru(L4-SAc)2(L5)] [PF6]2 (C3)

SM114

A mixture of Ru(L4-SAc)2Cl2 (100 mg, 99 µmol,

1.0 eq.) and L5 (46 mg, 118 µmol, 1.2 eq.) in

MeOH (14 ml) was heated in a microwave reactor

at 115 °C for 1.5 h. The resulting solution was

poured into water and aqueous NH4PF6-solution was

added. The formed precipitate was �ltered over

Celite, washed with water and diethyl ether and dried

in an airstream. The solid was dissolved in acetoni-

trile, the solvent was removed, the red solid was dis-

solved in acetone (3 ml) and precipitated in petrol

ether. Further puri�cation was performed by recrys-

tallization from EtOH. C3 was obtained as a red

solid. ( 90 mg, 55 µmol, 56 %).

1
H NMR (500 MHz, CD3CN) δ/ppm: 9.10 (d, J

= 2.5 Hz, 1H, HF3), 8.87 (dd, J = 8.4, 1.2 Hz, 1H,

HD4), 8.76 (dd, J = 8.0, 1.4 Hz, 1H, HC4), 8.69 (d, J = 9.6 Hz, 1H, HF6), 8.59 (dd, J = 9.3, 2.6 Hz,

1H, HF5), 8.14 (dd, J = 5.4, 1.4 Hz, 1H, HC2), 7.96 (d, J = 2.6 Hz, 4H, HA3,B3), 7.93 (m, 1H, HD2),

7.65 (dd, J = 8.0, 5.5 Hz, 1H, HC3), 7.61 (m, 1H, HD3), 7.51 (d, J = 6.5 Hz, 4H, HA6,B6), 6.91 (m,

4H, HA5,B5), 4.24 (t, J = 6.1 Hz, 8H, H3′), 3.02 (t, J = 7.1 Hz, 8H, H1′), 2.30 (s, 12H, HMe), 2.08

(m, 8H, H2′). 13C NMR (126 MHz, CD3CN) δ/ppm: 196.3 (CC=O), 179.0 (CE3), 166.9 (CA4,B4),

159.4 (CA2,B2), 157.4 (CC2), 157.0 (CE1), 153.1 (CA6,B6), 152.9 (CD2) 149.8 (CE6), 144.2 (CF4),

143.5 (CF1), 135.9 (CF2), 135.5 (CC4), 132.7 (CE5), 131.8 (CE4), 131.1 (CE2), 131.0 (CF5), 128.5

(CD3) 128.1 (CC3), 123.4 (CF3), 119.9 (CF6), 115.0 (CA5,B5), 112.0 (CA3,B3), 68.9 (C3′), 30.8 (CMe),

29.6 (C2′), 26.0 (C1′). IR (solid, ν/cm−1): 557 (m), 585 (s), 613 (s), 825 (s), 955 (m), 1028 (s), 1131

(m), 1211 (m), 1333 (m), 1438 (m), 1484 (m), 1608 (s), 1682 (m), 1973 (w), 2928 (w), 3235 (w). MS

(ESI, m/z): 666.1 [M-2PF6]2+(calc. 666.1), (MALDI-TOF, m/z) 1332.2 [M-2PF6]+(calc. 1332.2).

EA: Found C 42.60 %, H 4.13 %, N 7.03 %, C58H58F12N10O13P2RuS4·3H2O ·4EtOH requires C

42.60 %, H 4.77 %, N 7.53 %.
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Ru[(dmcbpy)2(PDA)][PF6]2 (C4)

SM74

A mixture of Ru(dmcbpy)2Cl2 (50 mg, 69.8 µmol,

1.0 eq.) and PDA (19 mg, 80.4 µmol, 1.1 eq.) in MeOH

(4 ml) was heated in a microwave reactor at 115 °C for

30 min. The red solution was diluted with water and and

aqueous NH4PF6-solution was added. The formed precip-

itate was �ltered over Celite, washed with diethyl ether

and dried in an airstream. The solid was dissolved in ace-

tonitrile and the solvent was removed. The red solid was

dissolved in hot ethyl acetate (5 ml) and n-hexane was

added until a precipitate was formed. C4 was obtained as

a red solid (27 mg, 23 µmol, 33 %).

1HNMR (500 MHz, CD3CN) δ/ppm: 10.62 (s, 2H, HC5),

9.35 (s, 2H, HD3), 9.12 (m, 2H, HA3), 9.08 (m, 2H, HB3),

8.41 (d, J = 5.4 Hz, 2H, HC2), 8.15 (d, J = 5.4 Hz, 2H,

HC3), 7.98 (dd, J = 5.8, 0.6 Hz, 2H, HA6) 7.89 (dd, J = 5.8, 1.8 Hz, 2H, HA5), 7.69 (m, 2H,

HB6 ) 7.67 (dd, J = 5.7, 1.7 Hz, 2H, HB5), 4.02 (s, 6H, HMe), 3.96 (s, 6H, HMe). 13C NMR

(101 MHz, CD3CN) δ/ppm: 192.9 (CC5), 164.7 (CC=O), 158.3 (CA2,B2/A4,B4), 158.2 (CA2,B2/A4,B4),

155.5 (CC2), 154.2 (CA6,B6) , 149.0 (CD1), 137.9 (CC4), 130.1 (CC33), 128.4 (CD2), 127.8 (CD3),

127.7 (CA5), 127.6 (CB5), 125.0 (CA3), 124.9 (CB3), 54.0 (CMe). MS (MALDI-TOF, m/z): 1027.3

[M-PF6]+ (calc. 1027.1), 882.2 [M-2PF6]+ (calc. 882.1). EA: Found C 44.41 %, H 3.99 %, N 7.85

%, C42H32F12N6O10P2Ru·MeCN· EtOAc requires C 44.32 %, H 3.33 %, N 7.54 %.
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Ru[(L4-SAc)2(PDA)][PF6]2 (C5)

SM119

Ru(L4-SAc)2Cl2 (101 mg, 100 µmol, 1.0 eq.) and

PDA (28 mg, 120 µmol, 1.2 eq.) were dissolved in aque-

ous EtOH (66 Vol%, 30 ml), degassed with argon for

20 min. and re�uxed under inert atmosphere for 22 h.

