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CNRM) for the source code of an early version of COBEL and all the related support.

Prof. Dr. Andreas Bott and Matthieu Masbou (University of Bonn) invited me
to start the development of a 3D fog model. For their hospitality and the excellent
scientific collaboration I am deeply grateful. I also appreciate the fact that they
shared the source code of the PAFOG 1D model. Jan Cermak from the University of
Marburg generously provided satellite data needed for forecast verification. For the
help in developing the variational data assimilation I would like to thank Dr. Ross
Bannister from the Data Assimilation Research Centre in Reading / UK.

I would like to further thank my colleagues working at the Institute of Meteorol-
ogy, Climatology and Remote Sensing at the University of Basel for their support,
assistance and contributions to the present work: Dr. Andreas Christen for endless
discussions and for sharing an apartment with a ”mad scientist”, Irene Lehner for
being such a great friend and fueling my brain cells with sweets, Gergely Rigo for the
help with satellite data, Jan Eitel for the vivid time in our office, Thomas Kleiber for
his surveys of competitive research, Günter Bing and Josette Pefferli-Stocky for an
excellent computer and administrative support, respectively.

I am indebted to our university’s computing center (URZ) for providing ten thou-
sands of CPU hours on the Beowulf cluster and especially to the support of Martin
Jacquot, who always found a solution for my very special demands and complicated
setups.

i



This research was funded by the Swiss Federal Office for Education and Science
(Grant C03.0024).

Finally I would like to thoroughly thank and dedicate this work to my parents
who enabled that I could always follow my interests.

ii



Abstract

Two high resolution numerical 1D models, namely COBEL and PAFOG, have been
adapted to compute a probabilistic fog forecast. Major modifications were made to the
COBEL model. It was coupled to the NOAH land surface model to take into account
the effects of soil and vegetation and furthermore a parameterization of precipitation
was added. To deal with the large uncertainty inherent to fog forecasts, a whole
ensemble of 1D runs is computed using the two different numerical models and a
set of different initial conditions in combination with distinct boundary conditions.
Initial conditions are obtained from variational data assimilation, which optimally
combines observations with a first guess taken from operational 3D models. The
design of the ensemble scheme computes members that should fairly well represent
the uncertainty of the current meteorological regime. Verification reveals that the
probabilistic forecast can significantly improve the current methods used at Zürich
Unique airport.

The complex topography in Switzerland further complicates fog forecasting. In
order to simulate processes like advection, cold air drainage flows and cold air pooling,
the NMM 3D model of NOAA/NCEP is modified and extended with detailed fog
microphysics. The resulting 3D fog model runs at a horizontal resolution of 1 km and
a vertical resolution comparable to the 1D models. First results look very promising
and are able to reproduce the spatial distribution of fog as it is seen by satellite.

With increasing horizontal resolution of numerical weather prediction models,
topographical effects on radiation gain importance. With a newly developed parame-
terization it is possible to consider slope angle, aspect angle, shadows and restricted
sky view on the subgrid scale and with negligible computational costs. Verification
reveals that RMS and mean error of 2 m temperature forecasts are generally improved
by 0.5 to 1 K.
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April 2005 at Zürich Unique airport from different mesoscale models. . 24
12 Sensitivity of COBEL-NOAH to vertical motion for the fog event start-
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1 Introduction

Computing power has now reached a performance level that allows for high resolution
numerical weather prediction. Today’s forecast models are run at a grid spacing of
a few kilometers and are thus capable to resolve mesoscale phenomena and produce
weather forecast with incredible spatial detail. Over the last few years I developed a
high resolution semi-operational forecast system for Europe and the Alpine region in
particular. In cooperation with NOAA/NCEP, the Nonhydrostatic Mesoscale Model
(NMM) has been adapted to and tested in the complex topography of the Alps. Every
12 hours weather predictions up to three days are computed and the results are made
available on the internet. These are indeed the highest resolution forecasts available.
The modeling work on the small scales has caught my fascination and it has become
a personal goal to provide and further improve high resolution weather forecasting.
In this study I try to address two common problems related to this high resolution
numerical weather prediction, namely fog and radiation in complex terrain.

For the safe and economically efficient flight operation the so called aeronautical
users, namely air traffic management authorities or airlines depend heavily on the
accurate forecasts of fog and visibility. In Switzerland, the major airports are prone
to fog development and low visibility conditions from approximately September to
March. Due to the central air traffic flow management in Europe non-accurate visi-
bility predictions for an airport result in too low or too high frequencies compared to
the actual capacities on the airports. The delays caused by an inaccurate visibility
prediction are substantial and costly. In the year 2003, the airline Swiss assessed the
impact of such a single event of one hour reduced traffic due to an inaccurate fog pre-
diction to approximately 50000 Euro (Christoph Schmutz, personal communication
2005).

The need for a reliable fog forecast has lead to the development of various fore-
casting and nowcasting methods based on numerical forecast models and statistics.
The most common statistical methods are based on regression, neural networks or de-
cision trees to forecast fog, visibility and low clouds. Statistical methods are typically
driven by an atmospheric profile, which is almost always taken from an operational
3D forecast model, since radiosonde data are not available at most airports. The fore-
cast variable is then related either to this profile or to both the profile and the latest
surface observation. Apart from the input data from each forecast, the key require-
ment is for historical data to establish the statistical relationship. It is crucial that
the characteristics of the forecast do not change once the statistical relationship is
established, a requirement difficult to fulfill with always improving 3D forecast mod-
els. Most systems appear to have used about three years of historical data. However,
this is likely to be too short to adequately calibrate predictions of dense fog which
occurs only rarely in most locations. In Austria a Model Output Statistics (MOS)
system was developed based on ten years of historical data (Golding 2002). Such long
data sets seem necessary for statistical regression and neural networks. Historical
data from a 3D model can be avoided if forecast variables are related only to vari-
ables observed at the surface and if it is further assumed that 3D model forecasts are
representative for the observations. According to a survey conducted by the COST-
722 action (Golding 2002), these considerations relate to the statistical systems used
in Austria, Finland, France, Germany, Italy, Netherlands and Spain. More complex
systems use a multi-step process, for instance the profile is first corrected and then a
Perfect-Prog method estimates visibility. For Expert Systems, Decision Tree or Score
Table approaches, the requirement for historical data is likely to be much greater,
since each step in the process must be calibrated. Another problem with statistical
methods is the difficulty to transfer the algorithm to another location. Besides the
necessary historical data, often local knowledge was used in the development and
many adaptations are necessary. Because of such deficiencies inherent to statistical

1



methods, it seems useful to base a fog forecast model on physical principles.
In the framework of COST-722, I developed a 1D ensemble forecast system for

fog. Even though 1D models only lead to point forecasts and cannot take advection
into account, they have the advantage of a relatively short running time and that they
can represent some processes in better detail because of a very high vertical resolu-
tion and possibly more sophisticated microphysical parameterizations. A 3D model,
which considers spatial interactions in the form of advection could be run for all
weather situations. However, highly sophisticated 3D models may have a rather long
running time, so that especially for operational purposes a balance has to be struck
between running time requirements and the accuracy of representation of physical
processes. Ensemble forecasting is a suitable alternative to deterministic model fore-
casts. With this technique, predictions from an ensemble of slightly different initial
conditions and/or various versions of models are computed to improve the accuracy of
the forecast through averaging the various forecasts, which eliminates non-predictable
components. The ensemble also provides reliable information on forecast uncertain-
ties from the diversity amongst ensemble members. Unfortunately 3D probabilistic
forecast exceed current computational limits. In the framework of this project, 3D
deterministic forecasts at a horizontal resolution of 2 km, using the Nonyhdrostatic
Mesocale Model (NMM), were carried out in order to evaluate the fog forecasting po-
tential. The rather discouraging outcome lead to the development of a more detailed
cloud microphysics module for NMM and a 1D fog forecasting system. The latter
was developed for operational purpose and it has been running in such context since
November 2004, producing daily forecasts for Zürich Unique airport.

Outline

Two state of the art 1D models were chosen for the fog forecast system. They are
described with all the modifications made in Chapter 2. The model was then tested
in a comparison project (Chapter 3). Accurate specification of initial and boundary
conditions is a crucial point of the fog forecast process (Chapter 4). This expresses the
need for profile measurements of temperature and humidity. But launching radioson-
des at an airport is a rather impossible undertake for obvious flight safety reasons.
To address the problem, a 1D data assimilation system was developed, which opti-
mally combines all available measurements with a first guess obtained from different
mesoscale models (Chapter 5). The latter are also used to include effects of spatial
heterogeneity into the 1D model. In practice this is like a one way nesting of the
1D column into the 3D model. Unfortunately fog forecasting is a threshold problem
where very small errors in predicted temperature or humidity might decide whether
condensation takes place or not. To deal with such uncertainty, an ensemble predic-
tion system was programmed to produce probabilistic fog forecasts for Zürich Unique
airport. The verification results, summarized in Chapter 6, indicate that inclusion of
advection is the key point. Only by doing so, skillful forecasts are possible.

Chapter 7 is devoted to the interaction of radiation with complex terrain. So
far this was not considered in numerical weather prediction. In fact, radiation was
assumed to be absorbed by a horizontal surface, thus neglecting the effects of slope
and aspect angle, limited sky view and shadows cast by the topography. A new para-
meterization for these effects significantly modifies the available energy and improves
the temperature forecast.

The last Chapter is an outlook to the future of fog forecasting. Unsatisfying results
with the high resolution semi operational 3D model reveal that fog forecasting is not
just a matter of resolution. More detailed microphysics are introduced into the 3D
model. The computation of condensation/evaporation as well as the sedimentation of
cloud water can be modeled more accurately when a prognostic equation for the total
droplet number concentration is solved. The 3D framework allows to explicitly model
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cold air outflow and ponding and solves the problems of advection inherent to the 1D
model simulations. This modified 3D model produced very promising first results.
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2 1D numerical models

The formation and dispersion of fog is the result of complex interaction between
thermodynamic and dynamical processes. Duynkerke (1990) identified the most im-
portant factors for fog formation to be:

• cooling of moist air by radiative flux divergence

• mixing of heat and moisture

• vegetation

• horizontal and vertical wind

• heat and moisture transport in soil

• advection

• topographic effects,

where atmospheric conditions, location and season decide upon the relative impor-
tance of each factor. The presence of clouds increases the incoming longwave radiation
at ground level and thus reduces the longwave radiative cooling at the surface, which
has great influence on fog formation. Therefore a good cloud forecast, computed by
a 3D model, is also needed. In complex topography cold air outflow and pooling as
well as advection in the heterogenous landscape become very important. Once the
fog has formed there are further influences:

• longwave radiative cooling at fog top

• gravitational droplet settling

• fog microphysics

• shortwave radiation

Starting with the work of Zdunkowski & Nielsen (1969) some of the above listed
processes were included in newly developed fog models. In this early model there was
no parameterization for the sedimentation of liquid water nor exchange coefficients.
The latter were introduced by Zdunkowski & Barr (1972). An even more sophisticated
model was developed by Brown & Roach (1976) and further refined by Turton &
Brown (1987) including new formulations for exchange coefficients of the nocturnal
boundary layer. A similar model was also used by Musson-Genon (1987) for his
quantitative comparison between computed and observed fog evolution. Very detailed
microphysics was introduced by Brown (1980) and further refined in a new model by
Bott et al. (1990), who also introduced a sophisticated treatment of radiation. Siebert
et al. (1992a), Siebert et al. (1992b) and von Glasow & Bott (1999) finally added
a module to resolve small and tall vegetation on a high resolution grid. In these
later models, the evolution of the droplet size distribution and cloud condensation
nuclei is explicitly resolved, but even today such an approach is computationally very
expensive.

For the 1D approach of this study two numerical models without spectral micro-
physics are used to compute an ensemble forecast. The COBEL model was signifi-
cantly modified and coupled to the NOAH land surface model. The second model,
called PAFOG was taken as it is and only the input/output handling was changed
so that it could be integrated into the ensemble system. A short description of the
models and modifications is now given.
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2.1 Brief description of COBEL

The COBEL model (Couche Brouillard Eau Liquide) was originally derived from the
1D model of the nocturnal boundary layer, developed by the Laboratoire d’Aérologie
of the Toulouse University (Estournel 1988). It has been used to predict fog events
over the past years at Paris Charles de Gaulle airport (Bergot et al. 2005), a site in
very flat topography. The governing equations are:

∂u

∂t
= f(v − vg)−

∂

∂z
w′u′ (1)

∂v

∂t
= −f(u− ug)−

∂

∂z
w′v′ (2)

∂θ

∂t
=

∂

∂z
w′θ′ +

θ

T

(
1
ρcp

∂Fr

∂z
+
L

cp
C

)
+ Adv θ (3)

∂q

∂t
= − ∂

∂z
w′q′ − C + Adv q (4)

where ρ is air density, u and v are the horizontal wind components, T the tempera-
ture, θ the potential temperature, q the mixing ratio and f the Coriolis parameter.
Turbulent vertical fluxes of α are denoted w′α′, Fr is the net radiative flux, C the
condensation rate by airmass unit, cp the specific heat of air at constant pressure,
L the latent heat of evaporation. Equations (1-4) support external forcing terms for
the geostrophic wind (ug, vg) and horizontal temperature advection (Advθ) as well
as humidity advection (Advq) which is present in a baroclinic atmosphere.

The most important point of a 1D fog model besides the cloud microphysics is the
turbulence closure. The main problem here is that it has to cope with stable or very
stable environments. In COBEL, a 1.5 order closure with the following prognostic
equation for turbulent kinetic energy Et is used:

∂Et

∂t
= − ∂

∂z
w′E′

t − u′w′
∂u

∂z
− v′w′

∂v

∂z
+
g

T
w′θ′ − κ (5)

where g is gravitational acceleration and κ the dissipation rate of kinetic energy. The
turbulent fluxes are related to the vertical local gradients with the help of an exchange
coefficient:

w′α′ = −Kα
∂α

∂z
for α = u, v, θ, q (6)

The main problem is now the specification of the turbulent diffusion coefficients Kα,
which are given in terms of local stability dependent mixing length lα and turbulent
kinetic energy Et:

Kα = 0.4lαE
1/2
t (7)

Note that there is a nice prognostic equation for Et but the mixing length needed
in [7] requires parameterizations, and this is the main weakness of the turbulence
closure. Depending on the stability a different formulation for mixing length is used.
For stable stratification the relation of Estournel & Guedalia (1987) is applied:

lα = ln(1− 5 Ri ), Ri ≤ 0.16 (8)

lα = ln(1 + 41 Ri )−0.84, Ri > 0.16 (9)

where Ri is the Richardson number and ln is the neutral mixing length according to
Delage (1974):

ln =
kz

1 + (kz/Gn)
(10)

with the von Kármán constant k and Gn = 4 · 10−4ugf
−1
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For unstable layers, mixing length is computed according to Bougeault & André
(1986). Here the distance a parcel can ascend (Lup) and descend (Ldown) against
buoyancy using its kinetic energy is computed first:∫ z+Lup

z

β[θ(z′)− θ(z)]dz′ = Et(z) (11)

∫ z

z−Ldown

β[θ(z′)− θ(z)]dz′ = Et(z) (12)

where β is the buoyancy coefficient g/T . The mixing length can now be assigned:

lα = min (Ldown, Lup) (13)

In the absence of liquid water, stability is simply diagnosed using the virtual potential
temperature gradient. However when liquid water is present an expression derived
from the formulation of the Brunt-Väisälä frequency after Durran & Klemp (1982) is
used:[

T

θ

∂θ

∂z
+ Γm − g

cp

] [
1 +

Lq,sat(T )
RT

]
− T

1 + qw

∂qw
∂z

 < 0 → unstable
= 0 → neutral
> 0 → stable

 (14)

where Γm is the moist adiabatic lapse rate.
The microphysics are treated rather simple with an implicit bulk-type parameter-

ization. If the mixing ratio q exceeds the saturation value qsat, the excess condenses
as liquid water ql. The equilibrium mixing ratio q∗ and temperature T ∗ are calculated
iteratively conserving the total energy and total water content:

cpT + Lq = cpT
∗ + Lq∗ (15)

q∗ = qsat(T ∗)

Basically if water condenses, it increases the temperature and thus the saturation mix-
ing ratio, so that the slightly warmer air can maintain a bit more water vapor, which
results in evaporation and cooling of the air. The cycle repeats until equilibrium is
reached. Since no information about the cloud droplets is available, the determination
of the gravitational settling flux G is rather difficult and a simple parameterization
of Brown & Roach (1976) has to be used:

G = viql (16)

The settling velocity vi is kept constant at a value of 0.016 m s−1 according to the
case study of Bergot & Gudalia (1994a).

Using the microphysics [15,16] for condensation/evaporation (C) and the gravita-
tional settling (G) the prognostic equation for liquid water is defined:

∂ql
∂t

=
∂

∂z

(
Kz

∂ql
∂z

)
+
∂G

∂z
+ C − P (17)

where P is autoconversion of cloud water into precipitation, which is described in the
next section. Finally visibility estimates are obtained using the relation of Kunkel
(1984):

vis =
3.9

144.7(ρql)0.88
(18)

The computationally most expensive part of the model is the radiation code.
Net shortwave radiation is computed at each vertical level using a version of the
parameterization presented by Fouquart & Bonnel (1984). It is a monospectral model
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between 0.24 and 4 µm which takes into account the absorption by water vapor, carbon
dioxide, ozone and cloud droplets. For the longwave radiation (4-100 µm) the scheme
of Vehil et al. (1989) is used. Computations are done for 232 spectral ranges at every
vertical level by taking into account the emission and absorption by water (liquid and
vapor), and CO2, as well as by the Earth’s surface.

The remaining parts of the model have been changed and are presented below in
more detail.

2.2 COBEL model modifications

2.2.1 Parameterization of precipitation

Many simulations showed an increase in liquid water content of stratus clouds beyond
values of 0.6 g m−3. In fact, the stratus clouds sometimes became completely imper-
meable for shortwave radiation even at noon. In order to remove this excess of liquid
water from the clouds, a simple but robust and frequently used parameterization for
precipitation was introduced into the model. It was developed by Kessler (1969) and
considers autoconversion, accretion, evaporation of rain and computations of mean
fall speeds. In COBEL, the rainwater is allowed to evaporate if a grid box is not satu-
rated and thus can alter the temperature and humidity. Rainwater descends through
the column based on the computed fall speed in a grid box and finally enters the land
surface scheme. There is no direct interaction of rainwater and radiation. Humidity
q, cloud water content qc and rainwater qr, form the following system of equations:

dq

dt
= Qrevp −Qcnevp

dqc
dt

= Qcnevp −Qaut −Qacc (19)

dqr
dt

= Qacc +Qaut −Qrevp +Qsed

where Qrevp is the rate of rainwater evaporation, Qcnevp the rate of condensation
(Qcnevp > 0) or evaporation between q and qc, Qaut the autoconversion rate, Qacc

the accretion rate and Qsed the rate of change due to sedimentation fluxes into and
out of a gird cell. Note that all water contents are volumetric.

The parameterization assumes that the droplet size distribution is of the Marschall-
Palmer type:

n(D) = N0e
−ΛD (20)

where D is the droplet diameter, N0 is an empirically determined constant, taken
to be equal to 0.8 107 m−4 and Λ is a function of the total amount of rain water
(Houze (1993) p.104). The rates of autoconversion and collection of cloud droplets
by precipitation are:

Qaut = k1(qc − a) (21)
Qacc = k′2qcq

7/8
r ec (22)

c =
g

287T
z

2
, k′2 = k2EN

1/8
0

where z is the height above ground, k1 is the autoconversion rate or reciprocal of
”conversion time” of cloud water and a the autoconversion threshold (a = 0.5 g m−3)
below which no precipitation forms. Following Ghosh & Jonas (1998) a representative
value for continental clouds of k1 = 5.46 10−4s−1 is used. Note that the autocon-
version rate, is linearly related to the cloud liquid water content. The accretion rate
needs specification of constants k2 = 6.96 10−4 and the collision-coalescence effi-
ciency E, which is set to be less than unity (E = 0.9), since the clouds consist of
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small droplets under low stratus and fog conditions. If the air in a grid cell is not
saturated, evaporation reduces the precipitation water content:

Qrevp = k3N
7/20
0 (qsat − q)q13/20

r (23)

where the subscript sat denotes saturation and k3 = 1.93 10−6. Finally the rainwater
settles with terminal velocity vt:

vt = 38.8N−1/8
0 q1/8

r ec (24)

The process of accretion is faster than autoconversion, thus cloud water depletion
due to accretion is done before autoconversion. The divergence of the precipitation
sedimentation flux is discretized using an upstream formulation:

qt+1
r (k) = qt

r(k)−
∆tsed

∆z
(−vt(k + 1)qt

r(k + 1) + vt(k)qt
r(k)) (25)

Due to high vertical resolution in COBEL, special care has to be taken when solv-
ing (24) in order to not violate the Courant condition. Thus, if the fastest droplet
moves more than half the grid spacing, the fundamental time step is split into smaller
sedimentation time steps ∆tsed.

2.2.2 Coupling COBEL with the NOAH Land Surface Model

The initial version of COBEL used a simple treatment of surface-atmosphere ex-
changes and was developed for bare soil only. A detailed description of the old scheme
is given by Bergot & Gudalia (1994a), but computed sensible and latent heat fluxes
were often of unrealistic magnitude and numerically unstable. The new approach uses
the NOAH Land Surface Model (LSM) to compute the energy balance of the canopy
layer and the evolution of temperature and humidity in the soil. The NOAH LSM
has a long heritage and originated from Mahrt & Pan (1984), Mahrt & Ek (1984) and
Mahrt & Mahrt (1987). Since then several major improvement were done (Chen et al.
1997, Ek et al. 2003) and it is currently used in the NCEP realtime Land Data Assim-
ilation System. The NOAH LSM is a multi-layer soil model with an explicit seasonal
cycle of vegetation and sophisticated treatment of snowpack physics. The prognostic
equations are for soil moisture and temperature in each soil layer, skin temperature,
snowpack water, and canopy water. A single skin temperature is obtained from a sin-
gle surface energy balance equation for the combined ground/vegetation/snowpack
surface. The evaporation in the energy balance is a combination of direct evaporation
from bare soil, transpiration through plant canopy and canopy water evaporation.
The weighting of these three evaporation components is controlled by a specified
monthly annual cycle of NDVI-based green vegetation fraction. The vegetation re-
sistance treatment is similar to that used in in the French ISBA model (Noilhan &
Mahfouf 1996). The soil hydraulics is governed by Darcy’s Law, including both a
hydraulic conductivity and diffusivity, which vary with soil moisture content.