Aqueous NH4PF6-solution was added, the organic sol-

vent was removed and the formed precipitate �ltered o�.

The solid was washed with water, dissolved in CH2Cl2
and the solution was dried over MgSO4. The solvent

was removed and the crude product was puri�ed by re-

crystallization from ethyl acetate/n-hexane. C5 was ob-

tained as a red solid (86 mg, 46 µmol, 46%).

1H NMR (500 MHz, CD3CN) δ/ppm: 10.61 (s, 2H,

HB5), 9.35 (s, 2H, HC3), 8.56 (d, J = 5.4 Hz, 2H, HB2),

8.12 (d, J = 5.4 Hz, 2H, HB3), 7.96 (m, 4H, HA3), 7.51

(m, 4H, HA6), 6.91 (m, 4H, HA5), 4.24 (t, J = 6.0 Hz,

8H, H3′), 3.01 (m, 8H, H1′), 2.30 (s, 12H, HMe), 2.07

(m, 8H, H2′). 13C NMR (101 MHz, CD3CN) δ/ppm:

196.4 (CC=O), 192.9 (CB5) 166.8 (CA4), 159.3 (CA2), 155.3 (CB2), 153.3 (CA6), 150.4 (CC1), 136.6

(CB4), 129.9 (CB3), 128.1 (CC2), 127.7 (CC3), 115.1 (CA5), 112.3 (CA3), 69.0 (C3′) 30.8 (CMe), 29.6

(C2′), 260.0 (C1′). IR (solid, ν/cm−1): 555 (s), 587 (s), 592 (s), 615 (s), 669 (m), 826 (s), 955 (m),

1031 (m), 1111 (w), 1130 (w), 1215 (m), 1254 (w), 1332 (w), 1440 (m), 1488 (w), 1555 (w), 1609

(m), 1685 (m), 2923 (w). MS: (LC-ESI, m/z): 589.0 [M-2PF6]2+ (calc. 589.1).
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[Ir(ppy)2(L4-SAc)][PF6] (C6)

SM149/IW162

A solution of L4-SAc (50 mg, 118 µmol, 2.1 eq.) and

the dimer Ir2(ppy)4Cl2(60 mg, 56 µmol, 1.0 eq.) in

MeOH (4 ml) was degassed with nitrogen for 5 min.

and heated in a microwave reactor at 120 °C for 2 h.

NH4PF6 (91 mg, 560 µmol, 10 eq.) was added to the

cooled solution and after stirring for 30 min. at rt

the solvent was removed. The residue was dissolved

in CH2Cl2, �ltered over celite and the solvent was re-

moved. The crude product was puri�ed by column chro-

matography (SiO2, CH2Cl2, 2 % MeOH, Rf = 0.23).

The obtained oil was dissolved in CH2Cl2 and precipi-

tated with n-pentane. C6 was yielded as a yellow solid

(75 mg, 70 µmol, 63 %).

1H NMR (500 MHz, CD3CN) δ/ppm: 8.05 (d, J = 8.0 Hz, 2H, HC3), 7.96 (d, J = 2.6 Hz, 2H,

HA3), 7.85 (m, 2H, HC4), 7.78 (dd, J = 7.80, 1.1 Hz, 2H, HB3), 7.71 (d, J = 6.4 Hz, 2H, HA6), 7.65

(m, 2H, HC6), 7.03 (m, 4H, HB4,C5), 6.98 (dd, J = 6.4, 2.6 Hz, 2H, HA5), 6.89 (td, J = 7.4, 1.3 Hz,

2H, HB5), 6.27 (dd, J = 7.6, 0.8 Hz, 2H, HB6), 4.25 (t, J = 6.1 Hz, 4H, H3′), 3.01 (t, J = 7.2 Hz,

4H, H1′), 2.30 (s, 6H, HMe), 2.07 (p, J = 6.4 Hz, 4H, H2′). 13C NMR (126 MHz, CD3CN) δ/ppm:

196.3 (CC=O ), 168.5 (CC2), 167.9 (CA4), 158.3 (CA2), 152.3 (CA6), 151.8 (CB1), 149.9 (CC6), 145.1

(CB2), 139.3 (CC4), 132.5 (CB6) , 131.2 (CB5), 125.7 (CB3), 124.3 (CC5), 123.2 (CB4), 120.6 (CC3),

115.3 (CA5), 112.4 (CA3), 69.0 (C3′), 30.8 (CMe), 29.5 (C2′), 25.9 (C1′). IR (solid, ν/cm−1): 515

(m), 524 (m), 544 (m), 557 (s), 576 (w), 628 (m), 730 (s), 737 (s), 757 (s), 794 (w), 834 (s), 876

(m), 955 (m), 1031 (s), 1063 (w), 1134 (w), 1219 (m), 1249 (m), 1267 (w), 1314 (m), 1334 (m), 1419

(m), 1439 (m), 1477 (s), 1556 (m), 1582 (m), 1607 (s), 1683 (m), 1766 (w), 3055 (w). MS (LC-ESI,

m/z): 921.3 [M-PF6]+ (calc. 921.2).
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[Ir(fppy)2(L4-SAc)][PF6] (C7)

SM152

A solution of L4-SAc (48 mg, 115 µmol, 2.1 eq.) and

the dimer Ir2(fppy)4Cl2 (60 mg, 53 µmol, 1.0 eq.) in

MeOH (15 ml) was degassed with nitrogen for 5 min.

and heated in a microwave reactor at 120 °C for 2 h.

NH4PF6 (86 mg, 530 µmol, 10 eq.) was added to the

cooled solution and after stirring for 30 min. at rt wa-

ter was added until a precipitate was formed. The

formed solid was �ltered o�, washed with aq. MeOH

and diethyl ether and dried in an airstream. The

crude product was puri�ed by column chromatogra-

phy (SiO2, CH2Cl2, 2 % MeOH, Rf = 0.35). The

obtained oil was dissolved in CH2Cl2 and precipitated

with n-pentane. C7 was yielded as a yellow solid (29 mg, 26 µmol, 25 %).

1H NMR (500 MHz, CD3CN) δ/ppm: 8.02 (ddd, J = 8.5, 1.4, 0.7 Hz, 2H, HC3 ), 7.97 (d, J = 2.7

Hz, 2H, HA3), 7.86 (m, 4H, HB3,C4), 7.73 (d, J = 6.4 Hz, 2H, HA6), 7.62 (ddd, J = 5.7, 1.6, 0.8 Hz,

2H, HC6), 7.07 (ddd, J = 7.4, 5.8, 1.4Hz, 2H, HC5), 6.99 (dd, J = 6.4, 2.6 Hz, 2H, HA5), 6.80 (td,

J = 9.0, 2.6 Hz, 2H, HB4), 5.87 (dd, J = 9.6, 2.6 Hz, 2H, HB6), 4.26 (t, J = 6.1 Hz, 4H, H3′), 3.02

(t, J = 7.2 Hz, 4H, H1′), 2.30 (s, 6H, HMe), 2.07 (p, J = 6.3 Hz, 4H, H2′). 13C NMR (126 MHz,

)CD3CN) δ/ppm: 196.3 (CC=O), 168.1 (CA4), 167.3 (CC2) 165.60/163.59 (d,C B5 ), 158.2 (CA2),

154.8 (CB1), 152.5 (CA6), 149.9 (CC6), 141.5 (CB2), 139.6 (CC4), 128.0 (CB3), 124.3 (CC5), 120.9

(CC3), 118.3 (C B6 unter Lsm), 115.4 (CA5), 112.6 (CA3), 110.3 (CB4), 69.1 (C3′), 30.8 (CMe), 29.5

(C2′), 25.9 (C1′). 19F NMR (376 MHz, CD3CN) δ/ppm: -111.25. IR (solid, ν/cm−1): 556 (s), 625

(w), 752 (m), 774 (s), 834 (s), 956 (w), 1029 (m), 1133 (w), 1187 (m), 1224 (m), 1250 (m), 1315 (w),

1334 (m), 1433 (m), 1446 (m), 1481 (m), 1555 (m), 1594 (m), 1609 (s), 1685 (w), 3404 (w). MS

(MALDI-TOF, m/z): 957.7 [M-PF6]+ (calc. 957.2). EA: Found C 44.87 %, H 3.50 %, N 5.35 %,

C42H38F8IrN4O4PS2·H2O requires C 45.04 %, H 3.60 %, N 5.00 %.
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[Ir(dfppy)2(L4-SAc)][PF6] (C8)

SM151

A solution of L4-SAc (54 mg, 127 µmol, 2.1 eq.) and

the dimer Ir2(dfppy)4Cl2 (70 mg, 58 µmol, 1.0 eq.)

in MeOH (15 ml) was degassed with nitrogen for5 min.

and heated in a microwave reactor at 120 °C for 2 h.

NH4PF6 (95 mg, 580 µmol, 10 eq.) was added to

the cooled solution and after stirring for 30 min. at

rt water was added until a precipitate was formed.

The solid was �ltered o�, washed with aq. EtOH

(70 %vol.) and diethyl ether and dried in an airstream.

The crude product was puri�ed by column chromatog-

raphy (SiO2, CH2Cl2, 2 % MeOH, Rf = 0.28). The

obtained oil was dissolved in CH2Cl2 and precipitated

with n-pentane. C8 was yielded as a yellow solid (90 mg, 79 µmol, 69 %).