Coupling the soil to the atmosphere is a rather difficult task and the strategy
chosen is a flux coupling. Therefore LSM fluxes are transferred as lower boundary
conditions into the vertical turbulent diffusion scheme of COBEL. The model dynam-
ics, shortwave radiation and the LSM use the same time-step of 10 seconds, whereas
the computationally expensive longwave radiation scheme is called every 10 minutes.
Effective canopy skin temperature Ts is used in the computation of longwave emis-
sion. Since the radiative scheme is called less frequently than the dynamics and the
LSM, special care has to be taken in order to conserve energy. To achieve this, skin
temperature is averaged over intermediate time-steps so that the mean flux emitted
from the surface, as calculated by the LSM is transferred to the radiative scheme. The
averaging procedure was proposed by Polcher et al. (1998) and is given by equations
(26) and (27):
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Figure 1: Vertically staggered atmospheric grid of COBEL. Temperature, humidity,
wind and cloud water are defined on the Z1 grid, fluxes are defined on the Z2 grid.
At the lower flux boundary Z2(0), sensible and latent heat fluxes computed within
the LSM are introduced into the atmosphere. At z0 wind speed is set to 0. Model
level Z1(1) is used to force the LSM.

εn+1 =
nεn + ε

n+ 1
(26)

T 4
s

n+1
=

1
n+ 1

(n
εn

εn+1T
4
s

n
+

ε

εn+1T
4
s ) (27)

where ε is the emissivity, n is the time-step at which radiative temperature from the
LSM is available between two calls to the radiation scheme and εn is the mean value
of emissivity from n time steps. Note that the averaging is linear for ε and in the 4th

power of Ts, which is basically computing a mean flux.
Figure 1 illustrates the vertical grid and level definitions, relevant for the surface-

atmosphere coupling. A crucial part of the coupling is the computation of exchange
coefficients for the canopy layer. They are calculated inside the LSM using wind
speed, temperature and humidity of the first COBEL layer Z1(1) as external parame-
ters. Since parameters are from the previous time step, the method realizes an explicit
time scheme. It would also be possible to drive the LSM with exchange coefficients
obtained from the vertical diffusion parameterization of COBEL. Both methods have
their advantages and problems. For the first method, a flux discontinuity could arise
which unrealistically accumulates or dissipates heat and moisture in the lowest level.
However, the LSM has full control over the exchange coefficients and iterations with
recomputations of stability functions, needed for fast convergence of the surface en-
ergy balance, are possible. Furthermore surface heterogeneities can be considered
easily, since a single grid box atmospheric forcing translates into different fluxes de-
termined by surface properties. Technically, for each surface type the LSM has to
compute the fluxes and Ts and area weighted average values are fed back to COBEL.
Mathematically the coupling is achieved by altering the coefficients A(1), B(1) and
C(1) of the tri-diagonal matrix ψ used in the implicit treatment of vertical diffusion.
A(1) is set to zero and the turbulent fluxes are introduced as source term into Y (1).
This flux formulation also establishes a convenient framework to test the atmospheric
part of the model with fluxes obtained from field measurements. Thus avoiding model
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deficiencies related to canopy layer processes if the model is run for past cases. Note
that in a 1-D model like COBEL, the only resolved transport process is turbulent
diffusion, which is governed by the turbulence closure scheme used to compute K.
Horizontal and vertical advection enter the model dynamics as external forcings, and
have to be computed by a driving 3-D model. From a theoretical point of view it
seems rather inconsistent to include these advections in a 1-D model, as the model’s
fundamental assumption is a barotropic homogenous environment, where no gradients
can develop in the first place. Thus if advections are observed at the fog forecasting
site, the need for a 3-D fog model becomes obvious.

To illustrate the flux coupling, the turbulent diffusion equation for temperature is
used as a surrogate for all scalar variables. On the staggered grid having k layers, the
discretization yields:

T t+1(k)− T t(k)
∆t

=
Kz(k)

T t+1(k+1)−T t+1(k)
∆z1(k) −Kz(k − 1)T t+1(k)−T t+1(k−1)

∆z1(k−1)

∆z2(k)
(28)

The turbulent diffusion coefficients Kz are computed using a 1.5 order scheme and
thus are functions of stability dependent mixing lengths l and the turbulent kinetic
energy. Under the assumption that the sensible heat flux Fsh computed by the LSM
varies only little in the time interval ∆t, equation (28) for the first atmospheric level
can be written as (29):

T t+1(1)− T t(1)
∆t

=
Kz(1)T t+1(2)−T t+1(1)

∆z1(1)
− F t

sh

∆z2(1)
(29)

which is equivalent to (30):

T t(1)− ∆t
∆z2(1)

F t
sh︸ ︷︷ ︸

Y (1)

=
(
− ∆t

∆z1(1)∆z2(1)
Kz(1)

)
︸ ︷︷ ︸

C(1)

T t+1(2) +

(
1 +

∆t
∆z1(1)∆z2(1)

Kz(1)
)

︸ ︷︷ ︸
B(1)

T t+1(1) (30)

where C(1),B(1) and A(1) = 0 are coefficients of the tri-diagonal matrix ψ, and the
following system has to be solved for T t+1:


:

Y t(k + 1)
Y t(k)

Y t(k − 1)
:

 = ψ


:

T t+1(k + 1)
T t+1(k)

T t+1(k − 1)
:

 (31)

ψ =


· ·
· · ·
C(k) B(k) A(k)

· · ·
C(1) B(1)


where matrix Inversion of ψ is carried out using the LU-decomposition algorithm of
Press et al. (1998)

Now this works on paper, but how about the implementation? It turns out that the
high resolution in the atmosphere, the first layer being only 0.5 m thick, requires an
extremely fine resolution in the soil. Indeed six layers are packed into the uppermost
10 cm, starting with a thickness of only 1.5 mm. By doing so it is guaranteed that
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the soil responds quickly to any atmospheric forcing, thus keeping the temperature
gradient between the first soil and atmospheric layer relatively small. In Figure 2
it can be seen how good the modeled skin temperature fits the surface brightness
temperature computed from the observed longwave emission. It has to be noted
that this was a very difficult situation with weak winds of about 0.5 m s−1 and thus
very little turbulence. If the first soil layer is 10 cm thick in this case, a common
resolution in numerical weather prediction models, a strong cold bias of over 4 K
develops in 2 m air temperature. If we look again at Figure 2 we notice a very
strong temperature gradient in the first 8 cm of soil, which can only be resolved
at high resolution. Furthermore at coarse resolution the skin temperature and the
temperature of the first soil layer can be very different, which causes problems in the
computation of the soil heat flux. Figure 2 also illustrates the effect of fog formation on
soil temperatures, which start to rise after formation. This reduces the temperature
gradient since absorption of longwave emission from the fog at the surface turns the
former sink of energy into a source. Unfortunately fog onset was predicted two hours
too early, explaining the offset in brightness temperature. The observation taken at
5 cm does not fit very well to the model, but one has to keep in mind that on the
rather rough and vegetated soil surface the actual depth of the uppermost observation
remains a mystery.

2.3 Brief description of PAFOG

The 1D model for PArameterized FOG (PAFOG) was derived from the detailed spec-
tral microphysical model MIFOG (Bott et al. 1990, 1989). PAFOG consists of four
modules, namely the dynamic module, the microphysical module, the radiation code,
and a module for low vegetation. The main difference to COBEL is the parameterized
but still very detailed cloud microphysics module that allows to compute the total
droplet number concentration.

Since no major changes to the 1D model PAFOG were done, an up to date de-
scription can be found in Bott & Trautmann (2002) and references mentioned therein.
Details on the parameterized cloud microphysics are discussed in a 3D context and
the reader is referred to section 8.4.
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Figure 22 in the ensemble prediction Section (5.5.1).
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3 1D Model comparison

In the framework of COST-722 a 1D model comparison project was carried out. Two
sites, namely Paris Charles de Gaulle airport in France and Lindenberg in Germany
were chosen due to the availability of good profile measurements for model initial-
ization. Furthermore these sites are located in flat and very smooth topography,
respectively. With very little spatial heterogeneities, the two sites are ideal for 1D
models. The comparison experiment is thus also a good test of the COBEL-NOAH
model.
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Figure 3: Dispersion between the models for the 1800 UTC run of the fog case of
1-2 October 2003: the mean (plain), minimum and maximum value (dashed) from
the different models for temperature at 2 m (a), temperature at 45 m (b), specific
humidity at 2 m (c) and specific humidity at 45 m (d). Reproduced from Bergot et al.
(2005).

3.1 The Paris-CDG experiment

Six different numerical 1D models, listed in Table 2 participated in the comparison
project. A description of the models is given in Bergot et al. (2005, 2006). The ver-
tical resolutions used are very different and this proves to be a cause for significant
differences in the simulations. Two cases were simulated, a true fog case (1-2 October
2003) and another case (11-12 October 2003) where relative humidity almost reached
100 % but no fog formation was observed. In order to demonstrate model differences
we focus on the actual fog event. For comparison purposes, all models were initialized
with the same atmospheric profile data and soil conditions. No participant, except
France, knew the actual development of the fog case. For every case, four simula-
tions starting at 1800 UTC, 2100 UTC, 0000 UTC and 0300 UTC, respectively, were
computed by each model.

In the following we look at the differences between simulated parameters that
develop in the first few hours of the simulation. After 3 hours of simulation, tem-
perature differences of 3 K and humidity differences of 2.5 g kg−1 are found at 2 m
above ground, when the models are initialized at 1800 UTC (Figure 3). If the mod-
els are initialized at 0000 UTC, with liquid water already present, the dispersion is
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Table 2: Models of the Paris Charles de Gaulle comparison. The vertical resolution is
summarized by the number of levels in the lowest 50 m (N < 50 m) and in the lowest
200 m (N < 200 m), respectively.

Model Institution N < 50 m N < 200 m
Hirlam-Isba I.N.M., Spain 1 3
Hirlam D.M.I., Denmark 13 20
COBEL-Isba Météo-France, France 13 20
COBEL-NOAH Univ. of Basel, Switzerland 18 30
tBM Analysen & Konzepte, Switzerland 2 7
MesoNH-Isba Univ. Balears., Spain 50 89

significantly smaller (Figure 4). This is mainly due to the longwave emission of the
fog, which keeps the surface at an almost constant temperature.

The classical radiation fog produces a well mixed temperature profile inside the
fog with a strong inversion at the top, which can be seen in 4 profiles in Figure 5.
The temperature of the mixed layer is regulated by the land surface scheme, or more
specifically the temperature at the time of fog formation. After fog formation the
temperature of the fog column is mainly regulated by the net radiative loss at the
top of the fog layer. However, the presence of clouds can significantly reduce this
net loss. Within the fog, the net radiative flux is about zero, because the radiative
cooling/heating of droplets produces a thermodynamic equilibrium (Figure 6). But
as long as the net radiative flux at the top is not zero this equilibrium is never quite
reached. At night the fog column thus keeps cooling. Basically the fog layer acts
like one thick layer, that reacts slower to changes the higher it grows since the same
energy is distributed over a larger volume. The reduced cooling rates of the fog layer
can be seen by comparing Figures 3a and 4a. Temperature profiles of all models
for a 3 h forecast, initialized at 0000 UTC, are shown in Figure 5. The classical
mixed layer shape is only reproduced by the 4 high resolution models. The coarse
grid cannot resolve the vertical structure and resulting physical processes and is thus
unsuitable for fog prediction. In summary the results reveal a rather large dispersion
in predicted temperature and humidity (Bergot et al. 2005). Differences are largest
close to the surface and almost disappear above 100 m. Even though a large dispersion
in predicted meteorological parameters was observed, the fog forecasting ability of the
high resolution models was rather good. This is surprising but could mean that the
actual atmospheric conditions were very favorable for fog formation. Indeed, the
relative humidity was already close to saturation at 1800 UTC and the wind speed
was observed to be around 1.5 m s−1, so that it does not seem very difficult to forecast
fog. Unfortunately, the observations cannot be reproduced here due to restrictive data
regulations of Météo-France.

3.2 The Lindenberg experiment

For the Lindenberg experiment two continuous periods were modeled. In the first
period from 24-29 September 1998 fog was observed on 4 days and in the second
period from 15-17 October no fog had formed. The conditions during both periods
were nearly ideal - anticyclonic with almost no wind and thus very little advection.
Unfortunately only three different 1D models participated. Namely COBEL-NOAH
and tBM from the Paris Charles de Gaulle experiment and PAFOG (see Section )
which was run by the University of Bonn. Similar to the Paris-CDG experiment, all
models were initialized with the same atmospheric and soil data, but only one run,
initialized at 1800 UTC was carried out by every model for every day. Besides the
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Figure 4: Summary result from the Paris-CDG model comparison study for 1D fog
prediction models. 2m (a) and c)) and 45m (b) and d)) variables as a function of fore-
cast time. Shown are the mean of all 6 models (solid lines) and minmum/maximum
values (dashed lines), respectively. All models initialized at 0000 UTC for the fog
case of 1-2 October 2003. Reproduced from Bergot et al. (2005).
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Figure 5: Summary result from the Paris-CDG model comparison study for 1D fog
prediction models. Vertical profiles of temperature forecasted by 6 different models
at 0300 UTC (3h forecast) of the fog case of 1-2 October 2003. Observations from
the tower are indicated with crosses. Reproduced from Bergot et al. (2005).
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Figure 6: Summary result from the Paris-CDG model comparison study for 1D fog
prediction models. Profiles of net longwave radiation flux from 6 different models at
0300 UTC (3h forecast) of the fog case of 1-2 October 2003. Reproduced from Bergot
et al. (2005).
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Figure 8: Evolution of observed and modeled 2 m temperature at Lindenberg for the
case of 24 September 1998.

initial conditions, no more information about the meteorological development of the
cases, not even if fog formed, was known by the participants.

Figure 7 summarizes observed and modeled fog for the first period on an hourly
basis. The fog forecasts from PAFOG achieved significant skill, followed by Cobel-
NOAH and finally tBM. For 26 and 29 September most models produced false alarms
in the form of long fog periods. In the second period however, no model simulated fog
occurrence. It has to be noted that tBM never produced fog but low stratus instead.
The cloud typically started to grow downward from around 50 m above ground. For
the summary in Figure 7 these low stratus clouds were assumed to be fog.

In Figure 8 the evolution of 2 m temperature for the fog case initialized on 24
September is shown. Even though COBEL-NOAH has an almost perfect temperature
forecast in this case, the fog forecast of the generally cold biased PAFOG model was
better according to Figure 7. The reason is simply that the dewpoint temperature
was not reached without the cold bias since predicted humidities were very similar.

In this experiment the forecasted profiles were also compared to radiosonde data.
Surprisingly there were not just differences between the models but all modeled pro-
files were sometimes far away from the observed truth after just 6 hours into the
forecast. The differences were around 3 K for temperature and 2 g kg−1 for humidity.
Since errors are found throughout the whole profile and not just close to the ground
they are caused by advection. This is quite a remarkable result since it outlines the
importance of advection under almost ideal conditions with weak wind and very little
topography. Therefore even for simple terrain a 3D model might be needed to resolve
advection on the grid.

Due to the high skill of the PAFOG forecast this model was also included into the
ensemble forecast system of Zürich Unique airport.
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3.3 Conclusions from the comparison experiments

The comparison demonstrated that fog forecasting is possible if initial conditions are
well known, and the topographic and synoptic conditions give rise to no or only little
advection. The different models show significant spread after only 2 hours of simula-
tion. To model radiation fog that is generally not very thick, a high vertical resolution
is necessary. Even if different models agree about occurrence or non-occurrence under
almost ideal conditions, a correct forecast is not guaranteed. This might be related
to the fact that some advection is always present. In fact, for certain cases all mod-
eled profiles were significantly different from radiosonde data after just 6 hours of
simulation.
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4 Initial data and boundary conditions for a 1D
forecast model

Prognostic numerical models compute the temporal evolution from a specified initial
state. This initial state can be based on assumptions, another forecast valid at initial-
ization time or favorably on observations. As previous work has shown, fog forecasts
are very sensitive to initial conditions (Musson-Genon 1987, Fitzjarrald & Lala 1989,
Ballard et al. 1991, Bergot & Gudalia 1994a). Especially humidity has to be known
with a precision of about 0.5 g kg−1 but different cooling conditions might increase
or decrease this value. Fog that forms at the end of the night is most sensitive to
initial conditions since a very small error decides if fog is formed or not. In reality
there are often not enough observations available to properly define the initial state,
which is especially true for 3D models. With complex methods of data assimilation,
it is however possible to obtain initial conditions for every grid point.

In the following, a discussion and an overview of available observations that were
used for model development and data assimilation at Zürich Unique airport are out-
lined. Furthermore, boundary conditions and their importance for the 1D model are
presented. In the next chapter, the actual derivation of initial conditions with varia-
tional data assimilation is explained and extended to the case of ensemble forecasting.

4.1 Observations

For the 1D ensemble forecasts at Zürich Unique airport, several observations, listed
in Table 3, were set up or already in place. Since the model is run in semi-operational
mode, data had to be collected and transferred over the internet almost in realtime. To
access data from all the different instruments in an easy way, a database was developed
using the IDL programming language. For storage the platform independent, self
documented NetCDF file format was chosen.

Table 3: Available observations around Zürich Unique airport. Details about the
virtual profile are given in Table 4.

Parameter Unit
visibility (spatially aggregated) m
precipitation rate mm/h
precipitation type code
soil temperature (-0.05, -0.1,-0.2,-1.0 m) K
volumetric soil moisture (-0.01, -0.02, -0.1, -0.25, -0.6, -0.98 m) fraction
”surface” temperature (0.02 m) K
temperature (0.5 m) K
temperature (all heights of virtual profile) K
temperature profile (MTP-5) K
wind profile m/s
humidity (all heights of virtual profile) %
u-wind (all heights of virtual profile) m/s
v-wind (all heights of virtual profile) m/s
cloud base m
cloud cover fraction
radiation LW↓ W/m2

radiation LW↑ W/m2

radiation SW↓ W/m2

Some observations were only used in the development phase of the COBEL-NOAH
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model. Especially helpful for the surface-atmosphere coupling were longwave emis-
sion data of the surface to validate the computed skin temperature. It turned out
that a high vertical resolution in the soil, with the first layer only 1.5 mm thick, is
needed for the model to respond quickly enough to an atmospheric forcing and thus
avoid excessive cooling. Temperature and humidity in the atmosphere and in the soil
are used in the assimilation scheme to initialize the model. Soil humidity is however
not very reliable, as crosschecking with observed precipitation revealed. Soil moisture
values are thus taken from the 3D models. The sensitivity to soil moisture is rather
small since very little evaporation takes place during the night. It does however play
a role in the morning, but then the water deposited by the sedimentation scheme
basically saturated the first thin soil layers, so that the initial value is not that im-
portant. Wind observations were not very helpful and are not used. The reason is
that the 1D model requires a representative geostrophic wind for the entire range of
the simulation and not a snapshot of the current turbulent wind profile.

In terms of fog modeling it is best to directly measure profiles of temperature
and humidity up to a height of approximately 2 km. This can be easily achieved
with a radiosonde. However at an airport this is not allowed for safety reasons and
operating costs are also very high. Remote sensing techniques could be used as a
surrogate but they are in general less accurate and rather costly. For temperature
it was possible to use an MTP-5 microwave profiler but nothing comparable was
available for humidity. Thus a sophisticated data assimilation system, described in
Chapter 5 had to be developed to obtain vertical profiles based on sparse and not
very representative observations.

4.1.1 MTP-5 and the virtual profile

Temperature profiles for Zürich Unique airport can be obtained in two ways, either
based on a virtual profile constructed from stations located on nearby mountains
or from the MTP-5 microwave profiler. The first method has the problem that all
observations are taken in close proximity to the ground instead of several hundred
meters above ground so that they are especially error prone under calm conditions.
Even though the stations are relatively close to the airport, they still spread over a
considerable volume. For windy conditions the influence of the surface is smaller and
the stations are more representative. Unfortunately, fog normally forms under calm
conditions. On the other hand, the temperature sensors of the stations provide direct
and relatively accurate measurements. The indirect remote sensing method of the
microwave profiler is less accurate, but provides an in-situ measurement. A drawback
of this indirect method are relatively smooth vertical profiles. To compare the two
observational systems, mean and root mean square deviations of the virtual profile
from the MTP-5 profile at the corresponding height were computed at a temporal
resolution of 10 minutes. MTP-5 data were linearly interpolated to the height above
sea level where the station measurements took place. Considered are the statistics
for each day of the observation period from 26 October 2004 until 11 April 2005. In
Table 4 the RMS and mean deviations for the whole observation period are listed.
Also indicated is the number of ground based observations with negative or positive
deviations from the MTP-5. Overall the virtual profile is not too bad but of course
deviates more as altitude increases. Also the number of cases where the stations
measured lower temperatures than the MTP-5 increases with altitude, which shows
the dominant role of radiative cooling being most pronounced close to the surface.
In summertime, increasing positive deviations with higher altitude might be observed
due to the much stronger solar radiation and longer daytime. Unfortunately no MTP-
5 data are available for the warm season. It is expected that the virtual profile is most
reliable when the net radiation is close to zero. This time should be used for model
initialization. However to spin up the model, especially the turbulence, it is favorable
to have some more turbulent conditions and therefore the model should be initialized
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Table 4: Statistics of temperature deviations between the MTP-5 and the virtual
temperature profile.