1H NMR (400 MHz, CD3CN) δ/ppm: 8.31 (dt, J = 8.6, 1.0 Hz, 2H, HC3), 7.97 (d, J = 2.7 Hz,

2H, HA3), 7.91 (m, 2H, HC4), 7.74 (d, J = 6.4 Hz, 2H, HA6), 7.67 (ddd, J = 5.7, 1.5, 0.7 Hz, 2H,

HC6), 7.11 (ddd, J = 7.4, 5.8,1.4 Hz, 2H, HC5), 7.00 (dd, J = 6.4, 2.6 Hz, 2H, HA5), 6.67 (ddd,

J = 12.8, 9.4, 2.4 Hz, 2H, HB4), 5.73 (dd, J = 8.6, 2.4 Hz, 2H, HB6), 4.27 (t, J = 6.1 Hz, 4H ,

H3′), 3.02 (t, J = 7.1 Hz, 4H, H1′), 2.30 (s, 6H, HMe), 2.08 (m, 4H, H2′). 13C NMR (126 MHz,

CD3CN) δ/ppm: 196.3 (CC=O), 168.3 (CA4), 164.7 (CC2), 163.4 (CB5),161.3 (CB3), 158.0 (CA2),

155.9 (CB1), 152.6 (CA6), 150.3 (CC6), 140.3 (CC4),129.0 (CB2), 124.7 (CC5), 124.5 (CC3),115.5

(CA5), 114.6 (CB6), 112.7 (CA3), 99.4 (CB4), 69.1 (C3′), 30.8 (CMe), 29.5 (C2′), 25.9 (C1′). 19F

NMR (376 MHz, CD3CN) δ/ppm: -108.48 (d, J = 10.4 Hz), -110.28 (d, J = 10.5 Hz). IR (solid,

ν/cm−1): 515 (s), 526 (s), 536 (s), 542 (s), 556 (s), 567 (s), 713 (m), 719 (m), 737 (m), 756 (m), 788

(m), 827 (s), 985 (s), 1030 (m), 1041 (m), 1104 (m), 1164 (w), 1224 (m), 1247 (m), 1265 (w), 1295

(m), 1318 (m), 1339 (m), 1404 (m), 1428 (m), 1448 (w), 1478 (m), 1491 (w), 1556 (s), 1573 (m),

1601 (s), 1687 (m), 3086 (w). MS: (LC-ESI, m/z): 993.2 [M-PF6]+ (calc. 993.2). EA: Found C

43.74 %, H 3.46 %, N 5.04 %, C42H36F10IrN4O4PS2·H2O requires C 43.64 %, H 3.31 %, N 4.85 %.
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7 EXPERIMENTAL 7.3 Synthesis of complexes

[Fe(MeO-tpy)2][PF6]2

SM167

MeO-tpy (76 mg, 197 µmol, 1.7 eq.) was dissolved in hot

MeOH (15 ml) and mixed with a solution of FeCl2 (15 mg,

118 µmol,1.0 eq.) in water (5 ml). The resulting purple solu-

tion was stirred at rt for 20 min. and NH4PF6 was added.

After stirring for another 20 min. the formed solid was �ltered

over Celite, washed with water and diethyl ether and dried in

an airstream. The solid was dissolved in MeCN and the sol-

vent was removed. The crude product was puri�ed by recrys-

tallization (EtOH/cyclohexane). [Fe(MeO-tpy)2][PF6]2 was

obtained as a purple solid (79 mg, 77 µmol, 65 %).

1H NMR (500 MHz, CD3CN) δ/ppm: 9.15 (s, 4H, HB3), 8.61

(d, J = 8.1 Hz, 4H, HA3), 8.31 (d, J = 7.8 Hz, 4H, HC2), 7.90

(t, J = 7.8 Hz, 4H, HA4), 7.35 (m, 4H, HC3), 7.20 (d, J =

5.6 Hz, 4H, HA6), 7.08 (m, 4H, HA5), 4.00 (s, 6H, HMe). 13C

NMR (126 MHz, CD3CN) δ/ppm: 163.0 (CC4), 161.1 (CB2),

159.1 (CA2), 154.0(CA6), 151.0 (CB4), 139.6 (CA4), 130.3 (CC2), 129.7 (CC1), 128.2 (CA5), 124.7

(CA3), 121.8 (CB3), 116.1 (CC3), 56.4 (CMe). IR (solid, ν/cm−1): 555 (s), 651 (w), 737 (m), 753

(s), 787 (s), 828 (s), 1031 (w), 1177 (m), 1242 (m), 1302 (w), 1411 (m), 1465 (w), 1517 (w), 1603

(m), 2010 (w), 2936 (w). MS: (ESI, m/z): 367.2 [M-2PF6]2+ (calc. 367.1). EA: Found C 50.86 %,

H 3.49 %, N 8.51 %, C44H34F12FeN6O24P2·H2O requires C 50.69 %, H 3.48 %, N 8.06 %.
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7.4 Diverse ligands 7 EXPERIMENTAL

7.4 Diverse ligands

6,6′-Dimethyl-2,2′-bipyridine (dmbpy)

SM206

A mixture of 2,2′-bipyridine (7.0 g, 44.8 mmol, 1.0 eq.) and anhydrous

THF (125 ml) was cooled to -78 °C under nitrogen atmosphere. Methyl

lithium (1.6 M, 100 ml, 160 mmol, 3.6 eq.) was added which resulted in

a color change of the solution from colourless to cherry red. The solution

was stirred at -78 °C for 1-2 h followed by slow warming up to room

temperature overnight. Then the mixture was re�uxed for 4 h, cooled to room temperature and

later cooled further in an ice bath. Ice-water (50-60 ml) was added slowly and the mixture was

stirred for 10 min. The organic solvents were removed in vacuo and the resulting aqueous phase was

extracted with CH2Cl2 (4 x 70 ml). After combining the organic phases and drying over MgSO4, the

volume was reduced to approx. 250 ml. The brown clear solution was cooled in a water-bath and

activated MnO2 (100 g) was added. After stirring for 1.5 h the mixture was �ltered over celite and

the solvent was removed in vacuo. The received solid was puri�ed by recrysalisation from n-hexane.

The product dmbpy (4.91 g, 26.6 mmol, 59 %) was obtained as a colourless solid.

1H NMR (250 MHz, CDCl3) δ/ppm: 8.18 (d, J = 7.8 Hz, 2H), 7.68 (t, J = 7.7 Hz, 2H), 7.15 (d,

J = 7.6 Hz, 2H), 2.63 (s, 6H). The 1H NMR spectroscopic data are in accord with the literature.[132]

6,6′-Dimethyl-[2,2′-bipyridine] 1,1′-dioxide (P13)

SM126

A mixture of dmbpy (1.7 g, 9.23 mmol, 1.0 eq.), H2O2 (35 %, 10 ml,

145 mmol, 15.7 eq.) and glacial acetic acid (20 ml) was stirred at 70 °C

for 23 h. After evaporation of the solvent, P13 was obtained as a yellow

solid (1.45 g, 6.74 mmol, 73 %) and used without further puri�cation.

1H NMR (400 MHz, DMSO-d6) δ/ppm: 7.58 (m, 2H), 7.45 (m, 2H), 7.31 (t, J = 7.8 Hz, 2H), 2.38

(s, 6H).
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7 EXPERIMENTAL 7.4 Diverse ligands

6,6′-Dimethyl-4,4′-dinitro-[2,2′-bipyridine] 1,1′-dioxide (P14)

SM127

P13 (1.45 g, 6.74 mmol) was cooled in an icebath while a mixture of sul-

furic acid (95 %, 8 ml, 143 mmol) and nitric acid (68 %, 14 ml, 212 mmol)

was added dropwise. The resulting solution was re�uxed for 22 h, cooled

to room temperature and poured on ice. The mixture was stirred for

30 min. while a precipitate was formed. The solid was �ltered o�, washed

with water, EtOH and diethyl ether and dried. P14 was obtained as a

yellow solid (474 mg, 1.55 mmol, 23 %)

1H NMR (400 MHz, DMSO-d6) δ/ppm: 8.61 (d, J = 3.2 Hz, 2H), 8.53 (d, J = 3.2 Hz, 2H), 2.48

(s, 6H). The 1H NMR spectroscopic data are in accord with the literature.[133]

4,4′-Dibromo-6,6′-dimethyl-[2,2′-bipyridine] 1,1′-dioxide (P15)

SM128

A mixture of glacial acetic acid (30 ml) and P14 (0.5 g, 1.63 mmol,

1.0 eq.) was warmed to 60 °C and acetyl bromide (3.63 ml, 49 mmol,

30 eq.) was added. The mixture was stirred under re�ux for 4 h, cooled to

room temperature and poured on ice. The solution was neutralized with

saturated aq. Na2CO3-solution and the formed precipitate was �ltered

o�. After washing with water, EtOH and diethyl ether P15 was obtained

as a yellow solid (176 mg, 470 µmol, 29 %). The compound was used without further characterization.
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7.4 Diverse ligands 7 EXPERIMENTAL

4,4′-Dibromo-6,6′-dimethyl-2,2′-bipyridine (P16)

SM129

P15 (240 mg, 642 µmol, 1.0 eq.) and anhydr. CH2Cl2 (15 ml) were

mixed and cooled in an icebath. Tribromophospane (1 ml, 10.4 mmol,

16.2 eq.) was added and the mixture was stirred under re�ux for 5 h. The

solution was cooled to room temperature, poured on ice and saturated

aq. Na2CO3 was added. The phases were separated and the aqueous

phase was extracted twice with CH2Cl2. The combined organic fractions

were dried over MgSO4 and the solvent was evaporated. The resulting brown solid was puri�ed by

column chromatography (Al2O3, cyclohexane / CH2Cl2 2:1, Rf = 0.63). P16 was obtained as a

colourless solid (55 mg, 160 µmol, 25 %).

1H NMR (250 MHz, CDCl3) δ/ppm: 8.40 (d, J = 1.5 Hz, 2H), 7.36 (d, J = 1.5 Hz, 2H), 2.60 (s,

6H). The 1H NMR spectroscopic data are in accord with the literature.[133]

ALPE

SM138

A Microwave �ask was charged under nitrogen amosphere with

dmbpy (130 mg, 380 µmol, 1.0 eq.), Cs2CO3(272 mg, 836 µmol,

2.2 eq.), Pd(PPh3)4 (44 mg, 38 µmol, 0.1 eq. ), anhydr. THF

(15 ml) and diethyl phosphite (190 µl, 1.52 mmol, 4.0 eq.). The

mixture was heated for 2 h to 110 °C in a MW reactor. After cool-

ing, the mixture was �ltered and the solvent was removed. The

crude product was puri�ed by column chromatography (SiO2,

ethyl acetate, Rf = 0.14). ALPE was obtained as a colourless

solid (115 mg, 252 µmol, 66 %).

1H{31P} NMR(400 MHz, CDCl3) δ/ppm: 8.57 (s, 2H, HA3), 7.56 (s, 2H, HA5), 4.17 (m, 8H, Ha),

2.69 (s, 6H, HA7), 1.37 (t, J = 7.1 Hz, 12H, Hb). 31P{1H} NMR (162 MHz, CDCl3) δ/ppm: 15.75

.
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7 EXPERIMENTAL 7.4 Diverse ligands

2-Bromo-6-methylpyridine 1-oxide (P17)

SM139

Amixture of 2-bromo-6-methylpyridine (1.14 ml, 10 mmol, 1.0 eq.) and mCPBA

(2.59 g, 15 mmol, 1.5 eq.) in CH2Cl2 (25 ml) was stirred at rt for 19 h. The

solution was neutralized with saturated aq. Na2CO3-solution and extracted

twice with CH2Cl2. The combined organic fractions were dried over MgSO4,

the solvent was removed and the obtained orange oil was puri�ed by column

chromatography (SiO2, cyclohexane/ethyl acetate 1:2 , Rf = 0.1). P17 was

obtained as a colourless solid (1.1 g, 5.85 mmol, 59 %).