Station Height (m a.s.l.) RMS (K) Mean (K) negative positive
Bühlhof 520 0.77 0.44 586 2745
Gubrist 640 0.79 0.28 955 2453
Zürichberg 730 0.90 0.37 922 2486
Lägeren 870 1.21 -0.56 2137 1194
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Figure 9: Mean daily course of RMS and mean deviation of temperature measured
at the same height above sea level by MTP-5 and the surface stations.

a bit earlier, e.g. at 1500 UTC. Figure 9 shows the mean over all days for RMS and
mean deviation as a function of time. As can be seen for Lägeren, the station located
at highest elevation, the mean daily course of RMS deviation reaches a minimum
around 1700 UTC. For the lower stations the daily RMS amplitude is not very distinct.
However, for the mean error the situation is different. All stations show a bump in the
morning. This is caused by the transition of the stable nocturnal boundary layer to a
better mixed layer, which is seen differently by the surface stations and the microwave
profiler. Hereby the surface stations might overestimate the inversion or the profiler
underestimate it. But lets note that the morning is not really of interest for fog
modeling, since the model will not be initialized at that time. It seems tempting to
initialize a simulation in the morning and compute the time of fog dissipation, because
a short range forecast should be more accurate. But for a complex numerical model,
the initial conditions are even more complicated to derive if fog is present, since a
vertical distribution of liquid water has to be defined. But in general, profiles of liquid
water and humidity are not observed.

4.2 External forcing of a 1D model

It is common practice (Bergot & Gudalia 1994b) to drive a 1D model with temporal
boundary conditions, even though this violates the fundamental underlying assump-
tion for the model dynamics of a barotropic atmosphere. Such a procedure is used
to extend the applicability of the model to more likely weather situations. Espe-
cially in complex terrain, advection plays an important role and is present even under
synoptically calm situations in the form of cold air drainage flows.

Boundary conditions are a difficult subject to deal with. Processes like advection
of temperature, humidity and wind can significantly modify the current state and
also its evolution. For example, a warm air advection aloft increases the stability
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and decreases the turbulent exchange, thus changing the temporal evolution. The
presence of very weak vertical motions is often responsible for the formation of low
stratus clouds. But with a 1D-model it is not possible to compute vertical velocities
so that they have to be specified or derived from a 3D model. However, the extreme
sensitivity makes it unpractical to specify any vertical velocities (see Section 4.2.2).

Another external forcing is radiation, which is significantly modified by clouds.
Due to the limited vertical extent of the 1D model, most clouds are above the model
atmosphere. Increasing the vertical extent does not solve the problem, since clouds
mostly drift and do not form locally. But the effect of higher clouds can be included
using the downward radiation computed by a 3D model at the top boundary height
of the 1D model. If the radiation at a certain height is not available from the 3D-
model, it can be quantified using a radiation model and predicted cloud cover for
medium and high clouds. Note that the radiation model does not have to be extremely
sophisticated and computationally expensive, since the cloud forecast from the 3D
model can only provide an estimate. In this study, the radiation was computed
using predicted cloud cover of medium and high clouds and the radiation code of the
PAFOG model.

Under ideal, horizontally homogeneous conditions, for which and only for which, a
1D model is theoretically valid, it is not necessary to specify any time varying bound-
ary conditions. In reality however, there are always stronger or weaker horizontal
advection of temperature, humidity or wind, which a 1D model is unable to predict
due to the lack of horizontal gradients. Only for cases with weak external forcing, a
1D model is likely to do a decent forecast.

4.2.1 The advection term

Advection of a as defined by (32) is specified as an external tendency. It is computed
using centered finite differences [33] about the point of interest, which requires four
additional vertical columns from the 3D-model. Figure 10 illustrates the naming con-
vention within the grid point array extracted from every 3D model. Note that eight
neighbors are extracted so that interpolation of rotated grids onto northward and
eastward oriented axes is possible. Now this numerical solution is not very accurate,
but we have to bear in mind that the solution of the large scale advection problem
was already done by the 3D model. To make worthwhile a more complex derivation
of advection tendencies, e.g. with a semi-Lagrangian approach, it should be done for
every time step of the 3D model. The temporal resolution of the output from opera-
tional models is however very limited and often one hour or even worse. Thus it has
to be assumed that advection tendencies computed every hour can be interpolated in
time. This kind of temporal discretization ultimately places the limit on the accuracy
of the computed advection terms (Dunlop & Clark 1997).

∂a

∂t
= −~v~∇a (32)

∆ai,j

∆t
= −ui,j

ai+1,j − ai−1,j

2∆x
− vi,j

ai,j+1 − ai,j−1

2∆y
(33)

In order to not disturb the evolution of the lower boundary layer, advection was
set to zero in the lowest 100 m above ground. Remember that the development of
the temperature inversion in the 1D model is simulated fairly well, and this feature
should be maintained.

Another question to be raised is how skillful the forecast of advection is. The
validation seems to be very difficult and cannot be done in a direct way without enor-
mous expense, since the required observational setup would have to include several
profile measurements at different locations in the area of interest at the same time.
Instead advection estimates from different 3D models validating at the same time
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Figure 10: Naming convention for grid points extracted from a 3D model.

and location are compared for every hour and every vertical level within the low-
est 1500 m above ground. The examined time period started 1 December 2004 and
ended 30 April 2005. The models considered were NMM-22, NMM-4, NMM-2 and
the aLMo. In Figure 11 the mean and standard deviation over the different models
are shown, where every dot represents one model level at one time. The tendencies
for humidity and temperature are per hour. The idea is that advection computed by
different models will show similar patterns, as expressed by mean values larger than
the standard deviation, if it can be estimated accurately with a model. However, it
can be seen that mean values are often significantly less than the standard deviation
so that there is basically no clear signal for the advection term. This suggest that
advection could also be neglected or treated as a stochastic process without deteri-
orating the forecast skill, but saving a lot of cumbersome data extraction and setup
modifications regarding the 3D model.

In summary, advection has a large impact on the 1D-model, because it directly
alters the temperature and humidity profile by the advective tendency. Furthermore
advection can be quite large according to forecasts from different 3D models, but there
is also a large uncertainty in the predicted advection. The verification will show that
inclusion of advection, despite all the problems mentioned, still significantly improves
the fog forecast skill (6.4.1).

Due to some difficulties already mentioned, in obtaining estimates of advection,
it was also tried to specify a total tendency, rather than pure advection. Therefore,
the total hourly change of humidity and temperature in the profile of the 3D model
was computed. Of course this change is not solely caused by advection but by all
processes. Because at night the planetary boundary layer is not very thick, and
surface fluxes loose influence with increasing altitude rather quickly, this forcing is
mainly based on advection. For the simulations the total tendency was set to zero in
the lowest 100 m and then linearly increases to its full value in the following 200 m.
Thereby the 1D-model is undisturbed by boundary conditions in the lower levels and
can develop its own boundary layer. The use of the total tendency has some other
benefit, originating in the turbulent diffusion. Because good wind forecasts at higher
levels are not possible with a 1D model, the resulting turbulent vertical mixing is not
very reliable. Note that in 1D there are no horizontal gradients that are necessary for
wind computation, and often a nocturnal jet of unrealistic magnitude is developed.
Such problems are not present in a 3D framework so that wind forecasts and the
resulting vertical exchange are more reliable. However, as verification will reveal, the
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Figure 11: Hourly advection estimates for the period from 1 December 2004 - 30 April
2005 at Zürich Unique airport from different mesoscale models.

runs with the total rate of change are worse than purely advection based runs. The
details can be found in the verification section (6.4.1).

4.2.2 Vertical velocity

Vertical velocities are important for fog and cloud formation due to the resulting
adiabatic temperature change. Yet the dynamics of a 1D model make it impossible
to compute vertical motion inside the model and it has to be specified as an external
forcing. Unfortunately these velocities are of such a small magnitude that they cannot
be measured but have to be extracted from a 3D model. Now the vertical velocities
in the 3D models are not very reliable and often very noisy as well. The magnitudes
might not be realistic and the physics packages of a 3D model need to be tuned to
work with these estimates. For example the nonhydrostatic MESO-ETA model has
relatively low vertical velocities when run with step mountain coordinates and higher
vertical velocites when run with sigma coordinates. Experiments with different models
used in the COST-722 showed that 1D models are so sensitive to vertical motion that
its inclusion is of no practical use indeed. The behavior is illustrated in Figure 12,
where the fog event starting on 11 November 2004 is modeled with COBEL-NOAH
using no vertical velocity, an upward motion of 0.1 cm/s and a downward motion of
0.3 cm/s, respectively. As can be seen in the case of no vertical motion, the fog event
is predicted quite well. However, even a very small vertical forcing severely limits fog
formation. In other cases vertical motion also resulted in unrealistically strong fog
growth. Another example is given for the 1D PAFOG model in Figure 13, where a
low stratus is exposed to weak downward motion. As can be seen the stratus remains
relatively close to the ground and almost dissolves at 0500 UTC if vertical motion is
enforced. In summary, due to the high sensitivity of the 1D model to vertical motion
and the difficulties in obtaining a representative value, it is best to neglect vertical
motion in a 1D fog model.
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Figure 12: Sensitivity of COBEL-NOAH to vertical motion for the fog event starting
on 11 November 2004 at Zürich Unique airport.
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Figure 13: Sensitivity of PAFOG to vertical motion for a low stratus case.
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5 Variational data assimilation and ensemble fore-
casting

Data assimilation has grown to a large and important field of research over the past
years. This is because differential equations of any forecast model solve the temporal
evolution from a given initial state but cannot derive the initial state itself. Basi-
cally the quality of the forecast is strongly dependent on the initial state it started
from. Many articles and books have been devoted to the subject of data assimilation.
The articles of (Ghil & Malanotte-Rizzoli 1991, Talagrand 1990, Lorenc 1986, Ingleby
2001, Schlatter 2000), the technical report of Bannister (2003) and lecture series of
ECMWF (Bouttier & Courtier 1999, Fisher 2002a,b,c) are very useful to understand
the complicated subject. Also the books of Daley (1991) and Kalnay (2003) are a
valuable reference. In the following, a brief description of variational data assimila-
tion is given, which includes basic theory but also some technical details, necessary
to develop a data assimilation system. The focus lies on one dimensional variational
assimilation (1D-VAR), as it was developed for Zürich Unique airport. 3D-VAR and
4D-VAR systems are based on the same theory, which is extended in the case of
4D-VAR, but mainly the larger size of the system introduces a manifold of techni-
cal problems and solution strategies outlined mainly in technical reports of the the
above references. Similar to numerical modeling, data assimilation looks nice and
clean as written equations on paper, but becomes really messy when it has to be
implemented and actually solved numerically. I therefore try to avoid most aspects of
implementation and numerical solution and refer the interested reader to the source
code.

5.1 Understanding variational data assimilation

The process of approximating the true state of a physical system at a given time is
called analysis. An analysis which combines time distributed observations and a dy-
namic model is called assimilation or data assimilation (Daley 1991). The assimilation
has to know the statistical error properties of observations and of the numerical model
in order to give each information source the proper weight. Under the assumption
that errors can be modeled by a Gaussian unbiased distribution, and thus entirely
specified by a covariance matrix, variational assimilation becomes the problem of min-
imizing the cost function [34]. Detailed mathematical derivations of the cost function
are given in Hólm (2003) and Kalnay (2003).

J(~x) =
1
2
(~x− ~xb)T B−1(~x− ~xb) +

1
2
(~y −H~x)T R−1(~y −H~x) (34)

Here the following notation, proposed by Ide et al. (1997), and hypothesis are used:
~x model state (dimension n)
~xt true model state (dimension n)
~xb background model state (dimension n)
~y vector of observations (dimension p)
H linearized observation operator (from dimension n to p)
B covariance matrix of background errors ( ~xb − ~xt) (dimension n× n)
R covariance matrix of observation errors (~y −H~xt) (dimension p× p)

• Unbiased errors: the expectation of observation and background errors is zero:
~xb − ~xt = ~y −H~xt = 0

• Uncorrelated errors: observation and background errors are mutually uncorre-
lated: ( ~xb − ~xt)(~y −H~yt)T = 0
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Figure 14: A simple case with four model grid points and two observations.

• Linear analysis: the analysis defined by corrections to the background state
depends linearly on background observation departures

• Optimal analysis: the analysis state is as close as possible to the true state in
an r.m.s. sense (i.e. it is a minimum variance estimate)

So basically once H, B and R are determined and the observations ~y as well as a
first guess for ~x are available, the values in ~x are modified. Every modification results
in costs in a least-squares sense that are quantified by a scalar value, which is the
result of Eqn. 34. The values of the state vector where J(~x) has its minimum is the
analysis.

The first thing to do when setting up an assimilation scheme is defining a state
vector ~x which will store the information of the system. The values of ~x may start
with the temperature of the lower left corner on the lowest model layer followed by
the other gird points in this layer before proceeding to the next vertical layer. After
the last temperature value, the first humidity value could follow and so on until all
needed variables on all grid points are stored. The background state ~xb will be the
first guess for the assimilation and is normally a previous model forecast valid at the
time of analysis. The true state of the system ~xt is unknown but the assimilation
tries to find the best estimate of it, called the analysis ~xa. To carry out an analysis
some observed values are needed and stored in an observation vector ~y. The storage
structure of ~y should also be carefully organized, e.g. it could contain all available
measurements from different instruments at a particular location before proceeding
to the next location. Unfortunately the number and locations of measurements will
not correspond to the the state vector ~x. There might be locations where several mea-
surements from different instruments are available, and others where no observations
are available. Even worse some observations may only be a proxy of a variable in the
state vector. It is thus necessary to introduce an observation operator H which must
be linearized and expressed as a matrix. Multiplying by H on the left, as it is done in
the cost function [34], transforms model state values of ~x into synthetic observation
values corresponding to elements in ~y and the adjoint HT transforms from observation
points back to grid points. The design of H can be quite difficult and e.g. include
a linearization of a radiative transfer model as done by Janisková et al. (2002) or
Eyre (2002) to obtain radiances measured by a satellite from modeled vertical profiles
of temperature and humidity. In the current framework of considered observations,
such complicated transitions do not have to be included and H just represents a linear
interpolation of model points to observation locations. Thus, every row of H has no
more than two nonzero elements. If ~x has 4 elements and observations are taken at
two different locations x1 and x2 as illustrated in Figure (14), then the coefficients of
H for linear interpolation are:

H =
( xm2−x1

xm2−xm1

x1−xm1
xm2−xm1

0 0
0 xm3−x2

xm3−xm2

x2−xm2
xm3−xm2

0

)
(35)

To actually perform an analysis, the differences between the background state and
the observations, given by ~y − H~x have to be analyzed and minimized through an
iterative process. As can be seen, the cost function [34] has two terms, where the
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first one penalizes departures of the analysis from the background and the second
one does so for departures from observed values. The magic of data assimilation now
lies in the treatment of uncertainties inherent to observations and the background
state, which means a model for errors is introduced. Mathematically this is done
by error covariance matrices R for the observations and B for the background state.
Let us denote the background errors as ~εb = ~xb − ~xt and the observation errors
as ~εo = ~y − H~xt. The symmetric error covariance matrices are then obtained by
multiplying the vectors with their transpose:

B = (~εb − ~εb)(~εb − ~εb)T (36)

R = (~εo − ~εo)(~εo − ~εo)T (37)

In the case of 3 elements in ~x and the corresponding backround errors (e1, e2, e3) this
yields:

B =

 var(e1) cov(e1, e2) cov(e1, e3)
cov(e1, e2) var(e2) cov(e2, e3)
cov(e1, e3) cov(e2, e3) var(e3)

 (38)

The problem now is, that ~εb and ~εo both contain the true state of the system which is
unknown. But before considering ways of determining B and R it is helpful to shed
some light on their meanings. B is a square symmetric matrix of dimension n × n,
where n is the dimension of the model state vector ~x. In 3D-VAR the model state
vector can contain about 107 elements, yielding 1014 elements for B, which exceeds
the memory capacity of supercomputers. With the control variable transform, the
size of B can be enormously reduced into smaller parts (see Bannister (2003)). The
procedure is outlined later for the case of 1D-VAR. It might be helpful to see that
the off-diagonal terms in [38] can be transformed into correlations by

ρ(ei, ej) =
cov(ei, ej)√
var(ei)var(ej)

(39)

Thus the background error covariance matrices describe correlations between differ-
ent locations and different variables. Observation errors are often assumed to be
uncorrelated, reducing R to a diagonal matrix. Background error correlations are of
major importance for data assimilation. They are responsible for information spread-
ing, information smoothing and for physical balance. The spreading of information is
necessary to obtain analysis increments for a limited area of points surrounding the
observation. It fills the holes in data-spares areas. On the other hand, in data-dense
areas the correlations in B control the amount of smoothing. For example under
anticyclonic conditions horizontal correlations are desirable to spread and average the
observations, whereas for inversions or fronts the smoothing should be kept relatively
small. Balance properties are imposed by correlations between variables. The large
scale atmosphere is mainly hydrostatic and geostrophic, thus a single temperature
observation can modify not just the temperature of surrounding grid points, but also
the wind field. The correlations and variances determine the relative amplitude of
the assimilation increments for the various model fields.

5.2 Methods for estimating background error covariances

The quality of the assimilation relies on an accurate estimation of B. This is a
difficult task since it cannot be observed directly and hence has to be estimated in a
statistical sense. Simplifying assumptions of homogeneity and stationarity have to be
made. The later can be avoided by using ensemble Kalman filtering introduced by
Evensen (1994), where an ensemble of data assimilations is used to estimate a situation
dependent background error covariance (Houtekamer & Mitchell 1998, 2001, Hamill &

28



Snyder 2000, Hamill et al. 2001, Anderson 2001). If stationarity is assumed, a simple
and reliable estimation method is the observational or Hollingworth-Lönnberg method
(Hollingsworth et al. 1986, Hollingsworth & Lönnberg 1986). Given a dense and large
enough observing network that provides uncorrelated discrete information on many
scales, it is possible to determine background and observation errors. Observation
minus background covariance statistics are computed for different distances from the
observing point. At zero separation, averaged information about observation and
background errors are obtained, which need to be separated by using the interpolated
background error correlation tendency. The background error correlation should go
to zero for large separations and increase towards the observing point.

Another widely used method that does not depend on measurements at all is the
”NMC” or NCEP Method introduced by Parrish & Derber (1992).

B ≈ α
1
n

n∑
i=1

(
( ~xf (t1)− ~xf (t0))( ~xf (t1)− ~xf (t0))T

)
(40)

where ~xf represents the forecast state vector and α is an empirical scaling factor.
As can be seen in [40] B is estimated as the average over n differences between two
short-range model forecasts verifying at the same time. Normally t1 = 48h, t0 = 24h
and about 50 different forecasts representative for the season are used. In 3D-VAR
spatial inhomogeneities can also be taken into account following e.g. the methodology
of Wu et al. (2002).

The cost function can also be written in incremental form, so that the minimization
process tries to find the optimal increment to be added to the background state
(Courtier et al. (1994)). We can define perturbation quantities ~x′ and ~y′ with the
help of a linearization state, which will be the background ~xb.

~x′ = ~x− ~xb (41)

~y′ = ~y −H ~xb (42)

Thus the incremental form of the cost function becomes:

J(~x′) =
1
2
(~x′

T
B−1~x′) +

1
2
(~y′ −H~x′)T R−1(~y′ −H~x′) (43)

The incremental form has the advantage that any imbalance introduced through the
analysis procedure is limited to the increments that are added to the balanced back-
ground. So because the increments are of smaller magnitude than the background
state the balance is disturbed only little. During the iterative minimization process,
the values of ~x′ are varied to find the minimal value of the cost function J . As can be
seen in [34,43] this involves the inversion of B, which is normally a large and badly
conditioned matrix. It is however not obvious to see this bad conditioning, but any
attempt to solve [34, 43] is very likely to fail. The shape of the cost function can
illustrate this for a two variable space of ~x′.

In Figure 15 isolines of J are sketched with the optimal analysis being located in
the center. A minimization algorithm now starts somewhere on the outer lines and
tries to reach the center by proceeding in a down gradient direction. This process is
much easier in regions of small curvature than in regions with large curvature, where
the algorithm proceeds in a zig-zag path, a phenomenon called the narrow valley
effect. A small curvature represents a mode of the data assimilation system with high
variance and thus little information.

Mathematically the shape of the cost function is described by the second deriva-
tives of J with respect to the elements of the control vector ~x, the so called Hessian
Ax. The derivation of the Hessian, given in Bouttier & Courtier (1999) yields:

∂2J(x)
∂x2

= Ax = B−1 + HT R−1H (44)
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Figure 15: Graphical illustration of the cost function with iso-J curves. The isolines
are narrow ellipses and the minimum, which corresponds to the ideal analysis, lies in
the center.

and we see that the shape is independent of the actual values of the state vectors ~x and
~y. In Figure 15 the principal axes of J are the eigenvectors of Ax and the curvature
of J along these directions are given by the eigenvalues. Normally the principal axes
are different from the axes given by the state vector, which means they represent
no meteorological variable at a particular location but some sort of mixture between
variables and locations.

The conditioning number of J is defined as the ratio between the largest and the
smallest eigenvalue of the Hessian. Bad conditioned matrices have a large conditioning
number, giving rise to slow convergence and error prone results of the minimization.
For a perfectly conditioned matrix the number is unity, which corresponds to a circle
of J-Isolines in the above example.

To be able to solve the assimilation problem it is necessary to precondition B
and reduce the number of elements, which is done by the so called control variable
transform. The aim is to get rid of B in the cost function, which can be stated as
follows:

UT B−1U = I (45)

It is thus necessary to transform our model variables (actually perturbations) ~x′ into
control variables ~v′, the so called T-Transform and vice versa using the so called
U-Transform:

~x′ = U~v′ (46)

~v′ = T~x′ (47)

In order to appreciate this, substitute [46] into the cost function [43],which can then
be formulated in ~v′-space:

J(~v′) =
1
2
((U~v′)T B−1U~v′) +

1
2
(~y′ −HU~v′)TR−1(~y′ −HU~v′) (48)

J(~v′) =
1
2
(~v′

T
UT B−1U~v′) +

1
2
(~y′ −HU~v′)TR−1(~y′ −HU~v′) (49)
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with the help of [45], B can be eliminated:

J(~v′) =
1
2
(~v′

T ~v′) +
1
2
(~y′ −HU~v′)TR−1(~y′ −HU~v′) (50)

The cost function does not contain the largest matrix anymore and the complexity
of the problem has been significantly reduced. Since the minimization now works on
the control vector ~v′, the final analysis has to be converted back to ~x-space:

~xa = ~xb + U~v′ (51)

During the minimization process, the cost function and the gradient of [50] as derived
by Bouttier & Courtier (1999) and transformed into the incremental form in ~v′-space
[52] have to be evaluated during every step of the minimization.