1H NMR (400 MHz, CDCl3) δ/ppm: 7.55 (d, J = 8.1 Hz, 1H), 7.22 (d, J = 7.9 Hz, 1H), 6.99 (t,

J = 8.0, 1H), 2.58 (s, 3H). The 1H NMR spectroscopic data are in accord with the literature.[134]

MS (LC-ESI, m/z): 187.9 [M+H]+ (calc. 188.0).

2-Bromo-6-methyl-4-nitropyridine 1-oxide (P18)

SM140

P17 (1.1 g, 5.85 mmol) was dissolved in conc. H2SO4 (10 ml) and heated to

90 °C. A mixture of conc. H2SO4 (10 ml) and fuming HNO3 (5 ml) was added

dropwise to the reaction mixture and the solution was stirred at 95 °C for 3.5 h.

After cooling to rt, the mixture was poured on ice and aq. Na2CO3-solution

was added until the mixture was alkaline. The formed precipitate was �ltered,

washed with water and dried in an airstream. P18 was obtained as a green solid

(0.9 g, 3.86 mmol, 66 %).

1H NMR (400 MHz, CDCl3) δ/ppm: 8.42 (d, J = 3.1 Hz, 1H), 8.10 (d, J = 3.0 Hz, 1H), 2.64 (s,

3H). The 1H NMR spectroscopic data are in accord with the literature.[134]
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4′-Bromo-[1,1′-biphenyl]-4-carbaldehyde (P22)

SM156

An oven-dried �ask was charged with 4,4′-dibromo-1,1′-biphenyl

(4.0 g, 12.8 mmol, 1.0 eq.) and anhydr. THF (37 ml) under ni-

trogen atmosphere. The mixture was cooled to -78 °C and n-BuLi

(1.6 M, 8.0 ml, 12.8 mmol, 1.0 eq.) was added during 5 min. After

stirring for 5 min., anhydr. DMF (0.99 ml, 12.8 mmol, 1.0 eq.) was added and the mixture was slowly

warmed to rt. After quenching with water, the yellow solution was extracted twice with diethyl ether

and the combined organic fractions were dried over MgSO4. The solvent was removed and the yellow

solid was puri�ed by column chromatography (SiO2, cyclohexane/CH2Cl2 1:1, Rf = 0.34).. P22

was obtained as a colourless solid (1.45 g, 5.55 mmol, 43 %).

1H NMR (400 MHz, CDCl3) δ/ppm: 10.06 (s, 1H), 7.96 (d, J = 8.3 Hz, 2H), 7.72 (d, J = 8.2 Hz,

2H), 7.61 (d, J = 8.5 Hz, 2H), 7.50 (d, J = 8.6 Hz, 2H). The 1H NMR spectroscopic data are in

accord with the literature.[112]

1,6-Bis(4'-bromo-[1,1'-biphenyl]-4-yl)hexa-1,5-diene-3,4-dione (P23)

SM158

2,3-Butanedione (0.29 ml, 3.33 mmol,

1.0 eq.) in MeOH (50 ml) was added

dropwise to a mixture of P22 (1.74 g,

6.66 mmol, 2.0 eq.) and piperidine (80 µl,

0.81 mmol, 0.25 eq.) in MeOH (50 ml).

The mixture was stirred under re�ux for

69 h. After cooling, the formed solid was

�ltered, washed with MeOH and diethyl

ether and dried. P23 was obtained as a brown solid (0.94 g, 1.65 mmol, 49 %).

MS (MALDI-TOF, m/z): 284.8 [M/2]+ (calc. 285.0).
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1,6-Bis(4'-bromo-[1,1'-biphenyl]-4-yl)hexa-1,5-diene-3,4-dione (P24)

SM159

A mixture of P23 (0.5 g, 874 µmol, 1.0 eq.),

N -acetonylpyridinium chloride (0.9 g, 5.24 mmol, 6.0 eq.)

and ammonium acetate (2.1 g, 26.2 mmol, 30 eq.) in EtOH

(50 ml) was stirred under re�ux for 70 h. After cooling, the

reaction mixture was �ltered, the solid was washed with

EtOH and diethyl ether and dried. P24 was obtained as

a grey solid (428 mg, 662 µmol, 75 %).

MS (MALDI-TOF, m/z): 647.0 [M+H]+ (calc. 647.9).

ALPE2

SM157

A Microwave �ask was charged under nitro-

gen amosphere with P24 (170 mg, 263 µmol,

1.0 eq.), Cs2CO3 (189 mg, 579 µmol, 2.2 eq.),

Pd(PPh3)4 (61 mg, 52 µmol, 0.2 eq.), anhydr.

THF (15 ml) and diethyl phosphite (135 µl,

1.05 mmol, 4.0 eq.). The mixture was heated for

2 h to 115 ◦C in a MW reactor. After cool-

ing, the mixture was �ltered and the solvent was

removed. The obtained solid was dissolved in

CH2Cl2 (20 ml), stirred with activated charcoal

for 15 min., �ltered over celite and the solvent

was removed. The crude product was puri�ed by

column chromatography (SiO2, ethyl acetate, 3 % MeOH, Rf = 0.15) or by recrystallization from

ethyl acetate. ALPE2 was obtained as a pale-yellow solid (68 mg, 84 µmol, 32 %).

1H {31P} NMR (600 MHz, CDCl3) δ/ppm: 8.47 (d, J = 1.7 Hz, 2H, HA3), 7.83 (d, E = 7.8 Hz,

4H, HC3), 7.77 (d, J = 7.9 Hz, 4H, HB2), 7.64 (m, 8H, HB3,C2),7.35 (d, J = 1.8 Hz, 2H, HA5), 4.10

(m, 4H, Ha), 4.04 (m, 4H, Ha), 2.64 (s, 6H, HA7), 1.26 (t, J = 7.1 Hz, 12H, Hb).
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13C NMR (151 MHz, CDCl3) δ/ppm:158.6 (CA6), 156.5 (CA2), 148.8 (CA4), 144.4 (d, J = 3.4 Hz,

CC1), 140.4 (CB4), 138.5 (CB1), 132.4 (d, J = 10.2 Hz, CC3), 127.8 (CB2) , 127.8 (CB3), 127.1 (d,

J = 15.3 Hz, CC2), 121.0 (CA5), 116.6 (CA3), 62.3 (d, J = 5.4 Hz, Ca), 24.8 (CA7), 16.4 (d, J =

6.5 Hz, Cb). 31P{1H} NMR (243 MHz, CDCl3) δ/ppm: 18.8. MS (MALDI-TOF, m/z): 783.8

[M+Na]+ (calc. 783.3), 761.8 [M+H]+ (calc. 761.3).

TA-TEG

SM37

DL-thioctic acid (2.06 g, 10 mmol, 1.0 eq.),

tetraethylene glycol (17.3 ml, 100 mmol, 10 eq.)

and 4-dimethylaminopyridine (0.367 g, 3.0 mmol,

0.3 eq.) were mixed in CH2Cl2 (150 ml) and de-

gassed with nitrogen for 20 min. The solution was

cooled in an ice-bath and a nitrogen degassed solution of N,N ′-dicyclohexylcarbodiimide (2.5 g,

12.1 mmol, 1.2 eq.) in CH2Cl2 (15 ml) was added dropwise. The solution was stirred under nitrogen

atmosphere for 2 h in the ice-bath and for 18 h at rt. The mixture was �ltered over celite and the

volume of the solvent was reduced to ∼15 ml. After cooling and �ltering, the solvent was removed,

the residue suspended in saturated NaHCO3-solution (150 ml) and extracted with ethyl acetate

(5 x 70 ml). The organic fractions were combined, the volume of the solvent was reduced and the

formed solid was �ltered o�. After drying over MgSO4, the solvent was removed. The crude product

was puri�ed by column chromatography (SiO2, ethyl acetate/MeOH 95:5, Rf = 0.35). TA-TEG

was obtained as a yellow oil (2.62 g, 6.86 mmol, 69 %).

1H NMR (400 MHz, CDCl3) δ/ppm: 4.23 (m, 2H), 3.67 (m, 12H), 3.61 (m, 2H), 3.15 (m, 2H), 2.45

(m, 1H), 2.35 (t, J = 7.4 Hz, 2H), 1.91 (m, 1H), 1.82 (s, 1H), 1.67 (m, 4H), 1.46 (m, 2H).13C NMR

(101 MHz, CDCl3) δ/ppm: 173.6, 72.6, 70.8, 70.6, 70.4, 69.3, 63.5, 61.9, 56.5, 40.3, 38.6, 34.7, 34.0,

28.8, 24.7. The 1H and 13C NMR spectroscopic data are in accord with the literature.[116]
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TA-PEG

SM38

DL-thioctic acid (2.06 g, 10 mmol, 1.0 eq.),

polyethylene glycol 400 (37 ml, 100 mmol, 10 eq.)

and 4-dimethylaminopyridine (0.367 g, 3.0 mmol,

0.3 eq.) were mixed in CH2Cl2 (150 ml) and de-

gassed with nitrogen for 20 min. The solution was

cooled in an ice-bath and a nitrogen degassed solution of N,N ′-dicyclohexylcarbodiimide (2.5 g,

12.1 mmol, 1.2 eq.) in CH2Cl2 (15 ml) was added dropwise. The solution was stirred under nitrogen

atmosphere for 2 h in the ice-bath and for 18 h at rt. The mixture was �ltered over celite, the solvent

was removed and the obtained yellow oil was �ltered again. The residue was suspended in saturated

NaHCO3-solution (150 ml) and extracted with ethyl acetate (3 x 70 ml). The combined organic

fractions were dried over MgSO4 and the solvent was removed. After �ltering, the oil was diluted

with ethyl acetate to avoid gelation. The crude product was puri�ed by column chromatography

(SiO2, ethyl acetate/cyclohexane/EtOH 4:3:2 + 2 % MeOH). TA-PEG was obtained as a yellow

oil (3.5 g, 5.8 mmol, 58 %).