∇~v′J(~v′) =

(
∂J(~v′)

∂~v′

)T

=


∂J

∂v′1
...
∂J

∂v′n

 = ~v′ −UT HT R−1(~y′ −HU~v′) (52)

In the current implementation, the Broyden-Fletcher-Goldfarb-Shanno variant of the
Davidon-Fletcher-Powell method, as described in Section 10.7 in Numerical Recipies
in C (Press et al. 1998), is used to compute the minimization of the cost function
with the help of its gradient. Equations [50] and [52] now describe the assimilation,
however the control variable transformations have to be found first. In order to do
this, the background error covariance matrix B has to be diagonalized, which can
easily be done with the small size of B in the case of 1D-VAR. The decompositon
of B into the diagonal matrix of eigenvalues λ and the matrix E composed of the
corresponding eigenvectors is expressed as:

B = EλE−1 (53)

This most general form has the problem that it may destroy the physical meaning of
B. For example, if the error covariances represent different volumes, as it is the case
for a model grid with variable vertical resolution, all elements are weighted equally
and not in relation to their volume. To avoid this, a diagonal matrix P of grid box
volumes is used for scaling. Technical details are given in Bannister (2002).

BPE = Eλ (54)

Since P is a symmetric matrix it is useful to decompose it into its square roots:

P = PT/2P1/2 (55)

Now lets substitute this decomposition into [54] and also we multiply on the left both
sides of [54] with P1/2 to obtain

P1/2BPT/2P1/2E = P1/2Eλ (56)

which is equivalent to
B′F = Fλ (57)

where [58] are the eigenvectors of the transformed B matrix [59]

F = P1/2E (58)

B′ = P1/2BPT/2 (59)
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After the eigendecomposition has been completed, using standard mathematical
library routines, the U-transform can be computed following Bannister (2003). Be-
cause the background error covariance matrix is symmetric also B′ is symmetric so
that the corresponding eigenvectors are orthogonal:

FFT = I and FT F = I (60)

so that
FT = F−1 (61)

This will be useful now and also in the computation of the adjoint and inverse of the
U-transform. To find the U-transform, the eigenvalue problem [57] has to be brought
into a form similar to [45]. To do this [57] is first multiplied on the left with FT on
both sides:

FT B′F = λ (62)

Furthermore the diagonal eigenvector matrix λ is expressed as λ1/2λ1/2 and we mul-
tiply with the inverse on both sides:

λ−1/2FT B′Fλ−1/2 = λ−1/2λ1/2λ1/2λ−1/2 (63)

Finally [63] is inverted and after substitution of [59] the form containing U and UT

as in [45] is obtained:

λ1/2FT P−T/2B−1P−1/2Fλ1/2 = I (64)

where the right part is the U-transform:

U = P−1/2Fλ1/2 (65)

and the left part is the adjoint:

UT = λ1/2FT P−T/2 (66)

Finally the T-transform is the inverse of the U-transform:

T = λ−1/2FT P1/2 (67)

The T-transform can convert model variables to new parameters which have mutually
uncorrelated errors. This can be thought of as doing a Fourier decomposition, but
the projection is onto empirical orthogonal functions (EOFs) rather than plane waves.
The EOFs are found from the eigendecomposition of B as shown above. So we have
to change our view of B. It was used to represent error variances at different vertical
levels and covariances between levels. Now, with the T-Transform, B consists of
variances of the EOFs that are uncorrelated and thus have no covariances, which
makes the problem much simpler. It is funny that the T-Transform is not needed
to solve the assimilation, but the U-Transform and the transposed U-Transform are
needed many times in the computation of the cost function and and its gradient,
respectively. So it might be hard to picture the T-transform, but even harder for the
inverse, the U-transform, which does the same but in the other direction. Finally
note that the variances of the vertical EOFs are the eigenvalues.

Figure 16 shows an example of the eigenvector matrix E and eigenvalues λ for the
estimated temperature error covariance matrix of the NMM-22 model at 00 UTC.
Each eigenvector is in a column and each row represents each variable. The eigen-
vectors are sorted in decreasing order corresponding to the size of the eigenvalues λ
from left to right. As can be seen, most of the information is carried in a few leading
eigenvectors and the problem could be further simplified by cutting off eigenvectors
on the right.

32



FIRST 30 EIGENVALUES

0 5 10 15 20 25 30

10

20

30

40

50
0 200

200

EIGENVECTOR MATRIX

Figure 16: Example of an eigenvector matrix E with 200 vectors and the first 30
corresponding eigenvalues λ.

5.3 Estimating the observational error covariance matrix

Similar to the background error covariance matrix, R specifies errors of the obser-
vational system. The error is mainly caused by representativeness problems of the
observation in model space and only secondly an instrumental characteristic. In con-
trast to B, correlations are assumed to be zero. This seems reasonable for observations
made with different instruments but may be invalid for observations done with the
same platform such as a radiosonde or satellite measurements. Especially, compli-
cated preprocessing, expressed by H, might require model data which are correlated
so that also the derived observations become correlated. Furthermore, representative-
ness errors are correlated as soon as observations are dense compared to the model
resolution. However, in practice the correlations are difficult to estimate and can cre-
ate problems in the numerical solution of the assimilation. Hence a diagonal structure
for R is used in most assimilation schemes. This can be partly achieved by minimiz-
ing correlations by avoiding unnecessary preprocessing of observations and thinning
of dense data.

Concerning the assimilation at Zürich Unique airport, the most difficult part is
putting a label on the representativeness of radiosonde data recorded in Payerne.
Because the latter is about 150 km away from Zürich, the lower part of the sounding is
expected to be rather unreliable. To quantify the similarity between the two locations,
model profiles from high resolution numerical weather prediction were analyzed. It is
believed that the NMM model, run at 2 km resolution is able to capture most spatial
differences between Payerne and Zürich. Thus, for the time from October 2004 to
March 2005, correlations for humidity as well as temperature, were computed for all
vertical layers, respectively. The result is shown in Figure 17 for radiosonde ascent
time of 1200 UTC.

For the virtual profile of temperature and humidity the errors increase with in-
creasing station height. This expresses the fact that the station located at the surface
can only provide an estimate of the thermodynamic state of the free atmosphere at
that height. Table 5 lists the errors used in the assimilation scheme. For the virtual
temperature profile the values could be derived from comparison with MTP-5 data
as described in Section 4.1.1.

It has to be noted that new observations, like temperature reports from landing
aircrafts, can easily be included in the assimilation system. All what has to be done is
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Figure 17: Standard deviations from the observational error covariance matrix R of
the radiosonde in Payerne.

Table 5: Error variance of operational systems used in the assimilation for Zürich
Unique airport.

Station Height (m a.s.l.) Temperature error Humidity error
Bühlhof 520 0.04 5
Gubrist 640 0.8 10
Zürichberg 730 0.9 28
Lägeren 870 1.21 35
MTP-5 all levels 0.5

specification of the observational error variances, which are inserted as new elements
into R. They need to be at the right place according to the storage logic used to
build the observational vector ~y, which then also has the new observations inserted.
Finally H has to be extended to provide model estimates for the new observations.

5.4 Assimilation strategy for a 1D model

Data assimilation optimally combines observations with a first guess or background
estimate. In this case data have to be assimilated for a 1D model, and it seems
natural to use a previous forecast of that model as background state. There are
however several reasons for using the 3D model forecasts, having resolutions between
2 and 7 km, as a first guess. In 1D it is not possible to simulate horizontal gradients
which are responsible for advection and wind. Even though the latter is modified
due to turbulent diffusion and might be quite accurate close to the ground, the upper
levels are a different story and often subject to overestimation of nocturnal jets.
Thus, nonlocal changes have to be introduced in form of tendencies computed on
the 3D model using gradients and wind. It is favorable to take tendencies instead of
computing the advection based on the 1D model wind due to the weakness of 1D wind
forecasts. But the tendencies computed on the 3D model are not very accurate. This
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Figure 18: Temperature error covariance and error correlation matrices for the winter
season 2004/2005 at 00 UTC for 3 different 3D models.
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is because 3D model output is normally only available with very limited temporal
resolution of 1 hour or even worse. Another big problem is the limited vertical extent
of the 1D model, which currently simulates the lowest 1500 m of the atmosphere. Thus
most clouds are not part of the model and the radiative fluxes at the model top have
to be supplied from a 3D model as well. Therefore the 1D model is heavily dependent
on data that have to be derived from 3D model output of low temporal resolution. So
if instead a column of the high resolution 3D model is taken as first guess, it might
be less accurate close to the surface, but the higher levels are obtained directly. The
1D model background could also be computed in realtime with a special assimilation
run, which integrates new observations every 10 minutes. Unfortunately, observations
of temperature, humidity, wind and radiation are available only at the surface, and
advection at higher levels is unrelated to them and can introduce large errors over
time. To prevent a drift, the model has to be corrected with measurements covering
the whole column. Therefore, a radiosonde would be the preferred choice, but at
the airport such data are not available. Regardless which model provided the first
guess, a drift correction is carried out during variational assimilation. Radiosonde
data from Payerne, some 150 km away, in combination with an error covariance
matrix, that takes into account the spatial correlations, provide the necessary means.
Considering the whole profile, the surface layer contains not much energy and the
high resolution 1D model adjusts the surface layer profiles in a relatively short time.
Also the assimilation will correct a suboptimal surface layer background from the
3D model, using all the observations. Furthermore, due to large error variances
and abundant observations close to the ground, the assimilation normally gives little
weight to the background in the surface layer. Another important point is the fact
that a 3D model is able to do skillful forecasts for several days, where the most recent
one is not necessarily the best. Thus, several forecasts initialized in the past, but valid
at the same time, can be used as first guess for the generation of ensemble members.
Note that determination of the background error covariance matrix B, using the NMC
method, also requires a model able to do skillful time integrations of 48 hours or more.
Such long forecasts are impossible with a 1D model, making the determination of B
a very difficult task.

The estimates of B obtained for different models using the NMC-Method [40] and
corresponding correlations, computed with [39] are shown in Figure 18. The statistics
are based on the vertical profiles of the 3D models from October 2004 to February
2005. Of course these are overall statistics including different synoptic situations. It
would also be possible to derive specific B matrices for particular synoptic conditions,
but this requires either a sophisticated automated classification of the situation for
which an assimilation has to be done, or an experienced human forecaster. Rather
than using error prone classifications and a set of static B matrices for which it might
be difficult to obtain enough cases to be statistically representative, extended Kalman
filtering could be used in the future. In this approach a whole ensemble of assimilations
is carried out to estimate the forecast error covariance (Evensen 1994, Hamill & Snyder
2000, Houtekamer & Mitchell 1998, 2001, Anderson 2001). In particular the ensemble
of initial conditions from the previous cycle is integrated with the model and the
error covariance for the current cycle is estimated from the members of the ensemble
forecast. However, the large number of time integrations with the 3D model make
such an approach computationally very expensive.

If we now have a look at the estimates of B shown in Figure 18, it is evident
that variances are largest close to the surface, where most of the energy fluxes are
transformed and a small change in e.g. predicted cloud cover results in a large tem-
perature difference. This means that in this region, the background term will have
relatively little influence compared to the observations. Fortunately most observa-
tions are available close to the surface and an unreliable forecast for that layer does
not pose a problem for data assimilation. For the two resolutions of NMM, a second
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Figure 19: NMM-4 temperature error covariance and error correlation matrices for
the winter season 2004/2005 at 1400 UTC.

maximum can be found around 500 m above ground which is not present in the aLMo.
The correlations between vertical layers generally increase from ground level to the
region of maximum variance. In the aLMo the vertical layers are less independent of
each other than in the NMM, which means that the spread and smoothing of informa-
tion during the assimilation process is bigger. The structure of the error covariance
is different throughout the day due to the daily evolution of the boundary layer. The
temporal evolution is rather smooth and thus not shown in detail. As an example,
B for NMM-4 at 1400 UTC is shown in Figure 19. When compared to 00 UTC, the
secondary maximum of error variance is found at higher altitude due to the generally
thicker boundary layer in the afternoon.

As an example of a successful minimization of the cost function, assimilated tem-
perature and humidity profiles for 28 November 2004 at 1200 UTC are presented in
Figure 20. The background estimate is a 21 hours forecast of NMM-2. The tempera-
ture profile of the MTP-5 and the radiosonde of Payerene agree quite well, indicating
an inversion with a lower bound between 200 and 300 m above ground. In the model
background this inversion is rather week and some zig-zag temperature structure is
present in the lowest 500 m which corresponds well with the pattern shown by the
stations. The assimilated profile combines dominant features of the structures and has
its absolute values close to the different observations. For humidity, no profiler data
are available, and the surface stations do not provide a representative value for upper
levels, since the surface is the main source of moisture. Furthermore the effects of
radiative cooling and heating are strongest close to the surface, resulting in a temper-
ature error which also influences relative humidity. The observational error standard
deviation for station based humidities is thus specified to be as large as 35 % at the
highest station. As for temperature, the benefits of variational assimilation are well
manifested. The assimilated humidity profile inherits the structure of the NMM-2
model forecast but is drawn towards the absolute values of the radiosonde.
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5.5 The ensemble forecast system

The forecast skill of an atmospheric model depends on the accuracy of the initial
conditions, the quality of the model and on the current meteorological conditions itself
(Lorenz 1963a,b, 1965). Lorenz showed that any nonlinear system with instabilities
has limited predictability and that it is necessary to account for the stochastic nature
of the evolution of the atmosphere.

The first method to deal with the uncertainty was developed by Epstein (1969)
who introduced stochastic-dynamic forecasting. His method is a simplification of the
infinite Monte Carlo ensemble but still requires about half as much model integrations
as degrees of freedom, which makes it completely unfeasible even for a simple weather
forecast model with millions of degrees of freedom. Leith (1974) found that Monte
Carlo forecasting can be done with few members if forecast errors can be estimated
and used in the derivation of initial conditions.

As an alternative to Monte Carlo forecasting, lagged average forecasting was pro-
posed by Hoffman & Kalnay (1983). With this method the current forecast as well
as forecasts initialized earlier are combined to form an ensemble. From the older
forecasts a previous forecast error can be computed and used for the generation of
initial conditions. So far the members of different age are all weighted equally by the
operational centers, since it is very difficult to derive weights.

An extension to lagged average forecasting is scaled lagged average forecasting and
was introduced by Ebisuzaki & Kalnay (1991). Therein a linear scaling of error growth
during the first 2-3 days is used and the number of ensemble members is doubled
because perturbations are not just added, but also subtracted from the analysis.

Houtekamer et al. (1996) and Houtekamer & Mitchell (1998) developed an en-
semble forecasting system based on running a whole ensemble of data assimilation
systems to create initial conditions. Every data assimilation system adds random
errors to the observations. The errors added are in addition to the observational error
specified with the error covariance matrix R. Furthermore different parameters in
the physical parameterizations of the model are used in different ensembles.

A very costly and work intensive way to derive initial conditions is by introducing
singular vectors, which are basically the perturbations with maximal energy growth
in the forecast. The computation of the singular vectors requires the tangent linear
model and its adjoint. In practice the linear model is obtained by linearizing the
nonlinear forecast model which is an enormous amount of work. To obtain the singular
vectors many forward and backward integrations with the linearized model and its
adjoint are needed, which makes the procedure computationally very expensive. This
approach is used at ECMWF (Molteni et al. 1996, Molteni & Palmer 1993, Buizza
1997, Buizza et al. 1997).

Very popular at the moment is the multisystem approach, also called ”poor man’s
ensemble”. It turns out that an ensemble average of deterministic operational global
forecasts from different operational centers is far more skilful than the best individual
forecast (Fritsch et al. 2000). Hou et al. (2001) showed that this also applies to short-
range regional models. Krishnamurti et al. (2000) further improved the quality of the
ensemble forecast by removing systematic model errors by means of regression. He
calls this ensemble a ”superensemble”.

The 1D ensemble system developed for Zürich Unique airport uses the numerical
model COBEL (Bergot & Gudalia 1994a,b), which has been coupled to the NOAH
land surface model (Chen et al. 1997, Ek et al. 2003) as described in Section 2.2.2.
Furthermore the 1D PAFOG model is run (Bott et al. 1989, Bott & Trautmann
2002), which integrates the same initial conditions as COBEL. The derivation of
initial conditions in the 1D ensemble system is outlined in the next section.
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Figure 21: Schematic of the 1D ensemble prediction system. Every 3D run provides
initial conditions that are used as a background for an individual variational assimi-
lation.

5.5.1 Initial conditions for ensemble members

An important part of every ensemble forecast is the derivation of initial conditions.
They should be representative for the current uncertainty of the initial state. Per-
turbations added to the control analysis should thus be the leading eigenvectors of
the analysis error covariance (Ehrendorfer & Tribbia 1997) and also include our un-
certainty about model deficiencies. Due to limited computational resources and time
constraints, it is impossible to do Monte Carlo simulations. Therefore a relatively
small set of initial conditions has to be derived that covers the variational range a
Monte Carlo simulation would produce. With few ensemble members this is very dif-
ficult to achieve and remains always an approximation. The most common methods
used were summarized in the preceding section.

For the 1D model, a new and somewhat different ensemble strategy was developed.
It combines ideas from ensembles based on multiple data assimilation, lagged average
forecasting and the multisystem ensemble approach.

The main problem of a 1D forecast is the assumed horizontal homogeneity and
the resulting dependence from a 3D model to include the effects of heterogeneity. The
1D model on its own is thus unable to produce an independent skillful forecast under
most conditions. The only exception are situations with almost perfect horizontal
homogeneity. Also the generation of the ensemble members should have computa-
tional costs comparable to the time integration. Here, instead of adding deviations
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Figure 22: 1D ensemble prediction of the fog event from 14-15 October 2005. The first
two panels show computed temperature and humidity at 2 m height for each member
(thin lines), the ensemble mean (thick colored line) as well as the corresponding
observations (thick gray line). In the lower left panel the ensemble mean liquid water
content is contoured together with observed (thick gray line) and modeled wind speed.
The last panel indicates the probability that a liquid water content of 0.01 g kg−1 is
exceeded. Figures were taken from the developed semi-operational system.

to a so called control run to obtain a set of initial conditions, a whole bunch of dif-
ferent control runs is used. It is interesting to note that adding a deviation to the
control run, by definition, makes the best estimate of the true state worse, so that
the resulting time integration is expected to have less skill. For these reasons the
initial conditions are based on available forecasts computed with different 3D models.
Currently the aLMo of MeteoSwiss, running at 7 km resolution, as well as the oper-
ational forecasts with the Nonhydrostatic Mesoscale Model (NMM) at resolutions of
22, 4 and 2 km are used. The NMM forecasts are very distinct due to the dynamical
core (Janjic et al. 2001, Janjic 2003), the resolution, but also due to differences in
physical parameterizations. For example the model with 2 km resolution uses un-
parameterized convection and a newly developed prototype of a land surface model
developed by Zavisa Janjic from NOAA/NCEP. The dynamical core of the 22 km
version is hydrostatic and the higher resolutions are nonhydrostatic. The aLMo has
a different dynamical core and also other physical parameterizations. It is initialized
with ECMWF data, whereas the NMM is driven with the Global Forecast System
(GFS). Now to increase the number of 3D forecasts, all the runs valid at the same
time, but initialized at different times are also used. This can be done since the most
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recent run does not have to be the most skillful. Of course this is not true for runs
that are several days old and initial conditions are not taken if they are older than
two days. It has to be noted that other models could be easily included if available.

The different 3D models driven by distinct global assimilations, their varying
resolutions as well as different initialization times produce a spread in initial conditions
which is dependent on the current weather situation. Experiments at NOAA/NCEP
revealed that initial conditions based on lagged average forecasting, scaled lagged
average forecasting and on the forecast differences between forecasts verifying at the
same initial time grew much faster than Monte Carlo perturbations with similar
size and statistical distribution (Kalnay & Toth 1996). If the atmosphere is very
predictable, e.g. under stable anticyclonic conditions the forecasts are more similar
than during westerly flow situations. However the 3D models have limited skill and the
boundary layer and local influences are represented with different degrees of accuracy.
Hence, such forecasts should not be used directly and have to be combined with local
observations. The forecasts are thus used as a first guess in the variational assimilation
described in at the beginning of this Section. Hereby, profiles of temperature and
humidity are assimilated separately for every 3D model background using observations
from a temperature profiler, surface observations on nearby mountains and data from
a radiosonde, located about 150 km away from the airport. The model error covariance
Matrix B needed in the variational assimilation was derived separately for every 3D
model using the NMC-method. In Figure 21 a schematic of the ensemble forecast
system is given. Note how the 1D forecast time range is cut out of the 3D forecasts
so that it is possible to extract initial and temporal boundary conditions.

Postprocessing finally aggregates the individual forecasts and computes probabil-
ities of liquid water occurrence as well as mean values of predicted variables. Fur-
thermore graphical output is generated for every individual member as well as for
aggregated information. In the last step a web page is compiled to allow for platform
independent access and easy navigation through hundreds of plots. Figure 22 gives
an example of an ensemble forecast for the fog event during the night of 14-15 Oc-
tober 2005. As can be seen in the upper left panel, the cooling during the night is
predicted rather good, but because the modeled fog disappears around 0800 UTC the
temperature rises too fast in the morning. Note how the temperature forecasts from
different members slowly diverge. The probability for a liquid water content above
0.01 g kg−1 is over 70 % and indeed fog formed that night. The timing however was
not perfect according to the visibility observations shown in the lower right panel.

Since the assimilation of humidity has to operate with few and not very represen-
tative observations, the resulting humidity profile is a rather uncertain estimate. To
address this issue, a humidity ensemble is generated by simply making the assimi-
lated profile drier and moister, respectively. A variation of 10 % in relative humidity
was taken. To avoid supersaturation, the humidity profile cannot exceed a relative
humidity of 99 % anywhere. The verification presented in section 6.4.3 reveals that
the moister profiles reach the highest skill, thus suggesting that the assimilation is
too dry.

5.5.2 Boundary conditions for ensemble members

Specification of the boundary conditions for the ensemble members is done as outlined
in section 4.2. It was explained that the advection term, which represents the bound-
ary conditions for the 1D forecast, is difficult to determine and only a crude estimate
of reality. It is thus reasonable to further increase the number of ensemble mem-
bers with different temporal boundary conditions. This means that the same initial
conditions in combination with different external forcings during the time integration
are used. Such a procedure has not been used elsewhere, mainly because advection is
computed internally by the 3D model. In the implementation, the number of members
is tripled. The same initial conditions are integrated using no advection, the total
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tendency and the mesoscale advection. Currently, initial conditions and boundary
conditions are taken from the same 3D forecast run. It is however possible to further
increase the number of ensemble members by mixing initial and boundary conditions
derived from different 3D runs.

Note that in order to define an external forcing, the 3D model run needs to tem-
porally cover the whole period of the 1D forecast. Of course the boundary conditions
cannot be improved with data assimilation because no observations of the future
atmospheric conditions are available.
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6 Verification of the 1D ensemble fog forecast

Now this is the moment we have all waited for. Was it worth all the trouble? This
section tries to answer this but to raise suspense even more, some details about the
verification method are outlined first. It should also be noted that a model cannot
be verified but only falsified, and thus the term model validation would be more
appropriate. However the term verification is used here to be consistent with current
literature.

6.1 Verification methods for deterministic forecasts

For categorical forecasts, having only two possible outcomes, a simple contingency
table can be defined (Table 6). In our case the binary event is fog or no fog and
threshold values for visibility and liquid water content will have to be used to define
a fog event.

Table 6: Contingency table for categorical forecasts of a binary event. The numbers
of observations in each category are denoted by a,b,c and d, respectively.

forecast observed
yes no total

yes a (hit) b (false alarm) a+b
no c (miss) d (correct rejection) c+d

total a+c b+d a+b+c+d

The most basic descriptive measure based on the contingency table is the base
rate s or event probability. It is solely a characteristic of the observations and not
of the forecast model. Unfortunately many performance measures are in some way
dependent on the base rate, so that the pure natural variability may cause different
skill even though the forecast model has not changed. Using the variables introduced
in Table 6, the base rate can be computed as

s =
a+ c

a+ b+ c+ d
(68)

For the verification period chosen the base rate is very low. Only 2 % for a visibility
threshold of 500 m, 5 % for 1000 m and 9 % for 1500 m. So fog is a very rare event.

Several performance measures can be defined based on the contingency table.
The hit rate H (Swets 1986), also called probability of detection, is the proportion of
occurrences that were correctly forecast.

H =
a

a+ c
(69)

Since a good forecast should have high hit rates and a low number of false alarms,
the hit rate alone is insufficient for measuring forecast skill. The false alarm rate
F (Swets 1986) is the proportion of non-occurrences that were incorrectly forecast
by the model. It must be distinguished from the false alarm ratio FAR (Donaldson
et al. 1975), which is the conditional probability of of a false alarm conditioned on
the event being forecast. FAR is reduced if more events are observed and is thus not
a very reliable performance measure. Note that the number of forecast events can be
controlled by changing the forecast probability threshold needed to define a fog event.
A high probability threshold will reduce the false alarm rate.

F =
b

b+ d
(70)
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FAR =
b

a+ b
(71)

The proportion of correct forecasts PC (Finley 1884) is also expressed in percent and
then called percent correct. Note that very frequent or very rare events score with a
high PC if occurrence or non-occurrence, respectively, is always predicted.

PC =
a+ d

a+ b+ c+ d
(72)

Heidke (1926) adjusted PC to account for the proportion of forecasts that would have
been correct by chance. His Heidke Skill Score (HSS) defines hits due to chance E as
the event relative frequency multiplied by the number of event forecasts.

HSS =
PC − E

1− E
with random prognosis E (73)

E =
(

a+ c

a+ b+ c+ d

)(
a+ b

a+ b+ c+ d

)
+
(

b+ d

a+ b+ c+ d

)(
c+ d

a+ b+ c+ d

)
The HSS is an equitable score, because constantly forecasting occurrence or non-
occurrence results in zero skill. HSS can have values from -1 to 1, where 1 corresponds
to a perfect forecast, -1 is a perfect, but wrongly calibrated forecast and 0 is the no
skill level. It has to be noted that the HSS is highly dependent on the base rate and
threshold probability so that it is a rather unreliable performance measure. This will
be seen later when HSS and ROC are compared. There are many other measures of
skill that can be derived from the contingency table. A very good review of verification
concepts and skill scores is given in Jolliffe & Stephenson (2003). For our purpose
the above mentioned scores together with the signal detection methods mentioned in
the next section are a valuable verification tool to asses the quality of the forecast
system.

6.2 Verification of probabilistic forecasts

The performance measures mentioned so far cannot directly asses the quality of proba-
bilistic forecasts. The development of a general framework for verification by (Murphy
& Winkler 1987) together with the introduction of methods from signal detection the-
ory by Mason (1980, 1982, 1989) allow for the verification of probabilistic forecasts.
Basically it is necessary to first transform the probability forecast into a set of binary
yes/no forecasts using a whole sequence of probability threshold in the range 0 to 1.
An event is forecast if the specified probability threshold is exceeded. In that way
the contingency table for every threshold value, as well as all the categorical skill
measures can be computed. Now this seems to become a rather messy procedure
with hundreds of verification scores to keep track of. But fortunately there is a pow-
erful signal detection tool called the relative operating characteristic (ROC) which is
obtained by plotting the hit rate H versus the false alarm rate F for each possible
decision probability threshold. The ROC distinguishes between the decision thresh-
old and the intrinsic discrimination capacity of the forecast system. Low probability
thresholds result in both, high hit rates but also high false alarm rates. These points
of the ROC are located in the upper right corner of the ROC diagram. A forecast
model with perfect discrimination has a ROC curve that rises from (0/0) along the
hit rate axis. Note that the diagonal has no skill and if the ROC curve is below the
diagonal, the system is wrongly calibrated, because it again requires skill to be that
bad. In practice the ROC curve can only be approximated for a certain number of
probability thresholds. A resolution of 1 % in the probability requires at least an
ensemble of 100 members. Every threshold probability gives a point on the ROC,
and neighboring points are then connected to form the ROC curve. If a threshold
probability of the ensemble forecast is exceeded it makes a modeled fog event. But
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what can we learn from a particular ROC curve? It illustrates the false alarms and
hit rates the system has for a particular forecast probability. So the threshold for
good detection and relatively few false alarms can be found. However, depending on
the costs of false alarms or missed events another probability will be chosen.

The most popular overall skill measure in this context is the area under the ROC,
typically denoted Az, which would be unity for a perfect system and 0.5 for a no skill
system. For values of Az smaller than 0.5 the corresponding ROC curve lies below the
diagonal, indicating the same level of discrimination ability as if it was symmetrically
above the diagonal but wrongly calibrated in this case.

The verification has to be carried out with fog events that are not directly predicted
but need to be defined e.g. based on threshold values for observed visibility and
modeled liquid water content. This opens a new field of problems, namely how to
automatically detect a fog event.

6.3 Detection of fog events

In terms of observations, the aggregated visibility estimate derived from the different
instruments installed around the runways is used. In that way an area is probed
rather than a single point, which is more reliable. By definition the visibility has
to be below 1000 m for fog, but in the verification also other thresholds are used
to account for some uncertainty in the observations and representativeness. From
the model output, visibility and liquid water content can be analyzed. But visibility
itself is not a prognostic variable and is derived using statistical relations that include
liquid water content and eventually also the droplet number concentration. For the
purpose of verification, a fog event is classified based on the presence of liquid water,
rather than low visibility. This is because visibility might be wrongly derived from the
prognostic variables and thus introduce another source of error. For fog the modeled
liquid water content has to exceed 0.01 g kg−1. Note that also higher thresholds were
used but resulted in worse verification scores.

All verification is done on a temporally aggregated resolution of one hour. Fog is
classified as such, when the modeled liquid water content threshold is exceeded or the
observed visibility lies below the threshold value for at least 10 min.

For aviation purposes it is of course very important to know visibility since it
makes a big difference if a pilot can see 1000 m or only 50 m. However this is far too
high a goal at the moment for a numerical model. In fact just predicting occurrence
or non-occurrence of fog with formation and clearance times accurate to one hour is
a very difficult task in a complex location such as Zürich Unique airport.

6.4 Verification results for Zürich Unique airport

In this section the verification results of fog forecasts at Zürich Unique airport ob-
tained from the 1D ensemble forecast system are presented. The verification period
begins on 1 November 2004, when all observations needed for data assimilation and
verification (see Table 3) were available on a regular basis, and it ends on 30 April
2005. Verification will address the importance of advection and uncertainties in the
humidity assimilation, the impact of different initialization times as well as effects of
the driving 3D model. For every initialization time an ensemble consists of around 30
members and over 50’000 runs were done in total, so that the statistical significance
of this verification should be fulfilled. All verification is done on a temporally aggre-
gated resolution of one hour in the time window from 03-11 UTC. This time window
is of great importance for an airport and also the time of likely fog occurrence. The
discrimination between fog and no fog for model and observation data is done as
described in the preceding Section.
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Figure 23: Percent Correct and Heidke Skill Score for fog occurrence simulated with
the 1D ensemble if different derivations of advection are used; ADV = pure advection,
d/dt = total rate of change in profile, CONTROL = no advection. Verification was
done on an hourly basis between 03-11 UTC from 1 November 2004 until 30 April
2005 at Zürich Unique airport. The observational visibility threshold for a fog event
was 1000 m and all simulations were initialized at 1500 UTC.

6.4.1 Importance of advection

Advection might be insignificant in flat terrain, but will certainly collect its toll in a
location such as Zürich Unique airport. As there are some problems in estimating the
amount of advection, two methods were proposed to do so in section 4.2.1 and the
results are indeed very different. Nevertheless we also want to look at what happens
if advection is not considered at all. Now, the percentage of correct forecasts seems
to be a good measure of skill at first, and is shown in Figure 23. Obviously there is
not much difference whether advection was derived using gradients and wind (ADV),
computed as a total temporal change in the 3D column (d/dt) or was even neglected
(NONE). But what is seen here is mainly the inability of the skill score for an unlikely
event such as fog. Recall that the base rate is only 5 % when visibility has to be below
1000 m for a fog event. A probability of 100 % in the ensemble prediction was never
achieved in the period considered, so this value is equivalent to never forecast any fog
in which case 95 % of all forecasts are correct. Which seems great, but there is no skill
required for this and it is about the same as saying it will not rain tomorrow in the
Sahara desert. However, with higher base rates the PC can be a suitable verification
score. In our case the increasing PC with increasing probability thresholds reflects
the decline in false alarms. When the HSS is examined the ADV members score a
bit higher, even though there is basically no skill. But also the HSS suffers from the
base rate effect and for a real assessment of skill, ROC curves have to be considered.
In Figure 24 these are given for different thresholds of observed visibility. Now it is
evident that inclusion of advection significantly improves the forecast, if it is derived
with [32], using gradients and wind. The other way of estimating advection as the
total rate of change in the 3D column did generally not improve the performance,
which means that local processes in the column overshadow advection. Especially
the relatively coarse vertical resolution of the 3D model does not allow an accurate
simulation of these local processes. But all possible inaccuracies are transferred into
the 1D model when the total rate of change is used to determine advection.

The fact that inclusion of advection improves the forecast demonstrates the im-
portance of advection. But because advection offends against the supposition of a 1D
model (horizontal homogeneity), it is very questionable to use a 1D model in such
cases. One might think of other tricks and experiments and eventually also include
local knowledge and experience for the derivation of advection. This might further
improve the forecast skill, but it seems more reasonable to seek a general solution,
which would be a 3D fog model able to compute spatial interactions. A possible way
to go is the 3D model described in the outlook of this work.
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Figure 24: ROC for fog occurrence in the 1D ensemble for different types of computed
advection; ADV = pure advection, d/dt = total rate of change in profile, CONTROL
= no advection. Visibilities below 500 m, 1000 m and 1500 m were used as observa-
tional thresholds of an observed fog event, respectively. Numbers above the symbols
indicate the ensemble forecast probability in percent that has to be exceeded in order
to be classified as a modeled fog event. Az indicates the area under the ROC.
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6.4.2 Different initialization time

The forecast skill of every model decreases with increasing forecast length. Thus the
later we initialize, the better our forecast should be for a given time window. This is
what theory says, but it has to be considered that for example radiosonde data are
only available at 0000 and 1200 UTC and that the model also needs some spin-up,
which is generally easier in a mixed than in a stable boundary layer. Furthermore if
there is already liquid water present at model start, it cannot be properly initialized
due to the lack of liquid water content measurements. The time window we will use
for verification stretches from 0300 to 1100 UTC, which is not only the time of likely
fog occurrence but also very important for an airport.

In Figure 25 the ROC curves corresponding to different initialization times are
shown. For the observations a visibility threshold of 1000 m is used and the advection
is as outlined in the previous section. Obviously the 1500 UTC initialization has
the highest skill. Starting at 1500 UTC, the model is able to spin-up and simulate
the entire night with the cooling of the surface layer. Also the planetary boundary
layer is generally well mixed, producing simple profiles of temperature and humidity.
The latter allows for a more accurate initialization since the virtual profile is quite
representative at that time (Figure 9). Radiosonde data after all do not seem to
be very useful, primarily because they are available either too early (1200 UTC) or
too late (0000 UTC). But again the importance of advection has to be pointed out,
because basically at all times the members considering advection reach higher skill
scores.

According to the ROC a low forecast probability of about 15 % has quite some skill.
Even though the hit rate is only about 60 % the false alarm rate is significantly lower
at 30 %. This does not seem very convincing, but since low visibilities are very difficult
to forecast in the daily operations, such a performance might potentially increase the
quality of the forecasts (Christoph Schmutz - MeteoSwiss, personal communication
2005).

6.4.3 Humidity profile

Even though data assimilation gives a good estimate of the temperature profile, the
thermodynamic state of the atmosphere is not accurately defined without a reasonable
humidity profile. But the latter causes some trouble, because the assimilation simply
does not have a reliable data source to work on. Therefore the effects on forecast
quality related to the uncertainties in the humidity profile were examined by deriving
the whole set of ensemble members again, but this time with 10 % increased and
decreased relative humidity profiles, respectively. By doing so every humidity class
still has the same number of about 30 ensemble members. Note that the relative
humidity was not allowed to exceeded 99 % to avoid an artificial creation of fog at
the beginning. The result is summarized in Figure 26, where every panel represents
a different visibility threshold used in the classification of observed fog events. If
observed visibility has to be below 500 m to be considered as a fog event, there is not
much difference between the control run and the two deviations, but as soon as the
threshold, and thus also the number of events, is increased, a more humid profile yields
better forecasts. This indicates that the assimilation is often too dry. If for example
the 10 % probability is examined and the points are mentally interconnected to form a
curve, the resulting slope is steeper than the diagonal. Thus the hit rate grows faster
than the false alarm rate with increasing humidity, finally making a better forecast.

6.4.4 PAFOG and multi-model ensembles

For maximum comparability PAFOG is verified exactly the same way as COBEL-
NOAH. Recall that PAFOG does not support the specification of advection. Never-
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Figure 25: ROC for fog occurrence in the 1D ensemble for different types of computed
advection and initialization times. Numbers above the symbols indicate the ensemble
forecast probability in percent that has to be exceeded in order to be classified as a
modeled fog event. The observational visibility threshold for a fog event was 1000 m.
Az indicates the area under the ROC.

50



0.0 0.2 0.4 0.6 0.8 1.0
FALSE ALARM RATE

0.0

0.2

0.4

0.6

0.8

1.0

ET
A

R TI
H

AZ = 0.667

AZ = 0.659

AZ = 0.602

CONTROL

+10% RH

-10% RH

5

5

5

10
1015

10

15

20

0.0 0.2 0.4 0.6 0.8 1.0
FALSE ALARM RATE

0.0

0.2

0.4

0.6

0.8

1.0

ET
A

R TI
H

AZ = 0.591

AZ = 0.628

AZ = 0.556

CONTROL

+10% RH

-10% RH

5

5

5

10

10

10

15

15

20

0.0 0.2 0.4 0.6 0.8 1.0
FALSE ALARM RATE

0.0

0.2

0.4

0.6

0.8

1.0

ET
A

R TI
H

AZ = 0.572

AZ = 0.636

AZ = 0.551

CONTROL

+10% RH

-10% RH

5

5

5

10

10

10

15

15

20

ROC 500m ROC 1000m

ROC 1500m

COBEL-NOAH, ZÜRICH UNIQUE AIRPORT
1 NOVEMBER 2004 - 30 APRIL 2005
INITIALIZED 1800 UTC
VERIFICATION FOR 03-11 UTC

Figure 26: ROC for fog occurrence in the 1D ensemble for initializations with different
relative humidity profiles. Visibilities below 500 m, 1000 m and 1500 m were used as
observational thresholds of an observed fog event, respectively. Numbers above the
symbols indicate the ensemble forecast probability in percent that has to be exceeded
in order to be classified as a modeled fog event. The observational visibility threshold
for a fog event was 1000 m. Az indicates the area under the ROC.
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Figure 27: ROC for fog occurrence in the 1D ensemble for PAFOG, COBEL-NOAH
and the multi-model ensemble at different initializations times. A visibility of 1000
m was used as observational thresholds of an observed fog event. Numbers above the
symbols indicate the ensemble forecast probability in percent that has to be exceeded
in order to be classified as a modeled fog event. Verification was done on an hourly
basis between 03-11 UTC from 1 November 2004 until 30 April 2005 at Zürich Unique
airport. Az indicates the area under the ROC.
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theless there are boundary conditions with a temporal resolution of one hour, which
specify cloud cover above 2000 m. The verification scores are shown in Figure 27 for
different initialization times. For comparison purposes the ROC curves of COBEL-
NOAH are also shown. Furthermore the ROC of the mulit-model ensemble consisting
of COBEL-NOAH and PAFOG was computed. From the COBEL-NOAH ensemble
only the members with advection (ADV) are considered, since they are the most skill-
ful according to Figure 24. If we now look at the skill score Az of PAFOG we notice
that unlike COBEL-NOAH the skill increases with later initialization time. This is
related to a faster model spin-up of PAFOG. However for the 00 UTC initialization
all models have less skill, because at that time fog has already formed in most cases.
Note that an existing fog layer cannot be properly initialized due to the lack of ob-
servations. According to the ROC it are the low forecast probabilities that have the
most skill and higher probabilities are not very useful for forecasting, as it is the case
for COBEL-NOAH. Especially the 2100 UTC initialization has a remarkable discrim-
ination between hit and false alarm rates when forecast probabilities between 5 and
15 % are used.

Interestingly the multi-model ensemble is not that different from each individual
model. In fact it is rarely better than any individual model and most of the time
either COBEL-NOAH or PAFOG reach a higher level of discrimination. Therefore the
ensemble system should not just provide the results from the multi-model ensemble
but also the individual model ensembles. Especially because PAFOG outperforms
COBEL-NOAH with later initialization time, a forecaster can give more weight to
PAFOG for late model initializations.

Finally a last comment relating to the skill discussion on the ROC curve. With an
increasing probability threshold the skill decreases because the probability of detection
approaches the false alarm rate for the models used. It is also important to note that
fog is a relatively rare event. The consequence is that if e.g. false alarm rate and hit
rate are equal, the absolute number of detected and false alarm forecasts is not equal,
as can be seen from the mathematical definitions [69, 70]. With the low base rate
for fog, the absolute number of false alarm forecasts will be bigger than the absolute
number of detected fog events.

6.5 How could the forecast be improved?

The verification clearly demonstrated the importance of advection. Therefore appli-
cation of a 1D model is theoretically wrong and in practice of questionable nature.
Nevertheless a significantly higher skill than with currently used forecast methods
was achieved. Improvements can be expected with better initialization. Mainly for
humidity, available observations are insufficient and skill scores from the humidity en-
semble underline the need for more measurements. However the observations required
are vertical profiles, so that expensive remote sensing instruments are the only option
for an airport. The models can always be improved to run e.g. with more complex
microphysics or a better turbulence scheme. For the latter one has to consider that
a 1D model cannot predict the wind vector because horizontal gradients are nonexis-
tent. Therefore the outcome of any turbulence scheme is governed by the externally
supplied wind speed. This can be a fine tool to perform some tests if the model is
driven with observations, but for forecasting this seems not very promising. Hence,
if the goal is forecasting, a model should require as little external forcing as possible
and simulate any spatial interactions. An improvement from the model side is thus
seen in the development of a 3D model.
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7 A grid and subgrid scale radiation parameteriza-
tion of topographic effects for mesoscale weather
forecast models

This is the article of Müller & Scherer (2005), which was published in Monthly Weather
Review.

Complex topography significantly modifies radiation fluxes at the Earth’s surface.
As spatial resolution of mesoscale weather forecast models increases, terrain effects on
radiation fluxes induced by slope aspect, slope angle, sky view factor and shadowing
also gain importance. A radiation parameterization scheme is hence designed to better
represent these topographic influences to improve weather forecasts.

The grid and subgrid scale radiation parameterization scheme allows computation
of radiation fluxes for each weather forecast model grid cell by considering arbitrarily
fine resolved topography without degrading the model’s computational performance.
The proposed scheme directly computes mean fluxes for each model grid cell based
on flux computations at full spatial resolution of a digital elevation model covering
the model domain. Thus the scheme does not require a problematic computation of
averaged topographic properties such as aspect angles. Furthermore the scheme has
a non-local computation of sky view restriction and shadowing effects.