1H NMR (400 MHz, CDCl3) δ/ppm: 4.22 (t, J = 4.8 Hz, 2H), 3.65 (m, 36H), 3.13 (m, 2H), 2.78

(d, J = 6.2 Hz, 1H), 2.45 (m, 1H), 2.35 (t, J = 7.4 Hz, 2H), 1.99 (m, 1H), 1.91 (m, 1H), 1.67 (m,

4H), 1.47 (m, 2H). The 1H NMR spectroscopic data are in accord with the literature.[116]

(Phenylazanediyl)bis(ethane-2,1-diyl) dimethanesulfonate (P25)

SM76

To a cooled solution of N -phenyldiethanolamine (10.0 g, 55 mmol,

1.0 eq.) and NEt3 (23 ml, 166 mmol, 3.0 eq.) in CH2Cl2 (200 ml) was

added dropwise methanesulfonyl chloride (9.0 ml, 116 mmol, 2.1 eq.). Af-

ter stirring for 45 min. in an ice-bath, the mixture was stirred for 1.5 h at

rt. After �ltering, the solution was poured into an acidic ice-water mix-

ture. The organic phase was separated, washed with water (2 x 50 ml).

and saturated NaCl-solution (3 x 50 ml) and dried over MgSO4. The

solvent was removed and the crude product was recrystallized (CH2Cl2/cyclohexane). P25 was

obtained as a yellow oil (9.56 g, 28.3 mmol, 52 %).

1H NMR (400 MHz, CDCl3) δ/ppm: δ7.27 (m, 2H), 6.80 (t, J = 7.3 Hz, 1H), 6.74 (dd, J = 8.8, 0.8

Hz, 2H), 4.36 (t, J = 5.9 Hz, 4H), 3.77 (t, J = 5.9 Hz, 4H), 2.97 (s, 6H). The 1H NMR spectroscopic

data are in accord with the literature.[135]
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10-Phenyl-1,4-dioxa-7,13-dithia-10-azacyclopentadecane (P26)

SM77

A mixture of 3,6-dioxa-1,8-octanedithiol (1.2 g, 6.6 mmol, 1.0 eq.) and K2CO2

(3.65 g, 26.4 mmol, 4.0 eq.) in anhydr. MeCN (150 ml) was stirred for 1 h

under re�ux. P25 (2.23 g, 6.6 mmol, 1.0 eq.) was dissolved in anhydr. MeCN

(20 ml) and and added slowly the the reaction mixture. After re�uxing for

18 h, the mixture was �ltered and the solvent was removed. The obtained yel-

low oil was puri�ed by column chromatography (SiO2, CH2Cl2/ethyl acetate

10:1, Rf = 0.55). P26 was obtained as an o�-white solid (0.5 g, 1.53 mmol,

23 %).

1H NMR (500 MHz, CDCl3) δ/ppm: 7.22 (dd, J = 8.7, 7.4 Hz, 2H), 6.69 (t, J = 7.2Hz,1H) 6.65

(m, 2H), 3.81 (t, J = 5.1 Hz, 4H), 3.65 (s, 4H), 3.62 (m, 4H), 2.90 (t, J = 8.0 Hz, 4H), 2.76 (t, J

= 5.1 Hz, 4H). 13C NMR (126 MHz, CDCl3) δ/ppm: 146.9, 129.6, 116.2, 111.8, 74.4, 70.8, 51.9,

31.2, 29.6. The 1H and 13C NMR spectroscopic data are in accord with the literature.[136] MS: (EI,

m/z): 327.1 [M]+ (calc. 327.1).
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L6

SM78

4-([2,2′:6′,2′′-terpyridin]-4′-yl)aniline (90 mg, 277 µmol, 1.0 eq.) was

dissolved in HCl (16 %, 10 ml), and the orange solution was cooled

to -4 ◦C. A solution of NaNO2 (20 mg, 290 µmol, 1.05 eq.) in water

(0.4 ml) was added dropwise. After 5 min. stirring, the solution was

tested to free nitrous acid with potassium iodide starch paper and

the excess of acid was quenched with sulfamic acid. This mixture

was added to a solution of P26 (0.1 g, 305 µmol, 1.1 eq.) in HCl

(1 M, 10 ml) at 7 °C and stirred for 1 h. NaOAc-solution (4 M,

25 ml) and saturated Na2CO3-solution (30 ml) were added until the

mixture was neutral and the formed solid was �ltered o�. After

washing with water and diethyl ether, the solid was dried. L6 was

otained as an orange solid (78 mg, 117 µmol, 42 %).

1H NMR (500 MHz, CDCl3) δ/ppm: 8.79 (s, 2H, HB3), 8.73 (m,

2H, HA6), 8.68 (m, 2H, HA3), 8.03 (d, J = 8.5 Hz, 2H, HC2), 7.97 (d,

J = 8.6 Hz, 2H, HC3), 7.88 (m, 2H, HA4), 7.36 (ddd, J = 7.5, 4.8,

1.0 Hz, 2H, HA5), 7.21 (m, 2H, HD2), 6.66 (m, 2H, HD3), 3.80 (m,

4H, H4), 3.74 (m, 4H, H1), 3.64 (s, 4H, H5), 2.95 ( m, 4H, H2), 2.76

(m, 6H, H3). 13C NMR (126 MHz, CDCl3) δ/ppm: 156.3 (CA2),

156.0 (CB2), 153.6 (CC4), 149.7 (CB4), 149.2 (CA6), 146.8 (CD4)

144.0 (CD1), 139.2 (CC1), 137.1 (CA4), 129.6 (CD2), 128.1 (CC2),

124.0 (CA5), 122.9 (CC3), 121.5 (CA3), 118.9 (CB3), 111.6 (CD3), 74.5 (C4), 70.8 (C5), 51.9 (C1),

31.4 (C3), 29.7 (C2). MS: (ESI, m/z): 701.5 [M+K]+ (calc. 701.2); 663.3 [M+H]+ (calc. 663.3).
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