Case studies with the Nonhydrostatic Mesoscale Model (NMM) at resolutions of
4 and 2 km respectively and the parameterization based on a 1 km resolved elevation
model, showed that effects of this parameterization are significant, and result in better
temperature forecasts in complex terrain. RMS and mean error of 2 m temperature
forecasts are generally improved by 0.5 to 1 K. At night, the consideration of restricted
sky view leads to a temperature increase between 0.5 and 1.5 K along valleys. During
clear sky daytime, this warming is of the same magnitude for grid cells containing
slopes exposed to the sun. Under overcast conditions, RMS error is reduced by 0.2
to 0.5 K. In wintertime shadows reduce temperatures in valleys by 0.5 to 3 K during
daytime.

7.1 Introduction

Radiation, the main source and sink of energy at the Earth’s surface, is significantly
influenced by topography. Local slope and aspect angles considerably modify the
amount and daily course of downwelling short-wave radiation (e.g. Whiteman et al.
(1989)). For instance, a time lag for the maximum downwelling short-wave radiation
of about two hours, and intensities increased by 200 W m−2 were observed on inclined
surfaces in an alpine valley (Matzinger et al. 2003). Simulated diurnal averages of
downwelling short-wave radiation showed variations as large as 450 Wm−2 for the
Tekapo watershed (Oliphant et al. 2003). Sky view restriction increases downwelling
longwave radiation and generates spatial variability of diffuse radiation (Matzinger
et al. (2003), Dubayah & Loechel (1997)). Scherer & Parlow (1994) have thoroughly
demonstrated the consequences of terrain induced modifications of radiation fluxes
on the energy balance, and hence on snowmelt and snow-hydrology for a drainage
basin in Svalbard. In their study they showed that specific topographic conditions
led to significantly increased solar radiation on the west-exposed slopes of the studied
drainage basin in NW-Spitsbergen, which is the main reason for intensified snowmelt
and subsequent meltwater runoff measured in the field. The parameterization scheme
used in their spatially distributed local scale radiation model forms the basis of the
one developed in our study, but it has to be noted that many other models for the
treatment of radiation in complex terrain have been developed over the last years
(e.g. Dozier (1980), Dozier (1989), Duguay (1993), Dubayah & Rich (1995), Kumar
et al. (1997)). Our parameterization is specially tailored for mesoscale models, in
a way that it deals with coarse grid resolutions used in mesoscale weather forecast
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Table 7: Topographic effects considered by mesoscale models used for numerical
weather prediction. The term shadow is used for shadows cast by surrounding terrain,
not self-shading of a grid cell, which is considered within slope and aspect.

Model Considered topographic
influence on radiation

ARPS slope, aspect, shadow
Bolam (Bologna limited area model) none
Hirlam (High Resolution Limited Area Model) none
LM / aLMo (Lokal-Modell) none
MASS (Mesoscale Atmospheric Simulation System) slope, ascpect
MC2 (Mesoscale Compressible Community model) none
Meso ETA none
Meso-NH slope, aspect
MM5 (Fifth-generation Pennsylvania State
UniversityNational Center for Atmospheric Research
Mesoscale Model) slope, aspect
NMM (Nonhydrostatic Mesoscale Model) none
NMS none
RAMS (Regional Atmospheric Modeling System) slope, aspect
RUC (Rapid Update Cycle) none
UK Unified Model none
WRF (Weather Research and Forecast model) none

models, severe computational cost restrictions as well as ease of implementation and
portability.

To the knowledge of the authors, the majority of mesoscale weather forecast mod-
els only consider a few or none of topographic influences on radiation. A survey of
considered topographic effects for popular mesoscale models in operational use is given
in Table 7. It can be seen that most models only include slope aspect and slope angle,
which in fact are the most important effects, as mentioned by Oliphant et al. (2003).
However, at typical grid resolutions of a few kilometers, such effects decrease due to
the flattening of slopes. Dubayah et al. (1990) analyzed topographic modulation of
clear sky irradiance using a parameterization very similar to the one of this study.
They found that variance and spatial autocorrelation of simulated radiation changed
with sun angle and grid spacing. As grid spacing increased, variance decreased and
spatial autocorrelation increased. Recently, shadow effects were included into the Ad-
vanced Regional Prediction System (ARPS), and its importance was demonstrated
(Colette et al. 2003). Mesoscale weather forecast models are usually running at spa-
tial resolutions of a few kilometers, thus resolving larger valleys on the grid. However,
sloping surfaces are flattened, and topographic details are not resolved, so that radi-
ation computation based on the grid scale topography has little effect. The proposed
parameterization scheme considers topographic effects on radiative fluxes by using an
arbitrarily fine resolved topography. Thus the scheme’s accuracy is not restricted by
the spatial resolution of the weather forecast model grid but only by the one of an
available digital elevation model (DEM). If the DEM used for radiation computations
has a higher resolution than the model grid, the model grid cell radiation fluxes are
representative means based on the higher resolution fluxes as computed using the
DEM grid.

Treatment of radiation in the described way seems to be computationally expen-
sive, but most computations can be done prior to model execution, leaving only a
few multiplications for the weather forecast model during time integration, so that
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Figure 28: Verification of 2 m temperatures for alpine stations on 21 June 2003. The
NMM was run at 4 km resolution using no topographic radiation parameterization
(CTL), the parameterization based on the model topography (GRID) and the para-
meterization based on a 1 km DEM (SUBGRID), respectively. Mean and RMS errors
are given in Kelvin.

computational costs are negligible.
In the first part of this article we derive the parameterization scheme and present

the preprocessing steps. In the second part we demonstrate the skill improvement
for air temperature forecasts due to the new parameterization scheme under clear sky
summer and winter conditions, under overcast conditions, as well as for a whole month
of strongly varying cloud conditions. Therefore, the scheme was implemented into the
Nonhydrostatic Mesoscale Model (NMM) of NOAA/NCEP (Janjic et al. (2001) and
Janjic (2003)).

7.2 Parameterization scheme and data

7.2.1 Mathematical description

The parameterization affects five radiation fluxes at ground level, namely direct down-
welling short-wave ↓Es,dir, diffuse downwelling short-wave ↓Es,diff , upwelling short-
wave ↑Es, upwelling long-wave ↑El, and downwelling long-wave ↓El. These fluxes
are computed by the mesoscale forecast model considering the altitude of each grid
cell as provided by a DEM of same spatial resolution as the model grid. The same
symbols but marked by ∗ are used for the parameterized radiation fluxes. Depending
on the details of the respective model, radiative transfer computations consider the
actual atmospheric conditions, but often assuming flat terrain, i.e. the surface of
each grid cell is horizontally oriented, and also disregarding neighborhood effects like
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Figure 29: Map of model domain showing locations of alpine (∆) and non-alpine
(x) measurement stations. The dark shaded region indicates the subset used in Fig-
ures 30 and 36 to 38. Latitude and longitude coordinates are given on the borders.
The shaded topography was generated from the 1 km GTOPO30 DEM used for the
parameterization.

sky view restrictions and shadowing. The NMM, used in this study, computes short-
wave radiation absorption, reflection and scattering in the model atmosphere based
on Lacis & Hansen (1974). Absorption for water vapor, O3 and CO2 are computed
separately and over single bands in the UV/visible and NIR portions of the solar
spectrum, each representing 50 % of incoming solar energy. The basic surface albedo
taken from climatology is modified to take into account the actual local conditions
at the surface. The parameterization for long-wave radiative transfer in clear-sky
conditions was developed at GFDL (Fels & Schwarzkopf (1975), Schwarzkopf & Fels
(1985), Schwarzkopf & Fels (1991)). Radiation interactions with clouds are computed
for each vertical layer (Harshvardhan et al. (1989), Hong et al. (1998), Slingo (1987),
Xu & Randall (1996)). It has to be noted that the proposed parameterization of
topographic effects takes radiative fluxes as externally computed input, which allows
easy implementation in different mesoscale models.

The dependence of |↓Es,dir| on slope angle α was formulated by Kondratyev (1977)
with help of the geometry factor cos(α):

cosα = cos θN sin θS + sin θN cos θS cos(φS − φN ) (74)

where α is the angle between the unit vector of the solar direct beam and the normal
vector of the surface, φN is the slope aspect, and θN is the slope angle. The position
of the sun is given by the sun elevation angle θS and sun azimuth angle φS .

A correction factor fcor is derived for ↓Es,dir combining the effects of slope angle
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a) b) c) 

Figure 30: a) Topography at 1 km resolution with height contours every 500 m for
the dark shaded area in Figure 28. The most complex topography is found in the
South and is part of the Swiss Alps. b) Sky view factor aggregated to the 2 km NMM
Grid. A significant reduction of sky view appears within alpine valleys in the South
(lower part). c) Direct short-wave radiation correction factor fcor for 0900 LST 22
June 2003, on the 2 km NMM grid.

and aspect, geometric enlargement of a sloping surface, and shadowing. By using [74],
the effective direct downwelling short-wave radiation ↓E∗

s,dir on an inclined surface
can be computed as:

↓E∗
s,dir =↓ Es,dir

(
1

sin θS

)(
1

cos θN

)
mask shadow (75)

[cos θN sin θS + sin θN cos θS cos(φS − φN )]

The geometric surface enlargement - that is, the ratio between the actual area of
a sloping surface and its projected area as given by the spatial resolution of the
underlying DEM (Scherer & Parlow 1994) - is given by the third factor in [75]. Note
that surface enlargement can only be applied for the computation of ↓E∗

s,dir, since it
is the only flux showing directional dependence by definition.

The treatment of shadows is done by introducing a binary shadow mask:

mask shadow =
0 θS < θh,φS

1 elsewhere (76)

where θh,φS
is the horizon angle towards the sun azimuth angle φS . The great ad-

vantage of this approach is its high computational performance, since only a logical
operator has to be applied to each grid cell instead of ray tracing or radiosity com-
putations. The time consuming part of the computation, i.e., the derivation of the
horizon angles, is carried out as part of the preprocessing. According to [75] it is
possible to compute ↓E∗

s,dir by simply multiplying ↓Es,dir with a correction factor

58



fcor:
↓E∗

s,dir =↓ Es,dirfcor (77)

where, after simplification of [75]:

fcor = mask shadow

[
1 +

tan θN

tan θS
cos(φS − φN )

]
(78)

Here, ↓Es,dir is computed by the mesoscale model, and is representative for a single
model grid cell usually covering an area of several square kilometers. Computing topo-
graphic parameters from the mesoscale model topography, as needed by [75], would
be a crude approximation producing values for fcor close to 1. A better approach is
to compute the radiative fluxes based on a high-resolution DEM covering the whole
model domain. Because of the multiplicative nature of [77] it is possible to simply
compute a mean fcor and multiply it with mean ↓Es,dir to obtain mean ↓E∗

s,dir. Fig-
ure 28 illustrates the benefits of computing subgrid fluxes based on a 1 km resolved
DEM rather than using the 4 km resolved mesoscale model topography. Shown are
verifications of 2 m temperature forecasts for clear sky conditions on 21 June 2003.
The grid scale resolved parameterization lies between the unparameterized control run
and the subgrid parameterized run. Thus the sugbrid computation of fluxes doubles
the effect of a gridscale parameterization in the current configuration. Both parame-
terizations have the same memory requirements and computational costs during time
integration. The verification procedure is described later in Section 3a.

Figure 31: Verification for alpine stations for 22 June 2003. Shown are unparameter-
ized control runs (CTL) and parameterized runs (PAR). Grey curves are the 4 km
resolution NMM simulation and black curves are the 2 km resolution NMM simula-
tion. A perfect model has an RMS and mean error of 0 K. LST is UTC+2.

To save computational resources during model execution, mean fcor can be com-
puted diagnostically prior to model execution for each hour t of the model run period
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based on all n grid points of the DEM that cover a mesoscale model grid cell:

f t
cor =

1
n

n∑
i=1

f t,i
cor (79)

The parameterization also considers topographic effects on ↓Es,diff by restricted sky
view. Effective diffuse downwelling short-wave radiation ↓E∗

s,diff is approximated by:

↓E∗
s,diff =↓ Es,difffsky +↑ Es(1− fsky) (80)

where fsky is the sky view factor. The last term in [80], which is the part of down-
welling short-wave radiation reflected by adjacent areas, assumes homogenous albedo
equal to the one of the model grid cell. This is a simplification, since the reflected
short-wave radiation may originate from a neighboring grid cell having a different
albedo. Furthermore, albedo depends on the relative incident angle, which can vary
across the entire range at different locations and times throughout the day. However,
the effect of this simplification is usually small, and computational performance would
significantly decrease by a more sophisticated treatment.

The flux ↓El may be modified by radiation emitted by adjacent areas. In analogy
to ↓E∗

s,diff , this effect is considered by

↓E∗
l =↓ Elfsky +↑ El(1− fsky) (81)

Usually, the surface is warmer than the sky, thus ↓El in complex topography is in-
creased in most cases by the parameterization given by [81] in areas of restricted sky
view.

7.2.2 Preprocessing

The required topographic parameters are derived as spatially distributed properties
from a DEM of arbitrary spatial resolution or coordinate system. Due to their sta-
tionarity they need to be computed only once. The computations are following the
scheme described by (Scherer & Parlow 1994). The only modification was done with
respect to DEMs that use non-metric coordinate systems like the GTOPO30 data set
used in our study.

Since θh,φ and fsky are non-local properties, they have to be computed considering
a neighboring area for each grid element of suitable horizontal extent. In our study, we
used an area of 40 km by 40 km, where the grid element, for which the properties are to
be computed, is located in the center. The grid elements of the DEM within this area
are resampled from the original grid to a Cartesian grid using a local orthographic
projection, also taking into account the earth’s curvature. The procedure is thus
applicable for any model domain of the earth.

The variables φN and θN are local properties, and are derived from the resampled
neighborhood by locally fitting a biquadratic surface through the central grid element
and its eight neighbors. To save computational and disk storage resources, θh,φ is
computed for 24 discrete azimuth angles φ, that is, using an azimuthal step width of
15◦. For other azimuth directions the corresponding horizon angle can be obtained
with sufficient accuracy by linear interpolation, and fsky is computed from θh,φ after
Dozier & Marks (1987):

fsky = 1− 1
24

 23∑
j=0

sin(θh,j15◦)

 (82)

For the dark shaded subset in Figure 29, the spatial distribution of fsky is shown in
Figure 30b. Darker shades indicate smaller values of fsky. The corresponding topog-
raphy is contoured in Figure 30a. In regions of complex terrain, fsky is significantly
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Figure 32: Same as Figure 31 for non-alpine stations.

reduced, and can be as low as 0.7. Note that fsky, computed from 1 km resolved
GTOPO30 data, were aggregated to the 2 km grid of NMM.

Temporal discretization of the time dependent parameters can be achieved with
sufficient accuracy using a resolution of one hour. To save computational resources
during time integration of the mesoscale model, the computation of θS , φS , mask shadow

and fcor for each grid cell is carried out prior to model execution in a preprocessor, as
well as the subsequent aggregation of fcor to the model grid. Because of the preproces-
sor, the only computational task left for the mesoscale model itself is application of
Eqs. [77], [80] and [81].

Figure 30c shows the spatial distribution of the direct short-wave correction factor
fcor for a morning situation. It is evident that eastward sloping surfaces have larger
fcor values than westward sloping surfaces, where fcor is smaller than 1. On horizontal
surfaces, fcor becomes unity. At noon, southward sloping surfaces have higher fcor

and in the evening westward sloping surfaces are subject to higher values of fcor.

7.2.3 Model area and measurement data

Case studies were carried out in a domain shown in Figure 29, covering Switzerland
and surroundings, thus including terrain ranging from very complex in the Swiss
Alps with elevations over 4000 m a.s.l. to very flat in the Rhine plane of southern
Germany. Figure 30a shows the topography for the dark shaded subset of the model
domain indicated in Figure 29. Data of about 400 automatic weather stations, half
of those located in the Swiss Alps, is available for the entire model domain, thus
yielding a statistically significant number of observations. From all stations hourly
mean temperatures could be obtained, allowing a comparison with model data at a
temporal resolution of one hour.
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Figure 33: Same as Figure 31, but for a wintertime clear sky situation on 24 December
2003. LST is UTC+1.

Figure 34: Same as Figure 31, but for an overcast situation on 20 October 2003. LST
is UTC+2.
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7.3 Results

The proposed radiation parameterization was implemented into the Nonhydrostatic
Mesoscale Model (NMM) of Janjic et al. (2001) and Janjic (2003). NMM is used for
operational weather forecasts at NOAA/NCEP. Effects of the parameterization are
analyzed using modeled and observed air temperatures at 2 m above ground. Air
temperature is strongly correlated to radiation, and is measured at every observing
site. In addition, air temperature is an important forecast variable that is expected
to be improved by application of the parameterization scheme.

7.3.1 Verification results

Results for clear sky conditions on 22 June 2003 and 25 December 2003, as well as
completely overcast conditions on 20 October 2003 are presented separately to discuss
the different effects of the parameterization. In order to evaluate the benefits of the
parameterization for operational weather forecasts under different synoptic conditions,
parallel runs where carried out for September 2004. All situations were simulated
with full model physics but with an unparameterized topographic radiation control
run (CTL) and with the new radiation parameterization (PAR) at spatial resolutions
of 4 km as well as 2 km. Forecast initialization was done using NOAA 1◦ resolution
GFS data and one way nesting via a 22 km resolution NMM run covering Europe.

As expected, the effects of the radiation parameterization are most pronounced
in complex terrain (cf. Whiteman et al. (1989); Colette et al. (2003); Chow et al.
(2004)). Thus, available observations are divided into an alpine and a non-alpine
group as shown in Figure 29. The alpine group consists of all stations within the
Alps and represents measurements from the most complex topography. The non-
alpine group consists of the remaining stations. Verification scores are computed
on an hourly basis by comparing all measured temperatures with the corresponding
modeled temperatures. Note that temperature forecasts for stations were taken from
the closest model grid point without further processing. Due to the very complex
small scale topography of the Alps, elevation differences between model grid cells
and actual station heights are around 400 m for alpine stations, which contributes to
the large mean and RMS temperature errors. However these values are typical for
temperature forecasts of the Alps. The high resolution model (aLMo), running at the
Swiss national weather service (MeteoSwiss) obtains RMS errors, for stations located
above 1500 m a.s.l, of 2.5 to 3.5 K in summer and 4 to 6 K in winter, respectively
(Schubiger 2001, F. Schubiger 2004, personal communication).

In Figure 31 and 32 verification results of 22 June 2003 are shown for alpine and
non-alpine stations, respectively. It can be seen that for both resolutions the new
parameterization has most impact at night and of course is more pronounced for
alpine stations, located in complex terrain. The positive effect at night is caused by
reduced sky view considered in the parameterization scheme. Long-wave radiative
loss of energy is reduced in valleys yielding warmer temperatures with less negative
mean errors and smaller RMS errors. Thus the parameterization weakens the cold
bias, which together with an underestimation of nocturnal ↓El , is also observed in
the operational models, run at NOAA/NCEP (Z. Janjic 2004, personal communica-
tion). During daytime the parameterization seems to have little influence. At 4 km
resolution the parameterization slightly increases the forecast error during daytime.
This is mainly a problem of forecast verification and model resolution. The para-
meterization computes a representative mean of net radiation for a model grid cell
including slopes and plains which covers 16 or 4 km2, respectively. Measurement
stations, however, are mostly located in flat areas of a grid cell, so that radiation and
resulting temperature computed for a flat area, as it is done in the unparameterized
version, are more accurate for this particular part of the grid cell, but not for the
whole area of the grid cell. For example, if a grid cell contains large slopes facing the
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Figure 35: Verification of 2 m temperatures for alpine stations under different synoptic
conditions in August and September 2004. Shown are unparameterized control run
(CTL) and parameterized run (PAR) for night (upper panel) and daytime (lower
panel). The two gaps are due to missing initial conditions. The mesoscale model
(NMM) was run at a resolution of 4 km.

sun, the parameterization yields more short-wave radiation that is absorbed, and thus
higher temperatures for the whole grid cell. But the station located in the flat terrain
part of the grid cell measures a lower temperature, which is not representative for
the entire grid cell in complex terrain. At higher resolutions, observed and modeled
areas correspond better, and the verification of parameterized and unparameterized
runs converge, which is evident from the 2 km model resolution. Reduced sky view
exists on the valley bottom as well as on sloping surfaces, thus measurement stations
in valleys capture the phenomenon, and the above mentioned verification problem is
less severe at night.

Another clear sky situation is shown in Figure 33. Those wintertime verification
results are very similar to the summer situation, with most RMS and mean error
reduction at night. Again the benefit of the parameterization is the same for both
resolutions of the mesoscale model.

Completely overcast conditions on the entire domain prevailed on 20 October
2003. After initialization the parameterized and control runs diverge only little when
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a) b) c) 

Figure 36: Modeled 2 m height temperature differences (4PAR-4CTL) for the clear
sky situation on 22 June 2003 at 4 km model resolution. White and black contour
lines inside the shaded areas are 0.5 K increments. White contours and bright filling
indicates a warming due to the parameterization, whereas darker filling and black
contours indicate a cooling effect. White fields, surrounded by black contours are
differences between 0 and 0.2 K and thus regions where the parameterization has
negligible effect. a) Differences at 0500 LST. b) Differences at 0900 LST. c) Differences
at 1200 LST.

compared to the clear sky situation. The parameterization has only a small positive
impact, but both during day- and nighttime, which is caused by inclusion of the sky
view factor. The importance of sky view obstruction under overcast conditions and
the resulting spatial variability has been demonstrated by Dubayah & Loechel (1997)
for a portion of the Rocky Mountains. It has to be noted that this situation is a rarely
occurring ”worst case” scenario, since for large model domains there are almost always
regions and time windows with no or very little clouds, where the parameterization has
more effect. The mean error in Figure 34 shows that during daytime the improvement
is due to cooler temperatures in the parameterized run. This can be explained by
looking at equation [80], where ↓Es,diff is reduced by multiplication with the sky
view factor, and where, under overcast conditions, the second term is only dependent
on ↓Es,diff and albedo. Thus the net effect is a decrease of incoming short-wave
radiation. Longwave downwelling radiation is increased due to restricted sky view,
but less than under clear sky conditions. This is due to the presence of relatively warm
clouds that decrease the contrast between cold clear sky temperatures and warmer
terrain (cf. Matzinger et al. (2003)). The shortwave part of the parameterization
dominates during daytime, whereas at night, only the longwave part, with its above
mentioned reduced effect, is present. A verification problem associated with direct
downwelling shortwave radiation does not appear under cloudy conditions.

Finally, the parameterization was tested under strongly varying synoptic condi-
tions, such as stable high pressure with warm temperatures, many passages of fronts
and even snowfall in the Alps, as well as unstable situations with development of local
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a) b)

Figure 37: Modeled 2 m height temperature differences (PAR-CTL) for the clear sky
situation at 1100 LST on 25 December 2003 for 2 km and 4 km model resolution,
respectively. The upper left quadrant was cloudy. Contours are as specified in Fig-
ure 36. a) NMM simulation with 2 km resolution. b) NMM simulation with 4 km
resolution.

thunderstorms. The chosen period starts on 25 August and ends on 29 September
2004. Figure 35 shows RMS errors computed for day- and nighttime, respectively.
The verification is done using hourly data between 0700 and 1900 LST for daytime
and the remaining 11 hours for nighttime, by comparing all measured temperatures
with the corresponding modeled temperatures. As can be seen, the parameterization
reduces the temperature error throughout the time period, especially at nighttime.
During daytime, the verification is again less representative, and parameterization
effects are thus much smaller.

7.3.2 Spatial impacts of the parameterization on modeled air tempera-
ture

Local deviations of the temperature field caused by a more detailed treatment of
radiation are larger than the spatially integrated verification results suggest. Figures
36 to 38 illustrate spatial impacts of the parameterization for selected conditions and
times. Depicted are differences between the parameterized and the control run for
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a) b) c)

Figure 38: Modeled 2 m height temperature differences (4PAR-4CTL) for overcast
conditions on 20 October 2003 at 4 km model resolution. Contours are as specified
in Figure 36. a) Differences at 0100 LST. b) Differences at 1400 LST. c) Differences
at 1600 LST.

clear sky conditions on 22 June 2003 and 25 December 2003, as well as overcast
conditions on 20 October 2003, respectively. For clarity, only a small spatial subset
marked as dark shaded area in Figure 29 is used here. In the clear sky situation of
Figures 36b and 36c the differences are mainly caused by ↓E∗

s,dir. Higher values of fcor

in Figure 30c correspond well with warmer areas in Figure 36b. The correlation is,
however, not perfect, since temperature is also controlled by dynamic processes such as
turbulent exchange and advection. The spatial correspondence between temperature
and fcor exists for the other hours of the day, depicting the sun’s movement.

In Figure 37 clear sky winter conditions at 1100 LST 25 December are shown for
2 and 4 km model resolution, respectively. In addition to warmer regions, likewise
modeled for the summer situation, significantly cooler temperatures can also be found
in valleys. The cooling is in the range of 0.5 to 3 K and caused by shadows, which are
much longer in wintertime. It can be seen that the 4 km resolution develops the main
patterns of the higher resolution run. However, a lot of detail in smaller valleys is
missing, and the effects of the parameterization are weaker at the coarser resolution.

At night, when short-wave radiation is not present, restricted sky view (Figure
30b) leads to reduced net loss of longwave radiation, which results in warmer air
temperatures (Figure 36a). As for shortwave radiation, the effects are best seen in
the Alps. Mainly along the big valleys, where sky view factors are generally smaller,
temperature increased more than 1 K.

For overcast conditions, spatial patterns are caused by the sky view factor. Figure
38 shows temperature differences at 1400, 1600 and 0100 LST on 20-21 October 2003,
respectively. As can be seen by comparison with Figure 30b, the parameterization
leads to the already discussed cooling during the day in regions of restricted sky view.
At night, a warming in regions of restricted sky view is observed. It is of smaller
magnitude than under clear sky conditions due to the presence of relatively warm
clouds, as mentioned before. Note that advection smooths the spatial patterns.
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7.4 Conclusions

The proposed parameterization allows simulation of important radiation effects as-
sociated with complex topography at negligible computational costs. Verifications
with 2 m air temperatures demonstrate a general improvement of 0.5 to 1 K in RMS
and mean error, respectively. Especially at night, the consideration of restricted sky
view leads to higher air temperatures in complex terrain. Along valleys the nighttime
warming is between 0.5 and 1.5 K. During clear sky daytime, this warming is of the
same magnitude for grid cells containing slopes exposed to the sun. The parame-
terization also shows improvement under overcast conditions, where the nighttime
warming was about half that of clear sky conditions. During an overcast day, the
parameterization cools the air in areas of restricted sky view by 0.2 to 0.7 K. In win-
tertime with lower sun elevation, shadows reduce temperatures in valleys by 0.5 to
3 K during daytime. At a resolution of 4 km the parameterization has significant
impacts, which are even more pronounced on the finer 2 km grid.

Higher temperatures on slopes facing the sun may play an important role in trig-
gering convective processes, and thus influence precipitation patterns as well. But
this will have to be analyzed in the future.
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8 Outlook - a 3D fog model

This chapter is thought to be an outlook to the future of fog forecasting. So far many
problems of 1D models have been pointed out and several tricks are used to extend
the applicability of 1D models to more complex situations. However, to model the
processes in complex topography, it seems inevitable to sooner or later extend a 3D
model in such a way that it can do fog prediction. This is of course a long term project
because many issues like cloud microphysics, turbulence or problems related to high
vertical and horizontal resolution, have to be solved. More complex microphysics
also requires more complex initialization with properties currently not measured or
assimilated, like the concentration and chemical composition of aerosols. It will not
be sufficient to develop only a forecast model but also an accurate data assimilation
for high resolution.

Here I want to present a first step towards 3D fog prediction, which becomes
possible due to the outstanding dynamical core of the NMM developed by Zavisa
Janjic at NOAA/NCEP.

8.1 Requirements for 3D fog forecasting

A 3D fog model needs detailed cloud microphysics and should be able to run at very
high resolutions. Horizontal resolution is important to simulate cold air drainage flows
and cold air ponding in complex topography. The growth of the surface inversion,
eventually followed by fog formation requires also a high vertical resolution in the
boundary layer. The dynamical core of the NMM seems to be very suitable, since
it can run at horizontal resolutions as fine as 100 m (Janjic 2003) and because it
is computationally very efficient. The latter is very important if forecasts have to
be done in an operational context. The condensation/evaporation scheme as well as
computation of droplet settling are essential to model fog. However these processes
are represented in a highly parameterized manner in the NMM, as well as in all other
major weather forecast models in operational use listed in Table 8. What is used
are very simple bulk adjustment schemes for condensation and evaporation. With
this kind of adjustment, condensation and evaporation are separated by a prescribed
relative humidity threshold value. For high resolution models this is usually 100 %.
For coarse resolutions the threshold is decreased, because the large grid box volume is
often only partly cloudy in reality, and these clouds have to be predicted by the model,
particularly because of the interaction with radiation. The condensation/evaporation
and the related change in temperature and saturation vapor pressure is solved using
different strategies. For example in the MM5 model, if supersaturation exists an
adjustment step is applied that converts water vapor to liquid water and warms the
air. This is done with the equation of Soong & Ogura (1973) that uses a single
step to approximately reach 100 % relative humidity. A Taylor series expansion is
used to derive this equation, where only the first-order terms are retained. By doing
so the amount of condensation necessary to obtain 100 % relative humidity is only
approximated. Other models, like the NMM use an iterative procedure (Asai 1965)
similar to COBEL which is more accurate but also computationally more expensive.
A statistic approach with a PDF and height dependent humidity thresholds is used
in the UK MetOffice model (Wilson & Ballard 1999, Smith 1990).

But there are also higher degrees of sophistication. From Köhler theory (Köhler
1936) it is known that the critical supersaturation for a droplet depends on its size and
chemical composition. Bigger size and higher salt concentration decrease the critical
supersaturation. Therefore droplets can exist at relative humidities below 100 % and
larger droplets still grow at humidities where smaller ones evaporate. If these processes
have to be modeled, it is necessary to solve the droplet growth equations for several
droplet size bins, as it was done in some sophisticated 1D models (Brown 1980, Bott
et al. 1990). Even though such schemes have been implemented and tested in some of
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Table 8: Cloud condensation schemes of operationally used numerical weather pre-
diction models.

Model Condensation scheme
ARPS Soong & Ogura (1973)
Hirlam Sundqvist (1978)
LM / ALMO iterative bulk adjustment (Doms et al. 2005)
MC2 Sundqvist et al. (1989)
Meso ETA Asai (1965)
MM5 all schemes follow Soong & Ogura (1973)
NMM Asai (1965)
RAMS direct, non-iterative implicit algorithm
RUC as MM5 Brown et al. (1998)
UK UM Wilson & Ballard (1999), Smith (1990)
WRF different schemes but all threshold based

the models mentioned in Table 8, they are computationally too expensive to be used
for actual weather forecasting. For our 3D model a parameterization of the Köhler
theory is used, so that only a total droplet number concentration, but not different
size bins are needed. The microphysics still have a high degree of sophistication and
are computationally much cheaper.

8.2 Microphysics implementation strategy

The PAFOG microphysics, outlined in section 8.4, was incorporated into the Non-
hydrostatic Mesoscale Model to improve forecasts of fog and low stratus clouds in
3D. In the NMM the condensation/evaporation algorithm of Asai (1965) is used and
now replaced by detailed microphysics. It is important that the implementation does
not interfere with the already existing cloud and precipitation microphysics scheme
(Ferrier 2002) of the NMM. PAFOG microphysics is limited to the lower part of
the atmosphere which extends from the ground up to a prescribed height, currently
1500 m. In this lower part, where fog and low stratus clouds form, the condensation
and evaporation processes, as well as the settling of cloud droplets are modeled with
the detailed cloud microphysics of PAFOG. Precipitation, processes including the ice
phase, autoconversion, accretion and evaporation of precipitation are left unchanged
and predicted with NMM microphysics. Liquid water content already is a prognostic
variable in the NMM, and once formed, is transported by turbulence and advection.
Now a new prognostic variable, the total droplet number concentration (Nc) is in-
troduced into the dynamical framework. The three dimensional link of the PAFOG
microphysics to the other model equations is done by the transport of Nc and liq-
uid water. The implementation has to consider horizontal and vertical advection as
well as the turbulent transport of Nc. Note that Nc fields are not smooth at all and
values can be as high as 109, producing a field with large gradients that looks very
noisy. Tests revealed that it is necessary to carry out calculations of droplet number
concentration in double precision. However, to increase the speed of communication
with MPI between different nodes on the parallel machine, Nc fields are converted to
floating point precision before exchanging them between processors.

8.3 Spatial discretization

In terms of resolution a couple of changes are necessary. Modeling the boundary
layer processes, especially the nocturnal cooling due to emission at the surface, re-
quires a high vertical resolution. The formation of radiation fog normally begins close
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to the surface and then steadily grows upward. In today’s operational high resolution
weather forecast models, the first layer above ground is about 30 m thick in the NMM
and around 70 m in the aLMo and LM. Such coarse resolutions cannot describe the
slowly growing fog. For the 3D fog model this is changed to a very high vertical res-
olution with about 27 layers in the lowest 1000 m and a thickness of 5 m for the first
few layers. The top boundary is set to be at 50 hPa, and 18 further layers are used to
reach this height. For the boundary layer, the vertical resolution is similar to what is
used in 1D models. There is however a drawback related to the smaller heat capacity
of thin layers. The cooling or heating at the surface affects the lowest layer first and
is then communicated to upper layers via turbulent exchange processes. During the
day a warming of lower layers results in a more unstable lapse rate and thus the
upward transport of heat works well. Hence temperatures are relatively independent
of vertical resolution as long as the surface is heated. At night, the radiative cooling
of the surface increases the stability and thus deteriorates the conditions for vertical
exchange that could transport heat downwards. So there is a positive feedback which
produces a very strong inversion in the lowest layers, where the temperatures can be
several Kelvins colder than observed. The problem could probably be solved with a
sophisticated turbulence scheme that is fully three dimensional and able to produce
intermittent turbulence. With current schemes, the specification of a minimal ex-
change coefficient could reduce the cold bias at night. However, the residual artificial
diffusion in the surface layer and the layer below the inversion in the NMM would
then be un-physically high. Furthermore, the longwave flux reaching the surface over
night in clear sky conditions is underestimated in the NMM (Janjic, personal commu-
nication 2005). The underestimation of incoming longwave radiation is also related
to topography. Due to a reduced sky view factor in complex terrain, a particular grid
point receives more longwave radiation from the surrounding mountains than from
the clear sky. Because the sky is normally colder than the surrounding, a reduced sky
view factor increases the amount of incoming radiation. But topography also influ-
ences shortwave direct and diffuse radiation that can be parameterized. A detailed
description of this radiation parameterization was given in Section 7. Consequently,
it appears that the crux of the problem is that there is not enough energy reaching
the surface in order to close the energy balance over night under clear sky conditions.

Concerning the resolution of the surface or constant flux layer, this layer is ap-
proximately 10 % of the PBL height, so its thickness varies from a few meters to over
a hundred meters. Near the surface, the profiles in this layer are very nonlinear (ap-
proach logarithmic), and that is the reason why the NMM uses the Monin-Obukhov
similarity to represent it. Further away from the surface, the profiles are more linear
so that an explicit handling of turbulence is possible using finite-differences that im-
ply piece-wise linear profiles. Considering that the surface layer is only a few meters
thick under strongly stable conditions, it is clear that a thickness of 50-100 m for
the first model layer does not appropriately resolve the physical processes. However,
under such conditions the fluxes are small, so that the resulting error is small in ab-
solute terms. On the other hand, very high, but still insufficient resolution within the
strongly nonlinear part of the profiles also could be harmful.

Some improvements for the above may however be possible. For example, emissiv-
ity is often assumed to be 1, which is an overestimate, consequently this value could
be reduced for the fog model if cold bias problems are found. For complex terrain
the mentioned radiation parameterization also improves the nightly cold bias prob-
lem. More desperate measures could also artificially increase the ground flux or add a
”residual” cirrus. The first actually happened in the 1D COBEL-NOAH model when
the resolution of the soil layers was increased to the current setup. In calm nights the
computed soil heat flux reached values between 50 to 100 W m−2 which is an over-
estimate but leads to quite accurate temperature forecasts for the stable boundary
layer. In the 3D fog model the high resolution of the soil grid did not really improve

71



Figure 39: 3D forecast of 2 m temperature and 10 m wind for the fog case of 10
October 2005, 2000 UTC.

the cold bias problem. This is because in complex terrain cold air drainage flows keep
bringing cold air into basins where fog forms. Nevertheless the thin soil layers are
needed for the temperature and hydrological coupling. The effects on temperature
were described in Section 2.2.2. In hydrological terms, the deposition of fog is small
and can only change the water content of a thin soil layer. During the day this water
is again evaporated and the first thin layers can dry, which produces vertical moisture
gradients in the soil. The related moisture transport in the soil can be resolved and
computed on the high resolution soil grid. With the normal resolution, which is 10 cm
for the uppermost layer, the response times are too long and vertical gradients do not
really develop, so that the moisture availability for evaporation does not change much
during the day. This means that evaporation is purely controlled by the atmospheric
conditions and no constraints due to a drying soil layer can be considered on the short
term.

The horizontal resolution should also be rather high to resolve a considerable
amount of topographical details. Currently 1 km is used and the effects of cold air
outflow and ponding are well resolved as can be seen in Figure 39. The high horizontal
resolution did not cause any problems since the dynamical core was originally designed
to work with a grid spacing as fine as 100 m.
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8.4 The microphysics model

The microphysical parameterization was taken from the 1D model PAFOG (Bott &
Trautmann 2002) and is used to compute the cloud liquid water content in the lower
part of the model atmosphere. Prognostic equations for the total number concen-
tration Nc of cloud droplets and for the total specific cloud water content qc are
solved.

∂Nc

∂t
= ADV (Nc) +DIF (Nc) +

(
∂Nc

∂z

)
sed

+ s(Nc) (83)

∂qc
∂t

= ADV (qc) +DIF (qc) +
(
∂qc
∂z

)
sed

+ s(qc) (84)

The operators ADV andDIF are computed by the dynamical framework of the NMM
and stand for advection and turbulent diffusion, respectively. These two transport
processes are essential for the 3D coupling of the microphysics. Their implementation
forNc into the 3D model require major modifications of source code, which, depending
on the 3D model, are quite complex. Note that a new prognostic variable has to be
added. The third term represents sedimentation of cloud droplets and the source-
sink terms s(Nc) and s(qc) describe phase changes between the gaseous and liquid
phase. From the continuity equations [83,84], the following two prognostic equations
are solved with the PAFOG microphysics.
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(86)

∆(S̄) := { 1, for S̄ < 0
0, for S̄ ≥ 0 (87)

S =
q

qsat
− 1

where S̄ is the mean supersaturation. Note that due to the ∆(S̄) mechanism, evap-
oration changes Nc only if the air is not saturated. Besides the dynamic transports
due to advection and turbulence, the concentration of Nc and liquid water content
can be changed due to microphysical processes. The interactions are quite complex
and an increase in liquid water does not necessarily change the droplet number con-
centration. This is because existing droplets may grow without new droplets being
formed. The inverse is true for evaporation of cloud water. Sedimentation is always
directed downwards and the same flux divergence may increase or decrease Nc and
cloud water differently, depending on the size of settling droplets. Because larger
droplets have higher settling velocities they are removed effectively by sedimentation
and evaporation has little effect on the number concentration for big droplets. For
small droplets the opposite is true and the evaporation algorithms gain importance.
At the ground, liquid water is treated like precipitation and droplets disappear due
to deposition. Before further considering the individual terms, an assumption on the
droplet size distribution has to be made. In PAFOG this is a log-normal function of
the form

dNc =
Nc√

2πσcD
exp

(
− 1

2σ2
c

ln2(
D

Dc,0
)
)
dD (88)

where D is the droplet diameter, Dc,0 is the mean value of D and σc is the disper-
sion parameter of the given droplet size distribution (σc = 0.2). The resulting size
distributions for different values of σc are shown in Figure 41. The shape reflects the
explicitly computed spectral distribution obtained from simulations with the MIFOG
model (Bott et al. 1990). Note that the simple size distribution of fog is caused by the
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Figure 40: Cross section of droplet number concentration and liquid water content as
computed with PAFOG and standard microphysics for the fog event of 28 November
2004 at 0100 UTC (10 h forecast).
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nature of its formation under stable conditions due to slow cooling, which produces a
relatively shallow layer of small droplets. There are only very weak vertical motions
and the differences in fall speed are too small for coagulation to be important. This
is very different from a convective cloud, were up- and downdrafts, coagulation and
the presence of liquid and frozen water produce very complicated droplet spectra.

A second important assumption has to be made to determine the number of
droplets that activate when supersaturation is reached. Note that a newly activated
droplet competes with other newborns, as well as older siblings, about the available
condensate so that too large a population may result in sudden death enforced by
evaporation. Birth control is done using Twomey’s relation (Twomey 1959). For a
supersaturation S the number of activated cloud droplets Nact is calculated as:

Nact = CSk (89)

The constants k and C describe the aerosol model (maritime: k = 0.7, C = 100
cm−3, continental: k = 0.9, C = 3500 cm−3, this study: k = 0.9, C = 10000 cm−3).
Aerosols are needed condensation nuclei to produce liquid water in the form of small
droplets. In clean air without aerosols, supersaturation could easily exceed 100 %.
For Switzerland a typical value of C = 10000 cm−3 as in Bott & Trautmann (2002)
is used, but it could be even higher in rural areas. Currently C is the same for the
whole domain, but if detailed data become available it can be easily specified as a
spatial field. The increase in total concentration of cloud droplets during the time
step ∆t represents the first term of the prognostic equation [85] and with Twomey’s
relation is written as:(

∂Nc

∂t

)
act

: Nc(t+ ∆t) = Nc(t) +max(Nact −Nc(t), 0) (90)

Due to the maximum operator, Nc only increases in the case of a positive tendency
in the supersaturation. Thus if the supersaturation remains unchanged or decreases
no new droplets are activated and existing droplets grow. The time rate of change for
the cloud droplet diameter D due to condensation or evaporation is expressed with
the analytical solution of Mason (1971):

dD

dt
= Af̄

S

D
(91)

where f is a ventilation coefficient and A the thermodynamic function given in [92].
Now this needs some appreciation. Even though at the beginning a size distribution
was specified, it is actually allowed to evolve. The function A is defined as:

A =
Lρw

KT

(
L

RwT
− 1
)

+
ρwRwT

es(T )Dv
(92)

here es is the saturation vapor pressure over a plane water surface, ρw the density of
water, Rw the specific gas constant for moist air, Dv the water vapor diffusivity and
K is the thermal conductivity. The first term considers the effects of heat conduction,
and diffusion of water vapor is expressed by the second term.

In the case of evaporation (the second term of [85]), the smallest droplets disappear
first and Nc decreases. It is assumed that evaporation of small droplets is fast enough
for the ventilation coefficient to be negligible. The process can be modeled by first
computing the critical diameter Dc,eva of the largest droplet able to evaporate

Dc,eva =
√
−2AS∆t (S < 0) (93)

and then integrating from the smallest droplet to the critical diameter

Nc|eva =
∫ Dc,eva

0

Nc(D)dD (94)
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therefore the change in droplet number concentration due to evaporation can be
computed (

∂Nc

∂t

)
eva

: Nc(t+ ∆t)|eva = Nc(t)−Nc|eva (95)

So far the supersaturation S was assumed to be known. For its computation the
procedure of Bott & Trautmann (2002), which is based on Chaumerliac et al. (1987)
and Sakakibara (1979) was used:

S̄ = −c3
c
−
(
S(t) +

c3
c

)(1− ec∆t

c∆t

)
(96)

where c and c3 are assumed to be constant for the time step ∆t and c := c1 + c2 + c3

c1 = − 1
qv,sat

ρw

ρ

π

2
AΣc (97)

c2 = − L2

R1T 2cp

ρw

ρ

π

2
AΣc (98)

c3 =
(

1
p
− L

R1T 2ρcp

)
dp

dt
(99)

Σc = NcDc,0exp

[
σ2

c

2

]
(100)

Knowing the supersaturation, the changes in liquid water content and specific
humidity are: (

∂qc
∂t

)
con/eva

=
ρw

ρ

π

2
AS̄Σc (101)

(
∂q

∂t

)
con/eva

=
(
∂qc
∂t

)
con/eva

(102)

and with that the change in potential temperature due to phase changes can be
computed by: (

∂θ

∂t

)
con/eva

= − L

cp

(
∂q

∂t

)
con/eva

(103)

The sedimentation tendencies for cloud water and droplet number concentration ap-
pearing in the main prognostic equations [85] are:(

∂Nc

∂t

)
sed

=
∂Sn,c

∂z
− ∂

∂z
(Ncw) (104)

(
∂qc
∂t

)
sed

=
∂Sq,c

∂z
− ∂

∂z
(qcw) (105)

They can be evaluated assuming the log-normal droplet size distribution [88]. The size
distribution is multiplied with the size dependent settling velocities and integrated
over the whole droplet spectra. The formulation of Berry & Pranger (1974) is used
to express the settling velocity as a function of the Reynolds number Re

v(D) =
ηRe

Dρ
(106)

where

η = 1.496286× 10−6 T 1.5

T + 120
(107)
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The sedimentation terms Sn,c and Sq,c can then be evaluated

Sn,c =
∫ ∞

0

Nc(D)v(D)dD =
Ncv(Dc,0)√

2σcξ
exp

[
(k2 − 1)2)

4ξ2

]
(108)

Sq,c =
1
ρ

∫ ∞

0

m(D)Nc(D)v(D)dD =
Ncm(Dc,0)v(Dc,0)√

2σcξρ
exp

[
(k2 + 2)2)

4ξ2

]
(109)

using a2 = 1.01338, a3 = −0.0191182 and the following parameters

ξ :=

√
1

2σ2
c

− 9a3 (110)

k2 := 3a2 + 6a3 ln(aD3
c,0) (111)

a :=
4ρρwg

3η2
(112)

m(Dc,0) :=
π

6
ρwD

3
c,0 (113)

For the numerical solution of sedimentation, the positive definite advection scheme
of Bott (1989) is used. Since the size distribution of the droplets is known, the sedi-
mentation of the droplets can be computed accurately and it is not necessary to make
assumptions of a representative settling velocity as it is done in simple bulk micro-
physics models like COBEL. The sedimentation of liquid water is a very important
sink, especially for the large droplets containing a lot of water and having high settling
velocities.

The effects of more detailed microphysics can best be studied in a vertical cross
section (Figure 40). The top panel shows the distribution of computed droplet number
concentration, a variable not part of the standard microphysics. Generally highest
concentrations correspond well with high liquid water contents, shown in the second
panel. But interestingly there are also many droplets just over the airport, where
liquid water content is not very high. This means that the droplets must be rather
small. Note that for visibility the droplet number and the liquid water concentration
are important. For a constant liquid water content, visibility decreases with increasing
droplet number concentration. The structure of liquid water is very different from the
one obtained with standard microphysics. With PAFOG microphysics the liquid water
content generally decreases with increasing height. In the standard case the liquid
water distribution is rather uniform with lower concentrations close to the ground and
on top. In the case of PAFOG microphysics, most of the vertical structure is caused
by the sophisticated sedimentation scheme, which transports droplets of all sizes at
corresponding fall speeds. With standard microphysics sedimentation kicks in after a
critical liquid water concentration is exceeded and then decreases the water content
uniformly due to the lack of information about droplet size. Evaporation of droplets
is not very important at night.

8.5 Boundary conditions for Nc

PAFOG microphysics introduces droplet number concentration Nc as a new prognos-
tic variable into the 3D forecast model. The main goal is to link the Nc to the liquid
water content and thus allow a more precise modeling of the cloud water content.
The processes involved are activation, condensation/evaporation and sedimentation.
Since the droplet distribution outside the PAFOG domain is unknown, some prob-
lems arise when liquid water is transported into the domain. In particular PAFOG
is unable to evaporate or sediment this water because there are no droplets related
to it. As a consequence, liquid water accumulates in an environment that might have
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Figure 41: Some parameterized droplet size distributions with different σ used as
boundary conditions (left panel) and vertical layer distribution of the 3D fog model
(right panel).

relative humidities far below saturation and finally even precipitation may form. Now
the sources of such invisible water are advection through the lateral boundaries as
well as advection or turbulent diffusion through the top boundary, since PAFOG is
restricted to the lower part of the atmosphere. To maintain the link between Nc and
liquid water content, and thus control the development of fog, a boundary condition
for Nc has to be formulated.

A first possible solution is forced evaporation of the water at the boundaries and
condensation with PAFOG microphysics. This procedures produced too high relative
humidity values for the PAFOG microphysics. Note, that normally condensation
occurs over some time always keeping the relative humidity at low supersaturation.
It is however impossible to reconstruct the history of past supersaturation conditions
of the water at the boundaries so that the use of such an approach is not expected
to produce accurate results. Furthermore the evaporation/condensation procedure of
PAFOG does not allow its use with a threshold of humidity due to the relaxation in
the Sakakibara parameterization.
A second, more simple, very robust and also computationally efficient approach is to
relate liquid water content at the boundaries directly to Nc, assuming a lognormal
droplet size distribution as defined in [88].

We can solve Equation 3 of Chaumerliac et al. (1987) for Nc

qc =
Nc

ρa
(
π

6
D3

c,0ρw)exp(
9
2
σ2

c ) (114)

Nc = ρaqc(
1

π
6D

3
c,0ρw

)exp(
−9
2
σ2

c ) (115)

which is used at the boundaries.
The difficulty now is to find representative values for the mean diameter and stan-

dard deviation defining the lognormal droplet size distribution. They were determined
from the work of Miles et al. (2000), who presented a summary of different Nc mea-
surement campaigns for maritime and continental clouds. It is assumed that clouds
of the PAFOG domain are of continental type only. The lognormal distribution is
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parameterized with an evolution of the standard deviation and a fixed mean diameter
of 10 micrometers. The standard deviation σc is linearly interpolated with height
between a value of 0.2 at 1000 m and 0.35 at the top of the PAFOG domain. Below
and above this region the values of σc are kept constant at 0.2 and 0.35, respectively.
Figure 41 summarizes the parameterization and shows some resulting droplet size dis-
tributions. Note that this procedure basically broadens the droplet size distribution
with increasing height.

The boundary condition is applied at the lateral boundaries as well as at the
next five layers above the PAFOG domain, so that water entering from above due to
advection or turbulent diffusion contains Nc. Furthermore the boundary condition is
applied at initialization when liquid water is present. It has to be noted that droplets
introduced by this procedure are generated with a prescribed size distribution, but
once existent they can grow or shrink, since the mean diameter of the droplet size
distribution is computed with [91].

8.6 The cold bias problem

The already mentioned cold bias problem can give rise to severe over- as well as
underestimation of fog. The latter might seem surprising but we have to consider
that the cold bias at the surface is caused by insufficient turbulent mixing. So the
lowest few meters are too cold but the upper air is consequently too warm, in fact
it could just be warm enough to prevent fog formation. Depending on the humidity
conditions near the ground, the reduced mixing might also keep upper levels too dry.

Zavisa Janjic (personal communication, 2005) introduced a few modifications to
the moist turbulence scheme which addresse the cold bias problem. The floor value
for two times the turbulent kinetic energy (q2) was reduced from q2 = 0.2 to q2 = 0.02
and the minimum mixing length l = 0.32 m was changed to l = 0.1 m. With these
physically more realistic values the residual exchange coefficients drop from about 0.1
to 0.01 in the case of no turbulence, i.e. when q2 and l hit the floor values. Thus in
order to send more heat toward the surface in the case of very strong ground inversions,
residual exchange coefficients near the surface are set to 0.5 m2/s. The most important
change was made in the calculation of the production of turbulent kinetic energy,
which now also considers the gradient of equivalent potential temperature. By directly
converting some of the potential instability into turbulent kinetic energy, too unstable
shallow convective profiles are corrected towards a moist adiabatic lapse rate. In the
case of fog it appears to transport more heat downwards which significantly reduces
the cold bias.

Several case studies revealed that temperatures are now very similar to simulations
done on a coarser vertical grid. Therefore the changes solve the problem associated
with the high vertical resolution. Figure 42 shows an example cross section of pre-
dicted temperature and liquid water content. A cold bias of 6 K in 2 m temperatures
at Zürich Unique airport was reduced to 0.5 K using the above mentioned modifi-
cations. It can be seen how the fog resides in a relatively homogenous layer of cold
air, a pattern discussed for 1D models in Section 3.1. Without the modifications, a
strong surface inversion leading to the cold bias developed, which kept the fog within
the lowest 20 m.

8.7 A new possibility to compute visibility

The PAFOG microphysics compute the total droplet number concentration. This
variable is important for the calculation of visibility, because an increasing number
of light scattering droplets decreases visibility resulting from the same liquid water
content. In our article (Gultepe et al. 2005) we develop a new parameterization for
visibility that considers the new prognostic variable. Detailed observations of liquid

79



TEMPERATURE 

5.0-

5.0

5.0

5.
1

5.1

5.1

5.2

5.2

5.2

5.2

5.
2

5.
3

5.3

5.3

5.
3

5.3

5.3

5.
4

5.
45.

4

5.
4

5.4

5.4 5.
4

500

600

700

800

900

H
EI

G
H

T 
(m

)

 -2.5
 -2.0
 -1.5
 -1.0
 -0.5
  0.0
  0.5
  1.0
  1.5
  2.0
  2.5
  3.0
  3.5
  4.0
  4.5
  5.0
  5.5
  6.0
  6.5
  7.0

30 40 50 60 70
SOUTH NORTHDISTANCE (km)

(°C)

LIQUID WATER CONTENT 

0.01
0.05
0.10
0.15
0.20
0.25
0.30
0.35
0.40
0.45
0.50
0.55
0.60
0.70
0.80
0.90

30 40 50 60 70
SOUTH NORTHDISTANCE (km)

500

600

700

800

900

H
EI

G
H

T 
(m

)

(g/kg)

AIRPORT

Figure 42: 12 h forecast of temperature and liquid water content for 28 November
2004 at 0300 UTC.
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water content (qc), visibility (vis) and droplet number concentrations Nc lead to the
following parameterization for visibility:

vis = 1000
(

1.0002(
1

qcNc
)0.6473

)
(116)

So with the more detailed microphysics it is also possible to better diagnose visibility.
But it has to be mentioned that very accurate predictions of qc and Nc are needed
for reliable visibility forecasts, which is currently not possible. In fact the 1D model
verification showed that it is very difficult to only predict occurrence or non-occurrence
of fog.

8.8 Data and method for verification - a case study

Assessing the quality of the 3D fog model is rather difficult with currently available
data. Ideally a spatial distribution of fog would be needed, but such data have to
be derived from satellite measurements. Unfortunately satellites look at clouds from
above so that the discrimination between low stratus clouds and real fog is currently
not very accurate. Monitoring onset and dissipation further requires a high temporal
resolution, so that Meteosat-8, also called Meteosat Second Generation (MSG) with a
frequency of 15 min and a spatial resolution of around 3 km in Switzerland seems to
be appropriate. NOAA/AVHRR provides a high resolution 1 km image without much
geometric distortion, but there are only a handful of satellite passes a day. Of course
one could also just focus on a single point, where ground observations are available,
and compare one vertical column from the 3D results to assess the forecast skill for a
whole season of simulations.

Since October 2005 the 3D fog model is run in a semi-operational framework
to acquire a data set for future verification. For an area around Berlin-Lindenberg
as well as Zürich Unique airport 24 hours of simulation are computed daily. The
Berlin-Lindenberg domain is part of a model comparison project of COST-722. Both
experiments use a model domain of 100 by 100 grid points at a resolution of 1 km
and a time step of 2 seconds. This configuration requires about 55 min for a 24 h
simulation if 9 Pentium-4 CPU’s are used. This high efficiency of the model would
make it possible to run fog forecasts even for operational purposes. With an extent of
100 km by 100 km, the model domain requires a proper nesting into a larger domain.
For the Swiss experiment, the fog model was nested into the 4 km resolution NMM-4
model and for Berlin, the operational 13 km grid of NMM-22 was taken. It should be
noted that a nesting with the Lokalmodell of the German Weather Service was also
programmed.

In the scope of this outlook a case study for 11 October 2005 is presented to
demonstrate the potential of the fog model and the applicability of MSG satellite
data for model verification. For this particular case a prototype cloud classification
developed by Cermak et al. (2004) was available. Cermak & Bendix (2004) mention
some co-location issues in the satellite product. On the whole the geo-location of
Meteosat-8 is stable, but slight changes may occur in individual scenes. One therefore
has to consider that features may be found in a pixel other than the expected one in
some instances, resulting in an error of around 5 km for Switzerland. With correctly
geo-referenced visualizations as in Figure 43, conclusive verification can be done by
visual inspection. Black shaded areas indicate fog occurrence as detected by the
satellite and color shading shows the modeled liquid water content in the lowest
layer. Overall the result looks very promising in terms of spatial distribution as
well as temporal evolution. Especially if one keeps in mind the uncertainties and
relatively coarse resolution of the satellite observations. It has to be noted that the
model underestimates the fog in the upper right corner over lake Constance but this
is very likely a boundary effect. There was an easterly flow entering the domain but
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Figure 43: Spatial distribution of fog as seen by satellite (black shaded areas) and
simulated by the 3D fog model (colored areas). Contour lines of modeled liquid water
have a spacing of 0.1 g kg−1.
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the driving model did not predict any fog, so that the boundary conditions were too
dry. For an objective skill assessment the model and satellite data can be interpolated
to a common resolution and similarities and discrepancies can be analyzed for every
pixel.

A case study is of course not very representative, but once a whole winter season
has been simulated and the MSG fog product becomes available for the entire time
range, more conclusive verification can be carried out. Of special interest will be the
number of false alarms. So far the model seems to overestimate fog occurrence but a
verification at the end of the fog season will give a definitive answer.
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9 Conclusions and summary

1D ensemble fog forecast

The numerical simulation of fog is still a very difficult task. The reason is the need
for an almost perfect prediction of boundary layer temperature, humidity and wind
together with a detailed treatment of cloud microphysics. Small errors in temper-
ature or humidity can have dramatic effect if the air is close to saturation. Even
though there are situations with better predictability, such as days with high rela-
tive humidity at the beginning of the night, clear sky and only weak wind, the exact
onset and dissipation times are still difficult to obtain from numerical simulations.
Ensemble forecasting is very helpful to deal with the large quantity of uncertainties.
The generation of ensemble members is a rather complicated process and involves
data from different operational models and an assimilation scheme. The ensemble
members should reflect the current atmospheric uncertainty, which can be achieved
by computing a whole set of assimilations using background estimates from different
3D models. With few observations available, variational assimilation has to give a
lot of weight to the background derived from 3D models. For the humidity assimila-
tion, observational data are scarce and of poor quality, leaving a lot of uncertainty in
the assimilated profiles. Experiments showed that artificially increasing the humid-
ity improves the fog forecast skill. Therefore a humidity ensemble might be helpful
for operational purpose. Skill scores from 180 days of simulations proof that the 1D
ensemble forecast system can significantly improve fog forecasting at Zürich Unique
airport. The numerical model ensemble is able to increase the discrimination up to
a hit rate of 60 % with a false alarm rate of 30 % or for the 2100 UTC initialization
to a hit rate of 80 % with a false alarm rate of 45 %. It has to be noted that these
forecasts are purely machine based, and if the model results were interpreted by a
human forecaster, even better skills could be achieved.

As good as this seems, the potential of a 1D model in complex terrain is however
limited by the effects resulting from spatial heterogeneity. There are many problems
if spatial inhomogeneities have to be included in a 1D model. Boundary conditions
can be introduced to simulate the effects of advection and changing cloud cover can
be considered by variable radiation fluxes at the model top. All in all the 1D model
is heavily dependent on a 3D model supplying the boundary conditions. A 1D fog
forecast is thus very sensitive to the forecast quality of the driving 3D model. Another
problem in a 1D model are accurate forecasts of the mean flow, which are essential
for computing turbulent exchange.

Nevertheless, the big advantage of 1D models is high computational efficiency,
allowing to compute a probabilistic forecast for the next 18 h at a high temporal fre-
quency, e.g. every hour. If driven with observations and not run in forecast mode, a
1D model can also be a very good research tool to test and develop physical parame-
terizations. From the underlying assumption of spatial homogeneity, the developed
forecast system is expected to yield even better results for locations in relatively flat
terrain.

3D fog modeling

A proper solution to deal with spatial heterogeneity is without question the develop-
ment of a 3D model. A first step in this direction was made by including detailed
fog microphysics into an existing 3D model. By doing so, the total droplet number
concentration is introduced as a new prognostic variable, which allows to better repre-
sent the gravitational settling as well as condensation and evaporation of cloud water.
During the growth phase, radiation fog steadily gains thickness, starting from a thin
layer above the surface. To model this process it is necessary to have a very high ver-
tical resolution not used in numerical weather prediction models. As a consequence,
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the turbulent exchange is not adapted to such thin layers, and through nocturnal
decoupling a severe cold bias may develop if no modifications are made. In order to
resolve topographical features of complex terrain, a grid spacing of 1 km or even less
is required. At such high resolution, the model reproduced cold air drainage flows
and cold air ponding resulting in a fog of larger vertical extent than in the case of
local surface cooling. Indeed, simulated fog from the 1D model was often very shallow
and could not reach the vertical extent typically seen. When it comes to verification,
spatial fields have to be analyzed, which expresses the need for satellite data or a very
dense observational network. A case study outlines the good performance of the 3D
fog model and also the potential of sophisticated satellite cloud products, which can
be used for verification purposes. However, for conclusive skill assessment a whole
season needs to be simulated and analyzed, which will be part of future research.
Also of great importance is the specification of initial conditions, which is far more
complicated than in the 1D case. Currently initial conditions are simply interpolated
from an operational forecast model, but the development of a high resolution data
assimilation system is expected to have significant impact.

The high computational efficiency of the NMM results in a fog model with rel-
atively modest CPU requirements. Furthermore the 3D context allows to do time
integrations of two days or even more if the model is nested into an operational fore-
cast model. Even today it would be possible to run a 2 day forecast for Switzerland
in an operational context. Especially in complex terrain the future of fog forecasting
will be a 3D model. For the moment this can be a separate model running for a small
region, but as the resolution of the operational weather forecast reaches 1 km, the fog
module could be incorporated into an operational model.

Radiation in complex terrain

With increasing resolution, topographical effects on radiation gain importance. The
smaller grid spacing results in steeper slopes and the radiation absorbing surface
cannot any longer be modeled as a horizontal surface. In fact radiation interacts in
a very complex way with topography. It is computationally too expensive to model
processes like multiple reflections, but if only some basic features like slope angle,
aspect angle, shadows and sky view restriction are considered, the resulting spatial
redistribution of energy has a significant positive impact on the temperature forecast.
In absolute values, a reduction of 0.5 K in RMS error and 1 K in mean error was found.
The benefit is most pronounced at night, when the inclusion of sky view restriction
leads to a smaller cold bias. But the radiation parameterization does not solely affect
temperature. Indeed, a changed temperature can influence the wind field, clouds and
even precipitation.

The developed parameterization is especially useful because it comes at no com-
putational costs. Furthermore its effects increase with decreasing grid spacing, which
is likely to happen with the steadily improving performance of computing resources.
Even though the grid spacing of operational numerical weather prediction will reach
1 km in the next 5 to 10 years, there will still be a lot of topographical detail miss-
ing. But since topography is treated in a sub-grid way, higher resolution elevation
data can be used to take into account small scale features not seen on the forecast
model grid. Fortunately the necessary topographical information is already available.
One such data set is the near globally available elevation model of the Shuttle Radar
Topography Mission (SRTM), which has a resolution of about 80 m. Finally it has to
be mentioned that, NOAA/NCEP as well as MeteoSwiss decided to implement the
parameterization into their operational forecast models.
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Hólm, E. V. (2003), Lecture notes on assimilation algorithms, Technical report, Eu-
ropean Center for Medium Range Weather Forecast ECMWF.

Hong, S.-Y., Juang, M.-M. H. & Zhao, Q. (1998), ‘Implementation of prognostic cloud
scheme for a regional spectral model’, Mon. Wea. Rev. 126, 2621–2639.

Hou, D., Kalnay, E. & Droegemeier, K. K. (2001), ‘Objective verification of the
SAMEX’98 ensemble forecast’, Mon. Wea. Rev. 129, 73–91.

Houtekamer, P. L., Lefaivre, L., Derome, J., Ritchie, H. & Mitchell, H. L. (1996), ‘A
system simulation approach to ensemble prediction’, Mon. Wea. Rev. 124, 1225–
1242.

Houtekamer, P. L. & Mitchell, H. L. (1998), ‘Data assimilation using an ensemble
Kalman filter technique’, Monthly Weather Review 126, 796–811.

Houtekamer, P. L. & Mitchell, H. L. (2001), ‘A sequential ensemble Kalman filter for
atmospheric data assimilation’, Monthly Weather Review 129, 123–137.

Houze, R. A. (1993), Cloud Dynamics, Academic Press, San Diego, California.

Ide, K., Courtier, P., Ghil, M. & Lorenc, A. C. (1997), ‘Unified notation for data
assimilation: operational, sequential and variational’, J. Meteorol. Soc. Japan
75(1B), 181–189.

Ingleby, N. B. (2001), ‘The statistical structure of forecast errors and its representa-
tion in the Met. Office global 3-D variational data assimilation scheme’, Q. J. R.
Meteorol. Soc. 127, 209–231.
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